Substratbindung und Katalyse in RNase P RNA vom cyanobakteriellen Typ

Substrate recognition and catalysis of RNase P RNA of the cyanobacterial type

Please always quote using this URN: urn:nbn:de:bvb:20-opus-11283
  • Ribonuklease P (RNase P) ist eine essentielle Endonuklease, welche die 5'-Flanke von pre-tRNAs entfernt. Die RNase P RNA des Cyanobakteriums Prochlorococcus marinus ist in vitro katalytisch aktiv und bevorzugt in heterologen Prozessierungssystemen Substrate mit vollständigem 3’-CCA-Ende. Diese Substratspezifität widerspricht den Erwartungen, da tRNAs in P. marinus nicht mit dem CCA-Ende codiert sind und die RNase P RNA auch nicht das GGU-Bindungsmotiv für diese CCA-Enden aufweist. Um die Substratspezifität und Aufbau desRibonuklease P (RNase P) ist eine essentielle Endonuklease, welche die 5'-Flanke von pre-tRNAs entfernt. Die RNase P RNA des Cyanobakteriums Prochlorococcus marinus ist in vitro katalytisch aktiv und bevorzugt in heterologen Prozessierungssystemen Substrate mit vollständigem 3’-CCA-Ende. Diese Substratspezifität widerspricht den Erwartungen, da tRNAs in P. marinus nicht mit dem CCA-Ende codiert sind und die RNase P RNA auch nicht das GGU-Bindungsmotiv für diese CCA-Enden aufweist. Um die Substratspezifität und Aufbau des Ribozym-Substrat-Komplex von P. marinus RNase P RNA im homologen System untersuchen zu können, wurden Transkriptionsklone für P. marinus pre- und mat-tRNAArgCCU konstruiert, mit denen nach entsprechender Restriktionshydrolyse Transkripte mit stufenweise verkürzten 3’-CCA-Ende synthetisiert werden können. Durch enzymkinetische Untersuchungen der Prozessierung durch P. marinus RNase P RNA wurde unter steady-state-Bedingungen für pre-tRNACCA eine Michaelis-Menten Konstante von 6,92 µM ermittelt. Die Entfernung von A76 und C75 des 3’-CCA-Endes führt zu einer Erhöhung der KM (7,13 µM bzw. 19,68µM). Diese Substrate werden folglich weniger stark gebunden, was sich auch in der freien Bindungsenthalpie von 0,02 und 0,65 kcal/mol ausdrückt. Die Entfernung des vollständigen 3’-CCA-Endes führt zu einer erheblichen Erniedrigung der KM (0,83µM) und zu einer energetisch begünstigten, stärkeren Substratbindung (–1,31 kcal/mol). P. marinus RNase RNase P RNA zeigt folglich bei der in vitro Prozessierung im homologen System unter steady-state-Bedingungen eine Substratspezifität für das Substrat mit deletiertem 3’-CCA-Ende. Durch die Methode des Crosslinking, die in dieser Arbeit etabliert und optimiert wurde, können RNA-Protein und RNA-RNA Interaktionen nachgewiesen werden. Mit ihr wurde die Bindung von Substrat und Produkt im Komplex mit der RNase P RNA untersucht. Durch interne Modifizierung der P. marinus RNase P RNA-Komponente mit dem photosensiblen Nukleotidanalogon s4U wurden Kontaktstellen in 5’-Flanke, Acceptor-Stamm, D-Stamm, D-Schleife, Anticodon-Schleife und in der variablen Schleife der P. marinus pre-tRNAArg identifiziert. Diese lokalisierten Kontaktstellen stehen denen in der 5’-Flanke, dem Acceptor-Stamm und der 3’-Flanke, wie sie für den Ribozym-Substrat-Komplex mit E. coli RNase P RNA identifiziert wurden, gegenüber. In P. marinus RNase P RNA werden folglich alternative Kontaktstellen zur Substratbindung benutzt. Mit Hilfe der hier überexprimierten E. coli Nukleotidyltransferase, konnte pre- und mat-tRNAArg durch eine neue Synthesestrategie am 3’-CCA-Ende mit dem Crosslink-Reagenz Azidophenacyl (APA) modifiziert werden. Durch die Positionierung von APA am 5’-Terminus von pre- und mat-tRNAArg wurden weitere modifizierte tRNAs synthetisiert. Durch Crosslink-Experimente im homologen P. marinus System mit diesen modifizierten pre- und mat-tRNAArg-Varianten wurden die selben Regionen des katalytischen Zentrums (J18/2, Region P15/P16, J5/15) der RNase P RNA identifiziert, wie sie von E. coli und B. subtilis RNase P RNA bekannt sind. Dies bedeutet, dass die 5’-Flanke, die Prozessierungsstelle und das 3’-CCA-Ende der tRNAs auf einer vergleichbaren Oberfläche positioniert werden wie in anderen Ribozymen. Durch die fehlende Fixierung des 3’-CCA-Endes über Basenpaarungen mit dem GGU-Bindungsmotiv werden die tRNAs in P. marinus RNase P RNA weniger starr an das Ribozym gebunden und das 3’-CCA-Ende besitzt eine flexiblere Positionierung im Komplex mit dem Ribozym. Die Existenz unterschiedlicher Crosslink-Muster in P6, P18, J5/15 und J3/4 zeigt, dass pre-tRNAs und reife tRNAs durch verschiedene Modi an das P. marinus Ribozym gebunden werden. Die Identifizierung von vernetzten Nukleotiden in P15, J15/16, P16 und J16/15, die mit vergleichbaren modifizierten tRNAs in E. coli RNase P RNA nicht gefunden wurden, belegen, dass in P. marinus RNase P RNA ein anderer Produkt-Bindungs-Modus existiert als in E. coli. Erstmals konnten in dieser Arbeit auch zu erwartende Interaktionen mit dem katalytischen Zentrum identifiziert werden, die in bisherigen Crosslink-Experimenten in E. coli und B. subtilis RNase P RNA nicht oder nur geringfügig auftraten. Um die erhaltenen Ergebnisse besser veranschaulichen zu können, wurde mit dem Programm ERNA 3D ein Raumstrukturmodell für P. marinus RNase P RNA und tRNAArg erstellt. Die RNase P RNA der Cyanellen von Cyanophora paradoxa, ist in vitro katalytisch inaktiv. Um zu klären, ob die fehlende Ribozym-Aktivität dieser RNase P RNA auf eine fehlerhafte Substratbindung zurückzuführen ist, sollten Crosslink-Experimente mit den modifizierten P. marinus tRNAArg durchgeführt werden. Es konnte gezeigt werden, dass 5’- und 3’-modifizierte pre-tRNAs in C. paradoxa in einem anderen Modus gebunden werden, als durch die katalytisch aktive P. marinus RNase P RNA.show moreshow less
  • Ribonuclease P (RNase P) is the essential endonuclease responsible for the removal of the 5’-flank of precursor tRNAs. The RNase P RNA from the cyanobacterium Prochlorococcus marinus shows in vitro catalytic activity and specificity for heterologous substrates containing the complete 3’-CCA end. This preference is in contrast to the fact that the P. marinus RNase P RNA does not possess the binding motif for the CCA terminus, which is not encoded in tRNA genes in this organism. To analyse the substrate specificity and architecture of theRibonuclease P (RNase P) is the essential endonuclease responsible for the removal of the 5’-flank of precursor tRNAs. The RNase P RNA from the cyanobacterium Prochlorococcus marinus shows in vitro catalytic activity and specificity for heterologous substrates containing the complete 3’-CCA end. This preference is in contrast to the fact that the P. marinus RNase P RNA does not possess the binding motif for the CCA terminus, which is not encoded in tRNA genes in this organism. To analyse the substrate specificity and architecture of the ribozyme-substrate-complex of P. marinus RNase P RNA in a homologous system, transcription clones for P. marinus pre- and mat-tRNAArg were generated to obtain different transcripts with stepwise shortened 3’-CCA ends. In the kinetic analysis of P. marinus RNase P RNA, the Michaelis constant (KM) for pre-tRNACCA was 6,92 µM, as determined under steady-state conditions. The subsequent deletion of A76 and C75 from the 3’-CCA end results in an increase of KM (7,13 µM and 19,69 µM, respectively). These substrates are bound less strongly, which is expressed in loss of binding energy (0,02 and 0,65 kcal/mol, respectively).The removal of the complete CCA end results in an considerable decrease of KM (0,83 µM) and an energetically favoured and stronger binding of substrate (–1,31 kcal/mol). In conclusion, in the homologous in vitro system, P. marinus RNase P RNA has a preference for substrate lacking the 3’-CCA end. The method of Crosslinking, which was established and optimised in this work, is generally used to determine RNA-protein and RNA-RNA interactions. This method was used to examine the binding of substrate and product in the complex composed with RNase P RNA. P. marinus RNase P RNA was internally modified with the photoinducible nucleotide analogue s4U. With this modified RNA, interactions of the 5’-flank, acceptor stem, D-stem and loop, anticodon loop and variable loop of pre-tRNAArg with RNase P RNA were detected. These contacts are in contrast to signals in the 5’-flank, acceptor stem and 3’-flank which have been identified in the ribozyme-substrate-complexes of E. coli RNase P RNA. Thus, in P. marinus RNase P RNA, alternative interactions are used for substrate binding. Using purified recombinant E. coli Nucleotidyltransferase, pre- and mat-tRNAArg were modified at the 3’-CCA end by a new strategy using the crosslink-reagent azidophenacyl (APA). Additional modified tRNAs were obtained by positioning the APA-reagent at the 5’-end. In the homologous P. marinus system, crosslinking experiments with the modified tRNAs identified the same regions of the catalytic centre (J18/2, region P15/P16, J5/15) which have been established in E. coli and B. subtilis RNase P RNA. This observation indicates that 5’-flank, cleavage site and 3’-CCA end are positioned on a similar surface, as in the other ribozymes. Due to the missing interaction between the GGU motif and the CCA end, tRNAs are bound less rigid to the ribozyme in P. marinus and the 3’-CCA end is more flexible in the complex. Different crosslink patterns in P6, P18, J5/15 and J3/4 indicate that pre-tRNAs and mat-tRNAs are bound in a different mode by P. marinus RNase P RNA. The identification of crosslinked nucleotides in P15, J15/16, P16 and J16/15 which are not observed with analogous modified tRNAs in E. coli RNase P RNA, show that a different mode of product binding exists in P. marinus RNase P RNA. For the first time, interactions within the catalytic centre could be identified which had been anticipated, but were only weakly detectable in the E. coli and B. subtilis RNase P RNAs. The crosslinks in P4, J3/4 and P3 are a distinctive feature, which is supported by mutational studies, phosphorothioate interference and NAIM analysis. To obtain a good visualization of the crosslinking results, a 3D-model of P. marinus RNase P RNA and tRNAArg was created with the program ERNA-3D. RNase P RNA from the cyanelles of Cyanophora paradoxa does not show catalytic activity in vitro. To establish whether the lack of substrate binding ability is the reason for the missing ribozyme activity, crosslinking experiments with the modified P. marinus tRNAArg were done. 5’- and 3’- modified pre-tRNAArg are bound by cyanelle RNase P RNA in a different mode than by the catalytically active P. marinus RNase P RNA.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Olaf Gimple
URN:urn:nbn:de:bvb:20-opus-11283
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Lehrstuhl für Biochemie
Date of final exam:2004/12/20
Language:German
Year of Completion:2004
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Prochlorococcus marinus; Endoribonuklease P; Ribozym
Tag:RNase P; Ribozym; Substratbindung
RNase P; ribozyme; substrate binding
Release Date:2005/01/07
Advisor:Dr. Astrid Schön