
Decoding Evaluation Codes and their
Interleaving

DISSERTATION

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS
(DR.-ING.)

der Fakultät für Ingenieurwissenschaften,
Informatik und Psychologie der Universität Ulm

von

Wenhui Li
aus Jinan, China

Betreuer: Prof. Dr.-Ing. Martin Bossert

Prof. Dr. Hans-Andrea Löliger

Amtierende Dekanin: Prof. Dr. Tina Seufert

Ulm, 24.04.2015

Preface

T
his dissertation is an original intellectual product of the author, Wenhui Li, who has
spent four years in the Institute of Communications Engineering at the University
of Ulm as a research assistant. The purpose of this dissertation is to develop

algorithms to correct errors and erasures for evaluation codes and their interleaving. This
research was supported by the German Research Council (Deutsche Forschungsgemeischaft
DFG) under project Bo 867/22-1. Part of the results were presented in a number of
symposia and conferences and are published in proceedings of these conferences and in
journal Designs, Codes and Cryptography.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr.-Ing. Martin
Bossert for giving me opportunity to enter the research world of algebraic coding theory
and work with his group, and for supporting me with my PhD study and related research.
Thanks to him, that I was able to go to many conferences, and meet and discuss with great
scientists.

I would like to thank the second reviewer Prof. Dr. Hans-Andrea Löliger from Signal and
Information Processing Laboratory (Institut für Signal- und Informationsverarbeitung ISI),
ETH, Zürich, and the rest of my thesis committee from University of Ulm: Prof. Dr.-Ing.
Stefan Wesner, and Prof. Dr. Jian Xie, for their valuable comments and suggestions. Their
questions widen my research from various perspectives.

My completion of this dissertation could not have been accomplished without the support
of Dr. Vladimir Sidorenko, my closest friend. His lecture Channel Coding inspires my
interest to coding theory. His guidance helped me throughout my research, thesis writing
as well. I will forever be beholden to him for his patience, immense knowledge, selfless
contribution, and all of our outdoor sports in spare time.

I truly appreciate former colleagues for our cooperative and progressive work: Dr.
Alexander Zeh, who supervised my Master thesis, confirmed me to continue the coding
direction for doctoral study, and recommended great ideas; Dr. Sabina Kampf, who
disclosed the secret of varying-length MS-LFSR synthesis; Dr. Johan S.R. Nielsen, who
gave tremendous help in discussing, and working together before deadlines for ICR codes.

Tons of thanks go to Sven Mülich, Mostafa Hosni Mohamed, Sven Puchinger, Vladimir
Sidorenko, and my boss Martin Bossert for helping proofread my dissertation draft. I
appreciate Susanne Sparrer for sharing her tea with me time after time. Four-year’s work
can not be done without computer, hence I thank Linux experts Werner Hack and Günther
Haas for their technical support in several ways. Also I thank the rest of my colleagues in

I

the institute of Communications Engineering. In particular, I am very grateful to secretaries
Ulrike Stier, Ilse Walter, and Fe Bauer, who endured my numerous annoying disturbance
of paper work.

Last but not the least, I would like to thank my parents from my deep heart for supporting
me spiritually through the PhD period and my life in general.

Ulm, September 2015, Wenhui Li

II

Contents

Abstract V

1 Introduction 1

2 Notations and Definitions 5
2.1 Evaluation Codes . 5
2.2 Channel Model . 7
2.3 Decoding Evaluation Codes . 8
2.4 Interleaved Evaluation Codes . 10

3 Decoding Interleaved Reed–Solomon Codes 11
3.1 Basics of RS Codes . 12
3.2 Decoding RS Codes . 15
3.3 Decoding IRS Codes with Berlekamp–Massey Algorithm 19
3.4 Decoding IRS Codes with Euclidean Algorithm 24

3.4.1 Generalized Extended Euclidean Algorithm (GEEA) 26
3.4.2 Complexity of Modified GEEA . 30

3.5 Fast Decoding of IRS Codes . 32
3.5.1 Extended Euclidean Algorithm . 32
3.5.2 Fast Extended Euclidean Algorithm 33
3.5.3 Fast GEEA . 36
3.5.4 Complexity of Fast GEEA for MS-LFSR Synthesis 44

3.6 Discussion . 46

4 Decoding Hermitian Codes 47
4.1 Hermitian Codes and Burst-Errors . 48
4.2 From Hermitian to Reed–Solomon Codes 50
4.3 Decoding Extended Reed–Solomon Codes 51
4.4 Interleaving of Extended Reed–Solomon Codes 53
4.5 Power Decoding . 55
4.6 Decoding Hermitian Codes . 57
4.7 Discussion and Future Work . 59

5 Decoding Gabidulin Codes with Errors and Erasures 61
5.1 Basics of Gabidulin Codes . 62

5.1.1 Skew Polynomials . 63

III

Contents

5.1.2 Skew Shift-register Synthesis . 65
5.1.3 Errors and Erasures . 67

5.2 Decoding of a Single Code . 70
5.2.1 Key Equation for Errors and Erasures 70
5.2.2 Decoding in the Transform Domain 71

5.3 Interleaved Gabidulin Codes . 74
5.4 Discussion and Future Work . 76

6 Decoding Chinese Remainder Codes 79
6.1 Basics of CR Codes . 80
6.2 Syndrome Decoding . 86
6.3 Error and Erasure Decoding . 88

6.3.1 Generalized CR Codes . 89
6.3.2 Error Correction . 90
6.3.3 Error and Erasure Correction . 92

6.4 Decoding Interleaved CR Codes . 94
6.4.1 Interleaving of CR Codes . 94
6.4.2 Lattice Reduction . 95
6.4.3 Decoding of ICR Codes . 99
6.4.4 Power Decoding of a Single Low-rate CR Code 110
6.4.5 Decoding of Low-rate ICR Codes 111

6.5 Discussion and Future Work . 111

7 Conclusion 113

Bibliography 117

IV

Abstract

F
our classes of evaluation codes are considered in this dissertation. They are Reed–
Solomon (RS) codes, Hermitian codes, Gabidulin codes, and Chinese remainder
codes. We also consider the interleaving of these codes since this we can benefit

from this special structure. Our goal is to construct good decoding algorithms which are
able to correct more errors with less complexity and less failure probability if any.

The classical decoding approaches for RS codes allow correcting up to half the minimum
distance number of errors. By the interleaving scheme, an RS code can be decoded beyond
half the minimum distance. In the dissertation, for decoding interleaved RS codes, a
version of a fast algorithm which is based on the extended Euclidean algorithm is proposed,
reducing the complexity from quadratic to sub-quadratic in length.

Furthermore, a joint decoding algorithm for interleaved extended RS codes is proposed,
having quadratic in length complexity. We apply this algorithm to decode Hermitian
codes resulting in correcting up to (N −K)/(q + 1) burst errors with complexity O(N1 2

3)
operations in Fq where N is the length and K is the dimension of Hermitian codes. The
low rate Hermitian codes can correct even more burst errors using “power” decoding.

The error and erasure decoding for Gabidulin codes and Chinese remainder codes are
considered. For a Gabidulin code with minimum (rank) distance d, a transform domain
algorithm is proposed with quadratic number of operations in Fqm to correct ε full errors,
µR row erasures and µc column erasures as long as 2ε + µR + µC ≤ d − 1. For an (n, k)
Chinese remainder code with minimum distance d, any pattern of ε errors and µ erasures
will be corrected, provided that (log p1 + log pn)/log p1ε + µ ≤ d − 1 where the first and
last coordinates of the codeword are over Zp1 and Zpn . A syndrome-based decoder for error
correction for Chinese remainder codes is proposed.

Decoding interleaved Gabidulin codes and decoding interleaved Chinese remainder codes
are also considered. The complexities of both decoders are analyzed and show that the
proposed algorithms are efficient. The decoding radius and failure probability are also
analyzed for both decoders.

V

1
Introduction

M
odern information technologies can not exist without using error correcting codes.
Processors become more and more powerful which allow us to implement more
and more sophisticated algorithms to correct more errors, which is necessary since

volumes of data, transmission rate, and density of recording are permanently growing.

It was estimated that the most of applications with error correcting codes are based on
Reed-Solomon (RS) codes named in honor of Irving S. Reed and Gustave Solomon [RS60]
who invented this class of codes in 1960. They are widely used in data transmission (DSL,
WiMAX etc.), space communication (Voyager program, Galileo spacecraft etc.), data
storage (CDs, Blu-ray Discs etc.), cloud computation, and cloud storage. Furthermore,
RS codes are found very frequently in two-dimension (2D) codes. As an upgrade of one
dimension barcode, 2D codes are readable two dimensional patterns which are used for
product identification. The information related to the product is encrypted in this pattern
which is actually an RS codeword. In comparison with the first generation barcode, 2D
code contains much more information and has higher reliability. Nowadays, 2D code is
becoming the most frequently used type in transportation, cellphone scanning etc.

The RS codes are an outstanding class of codes. They are defined over the finite field F
and have several splendid properties, and hence, the decoding of RS codes has always been
one of the hot topics in research. We transmit the RS codewords over the noisy channel and
receive words with errors. If every symbol in the received words is from F, then the decoder
in the next step uses hard decision decoding approaches. Otherwise, the received words
contain additional information (reliabilities) from the channel and soft decision decoding
schemes are applied for the decoder.

In the late 90s, Krachkovsky and Lee started to work on interleaved Reed–Solomon (IRS)
codes to correct burst errors jointly [KL97, Kra03]. Among the hard decision decoding
methods, the well-known Berlekamp–Massey algorithm [Ber68, Mas69] can be generalized
to decode arbitrary IRS codes efficiently [SSB09]. The Euclidean algorithm which has an
equivalence connection to the Berlekamp–Massey algorithm, however, is generalized by
Feng and Tzeng [FT89] to decode only homogeneous IRS codes.

RS codes are also used in one of the structures of secret sharing (Shamir’s secret

1

1 Introduction

sharing [Sha79]). It refers to the methods by which the secret is distributed to a set of
participants, each of whom has a share of the secret, and the secret can only be reconstructed
by a subset of the participants.

Part of this dissertation is devoted to applying the generalized Euclidean algorithm to
decode the heterogeneous IRS codes and accelerating the proposed algorithm as well.

There is another class of codes which can be used in secret sharing as well [GRS00]. The
codes are called Chinese remainder codes, and they are named after the ancient Chinese
remainder theorem. The Chinese remainder codes can be used not only in cryptography,
but also in many other applications, for example, cloud computation systems. When
we manipulate arithmetic operations (except division) with large integer numbers, it is
time-consuming to run the task on one computer. Using the Chinese remainder theorem,
running a big task is converted to running smaller tasks on a system of n > 1 computers,
where the results (still small data) are collected for the final calculation. Using the Chinese
remainder codes, although some computers from the system are crashed, we can still recover
the data from the corrupted computer, and obtain the correct final result. The destroyed
computers cause errors if the computer locations are not known. Otherwise, they create
erasures.

The interleaved Chinese remainder codes allow for recovering data when a system of
computers are used to run multiple big tasks. A corrupted computer from the system creates
an error burst, since it could not handle any tasks. Using the structure of interleaving, more
error bursts can be corrected in comparison with using a single Chinese remainder code.
Developing efficient algorithms for decoding Chinese remainder codes and their interleaving
with errors or with erasures is also the topic of the dissertation.

A hot topic in the last decades is network coding [ACLY00] which requires rank metric
codes. A representative of rank metric codes is Gabidulin codes [Del78, Gab85, Rot91]
which have drawn significant attention in network coding, or more specifically, in random
linear network coding [HKM+03]. In the latter model, a node in the network receives
packets from different routes and forward their random linear combination as one packet.
Hence, an erroneous packet affects the successive ones and then paralyzes the transmission.
Gabidulin codes are used in this case such that they can provide close to optimal solution
to the error control problem [KK08, SKK08]. Besides errors, erasures which can be defined
in rank metric [SKK08, GP08, GPT91] can also occur in a network. Correcting errors and
erasures in a lossy network using Gabidulin codes and using interleaved Gabidulin codes
will be considered in this dissertation.

Shannon showed that the communication which is almost error free is possible using
long good codes [Sha48]. Although the RS codes are maximum distance separable codes, a
defect of using RS codes is that their length are restricted by the size of the field. From this
point of view, Hermitian codes and RS codes have almost the same normalized minimum
distance, but the length of Hermitian codes can be much longer than the size of the field.
This fact makes Hermitian codes potentially very interesting for scientific research and
applications. There are some publications about reducing decoding a Hermitian code to
decoding interleaved RS codes [YB92, Ren04]. An efficient algorithm will be proposed in

2

the dissertation, competing with previous results in the respects of decoding radius and
complexity.

The RS codes, Chinese remainder codes, Gabidulin codes, and Hermitian codes all belong
to the family of evaluation codes. The dissertation is dedicated to decoding these four
classes of evaluation codes and their interleaving with the algorithms which provide good
performances with respect to decoding radius, complexity, and failure probability. The
dissertation is structured as follows.

Structure of the work

In Chapter 2, we define the family of evaluation codes and show that four code classes
considered in the dissertation belong to this family. Moreover, the code metrics and the
considered channel model throughout the dissertation are specified. Some frequently used
decoding paradigms for the evaluation codes with errors and/or erasures are introduced as
well. The structure of interleaving is briefly described in the end.

In the next four chapters, each class of evaluation codes is considered and analyzed
individually. For all the proposed algorithms, the complexity, failure probability, and
decoding radius are analyzed.

We start with the most widely used codes — RS codes in Chapter 3. Basic terms
and facts which are required for RS codes are briefly introduced as a preclude, including
different definitions in terms of the polynomial, matrix, and discrete Fourier transform, the
key equation based on the syndrome, and the well-known decoding algorithms: Berlekamp–
Massey algorithm and Sugiyama et.al algorithm [SKHN75]. The generalization of these two
algorithms is shown by Schmidt, Sidorenko, and Bossert in [SSB09] and by Feng and Tzeng
in [FT89] to decode IRS codes. As a reference, we provide the pseudo codes of all these
algorithms for decoding RS codes and their interleaving except the Feng–Tzeng algorithm.
As we mentioned before, the drawback of Feng–Tzeng algorithm is that their algorithm can
not be applied to decode heterogeneous IRS codes. Therefore, we modify the Feng–Tzeng
algorithm such that it can be applied for decoding arbitrary IRS codes. The pseudo codes
of the modified algorithm is given together with an example and the complexity analysis.
Zeh and Wachter show that the divide and conquer strategy allows for the acceleration
of the Feng–Tzeng algorithm [ZW11], based on which we fasten our modified algorithm.
An example of decoding IRS codes using fast algorithm follows its pseudo codes. Detailed
analysis of the complexity of the fast algorithm is shown.

Due to very strong relation to decoding IRS codes, decoding Hermitian codes is discussed
immediately after RS codes in Chapter 4. After a simple definition of Hermitian codes
without too much knowledge of algebraic geometry and the definition of phased bursts,
reducing decoding Hermitian codes to decoding interleaved extended RS (IERS) codes is
explained. Based on decoding a single extended RS code, a joint decoding algorithm for
IERS codes is proposed. In addition, an upper bound of failure probability and decoding
radius for decoding IERS codes are described. Equipped with the proposed algorithm for

3

1 Introduction

IERS codes, we also show that “power ” decoding and “mixed” decoding can improve the
decoding performance for low-rate IERS codes. We return to the theme of this chapter
eventually, sketching and analyzing the algorithm for decoding Hermitian codes.

Chapter 5 deals with decoding Gabidulin codes and interleaved Gabidulin codes. Firstly,
some notations and the definition of Gabidulin codes in terms of parity check matrix are
introduced. Then we show that, the Gabidulin codes can also be obtained by evaluating
skew polynomials. The problem of error correction for Gabidulin codes is considered as a
skew shift register synthesis by the Berlekamp–Massey type algorithm from which error
positions are obtained. Then we define “erasures” for the rank metric, which is not trivial,
propose an efficient decoding algorithm in transform domain, correcting both errors and
erasures for Gabidulin codes. We also generalize this algorithm for interleaved Gabidulin
codes, for which the decoding failure probability and decoding radius are given.

Chapter 6 is devoted to the Chinese remainder codes. After a short introduction of
classical Chinese remainder codes and some relevant notations, a syndrome-based error
correcting algorithm is proposed. Then Chinese remainder codes are generalized in order
to create bounded minimum distance decoder for correcting both errors and erasures. The
same idea as for the previous evaluation codes is applied to define interleaved Chinese
remainder codes. Inspired by the lattice reduction, the corresponding decoding algorithm for
interleaved Chinese remainder codes is proposed, together with an example and complexity
analysis. The failure probability and the decoding radius are studies intensively to obtain
theoretical bounds. We also give the simulation results to illustrate the tightness of the
bounds. The proposed algorithm for interleaved Chinese remainder codes is extended to
decode a single low-rate Chinese remainder code and low-rate interleaved Chinese remainder
codes, which are sketched at the end of this chapter.

The dissertation is completed by some concluding discussion in Chapter 7.

4

2
Notations and Definitions

A
s an overview of the whole dissertation, this chapter can be regarded as a preliminary
to evaluation codes. Some basic knowledge of these codes is introduced here,
including the subclasses of evaluation codes, the channel model, and the algebraic

decoders at the receiver side. Some of the decoders which we discuss through the dissertation
can correct only errors, and some can correct both errors and erasures. By using interleaved
codes, we can decode burst errors beyond half the minimum distance.

2.1 Evaluation Codes

Evaluation codes are a class of codes which can be obtained by evaluation of polynomials
(or integers) at certain points. The number of points is the length of the codes. There are
quite a lot of evaluation codes, such as Reed–Muller codes, Reed–Solomon codes, and BCH
codes etc. In this dissertation, we will consider four types of codes which are defined over
the polynomial ring, the algebraic geometric curve, the linearized (skew) polynomial ring,
and the integer ring, respectively. These codes are Reed–Solomon codes, Hermitian codes,
Gabidulin codes, and Chinese remainder codes. In the following chapters, we will explore
them individually.

Reed–Solomon Codes

In 1960, Irving S. Reed and Gustave Solomon invented non-binary error correcting codes
which were later called Reed–Solomon (RS) codes. Consider a ring F[x] of polynomials

{f(x) = fk−1x
k−1 + · · ·+ f1x+ f0 | fi ∈ F}

where F indicates a finite field. Let α0, α1, . . . , αn−1 be n distinct elements over F. For an
integer 0 < k ≤ n, the RS code RS(n, k) is a set of n-tuples (c0, c1, . . . , cn−1), where every
component ci for i = 0, . . . , n− 1 is obtained by evaluating polynomials f(x) ∈ F[x] at αi,
i.e.,

RS(n, k) = {(f(α0), f(α1), . . . , f(αn−1)) | f(x) ∈ F[x] and deg f(x) < k} .

5

2 Notations and Definitions

Hermitian Codes

Hermitian codes are one of the most studied families of algebraic geometry (AG) codes
which are also known as Goppa codes. Consider an extension field FQ where Q = q2 and q
is a power of prime. A Hermitian curve H(q) over FQ is defined by

yq + y = xq+1.

Let P = {P1, . . . , Pn} be a set of all points (x, y) on H(q) except the single point at infinity.
Given bivariate polynomials of the form

h(x, y) = f (1)(x) + yf (2)(x) + · · ·+ yq−1f (q)(x),

where f (i)(x) ∈ FQ[x] of degree at most b(m− (i− 1)(q + 1))/qc and m is an integer at
least q2 − 1, the Hermitian code Hm of length n over FQ is defined by evaluation of h(x, y)
at all points from P , i.e.,

Hm =

{
(h(P1), . . . , h(Pn)) | Pj ∈ H(q) and deg f (i)(x) ≤

⌊
m− (i− 1)(q + 1)

q

⌋}
.

Gabidulin Codes

Consider an extension field F = Fqm and the ring of linearized q-polynomials

F(q)[x] = {f(q)(x) = fnx
[k−1] + · · ·+ f1x

[1] + f0x
[0] | fi ∈ F and k ∈ N}

where x[i] is the Frobenius power with x[i] = xq
i
. For an integer n ≤ m, let us fix the vector

h = (h0, h1, . . . , hn−1),

with elements hi ∈ Fqm linearly independent over Fq, the Gabidulin code G(qm;n, k) with
k ≤ n is defined by the evaluation of linearized polynomials f(q)(x) ∈ F(q)[x] with restricted
degree at points h0, h1, . . . , hn−1, i.e.,

G(qm;n, k) = {
(
f(q)(h0), . . . , f(q)(hn−1)

)
| f(q)(x) ∈ F(q)[x] and deg f(q)(x) < k}.

Since any vector of length n over Fqm can be considered as a (m × n) matrix over the
subfield Fq, the Gabidulin code can have two equivalent forms: as the set of matrices C
over the base field Fq, or the set of vectors c over the extension field Fqm .

Chinese Remainder Codes

The evaluation of polynomials f(x) over any field at some point a can be considered as the
remainder when f(x) is divided by (x− a). Indeed, f(x) = q(x)(x− a) + r where q(x) is
the quotient and r is the remainder, hence, r = f(a). Let us denote the remainder r by
[f(x)](x−a), then

f(a) = [f(x)]x−a.

6

2.2 Channel Model

Now consider two integers A > B and denote by [A]B the remainder when we divide A by
B, [A]B = A mod B. Thus, this modulo operation for integers is equivalent to evaluation
for polynomials. There is a class of codes which are obtained by “evaluating” an integer,
and they are called Chinese remainder codes.

Given a list of n prime numbers P = (p1, p2, . . . , pn) where 0 < p0 < p1 < · · · < pn−1.
For 0 < k < n, let us define K =

∏k−1
i=0 pi. A Chinese remainder code CR(P ;n,K) having

cardinality K and length n over the list P is defined as follows

CR(P ;n,K) = {([C]p1 , . . . , [C]pn) | C ∈ N and C < K} .

Minimum Code Distance

Given a metric, i.e., for every two words a and b, the distance dist(a, b) between a and b
where the function dist() satisfies the axioms of a metric, the minimum distance d of the
code C is defined as min dist(c, c′) where c 6= c′ and c, c′ ∈ C.

For RS codes, Hermitian codes, and Chinese remainder codes, we consider Hamming
metric, i.e., dist(a, b) is the number of positions in which the words a and b differ. In case
of Gabidulin codes the words are matrices, and we consider rank metric, i.e., the distance
between two words is defined as the rank of their difference.

RS codes, Gabidulin codes, and Chinese remainder codes satisfy the Singleton bound
with equality, i.e., d = n− k + 1. The codes are called maximum distance separable (MDS)
codes for Hamming metric and maximum rank distance (MRD) codes for rank metric.

2.2 Channel Model

Let c = (c0, . . . , cn−1) ∈ Fn be a codeword, and r = (r0, . . . , rn−1) ∈ Fn the received word.
An additive channel is illustrated in Figure 2.1. It means that c and r have the same
alphabet and r = c+ e where e = (e0, . . . , en−1) ∈ Fn is an error word. The weight of the
error word is the number of errors. We assume that the additive channel is memoryless,

+ rc

e

Figure 2.1: An additive noisy channel

i.e., the symbols are transmitted independently.

q-ary Symmetric Channel with Error and Erasures

When an error occurs, the component in the codeword is replaced by other element of the
field. Assume an error symbol occurs with probability p.

7

2 Notations and Definitions

In some cases, some symbols are “scrambled” at the receiver, which means that the
receiver knows the erased positions, but does not know the value of the symbols. Thus,
these erased symbols are considered as erasures. Denote the symbol at an erased position
by ε and an erasure occurs with probability pε.

By p(ri|ci) for i = 0, . . . n− 1 we denote the probability that the symbol ri is received
after we transmit the codeword symbol ci. For a q-ary symmetric channel with error and
erasures, the crossover probability is as follows:

p(ri|ci) =


1− p− pε if ri = ci

pε if ri = ε
p/(q − 1) otherwise

.

2.3 Decoding Evaluation Codes

In this dissertation, all the algebraic decoders we present are bounded distance decoders
which means that they are able to decode up to a certain number of errors. With the
decoder for Gabidulin codes, error matrices with up to a certain number of rank can be
corrected. Consider a codeword c of an evaluation code C at the center, and a ball of radius
t around the codeword, we have three paradigms to decode such codes [Moo05]. They are
illustrated in Figure 2.2.

r

c2c1

dmin

(a) BD decoding

r

c2c1

dmin

(b) ML decoding

r

c2c1

dmin

(c) List decoding

Figure 2.2: BD, ML and list decoding comparison

• Bounded distance (BD) decoding
The decoder can correct up to a certain number of errors. Given a received word r.
If r is in the ball of some codeword with radius t = b(dmin − 1)/2c, then a unique
codeword c can be always delivered. Such a decoder is also known as the bounded
minimum distance (BMD) decoder. If r lies outside half the minimum distance of
the code, it is also possible to decode with some efficient probabilistic algorithms.
Nevertheless, in this case, the decoder might fail.

• Maximum Likelihood (ML) decoding
Given a certain boundary between codewords, the decoder selects the codeword which
is in the same area as the received word. The boundary is not necessarily a sphere,

8

2.3 Decoding Evaluation Codes

and it can be of any shape. In other words, the ML decoder selects the nearest
codeword to r. The number of the errors can be larger than half the minimum
distance, in which case, ML decoding has high complexity [BMvT78].

• List decoding
All possible codewords c ∈ C could be found within a given distance from the received
word r. The distance can be larger than half the minimum distance. The Sudan
approach in [Sud97] and the one-step-further Guruswami–Sudan approach in [GS98]
are representatives of list decoders.

Error Correction

When a word is received, at some positions the symbols can be either errors or erasures.
Let us start with decoding when only errors occurred.

Let us take RS codes as an example. Denote the number of errors by t. When t ≤
b(d− 1)/2c, the algebraic decoding of an RS code is as follows. The decoder first finds the
error positions as roots of a polynomial known as error locator polynomial (ELP). There
are some classical algorithms such as Belekamp–Massey algorithm (BMA) and extended
Euclidean algorithm (EEA) to obtain the ELP involving syndromes. The second step is to
calculate the error values. This can be done by solving linear equations with syndromes, or
by some efficient algorithm such as Forney algorithm.

Erasure Correction

Since the positions of the erasures are known, calculating the erasure values is equivalent
to the second step of error decoding.

Denote the number of erasures by ε. If we remove all erased positions, then the punctured
RS code has minimum distance ≥ d− 1− ε. Since the punctured code has only errors, the
decoder can correct up to b(d− 1− ε)/2c errors, i.e., t ≤ b(d− 1− ε)/2c.

Overall, to decode an RS code with t errors and ε erasures, the following inequality
should be satisfied.

2t+ ε ≤ d− 1.

For other evaluation codes, we consider the following decoders in this dissertation.

• Decoding Hermitian codes will be reduced to decoding interleaved RS codes. We only
consider the error-only case for Hermitian codes.

• For Gabidulin codes and Chinese remainder codes, due to the similar structure to
RS codes, we would adapt the same technique to develop error-erasure decoders for
Gabidulin codes and Chinese remainder codes. On the other hand, different algebraic
structures of Gabidulin codes and Chinese remainder codes mean that the analysis
varies a lot.

9

2 Notations and Definitions

2.4 Interleaved Evaluation Codes

The codeword of an interleaved evaluation code can be considered as a matrix in which every
row is a codeword from the same evaluation code. The number of rows is called interleaving
order which we denote by ` through the whole dissertation. Speaking of the error word for
the interleaving case, we consider burst errors. A whole column of an interleaved codeword
is corrupted by one burst error. A typical example of correcting burst errors is reading
CDs with scratches. The scratches are regarded as burst errors and they can be corrected
using interleaved RS codes in the CD, c.f. [WB94].

One can decode each row of the interleaved evaluation codeword separately, which clearly
increases the time complexity of such brute-force decoder with a factor of `, compared with
the complexity of decoding a single code. Furthermore, the number of errors should not
exceed half the minimum distance for each row. Since the error positions are assumed to be
the same for all rows, we can use this special structure to find these positions. Afterwards,
the error values for each row will be calculated individually. Joint decoding is more efficient
than the brute-force decoder: it allows decoding errors beyond half the minimum distance
without increasing the complexity.

In this work, we consider error decoders for interleaved RS (IRS) codes, interleaved
Gabidulin codes, and interleaved Chinese remainder codes. There are many research results
about decoding IRS codes, based on which we will propose a fast algorithm.

10

3
Decoding Interleaved Reed–Solomon
Codes

R
eed–Solomon (RS) codes are named in honor of Irving S. Reed and Gustave
Solomon [RS60] who invented this class of codes. The RS codes are evaluation codes,
which means that every codeword is the evaluations of a polynomial f(x) ∈ F[x]

with deg f(x) < k ≤ n at points αi, for i = 1, . . . , n, where αi are different elements over
F = Fq. We denote the length, dimension and minimum distance of an RS code CRS by n,
k and d, respectively. RS codes are maximum distance separable (MDS) since they fulfill
the Singleton bound with equality.

There exist three methods to combine RS codes: interleaving, concatenation and folding.
In our work, we mainly consider the interleaved RS (IRS) codes. The advantages of applying
interleaving scheme to RS codes are as follows.

• In addition to random errors, burst errors can also be corrected;

• The decoding radius is increased beyond half the minimum distance in comparison
with a single code. If the interleaving factor ` goes to infinity, then up to d− 2 error
bursts can be corrected.

Thus, IRS codes are applied in noisy channels with memory which produce errors.
Therefore, as an outer code, the IRS code can be used in code concatenation designs [SSB09].

The rest of this chapter is organized as follows. We shortly recall RS codes in Section 3.1.
Some decoding approaches of RS codes including the classical Berlekamp–Massey algorithm
and Sugiyama et.al algorithm (based on the Euclidean algorithm) are introduced in
Section 3.2. We introduce the generalized Berlekamp–Massey algorithm for decoding IRS
codes in Section 3.3. In Section 3.4, we modify Feng–Tzeng’s algorithm [FT89] based
on generalized Euclidean algorithm such that it can be applied for decoding not only
homogeneous IRS codes but also heterogeneous IRS codes. The modified algorithm has
quadratic polynomial time complexity in length. At the end of this chapter (Section 3.5),
we propose a fast algorithm based on the generalized Euclidean algorithm to decode IRS
codes, and reduce the complexity to sub-quadratic operations in length in F.

11

3 Decoding Interleaved Reed–Solomon Codes

3.1 Basics of RS Codes

A block code is denoted by C(n, k), or simply C, where n is the (block) length of the code,
and k ≤ n is number of information symbols. In other words, k information symbols are
encoded as a codeword of n symbols c = (c0, c1, . . . , cn−1). Therefore, the code rate is
R = k/n ≤ 1.

In our work, most of the evaluation codes are defined over some field. Let F be an
arbitrary commutative field.

Definition 1 (Linear code). A code is called linear, if any linear combination of two
codewords over F is again a codeword, i.e.,

ac1 + bc2 ∈ C for c1, c2 ∈ C, a, b ∈ F.

If C is a linear (n, k) code, then k is the dimension of the code.
Any word can be described not only by an n-tuple (c0, . . . , cn−1) ∈ Fn, but also by the

polynomial: c(x) =
∑n−1

i=0 cix
i ∈ F[x] where F[x] is the polynomial ring over the field F.

Let F = Fq be a finite field of order q. If q is a prime, we call such a finite field prime
field, or extension of a prime field if q is a power of a prime. Let α denote a primitive
element in Fq. Any nonzero element in Fq can be represented as a power of the primitive
element, i.e., αi for i = 0, 1, . . . , q − 1.

We use Hamming metric to measure the distance dist(c1, c2) between two words c1 and
c2, i.e., dist(c1, c2) is the number of positions where they differ. The Hamming weight
wt(c) is the number of nonzero symbols in c.

Definition 2 (Minimum distance). The minimum distance d, or simply distance d, of
a code is the smallest (Hamming) distance of any two codewords in the code, i.e.,

d = min dist(c1, c2) = min wt(c1 − c2), for c1, c2 ∈ C and c1 6= c2.

If C is linear, the distance

d = min wt(c) for c ∈ C and c 6= 0.

The distance of any block code is upper bounded by the Singleton bound [Sin64].

Theorem 1 (Singleton bound). If C is a block code of length n and minimum distance
d over Fq, then

|C| ≤ qn−d+1.

If C is linear, then

k ≤ n− d+ 1.

The codes which fulfill the Singleton bound with equality are called maximum distance
separable (MDS) codes.

12

3.1 Basics of RS Codes

Definition 3 (Reed–Solomon code). Given n distinct elements (called locators) αi, i =
0, 1, . . . , n−1 of the field Fq, a Reed–Solomon (RS) code RS(n, k) of length n and dimension
k over Fq consists of the following codewords

CRS = {(m(α0),m(α1), . . . ,m(αn−1)) : m(x) ∈ Fq[x] and degm(x) < k}. (3.1)

Remarks. The classical definition of RS codes usually assumes αi 6= 0,∀i. A classical RS
code is called primitive if the set of locators consists of all nonzero elements of Fq, hence
the length of the primitive RS code is n = q − 1. Denote by α the primitive element in
Fq, a primitive RS code with locator αi = αi, i = 0, 1, . . . , n− 1 is a cyclic code. If zero
element is included in the list of locators, then the RS code is called extended RS code.
The most interesting part for practice is the extension of primitive RS code, having all q
elements of Fq as locators and hence n = q. In this work, we will consider both primitive
RS codes and the RS codes of length q which for short is called extended RS codes.

The k information symbols are the coefficients mi of the message polynomial m(x) =∑k−1
i=0 mix

i where mi ∈ Fq. The RS codes are a subclass of the evaluation codes. The RS
codes are MDS, since the Hamming distance of an RS code is d = n− k + 1, which fulfills
the Singleton bound with equality.

The RS codes can be encoded using Definition 3 which is one of the non-systematic
encoding methods, we will use this definition for RS codes through our work. One can also
encode the RS codes systematically, which means after encoding the information symbols
are directly some elements in the codeword. Different encoding methods can be employed
for the same code, resulting in different mappings from information symbols to codewords.
We refer [Bos99] for other encoding methods.

From Definition 3, the evaluation of m(x) at n points gives the RS codeword c =
(c0, c1, . . . , cn−1), which can be seen as the message vector m = (m0,m1, . . . ,mk−1) multi-
plied with a k × n Vandermonde matrix

GRS =


1 1 . . . 1
α0 α1 . . . αn−1

α2
0 α2

1 . . . α2
n−1

...
...

...
...

αk−1
0 αk−1

1 . . . αk−1
n−1

 . (3.2)

The codeword is, therefore, obtained by

c = mGRS. (3.3)

We call GRS a generator matrix of the RS code.
We denote by HRS a parity check matrix of the code, where HRS has full rank and

HRSc
T = 0, ∀c ∈ C. To obtain a parity check matrix HRS of an RS code, replace c

by mGRS from (3.3), we have HRSG
T
RSm

T = 0 and hence HRSG
T
RS = 0 for nonzero

information words. The following Lemma 2 shows a parity check matrix of the primitive
RS code.

13

3 Decoding Interleaved Reed–Solomon Codes

Lemma 2. Consider a primitive RS code RS(n, k) from Definition 3, having all nonzero
elements αi, i = 0, . . . , n− 1 of Fq, as code locators. Then the following matrix is a parity
check matrix of the code

HRS =


αd−1

0 αd−1
1 . . . αd−1

n−1
...

...
...

...
α2

0 α2
1 . . . α2

n−1

α0 α1 . . . αn−1

 . (3.4)

where d = n− k + 1.

Proof: Notice that the matricesGRS in (3.2) andHRS in (3.4) are Vandermonde matrices,
hence both have full rank. To prove that HRS is a parity check matrix of the RS code,
we need to show HRSG

T
RS = 0, i.e., each row hs = (αs0, α

s
1, . . . , α

s
n−1), s = 1, . . . , d − 1 of

HRS is orthogonal to each row gt = (αt0, α
t
1, . . . , α

t
n−1), t = 0, . . . , k − 1 of GRS. The inner

product of hs and gt is

< hs, gt >=
n−1∑
i=0

αs+ti , for s = 1, . . . , d− 1; t = 0, . . . , k − 1. (3.5)

Denote by α the primitive element of the field Fq. For a primitive RS code, all nonzero
locators can be written as α0, α1, . . . , αn−1. Then (3.5) becomes

< hs, gt >=
n−1∑
i=0

(αs+t)i =
α(s+t)n − 1

αs+t − 1
. (3.6)

Since αn = 1, the numerator in (3.6) is 0. From (3.5), 1 ≤ s+ t ≤ (d− 1) + (k− 1) = n− 1,
hence the denominator αs+t − 1 6= 0 in (3.6). We have < hs, gt >= 0. The statement of
the lemma follows, since HRS has full rank n− k and HRSG

T
RS = 0.

Note that the order of rows in the parity check matrix can be arbitrary. We selected the
parity check matrix HRS in (3.4), which later allows accelerating decoding of extended RS
codes.

We already discussed that encoding using Definition 3 is the same as using (3.3). Actually,
evaluation of a polynomial in Definition 3 is also equivalent to the discrete Fourier transform.

Definition 4 (Discrete Fourier transform). Let α be a primitive element of the field
Fq. Consider two polynomials a(x) =

∑n−1
i=0 aix

i, A(x) =
∑n−1

i=0 Aix
i ∈ Fn[x]. The discrete

Fourier transform (DFT) is defined by

ai = A(αi), i = 0, . . . , n− 1.

Then, the inverse discrete Fourier transform (IDFT) is

Aj =
1

n
a(α−j), j = 0, . . . , n− 1.

14

3.2 Decoding RS Codes

We say that the polynomial a(x) is in time domain and A(x) in frequency domain. The
transform is denoted by

a(x)� A(x).

The convolution property of the Fourier transform [Bos99, Theorem 3.6] says that the
multiplication of two polynomials in one domain corresponds to element-wise multiplication
in the transform domain.

When we discuss Fourier transform, by default, we use the lower case letters to represent
the expressions used in the time domain, and upper case letter in frequency domain.
For instance, for RS codes, the transmitted codeword c(x) or c is in time domain. The
transformed polynomial C(x) is in frequency domain, and is the same as m(x) in Definition 3.

3.2 Decoding RS Codes

We assume the following channel model. The codeword vector c = (c0, . . . , cn−1) or
polynomial c(x) =

∑n−1
i=0 cix

i is transmitted over a q-ary channel and the word r =
(r0, . . . , rn−1) ∈ Fnq or r(x) =

∑n−1
r=0 rix

i ∈ F[x] is received. The difference of the received

word and the codeword is the error word e = r − c ∈ Fq or e(x) =
∑n−1

i=0 eix
i ∈ F[x]. The

number of nonzero elements in the vector e is the error weight. The codeword, the error
word, and the received word in transform domain are denoted by C(x), E(x), and R(x),
and R(x) = C(x) + E(x) holds.

Assume that t errors are at positions E = {i1, . . . , it} and define the error locator
polynomial (ELP) as follows

Λ(x) = Λ0 + Λ1x+ · · ·+ Λtx
t =

∏
i∈E

(x− αi) (3.7)

where Λt = 1. For decoding, we consider non-extended RS codes with αi 6= 0, hence
Λ0 = (−1)t

∏
i∈E αi 6= 0. An equivalent error locator polynomial is Λ′(x) = Λ(x)/Λ0 where

the constant term is 1. We can use Λ(x) and Λ′(x) equivalently later for decoding, since
they have the same roots. The IDFT λ(x) of the ELP directly shows the error positions as
the power of each term λix

i, for λi = 0. Therefore, we have λiei = 0, i = 0, . . . , n − 1 in
time domain, and according to the convolution property,

Λ(x)E(x) ≡ 0 mod xn − 1 (3.8)

in frequency domain.
Given a received vector r and the parity check matrix HRS from (3.4), the syndrome is

defined as follows
S = (S0, S1, . . . , Sd−2) = rHT

RS. (3.9)

and S(x) =
∑d−2

i=0 Six
i.

Despite many of our results hold for arbitrary RS codes, to simplify the description, from
now on, we will consider the primitive RS codes with locators αi = αi for i = 0, . . . , n− 1
where α is a primitive element of the field.

15

3 Decoding Interleaved Reed–Solomon Codes

Lemma 3. Assume that the primitive RS code locators αi = αi, i = 0, . . . , n− 1 where α
is a primitive element of F. Given a received word R(x) =

∑n−1
i=0 Rix

i in frequency domain,
the syndrome sequence S0, . . . , Sd−2 is proportional to the sequence Rk, Rk+1, . . . , Rn−1, i.e.,
Sj = βRj+k with β ∈ F and β 6= 0 for j = 0, . . . , d− 2.

Proof: By multiplying the received vector r = (r0, r1, . . . , rn−1) and the parity check
matrix HT

RS, each element in syndrome S is

Sj =
n−1∑
i=0

riα
d−1−j
i , j = 0, . . . , d− 2.

Since αi can be written as a power of the primitive element, the syndrome can be rewritten
as

Sj =
n−1∑
i=0

ri(α
d−1−j)i = r(αd−1−j), j = 0, . . . , d− 2. (3.10)

The polynomial R(x) is obtained from r(x) by DFT:

Ri =
1

n
r(α−i), i = 0, . . . , n− 1. (3.11)

Compare (3.10) and (3.11), Ri is proportional to Sj when α−i = αd−1−j , i.e., i = j+1−d+n,
because we need i to be positive. Since j runs from 0 to d− 2, i runs from n− d+ 1 to
n− 1 which is from k to n− 1 for RS codes. Then the statement follows.

In the dissertation, the syndrome Sj and received word in transform domain Rj+k are
equivalent since they are proportional. One can obtain the syndrome by multiplying the
received word with the parity check matrix, or by calculating the last (n− k) coefficients
in the DFT of received word.

As we mentioned before, R(x) = C(x) + E(x). Since C(x) has at most degree k − 1,
we have Si ≡ Rj+k = Ej+k for j = 0, . . . , d− 2. From (3.8), one can write n homogeneous
equations in a matrix form. We take only the syndrome-dependent part and obtain the
following n− k − t equations

xn−1 : Sd−2Λ0 + Sd−3Λ1 + · · ·+ Sd−t−2Λt = 0
xn−2 : Sd−3Λ0 + Sd−4Λ1 + · · ·+ Sd−t−3Λt = 0

...
...

xt+k+1 : St+1Λ0 + StΛ1 + · · ·+ S1Λt = 0
xt+k : StΛ0 + St−1Λ1 + · · ·+ S0Λt = 0,

(3.12)

or 
St St−1 . . . S0

St+1 St . . . S1
...

...
...

Sd−2 Sd−3 . . . Sd−t−2




Λ0

Λ1
...

Λt

 =


0
0
...
0

 .

16

3.2 Decoding RS Codes

These equations are also known as generalized Newton’s identities [MS77]. Note that there
are t unknowns in n− k − t equations. To have a unique solution, the matrix consisting of
syndromes should have full rank, and the number of equations should not be less than the
number of unknowns, i.e., n− k − t ≥ t, or

t ≤
⌊
n− k

2

⌋
=

⌊
d− 1

2

⌋
. (3.13)

Indeed, [PW72] has shown that if 3.13 is satisfied, the syndrome matrix has full rank. An
iterative form of (3.12) is written as follows:

Si = −
t∑

j=1

Si−jΛj, i = t, . . . , d− 2.

which is described as a linear feedback shift register (LFSR). As it is indicated in Figure 3.1,
each symbol of the syndrome should be generated by the linear combination of the next t
syndrome symbols. The coefficients of the t syndrome symbols are the coefficients of the
error locator polynomial Λ(x). Therefore, Λ(x) is also called the connection polynomial in
LFSR synthesis.

Si−1 Si−2 Si−t+1 Si−t

−Λ1 −Λ2 −Λt−1 −Λt

+ + +

· · · S1 S0

Figure 3.1: LFSR for generating a sequence S = {Si}d−2
i=0 .

It is also shown in [PW72] that one can write (3.12) in a polynomial form:

S(x)Λ(x) ≡ Ω(x) mod xd−1 (3.14)

with deg Ω(x) < deg Λ(x). We call (3.14) key equation and Ω(x) error evaluator polynomial
(EEP).

For decades, solving the linear feedback shift register synthesis or the key equation has
always been a hot topic in decoding RS codes. The classical syndrome-based decoder
usually contains two steps: firstly finding the error positions and secondly calculating
error values. Algorithm 3 depicts the procedure of decoding RS codes. Representatives
for the first step are the Peterson algorithm [Pet60], Sugiyama et.al algorithm [SKHN75],
Belerkamp–Massey algorithm [Ber68, Mas69] etc. They aim at obtaining the ELP Λ(x).
The erroneous positions can be found by finding roots of Λ(x), e.g., Chien search [Chi64].

17

3 Decoding Interleaved Reed–Solomon Codes

Algorithm 1: Berlekamp–Massey algorithm

1 Input: S = {Si}d−2
i=0

2 begin
3 t← 0,Λ(x)← 1
4 ia ← −1
5 Λa(x)← 1, ta ← 0,∆a ← 1
6 for each i from 0 to n− k − 1 do

7 ∆← Si +
∑t

j=1 ΛjSi−j
8 if ∆ 6= 0 then
9 if i− ia ≤ t− ta then

10 Λ(x)← Λ(x)− ∆
∆a

Λa(x)xi−ia

11 else

12 t̃← t, Λ̃(x)← Λ(x)

13 Λ(x)← Λ(x)− ∆
∆a

Λa(x)xi−ia

14 t← i− ia + ta

15 ta ← t̃,Λa(x)← Λ̃(x)
16 ∆a ← ∆, ia ← i

17 Output: Linear feedback shift–register (Λ(x), t)

After Λ(x) is found in the first step, the second step can be implemented straightforwardly
by recursively solving system of linear equations (3.8) and then transforming E(x) to time
domain [Gor73]. Another efficient way to find the error values is proposed by the Forney
algorithm [For65]. The decoders which are mentioned above are all bounded minimum
distance (BMD) decoders, since they have unique solutions and are capable to correct up
to half the minimum distance errors.

There are decoders which can decode an RS code beyond half the minimum distance,
such as list decoder which is based on the interpolation and factorization techniques.
Welch–Berlekamp algorithm [WB86], Sudan algorithm [Sud97], and Guruswami–Sudan
algorithm [GS99] can decode the RS code by listing all codewords inside the decoding
radius around the received word. A list of error locator polynomials is given by Wu
algorithm [Wu08].

Recently, a unified view of the above algebraic decoding algorithms is proposed by Bossert
and Bezzateev in [BB13].

In our work, we consider only bounded distance decoders. List decoders are not considered.
Among those methods based on the syndrome, Berlekamp–Massey algorithm and

Sugiyama et.al algorithm outperform others in their simplicity and efficiency. Both algo-
rithms have complexity O(n2) operations in F. These algorithms are shown in Algorithm 1
and Algorithm 2. In Line 6 of Algorithm 2, the Quotient function computes the quotient
qi(x) of ri−1/rr(x). In practice, it is not necessary to compute fi(x) through Algorithm 2.

18

3.3 Decoding IRS Codes with Berlekamp–Massey Algorithm

Algorithm 2: Sugiyama et.al algorithm

1 Input: S(x) =
∑d−2

i=0 Six
i ∈ F[x]

2 begin

3

(
r0(x) f0(x) g0(x)
r1(x) f1(x) g1(x)

)
←
(
xd−1 1 0
S(x) 0 1

)
4 i← 1
5 while deg ri(x) > deg gi(x) do
6 qi(x)← Quotient(ri−1(x), ri(x))

7

(
ri(x) fi(x) gi(x)
ri+1(x) fi+1(x) gi+1(x)

)
←
(

0 1
1 −qi(x)

)(
ri−1(x) fi−1(x) gi−1(x)
ri(x) fi(x) gi(x)

)
8 i← i+ 1

9 k ← i

10 Output: (Λ(x),Ω(x), t) = (gk(x), fk(x), deg gk(x))

We will discuss this algorithm later in Section 3.5.1. As a result one can decode RS code
by Algorithm 3.

Algorithm 3: Decoding an RS code

1 Input: Received word r

2 begin
3 Compute syndrome S = rHT

RS

4 Run Algorithm 1 or Algorithm 2 for S, and get t and Λ(x)

5 Find roots αi1 , . . . , αit of Λ(x) in F
6 Compute c by correcting t erasures in positions i1, . . . , it of r

7 Output: Codeword c

3.3 Decoding IRS Codes with Berlekamp–Massey
Algorithm

In the last decades, interleaved Reed–Solomon (IRS) codes were one of the popular research
topics in algebraic coding theory. Related to this topic, the decoding approaches underwent
several phases. A trivial thinking is to treat the IRS code as ` individual RS codes and
decode them separately, which leads the correctable error number is only within half the
smallest minimum distance of these ` codes. In case of burst errors, all the error positions
for each RS code are the same, thus, collaborative decoding can correct more errors than the

19

3 Decoding Interleaved Reed–Solomon Codes

trivial method with the same complexity. In our work, to deal with burst errors, we consider
the collaborative decoding approach, which means to find the common error locations for
all ` RS codes at first and then evaluate the error values separately. As mentioned in the
previous chapter, the first step is more complicated than the second one, so we mainly
focus on finding the error locations, meanwhile we keep the complexity low in collaborative
decoding of IRS codes.

Given ` Reed–Solomon codes RS(n, k(l)), l = 1, 2, . . . , `, over Fq of length n and dimen-

sions k(l) defined by generator matrices G
(l)
RS of the form (3.2) or by parity check matrices

H
(l)
RS of the form (3.4), the interleaved RS (IRS) code IRS(n, k(1), . . . , k(`)) consists of all

`× n matrices CIRS

CIRS =


c(1)

c(2)

...
c(`)

 =


c

(1)
0 c

(1)
1 . . . c

(1)
n−1

c
(2)
0 c

(2)
1 . . . c

(2)
n−1

...
...

...
...

c
(`)
0 c

(`)
1 . . . c

(`)
n−1

 ,

where c(l) ∈ RS(n, k(l)). If k(l) are all the same, then the IRS codes are called homogeneous,
otherwise, they are heterogeneous. If every row c(l) is a codeword of the extended RS
code, then such construction forms interleaved extended RS (IERS) codes. We will focus
on decoding IRS codes in this section, and discuss IERS codes later in Section 4.2 and
Section 4.4.

We assume the following interleaving scheme and channel model. We transmit a code
matrix C and receive a `× n matrix R over Fq, we say that the error matrix is E = R−C
over Fq. A burst error which occurred in the channel destroys all components in a column
of the received word. Figure 3.2 depicts the burst error model for a heterogeneous IRS
codeword. The burst error weight is the number of columns which are corrupted, i.e.,
the number of nonzero columns in the matrix E. We assume that the channel is q`-ary
symmetric.

The IRS code can be efficiently decoded as follows. By default, the index l always runs
from 1 to `. Given a received matrix R, denote by r(l) rows of R and compute the syndrome
vectors S(l) and polynomials S(l)(x) for every component RS code as follows

S(l) = (S
(l)
0 , S

(l)
1 , . . . , S

(l)
d−2) = r(l)H

(l)T
RS (3.15)

and

S(l)(x) =
d−2∑
i=0

S
(l)
i x

i. (3.16)

Assume that t erroneous columns are at positions E = {i1, . . . , it} and define the error
locator polynomial by (3.7). The syndromes and the ELP for the IRS code satisfy the
following system of key equations

S(l)(x)Λ(x) ≡ Ω(l)(x) mod xd
(l)−1 for l = 1, . . . , `, (3.17)

20

3.3 Decoding IRS Codes with Berlekamp–Massey Algorithm

k(`)

k(3)

k(2)

k(1)

n

`

burst errors

Figure 3.2: Burst error model for interleaved codes.

where Ω(l)(x) is a polynomial with deg Ω(l)(x) < deg Λ(x). Similar to the single sequence
case in LFSR synthesis in Figure 3.1, solving the system of key equations (3.17) can be
regarded as one LFSR generating ` sequences, which is so-called multi-sequence linear
feedback shift register (MS-LFSR) synthesis (see Figure 3.3). Note that Λ(x) in (3.17) may
not be unique to generate the same syndromes. We are interested in finding a Λ(x) with
smallest degree which is the ELP. Regarding to MS-LFSR synthesis, decoding IRS codes
are considered as the following problem.

S
(l)
i−1 S

(l)
i−2 S

(l)
i−t+1 S

(l)
i−t

−Λ1 −Λ2 −Λt−1 −Λt

+ + +

· · · S(l)
1 S

(l)
0

Figure 3.3: MS-LFSR synthesis.

Problem 1. Let S(1),S(2), . . . ,S(`) of length N (1), N (2), . . . , N (`), respectively, be sequences
over a field F. Find the smallest nonnegative integer t for which there is a vector of
coefficients Λ = (Λ1,Λ2, . . . ,Λt) over F such that for l = 1, 2, . . . , ` and for i = t, . . . , N (l)−1

S
(l)
i = −Λ1S

(l)
i−1 − Λ2S

(l)
i−2 − · · · − ΛtS

(l)
i−t. (3.18)

Moreover, find a vector of coefficients Λ which fulfills (3.18).

Known results. As mentioned before, there are two notable algorithms which solve LFSR
synthesis efficiently: Berlekamp–Massey algorithm (BMA), and Sugiyama et.al algorithm

21

3 Decoding Interleaved Reed–Solomon Codes

which is based on the Euclidean algorithm (EA). These two algorithms are to solve single-
sequence LFSR synthesis. Due to their efficiency and simplicity, both algorithms have been
generalized to the multi-sequence LFSR synthesis. There are approaches such as Feng
and Tzeng’s fundamental iterative algorithm (FIA) [FT85] and the generalized iterative
algorithm (GIA) [FT91] which are considered as a generalization of BMA. In 1989, Feng
and Tzeng proposed the generalization of extended Euclidean algorithm (GEEA) [FT89]
for MS-LFSR synthesis. However, the same drawback of FIA, GIA and GEEA is that they
require input sequences to have the same length. Regarding to sequences of different lengths,
efficient modifications based on GIA and GEEA have been done in [SS11] and [KL13],
respectively, aiming to solve the multi-sequence varying length problem — Problem 1.
Details of the latter one will be discussed in Section 3.4. More recently, Nielsen proposed an
easy-understandable “module minimization” approach [Nie13a] which converts Problem 1
to finding leading position at the first column in the weak Popov form of a certain-
structured polynomial matrix over F[x]. The modified GIA, the modified GEA and module
minimization are all looking for an error locator polynomial, although the equivalence of
these three methods are not proved, some similar intermediate behaviors/results can be
found during their calculations.

An efficient solution based on GIA, or say based on the BMA, in [SS11] of Problem 1 is
given by Algorithm 4.

Theorem 4 ([SS11]). If the output of Algorithm 4 is Λ(x), N , t; and Λ(l)(x), n(l), t(l)

for l = 1, . . . , `, then t is the length of a shortest shift-register that generates ` sequences
S(l). The connection polynomial Λ(x) is unique if and only if ε = 0, where

ε =
∑̀
l=1

ε(l),

ε(l) = max
l
{0, n(l) − t(l) − z(l) − (N − t)},

z(l) = max
l
{0, t−N (l)}.

Time complexity of Algorithm 4 is O(`N2) operations in F.

After the unique error locator polynomial is found, position of errors can be obtained by
computing roots of the polynomial. When the error positions are known, the errors are
transformed to erasures and can be corrected independently in every component code. As
a result the IRS code can be decoded by Algorithm 5.

Theorem 5 ([SSB07]). For an IRS code IRS(n, k(1), . . . , k(`)), Algorithm 5 corrects
errors of weight t up to decoding radius tmax with failure probability Pf (t) if

t ≤ tmax = min

{
`

`+ 1

(
n− k

)
, n− kmax

}
, (3.19)

22

3.3 Decoding IRS Codes with Berlekamp–Massey Algorithm

Algorithm 4: MS-LFSR synthesis based on BMA (Problem 1)

1 Input: `; S(l) = S
(l)
0 , . . . , S

(l)

N(l)−1
and N (l) for l = 1, . . . , `

2 begin
3 t← 0, Λ(x)← 1, N ← maxl{N (l)}
4 δ(l) ← N −N (l), n(l) ← δ(l), t(l) ← 0, ∆(l) ← 1, Λ(l)(x)← 0 for l = 1, . . . , `
5 for each n from 0 to N − 1 do
6 for each l from 1 to ` do
7 if n− t ≥ δ(l) then

8 ∆←
∑t

j=0 ΛjS
(l)

n−δ(l)−j

9 if ∆ 6= 0 then
10 if n− n(l) ≤ t− t(l) then

11 Λ(x)←Λ(x)− ∆
∆(l) Λ

(l)(x)xn−n
(l)

12 else

13 t̃← t, Λ̃(x)← Λ(x)

14 Λ(x)←Λ(x)− ∆
∆(l) Λ

(l)(x)xn−n
(l)

15 t← n− n(l) + t(l)

16 t(l) ← t̃, Λ(l)(x)← Λ̃(x), ∆(l) ← ∆, n(l) ← n

17 Output: Λ(x), N , t; and Λ(l)(x), n(l), t(l) for l = 1, . . . , `

where

k =
1

`

∑̀
l=1

k(l), kmax = max
l
{k(l)}

are the average and the maximum dimension of the ` Reed–Solomon codes respectively, and

Pf (t) ≤ P̂f (t) = γq−(l+1)(tmax−t)−1 , (3.20)

γ =

(
ql − 1

q

ql − 1

)t
q

q − 1
≈ 1.

The bound (3.20) can be also written as

Pf (t) ≤ P̂f (t) = γq−(# of equations−t)−1 , (3.21)

using the numbers of equations in the system (3.18).

23

3 Decoding Interleaved Reed–Solomon Codes

Algorithm 5: Decoding an IRS code

1 Input: Received words r(1), . . . , r(`)

2 begin

3 Compute syndromes S(l) = r(l)H
(l)T
RS for l = 1, . . . , `

4 Run Algorithm 4 for ` sequences S(l), l = 1, . . . , ` of length N (l) = n− k(l), and
get Λ(x) and t

5 if ε 6= 0 then
6 output decoding failure and stop

7 Find roots αi1 , . . . , αiτ of Λ(x) in F
8 if number of roots not equal t then
9 output decoding failure and stop

10 for l = 1, . . . , ` do
11 Compute c(l) by correcting t erasures in positions i1, . . . , it of c(l)

12 Output: Codewords c(1), . . . , c(`) or decoding failure

3.4 Decoding IRS Codes with Euclidean Algorithm

Thr Euclidean algorithm is often used to find the greatest common divisor between two
integers or polynomials. In 1975, Sugiyama et.al applied extended EA for decoding RS
codes to find the error locator polynomial given S(x), c.f. (3.14) and Algorithm 2. In
1989, Feng and Tzeng [FT89] generalized the Euclidean algorithm to solve Problem 1,
given S(l)(x), l = 1, . . . , `. However, Feng–Tzeng’s algorithm only concentrates on the
homogeneous case (N (1) = N (2) = · · · = N (`)), without any hints or ideas of how to adapt
it for the heterogeneous case. In order to fit Feng–Tzeng’s algorithm to decode any IRS
codes, one idea is presented in [ZL10a] where the syndrome sequences of different lengths
are converted into several sequences of the same length. Assume the shortest sequence
has length Nmin, one can write any long sequence as some short sequences of length Nmin.
If lengths of the syndrome sequences differ very much, then the rewriting significantly
increases the number of interleaved words and hence the decoding complexity. In order to
the complexity low, in this section, we present a modification of [FT89] that does not need
this transformation of syndromes.

Problem 1 can be equivalently rewritten as follows.

Problem 2. Let all prerequisites be the same as in Problem 1. Find a polynomial Λ(x) ∈
F[x] with smallest degree such that for l = 1, 2, . . . , `

S(l)(x)Λ(x) = Ω(l)(x) + P (l)(x)xN
(l)

(3.22)

24

3.4 Decoding IRS Codes with Euclidean Algorithm

holds for some polynomials P (l)(x) with

deg Ω(l)(x) < deg Λ(x). (3.23)

In this case, we say Λ(x) generates S(l)(x) for l = 1, . . . , `.

The term P (l)(x)xN
(l)

is just an alternative representation to the modulo operation in (3.17).
We replace the indeterminate x by x`, i.e.,

S(l)(x`)Λ(x`) = Ω(l)(x`) + P (l)(x`)xN
(l)`.

Then, we shift the coefficients of S(l)(x`) in a way such that there is no overlapping when
adding all the ` equations together. This can be done by multiplying the l-th equation by
xl−1, and we obtain the concatenated key equation as follows

S̃(x)Λ(x`) = Ω̃(x) +
∑̀
l=1

P (l)(x`)xN
(l)`+l−1 (3.24)

where

S̃(x) =
∑̀
l=1

S(l)(x`)xl−1, (3.25)

Ω̃(x) =
∑̀
l=1

Ω(l)(x`)xl−1. (3.26)

The cross breeding of ` syndromes produces one “long” syndrome which is a vector of
coefficients in S̃(x). Figure 3.4 depicts an alternative of MS-LFSR. For every sequence
shift, only symbols from the same syndrome are coped with the connection polynomial
Λ(x). Therefore, it is straightforward to see that (3.24) is equivalent to (3.22).

S
(1)
i−1 S

(`)
i−1 S

(1)
i−2 S

(`)
i−2 S

(1)
i−t S

(`)
i−t

−Λ1 −Λ2 −Λt

+ + · · ·

· · ·

Figure 3.4: An equivalence of MS-LFSR synthesis based on (3.24).

The following lemma states how the degree conditions in Problem 2 change correspond-
ingly for (3.24).

25

3 Decoding Interleaved Reed–Solomon Codes

Lemma 6. Λ(x) generates sequences S(l)(x) for l = 1, . . . , `, if and only if

deg Ω̃(x) < ` deg Λ(x). (3.27)

Proof: Let (3.27) holds, first we prove that (3.27) is a sufficient condition to obtain (3.23).
Let us assume that Ω(l∗)(x) has the maximum degree among Ω(l)(x) for all l. Then

deg Ω̃(x) = ` deg Ω(l∗)(x) + l∗ − 1 < ` deg Λ(x).

It follows immediately that,

deg Λ(x)− deg Ω(l∗)(x) >
l∗ − 1

`
≥ 0.

Hence (3.23) is satisfied.
Conversely, if ∀l, deg Ω(l)(x) < deg Λ(x), then

` deg Ω(l)(x) ≤ `(deg Λ(x)− 1). (3.28)

Since the summation in (3.26) can not have degree higher than ` deg Ω(l∗)(x) + l∗ − 1,
together with (3.28) we have

deg Ω̃(x) ≤ ` deg Ω(l∗)(x) + l∗ − 1 ≤ `(deg Λ(x)− 1) + `− 1 < ` deg Λ(x).

Hence, the following problem is equivalent to Problem 2.

Problem 3. Let all prerequisites be the same as in Problem 1. Find a polynomial Λ(x) ∈
F[x] with smallest degree such that (3.24) is satisfied with restriction (3.27).

3.4.1 Generalized Extended Euclidean Algorithm (GEEA)

As we mentioned before, Feng–Tzeng’s generalized extended Euclidean algorithm (GEEA)
[FT89] solves the LFSR problem with sequences of the same length. In particular, the
generalized division GenDiv plays the main role in the GEEA.

Definition 5 (Congruence relation). Given a(x), b(x) ∈ F [x] and a nonzero integer `,
we say that a(x) is congruent to b(x), denoted by a(x) ∼ b(x), if and only if

deg a(x) ≡ deg b(x) mod `,

If the polynomials are not congruent, we denote it by a(x) � b(x).

Thus, the congruence relation splits F[x] into ` congruence classes [xv], v = 0, . . . , ` where
[xv] = {a(x)|a(x) ∈ F[x] and deg a(x) ≡ v mod `}.

26

3.4 Decoding IRS Codes with Euclidean Algorithm

Definition 6 (Congruence set). Given polynomials b(l)(x) for l = 1, . . . , ` over F[x]. If
every polynomial belongs to a distinct congruence class, e.g., b(l)(x) ∈ [xl], then ∀l, b(l)(x)
form a (full) congruence set.

To run the GEEA, we need a modified division of two polynomials. Feng and Tzeng
considered this operation only for polynomials which are congruent to each other. They
modified the usual polynomial division such that the quotient contains powers which are
only multiple of `. Let a(x), b(x) be two polynomials over F[x]. If a(x) ∼ b(x) and
deg a(x) ≥ b(x), then the modified division (ModDiv, Algorithm 6) finds uniquely a quotient
Q(x`) 6= 0 and a remainder r(x) such that

a(x) = Q(x`)b(x) + r(x),

where deg r(x) < deg b(x) if r(x) ∼ b(x). Note that the difference from the usual polynomial
division is that, if r(x) � b(x) then deg r(x) might be greater than deg b(x) when the
algorithm stops.

Algorithm 6: Modified division function ModDiv

1 Input: `; a(x), b(x) 6= 0 in F[x], and deg a(x) ≡ deg b(x) mod `

2 begin
3 if deg a(x) < deg b(x) then
4 exchange a(x) and b(x)

5
(
Q(x`) r(x)

)
←
(
0 a(x)

)
6 while r(x) ∼ b(x) and deg r(x) ≥ deg b(x) do
7 δ = deg r(x)− deg b(x)

8
(
Q(x`) r(x)

)
←
(
1 xδ

)(Q(x`) r(x)
1 −b(x)

)
9 Output: Q(x`), r(x)

Now let us introduce generalized division for ` + 1 polynomials. Given ` polynomials
b(l)(x) ∈ F[x] for l = 1, . . . , ` which form a congruence set, and a polynomial a(x) ∈ F[x]
with deg a(x) ≥ deg b(l)(x) ∀l, we can apply ModDiv iteratively and obtain the following
form

a(x) =
∑̀
l=1

Q(l)(x`)b(l)(x) + r(x) (3.29)

where r(x) ∼ b(v)(x) for some v and deg r(x) < deg b(v)(x).
From now on, we will use another expression which is equivalent to (3.29). Assume

a(x) ∼ b(u)(x) for some u ∈ [1, . . . , `]. Let us rewrite (3.29) as

r(x) = −Q(u)(x`)b(u)(x) + a(x) +
∑
l 6=u

−Q(l)(x`)b(l)(x). (3.30)

27

3 Decoding Interleaved Reed–Solomon Codes

Let A(x) = b(u)(x), B(l)(x) = b(l)(x) for all l 6= u, and B(u)(x) = a(x). Let p(x`) =
−Q(u)(x`), q(l)(x`) = −Q(l)(x`) for all l 6= u, and q(u)(x`) = 1. Then (3.30) becomes

r(x) = p(x`)A(x) +
∑̀
l=1

q(l)(x`)B(l)(x), (3.31)

where r(x) ∼ A(x) and deg r(x) < degA(x), or r(x) ∼ B(v)(x) for some v 6= u and
deg r(x) < degB(v)(x). With the new notations, the problem is as follows. Given ` + 1
polynomials A(x) and B(l)(x) (A(x) ∼ B(u)(x) for some u and degA(x) ≤ degB(u)), we
would like to express the remainder r(x) as a combination of these ` + 1 polynomials
by (3.31) like in extended Euclidean algorithm.

Algorithm 7 GenDiv gives the solution of the problem. It finds uniquely polynomials
r(x), p(x`), and q(l)(x`) for all l such that (3.31) is satisfied. Line 6 and the while loop
form the generalized division which is as shown in (3.29). If ` = 1, GenDiv is simplified to
ModDiv.

Algorithm 7: Generalized division function GenDiv

1 Input: `; A(x), B(l)(x) ∈ F[x] and B(l)(x) ∈ [xl−1] for l = 1, . . . , `.

2 begin
3 u← (degA(x) mod `) + 1

4 a(x)← B(u)(x); b(u)(x)← A(x), and b(l)(x)← B(l)(x) for all l 6= u

5 Q(l)(x`)← 0 for all l
6 r(x)← a(x)

7 while deg r(x) ≥ deg b(u)(x) do

8 Q̃(u)(x`), r(x)← ModDiv(r(x), b(u)(x))

9 Q(u)(x`)← Q(u)(x`) + Q̃(u)(x`)

10 Q(l)(x`)← Q(l)(x`) for all l 6= u
11 u← (deg r(x) mod `) + 1

12 p(x`)← −Q(u)(x`)

13 q(u)(x`)← 1

14 q(l)(x`)← −Q(l)(x`) for all l 6= u

15 Output: r(x), p(x`), q(l)(x`), for l = 1, . . . , `

In the original Feng–Tzeng’s GEEA, all the input sequences are assumed to have the
same length N , and b

(l)
0 (x) is initialized as xN`+l−1 ∀l. To solve MS-LFSR synthesis problem,

all sequences may have different lengths. Hence, GEEA needs to be modified. According
to (3.24), we use b

(l)
0 (x) = xN

(l)`+l−1 in Feng–Tzeng’s GEEA where N (l) is the length of each
sequence. Without changing ModDiv and GenDiv, the modified algorithm (Algorithm 8) can

28

3.4 Decoding IRS Codes with Euclidean Algorithm

Algorithm 8: Modified FengTzeng’s algorithm for MS-LFSR synthesis

1 Input: `; sequences S(l)(x) with length N (l), for l = 1, . . . , `

2 begin

3 r0(x)← S̃(x) according to (3.25), b
(l)
0 (x)← xN

(l)`+l−1 ∀l
4 U0(x)← 1, V

(l)
0 (x)← 0 ∀l

5 j ← 0
6 while deg rj(x) ≥ degUj(x

`) do

7 rj+1(x), pj+1(x`), q
(l)
j+1(x`)← GenDiv(rj(x), b

(l)
j (x))

8 vj+1 ← deg rj(x) mod ` +1

9 b
(vj+1)
j+1 (x)← rj(x)

10 Uj+1(x)← pj+1(x)Uj(x) +
∑`

l=1 q
(l)
j+1(x)V

(l)
j (x)

11 V
(vj+1)
j+1 (x)← Uj(x)

12 j ← j + 1

13 k ← j

14 Output: Monic polynomial δUk(x)

be immediately applied to the LFSR synthesis with sequences of different lengths. And the
complexity is the same as the original GEEA’s since only the longest length is considered.

The underlined part in Line 3 is the only difference from the original Feng–Tzeng’s GEEA.
In Line 7 of every while loop, given `+ 1 polynomials, by running GenDiv repeatedly, the
remainder rj+1(x) and quotients pj+1(x`), q

(l)
j+1(x`) are obtained satisfying

rj+1(x) = pj+1(x`)rj(x) +
∑̀
l=1

q
(l)
j+1(x`)b

(l)
j (x) for j = 0, 1, (3.32)

In Line 8 and Line 9, we find out the polynomial b
(vj+1)
j (x) ∼ rj(x) in b

(l)
j (x) and replace

this polynomial by rj(x) for the next iteration. For all l 6= vj+1, b
(l)
j+1(x) = b

(l)
j (x).

Algorithm 8 finds the error locator polynomial δUk(x). In fact, this is also a minimal
solution.

Theorem 7. To solve the MS-LFSR synthesis problem, the polynomials δUk(x) which
Algorithm 8 outputs is a Λ(x) with smallest degree.

Proof: For multi-sequence varying lengths case, the proof is the same as for multi-
sequence same length case. In [FT89], it is proved by contradiction that, there exist no
other connection polynomial with degree less than δUk(x). In our case, input sequences
have different lengths, however, the changes of degree of Uj(x

`) and rj(x) are the same as
that in the case of the same length, i.e., the degree conditions don not alter in terms of
length of the input sequence.

29

3 Decoding Interleaved Reed–Solomon Codes

The decoding radius and failure probability of using Algorithm 8 to decode IRS codes
are the same as to decode by using Algorithm 4 based on BMA, which is already stated in
Theorem 5.

Example 1. Let us transmit an IRS code where each row is a primitive RS codeword, i.e.,
c1 ∈ RS1(10, 3) and c2 ∈ RS2(10, 5) codes. The syndromes of the received words

r(1) = (5, 5, 1, 0, 8, 0, 2, 1, 1, 9),

r(2) = (0, 4, 3, 0, 10, 0, 10, 6, 10, 3)

are calculated as follows according to (3.9)

S(1) = (1, 10, 5, 4, 9, 2, 8),

S(2) = (3, 10, 6, 2, 0).

To proceed with the decoding, we apply these syndromes to the modified GEEA (Algorithm 8).
The intermediate results are listed in Table 3.1.

j rj(x) pj(x) q
(1)
j (x) q

(2)
j (x) Uj(x)

0
8x12 + 2x10 + 9x8 + 2x7 + 4x6 +
6x5 + 5x4 + 10x3 + 10x2 + 3x+ 1

− − − 1

1
x10 + 8x9 + 7x8 + 5x6 + x5 + 2x4 +
2x3 + 5x2 + 8x+ 10

4x+ 10 1 0 4x+ 10

2
3x9 +6x8 +5x7 +5x6 +7x4 +10x3 +
2x2 + 6x+ 2

3x+ 10 1 9 x2 + 4x+ 2

3
2x8 +3x7 +7x6 +6x5 +9x4 +8x3 +
x2 + 2x+ 8

7x+ 5 2 1 7x3 + 9x+ 8

4 5x7+9x5+8x4+10x3+6x2+10x+7 5x+ 2 1 7
2x4 + 3x3 + 8x2 +
2x+ 7

Table 3.1: Decoding IRS codes using Algorithm 8.

Since degU4(x
4) > deg r4(x), we have k = 4 and the monic error locator polynomial is

δU4(x) = x4 + 7x3 + 4x2 + x+ 9. It can be easily checked that α0, α1, α2, and α3 are roots
of δU4(x) which give the positions of errors.

3.4.2 Complexity of Modified GEEA

Because of the GEEA, the degree of remainder rj+1(x) is monotonically decreasing with

the increasing of the iterations. If inputs of Algorithm 8 are r0(x) ∈ F[x] and b
(l)
0 (x) ∈ F[x],

and Algorithm 8 does not stop when deg rk(x) < degUk(x
`) until the remainder rj = 0.

We say such an algorithm is the complete GEEA.

30

3.4 Decoding IRS Codes with Euclidean Algorithm

Theorem 8 (Complexity of complete GEEA). Given `+ 1 polynomials r0(x) ∈ F[x],

b
(l)
0 (x) ∈ F[x] for l = 1, . . . , ` where all b(l)(x) form a congruence set. Furthermore, for

some u ∈ [1, `], deg r0(x) < deg b(u)(x) where r0(x) ∼ b
(u)
0 (x). Let an integer I be at least

the maximum degree of these ` + 1 polynomials. Then the complete GEEA computes a
greatest common divisor (GCD) of r0(x), b

(l)
0 (x) in polynomial time O(I2).

Proof: Using generalized division GenDiv, the time Tj to perform this division at the j-th

iteration in Algorithm 8 is determined by the product of pj+1(x`)rj(x) and q
(l)
j+1(x`)b

(l)
j (x)

for l = 1, . . . , `. Note that only every `-th coefficient in pj+1(x`) and q
(l)
j+1(x`) is considered.

Thus,

Tj ≤
c

`
max
l

{
deg pj+1(x`) deg rj(x), deg q

(l)
j+1(x`) deg b

(l)
j (x)

}
(3.33)

for some constant c. Since the complete GEEA requires at most I + 1 = O(I) iterations,
the total time T is bounded by

T =
I∑
j=0

Tj ≤
c

`

I∑
j=1

max
l

{
deg pj+1(x`) deg rj(x), deg q

(l)
j+1(x`) deg b

(l)
j (x)

}
≤ cI

`

I∑
j=0

max
l

{
deg pj+1(x`), deg q

(l)
j+1(x`)

}
We know from (13.1) and (13.2) in [FT89] that,

deg pj+1(x`) = deg b
(vj)
j (x)− deg rj(x),

deg q
(l)
j+1(x`) < deg b

(v)
j (x)− deg b(l)(x) for l 6= vj.

(3.34)

Due to our updating rule in Line 8 and Line 9 in Algorithm 8, at most the first ` iterations,
the minuend in (3.34) can be one of b

(l)
0 (x). From the (`+ 1)st iteration on, all minuends

are the previous remainders which can be canceled by previous subtrahends. Hence,

T =
cI

`

I∑
j=0

max
l

{
deg b

(vj)
j (x)− deg rj(x), deg b

(v)
j (x)− deg b(l)(x)

}
≤ cI

`

∑̀
l=1

deg b
(l)
0 (x) ≤ cI

`
`I = cI2.

Line 10 is used for calculating the coefficient polynomials of r0(x). However, this will
not increase the burden to the overall complexity as the time of Line 10 is less than Tj.
Therefore, the complete GEEA algorithm still has complexity O(I2) in F.

Given ` sequences S(l)(x) ∈ F[x] of length N (l). If r0(x), b
(l)
0 (x) are given according to

Line 3 in Algorithm 8 and the maximum length of the sequences is N , then

I ≥ `N + l − 1.

31

3 Decoding Interleaved Reed–Solomon Codes

Therefore, the overall complexity of complete GEEA is O(l2N2).
Since we use GEEA to decode (heterogeneous) IRS codes, the algorithm stops when

deg rj(x) < degUj(x
`) for the first time, which means the iteration times Ĩ = I −

degUk(x
`) = I − `t where t is the number of errors. Assume every sequence has length N ,

by combining (3.19) with Ĩ, we obtain

Ĩ = `N + l − 1− ` `

`+ 1
N

<
`

`+ 1
N + `.

which has order O(N). However, in each iteration, we still need I operations. Therefore,
we have the following theorem.

Corollary 9 (Complexity of GEEA solving MS-LFSR synthesis). Given multiple
sequences S(l)(x) of length N (l) for l = 1, . . . , ` over F[x]. Denote the maximum length of
the sequence by N . Solving Problem 1, 2 or 3 with Algorithm 8 has time complexity O(`N2)
operations in F.

From Theorem 4 and Theorem 9, BMA-based Algorithm 4 and EA-based Algorithm 8 have
the same order of time complexity.

3.5 Fast Decoding of IRS Codes

First let us revisit the strategy to accelerate the Euclidean algorithm (EA) for only two
polynomials over F[x]. Recall Algorithm 2, if we replace the degree comparison by ri(x) 6= 0
for the while condition, then Algorithm 2 can find GCD of r0(x) and r1(x).

3.5.1 Extended Euclidean Algorithm

In fact, Algorithm 2 is an extended Euclidean algorithm (EEA). Given two polynomials
r0(x), r1(x) ∈ F[x], for every iteration step, it finds not only the remainder ri(x), but also
the coefficient polynomials fi(x) and gi(x) in each iteration such that

fi(x)r0(x) + gi(x)r1(x) = ri(x) for i = 2, 3,

Denote the
(

0 1
1 −qi(x)

)
in Line 7 by Qi. Then(

ri(x)
ri+1(x)

)
= Qi

(
ri−1(x)
ri(x)

)
= QiQi−1 · · ·Q1

(
r0(x)
r1(x).

)
= Ri

(
r0(x)
r1(x).

)
where

Ri = Qi · · ·Q1 =

(
fi(x) gi(x)
fi+1(x) gi+1(x)

)
for i = 1, . . . k − 1 (3.35)

32

3.5 Fast Decoding of IRS Codes

is called Euclidean matrix.
The main complexity issue concerning the Euclidean algorithm is the time to perform

each division and the number of iterations that are required to compute the GCD of two
polynomials r0(x) and r1(x).

Theorem 10 (Complexity of EA [Lip81] Theorem 3, VII.3.1). Given two polyno-
mials r0(x), r1(x) ∈ F[x] and let N ≥ deg r0(x) ≥ deg r1(x) be an integer, the cost of
carrying out a GCD of r0(x) and r1(x) by the Euclidean algorithm is in quadratic time,
i.e., O(N2), assuming the coefficients operations take constant O(1) time.

It is easy to see that, each iteration of EEA needs to handle the multiplication of fi(x)
and qi(x), gi(x) and qi(x) in addition to the division. However, this does not affect the
complexity of Theorem 10.

3.5.2 Fast Extended Euclidean Algorithm

The so-called divide and conquer is a strategy to accelerate solving a problem. It recursively
divides the problem into smaller parts, compute the solution of each parts, and combine
the solutions for the whole problem. This strategy can be applied to speed up the EEA
since the first quotient qi only depends on the highest coefficients of ri(x) and ri−1(x) in
each iteration. The fast EA has been described by Aho, Hopcroft and Ulman [AHU74].
Blahut [Bla85] used the same idea to accelerate the EEA.

Theorem 11 ([Bla85] Theorem 10.7.1). Given two polynomials r0(x), r1(x) ∈ F[x]
with deg r0(x) ≥ deg r1(x), let

r0(x) = r̃0(x)xκ + r̂0(x),

r1(x) = r̃1(x)xκ + r̂1(x)

where deg r̂0(x) < κ and deg r̂1(x) < κ for some κ satisfying

κ ≤ 2 deg r1(x)− deg r0(x), (3.36)

i.e., deg r̃1(x) ≥ deg r̃0(x). Let r0(x) = q(x)r1(x) + r2(x) and r̃0(x) = q̃(x)r̃1(x) + r̃2(x)
each satisfy the division algorithm, then

q(x) = q̃(x),

r2(x) = r̃2(x)xκ + r̂2(x)

where deg r̂2(x) < deg r0(x)− deg r1(x) + κ. In other words, r2(x) and r̃2(x)xκ agree in all
terms of degree deg r0(x)− deg r1(x) + κ or higher.

If the division algorithm are proceeded recursively in EA or EEA, then the following
theorem states how the polynomial should be truncated such that the correctness of the
quotients is not influenced.

33

3 Decoding Interleaved Reed–Solomon Codes

Algorithm 9: Fast (complete) extended Euclidean algorithm FEEA

1 Input: r0(x), r1(x) ∈ F[x], with deg r0(x) ≥ deg r1(x)

2 begin
3 κ = bdeg r0(x)/2c
4 if deg r1(x) ≤ κ then
5 q(x)← Quotient(r0(x), r1(x))

6 R←
(

0 1
1 −q(x)

)
7 else
8 R← HEEA(r0(x), r1(x))

9

(
r0(x)
r1(x)

)
← R

(
r0(x)
r1(x)

)
10 if r1(x) 6= 0 then
11 R′ ← FEEA(r0(x), r1(x))
12 R← R′R

13 Output: R

Theorem 12 ([Bla85] Theorem 10.7.3). Let Ri and R̃i be the Euclidean matrices of
r0(x), r1(x) and truncated polynomials r̃0(x), r̃1(x) as in Theorem 11 in each i, respectively.
Then

Ri = R̃i

provided that deg r̃i+1(x) ≥ (deg r0(x)− κ)/2 where r̃i+1(x) is the remainder of division for
r̃i−1(x) and r̃i(x).

From Theorem 11, the smallest value that κ can get is 0. In this case, we see from (3.36)
that

deg r1(x) ≥ deg r0(x)

2
(3.37)

should be satisfied if the fast algorithm is applied.
Towards formulating the the fast EEA, the dividend and divisor input polynomials are

truncated recursively till (3.37) is not fulfilled. The quotients are calculated by polynomials
of smallest degree in this recursive truncation. Afterwards, the algorithm moves one step
further in the EA by calculating the next remainder. This remainder, together with the
previous divisor are then used as input in the next recursive call.

The complete fast extended Euclidean algorithm consists of two algorithms, the fast
EEA (FEEA), Algorithm 9, as the main one and the half EEA (HEEA), Algorithm 10, as a
calling function [Bla85].

In Line 4 of Algorithm 9, it decides whether to perform one normal iteration of the EA
or to truncate the polynomials. In the normal iteration, The Quotient function computes

34

3.5 Fast Decoding of IRS Codes

Algorithm 10: Half extended Euclidean algorithm HEEA

1 Input: r0(x), r1(x) ∈ F[x], with deg r0(x) ≥ deg r1(x)

2 begin
3 κ = bdeg r0(x)/2c
4 if deg r1(x) ≤ κ then

5 R←
(

1 0
0 1

)
6 else
7 r̃0(x)← Quotient(r0(x), xκ)
8 r̃1(x)← Quotient(r1(x), xκ)
9 R← HEEA(r̃0(x), r̃1(x))

10

(
r0(x)
r1(x)

)
← R

(
r0(x)
r1(x)

)
11 q(x)← Quotient(r0(x), r1(x))

12 R←
(

0 1
1 −q(x)

)
R

13

(
r0(x)
r1(x)

)
←
(

0 1
1 −q(x)

)(
r0(x)
r1(x)

)
14 κ′ ← bκ/2c
15 r̃0(x)← Quotient(r0(x), xκ

′
)

16 r̃1(x)← Quotient(r1(x), xκ
′
)

17 R′ ← HEEA(r̃0(x), r̃1(x))
18 R← R′R

19 Output: R

the quotient of r0(x)/r1(x) which is a usual division. The degree of the new r0(x) and r1(x)
in Line 9 are not larger than κ. Since these two new polynomials are the input for the next
call of FEEA in Line 11, one normal iteration halves the degree the input polynomials.

Divide and conquer strategy is applied in Algorithm 10. The algorithm contains two
recursive calls with truncated polynomials in Line 9 and Line 17. In Line 10 and Line 13,
the new r1(x) are successive remainders, of degree at most 3/4 the degree of r0(x). The
input polynomials in Line 17 are of degree at most 1/4 the degree of r0(x).

Theorem 13 (Complexity of fast EEA [AHU74] Theorem 8.19). Given two poly-
nomials r0(x), r1(x) ∈ F[x] and let N ≥ deg r0(x) ≥ deg r1(x) be an integer, the Algorithm 9
finds a GCD with time complexity O(M(N) logN), where M(N) is the time needed for
multiplying two polynomials of degree N .

35

3 Decoding Interleaved Reed–Solomon Codes

Since we recursively divide the problem into nearly equal parts, we assume that N is
actually a power of 2. In our case, if deg r0(x) is not a power of 2, we select N as the
smallest power of 2 which is equal to or larger than deg r0(x). The complexity M(N) is
usually considered as O(N logN) [Lip81, Theorem 1, IX.2.1]. Thus, the time complexity
of Algorithm 9 is given by O(N log2N).

3.5.3 Fast GEEA

The divide and conquer strategy for two polynomials can be generalized for multiple
polynomials. This fast algorithm has been explored in [ZW11]. However, their algorithm is
proposed to solve MS-LFSR problem for sequences of the same length. In this subsection,
we propose a version of fast GEEA for sequences of different lengths, and also give the
complexity analysis.

Let us shortly revisit Feng–Tzeng’s GEEA. Given ` + 1 polynomials r0(x), b
(l)
0 (x) for

l = 1, . . . , `, where r0(x) ∈ [xv0] for some 1 ≤ v0 ≤ ` and b
(l)
0 (x) ∈ [xl−1] with deg b

(v0)
0 (x) >

r0(x). By repeatedly running GenDiv, (3.32) can be represented as



rj+1(x)

b
(1)
j+1(x)

...

b
(vj)
j+1(x)

...

b
(`)
j+1(x)


= Qj+1



rj(x)

b
(1)
j (x)

...

b
(vj)
j (x)

...

b
(`)
j (x)


(3.38)

where the matrix Qj+1 ∈ F(m+1)×(m+1)[x], j = 0, 1, . . . is given by



pj+1(x`) q
(1)
j+1(x`) . . . q

(vj−1)
j+1 (x`) q

(vj)
j+1(x`) q

(vj+1)
j+1 (x`) . . . q

(`)
j+1(x`)

0 1 0 0 0 . . . 0
...

. . .
...

...
...

0 0 1 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 1 0
...

...
...

...
. . .

0 0 . . . 0 0 0 1


. (3.39)

Similarly, let U0(x) = 1, and V
(l)

0 (x) = 0 for l = 1, . . . , `, define polynomials Uj(x), V
(l)
j (x)

36

3.5 Fast Decoding of IRS Codes

for j ≥ 0 such that 

Uj+1(x`)

V
(1)
j+1(x`)

...

V
(vj)
j+1 (x`)

...

V
(`)
j (x`)


= Qj+1



Uj(x
`)

V
(1)
j (x`)

...

V
(vj)
j (x`)

...

V
(`)
j (x`)


. (3.40)

Let

Rj = QjQj−1 . . . Q1, j = 1, 2, . . . , (3.41)

from (3.38) and (3.39) we obtain

rj(x)

b
(1)
j (x)

...

b
(vj−1)
j (x)

...

b
(`)
j (x)


= Rj



r0(x)

b
(1)
0 (x)

...

b
(v0)
0 (x)

...

b
(`)
0 (x)


. (3.42)

and from (3.39) 

Uj(x
`)

V
(1)
j (x`)

...

V
(vj−1)
j (x`)

...

V
(`)
j (x`)


= Rj



1
0
...
0
...
0


. (3.43)

Analogously to Theorem 11, the quotients of the original and the truncated polynomials
for rj(x) and b(l)(x) are also the same.

Theorem 14. Given `+ 1 polynomials r(x), {b(l)(x)}`l=1 ∈ F[x] with b(l)(x) ∈ [xl−1]. For
some v ∈ [1, `], r(x) ∼ b(v)(x) and deg r(x) < deg b(v)(x). Let

r(x) = r̃(x)xκ + r̂(x),

b(l)(x) = b̃(l)(x)xκ + b̂(l)(x) (3.44)

where {deg b̃(l)(x)}`l=1,l 6=v > 0, and deg r̂(x) < κ, {deg b̂(l)(x)}`l=1 < κ for some κ satisfying

κ ≤ 2 deg r(x)− deg b(v)(x).

37

3 Decoding Interleaved Reed–Solomon Codes

Let r′(x) = p(x`)r(x) +
∑`

l=1 q(x
`)b(l)(x) and r̃′(x) = p̃(x`)r̃(x) +

∑`
l=1 q̃(x

`)b̃(l)(x) satisfy
the generalized division algorithm GenDiv separately, then

p(x`) = p̃(x`),

q(x`) = q̃(x`),

r′(x) = r̃′(x)xκ + r̂′(x)

where deg r̂′(x) < deg b(v)(x)− deg r(x) + κ.

Proof: For l 6= v, since deg b̃(l)(x) > 0 and deg b̂(l)(x) < κ, it follows from (3.44) that
deg b(l)(x) > κ. In fact, all degrees of b(l)(x) are greater than κ, since κ ≤ 2 deg r(x) −
deg b(v)(x) < deg r(x) < deg b(v)(x).

Now let us recall GenDiv, i.e., Algorithm 7. The algorithm starts from r(x) and b(v)(x) by
calculating the quotient q(v)(x`) and remainder r1(x) by using modified division algorithm
ModDiv such that b(v)(x) = q(v)(x`)r(x) + r1(x). Same procedure are also applied for
truncated polynomials r̃(x) and b̃(v)(x), i.e., b̃(v)(x) = q̃(v)(x`)r̃(x) + r̃1(x). Since the
modified division algorithm doesn’t stop later than usual division algorithm and according
to Theorem 11, we have q(v)(x`) = q̃(v)(x`) and r′1(x) = r̃′1(x)xκ + r̂′1(x) where deg r̂′1(x) <
deg b(v)(x)− deg r(x) + κ.

There are two cases in which the GenDiv algorithm stops after running once ModDiv.
One is when r1(x) ∼ r(x), and the other one is when r1(x) ∼ b(u)(x) for some u 6= v and
deg r1(x) < deg b(u)(x). Clearly, if GenDiv stops after first time ModDiv, then the statement
of the theorem follows.

If GenDiv continues running, then it must be when r1(x) ∼ b(u)(x) for some u 6= v and
deg r1(x) ≥ deg b(u)(x). By using ModDiv again, if we need to have q(u)(x`) = q̃(u)(x`) with
the same κ truncation, then κ ≤ 2 deg b(u)(x)−deg r1(x) ≤ deg b(u)(x). For the same reason,
the modified division in the following steps will generate the same quotients for two original
and truncated polynomials as long as κ is smaller than the degree of b(l)(x), for l 6= v or
degree of r(x). Regarding to the remainders r′(x) and r̃′(x), since their degrees are smaller
than those of r1(x) and r̃′1(x), we have deg r̂′(x) < deg r̂′1(x) < deg b(v)(x)− deg r(x) + κ.

If GenDiv is proceeded repeatedly, then we can apply the following theorem which is a
generalization of Theorem 12.

Theorem 15. Let all prerequisites be the same as in Theorem 14. Let the polynomials be
initialized with r0(x) = r(x), b

(l)
0 (x) = b(l)(x) and with r̃0(x) = r̃0, b̃

(l)
0 (x) = b̃(l)(x). Let Rj

and R̃j be the Euclidean matrices defined by (3.41) computed from r0(x), b
(l)
0 (x) and the

truncated polynomials r̃0(x), b̃
(l)
0 (x), respectively. Let vj−1 = (deg rj(x) mod `) + 1. Then

for each j,

Rj = R̃j

provided that deg r̃j(x) ≥ (deg b(v) − κ)/2 and {deg b̃
(l)
j (x)}`l=1,l 6=vj−1

≥ (deg b(v) − κ)/2.

38

3.5 Fast Decoding of IRS Codes

Proof: Theorem 14 assures that the quotients pj(x
`), q

(l)
j (x`) in the matrix Qj in (3.39)

agree in each iteration, i.e., after proper truncation, the quotients will not change. Theo-
rem 14 also assures that in the corresponding sequences rj(x), b

(1)
j (x), . . . , b

(l)
j (x) a sufficient

number of the high-order terms agree.

Equipped with Theorem 15, the fast version of our modified EEA (Algorithm 9) for
MS-LFSR synthesis is illustrated in Algorithm 11. The algorithm together with its calling
function HGEEA are an alternative version of those in [ZW11] with slight modification.

Algorithm 11: Fast generalized extended Euclidean algorithm for MS-LFSR syn-
thesis FGEEA

1 Input: `; r(x), {b(l)(x)}`l=1 ∈ F[x], b(l)(x) ∈ [xl−1].

2 begin
3 U(x)← 1, {V (l)(x)}`l=1 ← 0

4 Find v ∈ [1, `] such that r(x) ∼ b(v)(x) and deg r(x) < deg b(v)(x)

5 κ← bdeg b(v)(x)/2c
6 if deg r(x) ≤ κ or {deg b(l)(x)}`l=1,l 6=v ≤ κ then

7 r(x), p(x`), q(x`)← GenDiv(r(x), {b(l)(x)}`l=1)
8 Construct matrix R according to (3.39) with v

9 else
10 R← HGEEA(r(x), {b(l)(x)}`l=1)

11


r(x) U(x`)
b(1)(x) V (1)(x`)

...
...

b(`)(x) V (`)(x`)

← R


r(x) U(x`)
b(1)(x) V (1)(x`)

...
...

b(`)(x) V (`)(x`)


12 if degU(x`) ≤ deg r(x) then
13 R′ ← FGEEA(r(x), {b(l)(x)}`l=1)
14 R← R′R

15 Output: R, U(x)

Given ` sequences S(l)(x) ∈ F[x] of length N (l), the initial assignment of the inputs in
Algorithm 11 is given by

r(x) = r0(x) =
∑̀
l=1

S(l)(x`)xl−1, (3.45)

and
b(l)(x) = b

(l)
0 (x) = xN

(l)`+l−1, for l = 1, . . . , `. (3.46)

Denote the length of longest sequence of S(l) by Nmax, the degree of r0(x) in (3.45) depends
only on Nmax, since deg r0(x) = maxl{(Nl−1)`+ l−1} and l−1 < `. For r0(x) with degree

39

3 Decoding Interleaved Reed–Solomon Codes

(Nmax − 1)`+ l− 1, it is easy to see that, r0(x) ∼ xNmax`+l−1 and deg r0(x) < Nmax`+ l− 1

where Nmax`+l−1 is the highest degree of b
(l)
0 (x) in (3.46). Therefore, with (3.45) and (3.46),

one can always find some v, such that r0(x) ∼ b
(v)
0 (x) and deg r0(x) < deg b

(v)
0 (x). Since

Algorithm 11 is recursive, Line 4 appears in each recursion. The property of generalized
Euclidean division guarantees that such v always exists.

According to Theorem 15, the truncation is proceeded only when degrees of all polynomials
are larger than half of that of b(v)(x). Otherwise, generalized Euclidean division is carried.
If r(x) has a degree which is less than or equal to κ, or other input polynomials b(l)(x),
other than r(x) and b(v)(x) have degrees that are less than or equal to κ, then one normal
iteration of the GEEA cuts the size of the problem in half. Therefore, nothing is lost if
only half of the coefficients of r(x) or b(l)(x) is used in the calculation.

Nothing has changed in Line 11, in comparison with the updating part in the modified
GEEA. If R is obtained from normal generalized division, then the matrix multiplication
can be reduced to only using the first row of R to multiply with the matrix containing
r(x), b(l)(x), U(x`) and V (l)(x`). If R is obtained by truncated polynomials in Line 10, then
it is an (`+ 1)× (`+ 1) matrix multiplication.

Algorithm 12 describes the recursive procedure of fast half GEEA. There are two times of
self call (Line 11 and Line 22). Each one directly follows the half truncation. Polynomials
r̃(x), b̃(l)(x) are the truncated polynomials which are the quotient of r(x)/xκ by usual
division. In Line 12 and Line 14, the two new r(x) are successive remainders, of degree at
most 3/4 the degree of r(x) which is the input of Algorithm 12. The input polynomials in
Line 22 are of degree at most 1/4 the degree of the input r(x). The algorithm does not
stop until one of the input polynomials, other than b(v)(x), has a degree less than κ, i.e.,
half of that of b(v)(x).

Now we illustrate fast algorithm FGEEA with an example.

Example 2. Consider an IRS(10, [4, 5]) code. The syndromes of the received word are

S(1)(x) = 3x5 + 9x4 + 4x3 + 4x2 + x+ 5

S(2)(x) = 0x4 + +3x3 + x2 + 4x+ 1

of length N (1) = 6 and N (2) = 5, respectively.

40

3.5 Fast Decoding of IRS Codes

Algorithm 12: Half generalized extended Euclidean algorithm HGEEA

1 Input: `; r(x), {b(l)(x)}`l=1 ∈ F[x], b(l)(x) ∈ [xl−1]. ∃v ∈ [1, `] such that

r(x) ∼ b(v)(x) and deg r(x) < deg b(v)(x).

2 begin
3 Find v ∈ [1, `] such that r(x) ∼ b(v)(x) and deg r(x) < deg b(v)(x)

4 κ← bdeg b(v)(x)/2c
5 if deg r(x) ≤ κ or {deg b(l)(x)}`l=1,l 6=v ≤ κ then
6 R← (`+ 1)× (`+ 1) identity matrix
7 else
8 r̃(x)← Quotient(r(x), xκ)
9 for l = 1 to ` do

10 b̃(l)(x)← Quotient(b(l)(x), xκ)

11 R← HGEEA(r̃(x), {b̃(l)(x)}`l=1)

12


r(x)
b(1)(x)

...
b(`)(x)

← R


r(x)
b(1)(x)

...
b(`)(x)


13 Find v′ ∈ [1, `] such that r(x) ∼ b(v′)(x) and deg r(x) < deg b(v′)(x)

14 r(x), p(x`), q(x`)← GenDiv(r(x), {b(l)(x)}`l=1)
15 Construct matrix R′ according to (3.39) with v′

16 R← R′R

17


r(x)
b(1)(x)

...
b(`)(x)

← R′


r(x)
b(1)(x)

...
b(`)(x)


18 κ′ ← bκ/2c
19 r̃(x)← Quotient(r(x), xκ

′
)

20 for l = 1 to ` do

21 b̃(l)(x)← Quotient(b(l)(x), xκ
′
)

22 R′′ ← HGEEA(r̃(x), {b̃(l)(x)`l=l})
23 R← R′′R

24 Output: R

41

3 Decoding Interleaved Reed–Solomon Codes

According to (3.45) and (3.46),

r0(x) = 3x10 + 9x8 + 3x7 + 4x6 + x5 + 4x4 + 4x3 + x2 + x+ 5, (3.47)

b
(1)
0 (x) = x12, b

(2)
0 (x) = x11. (3.48)

Obviously, r0(x) ∼ b(1)(x). If r(x) = r0(x) and b(l)(x) = b
(l)
0 (x), then in Lines 8-10 in

Algorithm 12 we have v = 1 and κ = 6, and

r̃(x) = 3x4 + 9x2 + 3x+ 4, (3.49)

b̃(1)(x) = x6, b̃(2)(x) = x5. (3.50)

Then HGEEA is called in Line 11.
In this first recursion, κ = 3. It is not difficult to see that, after κ is cut to half, Line 5

is true and R is a 3× 3 diagonal matrix in Line 11. The index v′ = 1. Then we use the
polynomials in (3.49) and (3.50) for generalized division in Line 14 and obtain

R′ =

7x2 + 1 1 0
1 0 0
0 0 1


In Line 15. The polynomials are updated in Line 17 and with value

r(x) = 10x3 + 4x2 + 3x+ 4,

b(1)(x) = 3x4 + 9x2 + 3x+ 4, b(2)(x) = x5.

Since it is still in the first iteration, κ′ = 1, and in Line 19-21

r̃(x) = 10x2 + 4x+ 3,

b̃(1)(x) = 3x3 + 9x+ 3, b̃(2)(x) = x4.

Since deg r̃ ≤ deg b̃(2), R′′ is returned as a diagonal matrix in Line 22. Line 23 together
with Line 16 indicates the Euclidean matrix

R =

1 0 0
0 1 0
0 0 1

7x2 + 1 1 0
1 0 0
0 0 1

1 0 0
0 1 0
0 0 1

 =

7x2 + 1 1 0
1 0 0
0 0 1

 . (3.51)

for the first recursion.
We proceed on Line 12, with multiplication of R in (3.51) and the r0(x), b

(0)
0 (x), b

(1)
0 (x)

in (3.47) and (3.48), to give

r(x) = 10x9 + 4x8 + 10x7 + 10x6 + 7x5 + 3x2 + x+ 5,

b(1)(x) = 3x10 + 9x8 + 3x7 + 4x6 + x5 + 4x4 + 4x3 + x2 + x+ 5,

b(2)(x) = x11

42

3.5 Fast Decoding of IRS Codes

which lead to R′ in Line 15 to be

R′ =

x2 + 10 6 1
0 1 0
1 0 0

 . (3.52)

Line 17 yields

r(x) = 5x8 + 4x7 + 3x6 + 10x5 + 5x4 + 3x3 + 8x2 + 5x+ 3,

b(1)(x) = 3x10 + 9x8 + 3x7 + 4x6 + x5 + 4x4 + 4x3 + x2 + x+ 5,

b(2)(x) = 10x9 + 4x8 + 10x7 + 10x6 + 7x5 + 3x2 + x+ 5.

With κ′ = 3, the truncated polynomials are

r̃(x) = 5x5 + 4x4 + 3x3 + 10x2 + 5x+ 3,

b̃(1)(x) = 3x7 + 9x5 + 3x4 + 4x3 + x2 + 4x+ 4,

b̃(2)(x) = 10x6 + 4x5 + 10x4 + 10x3 + 7x2.

At Line 22, we find

R′′ =

6x2 + 4 1 2
1 0 0
0 0 1

 . (3.53)

So in Line 23 we multiply (3.51), (3.52) and (3.53), and have the result

R =

6x2 + 4 1 2
1 0 0
0 0 1

x2 + 10 6 1
0 1 0
1 0 0

7x2 + 1 1 0
1 0 0
0 0 1


=

9x6 + 3x4 + 9x2 + 1 6x4 + 9x2 + 9 6x2 + 4
7x4 + 5x2 + 5 x2 + 10 1

7x2 + 1 1 0


which is the returned value in Line 10 in the main algorithm, Algorithm 11. Now let us
continue the main one and compute r(x) and U(x`) in Line 11 and obtain

r(x) = 7x5 + 6x4 + 2x3 + 2x2 + x+ 5,

U(x`) = 9x6 + 3x4 + 9x2 + 1.

It can be seen that degU(x`) > deg r(x) and thus the algorithm stops. Making U(x) monic
yields x3 + 4x2 + x + 5 = (x + 2)(x + 3)(x + 10) with roots at α0, α3, α6 which give the
positions of errors.

43

3 Decoding Interleaved Reed–Solomon Codes

3.5.4 Complexity of Fast GEEA for MS-LFSR Synthesis

Given ` + 1 input polynomials r(x), b(l)(x) as shown in the input of Algorithm 11. Let
N ≥ deg b(v)(x) where r(x) ∼ b(v)(x). Let M(N) be the time to multiply two polynomials
of degree at most N . Let us start by analyzing the operations of Algorithm 12.

The polynomial truncation in Lines 8-10 and 19-21 requires negligible O(N) number
of operations. In Line 12, it involves multiplication of an (` + 1) × (` + 1) matrix R
with an (` + 1)× 1 matrix containing polynomials of degree at most N . This operation
requires (`+ 1)2 times of multiplication of two polynomials of degree at most N and a fewer
number of additions. Since the polynomials in R is sparse, i.e., they only have exponents
at multiples of `, the multiplication needs only O(M(N)/`) in time. Hence this step costs
c1`M(N) number of operations, for some constant c1.

Line 14 calls on GenDiv, to compute the quotients and remainder for each single iteration
in the generalized Euclidean algorithm. As we have analyzed in (3.33), the time to perform
GenDiv is c2M(N)/` for some constant c2.

Line 16 computes product of two (`+ 1)× (`+ 1) square matrices. The multiplication
of the two square matrices contains at most (` + 1)3 polynomial multiplications and a
slightly lower number of additions. However, each of the element in the matrix R is a sparse
polynomial. As a result, the matrix multiplication needs c3`

2M(N) number of operations,
where c3 is some constant.

The updating in Line 17 has the same time complexity as that in Line 12, i.e., O(`M(N)).
Line 23 is again a matrix multiplication with sparse polynomials. Therefore, the resultant

cost is O(`2M(N)).
All other lines except Lines 11 and 22 contain linear operations O(N) which can be

neglected.
Considering the complete HGEEA, Algorithm 12, the total cost TH(N) with input of degree

at most N , is bounded by

TH(N) ≤ 2TH(N/2) + c`2M(N), (3.54)

for some constant c. The term TH(N/2) comes from Lines 11 and 22 when HGEEA calls
itself recursively with half sized arguments. Substituting N/2 for N in (3.54) gives

TH(N/2) ≤ 2TH(N/4) + c`2M(N/2).

Subsequently substituting the halved term in (3.54) yields

TH(N) ≤ 2TH(N/2) + c`2M(N)

≤ 4TH(N/4) + 2c`2M(N/2) + c`2M(N)

≤ 8TH(N/8) + 4c`2M(N/4) + 2c`2M(N/2) + c`2M(N)

. . .

≤ 2log2NTH(N/2log2N) + c`2

(log2N)−1∑
i=0

2iM(N/2i)

= NTH(1) + c`2M(N) logN

= O(`2M(N) logN).

44

3.5 Fast Decoding of IRS Codes

Theorem 16 (Complexity of HGEEA). Algorithm 12 requires O(`2M(N) logN) opera-
tions in F if its arguments are of degree at most N , where M(N) is the time required to
multiply two polynomials of degree N .

