Resveratrol counteracts IL‐1β‐mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs

Please always quote using this URN: urn:nbn:de:bvb:20-opus-215471
  • When aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environmentWhen aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL‐1β (1–10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL‐1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL‐1β‐treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL‐1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL‐1β‐mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long‐term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sebastian FrischholzORCiD, Oliver Berberich, Thomas Böck, Rainer H. Meffert, Torsten Blunk
URN:urn:nbn:de:bvb:20-opus-215471
Document Type:Journal article
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II)
Language:English
Parent Title (English):Journal of Tissue Engineering and Regenerative Medicine
Year of Completion:2020
Volume:14
Issue:7
First Page:897
Last Page:908
Source:Journal of Tissue Engineering and Regenerative Medicine 2020, 14(7):897–908. DOI: 10.1002/term.3031
DOI:https://doi.org/10.1002/term.3031
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:IL‐1β; articular chondrocytes; cartilage; cell‐based therapy; extracellular matrix; inflammation; osteoarthritis; resveratrol
Release Date:2021/07/01
EU-Project number / Contract (GA) number:309962
OpenAIRE:OpenAIRE
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International