Methods to Improve Bone Marrow Dosimetry in Molecular Radiotherapy

Methoden zur Verbesserung der Knochenmarkdosimetrie in der molekularen Strahlentherapie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-208503
  • Bone marrow dosimetry is a topic of high interest in molecular radiotherapy. Predicting the level of hematological toxicity is one of the most important goals of nuclear medicine radiation dosimetry. To achieve this, it is necessary to quantify the absorbed dose to the active bone marrow, thus aiming at administering the most efficient therapy with a minimum level of adverse effects in the patient. The anatomical complexity of trabecular bone and bone marrow leads to the need of applying non-nuclear medicine imaging methods for determining theBone marrow dosimetry is a topic of high interest in molecular radiotherapy. Predicting the level of hematological toxicity is one of the most important goals of nuclear medicine radiation dosimetry. To achieve this, it is necessary to quantify the absorbed dose to the active bone marrow, thus aiming at administering the most efficient therapy with a minimum level of adverse effects in the patient. The anatomical complexity of trabecular bone and bone marrow leads to the need of applying non-nuclear medicine imaging methods for determining the spatial distribution of soft tissue, adipose tissue, and bone in spongiosa. Therefore, the two objectives of this dissertation are: i) to apply magnetic resonance imaging (MRI) for quantification of the fat volume fraction, and ii) to validate a method based on dual-energy quantitative computed tomography (DEQCT) for quantification of the trabecular bone volume fraction. In a first step, an MRI sequence (two-point Dixon) for fat-water separation was validated in a 3 Tesla system by quantifying the fat volume fraction in a phantom and the lumbar vertebrae of volunteers and comparing with magnetic resonance spectroscopy (MRS). After successful validation, the fat volume fraction was retrospectively measured in the five lumbar vertebrae of 44 patient images acquired in the clinical routine. The two-point Dixon showed a good quantification of the fat volume fraction in the phantom experiment (-9.8% maximum relative error with respect to the nominal values). In the volunteers, a non-significant difference between MRI and MRS was found for the quantification of the fat volume fraction in volumes-of-interest with similar dimensions and position in both quantification methodologies (MRI and MRS). In the study with patient data, the marrow conversion (red → yellow marrow) was found to be age-dependent, and slower in males (0.3% per year) than in females (0.5% per year). Also, considerable variability of the fat volume fraction in patients of similar ages and the same gender was observed. These results enable the use of two-point Dixon MRI in the quantification of the fat volume fraction in the bone marrow. Additionally, the constant marrow conversion during adulthood suggests that a patient-specific approach should replace the assumption of a constant cellularity volume fraction of 0.7 (reference man) (1,2) as proposed by the International Commission on Radiological Protection (ICRP). In a second step, a quantification method based on DEQCT was validated in two CT systems: i) a clinical CT integrated into a SPECT/CT and ii) a dual-source computed tomography (DSCT) system. The method was applied in two phantoms: the first was used to validate the DEQCT method by the quantification of the hydroxyapatite volume fraction in three vials of 50 ml each and three different hydroxyapatite concentrations (100 mg/cm3, 200 mg/cm3, 300 mg/cm3). The second phantom was the European spine phantom (ESP), an anthropomorphic spine phantom. It was used to quantify the bone mineral content (BMC) on the whole vertebra and the hydroxyapatite volume fraction (VFHA) in the spongiosa region of each vertebra of the phantom. Lastly, the BMC of lumbar vertebrae 1 (LV1) and 2 (LV2) was measured in a patient using DEQCT and dual-energy X-ray absorptiometry (DEXA). Furthermore, the hydroxyapatite volume fraction (VFHA) and the bone volume fraction (VFB) was calculated for both the whole vertebrae and the spongiosa region of LV1 and LV2. The measured and nominal hydroxyapatite volume fraction in the vial phantom showed a good correlation (maximum relative error: 14.2%). The quantification of the BMC on the whole vertebra and the VFHA on the spongiosa region showed larger relative errors than in the validation phantom. The quantification of BMC on LV1 and LV2 showed relative errors between DEXA and DSCT equal to 7.6% (LV1) and -8.4% (LV2). Also, the values of the VFHA (mineral bone) were smaller than the VFB. This result is consistent with the bone composition (mineral bone plus organic material). The DEQCT method enables the quantification of hydroxyapatite (mineral bone) and bone (mineral bone plus organic material) in a clinical setting. However, the method showed an overestimation of the quantified mineral bone volume fraction. This overestimation might be related to the lack of detailed information on the CT X-ray spectra and detector sensitivity. Also, the DEQCT method showed a dependency on the CT reconstruction kernel and the chemical description of the materials to be quantified. Based on the results of this work, the feasibility for quantifying the fat volume fraction and the bone volume fraction in the spongiosa in a clinical setting has been demonstrated/proven. Furthermore, the differences in fat volume fraction in females and males, as well as the variability of the fat volume fraction in subjects of similar ages, questions the approximation of the cellularity volume fraction by only a single ICRP reference value in bone marrow dosimetry for molecular radiotherapy. Lastly, this study presents the first approach for non-invasive quantification of the bone volume fraction (mineral bone plus organic material) for improved bone marrow dosimetry.show moreshow less
  • Die Knochenmarkdosimetrie ist von großem Interesse für die Radionuklidtherapie. Die Vorhersage des Grades der hämatologischen Toxizität ist eines der wichtigsten Ziele der nuklearmedizinischen Dosimetrie. Um dieses Ziel zu erreichen, ist es erforderlich, die Energiedosis des aktiven Knochenmarks zu quantifizieren, um dem Patienten so eine möglichst effiziente Therapie mit einem minimalen Maß an unerwünschten Nebenwirkungen verabreichen zu können. Die anatomische Komplexität von Knochentrabekel und Knochenmark macht es erforderlich,Die Knochenmarkdosimetrie ist von großem Interesse für die Radionuklidtherapie. Die Vorhersage des Grades der hämatologischen Toxizität ist eines der wichtigsten Ziele der nuklearmedizinischen Dosimetrie. Um dieses Ziel zu erreichen, ist es erforderlich, die Energiedosis des aktiven Knochenmarks zu quantifizieren, um dem Patienten so eine möglichst effiziente Therapie mit einem minimalen Maß an unerwünschten Nebenwirkungen verabreichen zu können. Die anatomische Komplexität von Knochentrabekel und Knochenmark macht es erforderlich, nicht-nuklearmedizinische bildgebende Verfahren anzuwenden, um die räumliche Verteilung von Weichgewebe, Fettgewebe und Knochen in der Spongiosa zu bestimmen. Daher sind die zwei Ziele dieser Dissertation: i) die Anwendung der Magnetresonanztomographie (MRT) zur Quantifizierung des Fettvolumenanteils und ii) die Validierung einer auf der quantitativen Dual-Energy Computertomographie (engl. Dual-energy quantitative computed tomography, DEQCT) basierenden Methode zur Quantifizierung des Knochentrabekelvolumenanteils. In einem ersten Schritt wurde eine Zweipunkt-Dixon-Sequenz der MRT zur Fett-Wasser-Trennung in einem 3 Tesla-System validiert, indem der Fettvolumenanteil in einem Phantom und in den Lendenwirbeln von Probanden quantifiziert und mit mittels der Magnetresonanzspektroskopie (MRS) ermittelten Werten verglichen wurde. Nach erfolgreicher Validierung wurde der Fettvolumenanteil retrospektiv an den fünf Lendenwirbeln von 44 in der im klinischen Routine aufgenommenen Patientendatensätzen gemessen. Die Zweipunkt-Dixon-Methode zeigte eine gute Quantifizierung des Fettvolumenanteils im Phantomexperiment (-9,8% maximaler relativer Fehler in Bezug auf die Nennwerte). Bei den Probanden wurde ein nicht signifikanter Unterschied zwischen MRT und MRS für die Quantifizierung des Fettvolumenanteils in einem Zielvolumen mit ähnlichen Dimensionen und ähnlicher Orientierung festgestellt. In der Patientenstudie wurde festgestellt, dass die Umwandlung des Knochenmarks (rotes Knochenmark → gelbes Knochenmark) altersabhängig und bei Männern (0,3% pro Jahr) langsamer als bei Frauen (0,5% pro Jahr) voranschreitet. Es wurde allerdings auch eine beträchtliche Variabilität