Mechanisms and consequences of µ-opioid receptor dimerization

Mechanismen und Konsequenzen der µ-Opioid-Rezeptor-Dimerisierung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-219862
  • One third of all market approved drugs target G protein coupled receptors (GPCRs), covering a highly diverse spectrum of indications reaching from acute anti-allergic treatment over bloodpressure regulation, Parkinson's disease, schizophrenia up to the treatment of severe pain. GPCRs are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. I have investigated this problem using the μ-opioid receptor (µOR) as a model systemOne third of all market approved drugs target G protein coupled receptors (GPCRs), covering a highly diverse spectrum of indications reaching from acute anti-allergic treatment over bloodpressure regulation, Parkinson's disease, schizophrenia up to the treatment of severe pain. GPCRs are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. I have investigated this problem using the μ-opioid receptor (µOR) as a model system - based both on its pharmacological importance and on specific biochemical data suggesting that it may present a particularly intriguing case of mono- vs- dimerization. The µOR is the prime target for the treatment of severe pain. In its inactive conformation it crystallizes as homodimer when bound to the antagonist β- funaltrexamine (β-FNA), whereas the active, agonist-bound receptor crystallizes as a monomer. Using single-molecule microscopy combined with superresolution techniques on intact cells, I describe here a dynamic monomer-dimer equilibrium of µORs where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates temporally and, in its agonist, and phosphorylation dependence with β-arrestin2 binding to the receptors. This dimerization is independent from but may precede µOR internalization. Furthermore, the results show that the μOR tends to stay, on the cell surface, within compartments defined by actin fibers and its mobility is modulated by receptor activation. These data suggest a new level of GPCR regulation that links receptor compartmentalization and dimer formation to specific agonists and their downstream signals.show moreshow less
  • Abgesehen davon, dass der μ-Opioid-Rezeptor das primäre Zielprotein zur Behandlung schwerer Schmerzen ist, führt die Aktivierung dieses Rezeptors zu einer Reihe von unerwünschten Nebenwirkungen wie Atemdepression, Obstipation und Drogenabhängigkeit. Um die medizinischen Chemiker bei der Entwicklung neuer Arzneistoffe zu unterstützen, ist das Verständnis der molekularen Funktion insbesondere der Aktivierungs- und Deaktivierungsmechanismen des μ-Opioid-Rezeptors von voranschreitender Bedeutung.Abgesehen davon, dass der μ-Opioid-Rezeptor das primäre Zielprotein zur Behandlung schwerer Schmerzen ist, führt die Aktivierung dieses Rezeptors zu einer Reihe von unerwünschten Nebenwirkungen wie Atemdepression, Obstipation und Drogenabhängigkeit. Um die medizinischen Chemiker bei der Entwicklung neuer Arzneistoffe zu unterstützen, ist das Verständnis der molekularen Funktion insbesondere der Aktivierungs- und Deaktivierungsmechanismen des μ-Opioid-Rezeptors von voranschreitender Bedeutung. Die prominentesten Signalpartner des μ-Opioid-Rezeptors sind G-Proteine des Typs Gi, sowie nach vorheriger Phosphorylierung durch G-Protein-gekoppelte Rezeptorkinasen, β- Arrestin2. Die neusten strukturbasierten Bemühungen zur Entwicklung sicherer Opioid-Schmerzmittel waren auf die Herstellung von Signal-selektiven konzentriert, die eine hohe Präferenz für G-Protein-Signalwege aufweisen und somit die β- Arrestin-vermittelten Nebenwirkungen umgehen sollen. In der Tat konnte, durch Knock-in -Mäuse mit phosphorylierungs-defizienten μ-Opioid-Rezeptoren gezeigt werden, dass die analgetischen Effekte verbessert wurden und die Toleranzentwicklung abgeschwächt wurde, wenn der Rezeptor eine Präferenz für den G-Protein Signalweg zeigte. Unerwarteterweise wurden die anderen Nebenwirkungen, wie Atemdepressionen, Obstipation, sowie Entzugssymptome jedoch dadurch verschlimmert. Ein Erklärungsversuch für dieses andauernde Problem bei der Entwicklung sicherer Opioid-Medikamente basiert auf der verminderten intrinsischen Aktivität dieser G- Protein Signalweg-betonten Arzneistoffe. ...show moreshow less

Download full text files

Export metadata

Metadaten
Author: Jan MöllerORCiD
URN:urn:nbn:de:bvb:20-opus-219862
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Prof. Dr. Martin J. Lohse
Date of final exam:2020/12/23
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-21986
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 615 Pharmakologie, Therapeutik
GND Keyword:Opiatrezeptor; Dimere
Tag:Pharmacology
Release Date:2022/01/03
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International