Bolaamphiphilic Rylene Bisimides: Thermodynamics of Self-assembly and Stimuli-responsive Properties in Water

Bolaamphiphile Rylenebisimide: Thermodynamik der Selbstorganisation und Stimuli-responsiven Merkmale in Wasser

Please always quote using this URN: urn:nbn:de:bvb:20-opus-213424
  • The present thesis demonstrates how different thermodynamic aspects of self-assembly and stimuli-responsive properties in water can be encoded on the structure of π-amphiphiles, consisting of perylene or naphthalene bisimide cores. Initially, quantitative thermodynamic insights into the entropically-driven self-assembly was studied for a series of naphthalene bisimides with UV/Vis and ITC measurements, which demonstrated that their thermodynamic profile of aggregation is heavily influenced by the OEG side chains. Subsequently, a control overThe present thesis demonstrates how different thermodynamic aspects of self-assembly and stimuli-responsive properties in water can be encoded on the structure of π-amphiphiles, consisting of perylene or naphthalene bisimide cores. Initially, quantitative thermodynamic insights into the entropically-driven self-assembly was studied for a series of naphthalene bisimides with UV/Vis and ITC measurements, which demonstrated that their thermodynamic profile of aggregation is heavily influenced by the OEG side chains. Subsequently, a control over the bifurcated thermal response of entropically driven and commonly observed enthalpically driven self-assembly was achieved by the modulation of glycol chain orientation. Finally, Lower Critical Solution Temperature (LCST) phenomenon observed for these dyes was investigated as a precise control of this behavior is quintessential for self-assembly studies as well as to generate ‘smart’ materials. It could be shown that the onset of phase separation for these molecules can be encoded in their imide substituents, and they are primarily determined by the supramolecular packing, rather than the hydrophobicity of individual monomers.show moreshow less
  • Die vorliegende Arbeit zeigt, wie verschiedene thermodynamische Aspekte der Selbstorganisation sowie die Stimuli-responsiven Merkmale in Wasser mittels der Struktur von π-Amphiphilen mit Perylen- oder Naphthalinbisimidkernen programmiert werden können. Zunächst wurden quantitative thermodynamische Einblicke in die entropisch getriebene Selbstorganisation für eine Reihe von Naphthalinbisimiden mit UV / Vis- und ITC-Messungen untersucht. Diese zeigten, dass ihr thermodynamisches Aggregationsprofil stark von den Oligoethylenglykol-SeitenkettenDie vorliegende Arbeit zeigt, wie verschiedene thermodynamische Aspekte der Selbstorganisation sowie die Stimuli-responsiven Merkmale in Wasser mittels der Struktur von π-Amphiphilen mit Perylen- oder Naphthalinbisimidkernen programmiert werden können. Zunächst wurden quantitative thermodynamische Einblicke in die entropisch getriebene Selbstorganisation für eine Reihe von Naphthalinbisimiden mit UV / Vis- und ITC-Messungen untersucht. Diese zeigten, dass ihr thermodynamisches Aggregationsprofil stark von den Oligoethylenglykol-Seitenketten beeinflusst wird. Anschließend wurde durch gezielte Modulation der Glykolketten und der daraus resultierenden Neuorientierung der Ketten, eine Kontrolle über die Thermodynamik der Selbstassemblierung zwischen der häufiger beobachtbaren enthalpisch getriebenen und der entropisch getriebenen Selbstorganisation erreicht. Schließlich wurde das für diese Farbstoffe beobachtete Phänomen der niedrigeren kritischen Lösungstemperatur (LCST) untersucht, da eine genaue Kontrolle dieses Verhaltens für Selbstorganisationsstudien sowie für die Erzeugung „intelligenter“ Materialien von entscheidender Bedeutung ist. Es konnte gezeigt werden, dass der Beginn der Phasentrennung für diese Moleküle von ihren Imidsubstituenten und hauptsächlich durch die supramolekulare Packung bestimmt werden und nicht durch die Hydrophobie einzelner Monomere.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Pradeep Peethambaran Nair SyamalaORCiD
URN:urn:nbn:de:bvb:20-opus-213424
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Referee:Prof. Dr. Frank WürthnerORCiDGND
Date of final exam:2020/10/08
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-21342
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 547 Organische Chemie
GND Keyword:Supramolekulare Chemie; Aggregation; Selbstorganisation; Wasser
Tag:Organische Chemie
Lower Critical Solution Temperature (LCST); Self-assembly; Supramolecular Chemistry; Thermodynamics; Water
Release Date:2021/10/11
Licence (German):License LogoDeutsches Urheberrecht