des Fettvolumenanteils bei Patienten ähnlichen Alters und gleichen Geschlechts beobachtet. Diese Ergebnisse ermöglichen die Verwendung der Zweipunkt-Dixon-MRT zur Quantifizierung des Fettvolumenanteils im Knochenmark. Darüber hinaus legt die konstante Umwandlung des Knochenmarks im Erwachsenenalter nahe, dass der von der Internationalen Strahlenschutzkommission (engl. International Commission on Radiological Protection, ICRP) vorgeschlagene konstante Zellvolumenanteil von 0,7 (Referenzwert für einen männlichen Erwachsenen) (1,2) durch einen patientenspezifischen Ansatz ersetzt werden sollte. In einem zweiten Schritt wurde eine auf DEQCT basierende Quantifizierungsmethode in zwei CT-Systemen validiert: i) ein in ein SPECT/CT integriertes klinisches CT und ii) ein Dual-Source-Computertomographie-System (DSCT). Die Methode wurde an zwei Phantomen erprobt: Das erste diente zur Validierung der DEQCT-Methode, wobei der Hydroxylapatit-Volumenanteil in drei 50-Milliter-Phiolen mit drei verschiedenen Hydroxylapatit-Konzentrationen (100 mg/cm3, 200 mg/cm3, 300 mg/cm3) quantifiziert wurde. Das zweite Phantom war das European Spine Phantom (ESP), ein anthropomorphes Wirbelsäulenphantom. Es wurde verwendet, um den Knochenmineralgehalt (engl. Bone Mineral Content, BMC) des gesamten Wirbels und den Hydroxylapatit-Volumenanteil (VFHA) in der Spongiosa-Region jedes Phantomwirbels zu quantifizieren. Schließlich wurde der BMC der Lendenwirbel 1 (LV1) und 2 (LV2) bei einem Patienten unter Verwendung von DEQCT und Dual-Röntgen-Absorptiometrie (engl. dual-energy X-ray absorptiometry, DEXA) gemessen. Darüber hinaus wurden der Hydroxylapatit-Volumenanteil (VFHA) und der Knochenvolumenanteil (VFB) sowohl für die gesamten Wirbel als auch für die Spongiosa-Region von LV1 und LV2 berechnet. Der gemessene und der nominelle Hydroxylapatit-Volumenanteil in den Phiolen zeigten eine gute Korrelation (maximaler relativer Fehler: 14,2%). Die Quantifizierung des BMC im gesamten Wirbel und des VFHA in der Spongiosa-Region zeigten größere relative Fehler als im Validierungsphantom: Die BMC-Quantifizierung für LV1 und LV2 ergaben relative Fehler zwischen DEXA und DSCT in Höhe von 7,6% (LV1) und -8,4% (LV2). Auch die Werte des VFHA (mineralischer Knochen) waren kleiner als die des VFB. Dieses Ergebnis steht im Einklang mit der Knochenzusammensetzung (Knochenmineral plus organisches Material). Die DEQCT-Methode ermöglicht die Quantifizierung von Hydroxylapatit (mineralischer Knochen) und Knochen (mineralischer Knochen plus organisches Material) in einem klinischen Umfeld. Die Methode zeigte jedoch eine Überschätzung des quantifizierten mineralischen Knochenvolumenanteils. Diese Überschätzung könnte mit dem Mangel an detaillierten Informationen über die CT-Röntgenspektren und die Detektorempfindlichkeit zusammenhängen. Auch die DEQCT-Methode zeigte eine Abhängigkeit vom verwendeten CT-Rekonstruktionsalgorithmus und der chemischen Beschreibung der zu quantifizierenden Materialien. Die Ergebnisse dieser Dissertation zeigen die Machbarkeit einer Quantifizierung des Fettvolumenteils und des Knochenvolumenteils in der Spongiosa in einem klinischen Kontext. Darüber hinaus geben die Unterschiede im Fettvolumenanteil von Frauen und Männern sowie die Variabilität des Fettvolumenanteils bei Individuen ähnlichen Alters Grund zur kritischen Auseinandersetzung mit der Näherung des Zellvolumenanteils durch nur einen einzelnen ICRP-Referenzwert in der Knochenmarkdosimetrie bei Radionuklidtherapien. Zusätzlich wird in dieser Arbeit der erste Ansatz für eine nicht-invasive Quantifizierung des Volumenanteils des Knochens (Knochenmineral plus organisches Material) für eine verbesserte Dosimetrie des Knochenmarks vorgestellt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Maikol Salas Ramirez
URN:urn:nbn:de:bvb:20-opus-208503
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Prof. Dr. Michael Lassmann, Prof. Dr. Gerhard Glatting, Prof. Dr. Andreas Buck, Prof. Dr. Peter Jakob
Date of final exam:2020/06/24
Language:English
Year of Completion:2020
DOI:https://doi.org/10.25972/OPUS-20850
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:2-point Dixon; Bone Marrow Dosimetry; Bone Quantification; DEQCT; Fat Quantification; Internal Dosimetry; MRI; Molecular Radiotherapy; Nuclar Medicine
Release Date:2020/07/24
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International