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Abstract 

In the field of autonomously driving vehicles the environment perception containing dynamic 
objects like other road users is essential. Especially, detecting other vehicles in the road traffic 
using sensor data is of utmost importance. As the sensor data and the applied system model 
for the objects of interest are noise corrupted, a filter algorithm must be used to track moving 
objects. Using LIDAR sensors one object gives rise to more than one measurement per time 
step and is therefore called extended object. This allows to jointly estimate the objects, 
position, as well as its orientation, extension and shape. Estimating an arbitrary shaped object 
comes with a higher computational effort than estimating the shape of an object that can be 
approximated using a basic geometrical shape like an ellipse or a rectangle. In the case of a 
vehicle, assuming a rectangular shape is an accurate assumption. 

A recently developed approach models the contour of a vehicle as periodic B-spline function 
[1]. This representation is an easy to use tool, as the contour can be specified by some basis 
points in Cartesian coordinates. Also rotating, scaling and moving the contour is easy to handle 
using a spline contour. This contour model can be used to develop a measurement model for 
extended objects, that can be integrated into a tracking filter. Another approach modeling the 
shape of a vehicle is the so-called bounding box that represents the shape as rectangle. 

In this thesis the basics of single, multi and extended object tracking, as well as the basics of 
B-spline functions are addressed. Afterwards, the spline measurement model is established in 
detail and integrated into an extended Kalman filter to track a single extended object. An 
implementation of the resulting algorithm is compared with the rectangular shape estimator. 
The implementation of the rectangular shape estimator is provided. The comparison is done 
using long-term considerations with Monte Carlo simulations and by analyzing the results of 
a single run. Therefore, both algorithms are applied to the same measurements. The 
measurements are generated using an artificial LIDAR sensor in a simulation environment.  

In a real-world tracking scenario detecting several extended objects and measurements that 
do not originate from a real object, named clutter measurements, is possible. Also, the sudden 
appearance and disappearance of an object is possible. A filter framework investigated in 
recent years that can handle tracking multiple objects in a cluttered environment is a random 
finite set based approach. The idea of random finite sets and its use in a tracking filter is 
recapped in this thesis. Afterwards, the spline measurement model is included in a multi 
extended object tracking framework. An implementation of the resulting filter is investigated 
in a long-term consideration using Monte Carlo simulations and by analyzing the results of a 
single run. The multi extended object filter is also applied to artificial LIDAR measurements 
generated in a simulation environment. 

The results of comparing the spline based and rectangular based extended object trackers 
show a more stable performance of the spline extended object tracker. Also, some problems 
that have to be addressed in future works are discussed. The investigation of the resulting 
multi extended object tracker shows a successful integration of the spline measurement 
model in a multi extended object tracker. Also, with these results some problems remain, that 
have to be solved in future works. 
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1  1 Introduction 

1 Introduction 
This chapter introduces the topics that are highlighted in this master thesis. Section 1.1 
describes the motivation for working in this field of research. In section 1.2 the application for 
the presented algorithm is described. Section 1.3 is about to introduce the algorithm worked 
out and tested in this thesis, while the last section in this chapter summarizes the structure of 
the thesis. 

1.1 Motivation 
A brief research on autonomous driving gives an idea of the efforts being made to advance 
this topic. And this is only one field of research for the use of autonomous systems. In robotics 
in general, but also in medical technology or the investigation of biological processes, work is 
being done to automate processes. And these are just a few examples. 

As the level of automation increases, the system environment needs to be captured more 
accurately. In the case of autonomous robots that are supposed to act freely in their 
environment, this means that fixed objects must be captured, and other moving objects must 
be tracked. The focus of this thesis is on tracking other moving objects. 

The environment can be detected by various sensors. These include sensors that generate a 
point cloud, such as light detection and ranging (LIDAR) or radio detection and ranging 
(RADAR) sensors, but also camera systems. This thesis examines a 2D-LIDAR sensor as a 
measurement system. 

When measuring moving objects with these systems, different problems can occur. First, the 
number of measured objects and the number of measurements each object generates is 
unknown. At the beginning of this research area, distant objects were measured and tracked. 
They generated only one measurement per time step and could therefore be modeled as point 
objects. But the further development of sensor technology has led to several measurements 
being generated per object and time step at a sufficiently short distance between the sensor 
and the measuring object. These objects are called extended objects. 

Furthermore, it must be assumed that all measurements are afflicted with an error which must 
be compensated. The occurrence of incorrect measurements must also be considered. All 
these reasons lead to the necessity of a filter, which generates an estimate of the state of the 
individual objects from the measurement data at each time step. A solution to this problem is 
provided by the Bayesian filter theory. 

1.2 Application description 
In general, the solution to the multi extended object problem, presented in this thesis, can be 
applied to many applications. Here the tracking solution is applied to the automotive sector. 
The aim is to track extended objects with almost rectangular extension, with the possibility of 
detecting both small and large vehicles. Accordingly, the extension model must be scalable so 
that both a car and a truck can be detected. 

For this application a 2D-LIDAR sensor is used. This sensor measures the distance and the angle 
of the detected measuring point, so the sensor measures in polar coordinates. Both the 
distance and the angle are not measured exactly. 

Figure 1.1 shows an example of the examined application. The LIDAR sensor with a resolution 
of two degrees and a range of 30 meters is located in the origin. In this example, three objects 
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with different extensions are detected. The measurements are noise corrupted as mentioned 
above.  

 

Figure 1.1: Example of the application presented in this thesis 

With this sensor, either one or two sides of the object can be detected if it is assumed that 
there are no reflections of the laser beams. Otherwise, multipath detections at the sides of 
the objects away from the sensor would occur. 

Situations not shown in this figure are false measurements and occlusions. False 
measurements, which are called clutter in the following, are randomly occurring 
measurements that cannot be assigned to a real object. In the case of occlusions, two objects 
are located one behind the other, so the sensor cannot capture the entire rear object. 

1.3 Investigated approach 
In the development of an approach for the multi extended object problem the measurement 
model of the extended object is a crucial part. In this thesis an approach is presented where 
the extension of the object is modeled as a quadratic periodic B-spline function. This makes it 
possible to display the contour as a rectangle with rounded edges as shown in Figure 1.1. This 
shape is ideal for a vehicle, but cannot be used for many other objects, therefore the contour 
function must be adapted. B-spline functions are easy to handle, because the shape can be 
modeled in Cartesian coordinates and the contour can easily be scaled in 𝑥 and 𝑦 Dimension. 

To use the measurement model in a tracking scenario, it must be integrated into a Bayesian 
filter framework. In the case of a single object tracker the well-known extended Kalman filter 
is used. In the multi object case there are many scenarios that do not need to be considered 
in the single object case. First it is unknown how many objects of interest are situated in the 
surveillance area at every time step. It is always possible that a new object is born. Also, the 
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disappearance of an object is possible in every time step. Therefore, the assignment of the 
measurements to the given and new tracks is a very complicated part. Furthermore, it can 
never be assumed that a measurement actually belongs to a real object, since clutter 
measurements can occur as well. Various approaches exist to all these problems. The one 
presented in this thesis is a Gaussian mixture probability hypothesis density (GM-PHD) filter. 

In order to evaluate the performance of the approach in the single object case, it is compared 
with an extension model that represents the shape as a rectangle. The two algorithms are 
compared mainly by Monte Carlo simulations.  

1.4 Structure of the thesis 
The remainder of this thesis is structured as follows. Chapter 2 gives a rough overview of the 
Bayesian filter theory. Therefore, a brief review of the derivation of the Bayes filter and its 
linear and nonlinear parametric solutions are given. Chapter 3 then continues with the 
problem of modeling extended objects. The ideas of different approaches, as well as the 
representation of the contour as a rectangle, are presented. Chapter 4 then discusses the 
multi object tracking problem. Here the idea of random finite sets is introduced and integrated 
in the Bayesian filter theory. The chapter ends with the presentation of a solution for the multi 
object tracking problem, the GM-PHD filter. The basics of splines are then explained in chapter 
5. Also, the representation of the vehicle contour as a spline function is presented. In chapter 
6 the Cartesian B-spline model for extended objects is introduced. Therefore, the derivation 
of the measurement model is performed. Finally, the integration of the measurement model 
in the extended Kalman and the GM-PHD filter framework is carried out in this chapter. The 
performance evaluation of the developed approach is presented in chapter 7. The thesis ends 
with the conclusions and ideas for future work in chapter 8. 

2 Bayesian filter theory 
In this chapter the basics of the Bayesian filter theory are discussed. The theory is based on 
the considerations for the estimation of states out of noisy measurement data. This estimation 
is provided by a Bayes filter, which is presented in section 2.1. Since this filter is of theoretical 
nature and cannot be implemented in this form, filter solutions for linear and nonlinear 
motion and measurement models, addressed in section 2.2, are presented in sections 2.3 and 
2.4 respectively. 

2.1 The Bayes filter 
In general, the Bayes filter [2, pp. 22-25] [3, pp. 41-42] [4, pp. 13-15] is a framework for the 
state estimation out of noise corrupted measurement data. Assuming there is a measurement 
set 𝒁𝑘 = {𝒛1, 𝒛2, … , 𝒛𝑘} up to time 𝑘. Based on these measurements, an estimation of the 

states of the object at the respective time is to be given. The set of states is denoted as 𝑿𝑘 =
{𝒙1, 𝒙2, … , 𝒙𝑘}. It must be assumed that the measurements are noisy and therefore not 
accurate. Based on this assumption, the state estimation is to be given in the form of a 
probability distribution 𝑝(𝑿𝐾|𝒁𝑘) under the assumption of known measurement data. Since 
this distribution is very difficult to determine in reality, Bayes' theorem is applied in a first 
step. The probability of the 𝑘th set of states, given a measurement set, is then given as 

𝑝(𝑿𝑘|𝒁𝑘) =  
𝑝(𝒁𝑘|𝑿𝑘) ∙ 𝑝(𝑿𝑘)

𝑝(𝒁𝑘)
 . (2.1) 

 
However, the information of the previous system states is not used adequately in this 
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equation of the states. The goal is a recursive presentation of the states. In order to obtain 
such a presentation, three basic assumptions for the further calculations are assumed below: 

1. Principle of causality: It can be assumed that the measurements up to time 𝑘 − 1 are 
not influenced by the system state at time 𝑘. 

2. Markov characteristic: The system state at time 𝑘 is only dependent on the system 
state at time 𝑘 − 1. All previous system states can be ignored. 

3. Measuring characteristic: The measurement at time 𝑘 is only dependent on the system 
state at time 𝑘. 

The application of these assumptions results in the presentation of a recursive Bayes rule and 
is then given as 

𝑝(𝑿𝑘|𝒁𝑘) =
𝑝(𝒛𝑘|𝒙𝑘)

𝑝(𝒛𝑘|𝒁
𝑘−1)

∙  𝑝(𝒙𝑘|𝒙𝑘−1)  ∙ 𝑝(𝑿
𝑘−1|𝒁𝑘−1) . (2.2) 

 
According to this recursive Bayes rule, all previous system states are calculated in each 
iteration step, which represents an unnecessary computational effort. A representation in 
which the current state 𝒙𝑘 is determined from the previous one 𝒙𝑘−1 is desirable. This is 
achieved by considering the marginal distribution. The integration over all past states 
𝒙0, … , 𝒙𝑘−1 results in the algorithm of the Bayes filter, represented by the two following 
equations. 

1. Prediction step or Chapman-Kolmogorov equation: 

𝑝(𝒙𝑘|𝒁
𝑘−1) =  ∫𝑝(𝒙𝑘|𝒙𝑘−1)  ∙ 𝑝(𝒙𝑘−1|𝒁

𝑘−1) 𝑑𝒙𝑘−1 . (2.3) 

 

2. Update step: 

𝑝(𝒙𝑘|𝒁
𝑘) = 𝜂 ∙ 𝑝(𝒛𝑘|𝒙𝑘)  ∙ 𝑝(𝒙𝑘|𝒁

𝑘−1) . (2.4) 
 

The normalization coefficient 𝜂 =  
1

𝑝(𝒛𝑘|𝒁
𝑘−1)

 is determined by the law of total probability by 

integrating over all system states that could have caused the given measurement and is then 
given as 

𝑝(𝒛𝑘|𝒁
𝑘−1) = ∫𝑝(𝒛𝑘|𝒙𝑘) ∙  𝑝(𝒙𝑘|𝒁

𝑘−1) 𝑑𝒙𝑘 . (2.5) 

 
The probability density calculated in the prediction step (2.3) is called the prior density while 
the probability density of the update step (2.4) is called the posterior density. By applying 
these two steps, a statement about the system state under the consideration of the given 
measurement set can be made. The assumptions used for this derivation are very crucial in 
this context. If these assumptions do not apply to the application, a Bayes filter in this form 
cannot be used. However, the assumptions apply in most applications, which justifies their 
use. The Bayes filter can only be used in this form if the probability distributions used are 
known. Since these are not known in most cases, assumptions must be made to use the Bayes 
filter in reality. These assumptions are discussed in the following sections. 
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2.2 The motion and measurement model 
In order to make a prediction of the change of state and the associated measurement, suitable 
models [5, pp. 91-119] [6, pp. 267-295] [7, pp. 199-257] must be applied for both processes. 
In general, both the motion and the measurement model can be represented as nonlinear 
functions. In the case of the motion model the transition depends on the previous system 
state 𝒙𝑘−1, some system inputs 𝒖𝑘−1 and a noise term 𝒗𝑘−1, so the motion model is given as 
𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝒗𝑘−1). In the remainder of this thesis the system inputs will be neglected. 
The noise term 𝒗𝑘−1 is assumed to be additive with zero mean, so the expectation value is 
𝔼(𝒗𝑘−1) = 0. The transition of the system states can then be represented as 

𝑥𝑘 = 𝑓(𝒙𝑘−1) + 𝒗𝑘−1. (2.6) 
 
Frequently used models are the Constant Velocity (CV) and Constant Turn Rate and Velocity 
(CTRV) [8] models.  

In the case of the measurement model the calculation depends on the current system state 
𝒙𝑘 and a noise term 𝒘𝑘 and is then given as 𝒛𝑘 = ℎ(𝒙𝑘, 𝒘𝑘). As for the transition of the 
system state the noise term 𝒘𝑘 is assumed to be additive with zero mean, so the expectation 
value is 𝔼(𝒘𝑘) = 0 and the measurement model can then be represented as 

 𝒛𝑘 = ℎ(𝒙𝑘) + 𝒘𝑘 . (2.7) 
 
In general, the measurement model contains the conversion of the system states into the 
actual representation of the measurement states.  

In the case of linear correlations in the motion and measurement model both can be 
simplified. The transition of the system is then given as 

𝒙𝑘 = 𝐹 ∙ 𝒙𝑘−1 + 𝒗𝑘−1 (2.8) 
 
with transition matrix 𝐹, while the calculation of the measurements is given as 

𝒛𝑘 = 𝐻 ∙ 𝒙𝑘 +𝒘𝑘 (2.9) 
 
with measurement matrix 𝐻. 

2.3 A solution of the Bayes filter – The Kalman filter 
Since the prior and the posterior of (2.3) and (2.4) respectively are given by general probability 
densities, analytical densities must be assumed in reality. In the first step a system with linear 
motion and measurement model is considered, so the general equations (2.8) and (2.9) can 
be taken into account. When considering these equations, it becomes clear that the 
uncertainty in the prediction of the state and the measurement is in the noise term. These 
noise terms are assumed to be additive and normally distributed with zero mean. Given these 
assumptions the distribution of the system state with a given previous system state can be 
specified as 

𝑝(𝒙𝑘|𝒙𝑘−1) = 𝑝(𝒗𝑘−1) = 𝑝(𝒙𝑘 − 𝐹𝒙𝑘−1) 

= 𝒩(𝒙𝑘 − 𝐹𝒙𝑘−1, 0, 𝑄𝑘) = 𝒩(𝒙𝑘, 𝐹𝒙𝑘−1, 𝑄𝑘) . 
(2.10) 

 
Here the covariance matrix of the noise 𝒗𝑘−1 is referred to as 𝑄𝑘. The distribution of the 
measurement with a given system state can then be specified as 
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𝑝(𝒛𝑘|𝒙𝑘) = 𝑝(𝒘𝑘) = 𝑝(𝒛𝑘 − 𝐻𝒙𝑘) = 𝒩(𝒛𝑘 − 𝐻𝒙𝑘, 0, 𝑅𝑘) = 𝒩(𝒛𝑘; 𝐻𝒙𝑘, 𝑅𝑘) . (2.11) 
 
Here the covariance matrix of the measurement noise 𝒘𝑘−1 is referred to as 𝑅𝑘. In the 
recursive representation of the Bayes filter, the distribution of the state estimate from the last 
time step is finally needed. This is also assumed to be normal distributed and is given as 

𝑝(𝒙𝑘−1|𝒁
𝑘−1) = 𝒩(𝒙𝑘−1; 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1) (2.12) 

 
with the expected value 𝒙𝑘−1|𝑘−1 and the covariance matrix 𝑃𝑘−1|𝑘−1. These three normal 

distributions can now be used in (2.3) – (2.5). The further simplifications are not presented 
here but can be performed using the Gaussian product theorem [9]. The result of these 
simplifications is the well-known Kalman filter [10] [2, pp. 25-30] [11, pp. 56-69] [5, pp. 34-48], 
whose algorithm can be divided into the following three steps. 

1. Prediction of the system state with corresponding covariance: 

𝒙̂𝑘|𝑘−1 = 𝐹 ∙ 𝒙̂𝑘−1|𝑘−1 (2.13) 

𝑃𝑘|𝑘−1 = 𝐹 ∙ 𝑃𝑘−1|𝑘−1 ∙ 𝐹
𝑇 + 𝑄𝑘 (2.14) 

2. Prediction of the measurement with corresponding Innovation covariance: 

𝒛̂𝑘 = 𝐻 ∙ 𝒙̂𝑘|𝑘−1 (2.15) 

𝑆𝑘 = 𝐻 ∙ 𝑃𝑘|𝑘−1 ∙ 𝐻
𝑇 + 𝑅𝑘 (2.16) 

3. Update of the system state and the corresponding covariance: 

𝐾𝑘 = 𝑃𝑘|𝑘−1 ∙ 𝐻
𝑇 ∙ 𝑆𝑘

−1 (2.17) 

𝒙̂𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝐾𝑘 ∙ (𝒛𝑘 − 𝒛̂𝑘) (2.18) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘 ∙ 𝐻 ∙ 𝑃𝑘|𝑘−1 (2.19) 

 
The result of the filter is an estimation of the system state 𝒙̂𝑘|𝑘 from a given measurement 𝒛𝑘 

with corresponding covariance 𝑃𝑘|𝑘. However, not all measurement and motion models can 

be assumed to be linear. Furthermore, the assumption that all distributions can be assumed 
as Gaussians does not apply in all systems. Approaches to solve these problems are discussed 
in the following chapter. 

2.4 Bayes filter solutions for nonlinear models 
When using nonlinear models, the general equations (2.6) and (2.7) must be assumed as 
motion and measurement models. Once again, the noise terms are assumed to be additive 
and Gaussian with zero mean. In general, two approaches are known to determine the 
distribution of the state estimation in this case. The idea of the first approach is to linearize 
the models. Therefore, the Jacobi matrix of the motion model and the measurement model 
must be determined in each step. The filter that results from this approach is called the 
extended Kalman filter (EKF). The idea of the second approach is to approximate the 
distribution as normal distribution using the expectation value and the standard deviation, its 
parameters. Therefore, a sufficient number of so-called sigma-points must be drawn in each 
step, in order to be able to display the parameters of the Gaussian distribution. The number 
of sigma-points depends on the dimension of the normal distribution. The filter that results 
from this approach is called the unscented Kalman filter (UKF).  
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The nonlinear approach used in this thesis is an EKF. The UKF is not used in this thesis, thus it 
is not discussed further here. For the derivation and the UKF filter equations, the reader is 
referred to [12] [2, pp. 36-43]. The derivation of the EKF approach can also be found in the 
literature [11, pp. 106-116] [2, pp. 31-36] [5, pp. 48-54]. In the following only the filter 
equations are shown. Since the filter update of the EKF is identical to the update of the linear 
Kalman filter, only the prediction of the system state and the measurement are shown.  

1. Calculation of the Jacobi matrix of 𝑓: 

𝐹𝑘 = ∇𝒙𝑇𝑓(𝒙)|𝒙=𝒙̂𝑘−1|𝑘−1 

 

(2.20) 

2. Prediction of the system state with corresponding covariance: 

𝒙𝑘|𝑘−1 = 𝑓(𝒙̂𝑘−1|𝑘−1) (2.21) 

𝑃𝑘|𝑘−1 = 𝐹𝑘 ∙ 𝑃𝑘−1|𝑘−1 ∙ 𝐹𝑘
𝑇 + 𝑄𝑘 (2.22) 

3. Calculation of the Jacobi matrix of ℎ: 

𝐻𝑘 = ∇𝒙𝑇ℎ(𝒙)|𝒙=𝒙̂𝑘|𝑘−1 

 

(2.23) 

4. Prediction of the measurement with corresponding Innovation covariance: 

𝒛̂𝑘 = ℎ(𝒙̂𝑘|𝑘−1) (2.24) 

𝑆𝑘 = 𝐻𝑘 ∙ 𝑃𝑘|𝑘−1 ∙ 𝐻𝑘
𝑇 + 𝑅𝑘 (2.25) 

5. Update of the system state and the corresponding covariance according to (2.17) – 
(2.19) 

When processing systems with arbitrary complex distributions, the performance of a Kalman 
filter can become very poor. In these cases, the distributions often have several maxima, so 
they cannot be described accurate by a normal distribution. If such a distribution is present, 
sequential Monte Carlo methods [2, pp. 46-53] [13] [14] or particle filters lead to the desired 
result. The idea of this method is to represent the distribution by a large number of samples, 
also called particles. In regions of high probability many particles should be present and in 
regions of low probability few particles. With this method, the performance gain is bought 
with a significantly higher computational effort, that can be parallelized very well. 
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3 Extended object tracking 
This chapter gives an overview of the problem of modeling extended objects [15]. In the first 
section a precise definition of the problem is given. In the second section, the best-known 
approaches to solve this problem are presented. Finally, the measurement model used for 
comparison, the rectangular shape estimator, is presented in section 3.3. 

3.1 Problem definition 
By expanding the field of applications and improving sensor technology, different tracking 
scenarios must be distinguished in the area of environment perception [15]. Definitions for 
these different scenarios are given below. 

• Point object tracking: Each object within the surveillance area generates at most one 
measurement per time step. 

• Extended object tracking: Each object within the surveillance area can generate several 
measurements per time step with the measurements distributed spatially around the 
object. Each measurement is generated by a measurement source located on the 
surface of the extended object. 

• Group object tracking: Some objects within the surveillance area can consist of 
multiple objects where each object can be modeled as an extended object or a point 
object. The objects in the group share some motion characteristics e.g. moving in the 
same direction with a similar velocity. They can therefore be treated as one object and 
are not tracked individually. 

 

Figure 3.1: Illustration of different tracking scenarios 
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The different scenarios are shown in Figure 3.1 with a car as extended object, a pedestrian as 
point object and a group of pedestrians as group object. The group tracking scenario is 
illustrated with three point objects in this example, but could also be a group of extended 
objects, or a mixture of extended and point objects. 

3.1.1 The object state 
When modeling the state of an extended object, the position, kinematics and extension must 
be represented in a state vector 𝒙𝒌 for time step 𝑘 [15]. In the following example, the 
extension is assumed to be a rectangle to illustrate the state vector which, in this example, 
would be given as 

𝒙𝒌 = (𝑥𝑘 , 𝑦𝑘 , 𝑣𝑘  , 𝜓𝑘  , 𝐿𝑘 ,𝑊𝑘)
𝑇 . (3.1) 

 
The object state is illustrated in Figure 3.2. 

 

Figure 3.2: Illustration of the object state 

In this representation, the vector (𝑥𝑘 , 𝑦𝑘)
𝑇 represents the position of the center point. The 

kinematic is represented by the velocity 𝑣𝑘, the orientation by the heading angle 𝜓𝑘 and the 
extension of the object is represented by the length 𝐿𝑘 and the width 𝑊𝑘 of the rectangle.  

The composition of the object state depends on many factors. In many applications it is 
sufficient to model the objects position in 2D coordinates, however, the third spatial 
dimension cannot be ignored, when tracking flying objects. The object state also depends on 
the choice of the motion model. In a CV model the orientation would be neglected, while in 
other models the steering angle of the moving object would be added. Furthermore, the 
extension state depends on the choice of the shape to be modeled. In many applications it is 
sufficient to model the extent with a simple geometric shape like a rectangle or an ellipse. In 



 

10  3 Extended object tracking 

other applications the choice of a more general shape would be more appropriate. So, the 
composition of the object state must be reconsidered in every application separately. 

3.1.2 Modeling the measurements 
Finding a suitable measurement model is a crucial part when tracking extended objects. 
Depending on the sensor and the relative positioning of the sensor and the object to be 
measured, a different number of measurements is generated from different measurement 
sources. In addition, all detections are measured with an additive random noise and the 
assignment of a measurement to a specific measurement source is unknown. Modeling the 
measurement process, summarized in [15], is therefore a highly complex problem. When 
tracking extended objects, it is assumed that a measurement set 𝒁𝑘 = {𝒛1, 𝒛2, … , 𝒛𝑛𝑘} of 𝑛𝑘 

measurements is available at each time step 𝑘. In this case the conditional distribution 

𝑝(𝒁𝑘|𝒙𝑘) (3.2) 
 
is searched for modeling the measurements. Thus, the distribution of all measurements given 
a specific object state is to be calculated. In a first step, it can be assumed that the detections 
are measured independently of each other so the measurement likelihood can be stated as 

𝑝(𝒁𝑘|𝒙𝑘) =∏𝑝(𝒛𝑘,𝑖|𝒙𝑘)

𝑛𝑘

𝑖=1

 . (3.3) 

 
Further considerations can be divided into two different approaches. In the first approach, the 
detections are modeled as Poisson point process [16]. It is assumed that the number of 
detections generated by the measurement object follows a Poisson distribution that depends 
on the object state. The localization of the measurements then follows a spatial distribution. 
This approach completely avoids a direct assignment of the measurements to the 
corresponding measurement sources. In the literature this assignment is referred to the data 
association problem in extended object tracking. The Poisson point process approach is used 
to model the extension of the tracked object as a random matrix [17], which will be briefly 
introduced later. 

In the second approach, each measurement 𝒛𝑖 is modeled as a detection of a measurement 
source 𝒚 ∈ 𝒀𝑘 = {𝒚1, 𝒚2, … , 𝒚𝑛𝑘} located on the surface of the object. The distribution of a 

measurement given an object state 𝒙𝑘 is then calculated as the total probability  

𝑝(𝒛𝑖|𝒙𝑘) = ∫𝑝(𝒛𝑖|𝒚) ∙ 𝑝(𝒚|𝒙𝑘) 𝑑𝒚 (3.4) 

 
of all measurement sources 𝒚 that could have caused the measurement. The data association 
problem is a crucial part in the use of this approach. A well-known possibility of modeling 
measurement sources is the random hypersurface model [18], where each measurement 
source is assumed to be an element of a randomly generated hypersurface. In mathematics, 
hypersurfaces denote objects of codimension one. In 3-dimensional space this object would 
be a surface and in 2-dimensional space a curve. The random hypersurface model will also be 
briefly introduced later. 

3.1.3 Modeling the shape 
When modeling the shape of an extended object, different levels of difficulty must be 
distinguished. The description of the shape can therefore be less to highly complex. These 
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different levels are reflected in different approximations and algorithms [15]. The question of 
the choice of the appropriate modeling of the shape for the application cannot be answered 
easily. With highly complex approaches, the calculation effort increases considerably, whereas 
less complex approaches often do not generate the information that is needed. The goal is 
therefore to choose an approach that generates the necessary information with as less 
computational effort as possible. In the following, the different levels of complexity are briefly 
explained. 

• No shape modeling: For example, if an application does not require information’s 
about the extension of the tracked objects, a model can be selected that completely 
neglects the extension and estimates only the kinematic components. Since the sensor 
can generate a large number of measurements per object and time step, information 
is deliberately discarded in this case. 

• Standard geometrical shape modeling: A common approach of describing the shape of 
an extended object is to use a basic geometric shape for the object such as ellipses or 
rectangles. These models are sufficient for some applications and are not too complex, 
so that the computation can be carried out in a reasonable time. 

• Arbitrary shape modeling: The most complex models are those that are able to 
describe an arbitrary shape of the extended object. These models are able to describe 
objects with unusual shapes. The generality of the approach, however, also entails a 
high computational effort. 

The choice of the complexity level depends on the application and the objects to be tracked. 
In applications for tracking cars or ships, it is normally sufficient to describe the extension with 
a standard shape, such as a rectangle or an ellipse respectively. On the other hand, the 
extension of a pedestrian can be neglected due to size differences in these applications. If 
objects are to be tracked whose shape resembles neither a rectangle nor an ellipse, models 
must be selected to describe an arbitrary shape. An example of such an object can be a plane 
whose shape resembles a cross. When describing a cross with a rectangle or an ellipse, big 
mistakes can be made. In the literature there are two different approaches for the description 
of arbitrary shapes. The first describes the shape by a curve, while the second describes the 
shape by composite ellipses. Literature examples for all three complexity levels can be found 
in [15]. 

3.2 Popular approaches to extended object tracking 
In this section two popular approaches to the problem of tracking extended objects are 
addressed. In the first subsection the random matrix approach, where the extension of the 
object is represented as ellipse using a spatial distribution, is briefly outlined. The random 
matrix extension model has been investigated in a single object tracking framework [17], as 
well as in a multi object tracking scenario [19]. In the second subsection the random 
hypersurface model is addressed [18]. Using this approach, the state of arbitrary shaped 
objects can be estimated in a tracking filter.  

3.2.1 The random matrix approach 
The random matrix approach is an example of modeling the measurements originating from 
an extended object using a spatial distribution. The state of the extended object is split up to 
a state vector 𝒙𝑘, containing the position, orientation and kinematics, and an extent matrix 
𝑋𝑘 as 𝜉𝑘 = (𝒙𝑘, 𝑋𝑘). The extent matrix is modeled as symmetric and positive definite square 
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matrix with 𝑋𝑘 ∈ ℝ
𝑑×𝑑, where 𝑑 is the objects position dimension. With the position e.g. in 2-

dimensional space, the extent matrix is of dimension 𝑋𝑘 ∈ ℝ
2×2. A symmetric and positive 

definite square matrix describes an ellipse with the half axes defined using the Eigen values of 
the matrix 𝑋𝑘. Integrating the random matrix measurement model in a Bayesian tracking 
framework, the aim is to jointly estimate the objects position, kinematics and extension as 
𝑝(𝜉𝑘|𝒁

𝑘) with the set of measurements up to time 𝑘 denoted as 𝒁𝑘. This probability density 
function can be split up to the product 

𝑝(𝜉𝑘|𝒁
𝑘) = 𝑝(𝒙𝑘, 𝑋𝑘|𝒁

𝑘) = 𝑝(𝒙𝑘|𝑋𝑘, 𝒁
𝑘) ∙ 𝑝(𝑋𝑘|𝒁

𝑘) (3.5) 
 
where 𝑝(𝒙𝑘|𝑋𝑘, 𝒁

𝑘) is a vector variate density and 𝑝(𝑋𝑘|𝒁
𝑘) a matrix variate density. In 

Bayesian probability theory the posterior and prior probability are called conjugate 
distributions if the probability distributions are in the same probability family. In the case of 
Gaussian distributed measurements the conjugate prior for the mean of the measurement is 
Gaussian distributed, whereas the covariance is inverse Wishart distributed [15] [17]. The 
original measurement model for the random matrix approach [17] applies the extent matrix 
𝑋𝑘 as covariance matrix of the measurement process. As the measurement process is modeled 
using a Gaussian distribution it is given as 

𝑝(𝒛𝑘|𝒙𝑘, 𝑋𝑘) = 𝒩(𝒛𝑘; 𝐻𝑘𝒙𝑘, 𝑋𝑘) . 
 

(3.6) 
 
Using this expression, the spatial distribution of the measurements is given through the 
covariance matrix 𝑋𝑘 that implies an elliptical extent. Furthermore, the probability density 
functions of (3.5) can be modeled as product of a Gaussian and inverse Wishart distribution. 
The random matrix approach provides a robust possibility of tracking extended objects as it 
completely avoids a measurement to the objects contour or measurement source association. 
Approaches that apply this association can completely fail if the prediction step is not precise 
enough. The way of modeling the objects shape as ellipse seems limiting, indeed it is 
applicable to many real-world scenarios like tracking of pedestrians, cyclists, ships or boats. 
An overview of investigated scenarios is given in [15]. However, the elliptical shape still can 
reach a limit if the shape of the object is too disparate to an ellipse, or in the case of closely 
spaced objects where the shape needs to be estimated very accurately. In those cases, it is 
necessary to be able of estimating an arbitrary shaped object, which is addressed in the next 
subsection. 

3.2.2 The random hypersurface approach 
The random hypersurface model originally proposed in [18] is a method of modeling the 
measurement source as an element of a randomly generated hypersurface. In a 𝑑-dimensional 
space a hypersurface is a surface of dimension 𝑑 − 1. Thus, a hypersurface in 2-dimensional 
space is a line. For a random set measurement model, the shape of the extended object is 
assumed to be of the form 

𝒪(𝒑𝑘) = {𝒛 ∈ ℝ
2|𝑔(𝒛, 𝒑𝑘) ≤ 0} (3.7) 

 
where 𝒑𝑘 is a parameter vector and 𝑔(𝒛, 𝒑𝑘) is the function defining the shape of the 
extended object. The points belonging to the object are therefore all the points on the 
boundary or with a distance smaller than the boundary. For a circle the parameter vector 
would contain the center and the radius. Now the object generates a set of measurements 
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𝒁𝑘 = {𝒛𝑘,𝑙}𝑙=1
𝑛𝑘

 in a specific time step. The measurement source to each measurement is 

assumed to be an element of the measurement set 

ℳ(𝒑𝑘,𝑙
𝑚 ) = {𝒚 ∈ 𝑅2|𝐶(𝒚, 𝒑𝑘,𝑙

𝑚 )} (3.8) 

 
where 𝒑𝑘,𝑙

𝑚  is the parameter vector similar to the parameter vector of the set defining the 

objects shape and 𝐶(𝒚, 𝒑𝑘,𝑙
𝑚 ) is a constraint similar to the function specifying the objects 

shape. Given the two parameter vectors 𝒑𝑘 and 𝒑𝑘,𝑙
𝑚  of the shape and measurement set 

respectively, the random set measurement model is specified as 𝑓(𝒑𝑘,𝑙
𝑚 |𝒑𝑘). The random set 

measurement model is a generalization of the spatial distribution model like the random 

matrix approach, as the measurement set would be the singleton ℳ(𝒑𝑘,𝑙
𝑚 ) = {𝒑𝑘,𝑙

𝑚 } for a 

spatial distribution model. In the case of a random hypersurface model the measurement set 
is assumed to be a hypersurface respectively a scaled version of the object’s boundary 
specified by a random scaling factor 𝑠𝑘,𝑙. The measurement source is then specified by a 1-

dimensional distribution over the hypersurface. A summary to the random hypersurface 
model is also given in [15]. In [18] the random hypersurface model is applied to elliptical 
shaped extended objects. The measurement set is therefore a scaled version of the boundary 
ellipse. A comparison of the random matrix approach and the random hypersurface model for 
extended objects is given in [20]. An expansion of the random hypersurface model for elliptical 
shape to star convex shapes is addressed in [21]. A star convex set is a set where the 
connecting line of the center to a point on the boundary is completely in the set. A star convex 
boundary can be specified using a radial function 𝑟(𝜙). A radial function gives the distance 
between the center and the contour point depending on the given angle 𝜙. Using a Fourier 
series expansion of degree 𝑁𝐹, a periodic radial function can be specified as 

𝑟(𝒂𝑘, 𝒃𝑘 , 𝜙) =
𝑎𝑘
(0)

2
+∑𝑎𝑘

(𝑗)
cos(𝑗𝜙) + 𝑏𝑘

(𝑗)
sin(𝑗𝜙)

𝑁𝐹

𝑗=1

 . (3.9) 

 
When tracking an arbitrary star convex shaped extended object, the degree of the Fourier 
series expansion can be fixed, and the parameters can be estimated in a Bayesian tracking 
filter. As the random hypersurface model is able to model arbitrary shaped objects it comes 
with a much higher computational effort than a spatial distribution model. 

3.3 The rectangular shape estimator 
When tracking vehicles in the road traffic, the position, orientation, kinematics and extension 
is to be estimated using sensor data. An intuitive approach is to model the extension of a 
vehicle as rectangle, also known as bounding box. A tracking filter for rectangular objects 
briefly addressed in this section is given in [22]. The object state 𝒙𝑘 can be used according to 

(3.1) in this algorithm. The measurements 𝒁𝑘 = {𝒛𝑘,𝑖}𝑖=1
𝑛𝑘

 are assumed to be generated from 

specific points on the object’s contour. The measurement sources 𝒀𝑘 = {𝒚𝑘,𝑖}𝑖=1
𝑛𝑘

 on the 

contour are assumed to be the closest points to the measurements, which can be computed 
using an orthogonal projection on the bounding box. An illustration of the measurement 
prediction is given in Figure 3.3. Using the distance 𝑑𝑘,𝑖 between the measurement 𝒛𝑘,𝑖 =

(𝑥𝑘,𝑖
(𝑧), 𝑦𝑘,𝑖

(𝑧))
𝑇

 and the measurement source 𝒚𝑘,𝑖 = (𝑥𝑘,𝑖
(𝑦)
, 𝑦𝑘,𝑖

(𝑦)
), as well as the orientation 𝜓𝑘 of 

the bounding box, the measurement source can be computed as 
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(
𝑥𝑘,𝑖
(𝑦)

𝑦𝑘,𝑖
(𝑦)
) = (

𝑑𝑘,𝑖 ∙ cos(𝜓̂𝑘,𝑖) + 𝑥𝑘,𝑖
(𝑧)

𝑑𝑘,𝑖 ∙ sin(𝜓̂𝑘,𝑖) + 𝑦𝑘,𝑖
(𝑧)
) . (3.10) 

 
By denoting the box sides with a counter clockwise line identification index 𝑗 ∈ {0, … ,3}, 

where 0 is the front, the angle 𝜓̂𝑘,𝑖 of (3.10) can be calculated as 𝜓̂𝑘,𝑖 = 𝜓𝑘 +
𝜋

2
∙ 𝑗.  

 

Figure 3.3: Measurement prediction for the rectangular shape estimator 

Given a set of measurements and a predicted bounding box, the set of measurement sources 
can be computed. The aim of the filter is to adjust the bounding box parameters according to 
an optimal fit to the given measurement set. Therefore, the residuals  

𝜈𝑘,𝑖
(𝑥)
= 𝑥𝑘,𝑖

(𝑦)
− 𝑥𝑘,𝑖

(𝑧) , (3.11) 

𝜈𝑘,𝑖
(𝑦)

= 𝑦𝑘,𝑖
(𝑦)
− 𝑦𝑘,𝑖

(𝑧) (3.12) 

 
need to be minimized with respect to the equation system 

(
𝑑𝑘,𝑖 ∙ cos(𝜓̂𝑘,𝑖) + 𝑥𝑘,𝑖

(𝑧)

𝑑𝑘,𝑖 ∙ sin(𝜓̂𝑘,𝑖) + 𝑦𝑘,𝑖
(𝑧)
) − (

(𝑥𝑘,𝑖
(𝑧) + 𝜈𝑘,𝑖

(𝑥))

(𝑦𝑘,𝑖
(𝑧) + 𝜈𝑘,𝑖

(𝑦)
)
) = 0 . (3.13) 

 
The calculation of the full covariance matrix 𝑃𝑘 for the estimated system state 𝒙𝑘, containing 
the variances as well as the corresponding correlation coefficients, is described in [22]. In the 
case of fast changes in the parameters of the bounding box the adjustment fails. This problem 
can be addressed by transforming the rectangle distribution to the measurement space using 
the bounding points illustrated in Figure 3.3. In the remainder of this thesis the rectangular 
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shape estimator is used for comparison with the investigated spline-based measurement 
model. To compare the rectangular shape estimator with the presented spline-based 
measurement model, an implementation of the rectangular shape estimator is provided by 
Stefan Wirtensohn. 

4 Multi object tracking 
This chapter describes a solution to the problem of tracking multiple objects in a cluttered 
environment. In classic approaches each track is assigned to a measurement in order to 
perform a single object tracker. The main challenge is therefore the measurement to track 
assignment and the track management in these approaches. The track management is needed 
since the disappearance or appearance of an object can occur in each time step. A solution to 
the multi object tracking problem investigated in recent years is an approach describing the 
problem in a multi object Bayes filter using so called random finite sets (RFS) and finite set 
statistics (FISST), leading to the probability hypothesis density (PHD) filter. The remainder of 
this chapter is organized as follows. In section 4.1 the problem of tracking multiple objects is 
described in detail. Also, the classic approaches solving this problem and their limitations 
leading to the necessity of a new approach are briefly addressed. In order to be able to 
understand the generalization of the single object Bayes filter to a multi object Bayes filter, 
the basic ideas of a RFS and FISST are discussed in section 4.2. The derivation of the multi 
object Bayes recursion using RFSs is then presented in section 4.3. Since the general multi 
object Bayes equation is computationally intractable in most scenarios, approximations are 
needed to propagate the posterior multi object distribution. Two famous approximations to 
the multi object Bayes recursion are the PHD filter and the Multi-Bernoulli filter. In section 4.4 
the PHD framework is therefore described. Since the aim of this thesis is about to track 
multiple extended objects the modifications of the point object PHD filter to an extended 
object PHD filter are summarized in section 4.5. 

4.1 Problem description 
In a first consideration of the multi object tracking problem the objects are assumed to be 
point objects generating at most one measurement per time step. Using this assumption 
several problems need to be considered when tracking multiple objects in a cluttered 
environment. 

• The number of objects being present in the surveillance area is unknown. Besides, it 
cannot be assumed that every object being present generates a measurement in every 
time step.  

• The number of objects being present in the surveillance area can change within every 
time step since new objects can appear and present objects can disappear. Also, the 
spawning of one object to multiple objects is possible. 

• The assignment of a measurement to a specific track is a very complex problem. Since 
the number of objects being present is unknown the measurement can occur from a 
real object or can be a clutter measurement. Assigning a measurement to a wrong 
track can lead to a filter divergence. 

A visualization of the multi object tracking problem is shown in Figure 4.1. In the figure eight 
measurements originating from nine objects and five clutter measurements are shown. For 
the sensor the real measurements and clutter measurements are indistinguishable. Therefore, 
the measurement to track assignment is a crucial problem in multi object tracking. Since multi 
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object tracking is a problem studied for decades’ various approaches exist to solve it. The most 
widely used classic approaches are the joint probabilistic data association (JPDA) filter and the 
multi hypothesis tracking (MHT) filter. Summaries to both filters and references to other 
approaches can be found in [23]. The basic idea to classic solutions of the multi object tracking 
problem is always to assign a measurement to a track and perform one of the single object 
trackers presented in chapter 2. Since clutter measurements can occur, objects can appear or 
disappear and misdetections are possible, the measurement to track assignment is the key 
element of a classic multi object tracker. The assignment approaches are briefly summarized 
below. For detailed information the reader is referred to the literature given below. 

The simplest possible data association is a nearest neighbor approach where each predicted 
track is assigned to the nearest measurement to perform the update step of a single object 
Bayes filter.  

 

Figure 4.1: Multi object tracking problem visualization 

Due to the possible unequal number of measurements and tracks, this approach can lead to a 
very poor performance since one measurement can be assigned to various tracks, causing the 
filter to diverge. An extension of the nearest neighbor approach is the global nearest neighbor 
tracker where each measurement is assigned to at most one track. Using a cost function like 
the total distance, where each track is assigned to a unique measurement, the goal is to 
minimize the cost function forming a joint data association. However, the global nearest 
neighbor approach is also susceptible to track loss leading to poor filter performances. 
Therefore, a data association approach for tracking a single object in a cluttered environment 
can be extended to track multiple objects. The probabilistic data association (PDA) filter [2, 
pp. 111-119] [11, pp. 163-184] uses all validated measurements per time step to update the 
prior density of the track using a weighting assumption to each measurement. The joint PDA 
(JPDA) filter [2, pp. 205-221] [11, pp. 222-238] is the extension to track a known number of 
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objects in a cluttered environment. Since the number of objects actually being present can be 
unknown in many scenarios, the JPDA filter can be extended to the joint integrated PDA filter 
[24], in order to track an unknown number of objects in a cluttered environment. When 
tracking closely spaced objects, the JPDA filter reaches its limits leading to the necessity of an 
approach considering all possible progressions of the track. 

Given a set of tracks and a set of measurements in one time step, the multi hypothesis tracking 
(MHT) [23] filter scores every association hypothesis and performs a single object Bayes 
update for every probable association hypothesis. In the next time step the new set of 
measurements can be used to reassess every association hypothesis and delete the unlikely 
ones. This procedure automatically handles the appearance and disappearance of a single 
object, as one association hypothesis for every measurement is always a non-existing track. 
Also, a non-detection hypothesis is always considered. In order to reduce the number of 
hypotheses, merging and pruning is performed within every time step. Otherwise the number 
of hypotheses would increase exponentially. In a pruning step all hypotheses with a weighting 
score lower than a specific threshold are rejected, while a merging step is used to melt closely 
spaced hypotheses. However, the number of hypotheses increases very fast, although 
merging and pruning is performed causing the filter to become very slow.  

The novel approach investigated in the last one and a half decades was first introduced by 
Mahler [25] using RFSs and FISST methods to describe a closed multi object Bayesian filter 
approach. An approximation of the multi object Bayes equation is used in this thesis to track 
several extended objects. Using the RFS approach, comparable results to MHT filters with a 
lower computational effort can be achieved. In order to be able to understand the multi object 
Bayesian filter approach, the next section is about to recap the theory of RFSs and FISST 
methods. 

4.2 Random finite sets 
When tracking multiple objects in a cluttered environment the number of tracks as well as the 
number of measurements are random. The set of tracks and measurements therefore need 
to be modeled random in the number of elements and the elements itself. Such a tool is 
provided by the theory of RFSs and FISST [26, pp. 343-394] [4, pp. 19-30] [3, pp. 61-64] [27]. A 
RFS 𝑿 = {𝒙1, … , 𝒙𝑛} represents an unordered set of elements drawn of the space 𝒳 with 
𝒙1, … , 𝒙𝑛 ∈ 𝒳. In general, the space 𝒳 can be any measurable space, however, this thesis is 
restricted to the space being an Euclidean space with 𝒳 = ℝ𝑛. Using this representation, the 
multi object state can be stated as 

𝑿𝑘 = {𝒙1, … , 𝒙𝑟𝑘} , 𝒙1, … , 𝒙𝑟𝑘 ∈ ℝ
𝑛 (4.1) 

 
with a varying number of tracks 𝑟𝑘 possibly changing every time step and the set elements 
drawn from the state space ℝ𝑛. Analog to this, the measurement set can be stated as 

𝒁𝑘 = {𝒛1, … , 𝒛𝑙𝑘} , 𝒛1, … , 𝒛𝑙𝑘 ∈ ℝ
𝑚 (4.2) 

 
with a varying number of measurements 𝑙𝑘 possibly changing every time step and the set 
elements drawn out of the measurement space ℝ𝑚. The number of elements in a RFS is 
denoted as the cardinality |𝑿| and modeled using a discrete distribution 𝜌(𝑛) = 𝑃{|𝑿| = 𝑛} 
to clarify the varying number of tracks and measurements in every time step. Furthermore, 
the elements of the RFS itself need to be modeled using a symmetric joint distribution 
𝑝𝑛(𝒙1, … , 𝒙𝑛), to represent the random draw of elements out of the Euclidean space. A 
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symmetric joint distribution delivers the same value if the order of arguments is swapped. The 
distribution therefore is equal for every permutation of the input values. In summary a RFS 
draws its instantiations out of the set of all finite subsets of ℝ𝑛 denoted as ℱ(ℝ𝑛) as 𝑿 ∈
ℱ(ℝ𝑛). By specifying the discrete distribution 𝜌(𝑛), modeling the cardinality, and the 
symmetric joint distribution 𝑝𝑛, modeling the drawing of the set elements, a RFS is well-
defined. In order to use a RFS in a multi object Bayesian filter, the usual probabilistic 
descriptors like the probability density function (PDF) and its moments need to be defined for 
a RFS. In Mahler [26, pp. 343-394], these descriptors are summarized under the term FISST. A 
FISST PDF is then defined as 

𝑓({𝒙1, … , 𝒙𝑛}) ∶= 𝑛! ∙ 𝜌(𝑛) ∙ 𝑝𝑛(𝒙1, … , 𝒙𝑛) (4.3) 

 
with the FISST PDF denoted as 𝑓(𝑿). In order to verify the well-definition of the FISST PDF it 
needs to integrate to one. Since a RFS is a set and therefore the FISST PDF is a function defined 
on sets it must be integrated using a set integral defined as 

∫𝑓(𝑿) 𝛿𝑿 ∶= 𝑓(∅) +∑
1

𝑛!

∞

𝑛=1

∫𝑓({𝒙1, … , 𝒙𝑛})𝑑𝒙1…𝑑𝒙𝑛 . (4.4) 

 

By inserting (4.3) in (4.4), the set integral can be stated as ∫𝑓(𝑿)𝛿𝑿 = 𝑓(∅) + ∑
𝑛!

𝑛!
∞
𝑛=1 ∙ 𝜌(𝑛) ∙

∫ 𝑝𝑛(𝒙1…𝒙𝑛)𝑑𝒙1…𝑑𝒙𝑛. The FISST PDF is equal to zero inserting the empty set and the joint 
distribution 𝑝𝑛 integrates to one since it is a well-defined PDF. The set integral therefore 
simplifies to ∫𝑓(𝑿)𝛿𝑿 = ∑ 𝜌(𝑛)∞

𝑛=1 = 1, which is equal to one since 𝜌(𝑛) is a well-defined 
discrete PDF that sums up to one for all 𝑛 ∈ ℕ. This calculation proves 𝑓(𝑿) to be a well-
defined PDF. 

Another tool needed for the derivation of a tractable multi object Bayes filter is the first order 
moment of a RFS [4, p. 23]. As a reminder, the first order moment of a random variable is the 
expectation value. Given a RFS 𝑿 ⊆ ℝ𝑛, its first order moment is defined as 

𝑉(𝑩) ∶= 𝔼(|𝑿 ∩ 𝑩|) = ∫𝑣(𝒙)𝑑𝑥
𝑩

 (4.5) 

 
for any 𝑩 ⊆ ℝ𝑛. In this definition 𝑣(𝒙) is called the intensity function. The first order moment 
over a set 𝑩 can be interpreted as the expected number of elements of 𝑿 that are elements 
of 𝑩 as well. In the remainder of this thesis the first order moment will be used as an 
approximation of the posterior density within a multi object Bayes filter, propagating only the 
intensity function over time, comparable to the expectation value within a Kalman filter 
propagating over time. 

Following, two RFSs needed in this thesis are summarized [27]. Therefore, only the cardinality 
distribution 𝜌(𝑛) needs to be specified. The first RFS needed is one to model whether the set 
involves an element or not, called Bernoulli RFS. The cardinality distribution accordingly is 
represented by a Bernoulli distribution. Thus, the Bernoulli RFS involves an element with 
probability 𝑞 and is empty with probability 1 − 𝑞. The Bernoulli RFS is then given as 
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𝑓(𝑿) = {
1 − 𝑞       𝑖𝑓 𝑿 = ∅

𝑞 ∙ 𝑝(𝑥)      𝑖𝑓 𝑿 = {𝒙}
 . (4.6) 

 
Other important RFSs, considering a multi object Bayes equation, are independent identically 
distributed (IID) cluster RFSs. Within this special case each element of the RFS 𝒙 ∈ 𝑿 is 
independent but identically distributed according to the PDF 𝑝(𝒙). Using this property, the 
joint probability of (4.3) can be rewritten using the product over the identically distributed 
probability of each element within the RFS. The FISST PDF of an IID cluster RFS is then given 
as 

𝑓({𝒙1, … , 𝒙𝑛}) = 𝑛! ∙ 𝜌(𝑛) ∙∏𝑝(𝒙)

𝒙∈𝑿

 . (4.7) 

 
The set of measurements as well as the set of objects are modeled using IID cluster RFSs, since 
the measurements are assumed to be generated independently of each other and the objects 
are assumed to evolve independently over time. A special case of an IID cluster RFS is a Poisson 
RFS, where the cardinality distribution 𝜌(𝑛) is assumed to be Poisson distributed. The 
cardinality distribution of a Poisson RFS is then given as 

𝜌(𝑛) =
𝑒−𝜆 ∙ 𝜆𝑛

𝑛!
 . (4.8) 

 
The Poisson FISST PDF is then given by inserting (4.8) in (4.7) and can be stated as 

𝑓({𝒙1, … , 𝒙𝑛}) = 𝑛! ∙
𝑒−𝜆 ∙ 𝜆𝑛

𝑛!
∙∏𝑝(𝒙)

𝒙∈𝑿

= 𝑒−𝜆 ∙∏𝜆 ∙ 𝑝(𝒙)

𝒙∈𝑿

 . (4.9) 

 
The theory elaborated in this section can now be used to derive the multi object Bayes 
recursion in the next section. 

4.3 The multi object Bayes filter 
By modeling the set of tracks and the set of measurements as RFSs, a multi object Bayes filter 
[26, pp. 483-539] [3, pp. 62-65] [4, pp. 30-40] can now be formulated using the derivation of 
section 2.1 resulting in equations (2.3)-(2.5). However, first of all the measurement RFS and 
the multi object RFS need to be specified [4, pp. 30-35].  

Assuming the multi object state 𝑿𝑘−1 from the previous time step is given, then each object 
𝒙𝑘−1 ∈ 𝑿𝑘−1 within the set either survives and moves on or disappears. For the sake of 
simplicity, the survival probability 𝑝𝑆 is assumed to be constant in this thesis but can also be 
formulated more generally. Accordingly, each object either survives with probability 𝑝𝑆 or 
disappears with probability 1 − 𝑝𝑆. The behavior of one object can therefore be modeled as a 
Bernoulli RFS 𝑺𝑘|𝑘−1({𝒙𝑘−1}), using the state transition 𝑓(𝒙𝑘|𝒙𝑘−1). Also, the state transition 

is assumed to be constant over time, but can be formulated more generally. Using (4.6), the 
single object Bernoulli RFS is then given as 

𝑺𝑘|𝑘−1({𝒙𝑘−1}) = {
1 − 𝑝𝑆                     𝑖𝑓 𝒙𝑘−1 = ∅
𝑝𝑆 ∙ 𝑓(𝒙𝑘|𝒙𝑘−1)    𝑖𝑓 𝒙𝑘−1 ≠ ∅

  . (4.10) 

 
Since 𝑿𝑘−1 contains multiple objects the appearance or disappearance process needs to be 
modeled using the union of all Bernoulli RFSs as specified in (4.10). This union is then called a 
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multi-Bernoulli RFS containing a set of cardinality distributions and state transitions. More 
details on a multi-Bernoulli RFS can be found in [4, pp. 29-30] [26, p. 368]. The multi-Bernoulli 
RFS is then given as 

𝑻𝑘|𝑘−1(𝑿𝑘−1) = ⋃ 𝑺𝑘|𝑘−1({𝒙𝑘−1})

𝒙𝑘−1∈𝑿𝑘−1

 . (4.11) 

 
Another component of the multi object state at time 𝑘 are objects of spontaneous 
appearances, called object births. Object spawning is also possible but will be neglected in this 
thesis. According to (4.8) and (4.9), the RFS of spontaneous births is modeled using a Poisson 
RFS called 𝚪𝑘. The multi object state RFS can then be specified as union of the transition RFS 
in (4.11) and the birth RFS and is given as 

𝑿𝑘 = 𝑻𝑘|𝑘−1(𝑿𝑘−1) ∪ 𝚪𝑘 . (4.12) 

 
The next step is to specify the measurement RFS, which consists of the measurements 
generated from an object of interest and clutter measurements. The clutter measurements 
𝑲𝑘 can be modeled by a Poisson RFS using (4.8) and (4.9). The remaining measurements in 
the measurement set are those originating from a moving object. Those objects can be 
detected or stay undetected according to a detection probability at time 𝑘. The detection 
probability 𝑝𝐷 is assumed to be constant in this thesis but can also be formulated more 
generally. Assuming each object generates a measurement with probability 𝑝𝐷 and stays 
undetected with probability 1 − 𝑝𝐷, the detection of a single object can be modeled using a 
single object Bernoulli RFS. The measurement likelihood ℎ(𝒛𝑘|𝒙𝑘) is assumed to be constant 
over time but can also be formulated more generally. Using (4.6), the single object detection 
RFS 𝑫𝑘({𝒙𝑘}) is given as 

𝐷𝑘({𝒙𝑘}) = {
1 − 𝑝𝐷                𝑖𝑓 𝒙𝑘 = ∅

𝑝𝐷 ∙ ℎ(𝒛𝑘|𝒙𝑘)    𝑖𝑓 𝒙𝑘 ≠ ∅
  . (4.13) 

 
Since the measurement set contains measurements of multiple objects, the measurement 
process needs to be modeled using the multi-Bernoulli RFS as union of all single Bernoulli RFSs 
as specified in (4.13) and is then given as 

𝚯(𝑿𝑘) = ⋃ 𝑫𝑘(𝑥𝑘)

𝒙𝑘∈𝑿𝑘

 . (4.14) 

 

Using the RFS of clutter and the RFS modeling the measurement process, the complete 
measurement set can be stated as the union of those RFSs and is given as 

𝒁𝑘 = 𝚯(𝑿𝑘) ∪ 𝑲𝑘 . (4.15) 

 
Now the multi object state RFS and the measurement RFS are completely specified and can 
be used to form a multi object Bayes equation. The remaining missing components to 
formulate a multi object Bayes filter are the multi object transition density and the multi 
object measurement likelihood. Both those functions can be specified using the convolution 
formula [26, p. 385] for the union of independent RFSs as given in (4.12) and (4.15). Starting 
with the multi object transition density 𝑓(𝑿𝑘|𝑿𝑘−1), the probability densities 𝑝𝑻𝑘|𝑘−1  and 𝑝𝚪𝑘  
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are those of the transition RFS 𝑻𝑘|𝑘−1(𝑿𝑘−1) and the birth RFS 𝚪𝑘 respectively. The multi 

object transition density is then given as 

𝑓(𝑿𝑘|𝑿𝑘−1) = ∑ 𝑝𝑻𝑘|𝑘−1(𝑾|𝑿𝑘−1)

𝑾⊆𝑿𝑘

∙ 𝑝𝚪𝑘(𝑿𝑘\𝑾) . (4.16) 

 
Since the multi object state RFS is an unordered set, it is not clear which states within the RFS 
can be assigned to the RFS of already existing objects from the previous time step, and which 
objects belong to the RFS of spontaneous births. Therefore, the summation of (4.16) considers 
every subset 𝑾 of 𝑿𝑘 to be the RFS of existing objects from the previous time step and the 
remaining elements, represented as the set difference of 𝑿𝑘 and the subset of 𝑿𝑘, belong to 
the RFS of spontaneous births. The last component to be specified is the multi object 
measurement likelihood ℎ(𝒁𝑘|𝑿𝑘), which can be represent using the probability densities 𝑝𝚯𝑘 

and 𝑝𝑲𝑘 of the measurement process RFS 𝚯(𝑿𝑘) and the clutter RFS 𝑲𝑘 respectively within 

the convolution formula. The multi object measurement likelihood is then given as 

ℎ(𝒁𝑘|𝑿𝑘) = ∑ 𝑝𝚯𝑘(𝑾|𝑿𝑘) ∙ 𝑝𝑲𝑘(𝒁𝑘\𝑾)

𝑾⊆𝒁𝑘

 (4.17) 

 
Using the multi object measurement likelihood and the multi object transition density, the 
multi object Bayes recursion can now be specified. Denote 𝒁𝑘−1 the set of measurement RFSs 

up to time 𝑘 − 1 and 𝑝(𝑿𝑘|𝒁
𝑘−1) and 𝑝(𝑿𝑘|𝒁

𝑘) the multi object predicted density and the 
multi object posterior density respectively. The multi object Bayes recursion can then be 
subdivided in the following steps [4, pp. 35-37]: 

1. Multi object prediction step: 

𝑝(𝑿𝑘|𝒁
𝑘−1) = ∫𝑓(𝑿𝑘|𝑿𝑘−1) ∙ 𝑝(𝑿𝑘−1|𝒁

𝑘−1) 𝛿𝑿𝑘−1 . (4.18) 

 

2. Multi object update step: 

𝑝(𝑿𝑘|𝒁
𝑘) =

1

𝜂
∙ ℎ(𝒁𝑘|𝑿𝑘) ∙ 𝑝(𝑿𝑘|𝒁

𝑘−1) .  (4.19) 

 

3. Normalization: 

𝜂 = ∫ℎ(𝒁𝑘|𝑿𝑘) ∙  𝑝(𝑿𝑘|𝒁
𝑘−1) 𝛿𝑿𝑘 . (4.20) 

4.4 The probability hypothesis density filter 
The derivation of the multi object Bayes recursion, presented in the previous section, provides 
the best possible estimate of the multi object state from a Bayesian point of view. However, 
the set integrals within those equations operate on the space of all finite subsets of the single 
object space ℱ(ℝ𝑛) what makes them computationally intractable to propagate the multi 
object state over time. A reasonable approximation to the multi object state is the intensity, 
presented in (4.5), as a first order moment of the multi object state. In the context of object 
tracking the name probability hypothesis density (PHD) has prevailed for the first order 
moment of the multi object probability density function. The idea of the PHD filter is therefore 
to propagate the PHD over time, instead of the multi object probability density function. This 
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approximation makes the filter a computationally tractable algorithm since the PHD operates 
on the single object space ℝ𝑛. In order to derive the equations of the PHD filter [28] [26, pp. 
565-632] the following assumptions need to be considered: 

• Independence assumption: It is assumed that each object of interest within the 
surveillance area operates independent to all the other objects regarding the motion 
and the generation of measurements.  

• Clutter assumption: The clutter measurement set is assumed to be a Poisson RFS. 
Furthermore, the clutter measurements are assumed to be independent of object 
generated measurements. 

• Prediction assumption: The predicted multi object state RFS is assumed to be a 
Poisson RFS. 

Using these assumptions, the prediction of the PHD as an approximation of the predicted multi 
object probability density of (4.18), avoiding spawned objects, can be stated as [29] 

𝑣𝑘|𝑘−1(𝒙) = ∫𝑝𝑆 ∙ 𝑓(𝒙|𝜻) ∙ 𝑣𝑘−1|𝑘−1(𝜻) 𝑑𝜻 + 𝛾𝑘(𝒙) (4.21) 

 
with 𝛾𝑘(𝒙) as the intensity of the birth RFS 𝚪𝑘 and 𝜻 as the previous system state at time 𝑘. 
Given the predicted intensity, the update step of the PHD filter as an approximation of the 
posterior multi object probability density of (4.19) and (4.20) is given as 

𝑣𝑘|𝑘(𝒙) = 𝑣𝑘|𝑘−1(𝒙) ∙ (1 − 𝑝𝐷) + ∑
𝑝𝐷 ∙ ℎ(𝒛|𝒙) ∙ 𝑣𝑘|𝑘−1(𝒙)

𝜅𝑘(𝒛) + ∫𝑝𝐷 ∙ ℎ(𝒛|𝜻) ∙ 𝑣𝑘|𝑘−1(𝜻) 𝑑𝜻
𝒛∈𝒁𝑘

 (4.22) 

 
with 𝜅𝑘(𝒛) as the intensity of the clutter RFS 𝑲𝑘 given as 𝜅𝑘(𝒛) = 𝜆𝑘𝑐(𝒛). The rate of the 
Poisson distributed random number modeling the cardinality of the clutter RFS is 𝜆𝑘, while 
the spatial distribution of a clutter measurement over the surveillance area is 𝑐(𝒛). Within the 
sum of (4.22) every single object state is compared to every measurement. However, the 
recursion specified in (4.21) and (4.22) does not provide a closed form solution that can be 
implemented. One possibility is to represent the intensity function using sequential Monte 
Carlo methods [30]. The maxima of the intensity function, representing the most likely 
positions of the objects, are depicted as the points with the largest number of particles after 
the resampling step in this approach. A closed form solution of the PHD recursion is provided 
by approximating the PHD using GMs [29]. A GM is a weighted sum of normal distributions. 
As the PHD filter is applied to a nonlinear measurement model in the further course of this 
thesis, the GM approximation of the PHD recursion is presented using nonlinear motion and 
measurement models. For the derivation further assumptions need to be considered: 

• Modeling assumption: The motion and measurement models are assumed to be 
nonlinear models as given in (2.6) and (2.7). 

• Birth RFS assumption: The birth RFS is assumed to be a GM of the form 
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𝑏𝑘(𝒙) =∑𝜔𝑏,𝑘
(𝑗)
∙ 𝒩 (𝒙; 𝒙̂𝑏,𝑘

(𝑗)
, 𝑃𝑏,𝑘

(𝑗)
)

𝐽𝑏,𝑘

𝑗=1

 (4.23) 

 
where 𝐽𝑏,𝑘 is the number of GMs, 𝜔𝑏,𝑘 is the weight of a GM component and 𝒙̂𝑏,𝑘 and 
𝑃𝑏,𝑘 are the mean and covariance respectively of the GM component.  

In order to specify the prior and posterior intensities at time 𝑘, the posterior intensity at time 
𝑘 − 1 is assumed to be a GM of the form 

𝑣𝑘−1|𝑘−1(𝒙) = ∑ 𝜔𝑘−1|𝑘−1
(𝑗)

∙ 𝒩 (𝒙; 𝒙̂𝑘−1|𝑘−1
(𝑗)

, 𝑃𝑘−1|𝑘−1
(𝑗)

)

𝐽𝑘−1|𝑘−1

𝑗=1

 (4.24) 

 

with 𝐽𝑘−1|𝑘−1 as the amount of GM components at 𝑘 − 1, 𝜔𝑘−1|𝑘−1
(𝑗)

 as the weight of a GM 

component, and 𝒙̂𝑘−1|𝑘−1
(𝑗)

 and 𝑃𝑘−1|𝑘−1
(𝑗)

 as the mean and covariance respectively of the GM 

component at 𝑘 − 1. The prior intensity is given as 

𝑣𝑘|𝑘−1(𝒙) = 𝑣𝑆,𝑘|𝑘−1(𝒙) + 𝑏𝑘(𝒙) (4.25) 

 
with 𝑣𝑆,𝑘|𝑘−1(𝒙) as the prediction of the GM components of 𝑘 − 1. While 𝑏𝑘(𝒙) is given using 

(4.23), the prediction of the intensity from the previous time step is given as 

𝑣𝑆,𝑘|𝑘−1(𝒙) = 𝑝𝑆 ∙ ∑ 𝜔𝑘−1|𝑘−1
(𝑗)

𝐽𝑘−1|𝑘−1

𝑗=1

∙ 𝒩 (𝒙; 𝒙̂𝑆,𝑘|𝑘−1
(𝑗)

, 𝑃𝑆,𝑘|𝑘−1
(𝑗)

) . (4.26) 

 
As the motion model is assumed to be a nonlinear model, the mean and covariance of the GM 
components of (4.26) need to be calculated using the extended transform presented in section 
2.4. According to (2.20) – (2.22) the mean and covariance are given as 

𝒙̂𝑆,𝑘|𝑘−1
(𝑗)

= 𝑓 (𝒙̂𝑘−1|𝑘−1
(𝑗)

) (4.27) 

and 

𝑃𝑆,𝑘|𝑘−1
(𝑗)

= 𝐹𝑘
(𝑗)
∙ 𝑃𝑘−1|𝑘−1

(𝑗)
∙ 𝐹𝑘

(𝑗)𝑇
+ 𝑄𝑘 (4.28) 

 

respectively, where 𝐹𝑘
(𝑗)

 denotes the Jacobian matrix evaluated at the 𝑗th posterior mean of 

the previous time step. The Jacobian matrix is given as 

𝐹𝑘
(𝑗)
= ∇𝒙𝑇𝑓(𝒙)|𝒙=𝒙̂𝑘−1|𝑘−1

(𝑗)  . (4.29) 

 
By multiplying the predicted intensity 𝑣𝑆,𝑘|𝑘−1(𝒙) with the probability of survival 𝑝𝑆, the death 

of an object is taken into account. The predicted intensity 𝑣𝑘|𝑘−1(𝒙) is constructed as the sum 

of the intensity of the objects that survived, with the intensity of spontaneous births. Given 
the predicted intensity the posterior intensity can be calculated. As the predicted intensity is 
a GM, the posterior intensity is also a GM and can be specified as 
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𝑣𝑘|𝑘(𝒙) = (1 − 𝑝𝐷) ∙ 𝑣𝑘|𝑘−1(𝒙) + ∑ 𝑣𝐷,𝑘(𝒙, 𝒛) .

𝒛∈𝒁𝑘

 (4.30) 

 
The first summand of the posterior intensity considers that none of the objects was detected, 
by multiplying the predicted intensity with the probability of non-detection. The second 
summand updates the whole predicted intensity with every measurement within the 
measurement RFS, assuming the objects were detected. As the measurement model is 
assumed to be a nonlinear model, (2.7) must be taken into account when predicting the 
measurements. The update equation of the intensity component presenting the detected 
objects is given as 

𝑣𝐷,𝑘(𝒙, 𝒛) = ∑ 𝜔𝑘|𝑘
(𝑗) (𝒛) ∙ 𝒩 (𝒙; 𝒙̂𝑘|𝑘

(𝑗) (𝒛), 𝑃𝑘|𝑘
(𝑗)
)

𝐽𝑘|𝑘−1

𝑗=1

 (4.31) 

 
where the number of GM components is given as 𝐽𝑘|𝑘−1 = 𝐽𝑘−1|𝑘−1 + 𝐽𝛾,𝑘. Due to the 

nonlinearity of the measurement model, the extended transform is used to update the GM 
components of (4.31). Therefore, the measurement matrix is given as the Jacobian matrix 
evaluated at the 𝑗th predicted mean and is given as 

𝐻𝑘
(𝑗)
= ∇𝒙𝑇ℎ(𝒙)|𝒙=𝒙̂𝑘|𝑘−1

(𝑗)  . (4.32) 

 
Using the measurement matrix and the nonlinear measurement model, the update equations 
of the mean and the covariance matrix can be specified according to (2.24), (2.25) and (2.17) 
– (2.19) and are given as  

𝒙̂𝑘|𝑘
(𝑗) (𝒛) = 𝒙̂𝑘|𝑘−1

(𝑗)
+ 𝐾𝑘

(𝑗)
∙ (𝒛 − ℎ (𝒙̂𝑘|𝑘−1

(𝑗)
)) , (4.33) 

𝑃𝑘|𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
− 𝐾𝑘

(𝑗)
∙ 𝐻𝑘

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
  

 
respectively. The Kalman gain is computed using 

𝐾𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑘

(𝑗)
∙ (𝐻𝑘

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑘

(𝑗)𝑇
+ 𝑅𝑘)

−1

 . (4.34) 

 
In (4.31) each GM component is updated using the same measurement. The probability that 
the measurement actually belongs to the GM component is expressed in the weight of the 
GM component. By definition those weights need to sum up to one for any 𝑣𝐷,𝑘(𝒙, 𝒛). The 
weights are calculated using 

𝜔𝑘|𝑘
(𝑗) (𝒛) =

𝑝𝐷 ∙ 𝜔𝑘|𝑘−1
(𝑗)

∙ 𝑞𝑘
(𝑗)
(𝒛)

𝜅𝑘(𝒛) + 𝑝𝐷 ∙ ∑ 𝜔𝑘|𝑘−1
(𝑙) 𝑞𝑘

(𝑙)(𝒛)
𝐽𝑘|𝑘−1
𝑙=1

 (4.35) 

 

where the denominator is responsible for the normalization of the weights. The factor 𝑞𝑘
(𝑗)
(𝒛) 

is given as the multivariate normal distribution 
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𝑞𝑘
(𝑗)(𝒛) = 𝒩 (𝒛; ℎ (𝒙̂𝑘|𝑘−1

(𝑗)
) , 𝐻𝑘

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑘

(𝑗)𝑇
+ 𝑅𝑘) . (4.36) 

 
The value of the normal distribution gets low if the predicted measurement is far away from 
the given measurement. On the other hand, the value of the normal distribution gets high if 
the predicted measurement is close to the given measurement. The presented equations 
(4.23) - (4.36) specify the GM-PHD filter proposed in [29]. A generalization of the PHD filter is 
the cardinalized PHD (CPHD) filter [31] [32]. This extension propagates not only the PHD 
through time but also the cardinality distribution. By jointly propagating the posterior PHD 
and cardinality distribution, the accuracy and stability of the filter is improved and the 
temporal variance in the estimated cardinality is reduced. 

4.5 The extended object PHD filter 
With the increasing sensor accuracy and resolution, the small object assumption modeling the 
objects as points is not reasonable anymore. If an object is sufficiently close to the sensor it 
gives rise to more than one measurement per time step and is therefore called extended 
object in the context of object tracking. The sufficient proximity of the object to the sensor 
depends on the resolution of the sensor and the objects extension. In this section the 
extension of the PHD filter for point objects to the PHD filter for extended objects is addressed. 
To achieve this extension, the update equation of the PHD filter according to (4.22) needs to 
be adapted. Equation (4.21), handling the prediction step, remains unchanged. The difference 
of both equations is in the handling of measurements originating from the same object. 
Assuming to measure extended objects, the number of measurements originating from the 
same object depends on the distance between the object and sensor, the extension, 
orientation and material composition of the object, as well as unpredictable processes like 
misdetections. Furthermore, the assignment of a measurement to a specific object is unknown 
as well. These problems lead to the necessity to consider every possible partitioning of the 
measurement set, referred to as partition 𝑝 in the following, in the update equation. 
Accordingly, every partition 𝑝 divides the measurement set into subsets, referred to as cells 
𝑾 in the following, containing measurements possibly originating from the same object. With 
a given predicted PHD the update PHD for extended objects [33] can be calculated using 

𝑣𝑘|𝑘(𝒙) = (1 − (1 − 𝑒
−𝛾(𝒙))𝑝𝐷

+ 𝑒−𝛾(𝒙)𝑝𝐷 ∑ 𝜔𝑝 ∑
𝛾(𝒙)|𝑾|

𝑑𝑾
𝑾∈𝑝𝑝∠𝒁𝑘

Φ𝑾(𝒙) ∏
1

𝜅𝑘(𝒛𝑘)
𝒛𝑘∈𝑾

) ∙ 𝑣𝑘|𝑘−1(𝒙) . 

(4.37) 

 
The number of measurements generated from an object is modeled as Poisson distributed 
random number with rate 𝛾(𝒙). In some approaches this rate is modeled to be constant but 
in general the number of generated measurements depends on the object’s state. According 

to (4.8), the probability of an object not generating a single measurement is given as 𝑒−𝛾(𝒙). 
The complementary event of an object generating at least one measurement can then be 

calculated using 1 − 𝑒−𝛾(𝒙). Finally, the effective probability of detection (1 − 𝑒−𝛾(𝒙))𝑝𝐷 is 

given as the probability of an object generating at least one measurement multiplied with the 
probability of detection. Thus, the first summand of (4.37) is handling the undetected objects. 
The second summand considers each partition of the measurement set 𝒁𝑘 by taking the sum 
over all possible partitions 𝑝∠𝒁𝑘. Subsequently, the next sum considers each cell 𝑾 in the 
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partition 𝑝. The normalization factors for each partition and cell are denoted as 𝜔𝑝 and 𝑑𝑾 

respectively. The extended object measurement likelihood Φ𝑾(𝒙) considers each cell in each 
partition for the calculation of the updated PHD. 

The partitioning of the measurement set is done by considering every possible combination 
of subsets, excluding the null set, to form the measurement set. Assume 𝒁 = {𝒛1, 𝒛2, 𝒛3} to 
be the measurement set in a specific time step. The possible partitions are given as [33] 

𝑝1 = {{𝒛1, 𝒛2, 𝒛3}}, 𝑝2 = {{𝒛1}, {𝒛2}, {𝒛3}}, 𝑝3 = {{𝒛1, 𝒛2}, {𝒛3}}, 

𝑝4 = {{𝒛1, 𝒛3}, {𝒛2}}, 𝑝5 = {{𝒛2, 𝒛3}, {𝒛1}} . 
(4.38) 

 

With three elements in the measurement set all possible partitions can be considered in an 
update step. However, the number of possible partitions already grows up to 115975 with ten 
elements in the measurement set, leading to the impossibility to consider every partition in a 
tractable tracking algorithm. The number of partitions can be computed using the bell 
numbers [34]. To only consider a reasonable subset of all possible partitions in a tractable 
tracking algorithm, cluster algorithms can be used, as the measurements originating from the 
same object are spatially related.  

As with the PHD filter for point objects, the PHD filter for extended objects does not provide 
a closed form solution. Therefore, a GM approximation of the PHD for extended objects [35] 
is presented as closed form solution that can be implemented. In addition to the assumptions 
presented in section 4.4 the following assumption is adopted in [35]: 

• Object generated measurements assumption: The rate of the Poisson distributed 
random number modeling the number of object-generated measurements is given as 

𝛾(𝒙) = 𝛾(𝒙̂𝑘|𝑘−1
(𝑖) ) (4.39) 

 
for all 𝑖 = 1, … , 𝐽𝑘|𝑘−1. The rate is assumed to be dependent on the predicted object 

state. 

The prediction step of the GM-PHD filter for extended objects is provided using the prediction 
step of the GM-PHD filter for point objects according to (4.24)-(4.29). The update step 
calculating the posterior extended object PHD is given as 

𝑣𝑘|𝑘(𝒙) = 𝑣𝑘|𝑘
𝑁𝐷(𝒙) + ∑ ∑ 𝑣𝑘|𝑘

𝐷 (𝒙,𝑾)

𝑾∈𝑝𝑝∠𝒁𝑘

 (4.40) 

 

with 𝑣𝑘|𝑘
𝑁𝐷(𝒙) the GM components handling the undetected objects and 𝑣𝑘|𝑘

𝐷 (𝒙,𝑾) the GM 

components handling the detected objects, assuming 𝑾 is the cell of measurements 
belonging to the object. The GM components handling the undetected objects can be 
calculated using 

𝑣𝑘|𝑘
𝑁𝐷(𝒙) = ∑ 𝜔𝑘|𝑘

(𝑗)
∙ 𝒩 (𝒙; 𝒙̂𝑘|𝑘

(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
)

𝐽𝑘|𝑘−1

𝑗=1

 (4.41) 

 

where the updated mean 𝒙̂𝑘|𝑘
(𝑗)

 and covariance 𝑃𝑘|𝑘
(𝑗)

 are given as the predicted ones 𝒙̂𝑘|𝑘−1
(𝑗)

 and 
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𝑃𝑘|𝑘−1
(𝑗)

 respectively. The weight of the GM component handling the undetected objects is 

calculated as 

𝜔𝑘|𝑘
(𝑗)

= (1 − (1 − 𝑒
−𝛾(𝒙̂𝑘|𝑘−1

(𝑗)
)
) 𝑝𝐷)𝜔𝑘|𝑘−1

(𝑗)
  (4.42) 

 
using the effective probability of detection and the predicted weights. As for the update 
equations of the PHD filter for point objects, the measurement model is assumed to be a 
nonlinear model. Therefore, the extended transform presented in section 2.4 is used in the 
update equations for the extended object PHD filter as well. The GM handling the detected 
objects is given as 

𝑣𝑘|𝑘
𝐷 (𝒙,𝑾) = ∑ 𝜔𝑘|𝑘

(𝑗)
∙ 𝒩 (𝒙; 𝒙̂𝑘|𝑘

(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
)

𝐽𝑘|𝑘−1

𝑗=1

 . (4.43) 

 
According to subsection 3.1.2 the measurements of an extended object can be modeled as 
detections of measurement sources on the surface of the object. In the update equations of 
the extended object PHD filter the measurement set with assumed measurements from the 
same object are in the cell 𝑾. In order to use the measurement set in a simultaneous update, 
the measurements and measurement matrices need to be stacked according to 

𝒛𝑾 = (𝒛𝑘,1
𝑇 , 𝒛𝑘,2

𝑇 , … 𝒛𝑘,|𝑾|
𝑇 )

𝑇
 (4.44) 

and 

𝐻𝑾
(𝑗)
= (𝐻𝑘,1

(𝑗)𝑇
, 𝐻𝑘,2

(𝑗)𝑇
, … , 𝐻𝑘,|𝑾|

(𝑗)𝑇
)
𝑇

 (4.45) 

 
respectively. Since the measurement process is assumed to be nonlinear, the measurement 
matrices are computed as linearization using the Jacobi matrices as 

𝐻𝑘,𝑖
(𝑗)
= ∇𝒙𝑇ℎ𝑘,𝑖

(𝑗)(𝒙)|
𝒙=𝒙̂𝑘|𝑘−1

(𝑗)  . (4.46) 

 
The measurement sources or predicted measurements are computed using the nonlinear 
measurement equation and need to be stacked according to 

𝒚𝑾
(𝑗)
= (ℎ𝑘,1

(𝑗)
(𝒛𝑘,1
𝑇 ), ℎ𝑘,2

(𝑗)
(𝒛𝑘,2
𝑇 ), … , ℎ𝑘,|𝑊|

(𝑗)
(𝒛𝑘,|𝑾|
𝑇 ))

𝑇

 . (4.47) 

 
The stacked measurement uncertainty matrices are given as 

𝑅𝑾 = blkdiag(𝑅𝑘,1, 𝑅𝑘,2, … , 𝑅𝑘,|𝑾|) (4.48) 

 
with the abbreviation “blkdiag” meaning to form a block diagonal matrix using the given 
matrices. With the stacked vectors and matrices, the update components can be computed 
using the following equations: 
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𝐾𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑾

(𝑗)𝑇
∙ (𝐻𝑾

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑾

(𝑗)𝑇
+ 𝑅𝑾)

−1

, (4.49) 

𝒙̂𝑘|𝑘
(𝑗)

= 𝒙̂𝑘|𝑘−1
(𝑗)

+ 𝐾𝑘
(𝑗)
(𝒛𝑾 − 𝐻𝑾

(𝑗)
∙ 𝒙̂𝑘|𝑘−1

(𝑗)
) , (4.50) 

𝑃𝑘|𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
− 𝐾𝑘

(𝑗)
∙ 𝐻𝑾

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
 . (4.51) 

 
Finally, the weighting of the GM component is calculated using 

𝜔𝑘|𝑘
(𝑗)

= 𝜔𝑝 ∙
Γ(𝑗)𝑝𝐷
𝑑𝑾

∙ Φ𝑾
(𝑗)
∙ 𝜔𝑘|𝑘−1

(𝑗)
 , (4.52) 

Γ(𝑗) = 𝑒
−𝛾(𝒙̂𝑘|𝑘−1

(𝑗)
)
(𝛾 (𝒙̂𝑘|𝑘−1

(𝑗)
))

|𝑾|

 , (4.53) 

Φ𝑾
(𝑗)
= 𝒩 (𝒛𝑾; 𝐻𝑾

(𝑗)
∙ 𝒙𝑘|𝑘−1

(𝑗)
, 𝐻𝑾

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑾

(𝑗)𝑇
+ 𝑅𝑾) ∙ ∏

1

𝜅𝑘(𝒛𝑘)
𝒛𝑘∈𝑾

 (4.54) 

 
with the normalization factors for each cell and partition as 

𝑑𝑾 = 𝛿|𝑾|,1 + 𝑝𝐷 ∑ Γ(𝑙) ∙ Φ𝑾
(𝑙) ∙ 𝜔𝑘|𝑘−1

(𝑙)

𝐽𝑘|𝑘−1

𝑙=1

 (4.55) 

and 

𝜔𝑝 =
∏ 𝑑𝑾𝑾∈𝑝

∑ ∏ 𝑑𝑾′𝑾′∈𝑝′𝑝′∠𝒁𝑘

 (4.56) 

 
respectively. The cell normalization factor is taken as the sum over all weights in the cell 𝑾 
multiplied with the probability of detection. Additionally, the Kronecker delta 𝛿|𝑾|,1 is added 

to the sum, which is defined as 

𝛿𝑖,𝑗 = {
1  𝑖𝑓 𝑖 = 𝑗
0  𝑒𝑙𝑠𝑒

. (4.57) 

 
Therefore, the Kronecker delta is one if the cell contains only one measurement in the case of 
a clutter cell. The partition normalization is calculated using the product over all cell 
normalization factors in the partition 𝑝 divided by the sum over the products of every cell 
normalization factor, calculating how likely the partition 𝑝 is. 
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5 Spline functions 
A spline is a piecewise defined curve where each piece, named span, is represented by a 
polynomial. These polynomials are joined together at the ends, allowing any continuous curve 
to be generated. For the use of spline functions, a walk parameter 𝑠 is introduced, which 
increases as the curve is traversed. The creation of a curve 𝑓𝑠 in 2-dimensional space is then 
done by using 2 spline functions and is given by 

𝑓𝑠(𝑠) = (𝑥(𝑠), 𝑦(𝑠))
𝑇
 . (5.1) 

 
The use of spline functions for the representation of arbitrary curves is a common tool in 
computational image processing. By their use, those curves can be represented analytically. 
They are an elegant and easy to use tool. By creating closed curves, any shape and thus the 
edge of any object can be adjusted. The spline functions considered in this thesis are basis 
spline or shortened B-spline functions [36, pp. 46-68].  

Within this chapter, the basics of B-Splines are explained in section 5.1. In section 5.2 the 
contour, which is used as an extension model of a vehicle in the further course of this thesis, 
is then introduced. The possible representation of other objects is also explained. 

5.1 Basis spline functions 
Basis spline or B-spline functions are a weighted sum of 𝑁𝑏 basis functions 𝐵𝑛(𝑠), 𝑛 =
0, … , 𝑁𝑏 − 1 that are joined together at knots [36, pp. 46-68]. The basis functions consist of 
polynomials of degree 𝑑. The B-spline curve of (5.1) is then given as 

𝑥(𝑠) = ∑ 𝑥𝑛 ∙ 𝐵𝑛(𝑠)

𝑁𝑏−1

𝑛=0

 (5.2) 

𝑦(𝑠) = ∑ 𝑦𝑛 ∙ 𝐵𝑛(𝑠)

𝑁𝑏−1

𝑛=0

 (5.3) 

 
with weights 𝑥𝑛 and 𝑦𝑛 for both splines respectively. The walk parameter 𝑠 is within the 
Interval 𝐼 ∶= [0, 𝑁𝑏] and the knots are equally spaced over 𝐼 with uniform length for each span, 
which makes 𝑓𝑠 a uniform B-spline. The representation of (5.2) and (5.3) can be expressed 
compactly in matrix notation. The B-spline functions are then given as 

𝑥(𝑠) = 𝒒𝑥 ∙ 𝐵(𝑠) (5.4) 

𝑦(𝑠) = 𝒒𝑦 ∙ 𝐵(𝑠) (5.5) 

with a vector of basis functions 𝐵(𝑠) = (𝐵0(𝑠), 𝐵1(𝑠),… , 𝐵𝑁𝑏−1(𝑠))
𝑇

and two vectors of 

weights 𝒒𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑁𝑏−1) and 𝒒𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑁𝑏−1). For the representation of a 

point in 2-dimensional space (𝑥(𝑠), 𝑦(𝑠))
𝑇

 the weight vectors are combined to a weight 

matrix 

𝑄𝑥𝑦 = (
𝑥0 𝑥1 … 𝑥𝑁𝑏−1
𝑦0 𝑦1 … 𝑦𝑁𝑏−1

) (5.6) 

 
so every point on the spline function can be represented as 
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𝑓𝑠(𝑠) = 𝑄
𝑥𝑦 ∙ 𝐵(𝑠) . (5.7) 

  
The basis functions are constructed to sum up to 1 at each point. When choosing quadratic 
basis functions and assuming equally spaced knots with uniform length, the first basis function 
is given as 

𝐵0(𝑠) =

{
 

 
 0.5 ∙ 𝑠2                      𝑖𝑓 0 ≤ 𝑠 < 1

0.75 − (𝑠 − 1.5)2   𝑖𝑓 1 ≤ 𝑠 < 2

0.5 ∙ (𝑠 − 3)2           𝑖𝑓 2 ≤ 𝑠 < 3
0                             otherwise

 (5.8) 

 
while the other basis functions are the first basis function simply shifted by 𝑛 and are given as 

𝐵𝑛(𝑠) = 𝐵0(𝑠 − 𝑛) . (5.9) 
 
An illustration of quadratic uniform spline basis functions is given in Figure 5.1. In this figure 7 
weighted basis functions and the resulting sum of those weighted basis functions is shown. 

 

Figure 5.1: Weighted sum of spline basis functions 

The weights in this example are 𝒒𝑥 = (1, 2, 1, 2, 3, 2, 1). The last two basis functions are only 
partially visible in this figure, since the interval 𝐼 only goes up to 𝑠 = 7 and is given as 
𝐼 = [0, 7]. 

The figure also shows that only one basis function is active in the range from 𝑠 ∈ [0, 1[ and 
two are active in the range from 𝑠 ∈ [1, 2[ , while three basis functions are always active in 
the remaining interval. This means, that the boundary conditions of the B-spline function 
cannot be controlled completely. In order to be able to create a closed contour, however, this 
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control must be given. This can be achieved by using periodic basis functions. To create a 
periodic B-spline, 𝑑 basis functions must be added, so that the number of basis functions and 
weights are changed to 𝑁𝑏

′ = 𝑁𝑏 + 𝑑, while the interval 𝐼 remains unchanged. In the case of 
quadratic basis functions 𝐵−1(𝑠) and 𝐵−2(𝑠) must be added to the set of basis functions. The 
weights are also used periodically. The difference between periodic and non-periodic B-spline 

functions is illustrated in Figure 5.2. The colors in the figure are used equally to Figure 5.1. The 

left part of the figure shows a B-Spline function with non-periodic basis functions, while the 
right part of the figure shows a B-Spline function with periodic basis functions. In the right part 
of the figure all functions that are truncated at 𝑠 = 4 are continued at the beginning of the 
interval, creating a periodic B-spline with full control over the boundary conditions. 

Finally, there are multiple knots to mention in this chapter. For a polynomial, 𝑑 − 1 derivatives 
can be determined. To reduce this value, a knot can be specified more than once within the 
interval. With each further introduction of the same knot, the number of possible derivatives 
is reduced by 1. In the case of quadratic basis functions, the introduction of a double knot 
means that the function can no longer be derived at this point. 

 

Figure 5.2: Difference between periodic and no periodic B-splines 

This is shown as an edge in the plot of the function, which represents the purpose of multiple 
knots. 

5.2 B-spline vehicle contour function 
Using quadratic periodic uniform B-spline functions, this section describes the contour 
function 𝐶(𝑠) [1] that will be used later in the thesis as shape model for the extended object 
tracker. Such a contour function must meet some conditions in order to be effectively 
integrated into a tracking algorithm. It must be movable, rotatable and scalable in the 2-
dimensional plane. The contour is created by selecting weights that represent a rectangular 
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shape. Those weights are called basis points and are denoted as 𝑃 in the remainder of this 
thesis. Since the contour should be scalable in both dimensions, the size of the rectangle does 
not matter at first. The basis points are selected as 

𝑃 = (
1 1 0 −1 −1 −1 0 1
0 0.5 0.5 0.5 0 −0.5 −0.5 −0.5

) . (5.10) 

 
Using these basis points, the walk parameter 𝑠 on the contour is given as 𝑠 ∈ [0, 8], so 
𝑁𝑏 = 8. The contour function is then given as 

𝐶(𝑠) = 𝑃 ∙ 𝐵(𝑠) . (5.11) 
 
This contour must now be able to be moved, rotated and scaled. To move the center 𝒎 of the 
contour, the new center is simply added to each point of the contour.  

 

Figure 5.3: Spline vehicle contour model 

In order to achieve a rotation, a rotation matrix 𝑅𝜑 with the corresponding rotation angle ϕ is 

calculated. The rotation matrix is given as 

𝑅𝜑 = (
𝑐𝑜𝑠(𝜑) −𝑠𝑖𝑛(𝜑)
𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜑)

) . (5.12) 

 
Furthermore, the scaling factors 𝑠𝑥 and 𝑠𝑦 are introduced for scaling the contour in 𝑥 and 𝑦 

dimension respectively. The scaling matrix 𝑆𝐶  is then given as 

𝑆𝐶 = (
𝑠𝑥 0
0 𝑠𝑦

) . (5.13) 
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These tools can now be used to determine any point 𝒚 on the contour. With a given fixed walk 
parameter 𝑠, the searched point on the contour can be specified as 

𝒚 = 𝒎+ 𝑅𝜑 ∙ 𝑆
𝐶 ∙ 𝐶(𝑠) . (5.14) 

 

A moved, rotated and scaled spline vehicle contour is shown in Figure 5.3. As basis points the 

given basis points from (5.10) are used. The center is set to 𝒎 = (5, 5)𝑇, the heading angle is 
𝜑 = 30° and the scaling factors are set to 𝑠𝑥 = 𝑠𝑦 = 3. 

The spline vehicle contour is an elegant and easy to use contour model, because the basis 
points simply need to be specified in Cartesian coordinates. Afterwards, this contour can easily 
be scaled and moved in 𝑥 and 𝑦 dimension and rotated with a given heading angle. So, this 
model can be used to represent different vehicles. The simple scaling enables to use the 
vehicle contour for passenger cars, as well as for trucks. To track other objects than vehicles, 
other contour models could be used, which is briefly presented in the next section. 

5.3 Other B-spline contour models 
In order to represent other objects than vehicles, other spline contour models must be used. 
This can easily be achieved by changing the basis points of the contour model. In this section 
the usability of other contours for the developed tracking approach will be investigated. 

First, the basis points for two other shapes are given, then it is explained why these shapes 
can be used for a tracking algorithm and which property must be given for the use. 

 

Figure 5.4: Spline boat contour model 
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The first further contour is shown in Figure 5.4. Here the shape of a boat is shown, which can 
be generated by specifying 6 basis points. This contour is also shifted, rotated and scaled. 
However, the scaling factors in this figure are 𝑠𝑥 = 3 and 𝑠𝑦 = 2, the center point and 

orientation are identical to Figure 5.3. The basis points for the boat contour are 

𝑃𝑏𝑜𝑎𝑡 = (
1 0 −1 −1 −1 0
0 0.5 0.5 0 −0.5 −0.5

) . (5.15) 

 
It is also possible to create contours for objects that do not occur in everyday scenarios, such 
as a cross. The contour of a cross is not shown here in any illustration but can be created by 
using the basis points of a cross. Those basis points could be given as 

𝑃𝑐𝑟𝑜𝑠𝑠 = (
5 1 1 −1 −1 −5 −5 −1 −1 1 1 5
1 1 5 5 1 1 −1 −1 −5 −5 −1 −1

) . (5.16) 

 
By specifying different basis points, various contours can be created. In order to use this 
contour for a tracking algorithm, it must enclose a star-convex set. A star-convex set is a set 
in which each connecting line from the center to the edge of the set is also completely within 
the set. This property is important in order to be able to assign exactly one point on the 
contour to each angle.  

 

Figure 5.5: Non-star-convex spline contour 

An illustration of this property is shown in Figure 5.5. In this figure a non-star-convex spline 
contour is illustrated. If the contour is to be scanned from the center point, three points on 
the contour can be assigned to the 45° angle, which leads to problems in the further course 
of the tracking algorithm. In the remainder of this thesis, therefore, only star-convex contours 
are considered [1]. 
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6 The spline vehicle tracking algorithm 
The aim of this section is to derive a measurement model for vehicles using quadratic periodic 
uniform B-spline functions [1]. This measurement model will then be used to track vehicles 
measured with 2D-LIDAR sensors. Since a LIDAR sensor is a high-resolution sensor, it can be 
assumed that more than one measurement per time step is generated by the object, which is 
why a measurement model for extended objects is presented. As an introduction, section 6.1 
introduces the system state and some other notations used in the further course of this 
chapter. Afterwards, section 6.2 explains the assignment of each measurement to a 
measurement source on the surface of the vehicle, or the prediction of the measurements. In 
order to track the extended object, the measurement model must be integrated into a 
Bayesian filter. To perform a Kalman update, the predicted measurements must be derived 
with respect to the object state, as described in section 6.3. In the last two sections of the 
chapter, the measurement model for tracking one or more objects is integrated into an EKF 
and a PHD filter framework respectively. 

6.1 Notations 
First, the system state of the extended object, where the extension is modeled with a spline 
contour, is defined in this section. Based on (3.1) and Figure 3.2, the state is given as  

𝒙𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑣𝑘 , 𝜑𝑘, 𝜔𝑘 , 𝑠𝑥,𝑘, 𝑠𝑦,𝑘)
𝑇

 (6.1) 

 
with the position 𝒎𝑘 = (𝑥𝑘, 𝑦𝑘)

𝑇 of the center, the polar velocity 𝑣𝑘, the heading angle 𝜑𝑘, 

the turn rate 𝜔𝑘 =
𝑑𝜑𝑘

𝑑𝑡
 and the scaling factors 𝑠𝑥,𝑘 and 𝑠𝑦,𝑘 of the given spline contour forming 

the scaling matrix introduced in (5.13). In the further course of this thesis the spline vehicle 
contour is defined by the basis points 𝑃 introduced in (5.10). The goal of the tracking algorithm 
is to provide an optimal state estimation within a Bayesian filter at any time step. 

The predicted system state is updated at time 𝑘 by a given measurement set 𝒁𝑘 = {𝒛𝑘,𝑙}𝑙=1
𝑛𝑘

. 

Thus, 𝑛𝑘 measurements are available at each time step. Note that 𝑛𝑘 can always be different 
at each time step. The measurements within the measurement set are assumed to be 
generated from a certain measurement source on the surface of the vehicle. The first step is 
to associate each measurement to one measurement source, it’s the prediction step of the 
measurements. The set of predicted measurements within a time step 𝑘 are denoted as 𝒀𝑘 =

{𝒚𝑘,𝑙}𝑙=1
𝑛𝑘
.  

To avoid confusions caused by similar names, the walk parameter on the spline contour is 
called 𝜏 within the tracking algorithm. The contour is still called 𝐶, so with a given 𝜏 ∈ [0,8] 
the contour point is given as 𝐶(𝜏). 

6.2 Measurement prediction 
To assign a measurement source to each measurement, it is assumed that the measurement 
and the measurement source have the same angle relative to the center of the object, which 
is illustrated in Figure 6.1 [1]. The orientation of the object must be included in this 
assignment. By stating this rule, it becomes clear why only star-convex contours are 
considered in this thesis. Without this restriction no unambiguous assignment can be made. 
Note that other assignments like taking the nearest point on the contour are also possible, 
where also non-star-convex contours could be considered. However, this does not represent 
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a significant limitation, as typical objects of interest in automotive applications, such as 
vehicles or pedestrians, do not suffer if only star-convex shapes are considered.  

In order to find the measurement source to each measurement, the first step is to specify 
them in local coordinates, so that the origin is always at the center of the object. The rotation 
of the object must also be calculated out in this step. The measurement in local coordinates 
is then given as 

𝒛̂ = 𝑅𝜑
−1 ∙ (𝒛 −𝒎) (6.2) 

 
with the inverse of the rotation matrix 𝑅𝜑 specified in (5.12) and the difference between the 

measurement 𝒛 and the center 𝒎 of the object. 

 

Figure 6.1: Measurement prediction and contour division 

The measurement source can be calculated the same way in local coordinates and is then 
given as 

𝒚̂ = 𝑅𝜑
−1 ∙ (𝒚 −𝒎) (6.3) 

 
with the measurement source 𝒚. Using (5.14) for the measurement source without the scaling 
matrix, the measurement source in local coordinates can be stated as 

𝒚̂ = 𝑅𝜑
−1 ∙ (𝒎 + 𝑅𝜑 ∙ 𝐶(𝜏) −𝒎) = 𝑅𝜑

−1 ∙ 𝑅𝜑 ∙ 𝐶(𝜏) = 𝐶(𝜏) = 𝑃 ∙ 𝐵(𝜏) (6.4) 

 
where the last step is taken from (5.11). The point on the spline contour is therefore already 
given in local coordinates. In order to find the measurement source on the contour, the walk 
parameter 𝜏 must be specified for each measurement. The first step is to compute the active 
basis functions of the part of the spline contour where the measurement source is located. 
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The first step is therefore to calculate the angle of the measurement in local coordinates 

relative to the center as 𝛿 = arctan (
𝑧̂𝑦

𝑧̂𝑥
) with the 𝑥 and 𝑦 coordinates 𝑧̂𝑥 and 𝑧̂𝑦 of 𝒛̂ 

respectively. As indicated at the beginning of this chapter, it is required that the measurement 
source in local coordinates 𝒚̂ has the same angle 𝛿 relative to the center. According to Figure 
6.2, it becomes clear that only 3 basis functions are active for each 𝜏. 

 

Figure 6.2: Non-weighted periodic spline basis functions 

Thus, (6.4) can be stated as 

𝒚̂ = 𝑃 ∙ 𝐵(𝜏) = (
𝑝𝑥,𝑎 𝑝𝑥,𝑏 𝑝𝑥,𝑐
𝑝𝑦,𝑎 𝑝𝑦,𝑏 𝑃𝑦,𝑐

) ∙ (

𝐵𝑎(𝜏)
𝐵𝑏(𝜏)
𝐵𝑐(𝜏)

) = 𝑃𝜏 ∙ 𝐵𝜏(𝜏) (6.5) 

 
with the 𝑥 and 𝑦 components of the basis points given as 𝑝𝑥 and 𝑝𝑦 respectively. To compute 

these active basis points, the contour can be divided in pieces illustrated in Figure 6.1. Every 
piece ends at a knot where the spans of the spline function are joined. Each knot is located at 
the center of the connection line of two basis points. Given this information, the angles 𝛼 and 
𝛽 of Figure 6.1 can be calculated and the start and ending angles of the contour division can 
be determined. Note that the angles 𝛼 and 𝛽 must be calculated using the scaled basis points 
given as 

𝑃𝑐 = 𝑆𝑐 ∙ 𝑃 . (6.6) 
 
Another feature of the basis functions is that the values of the individual basis functions is 
equal for every uniform interval starting at a natural number 𝜏 ∈ ℕ0. The different points on 
the contour are only calculated with different basis points. Therefore, a shift of 𝜏 into the 
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uniform interval starting at zero leads to the same measurement source in local coordinates 
using the active basis points. The shift of 𝜏 is done by finding the knot 𝑘(𝜏) defining the three 
active basis points. The knot 𝑘(𝜏) is always the knot starting the interval. For 𝜏 ∈ [3,4[ the 
knot defining the three active basis points is 𝑘(𝜏) = 3, so 𝑘(𝜏) ∈ {0, 1, … ,7}. The shifted 𝜏 is 
denoted as 

𝜏′ = 𝜏 − 𝑘(𝜏) . (6.7) 
 
Using 𝜏′, (6.5) can be stated as 

𝒚̂ = 𝑃𝜏 ∙ (

𝐵−2(𝜏
′)

𝐵−1(𝜏
′)

𝐵0(𝜏
′)
) . (6.8) 

 
By viewing Figure 6.2, the definition area of each basis function can be extracted. Using (5.8) 
and (5.9), (6.8) can be stated as 

𝒚̂ = 𝑃𝜏 ∙ (
0.5𝜏′

2
− 𝜏′ + 0.5

−𝜏′
2
+ 𝜏′ + 0.5

0.5𝜏′
2

) = 𝑃𝜏 ∙ (
0.5 −1 0.5
−1 1 0.5
0.5 0 0

) ∙ (
𝜏′
2

𝜏′

1

) = 𝑃𝜏 ∙ 𝑀 ∙ (
𝜏′
2

𝜏′

1

) (6.9) 

 
Given the matrix of active basis points 𝑃𝜏 and the spline representation matrix 𝑀, the product 
of these 2 matrices is combined as 

𝑃𝜏 ∙ 𝑀 = (𝒂, 𝒃, 𝒄) (6.10) 
 
with 𝒂, 𝒃, 𝒄 ∈ ℝ2×1. In order to find the walk parameter 𝜏 defining the point on the contour 
used as measurement source in local coordinates of a measurement, the assigning assumption 
is now used. If two vectors have the same angle relative to the same point, they are linearly 
dependent, and their cross product is zero. Suppose there are two 2-dimensional vectors 𝒙 
and 𝒚 in 3-dimensional space then the cross product is defined as 

(
𝑥1
𝑥2
0
) × (

𝑦1
𝑦2
0
) = (

0
0

𝑥1 ∙ 𝑦2 − 𝑥2 ∙ 𝑦1

) (6.11) 

 
Since the cross product is normally defined for vectors in 3-dimensional space, the cross 
product in 2-dimensional space is defined as the 𝑧 component of the cross product of 2-
dimensional vectors in 3-dimensional space in this thesis. In this case, this definition makes 
sense, since only linearly dependent vectors are considered for the following calculation. This 
cross product is also zero for these vectors, since no plane can be spanned by them. Therefore, 
the cross product of two vectors in 2-dimensional space is defined as 

𝒙 × 𝒚 ∶= (
𝑥1
𝑥2
) × (

𝑦1
𝑦2
) = 𝑥1 ∙ 𝑦2 − 𝑥2 ∙ 𝑦1 = det((𝒙, 𝒚)) (6.12) 

 
in this thesis. Given a measurement and using the assigning assumption, the measurement 
source can now be calculated using 

0 = 𝒚̂ × 𝒛̂ . (6.13) 
 
By inserting (6.9) and (6.10) for 𝒚̂, (6.13) can be stated as 
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0 = (𝒂, 𝒃, 𝒄) ∙ (
𝜏′
2

𝜏′

1

) × 𝒛̂ = (𝒂 × 𝒛̂) ∙ 𝜏′
2
+ (𝒃 × 𝒛̂) ∙ 𝜏′ + (𝒄 × 𝒛̂) . (6.14) 

 
The second equation of (6.14) is not intuitive but can easily be recalculated. To make the 
equation more compact the cross products are now defined as 𝑢𝑞 ∶= 𝒒 × 𝒛̂. Using this 

definition, (6.14) can now be stated as 

0 = 𝑢𝑎 ∙ 𝜏
′2 + 𝑢𝑏 ∙ 𝜏

′ + 𝑢𝑐  . (6.15) 

 
If the active basis points define a line segment 𝑢𝑎 is zero and 𝜏′ is given as 

𝜏′ = −
𝑢𝑐
𝑢𝑏
 . (6.16) 

 
Otherwise, 𝜏′ can be calculated using 

𝜏′ =
−√𝑢𝑏

2 − 4 ∙ 𝑢𝑎 ∙ 𝑢𝑐 − 𝑢𝑏
2 ∙ 𝑢𝑎

 . (6.17) 

 
After calculating 𝜏′, (6.7) can be used to calculate 𝜏. In a final step, the measurement source 
can now be determined with (5.14). 

When using other spline contour models, the calculations established in this section can be 
used as well. The only thing that must be done individually for every spline model is the 
contour division illustrated in Figure 6.1 and the assignment of the active basis functions. 

6.3 Deriving the predicted measurement 
To use the spline measurement model for tracking an extended object, the model must be 
integrated in a Bayesian filter. Since the spline representation is a nonlinear problem, an EKF 
is used. According to (2.23), the measurement matrix 𝐻 is the Jacobi matrix of the 
measurement equation, which is represented by (5.14) for the spline measurement model. 
So, the goal of this chapter is to derive the predicted measurements calculated in the previous 
section with respect to the system state [1] as 

𝜕ℎ(𝒙𝑘)

𝜕𝒙𝑘
=
𝜕𝒚

𝜕𝒙𝑘
 . (6.18) 

 
Due to the extended object assumption it can be assumed that several predicted 
measurements are present in each time step. The handling of all measurements and predicted 
measurements together is presented in the next section, while this section is about to 
calculate the derivative for one predicted measurement. To derivate the predicted 
measurement with respect to the whole extended object state given in (6.1), it must be 
derived with respect to all the state parameters as 

𝜕𝒚

𝜕𝒙𝑘
= (

𝜕𝒚

𝜕𝒎
,
𝜕𝒚

𝜕𝑣
,
𝜕𝒚

𝜕𝜑
,
𝜕𝒚

𝜕𝜔
,

𝜕𝒚

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
) (6.19) 

 

with 𝒙𝑠ℎ𝑎𝑝𝑒 = (𝑠𝑥, 𝑠𝑦)
𝑇

 and 
𝜕𝒚

𝜕𝒙𝑘
∈ ℝ2×7. Since (5.14) is only dependent on the position, 
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orientation and extension, the derivatives of the predicted measurements with respect to the 
velocity and turn rate are given as 

𝜕𝒚

𝜕𝑣
=
𝜕𝒚

𝜕𝜔
= (0,0)𝑇 . (6.20) 

 
The three remaining derivatives can be calculated using the product rule and the chain rule. 
Since the walk parameter 𝜏 is also dependent of the object state, the chain rule must be used 
when deriving the contour function 𝐶(𝜏(𝒙𝑘)). The first derivative with respect to the object 
center is then given as 

𝜕

𝜕𝒎
(𝒎+ 𝑅𝜑 ∙ 𝑆

𝐶 ∙ 𝐶(𝜏)) = 𝐼2 + 𝑅𝜑 ∙ 𝑆
𝐶 ∙
𝜕𝐶(𝜏)

𝜕𝜏
∙
𝜕𝜏

𝜕𝒎
 (6.21) 

 

with the 2 × 2 identity matrix 𝐼2 and 
𝜕𝒚

𝜕𝒎
∈ ℝ2×2. In this equation only the chain rule must be 

used for the derivative of the contour function. For the derivative of the predicted 
measurement with respect to the orientation, also the product rule must be used. The 
derivative is then given as 

𝜕

𝜕𝜑
(𝒎+ 𝑅𝜑 ∙ 𝑆

𝐶 ∙ 𝐶(𝜏)) =
𝜕𝑅𝜑

𝜕𝜑
∙ 𝑆𝐶 ∙ 𝐶(𝜏) + 𝑅𝜑 ∙ 𝑆

𝐶 ∙
𝜕𝐶(𝜏)

𝜕𝜏
∙
𝜕𝜏

𝜕𝜑
  (6.22) 

 

with 
𝜕𝒚

𝜕𝜑
∈ ℝ2×1. To complete the derivative of (6.19), the last formula needed is the derivative 

of the predicted measurement with respect to the extension. Therefore, also the product rule 
and the chain rule must be used. The derivative is then given as 

𝜕

𝜕𝑥𝑠ℎ𝑎𝑝𝑒
(𝒎 + 𝑅𝜑 ∙ 𝑆

𝐶 ∙ 𝐶(𝜏)) = 𝑅𝜑 ∙ diag(𝐶(𝜏)) + 𝑅𝜑 ∙ 𝑆
𝐶 ∙
𝜕𝐶(𝜏)

𝜕𝜏
∙

𝜕𝜏

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
 (6.23) 

 

with 
𝜕𝒚

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
∈ ℝ2×2 and the function diag(𝒙) forming a diagonal matrix with the entries of 

the vector 𝒙. When considering (6.21)-(6.23) it becomes clear that several derivatives used in 
those equations have to be calculated as well. The first one presented is the derivative of the 
contour function. Since the functional values of the spline basis functions are the same for 
every unit interval, the derivative of the contour function with respect to the walk parameter 
𝜏 is the same as the derivative with respect to 𝜏′. Therefore, (6.9) and (6.10) can be used for 
the derivative of the contour function, which is then given as 

𝜕𝐶(𝜏)

𝜕𝜏
= (𝒂, 𝒃, 𝒄) ∙ (

2 ∙ 𝜏′

1
0
) . (6.24) 

 
The next part is to calculate the derivatives of the walk parameter 𝜏 with respect to the 
extended object state. Here two cases must be distinguished. In the first case, the spline 
segment is a line, so (6.16) must be used to calculate the derivative. Again, the derivative can 
be done with 𝜏′ instead of 𝜏. Using the quotient rule, the formula can be stated as 

𝜕𝜏

𝜕𝑔
=
𝜕

𝜕𝑔
(−

𝑢𝑐
𝑢𝑏
) = −

𝜕𝑢𝑐
𝜕𝑔

∙ 𝑢𝑏 − 𝑢𝑐 ∙
𝜕𝑢𝑏
𝜕𝑔

𝑢𝑏
2  . (6.25) 
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The derivatives of the walk parameter will be very similar, so the calculation is only done once 
using the variable 𝑔 as representation for the parameters of the object state. The numbers 𝑢𝑞 

with 𝑞 ∈ {𝒂, 𝒃, 𝒄} where defined as 𝑢𝑞 ∶= 𝒒 × 𝒛̂, so their derivatives using the product rule 

can be stated as 

𝜕𝑢𝑞

𝜕𝑔
=
𝜕

𝜕𝑔
(𝒒 × 𝒛̂) =

𝜕𝒒

𝜕𝑔
× 𝒛̂ + 𝒒 ×

𝜕𝒛̂

𝜕𝑔
= 𝒒 ×

𝜕𝒛̂

𝜕𝑔
 (6.26) 

 

since 
𝜕𝒒

𝜕𝑔
= 0. Using (6.26), (6.25) can be stated as 

−𝑢𝑏
2 ∙
𝜕𝜏

𝜕𝑔
= (𝒄 ×

𝜕𝒛̂

𝜕𝑔
) ∙ 𝑢𝑏 − 𝑢𝑐 ∙ (𝒃 ×

𝜕𝒛̂

𝜕𝑔
) . (6.27) 

 
The last simplification of (6.27) can be done using the distributive law. The derivative of 𝜏′ can 
then be stated as 

𝑢𝑏
2 ∙
𝜕𝜏

𝜕𝑔
= (𝒃 ∙ 𝑢𝑐 − 𝒄 ∙ 𝑢𝑏) ×

𝜕𝒛̂

𝜕𝑔
 . (6.28) 

 
In the second case the spline segment is a curve, so (6.17) must be used to calculate the 
derivative. Since the equation gets quite big the square root of the quadratic formula is 

defined as Θ ∶= √𝑢𝑏
2 − 4 ∙ 𝑢𝑎 ∙ 𝑢𝑐. Using this definition, the quotient rule and the chain rule, 

the derivative can be stated as 

−4𝑢𝑎
2
𝜕𝜏

𝜕𝑔
= (

1

2Θ
(2𝑢𝑏

𝜕𝑢𝑏
𝜕𝑔

− 4(
𝜕𝑢𝑎
𝜕𝑔

𝑢𝑐 + 𝑢𝑎
𝜕𝑢𝑐
𝜕𝑔

)) +
𝜕𝑢𝑏
𝜕𝑔

)2𝑢𝑎 − 2(Θ + 𝑢𝑏)
𝜕𝑢𝑎
𝜕𝑔

 . (6.29) 

 
When multiplying this equation out and using (6.26), (6.29) can be stated as 

−2𝑢𝑎
2Θ
𝜕𝜏

𝜕𝑔
= 𝑢𝑏𝑢𝑎 (𝒃 ×

𝜕𝒛̂

𝜕𝑔
) − 2𝑢𝑐𝑢𝑎 (𝒂 ×

𝜕𝒛̂

𝜕𝑔
) − 2𝑢𝑎

2 (𝒄 ×
𝜕𝒛̂

𝜕𝑔
)

+ 𝑢𝑎Θ(𝒃 ×
𝜕𝒛̂

𝜕𝑔
) − (Θ2 + 𝑢𝑏Θ) (𝒂 ×

𝜕𝒛̂

𝜕𝑔
) 

(6.30) 

 
The final equation can be calculated by using the distributive law again, doing some 

simplifications and using the definition of Θ by inserting Θ2 = 𝑢𝑏
2 − 4 ∙ 𝑢𝑎 ∙ 𝑢𝑐. The final 

equation is then given as 

−2𝑢𝑎
2Θ
𝜕𝜏

𝜕𝑔
= (𝒂(2𝑢𝑎𝑢𝑐 − 𝑢𝑏Θ − 𝑢𝑏

2) + 𝒃(𝑢𝑏𝑢𝑎 + 𝑢𝑎Θ) − 2𝑢𝑎
2𝒄) ×

𝜕𝒛̂

𝜕𝑔
 . (6.31) 

 
The last equations to calculate are the derivatives of the measurement in local coordinates 
with respect to the object state. The measurement in local coordinates is given by (6.2). The 
derivative with respect to the object center is given as 

𝜕𝒛̂

𝜕𝒎
=

𝜕

𝜕𝒎
(𝑅𝜑

−1 ∙ (𝒛 −𝒎)) = −𝑅𝜑
−1 (6.32) 

 
The derivative with respect to the orientation is given as 
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𝜕𝒛̂

𝜕𝜑
=
𝜕

𝜕𝜑
(𝑅𝜑

−1 ∙ (𝒛 −𝒎)) =
𝜕𝑅𝜑

−1

𝜕𝜑
(𝒛 −𝒎) (6.33) 

 
and the derivative with respect to the extension is given as 

𝜕𝒛̂

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
=

𝜕

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
(𝑅𝜑

−1 ∙ (𝒛 −𝒎)) = 0 . (6.34) 

 
Since (6.34) is zero, (6.23) simplifies to  

𝜕

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
(𝒎 + 𝑅𝜑 ∙ 𝑆

𝐶 ∙ 𝐶(𝜏)) = 𝑅𝜑 ∙ diag(𝐶(𝜏)) . (6.35) 

 
Now all the calculations for the derivative of the predicted measurement are done. In the next 
section the presented spline measurement model is integrated in the EKF framework. 

6.4 The spline EKF filter 
When integrating the spline measurement model into an EKF framework, the predicted object 
state must be used to calculate the predicted measurements and their derivatives. In equation 
(6.2) the predicted object center 𝒎𝑘|𝑘−1 and the predicted orientation 𝜑𝑘|𝑘−1 have to be used 

to calculate the measurement in local coordinates. Those quantities also must be considered 
when calculating the derivatives in section 6.3. The scale factor used in those equations can 

be taken as updated scale factor from the previous time step 𝑆𝑘−1|𝑘−1
𝐶  or the predicted scale 

factor from the present time step 𝑆𝑘|𝑘−1
𝐶  if the extension is assumed to be constant. Using this 

assumption, the prediction step returns the updated scale factor from the previous time step. 
With a non-constant extension, the predicted scale factor must be used. In every time step 
now section 6.2 must be used to calculate the predicted measurement set 𝒀𝑘  with a predicted 
measurement for every measurement. Afterwards, the corresponding active basis functions 
and the walk parameters 𝜏𝑖 have to be used to calculate the set of derived predicted 

measurements 
𝜕𝒀𝑘

𝜕𝒙𝑘
= {

𝜕𝒚𝑖

𝜕𝒙𝑘
|𝑖 = 1…𝑛𝑘}.  

To integrate the measurement model in the EKF framework, the calculated quantities from 
the previous sections must be stacked [1]. The measurements and the predicted 
measurements must be used in global coordinates and stacked like 

𝒛𝑘 = (𝒛𝑘,1
𝑇 ; 𝒛𝑘,2

𝑇 ; … ; 𝒛𝑘,𝑛𝑘
𝑇 ) (6.36) 

𝒚𝑘 = (𝒚𝑘,1
𝑇 ; 𝒚𝑘,2

𝑇 ; … ; 𝒚𝑘,𝑛𝑘
𝑇 ) (6.37) 

 
with the semicolon meaning to stack the quantities on top of each other forming two vectors 
𝒛𝑘, 𝒚𝑘 ∈ ℝ

2𝑛𝑘 . The derivatives of the predicted measurements must be stacked like 

𝐻𝑘 = (
𝜕𝒚𝑘,1
𝜕𝒙𝑘

;
𝜕𝒚𝑘,2
𝜕𝒙𝑘

; … ;
𝜕𝒚𝑘,𝑛𝑘
𝜕𝒙𝑘

) (6.38) 

 
forming the measurement matrix 𝐻𝑘 ∈ ℝ

2𝑛𝑘×7. The last quantity needed is the measurement 
covariance matrix stacked like 
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𝑅𝑘 =

(

 

𝑅𝑘,1 0 ⋯ 0

0 𝑅𝑘,2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅𝑘,𝑛𝑘)

  (6.39) 

 
forming a quadratic matrix 𝑅𝑘 ∈ ℝ

2𝑛𝑘×2𝑛𝑘. Now those quantities can be used to form an EKF, 
using (2.20)-(2.22), (2.25) and (2.17)-(2.19). The spline EKF algorithm [1] is summarized within 
the pseudocode given in Table 1. 

Table 1: The spline EKF algorithm 

1: function Spline EKF 
2: Input: 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1, 𝒁𝑘 

3: step 1: prediction step system state 
4: calculate transition matrix 𝐹𝑘 = ∇𝒙𝑇𝑓(𝒙)|𝒙=𝒙̂𝑘−1|𝑘−1 

5: predict 𝒙̂𝑘|𝑘−1 = 𝑓(𝒙̂𝑘−1|𝑘−1) 

6: predict 𝑃𝑘|𝑘−1 = 𝐹𝑘 ∙ 𝑃𝑘−1|𝑘−1 ∙ 𝐹𝑘
𝑇 + 𝑄𝑘 

7: step 2: prediction step measurements 
8: for 𝑖 = 1,… , 𝑛𝑘 do 

9:  measurement in local coordinates 𝒛̂𝑖 = 𝑅𝜑𝑘|𝑘−1
−1 ∙ (𝒛𝑖 −𝒎𝑘|𝑘−1) 

10:  calculate angle 𝛿𝑖 = arctan(
𝑧̂𝑦,𝑖

𝑧̂𝑥,𝑖
) 

11:  calculate scaled basis points 𝑃𝐶 = 𝑆𝑘|𝑘−1
𝐶 ∙ 𝑃 

12:  get active basis points 𝑃𝜏,𝑖 and corresponding 𝑘(𝜏𝑖) using 𝛿𝑖  and 𝑃𝐶  
13:  calculate (𝒂𝑖, 𝒃𝑖, 𝒄𝑖) = 𝑃𝜏,𝑖 ∙ 𝑀 

14:  calculate 𝑢𝑞,𝑖 = det((𝒒𝑖, 𝒛̂𝑖)) 

15:  if 𝑢𝑎,𝑖 = 0 

16:   𝜏𝑖
′ = −

𝑢𝑐,𝑖

𝑢𝑏,𝑖
 

17:  else 

18:   𝜏𝑖
′ =

−√𝑢𝑏,𝑖
2 −4∙𝑢𝑎,𝑖∙𝑢𝑐,𝑖−𝑢𝑏,𝑖

2∙𝑢𝑎,𝑖
 

19:  end if 
20:  calculate walk parameter 𝜏𝑖 = 𝜏𝑖

′ + 𝑘(𝜏𝑖) 

21:  calculate predicted measurement 𝒚𝑖 = 𝒎𝑘|𝑘−1 + 𝑅𝜑𝑘|𝑘−1 ∙ 𝑆𝑘|𝑘−1
𝐶 ∙ 𝐶(𝜏𝑖) 

22: end for 
23: step 3: predicted measurement derivation 
24: for 𝑖 = 1,… , 𝑛𝑘 do 

25:  contour derivative 
𝜕𝐶(𝜏𝑖)

𝜕𝜏
= (𝒂𝑖, 𝒃𝑖 , 𝒄𝑖) ∙ (2𝜏𝑖

′, 1,0)𝑇 

26:  measurement in local coordinates derivatives 
𝜕𝒛̂𝑖

𝜕𝒎
= 𝑅𝜑𝑘|𝑘−1

−1  

27:  
𝜕𝒛̂𝑖

𝜕𝜑
=

𝜕𝑅𝜑𝑘|𝑘−1
−1

𝜕𝜑
∙ (𝒛𝑖 −𝒎𝑘|𝑘−1) 

28:  if 𝑢𝑎,𝑖 = 0 

29:   𝑢𝑏,𝑖
2 ∙

𝜕𝜏𝑖

𝜕𝑔
= (𝒃𝑖 ∙ 𝑢𝑐,𝑖 − 𝒄𝑖 ∙ 𝑢𝑏,𝑖) ×

𝜕𝒛̂𝑖

𝜕𝑔
 

30:  else 

31:   −2𝑢𝑎,𝑖
2 Θi

𝜕𝜏𝑖

𝜕𝑔
= (𝒂𝑖(2𝑢𝑎,𝑖𝑢𝑐,𝑖 − 𝑢𝑏,𝑖Θi − 𝑢𝑏,𝑖

2 ) + 𝒃𝑖(𝑢𝑏,𝑖𝑢𝑎,𝑖 

     +𝑢𝑎,𝑖Θi) − 2𝑢𝑎,𝑖
2 𝒄𝑖) ×

𝜕𝒛̂𝑖

𝜕𝑔
 

32:  end if 

33:  derive predicted measurement 
𝜕𝒚𝑖

𝜕𝒎
= 𝐼2 + 𝑅𝜑𝑘|𝑘−1 ∙ 𝑆𝑘|𝑘−1

𝐶 ∙
𝜕𝐶(𝜏𝑖)

𝜕𝜏
∙
𝜕𝜏𝑖

𝜕𝒎
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34:  
𝜕𝒚𝑖

𝜕𝜑
=

𝜕𝑅𝜑𝑘|𝑘−1

𝜕𝜑
∙ 𝑆𝑘|𝑘−1

𝐶 ∙ 𝐶(𝜏𝑖) + 𝑅𝜑𝑘|𝑘−1 ∙ 𝑆𝑘|𝑘−1
𝐶 ∙

𝜕𝐶(𝜏𝑖)

𝜕𝜏
∙
𝜕𝜏𝑖

𝜕𝜑
 

35:  
𝜕𝒚𝑖

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
= 𝑅𝜑𝑘|𝑘−1 ∙ diag(𝐶(𝜏𝑖)) 

36:  put derivatives together 
𝜕𝒚𝑖

𝜕𝒙𝑘
= (

𝜕𝒚𝑖

𝜕𝒎
, 0,

𝜕𝒚𝑖

𝜕𝜑
, 0,

𝜕𝒚𝑖

𝜕𝒙𝑠ℎ𝑎𝑝𝑒
)  

37: end for 
38: step 4: get stacked quantities 

39: measurements 𝒛𝑘 = (𝒛𝑘,1
𝑇 ; 𝒛𝑘,2

𝑇 ; … ; 𝒛𝑘,𝑛𝑘
𝑇 ) 

40: predicted measurements 𝒚𝑘 = (𝒚𝑘,1
𝑇 ; 𝒚𝑘,2

𝑇 ; … ; 𝒚𝑘,𝑛𝑘
𝑇 ) 

41: measurement matrix 𝐻𝑘 = (
𝜕𝒚𝑘,1

𝜕𝒙𝑘
;
𝜕𝒚𝑘,2

𝜕𝒙𝑘
; … ;

𝜕𝒚𝑘,𝑛𝑘
𝜕𝒙𝑘

) 

42: measurement covariance matrix 𝑅𝑘 =

(

 

𝑅𝑘,1 0 ⋯ 0

0 𝑅𝑘,2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅𝑘,𝑛𝑘)

  

43: step 5: EKF update 

44: innovation covariance matrix 𝑆𝑘 = 𝐻𝑘 ∙ 𝑃𝑘|𝑘−1 ∙ 𝐻𝑘
𝑇 + 𝑅𝑘 

45: Kalman gain 𝐾𝑘 = 𝑃𝑘|𝑘−1 ∙ 𝐻𝑘 ∙ 𝑆𝑘
−1 

46: update system state 𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 + 𝐾𝑘 ∙ (𝒛𝑘 − 𝒚𝑘) 

47: update covariance matrix 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘 ∙ 𝐻𝑘 ∙ 𝑃𝑘|𝑘−1 

48: Output: 𝒙̂𝑘|𝑘 , 𝑃𝑘|𝑘 

49: end function 

 

The implementation and the performance of the spline EKF, as well as the comparison with 
the rectangular shape estimator is presented in the next chapter, while the last section in this 
chapter is about to integrate the spline measurement modal in the PHD filter framework. 

6.5 The spline PHD filter 
To integrate the spline measurement model [1] in the GM-PHD filter framework for extended 
objects [35], the equations of section 4.4 and 4.5 need to be used. Additionally, the stacked 
derivatives of (6.36)-(6.39) are considered as well. The prediction step of the spline PHD filter 
is the same as the prediction step of the PHD filter for point objects. Therefore, the modeled 
birth RFS is given using (4.23), while the prediction of the existing GM components is 
calculated using (4.26)-(4.29). As the spline measurement model is a measurement model for 
extended objects, (4.40)-(4.57) need to be used to calculate the updated GM components. As 
stacked derivatives of (4.44)-(4.48) the ones presented in (6.36)-(6.39) need to be used for 
every GM component in every cell in every partition. As the update step considers every cell 
in every partition to update every predicted GM component, the number of updated GM 
components, calculated in (4.50)-(4.52), can grow very fast. To reduce this amount a merging 
and pruning step [29] is used after the update step. In the pruning step every GM component 
with a weight smaller than a specific threshold 𝑇 is ignored to cut off every component under 
a certain threshold. The merging step is used to merge the GM components with closely 
spaced means, with the distance calculated using the Mahalanobis distance. With a given set 

of pruned GM components {𝜔𝑘|𝑘
(𝑖) , 𝒙𝑘|𝑘

(𝑖) , 𝑃𝑘|𝑘
(𝑖)}

𝑖=1

𝐽𝑇
, the first step is to compute the component 

with the biggest weight 𝜔𝑘|𝑘
(𝑗)

. 
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Afterwards, the corresponding mean 𝒙̂𝑘|𝑘
(𝑗)

 is used to find the closely spaced components. 

Therefore, a second threshold 𝑈 is introduced [29]. The indices of the closely spaced 
components are calculated using  

𝑳 ≔ { 𝑖 ∈ {1, … , 𝐽𝑇}| (𝒙̂𝑘|𝑘
(𝑖) − 𝒙̂𝑘|𝑘

(𝑗)
)
𝑇

𝑃𝑘|𝑘
(𝑖)−1 (𝒙̂𝑘|𝑘

(𝑖) − 𝒙̂𝑘|𝑘
(𝑗)
) ≤ 𝑈} .  (6.40) 

 
After computing the closely spaced components, those are merged using the following 
equations: 

𝜔̃𝑘|𝑘
(𝑙) =∑𝜔𝑘|𝑘

(𝑖)

𝑖∈𝑳

 , (6.41) 

𝒙̃𝑘|𝑘
(𝑙) =

1

𝜔̃𝑘|𝑘
(𝑙)
∑𝜔𝑘|𝑘

(𝑖) ∙ 𝒙̂𝑘|𝑘
(𝑖)

𝑖∈𝑳

 , (6.42) 

𝑃̃𝑘|𝑘
(𝑙) =

1

𝜔̃𝑘|𝑘
(𝑙)
∑𝜔𝑘|𝑘

(𝑖)

𝑖∈𝑳

(𝑃𝑘|𝑘
(𝑖) + (𝒙̃𝑘|𝑘

(𝑙) − 𝒙̂𝑘|𝑘
(𝑖) ) ∙ (𝒙̃𝑘|𝑘

(𝑙) − 𝒙̂𝑘|𝑘
(𝑖) )

𝑇

) . (6.43) 

 
Finally, a second pruning step can be performed by taking the 𝐽max GM components with the 
largest merged weights. Thus, the limitations of used hardware can be considered. After the 
merging and pruning steps the state extraction can be done by simply taking the GM 
components with weights larger than 0.5 as states of the objects actually being present. 

As LIDAR measurements enable the edge visibility of the measured object a DBSCAN algorithm 
[37] is a possible choice as cluster algorithm for the spline PHD filter. The algorithm clusters 
closely spaced measurements if the number of measurements is larger than a predefined 
minimum point threshold minPoints. Remaining measurements are clustered in a noise set. 
Two points are closely spaced, if the distance between the points is smaller than the 
predefined parameter 𝜀. Since the LIDAR measurements are close to each other if the object 
is close to the sensor and vice versa further apart if the object and sensor are further apart, a 
set of distance parameters 𝜺 = {𝜀1, … , 𝜀𝐽𝑃} has to be used to compute a reasonable subset of 

all possible partitions of the measurement set. 

Computing the rate of the Poisson distributed random number modeling the amount of 

measurements generated from a specific object 𝛾 (𝒙̂𝑘|𝑘−1
(𝑗)

), can be done by computing the 

intersections of the LIDAR sensors lines of sight and the objects’ contour. Using the position 

𝒎𝑘|𝑘−1
(𝑗)

, orientation 𝜑𝑘|𝑘−1
(𝑗)

 and extension provided by 𝑠𝑥,𝑘|𝑘−1
(𝑗)

 and 𝑠𝑦,𝑘|𝑘−1
(𝑗)

, the objects’ 

contour can be computed. The LIDAR sensor can be modeled using lines of sight arranged with 
the given resolution of the sensor. A measurement can occur if a line of sight intersects with 
the contour of the object. For the sake of simplicity, the spline contour is approximated as 
rectangle. The edge detection used for the computation of the rate modeling the generated 
measurements is illustrated in Figure 6.3. The amount of edge detections can be taken as rate 

of object generated measurements 𝛾 (𝒙̂𝑘|𝑘−1
(𝑗)

). 

When computing the partition weights according to (4.56), the product of the cell weights can 
get that large a numerical overflow can occur. Therefore, the cell weights can be stored using 
the logarithm of the cell weights. An explanation is given in [38] and the equations are given 
in the all in all spline PHD filter algorithm.  
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Figure 6.3: Illustration of the edge detection used for the spline PHD filter 

The summary of the spline PHD filter, where the spline measurement model is integrated in a 
GM-PHD filter framework for extended objects, is as pseudocode of Table 2. 

Table 2: The spline PHD filter algorithm 

1: function Spline PHD 

2:  Input: GM components {𝜔𝑘−1|𝑘−1
(𝑗)

, 𝒙̂𝑘−1|𝑘−1
(𝑗)

, 𝑃𝑘−1|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝑘−1|𝑘−1
 , measurement set 𝒁𝑘 ,  

  set of clustering parameters 𝜺 = {𝜀𝑝}𝑝=1
𝐽𝑃  

3: step 1: prediction step  
4: step 2: compute measurement partitions  
5: step 3: compute rate of target generated measurements  
6: step 4: update step  
7: step 5: merging and pruning  
8: step 6: state extraction  

9: Output: GM components {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
  , extracted object states 𝑿̂𝑘|𝑘 

10: end function 

 

In the following tables the individual steps, specified in Table 2, are given. The prediction step 
[29] is given in Table 3, the measurement partitioning [37] in Table 4, computing the amount 
of target generated measurements in Table 5, the update step [35] [1] in Table 6 and the 
merging and pruning step [29], as well as the state extraction [29], in Table 7 and Table 8 
respectively. 
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Table 3: The spline PHD filter prediction step 

1: function prediction of birth components 

2:  Input: GM components {𝜔𝑘−1|𝑘−1
(𝑗)

, 𝒙̂𝑘−1|𝑘−1
(𝑗)

, 𝑃𝑘−1|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝑘−1|𝑘−1
 

3: initialize prediction counter 𝑖 = 0 
4: for 𝑗 = 1,… , 𝐽𝑏,𝑘 do 

5:  increase prediction counter 𝑖 = 𝑖 + 1 

6:  predicted components 𝜔𝑘|𝑘−1
(𝑖)

= 𝜔𝑏,𝑘
(𝑗)

 , 𝒙̂𝑘|𝑘−1
(𝑖)

= 𝒙̂𝑏,𝑘
(𝑗)

 , 𝑃𝑘|𝑘−1
(𝑖)

= 𝑃𝑏,𝑘
(𝑗)

 

7: end for 
8: for 𝑗 = 1,… 𝐽𝑘−1|𝑘−1 do 

9:  increase prediction counter 𝑖 = 𝑖 + 1 

10:  predict weight 𝜔𝑘|𝑘−1
(𝑖) = 𝑝𝑆 ∙ 𝜔𝑘−1|𝑘−1

(𝑗)
 

11:  calculate Jacobi matrix 𝐹𝑘
(𝑗)
= ∇𝒙𝑇𝑓(𝒙)|𝒙=𝒙̂𝑘−1|𝑘−1

(𝑗)  

12:  predict mean 𝒙̂𝑘|𝑘−1
(𝑖)

= 𝐹𝑘
(𝑗)
∙ 𝒙̂𝑘−1|𝑘−1

(𝑗)
 

13:  predict covariance 𝑃𝑘|𝑘−1
(𝑖) = 𝐹𝑘

(𝑗)
∙ 𝑃𝑘−1|𝑘−1

(𝑖) ∙ 𝐹𝑘
(𝑗)𝑇

+𝑄𝑘  

14: end for 
15: predict amount of GM components 𝐽𝑘|𝑘−1 = 𝑖 

16: Output: predicted GM components {𝜔𝑘|𝑘−1
(𝑗)

, 𝒙̂𝑘|𝑘−1
(𝑗)

, 𝑃𝑘|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝑘|𝑘−1
 

17: end function 

 

 

Table 4: Measurement partitioning for the spline PHD filter 

1: function compute measurement partitions 

2:  Input: measurement set 𝒁𝑘 , set of clustering parameters 𝜺 = {𝜀𝑝}𝑝=1
𝐽𝑃  

3: for 𝑝 = 1,… , 𝐽𝑃 

4:  compute partition cells {𝒁𝑘
𝑾𝑛
𝑝

}
𝑛=1

|𝑝𝑝|

= DBSCAN(𝒁𝑘 , 𝜀𝑝,minPoints) 

5: end for 

6: Output: measurement partitions {{𝒁𝑘
𝑾𝑛
𝑝

}
𝑛=1

|𝑝𝑝|

}
𝑝=1

𝐽𝑃

 

7: end function 

 

Table 5: Computing amount of target generated measurements for the spline PHD filter 

1: function compute rate of target generated measurements 

2:  Input: predicted GM means {𝒙̂𝑘|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝑘|𝑘−1
 

3: for 𝑗 = 1,… , 𝐽𝑘|𝑘−1 do 

4:  𝛾𝑘
(𝑗)
= 𝛾 (𝒙̂𝑘|𝑘−1

(𝑗)
) 

5: end for 

6: Output: rate of target generated measurements {𝛾𝑘
(𝑗)
}
𝑗=1

𝐽𝑘|𝑘−1
 

7: end function 

 

 



 

48  6 The spline vehicle tracking algorithm 

Table 6: Update step for the spline PHD filter 

1: function update step 

2:  Input: predicted GM components {𝜔𝑘|𝑘−1
(𝑗)

, 𝒙̂𝑘|𝑘−1
(𝑗)

, 𝑃𝑘|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝑘|𝑘−1
 , rate of target  

  generated measurements {𝛾𝑘
(𝑗)
}
𝑗=1

𝐽𝑘|𝑘−1
 , measurement partitions {𝒁𝑘

𝑾𝑛
𝑝

}
𝑛=1

𝐽𝑃
 

3:  for 𝑗 = 1,… , 𝐽𝑘|𝑘−1 do 

4:  update weight 𝜔𝑘|𝑘
(𝑗)

= (1 − (1 − 𝑒−𝛾𝑘
(𝑗)

)𝑝𝐷)𝜔𝑘|𝑘−1
(𝑗)

 

5:  update mean 𝒙̂𝑘|𝑘
(𝑗)

= 𝒙̂𝑘|𝑘−1
(𝑗)

 and covariance 𝑃𝑘|𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
 

6: end for 
7: initialize cell counter 𝑙 = 0 
8: for 𝑝 = 1,… 𝐽𝑃 do 
9:  for 𝑛 = 1,… , |𝑝𝑝| do 

10:   increment cell counter 𝑙 = 𝑙 + 1 

11:   select measurement set 𝒁𝑛 = 𝒁𝑘
𝑾𝑛
𝑝

 

12:   for 𝑗 = 1,… , 𝐽𝑘|𝑘−1 do 

13:    predict measurements  
14:    for 𝑚 = 1,… , |𝒁𝑛| do  
15:     predict measurements according to (6.2)-(6.17) using 𝒁𝑛 

       and 𝒙̂𝑘|𝑘−1
(𝑗)

. 

16:    end for 

17:    Output: {𝜏𝑚
(𝑗)
, 𝒚𝑚
(𝑗)
}
𝑚=1

|𝒁𝑛|
 , {(𝒂𝑚

(𝑗)
, 𝒃𝑚
(𝑗)
, 𝒄𝑚
(𝑗)
)}
𝑚=1

|𝒁𝑛|
 , {𝒛̂𝑚

(𝑗)
}
𝑚=1

|𝒁𝑛|
  

18:    predicted measurement derivation 
19:    for 𝑚 = 1,… , |𝒁𝑛| do 
20:     derive predicted measurements according to (6.18)-(6.35)  

      using {𝜏𝑚
(𝑗)
, 𝒚𝑚
(𝑗)
}
𝑚=1

|𝒁𝑛|
 , {(𝒂𝑚

(𝑗)
, 𝒃𝑚
(𝑗)
, 𝒄𝑚
(𝑗)
)}
𝑚=1

|𝒁𝑛|
 , 𝒙̂𝑘|𝑘−1

(𝑗)
 , 𝒁𝑛  

      and {𝒛̂𝑚
(𝑗)
}
𝑚=1

|𝒁𝑛|
 

21:    end for 

22:    Output: {
𝜕𝒚𝑚

(𝑗)

𝜕𝒙𝑘
}
𝑚=1

|𝒁𝑛|

 

23:    get stacked quantities 

24:    measurements 𝒛𝑛 = (𝒛1
𝑇; 𝒛2

𝑇; … ; 𝒛|𝒁𝑛|
𝑇 ) 

25:    predicted measurements 𝒚𝑛
(𝑗)
= (𝒚1

(𝑗)𝑇
; 𝒚2

(𝑗)𝑇
; … ; 𝒚|𝒁𝑛|

(𝑗) 𝑇
) 

26:    measurement matrix 𝐻𝑛
(𝑗)
= (

𝜕𝒚1
(𝑗)

𝜕𝒙𝑘
;
𝜕𝒚2

(𝑗)

𝜕𝒙𝑘
; … ;

𝜕𝒚|𝒁𝑛|
(𝑗)

𝜕𝒙𝑘
) 

27:    covariance matrix 𝑅𝑛
(𝑗)
= (

𝑅1 0 ⋯ 0
0 𝑅2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅|𝒁𝑛|

)  

28:    compute updated components 

29:    innovation covariance 𝑆𝑛
(𝑗)
= 𝐻𝑛

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑛

(𝑗)𝑇
+ 𝑅𝑛

(𝑗)
 

30:    Kalman gain 𝐾𝑛
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
∙ 𝐻𝑛

(𝑗)𝑇
∙ 𝑆𝑛

(𝑗)−1
 

31:    mean 𝒙̂
𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙)  = 𝒙̂𝑘|𝑘−1
(𝑗)

+ 𝐾𝑛
(𝑗)
∙ (𝒛𝑛 − 𝒚𝑛

(𝑗)
) 

32:    covariance matrix 𝑃
𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙) = 𝑃𝑘|𝑘−1
(𝑗)

− 𝐾𝑛
(𝑗)
∙ 𝐻𝑛

(𝑗)
∙ 𝑃𝑘|𝑘−1

(𝑗)
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33:    Γ𝑛
(𝑗)
= 𝑒−𝛾

(𝑗)
∙ (𝛾(𝑗))

|𝒁𝑛|
 

34:    Φ𝑛
(𝑗)
= 𝒩(𝒛𝑛; 𝒚𝑛

(𝑗)
, 𝑆𝑛
(𝑗)
) ∙ ∏

1

𝜅𝑘(𝒛𝑚)

|𝒁𝑛|
𝑚=1  

35:    update weight 𝜔
𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙) = 𝑝𝐷 ∙ Γ𝑛
(𝑗)
∙ Φ𝑛

(𝑗)
∙ 𝜔𝑘|𝑘−1

(𝑗)
 

36:   end for 

37:   compute cell normalization 𝑑𝑾𝑛
𝑝 = 𝛿|𝒁𝑛|,1 + ∑ 𝜔

𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙)𝐽𝑘|𝑘−1
𝑗=1

 

38:   normalize weights 𝜔
𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙) =
𝜔
𝑘|𝑘

(𝑗+𝐽𝑘|𝑘−1𝑙)

𝑑
𝑾𝑛
𝑝

  for 𝑗 = 1,… , 𝐽𝑘|𝑘−1 

39:  end for 

40:  compute log partition normalization numerator 𝜔̃𝑝𝑝 = ∑ log (𝑑𝑾𝑛
𝑝)

|𝑝𝑝|

𝑛=1  

41: end for 
42: update amount of GM components 𝐽𝑘|𝑘 = 𝐽𝑘|𝑘−1 ∙ (𝑙 + 1) 

43: log partition normalization 𝜔̃𝑝𝑝 = 𝜔̃𝑝𝑝 − (𝜔̃𝑝1 + log (1 + ∑ 𝑒
𝜔̃𝑝

𝑝′
−𝜔̃𝑝1𝐽𝑃

𝑝′=2 ))  𝑝 = 1,… , 𝐽𝑃 

44: partition normalization factor 𝜔𝑝𝑝 = 𝑒
𝜔̃𝑝𝑝   for 𝑝 = 1,… , 𝐽𝑃 

45: 𝐽aux = 𝐽𝑘|𝑘−1 

46: for 𝑝 = 1,… , 𝐽𝑃 do 

47:  weight normalization 𝜔𝑘|𝑘
(𝑗+𝐽aux) = 𝜔𝑘|𝑘

(𝑗+𝐽aux) ∙ 𝜔𝑝𝑝  for 𝑗 = 1,… , 𝐽𝑘|𝑘−1|𝑝𝑝| 

48:  𝐽aux = 𝐽aux + 𝐽𝑘|𝑘−1 ∙ |𝑝𝑝| 

49: end for 
 

50: Output: updated GM components {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
   

51: end function 

 

Table 7: Merging and pruning step for the spline PHD filter 

1: function merging and pruning 

2: Input: updated GM components {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
 , thresholds 𝑇, 𝑈, 𝐽max 

3: prune small weights 𝑰 = {𝑖 ∈ {1,… , 𝐽𝑘|𝑘}|𝜔𝑘|𝑘
(𝑖) > 𝑇} 

4: initialize merged components counter 𝑙 = 0 
5: repeat 
6:  increment merged components counter 𝑙 = 𝑙 + 1 

7:  find maximum weight 𝑗 = argmax
𝑖∈𝑰

𝜔𝑘|𝑘
(𝑖)  

8:  closely spaced components 𝑳 = {𝑖 ∈ 𝑰| (𝒙̂𝑘|𝑘
(𝑖) − 𝒙̂𝑘|𝑘

(𝑗)
)
𝑇
𝑃𝑘|𝑘
(𝑖)−1 (𝒙̂𝑘|𝑘

(𝑖) − 𝒙̂𝑘|𝑘
(𝑗)
) ≤ 𝑈} 

9:  merge weights 𝜔̃𝑘|𝑘
(𝑙) = ∑ 𝜔𝑘|𝑘

(𝑖)
𝑖∈𝑳  

10:  merge means 𝒙̃𝑘|𝑘
(𝑙) =

1

𝜔̃𝑘|𝑘
(𝑙) ∑ 𝜔𝑘|𝑘

(𝑖)
𝑖∈𝑳 ∙ 𝒙̂𝑘|𝑘

(𝑖)  

11:  merge covariance’s 𝑃̃𝑘|𝑘
(𝑙) =

1

𝜔̃𝑘|𝑘
(𝑙) ∑ 𝜔𝑘|𝑘

(𝑖)
𝑖∈𝑳 (𝑃𝑘|𝑘

(𝑖) + (𝒙̃𝑘|𝑘
(𝑙) − 𝒙̂𝑘|𝑘

(𝑖) ) (𝒙̃𝑘|𝑘
(𝑙) − 𝒙̂𝑘|𝑘

(𝑖) )
𝑇
) 

12:  set derivative 𝑰 = 𝑰\𝑳 
13: until 𝐼 = ∅ 
14: if 𝑙 > 𝐽max do 

15:  replace GM components {𝜔̃𝑘|𝑘
(𝑖) , 𝒙̃𝑘|𝑘

(𝑖) , 𝑃̃𝑘|𝑘
(𝑖)
}
𝑖=1

𝑙
 with the components with 𝐽max   

   largest weights and 𝑙 = 𝐽max 
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16: end if 

17: set {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
= {𝜔̃𝑘|𝑘

(𝑖)
, 𝒙̃𝑘|𝑘
(𝑖)
, 𝑃̃𝑘|𝑘

(𝑖)
}
𝑖=1

𝑙
 

18: Output: merged and pruned updated GM components {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
 

19: end function 

 

Table 8: state extraction for the spline PHD filter 

1: function state extraction 

2: Input: merged and pruned updated GM components {𝜔𝑘|𝑘
(𝑗)
, 𝒙̂𝑘|𝑘
(𝑗)
, 𝑃𝑘|𝑘

(𝑗)
}
𝑗=1

𝐽𝑘|𝑘
 

3: initialize empty state set 𝑿̂𝑘|𝑘 = ∅ 

4: for 𝑗 = 1,… , 𝐽𝑘|𝑘 do 

5:  if 𝜔𝑘|𝑘
(𝑗)

> 0.5 do 

6:   update state set 𝑿̂𝑘|𝑘 = (𝑿̂𝑘|𝑘 , 𝒙̂𝑘|𝑘
(𝑗)
) 

7:  end if 
8: end for 

9: Output: state set 𝑿̂𝑘|𝑘 

10: end function 

 
The parameters used for the implementation as well as the simulation results are given in the 
next chapter. 

7 Performance evaluation 
In order to evaluate the performance of the spline extension model within the EKF and the 
GM-PHD Filter, a self-implemented version of both filters is tested. Since a decoupled error 
analysis, using root mean square errors for every component of the object state, does not 
show the impact of one component on the total error, a metric for the performance evaluation 
of extended objects is introduced in section 7.1. Afterwards, the performance evaluation for 
tracking one extended object using a spline EKF is illustrated in section 7.2. Within this section 
the performance is analyzed using simulated measurements. The first subsection 7.2.1 is 
therefore about the implemented simulation environment to generate the measurements in 
every time step. In subsection 7.2.2 the results using the spline EKF to track the simulated 
measurement data are presented. The results for one simulation run and a Monte Carlo 
simulation with 1000 runs are shown. In subsection 7.2.3 the performance of the spline EKF is 
compared with the rectangular shape estimator presented in section 3.3. Therefore, also the 
results for one simulation run and a Monte Carlo simulation with 1000 runs are shown. The 
performance of the spline PHD filter is analyzed in section 7.4. The performance of this filter 
is also evaluated with simulated measurements. Therefore, the simulation environment for 
generating measurements of several extended objects in a cluttered environment is 
presented in subsection 7.4.1. Finally, the results of the simulation are illustrated in subsection 
7.4.2. 

7.1 A distance measure for extended objects 
The metric used for the performance evaluation in this thesis is the optimal subpattern 
assignment (OSPA) metric introduced in [39]. The paper describes a consistent metric for the 
performance evaluation of multi object point tracking problems, where the performance is 
described in a single number. In contrast to a decoupled analysis using root mean square 
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errors, the OSPA provides an actual evaluation of the tracker’s performance. The metric can 
be adapted to analyze the performance of a single extended object tracker presented in [40].  

In order to calculate the OSPA distance of two extended objects 𝑛 equidistant points must be 
chosen from the reference contour 𝒙 and the estimated contour 𝒙̂ to approximate a uniform 
distribution on the boundary. 

 

Figure 7.1: Visualization of the OSPA distance for extended objects 

The points are denoted as 𝑝𝒙 = {𝑝𝒙
1, 𝑝𝒙

2, … , 𝑝𝒙
𝑛} for the reference contour and 𝑝𝒙̂ =

{𝑝𝒙̂
1, 𝑝𝒙̂

2, … , 𝑝𝒙̂
𝑛} for the estimated contour. The OSPA distance for extended objects is then 

defined as 

𝑑𝑂𝑆𝑃𝐴,𝑛(𝑝𝒙, 𝑝𝒙̂)
𝑝 = min

𝜋∈Π
√
1

𝑛
∑‖𝑝𝒙

𝑖 − 𝑝𝒙̂
𝜋(𝑖)‖

𝑝
𝑛

𝑖=1

 (7.1) 

 
with Π as the set of all permutations of {1,2, … , 𝑛} and 𝜋 as one permutation in the set of 
permutations. The OSPA metric therefore searches for the minimal sum of distances where 
each point on the reference contour is assigned to one point on the estimated contour. The 
OSPA distance is illustrated in Figure 7.1 with 𝑛 = 4 and the optimal assignment of the two 
sets of points. Finding the minimum costs for the assignment problem is a common problem 
in combinatorial optimization and can be solved using the Hungarian method, also called 
Kuhn-Munkres algorithm [41], or the auction algorithm [42]. An implementation of the Kuhn-
Munkres algorithm of [43] is used for the OSPA calculation in this thesis. 



 

52  7 Performance evaluation 

7.2 Performance of the spline EKF 
This section is about to evaluate the performance of the spline EKF tracker presented in Table 
1. In order to provide a well-defined object state in every time step, (6.1) is used to define the 
system state vector. As system transition model a coordinated turn model with polar velocity 
[8] combined with an assumed constant extension is used. The transition function is then given 
as 

𝑓(𝒙𝑘) =

(

 
 
 
 
 
 
 
𝑥𝑘 +

2𝑣𝑘
𝜔𝑘

sin (
𝜔𝑘𝑡

2
) cos (𝜑𝑘 +

𝜔𝑘𝑡

2
)

𝑦𝑘 +
2𝑣𝑘
𝜔𝑘

sin (
𝜔𝑘𝑡

2
) sin (𝜑𝑘 +

𝜔𝑘𝑡

2
)

𝑣𝑘
𝜑𝑘 + 𝜔𝑘𝑡

𝜔𝑘
𝑠𝑥,𝑘
𝑠𝑦,𝑘 )

 
 
 
 
 
 
 

 (7.2) 

 
with the periodic time 𝑡 of the sensor. The system covariance matrix is calculated as 

𝑄 = 𝐺 ∙ diag ((𝜎𝑣
2, 𝜎𝜔

2 , 𝜎𝑠𝑥
2 , 𝜎𝑠𝑦

2 )) ∙ 𝐺𝑇 (7.3) 

 
with 𝐺 given as 

𝐺 =

(

 
 
 
 

0 0 0 0
0 0 0 0
𝑡 0 0 0
0 0 0 0
0 𝑡 0 0
0 0 𝑡 0
0 0 0 𝑡)

 
 
 
 

 . (7.4) 

 
The system standard deviations are specified as 𝜎𝑣 = 2.2𝑚/𝑠 , 𝜎𝜔 = 1.5°/𝑠 , 𝜎𝑠𝑥 = 0.1𝑚 and 

𝜎𝑠𝑦 = 0.1𝑚. One single measurement covariance matrix used for the combination to the 

measurement covariance matrix specified in (6.39) is given as 

𝑅 = (
𝜎𝑟
2 0

0 𝜎𝜗
2) (7.5) 

 
with the measurement standard deviations specified as 𝜎𝑟 = 0.1𝑚 and 𝜎𝜗 = 0.5°. The 
measurement set is therefore given as 

𝒁𝑘 = (
𝑟1 𝑟2 … 𝑟𝑛𝑘
𝜗1 𝜗2 … 𝜗𝑛𝑘

) (7.6) 

 
with the range 𝑟 and the azimuth 𝜗 for every measurement in polar coordinates.  

7.2.1 Simulation environment 
Within the simulation environment to evaluate the performance of the spline EKF, the 
measurements for one moving object need to be generated. The LIDAR sensor is modeled 
using several lines of sight going through the point where the sensor is located. Those lines of 



 

53  7 Performance evaluation 

sight are generated using a specific angle as resolution of the sensor which can be adjusted 
within the simulation environment. 

In order to generate the shape measurements, the first step is to create a random trajectory 
using (7.2) without the extension components and adding Gaussian random noise terms using 
𝜎𝑣 and 𝜎𝜔. Given the position and the orientation of the trajectory at every time step those 
quantities can be used to create a rectangle within the surveillance area. 

 

Figure 7.2: Illustration of the edge detection used for the EKF simulation environment 

With a specific model length and width, the corners of the rectangle can be calculated. The 
analytical representation of the lines of sight and the edges of the model allows to calculate 
their intersections. Those intersections are illustrated in Figure 7.2 and are now used to 
generate the shape measurements. Since the sensor can only see the front facing it and one 
line of sight has two intersections with the rectangle, it is necessary to find out which 
intersection is located closer to the sensor. The closer located intersection is added to a data 
set if a uniform distributed random number is smaller than the predefined probability of 
detection 𝑝𝐷. The more distant intersection is added to a data set if a uniform distributed 
random number is smaller than the predefined probability of multipath detection 𝑝𝑀𝐷. This 
data set now contains noiseless shape measurements in Cartesian coordinates. In order to 
calculate the final measurement set, those data points need to be given in polar coordinates. 
The last step is to add a random Gaussian noise term to the range using 𝜎𝑟 and the azimuth 
using 𝜎𝜗 of each data point.  

7.2.2 Simulation results 
The simulations are done with a sensor resolution of one degree and a detection probability 
of 𝑝𝐷 = 0.95. The first results presented are the root mean square errors and the OSPA 
distance for a random single run. Within this simulation the probability of multipath detection 
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is set to 𝑝𝑀𝐷 = 0 and the periodic time of the sensor is set to 𝑡 = 0.1𝑠. The OSPA distance is 
calculated using 𝑛 = 50 samples both of the contour of the estimation and the reference. In 
Figure 7.3 the root mean square errors for the position in 𝑥 and 𝑦 dimension, the orientation 
and the scale factors in 𝑥 and 𝑦 dimension for one run are shown. The figure shows the 
accuracy of the filter for every component separately. 

 

Figure 7.3: Root mean square errors for one simulation run 

While the orientation error stays nearly constant, all the other errors increase over time. The 
reason for that can be seen in Figure 7.4, where the OSPA distance as well as the number of 
measurements are illustrated for the same simulation run. The number of measurements first 
increases at the beginning of the simulation and then decreases rapidly at the ending. The 
trajectory therefore starts near the sensor, then leads past the sensor, where the maximum 
number of measurements is, and then diverges from the sensor, where the number of 
measurements decreases. The deterioration of the performance can also be detected in the 
OSPA distance, which also increases over time. However, the deterioration in performance is 
not linearly related to the number of measurements, which is a positive property. The value 
itself of the OSPA distance is difficult to interpret since the position, the orientation and the 
extension are included in the distance. Since the RMSE values of the simulation run show an 
accurate performance of the filter, the OSPA distance seems to be in an acceptable range too. 
However, to interpret the value of the OSPA distance the best it needs to be compared to 
either another simulation run of the spline EKF or the simulation of another filter. Both 
comparisons will be shown within this chapter.  
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Figure 7.4: OSPA distance and number of measurements for one simulation run 

 

Figure 7.5: OSPA distance of the first Monte Carlo simulation of the spline EKF 
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In order to show a long-term performance of the spline EKF the results of a Monte Carlo 
simulation with 1000 runs is shown. In Figure 7.5 the mean OSPA distance of every simulation 
run is shown, while Figure 7.6 shows the mean root mean square errors of every run. The 
simulation is done using the same uncertainties, probabilities, simulation time and OSPA 
samples as stated above. 

 

Figure 7.6: RMSE values of the first Monte Carlo simulation of the spline EKF 

The figures show a constant performance for most of the runs. However, several simulations 
show a worse result than most of the others. The reason for that is up to the initialization of 
the spline EKF in the run. In the case where the measurements are assigned to the wrong side 
of the car within the initialization step the covariance matrix 𝑃 of the filter gets too small, to 
correct the wrong assignment throughout the simulation. To correct this only a new 
initialization can help. The remaining runs show a stable performance of the spline EKF tracker. 
Most of the mean values of the OSPA are between 0.6 and 0.8 were also the mean OSPA 
distance of Figure 7.4 is located.  

In order to improve the performance of the spline EKF the detection and multipath detection 
probabilities are set to 𝑝𝐷 = 0.95 and 𝑝𝑀𝐷 = 0.05 in a second Monte Carlo simulation. Also, 
in this simulation 1000 runs are done. The results are shown in the mean values of the OSPA 
distance and the RMSE values in Figure 7.7 and Figure 7.8 respectively. The figures show a 
much better performance than the results in the previous Monte Carlo simulation. Most of 
the mean OSPA values are lower than before and the RMSE values show a better performance 
as well. However, these results must be treated with caution, since there is no guarantee that 
there is a single multipath detection in a specific scenario. In summary the results show a very 
good performance of the spline EKF filter apart from the runs, where the initialization fails. In 
those cases, only a new initialization leads to a better performance.  
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Figure 7.7: OSPA distance of the second Monte Carlo simulation of the spline EKF 

 

Figure 7.8: RMSE values of the second Monte Carlo simulation of the spline EKF 
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7.2.3 Performance comparison 
Within this subsection the spline EKF tracker is compared to the rectangular shape estimator 
presented in section 3.3. Therefore, the same simulation environment presented in 
subsection 7.2.1 is used. First the simulation results of a single run are illustrated in Figure 7.9 
and Figure 7.10 with the mean root mean square errors and the OSPA distances for every time 
step respectively. The second figure also shows the number of measurements per time step. 

 

Figure 7.9: Compared RMSE values of a single run 

The simulation is done with the same uncertainties, simulation time and OSPA samples as 
stated above. The probability of detection and multipath detection probability are set to 𝑝𝐷 =
1 and 𝑝𝑀𝐷 = 0. The figure showing the root mean square errors is hard to interpret, since it 
shows a decoupled error consideration. The tendency is that the spline EKF is more stable than 
the rectangular shape estimator. At some points the spline EKF and at other points the 
rectangular shape estimator shows a better performance in a specific component of the 
system state, but the overall performance of the filters cannot be picked out easily. Therefore, 
the second illustration showing the OSPA distance with the number of measurements is more 
suitable. The scenario simulated is a drive-by of the car like in the subsection before, so the 
number of measurements increase in the beginning until the maximum number is reached 
and decreases as the vehicle moves away. The OSPA distances show the overall performance 
of the filters. In the beginning the rectangular estimator is much worse than the spline EKF, 
since the rectangular estimator needs quite some time steps in order to estimate the vehicles 
extension accurately. Afterwards, the rectangular estimator can get better than the spline EKF 
but is again getting worse as the number of measurements decreases. The results of a single 
run show the stability of the spline EKF tracker in contrast to the rectangular shape estimator. 
This can be better in some situations but is much worse in the first time steps and can 
completely loose the track with a decreasing number of measurements in the worst case. 
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Figure 7.10: Compared OSPA distance of a single run 

In order to verify the first impression, the results of two Monte Carlo simulations are 
illustrated in the following. Therefore, the same scenario as above with the same settings 
except the resolution of the sensor and the two probabilities is used for every run. The 
probability of detection is set to 𝑝𝐷 = 0.95 and the multipath detection probability is set to 
𝑝𝑀𝐷 = 0.05. In the first simulation a resolution of two degrees is used. In Figure 7.11 the mean 
OSPA distance, the total simulation time and the mean number of measurements for every 
time step are shown. The results of this Monte Carlo simulation show the outperformance of 
the spline EKF tracker towards the rectangular shape estimator in this scenario. The OSPA 
distance shows a much better and more constant performance of the spline EKF. Also, the 
total simulation time is mostly shorter with the implementations used. The mean number of 
measurements is under 20 measurements per time step and the spline EKF tracker is still 
showing a good performance. In order to achieve a similar performance between the spline 
EKF tracker and the rectangular estimator, the resolution of the sensor needs to be set to 0.5 
degrees. The results of this simulation are not shown here.  

To outperform the spline EKF the resolution needs to be set to 0.1 degrees. The results of this 
Monte Carlo simulation are shown in Figure 7.12. The OSPA distance of both trackers get much 
more constant and the rectangular estimator shows a better performance and gets faster as 
the spline EKF, which also still shows a good performance. The mean number of 
measurements grows up to 250 to 500 measurements per time step. A remarkable result of 
those simulations is the constancy of the spline EKF tracker, which nearly shows the same 
results with around 20 measurements per time step as up to several hundreds of 
measurements per time step. On the other side the rectangular estimator gets better and 
finally outperforms the spline EKF with an increasing number of measurements. 
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Figure 7.11: First Monte Carlo simulation for the comparison 

 

Figure 7.12: Second Monte Carlo simulation for the comparison 
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7.3 Evaluation of multi object trackers 
When evaluating a multi object tracker, the distance of the estimation to the ground truth 
needs to be measured. In the case of a single object the Euclidean distance can be taken into 
account. When tracking multiple objects in a cluttered environment the mean distance of an 
estimation to the ground truth could be considered. However, a labeling of the estimations 
would have to be available for this evaluation, which is not the case for a general PHD filter. 
But more importantly, the number of estimations and ground truths is not always the same 
as misdetections, misestimating the cardinality and false associations can occur. The goal is a 
multi object metric that incorporates all these outcomes of the filter. One solution is provided 

by the OSPA metric proposed in [39]. Given a set of references 𝑿𝑘 = {𝒙𝑘
(𝑖)}

𝑖=1

𝑚𝑘

∈ ℱ(𝑾) and a 

set of estimations 𝑿̂𝑘 = {𝒙𝑘
(𝑖)}

𝑖=1

𝑛𝑘
∈ ℱ(𝑾) as subsets of the same underlying set 𝑾, the OSPA 

metric is defined as 

𝑑̅𝑝
(𝑐)(𝑿𝑘, 𝑿̂𝑘) ∶= (

1

𝑛𝑘
( min
𝜋∈Π𝑛𝑘

∑𝑑(𝑐)(𝒙𝑘
(𝑖), 𝒙̂𝑘

𝜋(𝑖))
𝑝

+ 𝑐𝑝 ∙ (𝑛𝑘 −𝑚𝑘)

𝑚𝑘

𝑖=1

))

1
𝑝

 (7.7) 

 

if 𝑚𝑘 ≤ 𝑛𝑘. If 𝑚𝑘 > 𝑛𝑘  the OSPA metric is simply defined as 𝑑̅𝑝
(𝑐)(𝑿𝑘, 𝑿̂𝑘) ∶= 𝑑̅𝑝

(𝑐)(𝑿̂𝑘 , 𝑿𝑘). 

The parameter 𝑝 defines the 𝑝-norm used to calculate the OSPA. The parameter 𝑐 is given as 
the cut off distance if 𝑛𝑘 ≠ 𝑚𝑘 and an assignment of an estimation to a reference is not 
possible in every case. The minimal sum of distances is calculated by considering every 
permutation 𝜋 ∈ Π𝑛𝑘 of the estimation set as assignment specification. The distance 

𝑑(𝑐)(𝒙, 𝒚) ∶= min(𝑐, 𝑑(𝒙, 𝒚)) denotes an arbitrary metric with values in [0, 𝑐]. The 

minimization problem can be solved using either the Kuhn-Munkres algorithm [41] or the 
auction algorithm [42]. To evaluate the performance of an extended multi object tracker, the 
distance measure of (7.1) is used. The adapted OSPA metric for extended objects is then 
calculated as 

𝑑̂𝑝
(𝑐)(𝑿𝑘 , 𝑿̂𝑘) ∶= (

1

𝑛𝑘
( min
𝜋∈Π𝑛𝑘

∑𝑑𝑂𝑆𝑃𝐴,𝑛
(𝑐) (𝑝

𝒙𝑘
(𝑖) , 𝑝

𝒙̂𝑘
𝜋(𝑖))

𝑝

+ 𝑐𝑝 ∙ (𝑛𝑘 −𝑚𝑘)

𝑚𝑘

𝑖=1

))

1
𝑝

 . (7.8) 

 
Using the adapted OSPA measure for extended objects as distance for the OSPA metric, the 
position, orientation and extension errors for each estimation are calculated in one number 
and combined to a performance evaluation of the multi extended object tracker. Another 
evaluation tool for multi extended object trackers is the cardinality comparison. Thus, the true 
number of objects and the estimated number of objects are compared. The estimated number 
of objects can either be computed by taking the number of extracted objects or by the sum of 
updated, merged and pruned weights as 

cardinality =∑𝜔𝑘|𝑘
(𝑗)

𝐽𝑘|𝑘

𝑗=1

 . (7.9) 

 
The cardinality is computed as sum of weights in this thesis. 
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7.4 Performance of the spline PHD filter 
This section is about to evaluate the performance of the spline PHD filter presented in Table 
2. Equally to the spline EKF filter, the object state vector is used according to (6.1). As system 
state transition model also a coordinated turn model with polar velocity [8] is combined with 
an assumed constant extension according to (7.2). The system standard deviations are 
specified as 𝜎𝑣 = 2𝑚/𝑠, 𝜎𝜔 = 3°/𝑠 , 𝜎𝑠𝑥 = 0.1𝑚 and 𝜎𝑠𝑦 = 0.1𝑚 to form the system 

covariance matrix given in (7.3) and (7.4). A single measurement covariance matrix is 
computed using (7.5) with the measurement standard deviations of 𝜎𝑟 = 0.1𝑚 and 𝜎𝜗 = 0.5°. 
For clustering the measurement set 𝒁𝑘 a DBSCAN algorithm [37] with a set of parameters 
given as 𝜺 = (1,1.2, … ,5), to create 21 different partitions in each time step, is used. The 
implementation of the DBSCAN algorithm is taken from [44]. The thresholds for merging and 
pruning are taken as 𝑈 = 4 and 𝑇 = 10−5 while the maximum number of PHD components is 
specified as 𝐽max = 100. Two scenarios, introduced in the next subsection, are investigated 
using the spline PHD filter. The probability of survival 𝑝𝑆 = 0.99 is equal in both scenarios. As 
the probability of detection differs in both scenarios it is given in the next subsection. 

7.4.1 Simulation environment 
The measurement creation is similar to the spline EKF simulation environment explained in 
subsection 7.2.1. Unlike the measurement creation for a single object, the occlusion of an 
object has to be considered for the measurement creation of several objects. Also, the fact if 
the measurements are inside of the surveillance area has to be checked. The first scenario 
investigated is illustrated in Figure 7.13. 

 

Figure 7.13: First investigated scenario with the PHD filter 

In this scenario two objects enter the surveillance area with the edge of the contours moving 
up to two meters towards each other. Following, they separate again and exit the surveillance 
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area. By investigating this scenario, the birth process and tracking of closely spaced objects 
can be examined. Especially the performance of the DBSCAN algorithm needs to be 
appropriate for closely spaced objects. The probability of detection is taken as 𝑝𝐷 = 0.99 as 
the objects are assumed to be detected in every time step. The second investigated scenario 
is illustrated in Figure 7.14. 

 

Figure 7.14: Second investigated scenario with the PHD filter 

In this scenario two objects enter surveillance area and drive past each other. At the level of 
the sensor one object is occluded by the other and does not generate a single measurement 
for a few time steps. In order for the GM component representing the occluded object to 
survive, the probability of detection is taken as 𝑝𝐷 = 0.9 in this scenario. 

The number of birth PHDs positioned as illustrated in Figure 7.13 and Figure 7.14 is 𝐽𝑏 = 25 

using weights of 𝜔𝑏
(𝑗)
=

0.1

𝐽𝑏
=

0.1

25
 with 𝑗 = 1,… , 𝐽𝑏 in every time step. The positions of the birth 

PHDs are chosen like that because the spontaneous births are assumed to happen at the edge 
of the surveillance area, as an object enters it, not inside of the surveillance area. The opening 
angle of the sensor is 180° with a resolution of 1° and a range of 60𝑚 forming a semicircle. 
The objects entering the surveillance area are simulated as rectangles with a length of 6𝑚 and 
a width of 3𝑚. The spatial clutter distribution is modeled as uniform distribution over the 
surveillance area, while the number of clutter measurements is modeled as Poisson 
distributed random number with a rate of 𝜆 = 10 clutter measurements per time step. 

7.4.2 Simulation results 
In this section the simulation results of the spline PHD filter adapted to both scenarios are 
illustrated and discussed. The parameters and settings are taken as mentioned before in both 
scenarios. Following, the results of a single run and a Monte Carlo simulation with 1000 runs 
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for each scenario are given. The tracker is investigated by considering the cardinality as sum 
of weights and the OSPA distance as specified in section 7.3. For the OSPA metric the cut off 
distance 𝑐 = 30𝑚 is used. The adapted OSPA distance, to measure the distance of an 
estimated single extended object to its ground truth, is used with a number of 𝑛 = 50 samples 
on the contour as distance measure in the OSPA distance. Both minimization problems, for 
the OSPA and adapted OSPA distance, are solved using the Kuhn-Munkres algorithm. The 
results of a single run on the first scenario are illustrated in Figure 7.15. 

 

Figure 7.15: Single run result on first scenario 

The cardinality plot shows a working birth process as the estimated cardinality rises when the 
objects enter the surveillance area. However, the birth process is an error-prone process. 
During the birth of the objects the OSPA distance is very high in most of the time steps, also 
the cardinality is at its level of four estimated objects. This issue first arises from the fact, that 
the objects entering the surveillance area is a process of a few time steps. The sensor does 
not detect the whole contour of the object from the first moment on. Thus, the correct 
estimation of the position, orientation and extension fails. Furthermore, the spline 
measurement model struggles with an imprecise state prediction. With the objects entering 
the surveillance area a few meters away from the mean of the birth PHD, the measurement 
prediction in the update step also fails. However, the birth process still works. Another 
abnormality in Figure 7.15 are the peaks in the cardinality and OSPA plot. The peaks in the 
cardinality occur if some clutter measurements are close to a birth PHD and assumed as new 
object. Subsequently the same peaks occur in the OSPA plot. If a peak in the cardinality plot 
does not engender a peak in the OSPA plot, still the true number of objects is extracted in the 
last step of the spline PHD filter. As the state extraction only considers GM components with 
weights higher than 0.5 as true objects, two or more GM components must have weights 
lower than this threshold in this case. For the calculation of the OSPA distance only the GM 
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components after the state extraction are considered. The DBSCAN clustering algorithm can 
separate the measurement sets occurring from different closely spaced objects as the 
estimated cardinality is always two or higher. The spline measurement model still performs 
pretty good within the PHD filter since the OSPA distance is very low in the time steps of a 
good performance. The results of a single run on the second scenario are illustrated in Figure 
7.16. 

 

Figure 7.16: Single run result on first scenario 

Those results also show a working birth process as the cardinality rises when the objects enter 
the surveillance area. The cardinality and OSPA plots show the same peaks like in Figure 7.15. 
An additional abnormality are the peaks in the OSPA distance without a peak in the cardinality 
plot at the same time. In those cases, a true object is not detected of the filter, while a wrong 
object containing only clutter measurements is taken as true object. Thus, the cardinality 
estimate is close to the reference, while the OSPA distance shows a peak. Another result of 
investigating the second scenario concerns the occlusion of one object. The occlusion takes 
place after about 13 seconds. For a few time steps the estimated cardinality shrinks to one 
but rises up to two again as the object is detected again. So the occluded object is tracked 
again as it is detected again. The results of the single runs on both scenarios already show a 
working multi extended object filter but still many problems that need to be solved. The birth 
process is not that accurate because of the initialization problem of the spline measurement 
model that needs to be improved. Also, an improvement of the state extraction could yield in 
better performance results by considering not only the actual state extraction but also the 
previous ones. As the results of a single run do not provide a long-term conclusion, the 
following illustrations show the results of a Monte Carlo simulation with 1000 runs on each 
scenario. The results of the Monte Carlo simulation on the first scenario are illustrated in 
Figure 7.17. 
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Figure 7.17: Results of Monte Carlo simulation on first scenario 

The OSPA and cardinality plot show the means, medians and standard deviations considering 
the 1000 results in each sample step. The same trajectories are used in every Monte Carlo run, 
but the number and position of the clutter measurements, as well as the noise and the number 
of the object generated measurements differs in every run. The results of this long-term 
simulation clarify the assumptions made after the single run on the first scenario. The birth 
process still works after considering 1000 runs. However, the OSPA distance shows a peak at 
the moment of the objects entering the surveillance area, that clarifies the bad performance 
of the birth process. The median of both the estimated cardinality and the OSPA distance 
shows a nearly perfect performance of the filter in this scenario. However, the mean once 
more illustrates the aforementioned problems. The cardinality is overestimated in most of the 
time steps leading to a higher mean OSPA distance than the median. The state extraction as 
well as the birth process need to be improved for a better performance. In summary, the 
functionality of the filter is proven considering the results of the first Monte Carlo simulation. 
The results of the Monte Carlo simulation on the second scenario are illustrated in Figure 7.18. 
The cardinality as well as the OSPA plot show a worse performance of the spline PHD filter on 
the second scenario compared to the first scenario. The overestimation of the cardinality is 
higher in both the mean and the median leading to a larger OSPA distance compared to the 
first scenario. The functionality of the filter however is still proven considering the results of 
Figure 7.18. The occlusion process taking place after about 13 seconds also works in a long-
term simulation. The occluded object is tracked again as it is detected again. This can be seen 
as the estimated cardinality rises and the OSPA distance shrinks as the object is detected 
again.  
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Figure 7.18: Results of Monte Carlo simulation on second scenario 

All the investigations addressed in this chapter show a good performance of the spline 
measurement model although some problems still remain. In the next chapter the conclusions 
summarizing the deliberations and results of this thesis and possible ideas for future work are 
addressed. 

8 Conclusions  
In this thesis the spline measurement model [1] for tracking extended objects with LIDAR 
measurements was investigated. The shape of the object is modeled using quadratic periodic 
uniform B-spline functions. To establish the basis of the resulting filter algorithms, the theories 
of single object tracking, extended object tracking and multiple object tracking were briefly 
addressed. Also, the theory of B-spline functions was recapped. To use a B-spline represented 
object contour in a tracking algorithm a measurement prediction represented by a 
measurement source on the contour is needed. Additionally, those measurement sources 
need to be derived with respect to the object state. The derivation of those equations was 
presented in detail. Also, the use of a spline contour for other objects than vehicles was briefly 
addressed. To use the spline measurement model in a tracking scenario it was first integrated 
in an EKF framework. The full algorithm is given in pseudocode. The implementation was 
investigated using Monte Carlo simulations. Furthermore, the spline measurement model was 
compared to the rectangular shape estimator [22] also using Monte Carlo simulations. In order 
to track several extended objects in a cluttered environment, the spline measurement model 
was integrated in the GM-PHD filter for extended objects [35]. The equations, as well as the 
full algorithm in pseudocode is given. The investigation of the spline PHD filter using Monte 
Carlo simulations shows the successful integration of the spline measurement model in the 
GM PHD filter for extended objects, as well as the problems of this filter. Further investigations 
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could deal with the initialization process of the spline measurement model, as well as with 
improving the birth process of the PHD filter for extended objects as explained in section 7.4. 
The improvement of those processes could lead to a better performance of the spline PHD 
filter considering the overestimation of the cardinality and the poor birth process. 
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