Shadow mask assisted heteroepitaxy of compound semiconductor nanostructures

Schattenmasken-gestützte Heteroepitaxie von Nanostrukturen aus Verbindungshalbleiter

Please always quote using this URN: urn:nbn:de:bvb:20-opus-10290
  • Shadow Mask assisted Molecular Beam Epitaxy (SMMBE) is a technique enabling selected area epitaxy of semiconductor heterostructures through shadow masks. The objective of this work was the development of the SMMBE technique for the reliable fabrication of compound semiconductor nanostructures of high structural and optical quality. In order to accomplish this, technological processes have been developed and optimized. This, in combination with model calculations of the basic kinetic growth processes has enabled the fabrication of high qualityShadow Mask assisted Molecular Beam Epitaxy (SMMBE) is a technique enabling selected area epitaxy of semiconductor heterostructures through shadow masks. The objective of this work was the development of the SMMBE technique for the reliable fabrication of compound semiconductor nanostructures of high structural and optical quality. In order to accomplish this, technological processes have been developed and optimized. This, in combination with model calculations of the basic kinetic growth processes has enabled the fabrication of high quality quantum structures. A high spatial precision and control of the incidence regions of the molecular beams during the SMMBE process are required for the fabrication of nanostructures. One of the technological developments to this effect, which has substantially enhanced the versatility of SMMBE, is the introduction of a new type of freestanding shadow masks: Growth through such a mask with different incidence angles of the molecular beams is equivalent to employing different mechanical masks, but is much more accurate since the precision of mechanical alignment is limited. A consistent model has been developed, which successfully explains the growth dynamics of molecular beam epitaxy through shadow masks. The redistribution of molecular fluxes under shadow masks may affect the growth rates on selected areas of the substrate drastically. In the case of compound semiconductors, reactions between the constituent species play important roles in controlling the growth rates as a function of the growth parameters. The predictions of the model regarding the growth of II-VI and III-V compounds have been tested experimentally and the dependence of the growth rates on the growth parameters has been verified. Moreover, it has been shown, that selected area epitaxy of II-VI and III-V compounds are governed by different surface kinetics. Coexisting secondary fluxes of both constituent species and the apparent non-existence of surface diffusion are characteristic for SMMBE of II-VI compounds. In contrast, III-V SMMBE is governed by the interplay between secondary group-V flux and the surface migration of group-III adatoms. In addition to the basic surface kinetic processes described by the model, the roles of orientation and strain-dependent growth dynamics, partial shadow, and material deposition on the mask (closure of apertures) have been discussed. The resulting advanced understanding of the growth dynamics (model and basic experiments) in combination with the implementation of technical improvements has enabled the development and application of a number of different processes for the fabrication of both II-VI and III-V nanostructures. In addition to specific material properties, various other phenomena have been exploited, e.g., self-organization. It has been shown that, e.g., single quantum dots and quantum wires can be reliably grown. Investigations performed on the SMMBE nanostructures have demonstrated the high positional and dimensional precision of the SMMBE technique. Bright cathodoluminescence demonstrates that the resulting quantum structures are of high structural and optical quality. In addition to these results, which demonstrate SMMBE as a prospective nanofabrication technique, the limitations of the method have also been discussed, and various approaches to overcome them have been suggested. Moreover, propositions for the fabrication of complex quantum devices by the multiple application of a stationary shadow mask have been put forward. In addition to selected area growth, the shadow masks can assist in etching, doping, and in situ contact definition in nanoscale selected areas. Due to the high precision and control over the dimensions and positions of the grown structures, which at the same time are of excellent chemical, crystal, and optical quality, SMMBE provides an interesting perspective for the fabrication of complex quantum devices from II-VI and III-V semiconductors.show moreshow less
