Vacuum stability of models with many scalars

Vakuumstabilität von Modellen mit vielen Skalaren

Please always quote using this URN: urn:nbn:de:bvb:20-opus-112755
  • One of the most popular extensions of the SM is Supersymmetry (SUSY). It is a symmetry relating fermions and bosons and also the only feasible extension to the symmetries of spacetime. With SUSY it is then possible to explain some of the open questions left by the SM while at the same time opening the possibility of gauge unification at a high scale. SUSY theories require the addition of new particles, in particular an extra Higgs doublet and at least as many new scalars as fermions in the SM. Much in the same way that the Higgs boson breaks SUOne of the most popular extensions of the SM is Supersymmetry (SUSY). It is a symmetry relating fermions and bosons and also the only feasible extension to the symmetries of spacetime. With SUSY it is then possible to explain some of the open questions left by the SM while at the same time opening the possibility of gauge unification at a high scale. SUSY theories require the addition of new particles, in particular an extra Higgs doublet and at least as many new scalars as fermions in the SM. Much in the same way that the Higgs boson breaks SU (2)L symmetry, these new scalars can break any symmetry for which they carry a charge through spontaneous symmetry breaking. Let us assume there is a local minimum of the potential that reproduces the correct phenomenol- ogy for a parameter point of a given model. By exploring whether there are other deeper minima with VEVs that break symmetries we want to conserve, like SU (3)C or U (1)EM , it is possible to exclude regions of parameter space where that happens. The local minimum with the correct phenomenology might still be metastable, so it is also necessary to calculate the probability of tunneling between minima. In this work we propose and apply a framework to constrain the parameter space of models with many scalars through the minimization of the one-loop eff e potential and the calculation of tunneling times at zero and non zero temperature.After a brief discussion about the shortcomings of the SM and an introduction of the basics of SUSY, we introduce the theory and numerical methods needed for a successful vacuum stability analysis. We then present Vevacious, a public code where we have implemented our proposed framework. Afterwards we go on to analyze three interesting examples. For the constrained MSSM (CMSSM) we explore the existence of charge- and color- breaking (CCB) minima and see how it constraints the phenomenological relevant region of its parameter space at T = 0. We show that the regions reproducing the correct Higgs mass and the correct relic density for dark matter all overlap with regions suffering from deeper CCB minima. Inspired by the results for the CMSSM, we then consider the natural MSSM and check the region of parameter space consistent with the correct Higgs mass against CCB minima at T /= 0. We find that regions of parameter space with CCB minima overlap significantly with that reproducing the correct Higgs mass. When thermal eff are considered the majority of such points are then found to have a desired symmetry breaking minimum with very low survival probability. In both these studies we find that analytical conditions presented in the literature fail in dis- criminating regions of parameter space with CCB minima. We also present a way of adapting our framework so that it runs quickly enough for use with parameter fit studies. Lastly we show a different example of using vacuum stability in a phenomenological study. For the BLSSM we investigate the violation of R-parity through sneutrino VEVs and where in parameter space does this happen. We find that previous analyses in literature fail to identify regions with R-parity conservation by comparing their results to our full numerical analysis.show moreshow less
