Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications

Untersuchung angeregter Zustände des halbleitenden Polymers Poly(3-hexylthiophene) mittels optischer Spektroskopie für Anwendungen in der Photovoltaik

Please always quote using this URN: urn:nbn:de:bvb:20-opus-116730
  • In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the firstIn the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014show moreshow less
  • In der vorliegenden Arbeit wurden die zugrundeliegenden Mechanismen, die während der Photostromgeneration in Polymer:Fulleren-Solarzellen stattfinden, von der Exzitonengeneration bis zur Ladungsträgerextraktion, mittels spektroskopischer Methoden untersucht. Nach der Absorption eines Photons ist die Exzitonenbindungsenergie das erste zu überwindende Hindernis, um einen Photostrom in organischen Halbleitern zu generieren. Diese begründet die Notwendigkeit, zwei unterschiedliche Halbleitermaterialien zu implementieren, deren energetischer OffsetIn der vorliegenden Arbeit wurden die zugrundeliegenden Mechanismen, die während der Photostromgeneration in Polymer:Fulleren-Solarzellen stattfinden, von der Exzitonengeneration bis zur Ladungsträgerextraktion, mittels spektroskopischer Methoden untersucht. Nach der Absorption eines Photons ist die Exzitonenbindungsenergie das erste zu überwindende Hindernis, um einen Photostrom in organischen Halbleitern zu generieren. Diese begründet die Notwendigkeit, zwei unterschiedliche Halbleitermaterialien zu implementieren, deren energetischer Offset die treibende Kraft für Exzitonentrennung am Heterogrenzfläsche bildet. Zur Erforschung dieser Energie haben wir eine neuartige Methode entwickelt, mit welcher wurden Einfluss eines elektrischen Feldes auf die Exzitonen durch Photolumineszenzmessungen quantifizieren können. Aus Absorptions- und Photolumineszenzspektren ist ersichtlich, dass im reinen P3HT sowohl amorphe als auch kristalline Bereiche zur Absorption beitragen. Daraufhin erfolgt ein anschließender effektiver. Energietransfer zu den kristallinen Domänen, der durch die ausschließlich in diesen Bereichen auftretende Photolumineszenz nachgewiesen wird. Diese Exzitonen sind als interchain excitons bekannt, die bereits bei 0.42 eV; in nicht emittierende Spezies dissoziiert werden können, wie unsere feldabhängigen Photolumineszenzmessungen zeigen. Mit Hilfe komplementärer Methoden konnten wir nachweisen, dass diese Dissoziation nur ein erster Schritt zur Generation freier Ladungsträger ist. So konnte durch Photoelektronenspektroskopie 10 und Messungen der externen Quanteneffizienz gezeigt werden, dass die Erstellung freier Ladungsträger 0.7 eV benötigt. Die zusammenführende Analyse dieser Ergebnisse ermöglicht die Erstellung eines umfassenden Bildes der für die Photostromgeneration relevanten Energieniveaus in reinem P3HT. Desweiteren wurden die Ergebnisse dieser Arbeit national [1] als auch international [2] auf Konferenzen präsentiert und im Jahr 2010 in Physical Review B [3] publiziert. Die Tatsache, dass diese bereits über 50 mal zitiert wurden, verdeutlicht die große Bedeutung der erlangten Resultate. Durch die Verwendung der Quasi-Steady-State-Spektroskopie angeregter Spezies können unter Beleuchtung erwünschte (Ladungsträger) und unerwünschte (neutrale) Zustände detektiert werden. Im Rahmen des EU-Projekts "SolarNType" [4] wurden dazu mehrere, als Elektronenakzeptor dienende, Moleküle teilnehmender Institutionen untersucht. Mit Hilfe unserer spektroskopischen Methode und durch ergänzende Messungen des Ladunsträgerstransports sowie der Morphologie und Strom-Spannungs-Charakteristiken der Solarzellen waren wir im Stande, nicht nur das Potential dieser Moleküle zu beurteilen, sondern auch unseren Projektmitarbeitern detaillierte und wertvolle Informationen über die Stärken