Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell–killing capability

Please always quote using this URN: urn:nbn:de:bvb:20-opus-201973
  • Tuberculosis patients and mice infected with live Mycobacterium tuberculosis accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that dead M. tuberculosis vaccines also may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of M. tuberculosis vaccines (heat-killed M. tuberculosis in incomplete Freund’s adjuvant, such as Montanide) but not single or control vaccines without M. tuberculosis strongly expanded CD11b\(^+\) myeloid cells in the spleen, leading to T cellTuberculosis patients and mice infected with live Mycobacterium tuberculosis accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that dead M. tuberculosis vaccines also may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of M. tuberculosis vaccines (heat-killed M. tuberculosis in incomplete Freund’s adjuvant, such as Montanide) but not single or control vaccines without M. tuberculosis strongly expanded CD11b\(^+\) myeloid cells in the spleen, leading to T cell suppression of proliferation and killing ex vivo. Dead M. tuberculosis vaccination induced the generation of CD11b\(^+\)Ly6C\(^{hi}\)CD115\(^+\) iNOS/Nos2\(^+\) monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs were positioned strategically in the splenic bridging channels and then positioned in the white pulp areas. Notably, within 6–24 hours, in a Nos2-dependent fashion, they produced NO to rapidly kill conventional and plasmacytoid DCs while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that M. tuberculosis vaccine induced M-MDSCs do not directly suppress effector T cells in vivo but, instead, indirectly by killing DCs. Collectively, we demonstrate that M. tuberculosis booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs. Our data suggest that formation of MDSCs by M. tuberculosis vaccines should be investigated also in clinical trials.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Eliana Ribechini, Ina Eckert, Andreas Beilhack, Nelita Du Plessis, Gerhard Walzl, Ulrike Schleicher, Uwe Ritter, Manfred B. Lutz
URN:urn:nbn:de:bvb:20-opus-201973
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Virologie und Immunbiologie
Medizinische Fakultät / Medizinische Klinik und Poliklinik II
Language:English
Parent Title (English):JCI Insight
Year of Completion:2019
Volume:13
Issue:4
Pagenumber:e128664
Source:JCI Insight (2019) 13:4, e128664. https://doi.org/10.1172/jci.insight.128664
DOI:https://doi.org/10.1172/jci.insight.128664
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:Immunology; Infectious disease
Release Date:2020/05/19
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2019
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International