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Introduction

A
LTHOUGH in biological neural systems events take place with a much longer

time scale compared to digital computers, the energetic efficiency (joule per op-

eration per second) of the brain is much better than the one of the best com-

puters nowadays. This is because the computing concept of the brain is entirely differ-

ent from that of conventional digital computers [20]. The key concept is the ”massive

parallel nonlinear collective processing of large number of signals that are continuous in time

and amplitude” [87]. So, neither sampling nor quantization take place.

The brain has the capability to organize the neurons (experience-adapted connec-

tions) to perform specific tasks faster than the fastest digital computers in existence

today [20]. Pattern recognition and image processing are well suited examples. ”The

visual system of a single human being does more image processing than the entire world’s

supply of supercomputers” [54].

Artificial neural networks (in the following only neural networks) imitate the com-

puting concept of the brain in order to solve different tasks faced in many scientific

disciplines as efficient as possible. A general definition of neural networks as formu-

lated by Haykin [20] is:

”A neural network is a massively parallel distributed processor that has a natural propensity

for storing experimental knowledge and making it available for use. It resembles the brain in

two respects:

• Knowledge is acquired by the network through a learning process.

• Interneuron connections ”synaptic weights” are used for storing the knowledge.”

It is worth mentioning that it is the organization and interconnection of neurons,
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INTRODUCTION

in both biological and artificial neural networks, which enable powerful collective

computation , rather than the functionality of a single neuron. For instance, feedback

is observed in the nervous system of almost every animal [20]. Neural networks with

feedback represent a special class known as ”recurrent neural networks”. Properties and

capabilities of neural networks are changed essentially by the feedback. Recurrent

neural networks stand out due to their rich dynamics.

Very-large-scale integration (VLSI) technology has been shown to fit well as imple-

mentation medium for neural networks [54]. Whether the analog VLSI technology or

the digital one is favorable has a rich history of research. In [87] it has been shown

that a wide range of functions can be realized by a single transistor. This includes,

e.g.,

• Generation of square, square root, exponential and logarithmic functions.

• Voltage-controlled current source.

• Voltage-controlled conductance, linear in a limited range.

• Analog multiplication of voltages.

• Short and long term analog storage.

• Additional functions are offered by basic combinations of few transistors.

The conclusion of [87] is that any desired local operation can be realized by a very lim-

ited number of transistors, which enables a very dense implementation of continuous-

time and continuous-amplitude processing cells for a collective analog processing.

Compared with digital technology, certain computations are less area and/or power

consuming when performed in analog. Multiplication is a well known example.

However, analog computation is less precise because it is susceptible to noise, tem-

perature, power supply and hardware fluctuations [54]. In addition, analog circuit

design and test are more difficult and less flexible than digital ones. In conclusion,

analog VLSI signal processing is especially applicable for those tasks, where the mas-

sive parallel nonlinear collective processing compensates the less precise local com-

putation [87].

The advantages of the digital implementation over the analog one are widely known.

This includes flexibility, ease of design and test and the arbitrary high achievable pre-

cision.

At the end, the definite choice of analog or digital technology can not be decided

unless the particular algorithm to be implemented is known [20].
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INTRODUCTION

However, increasing energy prices and the fast growth of power-hungry high data

rate battery-operated mobile services make the energy consumption for nowadays

technology an economical as well as environmental challenge. This is especially re-

markable in the IT-field. ”Analog signal processing systems can be built that share the

robustness of digital systems but outperform digital systems by several orders of magnitude

in terms of speed and/or power consumption” [49].

In the light of this discussion, we focus in this thesis on the investigation and com-

parison of continuous-time and discrete-time recurrent neural networks for equaliza-

tion and channel decoding tasks. In this case, the recurrent neural networks represent

suboptimum solutions with good performance-complexity trade-off. The application

of discrete-time recurrent neural networks in this field is well investigated, in con-

trast to the continuous-time ones, far away from ”proof-of-concept”. We take in this

thesis a signal processing point of view rather than breaking the problem down to the

transistor level.

Equalization is needed at the receiver because of the multipath propagation of the

physical channel between transmitter and receiver. The receive signal in this case

is expected to suffer from intersymbol interference. In case of multiuser, multisub-

channel, multiantenna transmission systems or combination thereof, the receive sig-

nal suffers from additional interuser/intersubchannel interference. To cope with this

interference, vector equalization has to be applied at the receiver. To improve the

bandwidth/power efficiency further channel coding is applied.

Due to the high complexity of the optimum equalization and channel decoding,

suboptimum schemes are applied. In many cases, these are soft-valued iterative

schemes because of their good complexity-performance characteristic. As mentioned

before, recurrent neural networks are such a suboptimum scheme.

Neural networks, including the recurrent ones, can be trained to act as a vector

equalizer and to perform channel decoding. However, training neural networks is

always associated with computational complexity and is time consuming as well.

Large training sets are required, which represent a challenge in practical applications.

In addition, the capability of the trained neural network to generalize its performance

beyond the ”trained set” needs also to be considered.

In our case, there is no need for a training phase (learning algorithms). Instead of that,

we make use of the dynamics of these networks (dynamical solver). This idea has

been first exploited by Hopfield in his pioneering work [29], where information has

been stored in a dynamically stable recurrent neural network. Therefore, no training

algorithms are considered in this thesis. Instead of that an extensive stability analysis

is done for both, discrete-time and continuous-time recurrent neural networks.

We do believe that continuous-time equalization and decoding is a promising ap-
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INTRODUCTION

proach for high data rate transmissions, as an example for optical communications,

among others, where data is transmitted at rates up to 1000 Gbyte per second. Analog-

to-digital converters at such high rates have a high power consumption, the digital

signal processing as well. The continuous-time approach does not require analog-to-

digital converters and it is widely accepted that it leads to many orders of magnitude

performance improvement in terms of speed and/or power consumption.

This thesis is structured as follows.

Chapter 1 introduces the transmission chain and the receiver structure. Especially,

the definition of the discrete-time channel matrix on symbol basis is essential for the

following chapters. Optimum and some suboptimum solutions for the equalization

and channel decoding are also presented.

We begin Chapter 2 with a short introduction to dynamical systems and their im-

portant analysis methods. This is followed by the definition of twin dynamical systems,

which is essential to relate discrete-time recurrent neural networks to continuous-

time ones. Different classes of interest of recurrent neural networks are presented as

well and an extensive stability analysis is performed. In this chapter, we generalize

many known stability results from the real-valued case to the complex-valued one. In

addition, new stability results are derived. One of the most important contributions

of this chapter is the stability proof with time-varying activation functions. To a lesser

extent, high order recurrent neural networks are presented and investigated.

Chapter 3 is dedicated to the application of recurrent neural networks for vector

equalization. Many stability conditions from Chapter 2 are interpreted in the light of

this application. One of the major contributions of Chapter 3 is an approximation of

the optimum estimation function, which enables a numerically stable evaluation.

We begin Chapter 4 with the dynamical representation of two iterative decoding al-

gorithms, namely belief propagation and iterative threshold decoding, in both cases,

discrete-time and continuous-time. These dynamical models are related to the high-

order recurrent neural networks and are investigated from the stability point of view.

For the linear case, closed-form expressions could be found.

In Chapter 5, the connection between recurrent neural networks and high order

ones is considered to perform continuous-time joint equalization and decoding. The

importance of this approach lies in the fact that joint equalization and decoding leads

to an additional performance improvement but at the same time to higher complex-

ity and/or power consumption. This could be compensated by the continuous-time

approach. The intention in Chapter 5 is to show, based on the available knowledge in

the discrete-time case, how such a continuous-time joint equalization and decoding

could look like, rather than introducing its theoretical basis.

Finally, a summary and conclusions are given. Simulation results for equalization,

4
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decoding and joint equalization and decoding are presented in Chapter 3, Chapter 4

and Chapter 5, respectively.

Appendix A contains further supporting mathematical derivations. A list of sym-

bols, functions and abbreviations can be found in Appendix B.

The main novelties presented in this thesis are contained in Chapter 2, Chapter 3,

Chapter 4 and Chapter 5. Parts of this thesis were published in [57]–[66]. This work

has been essentially influenced by [10],[20] and the references therein.

Notation

Hereafter, bold small letters and bold capital letters designate vectors and matrices,

respectively. The only exception is the vector of L-values L: It is a bold capital letter

but it represents a vector. All nonbold symbols are scalars. In addition, (·)T , (·)∗ and

(·)H represent the transpose, conjugate and conjugate transpose. A matrix A > 0

(A ≥ 0) means that A is positive definite (positive semidefinite). We assume column

vectors. diag{·} with a vector as argument returns a square diagonal matrix with

the elements of the vector on the main diagonal. diag{·} with a square matrix as

argument returns a column vector of the main diagonal elements of the matrix.
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Chapter 1

Vector-Valued Transmission Model

I
N this chapter we introduce the block diagram of the vector-valued transmission

model and we briefly explain the functionality of its individual parts with special

focus on the detection part. The detector (DET) consists of two parts: equalization

and channel decoding (for simplicity referred to a decoding in the following).

One of the most important items in this chapter is the introduction of a discrete-time

vector-valued transmission model on symbol basis and the discrete-time channel ma-

trix on symbol basis R (for simplicity channel matrix). This model suits multiantenna,

multicarrier, multiusers systems and combinations thereof.

The complexity of the equalization depends only on the channel matrix R. So,

different systems which lead to the same channel matrix R have the same equalization

complexity and performance. If a receiver with low complexity is desired, the system

7



1 Vector-Valued Transmission Model

must be designed in a way that the channel matrix approaches the identity matrix,

i.e. R = I.

We start this chapter with the derivation of the discrete-time vector-valued trans-

mission model on symbol basis for the time-invariant case (for the time-variant case

see [10]). We show also how the channel matrix R looks like for multiantenna, orthog-

onal frequency-division multiplexing (OFDM), and MIMO-OFDM (multiple-input

multiple-output OFDM). An important step in this chapter is also the reformulation

of the discrete-time vector valued transmission model for block transmission.

After that, the maximum likelihood (ML) detection, equalization and decoding

rules are presented. We consider also suboptimum detection methods. This includes

separate and joint equalization and decoding (further discussed in Chapter 5). In ad-

dition, few suboptimum equalization schemes (further investigated in Chapter 3), an

introduction to iterative decoding (further analyzed in Chapter 4) are considered.

1.1 Transmission Model

This section is based mainly on [45],[46]. We limit ourself to linear modulation schemes.

For the ease of notation, we do not distinguish between band pass and low pass

signals and systems. Fig. 1.1 shows the continuous-time vector-valued transmission

model in the time-invariant case.

SRC

q(l)

CODcc

qc(l)

MODdig

x(l) x(t)

l · Ts

U(t)

stx(t)

H(t)

+ n(t)

srx(t)

V H(−t)

y(t)

l · Ts

x̃(l)

DET

q̂(l)

SNK

Figure 1.1: Continuous-time vector-valued transmission model. Time-invariant case.
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1.1 Transmission Model

The digital source (SRC) generates a sequence of vectors

· · · ,
[

q1(l), q2(l), · · · , qk(l)
]T

︸                               ︷︷                               ︸

q(l)

,
[

q1(l + 1), q2(l + 1), · · · , qk(l + 1)
]T

︸                                                 ︷︷                                                 ︸

q(l+1)

, · · ·

This can be understood as if the digital source generates a matrix of bits, where the

horizontal direction represents the discrete-time and the vertical direction represents

the components. The components of the vectors can belong to different users, anten-

nas, subcarriers or combinations thereof depending on the transmission scheme. We

show later examples of these cases.

CODcc performs channel coding by adding redundancy to the bits generated by

the SRC. This takes place in time or component direction or in both of them. At the

output of CODcc we obtain a sequence of vectors

· · · ,
[

qc,1(l), qc,2(l), · · · , qc,n(l)
]T

︸                                     ︷︷                                     ︸

qc(l)

,
[

qc,1(l + 1), qc,2(l + 1), · · · , qc,n(l + 1)
]T

︸                                                       ︷︷                                                       ︸

qc(l+1)

, · · ·

where n > k and r = k/n is the code rate.

MODdig maps the encoded bits to symbols, which belong to the symbol alphabet

Ψ = {ψ1, ψ2, · · · , ψM} : log2 M ∈ N. This includes Gray coding as well. At the

output of MODdig we obtain a sequence of vectors of transmit symbols x(l) of length

Mtx.

· · · ,
[

x1(l), x2(l), · · · , xMtx
(l)

]T

︸                                   ︷︷                                   ︸

x(l)

,
[

x1(l + 1), x2(l + 1), · · · , xMtx
(l + 1)

]T

︸                                                     ︷︷                                                     ︸

x(l+1)

, · · ·

The elements of the vectors of transmit symbols are converted to signals by Dirac

sampling. Interleaving can be done between CODcc and MODdig which is not con-

sidered here.

U(t) = diag {u1(t), u2(t), · · · , uMtx
(t)} is a diagonal matrix of basic waveforms.

The diagonal elements are Nyquist impulses or spreading functions. They define the

transmission/multiplexing scheme.

stx(t) is the vector of transmit signals of length Mtx given by:

stx(t) = ∑
l

U(t − l · Ts) · x(l) (1.1)

where Ts is the symbol duration.

9



1 Vector-Valued Transmission Model

H(t) is the physical channel matrix of size Mrx × Mtx.

srx(t) is the vector of receive signals of length Mrx given by:

srx(t) = H(t) ∗ stx(t) + n(t) (1.2)

where n(t) is a sample function of an additive white Gaussian noise (AWGN) vector

process. n(t) is a vector of length Mrx.

We define:
V(t) = H(t) ∗ U(t)

R(l) = V H(−t) ∗ V(t)|t=l·Ts

(1.3)

where V H(−t) is the channel matched filter (CMF). R(l) is the channel matrix. In this

case it can be shown that:

x̃(l) = R(l) ∗ x(l) + ñ(l)

Φññ(l) =
N0

2
· R(l).

(1.4)

x̃(l) is the vector of receive symbols at the l-th time instant which contains sufficient

statistics for a ML-detection [46]. N0/2 is the power spectral density of each compo-

nent of the double side AWGN vector process n(t) in the band pass domain. ñ(l) is

a sequence of colored noise vectors at the output of the channel matched filter with

covariance matrix Φññ. The discrete-time vector valued transmission model based on

Eq. (1.4) is shown in Fig. 1.2.

SRC

q(l)

CODcc

qc(l)

MODdig

x(l)

R(l)

+ ñ(l)

x̃(l)

DET

q̂(l)

SNK

Figure 1.2: Discrete-time vector-valued transmission model on symbol basis.
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1.1 Transmission Model

Remark 1.1 Vector-matrix convolution is performed as vector-matrix multiplication.

However, the multiplication sign is replaced by the convolution one. This is valid for

the matrix-matrix convolution as well.

DET stands for detector. It performs the equalization and decoding. Equalization

is required to cope with the effects of the multipath propagation channel between

transmitter and receiver. Decoding serves to correct the errors by exploiting the re-

dundancy which has been added at the transmitter by CODcc. More about the DET

can be found in Sec. 1.2.

If the physical channel is ideal and the diagonal entries of U(t) fulfill the general

first Nyquist criterion, it can be easily shown that

R(l) = δ(l) · I. (1.5)

For the j-th component, the first relation of Eq. (1.4) can be rewritten as follows:

x̃j(l) = rjj(0) · xj(l) + ∑
l′,l

rjj(l − l′) · xj(l
′) + ñj(l)

+ ∑
j′,j

rjj′ (0) · xj′ (l) + ∑
l′,l

∑
j′,j

rjj′ (l − l′) · xj′ (l
′).

(1.6)

We notice that the j-th component of the vector of receive symbols at the l-th time

instant can be decomposed into:

• The desired part: rjj(0) · xj(l).

• Intersymbol interference: ∑l′,l rjj(l − l′) · xj(l
′).

• Interference from other components at the same time instant: ∑j′,j rjj′ (0) · xj′ (l).

• Interference from other components at other time instants:

∑l′,l ∑j′,j rjj′ (l − l′) · xj′ (l
′).

• Noise: ñj(l).

rjj′ (l) is the element in the j-th row and j′-th column of R(l). To enable a high quality

transmission, these interferences must be compensated. This is done by the DET.

The vector-valued transmission model is able to represent a wide range of trans-

mission schemes. Fig. 1.3 shows the resulting channel matrix for a MIMO system for

different number of transmit/receive antennas. Fig. 1.4 shows the channel matrix for

OFDM with/without spreading. Fig. 1.5 shows the channel matrix for MIMO-OFDM.

In the last two cases, a two path channel with delay Ts and equal amplitudes has been

assumed. In Fig. 1.3-1.5 the darker the elements the larger are the absolute values of

the entries of the corresponding channel matrix.

11



1 Vector-Valued Transmission Model

1 2 3 4 5 6 7 8

1

2

3
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5
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8

(a) Mtx = 8, Mrx = 8.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Mtx = 8, Mrx = 16.

Figure 1.3: Visualization of the channel matrix for a MIMO transmission scheme with different
number of transmit/receive antennas. Mtx/Mrx is the number of transmit/receive
antennas.
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(a) ROFDM .
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(b) RMC−CDM with noninter-
leaved spreading.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(c) RMC−CDM with inter-
leaved spreading.

Figure 1.4: Visualization of the channel matrix for OFDM for 16 subcarriers and spreading over
four subcarriers with/without interleaving for a two path channel with delay Ts and
equal amplitudes.

1.1.1 Block Transmission

In many practical cases, the source symbols are divided into many shorter blocks.

Every two successive blocks are separated by a guard time longer than the duration

of the channel impulse response. In this case, interblock interference can be avoided,

i.e. no interference takes place between transmitted blocks. Thus, equalization of each

block can be treated independently of other blocks. This is valid for the decoding as

well if the channel coding does not take place over blocks. Assuming that each block

12



1.1 Transmission Model

5 10 15 20

5

10

15

20

Figure 1.5: Visualization of the channel matrix for MIMO-OFDM with 8 subcarriers and three
transmit antennas and two receive antennas. The channel between any pair of trans-
mit/receive antennas is a two path channel with delay Ts and equal amplitudes.

consists of Nb vectors of transmit symbols x(l), x(l + 1), · · · , x(l + Nb − 1), we can

combine these vectors to create a longer transmit vector xb of length N = Mtx · Nb. In

this case, Eq. (1.4) can be rewritten as:

x̃b = Rb · xb + ñb

Φñb ñb
=

N0

2
· Rb

(1.7)

where:

xb =
[

xT(l), xT(l + 1), · · · , xT(l + Nb − 1)
]T

x̃b =
[

x̃T(l), x̃T(l + 1), · · · , x̃T(l + Nb − 1)
]T

ñb =
[

ñT(l), ñT(l + 1), · · · , ñT(l + Nb − 1)
]T

(1.8)

and

Rb =








R(0) R(−1) R(−2) · · · · · · · · · R(−Nb + 1)
R(1) R(0) R(−1) · · · · · · · · · R(−Nb + 2)

...
...

...
. . .

...
...

...

R(Nb − 1) · · · · · · · · · R(2) R(1) R(0)








. (1.9)

If the channel is time-variant during one block, the submatrices in Eq. (1.9) change

from the above left corner to the below right one [46]. Usually, the matrix Rb is not

fully occupied because the block length Nb is much longer than the duration of the

channel impulse response. Comparing Eq. (1.4),(1.7), we recognize:

13



1 Vector-Valued Transmission Model

• The convolution has been replaced by a multiplication.

• The time index has been omitted because no interference is taking place be-

tween successive transmitted blocks.

We assume in this work a block transmission where the channel coding is restricted to

single blocks. Therefore, the transmission model is described after omitting the block

index , cf. Fig. 1.6, as:

x̃ = R · x + ñ

Φññ =
N0

2
· R.

(1.10)

In addition, it is assumed that the channel impulse response is time-invariant. The

digital source generates statistically independent (memoryless digital source) and

equally probable bits. Thus, the elements of the symbol alphabet Ψ occur with equal

probability. Important to mention is also:

R = RH

R ≥ 0.
(1.11)

R ≥ 0 means that R is positive semidefinite.

SRC
q

CODcc

qc

MODdig

x

R

+ ñ

x̃

DET

q̂

SNK

Figure 1.6: Discrete-time vector-valued block transmission model.

1.1.2 Uncoded Transmission

The uncoded discrete-time vector-valued block transmission model is given in Fig. 1.7.

Compared with Fig. 1.6, we notice that the detector DET becomes an equalizer EQ.

14



1.1 Transmission Model

The decision device DECI depends on the symbol alphabet Ψ. This model is used in

this work for investigating different equalization methods. Eq. (1.10) is still valid.

SRC
q

MODdig

x

R

+ ñ

x̃̃x

EQ

x̆

DECI

q̂

SNK

Figure 1.7: Uncoded discrete-time vector-valued block transmission model.

1.1.3 Coded Transmission Over AWGN Channel

Fig. 1.8 shows a coded transmission over a discrete-time AWGN channel. We limit

ourself to a binary phase shift keying (BPSK) symbol alphabet and to binary linear

block codes. This model is used for investigating iterative decoding methods over

the AWGN channel. The decision device for BPSK is a sgn function. In this case

x̃ = x + n

Φnn =
N0

2
· I.

(1.12)

SRC
q

CODcc

qc

MODdig

x

+ n

x̃̃x

DEC

x̆

DECI

q̂

SNK

Figure 1.8: Coded transmission over a discrete-time AWGN channel.
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1 Vector-Valued Transmission Model

1.2 Vector Detection

The vector detector DET in Fig. 1.6 has the vector of receive symbols x̃ in Eq. (1.10) as

input and possesses the knowledge about the channel matrix R, the symbol alphabet

Ψ, and the used forward error correction code. Based on this knowledge, the vector

detector DET delivers, in case of ML-detection, the vector of decided bits q̂ which has

been transmitted with the largest probability.

q̂ = argmax
q∈{0,1}r·N·log2 M

p(ẋ = x̃|q) (1.13)

p(ẋ|q) is the conditional probability density function of the vector of receive sym-

bols x̃ given that q, a realization to be understood as an event, has been occurred

(transmitted). ẋ represents the variable of the conditional probability density func-

tion. argmax
q∈{0,1}r·N·log2 M

p(ẋ = x̃|q) returns the vector q which has the largest p(ẋ = x̃|q).

Due to complexity issues, the vector detection is spit in general into two parts:

vector equalization and vector decoding. However, if a ML-detection is desired, the

vector detector can not be separated apriori. In this case, vector equalization and vec-

tor decoding must be considered jointly. In other words, splitting the vector detection

can not be done in general without performance lost.

1.2.1 Separate Equalization and Decoding

The detector DET in this case has a feed forward structure as illustrated in Fig. 1.9.

The vector detector performs at first a vector equalization process and the vector of

soft/hard decided symbols x̆/x̂ is fed to the vector decoder, which in turn delivers,

after DECI, the vector of decided bits q̂. It is obvious that no ”knowledge” exchange

takes place between the vector equalizer EQ and the vector decoder DEC. This kind

of detection is widely used in practice because it is less complex than the joint equal-

ization and decoding. However, even if both parts of the detector are maximum like-

lihood, this does not mean that the whole detection is also maximum likelihood be-

cause the EQ does not exploit the knowledge that not all x are possible because of the

channel coding.

x̃

EQ DEC DECI

q̂

Figure 1.9: Separate equalization and decoding.
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1.3 Vector Equalization

1.2.2 Joint Equalization and Decoding

In the joint equalization and decoding case, cf. Fig. 1.10, the vector equalizer EQ and

the vector decoder DEC deliver ”soft” decisions. In addition to the vector of receive

symbols x̃, the vector equalizer EQ does use the knowledge (constraints) from the

vector decoder DEC to improve its performance, which in turn improves the per-

formance of the vector decoder DEC. The ”knowledge” exchange takes place a few

times.

x̃

EQ DEC DECI

q̂

Figure 1.10: Joint equalization and decoding.

1.3 Vector Equalization

In this section, we focus on the vector equalization in the uncoded case, cf. Fig. 1.7

and Eq. (1.10). We start with ML-vector equalization. After that, we present various

suboptimum vector equalization schemes. The input of the vector equalizer EQ is

the vector of receive symbols x̃ ∈ CN and the output, including the decision device

DECI, is the vector of decided symbols x̂. We notice that for uncoded transmission

we obtain q̂ directly from x̂.

1.3.1 Blockwise Maximum Likelihood Vector Equalization

The optimum vector equalizer has to deliver the vector of decided symbols x̂ which

has been sent with the largest probability :

x̂APP = argmax
ξ∈X

Prob(x = ξ|x̃). (1.14)

X is the set of all possible vector of transmit symbols with cardinality MN . ξ is one

possible vector of transmit symbols. Prob( | ) is a conditional probability. The argu-

ments in Prob( | ) must be understood as events, where the event on the right side of

| has occurred. In this sense, Prob(x = ξ|x̃) in Eq. (1.14) delivers the probability that

x = ξ had been transmitted, given that x̃ has been received. We notice that Eq. (1.14)
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1 Vector-Valued Transmission Model

maximizes the aposteriori probability Prob(x = ξ|x̃), therefore Eq. (1.14) is called

blockwise maximum aposteriori probability equalization rule.

Applying the Bayesian rule, Eq. (1.14) can be rewritten as:

x̂APP = argmax
ξ∈X

p(ẋ = x̃|x = ξ) · Prob(ξ). (1.15)

p(ẋ|x = ξ) represents the transition probability density function of the channel.

Prob(ξ) is the probability of sending ξ. It is assumed that the elements of the sym-

bol alphabet are equally probable. Thus, the last relation can be further simplified as

follows:

x̂ML = argmax
ξ∈X

p(ẋ = x̃|x = ξ). (1.16)

Eq. (1.16) is known as the blockwise maximum likelihood vector equalization rule.

The noise process ñ in Eq. (1.10) follows a circular symmetric complex normal dis-

tribution [77] with zero mean and covariance matrix Φññ. p(ẋ|x = ξ) has the same

distribution but a mean of R · ξ. This leads to

p(ẋ = x̃|x = ξ) ∝ exp

{

−1

2
· (x̃ − R · ξ)H · Φ

−1
ññ · (x̃ − R · ξ)

}

. (1.17)

Based on Eq. (1.10),(1.16),(1.17) the decision rule can be rewritten as follows

x̂ML = argmin
ξ∈X

{

(x̃ − R · ξ)H · R−1 · (x̃ − R · ξ)
}

. (1.18)

Considering that R = RH this can be simplified to:

x̂ML = argmin
ξ∈X

{
1

2
· ξH · R · ξ −ℜ

{

ξH · x̃
}}

. (1.19)

The argument in Eq. (1.19) is also known as the Mahalanobis distance [7].

We notice from the last relation that the ML-vector equalizer needs to minimize

the last relation with respect to the set of all possible vectors of transmit symbols ξ,

which form a discrete set of cardinality MN . Thus, exhaustive search is required in

general. This can be realized for small MN . However, this is too complex in general

to be implemented in practice. Thus, suboptimum vector equalizers have been an

important research topic. They aim to achieve near optimum performance with much

lower complexity.
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1.3 Vector Equalization

1.3.2 Structure of Suboptimum Vector Equalizer

Fig. 1.11 shows the generic structure of many suboptimum vector equalizers. If the

switch is connected, we consider an iterative scheme. In this case, the suboptimum

vector equalizer consists of two parts. The first part is the feed forward part, where

the vector of receive symbols x̃ is multiplied with the feed forward matrix W f . The

second part is the feedback part. It consists of the estimation function ESTI and the

feedback matrix Wb. The second part attempts to generate an estimate of the interfer-

ence in order to subtract it. In this case vector equalization is often called interference

cancellation. This procedure can be repeated several times.

W b

+

x̂

W f

x̃

DECI

z−1 ESTI

Figure 1.11: Generic structure of interference cancellation.

Depending on the estimation function ESTI, we distinguish between:

• Hard interference cancellation: In this case the estimation function ESTI pro-

vides hard estimates which belong to the symbol alphabet Ψ.

• Soft interference cancellation: In this case the estimation function ESTI provides

soft estimates which can take any value.

The superiority of the soft iterative interference cancellation over the hard one has

been already shown and is widely accepted.

At the end of the interference cancellation process the decision device DECI gener-

ates the vector of decided symbols x̂. Both feed forward and feedback parts can work

on symbol basis (serial update) or on vector basis (parallel update).

If the switch in Fig. 1.11 is off, we are dealing with a noniterative vector equalization

technique. In this case the vector of receive symbols x̃ is multiplied with the feed

forward matrix W f . After that a decision is taken by means of the decision device

DECI.

There are many vector equalizers which use the principle depicted in Fig. 1.11.

Multistage detector MD, zero forcing-block linear equalizer ZF-BLE, minimum mean

square error-block linear equalizer MMSE-BLE, successive interference cancellation

SIC, parallel interference cancellation PIC [84], and recurrent neural networks RNNs [10]
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1 Vector-Valued Transmission Model

are some examples. They differ from each other by serial/parallel update, soft/hard

estimation, one step/iterative cancellation. In the following, we make this compari-

son for ZF-BLE and MMSE-BLE. Chapters 2 and 3 are dedicated to RNNs.

Zero Forcing-Block Linear Equalizer ZF-BLE

The ZF-BLE can be applied only if the channel matrix R is invertible. In this case it

eliminates the interference totally by multiplying the vector of the receive symbols

x̃ with the inverse of the channel matrix W z f = R−1, cf. Fig. 1.12 and Eq. (1.20).

However, noise amplification takes place.

x̆ = W z f · x̃ = x + R−1 · ñ
︸     ︷︷     ︸

nz f

x̂ = DECI(x̆)

Φnz f nz f
=

N0

2
· R−1

(1.20)

Comparing Fig. 1.12 with Fig. 1.11, we notice that W f = W z f and the switch is off

(noniterative approach).

x̃

W zf

x̆

DECI

x̂

Figure 1.12: Zero forcing-block linear equalizer ZF-BLE.

Minimum Mean Square Error-Block Linear Equalizer MMSE-BLE

The MMSE-BLE aims to reduce the noise enhancement drawback of the ZF-BLE by

multiplying the vector of receive symbols x̃ with the matrix Wmmse, which has been

derived according to the MMSE criterion as follows:

Wmmse = argmin
Wmmse

Exp

{

|x − Wmmse · x̃|2
}

(1.21)

which leads to:

Wmmse =
[

R +
1

SNR
· I

]−1
(1.22)

SNR represents the signal-to-noise ratio and Exp is the mathematical expectation.
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1.4 Vector Decoding

In this case:
x̆ = Wmmse · x̃

x̂ = DECI(x̆)

Φnmmsenmmse =
N0

2
· Wmmse · R · Wmmse

(1.23)

Comparing Fig. 1.13 with Fig. 1.11, we notice that W f = Wmmse and the switch is off

(noniterative approach). ZF-BLE and MMSE-BLE coincide for large SNR.

ZF-BLE and MMSE-BLE are originally noniterative approaches which require a ma-

trix inversion. Matrix inversion can be done iteratively by applying the Jacobi or

Gauss-Seidel method [5]. In this case, the switch is on and the estimation function

ESTI is a linear function. In contrast to iterative vector equalization based on RNNs

presented in Chapters 2 and 3, the iterative matrix inversion does not change the

linear character of these vector equalizers.

x̃

Wmmse

x̆

DECI

x̂

Figure 1.13: Minimum mean square error-block linear equalizer MMSE-BLE.

1.4 Vector Decoding

This section is based mainly on [34]. Forward error correction techniques aim to

achieve error free transmission over noisy channels with the maximum possible trans-

mission rate. They emerged from the famous statement of Shannon [74]: Arbitrarily

high reliable transmission over noise corrupted channels can be achieved if the trans-

mission rate is less than the channel capacity.

This is done by adding redundancy (extra bits) to the message q, such that the

codewords qc are sufficiently distinguishable and the transmitted messages can be

gained at the receiver, even if the noisy channel corrupts some bits of the codewords

during the transmission.

The vector coding mentioned in Sec. 1.1 is nothing else than a scalar coding, which

can be done in time and/or component direction, depending on the physical meaning

of the components in the vector-valued transmission model. For multiuser scenarios

vector coding is a parallel scalar coding, so coding takes place in time direction. For

OFDM transmission schemes coding can take place in the subcarrier and/or time

direction. Therefore, we focus in this section on scalar channel coding and we use the
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1 Vector-Valued Transmission Model

transmission model depicted in Fig. 1.8 and Eq. (1.12). We restrict ourself to binary

linear block codes with BPSK symbol alphabet.

Binary linear block codes are characterized by the following parameters: n, k, dmin,

G, H p. n is the length of the codeword. k is the length of the information word.

The minimum distance dmin describes the smallest number of bit positions, which is

required to change from one codeword to another codeword when bits are flipped.

The generator matrix G is a binary matrix of size k × n. The parity check matrix H p is

a binary matrix of size (n − k)× n. Furthermore it holds:

H p · GT = 0(n−k)×k. (1.24)

Addition and multiplication are modulo 2.

In Fig. 1.8, the digital source generates a sequence of bits, which are grouped into

blocks of length k, each of them is called information word. The encoder maps the

information words to codewords of length n > k, where the ratio r = k/n is the

code rate. Because the encoding is a bijective map, it can be understood as a table,

which maps unambiguously binary vectors of length k to binary vectors of length n.

This table contains 2k vectors. It is obvious that this table becomes unrealizable if k

increases. Therefore mapping the information words to the codewords takes place by

another way, namely by the binary generator matrix G.

qc = GT · q (1.25)

From Eq. (1.24), a codeword qc belongs to a code if the following relation is fulfilled

H p · qc = 0n−k. (1.26)

By means of the last relation, it can be decided, whether a received message is a code-

word of the used code. However, to correct an error caused by the noisy channel, a

decoding process is needed at the receiver. We distinguish between blockwise and

symbolwise decoding approaches. The set of all codewords of a code is called code

book C.

1.4.1 Blockwise Maximum Aposteriori Probability

The decoding process in this case aims to maximize the probability of a correct de-

coding of codewords.

ĉAPP = argmax
c∈C

Prob(qc = c|x̃) (1.27)
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1.4 Vector Decoding

By means of the Bayesian rule, the last relation can be rewritten as:

ĉAPP = argmax
c∈C

p(ẋ = x̃|qc = c) · Prob(c) (1.28)

Assuming that all information words are equally probable, we obtain the block max-

imum likelihood decoding rule:

ĉML = argmax
c∈C

p(ẋ = x̃|qc = c) (1.29)

Following the same approach as in Sec. 1.3.1 and taking into account Eq. (1.12), the

block maximum likelihood decoding approach leads to the minimum Euclidean dis-

tance. Thus, according to this approach, the Euclidean distance between the received

message and all 2k codewords has to be calculated and a decision is taken in the fa-

vor of the codeword with the minimum Euclidean distance to the received message.

The Viterbi algorithm is a block maximum likelihood decoding approach for convo-

lutional codes [86].

The block maximum likelihood decoding approach leads for binary symmetric

channels to the minimum Hamming distance.

1.4.2 Symbolwise Maximum Aposteriori Probability

The decoding process in this case aims to maximize the probability of a correct de-

coding of code symbols.

ĉj,s/s-APP = argmax
s∈{0,1}

Prob(qc,j = s|x̃) (1.30)

The importance of this approach lies in the ability to approximate it iteratively as

introduced later in Chapter 4. qc,j ∈ {0, 1} is the j-th element of the transmitted

codeword. Thus, qc is a valid codeword, i.e. qc = c ∈ C, cf. Fig. 1.8.

Eq. (1.30) comprises the calculation of two probabilities, the first one for s = 0 and

the second one for s = 1. Therefore, it is more familiar to consider the ratio of them.

The log-likelihood ratio (LLR) of the j-th code symbol is defined therefore as:

L(cj) = ln
Prob(qc,j = 0|x̃)
Prob(qc,j = 1|x̃) (1.31)

where the sign of L(cj) delivers the decision of ĉj being 0 or 1

ĉj =

{

0 : L(cj) ≥ 0

1 : L(cj) < 0
(1.32)
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1 Vector-Valued Transmission Model

and the magnitude |L(cj)| the reliability of the decision.

The advantage of the log-likelihood ratios arises from the fact that multiplying prob-

abilities leads to the summation of the log-likelihood ratios.

We split the code book C into two subcode books C0 and C1. C0 contains all code-

words from the original code book C, which contain a 0 at the j-th position. C1 con-

tains all codewords from the original code book C, which contain a 1 at the j-th posi-

tion. In this case, Eq. (1.31) can be rewritten as:

L(cj) = ln

∑
c∈C0

Prob(qc = c|x̃)

∑
c∈C1

Prob(qc = c|x̃) . (1.33)

According to the Bayesian rule:

L(cj) = ln

∑
c∈C0

p(ẋ = x̃|qc = c) · Prob(c)

∑
c∈C1

p(ẋ = x̃|qc = c) · Prob(c)
. (1.34)

Eq. (1.34) represents the symbol-by-symbol maximum aposteriori probability decod-

ing approach (s/s APP).

If all codewords are equally probable, we obtain from the last relation the symbol-

by-symbol maximum likelihood (s/s ML) decoding approach

L(cj) = ln

∑
c∈C0

p(ẋ = x̃|qc = c)

∑
c∈C1

p(ẋ = x̃|qc = c)
. (1.35)

For memoryless channels:

p(ẋ = x̃|qc = c) = ∏
j′

p(ẋj′ = x̃j′ |qc,j′ = cj′ ). (1.36)

Inserting Eq. (1.36) in Eq. (1.35) leads to:

L(cj) = ln

∑
c∈C0

∏
j′

p(ẋj′ = x̃j′ |qc,j′ = cj′ )

∑
c∈C1

∏
j′

p(ẋj′ = x̃j′ |qc,j′ = cj′ )
. (1.37)

We define now the intrinsic L-value (channel L-value):

Lch(x̃j) = ln
p(ẋj = x̃j|qc,j = 0)

p(ẋj = x̃j|qc,j = 1)
. (1.38)
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For an AWGN channel N (0, σ2
n) and BPSK modulation, xj = 1 − 2 · qc,j:

p(ẋj = x̃j|qc,j = 0) =
1

√

2 · π · σ2
n

· exp

{

−
(x̃j − 1)2

2 · σ2
n

}

p(ẋj = x̃j|qc,j = 1) =
1

√

2 · π · σ2
n

· exp

{

−
(x̃j + 1)2

2 · σ2
n

}

.

(1.39)

Inserting Eq. (1.39) in Eq. (1.38) leads to:

Lch(x̃j) =
2 · x̃j

σ2
n

. (1.40)

Depending on

p(ẋj = x̃j) =
1

2
· p(ẋj = x̃j|qc,j = 0) +

1

2
· p(ẋj = x̃j|qc,j = 1) (1.41)

for Prob(qc,j = 0) = Prob(qc,j = 1) = 0.5 and using Eq. (1.39) it can be found that:

p(ẋj = x̃j|qc,j) =
p(ẋj = x̃j)

1 + exp
{

−Lch(x̃j)
} · exp

{

−Lch(x̃j) · qc,j

}

(1.42)

As mentioned before, qc,j ∈ {0, 1}. Inserting the last relation in Eq. (1.37) leads to:

L(cj) = Lch(x̃j)
︸     ︷︷     ︸

Lint(cj)

+ ln

∑
c∈C0

∏
j′,j

exp
{

−Lch(x̃j′ ) · cj′
}

∑
c∈C1

∏
j′,j

exp
{

−Lch(x̃j′ ) · cj′
}

︸                                        ︷︷                                        ︸

Lext(cj)

. (1.43)

We conclude from the last relation that the LLR of the j-th code symbol consists of

the intrinsic L-value Lint(cj) = Lch(x̃j), which contains information about the code

symbol from its received version and the extrinsic L-value Lext(cj), which uses the

constraints of the code to obtain information about the j-th coded symbol from all

other code symbols.

The famous BCJR [3] decoding algorithm is a decoding algorithm based on Eq. (1.43),

where the numerator and denominator are calculated in an efficient way based on the

trellis description of the code.
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1 Vector-Valued Transmission Model

For a single parity check code where the parity check matrix becomes a row vector it

can be shown that

Lext(cj) = ln

1 + ∏
j′,j

tanh
[

L(x̃j′ )
2

]

1 − ∏
j′,j

tanh
[

L(x̃j′ )
2

] . (1.44)

Binary linear block codes can be understood as a set of single parity check codes.

Thus, iterative decoding algorithms exploit this fact by exchanging iteratively the L-

values of the code symbols. A detailed description of iterative decoding is given in

Chapter 4. j, j′ ∈ {1, 2, · · · n} for Eq.(1.30)-(1.44).

1.5 Chapter Summary

In this chapter we have given an overview of the continuous-time vector-valued

transmission model and its individual elements. The discrete-time counterpart has

been introduced too, where the importance of the channel matrix R for equalization

has been explicitly represented. Furthermore, we have graphically shown the chan-

nel matrix for few widely used transmission schemes as multiantanna, OFDM and

MIMO-OFDM.

Two special cases have been mentioned specifically, namely uncoded transmission

and coded transmission over AWGN channel. The first case is relevant to compare

the performance of different suboptimum equalization schemes, whereas the second

one is relevant for comparing different codes and decoding algorithms.

The maximum likelihood rule for detection, equalization and decoding has been

derived and the importance of suboptimum schemes has been emphasized. The

generic structure of an iterative interference cancellation has been given and two spe-

cial cases have been mentioned.

A short introduction to the mathematical background needed for iterative decoding

has been given as well.
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Chapter 2

Dynamical Neural Networks

T
HIS chapter provides a detailed investigation of recurrent neural networks and

high order recurrent neural networks as dynamical systems (DSs). We focus

on their qualitative and long term dynamical behavior. Training (learning) al-

gorithms are not considered. This investigation includes an extensive study of the

local and global asymptotical stability, where new stability conditions are derived

and known ones are extended. The stability investigation using time-variant activa-

tion functions is considered as well. This represents an important aspect, when using

recurrent neural networks as vector equalizer.

We start with a short introduction of DSs followed by essential definitions of stabil-

ity and the Lyapunov method of stability. After that, a novel method is introduced to

define continuous-time dynamical systems (CTDSs), which share specific properties
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with given discrete-time dynamical systems (DTDSs). Thereafter, different recurrent

neural networks structures are introduced. Before presenting the details of the sta-

bility investigation, some definitions are introduced and various lemmas are proven.

The same procedure is repeated for high order recurrent neural networks.

This chapter represents the theoretical basis of this work. Stability results in this

chapter are going to be interpreted in the light of the vector equalization and the

vector decoding tasks in Chapter 3 and Chapter 4, respectively.

2.1 Dynamical Systems

A DS is a system, whose state varies with time [20]. Virtually, anything that evolves

over time can be thought of as a DS [71]. We distinguish between DTDSs and CTDSs.

We consider complex-valued DSs and limit the investigation to autonomous ones.

The general form of a DTDS is given by [47],[71]:

u(l + 1) = sd[u(l)] : l = 0, 1, 2, · · ·
u(0) = uini

u = ur + ıui : ur, ui ∈ R
N

sd[ur, ui] = sd,r[ur, ui] + ısd,i[ur, ui] : sd,r, sd,i : R
2N → R

N .

(2.1)

For a CTDS we define [47],[71]:

Υ · du(t)

dt
= sc[u(t)] : t ≥ 0

u(0) = uini

Υ = diag {τ1, τ2, · · · , τN}
∀j ∈ {1, 2, · · · , N} : τj > 0

u = ur + ıui : ur, ui ∈ R
N

sc[ur, ui] = sc,r[ur, ui] + ısc,i[ur, ui] : sc,r, sc,i : R
2N → R

N .

(2.2)

u is called the state of the DS and N is its dimension. In addition, we assume that sd,r,

sd,i, sc,r and sc,i are continuously differentiable with respect to ur, ui.

Definition 2.1 The fixed points u f p of a DTDS, cf. Eq. (2.1), fulfill [47]:

u f p = sd[u f p]. (2.3)
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Definition 2.2 The equilibrium points uep of a CTDS, cf. Eq. (2.2), fulfill [47]:

sc[uep] = 0N . (2.4)

Definition 2.3 A DTDS reaches a limit cycle of length lc ∈ N and lc > 1 if it repeats the

trajectory between l and l + lc infinitely often:

u(l) = u(l + lc)

u(l) , u(l + j)

∀j ∈ {1, 2, · · · , lc − 1}.

(2.5)

Remark 2.1 The original definitions of DSs in [47],[71] are made for the real-valued

case. It can be easily shown that complex-valued DSs of dimension N as described in

Eq. (2.1), (2.2) can be represented by real-valued DSs of dimension 2 · N.

Remark 2.2 The terms fixed/equilibrium point are interchangeable in the literature,

cf. [47], [71]. Other terms for fixed/equilibrium point include stationary point, singu-

lar point, critical point and rest point [47]. In this thesis, we dedicate the term fixed

point for DTDSs and the term equilibrium point for CTDSs.

Remark 2.3 In this thesis, CTDSs are simulated using the first Euler method [50],

where it is assumed that τ = τ1 = τ2 = · · · = τN and τ/∆t = 10. Simulation based

on other numerical schemes, as Runge-Kutta method, reveals similar results. ∆t is the

sampling step.

2.1.1 Qualitative Behavior of Dynamical Systems

The theory of DSs focuses, among others, on their long term temporal behavior. In-

stead of giving explicit solutions of Eq. (2.1), (2.2), which is possible in very few cases,

it describes their qualitative behavior if the discrete/continuous time tends to infinity

(long term evolution). Qualitative behavior includes the existence (or nonexistence)

of fixed/equilibrium points, attractors, chaos etc.

A very important method to investigate the qualitative behavior of DSs is the Lya-

punov method. Before introducing it, we give some definitions based essentially

on [20].

Definition 2.4 The equilibrium point uep is said to be uniformly stable if the trajectory

u(t) of the CTDS can be made to stay within a small neighborhood of the equilibrium

point uep if the initial state uini is close to the equilibrium point uep:

∀ǫ1 > 0 : ∃ ǫ2 > 0 : ‖uini − uep‖ < ǫ2 ⇒ ‖u(t)− uep‖ < ǫ1 : ∀t > 0.
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Definition 2.5 The equilibrium point uep is said to be convergent if the trajectory u(t)
will approach the equilibrium point uep as the time t approaches infinity in case that

the initial state uini of the trajectory u(t) is close enough to the equilibrium point uep.

Thus, there exists a positive ǫ such that:

‖uini − uep‖ < ǫ ⇒ lim
t→∞

‖u(t)− uep‖ → 0N .

Definition 2.6 The equilibrium point uep is said to be (locally) asymptotically stable if it

is uniformly stable and convergent.

Definition 2.7 The equilibrium point uep is said to be globally asymptotically stable if it

is stable and all trajectories of the CTDS, regardless their initial states uini, converge

to uep as t tends to infinity. This implies that the CTDS does not have any other

equilibrium points.

2.1.2 Stability Analysis Based on Lyapunov Functions

The equilibrium point uep of an autonomous nonlinear CTDS is asymptotically sta-

ble if in a small neighborhood A of uep there exists a positive definite function E[u].
The derivative of E[u] with respect to the time along the dynamical evolution is neg-

ative definite in that region. A scalar function E[u] that satisfies these requirements is

called a strict Lyapunov function for the equilibrium point uep. In other words, uep is

asymptotically stable if E[u] fulfill the following conditions [20]:

1. E[u] has continuous partial derivatives with respect to the elements of the state

vector u.

2. E[uep] = 0

3. E[u] > 0 if u ∈ A \
{

uep
}

4.
dE[u(t)]

dt
< 0 if u ∈ A \

{
uep

}

5.
dE[u(t)]

dt
= 0 if u = uep

If A is unlimited, the CTDS possesses only one equilibrium point and it is globally

asymptotically stable.

For local stability, we focus on the equilibrium uep = 0N . For global stability, we

shift Eq. (2.2) to the single equilibrium point.
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For a DTDS, we replace the equilibrium point uep with the fixed point u f p and we

replace the differentiation
dE[u(t)]

dt
with ∆E = E[u(l + 1)]− E[u(l)].

We notice that there is no systematic approach to find Lyapunov functions. The

existence of a Lyapunov function is sufficient but not necessary for the stability.

Remark 2.4 In case of DSs with a unique globally asymptotically stable equilibrium

point uep (fixed point u f p), the initial conditions of the dynamical system uini do not

affect the long term behavior of the system. This is not true in the case of DSs with

multiple locally asymptotically stable equilibrium points (fixed points). In the later

case, the initial conditions influence the equilibrium point uep (the fixed point u f p) to

be reached after long term evolution (iteration).

2.1.3 Stability Analysis Based on the Linearization Method

Nonlinear DSs may have more than one fixed/equilibrium point. Their local asymp-

totical stability can be investigated by applying the linearization method. This is done

by linearizing Eq. (2.1), (2.2) in the vicinity of a fixed/equilibrium point using a Taylor

series and ignoring high order derivatives. This leads to [16], [71]:

• A fixed point u f p is locally asymptotically stable if the absolute values of all

eigenvalues of the Jacobian matrix of sd at u f p are smaller than one.

• An equilibrium point uep is locally asymptotically stable if the real parts of all

eigenvalues of the Jacobian matrix of sc at uep are negative.

2.1.4 Twin Dynamical Systems

In this subsection, we are interested in the definition of sc in Eq. (2.2) by means of sd

in Eq. (2.1) such that both DSs share specific characteristics. To do that, we need to

make further restrictions, namely [63]:

• The fixed points of the DTDS Eq. (2.1), (2.3) are the same as the equilibrium

points of the CTDS Eq. (2.2), (2.4), i.e. u f p = uep.

• If sd is linear and the corresponding DTDS is globally asymptotically stable, sc

must also be linear and the corresponding CTDS must be globally asymptoti-

cally stable too.
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Let us start with the linear case [16], [71]. The DTDS in the linear case is given by:

u(l + 1) = Dls · u(l) + dls : l = 0, 1, 2, · · ·
u(0) = uini.

(2.6)

The DTDS in Eq. (2.6) possesses only one fixed point if I − Dls is nonsingular. In this

case:

u f p = −[Dls − I]−1 · dls (2.7)

and u f p is globally asymptotically stable if:

∀j ∈ {1, 2, · · · , N} :
∣
∣
∣λ

(j)
Dls

∣
∣
∣ < 1. (2.8)

The CTDS in the linear case is given by:

Υ · du(t)

dt
= Cls · u(t) + cls : t ≥ 0

u(0) = uini.

(2.9)

Υ is given in Eq. (2.2). The CTDS in Eq. (2.9) possesses only one equilibrium point if

C is nonsingular. In this case:

uep = −C−1
ls · cls (2.10)

and uep is globally asymptotically stable if:

∀j ∈ {1, 2, · · · , N} : ℜ
{

λ
(j)
Cls

}

< 0 (2.11)

where λ
(j)
Cls

(λ
(j)
Dls

) are the j-th eigenvalue of Cls (Dls).

In case cls = dls (both DSs have the same stimulator) the above mentioned condi-

tions for the definition of twin dynamical systems lead in the linear case to:

uep = u f p

Cls = −I + Dls.
(2.12)

From Eq. (2.12) we conclude ∀j ∈ {1, 2, · · · , N}:

ℜ
{

λ
(j)
Cls

}

= −1 +ℜ
{

λ
(j)
Dls

}

ℑ
{

λ
(j)
Cls

}

= ℑ
{

λ
(j)
Dls

}

.
(2.13)

Fig. 2.1 shows that if the fixed point of the linear DTDS in Eq. (2.6), (2.7) is glob-

ally asymptotically stable, i.e. Eq. (2.8) is fulfilled, the equilibrium point of the linear
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ℜ{λ}

ℑ{λ}
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Figure 2.1: Eigenvalues of twin linear dynamical systems.

CTDS in Eq. (2.9), (2.10) through Eq. (2.12), (2.13) is also globally asymptotically sta-

ble.

For the nonlinear case, assuming that the linearization method is applicable, this

leads to:

sc[u] = −u + sd[u]. (2.14)

This means for the Jacobian matrices:

Jsc
[u] = −I + Jsd

[u]

eig
{

Jsc
[u]

}
= −I + eig

{
Jsd

[u]
}

.
(2.15)

The last equation is the vector-valued notation of Eq. (2.13). eig { } stands for the

eigenvalues of the matrix in the argument. Jsc
[u], Jsd

[u] represent the Jacobian matri-

ces of sc, sd at u, respectively.

Definition 2.8 The DTDS in Eq. (2.1) and the CTDS in Eq. (2.2) are twin if Eq. (2.14)

is fulfilled.

Remark 2.5 Even if the DTDS and the CTDS are twin, the trajectory of the CTDS is

generally not an interpolation of the trajectory of the DTDS.

Remark 2.6 The definition of twin dynamical systems is based on coinciding the

fixed and equilibrium points, because they represent the solutions of our equalization

and decoding tasks. Other behaviors, which might appear in nonlinear DSs as chaos,

is not considered in this work, since we know that it does not lead to a (satisfactory)

solution.
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2.2 Single Layer Recurrent Neural Networks Without Hidden

Neurons

The fundamental element of neural networks is the neuron. In the general case, the

neuron represents a nonlinear information processing unit. It possesses many inputs

and a single output. The functionality of the neuron can be divided into a linear part

and a nonlinear part:

• The linear part: performs a weighted summation of the inputs. The result of

this summation is called “inner state”.

• The nonlinear part: the inner state is subject to a nonlinear mapping by means of

a nonlinear element “activation function”. The result of this nonlinear mapping

is the output of the neuron.

In the discrete-time case, cf. Fig. 2.2 (a):

uj =
N

∑
j′=0

wjj′ · ej′

vj = ϕj(uj).

(2.16)

In the continuous-time case, cf. Fig. 2.2 (b) which is referred as “additive model” or

“resistance-capacitance model” [20]:

τj ·
duj(t)

dt
= −uj(t) +

N

∑
j′=0

wjj′ · ej′

vj = ϕj(uj)

τj = Rj · Cj > 0

wjj′ =
Rj

Rjj′
.

(2.17)

In Eq. (2.16), (2.17) uj, vj, ϕj represent the inner state, the output and the activation

function of the j-th neuron in a neural network, respectively. wjj′ is the weight factor

of the j-th neuron for its j′-th input. We restrict ourself in this work to bounded

activation functions.

In Eq. (2.17) the inputs, the inner state and the output are assumed to be voltage

signals. The summation node represents an ideal current summation junction. The

weight factors are scaled resistances (conductances).
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e1

e2

...

eN

wj1

wj2

...

wjN

∑

wj0 · e0

uj

ϕj(·) vj

(a) A discrete-time model of a neuron.

e1

e2

...

eN

Rj1

Rj2

RjN

Current-
summing
junction

Cj

uj(t)

Rj

Current
source

Rj0 · e0

ϕj(·) vj(t)

(b) A continuous-time model of a neuron. The ”resistance-capacitance” model.

Figure 2.2: Discrete and continuous-time models of a neuron.

The single layer recurrent neural network without hidden neurons, for simplicity

recurrent neural network (RNN), consists of one layer of N neurons. Each neuron

has one external input. The outputs of the neurons v1, v2, · · · , vN are fed back to the

input, i.e. each output is fed back in general to all neurons by weight coefficients.

This class of networks has been attracting a lot of interest because of their widespread

applications. They can be either trained to approximate a multiple-input multiple-

output system [17] (system identification, usually with hidden neurons), or they can

be considered as DSs. In the later case, one of the most important properties of these

networks is their ability to solve optimization problems without the need for a train-
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ing (learning) phase. In this case, the training process, always associated with com-

putational complexity, time and free parameter optimization can be avoided. This

relies on the ability of these networks (under specific conditions) to be Lyapunov-

stable. This property is desirable in many engineering fields like signal processing,

communications, automatic control etc.

One of the first and most well investigated applications of the RNNs is the content

addressable memory (CAM). A detailed description of RNN-CAM (two-state neu-

rons) with storage capacity can be found in [20]. Other applications of RNNs are

A/D converter [78] and the traveling salesman problem [31].

We focus in this work on the application of RNNs as vector equalizer and we focus

on the comparison between discrete- and continuous-time models. The dynamical

behavior of RNNs is usually given by the state-space representation.

2.2.1 Continuous-Time Recurrent Neural Networks

Fig. 2.3 shows a continuous-time RNN, to be abbreviated in the following by RNN-1.

The dynamical behavior is given by:

Υ · du(t)

dt
= −u(t) + W · v(t) + W0 · e

v(t) = ϕ[u(t)] =
[

ϕ1[u1(t)], ϕ2[u2(t)], · · · , ϕN [uN(t)]
]T

Υ = diag {τ1, τ2, · · · , τN}
W0 = diag {w10, w20, · · · , wN0} .

(2.18)

In Eq. (2.18) v is the output, u the inner state, e the external input, ϕj(·) the bounded

activation function of the j-th neuron, wjj′ =
Rj

Rjj′
the weight coefficient between the

output of the j′-th neuron and the input of the j-th neuron, wj0 =
Rj

Rj0
the weight

coefficient of the j-th external input and N the number of neurons in the network.

v, u, e ∈ CN . W , W0 ∈ CN×N . Υ ∈ RN×N . W0 and Υ are diagonal matrices.

By comparing Eq. (2.18) with Eq. (2.2) we notice that:

sc(u) = −u + W ·ϕ(u) + W0 · e.

Since we restrict ourself to bounded activation functions, the RNN-1 possesses at least

one equilibrium point [91].
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· · ·
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Figure 2.3: Continuous-time recurrent neural network. v(t) is the output, u(t) the inner state, e
the external input and ϕ(·) the activation function.

2.2.2 Discrete-Time Recurrent Neural Networks With Serial Update

The dynamical behavior of the discrete-time RNN with serial update, to be abbrevi-

ated in the following by RNN-2, assuming the j-th neuron is being updated, is given

by:

uj(ρ + 1) =
N

∑
j′=1

wjj′ · vj′ (ρ) + wj0 · ej

vj(ρ) = ϕj[uj(ρ)].

(2.19)

The parameters in Eq. (2.19) are the same as in Eq. (2.18). Depending on Eq. (2.19), we

define the output vector before and after updating the j-th neuron, i.e. the transition
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from the serial discrete-time index (ρ) to (ρ + 1), as follows:

v(ρ) =
[

v1(ρ), · · · , vj−1(ρ), vj(ρ), vj+1(ρ), · · · , vN(ρ)
]T

v(ρ + 1) =
[

v1(ρ), · · · , vj−1(ρ), vj(ρ + 1), vj+1(ρ), · · · , vN(ρ)
]T

(2.20)

This means, at each time step (ρ) the output of one neuron is updated, whereas the

others stay unchanged:

vj′ (ρ + 1) = vj′ (ρ) : j′ , j

It is obvious that the order of the update can play a role when applying the RNN-2 to

solve optimization tasks. In addition, N steps are needed to update all neurons one

time.

2.2.3 Discrete-Time Recurrent Neural Networks With Parallel Update and

Without Inner State Feedback

Fig. 2.4 shows the discrete-time RNN with parallel update and without inner state

feedback, to be abbreviated in the following by RNN-3. The dynamical behavior is

given by:

u(l + 1) = W · v(l) + W0 · e

v(l) = ϕ[u(l)].
(2.21)

The parameters in Eq. (2.21) are the same as in Eq. (2.18).

At this step we notice the difference between serial (asynchronous) and parallel

(synchronous) update. In the parallel update mode all neurons are updated at the

same time, whereas in the serial update mode only one neuron is updated every time

step. Combinations of both update modes are possible but they are out of the scope

of this work.

Remark 2.7 Depending on Definition 2.8, RNN-1 and RNN-3 represent twin dynam-

ical systems.

2.2.4 Discrete-Time Recurrent Neural Networks With Parallel Update and

Inner State Feedback

In this thesis we focus also on discrete-time RNNs with inner state feedback. Fig. 2.5

shows a RNN with inner state feedback of memory one. This network is abbreviated
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Figure 2.4: Discrete-time recurrent neural network without inner state feedback. v(l) is the out-
put, u(l) the inner state, e the external input and ϕ(·) the activation function.

in the following by RNN-4. The dynamical behavior of RNN-4 is given by:

u(l + 1) = A · u(l) + W · v(l) + W0 · e

v(l) = ϕ[u(l)].
(2.22)

The parameters in Eq. (2.22) are the same as in Eq. (2.18). In addition, A ∈ RN×N

and A = diag {a1, a2, · · · , aN}, where ∀j ∈ {1, 2, · · · , N} : aj ∈ [0, 1). aj is the inner

state feedback of the j-th neuron.

If the memory of the inner state feedback is two, we obtain the RNN depicted in

Fig. 2.6. This RNN is abbreviated in this work by RNN-5. The dynamical behavior is

given by:

u(l + 1) = A · u(l − 1) + W · v(l) + W0 · e

v(l) = ϕ[u(l)].
(2.23)
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Figure 2.5: Discrete-time recurrent neural network with inner state feedback of memory one.
v(l) is the output, u(l) the inner state, e the external input, a the inner state feedback
and ϕ(·) the activation function.

We notice that the difference between RNN-4 and RNN-5 is an additional delay in

the inner state feedback. The parameters in Eq. (2.23) are the same as in Eq. (2.22).

Remark 2.8 If A = 0N×N , RNN-3, RNN-4 and RNN-5 are identical.

Remark 2.9 As for the RNN-1, it can be proven that the RNN-2, RNN-3, RNN-4 and

RNN-5 possess also at least one fixed point [91].

Remark 2.10 It is often assumed that ϕ1 = ϕ2 = · · · = ϕN = ϕ.
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Figure 2.6: Discrete-time recurrent neural network with inner state feedback of memory two.
v(l) is the output, u(l) the inner state, e the external input, a the inner state feedback
and ϕ(·) the activation function.

2.2.5 Mathematical Preliminaries

In this subsection, Definitions are introduced and many lemmas are proven. This is

indispensable for the rest of this chapter.

Definition 2.9 A set of complex-valued functions g is said to be class g(1) if they fulfill

the following conditions:

• g : C → B : B ⊂ C, g(u) = gr(ur, ui) + ıgi(ur, ui), g(0) = 0, u = ur + ıui

• g are bounded, i.e. there exists a µ such that:

|g(u)| ≤ µ < ∞
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This implies that gr(ur, ui) and gi(ur, ui) are bounded too.

• gr(ur, ui) and gi(ur, ui) are continuously differentiable with respect to ur and ui.

• The real and imaginary parts of the functions g are strictly increasing with re-

spect to ur and ui, respectively. This means:

0 <
∂gr(ur, ui)

∂ur
≤ γr (2.24)

0 <
∂gi(ur, ui)

∂ui
≤ γi (2.25)

• The determinant of the Jacobian matrix of the functions g ∈ g(1) is always posi-

tive, i.e.

δJg
=

∂gr(ur, ui)

∂ur
· ∂gi(ur, ui)

∂ui
− ∂gr(ur, ui)

∂ui
· ∂gi(ur, ui)

∂ur
> 0 (2.26)

• In addition:
∂gr(ur, ui)

∂ui
=

∂gi(ur, ui)

∂ur
(2.27)

Based on the condition given above, the following properties of the inverse function

g−1 can be derived [76]:

• g−1 : B → C , g−1(v) = g−1
r (vr, vi) + ıg−1

i (vr, vi), g−1(0) = 0, v = vr + ıvi

• g−1
r (vr, vi) and g−1

i (vr, vi) are continuously differentiable with respect to vr and

vi.

• The real and imaginary parts of the inverse functions g−1 are strictly increasing

with respect to vr and vi, respectively, i.e.

0 <
∂g−1

r (vr, vi)

∂vr
(2.28)

0 <
∂g−1

i (vr, vi)

∂vi
(2.29)
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• The determinant of the Jacobian matrix of the inverse functions g−1 is always

positive, i.e.

δJ
g−1

=
∂g−1

r (vr, vi)

∂vr
· ∂g−1

i (vr, vi)

∂vi
− ∂g−1

r (vr, vi)

∂vi
· ∂g−1

i (vr, vi)

∂vr
> 0 (2.30)

• In addition:
∂g−1

r (vr, vi)

∂vi
=

∂g−1
i (vr, vi)

∂vr
(2.31)

• The derivatives of g−1
r (vr, vi) and g−1

i (vr, vi) with respect to vr and vi are under

bounded, i.e.

min

{

∂g−1
r (vr, vi)

∂vr

}

=







γr −
min

{
∂gr(ur, ui)

∂ui
· ∂gi(ur, ui)

∂ur

}

γi







−1

≥ 1

γr

(2.32)

min

{

∂g−1
i (vr, vi)

∂vi

}

=







γi −
min

{
∂gr(ur, ui)

∂ui
· ∂gi(ur, ui)

∂ur

}

γr







−1

≥ 1

γi

(2.33)

The proofs of Eq. (2.28)-(2.33) are considered in Lemma 2.1.

Definition 2.10 A set of complex-valued functions g is said to be class g(2) if they

fulfill the conditions mentioned in Definition 2.9 and in addition:

∂gr(ur, ui)

∂ui
=

∂gi(ur, ui)

∂ur
= 0 ⇔ ∂g−1

r (vr, vi)

∂vi
=

∂g−1
i (vr, vi)

∂vr
= 0

This means g ∈ g(2) ⇒ g(u) = gr(ur) + ıgi(ui). We call this property Separability of

real and imaginary parts.

Definition 2.11 A set of complex-valued functions g is said to be class g(3) if they

fulfill the conditions mentioned in Definitions 2.9, 2.10. In addition, if g1, g2 ∈ g(3)

and

γ1,r = max

{
dg1,r(ur)

dur

}

, γ1,i = max

{
dg1,i(ui)

dui

}

γ2,r = max

{
dg2,r(ur)

dur

}

, γ2,i = max

{
dg2,i(ui)

dui

}
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then ∀v = vr + ıvi ∈ B:

γ2,r > γ1,r ⇒
∫ vr

0
g−1

1,r (ϑ)dϑ ≥
∫ vr

0
g−1

2,r (ϑ)dϑ

γ2,i > γ1,i ⇒
∫ vi

0
g−1

1,i (ϑ)dϑ ≥
∫ vi

0
g−1

2,i (ϑ)dϑ

This means: if γ2,r > γ1,r and γ2,i > γ1,i, it holds:

ℜ
{∫ v

0
g−1

2 (ϑ)dϑ∗ −
∫ v

0
g−1

1 (ϑ)dϑ∗
}

≤ 0 (2.34)

Remark 2.11 g(3) ⊂ g(2) ⊂ g(1).

Definition 2.12 A set of real-valued functions g : R → Br : Br ⊂ R, g(0) = 0 is

said to be class g(4) if they fulfill the conditions mentioned in Definition 2.9, 2.10. In

addition, it holds gi(ui) = 0.

Lemma 2.1 If a function g ∈ g(1), it holds:

min

{

∂g−1
r (vr, vi)

∂vr

}

=







γr −
min

{
∂gr(ur, ui)

∂ui
· ∂gi(ur, ui)

∂ur

}

γi







−1

≥ 1

γr

min

{

∂g−1
i (vr, vi)

∂vi

}

=







γi −
min

{
∂gr(ur, ui)

∂ui
· ∂gi(ur, ui)

∂ur

}

γr







−1

≥ 1

γi

Proof

See Appendix A.1.

Lemma 2.2 If a function g ∈ g(1), there exists a function φ(vr, vi) such that:

∂φ(vr, vi)

∂vr
= g−1

r (vr, vi) &
∂φ(vr, vi)

∂vi
= g−1

i (vr, vi)

where v ∈ B.

Proof

See Appendix A.2.

Remark 2.12 This Lemma has been mentioned without detailed proof in [41].
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Lemma 2.3 If a function g ∈ g(1), it holds:

ℜ
{∫ b2

b1

g−1(ϑ)dϑ∗
}

= ℜ
{

(b2 − b1)
∗ · g−1(b0)

}

where b1, b2 ∈ B. b0 is unique and lies on the line segment joining the points (b1,r, b1,i)
and (b2,r, b2,i) (intermediate point).

Proof

See Appendix A.3.

Lemma 2.4 If a function g ∈ g(2) and ∀v1, v2 ∈ B it holds:

ℜ {(v1 − v2)
∗ · (u1 − u0)} ≥ 0

given that v1 = g(u1) and v2 = g(u2). In addition, u0,r is between u1,r and u2,r. u0,i is

between u1,i and u2,i.

Proof

See Appendix A.4.

Lemma 2.5 If a function g ∈ g(2), it holds:

ℜ
{∫ b2

b1

g−1(ϑ)dϑ∗
}

≤ ℜ
{

(b2 − b1)
∗ · g−1(b2)

}

− 1

2
· γ−1

r · (b2,r − b1,r)
2

− 1

2
· γ−1

i · (b2,i − b1,i)
2

where b1, b2 ∈ B.

Proof

See Appendix A.5.

Lemma 2.6 If a function g ∈ g(2), it holds:

∀u1, u2 ∈ C : ℜ
{

(u1 − u2)
∗ ·

[

g(u1)− g(u2)
]}

≥ 0 (2.35)

Proof

See Appendix A.6.

Lemma 2.7 If g ∈ g(2), gr(·) & gi(·) are Lipschitz functions.

Proof

See Appendix A.7.
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Lemma 2.8 If g ∈ g(2), there exists η > 0 such that:

∀u1, u2 ∈ C :
∣
∣
∣g(u1)− g(u2)

∣
∣
∣ ≤ η · |u1 − u2| (2.36)

Proof

See Appendix A.8.

Lemma 2.9 ∀M′
r, M′

i ∈ N0: u = ur + ıui, ϕ(u) = ϕr(ur) + ıϕi(ui) such that:

ϕr(ur) =
M′

r

∑
j=−M′

r

tanh
[

γr · (ur − 2 · j)
]

(2.37)

ϕi(ui) =
M′

i

∑
j=−M′

i

tanh
[

γi · (ui − 2 · j)
]

(2.38)

then ϕ(·) ∈ g(3).

Proof

See Appendix A.9.

Example 2.1 Fig. 2.7–2.11 illustrate the properties of the functions in Eq. (2.37),(2.38)

for M′
r = 1 and M′

i = 0 and different values of γr and γi. In this case:

ϕr(ur) = tanh
[

γr · (ur − 2)
]

+ tanh
[

γr · ur

]

+ tanh
[

γr · (ur + 2)
]

(2.39)

ϕi(ui) = tanh
[

γi · ui

]

(2.40)

We notice also that the shape of these functions does not change substantially if γr

and γi are large enough. In this case Eq. (A.17) tends to zero.

Lemma 2.10 ∀C ∈ CN×N & ∀v1, v2 ∈ CN it holds:

ℜ
{

vH
1 · C · v2

}

=
[

vT
1,r vT

1,i

]

·
[

Cr −Ci

Ci Cr

]

·
[

v2,r

v2,i

]

Proof

See Appendix A.10.

Lemma 2.11 ∀ C = CH ∈ CN×N & ∀v ∈ CN : ℑ
{

vH · C · v
}

= 0

Proof

See Appendix A.11. the absolute value here is elementwise.
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−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ui
v
i
=

ϕ
i
(u

i
)

 

 

γ
i
=1

γ
i
=2

γ
i
=4

γ
i
=8

(b) The function in Eq. (2.40).

Figure 2.7: The functions in Eq. (2.39), (2.40).
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Figure 2.8: The inverse functions of Eq. (2.39), (2.40).
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Figure 2.9: The derivatives of the functions in Eq. (2.39), (2.40).
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Figure 2.10: The derivatives of the inverse functions of Eq. (2.39), (2.40).
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Figure 2.11: The integration of the inverse function of Eq. (2.39), (2.40).

Lemma 2.12 If a matrix C = CH ∈ CN×N , then ∀v1, v2 ∈ CN it holds:

−1

2
· {vH

1 · C · v1 − vH
2 · C · v2} =− 1

2
· (v1 − v2)

H · C · (v1 − v2)

−ℜ
{

(v1 − v2)
H · C · v2

}

Proof

See Appendix A.12.

Lemma 2.13

∀v, u ∈ C
N : ℜ

{

vH · u
}

≤ |v|T · |u|
Proof

See Appendix A.13.

Remark 2.13 Because g(3) ⊂ g(2) ⊂ g(1):

• All Lemmas proven for functions belonging to g(1) are applicable for functions

belonging to g(2) and g(3) but not vice versa.

• All Lemmas proven for functions belonging to g(2) are applicable for functions

belonging to g(3) but not vice versa.

Remark 2.14 We notice that Lemmas 2.3-2.8 are applicable to functions belonging to

g(4) too.
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2.2.6 Local Asymptotical Stability of Recurrent Neural Networks

In this section, we investigate the local asymptotical stability (LAS) of the different

RNNs presented before. We always follow the same approach: For each RNN, we

introduce a function and derive specific conditions that guarantee that the function

we have given is a Lyapunov function, i.e. it is strictly (monotonically) decreasing

with time along the dynamics of the discussed RNN. Later on, we introduce time-

variant activation functions and discuss the LAS of RNNs with this kind of activation

function.

Locally asymptotically stable RNNs are desirable for some applications. Associa-

tive memory design based on RNNs is a natural and well investigated example. An-

other application is the vector equalization based on RNNs, which is considered in

details in the next chapter.

In case of variables (functions) with double subscripts separated by a comma, the

right one refers to the real/imaginary part of the variable (function) and the left one

refers to the neuron index. For the ease of notation, we drop the dependency of vari-

ables and functions on time, if possible. Parts of this section have been published

in [66].

Theorem 2.1 The RNN-1, cf. Fig. 2.3 and Eq. (2.18), reaches an equilibrium point if

the following conditions are fulfilled:

i) The activation function ϕ(·)∈ g(1).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

Proof

Under theses assumptions, RNN-1 possesses the following Lyapunov function:

E[v(t)] =− 1

2
· vH(t) · D · W · v(t)−ℜ

{

vH(t) · D · W0 · e
}

+
N

∑
j=1

dj · φj

[

vj,r(t), vj,i(t)
]

φj(vj,r, vj,i) =
∫ vj,r

0
ϕ−1

j,r (ϑ, 0)dϑ +
∫ vj,i

0
ϕ−1

j,i (vj,r, ϑ)dϑ

(2.41)

Using Lemma 2.2

dφj(vj,r, vj,i)

dt
= uj,r ·

dvj,r

dt
+ uj,i ·

dvj,i

dt
= ℜ

{
dv∗j
dt

· uj

}
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d

dt





N

∑
j=1

dj · φj(vj,r, vj,i)



 = ℜ
{

dvH

dt
· D · u

}

dE[v(t)]

dt
=

−ℜ







dvH(t)

dt
· D · W · v(t)







︷                                                                           ︸︸                                                                           ︷

−1

2
· dvH(t)

dt
· D · W · v(t)− 1

2
· vH(t) · D · W · dv(t)

dt

−ℜ
{

dvH(t)

dt
· D · W0 · e

}

+ℜ
{

dvH(t)

dt
· D · u(t)

}

=−ℜ
{

dvH(t)

dt
· D ·

[

− u(t) + W · v(t) + W0 · e
]}

From Eq. (2.18):

dE[v(t)]

dt
= −ℜ

{
dvH(t)

dt
· D · Υ · du(t)

dt

}

= −
N

∑
j=1

dj · τj ·
{

duj,r

dt
·

dvj,r

dt
+

duj,i

dt
·

dvj,i

dt

}

But ∀j ∈ {1, 2, . . . , N}:

duj,r

dt
=

∂ϕ−1
j,r (vj,r, vj,i)

∂vj,r
·

dvj,r

dt
+

∂ϕ−1
j,r (vj,r, vj,i)

∂vj,i
·

dvj,i

dt

duj,i

dt
=

∂ϕ−1
j,i (vj,r, vj,i)

∂vj,r
·

dvj,r

dt
+

∂ϕ−1
j,i (vj,r, vj,i)

∂vj,i
·

dvj,i

dt

For clarity of presentation, we suppress the dependency of ϕ−1
j,r (vj,r, vj,i) and ϕ−1

j,i (vj,r, vj,i)
on vj,r,vj,i:

dE[v(t)]

dt
= −

N

∑
j=1

dj · τj ·
{

∂ϕ−1
j,r

∂vj,r
·
(

dvj,r

dt

)2

+
∂ϕ−1

j,r

∂vj,i
·

dvj,r

dt
·

dvj,i

dt

+
∂ϕ−1

j,i

∂vj,r
·

dvj,r

dt
·

dvj,i

dt
+

∂ϕ−1
j,i

∂vj,i
·
(

dvj,i

dt

)2
} (2.42)
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Now we define:

Ẽ[v(t)] =−
N

∑
j=1

dj · τj ·
∂ϕ−1

j,i

∂vj,i
·







dvj,i

dt
+

∂ϕ−1
j,i

∂vj,r

∂ϕ−1
j,i

∂vj,i

·
dvj,r

dt







2

−
N

∑
j=1

dj · τj ·

∂ϕ−1
j,r

∂vj,r
·

∂ϕ−1
j,i

∂vj,i
−




∂ϕ−1

j,i

∂vj,r





2

∂ϕ−1
j,i

∂vj,i

·
(

dvj,r

dt

)2

(2.43)

Using Definition 2.9 and Eq. (2.28)-(2.31): Ẽ[v(t)] ≤ 0 and the equality holds if and

only if
dv(t)

dt
= 0N . Depending on Appendix A.14:

dE[v(t)]

dt
= Ẽ[v(t)] ≤ 0 (2.44)

The equality holds if and only if
dv(t)

dt
= 0N . This means an equilibrium point has

been reached. Otherwise, the function in Eq. (2.41) is strictly decreasing with the time

along the dynamics in Eq. (2.18). �

Remark 2.15 The original proof in [41] assumes D = I and W = W H , which is a

special case of the proof presented above. We will see later, cf. Eq. (3.26) that the

assumption of D , I is very useful when using RNN-1 as vector equalizer.

Remark 2.16 If the imaginary parts of all variables and activation functions in Eq. (2.18)

are zeros and ϕ ∈ g(4) (sigmoid input-output relation), we obtain the well known

continuous-time Hopfield network. The LAS in this case, where D = I & W = W T

has been proven in [30].

Theorem 2.2 The RNN-2, cf. Eq. (2.19),(2.20), reaches a fixed point if the following

conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .
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iii) The diagonal elements of W are nonnegative.

Proof

Under these assumptions, RNN-2 possesses the following Lyapunov function:

E[v(ρ)] =− 1

2
· vH(ρ) · D · W · v(ρ)−ℜ

{

vH(ρ) · D · W0 · e
}

+ℜ







N

∑
j=1

dj ·
∫ vj(ρ)

0
ϕ−1

j (ϑ)dϑ∗







(2.45)

Assuming that the j-th neuron has been updated, i.e.

∀j′ ∈ {1, 2, · · · , N} : vj′ (ρ + 1) = vj′ (ρ) : j′ , j

we define ∆Ej = E[v(ρ + 1)]− E[v(ρ)].
From Appendix A.15:

∆Ej =− dj · ℜ
{[

v∗j (ρ + 1)− v∗j (ρ)
]

· uj(ρ + 1)−
∫ vj(ρ+1)

vj(ρ)
ϕ−1

j (ϑ)dϑ∗
}

− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2
(2.46)

Using Lemma 2.3:

∆Ej = −dj · ℜ
{[

vj(ρ + 1)− vj(ρ)
]∗

·
[

uj(ρ + 1)− u0

]}

− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2

u0,r ∈
(

min{uj,r(ρ), uj,r(ρ + 1)}, max{uj,r(ρ), uj,r(ρ + 1)}
)

u0,i ∈
(

min{uj,i(ρ), uj,i(ρ + 1)}, max{uj,i(ρ), uj,i(ρ + 1)}
)

Depending on Lemma 2.4, we conclude that ∆Ej ≤ 0.

The equality holds if and only if vj(ρ + 1) = vj(ρ). The network will reach a fixed

point if ∀j ∈ {1, 2, . . . , N} : ∆Ej = 0. �

Remark 2.17 Because we are aiming to generalize the stability results from the real-

valued case to the complex-valued one, the LAS of the RNN-2 can be proven in an-

other way based on Lemma 2.5 as in the following theorem.
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Theorem 2.3 The RNN-2, cf. Eq. (2.19),(2.20), reaches a fixed point if the following

conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

iii) The diagonal elements of W are nonnegative.

Proof

We assume that the RNN-2 possesses the same Lyapunov function as in Theorem 2.2.

From Eq. (2.46):

∆Ej =− dj · ℜ
{[

v∗j (ρ + 1)− v∗j (ρ)
]

· uj(ρ + 1)−
∫ vj(ρ+1)

vj(ρ)
ϕ−1

j (ϑ)dϑ∗
}

− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2

Using Lemma 2.5:

∆Ej ≤− 1

2
· dj · γ−1

j,r · [vj,r(ρ + 1)− vj,r(ρ)]
2 − 1

2
· dj · γ−1

j,i · [vj,i(ρ + 1)− vj,i(ρ)]
2

− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2

∆Ej ≤ 0

We have shown in Theorem 2.2 that the equality holds if and only if vj(ρ+ 1) = vj(ρ).
The network will reach a fixed point if ∀j ∈ {1, 2, . . . , N} : ∆Ej = 0. �

Remark 2.18 The LAS of RNN-2 with different activation functions than g(2) has al-

ready been investigated. We mention in the list below some of them. However, we

notice that the stability conditions remains the same, regardless of the activation func-

tion.

• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and the network is composed of two-state neurons, we obtain the discrete-

time Hopfield network (serial update), its LAS (without external inputs e = 0N)

has been proven in [29].
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• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and ϕ(u) is a multithreshold function, the RNN-2 in this case can be trans-

formed into a discrete-time Hopfield network with larger number of neurons.

Thus, the LAS results for the discrete-time Hopfield networks are applicable to

the multithreshold RNNs too, cf. [10] and the references therein.

• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and ϕ(u) is strictly increasing within an interval and constant outside it,

the LAS has been proven in [14].

• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and ϕ(u) is strictly increasing, the LAS has been proven in [10].

• If ϕ(u) is a complex-valued, multistate function, the LAS (without external in-

puts e = 0N) in this case has been proven in [33],[43]. The stability conditions

have been relaxed in [42],[43].

• In the phasor model RNNs, where the outputs of the network lie on the unite

circle in the complex plane, the LAS ( without external inputs e = 0N) has been

proven in [56].

For complex-valued RNNs (the last two cases mentioned above) we notice that the

activation function is noninvertible.

Theorem 2.4 The RNN-4, cf. Fig. 2.5 and Eq. (2.22), reaches a fixed point if the fol-

lowing conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H and D · W ≥ 0.

iii) A = diag{a1, a2, . . . , aN} ∈ RN×N . ∀j ∈ {1, 2, . . . , N} : aj ∈ [0, 1), i.e. A is a

diagonal and positive semidefinite matrix.

Proof

Under theses assumptions, RNN-4 possesses the following Lyapunov function:

E[v(l)] =− 1

2
· vH(l) · D · W · v(l)−ℜ

{

vH(l) · D · W0 · e
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l)

0
ϕ−1

j (ϑ)dϑ∗







(2.47)
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We define in this case:

∆v = v(l + 1)− v(l) , ∆E = E[v(l + 1)]− E[v(l)]

∆E =− 1

2
·
{

vH(l + 1) · D · W · v(l + 1)− vH(l) · D · W · v(l)
}

−ℜ
{[

vH(l + 1)− vH(l)
]

· D · W0 · e
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗







Using Lemma 2.12:

∆E =− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · W · v(l)
}

−ℜ
{

∆vH · D · W0 · e
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗







=− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · [W · v(l) + W0 · e]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗







Using Eq. (2.22):

∆E =− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · [u(l + 1)− A · u(l)]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗







(2.48)

Using Lemma 2.3:

∆E =− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · [u(l + 1)− A · u(l)]
}

+ℜ
{

∆vH · D · [I − A] · u0

}
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u0 is between u(l) and u(l + 1), i.e. u0,r is between ur(l) and ur(l + 1). u0,i is between

ui(l) and ui(l + 1).

∆E =− 1

2
· ∆vH · D · W · ∆v

−ℜ
{

∆vH · D · [u(l + 1)− u0]
}

−ℜ
{

∆vH · D · A · [u0 − u(l)]
}

Based on Lemma 2.4, D > 0 and D · A ≥ 0, we conclude that all three terms in the last

relation are nonpositive and added constructively, i.e. ∆E ≤ 0. The equality holds if

and only if ∆v = 0N i.e. v(l + 1) = v(l). This means a fixed point has been reached.�

Remark 2.19 To relax the positive semidefinite condition in the last theorem, the LAS

of the RNN-4 can be proved in another way based on Lemma 2.5 as it is illustrated in

the following theorem. In this case, there is no necessity that D · W ≥ 0. However,

a similar condition must be fulfilled. This can be done by controlling the inner state

feedback A and/or the activation function.

Theorem 2.5 The RNN-4, cf. Fig. 2.5 and Eq. (2.22), reaches a fixed point if the fol-

lowing conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H and

W̃ =

[

D · W r + D · [I + A] · Γ
−1
r −D · W i

D · W i D · W r + D · [I + A] · Γ
−1
i

]

> 0

where

Γr = diag{γ1,r, γ2,r, . . . , γN,r} , Γi = diag{γ1,i, γ2,i, . . . , γN,i}

iii) A = diag{a1, a2, . . . , aN} ∈ RN×N . ∀j ∈ {1, 2, . . . , N} : aj ∈ [0, 1), i.e. A is a

diagonal and positive semidefinite matrix.

Proof

We assume that the RNN-4 possesses in this case the same Lyapunov function as in

Theorem 2.4. We define in this case:

∆v = v(l + 1)− v(l) , ∆u = u(l + 1)− u(l) , ∆E = E[v(l + 1)]− E[v(l)]
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From Eq. (2.48):

∆E =− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · [u(l + 1)− A · u(l)]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗







Using Lemma 2.5 considering that D · [I − A] is diagonal and positive definite:

ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l)
ϕ−1

j (ϑ)dϑ∗






≤ ℜ

{

∆vH · D · [I − A] · u(l + 1)
}

− 1

2
· ∆vT

r · D · [I − A] · Γ
−1
r · ∆vr

− 1

2
· ∆vT

i · D · [I − A] · Γ
−1
i · ∆vi

In this case:

∆E ≤− 1

2
· ∆vH · D · W · ∆v −ℜ

{

∆vH · D · A · ∆u
}

− 1

2
· ∆vT

r · D · [I − A] · Γ
−1
r · ∆vr −

1

2
· ∆vT

i · D · [I − A] · Γ
−1
i · ∆vi

According to Lemmas 2.7,2.10 taking into account that D · A ≥ 0:

∆E ≤− 1

2
· ∆vT

r · D · [I + A] · Γ
−1
r · ∆vr −

1

2
· ∆vH · D · W · ∆v

− 1

2
· ∆vT

i · D · [I + A] · Γ
−1
i · ∆vi

≤− 1

2
·
[

∆vT
r ∆vT

i

]
· W̃ ·

[
∆vr

∆vi

]

∆E ≤ 0

(2.49)

From Theorem 2.4, the equality holds if and only if ∆v = 0N , i.e. v(l + 1) = v(l). This

implies reaching a fixed point. �

Discussion

• For complex-valued RNN-4 with complex-valued weight matrix: W̃ > 0.
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• For complex-valued RNN-4 with real-valued weight matrix, i.e. W = W r,

W i = 0N×N , and D · W = {D · W}T :

D · W + D · [I + A] · Γ
−1
r > 0

D · W + D · [I + A] · Γ
−1
i > 0

• For real-valued RNN-4, Γ = Γr:

D · W + D · [I + A] · Γ
−1 > 0

This generalizes the results in [52],[92].

Theorem 2.6 The RNN-5, cf. Fig. 2.6 and Eq. (2.23), reaches a fixed point or a limit

cycle of length two if the following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

iii) A = diag{a1, a2, . . . , aN} ∈ RN×N . ∀j ∈ {1, 2, . . . , N} : aj ∈ [0, 1), i.e. A is a

diagonal and positive semidefinite matrix.

Proof

Under these assumptions, RNN-5 possesses the following Lyapunov function:

E[v(l)] =−ℜ
{

vH(l) · D · W · v(l − 1)
}

−ℜ
{[

vH(l) + vH(l − 1)
]

· D · W0 · e
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l)

0
ϕ−1

j (ϑ)dϑ∗







+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l−1)

0
ϕ−1

j (ϑ)dϑ∗







(2.50)

We define in this case:

∆v = v(l + 1)− v(l − 1) , ∆E = E[v(l + 1)]− E[v(l)]

∆E = −ℜ
{

∆vH · D · [W · v(l) + W0 · e]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l−1)
ϕ−1

j (ϑ)dϑ∗
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Using Eq. (2.23):

∆E =−ℜ
{

∆vH · D · [u(l + 1)− A · u(l − 1)]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l−1)
ϕ−1

j (ϑ)dϑ∗







(2.51)

Using Lemma 2.3:

∆E = −ℜ
{

∆vH · D · [u(l + 1)− u0]
}

−ℜ
{

∆vH · D · A · [u0 − u(l − 1)]
}

u0 is between u(l − 1) and u(l + 1). Based on Lemma 2.4, we conclude that ∆E ≤ 0.

Equality holds if and only if ∆v = 0N . This occurs in two cases:

• Limit cycle of length two: v(l + 1) = v(l − 1) , v(l).

• Fixed point: v(l + 1) = v(l) = v(l − 1).

�

The LAS of the RNN-5 can be proved in another way based on Lemma 2.5 as in the

following theorem.

Theorem 2.7 The RNN-5, cf. Fig. 2.6 and Eq. (2.23), reaches a fixed point or a limit

cycle of length two if the following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(2).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

iii) A = diag{a1, a2, . . . , aN} ∈ RN×N . ∀j ∈ {1, 2, . . . , N} : aj ∈ [0, 1), i.e. A is a

diagonal and positive semidefinite matrix.

Proof

We assume that the RNN-5 possesses in this case the same Lyapunov function as in

Theorem 2.6 and we define:

∆v = v(l + 1)− v(l − 1) Γr = diag{γ1,r, γ2,r, . . . , γN,r}
∆u = u(l + 1)− u(l − 1) Γi = diag{γ1,i, γ2,i, . . . , γN,i}
∆E = E[v(l + 1)]− E[v(l)]
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From Eq. (2.51):

∆E =−ℜ
{

∆vH · D · [u(l + 1)− A · u(l − 1)]
}

+ℜ







N

∑
j=1

dj · (1 − aj) ·
∫ vj(l+1)

vj(l−1)
ϕ−1

j (ϑ)dϑ∗







Using Lemma 2.5:

∆E ≤−ℜ
{

∆vH · D · [u(l + 1)− A · u(l − 1)]
}

+ℜ
{

∆vH · D · [I − A] · u(l + 1)
}

− 1

2
· ∆vT

r · D · [I − A] · Γ
−1
r · ∆vr −

1

2
· ∆vT

i · D · [I − A] · Γ
−1
i · ∆vi

∆E ≤−ℜ
{

∆vH · D · A · ∆u
}

− 1

2
· ∆vT

r · D · [I − A] · Γ
−1
r · ∆vr −

1

2
· ∆vT

i · D · [I − A] · Γ
−1
i · ∆vi

Using Lemma 2.7:

∆E ≤− 1

2
· ∆vT

r · D · [I + A] · Γ
−1
r · ∆vr −

1

2
· ∆vT

i · D · [I + A] · Γ
−1
i · ∆vi

∆E ≤0

Based on Theorem 2.6, the equality holds if and only if ∆v = 0N . This occurs in two

cases:

• Limit cycle of length two: v(l + 1) = v(l − 1) , v(l).

• Fixed point: v(l + 1) = v(l) = v(l − 1).

�

Remark 2.20 In contrast to RNN-1, RNN-2 and RNN-4, the RNN-5 can reach a limit

cycle of length two.

Remark 2.21 It is easy to prove that an RNN composed of RNN-4 and RNN-5 is also

locally asymptotically stable.

Remark 2.22 We notice that in all previous cases the inner state feedback A appears

in the third term (and fourth if given) of the Lyapunov functions. By controlling the

values on the diagonal elements of A, the relative importance between the different

terms of the Lyapunov functions is changed (shaping of the Lyapunov function).

Particularly if A → I the third term (and the fourth if given) in the Lyapunov

functions vanish.
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Remark 2.23 Proving the LAS for discrete-time RNNs for activation functions with

dependent real and imaginary parts is more interesting than doing that for activa-

tion functions belonging to g(2) ”independent real and imaginary parts”. However,

it can be proven that this is not possible if Lyapunov functions of the form as in

Eq. (2.45),(2.47),(2.50) are used. One exception is the phasor model, where the out-

put of each neuron lies on the unit circle in the complex plane [56]. The activation

function in this case is noninvertible.

We focus on Lyapunov functions of the form as in Eq. (2.45),(2.47),(2.50) because

the maximum likelihood function of the vector equalization has a similar form.

In this context, activation functions with independent real and imaginary parts are

important for square M-ary quadrature amplitude modulation (M-QAM) symbol al-

phabets, which are more relevant in practice. This is further investigated in Chapter 3.

The phasor model on the other hand is relevant for M-ary phase shift keying (M-PSK)

symbol alphabets. This is not considered further.

Recurrent Neural Network with Parallel Update and without Inner State

Feedback

In case A = 0N×N , RNN-4 and RNN-5 coincide and both are reduced to the RNN-3,

cf. Fig. 2.4 and Eq. (2.21).

When discussing the LAS of the RNN-3 in the complex-valued case depending on

Theorems 2.4-2.7 we distinguish for ϕ(·) ∈ g(2):

• The RNN-3 reaches a fixed point. In this case D ·W = {D ·W}H and D ·W ≥ 0

(or W̃ > 0)

• The RNN-3 reaches a fixed point or a limit cycle of length two. In this case

D · W = {D · W}H .

Remark 2.24 The LAS of RNN-3 as in Theorems 2.4-2.7 coincides with already known

stability results with different activation functions than g(2). Here are some examples:

• If the imaginary parts of all variables and activation functions in Eq. (2.21) are

zeros and the network is composed of two-state neurons, we obtain the discrete-

time Hopfield network (parallel update), cf. [10] and the references therein.

• If the imaginary parts of all variables and activation functions in Eq. (2.21) are

zeros and ϕ(u) is a multithreshold function, then the RNN-3 in this case can be

transformed into a discrete-time Hopfield network, cf. [10] and the references

therein. Thus, the LAS results for the discrete-time Hopfield networks are ap-

plicable to the multithreshold RNNs too [18].
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• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and ϕ(u) is strictly increasing within an interval and constant outside it,

the LAS has been proven in [14].

• If the imaginary parts of all variables and activation functions in Eq. (2.19) are

zeros and ϕ(u) is strictly increasing, the LAS has been proven in [10].

• If ϕ(u) is a complex-valued, multistate function, the LAS (without external in-

puts e = 0N) has been proven in [43],[44].

• If ϕ(u) is a linear threshold function, the LAS has been proven in [94].

Theorem 2.8 RNN-2 and RNN-3 share the same fixed points.

Proof

This has been proven for the real-valued case in [10]. The generalization to the complex-

valued case is analogue. We introduce here the main idea.

• Imagine that RNN-2 has been updated (in serial) and it reached a fixed point.

If you continue updating it in parallel (RNN-3), no changes on the output do

occur.

• Imagine that RNN-3 has been updated (in parallel) and it reached a fixed point.

If you continue updating it in serial (RNN-2), no changes on the output do

occur.

We conclude that the RNN-2 and RNN-3 share the same fixed points, which are also

the equilibrium points of the RNN-1 according to the definition of twin dynamical

systems. �

Remark 2.25 We notice that the advantage of the RNN-2 is the ability to avoid the

limit cycle of length two in case of the RNN-3 without requiring that D · W ≥ 0. This

takes place at the cost of a new condition, namely the diagonal elements of W are

nonnegative.

Remark 2.26 The RNN-1 combines the update behavior of RNN-3 and the stability

behavior of RNN-2.

Theorem 2.9 RNN-4 and RNN-5 share the same fixed points.

Proof

In both cases the fixed points fulfill:

u f p = [I − A]−1 · [W ·ϕ(u f p) + W0 · e].

�
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Remark 2.27 RNN-4 & RNN-5 share the same set of fixed points. This means, an

optimization problem solved by one of them can be solved by the second too. The

choice of using RNN-4 or RNN-5 depends whether the condition D ·W ≥ 0 is fulfilled

(RNN-4) or not (RNN-5). However, for RNN-5 there exists the possibility to get stuck

in a limit cycle of length 2. This can be understood as the price of not fulfilling D ·W ≥
0.

2.2.7 Stability Analysis of RNNs With Time-Variant Activation Functions

Time-variant activation functions in this work, cf. Definition 2.11 and Lemma 2.9, are

activation functions ϕ(·) ∈ g(3), where the factors γr and γi are time-variant during

the evolution (iteration) process. Parts of this section have been published in [66].

Remark 2.28 In the following, we limit the g(3) function class to functions as given in

Lemma 2.9.

Theorem 2.10 The RNN-1, cf. Fig. 2.3 and Eq. (2.18), reaches an equilibrium point if

the following conditions are fulfilled:

• The activation function ϕ(·) ∈ g(3) and γr and γi are time-variant and nonde-

creasing for all neurons during the evolution process.

• There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

Proof

Under these assumptions, RNN-1 possesses the following Lyapunov function, cf.

Theorem 2.1:

E[v(t)] =− 1

2
· vH(t) · D · W · v(t)−ℜ

{

vH(t) · D · W0 · e
}

+
N

∑
j=1

dj · φj

[

vj,r(t), vj,i(t), γj,r(t), γj,i(t)
]

φj(vj,r, vj,i, γj,r, γj,i) =
∫ vj,r

0
ϕ−1

γj,r
(ϑ)dϑ +

∫ vj,i

0
ϕ−1

γj,i
(ϑ)dϑ

(2.52)

ϕ−1
γj,r

Represents the real part of the inverse activation function of the j-th neuron with

γj,r = max

{

dϕj,r(uj,r)

duj,r

}

.

ϕ−1
γj,i

Represents the imaginary part of the inverse activation function of the j-th neuron
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with γj,i = max

{

dϕj,i(uj,i)

duj,i

}

.

Depending on Theorem 2.1, Lemma 2.2 and the law of the total derivative:

dφj

dt
=uj,r ·

dvj,r

dt
+ uj,i ·

dvj,i

dt

+
∂

∂γj,r
·
[∫ vj,r

0
ϕ−1

γj,r
(ϑ)dϑ

]

·
dγj,r

dt
+

∂

∂γj,i
·
[∫ vj,i

0
ϕ−1

γj,i
(ϑ)dϑ

]

·
dγj,i

dt
︸                                                                                            ︷︷                                                                                            ︸

Ĕj

According to Eq. (2.44)

dE[v(t)]

dt
= Ẽ[v(t)] +

N

∑
j=1

dj · Ĕj

• Ẽ[v(t)] ≤ 0 according to Eq. (2.43).

•

dγj,r

dt
≥ 0 and

dγj,i

dt
≥ 0, then according to Definition 2.11 and Lemma 2.9, cf.

also the next example:

Ĕj =
∂

∂γj,r
·
[∫ vj,r

0
ϕ−1

γj,r
(ϑ) dϑ

]

·
dγj,r

dt
+

∂

∂γj,i
·
[∫ vj,i

0
ϕ−1

γj,i
(ϑ) dϑ

]

·
dγj,i

dt
≤ 0

This leads to:
dE[v(t)]

dt
≤ 0

The equality holds if and only if
dv(t)

dt
= 0N and either

dγr(t)

dt
=

dγi(t)

dt
= 0 or

γr(t), γi(t) are so large (for all neurons) such that increasing them makes no changes

on the shape of the activation functions, cf. Lemma 2.9, Fig. 2.7-2.11. �

Example 2.2

vr = ϕγr (ur) = tanh(γr · ur) ⇔ ur = ϕ−1
γr

(vr) =
1

2 · γr
· ln

1 + vr

1 − vr

∫ vr

0
ϕ−1

γr
(ϑ)dϑ =

1

2 · γr
·
[

ln(1 − v2
r ) + vr · ln

1 + vr

1 − vr

]

: vr ∈ (−1,+1)

∂

∂γr

[ ∫ vr

0
ϕ−1

γr
(ϑ)dϑ

]

= − 1

2 · γ2
r
·
[

ln(1 − v2
r ) + vr · ln

1 + vr

1 − vr

]

≤ 0

The equality holds in two cases: either vr = 0 or γr ≫ 1.
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Theorem 2.11 The RNN-2, cf. Eq. (2.19),(2.20), reaches a fixed point if the following

conditions are fulfilled:

• The activation function ϕ(·) ∈ g(3) and γr and γi are time-variant and nonde-

creasing for all neurons during the iteration process.

• There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

• The diagonal elements of W are nonnegative.

Proof

Under these assumptions, RNN-2 possesses the following Lyapunov function, cf.

Theorem 2.2:

E[v(ρ)] =− 1

2
· vH(ρ) · D · W · v(ρ)−ℜ

{

vH(ρ) · D · W0 · e
}

+ℜ







N

∑
j=1

dj ·
∫ vj(ρ)

0
ϕ−1

γj(ρ)
(ϑ)dϑ∗







(2.53)

Where ϕ−1
γj(ρ)

[uj(ρ)] = ϕ−1
γj,r(ρ)

[uj,r(ρ)] + ıϕ−1
γj,i(ρ)

[uj,i(ρ)] refers to the inverse activation

function of the j-th neuron at discrete-time step (ρ) such that

γj,r(ρ) = max

{
dϕγj,r(ρ)(uj,r)

duj,r

}

, γj,i(ρ) = max

{
dϕγj,i(ρ)(uj,i)

duj,i

}

We build ∆Ej = E[v(ρ + 1)] − E[v(ρ)] assuming that the j-th neuron has been up-

dated. In this case, as long as j′ , j it is fulfilled:

vj′ (ρ + 1) = vj′ (ρ) , γj′ ,r(ρ + 1) = γj′ ,r(ρ) , γj′ ,i(ρ + 1) = γj′ ,i(ρ)

Following the same steps as in Theorem 2.3 taking into account that according to

Definition 2.11, Lemma 2.9 and Eq. (2.34),(A.17)

Ĕj = ℜ
{∫ vj(ρ)

0
ϕ−1

γj(ρ+1)
(ϑ)dϑ∗ −

∫ vj(ρ)

0
ϕ−1

γj(ρ)
(ϑ)dϑ∗

}

≤ 0
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yields:

∆Ej ≤ dj · Ĕj −
1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2

− 1

2
· dj · γ−1

j,r (ρ + 1) ·
[

vj,r(ρ + 1)− vj,r(ρ)
]2

− 1

2
· dj · γ−1

j,i (ρ + 1) ·
[

vj,i(ρ + 1)− vj,i(ρ)
]2

≤ 0

A fixed point is reached if ∀j ∈ {1, 2, . . . , N} : ∆Ej = 0. i.e. vj(ρ + 1) = vj(ρ) and

either γj,r, γj,i become constants or γj,r, γj,i are so large such that increasing them

makes no changes on the shape of the activation functions Ĕj → 0, cf. Remark 2.29. �

Theorem 2.12 The RNN-3, cf. Fig. 2.4 and Eq. (2.21), reaches a fixed point or a limit

cycle of length two if the following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(3) and γr and γi are time-variant and nonde-

creasing for all neurons during the iteration process.

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H .

Proof

Under these assumptions, RNN-3 possesses the following Lyapuov function, cf. The-

orem 2.6 taking into account that A = 0N×N :

E[v(l)] =−ℜ
{

vH(l) · D · W · v(l − 1)
}

−ℜ
{[

vH(l) + vH(l − 1)
]

· D · W0 · e
}

+ℜ







N

∑
j=1

dj ·
∫ vj(l)

0
ϕ−1

γj(l)
(ϑ)dϑ∗






+ℜ







N

∑
j=1

dj ·
∫ vj(l−1)

0
ϕ−1

γj(l−1)
(ϑ)dϑ∗







(2.54)

We define:

∆v = v(l + 1)− v(l − 1) Γr(l) = diag{γ1,r(l), γ2,r(l), · · · , γN,r(l)}
∆E = E[v(l + 1)]− E[v(l)] Γi(l) = diag{γ1,i(l), γ2,i(l), · · · , γN,i(l)}

Following the same steps as in Theorem 2.7 taking into account according to Defini-

tion 2.11, Lemma 2.9 and Eq. (2.34),(A.17) that:

Ĕj = ℜ
{∫ vj(l−1)

0
ϕ−1

γj(l+1)
(ϑ)dϑ∗ −

∫ vj(l−1)

0
ϕ−1

γj(l−1)
(ϑ)dϑ∗

}

≤ 0
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yields:

∆E ≤ −1

2
· ∆vT

r · D · Γ
−1
r (l + 1) · ∆vr −

1

2
· ∆vT

i · D · Γ
−1
i (l + 1) · ∆vi +

N

∑
j=1

dj · Ĕj

∆E ≤ 0

The equality holds in two cases:

• Limit cycle of length two: v(l + 1) = v(l − 1) , v(l)

• Fixed point: v(l + 1) = v(l) = v(l − 1)

In addition, either Γr, Γi become constant or Γr, Γi become so large (Ĕj → 0, cf.

Eq. (A.17)) such that increasing them makes no changes on the shape of the activation

functions, cf. Remark 2.29. �

Theorem 2.13 The RNN-3, cf. Fig. 2.4 and Eq. (2.21), reaches a fixed point if the

following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(3) and γr and γi are time-variant and nonde-

creasing for all neurons during the iteration process.

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that D · W = {D · W}H and D · W ≥ 0.

Proof

Under these assumptions, RNN-3 possesses the following Lyapuov function, cf. The-

orem 2.4 taking into account that A = 0N×N :

E[v(l)] =− 1

2
· ℜ

{

vH(l) · D · W · v(l)
}

−ℜ
{

vH(l) · D · W0 · e
}

+ℜ







N

∑
j=1

dj ·
∫ vj(l)

0
ϕ−1

γj(l)
(ϑ)dϑ∗







(2.55)

We define in this case:

∆v = v(l + 1)− v(l) Γr(l) = diag{γ1,r(l), γ2,r(l), · · · , γN,r(l)}
∆E = E[v(l + 1)]− E[v(l)] Γi(l) = diag{γ1,i(l), γ2,i(l), · · · , γN,i(l)}

Following the same steps as in Theorem 2.5 taking into account that according to

Definition 2.11, Lemma 2.9 and Eq. (2.34),(A.17)

Ĕj = ℜ
{∫ vj(l)

0
ϕ−1

γj(l+1)
(ϑ)dϑ∗ −

∫ vj(l)

0
ϕ−1

γj(l)
(ϑ)dϑ∗

}

≤ 0
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yields:

∆E ≤− 1

2
· ∆vH · D · W · ∆v +

N

∑
j=1

dj · Ĕj

− 1

2
· ∆vT

r · D · Γ
−1
r (l + 1) · ∆vr −

1

2
· ∆vT

i · D · Γ
−1
i (l + 1) · ∆vi

∆E ≤ 0

A fixed point is reached if ∆v = 0N , i.e. v(l + 1) = v(l) and either Γr, Γi become

constant or Γr, Γi become so large (Ĕj → 0, cf. Eq. (A.17)) such that increasing them

makes no changes on the shape of the activation functions, cf. Remark 2.29 �

Remark 2.29 Theorems 2.11-2.13 can also be proven based on Lemma 2.3. In this case

we follow the same steps as in Theorems 2.2, 2.4,2.6 taking into account Definition

2.11, Lemma 2.9 and Eq. (2.34),(A.17). Doing that, it can be shown that the equality

holds for the situations mentioned at the end of Theorem 2.11-2.13.

2.2.8 Global Asymptotical Stability of Recurrent Neural Networks

When solving optimization problems, the RNN is usually designed to have a unique

equilibrium and to be globally asymptotically stable to avoid spurious responses or

the problem of local minima [32]. Therefore, in both the continuous and the discrete-

time cases, the global asymptotical stability (GAS) of RNNs has attracted a lot of

interest compared with the LAS.

Among few GAS results we present the following two theorems which are relevant

to the vector equalization based on RNNs. The stability conditions, in the light of this

application, will be further discussed in Chapter 3.

Theorem 2.14 The RNN-1, cf. Fig. 2.3 and Eq. (2.18), has a unique and globally

asymptotically stable equilibrium point if:

• The activation function ϕ(·) ∈ g(2).

• There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that

Q = D ·
(

Ω
−1 − |W |

)

> 0 (2.56)

Ω = diag{η1, η2, . . . , ηN} > 0, cf. Lemma 2.8.

69



2 Dynamical Neural Networks

Proof

We represent an equilibrium point by uep ∈ CN and we shift the state-space equation

Eq. (2.18) to uep. For this purpose we define:

z(t) = u(t)− uep ⇒ dz(t)

dt
=

du(t)

dt

From Eq. (2.18) and Definition 2.2:

u(t) = ueq ⇔ du(t)

dt
= 0N ⇒ uep = W ·ϕ(uep) + W0 · e

Substituting these relations in Eq. (2.18) yields:

Υ · dz(t)

dt
= −z(t) + W ·ϕ(s)

[

z(t)
]

ϕ(s)
[

z(t)
]

= ϕ[z(t) + uep]−ϕ[uep]

(2.57)

ϕ(s)(·) is the same as ϕ(·) but shifted to (−uep,−vep) : vep = ϕ[uep].
The network in Eq. (2.57) has an equilibrium point z = 0N . To prove that z = 0N

is unique and globally asymptotically stable, we consider the following Lyapunov

function:

E[z(t)] =
1

2
· zH(t) · Ω · D · Υ · z(t) (2.58)

Υ, Ω and D are diagonal and positive definite matrices.

E[z(t)] :

{

= 0 : z(t) = 0N

> 0 otherwise

E[z(t)] is unbounded.

According to Eq. (2.57),(2.58):

dE[z(t)]

dt
=

1

2
· dzH(t)

dt
· Ω · D · Υ · z(t) +

1

2
· zH(t) · Ω · D · Υ · dz(t)

dt

= ℜ
{

zH(t) · Ω · D · Υ · dz(t)

dt

}

= ℜ
{

zH(t) · Ω · D ·
[

− z(t) + W ·ϕ(s)[z(t)]
]}

= ℜ
{

zH(t) · Ω · D · W ·ϕ(s)[z(t)]
}

−ℜ
{

zH(t) · Ω · D · z(t)
}

= ℜ
{

zH(t) · Ω · D · W ·ϕ(s)[z(t)]
}

− |z(t)|T · Ω · D · |z(t)|
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According to Lemma 2.13:

dE[z(t)]

dt
≤ −|z(t)|T · Ω · D · |z(t)|+ |z(t)|T · Ω · D · |W | ·

∣
∣
∣ϕ(s)[z(t)]

∣
∣
∣

According to the properties of g(2) functions and Lemma 2.8:

dE[z(t)]

dt
≤−

∣
∣
∣z(t)

∣
∣
∣

T
·
{

Ω · D − Ω · D ·
∣
∣
∣W

∣
∣
∣ · Ω

}

·
∣
∣
∣z(t)

∣
∣
∣

≤−
∣
∣
∣z(t)

∣
∣
∣

T
· Ω · Q · Ω ·

∣
∣
∣z(t)

∣
∣
∣ : Q > 0

≤ 0

The equality holds if and only if z(t) = 0N , i.e. u(t) = uep. �

Remark 2.30 The original proof [91] is slightly different from the proof in Theorem 2.14.

Small modifications have been done in order to fit our RNN vector equalizer applica-

tion.

Theorem 2.15 The RNN-3, cf. Fig. 2.4 and Eq. (2.21), has a unique and globally

asymptotically stable fixed point if:

• The activation function ϕ(·) ∈ g(2).

• There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that

Q = D2 · Ω
−2 − |W |T · D2 · |W | > 0 (2.59)

Ω = diag{η1, η2, . . . , ηN}, cf. Lemma 2.8.

Proof

We represent the fixed point by u f p ∈ CN and we shift Eq. (2.21) to u f p. For this

purpose we define:

z(l) = u(l)− u f p

According to Definition 2.1 and Eq. (2.21):

W0 · e = u f p − W ·ϕ[u f p]

Substituting these relations in Eq. (2.21) yields:

z(l + 1) = W ·ϕ(s)
[

z(l)
]

ϕ(s)
[

z(l)
]

= ϕ[z(l) + u f p]−ϕ[u f p]
(2.60)
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ϕ(s)(·) is the same as ϕ(·) but shifted to (−u f p,−v f p) : v f p = ϕ[u f p].
The network in Eq. (2.60) has a fixed point z = 0N . To prove that z = 0N is unique

and globally asymptotically stable, we consider the following Lyapunov function:

E[z(l)] = zH(l) · D2 · z(l) (2.61)

E[z(l)] :

{

0 : z(l) = 0N

> 0 otherwise

E[z(l)] is unbounded.

Based on Eq. (2.60),(2.61):

∆E = E[z(l + 1)]− E[z(l)]

= zH(l + 1) · D2 · z(l + 1)− zH(l) · D2 · z(l)

= ϕ(s),H [z(l)] · W H · D2 · W ·ϕ(s)[z(l)]− zH(l) · D2 · z(l)

= ϕ(s),H [z(l)] · W H · D2 · W ·ϕ(s)[z(l)]− |z(l)|T · D2 · |z(l)|

According to Lemma 2.13:

∆E ≤ −|z(l)|T · D2 · |z(l)|+
∣
∣
∣ϕ(s),H [z(l)]

∣
∣
∣ · |W |T · D2 · |W | ·

∣
∣
∣ϕ(s)[z(l)]

∣
∣
∣

For clarity of presentation, we suppress the dependency on the time index (l). Using

Lemma 2.8:

∆E ≤− |z|T · D2 · |z|+ |z|T · Ω
T · |W |T · D2 · |W | · Ω · |z|

≤ − |z|T ·
{

D2 − Ω
T · |W |T · D2 · |W | · Ω

}

· |z|

≤ − |z|T · Ω · Q · Ω · |z| : Q > 0

≤ 0

The equality holds if and only if z(l) = 0, i.e. u(l) = u(l + 1) = u f p. �

Remark 2.31 The original proof [91] has been done for RNN-4. In this case:

Q =

(
b

1 + b
· D − b · A · D · A

)

· Ω
−2 − |W |T · D · |W | > 0 (2.62)

where b is a positive number and D ∈ RN×N is any diagonal positive definite matrix

such that Eq. (2.62) is fulfilled.

We presented in Theorem 2.15 a special case where b → ∞ and A = 0N×N .
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2.3 Single Layer High Order Recurrent Neural Networks

Single layer recurrent neural networks are well known to be a very important tool to

solve classification and optimization problems without the need for a training process

because of their ability to be Lyapunov-stable. This has already been discussed in the

previous sections.

However, one of the largest drawbacks of RNNs is their quadratic Lyapunov func-

tion.Thus, optimization problems associated with cost functions of higher degree can-

not be solved ”satisfactorily” by RNNs. ”While preliminary applications using RNNs

were encouraging, others revealed limitations that may be helped by increasing the order of

the Lyapunov function” [8].

For this reason, researchers aim to increase the order of the Lyapunov function and

thus allowing nonlinear feedback (nonlinear interconnections between the neurons).

This increases the class of optimization problems that can be solved by recurrent neu-

ral networks [39]. Doing so, we obtain the single layer high order recurrent neural

network (HORNN). Therefore, HORNNs can be considered as a generalization of

RNNs, that allow nonlinear interaction between the neurons.

It is worth mentioning that the term ”high order” refers to the interconnection be-

tween the neurons not to the degree of the differential/difference equation, which

describes the dynamics. As for RNNs this is still of first order.

In order to apply the HORNNs to solve optimization tasks, their stability has to

be investigated. A property without which the behavior of dynamical systems is

often suspect [8]. This was the topic of many publications as in [8],[39],[75],[85]. An

Example of using HORNNs to solve optimization problems can be found in [89],

where it has been focused on the traveling salesman problem.

Depending on the kind of nonlinear interconnection between the neurons, the net-

work possesses different names. Gradient-like (gradient-type) systems (multilinear

objective functions) [1],[85], gradient recurrent high order neural networks [39], high

order absolutely stable neural networks [8], high order dynamic neural networks [75],

high order Hopfield neural networks [2] are just a few examples. However, polyno-

mial interconnection between the neurons is the most common one.

It is worth mentioning that the stability investigation is almost exclusively focused

on the continuous-time case. One of the very few publications considering the local

stability for the discrete-time ”generalized Hopfield model” can be found in [90].

In this section, we focus on real-valued HORNNs. Using the mean value theorem,

we connect between RNNs and HORNNs such that global stability results of RNNs

can be modified to be valid for HORNNs too. Like RNNs, the dynamical behavior of

HORNNs is given by the state-space representation.
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2.3.1 Continuous-Time High Order Recurrent Neural Networks

Figure 2.12 shows the continuous-time HORNN. The dynamical behavior is given by:

Υ · du(t)

dt
= −u(t) + W · f [v(t)] + W0 · e

v(t) = ϕ[u(t)]

(2.63)

The parameters in Eq. (2.63) are the same as in Eq. (2.18) but real-valued. f [v] is

a real-valued continuously differentiable nonlinear vector function and thus locally

Lipschitz function [72]. In addition, f (0N) = 0N .
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Current-
summing
junction
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ϕ1(·) v1(t)
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summing
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summing
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uN (t)
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ϕN (·) vN (t)
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...

· · ·

· · ·

· · ·

v → f [v]

fN [v(t)]

f2[v(t)]

f1[v(t)]

Figure 2.12: Continuous-time high order recurrent neural network. v(t) is the output, u(t) the
inner state, e the external input and ϕ(·) the activation function.
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2.3.2 Discrete-Time High Order Recurrent Neural Networks

Figure 2.13 shows the discrete-time HORNN. The dynamical behavior is given by:

u(l + 1) = W · f [v(l)] + W0 · e

v(l) = ϕ[u(l)]
(2.64)

All parameters in Eq. (2.64) are the same as in Eq. (2.63).

∑

∑

∑

u1(l)

u2(l)

uN (l)

ϕ1(·)
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ϕ2(·)

z−1

ϕN (·)

z−1

w10e1

w20e2

wN0eN

v1(l)

v2(l)

vN (l)

w11

w12

w1N

w21

w22

w2N

wN1

wN2

wNN

...

...

...

...

...

...

...

...
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...
...

v → f [v]

fN [v(t)]

f2[v(t)]

f1[v(t)]

· · ·

· · ·

· · ·

Figure 2.13: Discrete-time high order recurrent neural network. v(l) is the output, u(l) the inner
state, e the external input and ϕ(·) the activation function.

Remark 2.32 Depending on Definition 2.8 the discrete- and the continuous-time HORNNs

represent twin dynamical systems.

2.3.3 Stability Analysis of High Order Recurrent Neural Networks

Theorem 2.16 The continuous-time HORNN, cf. Fig. 2.12 and Eq. (2.63), reaches an

equilibrium point if the following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(4).
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ii) There exists a scalar function F[v] such that
{

∇ · F[v]
}T

= W · f [v].

Proof

Under these assumptions, the continuous-time HORNN possesses the following Lya-

punov function:

E[v(t)] = −F[v(t)]− vT(t) · W0 · e +
N

∑
j=1

∫ vj(t)

0
ϕ−1

j (ϑ)dϑ (2.65)

According to the second condition, the dynamical behavior of the continuous-time

HORNN Eq. (2.63) can be rewritten as:

Υ · du(t)

dt
= −u(t) +

{

∇ · F[v(t)]
}T

+ W0 · e (2.66)

In this case:

dE[v(t)]

dt
=

N

∑
j=1

∂E[v]

∂vj
·

dvj(t)

dt

= −
N

∑
j=1

{

−uj(t) +∇ · F[v(t)]j + wjo · ej

}

·
dvj(t)

dt

= −
N

∑
j=1

τj ·
duj(t)

dt
·

dvj(t)

dt

= −dvT(t)

dt
· Υ · du(t)

dt

≤ 0

Because ϕ(·) ∈ g(4) is a strictly increasing function.

The equality holds if and only if
dv(t)

dt
= 0N . This means an equilibrium point has

been reached. �

Remark 2.33 The last proof can be found in the literature in different ways [39],[85].

The most important property in this case is that, the left side of Eq. (2.63) is described

by means of the gradient of a scalar function.
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Remark 2.34 If f [v] = v & W = W T , the continuous-time HORNN reduces to the

real-valued RNN-1. In this case

F(v1, v2, · · · , vN) =
1

2
·

N

∑
j=1

N

∑
j′=1

wjj′ · vj · vj′

{

∇ · F[v]
}T

= W · v

Theorem 2.17 The continuous-time HORNN, cf. Fig. 2.12 and Eq. (2.63), has a unique

and globally asymptotically stable equilibrium point if the following conditions are

fulfilled:

i) The activation function ϕ(·) ∈ g(4).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that

Q = D ·
(

Ω
−1 −

∣
∣
∣W · J f [v0]

∣
∣
∣

)

> 0 : ∀v0 ∈ BN
r (2.67)

Where J f [v0] is the Jacobian matrix of the vector valued function f at the point

v0 and Ω = diag{η1, η2, . . . , ηN} > 0, cf. Definition 2.12 and Lemma 2.7.

Proof

The dynamical behavior of the continuous-time HORNN centered at the equilibrium

point uep can be given as:

Υ · dz(t)

dt
= −z(t) + W ·

{

f [v(t)]− f [vep]
}

This can be rewritten considering the mean value theorem on several variables as [70]:

Υ · dz(t)

dt
= −z(t) + W · J f [v0(t)] ·ϕ(s)[z(t)]

v0(t) is between v(t) and vep. ϕ(s)(·) is the same as ϕ(·) but shifted to (−uep,−vep).
Assume W(t) = W · J f [v0(t)], the last relation can be expressed as:

Υ · dz(t)

dt
= −z(t) + W(t) ·ϕ(s)[z(t)] (2.68)

which is similar to Eq. (2.57) except the time variation of the weight matrix.

As we found previously, the weight matrix does not appear in the Lyapunov func-

tion Eq. (2.58) during the GAS analysis of the RNN-1. This means that the same

Lyapunov function Eq. (2.58) can be used and during the time derivation we take into
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account that the weight matrix is time variant. This leads to the second condition

mentioned in this theorem. �

Theorem 2.18 The discrete-time HORNN, cf. Fig 2.13 and Eq. (2.64), has a unique

and globally asymptotically stable fixed point if the following conditions are fulfilled:

i) The activation function ϕ(·) ∈ g(4).

ii) There exists a diagonal positive definite matrix D = diag{d1, d2, . . . , dN} such

that

Q = D2 · Ω
−2 −

∣
∣
∣W · J f [v0]

∣
∣
∣

T
· D2 ·

∣
∣
∣W · J f [v0]

∣
∣
∣ > 0 : ∀v0 ∈ BN

r (2.69)

Where J f [v0] is the Jacobian matrix of the vector valued function f at the point

v0 and Ω = diag{η1, η2, . . . , ηN} > 0, cf. Definition 2.12 and Lemma 2.7.

Proof

Following the same approach as in Theorem 2.17, the discrete-time HORNN can be

reduced to the RNN-3, with a time-variant weight matrix, where the results of Theo-

rem 2.15 can be applied. �

2.4 Chapter Summary

In this chapter, we introduced the structure and the dynamical behavior of recurrent

neural networks and high order recurrent neural networks. They were considered

as nonlinear dynamical systems. Trained neural networks and training algorithms

have not been considered. A major distinction has been done between discrete-time

networks and continuous-time ones.

The stability is one of the most important properties of these networks. So, the main

focus of this chapter was the stability investigation in the sense of Lyapunov, both

locally and globally. We could extend and generalize many already known stability

conditions, especially for complex-valued networks.

One of the most important contributions of this chapter is the stability investiga-

tion of the recurrent neural networks with time-variant activation functions. They

have been already applied (heuristic approach) to solve the vector equalization prob-

lem with good results. In this chapter, we proved that recurrent neural networks

with time-variant activation functions stay Lyapunov-stable if some restrictions on

the characteristic of the time variations are fulfilled.
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2.4 Chapter Summary

Another important contribution is the definition of twin dynamical systems, where

a continuous-time dynamical system can be derived from a discrete-time one. Both

share the same set of fixed/equilibrium points. This plays an important role, when

analog realization of (discrete) iterative methods is required.
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Chapter 3

Recurrent Neural Networks for Vector

Equalization

I
N this chapter we relate the vector equalization discussed in Chapter 1 with the

RNN structures introduced in Chapter 2. This includes the definition of the RNN

(inputs, outputs, weight matrix, activation function etc.) to act as a vector equal-

izer.

We start this chapter with the parameter estimation problem for general symbol

alphabets, which leads to the optimum estimation function θ(opt)(·), mentioned in

Chapter 1. The properties and special form of θ(opt)(·) for specific symbol alphabets

are considered as well. This is a quite known problem [10], [11], therefore we mention

only the problem formulation and the result.
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3 Recurrent Neural Networks for Vector Equalization

We show also the relation between the optimum estimation function θ(opt)(·) and

the classes of g functions in Chapter 2. The evaluation of the optimum estimation

function θ(opt)(·) is investigated afterward. It is shown that for special symbol al-

phabets the optimum estimation function θ(opt)(·) can be approximated by a sum of

shifted hyperbolic tangent functions [65]. This is important for a numerically stable

evaluation of θ(opt)(·). The vector equalization based on RNNs (VE-RNNs) with all

related details embody the last part in this chapter.

Vector equalization based on recurrent neural networks (and their modifications)

is not a new idea. In the discrete-time case, they have been considered for example

in [12], [56], [58], [59], [64], [73], [80], [81], [82], [83], [88], [93].

In the continuous-time case, to the best of our knowledge, the analytical investiga-

tion is restricted to the BPSK [36], [37], [55], [62]. This is generalized in this chapter to

square M-QAM. We notice that [58], [59], [62], [64] are our own publications.

In addition, performance improving techniques, like time-variant activation func-

tions, are considered from the stability point of view. Following this way, it can be

understood, why such a technique can improve the performance of VE-RNNs.

3.1 The Problem of Parameter Estimation

Consider the estimation problem depicted in Fig. 3.1. A transmit symbol x ∈ Ψ =
{ψ1, ψ2, · · · , ψM} : ψj ∈ C : ∀j ∈ {1, 2, · · · , M} is transmitted over a channel which

adds noise and/or interference. Ψ is the symbol alphabet, ζ is the random variable

representing x. x̃ is the received symbol and ζ̃ is the random variable represent-

ing x̃. The estimation function θ(·) has, with given x̃, to deliver x̆ (an estimate for

x) which has to be as close as possible to x, i.e. minimizing the mean squared er-

ror Exp
{
|ζ̆ − ζ|2

}
where ζ̆ is the random variable representing x̆. Exp stands for the

mathematical expectation.

x

ζ

Channel

x̃

ζ̃

θ(·)
x̆

ζ̆

Figure 3.1: Parameter estimation problem.

If x is an interfering symbol, which needs to be estimated in order to cancel its

influence on other symbols, then Exp

{

|ζ̆ − ζ|2
∣
∣
∣x̃
}

is the residual interference power

after eliminating the interference.
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3.1 The Problem of Parameter Estimation

The function θ(·) can be analytically derived if the interference added by the chan-

nel (other symbols, other users) can be modeled as white Gaussian noise. As a conse-

quence, the channel in Fig. 3.1 is modeled by a zero mean, complex-valued, additive

white Gaussian noise where σ2
r , σ2

i are the variances of the statistically independent

noise components. In this case, it has been found that the optimum estimation func-

tion, taking into account that βr =
1
σ2

r
, βi =

1
σ2

i

, is [10], [11]:

x̆(opt) = θ(opt)(x̃)

=
∑

M
j=1 ψj · exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

∑
M
j=1 exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

(3.1)

We notice that x̆(opt) is not limited to the symbol alphabet Ψ.

Separating the real and imaginary parts in Eq. (3.1) yields:

x̆
(opt)
r = θ

(opt)
r (x̃r, x̃i)

=
∑

M
j=1 ψj,r · exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

∑
M
j=1 exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

(3.2)

x̆
(opt)
i = θ

(opt)
i (x̃r, x̃i)

=
∑

M
j=1 ψj,i · exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

∑
M
j=1 exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

(3.3)

For the residual interference, it has been found that [10]:

Exp

{

|ζ̆ − ζ|2
∣
∣
∣x̃
}

= Jr + Ji (3.4)

Jr =
∑

M
j=1 ψ2

j,r · exp
{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

∑
M
j=1 exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

} − x̆2
r

(3.5)
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Ji =
∑

M
j=1 ψ2

j,i · exp
{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

}

∑
M
j=1 exp

{

− 1
2 ·

(

βr · ψ2
j,r + βi · ψ2

j,i

)}

· exp
{

βr · ψj,r · x̃r

}

· exp
{

βi · ψj,i · x̃i

} − x̆2
i

(3.6)

Special Case

For M-PSK symbol alphabets, it can be easily shown in case of βr = βi that:

Exp

{

|ζ̆ − ζ|2
∣
∣
∣x̃
}

= 1 − |x̆|2

3.1.1 Separable Symbol Alphabets

This subsection depends on [10]. Given two real-valued symbol alphabets

Ψ(1) =
{

ψ
(1)
1 , ψ

(1)
2 , · · · , ψ

(1)
Mr

}

, Ψ(2) =
{

ψ
(2)
1 , ψ

(2)
2 , · · · , ψ

(2)
Mi

}

Ψ(1) and Ψ(2) fulfill the following conditions:

• log2 Mr, log2 Mi ∈ N/{0}.

• ψ
(1)
1 < ψ

(1)
2 < · · · < ψ

(1)
Mr

and ψ
(2)
1 < ψ

(2)
2 < · · · < ψ

(2)
Mi

.

• ∀j ∈
{

1, 2, · · · , Mr
2

}

: ψ
(1)
j = −ψ

(1)
Mr+1−j.

• ∀j ∈
{

1, 2, · · · , Mi
2

}

: ψ
(2)
j = −ψ

(2)
Mi+1−j.

The last two relations indicate the even symmetry of Ψ(1) and Ψ(2). We build now a

new symbol alphabet Ψ(sp) =
{

ψ
(sp)
1 , ψ

(sp)
2 , · · ·ψ

(sp)
Mr ·Mi

}

(sp stands for separable) such

that:
ψ
(1)
1 ψ

(1)
2 · · · ψ

(1)
Mr

ψ
(2)
1 ψ

(sp)
1 = ψ

(1)
1 + ıψ

(2)
1 ψ

(sp)
2 = ψ

(1)
2 + ıψ

(2)
1 · · · ψ

(sp)
Mr

= ψ
(1)
Mr

+ ıψ
(2)
1

ψ
(2)
2 ψ

(sp)
Mr+1 = ψ

(1)
1 + ıψ

(2)
2 ψ

(sp)
Mr+2 = ψ

(1)
2 + ıψ

(2)
2 · · · ψ

(sp)
2·Mr

= ψ
(1)
Mr

+ ıψ
(2)
2

...
...

...
. . .

...

ψ
(2)
Mi

ψ
(sp)
Mr ·(Mi−1)+1

= ψ
(1)
1 + ıψ

(2)
Mi

ψ
(sp)
Mr ·(Mi−1)+2

= ψ
(1)
2 + ıψ

(2)
Mi

· · · ψ
(sp)
Mr ·Mi

= ψ
(1)
Mr

+ ıψ
(2)
Mi

In this case, Eq. (3.2), (3.3) can be rewritten as:

x̆
(opt)
r = θ

(opt)
r (x̃r) =

∑
Mr

j=1 ψ
(1)
j · exp

{

− 1
2 · βr · ψ

(1) 2
j

}

· exp
{

βr · ψ
(1)
j · x̃r

}

∑
Mr

j=1 exp
{

− 1
2 · βr · ψ

(1) 2
j

}

· exp
{

βr · ψ
(1)
j · x̃r

} (3.7)
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x̆
(opt)
i = θ

(opt)
i (x̃i) =

∑
Mi

j=1 ψ
(2)
j · exp

{

− 1
2 · βi · ψ

(2) 2
j

}

· exp
{

βi · ψ
(2)
j · x̃i

}

∑
Mi

j=1 exp
{

− 1
2 · βi · ψ

(2) 2
j

}

· exp
{

βi · ψ
(2)
j · x̃i

} (3.8)

Because Ψ(1) and Ψ(2) are even symmetric, Eq. (3.7), (3.8) can be presented in a more

compact way:

x̆
(opt)
r = θ

(opt)
r (x̃r) =

∑
Mr
2

j=1 |ψ
(1)
j | · exp

{

− 1
2 · βr · ψ

(1) 2
j

}

· sinh
[

βr · |ψ(1)
j | · x̃r

]

∑
Mr
2

j=1 exp
{

− 1
2 · βr · ψ

(1) 2
j

}

· cosh
[

βr · |ψ(1)
j | · x̃r

] (3.9)

x̆
(opt)
i = θ

(opt)
i (x̃i) =

∑

Mi
2

j=1 |ψ
(2)
j | · exp

{

− 1
2 · βi · ψ

(2) 2
j

}

· sinh
[

βi · |ψ(2)
j | · x̃i

]

∑

Mi
2

j=1 exp
{

− 1
2 · βi · ψ

(2) 2
j

}

· cosh
[

βi · |ψ(2)
j | · x̃i

] (3.10)

We call the group of symbol alphabets Ψ(sp) separable symbol alphabets, because the real

and imaginary parts are separated in the sense of the optimum estimation function in

Fig. 3.1.

Example 3.1 For Quadrature phase shift keying (QPSK) Ψ(1) = Ψ(2) = {−1,+1} and

Ψ(sp) = {−1 − ı,−1 + ı,+1 − ı,+1 + ı}

x̆
(opt)
r = θ

(opt)
r (x̃r) = tanh(βr · x̃r)

x̆
(opt)
i = θ

(opt)
i (x̃i) = tanh(βi · x̃i)

The Real-Valued Case:

For real-valued symbol alphabets Ψ = Ψ(1) & M = Mr, Eq. (3.2), (3.3) can be rewrit-

ten as:

x̆
(opt)
r = θ

(opt)
r (x̃) =

∑
M
j=1 ψj · exp

{

− 1
2 · βr · ψ2

j

}

· exp
{

βr · ψj · x̃r

}

∑
M
j=1 exp

{

− 1
2 · βr · ψ2

j

}

· exp
{

βr · ψj · x̃r

}

x̆
(opt)
i = 0

(3.11)

Because the symbol alphabet is even symmetry:

x̆
(opt)
r = θ

(opt)
r (x̃) =

∑
M
2

j=1 |ψj| · exp
{

− 1
2 · βr · ψ2

j

}

· sinh
[

βr · |ψj| · x̃r

]

∑
M
2

j=1 exp
{

− 1
2 · βr · ψ2

j

}

· cosh
[

βr · |ψj| · x̃r

]

x̆
(opt)
i = 0

(3.12)
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Example 3.2 For BPSK Ψ = {−1,+1}

x̆
(opt)
r = θ

(opt)
r (x̃r) = tanh(βr · x̃r)

x̆
(opt)
i = 0

3.1.2 Evaluation of the Optimum Estimation Function

During the evaluation of Eq. (3.2), (3.3), numerical instability can take place especially

for large values of βr and βi (very low noise). To solve this problem, an iterative

procedure has been described in [10] to evaluate θ(opt)(·) in a numerically stable way.

Because of the discrete-time iterative nature of this procedure, it is not suitable for

continuous-time systems. In the following, we introduce a numerical stable method

for evaluating θ(opt)(·), which fits continuous-time systems as well. This subsection

is based mainly on [65].

Lemma 3.1 If Ψ = Ψ(sp) and the distance between any two consecutive elements of

Ψ(1) and Ψ(2) is two, it holds:

θ
(opt)
r (x̃r) ≈

Mr−1

∑
j=1

tanh
[

βr ·
(

x̃r − α
(1)
j

)]

θ
(opt)
i (x̃i) ≈

Mi−1

∑
j=1

tanh
[

βi ·
(

x̃i − α
(2)
j

)]
(3.13)

given that:

∀j ∈ {1, 2, · · · , Mr − 1} : α
(1)
j =

ψ
(1)
j+1 + ψ

(1)
j

2

∀j ∈ {1, 2, · · · , Mi − 1} : α
(2)
j =

ψ
(2)
j+1 + ψ

(2)
j

2
.

The larger βr and βi, the better the approximation.

Proof

We focus on θ
(opt)
r (x̃r) and we prove its related statement for Ψ(1) = {−3,−1,+1,+3}

and we show by simulation that it is valid for Ψ(1) with more elements. The whole

analysis is then valid for Ψ(2).
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For Ψ(1) = {−3,−1,+1,+3}, α(1) = {−2, 0,+2}. From Eq. (3.9):

θ
(opt)
r (x̃r) =

exp {4 · βr} · sinh
[

βr · x̃r

]

+ 3 · sinh
[

3 · βr · x̃r

]

exp {4 · βr} · cosh
[

βr · x̃r

]

+ cosh
[

3 · βr · x̃r

] (3.14)

We define according to Eq. (3.13):

θ̃
(opt)
r (x̃r) = tanh

[

βr · (x̃r − 2)
]

+ tanh
[

βr · (x̃r + 2)
]

+ tanh
[

βr · x̃r

]

(3.15)

Using the properties of hyperbolic functions, essentially the sum and product of hy-

perbolic functions, we can rewrite the last relation as follows:

θ̃
(opt)
r (x̃r) =

[

exp {4 · βr}+ exp {−4 · βr}+ 1
]

· sinh
[

βr · x̃r

]

+ 3 · sinh
[

3 · βr · x̃r

]

[

exp {4 · βr}+ exp {−4 · βr}+ 1
]

· cosh
[

βr · x̃r

]

+ cosh
[

3 · βr · x̃r

]

(3.16)

If βr > 1 : exp {4 · βr}+ exp {−4 · βr}+ 1 → exp {4 · βr}. In this case

θ̃
(opt)
r (x̃r) ≈

exp {4 · βr} · sinh
[

βr · x̃r

]

+ 3 · sinh
[

3 · βr · x̃r

]

exp {4 · βr} · cosh
[

βr · x̃r

]

+ cosh
[

3 · βr · x̃r

] (3.17)

Comparing the last relation with Eq. (3.14) we conclude:

θ
(opt)
r (x̃r) ≈ θ̃

(opt)
r (x̃r) (3.18)

The larger βr, the better the approximation. This is illustrated in Fig. 3.2. This analysis

is valid also for θ
(opt)
i (x̃i). �

Remark 3.1 Activation functions with similar structure as in Eq. (3.13) has been con-

sidered in [48], [95].

Remark 3.2 If the distance between any two consecutive elements in Ψ(1) and Ψ(2) is

different than two, it is still possible to represent θ
(opt)
r (x̃r) and θ

(opt)
i (x̃i) in Eq. (3.9),

(3.10) as a sum of shifted hyperbolic tangent functions.

θ
(opt)
r (x̃r) ≈

Mr−1

∑
j=1

a
(1)
j · tanh

[

a
(1)
j · βr ·

(

x̃r − α
(1)
j

)]

θ
(opt)
i (x̃i) ≈

Mi−1

∑
j=1

a
(2)
j · tanh

[

a
(2)
j · βi ·

(

x̃i − α
(2)
j

)]
(3.19)
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(a) Ψ(1) = {−3,−1,+1,+3}.
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(b) Ψ(1) = {−7,−5,−3,−1,+1,+3,+5,+7}.

Figure 3.2: Solid lines represent Eq. (3.9), dashed lines represent Eq. (3.13) for different values of
βr .

where

Ψ(1) =
{

ψ
(1)
1 , ψ

(1)
2 , · · · , ψ

(1)
Mr

}

, Ψ(2) =
{

ψ
(2)
1 , ψ

(2)
2 , · · · , ψ

(2)
Mi

}

∀j ∈ {1, 2, · · · , Mr − 1} : α
(1)
j =

ψ
(1)
j+1+ψ

(1)
j

2 and a
(1)
j =

ψ
(1)
j+1−ψ

(1)
j

2

∀j ∈ {1, 2, · · · , Mi − 1} : α
(2)
j =

ψ
(2)
j+1+ψ

(2)
j

2 and a
(2)
j =

ψ
(2)
j+1−ψ

(2)
j

2

Fig. 3.3 compares between Eq. (3.9) and Eq. (3.19) for Ψ(1) = {−5,−1,+1,+5} and

Ψ(1) = {−8,−1,+1,+8}.

We notice that if the distance between any two consecutive elements in Ψ(1) and

Ψ(2) equals two, it holds

∀j ∈ {1, 2, · · · , Mr − 1} : α
(1)
j = ψ

(1)
j + 1 and a

(1)
j = 1 , α

(1)
Mr
2

= 0

∀j ∈ {1, 2, · · · , Mi − 1} : α
(2)
j = ψ

(2)
j + 1 and a

(2)
j = 1 , α

(2)
Mi
2

= 0

In this case Eq. (3.19) reduces to Eq. (3.13).

3.1.3 Properties of the Optimum Estimation Function

Depending on Eq. (3.19) and the properties of the hyperbolic tangent function, it can

be shown that θ
(opt)
r (x̃r) and θ

(opt)
i (x̃i) are:
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Figure 3.3: Solid lines represent Eq. (3.9), dashed lines represent Eq. (3.19) for different values of
βr .

• θ
(opt)
r (0) = θ

(opt)
i (0) = 0

• continuously differentiable

• bounded: |θ(opt)
r (x̃r)| ≤ ψ

(1)
Mr

and |θ(opt)
i (x̃i)| ≤ ψ

(2)
Mi

• strictly increasing. If βr and βi are large enough, it holds

max
{dθ

(opt)
r (x̃r)

dx̃r

}

≈ βr · max
j

{a
(1)
j }

max
{dθ

(opt)
i (x̃i)

dx̃i

}

≈ βi · max
j

{a
(2)
j }

The larger βr and βi, the better the approximation.

If the distance between any two consecutive elements in Ψ(1) and Ψ(2) equals two,

the last two relations can be simplified to:

max
{dθ

(opt)
r (x̃r)

dx̃r

}

≈ βr

max
{dθ

(opt)
i (x̃i)

dx̃i

}

≈ βi
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Remark 3.3 Depending on above mentioned properties of θ
(opt)
r (x̃r) and θ

(opt)
i (x̃i) in

case of Ψ ∈ Ψ(sp) and taking into account Definition 2.11 and Lemma 2.9, we conclude

that:

Ψ ∈ Ψ(sp) ⇒ θ(opt)(·) ∈ g(3)

Lemma 3.2

∀j ∈ {1, 2, · · · , Mr} & j′ ∈ {1, 2, · · · , Mi} : θ
(opt)
r

(

ψ
(1)
j

)

≈ ψ
(1)
j & θ

(opt)
i

(

ψ
(2)
j′

)

≈ ψ
(2)
j′

Proof

From Eq. (3.7) we have:

θ
(opt)
r (ψ

(1)
j ) =

ψ
(1)
j · exp

{
1
2 · βr · ψ

(1) 2
j

}

+ ∑
Mr

j′=1,j′,j ψ
(1)
j′ · exp

{

βr ·
(

− 1
2 · ψ

(1) 2
j′ + ψ

(1)
j · ψ

(1)
j′

)}

exp
{

1
2 · βr · ψ

(1) 2
j

}

+ ∑
Mr

j′=1,j′,j exp
{

βr ·
(

− 1
2 · ψ

(1) 2
j′ + ψ

(1)
j · ψ

(1)
j′

)}

The first terms in the nominator and denominator of the last relation are dominating.

we conclude:

θ
(opt)
r

(

ψ
(1)
j

)

≈ ψ
(1)
j

Following the same approach we conclude that

θ
(opt)
i

(

ψ
(2)
j′

)

≈ ψ
(2)
j′

The larger βr and βi, the better the approximation. �

Remark 3.4 If σ2
r → 0 (βr → ∞) and σ2

i → 0 (βi → ∞) the optimum estimation

function θ(opt)(·) becomes a hard decision device DECI. βr and βi effect the slope of

the optimum estimation function θ(opt)(·), therefore they are referred in the following

as slope.

3.2 Vector Equalization Based on Recurrent Neural Networks

(VE-RNNs)

Since the pioneering work of Hopfield on the computational capabilities of RNNs [29],

they have been applied to solve classification and optimization problems in many sci-

entific disciplines.

This is usually done by formulating the cost function of the optimization problem

to have the same structure as the Lyapunov function of the RNN and by choosing
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a suitable activation function. Doing so, the parameters of the RNN are defined in

terms of the considered optimization problem. In this section, we do this for the

vector equalization task [55].

The importance of this approach lies in the ability to avoid the training phase,

which is very common for neural networks. Training of neural networks is always

associated with computational effort, time, free parameter optimization etc. The abil-

ity to avoid it is an interesting feature for applications in the engineering field.

To proceed further we need to recall Fig. 1.7 and Eq. (1.10), (1.19). According to

Theorem 2.8, RNN-1, RNN-2 and RNN-3 share the same fixed/equilibrium points.

Thus, we decided to deal with the Lyapunov function of RNN-1 in Eq. (2.41).

3.2.1 Determination of the VE-RNNs

The maximum likelihood vector equalization rule is given by Eq. (1.19):

c(ξ) =
1

2
· ξH · R · ξ −ℜ

{

ξH · x̃
}

(3.20)

where ξ is a possible vector of transmit symbols. There are MN possible vectors of

transmit symbols. M is the length of the symbol alphabet. N is the length of the vector

of transmit symbols. R is the channel matrix. x̃ is the vector of receive symbols. R is

decomposed as follows:

R = Rd + R/d

Rd = diag {diag {R}}
R/d = R − Rd

(3.21)

The diagonal elements of Rd are the same as the diagonal elements of R and the off-

diagonal elements of Rd are zeros. The off-diagonal elements of R/d are the same as

the off-diagonal elements of R and the diagonal elements of R/d are zeros. In addition

R/d = RH
/d. In this case Eq. (3.20) can be rewritten as:

c(ξ) =
1

2
· ξH · R/d · ξ −ℜ

{

ξH · x̃
}

+
1

2
· ξH · Rd · ξ (3.22)

The Lyapunov function of RNN-1 is given as, cf. Eq. (2.41)

E[v] = −1

2
· vH · D · W · v −ℜ

{

vH · D · W0 · e
}

+
N

∑
j=1

dj · φj(vj) (3.23)
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3 Recurrent Neural Networks for Vector Equalization

Comparing the first two terms in Eq. (3.22), (3.23) we conclude [36]:

D · W = −R/d DECI(v) = ξ e = x̃

D · W0 = I v = x̆
(3.24)

This comparison is valid also for RNN-2, RNN-3, RNN-4 and RNN-5 based on Theo-

rem 2.8, 2.9. We notice that D · W ≥ 0 is not fulfilled. Therefore Theorem 2.4, 2.13 are

excluded from further investigations. In addition we assume:

∀j ∈ {1, 2, · · · , N} : ϕj(·) = θ(opt)(·) (3.25)

A quite reasonable assumption to normalize the vector of receive symbols is:

W0 = R−1
d ⇒ D = Rd > 0 (3.26)

This justifies our proof of the stability for RNN-1 for D , I, cf. Remark 2.15.

In this case the parameters of the RNNs to act as vector equalizer can be defined as

follows:

v = x̆

DECI(v) = ξ

e = x̃

W0 = R−1
d

W = I − R−1
d · R

ϕ(·) = θ(opt)(·)

(3.27)

We notice that the diagonal elements of W are forced to be zero. This is important

for RNN-2, cf. Theorems 2.2, 2.3, 2.11. Originally, this has been assumed such that

the RNN-1 with high slope possesses equilibrium points near the corners of the unite

hypercube [0, 1]N [85]. Thus, by operating RNN-1 with high slope, it is possible to

minimize the Lyapunov function Eq. (2.41) over the discrete set {0, 1}N . To proceed

further, we recall Eq. (1.10) and define ñe = R−1
d · ñ.

The dynamical behavior of RNN-1 under the above mentioned conditions, cf. Eq. (3.27)

can be given as:

Υ · du(t)

dt
= −u(t) + x + ñe +

(

R−1
d · R − I

)

·
(

x − x̆(t)
)

︸                                  ︷︷                                  ︸

residual interference

(3.28)
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If an equilibrium point has been reached

uep = x + ñe +
(

R−1
d · R − I

)

·
(

x − x̆ep

)

︸                                 ︷︷                                 ︸

residual interference

(3.29)

If a correct equalization took place x̆ep = x:

uep = x + ñe (3.30)

The dynamical behavior of RNN-3 considering Eq. (3.27) can be given as:

u(l + 1) = x + ñe +
(

R−1
d · R − I

)

·
(

x − x̆(l)
)

︸                                  ︷︷                                  ︸

residual interference

(3.31)

If a fixed point has been reached

u f p = x + ñe +
(

R−1
d · R − I

)

·
(

x − x̆ f p

)

︸                                  ︷︷                                  ︸

residual interference

(3.32)

If a correct equalization took place x̆ f p = x:

u f p = x + ñe (3.33)

∀j ∈ {1, 2, · · · , N} the dynamical behavior of RNN-2 considering Eq. (3.27) can be

given as:

uj(ρ + 1) = xj + ñe,j +
N

∑
j′=1,j′,j

rjj′

rjj
·
(

xj′ − x̆j′ (ρ)
)

︸                                 ︷︷                                 ︸

residual interference

(3.34)

If a fixed point has been reached

u f p,j = xj + ñe,j +
N

∑
j′=1,j′,j

rjj′

rjj
·
(

xj′ − x̆ f p,j′
)

︸                                ︷︷                                ︸

residual interference

(3.35)

If a correct equalization took place x̆ f p = x:

u f p,j = xj + ñe,j (3.36)

If Eq. (3.30), (3.33), (3.36) are fulfilled, we obtain depending on Lemma 3.2 in the

noiseless case x̆ ≈ x.

Remark 3.5 For the rest of this chapter we assume Ψ ∈ Ψ(sp). Depending on Re-

mark 3.3 and Eq. (3.27) the stability of VE-RNNs in Chapter 2, Theorems 2.1-2.3, 2.5-

2.7, 2.10-2.12 is fulfilled.
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3.2.2 The Slope of the Activation Function for VE-RNNs

Depending on Eq. (3.27), we notice that all parameters of the RNN to act as vector

equalizer have been fixed. The only parameter, which can be seen as a free parameter,

is the slope of the activation function βr , βi for each neuron in the RNN. They can be

defined by one of the following methods.

Constant Slope

In this case, it is assumed that βr and βi for each neuron in the RNN are constant

during the iteration/evolution process. Theorems 2.1-2.3, 2.5-2.7 are applicable. One

possibility is to relate the values of βr and βi with the covariance matrix of ñe by

means of βr = βi = 1
σ2 . Other possibility is to optimize the constant values of βr

and βi such that a minimum error rate is achieved. However, the optimum value of

the slope and the number of iterations (the duration of the evolution time) have to be

optimized for every channel matrix R. The constant slope of the activation function

is especially interesting for RNN-1 because of its continuous-time nature.

Deterministic Time-Variant Slope

In this case, the slope is assumed to be time-variant during the iteration/evolution

process according to a given rule. The most common rule is the linear increasing one.

We have proven in Chapter 2 that the LAS stays preserved if the slope is nondecreas-

ing [60], [66], [64]. Theorems 2.10-2.12 are applicable. The idea behind this approach

is the possibility to skip local minima. This is discussed further in Sec. 3.2.5. However,

the optimum increasing step related with a given number of iterations (duration of

the evolution process) has to be found by simulation for each channel matrix R.

Statistical Time-Variant Slope

This approach is especially interesting for the discrete-time VE-RNNs and uses the

power of the residual interference in Eq. (3.31), (3.34), based on (3.4), (3.5), (3.6). For

more details we refer to [10]. In this case, the slope can increase and decrease dur-

ing the iteration process. Thus Theorems 2.10-2.12 are not applicable any more and

the stability can not be proven. Nevertheless, simulations show that this approach

leads to good results in the serial update case. However, it is computationally more

demanding. This is explained further in Sec. 3.2.5.
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3.2.3 The Suboptimality of VE-RNNs

The ability to apply RNNs as vector equalizer arises from the comparison between the

maximum likelihood vector equalization rule and the RNNs-Lyapunov functions in

the LAS case. However, VE-RNNs is a suboptimum scheme for the following reasons:

• For continuous-time RNNs and general symbol alphabets Ψ , Ψ(sp), the op-

timum estimation function θ(opt)(·) does not necessarily belong to g(1). For

discrete-time RNNs, the LAS could not be proven for ϕ(·) ∈ g(1). An exception

is the case where the output of the RNNs lie on the unite circle of the complex

plane (phasor model).

• The assumptions under which the optimum estimation function has been de-

rived are not fulfilled. This includes the correlation of the noise ñe as well as

modeling the interference from other symbols as complex-valued white Gaus-

sian noise with statistically independent components.

• If the slope of the activation function is updated according to the statistical time-

variant rule, Theorems 2.10-2.12 are not fulfilled, because the slope in this case

can increase and decrease. However, simulation results show that the VE-RNNs

in this case deliver the best performance compared with other slope update

rules. More about this observation in Sec. 3.2.5.

• Only the first two terms of the Lyapunov functions in Theorems 2.1-2.3, 2.5-2.7,

2.10-2.12 coincide with the maximum likelihood vector equalization rule, cf.

Eq. (3.22). Thus, the VE-RNNs minimizes an approximation of the maximum

likelihood vector equalization rule Eq. (3.20).

For RNN-4 & RNN-5 the inner state feedback A can be controlled such that

the nonequivalence because of the above mentioned third term between the

Lyapunov functions and Eq. (3.20) is minimized, because A appears in the third

term of the Lyapunov functions in case of RNN-4 and RNN-5, cf. Remark 2.22.

• The maximum Likelihood vector equalization rule minimizes Eq. (3.20) globally

with respect to ξ, whereas the VE-RNNs minimizes an approximation of the

maximum Likelihood vector equalization rule locally. More about this point in

Sec. 3.2.4.

3.2.4 Globally Stable VE-RNNs

In Theorems 2.14, 2.15 the global asymptotical stability of RNN-1 and RNN-3 has been

investigated, which led to the conditions given in Eq. (2.56), (2.59). Taking Eq. (3.27)
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into account, Eq. (2.56), (2.59) can be fulfilled only by reducing the slope of the acti-

vation function βr, βi [59].

If the channel matrix R does not include a lot of interference, i.e. small off-diagonal

elements, Eq. (2.56), (2.59) can be fulfilled even if the slope is large. We believe that

this is one of the cases, where the VE-RNNs deliver near ML-performance.

3.2.5 Time-Variant Slope and Local Minima

Locally asymptotically stable RNNs may get stuck in local minima, where the global

one is desired. This is exactly the case for VE-RNNs. On the other side, globally

asymptotically stable VE-RNNs may require small slopes such that no interference

cancellation takes place. This motivated the idea of the time-variant slope.

At the beginning of the iteration/evolution process, the slopes are small such that

the RNNs possess only one globally asymptotically stable fixed/equilibrium point,

where the output of the RNN moves toward it. During the iteration/evolution pro-

cess, the slopes are increased and other local minima arise. Depending on the dura-

tion of the first phase, the RNNs may avoid some local minima, which arise in the

second phase and the output of the RNN reaches the attraction domain of the global

minima.

However, in case of statistical time-variant slopes, the slope can increase and de-

crease. This enables the RNNs to skip local minima even in the second phase, which

can be seen as a kind of simulated annealing [10].

3.3 Simulation Results

Simulations have been done for the following channel impulse responses [67] :

ha = [ 0.04 −0.05 0.07 −0.21 −0.5 0.72 0.36 0 0.21 0.03 0.07 ]

hb = [ 0.407 0.815 0.407 ].

The first channel suffers from a little interference, whereas the second one represents

a channel with a strong interference. The following simulation parameters have been

assumed:

• Symbol alphabet: QPSK

• N = 32

• Υ = τ · I
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• βr = βi = β

• Sampling step for the first Euler method τ/∆t = 10

VE-RNN-1 with Constant Slope

Fig. (3.4) shows the bit error rate (BER) vs. the slope of the activation function β and

the evolution time Te (multiple of τ) for the channel ha at Eb/No = 8 [dB] and VE-

RNN-1. We notice from Fig. 3.4 that for enough large slope and long evolution time

the BER reaches a minimum and does not change any more. From Fig. 3.4, we expect

that VE-RNN-1 for the channel ha achieves almost maximum likelihood performance.

The same simulation is repeated for the channel hb at Eb/No = 15 [dB], cf. Fig. 3.5.

We observe that the VE-RNN-1 fails for the channel hb and an error floor occurs.
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Figure 3.4: BER vs. the slope of the activation function β and the evolution time Te (multiple of
τ) for RNN-1, channel ha and QPSK. N = 32, Eb/N0 = 8 [dB].
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Figure 3.5: BER vs. the slope of the activation function β and the evolution time Te (multiple of
τ) for RNN-1, channel hb and QPSK. N = 32, Eb/N0 = 15 [dB]
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VE-RNN-2 & VE-RNN-3 with Constant Slope

The BER vs. the slope of the activation function β and the number of iterations for the

channel ha at Eb/No = 8 [dB] is shown for VE-RNN-2 (serial update) in Fig. (3.6) and

for VE-RNN-3 (parallel update) in Fig. (3.7).

The results have a similar behavior as explained for VE-RNN-1. However, we no-

tice here that the improvement of the BER starts to degrade when the slope exceeds

some value.

By comparing Fig. (3.6), (3.7) we notice that the difference is only at the first three

iterations. In this case the BER of the VE-RNN-2 is better than the one of the VE-RNN-

3.

The same simulation has been done for the channel hb at Eb/No = 15 [dB]. This

is depicted in Fig. (3.8) for VE-RNN-2 and in Fig. (3.9) for VE-RNN-3. In this case,

we notice that VE-RNN-3 fails for the channel hb and a limit cycle behavior can be

observed. On the other side, VE-RNN-2 delivers good results. However, the BER is

sensitive to small changes of the slope.

VE-RNN-2 & VE-RNN-3 with Linear Increasing Time-Variant Slope

The BER vs. the number of iterations and the maximum time-variant linear increasing

slope βmax of the activation function for the channel ha at Eb/No = 8 [dB] is shown in

Fig. 3.10 for VE-RNN-2 and in Fig. 3.11 for VE-RNN-3.

The same simulation has been done for the channel hb at Eb/No = 15 [dB]. The

results for VE-RNN-2 & for VE-RNN-3 are depicted in Fig. 3.12, 3.13, respectively.

In both cases, the BER of RNN-2 is independent of βmax (in the simulated range)

and quite few iterations are enough. For RNN-3 optimum βmax has been obtained.
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Figure 3.6: BER vs. the slope of the activation function β and the number of iterations for VE-
RNN-2, channel ha and QPSK. N = 32, Eb/N0 = 8 [dB].
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Figure 3.7: BER vs. the slope of the activation function β and the number of iterations for VE-
RNN-3, channel ha and QPSK. N = 32, Eb/N0 = 8 [dB].

100



3.3 Simulation Results

2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

P
b

 

 

β =1

β = 1.5

β = 2

β = 2.5

β = 3

β = 10

(a) BER vs. the number of iterations for different
slopes of the activation function β.

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

Slope (β)

P
b

 

 

It. = 1

It. = 2

It. = 3

It. = 4

It. = 10

It. = 20

(b) BER vs. the slope of the activation function β for
different number of iterations.

Figure 3.8: BER vs. the slope of the activation function β and the number of iterations for VE-
RNN-2, channel hb and QPSK. N = 32, Eb/N0 = 15 [dB].
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Figure 3.9: BER vs. the slope of the activation function β and the number of iterations for VE-
RNN-3, channel hb and QPSK. N = 32, Eb/N0 = 15 [dB].
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Figure 3.10: BER vs. the maximum time-variant linear increasing slope βmax of the activation
function and the number of iterations for VE-RNN-2, channel ha and QPSK. N = 32,
Eb/N0 = 8 [dB].
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Figure 3.11: BER vs. the maximum time-variant linear increasing slope βmax of the activation
function and the number of iterations for VE-RNN-3, ha channel and QPSK. N = 32,
Eb/N0 = 8 [dB].
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Figure 3.12: BER vs. the maximum time-variant linear increasing slope βmax of the activation
function and the number of iterations for VE-RNN-2, channel hb and QPSK. N = 32,
Eb/N0 = 15 [dB].
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Figure 3.13: BER vs. the maximum time-variant linear increasing slope βmax of the activation
function and the number of iterations for VE-RNN-3, channel hb and QPSK. N = 32,
Eb/N0 = 15 [dB].
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VE-RNN-2 & VE-RNN-3 with Statistical Time-Variant Slope

The BER vs. the number of iterations for the channel ha at Eb/No = 7 and 8 [dB]
and the channel hb at Eb/No = 12 and 13 [dB] based on VE-RNN-2 & VE-RNN-3

with statistical time-variant slope is shown in Fig. (3.14). In both cases, we notice that

the serial update (VE-RNN-2) performs better than the parallel update (VE-RNN-3).

VE-RNN-3 for the channel hb seems to be unstable.
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ues of Eb/N0 for VE-RNN-2 and VE-RNN-3 and the
channel ha . Statistical time-variant slope.
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Figure 3.14: BER vs. the number of iterations for different values of Eb/N0 for VE-RNN-2 and
VE-RNN-3, Channels ha and hb and QPSK. Statistical time-variant slope. N = 32.

VE-RNN-4 & VE-RNN-5

The BER vs. the (constant) slope of the activation function β and the inner state feed-

back a for VE-RNN-4 and the channel ha at Eb/No = 8 [dB] is depicted in Fig. 3.15.

We notice that the inner state feedback for the channel ha does not improve the results

if the slope is larger than some value.

The same simulation has been done for the channel hb at Eb/No = 15 [dB]. The

results are depicted in Fig. 3.16. In contrast to the channel ha, the inner inner state

feedback improves the BER for the channel hb, cf. Fig. 3.9. We notice that the limit

cycle of length two disappear as well.

In Fig. 3.15, 3.16 the number of iterations equals 20.

Remark 3.6 VE-RNN-5 delivers similar results as VE-RNN-4. Inner state feedback
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(a) BER vs. the inner state feedback a for different
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Figure 3.15: BER vs. the slope of the activation function β and inner state feedback a for the
channel ha, QPSK and RNN-4. N = 32, Eb/N0 = 8 [dB]. Number of iterations
equals 20.
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Figure 3.16: BER vs. the slope of the activation function β and inner state feedback a for the
channel hb, QPSK and RNN-4. N = 32, Eb/N0 = 15 [dB]. Number of iterations
equals 20.
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has a similar influence as the time variation of the activation function. Therefore,

VE-RNN-4 and VE-RNN-5 are not considered further.

BER vs. Eb/N0

Using the optimized values for the slope β, number of iterations and duration of the

evolution time Te from the above mentioned simulations, we simulated the BER vs.

Eb/N0 based on the RNN-1, RNN-2 and RNN-3. The results are depicted in Fig. 3.17,

3.18.

In Fig. 3.17, a comparison between VE-RNN-2 (serial update) and VE-RNN-3 (par-

allel update) for different types of slopes β has been performed. We notice that for

the channel ha all simulated RNNs, except VE-RNN-3 with linear time-variant slope,

performs equally well. For the channel hb, the serial update is superior to the parallel

one.
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Figure 3.17: BER vs. Eb/N0 for VE-RNN2 and VE-RNN-3 and the channels ha, hb with different
slope types. QPSK and N = 32.

The comparison between discrete- and continuous-time RNNs is depicted in Fig. 3.18.

As we expected before, the maximum likelihood performance is achieved for the

channel ha. For the channel hb, an error floor does appear. This result is not surpris-

ing, since it is known that VE-RNNs are especially suitable for channels with mod-

erate interference [46]. The continuous-time RNN performs better than discrete-time

RNN with parallel update.
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Figure 3.18: BER vs. Eb/N0 for different RNNs for the channels ha, hb. QPSK and N = 32.

3.4 Chapter Summary

In this chapter we connected the different structures of recurrent neural networks

investigated in Chapter 2 with the vector equalization task introduced in Chapter 1.

This has been done by reviewing the problem of parameter estimation and using the

resulted optimum estimation function as activation function for the RNNs.

By investigating the properties of the optimum estimation function for separable

symbol alphabets, we have shown that the optimum estimation function belongs to

the class of functions g(3), introduced in Chapter 2. This enables the stability proofs

in Chapter 2.

A novel method to approximate the optimum estimation function in this case as a

sum of shifted hyperbolic tangent functions enables a numerically stable evaluation

of the optimum estimation function, even in continuous-time systems.

The parameters of the RNNs have been defined in terms of the discrete-time vector-

valued transmission model such that the RNN acts as a vector equalizer.

Many methods for updating the slope of the activation function and their inter-

relation with the local/global minima (local/global stability) have been discussed.

In addition, the suboptimality of the RNNs has been discussed. Finally, simulation

results have been shown.

107



108



Chapter 4

Dynamical Representation of Probabilistic

Iterative Decoding Algorithms

T
URBO codes [4] and low-density parity-check (LDPC) codes [15] have been

shown to achieve an error rate performance very close to the Shannon limit

for the AWGN channel. Both are decoded iteratively. To achieve a better in-

depth understanding of these powerful error correcting codes, they are considered

as dynamical systems to utilize the well-established theory of nonlinear dynamical

systems.

Most of the work on the dynamics of iterative decoding schemes is based on their

discrete-time representation. However, improving the power-to-speed ratio has moti-

vated the design of iterative decoders in the continuous-time domain (analog decod-
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4 Dynamical Representation of Probabilistic Iterative Decoding Algorithms

ing). For this reason, several proof-of-concept analog decoders for short codes have

been implemented [19], [25].

Far away from proof-of-concept, the continuous-time iterative decoder has been

modeled as a first order nonlinear differential equation [22], [23], [24], [26], [27] be-

cause of its strong relation to the behavior of a passive first order low pass filter.

In [27] as an example it has been shown that the analog min-sum iterative decoder in

the LLR domain can be considered as a piecewise linear dynamical system. Never-

theless, the dynamics of iterative decoding algorithms in the continuous-time domain

has not been attracting interest, in contrast to the discrete-time case.

In this chapter, we focus on the decoding part of the detection process. We nei-

ther construct new codes nor new decoding algorithms but we consider some al-

ready known iterative decoding algorithms, particularly belief propagation (BP) and

iterative threshold decoding (ITD) as DSs (discrete and continuous-time). We are in-

terested especially in the continuous-time representation. A connection with the high

order recurrent neural networks in Chapter 2 is also established. Fig. 1.8 and Eq. (1.12)

are applied.

We begin this chapter with a very brief historical overview of coding theory. More

details have been already presented in Sec. 1.4. Afterward, we introduce the required

tools for dealing with probabilistic iterative decoding algorithms.

The main part of this chapter focuses on formulating BP and ITD as DSs (discrete

and continuous-time). This is essential for considering the stability issues and has

been already done for discrete-time BP in [69]. We extend it here to the continuous-

time case. The major contribution of this chapter is the formulation of ITD as a dy-

namical system, where close form solutions have been obtained and compared with

BP for repetition codes.

The dynamical representation of iterative decoding algorithms in this chapter holds

for binary linear block codes with systematic encoding. If the information word is a

column vector of length k, the codeword is a column vector of length n, where the

first k elements are the information word and the rest m = n − k elements represent

the redundancy part. However, an equivalent representation can be obtained for the

nonsystematic case, too.

This chapter has been strongly influenced by [22]-[27], [69].

4.1 Introduction

Shannon’s statement [74] saying that an arbitrary reliable communication over a noisy

channel can be achieved if information are transmitted at a rate smaller than the
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channel capacity is understood to be the begin of coding theory. This includes two

steps [35]. In the first one (encoding at the transmitter) a ”structured” redundancy

is added to the original message and both are sent over the noisy channel. In the

second step (decoding at the receiver) the redundancy is used to detect/correct pos-

sible errors in the original message. Obviously, the research in this field is twofold:

How to generate the redundancy at the transmitter ”code construction” and how to

use the redundancy at the receiver to detect/correct the errors ”decoding algorithm”.

More about the basics of encoding/decoding process has been already introduced in

Sec. 1.4. To proceed further we need to introduce Tanner graph.

Tanner Graph

The Tanner graph [79] is a bigraph. It consists of two types of nodes: variable nodes

and check nodes, connected to each other by edges according to the parity check

equations of the considered code. The Tanner graph visualizes in a very efficient way

the parity check equations of binary linear block codes. Furthermore, it gives good

insight into the code structure and the structure of iterative decoding algorithms.

Each code symbol (there exist n code symbols) is represented by a variable node

and each parity check equation (there exist m = n − k parity check equations) is

represented by a check node.

A variable node, representing the j-th code symbol j ∈ {1, 2, · · · , n}, is connected

to a check node, representing the j′-th parity check equation j′ ∈ {1, 2, · · · , m}, if the

j-th code symbol appears in the j′-th parity check equation, i.e. H p(j′, j) = 1. Fig. 4.1

shows the Tanner graph of the Hamming code (7,4,3) with the parity check matrix

H p:

H p =





0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1





In the following, we define:

Lch =
[

Lch,1, Lch,2, · · · , Lch,n

]T

f =
[

f1, f2, · · · , fnh

]T

L =
[

L1, L2, · · · , Lnh

]T

x̆ =
[

x̆1, x̆2, · · · , x̆n
]T

(4.1)

nh is the number of the nonzero elements in H p which equals the number of the edges

in the Tanner graph. In the above mentioned example nh = 12.
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Figure 4.1: Tanner graph of the systematic Hamming code (7,4,3).

∀j ∈ {1, 2, · · · , n} : Lch,j is the intrinsic L-value of the j-th code symbol, which

depends on the transition probability of the channel. For the AWGN-channel and

BPSK modulation, cf. Eq. (1.38), (1.39), (1.40).

f is the ”message” sent from the check nodes to the variable nodes.

L is the ”message” sent from the variable nodes to the check nodes.

x̆ is the soft decided codeword.

Remark 4.1 Enumerating the entries in Eq. (4.1) and Fig. 4.1 has been done in a

symbol-ascending order and for each symbol in an ascending order depending on

the check nodes. Tanner graph is usually drawn, where all variable nodes are on one

side and all check node on the other side. The Tanner graph in Fig. 4.1 does not fol-

low this rule because it can be depicted without crossing edges, which is better for

introductory purposes.

Definition 4.1 A cycle in the Tanner graph is a sequence of connected nodes which
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starts and ends at the same node without passing a node twice [35]. The shortest

cycle of the Tanner graph of a code affects the performance of iterative decoding al-

gorithms. Codes with cycle-free Tanner graph represent a very special case as we will

see later.

4.2 Probabilistic Iterative Decoding Algorithms

Despite intensive research, the Shannon limit was unachievable till the beginning of

the nineties. It is the favor of the soft iterative decoding approach introduced by

turbo codes [4], which enabled extremely near Shannon limit decoding performance.

Later on, it has been realized that the idea of soft iterative decoding has been already

introduced in the sixties by Gallager [15]. However, the idea of Gallager sank into

oblivion because of its computational complexity for that time. With the introduction

of turbo codes and the huge development of computers, Gallager’s work has been

”rediscovered”.

4.2.1 Sum-Product Decoding

The sum-product decoding, also known as belief propagation, has been first intro-

duced by Gallager in 1962 [35]. It aims to approximate the aposteriori probability

(APP) of the code symbols, i.e. approximating Eq. (1.43), by iterative exchange of the

LLRs on the Tanner graph. BP delivers the exact APPs if the code (Tanner graph of

the code) is cycle free [35]. We will see later that this is the case for repetition codes.

BP (and many modifications of it) depends on the iterative exchange of soft values

between the variable and the check nodes as illustrated in Fig. 4.2.

L(l + 1)

Lch

f [L(l)]

x̆(l + 1)

z−1

Figure 4.2: General structure of belief propagation (and many modifications of it).
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In the following, we specify the structure in Fig. 4.2. For this purpose we define

the following binary matrices: Snh×nh
, Pnh×nh

, Bnh×n. These definitions are slightly

different from those in [69]. However, we are following the same approach.

Snh×nh
=

{

sjj′ ∈ {0, 1} : ∀j, j′ ∈ {1, 2, · · · , nh}
}

. sjj′ = 1 if j , j′ & Lj, Lj′ are

connected to the same check node. For example, the first row of S for the code given

in Fig. 4.1 is
[

0 0 0 0 0 1 0 1 0 0 1 0
]

and

f j = 2 · atanh






∏

j′∈pos[S(j,:)=1]

tanh
( Lj′

2

)







∂ f j

∂Lj
= 0

∂ f j

∂Lj′
∈ [−1,+1]

(4.2)

pos [S(j, :) = 1] gives the positions of the nonzero elements in the j-th row of S. Be-

cause of the last row in Eq. (4.2), f j is a Lipschitz function [20]. Because of the system-

atic encoding, the low right part of S is 0m×m.

Pnh×nh
=

{

pjj′ ∈ {0, 1} : ∀j, j′ ∈ {1, 2, · · · , nh}
}

. pjj′ = 1 if j , j′ & f j, f j′ are

connected to the same variable node. For an example, the seventh row of P for the

code given in Fig. 4.1 is
[

0 0 0 0 0 0 0 1 1 0 0 0
]

Because of the systematic encoding, the last m-rows of P represent 0m×nh
. For codes

where each column of the parity check matrix contains two nonzero elements, each

row of P contains one nonzero element.

Bnh×n: ∀j ∈ {1, 2, · · · , n} the number of nonzero elements in the j-th column equals

the number of nonzero elements in the j-th column of the parity check matrix. Each

row contains only one nonzero element. For an example, the first and second columns

of B for the code given in Fig. 4.1 are

[
1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

]T

Because of the systematic encoding, the low right part of B is an identity matrix of

size m × m.

Using the above mentioned definitions it can be shown that B · BT = P + I.
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The Dynamical System of BP

In the discrete-time case:

L(l + 1) = P · f [L(l)] + B · Lch

x̆(l + 1) = BT · f [L(l)] + Lch

(4.3)

This has been already described in [69].

In the continuous-time case according to Eq. (2.14), cf. Sec. 2.1.4:

Υ · dL(t)

dt
= −L(t) + P · f [L(t)] + B · Lch

x̆(t) = BT · f [L(t)] + Lch

(4.4)

Remark 4.2 Min-sum decoding is a special case of BP and is based on simplifying

Eq. (4.2) as:

f j =






∏

j′∈pos[S(j,:)=1]

sgn(Lj′ )






·







min
(

|Lj′ |
)

j′∈pos[S(j,:)=1]







(4.5)

However, this will not be investigated further, since the analog implementation of

Eq. (4.2) can be obtained directly by bipolar junction transistors [19].

4.2.2 Iterative Threshold Decoding

Threshold decoding is a kind of majority logical decoding. It was first introduced

by Massey [53] for convolutional self-orthogonal codes (CSOCs). ITD is the iterative

version of the threshold decoding. In this case, it is the soft decision x̆, instead of the

LLRs L, that is exchanged iteratively. In a series of papers Haccoun et. al. [6], [21]

have shown that the less complex ITD achieves the same error rate performance as

BP for a special class of convolution codes, namely convolution self (and self-doubly)

orthogonal codes. Before introducing the dynamical system of ITD we define the

following matrices:

w
(ul)
0 =

[

w
(ul)
1 , w

(ul)
2 · · · , w

(ul)
nh−m

]T

w
(br)
0 =

[

w
(br)
1 , w

(br)
2 · · · , w

(br)
m

]T

w
(ul)
1 =

[

w̆
(ul)
1 , w̆

(ul)
2 · · · , w̆

(ul)
nh−m

]T

(4.6)

115



4 Dynamical Representation of Probabilistic Iterative Decoding Algorithms

W ITD,0 =




diag

{

w
(ul)
0

}

0(nh−m)×m

0m×(nh−m) diag
{

w
(br)
0

}





W ITD,1 =

[

diag
{

w
(ul)
1

}

0(nh−m)×m

0m×(nh−m) 0m×m

]
(4.7)

W ITD,0 and W ITD,1 are diagonal positive semidefinite matrices.

The Dynamical System of ITD

In the discrete-time case:

L(l + 1) = W ITD,1 · B · BT · f [L(l)] + W ITD,0 · B · Lch

x̆(l + 1) = BT · f [L(l)] + Lch

(4.8)

In the continuous-time case according to Eq. (2.14), cf. Sec. 2.1.4:

Υ · dL(t)

dt
= −L(t) + W ITD,1 · B · BT · f [L(t)] + W ITD,0 · B · Lch

x̆(t) = BT · f [L(t)] + Lch

(4.9)

Remark 4.3 Because of the systematic encoding, the structure of W ITD,1 prevents the

variable nodes of the parity symbols in the corresponding Tanner graph from sending

back exactly what they obtained from the check nodes in the previous time step. This

has been assumed because it leads to compact close form solution for the stability in

case of repetition codes as explained in Sec. 4.3.1. Even if this is not the case ( the low

right part of W ITD,1 is a nonzero diagonal matrix), our experience is that BER are not

essentially influenced. This is further discussed in Remark 4.6.

4.3 Stability Analysis

In this section we investigate the stability of BP and ITD depending on their dynamics

as described in Eq. (4.3),(4.4) and Eq. (4.8),(4.9). For this purpose we consider at first

the linear case, where Eq. (4.3),(4.4) and Eq. (4.8),(4.9) become linear for special codes.

After that, the investigation based on the linearization method is done as described

in Sec. 2.1.3. The last step is the graphical representation of BP and ITD based on

HORNNs as introduced in Chapter 2.
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4.3 Stability Analysis

4.3.1 Repetition Codes: The Linear Case

This is based on [63]. If each row of the parity check matrix contains exactly two

nonzero elements, then every check node in the Tanner graph of the corresponding

code is connected to two variable nodes. In this special case, every row in the matrix

S contains only one nonzero element and S becomes a permutation matrix. This is

fulfilled in case of repetition codes, as we will see in the following.

The generator and parity check matrices of repetition codes with n code symbols,

k = 1 information symbol, and m = n − 1 parity check symbols are given as follows:

G =
[

1 1T
m

]

H p =
[

1m Im×m
] (4.10)

As illustrated in Fig. 4.3, the Tanner graph of repetition codes is a tree, i.e. it is cycle-

free. Important to mention in this case is also

nh = 2 · m ⇔ nh − m = m

From Fig. 4.3 and based on the definition of P, S and B it can be shown that:

P =

[
(1 − I)m×m 0m×m

0m×m 0m×m

]

S =

[
0m×m Im×m

Im×m 0m×m

]

B =

[
1m 0m×m

0m Im×m

]

(4.11)

For repetition codes, Eq. (4.2) can be rewritten as: f j = Lj′ . This has been already

found in [69]. In this case, Eq. (4.3),(4.4) and Eq. (4.8),(4.9) can be rewritten as:

BP: Discrete-Time

L(l + 1) = P · S · L(l) + B · Lch

x̆(l + 1) = BT · S · L(l) + Lch

(4.12)
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Figure 4.3: Tanner graph of repetition codes.

BP: Continuous-Time

Υ · dL(t)

dt
= −L(t) + P · S · L(t) + B · Lch

x̆(t) = BT · S · L(t) + Lch

(4.13)

The stability in this case depends on the eigenvalues of P · S where I − P · S is non-

singular, cf. Sec. 2.1.4.

BP: Fixed/Equilibrium Points

L f p = Lep = [I − P · S]−1 · B · Lch

x̆ f p = x̆ep =
{

BT · S · [I − P · S]−1 · B + I
}

· Lch

(4.14)

Depending on Eq. (4.11), (4.14) we find that:

P · S =

[
0m×m (1 − I)m×m

0m×m 0m×m

]

[I − P · S]−1 =

[
Im×m (1 − I)m×m

0m×m Im×m

] (4.15)
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4.3 Stability Analysis

and

x̆ f p = x̆ep = 1n×n · Lch (4.16)

The hard decision of x̆ f p (or x̆ep) in the last relation leads necessarily to a valid code-

word.

This has been already shown in [69] for the discrete-time case. Here, we have

proved it using the detailed structures of S, P, and B. In addition, we generalized

this result to the continuous-time case.

The eigenvalues of a triangular matrix are the elements on the main diagonal [68].

We notice that P · S is a strictly upper triangular matrix, i.e. the eigenvalues of P · S are

0 with multiplicity 2 · m. This leads to the fact that BP for repetition codes is always

(globally) stable in both discrete and continuous-time cases.

ITD: Discrete-Time

L(l + 1) = W ITD,1 · B · BT · S · L(l) + W ITD,0 · B · Lch

x̆(l + 1) = BT · S · L(l) + Lch

(4.17)

ITD: Continuous-Time

Υ · dL(t)

dt
= −L(t) + W ITD,1 · B · BT · S · L(t) + W ITD,0 · B · Lch

x̆(t) = BT · S · L(t) + Lch

(4.18)

The stability in this case depends on the eigenvalues of W ITD,1 · B · BT · S where

I − W ITD,1 · B · BT · S is nonsingular, cf. Sec. 2.1.4.

ITD: Fixed/Equilibrium Points

L f p = Lep =
[

I − W ITD,1 · B · BT · S
]−1

· W ITD,0 · B · Lch

x̆ f p = x̆ep =
{

BT · S ·
[

I − W ITD,1 · B · BT · S
]−1

· W ITD,0 · B + I
}

· Lch

(4.19)

Depending on Eq. (4.6), (4.7), (4.11), (4.19) we find that:

W ITD,1 · B · BT · S =

[

0m×m diag
{

w
(ul)
1

}

· 1m×m

0m×m 0m×m

]

[

I − W ITD,1 · B · BT · S
]−1

=

[

Im×m diag
{

w
(ul)
1

}

· 1m×m

0m×m Im×m

] (4.20)
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4 Dynamical Representation of Probabilistic Iterative Decoding Algorithms

and

x̆ f p = x̆ep =




1 w

(br),T
0

w
(ul)
0 Im×m + diag

{

w
(ul)
1

}

· 1m×m · diag
{

w
(br)
0

}



 · Lch (4.21)

The eigenvalues of W ITD,1 · B · BT · S are 0 with multiplicity 2 · m because it is a

strictly upper triangular matrix. We conclude that ITD for repetition codes is always

(globally) stable for both discrete and continuous-time cases. In contrast to BP, the

hard decision of x̆ f p (or x̆ep) in Eq. (4.21) does not lead necessarily to a valid code-

word. This depends on W ITD,0, W ITD,1.

Remark 4.4 We notice that in the linear case the weight matrices W ITD,1, W ITD,0 do

not play any role for the stability. However, they define the fixed/equilibrium point

itself Eq. (4.21).

Remark 4.5 Comparing Eq. (4.16) and Eq. (4.21) we notice that the fixed/equilibrium

point of BP does not coincide with the fixed/equilibrium point of ITD. However, If

w
(br),T
0 = [1, 1, · · · , 1] they coincide for the information symbol.

Remark 4.6 The compact close form solution as in Eq. (4.20), (4.21) owes to the as-

sumption in Remark 4.3. If the low right part of W ITD,1 equals diag
{

w
(br)
1

}

, such

that w
(br)
1 =

[

w̆
(br)
1 , w̆

(br)
2 , · · · , w̆

(br)
m

]

, Eq. (4.19) leads to:

x̆ f p = x̆ep =

[
Aul Aur

Abl Abr

]

· Lch (4.22)

such that

Aul = 1

+ 1T
m ·

[

Im×m − diag
{

w
(br)
1

}

· diag
{

w
(ul)
1

}

· 1m×m

]−1
· diag

{

w
(br)
1

}

· diag
{

w
(ul)
0

}

· 1m

Aur = 1T
m ·

[

Im×m − diag
{

w
(br)
1

}

· diag
{

w
(ul)
1

}

· 1m×m

]−1
diag

{

w
(br)
0

}

Abl =
[

Im×m − diag
{

w
(ul)
1

}

· 1m×m · diag
{

w
(br)
1

}]−1
· w

(ul)
0

Abr = Im×m

+
[

Im×m − diag
{

w
(ul)
1

}

· 1m×m · diag
{

w
(br)
1

}]−1
· diag

{

w
(ul)
1

}

· 1m×m · diag
{

w
(br)
0

}

(4.23)
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4.3 Stability Analysis

given that Im×m − diag
{

w
(br)
1

}

· diag
{

w
(ul)
1

}

· 1m×m and

Im×m − diag
{

w
(ul)
1

}

· 1m×m · diag
{

w
(br)
1

}

are invertible.

If diag
{

w
(br)
1

}

= 0m×m, Eq. (4.22), (4.23) reduce to Eq. (4.21).

4.3.2 Stability Analysis Based on Linearization Method

This subsection is based on Sec. 2.1.3 and Sec. 2.1.4. Depending on Eq. (4.2) we con-

clude that the Jacobian matrix J f [L] has the same structure as S. Both share the same

”zero” entries, however the ”one” entries in S are real numbers between ”-1” and

”+1” in J f [L].

BP

A fixed point L f p in this case is locally asymptotically stable if
∣
∣
∣eig

{

P · J f [L f p]
}∣
∣
∣ < 1. This leads, according to Sec. 2.1.4, to ℜ

{

eig
{

P · J f [Lep]
}}

<

0, which means that the corresponding equilibrium point Lep in the continuous-time

case is also locally asymptotically stable.

ITD

A fixed point L f p in this case is locally asymptotically stable if
∣
∣
∣eig

{

W ITD,1 · B · BT · J f [L f p]
}∣
∣
∣ < 1. This leads, according to Sec. 2.1.4, to

ℜ
{

eig
{

W ITD,1 · B · BT · J f [Lep]
}}

< 0, which means that the corresponding equi-

librium point Lep in the continuous-time case is also locally asymptotically stable.

Remark 4.7 In contrast to the linear case, the weight matrices W ITD,1 influences the

stability of the fixed/equilibrium points.

Remark 4.8 Even with the knowledge about the structure of P · J f [L] and

W ITD,1 · B · BT · J f [L], no close form solution of their eigenvalues have been found.

4.3.3 Stability Analysis Based on HORNNs

This is based on [57], [61]. In this subsection we reformulate Eq. (4.3), (4.4), (4.8), (4.9)

such that they possess the same structure as Eq. (2.63), (2.64). After that a stability

analysis based on Theorems 2.16-2.18 is done.
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4 Dynamical Representation of Probabilistic Iterative Decoding Algorithms

Based on Sec. 2.3 we define:

N = nh

u = L

e = B · Lch

ϕ(·) = tanh
( ·

2

)

v = ϕ(L)

f j = 2 · atanh






∏

j′∈pos[S(j,:)=1]

vj′







(4.24)

and

W =

{
P : BP (4.25a)

W ITD,1 · B · BT : ITD (4.25b)

In addition:

W0 =

{
I : BP (4.26a)

W ITD,0 : ITD (4.26b)

We notice that ϕ ∈ g(4), cf. Definition 2.12.

By comparing the stability conditions mentioned in Theorem 2.16 with Eq. (4.24)-

(4.26) we notice that a scalar function F[v] must exist such that
{

∇ · F[v]
}T

= W ·
f [v].

One of the most important questions, arising from this comparison and exposed to

future work is: For which codes can the scalar function F[v] be found, which fulfill

the condition
{

∇ · F[v]
}T

= W · f [v] and how much powerful are they?

For Theorems 2.17, 2.18, Ω
−1 = 2 · I and the stability is again dependent on the

Jacobian matrix of f [v], cf. Eq. (2.67), (2.69).

4.3.4 Stability Analysis: Closing Remarks

We notice from the above mentioned discussion that the LAS of a fixed/equilibrium

point depends on the eigenvalues of the Jacobian of some matrix, which is not really
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4.4 Simulation Results

meaningful, because no bounds for the eigenvalues could be found, even if the struc-

ture of the Jacobian matrix is known. In addition, the convergence to a fixed point is

not the sole observed behavior of iterative decoding schemes. In [38] it states:

”All the iterative decoding schemes in use today exhibit similar qualitative dynamics. In

particular, a whole range of phenomena known to occur in nonlinear systems, such as existence

of multiple fixed points, oscillatory behavior, bifurcation, chaos, and transit chaos are found in

iterative decoding algorithms”.

However, a common consensus is that the SNR value is crucial for the dynamical

behavior of iterative decoding schemes. Fixed points are reached at ”relatively” high

SNR [38].

4.4 Simulation Results

Simulations have been done for two LDPC codes (called in the following code1 &

code2) and further two tail-biting CSOCs (called in the following code3 & code4). For

LDPC codes Eq. (4.3), (4.4) have been simulated. For CSOCs Eq. (4.8), (4.9) have been

simulated as well. Evolution time Te in the following is multiple of τ. Moreover, it

has been assumed that W ITD,0 = I and w
(ul)
1 = [w1, w1, · · · , w1]

T , cf. Eq. (4.6), (4.7).

The parity check matrices of code1 & code2 have been obtained from [51]. Other

properties are listed in Table 4.1. Properties of Code3 & code4 are listed in Table 4.2.

[51] n k r column weight

code1 96.3.963 96 48 0.5 3

code2 408.33.844 408 204 0.5 3

Table 4.1: Properties of code1 & code2.

n k r memory connected places in the shift register

code3 256 128 0.5 6 0, 1, 4, 6

code4 256 128 0.5 11 0, 1, 4, 9, 11

Table 4.2: Properties of code3 & code4.
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4 Dynamical Representation of Probabilistic Iterative Decoding Algorithms

Code1 & Code2

Fig. 4.4 shows the BER performance vs. Eb/N0 for code1 & code2 depending on

Eq. (4.3), (4.4) (discrete- and continuous-time BP) and Te = 20 · τ. We notice that

the discrete- and continuous-time BP lead to the same BER performance. Fig. 4.5

shows the BER performance vs. evolution time/iteration for code1 & code2. We see

that the BER performance improves with longer evolution time/iterations. However,

the quantity of this improvement decreases with longer evolution time/iteration.

Comparing Fig. 4.5(a) with Fig. 4.5(b) we notice that code2 needs longer evolution

time/iteration than code1 because the codeword in this case is longer. Thus, messages

need longer time to propagate on the Tanner graph.

Code3 & Code4

Simulations have been done to find the optimum value of the weight factor w1 related

with the evolution time/iteration, in both discrete- and continuous-time cases. For

code3 this is depicted in Fig. 4.6. (continuous-time) and Fig. 4.7 (discrete-time). For

code4 this is depicted in Fig. 4.8. (continuous-time) and Fig. 4.9 (discrete-time). We

mention that both cases (discrete- and continuous-time) lead to the same optimum

value of the weight factor, which is around w1 = 0.7 for code3 and w1 = 0.9 for

code4. In addition, the longer the evolution time/iteration, the lower is the BER. This

does not hold after some threshold value of evolution time/iteration.

The BER vs. Eb/N0 for code3 & code4 at the optimized weight factor is depicted in

Fig. 4.10. In addition, Fig. 4.10 compares between BP and ITD, where we see that

BP performs better than ITD, in both discrete- and continuous-time cases, for the

simulated codes.
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Figure 4.4: BER vs. Eb/N0 for code1 & code 2 with evolution time equals 20 · τ. Discrete- and
continuous-time belief propagation.
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Figure 4.5: BER vs. evolution time/iteration for code1 at Eb/N0 = 5 [dB] and code2 at Eb/N0 =
3.5 [dB]. Discrete- and continuous-time belief propagation.
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Figure 4.6: BER vs. evolution time and weight factor for code3 at Eb/N0 = 5.5 [dB]. Continuous-
time iterative threshold decoding.
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Figure 4.7: BER vs. number of iterations and weight factor for code3 at Eb/N0 = 5.5 [dB].
Discrete-time iterative threshold decoding
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Figure 4.8: BER vs. evolution time and weight factor for code4 at Eb/N0 = 5.25 [dB]
Continuous-time iterative threshold decoding.
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Figure 4.9: BER vs. number of iterations and weight factor for code4 at Eb/N0 = 5.25 [dB].
Discrete-time iterative threshold decoding
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Figure 4.10: BER vs. Eb/N0 for code3 & code 4 for evolution time equals 10 · τ. Belief propaga-
tion and iterative threshold decoding, discrete- and continuous-time.

4.5 Chapter Summary

In this chapter we considered two iterative decoding schemes, namely BP & ITD, as

high dimensional nonlinear (discrete- and continuous-time) dynamical systems using

the state-space description. A connection with HORNNs has been established as well,

which might be useful from the implementation point of view.

For repetition codes, close form solutions have been obtained. In this case, both

discrete- and continuous-time representations lead to the same solution.

The major contribution of this chapter is, together with Sec. 2.1.4, showing that

modeling continuous-time decoders as first order nonlinear differential equation has,

beside its behavior as passive first order low pass filter, important dynamical proper-

ties as well.
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Chapter 5

Continuous-Time Joint Equalization and

Decoding

I
N Sec. 1.2 we mentioned that the maximum likelihood detection for coded trans-

mission over nonideal channels can not be generally achieved by separating the

detection process into cascade processes, namely equalization and decoding. How-

ever, the complexity of the maximum likelihood detection is too high to be imple-

mented in real applications from computational complexity and power consumption

point of view. This motivated the idea of joint equalization and decoding. In this

case, cf. Fig. 1.10, a ”knowledge” exchange takes place between the decoder and the

equalizer. This improves the performance of the detection process as a whole at the
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5 Continuous-Time Joint Equalization and Decoding

cost of a realistic increase of the complexity. However, almost all research in this area

is done for the discrete-time case.

Motivated by the advantages of the continuous-time realization mentioned in the

introduction, we aim to give an overview about how a joint equalization and decod-

ing can take place in the continuous-time case.

The goal of this chapter is to stimulate thoughts of how already available knowl-

edge about joint equalization and decoding in the discrete-time case can be used for

the extension to the continuous-time case, rather than introducing the whole theoret-

ical background. This can be found in [9], [73].

5.1 Discrete- and Continuous-Time Model

A block diagram of the joint equalization and decoding in the discrete-time case is

shown in Fig. 5.1 [9]. We notice that the decoder and the equalizer are exchanging

some ”knowledge” through a (de)interleaver. For the continuous-time case, we ig-

nore the (de)interleaver.

x̃

EQ + Π−1

DEC

q̂

+Π

Figure 5.1: Joint equalization and decoding.

In Chapter 3 we introduced vector equalizers based on continuous-time RNNs. In

Chapter 4 we introduced vector decoding based on HORNNs. All what we need to

perform joint equalization and decoding in the continuous-time domain is a proper

connection between the RNN and HORNN (both in continuous-time). This is de-

picted in Fig. 5.2, 5.3, which must be understood as a single figure.

The following explanation is for BP. However, it can be easily modified for ITD.
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5.1 Discrete- and Continuous-Time Model

Depending on Fig. 5.2, 5.3, we define:

Lch(t) = θS/L[u(t)]

L̆(t) = BT · f [L(t)] + Lch(t)

v(t) = θL/S[L̆(t)]

(5.1)

θS/L(·) converts the soft symbols (inner state of the RNN) to LLRs-values (channel

L-values for the decoder) depending on the symbol alphabet Ψ and the noise power

(or the noise and residual interference power). The opposite duty is done by θL/S(·).
The exact formulation of θS/L(·) and θL/S(·) can be found in [73]. For BPSK, they are

”simple”, cf. Eq. (5.2). However, realizing them for higher symbol alphabets in the

continuous-time domain is a challenging task.

θs/L

(

uj

)

=
2

σ2
n
· uj

θL/s

(

L̆j

)

= tanh
( L̆j

2

)
(5.2)

Fig. 5.2, 5.3 generalizes the discrete-time joint equalization and decoding principle

suggested in [73] to the continuous-time case. The dynamical behavior is described

by the following couple of differential equations, taking into account Eq. (5.1):

Υd ·
dL(t)

dt
= −L(t) + P · f [L(t)] + B · Lch(t)

Υe ·
du(t)

dt
= −u(t) + W · v(t) + W0 · e

(5.3)

Assuming that Υd = τd · I & Υe = τe · I, we distinguish:

• τd > τe the equalizer is faster than the decoder

• τe > τd the decoder is faster than the equalizer

The relation τd/τe is comparable in the discrete-time case to the scheduling issue.

Namely, after how many iterations the equalizer (decoder) should feed its output to

the decoder (equalizer). This is optimized usually by simulations and is case depen-

dent.

The stability of the continuous-time dynamical system given by Fig. 5.2, 5.3 and

Eq. (5.1), (5.3) is a very challenging topic and opposed to future work.
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5 Continuous-Time Joint Equalization and Decoding
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Figure 5.2: Continuous-time joint equalization and decoding. Equalization part.

Remark 5.1 From Fig. 5.2, we notice for an uncoded transmission, cf. Chapter 3, that:

θ(opt)(u) = θL/S[θS/L(u)]

Based on Eq. (5.2) and for BPSK:

θ(opt)(uj) = tanh
( uj

σ2
n

)

which is the optimum estimation function (activation function) for BPSK, cf. Example

3.2.
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5.2 Simulation Results
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Figure 5.3: Continuous-time joint equalization and decoding. Decoding part.

5.2 Simulation Results

We have simulated the dynamical system as in Eq. (5.1)-(5.3) and Fig. 5.2, 5.3. More-

over, the block length equals the codeword length. We assumed that Υd = Υe = τ · I.

We applied code1 as in Table 4.1 with the following channel impulse responses [67]
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5 Continuous-Time Joint Equalization and Decoding

(the same as in Chapter 3) :

ha = [ 0.04 −0.05 0.07 −0.21 −0.5 0.72 0.36 0 0.21 0.03 0.07 ]

hb = [ 0.407 0.815 0.407 ]

In addition, we simulated the system for continuous-time separate equalization and

decoding. As references we show the performance of the uncoded transmission (only

continuous-time equalization) and the (un)coded AWGN-BPSK. The evolution time

for the whole system is in all cases 20 · τ. For the case of separate equalization and

decoding, the evolution time of the equalization equals the evolution time of the de-

coding and equals 10 · τ. The results are shown in Fig. 5.4.

We notice that the joint equalization and decoding overcomes the separate one for

the same whole evolution time. For the channel ha, the BER is close to the coded

AWGN-BPSK curve. For the channel hb, there exists a huge gap between the obtained

results and the AWGN-BPSK curve. This reinforces once more the suboptimum na-

ture of the equalization and decoding schemes considered in this work.

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
b

 

 

Uncoded & EQ

Separate EQ & DEC

Joint EQ & DEC

Uncoded AWGN

Coded AWGN

(a) BER vs. Eb/N0 for ha channel and code 1.
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Figure 5.4: BER vs. Eb/N0 for evolution time equals 20 · τ. Continuous-time joint equalization
and decoding

Red curves in Fig. 5.4 must be understood as low bounds. The simulation results

in Fig. 5.4 confirm the continuous-time joint equalization and decoding concept as

depicted in Fig. 5.2, 5.3. Nevertheless, substantial work is still needed to be done in

this field.
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Summary and Conclusions

T
HIS thesis has studied some iterative equalization and decoding schemes. Al-

though this has been done in both domains, discrete- and continuous-time, our

major interest was focused on the continuous-time representation because of

its advantage for improving the power-to-speed ratio when implemented by an ana-

log VLSI circuit. These advantages have been shown by many previous publications

”proof of concept”.

In this thesis, dynamical neural networks played an essential role. We did a deep

analysis of their dynamics. Applying this approach, there is no need for learning

(training) strategies.

The main outcomes of this thesis can be summarized as follows:

Stability Analysis

This has been done essentially in Chapter 2. Our contribution includes the defini-

tion of twin dynamical systems. In this case, a discrete- and a continuous-time dy-

namical system are twin if they share the same set of fixed/equilibrium points. In

addition, a locally asymptotically stable fixed point of the discrete-time dynamical

system represents a locally asymptotically stable equilibrium point of the continuous-

time dynamical system. This definition is important, because if these fixed points are

the solutions for some task, these solutions can be reached by the continuous-time

dynamical system, which is twin with the original discrete-time one. In addition,

many local asymptotical stability conditions for discrete-time recurrent neural net-

works have been extended from the real-valued case to the complex-valued one. For
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Summary and Conclusions

serial update cf. Theorem 2.2,2.3, for parallel update cf. Theorem 2.4,2.5. Addition-

ally, the local asymptotical stability of a discrete-time recurrent neural network with

parallel update and inner state feedback of memory equals two has been proven, cf.

Theorem 2.6,2.7. This has been done, to the best of our knowledge, for the first time.

Furthermore, the local asymptotical stability of recurrent neural networks with time-

variant activation functions has been proven. The activation functions in all these

cases are complex-valued, invertible and independent with respect to the real and

imaginary parts.

Equalization

This has been performed in Chapter 3. The major output comprises modifying and

interpreting the local and global asymptotical stability conditions of recurrent neural

networks in the light of the vector equalization task. Moreover, it has been shown

that the optimum estimation function for square quadrature amplitude modulation

is a qualified activation function which serves all the stability conditions related with

the activation functions. A numerically stable approach to evaluate the optimum es-

timation function for square quadrature amplitude modulation has been introduced

too. This approach is especially interesting for an analog implementation. Many

performance-improving heuristic schemes for vector equalization based on recurrent

neural networks, as time-variant slope, have been interpreted based on the stability

conditions of the corresponding recurrent neural network as well. As shown by previ-

ous publications, the vector equalizer based on recurrent neural networks with serial

update has a superior performance compared with the parallel update. The vector

equalizer based on continuous-time recurrent neural networks performs as well as

the one based on parallel updated recurrent neural networks.

Channel Decoding

This was the topic of Chapter 4. In this case, belief propagation and iterative thresh-

old decoding have been described as dynamical systems (discrete- and continuous-

time). This description has been interpreted as a high order recurrent neural network,

which might be useful during the implementation. However, the stability of these al-

gorithms could be proven only for repetition codes, where the corresponding dynam-

ical system becomes linear. For all other cases, the question of stability is still open.

Using the definition of twin dynamical systems, the simulation results show that the

bit error rate performance of belief propagation and iterative threshold decoding in
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the continuous-time case is as good as in the discrete-time case.

Joint Equalization and Decoding

The first steps towards continuous-time joint equalization and decoding have been

performed. We have shown how to connect the continuous-time recurrent neural net-

works and the continuous-time high order recurrent neural networks, as investigated

in Chapter 3,4, for a continuous-time joint equalization and decoding. This includes

also defining all needed functions and operations. The first simulation results are

encouraging.

Future Work

The work presented in this thesis can be extended for future work in different direc-

tions. We suggest:

• The stability investigation for general quadrature amplitude modulation, where

the activation function is nonseparable with respect to the real and imaginary

parts.

• A deeper understanding of the joint equalization and decoding based on the

methods of dynamical systems is required. Utilization of EXIT charts is also

envisaged.

• Continuous-time Equalization and decoding for optical transmission because

of the high data rate.
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Appendix A

Mathematical Derivations

A.1 Proof of Lemma 2.1

We use the properties mentioned in Definition 2.9 and we build the Jacobian matrices

of g(ur, ui) and g−1(vr, vi). For clarity of presentation, we drop the dependency of

g(ur, ui) and g−1(vr, vi) on ur, ui, vr, vi:

Jg =






∂gr

∂ur

∂gr

∂ui
∂gi

∂ur

∂gi

∂ui




 Jg−1 =







∂g−1
r

∂vr

∂g−1
r

∂vi
∂g−1

i

∂vr

∂g−1
i

∂vi







(A.1)
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The determinant of Jg is δJg
=

∂gr

∂ur
· ∂gi

∂ui
− ∂gr

∂ui
· ∂gi

∂ur
> 0, cf. Eq. (2.26).

The determinant of Jg−1 is δJ
g−1

=
∂g−1

r

∂vr
· ∂g−1

i

∂vi
− ∂g−1

r

∂vi
· ∂g−1

i

∂vr
.

From [76], cf. Eq. (2.30):

Jg · Jg−1 = I ⇔ Jg−1 = J−1
g ⇔ δJg

· δJ
g−1

= 1 ⇒ δJ
g−1

> 0 (A.2)

J−1
g =

1

δJg

·






∂gi

∂ui
− ∂gr

∂ui

− ∂gi

∂ur

∂gr

∂ur




 (A.3)

Comparing Eq. (A.1) with Eq. (A.3), taking into account Eq. (2.24), (2.25), (A.2), leads

to, cf. Eq. (2.28),(2.29),(2.31):

∂g−1
r

∂vr
=

1

δJg

· ∂gi

∂ui
=

1

δJg
/

∂gi

∂ui

=







∂gr

∂ur
−

∂gr

∂ui
· ∂gi

∂ur

∂gi

∂ui







−1

> 0 (A.4)

∂g−1
i

∂vi
=

1

δJg

· ∂gr

∂ur
=

1

δJg
/

∂gr

∂ur

=







∂gi

∂ui
−

∂gr

∂ui
· ∂gi

∂ur

∂gr

∂ur







−1

> 0 (A.5)

∂g−1
r

∂vi
=

∂g−1
i

∂vr
(A.6)
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A.2 Proof of Lemma 2.2

From Eq. (A.4) and using Eq. (2.24),(2.25),(2.27):

min

{

∂g−1
r

∂vr

}

=







max







∂gr

∂ur
−

∂gr

∂ui
· ∂gi

∂ur

∂gi

∂ui













−1

=







max

{
∂gr

∂ur

}

− min







∂gr

∂ui
· ∂gi

∂ur

∂gi

∂ui













−1

=







max

{
∂gr

∂ur

}

−
min

{
∂gr

∂ui
· ∂gi

∂ur

}

max

{
∂gi

∂ui

}







−1

min

{

∂g−1
r

∂vr

}

=







γr −
min

{
∂gr

∂ui
· ∂gi

∂ur

}

γi







−1

≥ 1

γr

Following the same way, we find from Eq. (A.5)

min

{

∂g−1
i

∂vi

}

=







γi −
min

{
∂gr

∂ui
· ∂gi

∂ur

}

γr







−1

≥ 1

γi

Special case: If g ∈ g(2) :

min

{

dg−1
r

dvr

}

=
1

γr
& min

{

dg−1
i

dvi

}

=
1

γi
(A.7)

�

A.2 Proof of Lemma 2.2

We assume:

φ(vr, vi) =
∫ vr

0
g−1

r (ϑr, 0)dϑr +
∫ vi

0
g−1

i (vr, ϑi)dϑi (A.8)
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∂φ(vr, vi)

∂vr
=

∂

∂vr

∫ vr

0
g−1

r (ϑr, 0)dϑr +
∂

∂vr

∫ vi

0
g−1

i (vr, ϑi)dϑi

=
∂

∂vr

∫ vr

0
g−1

r (ϑr, 0)dϑr +
∫ vi

0

∂g−1
i (vr, ϑi)

∂vr
dϑi

Using Eq. (2.31):

∂φ(vr, vi)

∂vr
=

∂

∂vr

∫ vr

0
g−1

r (ϑr, 0)dϑr +
∫ vi

0

∂g−1
r (vr, ϑi)

∂ϑi
dϑi

= g−1
r (vr, 0) + g−1

r (vr, vi)− g−1
r (vr, 0)

= g−1
r (vr, vi)

Following the same approach yields:

∂φ(vr, vi)

∂vi
= g−1

i (vr, vi)

�

A.3 Proof of Lemma 2.3

Int = ℜ
{∫ b2

b1

g−1(ϑ)dϑ∗
}

= ℜ
{∫ b2

b1

[

g−1
r (ϑr, ϑi) + ıg−1

i (ϑr, ϑi)
]

·
[

dϑr − ıdϑi

]}

=
∫ b2

b1

{

g−1
r (ϑr, ϑi)dϑr + g−1

i (ϑr, ϑi)dϑi

}

(A.9)

Because of Eq. (2.31), the integral Int is path independent [40] and there is a function

φ(θr, θi), cf. Lemma 2.2 and Eq. (A.8), such that:

∇ · φ(ϑr, ϑi) =
[

g−1
r (ϑr, ϑi) g−1

i (ϑr, ϑi)
]

(A.10)

Substituting Eq. (A.10) into Eq. (A.9):

Int =
∫ b2

b1

{
∂φ(ϑr, ϑi)

∂ϑr
dϑr +

∂φ(ϑr, ϑi)

∂ϑi
dϑi

}

︸                                              ︷︷                                              ︸

Total derivative

=
∫ b2

b1

dφ(ϑr, ϑi) =
[

φ(ϑr, ϑi)
]b2

b1

= φ(b2)− φ(b1)
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A.4 Proof of Lemma 2.4

According to the mean value theorem on two variables [70], there exists an interme-

diate point b0 such that:

Int = φ(b2)− φ(b1) = ∇ · φ(ϑr, ϑi)
︸            ︷︷            ︸

ϑr=b0,r , ϑi=b0,i

·
[

b2,r − b1,r

b2,i − b1,i

]

Using Eq. (A.10) leads to:

Int = ℜ
{

(b2 − b1)
∗ · g−1(b0)

}

�

A.4 Proof of Lemma 2.4

The Equality holds for v1 = v2. Otherwise:

ℜ {(v1 − v2)
∗ · (u1 − u0)} = (v1,r − v2,r) · (u1,r − u0,r) + (v1,i − v2,i) · (u1,i − u0,i)

Depending on Eq. (2.24) and Definition 2.10 we distinguish :

• v1,r > v2,r ⇔ u1,r > u0,r > u2,r

• v1,r < v2,r ⇔ u1,r < u0,r < u2,r

In both cases (v1,r − v2,r) · (u1,r − u0,r) > 0.

Using a similar approach based on Eq. (2.25) and Definition 2.10, we conclude that

(v1,i − v2,i) · (u1,i − u0,i) > 0.

This means ℜ {(v1 − v2)
∗ · (u1 − u0)} ≥ 0. �

A.5 Proof of Lemma 2.5

From Lemma 2.3, Eq. (A.9) we have:

Int =
∫ b2,r

b1,r

g−1
r (ϑ)dϑ +

∫ b2,i

b1,i

g−1
i (ϑ)dϑ (A.11)

We define new twice continuously differentiable functions:

Gr(vr) =
∫ vr

0
g−1

r (ϑ)dϑ , Gi(vi) =
∫ vi

0
g−1

i (ϑ)dϑ (A.12)
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Using Eq. (A.7):

min

[
d2Gr(vr)

dv2
r

]

= min

[

dg−1
r (vr)

dvr

]

= γ−1
r > 0

min

[

d2Gi(vi)

dv2
i

]

= min

[

dg−1
i (vi)

dvi

]

= γ−1
i > 0

(A.13)

This means Gr(vr), Gi(vi) are strongly convex functions [28]. Using Eq. (A.12):

∫ b2,r

b1,r

g−1
r (ϑ)dϑ = Gr(b2,r)− Gr(b1,r) ,

∫ b2,i

b1,i

g−1
i (ϑ)dϑ = Gi(b2,i)− Gi(b1,i)

This leads to:

Int = Gr(b2,r)− Gr(b1,r) + Gi(b2,i)− Gi(b1,i) (A.14)

Using the properties of strongly convex functions [28]:

Gr(b2,r)− Gr(b1,r) ≤ (b2,r − b1,r) ·
dGr(vr)

dvr

∣
∣
∣
∣
vr=b2,r

− 1

2
· γ−1

r · (b2,r − b1,r)
2

≤ (b2,r − b1,r) · g−1
r (b2,r)−

1

2
· γ−1

r · (b2,r − b1,r)
2

Gi(b2,i)− Gi(b1,i) ≤ (b2,i − b1,i) ·
dGi(vi)

dvi

∣
∣
∣
∣
vi=b2,i

− 1

2
· γ−1

i · (b2,i − b1,i)
2

≤ (b2,i − b1,i) · g−1
i (b2,i)−

1

2
· γ−1

i · (b2,i − b1,i)
2

This means using Eq. (A.14):

ℜ
{∫ b2

b1

g−1(ϑ)dϑ∗
}

≤ ℜ
{

(b2 − b1)
∗ · g−1(b2)

}

− 1

2
· γ−1

r · (b2,r − b1,r)
2

− 1

2
· γ−1

i · (b2,i − b1,i)
2

�

A.6 Proof of Lemma 2.6

The equality in Eq. (2.35) holds for u1 = u2. We focus now on the case u1, u2 ∈ C

with u1 , u2 and we use the properties mentioned in Definition 2.9, Eq. (2.24),(2.25),
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A.7 Proof of Lemma 2.7

taking into account Definition 2.10.

Ieq = ℜ
{

(u1 − u2)
∗ ·

[

g(u1)− g(u2)
]}

= (u1,r − u2,r) ·
[

gr(u1,r)− gr(u2,r)
]

+ (u1,i − u2,i) ·
[

gi(u1,i)− gi(u2,i)
]

= (u1,r − u2,r)
2 · gr(u1,r)− gr(u2,r)

u1,r − u2,r
︸                      ︷︷                      ︸

> 0

+(u1,i − u2,i)
2 · gi(u1,i)− gi(u2,i)

u1,i − u2,i
︸                     ︷︷                     ︸

> 0

> 0

�

A.7 Proof of Lemma 2.7

A differentiable real-valued function with bounded derivative (in absolute value)

by kL is Lipschitz continuous [13]. kL acts as Lipschitz constant. We mention that

gr(·) & gi(·) fulfill this condition with Lipschitz constants γr & γi, respectively.

This means ∀u1, u2 ∈ C:

∣
∣
∣gr(u1,r)− gr(u2,r)

∣
∣
∣ ≤ γr · |u1,r − u2,r|

∣
∣
∣gi(u1,i)− gi(u2,i)

∣
∣
∣ ≤ γi · |u1,i − u2,i|

�

A.8 Proof of Lemma 2.8

The equality in Eq. (2.36) holds for u1 = u2 and any η > 0. We focus now on the case

u1, u2 ∈ C with u1 , u2 and we use the properties mentioned in Definition 2.9 taking

into account Definition 2.10.

By squaring Eq. (2.36):

∣
∣
∣g(u1)− g(u2)

∣
∣
∣

2
≤ η2 · |u1 − u2|2

[

gr(u1,r)− gr(u2,r)
]2

+
[

gi(u1,i)− gi(u2,i)
]2

≤ η2 · [u1,r − u2,r]
2 + η2 · [u1,i − u2,i]

2
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The last relation is fulfilled if
[

gr(u1,r)− gr(u2,r)
]2

≤ η2 · [u1,r − u2,r]
2

[

gi(u1,i)− gi(u2,i)
]2

≤ η2 · [u1,i − u2,i]
2

Taking into account Lemma 2.7, this leads to:

η2 ≥γ2
r (A.15)

η2 ≥γ2
i (A.16)

But η, γr, γi > 0 ⇒ η ≥ max {γr, γi}. �

A.9 Proof of Lemma 2.9

Obviously
∂ϕr(ur)

∂ui
=

∂ϕi(ui)

∂ur
= 0

• ϕ(0) = 0 and ϕ(u) is bounded

• ϕr(ur), ϕi(ui) are continuously differentiable with respect to ur and ui

• 0 <
dϕr(ur)

dur
≤ γr and 0 <

dϕi(ui)

dui
≤ γi if γr and γi are larger than some γth,

cf. Fig. 2.9.

• The determinant of the Jacobian matrix of the functions ϕ(u) is positive:

δJϕ
=

dϕr(ur)

dur
· dϕr(ui)

dui
> 0

• γ2,r > γ1,r and γ2,i > γ1,i then ∀v ∈ B it holds, cf. Fig. 2.11

∫ vr

0
ϕ−1

1,r (ϑ)dϑ ≥
∫ vr

0
ϕ−1

2,r (ϑ)dϑ

∫ vi

0
ϕ−1

1,i (ϑ)dϑ ≥
∫ vi

0
ϕ−1

2,i (ϑ)dϑ

This leads to:

ℜ
{∫ v

0
ϕ−1

2 (ϑ)dϑ∗ −
∫ v

0
ϕ−1

1 (ϑ)dϑ∗
}

≤ 0 (A.17)

�
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A.10 Proof of Lemma 2.10

A.10 Proof of Lemma 2.10

vH
1 · C · v2 =vT

1,r · Cr · v2,r + vT
1,i · Cr · v2,i + vT

1,i · Ci · v2,r − vT
1,r · Ci · v2,i

+ı
{

vT
1,r · Ci · v2,r + vT

1,i · Ci · v2,i + vT
1,r · Cr · v2,i − vT

1,i · Cr · v2,r

}

ℜ
{

vH
1 · C · v2

}

=vT
1,r · Cr · v2,r + vT

1,i · Cr · v2,i + vT
1,i · Ci · v2,r − vT

1,r · Ci · v2,i

=
[

vT
1,r vT

1,i

]

·
[

Cr −Ci

Ci Cr

]

·
[

v2,r

v2,i

]

�

A.11 Proof of Lemma 2.11

C = CH ⇔ Cr = CT
r & Ci = −CT

i . Depending on Lemma 2.10 assuming that

v1 = v2 = v, we notice that:

vH · C · v =
(

vH · C · v
)∗

⇒ ℑ
{

vH · C · v
}

= 0

This can be rewritten as vH · C · v = ℜ
{

vH · C · v
}

. �

A.12 Proof of Lemma 2.12

Depending on Lemma 2.11

Ieq = −1

2
· ℜ

{

(v1 − v2)
H · C · (v1 − v2)

}

−ℜ
{

(v1 − v2)
H · C · v2

}

= −1

2
· ℜ

{

vH
1 · C · v1 − vH

2 · C · v2 + vH
1 · C · v2 − vH

2 · C · v1

}

= −1

2
· ℜ

{

vH
1 · C · v1 − vH

2 · C · v2

}

− 1

2
· ℜ

{

vH
1 · C · v2 − vH

2 · C · v1

}

Depending on Lemma 2.10, the second term in the last relation equals zero for C =
CH . This leads to:

Ieq =− 1

2
· ℜ

{

vH
1 · C · v1 − vH

2 · C · v2

}

=− 1

2
· {vH

1 · C · v1 − vH
2 · C · v2}

�
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A Mathematical Derivations

A.13 Proof of Lemma 2.13

This can be easily proven by taking into account that ℜ
{

∑
N
j=1 bj

}

= ∑
N
j=1 ℜ

{

bj

}

and

∀bj ∈ C : ℜ
{

bj

}

≤ |bj|. Following the same approach, it can be proven that ∀u ∈
CN & C ∈ CN×N : ℜ

{
uH · C

}
≤ |u|T · |C|. In this case, |.| is applied elementwise. �

A.14 Continuous-Time RNNs

Starting from Eq. (2.43) and using Eq. (2.31) we find that:

Ẽ[v(t)] =−
N

∑
j=1

dj · τj ·
∂ϕ−1

j,i

∂vj,i
·
(

dvj,i

dt

)2

−
N

∑
j=1

dj · τj ·
∂ϕ−1

j,i

∂vj,i
·
(

dvj,r

dt

)2

·









∂ϕ−1
j,i

∂vj,r

∂ϕ−1
j,i

∂vj,i









2

−
N

∑
j=1

dj · τj · 2 ·
∂ϕ−1

j,i

∂vj,i
·

dvj,i

dt
·

dvj,r

dt
·

∂ϕ−1
j,i

∂vj,r

∂ϕ−1
j,i

∂vj,i

−
N

∑
j=1

dj · τj ·

∂ϕ−1
j,r

∂vj,r
·

∂ϕ−1
j,i

∂vj,i
−




∂ϕ−1

j,i

∂vj,r





2

∂ϕ−1
j,i

∂vj,i

·
(

dvj,r

dt

)2

Ẽ[v(t)] =−
N

∑
j=1

dj · τj ·







∂ϕ−1
j,r

∂vj,i
·

dvj,r

dt
·

dvj,i

dt
+

∂ϕ−1
j,i

∂vj,r
·

dvj,r

dt
·

dvj,i

dt
+

∂ϕ−1
j,i

∂vj,i
·
(

dvj,i

dt

)2






−
N

∑
j=1

dj · τj ·
(

dvj,r

dt

)2

·







∂ϕ−1
j,r

∂vj,r
·

∂ϕ−1
j,i

∂vj,i
−




∂ϕ−1

j,i

∂vj,r





2

+




∂ϕ−1

j,i

∂vj,r





2

∂ϕ−1
j,i

∂vj,i
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A.15 Serial updated RNNs

Ẽ[v(t)] = −
N

∑
j=1

dj · τj ·
{

∂ϕ−1
j,r

∂vj,r
·
(

dvj,r

dt

)2

+
∂ϕ−1

j,r

∂vj,i
·

dvj,r

dt
·

dvj,i

dt

+
∂ϕ−1

j,i

∂vj,r
·

dvj,r

dt
·

dvj,i

dt
+

∂ϕ−1
j,i

∂vj,i
·
(

dvj,i

dt

)2
}

By comparing the last relation with Eq. (2.42), we find that:

dE[v(t)]

dt
= Ẽ[v(t)]

A.15 Serial updated RNNs

E[v(ρ)] = −1

2
·

N

∑
j′′=1

N

∑
j′=1

dj′′ · wj′′ j′ · v∗j′′ (ρ) · vj′ (ρ)−ℜ







N

∑
j′=1

dj′ · v∗j′ (ρ) · wj′0 · ej′







+ℜ







N

∑
j′=1

dj′ ·
∫ vj′ (ρ)

0
ϕ−1

j′ (ϑ)dϑ∗







E[v(ρ + 1)] =− 1

2
·

N

∑
j′′=1

N

∑
j′=1

dj′′ · wj′′ j′ · v∗j′′ (ρ + 1) · vj′ (ρ + 1)

−ℜ







N

∑
j′=1

dj′ · v∗j′ (ρ + 1) · wj′0 · ej′






+ℜ







N

∑
j′=1

dj′ ·
∫ vj′ (ρ+1)

0
ϕ−1

j′ (ϑ)dϑ∗
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A Mathematical Derivations

Taking into account that D · W = {D · W}H

E[v(ρ)] =− 1

2
·

N

∑
j′′=1
j′′,j

N

∑
j′=1
j′,j

dj′′ · wj′′ j′ · v∗j′′ (ρ) · vj′ (ρ)−ℜ







N

∑
j′=1
j′,j

dj′ · v∗j′ (ρ) · wj′0 · ej′







+ℜ







N

∑
j′=1
j′,j

dj′ ·
∫ vj′ (ρ)

0
ϕ−1

j′ (ϑ)dϑ∗







+ℜ
{

dj ·
∫ vj(ρ)

0
ϕ−1

j (ϑ)dϑ∗
}

−ℜ







v∗j (ρ) · dj ·
[ N

∑
j′=1
j′,j

·wjj′ · vj′ (ρ) + wj0 · ej

]







− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ)

∣
∣
∣

2

ρ → ρ + 1: Updating the j-th neuron ⇒ vj′ (ρ + 1) = vj′ (ρ), ∀j′ , j

E[v(ρ + 1)] =− 1

2
·

N

∑
j′′=1
j′′,j

N

∑
j′=1
j′,j

dj′′ · wj′′ j′ · v∗j′′ (ρ) · vj′ (ρ)−ℜ







N

∑
j′=1
j′,j

dj′ · v∗j′ (ρ) · wj′0 · ej′







+ℜ







N

∑
j′=1
j′,j

dj′ ·
∫ vj′ (ρ)

0
ϕ−1

j′ (ϑ)dϑ∗







+ℜ
{

dj ·
∫ vj(ρ+1)

0
ϕ−1

j (ϑ)dϑ∗
}

−ℜ







v∗j (ρ + 1) · dj ·
[ N

∑
j′=1
j′,j

·wjj′ · vj′ (ρ) + wj0 · ej

]







− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)

∣
∣
∣

2
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A.15 Serial updated RNNs

∆Ej =E[v(ρ + 1)]− E[v(ρ)]

∆Ej =−ℜ







dj ·
[

v∗j (ρ + 1)− v∗j (ρ)
]

·
[ N

∑
j′=1
j′,j

wjj′ · vj′ (ρ) + wj0 · ej

]







+ℜ
{

dj ·
∫ vj(ρ+1)

vj(ρ)
ϕ−1

j (ϑ)dϑ∗
}

− 1

2
· dj · wjj ·

{∣
∣
∣vj(ρ + 1)

∣
∣
∣

2
−

∣
∣
∣vj(ρ)

∣
∣
∣

2
}

∆Ej =− dj · ℜ
{

uj(ρ + 1) ·
[

v∗j (ρ + 1)− v∗j (ρ)
]

−
∫ vj(ρ+1)

vj(ρ)
ϕ−1

j (ϑ)dϑ∗
}

− 1

2
· dj · wjj ·

∣
∣
∣vj(ρ + 1)− vj(ρ)

∣
∣
∣

2
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Appendix B

List of Symbols, Functions and Abbreviations

Abbreviations

APP Apposteriori probability

AWGN Additive white Gaussian noise

BER, Pb Bit error rate

BP Belief propagation

BPSK Binary phase shift keying

CAM Content addressable memory

CMF Channel matched filter

CODcc Channel coding

CO-BP Continuous-time belief propagation

CO-ITD Continuous-time iterative threshold decoding

CSOC Convolutional self-orthogonal code
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B List of Symbols, Functions and Abbreviations

CTDS Continuous-time dynamical system

DEC Decoding

DECI Decision device

DET Detector

DI-BP Discrete-time belief propagation

DI-ITD Discrete-time iterative threshold decoding

DS Dynamical system

DTDS Discrete-time dynamical system

EQ Equalization

ESTI Estimation function

GAS Global asymptotical stability

HORNN High order recurrent neural network

It. Iteration

ITD Iterative threshold decoding

LAS Local asymptotical stability

LDPC Low-density parity-check

LLR Log-likelihood ratio

MC-CDM Multicarrier-code-division multiplexing

MIMO Multiple-input multiple-output

MMSE Minimum mean square error

ML Maximum likelihood

MODdig Digital modulation

M-PSK M-ary phase shift keying

M-QAM M-ary quadrature amplitude modulation

OFDM Orthogonal frequency-division multiplexing

QPSK Quadrature phase shift keying

RNN Recurrent neural network

SNK Sink

SNR Signal-to-noise ratio

SRC Source

s/s APP Symbol-by-symbol apposteriori probability

s/s ML Symbol-by-symbol maximum likelihood

VE-RNN Vector equalizer (equlization) based on recurrent neural network

VLSI Very-large-scale integration

WGN White Gaussian noise

ZF Zero forcing
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Symbols

a(1), a(2) Needed parameters to approximate the optimum estimation

function

A Neighborhood of a fixed/equilibrium point

A = diag{a1, a2, · · · , aN} Inner state feedback of the RNN

b0, b1, b2 Complex numbers

B Value domain of functions of class g(1), g(2), g(3)

Br Value domain of functions of class g(4)

B Needed matrix for iterative decoding

Cj Capacitance of the j-th neuron

c Codeword

C Code book

cls External input of a continuous-time linear dynamical system

C Hermitian matrix

Cls Matrix of a continuous-time linear dynamical system

dls External input of a discrete-time linear dynamical system

D = diag{d1, d2, · · · , dN} Diagonal positive definite matrix

Dls Matrix of a discrete-time linear dynamical system

Eb Energy per information bit

e External input of the RNN/HORNN

G Generator matrix

H Channel impulse response matrix

HP Parity check matrix

Int An integral

Ieq An equality

I Identity matrix of suitable size

j, j′ ,j′′ Flexible neuron indices

Jr, Ji Power of the residual interference

Jsc
[u], Jsd

[u] The Jacobian matrices of the functions sc, sd at u

k Length of the information word

l, l′ Discrete-time variables (parallel update)

lc Length of a limit cycle

L Vector of log-likelihood values

Lch Vector of intrinsic L-values

Lext Vector of extrinsic L-values

m Number of the parity symbols

M Length of the symbol alphabet
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B List of Symbols, Functions and Abbreviations

Mi Length of the distinct imaginary part of the symbol alphabet

Mr Length of the distinct real part of the symbol alphabet

Mtx Length of the vector of transmit symbols/signals

Mrx Length of the vector of receive signals

n Length of the codeword

nh Number of the nonzero elements in the parity check matrix

N Dimension of a dynamical system/neural network

Nb Block length

N0 Noise power spectral density

n A sample function of a white Gaussian noise vector process

ñ A Sample function of a colored WGN vector process

P Needed matrix for belief propagation

q vector of uncoded bits of length k (information word)

qc vector of coded bits of length n (codeword)

q̂ vector of decided bits of length k (information word)

Q Matrix for global stability condition

r Code rate

Rj Resistance of the j-th neuron

R Discrete-time channel matrix on symbol basis

stx Vector of transmit signals

srx Vector of receive signals

S Needed matrix for iterative decoding

t Continuous-time variable

Ts Symbol duration

Te Evolution time (multiple of τ)

u State vector of a dynamical system/inner state

of a neural network

ur, ui Real/imaginary part

u f p, ueq Fixed/equilibrium point

uini Initial value of a dynamical system/neural network

U Matrix of basic waveforms

v Output of the RNN/HORNN

V Channel matched filter matrix

W Weight matrix

W0 Diagonal weight matrix for external inputs

W ITD,0, W ITD,1 Needed matrices for iterative threshold decoding

x Vector of transmit symbols

x̃ Vector of ”receive” symbols

x̆ Vector of soft estimated symbols
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x̂ Vector of decided/hard estimated symbols

y Output of the matched filter

z Shifted inner state

α(1), α(2) needed parameters to approximate the optimum

estimation function

βr, βi Slopes of the real and imaginary parts of the

activation function, respectively

Γr = diag {γ1,r, γ2,r, · · · , γN,r} Maximum derivation of the real part of the activation

function with respect to the real part of the argument

Γi = diag
{

γ1,i, γ2,i, · · · , γN,i

}
Maximum derivation of the imaginary part of the

activation function with respect to the imaginary

part of the argument

δJ The determinant of the matrix J

∆t Sampling step for the first Euler method

ζ, ζ̃, ζ̆ Random variables representing the transmit,

receive and estimated symbol, respectively

η Lipschitz constant

ϑ Integration variable

λ
(j)
Cls

, λ
(j)
Dls

The j-th eigenvalue of the matrices Cls, Dls, respectively

µ Bound of the function g

ξ Possible vector of transmit symbols

ρ Discrete-time variable (serial update)

σ2 Noise power

σ2
r , σ2

i Variance of the real and imaginary part of the

AWGN process, respectively

Υ = diag{τ1, τ2, · · · , τN} Relaxation time matrix of a continuous-time dynamical

system/neural network

τj Relaxation time of the j-th neuron

Υd Relaxation time matrix of the continuous-time decoder

Υe Relaxation time matrix of the continuous-time equalizer

Φnn Correlation matrix of the stochastic vector-valued

process n

Ψ Symbol alphabet

Ψ(sp) Separable symbol alphabet

Ω = diag{η1, η2, . . . , ηN} Matrix of Lipschitz constants

0N A column vector of zeros of length N

1N A column vector of ones of length N

0N×N Matrix of zeros of size N × N

1N×N Matrix of ones of size N × N
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B List of Symbols, Functions and Abbreviations

Functions

cosh Hyperbolic cosine function

exp Exponential function

E Lyapunov function

Exp Expectation

F A scalar function

f Vector valued function

g(1), g(2), g(3), g(4) Function classes

g A function belong to g(1), g(2), g(3) or g(4)

gr, gi Real/imaginary part

g−1 Inverse function

g−1
r , g−1

i Real/imaginary part

Gr(vr), Gi(vi) Strongly convex functions

ln Natural logarithm

sgn sign function

sinh Hyperbolic sine function

sd, sc Function rule of a discrete/continuous-time dynamical

system

sd,r, sc,r Real part

sd,i, sc,i Imaginary part

tanh Hyperbolic tangent function

θ(opt) Optimum estimation function

θS/L Function Converting symbols to L-values

θL/S Function Converting L-values to symbols

ϕ Activation function of a neural network

φ A scalar function
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Notation

ı Imaginary unit
√

ı = −1

(·)T Transpose

(·)∗ Conjugate

(·)H Hermitian

argmax
x

f (x) Denotes the value of x that maximizes f (x)

ℜ(·) Real part of a complex number

ℑ(·) Imaginary part of a complex number

max{·} Maximum of a real-valued variable

max{·, ·} The maximum of a two real-valued numbers

min{·} Minimum of a real-valued variable

p(·) Probability density function

Prob Probability

N Set of natural numbers

N0 Set of natural numbers including the zero

R Set of real numbers

C Set of complex numbers

eig Eigenvalues

| · | Absolute value

Pos Position

δ(t)/δ(l) Continuous/discrete Dirac delta impulse

∇ Gradient of a function
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