Metagenomic analysis of genetic variation in human gut microbial species

Metagenomische Analysen der genetischen Variationen in menschlichen Darmbakterien

Please always quote using this URN: urn:nbn:de:bvb:20-opus-113890
  • Microbial species (bacteria and archaea) in the gut are important for human health in various ways. Not only does the species composition vary considerably within the human population, but each individual also appears to have its own strains of a given species. While it is known from studies of bacterial pan-genomes, that genetic variation between strains can differ considerably, such as in Escherichia coli, the extent of genetic variation of strains for abundant gut species has not been surveyed in a natural habitat. This is mainly due to theMicrobial species (bacteria and archaea) in the gut are important for human health in various ways. Not only does the species composition vary considerably within the human population, but each individual also appears to have its own strains of a given species. While it is known from studies of bacterial pan-genomes, that genetic variation between strains can differ considerably, such as in Escherichia coli, the extent of genetic variation of strains for abundant gut species has not been surveyed in a natural habitat. This is mainly due to the fact that most of these species cannot be cultured in the laboratory. Genetic variation can range from microscale genomic rearrangements such as small nucleotide polymorphism (SNP) to macroscale large genomic rearrangements like structural variations. Metagenomics offers an alternative solution to study genetic variation in prokaryotes, as it involves DNA sequencing of the whole community directly from the environment. However, most metagenomic studies to date only focus on variation in gene abundance and hence are not able to characterize genetic variation (in terms of presence or absence of SNPs and genes) of gut microbial strains of individuals. The aim of my doctorate studies was therefore to study the extent of genetic variation in the genomic sequence of gut prokaryotic species and its phenotypic effects based on: (1) the impact of SNP variation in gut bacterial species, by focusing on genes under selective pressure and (2) the gene content variation (as a proxy for structural variation) and their effect on microbial species and the phenotypic traits of their human host. In the first part of my doctorate studies, I was involved in a project in which we created a catalogue of 10.3 million SNPs in gut prokaryotic species, based on metagenomes. I used this to perform the first SNP-based comparative study of prokaryotic species evolution in a natural habitat. Here, I found that strains of gut microbial species in different individuals evolve at more similar rates than the strains within an individual. In addition, I found that gene evolution can be uncoupled from the evolution of its originating species, and that this could be related to selective pressure such as diet, exemplified by galactokinase gene (galK). Despite the individuality (i.e. uniqueness of each individual within the studied metagenomic dataset) in the SNP profile of the gut microbiota that we found, for most cases it is not possible to link SNPs with phenotypic differences. For this reason I also used gene content as a proxy to study structural variation in metagenomes. In the second part of my doctorate studies, I developed a methodology to characterize the variability of gene content in gut bacterial species, using metagenomes. My approach is based on gene deletions, and was applied to abundant species (demonstrated using a set of 11 species). The method is sufficiently robust as it captures a similar range of gene content variability as has been detected in completely sequenced genomes. Using this procedure I found individuals differ by an average of 13% in their gene content of gut bacterial strains within the same species. Interestingly no two individuals shared the same gene content across bacterial species. However, this variation corresponds to a lower limit, as it is only accounts for gene deletion and not insertions. This large variation in the gene content of gut strain was found to affect important functions, such as polysaccharide utilization loci (PULs) and capsular polysaccharide synthesis (CPS), which are related with digestion of dietary fibers. In summary, I have shown that metagenomics based approaches can be robust in characterizing genetic variation in gut bacterial species. I also illustrated, using examples both for SNPs and gene content (galK, PULs and CPS), that this genetic variation can be used to predict the phenotypic characteristics of the microbial species, as well as predicting the phenotype of their human host (for example, their capacity to digest different food components). Overall, the results of my thesis highlight the importance of characterizing the strains in the gut microbiome analogous to the emerging variability and importance of human genomics.show moreshow less
  • Mikrobielle Arten (Bakterien und Archaeen) im menschlichen Darm sind wichtige Begleiter für unsere Gesundheit. Jedoch gibt es nicht nur starke Unterschiede zwischen individuellen Wirten in der Artenzusammensetzung des Darmmikrobioms, sondern es scheint sogar Individuen-spezifische Bakterienstämme zu geben. Analysen von Bakterien wie z.B. Escherichia coli haben schon früh gezeigt, dass die Genome von Bakterienstämmen derselben Art große Unterschiede aufzeigen können; jedoch wurden diese Unterschiede bisher noch nicht in einer natürlichenMikrobielle Arten (Bakterien und Archaeen) im menschlichen Darm sind wichtige Begleiter für unsere Gesundheit. Jedoch gibt es nicht nur starke Unterschiede zwischen individuellen Wirten in der Artenzusammensetzung des Darmmikrobioms, sondern es scheint sogar Individuen-spezifische Bakterienstämme zu geben. Analysen von Bakterien wie z.B. Escherichia coli haben schon früh gezeigt, dass die Genome von Bakterienstämmen derselben Art große Unterschiede aufzeigen können; jedoch wurden diese Unterschiede bisher noch nicht in einer natürlichen Umgebung gezeigt. Genetische Variation kann viele Ausprägungen haben und reicht von kleinen Veränderungen wie „small nucleotide polymorphism“ (SNP) zu makroskopischen Veränderung, wie z.B. chromosomalen Restrukturierungen. All diese genetischen Variationen wurden bis jetzt nicht in der natürlichen Umgebung der Bakterien studiert, vorallem bedingt durch fehlende Methoden um die meisten dieser Bakterien um Labor zu kultivieren. Metagenomische Studien können hier helfen, da sie unabhängig von Kultivierungen jegliche DNS aus einer natürlichen Bakteriengemeinschaft untersuchen. Jedoch wurde dies in den meisten bisher veröffentlichten metagenomischen Studien nicht ausgenutzt da diese hauptsächlich auf die Anzahl der gefunden Gene ausgerichtet waren. Das Ziel meiner Doktorarbeit war es, die genetische Variation in Darmbakterien zu beschreiben und phenotypische Veränderungen zu untersuchen. Dies habe ich umgesetzt durch die Erforschung (1) der SNP-Varianz in Darmbakterien, mit besonderem Augenmerk auf Gene, die unter einem selektivem Druck stehen und (2) der Variationen in der Genzusammensetzung eines Genomes (als eine Annäherung an strukturelle Variationen) und welchen Effekt dies auf Mikrobenarten und Wirtsphenotypen hat. Im ersten Kapitel meiner Doktorarbeit beschreibe ich meine Arbeit in einem Projekt unserer Gruppe, in dem wir basierend auf metagenomischen Daten 10 Millionen SNPs in menschlichen Darmbakterien beschrieben haben. Diesen Datensatz habe ich verwendet um die erste SNP-basierte, vergleichende Studie der Bakterienevolution in einem natürlichen Habitat zu realisieren. Ich entdeckte, dass Bakterienstämme unabhängig vom Wirt ähnliche evolutionäre Raten haben. Genauer gesagt, die evolutionäre Rate für eine Art ist stabiler zwischen Wirten, als die von verschiedenen Spezies innerhalb eines Wirtes. Ausserdem fand ich heraus, dass die Evolution von einzelnen Genen unabhängig vom restlichen Genom einer Spezies ist. Dies könnte durch einen Selektionsdruck wie z.B. die Ernährung des Wirtes ausgelöst werden, was ich am Beispiel des Galactokinasegenes (galK) gezeigt habe. Obwohl wir zeigen konnten, dass das SNP-Profil der Darmbakterien spezifisch für den jeweiligen Wirt ist, konnten wir keine Assoziation zwischen SNPs und Wirtsphänotypen finden. Auch aus diesem Grund habe ich mich in meiner weiteren Arbeit verstärkt auf makroskopische Genomvariationen konzentriert. Im zweiten Teil meiner Doktoarbeit entwickelte ich eine neue Methode, um Variationen in der genomische Zusammensetzung von einzelnen Bakterienarten zu beschreiben, wieder basierend auf metagenomischen Daten. Hierbei fokussiere ich mich insbesondere auf Gene, die in unseren metagenomischen Daten im Verglich zum Referengenom fehlen und wende dies auf die 11 dominantesten Bakterienspezies an. Diese neue Methode ist robust, da die gefundene Genomvarianz in unseren metagenomischen Daten übereinstimmt mit Daten aus komplett sequenzierten Genomen. So konnte ich herausfinden, dass im Durchschnitt 13% der Gene einer Bakterienart zwischen einzelen Wirten varieren. Besonders interessant ist hier, dass wir keine zwei Wirte gefunden haben, die für eine Bakterienart genau diesselben Gene haben. Jedoch ist die erwarte Varianz aller Wahrscheinlichkeit nach noch größer, da ich mit dieser Methode nur fehlende Gene beschreiben kann, aber nicht neu hinzugekommende. Diese Varianz kann auch wichtige bakterielle Funktionen betreffen, z.B. Gene für „polysaccharide utilization loci“ (PULs) und „capsular polysaccharide synthesis“ (CPS), welche wichtig sind um Ballaststoffe in der Nahrung zu verwerten. Zusammenfassend konnte ich in dieser Arbeit zeigen, dass metagenomische Methoden robust genug sind um die genetische Varianz von Darmbakterien zu beschreiben. Ausserdem konnte ich zeigen, dass die beschriebene Varianz benutzt werden kann, um phenotypische Veränderungen von Bakterien vorherzusagen (demonstriert für die galK, PULs and CPS-Gene). Dies wiederrum könnte benutzt werden um Vorhersagen für den Wirt über z.B. seine Ernährung zu machen. Meine Doktorarbeit zeigt wie wichtig es ist, einzelne Bakterienstämme zu charakterisieren, ganz analog zu der Bedeutsamkeit der genetischen Varianz des menschlichen Genomes.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Ana Cheng Zhu
URN:urn:nbn:de:bvb:20-opus-113890
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Thomas Dandekar, Prof. Dr. Peer Bork
Date of final exam:2015/05/27
Language:English
Year of Completion:2015
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Darmflora; Metagenom
Tag:metagenomic
Release Date:2015/06/05
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung