Einfluss von Dispergierungsmethode und Rohmaterialaufreinigung auf die Beschaffenheit einwandiger Kohlenstoffnanorohrsuspensionen

Influence of dispersion technique and raw material purification on the properties of single-wall carbon nanotube suspensions

Please always quote using this URN: urn:nbn:de:bvb:20-opus-105839
  • In der vorliegenden Dissertation wurden Dispergierungseffizienz, Entbündelungseffizienz und Röhrenqualität von SWNT-Suspensionen untersucht. Die Röhrenqualität wurde durch Messung von Quantenausbeuten bewertet. Außerdem wurden Suspensionen von den drei verschiedenen Rohmaterialien CoMoCAT, Black Sand und HiPCO, hergestellt durch die Behandlung mit Ultraschall und Schermischen, verglichen. Beim Beschallen zeigte sich wie erwartet eine höhere Dispergierungseffizienz im Vergleich zum Schermischen. Diese war jeweils bei Black Sand am größten,In der vorliegenden Dissertation wurden Dispergierungseffizienz, Entbündelungseffizienz und Röhrenqualität von SWNT-Suspensionen untersucht. Die Röhrenqualität wurde durch Messung von Quantenausbeuten bewertet. Außerdem wurden Suspensionen von den drei verschiedenen Rohmaterialien CoMoCAT, Black Sand und HiPCO, hergestellt durch die Behandlung mit Ultraschall und Schermischen, verglichen. Beim Beschallen zeigte sich wie erwartet eine höhere Dispergierungseffizienz im Vergleich zum Schermischen. Diese war jeweils bei Black Sand am größten, gefolgt von CoMoCAT und HiPCO. Ein Vergleich zwischen zwei HiPCO-Materialien bestätigte die deutlichen Effizienzvorteile nicht aufgereinigter Materialien. Trotz der viel geringeren Dichte des aufgereinigten HiPCO-Materials, ließ sich dieses durch das Schermischen wesentlich schlechter dispergieren. Der Effizienzunterschied war jedoch geringer als bei Black Sand und CoMoCAT, was vermutlich auf den geringeren Unterschied der Kohlenstoffanteile zurückzuführen ist. Dieser wiederum hängt von den jeweiligen Herstellungs- und Aufreinigungsverfahren ab. Die Dispergierungsgeschwindigkeit war für gescherte Black Sand- und CoMoCAT-Proben zu Beginn der Dispergierung höher als für die jeweils beschallten Proben, weshalb durch Kombination der beiden Methoden möglicherweise eine Verbesserung der präparierten Suspensionen bezüglich der drei untersuchten Parameter erreicht werden kann. Der Vergleich der Entbündelungseffizienzen ergab erneut Vorteile beim Ultraschall gegenüber dem Schermischen. Die beschallten Black Sand- und HiPCO-Proben zeigten hierbei noch eine deutlich effizientere Auftrennung als die Proben des aufgereinigten CoMoCAT-Materials. Dieses enthält zu jedem Zeitpunkt der Beschallung noch einen entsprechend größeren Anteil an aggregierten Röhren. Beim Schermischen funktionierte die Entbündelung von Black Sand im Vergleich zu CoMoCAT und HiPCO mit Abstand am besten, was sich auch in den ODVerhältnissen beschallter und gescherter Proben widerspiegelte. Die beobachtete Quantenausbeute war bei den durch Schermischen dispergierten DGUEinzelrohrproben um bis zu 50 % höher als bei den beschallten Proben, was auf eine deutlich niedrigere Röhrenbeschädigung und somit auch auf eine höhere Röhrenqualität hindeutete. Dies wurde auch durch Vergleichsmessungen an Einzelröhren bestätigt. Außerdem dringt bei durch Ultraschall geschnittenen Röhren Wasser ins Röhreninnere ein, was beim Schermischen nicht der Fall ist. Das ermöglicht durch Schermischen vielleicht die Herstellung von Proben mit veränderten Eigenschaften. Beim Vergleich der Materialien zeigte HiPCO die höchste Quantenausbeute. Dieses Herstellungsverfahren liefert also im Vergleich zum CoMoCAT-Verfahren eine bessere Röhrenqualität. Die um 70 % höheren Quantenausbeuten der Black Sand-Proben im Vergleich zu den CoMoCAT-Proben machten die Röhrenbeschädigungen bei der Aufreinigung des Rohmaterials deutlich. Werden zudem Beschädigungen durch Ultraschall berücksichtigt, beträgt der Unterschied sogar 250 %. Die beschallten HiPCO- und Black Sand-Proben der zeitabhängigen Messungen zeigten aufgrund der effizienten Entbündelung den schnellsten Anstieg der uantenausbeuten, welche aufgrund von Beschädigungen durch den Ultraschall, beeinflusst durch die Entbündelungsund Dispergierungseffizienzen der Materialien, nach 10-20 min wieder abfielen. Die Quantenausbeuten der gescherten Proben stiegen entsprechend langsamer über die gesamte Messzeit von sechs Stunden an. Die Dispergierung mittels Schermischer bei erhöhter Viskosität führte bei einem Iodixanolanteil von 45 % zu einer fast sechsfach höheren Dispergierungseffizienz im Vergleich zu Wasser. Auch Lufteinschlüsse scheinen einen Einfluss zu haben, weshalb ein Probenvolumen zwischen 13-14 mL mit dem verwendeten Aufbau am sinnvollsten erscheint. Ob Viskosität und Lufteinschlüsse auch Entbündelungseffizienz und Röhrenqualität beeinflussen, muss noch untersucht werden. In Kapitel 5 wurde die Dispergierung von Nanoröhren mit kationischem Perylenbisimid untersucht. Nach dem Zusammengeben von PBI-Lösung und SDS-Nanorohrsuspension wurden Flokkulationseffekte beobachtet, welche durch hohe Nanorohr- oder SDS-Konzentrationen verzögert wurden. Das ermöglichte die Herstellung von PBI-Nanorohrfilmen mit Streifenmuster durch Nutzung des Kaffeering-Effektes. Es wurde gezeigt, dass die Nanoröhren in das PBI eingebettet werden können. Allerdings waren die Streifen noch sehr unregelmäßig und die Röhren in den Streifen nicht ausgerichtet. Die Stabilität der PBI-Nanorohrsuspensionen konnte durch einen Tensidaustausch vom anionischen SDS zum kationischen CTAB verbessert werden. Es konnte gezeigt werden, dass für die Vermeidung von Aggregationen während den dafür nötigen Dialysen unter anderem die möglichst geringe Bewegung der Probe entscheidend ist. Außerdem musste die CTABKrafft-Temperatur von 25 °C berücksichtigt werden. Unterhalb dieser Temperatur bildet das Tensid keine Mizellen mehr, was die Suspensionen destabilisiert. Mischexperimente von CTAB-Nanorohrsuspensionen mit Lösungen aus verschiedenen CTAB:PBI-Verhältnissen lieferten Hinweise darauf, dass CTAB alleine die Röhren nicht stabilisiern kann. Ein Grund dafür könnte eine zu geringe Anzahl an positiven Ladungen auf den Röhren sein. Demzufolge wäre immer ein gewisser Anteil an Tensid zur Stabilisierung notwendig. Trotz geringer Tensidbeimischung könnten aber Filme mit in PBI eingebetteten Röhren hergestellt werden. Unter Umständen könnten die Röhren auch in die flüssigkristalline Phase des PBIs eingebettet werden. Ein anderer Grund für die nicht ausreichende Stabilisierung könnte sein, dass die PBI-Aggregate nur sehr schlecht aufgetrennt werden. Dann könnte das PBI-Adsorptionsverhalten durch eine Verbesserung der Aggregatauftrennung beeinflusst werden. Zuletzt wurde in der vorliegenden Dissertation die Herstellung von Nanorohrgelfilmen beschrieben. Neben Homogenität durch Nutzung von Gelatine und Stabilität durch Entfernung von Iodixanol sorgte eine Silikonform für eine einheitliche Dicke und Größe der präparierten (6,5)-Gelfilme. Röhrenaggregationen während der Iodixanolentfernung durch Zentrifugenfiltration konnten auf die Alterung der verwendeten Suspensionen zurückgeführt werden. Die optischen Dichten der so hergestellten Gelfilme standen immer in ähnlichen Verhältnissen zu denen der Ausgangssuspensionen, sodass die für die Gelfilme benötigten Röhrenkonzentrationen in den Ausgangssuspensionen relativ genau berechnet werden konnten. Um das Iodixanol für die Herstellung von (6,5)/(6,4)-Gelfilmen effektiv aus den Suspensionen zu entfernen, wurden drei verschiedene Dialysemembranen getestet. Dabei stellte sich die Membran mit einer Porengröße von 50 kD als bester Kompromiss aus effektiver Iodixanolentfernung und geringem Röhrenverlust heraus. Durch Einengung der (6,5)/(6,4)-Suspension konnten drei Gelfilme mit ausreichend hohen optischen Dichten hergestellt werden, wobei der dritte Film im Gegensatz zu den ersten beiden aufgrund des immer weiter abnehmenden Probenvolumens eine deutliche Röhrenaggregation zeigt. Dadurch eignen sie sich für weiterführende Experimente, wo mit Hilfe der Transienten-Absorptionsspektroskopie Untersuchungen zu Energie- und Ladungstransferprozessen zwischen CNTs verschiedener Chiralitäten durchgeführt werden könnten.show moreshow less