Now we proceed to analyze the complexity of the fast generalized extended Euclidean
algorithm — FGEEA. Based on the complexity analysis of HGEEA, in Algorithm 11, the most
expensive steps are a call to HGEEA in Line 10 and a self call in Line 13. Hence, the total
cost TF (N) of FGEEA is bounded by

TF (N) = TF (N/2) + c`2M(N) logN (3.55)

for some constant c. We apply same idea as that in (3.54) to (3.55), to calculate TF (N).
Therefore,

TF (N) ≤ TF (N/2log2N) + c`2

(log2N)−1∑
i=0

M(N/2i) log(N/2i)

≤ TF (1) + c`2

(log2N)−1∑
i=0

M(N/2i) log(N/2i)

≤ TF (1) + c`2M(N) logN + c`2

(log2N)−1∑
i=1

M(N/2i) log(N/2i). (3.56)

The last term in (3.56) converges to c`2M(N) logN , hence

TF (N) = O(`2M(N) logN).

Theorem 17 (Complexity of FGEEA). Algorithm 11 requires O(`2M(N) logN) time if
its arguments are of degree at most N , where M(N) is the time required to multiply two
polynomials of degree N .

Multiplication of two polynomials of degree N can be carried out in time O(N logN) by
fast Fourier transform. Regarding to the MS-LFSR synthesis, N ≥ `Nmax + ` where Nmax

is the maximum length of the syndromes.

Corollary 18 (Complexity for fast GEEA solving MS-LFSR synthesis). Given `
sequences S(l)(x) of length N (l) for l = 1, . . . , ` over F[x]. Denote the maximum length of
the sequence by Nmax, Solving Problem 1, 2 or 3 with Algorithm 11 has time complexity
O(`3Nmax log2(`Nmax)).

45

3 Decoding Interleaved Reed–Solomon Codes

3.6 Discussion

To solve the multi-sequence shift register synthesis problem for the IRS codes, we proposed
a modified algorithm based on the Feng–Tzeng’s generalized extended Euclidean algorithm
such that the input sequences for the shift register can have different lengths. Our algorithm
requires quadratic numbers of field operations in the maximum length of sequences. We
also accelerated our algorithm with the “divide and conquer” strategy, which leads to
sub-quadratic number of field operations in the maximum sequence length.

46

4
Decoding Hermitian Codes

H
ermitian codes are one of the most studied families of algebraic geometry codes
[Gop77]. The Hamming distance d of an (N,K) Hermitian code over the field
FQ = Fq2 is not far from the Singleton bound d ≤ N −K + 1, but the code length

N can be much longer than the order Q of the field, in contrast to very popular (RS) codes.
This fact makes Hermitian codes potentially very interesting for applications and a number
of efficient unique decoding algorithms were suggested, correcting up to d/2 independent
errors [FR93, SJM+95] and list decoders, correcting more than d/2 errors [GS99].

In this chapter, we consider Hermitian codes having rate R = K/N ≥ 1/2q. For these
codes we propose an efficient algorithm, correcting phased bursts of errors of length q, later
called simply bursts. This means that we decode Hermitian codes in the burst metric, which
is equivalent to decoding q-folded Hermitian codes in Hamming metric. Our algorithm is
based on the fact, that decoding a Hermitian code can be reduced to decoding interleaved
extended Reed–Solomon (IERS) codes [YB92, Ren04].

Denote by dB the code distance of a Hermitian code in the burst metric. We consider
unique decoding algorithms correcting more than dB/2 bursts. These algorithms may fail
in some cases. By Pf (t) we denote the failure probability of a given decoding algorithm in
presence of t bursts in the channel. The function Pf(t) describes the performance of the
decoding algorithm. Usually Pf(t) = 0 if t < dB/2, then Pf(t) � 1 for dB/2 ≤ t ≤ tmax

for some integer tmax, which is called the decoding radius, and then Pf (t) ≈ 1 for t > tmax.
This definition of tmax is not precise, and it depends on what Pf (tmax)� 1 means. For the
proposed algorithm we will give the function Pf (t). Performance of a decoding algorithm
can be approximately described by tmax and Pf (tmax).

Known results. It was shown by Yaghoobian and Blake [YB92] and by Ren [Ren04]
that every Hermitian code can be represented as concatenation of an IERS outer code and
trivial (q, q) inner code. Hence decoding of a Hermitian code can be reduced to decoding
IERS codes [Ren04]. To decode an IERS code, Ren [Ren04] suggested to decode RS codes
individually, where every next decoder erases positions, corrected by previous RS decoders.
It was shown by examples, that this decoder can correct more than d/2 errors, if the errors
occur in bursts. However, burst error correcting radius and decoding-failure probability
were not obtained. The time complexity of the algorithm is O(N5/3) operations in FQ.

47

4 Decoding Hermitian Codes

It is known that, for decoding interleaved RS (IRS) codes, joint decoding [Kra03, SSB09]
is more effective than Ren’s [Ren04]. Özbudak and Yayla [OY14] suggested an algorithm
for joint decoding IERS codes having cubic complexity in length, and applied it to decode
Hermitian codes resulting in correcting up to tmax = (N −K)/(q + 1) bursts with failure
probability Pf (tmax) < (1−R)q/(q + 1). The algorithm for decoding Hermitian codes has
complexity O(N3) field operations.

Our contribution. We propose a joint decoding algorithm for interleaved extended RS
codes. The algorithm has quadratic complexity in length. This result has interest itself.

Then we apply this algorithm to decode Hermitian codes. Our algorithm has less failure
probability than the one of Ren [Ren04], and lower complexity and a better bound on
decoding failure probability in comparison with Özbudak and Yayla [OY14].

We also show that low rate Hermitian codes can correct even more bursts of errors using
“power” and “mixed” decoding [SSB10, WZZB12].

The rest of this chapter is organized as follows. In Section 4.1 we give a simple definition
of Hermitian codes and phased bursts. In Section 4.2 we reduce decoding Hermitian codes
to decoding IERS codes. Section 4.3 reminds of an idea of decoding a single extended
RS code. This idea is generalized in Section 4.4 for extended interleaved RS codes. The
proposed algorithm is based on decoding interleaved non extended codes described in the
previous Sections 3.3 and 3.4. In Section 4.5, we shortly explain how power and mixed
decoding can increase the decoding radius and/or decrease the failure probability for low
rate IERS codes. Finally, in Section 4.6 we describe and analyze the decoding algorithm
for Hermitian codes.

4.1 Hermitian Codes and Burst-Errors

Consider an extension field FQ where Q = q2 and q is a power of prime. A Hermitian curve
H(q) over FQ is defined by (c.f. [Sti88, Tie87, YB92])

yq + y = xq+1. (4.1)

There are q3 points p = (x, y) ∈ F2
Q that satisfy (4.1) and hence lie on the Hermitian curve

H(q). In order to list these points, denote a primitive element of FQ by α and define the
elements βi as follows:

(β1, β2, . . . , βq) =
(
0, 1, α(q+1), α2(q+1), . . . , α(q−2)(q+1)

)
. (4.2)

Let (1, γ) be a solution to (4.1), then q3 points pi,j = (xj, yi,j) on the Hermitian curve H(q)
can be written as elements of a q× q2 matrix P = (pi,j), i = 1, . . . , q, j = 1, . . . , Q as follows
[YB92, Ren04]

pi,j = (αj−1, γαj−1 + βi), i = 1, . . . , q, j = 1, . . . , Q− 1,
pi,q2 = (0, βi), i = 1, . . . , q.

(4.3)

We pay attention that the x coordinate of the point pi,j does not depend on i, and hence is
denoted by xj, and xj runs through all Q elements of FQ when j = 1, . . . , Q.

48

4.1 Hermitian Codes and Burst-Errors

To define Hermitian codes we consider bivariate (information) polynomials of the form

h(x, y) = f (1)(x) + yf (2)(x) + · · ·+ yq−1f (q)(x), (4.4)

where f (i)(x) is a polynomial over FQ of restricted degree. Given a point p = (x, y), by
h(p) we mean the evaluation h(p) = h(x, y), and for the matrix P = (pi,j) we agree that
h(P) = (h(pi,j)). For an integer m ≥ q2 − 1 we define the Hermitian code Hm as follows.

Definition 7 (Hermitian code). For an integer m ≥ q2 − 1 the Hermitian code Hm of
length N = q3 over the field Fq2 is the set of q × q2 matrices W

Hm = { W = h(P) }, (4.5)

where the matrix P is defined by (4.3), and h are all possible polynomials defined by (4.4)
with degree constraints for i = 1, . . . , q

deg f (i)(x) < k(i) =

⌊
m− (i− 1)(q + 1)

q

⌋
+ 1. (4.6)

Hermitian code Hm is a linear (N,K) code over FQ. The dimension of the code is

K =

q∑
i=1

k(i) = m− g + 1, (4.7)

where
g = (q2 − q)/2 (4.8)

is the genus of the Hermitian curve (4.1). The code distance dist(Hm) in the Hamming
metric is lower bounded by the designed distance [FR93, SJM+95]

dist(Hm) ≥ dH = q3 −m = N −K + 1− g (4.9)

and is upper bounded as dist(Hm) ≤ q3 − qbm/qc [Ren04]. So a Hermitian code almost
reaches the Singleton upper bound N −K + 1 on the code distance, but it is longer by
factor q in comparison with RS codes, which is an advantage in many applications.

There are effective algebraic decoding algorithms, which allow correcting up to (dH−1)/2
independent errors [FR93, SJM+95]. However in this work we are focused on the correction
of phased bursts of errors of length q, i.e., q-bursts. One burst-error can corrupt one column
in the code matrix W , i.e., at least one element of the column is wrong.

Definition 8 (q-burst metric). The burst weight wB(V) of a q × q2 matrix V is the
minimum number of columns that contain all non zero components of V . The burst distance
dB(V,W) between matrices V and W of the same size is the weight of their difference
dB(V,W) = wB(V −W).

It follows from (4.9) and from [BS96] that the code distance dB of an (n, k) Hermitian code
in the q-burst metric is bounded by

(N −K + 1− g)/q ≤ dB ≤ (N −K)/q + 1 = d̂B. (4.10)

The code Hm with burst distance dB guarantees the correction of (dB − 1)/2 bursts of

errors. In Section VIII we propose an algorithm correcting with high probability q
q+1

(d̂B−1)
bursts of errors, which is almost twice the guaranteed correcting radius.

49

4 Decoding Hermitian Codes

4.2 From Hermitian to Reed–Solomon Codes

Let the received matrix V be obtained from a code matrix W of a Hermitian code Hm

by changing some elements in t columns of W . We can write V = W + E, where E has t
nonzero columns and we assume that every nonzero column in E is equiprobable. For the
error free case, V = W , from the definition of the code we have for all i, j

vi,j = f (1)(xj) + yi,jf
(2)(xj) + · · ·+ yq−1

i,j f
(q)(xj). (4.11)

For the jth column rj , j = 1, . . . , Q, of the received matrix V we get the system of equations
for unknowns f (i)(xj)

f (1)(xj) + y1,jf
(2)(xj) + · · ·+ yq−1

1,j f
(q)(xj) = v1,j

f (1)(xj) + y2,jf
(2)(xj) + · · ·+ yq−1

2,j f
(q)(xj) = v2,j

. . .

f (1)(xj) + yq,jf
(2)(xj) + · · ·+ yq−1

q,j f
(q)(xj) = vq,j

. (4.12)

It follows from (4.3) that for every fixed j, the elements yi,j are different. Hence the
Vandermonde matrix of the system (4.12) is non-singular and we can uniquely compute
the unknowns f (i)(xj). By solving the system (4.12) for each of the Q columns of V we
will find f (i)(xj) for all i and j. Solving the system (4.12) with q unknowns by Gaussian
elimination requires O(q3) filed operations. Solving this system Q = q2 times requires
O(Qq3) = O(N5/3) operations in FQ, since N = q3.

Let us recall the extended Reed–Solomon codes.

Definition 9 (Extended Reed–Solomon code). If αi = 0 for some i, i.e., if zero
locator is used, then the code is called extended Reed–Solomon (ERS) code ERS(n, k). An
extended primitive RS code has all q field elements as locators, the length of this code is
n = q.

Definition 10 (Interleaved extended Reed–Solomon codes). Given ` extended RS
codes ERS(n + 1, k(l)), l = 1, 2, . . . , `, over Fq of length n + 1 and dimensions k(l), the
interleaved ERS (IERS) code IERS(n+ 1, k(1), . . . , k(`)) consists of all q× (n+ 1) matrices
C

C =


c(1)

c(2)

...
c(`)

 =


f (1)(x1) . . . f (1)(xn+1)
f (2)(x1) . . . f (2)(xn+1)

...
...

...
f (`)(x1) . . . f (`)(xn+1)

 , (4.13)

where c(l) ∈ ERS(n+ 1, k(l)) and x1, . . . , xn+1 are the code locators.

Now let us return to the decoding of Hermitian codes. By solving Q systems (4.12) we
will compute f (i)(xj) for all i, j and obtain for n + 1 = Q a code matrix C (4.13) of the
interleaved extended RS codes in the error free case.

50

4.3 Decoding Extended Reed–Solomon Codes

If there is at least one error in the jth column vj of the Hermitian codeword, then the
solution f (1)(xj), . . . , f

(q)(xj) of the system (4.12) will be wrong, i.e., components of the
jth column in the matrix C will be replaced by other field elements, and we will get from
C the received matrix R of the IERS code with the jth column wrong. If t columns of the
Hermitian matrix W were corrupted, then the same t columns of received matrix R of the
IERS code will be corrupted.

If we know how to decode IERS codes, then we get the following algorithm correcting
burst errors in the Hermitian code. Given a received matrix V of the Hermitian code with t
erroneous columns, i.e., with t bursts of errors, we first compute the matrix R of the IERS
code with t erroneous columns. Second, by decoding the IERS code we find a codeword
C nearest to R in the burst metric and obtain information polynomials f (i)(x) for all i.
Since information polynomials for IERS and Hermitian codes coincide, we can transform
decoding Hermitian codes with burst errors to decoding IERS codes.

In the next sections we show how to decode IERS codes.

4.3 Decoding Extended Reed–Solomon Codes

Lemma 19. Consider an extended primitive (n+ 1, k, d+ 1) RS code ERS(n+ 1, k) from
Definition 9 of length n+ 1 = q over Fq, having all nonzero elements αi, i = 1, . . . , n, of
Fq as nonzero code locators and the last zero locator αn+1 = 0. Then the following matrix
H is a parity check matrix of the code

H =


αd−1

1 αd−1
2 . . . αd−1

n 0
...

... . . .
...

...
α2

1 α2
2 . . . α2

n 0
α1 α2 . . . αn 0
1 1 1 1 1

 , (4.14)

where d = n− k + 1.

Proof: The proof is similar to Lemma 2. Since αin+1 = 0 for i 6= 0 and α0
n+1 = 1, it

follows from Definition 9 that the code can be generated by the following matrix of full
rank k

G =


1 1 1 1 1
α1 α2 . . . αn 0
...

... . . .
...

...
αk−1

1 αk−1
2 . . . αk−1

n 0

 . (4.15)

The statement of the lemma follows, since H has full rank n− k + 1 and each row of H is
orthogonal to each row of G.

51

4 Decoding Hermitian Codes

By Ĉ, denote the (n, k − 1, d+ 1) RS code obtained by shortening the code C in the last
position. The shortened code Ĉ is defined by the parity check matrix

Ĥ =


αd−1

1 αd−1
2 . . . αd−1

n
...

... . . .
...

α1 α2 . . . αn
1 1 1 1

 , (4.16)

obtained from H by deleting the last column. The code Ĉ of length Q − 1 has nonzero
locators only and hence is a primitive RS code.

By C̃, denote the primitive (n, k, d) RS code obtained by puncturing the code C in the

last position. The punctured code C̃ is defined by the parity check matrix

H̃ =


αd−1

1 αd−1
2 . . . αd−1

n
...

... . . .
...

α2
1 α2

2 . . . α2
n

α1 α2 . . . αn

 , (4.17)

obtained from H by deleting both the last column and the last row.
The extended RS code C can correct up to t = bd/2c errors as follows (c.f. [Bla83]).

Assume a codeword c ∈ C was transmitted and a word r = (r1, r2, . . . , rn+1) over FQ
containing up to t errors was received.

If the distance d+ 1 of the extended code is even, then the punctured code C̃ has odd
distance d and can correct t errors. Hence, we can correct up to t errors in the punctured
word r = (r1, r2, . . . , rn) using a bounded minimum distance (BMD) decoder of the classical

RS code C̃. After decoding, the last symbol rn+1 can be corrected using the last parity
check c1 + c2 + · · ·+ cn+1 = 0 from (4.14). Let us consider the nontrivial case of odd d+ 1.

First we compute the syndrome

S = (S1, S2, . . . , Sd−1, Sd) = rHT = eHT , (4.18)

where e is the error vector. We distinguish two cases: the last received symbol rn+1 is
wrong or correct.

1. Assume that rn+1 is wrong and consider the received word r punctured in the last
position, r′ = (r1, . . . , rn) as a received word of the punctured code C̃. The syndrome

S̃ = (S1, S2, . . . , Sd−1) = r′H̃ of the punctured code C̃ can be obtained directly from
the known syndrome S. By assumption, r′ contains at most t − 1 errors. The
punctured code C̃ has even distance d̃ = d. It can correct up to t− 1 errors using a
BMD decoder of a classical RS code and can detect if there were t errors. If t errors
were detected, then we go to the next step, otherwise all errors in r′ were corrected
and the last symbol can be obtained using the last parity check c1 +c2 + · · ·+cn+1 = 0
from (4.14).

52

4.4 Interleaving of Extended Reed–Solomon Codes

2. Since t errors were detected in r′, the last symbol rn+1 in word r is error free by
assumption, en+1 = 0, and we should correct t errors in the word r′. To do this we
consider the word r′ as a received word of the shortened code Ĉ having distance d+ 1
and hence correcting t errors. It follows from (4.14) and (4.16) that the syndrome

of r′ in the shortened code Ĉ is Ŝ = r′ĤT = (e1, e2, . . . , en)ĤT = eHT = S since

en+1 = 0. Using a BMD decoder of classical RS code Ĉ we will correct t errors in the
word r′ and obtain the correct codeword, since rn+1 is error free.

The drawback of the algorithm is that we use BMD decoders of RS codes twice. However, it
was shown in [Bla83, Section 9.3] how to use results of the first decoding step in the second
step. This method gives an algorithm for the extended code having the same complexity as
a BMD decoder of a classical RS code. In the next sections we show how to extend these
ideas for interleaved extended RS codes.

4.4 Interleaving of Extended Reed–Solomon Codes

Consider ` extended Reed–Solomon codes ERS(n+ 1, k(l)), l = 1, 2, . . . , `, over F = FQ of
length n+ 1 and dimensions k(l) defined by the parity check matrices H(l) obtained from
(4.14) by replacing d with d(l) = n− k(l) + 1. The IERS code IERS(n + 1, k(1), . . . , k(`))
consists of all `× (n+ 1) matrices C

C =


c(1)

c(2)

...
c(`)

 =


c

(1)
1 c

(1)
2 . . . c

(1)
n+1

c
(2)
1 c

(2)
2 . . . c

(2)
n+1

...
...

...
...

c
(`)
1 c

(`)
2 . . . c

(`)
n+1

 ,

where c(l) ∈ ERS(n+ 1, k(l)). Denote the received matrix R as follows

R = (R1 . . . Rn+1) =
(
r(1)T . . . r(`)T

)T
and compute ` syndrome vectors S(l) = r(l)H(l)T . Our goal will be to correct up to t+max

columns in R, where decoding radius t+max is obtained by (3.19) using parameters of the
IERS code. Let us reduce the decoding of IERS codes to the decoding of IRS codes. If we
delete the last column Rn+1 from the received matrix R we obtain interleaving of classical
codes RS(n, k(l), d), which can be efficiently decoded. Let us consider again two cases: the
last column Rn+1 is wrong or correct.

1. Assume that Rn+1 is wrong. Denote the received matrix punctured in the last position
by R′ = (R1, . . . , Rn), and denote rows of the matrix by r(l)′ . By assumption, there
are t−1 erroneous columns in R′. Syndromes S(l)′ of punctured codes can be obtained
by puncturing the syndromes S(l) in the last position. We will decode the matrix R′

using interleaving of ` punctured codes C̃(l), which are classical RS codes defined by

53

4 Decoding Hermitian Codes

parity check matrices H̃(l) (4.17), where d should be replaced by d(l) = n− k(l) + 1 to

get H̃(l) from H̃. By decoding interleaving of ` codes C̃(l) we are able to correct up to
tmax columns in R′ according to (3.19), where from (4.21)

tmax = t+max − `/(`+ 1) ≥ t+max − 1.

Hence, from (3.20) decoding failure probability when correcting t− 1 columns is

Pf (t) ≤ γQ−(l+1)(tmax−(t−1))−1 ≤ γQ−(l+1)(t+max−t)−1 (4.19)

After this, the last column in R can be corrected using the last parity check C1 +
· · ·+Cn+1 = 0 in (4.14). Since we are correcting errors beyond half the code distance,

we can not detect the case when t+max columns of R̃ are in error and hence we should
go to the next step.

2. Assume that Rn+1 is correct. By decoding R′ using an interleaving of ` shortened
codes Ĉ(l) and full syndromes S(l), we are able to correct up to t+max columns in R′

according to Theorem 5, and get a correct code matrix C since the last column Rn+1

was error free by assumption. By Theorem 5, the decoding failure probability when
correcting t columns is

Pf (t) ≤ γQ−(l+1)(t+max−t)−1, (4.20)

hence (4.20) gives the decoding failure probability of the complete decoder, since
(4.20) coincides with the upper bound (4.19).

The proposed solution calls twice the decoder of IRS codes and hence extension of IRS codes
by one symbol is twice more complex in comparison with classical RS codes. Fortunately, we
are able to localize erroneous columns executing the following modification of Algorithm 4
only once.

The syndrome S(l) can be obtained from S(l)′ by adding one more d(l)th symbol. The
Berlekamp–Massey (BM) type algorithm processes elements of a syndrome sequence sequen-
tially to compute the polynomial Λ(x). As a result, for the case of a single sequence, when
the sequence S(l)′ was processed, to process the sequence S(l) one should just continue the
BM algorithm and make one step for the last element of S(l).

In case of multiple sequences of different lengths, the application of this idea depends on
the order of processing the elements of the sequences. Fortunately, the processing order in
Aglorithm 4 allows applying this idea. To explain the processing order in Algorithm 4 we
consider the following example of two syndrome sequences

S(1) = (S
(1)
1 , S

(1)
2 , S

(1)
3)

and

S(2) = (S
(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 , S

(2)
5)

54

4.5 Power Decoding

of lengths N (1) = 3 and N (2) = 5 respectively. Then we obtain the maximum sequence
length N = 5 and compose the syndrome matrix as follows

S =

(
S

(1)
1 S

(1)
2 S

(1)
3

S
(2)
1 S

(2)
2 S

(2)
3 S

(2)
4 S

(2)
5

)
.

This means that the sequences are aligned to the right. In Algorithm 4 the elements S
(l)
n in

the matrix S are processed one-by-one and downwards by columns in the following order

S
(2)
1 , S

(2)
2 , S

(1)
1 , S

(2)
3 , S

(1)
2 , S

(2)
4 , S

(1)
3 , S

(2)
5 .

This processing order in Algorithm 4 is implemented in Line 7 and Line 8. The last
elements of the syndrome sequences are in the last column of the syndrome matrix S
which is processed column wise. This allows to simplify our decoding as it is shown by
Algorithm 13, where Step 1 is implemented in Line 5 and Step 2 in Line 6. One of the steps
or both can fail. By ti and Λi(x) we denote the number of errors and the error locator
polynomial found in the ith step, i = 1, 2, respectively. For every found Λi(x) we compute
positions of errors in Line 8, correct them separately in each interleaved code in Line 10,
and compute the code matrix in Line 11.

From the above discussion and from Theorem 5 we obtain the following theorem.

Theorem 20. For the code IERS(n + 1, k(1), . . . , k(`)), Algorithm 13 corrects errors of
weight t up to decoding radius t ≤ min{t+max, n − kmax + 1} with failure probability Pf(t)
upper bounded by (4.20), with

t+max =
`

`+ 1

(
n− k + 1

)
, (4.21)

where k and kmax are defined in Theorem 5.

The complexity of Algorithm 13 is also O(`n2) operations in FQ similar to the one for
classical IRS codes. We localize errors calling the shift register synthesis algorithm once.

4.5 Power Decoding

To describe an idea of “power” decoding [SSB10] of an (extended) RS code, consider a code
vector c = (c0, . . . , cn−1) ∈ RS(n, k) and define cl = (cl0, . . . , c

l
n−1) for l = 1, 2, From

Definition 3 it immediately follows that if c ∈ RS(n, k) then cl ∈ RS(n, (k − 1)l + 1) for
(k− 1)l+ 1 ≤ n. In particular: if c ∈ ERS(n, k) = C then cl ∈ ERS(n, (k− 1)l+ 1) = C(l).

The idea of power decoding is as follows. We transmit a codeword c of ERS(n, k) and
receive a word r with t errors. At the transmitter we can compute ` powers of c and get
codewords c, c2, . . . , c`, from ERS codes C(l), l = 1, . . . , `, where ` is the maximum number,
such that (k − 1)`+ 1 ≤ n. We can think that we virtually transmitted interleaved words
c, c2, . . . , c`, despite in reality we transmit c only.

55

4 Decoding Hermitian Codes

Algorithm 13: Decoding an IERS code

1 Input: Receive R = (R1 . . . Rn+1) =
(
r(1)T . . . r(`)T

)T
2 begin

3 Compute syndromes S(l) = r(l)H(l)T , l = 1, . . . , `

4 Run Algorithm 4 for ` sequences S(l) of length N (l) = n− k(l) as follows:
5 First run Algorithm 4 for n = 1 . . . , N − 1 and get t1 = λ1 and Λ1(x). If ε 6= 0

skip Λ1(x)

6 Run Lines 6-16 of Algorithm 4 for the last syndrome elements, and get t2 = λ
and Λ2(x). If ε 6= 0 skip Λ2(x). If both Λi(x) are skipped, declare failure

7 for each not skipped Λi(x), i = 1, 2 do
8 Find roots αi1 , . . . , αiτ of Λi(x) in F. If number of roots of Λi(x) not equal ti

skip Λi(x)
9 for l = 1, . . . , ` do

10 Compute c(l) by correcting t erasures in positions i1, . . . , it of r(l), get the

`× n matrix C̃(i) of the punctured IRS code

11 Compute C
(i)
n+1 = −C(i)

1 − C
(i)
2 − · · · − C

(i)
n

12 Compute the code matrix C(i) = (C̃(i), C
(i)
n+1)

13 Output: Code matrix C(i) nearest to R in the burst metric or decoding failure

At the receiver we compute ` powers of r and get virtually received words r, r2, . . . , r`.
Observe that error free positions in r stay error free in all rl as well. Hence at the receiver
we have a matrix R of interleaved ERS code with t corrupted columns. Since we know how
to decode IERS code, we are able to decode the matrix R. This decoding allows to decode
a single extended RS code up to the following radius for ` ≥ 2

tpower =

⌊
2`(n)− `(`+ 1)k + `(`− 1)

2(`+ 1)

⌋
+ 1, (4.22)

which coincides with the Sudan decoding radius [Sud97]. The decoding failure probability
for ` = 2, which corresponds to code rates between 1/3 and 1/6, is given by (3.20) with a
slightly different coefficient γ

γ =
Q

Q− 1

(
Q

Q− 1
+

1

Q

)t
≈ 1.

For code rates below 1/6, the failure probability can be estimated using (3.20) or (3.21) as
well under the assumption that the virtual error vectors ri− ci, i = 1 . . . , `, are statistically
independent, correctness of which is supported by simulations.

56

4.6 Decoding Hermitian Codes

The idea of power decoding can be applied for interleaved (extended) RS codes [SSB07],
if some of them have low rate. In this case every codeword of a low rate code can be
virtually extended to two or more codewords. This increases the order of interleaving, the
number of equations and the decoding radius or decreases the failure probability.

For the interleaving of low rate codes, the interleaving order can be increased even more
using “mixed” decoding based on the following observation by Wachter–Zeh et.al. [WZZB12].
If c, c̃ are codewords of RS(n, k) and RS(n, k̃) respectively, then the word with component-
wise product is a codeword of an (n, k+ k̃− 1) RS code. Simulations show that usually the
new created equations are linearly independent with the original ones and one still can use
(3.21) to estimate failure probability, despite this was not proved.

4.6 Decoding Hermitian Codes

Decoding of a Hermitian code is shown by Algorithm 14.

Algorithm 14: Decoding a Hermitian code

1 Input: Received matrix V

2 begin
3 For j = 1, . . . , Q solve the system (4.12) and get all f (i)(xj), i = 1, . . . , q (with

errors)
4 Form matrix R of IERS code (4.13)
5 Decode R by Algorithm 13, get a codeword C of IERS code

6 Find information polynomial f (i)(x), i = 1, . . . , `, for every component ERS

codeword c(i)

7 Output: Information polynomials f (i)(x), i = 1, . . . , `, or decoding failure

Theorem 21. For a Hermitian (N,K) code Hm, see Definition 7, Algorithm 5 corrects t
erroneous columns (bursts) up to decoding radius tmax with failure probability Pf (t) if

t ≤ tmax = min

{
N −K
q + 1

, N/q − kmax

}
, (4.23)

where
kmax = max

l
{k(l)} = bm/qc+ 1

see (4.6), and

Pf (t) ≤ P̂f (t) = γQ−(q+1)(tmax−t)−1 , (4.24)

γ =

(
Ql − 1

Q

Ql − 1

)t
Q

Q− 1
≈ 1.

For t ≤ (N/q − kmax)/2 holds Pf (t) = 0.
The time complexity of Algorithm 14 is O(N5/3) operations in FQ.

57

4 Decoding Hermitian Codes

Proof: (sketch) After solving the system of linear equations (4.12) of full rank, every
nonzero burst of Hermitian code is mapped in one-to-one manner to an nonzero burst of
the IERS code. Hence, both codes have the same number of bursts and all nonzero bursts
are equiprobable.

The Hermitian code will be successfully decoded as soon as we decode the correspondent
IERS code. Hence, the decoding radius and the failure probability can be obtained from
Theorems 5 and 20 by using parameters of the Hermitian and IERS codes in Theorem 5:
interleaving order ` = q, length of RS codes n = Q, dimensions k(l), and average dimension
of RS codes is k = K/q. As a result, for Algorithm 14, we obtain time complexity
O(q5) = O(N5/3) operations in FQ, since N = q3.

Observe that when N−K
q+1
≤ N/q−kmax which is frequently satisfied, we have a case which

is interesting for practice:

tmax =
N −K
q + 1

,

i.e., , we can correct q
q+1

(d̂B − 1) bursts of errors which is very close to an upper bound

d̂B (4.10) on the burst distance of the Hermitian code and is almost twice larger than the
guaranteed burst correcting radius (dB − 1)/2.

Decoding radius and/or failure probability can be improved for low rate codes using
power or mixed decoding techniques as described in Section 4.5. Power decoding can be
applied when the minimal rate k(q)/Q of the interleaved RS codes is at most 1/3, i.e., when
the rate rHm of the Hermitian code is bounded by

rHm =
m− g + 1

q3
≤

⌈
q2−3

3

⌉
q2

+
1

2q
+

1

2q2
. (4.25)

Table 4.1 shows dependence of the threshold rate on q. For q = 4 we can apply power
decoding staring from rate 1/2, however, for large q the threshold tends to 1/3. Mixed
decoding can be applied when k(q−1)/Q ≤ 1/3.

q = 4 q = 8 q = 16

rHm 0.51 0.40 0.36

Table 4.1: Threshold rate for Hermitian codes to use “power” decoding

We made simulations to verify precision of our bounds for failure probability. This can
be done when the number of bursts is close to the possible maximum, otherwise, the failure
probability is usually too small to simulate. Our simulations show that all obtained bounds
for the failure probability coincides with simulations results up to a factor < 3. Some
simulations results are shown in Table 4.2.

Example 3. To compare the performance of our algorithm with the ones by Ren [Ren04]
and by Özbudak and Yayla [OY14], let us consider the example from [Ren04, OY14, YB92]

58

4.7 Discussion and Future Work

H26(64, 21, 38) H30(64, 25, 34)

tmax 8 7
tpower 9 8

Pf (tpower) 31056/106 ≈ 3.1 · 10−2 34574/106 ≈ 3.5 · 10−2

P̂f (tpower) 6 · 10−2 6 · 10−2

tmax : decoding radius without syndrome extension
tpower : decoding radius with syndrome extension
Pf : simulated failure probability for running 106 times

P̂f : theoretical failure probability upper bound

Table 4.2: Failure probability Pf (t) for Hermitian codes over F42

of rate R = 1/2 Hermitian code H37(64, 32) over F16 with q = 4 and Q = 16. The decoding
of the code is reduced to the decoding of q = 4 interleaved extended RS (n+ 1, k(i), d+ 1)
codes: (16, 10, 7), (16, 9, 8), (16, 7, 10), and (16, 6, 11).

It follows from Theorems 5 that tmax = 6.4, hence we can correct up to 6 bursts. The
failure probability in case of 6 bursts in the channel is Pf (6) ≤ γQ−3 = 2.6× 10−4, where
γ = 1.067. In case of 5 bursts we have Pf (5) ≤ γQ−8 = 2.3× 10−10.

The decoding algorithm proposed by Özbudak and Yayla [OY14] also can correct up to
6 busts with failure probability Pf(t) ≤ (1−R)Q/(Q+ 1) = 0.4. Actually, for these code
parameters they give a slightly better bound Pf (t) ≤ 0.37. This bound does not depend on
the number of bursts t in the channel and is very weak. Their simulations show that for
t = 6 bursts the failure probability is 1.7× 10−3.

Ren [Ren04] has shown one example, when his algorithm can correct 6 bursts. Let us
estimate the decoding failure probability of his algorithm for t = 6 bursts. First, he decodes
the (16, 6, 11) ERS code, correcting up to 5 errors, which was the case in his example.
However, with probability (Q− 1)/Q)6 = 0.67 there will be 6 errors in the first word and
the decoder will fail. Hence, for Ren’s decoder we have Pf (6) ≥ 0.67.

4.7 Discussion and Future Work

A joint decoding algorithm of interleaved extended RS codes is proposed, having quadratic
complexity in the code length. Then we apply this algorithm to decode Hermitian codes
Hm(N,K) over FQ = Fq2 resulting in correcting up to tmax = (N −K)/(q + 1) bursts with

complexity O(N
5
3) field operations. For the failure probability Pf(t) we give an upper

bound Pf (t) ≤ γQ−(q+1)(tmax−t)−1, which is at most 1/Q when t = tmax, and exponentially
decreases when t decreases, see Theorem 21 for details. Simulations show that the bound is
precise. As a result, our algorithm has less failure probability than the one of Ren [Ren04],
and less complexity and better bound on the decoding failure probability in comparison
with Özbudak and Yayla [OY14].

59

4 Decoding Hermitian Codes

We also show that low rate Hermitian codes can correct even more bursts of errors using
“power” and “mixed” decoding [SSB10, WZZB12].

60

5
Decoding Gabidulin Codes with Errors
and Erasures

G
abidulin codes [Del78, Gab85, Rot91] are closely related to Reed–Solomon codes
and have maximum possible distance in rank metric. These codes have many
applications and recently they have drawn significant attention since they can

provide a near-optimal solution to the error control problem in network coding [KK08,
SKK08]. It was shown in [SJB11] that interleaving or the direct sum of ` Gabidulin codes
allows decreasing the redundancy and increasing the error correcting radius nearly twice.
So, it is important to be able to correct Gabidulin codes and their interleaving efficiently.

There are a number of known error correcting algorithms for Gabidulin codes similar to
Reed–Solomon codes: a “standard” Berlekamp–Massey like approach [PT91] by Paramonov
and Tretjakov [RP04] or a Sugiyama et al. like approach [Gab85] by Gabidulin, in contrast
to Welch–Berlekamp like algorithm [Loi06] by Loidreau or Gao like algorithm [WZAS13]
by Wachter et al. We will consider the standard approach, where first a key equation
should be solved to find the “positions” of errors, and second the error vector can be
computed. In contrast to Reed–Solomon codes, where the second step is relatively simple,
for Gabidulin codes, the second step is very complicated to understand and to compute. In
[SK09], Silva and Kschischang suggested an elegant solution for the second decoding step
using a transform domain approach. This approach allows for simplification of derivation
and proofs of the second decoding step, and also allows for a decrease in the decoding
complexity.

In contrast to Hamming metric, it is not obvious how to define erasures in rank metric.
The general definition of erasures for rank metric was proposed in [SKK08] by Silva,
Kschischang and Kötter, and in [GP08] by Gabidulin and Pilipchuk. This definition
arises from network coding applications and generalizes the previous definition [GPT91],
where it was assumed that a number of rows and columns in the code matrix are erased.
Most decoding algorithms for Gabidulin codes and for interleaved Gabidulin codes [LO06],
[Ove07], [SJB11] were obtained for correcting errors only without erasures. However, in
[SKK08] and [GP08] the standard decoding algorithms were extended for the case of errors
and erasures. These algorithms work in the “time domain” where the second decoding step

61

5 Decoding Gabidulin Codes with Errors and Erasures

(finding the error vector after solving the key equation) is complicated. Error and erasure
correction algorithms for the transform domain have not been known so far.

In this chapter, we propose a transform domain algorithm correcting errors and erasures
for Gabidulin codes. We also generalize this algorithm for interleaved Gabidulin codes. The
transform-domain approach is used here because it dramatically decreases the number of the
decoding steps and simplifies the proofs, so that the algorithm is more transparent. These
are similar to the benefits gained from Silva and Kschischang’s use of the transform-domain
for decoding in the case of errors only [SK09]. However, our approach does not yield an
improvement in complexity order and requires quadratic number of the field operations
in the code length, though, we believe that it has more potential to be accelerated in
comparison with known time domain algorithms.

5.1 Basics of Gabidulin Codes

Let q ≥ 2 be a power of prime. Denote by Fm×nq the set of all m × n matrices over the
finite field Fq. A code C is defined as any nonempty subset of Fm×nq . The distance d(V,W)
between two matrices V,W ∈ Fm×nq is defined as d(V,W) = rank(V −W). This rank
distance was probably first introduced in [Hua51] as “Arithmetic distance”, where it was
observed that it is indeed a metric. The minimum distance of a code C is defined as the
minimum rank distance between two different code matrices.

To define the class of Gabidulin codes we consider an extension field F = Fqm , and the
Frobenius automorphism θ(a) = aq for a ∈ Fqm . For an integer i we define θi = θi mod m,
θ0(a) = a, and θi(a) = θ(θi−1(a)).

Given a basis of the field Fqm over the subfield Fq, we represent a element a of Fqm as a
column vector ϕ(a) of length m over Fq. In this way every row vector v of length n over
Fqm will be written as an m× n matrix V = ϕ(v) over Fq. The rank norm (weight) rankv
of a vector v is defined to be rankϕ(v). The rank distance between two vectors v,w ∈ Fnqm
is defined as rankϕ(v−w). Later we consider a code C in two equivalent forms: as the set
of matrices C over the base field Fq, or the set of vectors c over the extension field Fqm .

For n ≤ m, let us fix the vector

h = (h1, h2, . . . , hn), (5.1)

with components hi ∈ Fqm linearly independent over Fq, and define the following n × n
transform matrix Φ over Fqm

Φ =


h1 h2 . . . hn
θ(h1) θ(h2) . . . θ(hn)

...
...

...
...

θn−1(h1) θn−1(h2) . . . θn−1(hn)

 . (5.2)

The transform matrix Φ is nonsingular [LN83] and has the inverse matrix Φ−1.

62

5.1 Basics of Gabidulin Codes

Definition 11 (Gabidulin code). A Gabidulin code G in the vector form is a linear
(n, k) code of length n and dimension k over the field Fqm, n ≤ m, with parity check matrix
H, i.e.,

G(qm;n, k) = {c ∈ Fnqm : cHT = 0},

where the (n−k)×n parity check matrix H consists of the first n−k rows of the transform
matrix Φ.

Later we will give another equivalent definition of Gabidulin codes as evaluation codes.
The distance of a Gabidulin (n, k) code in rank metric is d = n− k + 1 and it reaches

the Singleton type upper bound [Gab85].

5.1.1 Skew Polynomials

To work with Gabidulin codes it will be convenient to use the skew polynomial ring of
automorphism type [Ore33] which we now define. Given a field F and an automorphism θ
of F, one defines a ring structure on the set

F[x; θ] = {a(x) = anx
n + · · ·+ a1x+ a0 | ai ∈ F and n ∈ N}.

This is the set of formal polynomials where the coefficients are written on the left of the
variable x. The addition in F[x; θ] is defined to be the usual addition of polynomials and the
multiplication is defined by the basic rule xa = θ(a)x and extended to all elements of F[x; θ]
by associativity and distributivity. This means that for two skew polynomials a(x) of degree
da and b(x) of degree db, the coefficients ck of the product polynomial c(x) = a(x)b(x) of
degree da + db are defined for k = 0, 1, . . . , da + db as follows :

ck =
∑
i+j=k

aiθ
i(bj) =

min{k,da}∑
i=max{0,k−db}

aiθ
i(bk−i) =

min{k,db}∑
j=max{0,k−da}

ak−jθ
k−j(bj). (5.3)

In particular, for da ≤ db we have

ck =
da∑
i=0

aiθ
i(bk−i) for da ≤ k ≤ db. (5.4)

Given an automorphism θ, by M(N) we denote the complexity of the multiplication of
two skew polynomials of maximum degree N . Using (5.3) this can be done with quadratic
complexity M(N) = O(N2).

Given a skew polynomial a(x) of degree n, we define a θ-reverse skew polynomial a(x)
having coefficients

ai = θi−n(an−i) for i = 0, ..., n. (5.5)

In our case of the finite field and the Frobenius automorphism θ, there is a ring isomor-
phism between the ring F[x; θ] of skew (or twisted) polynomials and the ring of linearized

63

5 Decoding Gabidulin Codes with Errors and Erasures

polynomials. The last term is used more often in the coding theory literature. Given a
skew polynomial a(x) ∈ F[x; θ], we denote the corresponding linearized q-polynomial by
a(q)(x), where

a(q)(x) =
n∑
j=0

ajθ
j(x) = anx

qn + · · ·+ a1x
q1 + a0x,

and n is called the q-degree of a(q)(x) if an 6= 0, degq a(q)(x) = n. The polynomial a(q)(x) is
called monic if an = 1. For linearized polynomials a(q)(x) and b(q)(x), the addition is the
usual addition of polynomials and the (symbolic) product of linearized polynomials is defined
as the composition a(q)(x)⊗ b(q)(x) = a(q)(b(q)(x)), with q-degree degq a(q)(x) + degq b(q)(x).

Evaluation (or operator evaluation) of a skew polynomial a(x) at α ∈ Fqm we define as
evaluation a(q)(α) of correspondent linearized polynomial, and we say that α is a root of
a(x) and a(q)(x) if a(q)(α) = 0.

Definition 12 (Gabidulin codes as evaluation). Given h1, . . . , hn ∈ Fqm linearly in-
dependent over Fq, from evaluation point of view, the Gabidulin codes is defined as follows

G(qm;n, k) = {c = (a(q)(h1), . . . , a(q)(hn)) : deg a < k}.

Definition 13 (Minimal polynomial). For a set A = {α1, . . . , αs} ⊆ Fqm define the
minimal linearized polynomial with respect to Fqm, denoted MA(x) as the monic linearized
polynomial over Fqm of least degree whose root space contains A. The correspondent skew
polynomial is called the minimal skew polynomial and is denoted by minpoly(a), where the
set A is written as a vector a = (α1, . . . , αs).

Let us find a method to compute the minimal polynomial, which we will need later for
decoding. If A is a set of roots of a linearized polynomial a(q)(x) then 〈A〉 are also roots
of a(q)(x), where 〈A〉 is the linear span of A over Fq of dimension dim〈A〉. Thus we can
compute the unique minimal linearized polynomial as usual polynomial

MA(x) =
∏
α∈〈A〉

(x− α)

of usual degree qdim〈A〉. Hence, MA(x) has q-degree dim〈A〉. Since complexity of this
method is exponential in dim〈A〉, we should consider practical methods with polynomial
complexity based on the following lemma, which is similar to some results in Section VI-A-2
in [SKK08]. For a set B = {βi} denote MA(B) = {MA(βi)}.

Lemma 22. 1. For A = {α} ⊂ Fqm holds:

M{α}(x) =

{
x for α = 0,

xq − αq−1x for α 6= 0.
(5.6)

2. Given minimal polynomials MA(x) and MB(x) for the sets A,B ⊆ Fqm, then

MA∪B(x) = MMA(B)(x)⊗MA(x). (5.7)

64

5.1 Basics of Gabidulin Codes

Proof: Statement 1 follows from M{α}(α) = 0. To prove Statement 2 we have to show
that for x ∈ A ∪B holds

MA∪B(x) = MMA(B) (MA(x)) = 0, (5.8)

and degqMA∪B = dim〈A ∪B〉. Indeed, for x = α ∈ A we have MA(α) = 0 and (5.8) holds.
For x = β ∈ B we have MMA(β) (MA(β)) = 0 and we get (5.8).

Since MA(β) = 0 for β ∈ 〈A〉 ∩ 〈B〉, it follows that degqMMA(B) = dim〈B〉 − dim{〈A〉 ∩
〈B〉}. Hence, from (5.7) for the degree of the product we obtain degqMA∪B = degqMA +
degqMMA(B) = dim〈A〉+ dim〈B〉 − dim{〈A〉 ∩ 〈B〉} = dim〈A ∪B〉, and the statement of
the lemma follows.

Using this lemma we obtain a recurrent algorithm [SKK08], shown by Algorithm 15,
to compute the minimal skew polynomial minpoly(a) for the set of roots, written as
components of a vector a of length s.

Algorithm 15: Minimal skew polynomial minpoly

1 Input: Vector a = (α1, α2, . . . , αs) where αi ∈ Fqm
2 begin
3 p(q)(x) = M{α1}(x) according to (5.6)
4 for each i from 2 to s do
5 p(q)(x) = M{p(q)(αi)}(x)⊗ p(q)(x)

6 Output: p(x)

Algorithm 15 has complexity O(s2) operations in Fqm .
All polynomials in this chapter belong to the ring F[x; θ], except for their linearized

polynomial equivalents denoted by the lower index (q). Later we show that to solve the
key equation we need to solve the following problem of skew shift-register synthesis.

5.1.2 Skew Shift-register Synthesis

Problem 4 (Skew shift-register synthesis). Given a field F, an automorphism θ of the
field, and ` sequences S(1),S(2), . . . ,S(`) over F with lengths N (1), N (2), . . . , N (`), respectively,
i.e., S(l) = S

(l)
1 , S

(l)
2 , . . . , S

(l)

N(l), find the smallest nonnegative integer λ for which there is a
vector of coefficients Λ = (Λ1,Λ2, . . . ,Λλ) over F such that for l = 1, 2, . . . , `

S(l)
n = −

λ∑
i=1

Λiθ
i
(
S

(l)
n−i

)
for n = λ+ 1, . . . , N (l). (5.9)

Moreover, find a connection vector Λ which fulfills (5.9) and detect when the found connec-
tion vector Λ is not unique.

65

5 Decoding Gabidulin Codes with Errors and Erasures

Given a connection vector Λ = (Λ1, . . . ,Λλ) over F, we define the corresponding connec-
tion polynomial Λ(x) ∈ F[x; θ] as follows

Λ(x) , 1 + Λ1x
1 + · · ·+ Λλx

λ,

where Λ0 = 1 and deg Λ(x) ≤ λ.
An effective Berlekamp–Massey type algorithm to solve Problem 4 was suggested in

[SJB11] and is shown by Algorithm 16.

Algorithm 16: θ-skew shift-register synthesis (Problem 4)

1 Input: `; S(l) = S
(l)
1 , . . . , S

(l)

N(l) , N (l) for l = 1, . . . , `

2 begin
3 λ← 0, Λ(x)← 1, N = maxlN

(l)

4 for each l from 1 to ` do
5 ρ(l) ← N −N (l), n(l) ← ρ(l), λ(l) ← 0, d(l) ← 1, Λ(l)(x)← 0

6 for each n from 1 to N do
7 for each l from 1 to ` do
8 if n > λ+ ρ(l) then

9 d←
∑λ

j=0 Λjθ
j
(
S

(l)

n−j−ρ(l)

)
10 if d 6= 0 then
11 if n− λ ≤ n(l) − λ(l) then

12 Λ(x)←Λ(x)−dxn−n(l) 1
d(l)

Λ(l)(x)

13 else

14 λ̃← λ, Λ̃(x)← Λ(x)

15 Λ(x)←Λ(x)−dxn−n(l) 1
d(l)

Λ(l)(x)

16 λ← λ(l) + n− n(l)

17 λ(l) ← λ̃, Λ(l)(x)← Λ̃(x), d(l) ← d, n(l) ← n

18 Output: λ, Λ(x); Λ(l)(x), n(l), λ(l) for l = 1, . . . , `

Theorem 23 ([SJB11]). If the output of Algorithm 16 is λ, Λ(x), and Λ(l)(x), n(l), λ(l)

for l = 1, . . . , `, then the pair (λ,Λ(x)) is a solution of Problem 4. The solution is unique
if and only if ε = 0, where ε =

∑`
l=1 ε

(l), ε(l) = max{0, n(l) − λ(l) − z(l) − (N − λ)}, and
z(l) = max{0, λ−N (l)}.

Algorithm 16 has time complexity O(`N2) operations in F, where N is the length of a
longest sequence.

A fast algorithm for solving Problem 4 was suggested in [SB14]. The asymptotic time
complexity of this algorithm is O(M(N) logN), for a fixed number of sequences.

66

5.1 Basics of Gabidulin Codes

5.1.3 Errors and Erasures

Assume a codeword c = (c1, . . . , cn) ∈ Fnqm of the code C = G(qm;n, k) was transmitted and a
word r = (r1, . . . , rn) ∈ Fnqm was received. It means that the error word is e = (e1, . . . , en) ∈
Fnqm , where e = r − c. Denote by τ the rank of the error matrix E = ϕ(e) ∈ Fm×nq ,
τ = rankE then we can write

E = AB (5.10)

for some full rank matrices A ∈ Fm×τq and B ∈ Fτ×nq . Decomposition of E in (5.10) is
not unique, but we use just one of them. Let A1, . . . , Aτ denote the columns of A and let
B1, . . . , Bτ denote the rows of B. Then we can rewrite (5.10) as follows

E = AB =
τ∑
i=1

AiBi. (5.11)

The task of error correction is to find a codeword c such that the error matrix E = ϕ(r−c)
has a minimum rank. There are a number of efficient decoding algorithms for the case
when the rank of the error is less than d/2.

We consider a more general problem of error and erasure correction. Assume that the
decoder has some side information from the channel about the expansion (5.11) of the error
matrix E. More precisely, we assume that in the expansion (5.11), µC vectors Bj, j ∈ J ,
|J | = µC, and µR vectors Ai, i ∈ I, |I| = µR, are known from the channel, later we will
say that there were µR + µC erasures in this case. It was shown in [SKK08] that such side
information is available in the case of random network coding, hence error and erasure
correction is very interesting for practical applications.

Let us define errors and erasures more precisely. Without loss of generality we assume
that J ∩ I = ∅, otherwise if i = j, we can subtract the known component AiBi from
R = ϕ(r). Let us write the known µC row vectors Bj, j ∈ J , as the matrix BC ∈ FµC×nq

and the correspondent column vectors Aj as the matrix AC ∈ Fm×µCq . Similarly, we write
the µR known column vectors Ai, i ∈ I, as the matrix AR ∈ Fm×µRq , and the row vectors Bi

as the matrix BR ∈ FµR×nq . Finally, the rest of the column vectors Al and row vectors Bl

we write as the matrices AF ∈ Fm×εq and BF ∈ Fε×nq respectively, where ε = τ − µR − µC.
Then we can rewrite expansion (5.11) as follows E = ACBC + AFBF + ARBR, where all
matrices have full rank, since they are sub matrices of A and B of full rank. Now we will a
give more general definition, where we do not require that all matrices have full rank. We
need this more general definition for interleaved codes.

Definition 14 (Errors and erasures). Given an error matrix E and matrices AR with
rankAR = µR, and BC with rankBC = µC, we say that there were ε (full) errors, µC column
erasures, and µR row erasures in the channel if the error matrix E can be represented as
follows

E = ACBC + AFBF + ARBR, (5.12)

where sizes of matrices were defined above, and we use an expansion (5.12) that minimizes
the size ε of AF and BF.

67

5 Decoding Gabidulin Codes with Errors and Erasures

The decoding problem is now as follows.

Problem 5 (Decoding with errors and erasures). Given a received matrix R and
matrices AR and BC of erasures, find a codeword C, having the minimum number ε
of full errors in expansion (5.12) of the error matrix E = R− C.

I.e., similar to Hamming metric, the task of the decoder is to find a codeword nearest to
the received word (minimum ε) in unerased positions.

We pay attention that expansion (5.12) is not unique and for decoding we can use any of
them. We will show later in Theorem 24 that a code C can correct an error E of larger
rank by using erasures, hence it is useful to have erasures from the channel. Note however
that in general, erasures Ai and Bj from the channel are not necessarily related to the
expansion of E. In this case, erasures do not help in decoding, similar to the case of
codes in Hamming metric, when a correct symbol was erased. For instance, we could have
an error free transmission E = 0 with erasures µC + µR ≥ d, in which case the decoder
will fail according to Theorem 24, but would output a correct result without using the
erasures. Fortunately, this never happens in a network coding application as it was shown
in [SKK08], so decoding with erasures is always at least as good and usually better than
without erasures.

Definition 14 requires one to know matrices AR and BC. We will show that the case
studied in [GPT91], where a number of columns and rows are erased in the received matrix,
is included in Definition 14 as well. We describe it by the following example.

Example 4. First, assume that we receive a matrix

R =

 ? c12 ?
? c22 ?
? c32 ?

 ,

obtained from a code matrix C = (cij) by erasing the first and the third columns, i.e.,
symbols denoted by “?” can have any value from Fq. Then an error matrix E = R−C can
be written as follows

E =

 e11 0 e13

e21 0 e23

e31 0 e33

 =

 e11 e13

e21 e23

e31 e33

(1 0 0
0 0 1

)
= ACBC,

where AC is an unknown m× µC matrix, µC = 2, and the matrix BC is determined by the
known positions of erasures. Up to column permutation, the matrix BC can be obtained by
the µC × µC identity matrix appended by all zero columns to the length n. Such a matrix
BC we call an extended identity matrix. To decode the received matrix R with column
erasures the decoder will get the following input: R, µC = 2, BC, µR = 0.

Second, assume that the first and the third rows of a code matrix are erased and we
receive

R =

 ? ? ?
c21 c22 c23

? ? ?

 .

68

5.1 Basics of Gabidulin Codes

An error matrix E = R− C can be written as follows

E =

 e11 e12 e13

0 0 0
e31 e32 e33

 =

 1 0
0 0
0 1

(e11 e12 e13

e31 e32 e33

)
= ARBR,

where the matrix AR is determined by the known µR = 2 positions of erasures. Up to row
permutation, the matrix AR can be obtained by the µR × µR identity matrix appended by
all zero rows to the height m. We call such AR an extended identity matrix as well. The
matrix BR is an unknown µR × n matrix over Fq. To decode the received matrix R with
row erasures the decoder will get the following input: R, µR = 2, AR, µC = 0.

Finally, consider the received matrix having two types of erasures and full errors

R =

 r11 r12 ?
? ? ?
r31 r32 ?

 .

In this case an error matrix E can be represented by (5.12) with AR = (0, 1, 0)T and
BC = (0, 0, 1). The decoder will get the following input: R, µR = µC = 1, AR, BC.

By this example we show that Definition 14 includes the previous definitions of erasures
[GPT91] and explain why the terms ARBR and ACBC are called row and column erasures
respectively.

The following theorem tells us how many errors and erasures can be corrected by the
code. This theorem was proved in [SKK08], however we give here a simpler proof of the
theorem.

Theorem 24 ([SKK08]). A code C with minimum rank distance d corrects simultaneously
ε errors, µC column erasures, and µR row erasures if 2ε+ µC + µR ≤ d− 1.

Proof: We have µC + µR erasures and ε errors in the channel. It means that we get
the erasure matrices AR and BC of full ranks µR and µC from the channel, respectively.
According to the Definition 14, the received matrix R can be written using (5.12) as

R = C + ACBC + AFBF + ARBR,

where this expansion is not unique, but as we have already mentioned, we can use any of these
expansions, which have the minimum number ε of full errors, i.e., rankAF = rankBF = ε.
By applying Gaussian elimination to rows of the matrix AR, we can transform it to an
extended identity matrix ÃR, i.e., ÃR = UAR, where U is a nonsingular m ×m matrix.
Similarly, we transform the matrix BC to an extended identity matrix B̃C, i.e., B̃C = BCV ,
where V is a nonsingular n× n matrix. We have URV = UCV + UACB̃C + UAFBFV +
ÃRBRV, hence we reduce our problem to correcting ε errors and µC + µR erased columns
and rows at known positions in the received matrix R̃ = URV by the code C̃ = {UCV },
which has the same distance d since the transform matrices U, V are nonsingular.

Remove µC erased columns and µR erased rows from every code matrix C̃ and from
R̃, and obtain a new code with distance at least d − µC − µR correcting ε errors if
ε ≤ (d− µC − µR − 1)/2, and the statement of the theorem follows.

69

5 Decoding Gabidulin Codes with Errors and Erasures

5.2 Decoding of a Single Code

5.2.1 Key Equation for Errors and Erasures

Recall that we assume that a codeword c ∈ Fnqm of the code C = G(qm;n, k) was transmitted
and a word r ∈ Fnqm was received from the channel. We consider transmission with errors
and erasures according to Definition 14. It means that we obtain the vector r and matrices
of erasures AR and BC of ranks µR and µC from the channel, respectively. The error word
is e ∈ Fnqm , where e = r − c. We can rewrite (5.12) in a vector form as follows

e = aCBC + aFBF + aRBR, (5.13)

where
aC ∈ FµCqm , ϕ(aC) = AC, BC ∈ FµC×nq , rankBC = µC,

aF ∈ Fεqm , ϕ(aF) = AF, BF ∈ Fε×nq , rankaF = rankBF = ε,

aR ∈ FµRqm , ϕ(aR) = AR, BR ∈ FµR×nq , rankaR = µR.

In [SKK08] and [GP08] the following definitions were introduced to get a modified key
equation incorporating errors and erasures. Given a vector v = (v1, . . . , vn) and a skew-
polynomial p(x), we use the notation p(v) = (p(v1), . . . , p(vn)). Let us introduce skew
polynomials of row erasures

ΛR(x) = minpoly(aR), deg ΛR(x) = µR, (5.14)

of full errors
ΛF(x) = minpoly(ΛR(q)(aF)), deg ΛF(x) = ε (5.15)

and skew polynomial
ΛFR(x) = ΛF(x)ΛR(x), (5.16)

which has components of aR and aF as roots due to Lemma 22.
Using h as in (5.1) we define

f = (f1, . . . , fµC) = hBT
C ,

and the polynomial of column erasures

λC(x) = minpoly(f). (5.17)

We compute the syndrome vector S as usual

S = (S1, . . . , Sd−1) = rHT = eHT , (5.18)

and introduce the syndrome polynomial S(x)

S(x) =
n−k∑
i=1

Six
i−1. (5.19)

70

5.2 Decoding of a Single Code

Like in [SKK08], we define the modified syndrome polynomial sRC(x), which incorporates
known information about row and column erasures

SRC(x) = ΛR(x)S(x)λC(x) (5.20)

and get the key equation.

Theorem 25 (Key equation for Gabidulin codes [SKK08]). Assume ε errors and
µC + µR erasures in the word to be decoded with Gabidulin (n, k) code. Then the following
equation holds

ΛF(x)SRC(x) ≡ Ω(x) mod xn−k, (5.21)

where the error evaluator polynomial Ω(x) has deg Ω(x) < τ , ε+ µC + µR and is defined
by the first τ components of the syndrome S(x).

Recall that deg ΛF(x) = ε by definition. Here and later mod means the right modulo
operation in F[x; θ].

From Theorem 25 it follows that monomials Ωjx
j of the polynomial Ω(x) vanish for

j ≥ τ . Using (5.4) for the product ΛF(x)SRC(x), which gives coefficients Ωj, we obtain an
equivalent form of the key equation.

Corollary 26. Assume ε errors and µC + µR erasures in the word decoded by Gabidulin
(n, k) code. Then the coefficients of polynomials ΛF(x) and SRC(x) for j = µC + µR + ε+
1, . . . , n− k satisfy

ε∑
i=0

ΛF,i θ
i(SRC,j−i) = 0 . (5.22)

To solve the key equation (5.21) or (5.22) one should find the minimum number of errors
ε, for which a solution ΛF(x) of the key equation exists. This means that we should find a
minimum non-negative ε, for which

SRC,j = −
ε∑
i=1

ΛF,i θ
i(SRC,j−i) for j = µC + µR + ε+ 1, . . . , n− k. (5.23)

This means that we should solve Problem 4 for the sequence S(1) of length n− k−µC−µR

obtained from the modified syndrome with removed first µC + µR elements. Recall that we
enumerate elements of the sequences S and SRC starting from 1.

5.2.2 Decoding in the Transform Domain

Let us introduce the transformed error vector and polynomial

E = eΦT , E(x) =
n∑
i=1

Ẽix
i−1. (5.24)

To find the transformed error vector E and then the error vector e, we propose the following
key equation for E.

71

5 Decoding Gabidulin Codes with Errors and Erasures

Theorem 27. The transformed error polynomial E(x) satisfies the following equation

ΛFR(x)E(x)λC(x) ≡ Ω(x) mod xn, (5.25)

where the polynomial Ω(x) is defined by (5.21).

Proof: Given a Gabidulin (n, k) code and an error vector e with fixed decomposi-
tion (5.12), then from Theorem 25, we can compute the error evaluator polynomial Ω(x)
as follows

Ω(x) ≡ ΛF (x)SRC(x) mod xn−k.

From (5.20) and (5.16)

ΛF (x)SRC(x) = ΛF (x)ΛR(x)S(x)λC(x) = ΛFR(x)S(x)λC(x),

and we obtain

ΛFR(x)S(x)λC(x) ≡ Ω(x) mod xn−k. (5.26)

Consider another Gabidulin (n, 0 code with k′ = 0 and the same error vector e as before
with the same decomposition as in (5.12). In this case, the polynomials ΛFR(x) and λC(x)
stay unchanged. The parity check matrix H ′ of this code is H ′ = Φ, and from (5.18) the
syndrome vector S′ of length n is the same as the transformed error vector ẽ. Since the
first n− k components of syndromes S and S′ = E coincide, the polynomial Ω′(x) for the
new code stay unchanged by Theorem 25, i.e., Ω′(x) = Ω(x). As a result, the theorem
statement follows from (5.26) and Theorem 25 applied to the new code G ′.

We are ready to describe our decoding algorithm shown by Algorithm 17.
In Lines 3-6 we compute erasure polynomials ΛR(q)(x), λC(q)(x) and the modified syndrome

SRC(x) using (5.14), (5.17) and (5.20).
In Line 7 we find ΛF (x) by solving the key equation (5.22). To do this we observe that

according to Corollary 26 solving the key equation is equivalent to solving Problem 4 for
the single ` = 1 sequence S(1) of length N (1) = n− k−µC−µR obtained from the modified
syndrome with removed first µC +µR elements. Problem 4 can be solved using Algorithm 16
(see also [SRB11]) or by fast algorithm [SB14], and we get the number of full errors ε = λ,
and the full error span polynomial ΛF (x) = Λ(x). In addition, this algorithm indicates
when the found polynomial Λ(x) is not unique. In this case we declare a decoding failure.

In Lines 8-9 we compute the error evaluator polynomial Ω(x) = ΛF (x)sRC(x) mod xn−k

using (5.21) from Theorem 25 and the polynomial ΛFR(x) using (5.16).
In Line 10 we compute the transformed error word using Theorem 27 by left and right

power series expansion E(x) = Λ−1
FR(x) w(x) λ

−1

C (x) |n−1
0 of skew polynomials, where

a−1(x)b(x)c−1(x) = f(x) means that b(x) = a(x)f(x)c(x), and f(x)|n−1
0 means that from

the power series f(x) we only take items fix
i for i = 0, . . . , n− 1.

In Line 11 we compute the error word e = E (Φ−1)
T

by the inverse transform.
From the above derivations and from Theorem 24 similar to [SKK08] and [GP08] we

obtain the following theorem.

72

5.2 Decoding of a Single Code

Algorithm 17: Decoding a Gabidulin code

1 Input: Received word r ∈ Fnqm , vector aR of row erasures , matrix BC of column
erasures

2 begin
3 Row erasure polynomial: ΛR(q)(x) = minpoly(aR)
4 Column erasure polynomial: f = hBT

C , λC(q)(x) = minpoly(f)
5 Syndrome: S = rHT

6 Modified syndrome: SRC(x) = ΛR(x)S(x)λC(x)

7 Find ΛF (x) by solving the key equation (5.22) using the Berlekamp–Massey type
Algorithm 16; in case of multiple solutions, output decoding failure

8 The error evaluator polynomial Ω(x) = ΛF (x)SRC(x) mod xn−k

9 ΛFR(x) = ΛF (x)ΛR(x)

10 The transformed error word E(x) = Λ−1
FR(x) w(x) λ

−1

C (x) |n−1
0

11 The error word e = E (Φ−1)
T

12 Output: The codeword c = r − e or decoding failure

Theorem 28. Algorithm 17 corrects ε full errors, µR row erasures and µC column erasures
as long as

2ε+ µR + µC ≤ n− k = d− 1. (5.27)

Time complexity of Algorithm 17 is O(n2) operations in Fqm for m, n, d of the same
order, see also [SKK08] and [GY08] for details. We would like to emphasize that after the
key equation is solved in Line 7 and the error span polynomial ΛF (x) is found, we need
only two polynomial multiplications and two power series expansions, which is equivalent
to two divisions of skew polynomials to find the error word in the transform domain. Then
the error vector can be computed by the low complexity inverse transform [SK09]. Recall
that in previous algorithms [SKK08] and [GP08] instead of these steps (Lines 8-11) one
should do the following more complicated steps:

• One polynomial multiplication to find ΛFR(x),

• Solve a system of linear equations (41) in [SKK08] to find β = (β1, . . . , βµC),

• Compute ΛC(q)(x) =minpoly(β),

• Compute Λ(x) = ΛC(x)ΛF (x)ΛR(x),

• Find a basis for the root space of Λ(q)(x),

• Solve a system of linear equations (36) in [SKK08] to find error locators,

• Compute error locations,

73

5 Decoding Gabidulin Codes with Errors and Erasures

• Compute the error word.

As a result, the algorithms in [SKK08] and [GP08] are more difficult for understanding,
despite the fact that they have the same order of time complexity O(n2).

5.3 Interleaved Gabidulin Codes

Let us consider interleaving of ` in general different (n(l), k(l)) Gabidulin codes over Fqm .
Let us agree that the index l runs always from 1 to `, i.e., l = 1, . . . , `. Denote by
c =

(
c(1) . . . c(`)

)
∈ F`nqm the concatenation of ` vectors c(l).

Definition 15. The `-interleaved Gabidulin code is

IG(qm, `;n, k(1) . . . k(`)) ,
{(
c(1) . . . c(`)

)
: c(l) ∈ G(qm;n, k(l))

}
.

The interleaved code is defined over Fqm and has length `n. For the case of identical codes,
k(l) = k, the distance of the interleaved code in rank metric is d = n− k + 1, which reaches
the Singleton upper bound if m = n. Recall that Loidreau and Overbeck ([LO06, Ove07])
suggested another construction of an interleaved code, which is over Fq`m and has length n.

Assume a codeword c ∈ IG(qm, `;n, k(1) . . . k(`)) was transmitted and a word r =(
r(1) . . . r(`)

)
∈ F`nqm was received. It means that the error word is e =

(
e(1) . . . e(`)

)
∈ F`nqm ,

where e = r − c. Denote rank e = τ , then we can represent the error word as

e = aB, where a ∈ Fτqm , B ∈ Fτ×`nq ,

where for every component code we have the following error vector

e(l) = aFB
(l)
F + aRB

(l)
R + aCB

(l)
C , (5.28)

where aR, and B
(l)
C are known, and hence µR = rankaR and µC

(l) = rankB
(l)
C are also

known, rankaF = ε, rankB
(l)
F ≤ ε.

We define error and erasure span polynomials and syndrome polynomials in a way similar
to a single code. We exploit the fact that the vector a is common for all interleaved codes,
and this allows us to get more equations for the common error span polynomial ΛF(x),
defined by the common vector aF. In a way similar to a single code, we obtain a key
equation for the interleaved Gabidulin codes as follows.

Theorem 29 (Key equation for interleaved Gabidulin codes). The following equa-
tion holds for l = 1, . . . , `

ΛF(x)S
(l)
RC(x) ≡ Ω(l)(x) mod xn−k

(l)

, (5.29)

where the error evaluator polynomial Ω(l)(x) is defined by the first ε+µR +µC
(l) components

of the modified syndrome S
(l)
RC(x), and deg Ω(l)(x) < ε+ µR + µC

(l).

74

5.3 Interleaved Gabidulin Codes

A decoding algorithm for interleaved Gabidulin codes is given by Algorithm 18, which
is similar to the one for a single code. In Line 8 of the new algorithm, to solve the key
equation (5.29) we solve Problem 4 using Algorithm 16 for ` sequences S(l) of length

N (l) = n− k(l) − µC
(l) − µR obtained from the modified syndrome S

(l)
RC(x) with removed

first µC
(l) + µR elements.

After the key equation (5.29) is solved and the error span polynomial ΛF(x) is found, the
error words e(l) can be computed separately for every interleaved code as in Algorithm 17
applying Theorem 27 for every component code:

ΛFR(x)E(l)(x)λ
(l)

C (x) ≡ Ω(l)(x) mod xn, (5.30)

where the polynomials Ω(l)(x) are defined by (5.29).

Algorithm 18: Decoding an interleaved Gabidulin code

1 Input: Received word r = (r(1), . . . , r(`)) ∈ F`nqm , aR, B
(l)
C , l = 1, . . . , `

2 begin
3 Row erasure polynomial: ΛR(q)(x) = minpoly(aR)
4 for l = 1, . . . , ` do

5 Column erasure polynomials: f (l) = hB
(l)T
C , λ

(l)
C(q)(x) = minpoly(f (l))

6 Syndromes: S(l) = r(l)H(l)T

7 Modified syndromes: S
(l)
RC(x) = ΛR(x)S(l)(x)λ

(l)

C (x)

8 Find ΛF (x) by solving the key equation (5.29) using the Berlekamp–Massey type
Algorithm 16; in case of non single solution output decoding failure

9 for l = 1, . . . , ` do

10 The error evaluator polynomial: Ω(l)(x) = ΛF (x)S
(l)
RC(x) mod xn−k

(l)

11 ΛFR(x) = ΛF (x)ΛR(x)

12 The transformed error: E(l)(x) = (ΛFR(x))−1 w(l)(x)
(
λ

(l)

C (x)
)−1

|n−1
0

13 The error word: e(l) = E(l) (Φ−1)
T

14 e = (e(1), . . . , e(`))

15 Output: The codeword c = r − e or decoding failure

A time domain error correcting algorithm (without erasures) for interleaved Gabidulin
codes was proposed in [SJB11], see Algorithm 4. Let us compare our Algorithm 3 and
Algorithm 4 in [SJB11]. In contrast to [SJB11], our algorithm corrects errors and erasures.
To proceed with it, in Lines 3-7 we reduce the decoding problem to multi-sequence skew
shift register synthesis (solving the key equation). Then in Line 8 we make this synthesis,
like in [SJB11], where we can get a failure, and hence, we can use the failure probability
bound from [SJB11]. Then in Lines 9-13 we compute error words e(l) separately for every

75

5 Decoding Gabidulin Codes with Errors and Erasures

interleaved code using transform domain approach, which decreases the number of steps in
comparison with time domain method used in [SJB11]. Since the failure probability and
the decoding radius are determined by solving the key equations, which coincide with the
ones in [SJB11], we can summarize our results using [SJB11] as follows.

Theorem 30. The fraction Pf(ε) of full error vectors of rank eF = ε uncorrectable by
Algorithm 18 in presence of µR row erasures and µC

(1), . . . , µC
(`) column erasures is upper

bounded by

Pf (ε) ≤ 3.5q−m{(`+1)(εmax−ε)+1} <
4

qm

if

` ≤ ε ≤ εmax ,
`

`+ 1
(d− 1) (5.31)

and
Pf (ε) = 0 for ε < dmin/2, (5.32)

where

d =
1

`

∑̀
l=1

d(l) − µR − µC
(l), dmin = min

l
{d(l) − µR − µC

(l)}

are the average and minimum code distances respectively after erasings in interleaved
(n(l), k(l)) Gabidulin codes having distances d(l) = n(l) − k(l) + 1.

This means that errors of rank weight less than dmin/2 are always corrected by Algo-
rithm 18, and all other errors of weight up to the decoding radius εmax are corrected with
very high probability. For the fixed order of interleaving `, the asymptotic complexity of
Algorithm 18 is the same as the one of Algorithm 17.

5.4 Discussion and Future Work

For a Gabidulin code we propose a transform domain algorithm correcting errors and
erasures. We also give a generalization of the algorithm for interleaved Gabidulin codes.

For a single code and the interleaved codes, if the complexity of polynomial multiplication
is M(N) = N2, then these algorithms can be straightforwardly implemented with time
complexity O(n2) operations over Fqm and O(`n2), respectively. Therefore, for fixed `, both
of the algorithms have quadratic complexity in the code length, i.e., O(n2). The order of
complexity is the same as the one in [SJB11], and is less than the one in [LO06, Ove07],
which has order O(n3).

The proposed algorithm has the potential to be accelerated and we are working in
this direction. Fast methods for multiplication of linearized polynomials were found in
[WZAS13] and [SK09]. A fast solution of the key equations was suggested in [SB14]. We
still need to find a fast method for finding a minimal degree linearized polynomial, given a

76

5.4 Discussion and Future Work

basis of its roots, and a fast method for left and right series power expansion or for left
and right division of skew polynomials. Afterwards, we will have a fast decoding algorithm
having sub-quadratic complexity in the code length.

77

6
Decoding Chinese Remainder Codes

I
n this chapter, we consider another class of evaluation codes — Chinese remainder (CR)
codes. The name comes from the ancient Chinese remainder theorem which was found
in a the 5th-century book “Sunzi’s Mathematical Classic” (Figure 6.1). The Chinese

remainder theorem was used to determine an integer number 0 ≤M <
∏k

i=0 pi that when
divided by some given co-prime divisors {p1, p2, ..., pk} gives remainders {m1,m2, . . . ,mk}.
Therefore, given divisors, the number M is uniquely reconstructed by a set of k remainders.

Figure 6.1: The Chinese remainder theorem in “Sunzi’s Mathematical Classic”.

The Chinese remainder code is defined as follows. Given n ≥ k co-prime numbers (divisors)
pi where p1 < p2 < · · · < pn and an integer number 0 ≤M <

∏k
i=0 pi, the codeword is the

sequence of n remainders, i.e., ci = M mod pi, denoted by (c1, . . . , ck, ck+1, . . . , cn). The
codeword is transmitted over the channel. If the channel is noiseless, then M is determined
by Chinese remainder theorem from any k components of the received word. For erroneous
channel, the CR codes can correct errors up to half the minimum Hamming distance, when
divisors do not differ too much.

79

6 Decoding Chinese Remainder Codes

The redundancy of the Chinese remainder representation of integers has been exploited
often in theoretical computer science and in many practical applications. It was shown by
Goldreich, Ron and Sudan [GRS00], that CR codes can be efficiently applied for distributive
computations, secret sharing, and permanent computation of random matrices.

In computer science, the Chinese remainder code is usually called residue number system
(RNS) which has been applied in the fields of computer arithmetic [OP07] and digital signal
processing [SJJT86].

As a class of evaluation codes, CR codes are similar to RS codes and Gabidulin codes in
many respects. In particular, all these codes are maximum distance separable, and the key
equation of CR codes are analogous to those of RS and Gabidulin codes. One important
difference of CR codes from others is that, the CR codes are defined over the integer ring,
whereas the RS and Gabidulin codes are defined over finite field. One can still use algorithms
created for RS codes for reference to decode the CR codes, nevertheless, the realization can
be slightly or completely different. In fact, several decoding algorithms have already been
studied to decode a single CR code. For example, Mandelbaum ([Man76, Man78]) gave
a decoding algorithm for the Chinese remainder codes, correcting up to (d− 1)/2 errors,
where d is the code distance in the Hamming metric. Unfortunately the complexity of this
algorithm is exponential in general. A more recent research in [GRS00, GSS00] propose an
unique decoder for CR codes which has almost linear complexity in the bit length of N
where N =

∏n
i=1 pi.

Recently, the construction of interleaved RS (IRS) codes have been intensively studied in
several publications, e.g., [SSB09, SSB07] where such construction allow decoding beyond
half the minimum distance and can be applied in concatenated designs. Among decoding
algorithms for IRS codes, Nielsen [Nie13b] proposes a module minimization approach for
solving multiple key equations by finding short vectors in a certain space.

Algebraic similarities of the interleaved CR (ICR) codes and IRS codes mean that we
can apply the method in [Nie13b] for ICR codes to solve multiple key equations by finding
short vectors in a certain space; on the other hand, algebraic differences of these two codes
result in that the entire analysis is different.

The rest of this chapter is structured as follows. The introduction of CR codes and some
known results are stated in Section 6.1. To decode a single CR code, we propose a unique
decoder based on syndrome in Section 6.2 and a decoding algorithm for correcting both
errors and erasures in Section 6.3. Since the CR codes profits from interleaving as well, we
consider interleaved CR (ICR) codes, and propose the corresponding decoding algorithm in
the Section 6.4.

6.1 Basics of CR Codes

We begin with defining the classical Chinese Remainder codes. Let n be the code length
and

0 < p1 < p2 < · · · < pn (6.1)

80

6.1 Basics of CR Codes

be a list P of n relatively prime positive integers. We construct a polyalphabetic code,
where the i-th component of codeword c = (c1, c2, . . . , cn) is taken from the alphabet Zpi ,
being the ring of integers modulo pi. Thus the codewords are selected from the code space
ZP = Zp1 × Zp2 × · · · × Zpn of size N = p1p2 . . . pn. Given P, let us define the function
F (a, b) for integers a, b, where 0 < a ≤ b ≤ n, as follows

F (a, b) =
b∏
i=a

pi, (6.2)

and for a > b, F (a, b) = 0. So, we have

N = F (1, n). (6.3)

We also need a cardinality of our code K; we mostly deal with the classical case where K
is selected as K = F (1, k) for some 0 < k < n. Such an integer k can be regarded as the
number of information symbols of the code. For integers x and y 6= 0 , we denote by [x]y
the remainder when x is divided by y, 0 ≤ [x]y ≤ y − 1.

Definition 16 (Chinese remainder code). A Chinese remainder code CR(P ;n,K) or
shortly CR(n,K) having cardinality K = F (1, k) for some k, 0 < k < n and length n over
alphabets P is defined as follows

CR(P ;n,K) = { ([C]p1 , . . . , [C]pn) : C ∈ N and C < K} .

Example 5. Given a list P = {3, 5, 7, 11, 13} and k = 2. Consider a CR code CR(P ;n,K)
of length n = 5, with cardinality K = F (1, k) = 15. For the message integer 0 ≤ C = 14 <
K, the codeword

c = ([14]3, . . . , [14]13) = (2, 4, 0, 3, 1).

In [SSG+05], upper and lower bounds on the cardinality of a polyalphabetic code with
given Hamming distance were analyzed, for instance, the Singleton-type bound is an upper
bound.

Theorem 31 (Singleton-type bound). Consider n abstract alphabets Q1, . . . , Qn of n-
codewords c = (c1, . . . , cn) where ci ∈ Qi. Assume w.l.o.g. that the alphabets are ordered
according to

q1 ≤ · · · ≤ qn.

where qi = |Qi| for i = 1, . . . , n. The cardinality of a polyalphabetic code C with distance d
is upper bounded by

|C| ≤
n−d+1∏
i=1

qi. (6.4)

81

6 Decoding Chinese Remainder Codes

Proof: Consider the code C ′ obtained by puncturing the code C in the last d−1 positions.
The Hamming distance of the code C ′ is at least 1, since puncturing one position decreases
the code distance by one at most. It means that codewords of the code C ′ of length
n′ = n − (d − 1) should be pairwise different and hence (6.4) holds, since F (n′) is the
number of different words of length n′ over alphabets of sizes p1, . . . , pn′ .

Theorem 32. A CR code CR(P;n,K) is maximum distance separable (MDS), i.e., its
minimum Hamming distance is d = n− k + 1.

Proof: The Singleton-type bound for the CR code can be written as |C| = F (1, k) ≤
F (1, n− d+ 1) from which it follows that k ≤ n− d+ 1.

For the CR code, two codewords (with corresponding information integers C1 and C2)
agree at i-th coordinate if and only if [C1 − C2]pi = 0, i.e., C1 and C2 are said to be
congruent modulo pi. But |C1 − C2| < k can have at most (k − 1) prime factors from the
list P which means that at most (k − 1) coordinates of the two codewords are the same.
So, the minimum distance of the CR code d ≥ n− k + 1. From this and the Singleton-type
bound, the statement of the theorem follows.

Assume we have settled on a CR code CR(n,K), and we transmit some codeword
c = (c1, . . . , cn) ∈ ZP over an additive noisy channel and receive the word r = (r1, . . . , rn) ∈
ZP . Then we say that the error vector is e = (e1, . . . , en) ∈ ZP in the channel with
ei = [ri − ci]pi ∈ Zpi . Let t be the number of errors, i.e., the Hamming weight of e. By the
Chinese remainder theorem, if the receiver knows any k error free positions of r, then it
can reconstruct C.

Theorem 33 (Chinese remainder theorem (CRT)). If a1, a2, . . . , am is a sequence
of integers and 0 ≤ ai < pi for 0 < i ≤ m where p1, . . . , pm are relatively prime positive
integers, then there exists a unique nonnegative integer X < N = F (1,m) such that

[X]p1 = a1, [X]p2 = a2, . . . , [X]pm = am. (6.5)

The solution of (6.5) is

X =
m∑
i=1

aibi
N

pi
(mod N) (6.6)

where bi are determined from

bi
N

pi
≡ 1 mod pi.

The CRT allows us to solve a system of m congruence equations (6.5). The complexity of
the CRT was analyzed in [GG03]. Denote the word length of a nonzero integer by len(·),
i.e., the number of digits for some base. Assume that we have a 64-bit processor, the length
of N is

len(N) = blog264 |N |c+ 1 = blog2 |N |/64c+ 1. (6.7)

For the complexity of the Chinese remainder theorem, we refer [GG03, Theorem 5.8] which
is stated as follows.

82

6.1 Basics of CR Codes

Theorem 34. Let p1, . . . , pm, a1, . . . , am, N as defined in Theorem 33, and len(N) as
defined in (6.7). Then the unique solution X ∈ Z with 0 ≤ X < N of the Chinese
remainder theorem can be computed using O(len(N)2) word operations.

Furthermore, we refer [GG03, Theorem 10.25] which states that the Chinese remain-
der theorem can be accelerated with O(M(logN) log logN) word operations where M(n)
is the multiplication time of two integers of length at most n. For Karatsuba’s algo-
rithm [KO63], M(n) is O(nlog2 3), and for Schönhage–Strassen’s algorithm [SS71], M(n) is
O(n log n log log n).

A common decoding strategy, which we will use throughout this dissertation, is firstly to
identify the erroneous positions in the received word r and secondly the codeword can be
calculated from at least k error free positions.

Since each component has different alphabet size pi, in addition to the usual Hamming
distance, let us define the weighted Hamming distance between words r and c as follows

dP(c, r) =
∑
i:ri 6=ci

log pi. (6.8)

Using the Chinese remainder theorem, we can compute the received word in frequency
domain R < N such that [R]pi = ri, and likewise an E < N such that [E]pi = ei; then
R ≡ C + E mod N . We will find the positions of the errors by determining the error
locator Λ, defined as:

Λ =
∏
i:ri 6=ci

pi. (6.9)

Thus dP(c, r) = log Λ.
According to the definition of Λ, if we encode Λ to a vector λ, then the coordinates

λi where errors occur are zeros, i.e., λi = 0 for ci 6= ri,∀i = 1, . . . , n. Thus, we have the
following lemma:

Lemma 35. The product of the error locator and the error value is a multiple of N , i.e.,

ΛE ≡ 0 mod N. (6.10)

Proof: Let

Γ =
∏
i:ci=ri

pi.

The error word e = (e1, e2, . . . , en) has zero coordinates at error free positions, that is
Γ|E. Since ΛΓ = N and E is a multiple of Γ, it is straightforward to see that N |(ΛE) i.e.,
[ΛE]pi = 0 ∀i and the statement follows.

The CR code indicates a one-to-one mapping between a number 0 < C < K and a code
vector c. We denote this mapping by C� c, and c� C, which are similar to Fourier
transform for RS codes (c.f. Definition 4).

83

6 Decoding Chinese Remainder Codes

Theorem 36 (Convolution property). Given two integers A and B, two vectors a =
(a1, . . . , an) and b = (b1, . . . , bn), and a prime list {p1, . . . , pn} where ai = [A]pi and
bi = [B]pi for all i = 1, . . . , n, the component-wise multiplication of a and b modulo pi
corresponds to the product of A and B modulo N =

∏n
i=1 pi (and vise versa), i.e., if

a� A, b� B,

then

ci = aibi mod pi ⇔ c� C = AB mod N.

Proof: In Theorem 33, for all i, the coefficients bi are independent of the integer X.
Denote bi in (6.6) by [N/pi]

−1
pi

.
Then by CRT,

C =
n∑
i=1

ci

[
N

pi

]−1

pi

N

pi
mod N =

n∑
i=1

[aibi]pi

[
N

pi

]−1

pi

N

pi
mod N

=
n∑
i=1

[[A]pi [B]pi]pi

[
N

pi

]−1

pi

N

pi
mod N

=
n∑
i=1

[AB]pi

[
N

pi

]−1

pi

N

pi
mod N

= AB mod N,

and the statement follows.

One can compare Chinese remainder codes with Reed–Solomon codes in a perspective
of the Fourier transform and it’s convolution property. For the RS codes, we define an
error locater polynomial Λ(x) which has roots at all erroneous positions, whereas all the
prime factors from P of the error locator Λ for the Chinese remainder codes indicate error
positions.

Lemma 37. The product of the error locator and [E]K is a multiple of K:

Λ · [E]K ≡ 0 mod K. (6.11)

Proof: The integer [E]K can be written as [E]K = E −mK where m is some integer.
Therefore, for i = 1, . . . , k,

[E −mK]pi = [[E]pi − [mK]pi]pi = [E]pi . (6.12)

For i = k + 1, . . . , n, we can not guarantee that (6.12) holds. In the vector form, e and
eK(:=� [E]K) have the same error position(s) in the first k coordinates. Therefore, the
vector form of Λ · [E]K has all zero in the first k positions, and (6.11) holds by Theorem 36.

84

6.1 Basics of CR Codes

Adding ΛC to both sides of (6.10) in Lemma 35, it immediately leads to a key equation:

ΛR ≡ ΛC mod N. (6.13)

For a not too large number of errors, then ΛR� N while ΛC � N , and Λ turns out to be
the only relatively small number such that [ΛR]N is also small.

In [GRS00] an error correcting GRS algorithm was suggested for the classical Chinese
remainder codes. The GRS decoder is shown by Algorithm 19, where the logarithm of the
integer parameter D is the error correcting radius in the weighted Hamming metric of the
GRS algorithm.

Algorithm 19: The GRS decoder for Chinese remainder codes

1 Input: The list P , the received word (r1, . . . , rn), N , K, D

2 begin
3 Using the CRT compute 0 ≤ R < N such that ri = [R]pi .
4 Find integers Λ,Ω such that

1 ≤ Λ ≤ D
0 ≤ Ω < N/D
ΛR ≡ Ω mod N

.

5 Output Ω/Λ if it is an integer.

6 Output: The message C

The cost of performing Algorithm 19 is as follows. Using the fast algorithm to compute
the CRT with Schönhage–Strassen’s algorithm, the integer R in Line 3 is computed in time
complexity O(len(N) log2 len(N) log log len(N)). For the realization of Line 4, one can use
fast Euclidean algorithm for integers [GG03, Chapter 11], or equivalently, continued fractions
method [Len83]. Both algorithms have the same complexity which is O(len(N) logε len(N))
for some constant ε [GRS00, Theorem 17], which means that this step performs in nearly
linear time in bit size of N . Therefore, the overall complexity of Algorithm is determined
by Line 4 which is O(len(N) logε len(N)).

Lemma 38 ([GRS00], Lemma 5). If dP(c, r) = logD ≤ log(
√
N/(K − 1)) then the

decoding Algorithm 19 finds Λ using (6.13).

Define Dt = F (n − t + 1, n) as the maximal value of Λ given that at most t errors
have occurred. The decoder of Lemma 38 succeeds whenever logDt ≤ log(

√
N/K) <

log(
√
N/(K − 1)). We can relax this to a decoding radius in the Hamming metric. Using

Dt < ptn we have

ptn ≤
√
N/K,

85

6 Decoding Chinese Remainder Codes

thus

t ≤
⌊

1

2
· log(N/K)

log pn

⌋
. (6.14)

There is a different expression of the decoding radius in [GRS00]

t ≤
⌊

log p1

log p1 + log pn
(d− 1)

⌋
(6.15)

which shows a direct connection to the code distance. In most cases, (6.14) and (6.15)
give the same result. We will discuss (6.15) in details in Theorem 43. If p1 and pn do not
differ too much, then up to half the minimum distance errors can be corrected by the GRS
decoder.

6.2 Syndrome Decoding

Equipped with the results mentioned in the previous section, we now define the syndrome
of the CR codes and later on the key equation to decode CR codes.

We define the syndrome S of a received word r with corresponding R as follows:

S =
R− [R]K

K
. (6.16)

There are some remarks regarding to the syndrome definition.

1. The syndrome of a codeword c is zero, since C − [C]K = 0.

2. The syndrome is an integer and depends on the error word E and essentially does not
depend on the codeword. Assume that the error word E is known, we shall discuss
the value of the syndrome in two cases as follows

S =
R− [R]K

K
=

{
E−[E]K

K
if 0 ≤ [E]K < K − C;

E−[E]K+K
K

otherwise.

We denote it as S = (E − [E]K + δK(C,E)K)/K where

δK(C,E) =

{
0 if 0 ≤ [E]K < K − C;
1 otherwise.

Although δK(C,E) is a function related to the codeword C, and makes the syndrome
have two values, later it can be seen that the analysis of the two cases of S come up
to the same solution.

The multiplication of Λ and the syndrome S can be written as

Λ · S = Λ

(
E − [E]K + δK(C,E)K

K

)
.

86

6.2 Syndrome Decoding

With Lemma 35 and Lemma 37, we obtain

Λ · S =
iN − jK + δK(C,E)ΛK

K
= i

N

K
− j + δK(C,E)Λ. (6.17)

where i , ΛE/N and j , Λ[E]K/K are some nonzero integers. We know from (6.11) that
1 ≤ j < Λ. Let Ω = −j + δK(C,E)Λ, then there are two cases we have to consider:

1. Ω = −j < 0. Since Ω + Λ = −j + Λ > 0, we obtain −Λ < Ω < 0.

2. Ω = −j + Λ > 0. Furthermore, Ω− Λ = −j < 0, hence, 0 < Ω < Λ.

In both cases, the absolute value of Ω should be smaller than Λ. Note that, if Ω = 0, then
the received word is error free.

Using ΛR = ΛC + ΛE = ΛC mod N , one can find the decoding radius is Λ <√
N/(K − 1). Rewrite (6.17) as

Λ · S ≡ Ω mod
N

K
with |Ω| < Λ <

√
N

K − 1
. (6.18)

As a result, we have the syndrome-based key equation (6.18). Given S,N and K, one can
solve the key equation and obtain Λ, using the following Algorithm 20.

Algorithm 20: Syndrome-based decoder of Chinese remainder codes

1 Input: Syndrome S calculated by (6.16), N , K

2 begin
3 Solve Λ · S ≡ Ω mod N/K by extended Euclidean algorithm iteratively to find

the greatest common divisor of S and N/K, which is ΛiS + Ψi(N/K) = Ωi.
4 Stop when |Λi| < Ωi and |Λi+1| > Ωi+1.
5 Λ← |Λi+1|.

6 Output: Error locator Λ

The inspiration of the algorithm comes from decoding RS codes by the key equation. The
proposed decoder finds the error locator Λ given parameters (N,K) of the code and the
syndrome S. Up to (n− k) log p1/(log p1 + log pn) errors can be always corrected, since the
decoding radius is the same as the one for the GRS decoder. In contrast to [GRS00] which
finds the codeword directly, our decoder finds the number of errors and their positions.

It is easy to see that the complexity of the step in Line 3 determines the whole complexity
of Algorithm 20. As is known in [GG03, Corollary 11.13], the extended Euclidean algorithm
has nearly linear complexity in bit size of N/K (O(M(len(N/K)) log len(N/K))). The
difference from Algorithm 19 is that, firstly we aim to find the error locations, the message
can be computed from any k correct positions by the Chinese remainder theorem, secondly
the parameter D is no longer needed here, and thirdly the numbers (S and N/K) we start
to deal with are K times smaller than those (R and N) in Algorithm 19.

Let us continue with Example 5.

87

6 Decoding Chinese Remainder Codes

Example 6 (Continued). Assume the received word is r = (1, 4, 0, 3, 1). By CRT, the
corresponding R = 10024. The syndrome S = 668 according to (6.16). N/K = 1001 is
known at the receiver. Table 6.1 illustrates the computation of extended Euclidean algorithm.

i Ωi Λi Ψi

0 1001 0 1
1 668 1 0
2 333 -1 1
3 2 3 -2

Table 6.1: Intermediate results of decoding the Chinese remainder code in Example 6.

We read from i = 2 and i = 3 that |Λ2| < Ω2 and |Λ3| > Ω3. The error locator is 3, i.e.,
the first position is erroneous. The message C can be calculated by CRT from any k = 2 of
the correct positions.

To find the error positions, the error locator should to be factorized using factors from
P. Usually integer factorization is an NP-complete problem. Since all the prime factors
are known at the receiver, one can employ Chien like search for Λ, i.e., check every element
in P to see if it is a factor of Λ.

Algorithm 20 has the same decoding performance as the one in (6.14).

Note that, at the same time we obtain the codeword, the error locator is also provided. If
we only focus on finding the error positions, Algorithm 20 gives a syndrome-based decoder
based on the syndromes which is equivalent to this unique decoder. Moreover, the form of
the syndrome-based decoder is similar to solving the classical key equation to decode the
Reed–Solomon codes.

6.3 Error and Erasure Decoding

Up to now, all the decoders for the CR codes correct errors only. In this section, in order
to correct erasures, we first give a slightly more general than the usual definition of the
Chinese remainder codes and then propose for these codes a decoding algorithm correcting
errors and erasures. The proposed decoder is based on the decoder by Goldreich et.al.
in [GRS00] and has similar complexity. The decoding capability of the decoder is given by
Theorem 44.

The section is organized as follows. First, a generalized Chinese remainder codes is given,
then we introduce the punctured Chinese remainder code which forms a subcode of the
classical codes. After demonstrating GRS decoder for generalized CR codes in Section 6.3.2,
our error-erasure-decoder will be shown in Algorithm 21.

88

6.3 Error and Erasure Decoding

6.3.1 Generalized CR Codes

To be able to correct both errors and erasures we need the following slightly more general
than the usual definition of Chinese remainder codes. Let us explain why the classical
definition of the Chinese remainder codes (see Definition 16) is not enough for the case of
error and erasure correction. Let us use a classical CR(P ;n, F (k)) code. Assume we have
τ erasures in a received word of the code. Then we should correct errors in the following
punctured code. Denote the list of n − τ unerased positions by U = {u1, u2, . . . , un−τ},
and by PU denote the list of pi at unerased positions, i.e., PU = {pi : i ∈ U}. By
puncturing the classical code CR(P ;n, F (k)) in the τ erased positions we obtain the code
CR(PU ;n− τ, F (k)), which is not classical anymore if at least one of the first k positions
of the original code was punctured. Indeed, if for example the first position is punctured,
then to be classical the cardinality K = p1p2 · · · pk of the punctured code should be equal
to p2p3 · · · pi for some i, which is not possible since pj are co-prime.

Our plan is as follows. We will be able to correct errors and erasures if we can correct
errors only in the punctured original code, which is not the classical code any more. So we
extend the error-only-correcting GRS decoder in Algorithm 19 to our wider class of the
Chinese remainder codes and apply this algorithm for the punctured code. After successful
decoding the punctured code, we obtain correct symbols at unerased positions and can
reconstruct the sent message of the original code. Before doing this, let us give some
properties of the wider class of the Chinese remainder codes given by Definition 17.

Definition 17 (Generalized Chinese remainder code). A Chinese remainder code
CR(P;n,K) or shortly CR(n,K) having cardinality 0 ≤ K ≤ N and length n over
alphabets P is defined as follows

CR(P ;n,K) = { ([C]p1 , . . . , [C]pn) : C ∈ N and C < K} .

A generalized Chinese remainder code is also said to be an arbitrary Chinese remainder
code. If cardinality of the code satisfies

K = F (k)

for some k then the code is a classical Chinese remainder code CR(P ;n, F (k)).

Corollary 39 ([SSG+05]). For cardinality |C| of any polyalphabetic code C of length n
over alphabets of sizes p1, p2, . . . , pn satisfying (6.1) having distance d in the Hamming
metric holds the following Singleton-type upper bound

|C| ≤
n−d+1∏
i=1

pi = F (n− d+ 1). (6.19)

Notice that we do not require in Corollary 39 that pi are relatively prime. It is also
interesting that the bound (6.19) does not depend on the d− 1 largest alphabet sizes! The

89

6 Decoding Chinese Remainder Codes

classical code CR(n, F (k)) has code distance d = n−k+ 1, which satisfy the Singleton-type
upper bound (6.19) with equality.

For the function F (k) let us define an inverse function f(K) as follows. For every integer
0 < K ≤ N , the function f(K), takes the integer value 0 < f(K) ≤ n that satisfies

F (f(K)− 1) < K ≤ F (f(K)), (6.20)

and f(0) = 0.
It follows from Definition 17 that f (F (k)) = k for every 0 ≤ k ≤ n. In the classical case

K = F (k), and the code has k = f(K) first information positions.

Lemma 40. Every code CR(P ;n,K) is a subcode of the classical code CR(P ;n, F (f(K)))
and a supercode for the classical code CR(P ;n, F (f(K)− 1)), i.e.,

CR(n, F (f(K)− 1)) ⊂ CR(n,K) ⊆ CR(n, F (f(K))). (6.21)

Proof: All codewords of the code CR(n,K) are obtained by encoding the messages C,
where 0 ≤ C ≤ K − 1, using the list P. Hence, the statement of the lemma follows from
(6.20).

From Lemmas 39, 40 and from Theorem 33 we have the followinig properties of the
generalized CR codes.

Theorem 41. The Chinese remainder code CR(P ;n,K) has minimum distance d = n−
f(K)+1 in the Hamming metric. Every f(K) positions of a codeword form a reconstruction
set, i.e., by knowing f(K) positions, the codeword can be uniquely reconstructed using the
CRT. For a classical Chinese remainder code CR(P;n, F (k)) the minimum distance is
d = n− k + 1, and every k positions of a codeword form a reconstruction set.

Proof: The second part of the theorem about classical Chinese remainder codes was
proved in [GRS00].

According to Lemma 40 the code C = CR(P;n,K) is a subcode of the classical code
CR(P;n, F (f(K))) with distance n − f(K) + 1. Hence for the distance d of the code C
we have d ≥ n − f(K) + 1. Let us show that only equality is possible here. Indeed, if
inequality holds and say d = n− f(K) + 2, then n− d+ 1 = f(K)− 1, and from the upper
bound (6.19) K = |C| ≤ F (f(K)− 1) that contradicts to (6.20).

Since for the classical code CR(P ;n, F (f(K))) every f(K) codeword’s positions form a
reconstruction set, the same holds for the subcode C.

6.3.2 Error Correction

In [GRS00] an error correcting GRS algorithm was suggested for the classical Chinese
remainder codes. In this section we show that this algorithm can be extended for correcting
errors for an arbitrary Chinese remainder code.

90

6.3 Error and Erasure Decoding

Assume a codeword c = (c1, . . . , cn) of an arbitrary Chinese remainder code CR(P ;n,K)
is transmitted, and a word r = (r1, r2, . . . , rn) from the code space ZP is received. We
assume t errors in the received word, i.e., r is obtained from c by replacing t components.

Let us recall the weighted Hamming distance between words r and c and error locator
as follows

dP(c, r) =
∑
i:ri 6=ci

log pi = log Λ.

The GRS decoder for an arbitrary Chinese remainder code CR(P;n,K) is shown by
Algorithm 19, where logarithm of the integer parameter D is the error correcting radius in
the weighted metric of the GRS algorithm.

Lemma 42 ([GRS00]). If r is such that for some C ∈ ZK holds dP(c, r) ≤ logD, where
D <

√
N/(K − 1), then Algorithm 19 returns C.

Proof: The lemma was proved in [GRS00] for the case of classical Chinese remainder
codes, i.e., when the condition K = F (k) holds for some k. However, this condition was
not used in the proof in [GRS00]. Hence the proof in [GRS00] holds for our case of general
Chinese remainder codes as well.

Lemma 42 gives decoding radius of Algorithm 19 in the weighted Hamming metric. The
following theorem answers the question how many errors can be corrected by the algorithm.
But first we need one more definition. Given the list P , we define the geometric mean p(m)
of m numbers pi, m ≤ n, as follows

p(m) = m
√
pnpn−1 · · · pn−m+1.

Theorem 43. Given a code CR(P ;n,K) with minimum distance d in the Hamming metric,
any pattern of t errors will be corrected by Algorithm 19 with D =

√
N/K, provided that

t ≤ tmax, where the decoding radius is

tmax = max
{
t ∈ N : t log p(t) ≤ log

√
N/K

}
. (6.22)

The decoding radius can be approximated by the following lower bound, which shows depen-
dance of the radius from the code distance:

tmax ≥
⌊

(d− 1)
log pf(K)+1

log pf(K)+1 + log pn

⌋
. (6.23)

Proof: The parameter D =
√
N/K satisfies D <

√
N/(K − 1), hence due to Lemma 42

the received word r will be decoded correctly to the codeword c if dP(c, r) ≤ logD. If t is
the Hamming distance t = d(r, c), then the weighted distance dP(c, r) is maximum when
the t errors occur at the last components and

max
c∈C

dP(c, r) = log
n∏

i=n−t+1

pi = t log p(t).

91

6 Decoding Chinese Remainder Codes

Hence t errors will be always corrected if t log p(t) ≤ logD and (6.22) follows, which gives
the precise value for the error correcting radius of Algorithm 21.

Let us prove (6.23). It follows from (6.20) that K ≤ F (f(K)), hence

max dP(c, r) ≤ log
√
N/K

if

max dP(c, r) ≤ log
√
N/F (f(K)).

The last is equivalent to (
n∏

i=n−t+1

pi

)2

≤
n∏

i=f(K)+1

pi,

which gives
n∏

i=n−t+1

pi ≤
n−t∏

i=f(K)+1

pi.

This holds if

ptn ≤ p
n−f(K)−t
f(K)+1 (6.24)

and (6.23) follows since n− f(K) = d− 1 by Theorem 41.

Notice that in (6.24) we can replace pf(K)+1 by a smaller value p1 and get a less precise
bound in Theorem 43 like in [GRS00]

tmax ≥
⌊

(d− 1)
log p1

log p1 + log pn

⌋
. (6.25)

Up to now, we obtain two decoding radii (6.14) and (6.25) by different approximation.
Two radii might differ, given the same parameters of the code. From (6.25), the connection
of decoding radius and minimum distance is seen more clearly. When all entries in P are
in same order of magnitude, one can correct errors up to half the minimum distance.

6.3.3 Error and Erasure Correction

We are ready to present the error and erasure decoding algorithm. Still assume a codeword
c = (c1, c2, . . . , cn) of an arbitrary Chinese remainder code CR(P;n,K) was transmitted,
and a word r = (r1, r2, . . . , rn) ∈ ZP was received. The receiver knows the list U of n− τ
unerased positions, i.e., the rest τ positions can be considered as erased (unknown). In
addition we assume that the received word has t errors in unerased positions.

The decoder for an arbitrary Chinese remainder code CR(P ;n,K) correcting errors and
erasures is shown by Algorithm 21. We give the error correction radius for this error and
erasure decoder in Theorem 44. For simplicity we give the theorem using the bound (6.25),
despite it can be done for the expressions (6.14), (6.22) and (6.23) as well.

92

6.3 Error and Erasure Decoding

Algorithm 21: Correcting errors and erasures for Chinese remainder codes

1 Input: The list P , the received word r, unerased set U
2 begin
3 By puncturing erased positions in r get punctured received word r′.
4 Correct errors in r′ by Algorithm 19 for the punctured code CR(PU ;n− τ,K),

get a codeword c′ ∈ CR(PU ;n− τ,K).
5 The codeword c′ ∈ CR(PU ;n− τ,K) gives n− τ correct symbols of the sent

codeword c. Reconstruct the message C by applying the CRT to the known
symbols of c.

6 Output: The message C

Theorem 44. Given a code CR(P ;n,K) with minimum distance d, any pattern of t errors
and τ erasures will be corrected by Algorithm 21, provided that

(log p1 + log pn)/log p1t+ τ ≤ d− 1. (6.26)

Proof: The function f(K) depends on the list P and we show this dependence by fP(K).
Notice that fP(K) ≥ fPU (K).

According to Theorem 41, the original code C = CR(P;n,K) has the code distance
d = n− fP(K) + 1, and the punctured code Cp = CR(PU ;n− τ,K) has distance

dp = n− τ − fPU (K) + 1 ≥ d− τ.

If (6.26) is satisfied then the bound (6.25) of Theorem 43 holds for Cp, i.e.,

log p1 + log pn
log p1

t ≤ dp − 1. (6.27)

Hence, t errors will be corrected in Step 2 of Algorithm 21 due to Theorem 43 and we
obtain correct codeword c′ of the punctured code of length n− τ .

This codeword c′ gives n− τ correct symbols of the sent codeword c. If (6.26) is satisfied
then n− τ ≥ fP(K). This allows us to reconstruct the message C by applying the CRT
to the known symbols of c, since fP(K) symbols form a reconstruction set according to
Theorem 41.

Since the complexity of the Algorithm 21 mainly depends on the Line 4 and in [GRS00]
Goldreich et.al. showed that Algorithm 19 has a nearly linear time complexity in the bit
sizes of N , we can assume the same complexity also applies for the Algorithm 21.

Thus, in this section, we gave a more general than the usual definition for the Chinese
remainder codes and proposed punctured Chinese remainder codes afterwards. To correct a
received word with t errors and τ erasures satisfying (6.26), we introduced an error-erasure-
decoder which is an extension of the GRS decoder. We also showed the error correcting
radius and analyzed the complexity for our decoder.

93

6 Decoding Chinese Remainder Codes

6.4 Decoding Interleaved CR Codes

Now we consider interleaved Chinese remainder (ICR) codes. As is mentioned at the
beginning of this chapter, the ICR codes are algebraic similar to interleaved Reed–Solomon
(IRS) codes in many respects. Recently, the construction of IRS codes have been intensively
studied in several publications, e.g. [SSB09] where decoding beyond half the minimum
distance is proposed. Among these decoding algorithms for IRS codes, Nielsen [Nie13b]
proposed a module minimization approach for solving multiple key equations by finding
short vectors in a certain space.

In this section, we adapt module minimization approach in [Nie13b] to decode ICR
codes, i.e., we model the decoding of ICR codes as that of finding a short vector in a Z-
lattice. Using the Lenstra–Lenstra–Lovász (LLL) algorithm, we obtain an efficient decoding
algorithm, correcting errors beyond half the minimum distance and having nearly linear
complexity. The algorithm can fail with a probability dependent on the number of errors,
and we give an upper bound for the failure probability. Simulation results indicate that
the bound is close to the truth. We apply the proposed decoding algorithm for decoding a
single CR code using the idea of “power” decoding, suggested for Reed–Solomon codes. A
combination of these two methods can be used to decode low-rate ICR codes.

In Section 6.4.1, we introduce ICR codes and state the decoding problem. In Section 6.4.3
we give the decoder for ICR codes as well as theoretical considerations, such as complexity,
failure probability and decoding radius. Some simulation results are shown; in Sections 6.4.4
and 6.4.5, we discuss how this method can be extended using power decoding for single
and interleaved CR codes.

6.4.1 Interleaving of CR Codes

Interleaving is a technique for making long codes from shorter ones which efficiently handle
burst errors. Up to now, we investigated interleaved Reed–Solomon codes and interleaved
Gabidulin codes. We also improved the corresponding collaborative decoding approaches.
Since the CR codes are similar to RS codes and Gabidulin codes, it is inevitable to consider
interleaved CR codes for improving their decoding performance.

Definition 18 (Interleaved Chinese remainder code). Let us consider ` classical CR
codes CR(P;n,Kl), l ∈ 1, . . . , `. Denote the list K1, K2, . . . , K` by K. The Interleaved
Chinese Remainder code ICR(P ;n,K) or shortly ICR(n,K) is defined as the set of matrices

c
(1)
1 c

(1)
2 . . . c

(1)
n

c
(2)
1 c

(2)
2 . . . c

(2)
n

...
...

. . .
...

c
(`)
1 c

(`)
2 . . . c

(`)
n


where c(l) = (c

(l)
1 , . . . , c

(l)
n) ∈ CR(n,Kl), l = 1, . . . , `.

94

6.4 Decoding Interleaved CR Codes

For the remainder of this section, consider some received matrix with rows r(1), . . . , r(`)

where r(l) = c(l) + e(l) for some error row e(l). We now define a complete error locator
which identifies all columns having any errors, i.e.,

Λ =
∏

i:∃l:r(l)i 6=c
(l)
i

pi.

We only consider burst errors, i.e., the error positions are the same for all rows. When we
refer to “the number of errors”, it is also the number of factors in the above product, and
the number of erroneous columns in the received matrix.

For each c(l) and r(l) corresponds a C(l) and an R(l), respectively. For a particular row
l, the key equation (6.13) holds with Λ; thus, collaboratively decoding of the ICR codes
becomes solving a system of ` key equations as follows

ΛR(1) ≡ ΛC(1) mod N
ΛR(2) ≡ ΛC(2) mod N

...
ΛR(`) ≡ ΛC(`) mod N

(6.28)

where Λ is a positive integer and relatively small.

6.4.2 Lattice Reduction

The problem of solving the system of key equations (6.28) is in abeyance until we know
another problem — finding a short vector in a lattice. We refer this section to [[GG03],
Chapter 16].

Definition 19 (Lattice). Let n ∈ N and f 1, . . . ,fn ∈ Rn with f i = (fi1, . . . , fin). Then

L =
∑

1≤i≤n

Zf i =

{ ∑
1≤i≤n

rif i : r1, . . . , rn ∈ Z

}

is the lattice or Z-module generated by f 1, . . . ,fn. If these vectors are linearly independent,
they are a basis of L.

The norm of L is |L| = | det(fij)1≤i,j≤n| ∈ R. The norm does not depend on the choices of
the generators of L. The norm (or length) of a vector f = (f1, . . . , fn) ∈ L is given by

‖f‖ =

(∑
1≤i≤n

f 2
i

)1/2

= 〈f ,f〉1/2 ∈ R

where 〈·, ·〉 is the inner product of two vectors in Rn. The norm ‖f‖ is also called Euclidean
norm or L2 norm.

95

6 Decoding Chinese Remainder Codes

A very interesting problem is to find the shortest vector in a lattice. However, this
problem is NP-hard [Ajt98]. Therefore, lots of work has been done on a relaxed topic

— lattice reduction, which means to find a lattice basis such that it contains “relatively”
short and almost orthogonal vectors. The earliest work regarding to the lattice reduction
problem was done by Hermite [Her50], where whether the complexity of the algorithm is
polynomial time is still an open question [NS06]. In 1982, lattice reduction was resurged
by the Lenstra–Lenstra–Lovász (LLL or L3) algorithm [LLL82]. It is an efficient method
in polynomial time to find such a relatively short vector, length of which is close to the
shortest one up to some constant factor.

Let us briefly revisit the Gram–Schmidt orthogonalization (GSO). It finds an orthogonal
basis f ′1, . . . ,f

′
n of Rn given an arbitrary basis f 1, . . . ,fn of Rn where f ′ are defined as

follows

f ′i = f i −
∑

1≤j<i

µijf
′
j, where µij =

〈f i,f ′j〉
‖f ′j‖2

for 1 ≤ j < i

with initialization f ′1 = f 1. Algorithm 22 describes the inductive procedure of GSO, and
outputs an orthogonal basis f ′1, . . . ,f

′
n and the matrix M of the linear transform

(f 1, . . . ,fn)T = M(f ′1, . . . ,f
′
n)T .

The Gram–Schmidt orthogonalization mainly performs Gaussian elimination on the Gramian
matrix

(
〈f i,f j〉

)
1≤i,j≤n ∈ R

n×n. GSO is carried out with O(n3) arithmetic operations in

R.

Algorithm 22: Gram–Schmidt orthogonalization (GSO)

1 Input: A basis f 1, . . . ,fn ∈ Rn

2 begin
3 f ′1 ← f 1

4 for i from 1 to n do
5 δ ← 0
6 for j from 1 to i do
7 µij ← 〈f i,f ′j〉/‖f ′j‖2

8 δ ← δ + µijf
′
j

9 f ′i ← f i − δ

10 Output: A basis f ′1, . . . ,f
′
n and a lower triangle matrix M = (µij)

From Line 6 to Line 9, the f ′i are computed as follows.

f ′i = f i −
∑

1≤j<i

µijf
′
j.

One can consider f ′i which is obtained by removing the projection part onto f ′j 1 ≤ j < i,
from f i, in particular, ‖f ′i‖ ≤ ‖f i‖ which immediately leads to the following theorem.

96

6.4 Decoding Interleaved CR Codes

Theorem 45 (Hadamard’s inequality). Given A = (fT1 , . . . ,f
T
n)T ∈ Rn×n with f i =

(fi1, . . . , fin), and B = max{|fij|1≤i,j≤n ∈ R}. Then

| detA| ≤ ‖f 1‖ · · · ‖fn‖ ≤ nn/2Bn.

There are some remarks regarding to GSO. Firstly, the norm of the lattice spanned by the
GSO basis doesn’t change, but the norm of the vectors in the basis are shortened. Secondly,
for any f ∈ L, we have

‖f‖ ≥ min{‖f ′1‖, . . . , ‖f ′n‖}.

In our problem, we consider the integer lattice L generated by a basis f 1, . . . ,fn ∈ Zn.
After GSO, we will get an orthogonal basis f ′1, . . . ,f

′
n ∈ Qn. If the GSO basis is the one

for the lattice generated by f 1, . . . ,fn ∈ Zn, then one of the f ′i is a shortest one. On
the other hand, the corresponding GSO basis can not be guaranteed to still stay in the
lattice generated by f 1, . . . ,fn since f ′i ∈ Qn. We would like to search an orthogonal or
quasi-orthogonal basis where all the basis vectors f ′i are in the integer lattice generated by
f 1, . . . ,fn, and the shortest vector is in the basis.

Definition 20 (Reduced basis). Given f 1, . . . ,fn a basis of Rn and f ′1, . . . ,f
′
n the cor-

responding GSO basis. Then f 1, . . . ,fn is a reduced basis if

‖f ′i‖2 ≤ 2‖f ′i+1‖, for 1 ≤ i < n.

Theorem 46 ([GG03], Theorem 16.9). Let f 1, . . . ,fn be a reduced basis of the lattice
L ⊆ R. Then ‖f 1‖ ≤ 2(n−1)/2‖f‖ for any f ∈ L.

Now we present the Algorithm 23 which is called Lenstra–Lenstra–Lovász (LLL) basis
reduction [LLL82] algorithm. It computes a reduced basis of a lattice in Z from any
arbitrary basis in Z. The reduced basis is a subset of the lattice generated by the input
basis, and the reduced basis is almost orthogonal. From Theorem 46, the LLL algorithm
guarantees to find a “relatively short” vector which is at most 2(n−1)/2 times larger than
the shortest one where n is the dimension of the lattice.

The algorithm runs repeatably in two steps: The replacement step in the for loop and
the swap step in the if check. The sub-function Round in Line 7 is to round µij ∈ R to the
nearest integer, i.e., Round(µij) = bµij + 1/2c.

Let g1, . . . , gn ∈ Zn and f 1, . . . ,fn ∈ Zn be the bases before and after the replacement
or the swapping, respectively. Let g′1, . . . , g

′
n ∈ Qn and f ′1, . . . ,f

′
n ∈ Qn be the their

corresponding GSO bases. In the first step, the GSO basis before and after the replacement
does not change ([GG03, Lemma16.12]), i.e.,

g′i = f ′i for 1 ≤ i ≤ n. (6.29)

Indeed, the spaces which are spanned by g1, . . . , gn and f 1, . . . ,fn are the same. After the
for loop, we have |µij| ≤ 1/2 for 1 ≤ j < i, 1 ≤ i ≤ n.

97

6 Decoding Chinese Remainder Codes

Algorithm 23: LLL basis reduction

1 Input: An arbitrary basis f 1, . . . ,fn ∈ Zn

2 begin
3 f ′1, . . . ,f

′
n, (µij)← GSO(f 1, . . . ,fn)

4 i← 2
5 while i ≤ n do
6 for j from i to 1 do
7 replace f i by (f i − Round(µij)f j)

8 f ′1, . . . ,f
′
n, (µij)← GSO(f 1, . . . ,fn)

9 if i > 1 and ‖f ′i−1‖2 > 2‖f ′i‖2 then
10 swap f i−1 and f i
11 f ′1, . . . ,f

′
n, (µij)← GSO(f 1, . . . ,fn)

12 i← i− 1

13 else
14 i← i+ 1

15 Output: A reduced orthogonal basis f ′1, . . . ,f
′
n ⊆ LZ

In the second step, after Line 11, the vectors in the GSO basis remain the same except
f ′i and f ′i−1 ([GG03, Lemma 16.13]), i.e.,

f ′k = g′k for k = {1, . . . , n} \ {i− 1, i}, (6.30)

‖f ′i−1‖2 ≤ 3

4
‖g′i−1‖2, (6.31)

‖f ′i‖ ≤ ‖g′i−1‖.

Convergence

Definition 21 (Gramian determinant). Given a matrix Fk = (fT1 , . . . ,f
T
k)T ∈ Zk×n,

1 ≤ k ≤ n. The Gramian determinant dk of Fk is the determinant of its Gramian matrix
FkF

T
k = 〈f i,f j〉1≤i,j≤k ∈ Rk×k, i.e.,

dk = det(FkF
T
k) ∈ Z.

In [GG03, Lemma 16.15], the Gramian determinant is dk =
∏

1≤i≤k ‖f
′
i‖2 > 0, for 1 ≤ k ≤ n.

Let us denote d′k as the new value of dk after replacement or swapping in one while loop
of Algorithm 23. In the replacement step, according to (6.29), we obtain

d′k = dk.

In the swapping step, for 1 ≤ k < i− 1, we have d′k = dk due to (6.30); for k = i− 1, since
di−1 = di−2‖f ′i−1‖2 and (6.31), we have d′i−1 ≤ (3/4)di−1; the swapping of matrix can be

98

6.4 Decoding Interleaved CR Codes

considered as the original matrix multiplied with a permutation matrix whose determinant
is 1 or −1, hence for i− 1 < k ≤ n, d′k = dk. As a result ([GG03, Lemma 16.16]),

d′i−1 ≤ (3/4)di−1, for some 1 < i ≤ n,
d′k = dk, for k = {1, . . . , n} \ {i− 1}.

Now let us see that the LLL algorithm converges at a finite number of steps. Let us consider
a variant

D =
∏

1≤k≤n−1

dk. (6.32)

Algorithm 23 every time runs the while loop, the value of D decreases by at least a factor
of (3/4). Since D ∈ Z+, Algorithm 23 converges. The reason that dn is not included
in (6.32) is as follows. From the above deduction, either in the replacement step or in the
swapping step, the dn does not change. The tendency of D is exactly the same as Ddn and
much smaller by a factor of dn. Thus, we use D instead of Ddn for complexity computation.

Complexity

The GSO in Line 3 of Algorithm 23 costs O(n3) arithmetic operations in Q.
The replacement in Line 7 and 8 costs O(n) operations in Q because the GSO basis

f ′1, . . . ,f
′
n doesn’t change, only one row in the matrix (µij) is updated. Thus the for

loop needs O(n2) operations in Q. In Line 9, computing the squared norm has O(n)
multiplications and additions in Z. If the vectors are needed to be swapped, then only f ′i−1

and f ′i are recomputed in Line 11 while other GSO basis vectors remain the same, which
yields O(n) operations in Q. Overall, the complexity of every while loop is O(n2) in Q.

How many iteration does Algorithm 23 need? In the last subsection, we already discussed
the variant D decreases in each iteration at least by a factor of 3/4. The initial value D0 is
calculated by

D0 = (‖f ′1‖2) · (‖f ′1‖2‖f ′2‖2) · · · · · (‖f ′1‖2 · · · ‖f ′n−1‖2)

≤ (‖f 1‖2) · (‖f 1‖2‖f 2‖2) · · · · · (‖f 1‖2 · · · ‖fn−1‖2)

≤ A2(1+2+···+n−1)

= An(n−1)

where A = max{‖f i‖1≤i≤n}. The decrease of D implies that, the maximum number of
iterations is log3/4D0 ∈ O(n2 logA).

To sum up, the complexity of Algorithm 23 is O(n4 logA) arithmetic operations in Q.

6.4.3 Decoding of ICR Codes

Recently, Nielsen [Nie13b] used a module minimization approach to solve multiple key
equations over polynomial ring F[x], such as those arising when decoding IRS codes. We
will apply essentially the same approach for our key equations, but the algebraic differences
between F[x] and Z implies fundamental differences in the final algorithms.

99

6 Decoding Chinese Remainder Codes

Let us recall the system of key equations (6.28). The l-th key equation means that there
exists some vl ∈ Z such that ΛR(l) − vlN = ΛC(l). We can collect these ` equations into
one in a vectorized form and say that s = (Λ,ΛC(1), . . . ,ΛC(`)) must be a vector in the
Z-row space of the matrix

M =


1 R(1) R(2) . . . R(`)

0 N 0 . . . 0
0 0 N . . . 0

. . .

0 0 0 . . . N

 . (6.33)

The essential observation is now that whenever few errors have occurred, s is often
the shortest vector in the row space of M ; we will explain and formalize this later with
Theorem 48. To increase the probability that s is the shortest vector, we will actually
consider the row space of Mω, a weighted version of M , where we scale the i-th column
with some ωi ∈ Z. We are thus seeking a sω = (Λω0,ΛC

(1)ω1, . . . ,ΛC
(l)ω`). We will come

back to how exactly we assign the ωi in Corollary 49.
As we explained in the last subsection, computing the shortest vector in the row space of

a matrix under the L2 norm is unfortunately an NP-hard problem; however, the Lenstra–
Lenstra–Lovász (LLL) algorithm [LLL82] in polynomial time finds a vector whose L2 norm

is at most γ‖v‖, where v is a shortest vector and γ is a constant. In the worst case, γ =
√

2
`
,

where ` + 1 is the dimension of the row space; however, the LLL and its modifications
perform nicer in experiments with γ ≈ 1.02`+1 [NS06]. To be certain that our computation
will lead us to sω, we must therefore not only be sure that sω is the shortest vector in the
row space, but that there are no other vectors of length at most γ‖sω‖.

Theorem 48 essentially says that whenever not too many errors have occurred, this is
indeed almost always the case. Therefore, one can construct Mω, apply the LLL algorithm to
find a short vector in it, and with high probability, the output will be sω. This immediately
leads to the decoding approach given as Algorithm 24.

Let us use an example with somewhat small numbers to illustrate the algorithm.

Example 7. As in Example 5, let us use a list P = {3, 5, 7, 11, 13} and k = 2 to construct
a single CR code. The interleaved CR code is constructed with ` = 3 CR codes CR(P ; 5, 2).
The received word matrix

R =

0 0 2 5 9
0 3 5 10 12
2 0 0 6 1


with corresponding R(1) = 555, R(2) = 3288, R(3) = 10115. And N = 15015. The initial
matrix

M =


1 555 3288 10115
0 15015 0 0
0 0 15015 0
0 0 0 15015

 .

100

6.4 Decoding Interleaved CR Codes

Algorithm 24: Decoding an ICR code

1 Input: The lists P and K, the received words r(l), l = 1, . . . , `, N
2 Preprocessing: ω0, . . . , ω` according to Corollary 49

3 begin
4 Compute R(1), . . . , R(`).
5 Construct M using (6.33) and multiply the ith column by ωi for i = 0, . . . , `.
6 Run the LLL algorithm which returns a short vector vω = (vω0, vω1, . . . , vω`).
7 if vω0 has the form ω0Λ where Λ is a valid error locator then
8 Return Λ.
9 else

10 Return Fail.

11 Output: The error locator Λ or Fail

After multiplied with weights (15, 1, 1, 1), the weighted matrix

Mω =


15 555 3288 10115
0 15015 0 0
0 0 15015 0
0 0 0 15015

 .

A short vector vω is in the first row of the matrix
825 495 660 770
−420 −525 −1974 2065
−1290 −2685 2517 9800
−2805 1320 759 385

 .

After running LLL algorithm. The error locator is 825/15 = 55 = 5 · 11 which indicates
the errors have occurred on the second and fourth positions. From any two of error-free
positions, we know the information are C(1) = 9, C(2) = 12, C(3) = 14.

For a single CR code CR(5, 2), only 1 error can be corrected by Algorithm 19 or Algo-
rithm 20 according to (6.14). With interleaving scheme, in our example, we can correct 2
errors which is beyond half the minimum distance of a single CR code. In fact, later we
will know from (6.43), the maximum decoding distance in our case is 2.

Failure Probability

With the overall idea explained, we can go on to analyze the probability that the above
algorithm will fail, and from this derive how to assign the weights ωi. Our failure probability
will depend on the unknown Λ, but we discuss in the next subsection how this can be
interpreted as a decoding radius.

101

6 Decoding Chinese Remainder Codes

The algorithm fails when there is a vector in the row space Mω different from sω but
which has L2 norm within γ‖sω‖, and we will upper bound this probability. Our theorem
will assume that certain values behave as independent, uniformly distributed random
variables, and so we will need the following lemma:

Lemma 47. Given some N, T ∈ Z with T < N and c1, . . . , c` ∈ Z+, and let X1, . . . , X` be
independent random variables, uniformly distributed on [0, N − 1]. Then

P = Prob[c1X1 + . . .+ c`X` < T] ≤ T `

`!N `c1 · · · c`
. (6.34)

Proof: To prove the lemma we relax integer variables Xi to real valued variables
uniformly distributed on [0, N] and show that for this case (6.34) holds with equality. If N
is large, which will be our case, this relaxation gives a very precise upper bound (6.34) for
the probability P in the lemma.

Assume that Xi are real valued variables uniformly distributed on [0, N] with density
p[Xi = b] = 1/N for b ∈ [0, N] and define the sum of the first i items Si = c1X1 + . . .+ ciXi

for 1 < i ≤ `. Then we have

P [Si < T] =

∫ T/ci

0

p[Xi = b]P [Si−1 < T − cibi] db

=
1

N

∫ T/ci

0

P [Si−1 < T − cibi] db. (6.35)

We proceed by induction on i. For the base case i = 1, observe that

P [S1 < T] = P [c1X1 < T] = P [X1 < T/c1] =
T

Nc1

.

For the induction step, we continue from (6.35) using the induction hypothesis:

P [Si < T] =
1

N

∫ T/ci

0

P [Si−1 < T − cib] db

=
1

N

∫ T/ci

0

(T − cib)i−1

(i− 1)!N i−1c1 . . . ci−1

db

=
ci−1
i

(i− 1)!N ic1 . . . ci−1

∫ T/ci

0

(
T

ci
− b
)i−1

db.

Since ∫ T/ci

0

(
T

ci
− b
)i−1

db =
1

i

(
T

ci

)i
we have proved the step of induction and for i = ` we obtain the expression of the lemma.

102

6.4 Decoding Interleaved CR Codes

Theorem 48. Let A be a random variable, uniformly distributed on 1, . . . , bT/ω0c, where
T is defined below, and assume then that we can regard (AR(l) mod N) for l = 1, . . . , ` as
` independent random variables, uniformly distributed on 0, . . . , N − 1.

Assume that the LLL algorithm finds a vector whose L2 norm is at most γ‖vω‖ where vω
is a shortest vector in the row space of Mω. For a random error locator Λ, the probability
of decoding failure Pf (Λ) satisfies

Pf (Λ) ≤ 1−
(

1− T `

`!N `ω1 · · ·ω`

)T/ω0

where T = γ̃max{ω0Λ, ω1ΛK1, . . . , ω`ΛK`} and γ̃ =
√
γ(`+ 1).

Proof: There are two cases we need to consider: pi - R(l) and pi | R(l).
If pi - R(l),∀i = 1, . . . , n, l = 1, . . . , `, then the variables (AR(l) mod N) are uniformly

distributed in [0, . . . , N − 1]. The decoder can only fail if there is a vector vω 6= sω with
‖vω‖ < γ‖sω‖, i.e., ∑̀

l=0

(ωlvl)
2 < γ

(
(ω0Λ)2 +

∑̀
j=1

(ωjΛC
(j))2

)
where ωlvl are the components of vω. Let T̃ = max{ω0Λ, ω1ΛK1, . . . , ω`ΛK`}; then the

above can only occur if
∑`

l=0(ωlvl)
2 < γ(` + 1)T̃ 2. Due to Cauchy–Schwartz inequality,

that implies ∑̀
l=0

ωlvl <
√
γ(`+ 1)T̃ = T. (6.36)

We will upper bound Pf (Λ) by the probability that a vector vω 6= sω satisfying (6.36) is in
the row space. Such a vector can be written in the form(

ω0A, ω1(AR(1) mod N), . . . , ω`(AR
(`) mod N)

)
where ω0A ∈ {1, . . . , T − 1}. Now we use Lemma 47 to over-approximate the probability
that for a given A ∈ {1, . . . , bT/ω0c}, the associated vector of the above form satisfies
(6.36):

P = Prob
[∑̀

j=1

ωi(AR
(j) mod N) < T − ω0A

]
< Prob

[∑̀
j=1

ωi(AR
(j) mod N) < T

]
≤ T `

`!N `ω1 . . . ω`
. (6.37)

Thus the probability that none of the T/ω0 choices of A satisfies (6.36) becomes at least
(1− P)T/ω0 , and the statement follows.

103

6 Decoding Chinese Remainder Codes

If for some i ∈ [1, n] and some l ∈ [1, `], pi | R(l), then pi | (AR(l) mod N). Therefore,
the variables (AR(l) mod N) are clearly not uniformly distributed in {0, 1, . . . , N − 1},
but still behave close to uniformly distributed in {0, pi, 2pi, . . . , N − pi}. In this case, the
vector vω can be written in the following way:(

ω0A, ω1

[
AR(1)

]
N
, . . . , ωipi

[
AR(l)

pi

]
N
pi

, . . . , ω`
[
AR(`)

]
N

)
.

In the end we reach the same failure probability, since

T `

`!N `−1N
pi
ω1 . . . ωipi . . . ω`

=
T `

`!N `ω1 . . . ω`
. (6.38)

If there are some pj 6= pi which divide any one in R(1), . . . , R(`), same arguments can be
iterated.

Though we have not proved that the following choice of weights is optimal, it seems intuitive:

Corollary 49. With the weights chosen as ω0 = K` and ωi = K`/Ki, i = 1, . . . , `, the
failure probability becomes

Pf (Λ) ≤ 1−

(
1− γ̃`Λ`

∏`
l=1 Kl

`!N `

)γ̃Λ

. (6.39)

Decoding Radius

The guaranteed unique decoding radius tg of the ICR code is given by (6.14), where
K = max{Kl} since any unique decoder must fail with non-zero probability when t > tg.
However, one could almost always find Λ using the best protected code, giving a “usual”
decoding radius tu from K = min{Kl}. Thus, the traditional definition of decoding radius
is not very useful. Exactly the same applies for the collaborative decoders of Reed–Solomon
codes [SSB09, SSB07].

To decode a single CR code, it follows from Lemma (38) that the decoding will never
fail if Λ ≤

√
N/(K − 1)). For ICR code, when Λ >

√
N/(K − 1), we can also correct

errors, but we can not guarantee that our decoding algorithm will always work in this case.
Therefore, we define a threshold φ, and say that “If Λ is within some range, Algorithm 24
can decode with probability 1 − φ”. One could then set φ satisfactorily low. For this
definition, one can use the failure probability estimated in Theorem 48 as a starting point.
Since we assume that all error patterns for given t are equally likely, each Λ with t factors
occurs equally often; thus the probability of failure for a given number of errors t is

P f (t) =

(
n

t

)−1∑
I

Pf (pI1 · · · pIt) (6.40)

104

6.4 Decoding Interleaved CR Codes

where the sum runs over all subsets of {1, . . . , n} of size t.
If we set the failure threshold as φ in (6.39), i.e.,

1−

(
1− γ̃`Λ`

∏`
l=1Kl

`!N `

)γ̃Λ

≤ φ. (6.41)

The term with exponent in (6.41) is approximated as

1− γ̃`Λ`
∏`

l=1Kl

`!N `
γ̃Λ.

According to the first order truncation of the binomial series, the error locator is bounded
as follows

Λ ≤

(
φ`!

[γ(`+ 1)]
`+1
2

) 1
`+1 (

N

K

) `
`+1

, α

(
N

K

) `
`+1

, (6.42)

where K =
√̀
K1 · · ·K` and α is some constant close to 1 which depends on φ, γ and `. The

decoding radius in Hamming metric of our algorithm, in the above sense, is

t ≤
⌊

`

`+ 1

log(N/K)

log pn
+

logα

log pn

⌋
(6.43)

where the latter term is a constant. By experiments logα/ log pn is always negative and
close to 0. Hence, one can use

t .

⌊
`

`+ 1

log(N/K)

log pn

⌋
to upper bound the decoding radius in Hamming distance. Note that, to measure the
correction capability for ICR codes, it is more precise to use weighted Hamming distance,
i.e., log Λ or directly Λ than usual Hamming metric.

To decode a single CR code (` = 1, φ = 1), (6.43) coincides with (6.14). One can use
γ = 1, 1.022 or

√
2 in (6.43), the result will not change.

Example 8. We will consider two ICR codes with low rate and high rate respectively.
Let us consider the ICR code ICR(n1 = 20,K1 = [3, 5]), i.e., interleaving factor ` = 2,

and with the list of primes P1 = [101, 103, . . . , 197]. Table 6.2 shows the value of logα/ log pn
which depends on φ, γ when ` = 2. We can see that logα/ log pn is much smaller than 1

such that one can simply use
⌊

`
`+1

log(N/K)
log pn

⌋
to bound the decoding radius. One can decode

up to 10 errors pursuit to (6.43).
Let us consider the ICR code ICR(n2 = 100,K2 = [81, 81, 82, 82, 83]) as a higher rate

code, and with the list of primes P2 = [101, 103, . . . , 691]. Similar behavior of logα/ log pn
can be found in Table 6.3 in comparison with the above example.

For single CR codes CR(P1;n1 = 20, k1 = 3) and CR(P2;n2 = 100, k2 = 81), one can
omit latter part in (6.43) for calculating correction radius since the absolute value of it
is even smaller than 0.1 (See Table 6.4). Therefore, (6.43) coincides with (6.14) with
` = 1, φ = 1.

105

6 Decoding Chinese Remainder Codes

γ = 1 γ = 1.02`+1 γ =
√

2
`

φ = 1 -0.060 -0.066 -0.126
φ = 0.9 -0.067 -0.073 -0.132

Table 6.2: The value of logα/ log pn in (6.43) for ICR(n1 = 20,K1 = [3, 5])

γ = 1 γ = 1.02`+1 γ =
√

2
`

φ = 1 -0.015 -0.024 -0.148
φ = 0.9 -0.018 -0.027 -0.150

Table 6.3: The value of logα/ log pn in (6.43) for ICR(n2 = 100,K2 = [81, 81, 82, 82, 83])

Complexity

The complexity of the LLL algorithm dominates the overall complexity in Algorithm 24. As
stated in the last part of Subsection 6.4.2, Line 6 performs O((`+ 1)4 logA) ≈ O(`4 logA)
operations on integers of bit-length O(` logA) where A is the greatest norm of rows in
Mω. Choosing the ωi as in Corollary 49, we have A =

√
`+ 1NK`/K1 which means

logA < 1/2 log(` + 1) + 2n log pn. The remaining computations of Algorithm 24 can be
performed faster than this. In particular, since we know which primes are allowed to divide
a valid error locator, the check in Line 7 can be done efficiently. Therefore, the complexity
of Algorithm 24 is O(n`4.5 log pn) operations on integers of bit-length O(n`1.5 log pn).

Test Results

We have done quite intensive testing of the algorithm, and have in general observed that
the failure probability of Theorem 48 coincides rather well with experiments: setting γ = 1,
i.e., expecting that the LLL algorithm can always find the shortest vector, sometimes proves

slightly too optimistic; while setting γ =
√

2
`
, i.e., the worst case, is quite pessimistic. The

difference between these two is usually within only a few errors, though.
We continue with our Example 8. Consider the ICR code ICR(n1 = 20,K1 = [3, 5]) with

the list of primes P1 = [101, 103, . . . , 197]. The guaranteed decoding radius for this ICR
code is tg = 7, while the “usual” radius is tu = 8. Choosing the weights as in Corollary 49,
we have run 10,000 tests with this code, creating random error patterns of weights ranging
from 7 up to 12. For each number of errors t, we then calculated the following aggregate
statistics

AObs = # of failures/# of testst

AγT =
∑

Λ∈testst
P γ
f (Λ)/# of testst,

the latter calculated for γ ∈ {1, 1.02`+1,
√

2
`}. We have also calculated

P γ
T = P γ

f (Dt),

106

6.4 Decoding Interleaved CR Codes

γ = 1 γ = 1.022 γ =
√

2

CR(P1;n1 = 20, k1 = 3) -0.066 -0.069 -0.098
CR(P2;n2 = 100, k2 = 81) -0.053 -0.056 -0.080

Table 6.4: The value of logα/ log pn in (6.43) for two CR codes with φ = 1

i.e., the failure probability of the biggest Λ.

t AObs A1
T A1.02`+1

T A
√

2
`

T P 1
T P 1.02`+1

T P
√

2
`

T

9 0 0 0 0 0 0 0
10 0 0 0 0.01 0.25 0.27 1.18
11 96.06 98.49 98.68 99.86 100 100 100
12 100 100 100 100 100 100 100

Table 6.5: Failure probabilities % (n = 20)

Table 6.5 summarizes our results. We see that the observed decoding failure rather
sharply goes from 0% to 100%, and we see that the theoretical failure probabilities come
very close to the observed behavior. It is interesting to note that with α = 1, (6.43)
evaluates to 10.

At a much higher rate, consider the ICR code ICR(100, [81, 81, 82, 82, 83]), with the list of
primes P2 = [101, 103, . . . , 691]. The guaranteed decoding radius for this ICR code is tg = 8,
while the “usual” radius is tu = 9. Running 10,000 tests with patterns of weights ranging
from 14 to 18, and aggregating as before, we got the test results as given on Table 6.6.
We see that the upper bounds of P γ̂

T are quite pessimistic estimates on the average failure
probability, and that it is slightly too optimistic to assume γ̂ ≤ 1.02. According to (6.43)
with α = 1, the decoding radius is t = 14, which is also pessimistic.

t AObs A1
T A1.02`+1

T A
√

2
`

T P 1
T P 1.02`+1

T P
√

2
`

T

14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 4.68 3.51 3.81 10.71 99.77 99.98 100
17 89.66 87.25 87.79 94.84 100 100 100
18 99.94 99.95 99.95 100 100 100 100

Table 6.6: Failure probabilities % (n = 100)

Given an ICR code, the decoding radius is calculated in terms of (6.43). What will be
the difference of the radius if we change the list of primes to a very large number or a very
small one? The answer is in the following illustration. We consider two scenarios: one is

107

6 Decoding Chinese Remainder Codes

the “large” list which has a big range, e.g., we took P3 = {2, . . . , 541} of length 100 for
ICR(100, [81, 81, 82, 82, 83]) such that pn/p1 � 1; the other one is the “small”” list whose
elements in the list of primes do not differ too much, e.g., P4 = {100003, . . . , 101197} of
length 100 for the same ICR code, we have pn/p1 ≈ 1. In comparison, we draw reference
from ICR(P2; 100, [81, 81, 82, 82, 83]).

Figure 6.2 depicts the performance using different lists of primes P2, P3, P4 in decoding.
The solid lines represent the theoretical failure probability obtained from (6.40) with

12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

t (1,000 tests)

P
f

Simulation Theoretical
P2 P2

P3 P3

P4 P4

Figure 6.2: Simulation and theoretical results for ICR(100, [81, 81, 82, 82, 83]) with
P2 = [101, . . .], P3 = [2, . . .] and P4 = [100003, . . .].

γ = 1.02`+1. In fact, given t ∈ [12, . . . , 24], we did not take all possible subsets I of
size t because even

(
100
12

)
has order O(1015) which exceeds the computation ability of

CPU. Therefore, we draw 1, 000 random errors patterns of size t, calculate the failure
probability for each pattern according to (6.39), and take the average value like (6.40)
to compute theoretical failure probability, given fixed number of errors. Meanwhile, the
failure probability for t errors by performing Algorithm 24 is obtained as well in each time
running 1, 000 tests.

In Figure 6.2, for one prime set, the simulated curve almost coincides with the theoretical
one, with the failure probability being slightly higher. The gap between dashed and solid
lines gets smaller when “smaller” list is chosen. By “small”, we mean the difference of the
elements in a list of primes. We can see that when P4 is considered as a list of primes, two
curves overlap each other.

108

6.4 Decoding Interleaved CR Codes

By (6.43), the decoding radii regarding 3 primes lists are tP2 = tP3 = 14, tP4 = 15.
An interesting observation is for “large” list of primes P3, the curve climbs slower than
other ones. In other words, other than pf for P4, the failure probability can not increase
immediately to 1 when error number is gradually increasing beyond tP3 . This behavior
comes down to different alphabets of each coordinate of the ICR codes. If the primes list
has a large range such as P3, then an error at a “heavy” positions is equivalent to few
errors at “light” positions. Since we use error locator Λ to bound the decoding radius,
for the same Λ, the decoder can correct more errors at the light positions than those at
heavy ones. One the other hand, for choosing lists of primes such as P4, the fact that
similar weight of every coordinate leads to a very sharp increase of failure probability, and
meanwhile gives a tighter bound of decoding radius than that for choosing big range lists
of primes. As a result, the decoding radius for ICR codes in Hamming metric gives us an
intuitive knowledge of the decoder performance, but it is more accurate to measure the
weighted Hamming distance, or Λ in our case. The analysis of the influence of Λ to the
failure probability can be considered as a future work.

As another reference, we show the comparison of simulation and theoretical results for
ICR(n1 = 20,K1[3, 5]) with P1, P3 and P4. The theoretical results strictly follow (6.40),
i.e., each subset I consists of Λs from all combination of t positions rather than Λs from
random samples. The results are illustrated in Figure 6.3. Similar behavior to Figure 6.2

7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

t (10,000 tests)

P
f

Simulation Theoretical
P1 P1

P3 P3

P4 P4

Figure 6.3: Simulation and theoretical results for ICR(20, [3, 5]) with
P1 = [101, . . .], P3 = [2, . . .] and P4 = [100003, . . .].

109

6 Decoding Chinese Remainder Codes

for choosing different prime lists is shown. The theoretical lines are very close to those
from simulations, respectively. The only difference is that, for the prime list with large
range, the theoretical curve is a little higher than the simulated one. This is due to the
way of calculating P f(t) in (6.40). From Figure 6.2 and 6.3, one can use (6.40) to upper
bound the failure probability of decoding ICR codes.

6.4.4 Power Decoding of a Single Low-rate CR Code

The power decoding of RS codes has already been descried in Section 4.5. In this part, we
are dealing with power decoding of CR codes.

The key equation (6.13) for a single CR code can be “virtually extended” to multiple
key equations whenever K � N ; this technique, called “power decoding”, was described
for Reed–Solomon in [SSB10]. The resulting “virtually interleaved” code can be decoded
by interleaved coding techniques beyond the unique decoding bound.

Each element of the received word is powered to be an element of a new CR code, i.e.,

r(l) = ([rl1]p1 , [r
l
2]p2 , . . . , [r

l
n]pn)

= ([(c1 + e1)l]p1 , [(c2 + e2)l]p2 , . . . , [(cn + en)l]pn)

= ([cl1]p1 + ẽ1, [c
l
2]p2 + ẽ2, . . . , [c

l
n]pn + ẽn),

where ẽi = [(c1 + e1)l − cl1]pi . Note that the error positions do not change under powering.
Therefore, a single CR code is virtually extended to an ICR code where each row has the
same error locator. The cardinality of the new code Kj = Kj can not be expressed by F (·),
so these codes are not part of the classical definition, but generalized CR codes.

Recall that N | ΛE, for l = 1, . . . `, the key equations for virtual extension are

ΛRl mod N ≡ Λ(C + E)l mod N

≡ ΛC l mod N.

Let ` be the greatest integer such that ΛC` < N ; the ` key equations for l = 1, . . . , ` can
be used to collaboratively determine Λ, and we can use exactly the same approach as we
did for ICR codes.

Consider the Z-row space of the matrix:(
1 R [R2]N . . . [R`]N
0 NI

)
, (6.44)

where I is the `×` identity matrix. By the above key equations, the vector (Λ,ΛC, . . . ,ΛC`)
will be in this space, and as in the case for ICR codes, it will be surprisingly short. We
should choose weights for the columns, and emulating the choice of Corollary 49, we let
ω0 = K` and ωj = K`−l for l = 1, . . . , `.

The failure probability of Theorem 48 can be reused for this case. However, one should
be noted that this is under heavier assumptions of randomness, since the various R-values,
R, [R2]N , . . . , [R

`]N obviously are more connected than for the usual ICR setting. We have

110

6.5 Discussion and Future Work

by simulation confirmed that the approach works and we can decode beyond the unique
decoding bound; however, more experiments are needed for proper verification that the
failure probabilities are well estimated.

Above, we chose ` depending on the unknown Λ and C, which is obviously problematic.
Instead, one could choose a decoding radius t and choose ` maximal such that DtK

` < N .
However, since more interleaving allows higher decoding radius, there is a non-trivial
connection here. Furthermore, since random Λ are usually much lower than Dt and random
C lower than K, it might be the case that the decoding case at hand would benefit from a
higher interleaving factor. We have not thoroughly investigated this issue.

6.4.5 Decoding of Low-rate ICR Codes

Power decoding can be straightforwardly combined with the ICR decoder, whenever one
interleaves CR codes of low rate; this idea was first proposed for Reed–Solomon codes in
[SSB07]. We will briefly sketch the idea, but we have not yet deeply analyzed this setting.

Theorem 48 essentially says that whenever not too many errors have occurred, this is
indeed almost always the case. Therefore, one can construct Mω, apply the LLL algorithm to
find a short vector in it, and with high probability, the output will be sω. This immediately
leads to the decoding algorithm given as Algorithm 24.

Consider a code ICR(P;n,K = [K1, . . . , K`]) as well as received matrix with rows
r1, . . . , r`. Define the corresponding R1, . . . , R`. For each of these, we can get virtually
extended key equations Λ[Rj

i]N ≡ ΛCj
i mod N for j = 1, . . . , ρi, where ρi is chosen maxi-

mally such that ΛCρi
i < N . This means that vector

(
Λ,ΛC1, . . . ,ΛC

ρ1
1 , . . . ,ΛC`, . . . ,ΛC

ρ`
`

)
is in the row space of the matrix:(

1 [R1
1]N . . . [Rρ1

1]N . . . [R1
`]N . . . [Rρ`

`]N
0 NI

)
where I is an appropriately sized identity matrix From here the decoding algorithm progress
as in Algorithm 24.

The issue with how to choose the ρi is even more compounded in this setting than for
the Power decoding, and more analysis is needed for determining the right choice while
minimizing computational effort. We also note that one can perform a “mixing” of the key
equations, as for IRS codes in [WZZB12], to get a larger matrix and decode more errors.

6.5 Discussion and Future Work

For a Chinese remainder code CR(P;n,K) with minimum distance d, we propose a
syndrome-based decoder which can correct up to blog(N/K)/(2 log pn)c errors with com-
plexity O(len(N) logε len(N)) in Z, i.e., the bit size of N . The number of correctable errors
of the can also be represented as b(d− 1) log p1

log p1+log pn
c which indicates a direct connection to

the minimum distance. If the first and the last primes in the prime set P do not differ too
much, then the number or errors which can be corrected almost reaches half the minimum

111

6 Decoding Chinese Remainder Codes

distance. Consider our proposed decoder, if there exist a method to calculate the syndrome
S directly without computing R, then this is similar to obtaining syndrome for the RS
codes, hence the algorithm becomes more efficient.

We generalize the Chinese remainder code with cardinality K =
∏k

i=1 pi to the Chinese
remainder code with an arbitrary cardinality 0 ≤ K ′ ≤ K in order to correct both errors
and erasures for a Chinese remainder code. The error-erasure decoder can correct t errors
and τ erasures, provided that log p1+log pn

log p1
t + τ ≤ d − 1. The cost of the corresponding

algorithm is almost linear in bit size of N , i.e., O(len(N) logε len(N)).
We propose an algorithm using lattice reduction to decode an interleaved Chinese

remainder code ICR(P ;n,K) correcting burst errors. The complexity of the algorithm is
O(n`4.5 log pn) operations on integers of bit length O(n`1.5 log pn). Regarding the failure
probability and the decoding radius of the decoder, theoretical and simulation results
practically coincide. Nevertheless, we still need more experiments for proper verification
that the failure probabilities are well estimated. The technique of power decoding can also
be applied to decode low-rate Chinese remainder codes and low-rate interleaved Chinese
remainder codes, for which deep analysis is still needed.

112

7
Conclusion

W
ithin this dissertation, the decoding of four classes of evaluation codes and
their interleaving was considered. More specifically, regarding the RS codes,
Hermitian codes, Gabidulin codes, and Chinese remainder codes together with

their interleaved codes, several decoding algorithms were proposed. Meanwhile, their
performances were deeply studied in terms of complexity, decoding radius, and failure
probability, if any. The new results in this dissertation concerning each class of evaluation
codes are listed as follows.

RS Codes

Algorithms for decoding IRS codes based on the generalized extended Euclidean algorithm
were considered in Chapter 3. To solve the multi-sequence linear feedback shift register
synthesis problem, we modified Feng–Tzeng’s generalized extended Euclidean algorithm
(GEEA) [FT89] such that the input syndrome sequences can have different lengths and the
obtained error locator polynomial is a minimal solution. Their algorithm requires quadratic
number of field operations in the maximum sequence length. Our modified algorithm
was accelerated by “divide and conquer” strategy, having sub-quadratic complexity in the
maximum sequence length.

Hermitian Codes

Decoding (N,K) Hermitian codes in FQ = Fq2 was investigated in Chapter 4. Since
correcting Hermitian codes with bursts of errors can be reduced to decoding IERS codes, an
algorithm for joint decoding IERS codes was proposed first, having quadratic complexity in
length. The proposed algorithm was then applied for decoding Hermitian codes having rate
at least 1/2q, correcting up to tmax = (N −K)/(q+ 1) bursts with time complexity O(N5/3)
operations in FQ which is lower than O(N3) from Özbudak and Yayla. For the failure
probability Pf (t) we gave an upper bound Pf (t) ≤ γQ−(q+1)(tmax−t)−1, which is at most 1/Q
when t = tmax, and exponentially drops while t decreases. For up to (N/q − kmax)/2 burst
errors where kmax is the maximum dimension of the transformed IERS codes, Pf(t) = 0.

113

7 Conclusion

Simulations showed that the bound is precise. As a consequence, our algorithm has less
failure probability than that in [Ren04], and lower complexity and better bound on decoding
failure probability in comparison with Özbudak–Yayla’s conclusion [OY14].

We also showed that low rate Hermitian codes can correct even more bursts of errors
using “power” and “mixed” decoding.

Gabidulin Codes

Chapter 5 firstly presented a transform domain decoding algorithm for (n, k) Gabidulin
codes with minimum distance d in Fqm . It corrects ε full errors, µR row erasures and µC

column erasures as long as 2ε + µR + µC ≤ d − 1 with complexity O(n2) operations in
Fqm , which is the same as those suggested in [SKK08, GY08]. Nevertheless, the transform-
domain approach dramatically decreases the number of decoding steps in the algorithm
and simplifies the relevant proofs. This algorithms was then generalized for interleaved
Gabidulin codes, where an upper bound of failure probability was given. Concerning
Gabidulin codes and their interleaved codes with a fixed interleaving order, both algorithms
have quadratic complexity in the code length.

Chinese Remainder Codes

The Chinese remainder codes and their interleaving were the theme of Chapter 6. Regarding
a Chinese remainder code CR(P ;n,K) with minimum distance d, we proposed a syndrome-
based decoder which corrects up to blog(N/K)/(2 log pn)c errors with linear complexity
in the bit size of N , i.e., O(len(N) logε len(N)) in Z for some constant ε. The decoding
radius in Hamming metric reaches half the minimum distance when sizes of the primes do
not differ too much. An algorithm for decoding Chinese remainder codes was proposed,
correcting t errors and τ erasures, provided that log p1+log pn

log p1
t+ τ ≤ d− 1. The cost of the

corresponding algorithm is almost linear in bit sized of N , i.e., O(len(N) logε len(N)). We
also proposed an algorithm to decode interleaved Chinese remainder codes ICR(P;n,K)
with burst errors, having complexity O(n`4.5 log pn) operations on integers of bit-length
O(n`1.5 log pn). Regarding the failure probability and the decoding radius, simulations
showed that our theoretical results are precise.

Discussions and future research directions were given at the end of each chapter.

114

List of Algorithms

1 Berlekamp–Massey algorithm . 18
2 Sugiyama et.al algorithm . 19
3 Decoding an RS code . 19
4 MS-LFSR synthesis based on BMA (Problem 1) 23
5 Decoding an IRS code . 24
6 Modified division function ModDiv . 27
7 Generalized division function GenDiv . 28
8 Modified FengTzeng’s algorithm for MS-LFSR synthesis 29
9 Fast (complete) extended Euclidean algorithm FEEA 34
10 Half extended Euclidean algorithm HEEA . 35
11 Fast generalized extended Euclidean algorithm for MS-LFSR synthesis FGEEA 39
12 Half generalized extended Euclidean algorithm HGEEA 41

13 Decoding an IERS code . 56
14 Decoding a Hermitian code . 57

15 Minimal skew polynomial minpoly . 65
16 θ-skew shift-register synthesis (Problem 4) 66
17 Decoding a Gabidulin code . 73
18 Decoding an interleaved Gabidulin code . 75

19 The GRS decoder for Chinese remainder codes 85
20 Syndrome-based decoder of Chinese remainder codes 87
21 Correcting errors and erasures for Chinese remainder codes 93
22 Gram–Schmidt orthogonalization (GSO) . 96
23 LLL basis reduction . 98
24 Decoding an ICR code . 101

115

Bibliography

References

[ACLY00] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information Flow,”
Inform. Theory, IEEE Trans. on, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, 1st ed. Addison-Wesley, Jan. 1974.

[Ajt98] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for Randomized
Reductions (extended abstract),” in Proc. of the 30th annual ACM Symp. on
Theory of computing, ser. STOC ’98. ACM Press, 1998, pp. 10–19.

[BB13] M. Bossert and S. Bezzateev, “A Unified View on Known Algebraic Decod-
ing Algorithms and New Decoding Concepts,” Information Theory, IEEE
Transactions on, vol. 59, no. 11, pp. 7320–7336, Nov. 2013.

[Ber68] E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, 1968.

[Bla83] R. E. Blahut, Theory and Practice of Error Control Codes, reprint. with corr ed.
Addison-Wesley, 1983.

[Bla85] ——, Fast Algorithms for Digital Signal Processing, 1st ed. Addison-Wesley,
Jan. 1985.

[BMvT78] E. R. Berlekamp, R. McEliece, and H. van Tilborg, “On the Inherent Intractabil-
ity of Certain Coding Problems (Corresp.),” Inform. Theory, IEEE Trans. on,
vol. 24, no. 3, pp. 384–386, May 1978.

[Bos99] M. Bossert, Channel Coding for Telecommunications, 1st ed. Wiley, Oct. 1999.

[BS96] M. Bossert and V. Sidorenko, “Singleton-Type Bounds for Blot-Correcting
Codes,” Inform. Theory, IEEE Trans. on, vol. 42, no. 3, pp. 1021–1023, May
1996.

[Chi64] R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem
codes,” Inform. Theory, IEEE Trans. on, vol. 10, no. 4, pp. 357–363, Oct. 1964.

[Del78] P. Delsarte, “Bilinear Forms over a Finite Field, with Applications to Coding
Theory,” Journal of Combinatorial Theory, Series A, vol. 25, no. 3, pp. 226–241,
1978.

117

Bibliography

[For65] G. Forney, “On Decoding BCH Codes,” Inform. Theory, IEEE Trans. on,
vol. 11, no. 4, pp. 549–557, Oct. 1965.

[FR93] G. L. Feng and T. R. N. Rao, “Decoding Algebraic-Geometric Codes up to the
Designed Minimum Distance,” Inform. Theory, IEEE Trans. on, vol. 39, no. 1,
pp. 37–45, Jan. 1993.

[FT85] G. L. Feng and K. K. Tzeng, “An Iterative Algorithm of Shift-Register
Synthesis for Multiple Sequences,” Science China Mathematics, vol. 28, no. 11,
pp. 1222–1232, Nov. 1985.

[FT89] ——, “A Generalized Euclidean Algorithm for Multisequence Shift-Register
Synthesis,” Inform. Theory, IEEE Trans. on, vol. 35, no. 3, pp. 584–594, 1989.

[FT91] ——, “A Generalization of the Berlekamp-Massey Algorithm for Multisequence
Shift-Register Synthesis with Applications to Decoding Cyclic Codes,” Inform.
Theory, IEEE Trans. on, vol. 37, no. 5, pp. 1274–1287, Sep. 1991.

[Gab85] E. M. Gabidulin, “Theory of Codes with Maximum Rank Distance,” Probl. of
Inform. Transm., vol. 21, no. 1, pp. 1–12, Jul. 1985.

[GG03] J. v. z. Gathen and J. Gerhard, Modern Computer Algebra. Cambridge
University Press, Jul. 2003.

[Gop77] V. D. Goppa, “Codes Associated with Divisors,” Problemy Peredachi
Informatsii, vol. 13, no. 1, pp. 33–39, 1977.

[Gor73] W. C. Gore, “Transmitting binary symbols with Reed-Solomon codes,” in Proc.
of the 7th Annual Princeton Conf. on Inform. Sciences and Systems. Dept. of
Electrical Engineering, Princeton University, Princeton, NJ, 1973, pp. 495–499.

[GP08] E. M. Gabidulin and N. Pilipchuk, “Error and erasure correcting algorithms for
rank codes,” Designs, Codes and Cryptography, vol. 49, no. 1-3, pp. 105–122,
2008.

[GPT91] E. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Rank Errors and Rank
Erasures Correction,” in Proc. 4th Int. Colloquium on Coding Theory, Oct.
1991, pp. 11–19.

[GRS00] O. Goldreich, D. Ron, and M. Sudan, “Chinese Remaindering with Errors,”
Inform. Theory, IEEE Trans. on, vol. 46, no. 4, pp. 1330–1338, Jul. 2000.

[GS98] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and
Algebraic-Geometry Codes,” Inform. Theory, IEEE Trans. on, vol. 45, pp.
1757–1767, 1998.

118

Bibliography

[GS99] ——, “Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes,”
Inform. Theory, IEEE Trans. on, vol. 45, no. 6, pp. 1757–1767, Sep. 1999.

[GSS00] V. Guruswami, A. Sahai, and M. Sudan, ““Soft-Decision” Decoding of Chi-
nese Remainder Codes,” in Proc. of the 41st IEEE Symp. on Foundations of
Computer Science, 2000, pp. 159–168.

[GY08] M. Gadouleau and Z. Yan, “Complexity of decoding Gabidulin codes,” in
Inform. Sciences and Systems, The 42nd Annual Conference on, Mar. 2008, pp.
1081–1085.

[Her50] C. Hermite, “Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents
objects de la théorie des nombres,” Journal für die reine und angewandte
Mathematik, vol. 40, pp. 261–277, 1850.

[HKM+03] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting,” in Inform. Theory, IEEE Int.
Symp. on, Jun. 2003, p. 442.

[Hua51] L.-K. Hua, “A theorem on matrices over a sfield and its applications,” Acta
Mathematica Sinica, vol. 1, no. 2, pp. 109–163, 1951.

[KK08] R. Koetter and F. Kschischang, “Coding for Errors and Erasures in Random
Network Coding,” Inform. Theory, IEEE Trans. on, vol. 54, no. 8, pp. 3579–
3591, Aug. 2008.

[KL97] V. Y. Krachkovsky and Y. X. Lee, “Decoding for Interleaved Reed-Solomon
Schemes,” Trans. Magn., vol. 33, pp. 2740–2743, September 1997.

[KO63] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Au-
tomata,” Soviet Physics–Doklady, vol. 7, pp. 595–596, 1963.

[Kra03] V. Y. Krachkovsky, “Reed-Solomon Codes for Correcting Phased Error Bursts,”
Inform. Theory, IEEE Trans. on, vol. 49, no. 11, pp. 2975–2984, Nov. 2003.

[Len83] J. Lenstra, H. W., “Integer Programming with a Fixed Number of Variables,”
Mathematics of Operations Research, vol. 8, no. 4, pp. 538–548, Nov. 1983.

[Lip81] J. D. Lipson, Elements of Algebra and Algebraic Computing. Addison-Wesley,
Jan. 1981.

[LLL82] A. K. Lenstra, J. Lenstra, H. W., and L. Lovász, “Factoring Polynomials with
Rational Coefficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534,
1982.

[LN83] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopedia of mathematics
and its applications. Addison-Wesley, Advanced Book Program/World Science
Division, 1983.

119

Bibliography

[LO06] P. Loidreau and R. Overbeck, “Decoding Rank Errors beyond the Error-
Correction Capability,” in Proc. the 10th Int. workshop on algebraic and combi-
natorial coding theory (ACCT), Sep. 2006.

[Loi06] P. Loidreau, “A Welch-Berlekamp Like Algorithm for Decoding Gabidulin
Codes,” in Coding and Cryptography, ser. Lecture Notes in Computer Science
(LNCS). Springer Berlin Heidelberg, 2006, vol. 3969, pp. 36–45.

[Man76] D. Mandelbaum, “On a Class of Arithmetic Codes and a Decoding Algorithm
(Corresp.),” IEEE Trans. on Inform. Theory, vol. 22, no. 1, pp. 85–88, Jan.
1976.

[Man78] ——, “Further Results on Decoding Arithmetic Residue Codes (Corresp.),”
Inform. Theory, IEEE Trans. on, vol. 24, no. 5, pp. 643–644, Sep. 1978.

[Mas69] J. Massey, “Shift-Register Synthesis and BCH Decoding,” Inform. Theory,
IEEE Trans. on, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[Moo05] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms.
Wiley-Interscience, Jun. 2005.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
North Holland Publishing Co., 1977.

[Nie13a] J. S. R. Nielsen, “Generalised Multi-sequence Shift-Register Synthesis using
Module Minimisation,” in Inform. Theory, IEEE Int. Symp. on, Jul. 2013, pp.
882–886.

[Nie13b] ——, “Generalised Multi-sequence Shift-Register Synthesis using Module Min-
imisation,” in Inform. Theory, IEEE Int. Symp. on, 2013.

[NS06] P. Q. Nguyen and D. Stehlé, “LLL on the Average,” in Algorithmic Number
Theory, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, vol. 4076, pp. 238–256.

[OP07] A. Omondi and B. Premkumar, Residue Number Systems: Theory and Imple-
mentation (Advances in Computer Science and Engineering Texts). Imperial
College Press, Sep. 2007.

[Ore33] O. Ore, “Theory of Non-Commutative Polynomials,” Annals of Mathematics,
vol. 34, no. 3, pp. 480–508, 1933.

[Ove07] R. Overbeck, “Public Key Cryptography based on Coding Theory,” PhD
dissertation, Universität Darmstadt, 2007.

[OY14] F. Özbudak and O. Yayla, “Improved Probabilistic Decoding of Interleaved
Reed-Solomon Codes and Folded Hermitian Codes,” Theoretical Computer
Science, vol. 520, pp. 111–123, Feb. 2014.

120

Bibliography

[Pet60] W. Peterson, “Encoding and Error-Correction Procedures for the Bose-
Chaudhuri Codes,” Inform. Theory, IRE Trans. on, vol. 6, no. 4, pp. 459–470,
Sep. 1960.

[PT91] A. V. Paramonov and O. V. Tretjakov, “An Analogue of Berlekamp-Massey
Algorithm for Decoding Codes in Rank Metric,” in Proc. of Moscow Institute
for Physics and Technology (MIPT) (in Russian), 1991.

[PW72] W. W. Peterson and E. J. Weldon, Error-Correcting Codes - Revised, 2nd ed.
The MIT Press, Mar. 1972.

[Ren04] J. Ren, “On the Structure of Hermitian Codes and Decoding for Burst Errors,”
Inform. Theory, IEEE Trans. on, vol. 50, no. 11, pp. 2850–2854, Nov. 2004.

[Rot91] R. Roth, “Maximum-Rank Array Codes and their Application to Crisscross
Error Correction,” Inform. Theory, IEEE Trans. on, vol. 37, no. 2, pp. 328–336,
Mar. 1991.

[RP04] G. Richter and S. Plass, “Fast Decoding of Rank-Codes with Rank Errors and
Column Erasures,” in Inform. Theory, IEEE Int. Symp. on, Jun. 2004, pp.
398–398.

[RS60] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp.
300–304, 1960.

[SB14] V. Sidorenko and M. Bossert, “Fast skew-feedback shift-register synthesis,”
Designs, Codes and Cryptography, vol. 70, no. 1-2, pp. 55–67, 2014.

[Sha48] C. Shannon, “A Mathematical Theory of Communication,” Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[Sha79] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, Nov. 1979.

[Sin64] R. C. Singleton, “Maximum Distance Q-Nary Codes,” Inform. Theory, IEEE
Trans. on, vol. 10, no. 2, pp. 116–118, Apr. 1964.

[SJB11] V. Sidorenko, L. Jiang, and M. Bossert, “Skew-Feedback Shift-Register Synthesis
and Decoding Interleaved Gabidulin Codes,” Inform. Theory, IEEE Trans. on,
vol. 57, no. 2, pp. 621–632, Feb. 2011.

[SJJT86] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, Eds., Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing.
Piscataway, NJ, USA: IEEE Press, 1986.

121

Bibliography

[SJM+95] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, and T. Hoholdt, “Fast
Decoding of Algebraic-Geometric Codes up to the Designed Minimum Distance,”
Inform. Theory, IEEE Trans. on, vol. 41, no. 6, pp. 1672–1677, Nov. 1995.

[SK09] D. Silva and F. Kschischang, “Fast encoding and decoding of Gabidulin codes,”
in Inform. Theory, IEEE Int. Symp. on, Jun. 2009, pp. 2858–2862.

[SKHN75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A Method
for Solving Key Equation for Decoding Goppa Codes,” Inform. and Control,
vol. 27, no. 1, pp. 87–99, 1975.

[SKK08] D. Silva, F. Kschischang, and R. Koetter, “A Rank-Metric Approach to Error
Control in Random Network Coding,” Inform. Theory, IEEE Trans. on, vol. 54,
no. 9, pp. 3951–3967, Sep. 2008.

[SRB11] V. Sidorenko, G. Richter, and M. Bossert, “Linearized Shift-Register Synthesis,”
Inform. Theory, IEEE Trans. on, vol. 57, no. 9, pp. 6025–6032, Sep. 2011.

[SS71] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,”
Computing, vol. 7, no. 3-4, pp. 281–292, 1971.

[SS11] V. Sidorenko and G. Schmidt, “A Linear Algebraic Approach to Multisequence
Shift-Register Synthesis,” Probl. of Inform. Transm., vol. 47, no. 2, pp.
149–165, Jun. 2011.

[SSB07] G. Schmidt, V. Sidorenko, and M. Bossert, “Enhancing the Correcting Radius
of Interleaved Reed-Solomon Decoding using Syndrome Extension Techniques,”
in Inform. Theory, IEEE Int. Symp. on. IEEE, Jun. 2007, pp. 1341–1345.

[SSB09] ——, “Collaborative Decoding of Interleaved Reed-Solomon Codes and Con-
catenated Code Designs,” Inform. Theory, IEEE Trans. on, vol. 55, no. 7, pp.
2991–3012, 2009.

[SSB10] G. Schmidt, V. R. Sidorenko, and M. Bossert, “Syndrome Decoding
of Reed-Solomon Codes Beyond Half the Minimum Distance Based on
Shift-Register Synthesis,” Inform. Theory, IEEE Trans. on, vol. 56, no. 10, pp.
5245–5252, Oct. 2010.

[SSG+05] V. Sidorenko, G. Schmidt, E. Gabidulin, M. Bossert, and V. Afanassiev, “On
Polyalphabetic Block Codes,” in Inform. Theory Workshop, IEEE. IEEE,
2005, pp. 4 pp.–.

[Sti88] H. Stichtenoth, “A Note on Hermitian Codes over GF(q2),” Inform. Theory,
IEEE Trans. on, vol. 34, no. 5, pp. 1345–1348, Sep. 1988.

[Sud97] M. Sudan, “Decoding of Reed-Solomon Codes beyond the Error-Correction
Bound,” Journal of Complexity, vol. 13, no. 1, pp. 180–193, Mar. 1997.

122

Bibliography

[Tie87] H. J. Tiersma, “Remarks on Codes from Hermitian Curves (Corresp.),” Inform.
Theory, IEEE Trans. on, vol. 33, no. 4, pp. 605–609, Jul. 1987.

[WB86] L. Welch and E. Berlekamp, “Error correction for algebraic block codes,” Dec. 30
1986, US Patent 4,633,470.

[WB94] S. B. Wicker and V. Bhargava, Reed-Solomon Codes and Their Applications.
Piscataway, NJ, USA: IEEE Press, 1994.

[Wu08] Y. Wu, “New List Decoding Algorithms for Reed-Solomon and BCH Codes,”
Inform. Theory, IEEE Trans. on, vol. 54, no. 8, pp. 3611–3630, 2008.

[WZAS13] A. Wachter-Zeh, V. Afanassiev, and V. Sidorenko, “Fast decoding of Gabidulin
codes,” Designs, Codes and Cryptography, vol. 66, no. 1-3, pp. 57–73, 2013.

[WZZB12] A. Wachter-Zeh, A. Zeh, and M. Bossert, “Decoding interleaved Reed-Solomon
codes beyond their joint error-correcting capability,” Designs, Codes and
Cryptography, pp. 1–21, Jul. 2012.

[YB92] T. Yaghoobian and I. Blake, “Hermitian codes as generalized Reed-Solomon
codes,” Designs, Codes and Cryptography, vol. 2, no. 1, pp. 5–17, Mar. 1992.

[ZW11] A. Zeh and A. Wachter, “Fast Multi-Sequence Shift-Register Synthesis with
the Euclidean Algorithm,” Advances in Mathematics of Commun., vol. 5, no. 4,
pp. 667–680, Nov. 2011.

Publications containing parts of this thesis:

[KL13] S. Kampf and W. Li, “Decoding Interleaved Reed-Solomon and Hermitian Codes
with Generalized Divisions,” in Systems, Commun. and Coding (SCC), Proc. 9th
Int. ITG Conf. on. VDE, Jan. 2013, pp. 1–6.

[Li12] W. Li, “On Syndrome Decoding of Chinese Remainder Codes,” in The 13th Int.
Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Jun. 2012.

[LNS14] W. Li, J. S. R. Nielsen, and V. Sidorenko, “On Decoding of Interleaved Chinese
Remainder Codes (extended abstract),” in The 21st Int. Symp. on Mathematical
Theory of Networks and Systems (MTNS), Jul. 2014.

[LS12] W. Li and V. Sidorenko, “On the Error-Erasure-Decoder of the Chinese Remainder
Codes,” in Probl. of Redundancy in Inform. and Control Systems, XIII Int. Symp.
on. IEEE, 2012, pp. 37–40.

[LSC13] W. Li, V. Sidorenko, and D. Chen, “On Transform-Domain Decoding of Gabidulin
Codes,” in Int. Workshop Coding Cryptogrphy (WCC), Apr. 2013, pp. 33–56.

123

Bibliography

[LSN13] W. Li, V. Sidorenko, and J. S. R. Nielsen, “On Decoding Interleaved Chinese
Remainder Codes,” in Inform. Theory, IEEE Int. Symp. on. IEEE, Jul. 2013,
pp. 1052–1056.

[LSS14] W. Li, V. Sidorenko, and D. Silva, “On transform-domain error and erasure
correction by Gabidulin codes,” Designs, Codes and Cryptography, vol. 73, no. 2,
pp. 571–586, 2014.

[LSW14] W. Li, V. Sidorenko, and X. Wang, “Efficient Burst Error Correction by Hermitian
Codes,” in The 21st Int. Symp. on Mathematical Theory of Networks and Systems
(MTNS), Jul. 2014, pp. 354–361.

[ZL10a] A. Zeh and W. Li, “Decoding Reed-Solomon Codes up to the Sudan Radius with
the Euclidean Algorithm,” in Inform. Theory and its Applications, Int. Symp. on
(ISITA), Oct. 2010.

[ZL10b] ——, “On Reformulated Multi-Sequence Problems,” in The 12th Int. Workshop
on Algebraic and Combinatorial Coding Theory (ACCT), Sep. 2010.

124

Wenhui Li | Curriculum Vitae

Personal Data
Date of Birth: 21.08.1984, Jinan, China
Nationality: Chinese

Career
Institute of Communications Engineering, Ulm University Ulm, Germany
Teaching assistant (doctoral candidate) 08.2010 – 10.2014

Education
Ulm Univesity Ulm, Germany
Degree “Master of Science” (M.Sc.) obtained 18.02.2011

Ulm University Ulm, Germany
Master student 03.2008 – 06.2010
majoring Communications Technology

Shandong Univesity Jinan, China
Degree “Bachelor of Engineering”(B.Eng.) obtained 01.07.2007

Shandong University Jinan, China
Bachelor student 09.2003 – 06.2007
majoring Communications Engineering

High school attached to Shandong Normal University Jinan, China
09.2000 – 06.2003

Middle school attached to Shandong University Jinan, China
09.1997 – 06.2000

Hong Jia Lou primary school Jinan, China
09.1991 – 06.1997

Experience
Exercise tutor
in course “Channel Coding” WS 2012/13, WS 2013/14
Institute of Communications Engineering, Ulm University

Exercise tutor
in course“Multiuser Communications and MIMO Systems” SS 2012
Institute of Communications Engineering, Ulm University

Lab Supervisor
in lab “Communications Technology” WS 2010/2011, SS 2011, WS 2011/2012, SS 2013
Institute of Communications Engineering, Ulm University

Publication

Journal Article

[1] W. Li, V. Sidorenko, and D. Silva, On transform-domain error and erasure correction by
Gabidulin codes, in Designs, Codes and Cryptography, vol. 73, no. 2, pp. 571-586, 2014.

Conference Papers

[2] W. Li, J. S. R. Nielsen, and V. Sidorenko, On Decoding of interleaved Chinese remainder
codes (extended abstract), in the 21st International Symposium on Mathematical Theory of
Networks and Systems (MTNS), Jul. 2014.

[3] W. Li, X. Wang, and V. Sidorenko, Efficient burst error correction by Hermitian codes, in
the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS), Jul.
2014, pp. 354–361.

[4] W. Li, V. Sidorenko, and J. S. R. Nielsen, On decoding interleaved Chinese remainder codes,
in IEEE International Symposium on Information Theory (ISIT), IEEE, Jul. 2013, pp. 1052–1056.

[5] W. Li, V. Sidorenko, and D. Chen, On transform-domain decoding of Gabidulin codes, in
International Workshop on Coding and Cryptography (WCC), Apr. 2013, pp. 33–56.

[6] S. Kampf and W. Li, Decoding interleaved Reed–Solomon and Hermitian codes with
generalized divisions, in the 9th International ITG Conference on Systems, Communications and
Coding (SCC), VDE, Jan. 2013, pp. 1–6.

[7] W. Li and V. Sidorenko, On the error-erasure-decoder of the Chinese remainder codes, in
the XIII International Symposium "Problems of Redundancy in Information and Control Systems,
IEEE, 2012, pp. 37–40.

[8] W. Li, On syndrome decoding of Chinese remainder codes, in the 13th International
Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Jun. 2012.

[9] A. Zeh and W. Li, Decoding Reed–Solomon codes up to the Sudan radius with the
Euclidean algorithm, In International Symposium on Information Theory and its Applications
(ISITA), Oct. 2010, pp. 986–990.

[10] A. Zeh and W. Li, On reformulated multi-sequence problems, in the 12th International
Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Sep. 2010.