  • Die Schattenmasken-gestützte Molekularstrahlepitaxie (SMMBE) ist eine neue Methode welche die ortsselektive Epitaxie von Halbleiterheterostrukturen mittels stationärer Schattenmasken ermöglicht. Ziel der vorliegenden Arbeit war die Entwicklung der SMMBE-Methode für die gezielte Herstellung von Nanostrukturen hoher Güte aus Verbindungshalbleiter. Dazu wurden technologische Prozesse entwickelt und optimiert, Modellrechnungen für die grundlegenden kinetischen Wachstumsprozesse in Schattenmasken entwickelt und darauf aufbauend QuantenstrukturenDie Schattenmasken-gestützte Molekularstrahlepitaxie (SMMBE) ist eine neue Methode welche die ortsselektive Epitaxie von Halbleiterheterostrukturen mittels stationärer Schattenmasken ermöglicht. Ziel der vorliegenden Arbeit war die Entwicklung der SMMBE-Methode für die gezielte Herstellung von Nanostrukturen hoher Güte aus Verbindungshalbleiter. Dazu wurden technologische Prozesse entwickelt und optimiert, Modellrechnungen für die grundlegenden kinetischen Wachstumsprozesse in Schattenmasken entwickelt und darauf aufbauend Quantenstrukturen hergestellt und untersucht. Eine hohe Ortsauflösung und flexible Kontrolle der Einfallsgebiete der Molekularstrahlen während des SMMBE-Wachstums sind notwendige Voraussetzungen für die Herstellung von Nanostrukturen. Einer der technologischen Fortschritte, der zu einer erheblich höheren Flexibilität der SMMBE-Methode führte, ist der Einsatz neuartiger, freistehender Schattenmasken: Die Epitaxie durch solche Masken unter verschiedenen Einfallswinkeln der Molekularstrahlen ist vergleichbar mit der Verwendung mehrerer mechanischer Masken, ermöglicht jedoch eine weit höhere Ortsauflösung und Präzision. Im Rahmen der Arbeit wurde ein konsistentes Modell entwickelt, welches die grundlegenden kinetischen Wachstumsprozesse unter der Schattenmaske beschreibt. Adsorbierte Atome und Moleküle werden durch Diffusion und Desorption innerhalb der Maskenkavität umverteilt, wodurch sich die lokalen Wachstumsraten drastisch ändern können. Beim Wachstum von Verbindungshalbleiter spielen die Reaktionen zwischen den einzelnen Konstituenten eine entscheidende Rolle und beeinflussen die Wachstumsraten abhängig von den Wachstumsbedingungen. Die Vorhersagen des Modells in Bezug auf das Wachstum von II-VI und III-V Verbindungshalbleiter wurden in grundlegenden Experimenten verifiziert und die Abhängigkeit der Wachstumsraten von den Wachstumsbedingungen bestätigt. Darüber hinaus konnte ein grundsätzlicher Unterschied in der Wachstumsdynamik der beiden Materialsysteme nachgewiesen werden. Charakteristisch für das SMMBE-Wachstum von II-VI Verbindungen ist die Koexistenz von Sekundärflüssen beider Konstituenten und eine vernachlässigbare Diffusionsdynamik. Hingegen ist die vom Gruppe-V-Gesamtfluss abhängige Oberflächendiffusion entscheidend für das Wachstum von III-V Strukturen. Über diese vom Modell beschriebenen grundlegenden Wachstumsprozesse hinaus wurde zusätzlich auch auf orientierungs- und verspannungsabhängige Prozesse, Halbschatteneffekte und das Zuwachsen der Maskenöffnungen eingegangen. Basierend auf diesen Ergebnissen der Modellrechnungen, den Experimenten und den technologischen Fortschritten wurden verschiedene neuartige Methoden zur Herstellung von II-VI und III-V Nanostrukturen entwickelt. Diese ermöglichen zum Beispiel Quantendrähte und Einzelquantenpunkte gezielt mit Schattenmasken zu wachsen. Dabei werden verschiedene Verfahren angewandt, die neben der materialspezifischen Wachstumsdynamik auch z.B. Selbstorganisationseffekte ausnutzen. Untersuchungen an SMMBE-Nanostrukturen demonstrierten die sehr hohe Positions- und Dimensionspräzision der SMMBE-Methode und eine hohe strukturelle und optische Qualität der hergestellten Quantenstrukturen, die sich z.B. in intensiver Kathodolumineszenz widerspiegelt. Diese Ergebnisse weisen SMMBE als vielversprechende Methode zur Herstellung von Nanostrukturen aus. Es werden aber auch die Grenzen des Verfahrens diskutiert und verschiedene Ansätze zu deren Überwindung vorgeschlagen. Darüber hinaus wurde das Potenzial der SMMBE-Technik dahingehend diskutiert, komplexe Quantenstrukturen durch mehrfache Anwendung einer stationären Schattenmaske herzustellen. Zusätzlich zum ortselektiven Wachstum kann die Schattenmaske auch zum lokalen Ätzen und Dotieren und zur in-situ-Kontaktierung ausgewählter Gebiete genutzt werden. Mit der Vielfalt der in dieser Arbeit entwickelten und vorgeschlagenen SMMBE Methoden, der präzisen Kontrolle der Strukturdimensionen und –positionen und der hohen Güte der hergestellten Quantenstrukturen bietet SMMBE eine interessante Perspektive für die Herstellung von komplexen quantenelektronischen Bauelementen aus II-VI und III-V Halbleiter.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Timo Schallenberg
URN:urn:nbn:de:bvb:20-opus-10290
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2004/06/22
Language:English
Year of Completion:2004
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Verbindungshalbleiter; Nanostruktur; Heteroepitaxie; Fernsehmaske
Tag:Lokales Wachstum; Maske (Halbleitertechnologie); Molekularstrahlepitaxie; Nanostruktur; Verbindungshalbleiter
compound semiconductor; molecular beam epitaxy; nanostructures; selected area growth; shadow mask
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 81.00.00 Materials science / 81.15.-z Methods of deposition of films and coatings; film growth and epitaxy (for structure of thin films, see 68.55.-a; see also 85.40.Sz Deposition technology in microelectronics) / 81.15.Hi Molecular, atomic, ion, and chemical beam epitaxy
Release Date:2004/10/02
Advisor:Prof. Dr. Laurens W. Molenkamp