Enriching the understanding of synaptic architecture from single synapses to networks with advanced imaging techniques

Vertiefung des Verständnisses synaptischer Architektur von der einzelnen Synapse bis zum Netzwerk mit modernsten bildgebenden Verfahren

Please always quote using this URN: urn:nbn:de:bvb:20-opus-189935
  • Because of its complexity and intricacy, studying the nervous system is often challenging. Fortunately, the small nematode roundworm Caenorhabditis elegans is well established as a model system for basic neurobiological research. The C. elegans model is also the only organism with a supposedly complete connectome, an organism-wide map of synaptic connectivity resolved by electron microscopy, which provides some understanding of how the nervous system works as a whole. However, the number of available data-sets is small and the connectomeBecause of its complexity and intricacy, studying the nervous system is often challenging. Fortunately, the small nematode roundworm Caenorhabditis elegans is well established as a model system for basic neurobiological research. The C. elegans model is also the only organism with a supposedly complete connectome, an organism-wide map of synaptic connectivity resolved by electron microscopy, which provides some understanding of how the nervous system works as a whole. However, the number of available data-sets is small and the connectome contains errors and gaps. One example of this concerns electrical synapses. Electrical synapses are formed by gap junctions and difficult to map due to their often ambiguous morphology in electron micrographs, leading to misclassification or omission. On the other hand, chemical synapses are more easily mapped, but many aspects of their mode of operation remain elusive and their role in the C. elegans connectome is oversimplified. A comprehensive understanding of signal transduction of neurons between each other and other cells will be indispensable for a comprehensive understanding of the nervous system. In this thesis, I approach these challenges with a combination of advanced light and electron microscopy techniques. First, this thesis describes a strategy to increase synaptic specificity in connectomics. Specifically, I classify gap junctions with a high degree of confidence. To achieve this, I utilized array tomography (AT). In this thesis, AT is adapted for high-pressure freezing to optimize for structure preservation and for super-resolution light microscopy; in this manner, I aim to bridge the gap between light and electron microscopy resolutions. I call this adaptation super-resolution array tomography (srAT). The srAT approach made it possible to clearly identify and map gap junctions with high precision and accuracy. The results from this study showcased the feasibility of incorporating electrical synapses into connectomes in a systematic manner, and subsequent studies have used srAT for other models and questions. As mentioned above, the C. elegans connectomic model suffers from a shortage of datasets. For most larval stages, including the special dauer larval stage, connectome data is completely missing up to now. To obtain the first partial connectome data-set of the C. elegans dauer larva, we used focused ion-beam scanning electron microscopy (FIB-SEM). This technique offers an excellent axial resolution and is useful for acquiring large volumes for connectomics. Together with our collaborators, I acquired several data-sets which enable the analysis of dauer stage-specific “re-wiring” of the nervous system and thus offer valuable insights into connectome plasticity/variability. While chemical synapses are easy to map relative to electrical synapses, signal transduction via chemical transmitters requires a large number of different proteins and molecular processes acting in conjunction in a highly constricted space. Because of the small spatial scale of the synapse, investigating protein function requires very high resolution, which electron tomography provides. I analyzed electron tomograms of a worm-line with a mutant synaptic protein, the serine/threonine kinase SAD-1, and found remarkable alterations in several architectural features. My results confirm and re-contextualize previous findings and provide new insight into the functions of this protein at the chemical synapse. Finally, I investigated the effectiveness of our methods on “malfunctioning,” synapses, using an amyotrophic lateral sclerosis (ALS) model. In the putative synaptopathy ALS, the mechanisms of motor neuron death are mostly unknown. However, mutations in the gene FUS (Fused in Sarcoma) are one known cause of the disease. The expression of the mutated human FUS in C. elegans was recently shown to produce an ALS-like phenotype in the worms, rendering C. elegans an attractive disease model for ALS. Together with our collaboration partners, I applied both srAT and electron tomography methods to “ALS worms” and found effects on vesicle docking. These findings help to explain electrophysiological recordings that revealed a decrease in frequency of mini excitatory synaptic currents, but not amplitudes, in ALS worms compared to controls. In addition, synaptic endosomes appeared larger and contained electron-dense filaments in our tomograms. These results substantiate the idea that mutated FUS impairs vesicle docking and also offer new insights into further molecular mechanisms of disease development in FUS-dependent ALS. Furthermore, we demonstrated the broader applicability of our methods by successfully using them on cultured mouse motor neurons. Overall, using the C. elegans model and a combination of light and electron microscopy methods, this thesis helps to elucidate the structure and function of neuronal synapses, towards the aim of obtaining a comprehensive model of the nervous system.show moreshow less
  • Das Nervensystem ist ein definierendes Merkmal aller Tiere, unter anderem verantwortlich für Sinneswahrnehmung, Bewegung und „höhere“ Hirnfunktionen. Wegen dessen Komplexität und Feingliedrigkeit stellt das Erforschen des Nervensystems oft eine Herausforderung dar. Jedoch ist der kleine Fadenwurm Caenorhabditis elegans als Modellsystem für neurobiologische Grundlagenforschung gut etabliert. Erbesitzt eines der kleinsten und unveränderlichsten bekannten Nervensysteme. C.elegans ist auch das einzige Modell, für das ein annähernd vollständigesDas Nervensystem ist ein definierendes Merkmal aller Tiere, unter anderem verantwortlich für Sinneswahrnehmung, Bewegung und „höhere“ Hirnfunktionen. Wegen dessen Komplexität und Feingliedrigkeit stellt das Erforschen des Nervensystems oft eine Herausforderung dar. Jedoch ist der kleine Fadenwurm Caenorhabditis elegans als Modellsystem für neurobiologische Grundlagenforschung gut etabliert. Erbesitzt eines der kleinsten und unveränderlichsten bekannten Nervensysteme. C.elegans ist auch das einzige Modell, für das ein annähernd vollständiges Konnektom vorliegt, eine durch Elektronenmikroskopie erstellte Karte der synaptischen Verbindungen eines gesamten Organismus, die Einblicke in die Funktionsweise des Nervensystems als Ganzes erlaubt. Allerdings ist die Anzahl der verfügbaren Datensätze gering und das Konnektom enthält Fehler und Lücken. Davon sind beispielsweise elektrische Synapsen betroffen. Elektrische Synapsen werden von Gap Junctions gebildet und sind auf Grund ihrer oft uneindeutigen Morphologie in elektronenmikroskopischen Aufnahmen schwierig zu kartieren, was dazu führt, dass einige falsch klassifiziert oder übersehen werden. Chemische Synapsen sind dagegen einfacher zu kartieren, aber viele Aspekte ihrer Funktionsweise sind schwer zu erfassen und ihre Rolle im Konnektom von C.elegans ist daher zu vereinfacht dargestellt. Ein umfassendes Verständnis der Signaltransduktion von Neuronen untereinander und zu anderen Zellen wird Voraussetzung für ein vollständiges Erfassen des Nervensystems sein. In der vorliegenden Arbeit gehe ich diese Herausforderungen mithilfe einer Kombination aus modernsten licht- und elektronenmikroskopischen Verfahren an. Zunächst beschreibt diese Arbeit eine Strategie, um die synaptische Spezifität in der Konnektomik zu erhöhen, indem ich Gap Junctions mit einem hohen Maß an Genauigkeit klassifiziere. Um dies zu erreichen, nutzte ich array tomography (AT), eine Technik, die Licht- und Elektronenmikrokopie miteinander korreliert. In dieser Arbeit wird AT adaptiert für Hochdruckgefrierung, um die Strukturerhaltung zu optimieren, sowie für ultrahochauflösende Lichtmikroskopie; so wird die Kluft zwischen den Auflösungsbereichen von Licht- und Elektronenmikroskopie überbrückt. Diese Adaption nenne ich super-resolution array tomography (srAT). Der srATAnsatz machte es möglich, Gap Junctions mit hoher Präzision und Genauigkeit klar zu identifizieren. Für diese Arbeit konzentrierte ich mich dabei auf Gap Junctions des retrovesikulären Ganglions von C.elegans. Die Ergebnisse dieser Studie veranschaulichen, wie es möglich wäre, elektrische Synapsen systematisch in Konnektome aufzunehmen. Nachfolgende Studien haben srAT auch auf andere Modelle und Fragestellungen angewandt ...show moreshow less

Download full text files

Export metadata

Metadaten
Author: Sebastian Matthias MarkertORCiD
URN:urn:nbn:de:bvb:20-opus-189935
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Christian Stigloher, Prof. Dr. Philip Kollmannsberger
Date of final exam:2019/10/09
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-18993
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 573 Einzelne physiologische Systeme bei Tieren
GND Keyword:Caenorhabditis elegans; Synapse; Elektronenmikroskopie; Myatrophische Lateralsklerose
Tag:connectomics; focused ion-beam scanning electron microscopy; super-resolution array tomography
Release Date:2021/10/11
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International