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A B S T R A C T

Niche-based species distribution models (SDMs) have become an essential tool in conservation and restoration
planning. Given the current threats to freshwater biodiversity, it is of fundamental importance to address scale
effects on the performance of niche-based SDMs of freshwater species’ distributions. The scale effects are ad-
dressed here in the context of hierarchical catchment ordering, considered as counterpart to coarsening grain-
size by increasing grid-cell size. We combine fish occurrence data from the Danube River Basin, the hierarchical
catchment ordering and multiple environmental factors representing topographic, climatic and anthropogenic
effects to model fish occurrence probability across multiple scales. We focus on 1st to 5th order catchments. The
spatial scale (hierarchical catchment order) only marginally influences the mean performance of SDMs, however
the uncertainty of the estimates increases with scale. Key predictors and their relative importance are scale and
species dependent. Our findings have useful implications for choosing proper species dependent spatial scales for
river rehabilitation measures, and for conservation planning in areas where fine grain species data are un-
available.

1. Introduction

Niche-based species distribution models (SDMs), play a central role
in studying species habitat preferences, conservation and restoration
planning at global, regional and local scales (e.g. Franklin, 2009).
Multitudes of different algorithms now exist, and new methods and
algorithms are developed continuously (e.g. Efron and Hastie, 2016).
Methodological aspects of SDMs have been thoroughly studied from
many perspectives, demonstrating reasons for differing performances
(see Elith and Graham, 2009) including the sampling patterns (pre-
sence/absence or presence only data, Brotons et al., 2004), choice of
single algorithm vs. consensus methods (Marmion et al., 2009), the
length of studied future time periods and used predictors (Morán-
Ordóñez et al., 2016), collinearity (Dormann et al., 2013), prevalence
(Lawson et al., 2014) and the choice of grain-size (resolution) of en-
vironmental layers (Guisan et al., 2007). While the superior perfor-
mance of consensus SDM methods has been repeatedly demonstrated
increasing the reliability of the projections and reducing the model

uncertainties (e.g. Thuiller, 2004; Marmion et al., 2009; Grenouillet
et al., 2011), the influence of spatial scales on predictive power was less
frequently studied. A study by Guisan et al. (2007) has shown that a 10-
fold increase of the grid cell size does not have a substantial effect on
the performance of SDMs describing distributions of bird, plant and
vertebrate species. Similarly, Lauzeral et al. (2013) have shown a minor
decrease in the performance of SDMs for five virtual species with
coarsening grain-size from 30´´×30´´ to 32´´×32´´. Comparable stu-
dies that use multiple grain-size resolutions and SDMs for freshwater
species do not exist, however, a study by Domisch et al. (2013) has
shown that the choice of stream network or landscape as study area
does not affect the performance of SDMs of stream biota.

Hierarchical catchment ordering provides a valuable framework to
address scale effects on niche-based SDMs of freshwater species’ dis-
tributions (Allan et al., 1997) and was thus considered as counterpart to
coarsening grain-size by increasing grid-cell size, which is commonly
used in modelling distributions of virtual or terrestrial species. Speci-
fically, the hierarchical structure of catchments is considered to be one

https://doi.org/10.1016/j.ecolmodel.2019.05.006
Received 10 December 2018; Received in revised form 7 May 2019; Accepted 12 May 2019

⁎ Corresponding author at: Faculty of Business Management and Social Sciences, Osnabrück University of Applied Sciences, Caprivistr. 30A, 49076, Osnabrück,
Germany.

E-mail address: o.kaercher@hs-osnabrueck.de (O. Kärcher).

Ecological Modelling 405 (2019) 33–42

Available online 21 May 2019
0304-3800/ © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2019.05.006
https://doi.org/10.1016/j.ecolmodel.2019.05.006
mailto:o.kaercher@hs-osnabrueck.de
https://doi.org/10.1016/j.ecolmodel.2019.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2019.05.006&domain=pdf


of the key challenges in the application of SDMs in freshwater ecosys-
tems (Domisch et al., 2015). Given that SDMs are central to both fun-
damental and applied research in biogeography (Araújo and Guisan,
2006), in particular conservation and restoration planning, the need for
an improved understanding of the effects of grain-size on the overall
performance of freshwater species SDMs becomes apparent.

Studies of freshwater species’ distributions using multiple spatial
scales are rare and generally limited to the comparison of the relative
importance of reach- and sub-catchment-related environmental factors
for the variation in species local composition (e.g. Hopkins and Burr,
2009; Esselman and Allan, 2010) using exploratory data analysis
techniques. However, Domisch et al. (2013) studied the effects of the
extent of the modelled area (stream network vs. landscape) and the
choice of predictors on SDMs of stream macroinvertebrates. As the lack
of data constrains freshwater conservation strategies in many regions of
the world, in particular less-developed countries, catchment scale data
hold great promise where fine grain survey data on freshwater species
occurrence or environmental factors are unavailable. Our study aims to
accommodate the need for clarity on the predictive performance of
freshwater SDMs based on catchment scale data, i.e., for SDMs lacking
fine grain survey data. Given the current threats to freshwater biodi-
versity including high anthropogenic stress levels, habitat fragmenta-
tion, climate change (Woodward et al., 2010; Markovic et al., 2017)
and the tremendous efforts for improvements (Knowler et al., 2004;
Bernhardt et al., 2005), it is of fundamental importance to understand
what environmental factors at what spatial scales (grain-size) are sui-
table predictors of which freshwater species' distributions.

The grain-size change is based on the most widely used hierarchical
catchment ordering, the Strahler system (Strahler, 1964). Strahler order
reflects the hierarchical level of each reach in the whole river network,
with 1st order assigned to all reaches with no tributaries, 2nd order to
the confluences of two first-order reaches, and so on. We focus on the
“reach scale” (here, the catchment area of the river reach where an
occurrence of the freshwater fish was observed) and the corresponding
2nd to 5th order catchments (following the catchment nomenclature of
the CCM2 pan-European catchments database; CCM version 2.1, de
Jager and Vogt, 2010; for further details see http://ccm.jrc.ec.europa.
eu, accessed on 10.11.2018). The study area includes the Danube River
Basin. The aims of the present study are: (1) to test whether there is a
decrease in the performance of SDMs with coarsening grain-size (i.e.,
catchment order) and (2) to quantify what environmental factors at

what catchment orders are important predictors of which fish species'
distributions.

2. Materials and methods

2.1. Study area

The Danube is Europe’s second largest river basin (801,463 km2)
and is shared among more than 80 million people from 19 countries. It
extends from Central Europe through the Balkans and drains to the
Black Sea (Fig. A.1). The Danube River delta is one of the world’s lar-
gest wetlands, rich in rare fauna and flora and inscribed on UNESCO’s
World Heritage List in 1991. Due to its large spatial extent and diverse
relief, the Danube River Basin also shows great differences in climate.
The summed annual precipitation ranges from more than 2300mm in
the high mountains to less than 400mm in the delta region, while the
mean annual discharge reaches 6460 m3s−1 at the Danube delta in
Romania (ICPDR, 2009). The Danube River Basin hosts over 2000 plant
species, 40 mammals species and approximately 100 fish species, and is
subject to increasing pressure including pollution from agriculture, in-
dustry and municipalities (ICPDR, 2009).

2.2. Environmental data

Choice of environmental factors was based on recent studies of fish
species distributions (Buisson et al., 2008; Lassalle et al., 2010;
Markovic et al., 2012; Isaak et al., 2017). To provide information on the
performance of freshwater SDMs at multiple scales, and in particular for
the potential applications where fine resolution survey data are not
available, all environmental data were gathered from publicly available
databases. A total of 22 environmental variables emerged representing
topographic, climatic and anthropogenic effects on ecosystems
(Table 1). Topographic data were extracted from the CCM2 pan-Eur-
opean catchments database (CCM version 2.1, de Jager and Vogt,
2010). Climatic data were extracted from the Worldclim 30 arc-second
(approx. 1 km×1 km) gridded information (Hijmans et al., 2007). As a
measure of anthropogenic pressure, we used land cover information
extracted from the CORINE land cover database (EEA, 2011) and the
number of inhabitants per area (Population) based on the Global Rural-
Urban Mapping Project (GRUMP, version1) (available at http://sedac.
ciesin.columbia.edu/gpw, accessed on 10.11.2018). Although different

Table 1
Initially considered environmental variables.

Category Variable Abbreviation Description

Topographic Altitude Altitude Mean catchment elevation
Gradient Gradient Relief energy of the river segment
Length Length Cumulative length of the upstream flow network
Slope Slope Mean slope in percent

Climatic Mean temperature AnnTMean Mean annual temperature
Maximum temperature AnnTMax Max temperature of warmest month
April-September temperature TAprSep Mean annual April to September temperature
May-August temperature TMaiAug Mean annual May to August temperature
Temperature range TRange Temperature annual range
Annual temperature seasonality TSeason Standard deviation
Wettest quarter temperature WettTMean Mean temperature of wettest quarter
Precipitation AnnPMean Mean annual precipitation
April-September precipitation PAprSep Mean annual April to September precipitation
May-August precipitation PMaiAug Mean annual Mai to August precipitation
Precipitation seasonality PSeason Coefficient of variation

Anthropogenic Agricultural area Agriculture % of catchment area used for agriculture
RowCrops RowCrops % of catchment area under row crops
Forest Forest % of catchment area under forest
Grassland Grassland % of catchment area under grasslands
Pastures Pastures % of catchment area under pastures
Built-up area BuiltUp % of catchment area under artificial surfaces
Population Population Number of inhabitants per catchment
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aspects of the hydrologic regime, such as flow magnitude, frequency,
timing and variability may impair ecological success of particular life
stages of freshwater species (Domisch et al., 2015; Markovic et al.,
2017), the availability of the discharge data is restricted even in the
developed countries. The hydrologic predictors were not used as the
aim of the study was to undertake performance assessment for SDMs
that lacked fine grain survey data.

2.3. Hierarchical catchment orders

The analyses and modelling were conducted for five different
catchment orders (WaterShed Order WSO1 to WSO5, Fig. A.1) based on
the Strahler order of the river reaches from the CCM2 pan-European
catchments database (CCM version 2.1, de Jager and Vogt, 2010). The
1st order catchments (WSO1) were defined according to the drainage
areas of the individual river reaches, while higher order catchments
(WSO2 –WSO5) result from groupings of the lower-order catchments in
a hierarchical way. The “WSO1″ to “WSO5″ nomenclature originated
from the CCM2 pan-European catchments database and was kept here
for consistency. Catchment order increase was reflected in an increasing
catchment size, with an average ranging from 12 km2 for the WSO1 to
2148 km2 for the WSO5. For each WSO, environmental factors were
calculated by averaging gridded data across the corresponding catch-
ment areas (Fig. A.1).

2.4. Fish data

Species occurrence data for the Danube River Basin were provided
by Biofresh (www.freshwaterplatform.eu, Schinegger et al., 2016) for
1364 sites (Fig. A.1). Fisheries data were sampled by either single-pass
or double-pass electrofishing between 1985 and 2002. To ensure an
accurate estimate of the species distributions, only species with a
minimum of 50 occurrences at the largest analysed scale, the WSO5,
were included into the analysis (cf. Coudon and Gégout, 2007). Eight
fish species were included in the study and ecological characterization
followed Kottelat and Freyhof (2007): the bleak (Alburnus alburnus) is a
small cyprinid, and prefers open waters of lakes and medium to large
rivers. The stone loach (Barbatula barbatula) is usually found in
medium-sized rivers with gravel to stone bottom. Barbus barbus is a fish
of the cyprinid family preferably inhabiting faster flowing, summer-
warm, medium to large-sized rivers. Gudgeons of the genus Gobio, here
represented by Gobio obtusirostris, are riverine cyprinids, too, which
tolerate – in contrast to barbels – lower flow velocities and finer
spawning substrates. The bullhead (Cottus gobio) inhabits cold, clear
and fast-flowing water of small streams to medium-sized rivers. The
roach (Rutilus rutilus) is a small fish of the cyprinid family mainly found
in nutrient-rich large to medium sized lowland rivers and backwaters.
The trout (Salmo trutta) is a species of salmonid fish preferring cold,
well-oxygenated streams in the mountainous areas. The chub (Squalius
cephalus) is a fish of the cyprinid family found in slow-flowing lowland
rivers, very small mountain streams, and in large streams of barbel
zone.

For each of the five WSOs, fish occurrence data were aggregated to
presence/absence information (hereafter called “catchment-scale
mapping”). The final number of catchments of each particular order
and their spatial arrangement was thus directly constrained by fish data
availability. With the WSO increase, the number of catchments under
consideration decreased (from 1363 for the WSO1 to 126 for the
WSO5), with a corresponding increase in species prevalence (Table 2).
We note here that, because of the dendritic structure of river networks,
catchment-scale mapping is more appropriate for freshwater species
than the point-to-grid mapping, used for mapping terrestrial species’
occurrences (see Fagan, 2002). In addition, given that catchments serve
as units for freshwater management and conservation (commonly re-
ferred to as the Catchment Based Approach – CaBA, see DEFRA, 2013),
catchment-scale mapping of freshwater species’ occurrences ensures

compatibility between the management and the analysis scales
(Lévêque et al., 2008; Markovic et al., 2017).

2.5. Data analysis and modelling

Univariate strength of the environmental predictor variables was
quantified using the weight of evidence (WOE) and information value
(IV) concepts as implemented in the R (R Development Core Team,
2018) library “Information” (Larsen, 2016). While WOE describes the
relationship between a predictor variable X (environmental predictors
listed in Table 1) and a binary dependent variable Y (here species oc-
currence in a particular catchment), information value measures the
strength of the −Y X relationship. Specifically, if =b i k, 1, ..., ,i denote
k discrete bins for the predictor X , then, the strength of the predictor in
describing Y can be quantified as ∑ ∈ = −P X b Y( ( | 1)i i

∈ = ×P X b Y WOE( | 0))i i (cf. Larsen, 2016). As such, information value
is suitable for the initial predictor selection, i.e., for comparing the
predictive power of the environmental factors. The information value
was used to reduce the parameter number used in the modelling and
thus avoid possible overfitting. Specifically, among several strongly
correlated parameters (with pairwise correlations above |0.75|), the
parameter with the largest information values was used in the model-
ling.

Species distribution modelling was performed using Generalized
Additive Models (GAM) (R library “gam”; Hastie, 2005). GAM is a non-
parametric extension of generalized linear methods, and is widely used
for modelling current and future distribution patterns of fish species.
Previous investigations using various SDMs have shown that GAM-,
GLM- (Generalized Linear Models) and regression tree based SDMs have
similar validation performance. The first two kinds of models had also
similar calibration performance, while regression tree based SDMs
tended to overfit during the calibration phase (Markovic et al., 2012).
The improved performance of consensus or ensemble methods in pro-
viding more accurate and robust projections of species distribution have
been already demonstrated (Marmion et al., 2009; Buisson et al., 2010;
Lauzeral et al., 2013). However, the main objective of this study was
determining the effect and importance of variation in spatial scale ra-
ther than the performance of different SDMs. Moreover, GAMs are very
flexible models, and in contrast to the majority of SDMs, have well
performance at high collinearity (Dormann et al., 2013). Therefore, we
focussed only on GAM based SDMs, but acknowledge the importance of
using multiple SDMs when the study goal is predicting future species
distribution patterns (see Markovic et al., 2012; Meller et al., 2014).

Table 2
Freshwater fish species and their prevalence. The total number of catchments
for the studied scales (WSO1-WSO5) is indicated in parentheses.

Name Code WSO1 WSO2 WSO3 WSO4 WSO5

(1363) (1059) (681) (350) (126)

Alburnus alburnus Albual 0.20 0.22 0.29 0.38 0.62
Barbatula barbatula Barbbr 0.31 0.33 0.34 0.35 0.45
Barbus barbus Barbba 0.20 0.21 0.23 0.28 0.45
Cottus gobio Cottgo 0.44 0.42 0.43 0.48 0.51
Gobio obtusirostris Gobris 0.31 0.33 0.36 0.37 0.51
Rutilus rutilus Rutiru 0.22 0.25 0.30 0.38 0.58
Salmo trutta Saltta 0.71 0.70 0.72 0.74 0.69
Squalius cephalus Squace 0.44 0.46 0.49 0.53 0.72

Ecological characterization followed Kottelat and Freyhof (2007): A. alburnus
prefers medium to large rivers; B. barbatula prefers medium-sized rivers; B.
barbus prefers faster flowing medium to large-sized rivers; C. gobio inhabits cold
and fast-flowing water of small streams to medium-sized rivers; G. obtusirostris
tolerate lower flow velocities; R. rutilus prefers nutrient-rich large to medium
sized lowland rivers and backwaters; S. trutta prefers cold, well-oxygenated
streams in the mountainous areas; and S. cephalus prefers slow-flowing rivers
and very small mountain streams.
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Species occurrence probabilities resulting from GAM application
were transformed to presence/absence information using the thresh-
olds, which maximize both sensitivity (the true positive rate) and the
specificity (the true negative rate). We applied random splitting of the
fish data ten times into calibration (70%) and validation (30%), i.e.,
each of the ten models was calibrated using a different 70% data sample
and validated using the remaining 30%. The repetitive modelling pro-
cedure allowed for quantifying the uncertainty of the estimates.
Agreement between the observed and modelled species distribution
patterns was quantified by sensitivity and specificity, while the per-
formance of the calibrated models was estimated using the Area under
the Receiver Operator Curve (AUC) and the True Skill Statistic (TSS)
(Allouche et al., 2006). The use of the different statistical measures
(here, sensitivity, specificity, AUC and TSS) was necessary to ensure

that sensitivities of the individual measures to prevalence and scale (see
Lobo et al., 2008) were not misleading. An AUC of 0.5 and a TSS of 0
indicate that a model has no discriminatory power, while an AUC or
TSS of 1 indicate that presences and absences are perfectly dis-
criminated. The search for a parsimonious model involved analyses of
the model improvement based on the Akaike Information Criterion
(AIC) through simultaneous forward and backward predictor selection.

To quantify the relative predictor importance, the variance parti-
tioning method by Lindeman et al. (1980), implemented within the R
library “relaimpo” (Grömping, 2006) was used. The advantage of the
variance partitioning method by Lindeman et al. (1980) is that it con-
siders sequential sums of squares over all predictor permutations, and
thus considers the inter-correlation effects among the individual pre-
dictors, with high predictor relative importance not necessarily

Fig. 1. Information value as a measure of the univariate strength of the environmental predictor variables. For convenience, the environmental predictors are ordered
according to their information value. (a)–(e) For each of the five spatial scales the information value was calculated as an average predictive strength of the
environmental predictor across all studied species; (f) the overall information value of an environmental predictor was calculated as an average predictive strength
across all scales and all considered species. Error bars represent one standard deviation of the estimates.
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implying causation.

3. Results

3.1. Information value and correlations

The mean catchment elevation (Altitude) manifested the highest
univariate strength in describing distributions of the studied fish species
across the studied spatial scales (Table A.1 and Fig. A.2f). Specifically,
for WSO1, WSO2 and WSO5, Altitude had by far the highest informa-
tion value (IV), and at WSO4 the second highest. At WSO3, eight pre-
dictors (including Altitude) had almost equally high IV. Consequently,
Altitude had to be retained as the predictor at all scales, while pre-
dictors with either marginal IV (Length, PSeason, Grassland and
Pastures) or extremely high correlations (−0.99 to −0.93) with
Altitude (Slope, Gradient, AnnTMean, AnnTMax, TAprSep, TMaiAug
and WettTMean) were omitted from the analyses for parsimony reasons
(Table A.1 and Fig. A.2). It is noteworthy that the pairwise correlation
between Altitude and several variables describing temperature
(AnnTMean, AnnTMax, TAprSep, TMaiAug and WettTMean) increased
with scale. The remaining temperature variables TRange (mean
IV= 0.52) and TSeason (mean IV= 1.21) (Table A.1), however, were
included in order to account for direct temperature effects and not
solely indirect given by the often-used temperature surrogate Altitude,
whereby correlations between Altitude and TRange as well as TSeason
were still high for catchment scales above WSO2 (−0.90 to −0.74)
(e.g. Fig. A.3). We note that GAMs are very flexible models and still
have well performance at high collinearity. For WSO1 and WSO2,
however, pairwise correlations of these variables with Altitude were
below |0.75| (−0.74 to −0.54). Mean information values of further
climatic variables, i.e. PMaiAug, PAprSep and AnnPMean, were close to
each other (1.30–1.42) (Table A.1). High pairwise correlations among
the three precipitation parameters and a lower correlation for WSO1 –
WSO5 between AnnPMean and each of the already chosen variables,
especially Altitude, led to the exclusion of PAprSep and PMaiAug. A low
mean information value led also to the exclusion of the last precipita-
tion variable PSeason (0.43) (Table A.1).

Among the anthropogenic variables, the area under row crops
(RowCrops) emerged as the most valuable in describing distributions of
the studied fish species. The high correlation between RowCrops and
the second most valuable anthropogenic variable Agriculture (0.78 –
0.95) (e.g. Fig. A.3) has led to the omission of Agriculture. While the
remaining anthropogenic variables BuiltUp, Forest and Population were
included in the final variable set because of low pairwise correlations
among the included variables and high information values within the
anthropogenic category, the variables Grassland and Pastures were
excluded due to low information values (Table A.1).

The final variable set consequently consisted of the topographic
variable Altitude, the climatic variables TRange, TSeason and
AnnPMean, and the anthropogenic variables RowCrops, Forest,
BuiltUp, and Population (Fig. 1 and Table A.2).

3.2. Model performance

Using the selected eight predictor variables (Table A.2), we pursued
two distinct model fitting approaches across all catchment scales and
species: Modelling species distributions with GAM by (a) keeping the
predictor number (n= 8) constant across the scales, and (b) using si-
multaneous forward and backward predictor selection in order to ob-
tain a parsimonious model. When keeping all predictors across all
scales, the overall validation performance was highly accurate with a
mean AUC of 0.88 and a mean TSS of 0.63 across all catchment scales
and species (Table A.3). Similar results held for the models with si-
multaneous forward and backward predictor selection where a mean
validation AUC of 0.88 and a mean validation TSS of 0.62 (Table 3)
were obtained. The highest performance values for both model fitting

approaches were observed for S. trutta at WSO4 (AUC=0.98) (Table 3
and Table A.3). Overall, when coarsening the grain size (i.e. increasing
catchment order), both a slight model degradation and a slight model
improvement was observed (Figs. A.4 and A.5). In addition, the in-
creasing catchment order was accompanied by an uncertainty increase
manifested by an increase in the standard deviation of the validation
sensitivity, specificity, AUC and TSS (Figs. 2 and A.6).

3.3. Predictor importance per species and catchment order

Predictor importance patterns varied across species and catchment
orders (Figs. 3 and 4, Table A.4–A.5, Fig. A.7–A.14). High variation
throughout species is shown in Fig. 3 by high standard deviations for all
variables. For both model fitting approaches and all species, highest
predictor importance was distributed among the variables Altitude
(20.1%–37%), TSeason (13.5%–22.5%), AnnPMean (14.1%–27.5%)
and RowCrops (4.3%–25.3%) (Fig. 3). In general, lowest predictor
importance was present for TRange, Forest, BuiltUp and Population.
However, TRange was shown to have an increasing overall mean im-
portance with increasing catchment order (5.1%–13.4%) and Forest an
overall nearly constant importance across all scales at around 10%,
both inferred from the first model fitting approach, which kept the
predictor number constant. Using simultaneous forward and backward
predictor selection implied a mean predictor importance below 9% for
the four least important variables across all scales (Fig. 3). Trends in the
predictor importance for the four most important variables across the
five catchment orders varied depending on whether the predictors were
kept constant across scales or automatically selected. The first approach
identified a downward trend of the importance for Altitude with

Table 3
Mean and standard deviation (sd) for validation AUCs and TSSs of the multi-
variate SDMs with simultaneous forward and backward predictor selection
across all studied scales (WSO1-WSO5). Performance was assessed by using
repeated random splitting (ten times) of the fish data into calibration (70%) and
validation (30%).

Accuracy
measure

WSO1 WSO2 WSO3 WSO4 WSO5

A. alburnus AUC mean 0.90 0.90 0.91 0.91 0.91
sd 0.01 0.02 0.02 0.03 0.05

TSS mean 0.61 0.65 0.68 0.71 0.69
sd 0.04 0.04 0.04 0.08 0.10

B. barbatula AUC mean 0.83 0.86 0.87 0.87 0.77
sd 0.02 0.02 0.01 0.02 0.05

TSS mean 0.53 0.58 0.60 0.59 0.47
sd 0.05 0.04 0.04 0.03 0.12

B. barbus AUC mean 0.86 0.85 0.84 0.83 0.76
sd 0.02 0.03 0.03 0.04 0.07

TSS mean 0.57 0.51 0.53 0.46 0.37
sd 0.07 0.05 0.06 0.06 0.15

C. gobio AUC mean 0.83 0.86 0.86 0.90 0.85
sd 0.01 0.01 0.02 0.02 0.05

TSS mean 0.53 0.57 0.56 0.67 0.57
sd 0.02 0.03 0.04 0.05 0.13

G. obtusirostris AUC mean 0.89 0.89 0.89 0.89 0.81
sd 0.02 0.01 0.02 0.02 0.08

TSS mean 0.64 0.64 0.60 0.63 0.46
sd 0.03 0.05 0.06 0.07 0.19

R. rutilus AUC mean 0.90 0.91 0.90 0.91 0.85
sd 0.01 0.02 0.02 0.02 0.06

TSS mean 0.66 0.69 0.69 0.71 0.64
sd 0.03 0.05 0.04 0.05 0.15

S. trutta AUC mean 0.94 0.95 0.97 0.98 0.96
sd 0.01 0.01 0.01 0.01 0.04

TSS mean 0.75 0.76 0.82 0.89 0.82
sd 0.03 0.02 0.04 0.04 0.10

S. cephalus AUC mean 0.87 0.87 0.87 0.87 0.83
sd 0.01 0.02 0.02 0.03 0.07

TSS mean 0.60 0.59 0.56 0.57 0.49
sd 0.03 0.04 0.05 0.08 0.15
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increasing scale, whereas the second approach delineated an increasing
importance with increasing scale. Trends of predictor importance along
the studied scales inferred from both approaches were similar for
TSeason, which could be described by an upward trend, whereas the
importance for WSO4 and WSO5 deduced from the second approach
was higher. Both model fitting approaches assigned high importance to
AnnPMean from WSO1 to WSO4 and lower importance at WSO5. The

second approach, however, showed greater variation for AnnPMean.
The predictor importance of RowCrops for both approaches revealed
highest explanation power at local scales and lower importance at
WSO4 and WSO5 (Fig. 3). Overall, at least one variable of the three
considered categories (“topographic”, “climatic”, “anthropogenic”),
respectively, was identified as important in describing fish species
distributions.

Fig. 2. Mean performance measures of the multivariate SDMs with simultaneous forward and backward predictor selection across the five studied scales (WSO1 –
WSO5). Performance was assessed by using repeated random splitting (ten times) of the fish data into calibration (70%) and validation (30%) and calculating the (a)
AUC (area under the receiver operating curve), (b) TSS (true skill statistic), (c) sensitivity and (d) specificity.
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On the single species level, most important variables consisted in
general of a subset of the overall identified four most important vari-
ables (Altitude, TSeason, AnnPMean, RowCrops) (Fig. 4, Tables A.4 and
A.5, Fig. A.7–A.14). Few exceptions were for example B. barbus or G.
obtusirostris where higher predictor importance with increasing scale of
TRange for the first model fitting approach was observable (Figs. A.9
and A.11). Moreover, some of the four most important predictors were
only selected at certain catchment orders. As such, TSeason as ex-
planatory variable for the distribution of B. barbus had a predictor
importance above 10% only for WSO4 and WSO5, whereas for WSO2
and WSO3 the variable was not selected as predictor (Fig. 4a and Table
A.5). However, Altitude was dominating the predictor importance
pattern of B. barbus from WSO1 to WSO5 and the distribution of B.
barbus at the local levels WSO1 to WSO3 was strongly influenced by
RowCrops (Fig. 4a and Table A.5). This pattern was also identified by
the first modelling approach (Fig. A.9a and Table A.4). In addition, the
anthropogenic variable Population, here generally identified as variable
with low importance, had an importance of 26.8% at WSO4 for models
with automatic predictor selection. Such occasional high importance of
variables with generally low importance could also be observed for

other considered species. For G. obtusirostris, Altitude, TSeason, An-
nPMean and RowCrops emerged as the key factors (Figs. 4b and A.11,
and Tables S4 and S5). Similarly, for S. trutta, Altitude, TSeason, An-
nPMean and RowCrops were most often selected as predictors across all
scales (Figs. 4c and A.13, and Tables S4 and S5).

4. Discussion

The majority of models of fish distribution patterns across the stu-
died spatial scales were highly accurate for both used model fitting
approaches. The negligible effect of the catchment order on the mean
performance of freshwater SDMs is in line with the results of Guisan
et al. (2007) who have shown that coarsening study grain-size through
grid-cell size increase, does not have substantial effects on the perfor-
mance of terrestrial SDMs. However, our study additionally shows that
the variance of the validation performance measures increases with
increasing scale. The high accuracy of the SDMs across all studied
catchment orders confirms the overall appropriateness of the con-
sidered environmental factors, and is also a reflection of the predictive
ability of the applied statistical methodology, i.e. GAM. As such, we

Fig. 3. Mean relative predictor importance resulting from the SDMs across all studied species and all studied scales (WSO1-WSO5) for two distinct model fitting
approaches: (a) with keeping the predictor number constant across the scales, and (b) with simultaneous forward and backward predictor selection. Error bars
represent one standard deviation of the estimates. We note that the figure represents the mean relative predictor importance based on all model runs per species and
catchment order.
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note that adding new parameters to our models would rather result in
an overfitting than in a meaningful improvement in the model accu-
racy.

When looking at the predictive ability of each individual environ-
mental factor, the topographic variable Altitude, the climatic variables
TSeason and AnnPMean, and the anthropogenic variable RowCrops
tend to be the most important predictors irrespective whether or not an
automatic predictor selection was used. Altitude, which can be seen as a
surrogate for temperature, and climatic factors are well known to in-
fluence fish species distributions (e.g. Kuemmerlen et al., 2014). The
identification of RowCrops as important predictor aligns with previous
studies stressing the importance of surrounding landscape on the in-
stream ecosystem structure and function (Fausch et al., 2002; Linke
et al., 2008). The link between the area covered by RowCrops and fish
distribution patterns was argued by Strayer et al. (2003) as high nitrate
flux leading to a high level of aquatic plant cover which in turn leads to
low fish species richness. Similarly, intensely used crop lands with its
bare soils free of weeds suffer from surface erosion and thus, provide a
continuous source of fine sediments leading to clogging and siltation of

coarse substrates followed by the decline of gravel-spawning riverine
fish species (Soulsby et al., 2001; Lapointe et al., 2004; Greig et al.,
2005; Jensen et al., 2009). Overall, our results, especially the differ-
ences in predictor importance trends across scales of the two ap-
proaches and the corresponding variable selection, suggest species de-
pendent selection of factors describing species distributions, paired with
appropriate monitoring of effects and management of mitigation ac-
tivities tailored to ensure species’ long-term persistence.

The relative importance of the factors used to describe species dis-
tribution patterns is known to vary across spatial scales (Jackson et al.,
2001; Blackburn and Gaston, 2002; Tudesque et al., 2014). At the same
time, the relative importance of the spatial scale and the environmental
factors used in species distribution modelling is largely determined by a
combination of species range and species prevalence (Hopkins and
Burr, 2009). Our results indicate that for B. barbus the relative im-
portance of anthropogenic pressure – manifested by RowCrops, Popu-
lation and BuiltUp – is similar to or higher than the importance of the
considered three climatic factors. B. barbus is known to be especially
sensitive to damming, river regulation and fine sediment input

Fig. 4. Relative predictor importance in describing distribution patterns of (a) B. barbus, (b) G. obtusirostris and (c) S. trutta across the studied scales (WSO1-WSO5)
inferred from the multivariate SDMs with simultaneous forward and backward predictor selection. Error bars represent one standard deviation of the estimates. We
note that the figure represents the mean relative predictor importance based on all model runs per catchment order.
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indicating that the results of the SDMs well align with the ecological
classification of this species (Kottelat and Freyhof, 2007). Also, B.
barbus seems more susceptible to the effects of land-use on water
quality and spawning habitat than S. trutta (which has similar en-
vironmental requirements). However, this seeming relation simply re-
sults from higher cumulative anthropogenic pressure at the lower ele-
vated river reaches preferably colonised by barbel. This is further
confirmed by the finding that the influence of RowCrops at local scales
better describes the distribution of gudgeons of the genus Gobio, which
prefer cold and clean water. Our finding of the dominant role of cli-
matic variables in shaping distribution patterns of the fish species stu-
died for all catchment orders, contradicts the suggestions that climate
related factors may be good predictors of species distributions only at
the macro-scale (e.g. Pearson and Dawson, 2003). However, for robust
conclusions to be made further integrated climate impact modelling
would be needed.

Although it contributes significantly to the understanding of fresh-
water fish patterns at various scales, our modelling framework has a
number of limitations. One limiting aspect of our study framework lies
in the fact that the selected set of catchment orders and the predictor
dataset used do not account for the effects of spatial arrangements of
local habitats and spatial autocorrelation effects, as well as habitat
peculiarities with respect to species requirements at different life stages.
Specifically, proximal environment experienced by a species is not ne-
cessarily reflected in the geographic scales used to calculate the en-
vironmental factors. As such, the probability of species’ occurrence
resulting from the calibrated models provides the information on the
potential habitat suitability of catchments at different hierarchical le-
vels. This suitability does not consider the accessibility of habitats re-
quired for particular life stages, or temporal resource availability and
adequateness.

Another weakness is the use of multi-decadal averages of climatic
factors in the model calibration process. Climate information for the
last 30–50 years may not adequately reflect species environmental
tolerance ranges. Moreover, the tolerance limits are rarely rigidly fixed,
as they might depend on lifetime experience, the developmental stage
of individuals within species and the combined effect of various abiotic
and biotic factors. Consequently, in order to account for temporal and
spatial aspects of species distribution patterns, researchers will need to
disentangle species information according to life stages, the life strategy
and temporal mismatch of predictors to response, as well as environ-
mental information according to temporal variability scales of the
physical processes governing individual environmental properties.
Time, space and hierarchical level are the fundamental axes of scale,
and since many physical and ecological phenomena are related in space
versus time (Wu and Li, 2006) temporal information should be ac-
counted for in models of species distributions (see also Soranno et al.,
2014).

5. Conclusion

Coarsening study grain-size through catchment order increase are
shown to be of minor influence on the mean performance of freshwater
fish SDMs. However, the uncertainty of the estimates increases with
scale. We highlight the importance of using anthropogenic effects as
population and land cover related predictors when addressing species
sensitive to pollution such as B. barbus. Specifically, our results indicate
that the model complexity and the importance assigned to environ-
mental drivers of fish distributions are both catchment order dependent
and species dependent. The latter emphasises importance of compat-
ibility between the scale of factor importance and species conservation
management scale.

With the current threat to freshwater biodiversity and lack of in-
formation on which to base freshwater conservation strategies in many
regions of the world, in particular less-developed countries, our results
have useful implications for predicting distributions of species and

conservation planning in areas where fine grain survey data on species
occurrence are unavailable. In particular, our results indicate that the
use of broader scale species and environmental data (i.e. up to WSO5
catchment scale data), does not significantly affect the performance of
SDMs. We remind here that the ecological scales of relevance of species
and environmental variables should be matched (Hurlbert and Jetz,
2007), although the increased availability of high resolution environ-
mental data is tempting towards studying species distributions at finer
resolutions than the species survey data, to avoid misleading con-
servation assessments. In addition, in view of the extreme global pres-
sure of climate change on freshwater ecosystems and the importance of
the climatic factors on distribution patterns of the studied freshwater
fish species even at the smallest studied scale (reach scale), our findings
underline the necessity of efforts to continuously re-assess the potential
effects of climate change on suitability of catchments for freshwater fish
species. Given the high vulnerability of freshwater ecosystems paired
with limited dispersal ability of strictly aquatic species such as fish,
addressing environmental effects across multiple (spatial and temporal)
scales is central to effective species conservation and timely identifi-
cation of potentially detrimental changes in habitat suitability.
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