Regulation of ion conductance and cAMP/cGMP concentration in megakaryocytes by light

Regulation der Ionenleitfähigkeit und cAMP/cGMP Konzentration in Megakaryozyten durch Licht

Please always quote using this URN: urn:nbn:de:bvb:20-opus-216947
  • Platelets play an essential role in haemostasis. Through granule secretion of second wave mediators and aggregation, they secure vascular integrity. Due to incorrect activation, platelet aggregation and subsequent thrombus formation can cause blood vessel occlusion, leading to ischemia. Patients with defects in platelet production have a low platelet count (thrombocytopenia), which can cause an increased bleeding risk. In vitro platelet generation is still in its development phase. So far, no convincing results have been obtained. For thisPlatelets play an essential role in haemostasis. Through granule secretion of second wave mediators and aggregation, they secure vascular integrity. Due to incorrect activation, platelet aggregation and subsequent thrombus formation can cause blood vessel occlusion, leading to ischemia. Patients with defects in platelet production have a low platelet count (thrombocytopenia), which can cause an increased bleeding risk. In vitro platelet generation is still in its development phase. So far, no convincing results have been obtained. For this reason, the health care system still depends on blood donors. Platelets are produced by bone marrow megakaryocytes (MKs), which extend long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Due to shear forces, platelets are then released into the bloodstream. The molecular mechanisms underlying platelet production are still not fully understood. However, a more detailed insight of this biological process is necessary to improve the in vitro generation of platelets and to optimise treatment regimens of patients. Optogenetics is defined as “light-modulation of cellular activity or of animal behaviour by gene transfer of photo-sensitive proteins”. Optogenetics has had a big impact on neuroscience over the last decade. The use of channelrhodopsin 2 (ChR2), a light-sensitive cation channel, made it possible to stimulate neurons precisely and minimally invasive for the first time. Recent developments in the field of optogenetics intend to address a broader scope of cellular and molecular biology. The aim of this thesis is to establish optogenetics in the field of MK research in order to precisely control and manipulate MK differentiation. An existing “optogenetic toolbox“ was used, which made it possible to light-modulate the cellular concentration of specific signalling molecules and ion conductance in MKs. Expression of the bacterial photoactivated adenylyl cyclase (bPAC) resulted in a significant increase in cAMP concentration after 5 minutes of illumination. Similarly, intracellular cGMP concentrations in MKs expressing photoactivated guanylyl cyclase (BeCyclop) were elevated. Furthermore, proplatelet formation of MKs expressing the light-sensitive ion channels ChR2 and anion channelrhodopsin (ACR) was altered in a light-dependent manner. These results show that MK physiology can be modified by optogenetic approaches. This might help shed new light on the underlying mechanisms of thrombopoiesis.show moreshow less
  • Thrombozyten sind für die primäre Hämostase verantwortlich und unterstützen die Blutgerinnung. Durch ihre Aggregation und die Synthese bzw. Freisetzung von in Granula gespeicherten second wave Mediatoren, sichern sie die Integrität der Blutgefäße. Werden Thrombozyten fälschlicherweise aktiviert, kann es zu einem Gefäßverschluss durch Thrombusbildung mit daraus resultierender Ischämie kommen. Patienten mit einer defekten Thrombozytopoese weisen eine reduzierte Thrombozytenzahl (Thrombozytopenie) auf, die mit einer erhöhten BlutungsneigungThrombozyten sind für die primäre Hämostase verantwortlich und unterstützen die Blutgerinnung. Durch ihre Aggregation und die Synthese bzw. Freisetzung von in Granula gespeicherten second wave Mediatoren, sichern sie die Integrität der Blutgefäße. Werden Thrombozyten fälschlicherweise aktiviert, kann es zu einem Gefäßverschluss durch Thrombusbildung mit daraus resultierender Ischämie kommen. Patienten mit einer defekten Thrombozytopoese weisen eine reduzierte Thrombozytenzahl (Thrombozytopenie) auf, die mit einer erhöhten Blutungsneigung assoziiert ist. Bisher gibt es keine überzeugenden Ansätze, die eine Thrombozytenproduktion in vitro ermöglichen. Aus diesem Grund ist das Gesundheitswesen, in der Versorgung der bedürftigen Patienten mit Thrombozytenkonzentraten, auf Blutspender angewiesen. Thrombozyten werden im Knochenmark von ihren Vorläuferzellen, den Megakaryozyten (MKs) produziert. Diese bilden lange zytoplasmatische Fortsätze aus, die Proplättchen genannt werden. Durch die Scherkräfte des Blutstroms in den sinuosoidalen Blutgefäßen, schnüren sich Thrombozyten von den Proplättchen ab. Bisher sind die molekularen Prozesse der Thrombozytenproduktion noch weitgehend unverstanden. Ein besseres Verständnis des Vorgangs ist die Voraussetzung für eine Weiterentwicklung der in vitro Thrombozytengenerierung und einer optimierten Patientenbehandlung. Unter Optogenetik versteht man die Übertragung lichtempfindlicher Proteine in zuvor nicht lichtempfindliche Zellen. Dadurch wird eine nicht-invasive Beeinflussung von Zellvorgängen oder des Verhaltens von Tieren durch Licht ermöglicht. Das Feld der Optogenetik, besonders der lichtempfindliche Kanal Channelrhodopsin 2 (ChR2), hatte einen großen Einfluss auf die neuronale Forschung. Durch ihn war es möglich, Neuronen gezielt nicht-invasiv zu aktivieren und Kreisläufe zu untersuchen. Mittlerweile wurde das Spektrum auf eine Vielzahl von Forschungsgebieten und Zelltypen ausgeweitet. Das Ziel dieser Arbeit ist es, die Methoden der Optogenetik in MKs zu etablieren. Dadurch soll ein Weg gefunden werden, die Megakaryozytenreifung gezielt zu kontrollieren bzw. zu manipulieren. Die bereits vorhandene „optogenetische Toolbox“ wurde verwendet, um die intrazellulären Konzentrationen bestimmter Signalmoleküle und Ionen in MKs zu verändern. Durch die Expression der bakteriellen fotoaktivierbaren Adenylatzyklase (bPAC), wurde die cAMP Konzentration nach 5 min Lichtgabe signifikant erhöht. Ebenfalls ist es durch die Expression der fotoaktivierbaren Guanylatzyklase (BeCyclop) gelungen, die intrazelluläre cGMP Konzentration in MKs durch Belichtung zu erhöhen. Darüber hinaus konnte der Vorgang der Proplättchenformierung in MKs, welche die lichtempfindlichen Ionenkanäle ChR2 und Anion Channelrhodopsin (ACR) exprimierten, durch Licht beeinflusst werden. Die Ergebnisse zeigen, dass eine Beeinflussung der Megakaryozytenphysiologie durch Optogenetik möglich ist. Die Erkenntnisse können dazu beitragen, die Vorgänge der Thrombozytopoese in Zukunft besser zu verstehen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Hendrikje KurzGND
URN:urn:nbn:de:bvb:20-opus-216947
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Medizinische Fakultät / Institut für Experimentelle Biomedizin
Referee:Dr. Markus Bender, Prof. Dr. Georg Nagel, Prof. Dr. Alma Zernecke-Madsen
Date of final exam:2020/11/18
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-21694
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Optogenetik; Megakaryozyt
Tag:megakaryocytes; optogenetics; proplatelets; second messenger
Release Date:2022/11/18
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International