Monolithische Quantenkaskadenlaser mit monomodiger und weit abstimmbarer Emission

Monolithic quantum cascade lasers with monomode and widely tunable emission

Please always quote using this URN: urn:nbn:de:bvb:20-opus-109432
  • Ausgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser für die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. Für den Entwurf der Laserstege wurde zunächst die zeitliche Entwicklung der TemperaturverteilungAusgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser für die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. Für den Entwurf der Laserstege wurde zunächst die zeitliche Entwicklung der Temperaturverteilung für verschiedene Varianten von Wellenleitern sowohl im gepulsten als auch im kontinuierlichen Betrieb simuliert. Anhand der berechneten thermischen Bauteilwiderstände konnten so geeignete Prozessparameter für die Herstellung der Laserstrukturen ermittelt werden Zur Herstellung von monochromatischen DFB-Lasern auf Basis eines MesaWellenleiters mit Seitenwandgittern wurde ein Prozess entwickelt, der sich - im Vergleichzu gängigen Verfahren zur Strukturierung von DFB-Gittern - durch eine stark reduzierte Anzahl an Verfahrenschritten und eine schnelle und einfache Durchführbarkeit auszeichnet. Für Laser mit 4 mm Länge und 14 µm mittlerer Breite wurde eine Spitzenleistung über 200 mW bei einer externen Effizienz von 330 mW/A und einer Schwellstromdichte von 2,1 kA/cm^2 bei Raumtemperatur bestimmt. DFB-Laser um 14 µm, welche - durch die große Wellenlänge bedingt – höhere Schwellstromdichten aufweisen, wurden dagegen auf Basis von nasschemisch geätzten Doppelkanal-Wellenleitern mit in die Oberseite des Steges geätzten Gittern und dickem Gold auf den Stegflanken hergestellt, um eine bessere laterale Wärmeabfuhr zu erreichen. Basierend auf der Analyse des Strahlprofils und des Emissionsspektrums war trotz der großen Stegbreite ausschließlich Betrieb auf der Grundmode zu beobachten. So konnte eine Spitzenleistung von 810 mW bei einer Schwellstromdichte von 4,3 kA/cm^2 bei Raumtemperatur erreicht werden. Um eine größere spektrale Abstimmbarkeit zu erreichen als dies mit DFB-Lasern möglich ist, wurde ein Lasertyp auf Basis von zwei gekoppelten Fabry-P erot Kavitäten entworfen, hergestellt und untersucht. Mit diesem Konzept konnte über eine geringe Stromvariation ein Umschalten zwischen verschiedenen Resonanzen erreicht werden, was bei konstanter Temperatur der Wärmesenke um Raumtemperatur einen Abstimmbereich von 5,2 cm^−1 ermöglichte. Unter Einbeziehung einer Variation der Temperatur der Wärmesenke konnte monomodige Emission in einem Spektralbereich von 52 cm^−1 erreicht und die Tauglichkeit der Laser für die Gas-Sensorik anhand einer Absorptionsmessung an Ammoniak demonstriert werden. Da die monomodige Spitzenleistung dieser Laser jedoch konzeptbedingt auf wenige mW beschränkt war, wurde für den Einsatz weit abstimmbarer Laser in der Spurengasanalytik im letzten Teil der Arbeit ein anderer Lasertyp mit flachgeätztem Bragg-Reflektor entwickelt. Durch sorgfältige Wahl der Gitterparameter und ein spezielles Puls-Schema wurde eine über 30 cm^−1 quasi-kontinuierlich abstimmbare, monomodige Emission erreicht. Die Stabilität und die spektrale Reinheit des Laserlichts mit einer Seitenmodunterdrückung von mehr als 30 dB konnte anhand von zeitaufgelösten Messungen des Abstimmvorgangs und durch ein Absorptionsexperiment mit Ethen belegt werden. Die erzielte spektrale Auflösung war durch die Messelektronik begrenzt und betrug 0,0073 cm^-1. Zudem ergab sich auch die Möglichkeit einer Analyse des thermischen Übersprechens, welche einen vernachlässigbaren Einfluss für den Pulsbetrieb der Laser zeigte und eine moderate Erwärmung benachbarter Segmente um 10% des für das vorsätzlich beheizte Segment gemessenen Wertes. Des Weiteren konnte dank der Möglichkeit zur unabhängigen Strominjektion in verschiedene Sektionen die Temperaturabhängigkeit von Verstärkung und Absorption im Resonator untersucht werden. Herausstechende Eigenschaften dieser Laser wie die Verringerung der gepulsten Chirprate im Vergleich zu DFB-Lasern um den Faktor 3 konnten anhand von systematischen Untersuchungen mit einer Vielzahl von Bauteilen analysiert und auf die zeitlicheTemperaturentwicklung bzw. die räumliche Temperaturverteilung im Lasersteg zurückgeführt werden. Die optische Spitzenleistung von 600 mW und externe Effizienzen bis 300mW/A sollten auch den Einsatz in der Spurengasanalyse erlauben, die hohe Geschwindigkeit mit der die Emissionswellenlänge variiert werden kann, überdies die Untersuchung der Reaktionskinetik in der Gasphase.show moreshow less
  • The main focus of this work was the design, fabrication and characterization of widely tunable monochromatic quantum cascade laser sources based on InGaAs/InAlAs/InP gain material grown by molecular beam epitaxy. Primary targets were the development of high-power lasers in the long-wavelength region of the mid-infrared around 14 µm as well as the design of devices with broad and fast tunability. To gain insight into the time evolution and spatial distribution of the waste heat in the laser ridge for both pulsed and cw-operation a thermalThe main focus of this work was the design, fabrication and characterization of widely tunable monochromatic quantum cascade laser sources based on InGaAs/InAlAs/InP gain material grown by molecular beam epitaxy. Primary targets were the development of high-power lasers in the long-wavelength region of the mid-infrared around 14 µm as well as the design of devices with broad and fast tunability. To gain insight into the time evolution and spatial distribution of the waste heat in the laser ridge for both pulsed and cw-operation a thermal simulation was performed. Based on the calculated thermal resistance of the laser structures optimum parameters for the fabrication process were deducted. A fabrication procedure for monochromatic DFB-lasers based on mesa-waveguides with lateral sidewall gratings was devised. It exhibits a strongly reduced number of fabrication steps and enables a quick and simple implementation compared to established types of DFB lasers. The electro-optic characteristics as well as the farfield-profile of the laser emission and the coupling coefficient of the DFB-grating were systematically investigated in dependence of the geometry of the ridge waveguide. Lasers with a resonator length of 4 mm and an average ridge width of 14 µm showed a peak output power of more than 200 mW with an external efficiency of 330 mW/A and a threshold current density of 2.1 kA/cm^2. In contrast, DFB lasers emitting around 14 µm were fabricated as double-channel waveguides with a DFB-grating on top of the laser ridge. A thick gold layer was deposited around the laser ridge to provide enhanced heat dissipation since inherently higher losses at long wavelengths lead to higher electrical power densities during operation and subsequently the production of more waste heat. It was found that lasers with very wide ridges of 28 µm exhibited the highest average output power of 11 mW at room temperature given the maximum targeted duty-cycle of 10% as specified by the application of industrial detection of acetylene. This way a record peak output power of 810 mW with a threshold current density of 4.3 kA/cm^2 at room temperature was reached. In order to acquire greater spectral tunability compared to DFB-lasers, multisegment lasers based on two coupled FP-cavities were designed, fabricated and characterized. Single-mode emission with side-mode suppression ratios up to 30 dB, operation above room temperature and reproducible mode switching between different cavity-resonances via current-tuning was observed in accordance with theory. A tuning range of 5.2 cm−1 was achieved at constant temperature. With additional temperature tuning single-mode emission within a spectral range of 52 cm−1 was observed. The usability of these devices for gas sensing purposes was demonstrated with a gas absorption experiment using ammonia. Since the monomode peak output power of these coupled cavity lasers was limited to a few mW due to constraints of the mode selection principle, the last part of the thesis deals with a novel type of multi-segment laser featuring a shallow etched Bragg-reflector. Through careful design of the grating parameters and a specific pulsing scheme quasi-continuously tunable single mode emission over 30 cm−1 was achieved. Excellent spectral purity and pulse stability with side-mode suppression ratios greater than 30 dB (noise limited) could be demonstrated by means of time-resolved measurements of the tuning behavior. The achievable spectral resolution in an absorption experiment with ethene was shown to be better than 0.0073 cm−1 and limited by the signal acquisition electronics. The influence of thermal crosstalk between the laser segments was investigated and found to be negligible for pulsed operation. For constant injected currents a moderate temperature rise in the neighbouring segment of about 10% compared to the value in the deliberately heated segment was observed. Moreover the temperature dependence of both gain and waveguide absorption could be determined separately by individual current injection into different segments and subsequent analysis of the threshold currents. Outstanding characteristics of these lasers like the reduction of the laser chirp by a factor of three compared to DFB lasers were systematically investigated on the basis of a multitude of devices. Finally comprehension of the temperature evolution and the spatial distribution of the temperature in the laser resonator lead to an explanation for both phenomena. The high peak output power of 600 mW and external efficiences up to 300 mW/A should prepare the ground for trace gas sensing applications with these devices. Their fast tuning capabilities should also enable the investigation of reaction kinetics in the gas phase with a single laser source.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Peter Fuchs
URN:urn:nbn:de:bvb:20-opus-109432
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Lukas Worschech
Date of final exam:2015/02/04
Language:German
Year of Completion:2014
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Quantenkaskadenlaser; Einmodenlaser
Tag:Quantenkaskadenlaser; gekoppelte Kavitäten; monomodige Laser; weite Abstimmbarkeit
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2015/02/17
Licence (German):License LogoDeutsches Urheberrecht