Biochemical and structural characterisation of modules within the SMN complex

Biochemische und strukturelle Charakterisierung von Modulen des SMN-Komplexes

Please always quote using this URN: urn:nbn:de:bvb:20-opus-194749
  • Cellular proteome profiling revealed that most biomolecules do not exist in isolation, but rather are incorporated into modular complexes. These assembled complexes are usually very large, consisting of 10 subunits on an average and include either proteins alone, or proteins and nucleic acids. Consequently, such macromolecular assemblies rather than individual biopolymers perform the vast majority of cellular activities. The faithful assembly of such molecular assemblies is often aided by trans-acting factors in vivo, to preclude aggregation ofCellular proteome profiling revealed that most biomolecules do not exist in isolation, but rather are incorporated into modular complexes. These assembled complexes are usually very large, consisting of 10 subunits on an average and include either proteins alone, or proteins and nucleic acids. Consequently, such macromolecular assemblies rather than individual biopolymers perform the vast majority of cellular activities. The faithful assembly of such molecular assemblies is often aided by trans-acting factors in vivo, to preclude aggregation of complex components and/or non-cognate interactions. A paradigm for an assisted assembly of a macromolecular machine is the formation of the common Sm/LSm core of spliceosomal and histone-mRNA processing U snRNPs. The key assembly factors united in the Protein Arginine Methyltransferase 5 (PRMT5) and the Survival Motor Neuron (SMN) complexes orchestrate the assembly of the Sm/LSm core on the U snRNAs. Assembly is initiated by the PRMT5-complex subunit pICln, which pre-arranges the Sm/LSm proteins into spatial positions occupied in the mature U snRNPs. The SMN complex subsequently binds these Sm/LSm units, displaces pICln and catalyses the Sm ring closure on the Sm-site of the U snRNA. The SMN complex consists of the eponoymous SMN protein linked in a modular network of interactions with eight other proteins, termed Gemins 2-8 and Unrip. Despite functional and structural characterisation of individual protein components and/or sub-complexes of this assembly machinery, coherent understanding of the structural framework of the core SMN complex remained elusive. The current work, employing a combined approach of biochemical and structural studies, aimed to contribute to the understanding of how distinct modules within the SMN complex coalecse to form the macromolecular SMN complex. A novel atomic resolution (1.5 Å) structure of the human Gemin8:7:6 sub-complex, illustrates how the peripheral Gemin7:6 module is tethered to the SMN complex via Gemin8’s C-terminus. In this model, Gemin7 engages with both Gemin6 and Gemin8 via the N- and C-termini of its Sm-fold like domain. This highly conserved interaction mode is reflected in the pronounced sequence conservation and identical biochemical behaviour of similar sub-complexes from divergent species, namely S. pombe and C. elegans. Despite lacking significant sequence similarity to the Sm proteins, the dimeric Gemin7:6 complex share structural resemblance to the Sm heteromers. The hypothesis that the dimeric Gemin7:6 functions as a Sm-surrogate during Sm core assembly could not be confirmed in this work. The functional relevance of the structural mimicry of the dimeric Gemin7:6 sub-complex with the Sm heterodimers therefore still remains unclear. Reduced levels of functional SMN protein is the cause of the devastating neurodegenerative disease, Spinal Muscular Atrophy (SMA). The C-terminal YG-zipper motif of SMN is a major hot-spot for most SMA patient mutations. In this work, adding to the existing inventory of the human and fission yeast YG-box models, a novel 2.2 Å crystal structure of the nematode SMN’s YG-box domain adopting the glycine zipper motif has been reported. Furthermore, it could be assessed that SMA patient mutations mapping to this YG-box domain greatly influences SMN’s self-association competency, a property reflected in both the human and nematode YG-box biochemical handles. The shared molecular architecture and biochemical behaviour of the nematode SMN YG-box domain with its human and fission yeast counterparts, reiterates the pronounced conservation of this oligomerisation motif across divergent organisms. Apart from serving as a multimerization domain, SMN’s YG-box also acts as interaction platform for Gemin8. A systematic investigation of SMA causing missense mutations uncovered that Gemin8’s incorporation into the SMN complex is influenced by the presence of certain SMA patient mutations, albeit independent of SMN’s oligomerisation status. Consequently, loss of Gemin8 association in the presence of SMA patient mutations would also affect the incorporation of Gemin7:6 sub-complex. Gemin8, therefore sculpts the heteromeric SMN complex by bridging the Gemin7:6 and SMN:Gemin2 sub-units, a modular feature shared in both the human and nematode SMN complexes. These findings provide an important foundation and a prospective structural framework for elucidating the core architecture of the SMN complex in the ongoing Cryo-EM studies.show moreshow less
  • Systematische Untersuchungen von zellulären Bestandteilen haben gezeigt, dass viele Proteine nicht isoliert, sondern vielmehr in modularen Komplexen organisiert vorliegen. Mit durchschnittlich zehn Untereinheiten sind diese Komplexe sehr groß, wobei sie entweder ausschließlich aus Proteinen oder aber aus Proteinen und Nukleinsäuren bestehen können. Daher wird der Großteil zellulärer Aktivitäten nicht von einzelnen Biopolymeren, sondern von makromolekularen Komplexen verrichtet. Die Zusammenlagerung dieser Komplexe wird in vivo häufig vonSystematische Untersuchungen von zellulären Bestandteilen haben gezeigt, dass viele Proteine nicht isoliert, sondern vielmehr in modularen Komplexen organisiert vorliegen. Mit durchschnittlich zehn Untereinheiten sind diese Komplexe sehr groß, wobei sie entweder ausschließlich aus Proteinen oder aber aus Proteinen und Nukleinsäuren bestehen können. Daher wird der Großteil zellulärer Aktivitäten nicht von einzelnen Biopolymeren, sondern von makromolekularen Komplexen verrichtet. Die Zusammenlagerung dieser Komplexe wird in vivo häufig von Hilfsfaktoren unterstützt, um die Aggregation der Einzelkomponenten und/oder unspezifische Wechselwirkungen zu verhindern. Ein Beispiel für eine derartige Zusammenlagerungshilfe ist die Bildung des Sm/LSm-Cores der mRNA-prozessierenden U snRNPs. Dabei wird die Anlagerung von Sm/LSm Proteinen an die U snRNAs durch eine Anzahl von Hilfsfaktoren orchestriert, die in Protein-Arginin-Methyltransferase 5 (PRMT5)- und dem Survival Motor Neuron (SMN)-Komplexen organisiert sind. Die Zusammenlagerung wird durch die PRMT5-Untereinheit pICln initiiert, die die räumliche Anordnung von Sm/LSm-Proteinen in höher-geordneten Komplexen stabilisiert. Diese werden anschließend auf den SMN-Komplex übertragen, wobei pICln verdrängt und die Verbindung mit der Sm-Seite der U snRNA sichergestellt wird. Der SMN-Komplex besteht aus dem SMN-Protein, das in einem modularen Netzwerk mit acht weiteren Proteinen (Gemins 2-8 und Unrip) interagiert. Auch wenn funktionale und strukturelle Charakterisierungen einzelner Proteinkomponenten und Module dieser Zusammenlagerungs-Maschinerie vorliegen, steht ein tiefergehendes Verständnis des strukturellen Organisation des Gesamt-Komplexes noch aus. In der vorliegenden Arbeit sollte unter Anwendung biochemischer und struktureller Techniken ein Beitrag dazu geleistet werden, die Interaktionen der verschiedenen Komponenten innerhalb des SMN-Komplexes zu verstehen, die so die dreidimensionale Organisation des SMN-Komplexes zu verstehen. Eine neuartige Kristallstruktur des humanen Gemin8:7:6-Subkomplexes bei einer Auflösung von 1.5 Å zeigt, wie der periphere Gemin7:6-Abschnitt durch den C-Terminus von Gemin8 zum SMN-Komplex dirigiert wird. In diesem Modell interagiert Gemin7 sowohl mit Gemin6 als auch Gemin8 über den N- und C-Terminus der Sm-ähnlichen Domäne. Dieser hochkonservierte Interaktionsmodus wird in der erwähnten konservierten Sequenz und dem gleichen biochemischen Verhalten ähnlicher Subkomplexe in divergenten Spezies einschließlich S. pombe und C. elegans widergespiegelt. Obwohl es keine signifikante Übereinstimmung mit der Sequenz von Sm-Proteinen gibt, weist der dimere Gemin7:6-Komplex markante strukturelle Ähnlichkeit mit dem einem Sm-Heterodimer auf. Die Annahme, der dimere Gemin7:6-Subkomplex würde als Hilfsfaktor über die direkte Interaktion mit Sm-Proteinen fungieren konnte in der vorliegenden Arbeit nicht bestätigt werden. Folglich bleibt die Funktion des dimeren Gemin7:6-Subkomplexes im Kontext der SMN-Zusammenlagerungsmaschinerie unklar. Verringerte Mengen des funktionellen SMN-Proteins sind die Ursache für die neurodegenerative Erkrankung Spinale Muskelatrophie (SMA). Das C-terminale YG-Zipper-Motiv von SMN stellt einen Hotspot für die meisten SMA-Mutationen dar. In dieser Arbeit wurde der bereits bekannten YG-Box aus H. sapiens und S. pombe eine neuartige Kristallstruktur der SMN YG-Box aus C. elegans mit einer Auflösung von 2.2 Å hinzugefügt. Zusätzlich wurde gezeigt, dass SMA-verursachende Missense-Mutationen in der YG-Box einen beträchtlichen Einfluss auf die Selbst-Interaktion von SMN haben, was aus biochemischen Versuchen mit der YG-Box aus H. sapiens und C. elegans ersichtlich wurde. Der molekulare Aufbau und das biochemische Verhalten der SMN YG-Box aus C. elegans, S. pombe und H. sapiens betont die Konservierung dieses Oligomerisierungsmotives über mehrere Organismen hinweg. Neben der Funktion als Multimerisationsdomäne dient die YG-Box von SMN auch als Interaktionsplattform für Gemin8. Eine systematische Untersuchung von SMA-verursachenden Missense-Mutationen ergab, dass die Einbindung von Gemin8 in den SMN-Komplex durch definierte Substitutionen massiv beeinflusst wird. Interessanterweise ist dieser Bindungsdefekt unabhängig vom SMN-Oligomerisierungsstatus. Demzufolge würde diese Klasse von SMA-Mutationen spezifisch die Inkorporation des Gemin7:6-Subkomplexes beeinflussen. Die Resultate dieser Arbeit bilden eine wichtige Grundlage für weitere strukturelle Untersuchungen des SMN-Komplexes über Kryo-Elektronenmikroskopie.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Aravindan Viswanathan
URN:urn:nbn:de:bvb:20-opus-194749
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Prof. Dr. Utz Fischer
Date of final exam:2020/01/10
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-19474
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Proteom; Motoneuron
Tag:Macromolecular machine; SMN complex; Structural organisation
Release Date:2022/01/10
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International