  • Within this present dissertation, dispersion efficiency, unbundling efficiency and tube quality of SWNT-suspensions were investigated. The tube quality was evaluated by quantum yield measurements. Furthermore, suspensions of the three different raw materials CoMoCAT, Black Sand and HiPCO, manufactured by treatment with sonication and shear-mixing, were compared. As expected, sonication exhibited a higher dispersion efficiency in comparison to shearmixing. Among the three raw materials, this efficiency was highest for Black Sand in eachWithin this present dissertation, dispersion efficiency, unbundling efficiency and tube quality of SWNT-suspensions were investigated. The tube quality was evaluated by quantum yield measurements. Furthermore, suspensions of the three different raw materials CoMoCAT, Black Sand and HiPCO, manufactured by treatment with sonication and shear-mixing, were compared. As expected, sonication exhibited a higher dispersion efficiency in comparison to shearmixing. Among the three raw materials, this efficiency was highest for Black Sand in each case, followed by CoMoCAT and HiPCO. A comparison between two HiPCO materials confirmed the considerable advantages in efficiency of unpurified materials. Despite the much lower density of the purified HiPCO-material, the dispersion with the shear-mixer was considerably less efficient. However, the difference in efficiency was smaller than for Black Sand and CoMoCAT. This is presumably due to a lower difference in carbon contents, which in turn depends on the respective manufacturing and purification processes. The dispersion rate at the beginning of the dispersion process was higher for the sheared Black Sand- and CoMoCAT samples, compared to the respective sonicated samples. Therefore, the combination of the two methods might possibly result in an improvement of the prepared suspensions with regard to the three investigated parameters. The comparison of the unbundling efficiencies once again showed the advantages of the sonication. Among these samples, the separation was considerably higher for Black Sand and HiPCO in comparison to the purified CoMoCAT. Accordingly, CoMoCAT still contains a higher proportion of aggregated tubes at any point during the sonication. Among the shearmixed samples, the unbundling worked by far best for Black Sand compared with CoMoCAT und HiPCO, which was also reflected by the OD ratios of sonicated and sheared samples. The observed quantum yield was up to 50 % higher for the sheared DGU-single-tube samples compared to the sonicated samples. This indicated a considerably lower damage to the tubes and thus a higher quality of the tubes. This was also confirmed by comparative measurements of single tubes. Furthermore, water penetrates into the tubes cut by ultrasonic sound, which is not the case for the shear-mixing. This perhaps allows the preparation of samples with modified properties. Comparing the materials, HiPCO showed the highest quantum yield. So the result of this manufacturing process is tubes with better quality than the tubes produced by the CoMoCAT process. The 70 % higher quantum yield of the Black Sand samples, compared to the CoMoCAT samples made it very clear that the tubes are damaged by the purification of the raw material. Cosidering also the damage caused by sonication, the difference is even 250 %. The sonicated HiPCO and Black Sand samples of the time-dependent measurements exhibited the fastest increase of the quantum yield due to the most efficient unbundling. It started to decrease again after 10-20 min as a result of the tube damage, influenced by the unbundling and dispersion efficiencies of the materials. Correspondingly, the quantum yields of the sheared samples increased slower over the whole measurement period of six hours. The dispersion by shear-mixing at increased viscosity resulted in an almost six times higher dispersion efficiency compared to water with an iodixanol share of 45 %. Since entrapped air also appears to influence the dispersion efficiency, it seems purposeful to use a sample volume between 13-14 mL under the given experimental conditions. It remains to be examined whether the unbundling efficiency and the tube quality are also affected by viscosity and entrapped air. In chapter 5, the dispersion of nanotubes with cationic perylene bisimide was investigated. Flocculation effects were observed after adding PBI solution to a SDS dispersed nanotube suspension. Those effects were delayed by high nanotube or SDS concentrations. This allowed the preparation of PBI nanotube films with a stripe pattern, using the coffee ring effect. It was demonstrated that the nanotubes can be embedded in the PBI. However the stripes were still arranged very irregularly and the tubes in the stripes were not aligned. The stability of the PBI nanotube suspensions was improved by an exchange of the anionic SDS to the cationic CTAB. It could be demonstrated that during the necessary dialysis, among other things, the sample should be moved as little as possible to avoid aggregation. In addition, the CTAB-Krafft-temperature of 25 °C had to be considered. Below this temperature, the tenside no longer forms micelles, which destabilizes the suspensions. Mixing experiments of CTAB nanotube suspensions with solutions consisting of different CTAB:PBI-ratios provided some evidence that CTAB alone is not able to stabilize the tubes. The reason for this may be a too small number of positive charges on the tube surface. As a result, a certain proportion of tenside would be necessary for stabilization. Despite a small addition of tenside, films with tubes embedded in PBI could be prepared. Under certain circumstances, the tubes could also be embedded in the liquid crystal phase of the PBI. Another reason for the unsufficiently stabilized tubes could be that the PBI aggregates are very difficult to separate. In such a case, the PBI adsorption behavior could be influenced by an improvement of the aggregate separation. Finally, the preparation of nanotube gel films was described. Besides homogeneity achieved by the use of gelatine and stability achieved by the removal of iodixanol, a silicone form ensured a uniform thickness and size of the prepared (6,5)-gel films. Tube aggregation during the removal of the iodixanol via centrifuge filtration could be attributed to an alteration of the used suspensions. The ODs of the so-prepared gel films always had similar ratios to the ODs of the starting suspensions. Therefore, the tube concentrations necessary for gel films could be calculated quite accurately. In order to remove the iodixanol from the suspensions for the preparation of (6,5)/(6,4)-gel films, three dialysis membranes were investigated. It turned out that the dialysis Membrane with a pore size of 50 kD is the best compromise between an efficient removal of the iodixanol and a small loss of nanotubes. By concentrating the (6,5)/(6,4)-suspension, three gel films with sufficiently high optical densities could be prepared. The third film exhibits a clear nanotube aggregation in contrast to the first two films due to the continuously decreasing sample volume. Thus, energy- and charge transfer processes between CNTs with different chiralities could be investigated using transient absorption spectroscopy.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Timo Hefner
URN:urn:nbn:de:bvb:20-opus-105839
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Referee:Prof. Dr. Tobias Hertel, Prof. Dr. Ingo Fischer
Date of final exam:2014/10/31
Language:German
Year of Completion:2014
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 541 Physikalische Chemie
GND Keyword:Nanoröhre; Dispergierung
Tag:Beschallung; Gelfilm; Perylenbisimid; Schermischen
Release Date:2014/11/19
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen