Sharpening super-resolution by single molecule localization microscopy in front of a tuned mirror

Einzelmolekül-Lokalisationsmikroskopie vor einem abgestimmten Spiegel zur Auflösungsverbesserung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-204329
  • The „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localizationThe „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localization microscopy (SMLM) in its most varied forms such as direct stochastic optical reconstruction microscopy (dSTORM) which are based on the temporal separation of the emission of individual fluorophores. Localization analysis of the subsequently taken images of single emitters eventually allows to reconstruct an image containing super-resolution information down to typically 20 nm in a cellular setting. The key point here is the localization precision, which mainly depends on the image contrast generated the by the individual fluorophore’s emission. Thus, measures to enhance the signal intensity or reduce the signal background allow to increase the image resolution achieved by dSTORM. In my thesis, this is achieved by simply adding a reflective metal-dielectric nano-coating to the microscopy coverslip that serves as a tunable nano-mirror. I have demonstrated that such metal-dielectric coatings provide higher photon yield at lower background and thus substantially improve SMLM performance by a significantly increased localization precision, and thus ultimately higher image resolution. The strength of this approach is that ─ except for the coated cover glass ─ no specialized setup is required. The biocompatible metal-dielectric nano-coatings are fabricated directly on microscopy coverslips and have a simple three-ply design permitting straightforward implementation into a conventional fluorescence microscope. The introduced improved lateral resolution with such mirror-enhanced STORM (meSTORM) not only allows to exceed Widefield and Total Internal Reflection Fluorescence (TIRF) dSTORM performance, but also offers the possibility to measure in a simplified setup as it does not require a special TIRF objective lens. The resolution improvement achieved with meSTORM is both spectrally and spatially tunable and thus allows for dual-color approaches on the one hand, and selectively highlighting region above the cover glass on the other hand, as demonstrated here. Beyond lateral resolution enhancement, the clear-cut profile of the highlighted region provides additional access to the axial dimension. As shown in my thesis, this allows for example to assess the three-dimensional architecture of the intracellular microtubule network by translating the local localization uncertainty to a relative axial position. Even beyond meSTORM, a wide range of membrane or surface imaging applications may benefit from the selective highlighting and fluorescence enhancing provided by the metal-dielectric nano-coatings. This includes for example, among others, live-cell Fluorescence Correlation Spectroscopy and Fluorescence Resonance Energy Transfer studies as recently demonstrated.show moreshow less
  • Die „Auflösungsrevolution" in der Fluoreszenzmikroskopie hat während des letzten Jahrzehnts eine Vielzahl von Techniken hervorgebracht, die es ermöglichen, das Beugungslimit zu überschreiten und eine Bildauflösung bis in den Nanometerbereich zu erreichen. Die Entwicklung der sogenannten superhochauflösenden Fluoreszenzmikroskopie ermöglicht es die zelluläre Architektur auf molekularer Ebene zu visualisieren und erreicht damit ein Auflösungsvermögen, wie es bisher nur mit elektronenmikroskopischen Ansätzen möglich war. Der BegriffDie „Auflösungsrevolution" in der Fluoreszenzmikroskopie hat während des letzten Jahrzehnts eine Vielzahl von Techniken hervorgebracht, die es ermöglichen, das Beugungslimit zu überschreiten und eine Bildauflösung bis in den Nanometerbereich zu erreichen. Die Entwicklung der sogenannten superhochauflösenden Fluoreszenzmikroskopie ermöglicht es die zelluläre Architektur auf molekularer Ebene zu visualisieren und erreicht damit ein Auflösungsvermögen, wie es bisher nur mit elektronenmikroskopischen Ansätzen möglich war. Der Begriff Einzelmolekül-Lokalisationsmikroskopie fasst zum Beispiel eine Vielzahl der unterschiedlichsten Ansätze zusammen. Wie zum Beispiel auch die direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM) basieren diese auf der zeitlichen Trennung der Emission einzelner Fluorophore. Die Lokalisierungsanalyse der so aufgenommenen Bilder von einzelnen Emittern ermöglicht schließlich die Rekonstruktion eines superhochaufgelösten Bildes, das eine Auflösung von typischerweise 20 nm in einer zellularen Umgebung erreicht. Der entscheidende Punkt ist hierbei die Lokalisierungsgenauigkeit, die hauptsächlich vom Bildkontrast abhängt. Eine Erhöhung der Signalintensität oder Reduzierung des Signalhintergrunds ermöglichen es daher, die mit dSTORM erzielte Bildauflösung zu erhöhen. In meiner Dissertation wird dies durch eine einfache reflektierende metalldielektrische Nanobeschichtung auf dem Mikroskop-Deckglas erreicht, das so als abstimmbarer Nanospiegel dient. Ich zeige in dieser Arbeit, dass solche metalldielektrischen Beschichtungen eine höhere Photonenausbeute bei niedrigerem Hintergrund liefern und somit die SMLM-Leistung durch eine signifikant erhöhte Lokalisierungsgenauigkeit und damit letztendlich einer höheren Bildauflösung wesentlich verbessern. Die Stärke dieses Ansatzes besteht darin, dass mit Ausnahme des beschichteten Deckglases keine spezielle Anpassung des experimentellen Aufbaus erforderlich ist. Die biokompatiblen metallisch-dielektrischen Nanobeschichtungen mit einem einfachen dreischichtigen Design werden direkt auf Mikroskop-Deckgläsern hergestellt, was eine direkte Implementierung in ein herkömmliches Fluoreszenzmikroskop ermöglicht. Die mit diesem spiegelverstärkten STORM (meSTORM) eingeführte verbesserte laterale Auflösung ermöglicht es nicht nur, die Bildauflösung von Weitfeld und Total Internal Reflection Fluorescence (TIRF) dSTORM zu übertreffen, sondern bietet auch die Möglichkeit, in einem vereinfachten Aufbau zu messen, da kein spezielles TIRF-Objektiv erforderlich ist. Die mit meSTORM erzielte Auflösungsverbesserung ist sowohl spektral als auch räumlich abstimmbar und ermöglicht so einerseits zweifarbige Bildgebung und andererseits eine gezielte Hervorhebung eines bestimmten Bereichs über dem Deckglas. Über die Verbesserung der lateralen Auflösung hinaus bietet das klare Profil des Verstärkungseffekts zusätzliche Information über die axiale Position. Wie in meiner Dissertation gezeigt, kann damit beispielsweise die dreidimensionale Architektur des intrazellulären Mikrotubuli-Netzwerks aufgelöst werden, indem die lokale Lokalisierungsunsicherheit in eine relative axiale Position übersetzt wird. Über meSTORM hinaus kann die selektive Hervorhebung und Fluoreszenzverstärkung durch die metalldielektrischen Nanobeschichtungen für eine Vielzahl von Membran- oder Oberflächenabbildungsanwendungen von Vorteil sein. Dies umfasst unter anderem Anwendungen wie die Fluoreszenzkorrelationsspektroskopie in lebenden Zellen und Fluoreszenzresonanz-energietransfer, wie bereits kürzlich gezeigt wurde.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Hannah Sophie HeilORCiD
URN:urn:nbn:de:bvb:20-opus-204329
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Biologie / Rudolf-Virchow-Zentrum
Referee:Prof. Dr. Katrin G. HeinzeORCiD, Prof. Dr. Markus SauerORCiD, Dr. Martin Kamp
Date of final exam:2020/05/13
Language:English
Year of Completion:2020
DOI:https://doi.org/10.25972/OPUS-20432
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Fluoreszenz; Einzelmolekülmikroskopie; Fluoreszenzmikroskopie
Tag:Nanofabrikation; Superhochauflösende Mikroskopie
Nanofabrication; Super-resolution microsopy
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 87.00.00 Biological and medical physics / 87.80.-y Biophysical techniques (research methods) / 87.80.Nj Single-molecule techniques (see also 82.37.Rs Single molecule manipulation of proteins and other biological molecules in physical chemistry)
Release Date:2020/05/20
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International