  • Eine der populärsten Erweiterungen des SM ist die Supersymmetrie (SUSY). Dies ist eine Symmetrie, die Bosonen und Fermionen in Beziehung setzt und auch die einzige machbare Erweiterung der Raumzeitsymmetrien. SUSY kann einige offene Fragen des SM erklären und eröffnet die Möglichkeit einer Vereinheitlichung der Eichwechselwirkungen bei einer hohen Skala. Supersymmetrische Theorien erfordern das Hinzufügen neuer Teilchen, insbesondere eines zusätzlichen Higgs-Dubletts und zumindest eines Skalars für jedes Fermion im SM. So wie im SM dasEine der populärsten Erweiterungen des SM ist die Supersymmetrie (SUSY). Dies ist eine Symmetrie, die Bosonen und Fermionen in Beziehung setzt und auch die einzige machbare Erweiterung der Raumzeitsymmetrien. SUSY kann einige offene Fragen des SM erklären und eröffnet die Möglichkeit einer Vereinheitlichung der Eichwechselwirkungen bei einer hohen Skala. Supersymmetrische Theorien erfordern das Hinzufügen neuer Teilchen, insbesondere eines zusätzlichen Higgs-Dubletts und zumindest eines Skalars für jedes Fermion im SM. So wie im SM das Higgs-Boson die SU (2)L-Symmetrie bricht, können diese neuen Skalare jede Symmetrie, deren Ladung sie tragen, spontan brechen. Angenommen, es gibt ein lokales Minimum des Potentials, das die korrekte Phänomenologie für einen Parameterraumpunkt eines Modells erzeugt: Durch die Suche nach anderen tieferen Minima mit Vakuumerwartungswerten, die gewünschte Symmetrien wie SU (3) oder U (1)EM brechen, ist es möglich Parameterraumpunkte, in denen dies passiert, auszuschliessen. Das lokale Minimum mit der korrekten Phänomenologie kann immernoch metastabil sein, weshalb es auch notwendig ist, die Tunnelwahrscheinlichkeit zwischen zwei Minima zu berechnen. In dieser Arbeit legen wir eine Prozedur vor und wenden sie an, um den Parameterraum von Modellen mit vielen Skalaren durch die Minimierung des effektiven Ein-Schleifen-Potentials und durch die Berechnung seiner Lebensdauer sowohl bei T = 0 und bei T /= 0 einzuschränken. Nach einer kurzen Diskussion der Unzulänglichkeiten des SM und Einführung der Grundlagen von SUSY erläutern wir die Theorie und die die nötigen numerischen Methoden für eine erfolgreiche Analyse der Vakuumstabilitaet. Danach präsentieren wir Vevacious, ein öffentliches Programmpaket, in das wir unsere Prozedur implementiert haben. Daraufhin analysieren wir drei interessante Beispiele. Für das Constrained MSSM (CMSSM) untersuchen wir die die Existenz von Minima, in denen die Farb- oder elektrische Ladung nicht erhalten ist (CCB-Minima), und wie dessen phänomenologisch relevante Region des Parameter- raums dadurch bei T = 0 eingeschränkt wird. Wir zeigen, dass die Regionen, die die korrekte Higgsmasse und die richtige Relikt-Dichte für die Dunkle Materie reproduzieren, mit Regionen, die tiefere CCB-Minima aufweisen, überlappen. Inspiriert durch die Ergebnisse für das CMSSM betrachten wir dann das Natural MSSM und prüfen die Parameterraumregion mit der korrekten Higgsmasse auf CCB-Minima bei T /= 0.Wir finden, dass die Region des Parameterraums mit CCB-Minima deutlich mit denen mit einer korrekten Higgsmasse überlappt. Bei Berücksichtigung von thermalen Effekten hat ein Großteil der bei T = 0 langlebigen Punkte ein gewünschtes symmetriebrechendes Minimum mit einer sehr geringen Überlebenswahrscheinlichkeit bei T /= 0. In beiden Studien finden wir, dass die analytischen Bedingungen, die bisher in der Literatur präsentiert wurden, nicht ausreichen, um Bereiche des Parameterraums mit CCB-Minima auszuweisen. Wir präsentieren einen Weg, unsere Prozedur für die Nutzung in Parameterraum-Fit-Studien zu beschleunigen. Zuletzt zeigen wir ein weiteres Beispiel. Für das BLSSM untersuchen wir die Verletzung der R-Parität durch Sneutrino- VEVs und in welchen Parameterraumbereichen dies geschieht. Wir stellen durch Vergleich mit unserer kompletten numerischen Analyse heraus, dass frühere Analysen in der Literatur darin fehlschlagen, diese Bereiche mit Erhaltung der R-Parität zu identifizieren.show moreshow less

Download full text files

Export metadata

Metadaten
Author: José Eliel Camargo Molina
URN:urn:nbn:de:bvb:20-opus-112755
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Referee:Prof. Dr Werner Porod, Prof. Dr. Thorsten Ohl, Prof. Dr. Raimund Ströhmer
Date of final exam:2015/05/05
Language:English
Year of Completion:2015
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Supersymmetry
Tag:Beyond Standard Model; Supersymmetry; Vacuum stability
Release Date:2015/05/08
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung