Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability

Please always quote using this URN: urn:nbn:de:bvb:20-opus-189803
  • The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showedThe animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na\(^+\)- and K\(^+\)-permeable mutants function as ion channels rather than K\(^+\) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na\(^+\)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: J. Böhm, S. Scherzer, S. Shabala, E. Krol, E. Neher, T. D. Mueller, R. Hedrich
URN:urn:nbn:de:bvb:20-opus-189803
Document Type:Journal article
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Language:English
Parent Title (English):Molecular Plant
Year of Completion:2016
Volume:9
Issue:3
Pagenumber:428-436
Source:Molecular Plant (2016) 9:3, S. 428-436. https://doi.org/10.1016/j.molp.2015.09.017
DOI:https://doi.org/10.1016/j.molp.2015.09.017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 571 Physiologie und verwandte Themen
Tag:Dionaea muscipula; HKT1; action potential; glands; sodium channel; sodium uptake
Release Date:2021/01/14
EU-Project number / Contract (GA) number:250194
OpenAIRE:OpenAIRE
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International