Dufter, Philipp; Zhao, Mengjie; Schmitt, Martin; Fraser, Alexander und Schütze, Hinrich
(Juli 2018):
Embedding Learning Through Multilingual Concept Induction.
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, July 15-20, 2018.
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
Bd. 1
Association for Computational Linguistics. S. 1520-1530
[PDF, 453kB]
Vorschau

Externer Volltext: https://www.aclweb.org/anthology/P18-1141
Abstract
We present a new method for estimating vector space representations of words: embedding learning by concept induction. We test this method on a highly parallel corpus and learn semantic representations of words in 1259 different languages in a single common space. An extensive experimental evaluation on crosslingual word similarity and sentiment analysis indicates that concept-based multilingual embedding learning performs better than previous approaches.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme
000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik 400 Sprache > 400 Sprache 400 Sprache > 410 Linguistik |
URN: | urn:nbn:de:bvb:19-epub-61841-5 |
ISBN: | 978-1-948087-32-2 |
Sprache: | Englisch |
Dokumenten ID: | 61841 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Mai 2019, 08:28 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |