Logo Logo
Hilfe
Kontakt
Switch language to English
Attosecond dynamics of nano-localized fields probed by photoelectron spectroscopy
Attosecond dynamics of nano-localized fields probed by photoelectron spectroscopy
This work focuses on the interaction of few-cycle laser pulses with nanosystems. Special emphasis is placed on the spatio-temporal evolution of the induced near-fields. Measurements on carrier-envelope-phase (CEP) controlled photoemission from isolated SiO2 nanospheres are taken by single-shot velocity map imaging (VMI) combined with CEP tagging. The obtained photoelectron spectra show a pronounced dependence on the CEP and extend to unexpectedly high energies. Comparison with numerical simulations identify the additional Coulomb forces of the liberated electron cloud as an effective additional acceleration mechanism for distinct trajectories. For larger spheres, an asymmetry in the field distribution is classically predicted. This asymmetry is also observed in the photoelectron momentum distributions. The mapping between position and momentum space in the VMI approach are investigated by analyzing the correlation of the photoelectron's birth and detection position. In a second set of experiments, photoemission at intensities exceeding 10^14 W/cm^2 from isolated nanospheres of different composition (SiO2, ZrO2, TiO2, Si, Au) is examined by stereo time-of-flight spectroscopy. It is found that the measured cutoff energies scale non-linearly with laser intensity depending on the material properties of the nanosystem. A trend towards a unified behavior for high intensities is observed indicating a drastic change in optical properties within the duration of the few-cycle laser pulse. The charge carrier generation mechanisms that could lead to such a transient effect are discussed. For a better understanding of the interaction of few-cycle fields with nanosystems, a direct access to the temporal evolution of (plasmonic) near-fields is highly desirable. The efforts on the realization of nanoplasmonic attosecond streaking spectroscopy are presented. Numerical simulations are used to identify the influence of the inhomogeneous near-field distributions on the streaking process. First experimental results obtained from Au nanotips show clear streaking features of sub-micron localized near-fields. The near-field oscillations are found to be phase offset as compared to reference measurements. The exact origin of the streaking features of the Au tip and possible improvements of the experimental approach are discussed., Im Mittelpunkt dieser Arbeit steht die Wechselwirkung von ultrakurzen Laserpulsen mit Nanosystemen wobei besonderes Augenmerk auf die örtlichen und zeitlichen Eigenschaften der erzeugten Nahfelder gelegt wird. Zur direkten und indirekten Bestimmung der Nahfeldentwicklung und -verteilung wird auf verschiedene Formen der Elektronenspektroskopie zurückgegriffen. Zum einen wird die Photoemission von isolierten SiO2 Nanokugeln mit Hilfe der Velocity-Map-Imaging-Methode bei gleichzeitiger Bestimmung der Träger-Einhüllenden-Phase der ultrakurzen Laserpulse gemessen. Die Impulsspektren zeigen eine starke Abhängigkeit von der Feldentwicklung des Laserfeldes und erstrecken sich zu unerwartet hohen Energien. Mit Hilfe numerischer Simulationen kann gezeigt werden, dass photoionisierte Elektronen eine hochdynamische Ladungsverteilung an der Oberfläche erzeugen, welche für eine zusätzliche Beschleunigung für ausgewählte Elektronentrajektorien verantwortlich ist. Messungen an Nanokugeln mit verschiedener Größe zeigen, dass die durch Propagationseffekte erzeugte asymmetrische Feldverteilung direkt auf die Impulsprojektionen übertragen wird. Die Korrelation zwischen Orts- und Impulsraum der Photoelektronen und eine mögliche Rekonstruktion der Feldverteilung an der Oberfläche werden diskutiert. Mit weiteren Experimenten an einem Stereo-Flugzeitspektrometer wird die Photoemission von Nanoteilchen unterschiedlicher Zusammensetzung (SiO2, ZrO2, TiO2, Si, Au) bei hohen Intensitäten oberhalb von 10^14W/cm^2 untersucht. Diese zeigen eine nichtlineare Abhängigkeit der höchsten Elektronenenergien von der Intensität. Die Gesetzmäßigkeit aller Materialien konvergiert, was ein starkes Indiz für eine drastische Änderung der optischen Eigenschaften noch während des Laserpulses ist. Die verfügbaren theoretischen Modelle zur Erzeugung freier Ladungsträger, die zu einem solchen transienten Effekt führen können, werden diskutiert. Zeitaufgelöste Messungen der Nahfeldoszillationen an Nanoteilchen würden ein tiefgreifenderes Verständnis und Charakterisierung der kollektiven Elektronendynamik ermöglichen. Die Anwendung von Attosekundenpulsen zu diesem Zweck wird diskutiert wobei besonderes Augenmerk auf die inhomogene örtliche Verteilung der Felder an Nanostrukturen gelegt wird. Erste experimentelle Resultate zur Messung der Nahfeldoszillationen an Gold-Nanospitzen werden präsentiert. Die Ergebnisse zeigen einen deutlichen Phasenversatz zu Referenzmessungen. Die örtliche Herkunft des Signals und mögliche Verbesserungen des Experiments werden aufgezeigt.
Not available
Süßmann, Frederik
2013
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Süßmann, Frederik (2013): Attosecond dynamics of nano-localized fields probed by photoelectron spectroscopy. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Suessmann_Frederik.pdf]
Vorschau
PDF
Suessmann_Frederik.pdf

22MB

Abstract

This work focuses on the interaction of few-cycle laser pulses with nanosystems. Special emphasis is placed on the spatio-temporal evolution of the induced near-fields. Measurements on carrier-envelope-phase (CEP) controlled photoemission from isolated SiO2 nanospheres are taken by single-shot velocity map imaging (VMI) combined with CEP tagging. The obtained photoelectron spectra show a pronounced dependence on the CEP and extend to unexpectedly high energies. Comparison with numerical simulations identify the additional Coulomb forces of the liberated electron cloud as an effective additional acceleration mechanism for distinct trajectories. For larger spheres, an asymmetry in the field distribution is classically predicted. This asymmetry is also observed in the photoelectron momentum distributions. The mapping between position and momentum space in the VMI approach are investigated by analyzing the correlation of the photoelectron's birth and detection position. In a second set of experiments, photoemission at intensities exceeding 10^14 W/cm^2 from isolated nanospheres of different composition (SiO2, ZrO2, TiO2, Si, Au) is examined by stereo time-of-flight spectroscopy. It is found that the measured cutoff energies scale non-linearly with laser intensity depending on the material properties of the nanosystem. A trend towards a unified behavior for high intensities is observed indicating a drastic change in optical properties within the duration of the few-cycle laser pulse. The charge carrier generation mechanisms that could lead to such a transient effect are discussed. For a better understanding of the interaction of few-cycle fields with nanosystems, a direct access to the temporal evolution of (plasmonic) near-fields is highly desirable. The efforts on the realization of nanoplasmonic attosecond streaking spectroscopy are presented. Numerical simulations are used to identify the influence of the inhomogeneous near-field distributions on the streaking process. First experimental results obtained from Au nanotips show clear streaking features of sub-micron localized near-fields. The near-field oscillations are found to be phase offset as compared to reference measurements. The exact origin of the streaking features of the Au tip and possible improvements of the experimental approach are discussed.

Abstract

Im Mittelpunkt dieser Arbeit steht die Wechselwirkung von ultrakurzen Laserpulsen mit Nanosystemen wobei besonderes Augenmerk auf die örtlichen und zeitlichen Eigenschaften der erzeugten Nahfelder gelegt wird. Zur direkten und indirekten Bestimmung der Nahfeldentwicklung und -verteilung wird auf verschiedene Formen der Elektronenspektroskopie zurückgegriffen. Zum einen wird die Photoemission von isolierten SiO2 Nanokugeln mit Hilfe der Velocity-Map-Imaging-Methode bei gleichzeitiger Bestimmung der Träger-Einhüllenden-Phase der ultrakurzen Laserpulse gemessen. Die Impulsspektren zeigen eine starke Abhängigkeit von der Feldentwicklung des Laserfeldes und erstrecken sich zu unerwartet hohen Energien. Mit Hilfe numerischer Simulationen kann gezeigt werden, dass photoionisierte Elektronen eine hochdynamische Ladungsverteilung an der Oberfläche erzeugen, welche für eine zusätzliche Beschleunigung für ausgewählte Elektronentrajektorien verantwortlich ist. Messungen an Nanokugeln mit verschiedener Größe zeigen, dass die durch Propagationseffekte erzeugte asymmetrische Feldverteilung direkt auf die Impulsprojektionen übertragen wird. Die Korrelation zwischen Orts- und Impulsraum der Photoelektronen und eine mögliche Rekonstruktion der Feldverteilung an der Oberfläche werden diskutiert. Mit weiteren Experimenten an einem Stereo-Flugzeitspektrometer wird die Photoemission von Nanoteilchen unterschiedlicher Zusammensetzung (SiO2, ZrO2, TiO2, Si, Au) bei hohen Intensitäten oberhalb von 10^14W/cm^2 untersucht. Diese zeigen eine nichtlineare Abhängigkeit der höchsten Elektronenenergien von der Intensität. Die Gesetzmäßigkeit aller Materialien konvergiert, was ein starkes Indiz für eine drastische Änderung der optischen Eigenschaften noch während des Laserpulses ist. Die verfügbaren theoretischen Modelle zur Erzeugung freier Ladungsträger, die zu einem solchen transienten Effekt führen können, werden diskutiert. Zeitaufgelöste Messungen der Nahfeldoszillationen an Nanoteilchen würden ein tiefgreifenderes Verständnis und Charakterisierung der kollektiven Elektronendynamik ermöglichen. Die Anwendung von Attosekundenpulsen zu diesem Zweck wird diskutiert wobei besonderes Augenmerk auf die inhomogene örtliche Verteilung der Felder an Nanostrukturen gelegt wird. Erste experimentelle Resultate zur Messung der Nahfeldoszillationen an Gold-Nanospitzen werden präsentiert. Die Ergebnisse zeigen einen deutlichen Phasenversatz zu Referenzmessungen. Die örtliche Herkunft des Signals und mögliche Verbesserungen des Experiments werden aufgezeigt.