und Schwächen der von ihnen synthetisierten Materialien zu geben. Die detaillierte Untersuchung von terrylene-3,4:11,12-bis(dicarboximide) als Elektronenakzeptor, welche wir für das Max-Planck-Institut in Mainz erstellten, wurde im Jahr 2012 in Synthetic Metals publiziert und für die Titelseite ausgewählt. [5] Im letzten Abschnitt werden die Ergebnisse transienter photoinduzierter Absorptionsmessungen diskutiert, welche zur Bestimmung der Rekombination freier Ladunsträger in P3HT:PCBM Mischschichten durchgeführt wurden. Diese Rekombination ist dafür bekannt, nicht der Langevin-Theorie zu folgen, was für Solarzellen von großer Bedeutung ist. Anstelle von Rekombination zweiter Ordnung nach der Langevin-Theorie, rekombinieren Ladungsträger in dieser Materialkombination unter höherer Ordnung und einem starken zusätzlichen Reduktionsfaktor. Dies hat zur Folge, dass die Ladungsträger weiter difundieren können, was die Erstellung dickerer und daher effizienterer Solarzellen ermöglicht. Durch umfassende Analysen der P3HT Quasi-Steady-State-Spektren wurde einspektraler sowie thermischer Bereich identifiziert, in dem in reinem P3HT ausschließlich Polaronen für die Absorption verantwortlich sind. Die Verwendung dieser Ergebnisse in transienten Absorptionsmessungen ermöglichte es erstmals, das Rekombinationsverhalten in reinen sowie mit PCBM gemischten P3HT Schichten zu vergleichen. Es zeigt sich, dass die Abnahme der Ladungsträgerdichte in reinem P3HT der Langevin-Theorie perfekt folgt. Demzufolge scheint die beobachtete limitierte Rekombination in gemischten P3HT:PCBM-Schichten aus der Präsenz zweier unterschiedlicher Materialien zu resultieren. Nach der Betrachtung mehrerer möglicher Mechanismen kommen wir zu dem Schluss, dass eine Kombination von energetischem Trapping und Phasenseparation für dieses Verhalten verantwortlich ist. Diese Ergebnisse wurden im Jahr 2014 in the Journal of Applied Physics publiziert. [6] Die erlangten neuen Einblicke in die photophysischen Eigenschaften von Polymer:Fulleren-Mischschichten besitzen große Bedeutung für die weitere Entwicklung in diesem Bereich. Systematische Messungen der Bindungsenergien von Exzitonen sowie Polaronenpaaren scheinen eine vielversprechende Methode zu sein, die Bedeutung der Exzitonen-Überschussenergie für die Photostromgeneration zu verstehen. Ein besseres Verständnis der Mischungsmorphologie sowie ihren Einfluss auf die bimolekulare Rekombinationsdynamik bahnt den Weg zur Steigerung der Leistung in vielversprechenden Materialsystemen, die bisher durch die limitierte Dicke der Solarzellen eingeschränkt ist. Allerdings bedingt die große Anzahl an Faktoren, die in diesen Rekombinationsmechanismen eine Rolle spielen, weitere fundierte experimentelle Ergebnisse, bevor eine quantitative Modellierung der Prozesse erreicht werden kann. [1] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [2] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [3] Deibel et al., Phys. Rev. B, 81:085202, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014show moreshow less

Download full text files

Export metadata

Metadaten
Author: Julien François Gorenflot
URN:urn:nbn:de:bvb:20-opus-116730
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Vladimir Dyakonov, Prof. Dr. Tobias Hertel
Date of final exam:2015/07/12
Language:English
Year of Completion:2014
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Organische Solarzelle; Fotovoltaik; Organischer Halbleiter
Tag:Charges recombination; Disordered semiconductor; Excited states spectroscopy; Excitons; Experimental physics; Organic semiconductors; Plastic electronics; Renewable energies; Semiconductors physics; Solar energy; Spectroscopy
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2015/07/30
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen