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Abstract

The aim of multi-object tracking is the estimation of the number of objects and
their individual states using a sequence of measurements. While state of the art
algorithms use object individual single-object trackers, the multi-object Bayes filter
models the multi-object state as well as the measurement process using random finite
sets which naturally represent the uncertainty in the number of objects as well as in
the state of the objects. Hence, a realization of a random finite set valued random
variable represents the complete environment and facilitates the incorporation of
object interactions. In the update of the multi-object Bayes filter, the multi-object
likelihood function averages over all possible track to measurement associations which
avoids error-prone association decisions. During the last decade, several tractable
approximations of the multi-object Bayes filter have been proposed based on the
statistical moments or parameterization. However, the approximations are prone to
unstable cardinality estimates, the influence of missed detections on well-separated
objects (”spooky effect”), or a biased cardinality estimate and do not allow for the
incorporation of object interactions any more due to the required approximations.

In this thesis, the first real-time capable sequential Monte Carlo implementation of
the multi-object Bayes filter and its application to real-world sensor data are pre-
sented. The proposed implementation of the multi-object Bayes filter is based on an
approximation of the multi-object likelihood function which significantly reduces the
computational complexity. Further, several methods to incorporate object interactions
in the prediction step of the multi-object Bayes filter are proposed. Additionally, a
novel multi-object tracking algorithm, the labeled multi-Bernoulli filter, is proposed
in this thesis. The approximation of the multi-object posterior density using labeled
multi-Bernoulli random finite sets results in an accurate and real-time capable track-
ing algorithm. The labeled multi-Bernoulli filter facilitates an implementation using
Gaussian mixtures and is capable to track a significantly larger number of objects
than the sequential Monte Carlo implementation of the multi-object Bayes filter.

The proposed tracking algorithms are evaluated using simulated data as well as
real-world sensor data. The performance of the algorithms is compared to other
approximations of the multi-object Bayes filter like the cardinalized probability hy-
pothesis density filter and the cardinality balanced multi-target multi-Bernoulli filter.
Additionally, the labeled multi-Bernoulli filter is compared to the joint integrated
probabilistic data association filter in the context of vehicle environment perception.





Kurzfassung

Das Ziel der Multi-Objekt-Verfolgung ist die simultane Schätzung der Objektan-
zahl sowie des Zustands der einzelnen Objekte unter Nutzung einer Sequenz von
Messungen. Während nach dem Stand der Technik häufig ein eigenes Filter für
jedes Objekt verwendet wird, modelliert das Multi-Objekt-Bayesfilter den Multi-
Objekt-Zustand sowie den Messprozess des Sensors mit Hilfe von Random Finite
Sets, welche die Unsicherheit über die Objektanzahl und die Objektzustände auf
natürliche Weise repräsentieren. Folglich stellt eine Random Finite Set Variable
alle detektierten Objekte in einem festgelegten Bereich dar und ermöglicht die Mod-
ellierung von Abhängigkeiten zwischen einzelnen Objekten. Im Innovationsschritt
des Multi-Objekt-Bayesfilters mittelt die Multi-Objekt-Likelihoodfunktion über alle
möglichen Assoziationen zwischen existierenden Tracks und empfangenen Messungen,
wodurch eine fehleranfällige Assoziationsentscheidung vermieden wird. Im letzten
Jahrzehnt wurden mehrere Approximationen des Multi-Objekt-Bayesfilters präsen-
tiert, welche unter Nutzung der statistischen Momente beziehungsweise durch eine
Parametrisierung der Multi-Objekt-Verteilung die Berechnungskomplexität signifikant
verringern. Die Approximationen führen jedoch zu ungewünschten Nebeneffekten wie
beispielsweise einer stark schwankenden Objektanzahl, einem Einfluss von Fehlde-
tektionen auf weit entfernte Objekte (”spooky”-Effekt) sowie einem Offset bei der
Objektanzahl. Außerdem führen die Approximationen dazu, dass eine Modellierung
von Abhängigkeiten zwischen den Objekten nicht mehr möglich ist.

Im Rahmen dieser Arbeit wird die erste echtzeitfähige sequentielle Monte-Carlo Im-
plementation des Multi-Objekt-Bayesfilters präsentiert. Die Implementierung basiert
hierbei auf einer Approximation der Multi-Objekt-Likelihoodfunktion, welche die
Berechnungskomplexität stark reduziert. Des Weiteren werden mehrere Methoden zur
Modellierung von Abhängigkeiten zwischen den Objekten vorgestellt, die in den Prädik-
tionsschritt des Multi-Objekt-Bayesfilters integriert werden können. Außerdem wird
ein neuartiger Multi-Objekt-Trackingalgorithmus, das Labeled Multi-Bernoulli Filter,
präsentiert. Die Approximation der a posteriori Multi-Objekt Wahrscheinlichkeits-
dichtefunktion durch ein Labeled Multi-Bernoulli Random Finite Set ermöglicht
einerseits eine hohe Schätzgüte und gewährleistet andererseits eine echtzeitfähige
Implementierung des Filters. Das Labeled Multi-Bernoulli Filter ermöglicht eine Im-
plementierung mittels Gauß-Mixturen und ist in der Lage eine deutlich höhere Anzahl
an Objekten zu verfolgen als das sequentielle Monte-Carlo Multi-Objekt-Bayesfilter.



Die entwickelten Trackingalgorithmen werden abschließend anhand simulierter sowie
realer Sensordaten evaluiert. Die Ergebnisse der Algorithmen werden mit existierenden
Approximation des Multi-Objekt Bayes-Filters wie beispielsweise dem Cardinalized
Probability Hypothesis Density Filter und dem Cardinality Balanced Multi-Target
Multi-Bernoulli Filter verglichen. Darüber hinaus wird das Labeled Multi-Bernoulli
Filter noch mit dem Joint Integrated Probabilitic Data Association Filter im Kontext
der Fahrzeugumfelderfassung verglichen.
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Chapter 1

Introduction

The recursive estimation of an object’s state using a series of uncertain measurements
is crucial for applications like the navigation and control of vehicles or aircraft. Since
the 1960’s, the Kalman filter [Kal60] is widely used for recursive state estimation since
it enables a closed-form calculation of the estimation problem. While the original
derivation of the Kalman filter is based on a least-squares approach, an alternative
derivation from a Bayesian point of view using Gaussian distributions is proposed in
[HL64]. Thus, the Kalman filter is a Bayes optimal state estimator if all distributions
are Gaussian and the corresponding measurement models and process models are
linear.

Within the Apollo program of the National Aeronautics and Space Administration, the
Kalman filter was used to estimate the trajectory of the spacecraft. In the following
decades, the Kalman filter was extensively used in military applications like air
surveillance. In contrast to navigation and control, the military applications required
the simultaneous state estimation for a time-varying number of objects since new
objects may appear and already existing objects may disappear at any time. Hence,
a multi-object tracking algorithm is required which jointly estimates the number of
objects and the state of each individual object using uncertain sensor measurements.
The sensor delivers a set of measurements comprising object detections and false
alarms. Additionally, some of the objects may not be detected. In order to handle the
arising ambiguity in the track to measurement association, a variety of data association
approaches have been proposed, e.g. probabilistic data association (PDA) [BT75] and
multi-hypothesis tracking (MHT) [Rei79].

Starting in the 1990’s, a rigorous extension of the Bayes filter to multi-object tracking
applications was developed by Mahler [GMN97; Mah07a] which is based on the finite
set statistics. A state of the multi-object Bayes filter is given by a random finite set
(RFS), which represents the complete environment. Since the multi-object likelihood
function averages over all possible associations, the multi-object Bayes filter produces
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an evolving estimate of the multi-object probability density and requires additional
post-processing to extract track estimates from the distribution. During the last
decade, a number of tractable approximations of the multi-object Bayes filter have been
proposed: the probability hypothesis density (PHD) filter [Mah03], the cardinalized
probability hypothesis density (CPHD) filter [Mah07b], and the cardinality balanced
multi-target multi-Bernoulli (CB-MeMBer) filter [Mah07a]. While the PHD and the
CPHD filter propagate the first moment of the multi-object density (and the cardinality
distribution) over time, the CB-MeMBer filter approximates the multi-object posterior
by the parameters of a multi-Bernoulli distribution.

Although the representation of the multi-object state using random finite sets facilitates
an incorporation of object interactions in the multi-object Bayes filter, the commonly
used PHD, CPHD, and CB-MeMBer implementations assume that all objects move
independently of each other. However, the possible state transitions are restricted
by physical constraints in scenarios with closely spaced objects. Within this thesis,
the incorporation of object interactions into the first real-time capable sequential
Monte-Carlo (SMC) implementation of the full multi-object Bayes filter is proposed.
The modeling of the interactions is based on hard-core point processes [Mat60] as well
as the social force model [HM95]. The hard-core point processes rely on the concept of
removing points of a process (or objects from a set) until each point has the required
minimum distance to all other points. In contrast, the social force model keeps all
points of the process and ensures physically possible states by adapting the motion of
an object to the environmental constraints.

Recently, Vo and Vo introduced the class of labeled random finite sets which facili-
tates an analytical implementation of the multi-object Bayes filter using δ-generalized
labeled multi-Bernoulli (δ-GLMB) distributions [VV13b]. The δ-GLMB filter signif-
icantly outperforms the CPHD and the CB-MeMBer filters at the cost of a higher
computational complexity. A drawback of the δ-GLMB filter is the exponentially in-
creasing amount of components required to represent the multi-object state adequately.
This thesis proposes the labeled multi-Bernoulli (LMB) filter and its implementation
using Gaussian mixture (GM) and SMC methods. Since the LMB filter approximates
the posterior δ-GLMB distribution by an LMB RFS with matching intensity function,
the LMB filter can be considered as a computationally efficient approximation of the
δ-GLMB filter. The LMB filter may also be interpreted as a generalized version of
the CB-MeMBer filter.

The proposed real-time capable SMC implementation of the full multi-object Bayes
filter is applied to a pedestrian tracking scenario using a static sensor setup. The
filter additionally incorporates knowledge about currently observable areas using a
state dependent detection probability and models interactions between the pedestrians
within the prediction step.
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Especially in the context of advanced driver assistance systems and autonomous driving,
a continuous and reliable perception and tracking of all objects in the environment
is required for applications like adaptive cruise control and emergency brake assists.
Further, situation analysis as well as decision-making require the evolving multi-object
state estimate. Thus, the Gaussian mixture implementation of the LMB filter is
applied to vehicle environment perception and its performance is compared to the
joint integrated probabilistic data association (JIPDA) implementation proposed
in [Mah09b; Mun11]. Several typical scenarios on highways and rural roads are
investigated to illustrate possible performance gains of the LMB filter.

This thesis is organized as follows: First, the single-object Bayes filter as well as its
implementation using the Kalman filter and sequential Monte-Carlo (SMC) methods
are introduced in Chapter 2. Additionally, standard multi-object tracking approaches
using object-individual single-object trackers are reviewed. Chapter 3 presents the
basics of the finite set statistics and introduces the multi-object Bayes filter as
well as the required multi-object motion and measurement models. Further, the
computationally tractable approximations of the multi-object Bayes filter are outlined
and discussed with respect to computational complexity and accuracy. A real-time
sequential Monte-Carlo (SMC) implementation of the multi-object Bayes filter is
proposed in Chapter 4 which achieves a significant reduction of the computational
complexity by approximating the multi-object likelihood function. Additionally, two
approaches to model object interactions within the multi-object Bayes filter are
proposed which are based on hard-core point processes and social forces. In Chapter
5, a novel multi-object tracking algorithm, the labeled multi-Bernoulli (LMB) filter,
is proposed and its implementation using Gaussian mixture (GM) and sequential
Monte-Carlo (SMC) methods is explained in detail. Finally, Chapter 6 presents the
evaluation of the SMC multi-object Bayes filter and the LMB filter using simulated
sensor data as well as real-world sensor data.





Chapter 2

Fundamentals of Object Tracking

The aim of object tracking is the estimation of the dynamic object state based on
uncertain measurements. The estimation process additionally uses sensor character-
istics as well as motion patterns of the objects. In Section 2.1, the recursive Bayes
filter which is central to the object tracking algorithms considered in this thesis is
introduced. Afterwards, standard implementations of the Bayes filter using Gaussian
distributions or sequential Monte-Carlo (SMC) methods are summarized in Sections
2.2 and 2.3. Section 2.4 outlines a variety of bottom-up approaches for the application
of the single-object Bayes filter to multi-object tracking. Finally, consistency checks
for single-object tracking algorithms are presented in Section 2.5.

2.1 Bayes Filter

In tracking applications, the state of an object is commonly described by a state vector
x. Thus, the aim of object tracking is the estimation of the posterior probability
density function (PDF)

pk+1(xk+1) , pk+1(xk+1|z1:k+1) (2.1)

of the state xk+1 of an object using the set of all measurements z1:k+1 = {z1, ..., zk+1}
for the discrete sampling times up to time k + 1.

The motion of an object between two successive time steps k and k + 1 is commonly
described using a Markov transition

xk+1|k = f(xk, vk) (2.2)

where vk denotes an additive noise which is required to handle the uncertainties of
the assumed motion model. An alternative representation of the object’s motion is
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given by the Markov transition density

fk+1|k(xk+1|k|xk, z1:k). (2.3)

Using the Markov property which states that all information about the past is
represented by the current state xk, the Markov transition density simplifies to

fk+1|k(xk+1|k|xk). (2.4)

The prediction of the prior PDF pk(x) = pk(x|z1:k) to time k + 1 is obtained using
the Chapman-Kolmogorov equation

pk+1|k(xk+1) =
∫
fk+1|k(xk+1|xk)pk(xk)dxk, (2.5)

where pk+1|k(xk+1) , pk+1|k(xk+1|z1:k).

The measurement update of the Bayes filter is based on the measurement equation

zk+1|k = hk+1(xk+1, wk+1) (2.6)

which transforms the predicted state xk+1 into the measurement space taking the
measurement noise wk+1 into account. The measurement equation facilitates an
innovation of the object’s state in the measurement space using the likelihood function

g(zk+1|xk+1) (2.7)

which is obtained using the measurement equation (2.6). The update of the Bayes
filter is consequently given by

pk+1(xk+1) =
g(zk+1|xk+1) · pk+1|k(xk+1)∫

g(zk+1|xk+1) · pk+1|k(xk+1)dxk+1
. (2.8)

Hence, the prediction and update equations of the Bayes filter facilitate the recursive
estimation of an object’s state if the object’s initial distribution p0(x0) is available.

Since the calculation of predicted values is based on prior values and the calculation
of posterior values depends only on the predicted values, the time indices k and k+1
corresponding to prior and posterior values are dropped in the following for reasons of
clarity. However, the time indices k+1|k of predicted values are abbreviated by ”+”
since the indication of predicted values is required to avoid ambiguities.
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2.2 Kalman Filter

The Kalman filter [Kal60] facilitates a closed-form implementation of the Bayes filter in
case of Gaussian distributed signals and probability densities as well as linear process
and measurement models. Since a Gaussian distribution is completely characterized
by the first and second statistical moment (i.e. the mean value x̂ and the covariance
P), it is sufficient to propagate the moments over time instead of the entire PDFs.
While the Kalman filter is derived using the least squares approach in [Kal60], Ho and
Lee [HL64] derived the identical equations for prediction and update in a top-down
Bayesian approach using probability density functions. Thus, the Kalman filter is a
Bayes-optimal single-object state estimator if the requirements of the derivation are
fulfilled.

In the Kalman filter, the initial estimate of the object state is assumed to be given by
a Gaussian distribution

N (x; x̂,P) , 1√
det(2πP)

exp
(
−1

2(x − x̂)TP−1(x − x̂)
)

(2.9)

with mean value x̂ and covariance P. In case of linear motion and measurement
models, the prediction equation (2.2) and the measurement equation (2.6) simplify to

x+ = Fx + v (2.10)
z+ = Hx+ + w (2.11)

where F is the process or state transition matrix and H is the measurement matrix.
Further, v denotes the process noise and w the measurement noise which are assumed
to be uncorrelated in the following. If the process noise v follows a zero-mean Gaussian
distribution, the state transition of a Gaussian distribution (2.9) yields the predicted
object state and estimation error covariance

x̂+ = Fx̂, (2.12)
P+ = FPFT + Q, (2.13)

where Q is the covariance matrix of the process noise.

In general, a sensor is not able to measure all components of the predicted state x̂+.
In case of a zero-mean Gaussian measurement noise w and a linear measurement
model, the predicted state x̂+ with covariance P+ induces a Gaussian distributed
predicted measurement

z+ = Hx̂+ (2.14)
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with according covariance

R+ = HP+HT. (2.15)

Since the Kalman filter requires all signals to follow a Gaussian distribution, the mea-
surement uncertainty of an obtained measurement z is represented by the covariance
matrix R. In the measurement update step of the Kalman filter, the residual

γ = z − z+ (2.16)

of the measurement z and predicted measurement z+ is required for the innovation of
the object state. The corresponding innovation covariance of the residual is given by

S = HP+HT + R. (2.17)

The filter gain

K = P+HTS−1 (2.18)

of the Kalman filter models the dependency of the posterior object state

x̂ = x̂+ + K
(
z − z+

)
= x̂+ + Kγ (2.19)

on the uncertainties of the process and measurement model. On the one hand, a
high measurement noise R in combination with a small predicted estimation error
covariance P+ implies a small value of K and the posterior state is dominated by
the predicted state x̂+. On the other hand, the posterior state is dominated by the
current measurement z for a small measurement noise R and a high estimation error
covariance P+. Finally, the posterior estimation error covariance is given by

P = P+ −KSKT

= (I−KH) P+ (I−KH)T + KRKT, (2.20)

where both forms are mathematically equivalent but the numerical stability of the
second version is higher due to the quadratic appearance of the term (I−KH) (see
[BP99, pp. 158ff.]). For notational convenience, the short form P+ −KSKT is used in
the following.

2.2.1 Constant Gain Kalman Filter

Due to the required matrix inversion, the computationally expensive part of the
Kalman filter is the update of the estimation error covariance matrix. The constant
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gain Kalman filters significantly reduce the computational costs by assuming the
Kalman gain K in (2.18) to be constant. Due to the constant gain, the calculation
of the estimation error covariance P is not required any more and it is sufficient to
propagate the mean value x̂ over time. Thus, constant gain filters can be considered
as approximations of the Bayes filter using only the first statistical moment of the
PDF p(x).

Since the Kalman gain converges for constant process and measurement noise, the
assumption of a constant gain is suitable for such tracking applications. However, the
constant gain filter is not optimal during object initialization due to a mismatching
estimation error covariance. Two well-known constant gain Kalman filters are the α-β
and α-β-γ [HM04a; Kal84] trackers for the constant velocity (CV) and the constant
acceleration (CA) motion models [BP99; BWT11].

2.2.2 Kalman Filter for Non-Linear Systems

The derivation of the Kalman filter requires linear motion and measurement models.
However, non-linear motion models like the constant turn rate and constant velocity
(CTRV) model as well as non-linear measurement models for sensors delivering range
and angle measurements are required in a huge number of tracking applications. The
extended Kalman filter (EKF) [BF88; BP99; SSM62] and the unscented Kalman filter
(UKF) [JU04; JUD00; JUD95] facilitate the application of the Kalman filter in case of
slightly non-linear motion or measurement models.

The EKF uses a Taylor series approximation to linearize the non-linear functions f
and h given by (2.2) and (2.6) which allows for keeping the structure of the Kalman
filter by using the linearized system and measurement matrices. In most applications,
the Taylor series is truncated after the linear term (first-order EKF). A truncation
after the quadratic term leads to the second-order EKF. In the first-order EKF, the
linear system matrix is given by the Jacobian matrix

FJ = ∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (2.21)

which is evaluated for the current state estimate x̂ and replaces F in the standard
equations of the Kalman filter. Analog, the linearization of the measurement equation
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yields the measurement matrix

HJ = ∂h

∂x
=


∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...
∂hm
∂x1

· · · ∂hm
∂xn

 (2.22)

which is evaluated at the predicted state x̂+. By replacing the system matrix F
and the measurement matrix H with the linearized matrices FJ and HJ , the EKF
facilitates the application of the Kalman filter equations in case of slightly non-linear
tracking applications.

While the EKF linearizes the non-linear process or measurement models, the aim
of the UKF is to approximate the probability density function itself. The Gaussian
distribution is approximated using sigma points X . The sigma points are selected
on a level curve of the Gaussian distribution and the number of points depends on
the dimension of the Gaussian distribution. Each of the sigma points is transformed
using the non-linear process or measurement equations. The resulting sigma points
are subsequently used to obtain the transformed state representation. For additional
details about the UKF, refer to [BWT11; JU04].

2.3 Particle Filter

The Kalman filter requires the probability density to be of a parametric form which is
completely characterized by its first and second statistical moment. Consequently, the
Kalman filter is not able to handle arbitrary distributions. Further, the EKF and UKF
approximations are only suitable for applications with moderately non-linear process
and measurement models. In contrast, a particle filter [AMGC02; DFG01; Gor97;
GSS93; IB98; RAG04] facilitates a non-parametric implementation of the Bayes filter
which approximates arbitrary probability density functions by a finite number of
samples. Consequently, a particle filter is able to represent arbitrary distributions
including multi-modal distributions. The particle filter is also known as the sequential
Monte-Carlo (SMC) method.

In a particle filter, the PDF p(x|z1:k) is approximated by ν particles

x(1), . . . , x(ν) ∼ p(x|z1:k), (2.23)

where each particle x(i) is a realization of the random variable x. A normalized weight
w(i) > 0 is associated with each particle such that

∑ν
i=1 w

(i) = 1. Consequently, the
approximation of the PDF p(x|z1:k) using ν particles is given by the weighted sum of
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the particles:

p(x|z1:k) ≈
ν∑
i=1

w(i) · δx(i)(x), (2.24)

where the Kronecker delta function is defined by

δx(i)(x) =
{

1 if x = x(i)

0 otherwise.
(2.25)

Using a huge number of particles ν →∞, an exact representation of a PDF is feasible.

The prediction of the particles to the time of the next measurement is realized by
sampling the predicted particles from the transition density f+:

x
(i)
+ ∼ f+(·|x(i), z1:k). (2.26)

The weights of the particles are not modified during the prediction step.

In the update step of the particle filter, the likelihood function g(z |x(i)
+ ) has to be

evaluated for each of the ν particles. The weight of the particles is updated by

w(i) ,
g(z |x(i)

+ )w(i)
+∑ν

e=1 g(z |x(e)
+ )w(e)

+
, (2.27)

where the denominator ensures that the updated weights sum up to one again. The
state of the updated particles is equivalent to the state of the predicted particles:

x(i) , x
(i)
+ . (2.28)

Finally, the estimate of the object’s a posteriori state is obtained by the weighted sum
of the particles:

x =
ν∑
i=1

w(i)x(i). (2.29)

A drawback of the particle approximation is the degeneration of the particles, i.e. the
weights concentrate on a very small number of particles. The degeneration is due
to the fact, that the variance of the weights increases during the update step and
never decreases. In order to avoid degeneration, particles with very small weights are
eliminated while particles with a high weight are drawn several times during the so
called resampling process. In the literature, several resampling strategies including
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multinomial, systematic, and residual resampling [DC05; DFG01] are available. The
strategies differ in the computational complexity as well as in the approximation
accuracy.

2.3.1 Importance Sampling

The particle filter requires to draw samples from arbitrary distributions. While uniform
and Gaussian distributions allow for an efficient generation of the samples, it is in
general not possible to draw samples directly from arbitrary PDFs p(x). In this case,
the particles are drawn from a proposal density function q(x) which is similar to p(x):

p(x) > 0⇒ q(x) > 0 ∀ x ∈ Rn. (2.30)

A common choice for the proposal density q(x) are uniform or Gaussian distributions
with according parameters. However, the drawn samples do not approximate the PDF
p(x) but the proposal q(x). Hence, the drawn particles have to be weighted using the
importance weights

w̃(x(i)) = p(x(i))
q(x(i))

. (2.31)

Finally, the obtained importance weights have to be normalized to obtain the according
weight of each particle:

w(x(i)) = w̃(x(i))∑ν
j=1 w̃(x(j))

. (2.32)

Within the particle filter equation of the previous subsection, the importance sampling
approach is applied for sampling the predicted particles if it is not possible to draw
the particles directly from the distribution.

2.4 Multi-Object Tracking

The filters presented in the previous sections implicitly assume that only one track and
one measurement are present. However, most applications require the simultaneous
tracking of several objects and the measurement to track assignment is usually
ambiguous due to inaccurate measurements, missed detections, and false alarms.
Thus, several approaches to enable multi-object tracking using a bank of Kalman or
particle filters have been proposed during the last decades.
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The scheme in Figure 2.1 illustrates the commonly used sequential processing chain of
these multi-instance trackers. First, a detection or segmentation algorithm is applied

Detection / Segmentation

Data Association

State Estimator

Multiple Single-Target Trackers

Classification / Validation

Object List

AssociationsPredictions

Track List

Figure 2.1: Multi-object tracking using a bank of single-object trackers
[Mah09b].

to the raw data of the sensor to obtain the object list. An example for a detection
algorithm is the application of a cascaded classifier [VJ01] on a raw image to detect
faces, cars or other kinds of objects. Segmentation algorithms are applied to the data
of sensors which deliver more than one measurement (e.g. a point cloud) for a single
object to enable the use of the so-called point target assumption. Due to missed
detections and/or false alarms, the number of measurements delivered by the detection
or segmentation process is usually not equal to the number of tracked objects. Thus,
a data association algorithm is required which assigns the received measurements
to the currently available object individual single-object trackers. The determined
associations are used to update the state estimate of each tracker. Finally, the list of
tracks is passed to the classification and validation stage which decides if an object
actually exists and determines the class of the object.

Obviously, the applied heuristics between the four steps of the scheme in Figure 2.1
lead to a loss of information. However, the most critical part in multi-object tracking
applications is the data association step since the measurement to track assignments
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tend to be ambiguous. Additionally, an erroneous association decision at time k is
irreversible which typically leads to track losses in complex situations.

2.4.1 Gating

In order to simplify the data association step, measurement validation procedures
[BWT11, pp. 108ff.] are commonly used to restrict the number of track to measurement
assignments. In Kalman filter applications, the quadratic form of the Mahalanobis
distance (MHD) between a predicted measurement z+ and a received measurement z
is given by

d2
MHD(z, z+) , (z − z+)TS−1(z − z+) = γTS−1γ, (2.33)

where S is the according innovation covariance introduced in (2.17). The quadratic
form of the MHD follows a χ2 distribution with dim(z) degrees of freedom. The
measurements within the gate of track i are obtained using

Z(i)(ϑ) =
{
z : d2

MHD

(
z, z

(i)
+

)
< ϑ

}
, (2.34)

where ϑ is the gating threshold. Using the gate probability pG, which denotes the
probability that the true measurement is located within the gating region, the gating
threshold ϑ is obtained from the cumulative distribution function of the χ2 distribution
with dim(z) degrees of freedom. It is common to use gate probabilities corresponding
to the σ intervals of the Gaussian distribution, e.g. pG = 0.9973 for the 3σ gate. In
case of small gates

√
ϑ � 3, the probability that the true measurement is located

within the gate is significantly smaller than one. Hence, the gating probability pG has
to be considered in the filter updates in addition to the detection probability.

2.4.2 Nearest Neighbor Approaches

The nearest neighbor (NN) algorithm simply associates the measurement with the
smallest euclidean or Mahalanobis distance to each object. If there are several
measurements within the gate of an object, the association is ambiguous and the
probability of assigning an incorrect measurement is considerably high. Since erroneous
associations are irreversible, the performance of the NN algorithm rapidly decreases in
such situations. Additionally, the NN algorithm does not ensure the commonly used
assumption that a measurement is generated by at most one object since it permits
the association of a measurement to more than one object.
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The global nearest neighbor (GNN) approach [BP99] ensures the above assumption
by finding the best association hypothesis using all tracks and measurements. An
association hypothesis for m measurements and n tracks is defined by the mapping

θ : {1, . . . , n,NO} → {0, 1, . . . ,m} (2.35)

where ”0” denotes the missed detection and NO represents the possibility of a new
born object. Within an association hypothesis θ, a measurement zj is required to
be uniquely assigned to a track x(i), i.e. θ(i) = θ(j) > 0 if and only if i = j.
Consequently, an association hypothesis does not necessarily assign the measurement
with the smallest Mahalanobis distance to an object.

By representing all track to measurement associations using an assignment matrix
A where each entry aij represents an association θ(i) = j, finding the best associa-
tion hypothesis corresponds to solving the assignment problem which was originally
investigated in the context of assigning a number of jobs to the available workers.
Hence, optimal assignment algorithms like the Hungarian method [Kuh55] or the
Munkres algorithm [BL71; Mun57] are used to obtain the best association hypothesis
θ. Alternative approaches to solve the assignment problem are the Jonker-Volgenant
[JV87] and the auction [Ber88; Ber90] algorithm.

2.4.3 Probabilistic Data Association

The performance of the NN approaches significantly decreases in scenarios with a
high number of false alarms due to the hard association decisions in ambiguous
situations. The premise of the probabilistic data association (PDA) [BF88; BT75] is
the calculation of a weighted state update using all possible track to measurement
associations and a subsequent approximation of the posterior PDF using a single
Gaussian distribution. Due to the weighted state update, the PDA avoids the hard
and possibly erroneous association decisions of the NN approaches at the cost of an
increased estimation error covariance [BWT11, p. 201].

In order to perform the weighted state update, the PDA determines the association
probabilities β(i,j) for each track i and all measurements j = 1, . . . ,m of the measure-
ment set Zk+1 = {z1, . . . , zm}. Consequently, the posterior PDF of object x(i) is given
by the weighted sum of the m+ 1 association hypotheses:

p(x(i)|z1, . . . , zm) =
m∑
j=0

β(i,j)p(x(i)|zj), (2.36)
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where j = 0 represents the missed detection and
m∑
j=0

β(i,j) = 1. (2.37)

The PDF p(x(i)|zj) represents the posterior state of object x(i) for the association
of measurement zj . In case of a missed detection, the posterior state of the object
corresponds to the predicted state of the object. Obviously, the posterior PDF (2.36)
does not follow a Gaussian distribution any more, even if all of the distributions
p(x(i)|zj) are Gaussians. Hence, an approximation of (2.36) is required to facilitate
the application of the Kalman filter equations for the next measurement update. First,
the posterior state is calculated for each association hypothesis:

x̂(i,j) = x̂
(i)
+ + K(i,j)(zj − z

(i)
+ ). (2.38)

In case of a missed detection, the posterior state corresponds to the predicted state:

x̂(i,0) = x̂
(i)
+ (2.39)

Finally, the posterior state estimate for object x(i) is obtained by the weighted mean
over all possible association hypotheses:

x̂(i) =
m∑
j=0

β(i,j)x̂(i,j). (2.40)

The according estimation error covariance is given by

P(i) =
m∑
j=0

β(i,j)
[
P(i)

+ −K(i,j)S(i,j)
[
K(i,j)

]T
+ (x̂(i,j) − x̂(i))(x̂(i,j) − x̂(i))T

]
(2.41)

where the last summand represents the uncertainty due to the approximation by a
single Gaussian distribution. The contributing weight of an association hypothesis is
proportional to the spatial likelihood g(zj |x

(i)
+ ) of measurement j for track i. Explicit

equations for the calculation of the probabilities β(i,j) are given for example in [BF88;
BWT11].

The approximation of the posterior (2.36) using a single Gaussian distribution obviously
implies an approximation error. Consider the example depicted by Figure 2.2a for
illustration of the PDA approximation error where three measurements (blue stars)
are obtained within the 3σ gate of a track (blue square). Additionally, the PDA takes
into account the possibility of a missed detection. Figure 2.2b illustrates the absolute
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error

∆(x) = |pPDA(x)− p(x(i)|z1, . . . , zm)| (2.42)

for the approximation of the multi-modal posterior density p(x(i)|z1, . . . , zm) by
a single Gaussian distribution with posterior density pPDA(x) = N (x; x̂(i),P(i)).
Obviously, a significant approximation error is obtained at the locations of the three
measurements. However, the approximation error is negligible in scenarios with at
most one measurement and a high detection probability.
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y
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]

(a) Predicted measurement of a track
(square) and three measurements
(stars) with according 3σ bounds.
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(b) Approximation error ∆(x): absolute differ-
ence between exact posterior PDF and the
approximation using a single Gaussian dis-
tribution.

Figure 2.2: PDA example.

Similar to NN approaches, the performance of PDA is decreasing in situations where
a measurement is located within the gate of several objects. To improve the tracking
performance in such situations, the joint probabilistic data association (JPDA) algo-
rithm [BWT11; FBS83] performs a weighted state update using all possible association
hypotheses θ. An intuitive representation of all association hypotheses is a hypotheses
tree. Figure 2.3 depicts the hypotheses tree for a scenario with two established tracks
and two measurements where θ(i) = j represents the association of object i with
measurement j. Obviously, the number of association hypotheses is combinatorial
which results in an exponential complexity. Hence, the evaluation of all hypotheses is
only feasible for a small number of tracks and measurements.

An application of JPDA to scenarios with a higher number of tracks and measurements
is possible using Murty’s algorithm [Mur68] which facilitates the determination of the
k-best association hypotheses without evaluating all possible association hypotheses.
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θ(2)=0θ(2)=2 θ(2)=1 θ(2)=0 θ(2)=1 θ(2)=2 θ(2)=0

θ(1)=1 θ(1)=2 θ(1)=0

θ(c©)=1θ(c©)=1θ(c©)=2θ(c©)=1θ(c©)=2

θ(c©)=2

Figure 2.3: PDA hypotheses tree for two objects and two measurements: a
node θ(i) = j denotes the association of object i to measurement
j, where j = 0 represents the missed detection. For simplicity, the
nodes for new born tracks and the clutter source are combined
and are represented by the symbol i = c©.

Murty’s algorithm starts with finding the best association hypothesis using one of the
optimal assignment algorithms. Afterwards, the obtained association hypothesis is used
to find the next best hypotheses by removing one of the optimal associations θ(i) = j
from the possible associations. A detailed example of Murty’s algorithm is given in
[BP99, pp. 346ff.]. Alternative solutions include the reduction of the computational
complexity using the structure of the hypotheses tree with its recurring subtrees
[Mas04] as well as an agglomerative grouping procedure [Mun11] which partitions the
set of tracks and the set of measurements into groups. The agglomerative grouping
facilitates a real-time implementation since a maximum computation time for each
group is ensured using an adaptive gating threshold.

The integrated probabilistic data association (IPDA) [MES94] is an extension of
the PDA which additionally incorporates track initiation and deletion based on an
additional Markov chain for the object existence. In [ME04], the joint integrated
probabilistic data association (JIPDA) filter is proposed which uses the joint associa-
tion probabilities in the filter update and the additional existence estimation. The
linear multi-target integrated probabilistic data association (LM-IPDA) [ML08] is an
approximation of the JIPDA algorithm which considers nearby objects as scatterers
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in order to achieve a multi-object tracking algorithm with linear complexity. Due
to the additional estimation of the existence probability, these approaches allow for
a probabilistic track initiation and determination. The existence probability of a
track represents the certainty that a track with a given association history represents
an existing object under the assumed parameters of the measurement model. Fur-
ther, the existence probabilities provide useful information for the decision process of
higher-level systems since a more accurate risk analysis is possible. Thus, higher-level
systems typically specify application dependent existence probability thresholds. A
low threshold implies a fast track confirmation in combination with a possibly high
number of false positive tracks while a high threshold significantly reduces the number
of false positive tracks at the cost of a slower track confirmation.

2.4.4 Multi-Hypothesis Tracking

The multi-hypothesis tracking (MHT) [Rei79] algorithm significantly differs from
the PDA based tracking algorithms. While the PDA based algorithms combine the
multiple hypotheses of the measurement update step before the next update, the MHT
approach keeps all hypotheses and expects that the subsequent measurements resolve
the association uncertainty. Consider again the example depicted in Figure 2.2a for
the illustration of MHT. Assume that there is only a single prior hypothesis H1 which
involves a single track x(i). In this case, a total number of four posterior hypotheses
is possible if the birth of additional tracks is neglected. The first posterior hypothesis
represents the missed detection of track x(i), i.e. all measurements are assumed to
be clutter measurements. Each of the remaining three hypotheses associates one of
the measurements to the existing track and expects the two other measurements to
be originated by the clutter source. Obviously, the number of hypotheses increases
exponentially in ambiguous situations. Hence, the computational complexity is
reduced using pruning and merging techniques as well as grouping strategies. In
[CH96], Cox and Hingorani present an efficient MHT implementation using Murty’s
algorithm [Mur68] which obtains the k best hypotheses without evaluating all possible
hypotheses.

In addition to the hypothesis-oriented MHT approach in [Rei79], a track-oriented MHT
implementation is possible [BP99]. While the hypothesis-oriented MHT propagates
the hypotheses over time, the track-oriented MHT only propagates the obtained
tracks over time and reconstructs the hypotheses using compatible tracks before the
next measurement update. A set of tracks is considered to be compatible if each
measurement contributes to at most one of the tracks.
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2.4.5 Discussion

The preceding subsections introduced several commonly used multi-object tracking
algorithms. In scenarios with unambiguous data association, high detection probability,
and low false alarm rate, all methods achieve similar tracking results. However,
the tracking performance significantly differs in challenging scenarios. In [BWT11,
pp. 400ff.], the differences between the tracking results of a NN, a PDA, and a
JPDA filter are illustrated using an example with two crossing objects. Using a NN
algorithm, both tracks tend to follow the measurements of one of the objects after
crossing which results in a huge estimation error for one of the objects. In contrast,
the PDA algorithm uses the measurements of both objects within the filter update
in ambiguous situations. Since both measurements are approximately equally likely
during crossing, the PDA yields a compromise estimate between the ground truth
positions of the two objects. The JPDA algorithm outperforms the NN and the PDA
algorithm is such scenarios since it constructs global association hypotheses which
ensure that each measurement is assigned to at most one track. During the crossing,
the JPDA returns an increased estimation error covariances due to the association
uncertainty. After the filter resolved the ambiguous situation, the estimation error
covariances of the tracks decrease again and the JPDA algorithm delivers accurate
track estimates.

In [BP99], the performance of the algorithms is evaluated with respect to the intensity
of false alarms. Compared to a GNN implementation, the PDA delivers comparable
results for approximately three times the false alarm density while MHT provides
similar results for a false alarm densities of factor 10 to 100.

2.5 Consistency of State Estimators

In case of estimating static parameters, the consistency of an estimator implies that
the estimate converges to the true value with an increasing number of measurements.
Due to the time-variant state of the objects in tracking applications, an identical
definition of consistency is not possible. In the following, the consistency criteria for
state estimators proposed in [BF88, pp. 70ff.] are summarized.

In applications with an available ground truth state x, the state estimate x̂ and the
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estimation error covariance P are utilized to require the properties

E{x̃} != 0 (2.43)

E{x̃x̃T} != P (2.44)

for the expectation values E of the residual x̃ = x − x̂. While (2.43) ensures an
estimator without bias, (2.44) requires the estimated covariance P to match the mean
square error. Obviously, (2.44) implicitly contains (2.43). The validity of (2.44) is
examined using the normalized estimation error squared (NEES)

ε = x̃TP−1x̃. (2.45)

In case of a linear Gaussian system, a tracking filter is consistent if the mean value ε̄ over
N independent simulation runs is within the confidence interval of a χ2 distribution
with N · dim(x) degrees of freedom (interval boundaries have to be divided by N).
Using only a single run, approximately six out of 100 NEES values may be located
outside of the 95% confidence interval in case of a two dimensional state.

Typically, an object’s ground truth state is only available in case of simulated sensor
data. Consequently, the NEES does not facilitate the evaluation of a filter’s consistency
in online applications. The normalized innovation squared (NIS) is designed to detect
the filter divergence in online applications which coincides with the detection of
unexpected measurements. In case of linear Gaussian motion and measurement
models, the NIS is given by the Mahalanobis distance

ε(z) = γTS−1γ, (2.46)

of the measurement residual γ = z − z+ with respect to the innovation covariance
S given by (2.17). Obviously, the NIS also follows a χ2 distribution but the degrees
of freedom are given by the dimension dim(z) of the measurement space. While the
NEES is tested using the ensemble average value over N independent simulation runs,
the evaluation of the NIS in online applications is realized using the time average
value which presumes ergodicity.

In addition to consistency, the absolute estimation error of a state estimator is of
great interest which is typically described using the root mean square (RMS) error

RMS(x̃) =

√√√√ 1
N

N∑
i=1

(‖x − x̂‖2)2 (2.47)
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averaged over N Monte-Carlo runs, where

‖x − x̂‖2 =

√√√√ n∑
i=1

(xi − x̂i)2 (2.48)

is the euclidean distance between true and estimated state. Note, a meaningful RMS
error is only obtained if all of the considered state components have the same units.
Thus, it is reasonable to calculate separate RMS errors for position, velocity, and so
forth.



Chapter 3

Random Finite Set Statistics

The multi-object tracking algorithms introduced in the previous chapter enable multi-
object tracking by using a bank of object individual single-object trackers. Conse-
quently, an explicit track to measurement association is required in these algorithms
which tends to be ambiguous in scenarios with closely spaced objects or high false
alarm rates. Additionally, a tracker of one object does not have any information about
the existence of other nearby objects and the track initialization and termination is
often based on heuristics.

A generalization of the single-object Bayes filter to multi-object tracking applications
is feasible by modeling the states as well as the observations using random finite
sets (RFSs) which are a well-known concept in point process theory [DV88; Mat75;
SKM95]. Finite set statistics (FISST) [GMN97; Mah03; Mah07a] facilitates an intuitive
application of the random finite set theory to multi-object tracking applications by
casting the problem into the familiar framework of Bayesian statistics. Consequently,
the resulting multi-object Bayes filter is a rigorous extension of the standard Bayes
filter to multi-object tracking. The tutorial papers ”Statistics 101” [Mah04] and
”Statistics 102”[Mah13b] are suitable for the first steps into the FISST. For a more
detailed mathematical foundation, refer to [Mah07a]. Details on the connection
between FISST and measure theoretic probability are established in [Vo08; VSD05].

The intention of this chapter is to summarize the main concepts of FISST and to
introduce the multi-object Bayes filter. Additionally, the recent approach of labeled
RFSs [VV13b] is outlined and several computationally tractable approximations of the
multi-object Bayes filter are discussed with respect to their computational complexity
and performance.



24 Random Finite Set Statistics

3.1 Random Finite Sets

In single-object tracking, random vectors are conveniently used to represent the state
of the objects. In the context of multi-object tracking, a drawback of random vectors
is the missing representation of the uncertain number of objects. An RFS

X = {x(1), . . . , x(n)} (3.1)

consists of n unordered points with random object states x(1), . . . , x(n) where n ≥ 0 is
a random number. Consequently, an RFS X naturally represents the uncertainty about
the number of objects in a multi-object state and uses random vectors to represent
the state of the individual objects. Furthermore, the RFS

Z = {z(1), . . . , z(m)} (3.2)

is conveniently used to describe the measurement process which returns a random
number of measurements whose values z(1), . . . , z(m) are also random. Here, the
randomness in the number of received measurements is due to the possibility of false
alarms and missed detections. The RFS representation of the multi-object state and
the measurement process are fundamental for the derivation of the multi-object Bayes
filter which is an extension the Bayes filter (see Section 2.1) to multi-object tracking
applications.

3.1.1 Notation and Abbreviations

In order to distinguish RFSs from random vectors, multi-object states are denoted by
capital letters (e.g. X) while single-object states are denoted by small letters (e.g. x).
To simplify notations, identical symbols are used for an RFS and its realization in the
following. Further, spaces are represented by blackboard bold letters. Hence, all state
vectors x are elements of the state space X and all measurements z are elements of
the measurement space Z. The finite subsets of a space X are denoted by F(X) and
all possible subsets comprising exactly n elements are represented by Fn(X).

For notational simplicity, a set X = {x} comprising only a single state vector is
conveniently abbreviated by x. Further, the inner product of two continuous functions
f(x) and g(x) is abbreviated using

〈f, g〉 ,
∫
f(x)g(x)dx. (3.3)

In case of discrete sequences, the integral on the right hand side of (3.3) reduces to a
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sum. Additionally, the multi-object exponential notation [VV13b]

hX ,
∏
x∈X

h(x) (3.4)

is used to shorten the notation for real-valued functions h(x) (e.g. probability densities)
which have to be evaluated for all state vectors of an RFS X. By definition, hX = 1
in case of X = ∅.

The generalized Kronecker delta function

δY(X) ,
{

1, if X = Y
0, otherwise. (3.5)

is extensively used in this thesis and facilitates the application of the Kronecker delta
function to arbitrary arguments like integers, vectors, and sets. Additionally, the
indicator or inclusion function

1Y(X) ,
{

1, if X ⊆ Y
0, otherwise. (3.6)

is used to determine if a set X is a subset of Y.

3.2 Multi-Object Probability Distributions

The spatial uncertainty of a random vector x is commonly represented by a probability
density function p(x). Analogously, a multi-object probability density function π(X)
facilitates the representation of the uncertainty about the multi-object state X which
incorporates the uncertainty about the number of objects and their individual states.
The multi-object probability density depends on the number of objects represented by
X and is given by

π(X) =


π(∅) if X = ∅
π({x(1)}) if X = {x(1)}
π({x(1), x(2)}) if X = {x(1), x(2)}

...
...

(3.7)

In [Mah07a, pp. 349ff.], several illustrative examples for multi-object probability
densities are revealed. One of the examples is a single twinkling star in the night sky
which is only visible for an observer with probability r and has a spatial distribution
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p(x). Consequently, the multi-object probability density for this example is given by

π(X) =

 1− r if X = ∅
r · p(x) if X = {x}
0 otherwise,

(3.8)

where the assumption of a single star implies a probability of π(X) = 0 for all sets
with cardinality |X| ≥ 2.

Due to the dependency of (3.7) on the number of objects, the evaluation of the integral
over a multi-object probability density function requires the utilization of a set integral
[Mah07a, pp. 360ff.]∫

π(X)δX =
∞∑
i=0

1
i!

∫
Xi

π({x(1), ..., x(i)})dx(1) · · · dx(n), (3.9)

where π({x(1), ..., x(i)}) = 0 if |{x(1), ..., x(i)}| 6= i. Obviously, the evaluation of the set
integral (3.9) for all cardinalities 0, . . . ,∞ is not computationally tractable. However,
for multi-object probability densities like the one given by (3.8) the computation of
the set integral is possible since only a subset of all possible cardinalities has to be
evaluated. Observe, that the evaluation of the set integral in this example still requires
the computation of multi-dimensional integrals which may not be solved analytically
in general.

The cardinality distribution of a random finite set X, which denotes the probability
that X contains exactly n vectors, is given by

ρ(n) = Pr(|X| = n) = 1
n!

∫
π
({
x(1), . . . , x(n)

})
dx(1) · · · dx(n). (3.10)

Consequently, the cardinality distribution provides an estimate for the number of
objects represented by X using e.g. the maximum of ρ or a weighted mean.

3.2.1 Independent Identically Distributed Cluster Random
Finite Set

The multi-object probability density of an independent identically distributed (i.i.d.)
cluster RFS with X = {x(1), · · · , x(n)} is given by

π(X) = n! · ρ(n) · p(x(1)) · · · p(x(n)) (3.11)



3.2 Multi-Object Probability Distributions 27

where ρ(n) is the probability distribution of the cardinality for n ≥ 0 and p(x(i))
denotes the probability density function representing the spatial distribution of the
ith object.

3.2.2 Poisson Random Finite Set

A Poisson RFS is directly obtained from the i.i.d. cluster process by replacing the
general cardinality distribution ρ(n) with the Poisson distribution

ρ(n) = e−λ · λ
n

n! , (3.12)

where λ is the expected number of objects. Consequently, the multi-object Poisson
RFS is given by

π(X) = e−λ · λn · p(x(1)) · · · p(x(n)). (3.13)

In multi-object tracking applications, a Poisson RFS with intensity density

κ(z) = λc · c(z) (3.14)

is commonly used to model the false alarm process with a mean number of λc false
alarms. In most applications, the probability density c(z) is assumed to be a uniform
distribution over the complete measurement space due to the absence of precise
information.

3.2.3 Multi-Bernoulli Random Finite Set

An intuitive way to represent the uncertainty about the existence of an object is the
usage of a Bernoulli RFS X. A Bernoulli RFS X is empty with probability 1− r and
is a singleton with probability r. The probability r is commonly referred to as the
existence probability of the singleton representing an object with spatial distribution
p(x) on the space X. The cardinality distribution of a Bernoulli RFS X is given
by a Bernoulli distribution with parameter r and its probability density is given by
[Mah07a, pp. 368]

π(X) =
{

1− r, if X = ∅,
r · p(x), if X = {x}.

(3.15)
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A multi-Bernoulli RFS X is the extension of the Bernoulli RFS to the multi-object case.
Under the assumption that the Bernoulli RFSs X(i) of the objects are independent
of each other, the multi-Bernoulli RFS for M objects is given by X =

⋃M
i=1X

(i).
Thus, the parameter set {(r(i), p(i))}Mi=1 completely defines a multi-Bernoulli RFS.
The probability density function for X = ∅ corresponds to the probability that none
of the M objects exists:

π(∅) =
M∏
j=1

(1− r(j)). (3.16)

In order to obtain the probability density function for X = {x(1), . . . , x(n)}, it is
necessary to sum over all n possible permutations of the vectors x(i). Then, the
multi-object probability density is given by [Mah07a]

π({x(1), ..., x(n)})=
M∏
j=1

(
1− r(j)

) ∑
1≤i1 6=...6=in≤M

n∏
j=1

r(ij)p(ij)(x(j))
1− r(ij)

. (3.17)

In the following, the probability density of a multi-Bernoulli RFS is abbreviated
using π = {(r(i), p(i))}Mi=1. The cardinality distribution of a multi-Bernoulli RFS X is
obtained by neglecting the spatial distribution in (3.17):

ρ(n) =
M∏
j=1

(
1− r(j)

) ∑
1≤i1 6=... 6=in≤M

n∏
j=1

r(ij)

1− r(ij)
. (3.18)

According to [Mah07a, pp. 584-585], the probability hypothesis density (PHD) of a
multi-Bernoulli RFS is given by

v(x) =
M∑
j=1

r(j)p(j)(x). (3.19)

Consequently, the mean cardinality of a multi-Bernoulli RFS is

N̂ =
M∑
j=1

r(j). (3.20)

In multi-object tracking applications, the multi-Bernoulli RFS is commonly used to
model the object detection process. Additionally, the cardinality balanced multi-
target multi-Bernoulli filter (see Section 3.7.3) approximates the multi-object posterior
density using a multi-Bernoulli RFS and provides a tractable multi-object tracking
algorithm which propagates only the parameters of the multi-Bernoulli RFS over time.
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3.3 Labeled Multi-Object Probability Distributions

The multi-object probability distributions presented in the previous subsection are
well suited for filtering multi-object states. In order to use the RFS based multi-object
probability distributions for multi-object tracking, a subsequent track extraction as
well as a track to track association for successive time steps is required.

In order to simplify the estimation of the objects’ trajectories, the state x ∈ X of
an object is augmented by a label ` ∈ L. The discrete label space L is given by
L = {αi : i ∈ N} where N represents the set of positive integers and αi = αj implies
i = j. For notational convenience, the mapping α is assumed to be the identity
mapping αi = i in the following.

Augmenting an unlabeled state x ∈ X with a label ` ∈ L delivers the labeled state
x = (x, `). Thus, a labeled multi-object state X = {x(1), . . . ,x(n)} is a finite set on
the space X × L. However, this does not ensure distinct labels within the labeled
multi-object state X since the same label may be assigned to several objects. The
class of labeled RFSs [VV13b] ensures distinct labels within a multi-object state X,
i.e. a realization of the labeled multi-object state X may not contain two or more
objects with identical label.

The labeled RFSs are based on an indicator function which invalidates labeled multi-
object states whose labels are not distinct. The indicator function requires the set of
track labels of a labeled multi-object state X which is given by

L(X) = {L(x) : x ∈ X}, (3.21)

where L(x) = ` is the projection of the labeled state x (defined on the space X×L)
to the label space L. Obviously, the track labels for a realization X of a labeled RFS
are distinct if the number of track labels corresponds to the cardinality of multi-object
state, i.e. |L(X)| = |X|. Thus, the distinct label indicator [VV13b]

∆(X) = δ|X|(|L(X)|) (3.22)

facilitates the discrimination between valid and invalid labeled multi-object states.

The unlabeled version of a labeled RFS is defined as the projection from the labeled
state space X ×L into the unlabeled state space X using marginalization which yields
[VV13b]

π({x(1), . . . , x(n)}) =
∑

(`(1),...,`(n))∈Ln
π({(x(1), `(1)), . . . , (x(n), `(n))}).
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An additional property of the class of labeled RFSs is the equivalence of the cardinality
distribution of a labeled RFS and its unlabeled version.

The following subsections introduce the labeled RFS distributions used in this thesis.
For further details about the class of labeled RFSs, refer to [VV13b].

3.3.1 Labeled Multi-Bernoulli Random Finite Set

A labeled multi-Bernoulli (LMB) RFS [VV13b] is the labeled version of a multi-
Bernoulli RFS, where the component indices are interpreted as track labels. Conse-
quently, an LMB RFS is completely described by the parameter set

π(X) = {(r(`), p(`))}`∈L . (3.23)

Following [VV13b], an LMB RFS is obtained by the sampling procedure given in
Algorithm 3.1. First, the labeled multi-object state is initialized by X = ∅. Afterwards,
a sample of the uniform distribution U(0, 1) is drawn for each track ` ∈ L to determine
whether the track ` exists or not. If the drawn random number is smaller than the
existence probability of the Bernoulli component, the track is existing and is added
to the multi-object state X. Thus, the probability that track ` is included in the
multi-object state X is proportional to its existence probability.

Algorithm 3.1 Sampling of an LMB RFS
1: X = ∅;
2: for ` ∈ L do
3: sample u ∼ U(0, 1);
4: if u ≤ r(`) then
5: sample x ∼ p(`)(·);
6: X = X ∪ {(x, `)};
7: end if
8: end for

The multi-object probability density of an LMB RFS on X × L with state space X
and label space L is given by

π
({

(x(1), `1), ..., (x(n), `n)
})

= δn(|{`1, ..., `n}|)
∏
i∈L

(
1− r(i)

) n∏
`=1

1L(`)r(`)p(`)(x)
1− r(`) .

(3.24)
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An LMB RFS is not a multi-Bernoulli RFS on X×L, however its unlabeled version is
a multi-Bernoulli RFS on X. A more compact representation of an LMB density is
obtained using the multi-object exponential notation:

π(X) = ∆(X)w(L(X))pX , (3.25)

where

w(L) =
∏
i∈L

(
1− r(i)

)∏
`∈L

1L(`)r(`)

1− r(`) , (3.26)

p(x, `) = p(`)(x). (3.27)

The PHD and the mean cardinality of the unlabeled version of an LMB RFS are given
by (3.19) and (3.20).

3.3.2 Generalized Labeled Multi-Bernoulli RFS

In an LMB RFS, all Bernoulli components are assumed to be statistically independent
and the weight (3.26) of each realization X depends on the existence probabilities
r(`) of the individual tracks ` ∈ L(X). Consequently, the cardinality distribution of
an LMB RFS follows the one of a multi-Bernoulli distribution, which is unimodal1
[Sam65; Wan93].

The generalized labeled multi-Bernoulli (GLMB) RFS [VV13b] is a generalization of
the LMB RFS which facilitates arbitrary weights and cardinality distributions. For a
state space X and a label space L, a GLMB RFS is given by

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)
]X

, (3.28)

where the discrete index set C enables multiple realizations for a set of track labels
L = L(X). Obviously, the weights w(c)(L) have to be normalized and the spatial
distributions p(c) have to be probability density functions, i.e.∑

L⊆L

∑
c∈C

w(c)(L) = 1, (3.29)

∫
p(c)(x, `) dx = 1. (3.30)

1Due to the discretization of the cardinality distribution, it is possible that two cardinalities n and
n + 1 are equally likely.
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Comparing (3.28) with the alternative formulation (3.25) of an LMB RFS, it is
obvious that an LMB RFS is a special case of the GLMB RFS which comprises only a
single component c for each realization X and whose weights follow a multi-Bernoulli
distribution (3.26) with parameters r(`). As mentioned in the previous subsection, an
LMB RFS comprises statistically independent tracks. Since the existence of one track
affects the association probabilities for other tracks, the measurement updated tracks
are not statistically independent any more. Thus, an LMB RFS may not exactly
represent the multi-object posterior. In contrast, the GLMB RFS facilitates multiple
components (or hypotheses) for a set of track labels L and naturally represents the
data association uncertainty of the filter update by generating a hypothesis c for each
possible track to measurement association. Hence, a GLMB RFS allows for the exact
representation of the statistically dependent tracks after the measurement update.
The approximation error due to an LMB representation of the multi-object posterior
will be examined in Section 5.2.3.

3.3.3 δ-Generalized Labeled Multi-Bernoulli RFS

The δ-generalized labeled multi-Bernoulli (δ-GLMB) RFS is an equivalent representa-
tion of a GLMB RFS which is used in [VV13b] to develop the δ-GLMB multi-object
tracking filter. Within a δ-GLMB RFS, the parameters of the GLMB RFS are
substituted by

C = F(L)× Ξ,
w(c)(L) = w(I,ξ)δI(L),

p(c) = p(I,ξ).

Here, Ξ denotes an arbitrary discrete space and the density of a δ-GLMB RFS follows

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))
[
p(I,ξ)

]X
. (3.31)

Obviously, (3.28) and (3.31) are equivalent in the general case. However, the δ-GLMB
RFS facilitates a significant reduction of the computational complexity, if the discrete
space Ξ represents the history of track label to measurement associations (see Section
5.1). In this case, an association history ξ implicitly contains the set of track labels I
and allows to abbreviate p(I,ξ) by p(ξ) within the δ-GLMB equations. Consequently,
the required number of spatial distributions within the δ-GLMB representation is
only |Ξ| while the GLMB representation requires |F(L) × Ξ|, i.e. the δ-GLMB
representation prevents the duplicate calculation of identical spatial distributions.
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Since the δ-GLMB RFS is substantial for the derivation of the LMB filter in Chapter
5, some additional properties of the distribution are required. Following [VV13b], the
cardinality distribution of a δ-GLMB RFS is obtained by

ρ(n) =
∑

(I,ξ)∈F(L)×Ξ

∑
L∈Fn(L)

w(I,ξ)δI(L) =
∑

(I,ξ)∈Fn(L)×Ξ

w(I,ξ). (3.32)

Hence, the probability of cardinality n is given by summing up the weights of all
hypotheses (I, ξ) with |I| = n. The δ-GLMB representation further allows to extract
information about a track with label ` using the PHD

v(x) =
∑

(I,ξ)∈F(L)×Ξ

∑
`∈L

p(I,ξ)(x, `)
∑
L⊆L

1L(`)w(I,ξ)δI(L)

=
∑
`∈L

∑
(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`)p(I,ξ)(x, `) (3.33)

of its unlabeled version. Since the PHD comprises the sum over all labels ` ∈ L, the
PHD of an individual track with label ` is given by

v(`)(x) =
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`)p(I,ξ)(x, `). (3.34)

Here, the inclusion function 1I(`) ensures that only hypotheses which include label `
are used. Since (3.34) represents the PHD of a single track with label `, the integral
over the PHD corresponds to the existence probability of a track with label `:

r(`) =
∫ ( ∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`)p(I,ξ)(x, `)
)
dx

=
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`)
∫
p(I,ξ)(x, `)dx

=
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`). (3.35)

The δ-GLMB representation of an LMB RFS with state space X, finite label space L,
and parameter set π = {r(`), p(`)}`∈L is given by

π(X) = ∆(X)
∑

I∈F(L)

w(I)δI(L(X))pX (3.36)

= ∆(X)w(L(X))pX , (3.37)
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where the weights w(L) and spatial distributions p(x, `) are given by (3.26) and (3.27).
Since an LMB RFS comprises a union of independent Bernoulli tracks, an LMB RFS
may not comprise several hypotheses for a given set of track labels. This corresponds
to setting the discrete space Ξ = ∅ in the δ-GLMB density (3.31). Observe that
(3.37) uses the property that all summands in (3.36) are zero except for I = L(X).
Moreover, (3.37) is equivalent to the LMB density (3.25).

3.4 Multi-Object Likelihood Functions

The single-object likelihood function g(z |x+), used in the innovation step of the
Bayes filter, only evaluates the distance between the predicted measurement and the
received measurement with respect to the measurement uncertainty. In contrast, the
multi-object likelihood function g(Z|X+) has to represent the entire measurement
process, i.e., it has to incorporate the field of view (FOV) of the sensor, the detection
probability, the false alarm rate, and even drop-outs of the data transmission (e.g.
due to limited bandwidth). An explicit handling of the FOV is not necessary, since
a state dependent detection probability usually incorporates the FOV information.
Further, data transmission drop-outs are neglected in the following.

Figure 3.1 illustrates the standard multi-object measurement model defined in [Mah07a],
which is based on the following assumptions: The sensor observes the objects in the
scene with a single-object spatial likelihood function g(z |x+) and each measurement
is generated by at most one object. Additionally, an existing object generates a
measurement with the state dependent detection probability pD(x+) and is not de-
tected with probability 1 − pD(x+). The false alarm process is assumed to follow
a Poisson distribution with an expected number of λc clutter measurements which
are distributed according to a spatial distribution c(z). In most applications, c(z) is
assumed to be uniformly distributed over the sensor’s field of view. The false alarm
process is assumed to be statistically independent of the object detection process and
all of the measurements are assumed to be conditionally independent of the objects’
state.

Due to missed detections, false alarms, and the spatial uncertainty of target generated
measurements, the track to measurement association is often ambiguous. Since there
is no a priori knowledge about the correct track to measurement association available,
the best assumption is to assume all association hypotheses to be equally likely. Conse-
quently, the multi-object likelihood functions in [Mah07a] average over all association
hypotheses θ : {1, . . . , n} → {0, 1, . . . ,m} for n objects and m measurements where
’0’ is appended to the set of measurements to cover missed detections. Using the
assumption that a measurement is generated by at most one object, the following
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detection

missed detection

clutter

Figure 3.1: Possible associations within the multi-object likelihood function:
measurements are either generated by an object or by the clutter
source. Additionally, the likelihood is required to represent the
possibility of a missed detection.

property has to be fulfilled: θ(i) = θ(j) > 0 if and only if i = j. The property ensures
that a measurement zθ(i) is uniquely assigned to track i. For θ(i) = 0, no measurement
is assigned to object i, i.e. object i is not detected.

Using the track to measurement associations θ, the standard multi-object likelihood
function [Mah07a]

g(Z|X+) = πC(Z)π(∅|X+)
∑
θ

∏
i:θ(i)>0

pD
(
x

(i)
+
)
· g
(
zθ(i)|x

(i)
+
)(

1− pD
(
x

(i)
+
))
· λcc

(
zθ(i)

) (3.38)

covers both missed detections and Poisson distributed false alarms. Here, pD(·) is the
state and sensor dependent detection probability, g(·|·) is the single-object likelihood
function, λc denotes the expected number of false alarms, and c(·) is the spatial
distribution of the false alarms. Further, the probability that none of the objects is
detected is abbreviated by

π(∅|X+) =
n∏
i=1

(
1− pD

(
x

(i)
+
))
, (3.39)
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and the probability that all measurements z ∈ Z are false alarms is given by

πC(Z) = e−λc
∏
z∈Z

λcc(z). (3.40)

The multi-object likelihood function averages over all association hypotheses and
each association hypothesis is represented by an additive term in the multi-object
likelihood (3.38). In case of a state independent detection probability pD(x+) = pD
and equally likely association hypotheses, the multi-object likelihood function (3.38)
differs from the likelihood of an MHT approach (see Section 2.4.4) just by a constant
factor [Mah07a, p. 422–424].

Further multi-object likelihood functions for special cases like state dependent false
alarms, extended objects, or unresolved objects are discussed in [Mah07a]. For the
purpose of this thesis, (3.38) is sufficient.

3.5 Multi-Object Markov Densities

In single-object tracking, it is sufficient to predict an object’s state x to the time of the
next measurement using a suitable Markov density f+(x+|x). Multi-object motion
models are far more complex since the motion of the objects is only one part of the
model. In addition to the object individual state transitions, a multi-object motion
model has to represent object appearance and disappearance. Figure 3.2 illustrates the
possible state transitions covered by the multi-object motion model. In general, the
multi-object motion model may additionally incorporate object spawning [Mah07a],
i.e. a new object is originated by an already existing object. However, spawning is
not relevant for the applications considered within this work and is neglected in the
following.

The multi-object Markov density mathematically resembles the multi-object likelihood
function, since appearing and disappearing objects in the motion model correspond
to false alarms and missed detections in the likelihood function. The standard
multi-object motion model comprises the following assumptions: All objects move
independent of each other according to a single-object Markov transition density
f+(x+|x), each object survives with a state dependent survival probability pS(x), and
new objects appear according to a Poisson distributed birth density πB(X). Further,
the birth density is assumed to be statistically independent of persisting objects.
The multi-object Markov density for the state transitions depicted by Figure 3.2 is
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motion

disappearance

birth

Figure 3.2: Illustration of the multi-object motion model: objects move ac-
cording to their motion model or disappear during the prediction.
Further, new objects appear based on a birth model.

represented by [Mah07a]

f+(X+|X) = πB(X+)π+(∅|X)
∑
θ

∏
i:θ(i)>0

pS(x(i)) · f+(x(θ(i))
+ |x(i))

(1− pS(x(i))) · λBpB(x(θ(i))
+ )

, (3.41)

where pS(·) is the state dependent survival probability and λB is the expected number
of new born objects distributed according to the probability density pB(·). Similar
to (3.38), the sum in (3.41) goes over all possible associations θ : {1, . . . , n′} →
{0, 1, . . . , n} where an association θ(i) = 0 corresponds to the disappearance of object
i while an association θ(i) > 0 implies that object i survives. The probability that all
objects within the predicted RFS are new born objects is given by

πB(X+) = e−λB
n∏
i=1

λBpB(x(i)
+ ) (3.42)

and

π+(∅|X) =
n′∏
i=1

(
1− pS(x(i))

)
(3.43)

denotes the probability that none of the previously existing objects survives. For all
associations θ(i) > 0, the product under the sum in (3.41) cancels the contribution
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of the corresponding state vector x(i) to (3.42) and (3.43). For additional multi-
object motion models covering extended targets, unresolved targets, and coordinated
multi-object motion refer to [Mah07a].

3.6 Multi-Object Bayes Filter

The random finite set statistics allow for a rigorous extension of the single-object
Bayes filter to multi-object filtering. Since the random variable in the multi-object
Bayes filter is a random finite set, the obtained estimate naturally comprises the
uncertain number of objects as well as the state uncertainty of the individual objects.

Using the Markov assumption, the entire information about the multi-object state
at a time k is captured by the multi-object posterior density π(X). The prediction
of the multi-object posterior to the time of the next measurement k + 1 is obtained
using the Chapman-Kolmogorov equation and the multi-object Markov density (3.41)
[Mah07a]:

π+(X+) =
∫
f(X+|X)π(X)δX. (3.44)

Obviously, (3.44) has the same form as the prediction of the single-object Bayes filter
(2.5). However, the integral in (3.44) is a set integral of the form (3.9) and the random
variables are random finite sets instead of random vectors.

The multi-object posterior density at k + 1 is obtained using the multi-object Bayes
filter update [Mah07a]

π(X|Z) = g(Z|X)π(X)∫
g(Z|X)π(X)δX

(3.45)

which uses the multi-target likelihood function g(Z|X) (see Section 3.4) to update
the predicted multi-object density. Again, the only differences to the single-object
Bayes filter update (2.8) are the set integral in the denominator and the RFS random
variables instead of the random vectors.

Similar to the single-object Bayes filter, the multi-object Bayes filter facilitates an
implementation using SMC methods. Due to the computational complexity of the
multi-object likelihood function (3.38), the SMC implementation of the multi-object
Bayes filter has not been applied to real sensor data so far. Using an approximation of
the multi-object likelihood function, a real-time capable implementation of the filter
is presented in Chapter 4. Additionally, the proposed implementation incorporates
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the modeling of interactions between objects in the environment. Using the standard
multi-object motion model as well as the standard multi-object likelihood, the δ-GLMB
filter [VV13b] facilitates an analytical implementation of the multi-object Bayes filter
using SMC and Gaussian mixture (GM) methods. A detailed description of the
δ-GLMB filter is given in Section 5.1. Subsequently, the results of the δ-GLMB filter
are used in Chapter 5 to derive the labeled multi-Bernoulli filter which provides a
tractable and accurate approximation of the δ-GLMB filter.

3.7 Approximations of the Multi-Object Bayes
Filter

During the last decade, several tractable approximations of the multi-object Bayes
filter have been proposed. Inspired by the constant gain and the Kalman filter,
which approximate the single-object Bayes filter using the moments of the probability
density function, the probability hypothesis density (PHD) filter and the cardinalized
probability hypothesis density (CPHD) filter propagate the first order moment of
the multi-object probability density function π(X|Z1:k) over time. The CPHD filter
is a partial second moment approximation since it additionally propagates the full
cardinality distribution. Another approximation is the cardinality balanced multi-
target multi-Bernoulli (CB-MeMBer) filter which propagates the parameters of a
multi-Bernoulli RFS over time instead of the moments of the multi-object probability
density. The main differences of the approximations are additionally summarized in
Appendix C.

3.7.1 Probability Hypothesis Density Filter

The probability hypothesis density (PHD) filter [Mah03] is an approximation of the
multi-object Bayes filter which propagates only the first moment of a multi-object
probability density π(X) over time. In point process theory (PPT), the first-order
multi-object moment v(x) of π(X) is conveniently called the intensity density [DV03].
However, in the context of multi-object filtering the intensity density is commonly
referred to as the probability hypothesis density. The PHD v(x) is obviously not
a probability distribution, since the integral over the PHD represents the expected
number of objects

N̂ =
∫
v(x)dx. (3.46)
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Within the derivation of the PHD filter prediction, the following assumptions are
necessary:

• the motion of each object follows a single-object Markov transition density
f+(x+|x)
• an existing object with state x survives from time step k to k + 1 with probability
pS(x)
• new objects appear at time k + 1 according to the birth intensity b(x).

The derivation of the PHD filter prediction in [Mah03] additionally facilitates spawning
of new objects based on existing objects. Since spawning is unlikely to occur in the
scenarios investigated in this work, it is not considered in the following. The prediction
of the prior PHD yields

v+(x) =
∫
pS(ξ)f+(x|ξ)v(ξ)dξ + b(x), (3.47)

where the first term represents the motion of the surviving objects and b(x) represents
the new born objects.

The corrector step of the PHD filter is based on the standard multi-object measurement
model introduced in Section 3.4. Thus,

• the likelihood that an object with state x generates a measurement z is given
by the spatial likelihood g(z |x).
• an object with state x is detected by the sensor with detection probability pD(x).
• the false alarm process follows a Poisson distribution and creates an average

number of λc false alarms whose spatial distribution is given by the probability
density c(z).

In order to derive closed-form equations for the corrector, it is necessary to assume
that the predicted PHD approximately follows a multi-object Poisson distribution
(see Section 3.2.2). Using these assumptions, the posterior PHD [Mah03]

v(x) =
(
1− pD(x)

)
v+(x) +

∑
z∈Z

pD(x)g(z |x)v+(x)
λcc(z) +

∫
pD(ξ)g(z |ξ)v+(ξ)dξ

, (3.48)

comprises the possibility of a missed detection (represented by the first term) and
the update of the predicted intensity v+(x) using each of the |Z| measurements
(represented by the sum over all z ∈ Z).

Due to the approximation of the full multi-object posterior by its first moment, the
prediction and update equations of the PHD filter do not incorporate set integrals
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any more which significantly reduces the computational complexity. Similar to the
single-object Bayes filter, the PHD filter facilitates an implementation using SMC
methods [Mah07a; Sid03; VSD05] where the posterior intensity is approximated by

v(x) =
ν∑
i=1

w(i)δx(i)(x). (3.49)

In contrast to SMC implementations of the single-object Bayes filter, the particle
weights w(i) in the SMC implementation of the PHD filter are not normalized since
the integral over the PHD corresponds to the estimated number of objects.

Based on the work on Gaussian sum filters in [AS72; SA71], Vo et al. proposed a
Gaussian mixture implementation of the PHD filter, the Gaussian mixture probabil-
ity hypothesis density (GM-PHD) filter [VM06], which approximates the posterior
intensity by

v(x) =
J∑
i=1

w(i)N
(
x; x̂(i),P(i)

)
, (3.50)

where x̂(i) is the mean value of the Gaussian distribution and P(i) is the according
covariance matrix. In contrast to the Gaussian sum filters, the weights w(i) are not
normalized, since the integral over the intensity function again represents the estimated
number of targets. Similar to the Kalman filter, the GM-PHD filter assumes linear
Gaussian motion and measurement models to ensure that the predicted and posterior
distribution are again a Gaussian mixture. Additionally, the prediction step requires
the birth density to be a Gaussian mixture and assumes a state independent survival
probability:

pS(x) = pS .

Further, the detection probability is assumed to be state independent:

pD(x) = pD.

The assumptions of state independent survival and detection probabilities are due
to the appearance of both pD(x) and 1 − pD(x) in the corrector equation. Thus,
modeling the detection probability as a Gaussian distribution incorporates a non-
Gaussian distribution for 1−pD(x) [Mah07a, p. 625]. However, a closed-form solution
for the GM-PHD filter may also be obtained if the state dependent survival and
detection probabilities are modeled by exponential mixtures [RGV+13; VM06]. Since
the GM-PHD filter is based on the standard equations of the Kalman filter, an
application to slightly non-linear problems using the EKF or UKF introduced in 2.2.2
is straightforward. Further details about the derivation as well as pseudo-code for the
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implementation of the GM-PHD filter can be found in [VM06].

A weakness of the PHD filter is the unstable estimate of the number of objects [EWB05]
which is due to the approximation of the multi-object distribution by its first moment.
Erdinc et al. [EWB05] illustrate the small memory for the number of objects using a
one target scenario where missed detections are present. By using a high detection
probability, the estimated number of objects drops rapidly if a single missed detection
occurs. Further, the estimated number of objects jumps from approximately zero
to one, if the object is detected again after several missed detections. In [MSRD06],
Mählisch et al. present a heuristic approach to achieve stable cardinality estimates
where a constant gain filter is used to smooth the total weight of the PHD after each
measurement update.

Despite the unstable cardinality estimate, the PHD filter has been applied to a wide
range of applications. A principal reason for its popularity is the considerably lower
computational complexity of the PHD filter compared to filters like JIPDA or MHT.
Since the PHD filter does not require explicit track to measurement associations,
the computational complexity is only of order O(mn), where m is the number of
measurements and n corresponds to the number of objects. Applications of the PHD
filter include but are not limited to uncalibrated aerial videos [PPP+09], airborne
radar [JDSW12], ultra wideband radar [JZT+13], passive radar [PE13], sonar images
[CRPB07], and video images [EAGG13]. Further, the PHD filter has been applied to
extended object tracking [GLO10; GLO11; LGO11; Mah09a], RFS based simultaneous
localization and mapping (SLAM) [MVAV11a; MVAV11b], and box-particle filtering
[SGM+12].

In [RCV10; RCVV12], Ristic et al. introduced an adaptive birth intensity for the
PHD filter which significantly reduces the required number of particles by adapting
the proposal density for new born particles using the current set of measurements.
A similar approach is also proposed in [HL10] for the GM-PHD filter. In [VPT06],
Vo et al. propose a multiple model probability hypothesis density (MM-PHD) filter
which utilizes several motion models to represent the motion of maneuvering objects.
The approach in [VPT06] is consistent with the approach in [Mah12]. The MM-PHD
filter is applied to a time-lapse cell microscopy imaging system in [RGV+13] where
two linear motion models (random walk and CA) are used for the cells. In [MRD13;
MRWD13], the MM-PHD filter is applied to environment perception at an urban
intersection using a network of laser range finders utilizing a linear CV model and a
non-linear CTRV model [SRW08]. While the CTRV model is well-suited for vehicles,
trucks, and bikes, the CV model is appropriate for pedestrians and unknown object
classes.
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3.7.2 Cardinalized Probability Hypothesis Density Filter

In single-object tracking, a Kalman filter significantly outperforms constant-gain
Kalman filters in most applications since a constant-gain filter only propagates the
first moment of the probability density function while the Kalman filter additionally
propagates the second-order moment. Thus, a filter which additionally propagates
the second-order moment of the multi-object probability density function is supposed
to show superior performance compared to the PHD filter and to solve the issue with
unstable cardinality estimates. In [Mah01; Mah07a] the development of a second-
order approximation of the multi-object Bayes filter is discussed. Since these filters
are expected to be computationally intractable, Mahler proposed the cardinalized
probability hypothesis density (CPHD) filter in [Mah07b]. The CPHD filter is a
partial second-order multi-object moment filter, which propagates the entire cardinality
distribution ρ(n) of π(X) in addition to the PHD v(x). The CPHD filter is outlined
in the following, for further details refer to [Mah07a; Mah07b; VVC07].

Since the CPHD filter is closely related to the PHD filter, the required assumptions
for the multi-object motion model and the observations are similar. In the prediction
step, the CPHD filter uses the same models for object motion, persistence, and new-
born objects as the PHD filter. Additionally, the CPHD filter requires the a priori
multi-object distribution to follow an i.i.d. cluster process.

For a given posterior intensity v(x), the predicted intensity [VVC07]

v+(x) =
∫
pS(ξ)f+(x|ξ)v(ξ)dξ + b(x) (3.51)

of the CPHD filter is equivalent to the predicted intensity of the PHD filter in (3.47)
since spawning is neglected. Additionally, the predicted cardinality distribution is
given by [VVC07]

ρ+(n) =
n∑
j=0

ρB(n− j)
∞∑
l=j

Clj
〈pS , v〉

j 〈1− pS , v〉
l−j

〈1, v〉l
ρ(l), (3.52)

where ρB is the cardinality distribution of target birth, Clj = l!
j!(l−j)! is the binomial

coefficient, pS(x) is the survival probability, and 〈·, ·〉 denotes the inner product defined
by (3.3).

Equivalent to the PHD filter, the corrector step of the CPHD filter assumes a measure-
ment model comprising a single-object spatial likelihood g(z |x) and a state dependent
detection probability pD(x). In contrast to the PHD filter, the false alarm process is
modeled by the more general i.i.d. cluster process. Further, the predicted multi-object
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probability distribution has approximately to be an i.i.d. cluster process to obtain a
closed-form solution. The posterior cardinality distribution and the posterior intensity
for a set of measurements Z are given by [VVC07]

ρ(n) =
Ψ0 [v+,Z

]
(n) · ρ+(n)〈

Ψ0
[
v+,Z

]
, ρ+

〉 , (3.53)

v(x) =
〈
Ψ1 [v+,Z

]
, ρ+

〉〈
Ψ0
[
v+,Z

]
, ρ+

〉 · (1− pD(x)) · v+(x)

+
∑
z∈Z

〈
Ψ1 [v+,Z\{z}

]
, ρ+

〉〈
Ψ0
[
v+,Z

]
, ρ+

〉 · ψz (x)v+(x), (3.54)

where

Ψu [v,Z] (n) =
min(|Z|,n)∑

j=0
(|Z| − j)!ρC(|Z| − j)Pnj+u ·

〈1− pD, v〉
n−(j+u)

〈1, v〉n
ej(Υ(v,Z))

(3.55)

is the likelihood that a set of measurements Z is obtained for a scene containing n
objects, ρC(·) is the cardinality distribution of clutter measurements, and Pnj = n!

(n−j)!
is the permutation coefficient. The intensity κ(z) = λcc(z) of the clutter measurements
and the detection probability pD(x) yield the measurement likelihood

ψz (x) = 〈1, κ〉
κ(z) pD(x)g(z |x). (3.56)

Further, ej(Y) is the j-th order elementary symmetric function of a finite set Y of
real numbers which is defined by

ej(Y) =
∑

S⊆Y,|S|=j

∏
ξ∈S

ξ, (3.57)

where e0(Y) = 1 by definition, and Υ(v,Z) = {〈v, ψz 〉 : z ∈ Z}. An efficient
implementation of the elementary symmetric function is possible using a double
recursion [Mah07a, pp. 640–641]. Further, an alternative implementation method
based on Vieta’s Theorem [BE95] is proposed in [VVC07].

Similar to the PHD filter, the CPHD filter facilitates an implementation using sequen-
tial Monte-Carlo methods [Mah07a] or Gaussian mixtures [VVC07]. The computational
complexity of the CPHD filter is O(m3n), i.e. the CPHD filter is cubic in the number
of measurements m while the PHD filter is linear. Compared to the PHD filter, the
CPHD filter provides a more accurate and stable cardinality estimate since it estimates



3.7 Approximations of the Multi-Object Bayes Filter 45

the cardinality distribution in addition to the first order multi-object moment while
the PHD filter assumes a Poisson distributed multi-object posterior which implies a
large standard deviation for the cardinality estimate.

In [FSU09], Fränken et al. observed the so-called ”spooky action at a distance” or
spooky effect within the CPHD filter. The spooky effect is exemplified using a linear
Gaussian example with two well separated objects, where object 1 is not detected at
k = 7 and object 2 is not detected at k = 13. The detection probability in the example
is given by pD = 0.98. Figure 3.3 illustrates the weights of the extracted Gaussian
components of the individual tracks and the sum of their weights. Obviously, the
missed detection of one of the objects leads to an increasing weight for the detected
object. The reason for the spooky effect is the scaling of a local estimate for the
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Figure 3.3: Track weights for the spooky effect example: sum of the weights
of both objects (left), weight of object 1 (middle), weight of object
2 (right).

number of objects with a global cardinality distribution. An ad-hoc approach to
eliminate the spooky effect is proposed in [FSU09] where individual CPHD filters are
used for each track cluster. Within a PHD filter, the spooky action at a distance is
not present since the PHD filter only estimates the intensity function.

Since the cardinality estimate of the CPHD filter is directly coupled with the false alarm
process, an imprecise knowledge of the clutter rate leads to erroneous cardinality
estimates. While the clutter rate is approximately constant in radar based air-
surveillance systems, the assumption of a constant clutter rate is not fulfilled in a
large number of applications like e.g. vehicular environment perception. The λ-CPHD
filter proposed in [MVV11] circumvents this issue by additionally filtering the clutter
rate. In [BVV13], Beard et al. show that the performance of the λ-CPHD filter is
worse than the one of a CPHD filter with matching clutter rate. Thus, they propose a
bootstrap Gaussian mixture cardinalized probability hypothesis density (GM-CPHD)
filter which uses a λ-CPHD filter to estimate the clutter rate and passes the estimated
clutter rate to a standard CPHD filter. The bootstrap GM-CPHD filter achieves
similar performance to a GM-CPHD filter with matching clutter rate.
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In the literature, several applications of the CPHD filter exist, including ground moving
target tracking [PPR11; UEW07], vehicle environment perception [LCB12a; LCB12b],
sonar applications [EWC08; GW12], passive radar data [PE13], and extended object
tracking [LGO13]. An application of the λ-CPHD filter to road user tracking at an
intersection using a network of laser range finders is presented in [RMD12].

3.7.3 Cardinality Balanced Multi-Target Multi-Bernoulli
Filter

The cardinality balanced multi-target multi-Bernoulli (CB-MeMBer) filter [VVC09]
conceptually differs from the PHD and CPHD filters introduced in the previous sections.
While the PHD and the CPHD filter propagate the first moment of the multi-object
probability density over time, the CB-MeMBer filter propagates the parameters of a
multi-Bernoulli distribution. Hence, the CB-MeMBer filter requires the approximation
of the multi-object posterior density by a multi-Bernoulli distribution at each time
step. The prediction and the update step of the CB-MeMBer filter require similar
assumptions as the PHD filter. However, the birth density has to follow a multi-
Bernoulli RFS (instead of a birth intensity) which is independent of the multi-Bernoulli
RFS of the surviving objects. Similar to the PHD filter, the clutter process has to
follow a Poisson RFS but the approximations in the update step of the CB-MeMBer
filter require a not too dense clutter distribution [VVC09].

The CB-MeMBer filter assumes that the multi-object posterior density is represented
by a multi-Bernoulli distribution of the form

π =
{(
r(i), p(i)

)}M
i=1

. (3.58)

According to the standard multi-object motion model, objects may appear or disappear
during the prediction of the multi-object state to the next time step. The state of
each surviving object is predicted using a single-object motion model while new born
objects are modeled using a multi-Bernoulli birth RFS with parameter set

πB =
{(
r

(i)
B , p

(i)
B

)}MB

i=1
, (3.59)

where the existence probabilities r(i)
B , the spatial distributions p(i)

B , and the number of
birth components MB are application dependent. The expected number of new-born
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objects is obtained using (3.20):

N̂B =
MB∑
i=1

r
(i)
B .

Since the multi-Bernoulli birth RFS is assumed to be independent of the multi-
Bernoulli RFS of the surviving objects, the predicted multi-Bernoulli RFS is given
by

π+ =
{(
r

(i)
+,S , p

(i)
+,S

)}M
i=1
∪
{(
r

(i)
B , p

(i)
B

)}MB

i=1
, (3.60)

where the parameters of the surviving objects are

r
(i)
+,S = r(i)ηS(i), (3.61)

p
(i)
+,S(x) =

〈
f+(x|·), p(i)pS

〉
ηS(i) , (3.62)

ηS(i) =
〈
p(i), pS

〉
. (3.63)

Here, f+(x|·) denotes the single-object state transition density and pS(x) is the state
dependent survival probability.

Due to the birth process, the total number of predicted Bernoulli distributions increases
to M+ = M +MB and the predicted multi-target density again is a multi-Bernoulli
distribution of the form

π+ =
{(
r

(i)
+ , p

(i)
+

)}M+

i=1
.

Since the measurement update of the predicted multi-object density is not a multi-
Bernoulli distribution, the posterior multi-object density is approximated by

π ≈
{(
r

(i)
L , p

(i)
L

)}M+

i=1
∪
{(
rU (z), pU (·; z)

)}
z∈Z

, (3.64)

where the subscript L denotes the legacy tracks and the subscript U denotes the
measurement updated tracks. The legacy tracks correspond to the possibility that a
track is not detected and a measurement updated Bernoulli distribution is obtained
for each measurement z.

Using the state dependent detection probability pD(x), the existence probability and
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the spatial distribution of the legacy tracks are updated by

r
(i)
L = r

(i)
+

1−
〈
p

(i)
+ , pD

〉
1− r(i)

+

〈
p

(i)
+ , pD

〉 , (3.65)

p
(i)
L (x) = p

(i)
+ (x) 1− pD(x)

1−
〈
p

(i)
+ , pD

〉 . (3.66)

The existence probability and the spatial distribution of the measurement updated
tracks are approximated by

rU (z) =

M+∑
i=1

r
(i)
+ (1−r(i)

+ )
〈
p

(i)
+ ,ψz

〉(
1−r(i)

+

〈
p

(i)
+ ,p

D

〉)2

κ(z) +
M+∑
i=1

r
(i)
+

〈
p

(i)
+ ,ψz

〉
1−r(i)

+

〈
p

(i)
+ ,p

D

〉 , (3.67)

pU (x; z) =

∑M+
i=1

r
(i)
+

1−r(i)
+
p

(i)
+ (x)ψz (x)∑M+

i=1
r

(i)
+

1−r(i)
+

〈
p

(i)
+ , ψz

〉 , (3.68)

where

ψz (x) = g(z |x)pD(x),

g(z |x) is the single object measurement likelihood, pD(x) is the state dependent
detection probability, and κ(·) denotes the intensity of the Poisson distributed clutter
process. The parameters rU (z) and pU (x; z) of the Bernoulli approximation are
chosen to match the PHD or intensity function of the posterior probability generating
functional (PGFL). However, the approximation requires a high detection probability
and not too dense clutter [VVC09].

The CB-MeMBer filter facilitates an implementation using SMC methods. The SMC
implementation is commonly used in case of highly non-linear systems and the spatial
distribution of each Bernoulli distribution is approximated by a set of weighted
particles:

p(i)(x) =
ν(i)∑
j=1

w(i,j)δx(i,j)(x). (3.69)

In contrast to the PHD and CPHD filter, the weights w(i,j) in (3.69) have to be
normalized to ensure a valid probability density, i.e.

∫
p(i)(x)dx = 1.
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In case of state independent detection and survival probabilities as well as linear motion
and measurement models, the CB-MeMBer filter can be implemented using Gaussian
mixtures, where the spatial distribution of each Bernoulli distribution (including the
birth components) has to be a mixture of Gaussians:

p(i)(x) =
J(i)∑
j=1

w(i,j)N
(
x; x̂(i,j),P(i,j)

)
. (3.70)

Here, w(i,j) are the normalized weights of the Gaussians with mean value x̂(i,j) and
covariance matrix P(i,j). The Gaussian mixture implementation may also be used
in case of slightly non-linear motion or measurement models by using an EKF or a
UKF implementation. Explicit equations for the GM and SMC implementation of the
CB-MeMBer filter are given in [VVC09].

Compared to the PHD and CPHD filter, the principal advantage of the CB-MeMBer
filter is the intuitive and straightforward extraction of track estimates due to the
representation of each object by a Bernoulli distribution. Especially in SMC imple-
mentations of the PHD and the CPHD filter, the extraction of track estimates is more
challenging since computationally expensive and error-prone clustering algorithms
are required. An additional advantage of the CB-MeMBer filter is the estimation of
object individual existence probabilities which are desired in applications like vehicle
environment perception. Similar to the PHD filter, the complexity of the CB-MeMBer
filter is linear in the number of measurements and linear in the number of objects.

While the PHD and CPHD filters have been applied to a huge amount of applications,
the CB-MeMBer filter is rarely used in the literature. Among the applications of the
CB-MeMBer filter are multi-object tracking using sensor networks [WZ09a; WZ09b;
WZ10] and video images [HVV13; HVVS11; VVPS10]. In [VVHM13], the robust
multi-Bernoulli filter is proposed which additionally estimates the clutter density and
the detection probability. Further, an adaptive birth distribution for the CB-MeMBer
filter is introduced in [RMWD13]. Similar to the adaptive birth intensities for the
PHD and CPHD filter, the adaptive birth distribution for the CB-MeMBer filter
concentrates around the measurements which are far away from any existing tracks.
In [DK13], an extension of the CB-MeMBer filter to support multiple motion models
is proposed.

A possible reason for preferring the PHD and CPHD filters are the issues of the
CB-MeMBer filter with a low signal to noise ratio. Specifically, the CB-MeMBer filter
tends to overestimate the cardinality in scenarios with a high clutter rate, which is
due to the assumptions used in the update step of the filter.
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3.8 Performance Evaluation of Multi-Object
Tracking Algorithms

3.8.1 Optimal Subpattern Assignment Metric

In order to evaluate the performance of multi-object tracking algorithms, a metric to
compare the estimated set of objects with the set of existing objects is necessary. Thus,
in addition to the state estimation error considered by single-object miss distances like
the Euclidean or Mahalanobis distance, the required metric has to incorporate the
cardinality error. One of the first approaches for a multi-object miss distance is the
Optimal Mass Transfer (OMAT) metric [HM04b] which is based on the Wasserstein
distance and resolves some issues of the Hausdorff metric in multi-object filtering
applications. In [SVV08], Schuhmacher et al. pointed out some weaknesses of the
OMAT. For example, the OMAT is undefined if one of the two sets is empty. Further,
the OMAT distance does not penalize multiple estimates for a single object. In order
to resolve the described weaknesses of the OMAT, the optimal subpattern assignment
(OSPA) metric is proposed in [SVV08].

In the OSPA metric, the distance of two state vectors x and y is calculated by

dc(x, y) = min(c, d(x, y)), (3.71)

where c > 0 is the cut-off parameter. For two finite sets X = {x(1), . . . , x(m)} and
Y = {y(1), . . . , y(n)}, m ≤ n, the OSPA distance of order p is given by

d(c)
p (X,Y) =

(
1
n

(
min
π∈Πn

m∑
i=1

dc(x(i), y(π(i)))p + cp(n−m)
)) 1

p

, (3.72)

where Πk is the set of permutations on {1, 2, . . . , k}. For m > n, the parameters X
and Y of equation (3.72) have to be switched.

Obviously, a higher order p assigns more weight to large distances [SVV08] which leads
to a higher penalization of outliers. In the OSPA metric, the effect of higher orders p
is attenuated due to the cut-off parameter c which restricts the maximum distance.
Further, the cut-off parameter c prevents that a high distance between an estimated
state and the true position leads to a larger OSPA distance than a cardinality error
due to a missed detection.

During the development of multi-object tracking algorithms, the combined localization
and cardinality error represented by the OSPA metric conceals the reason for the
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large distance. In order to determine the main contribution to the OSPA distance,
the metric may be split up into a localization error

d(c,loc)
p (X,Y) =

(
1
n
· min
π∈Πn

m∑
i=1

dc(x(i), y(π(i)))p
) 1
p

(3.73)

and a cardinality error

d(c,card)
p (X,Y) =

(
cp(n−m)

n

) 1
p

. (3.74)

Although the separated errors are no longer a metric on the space of finite subsets,
they provide additional information for further improvements of the multi-object
tracking algorithms [SVV08].

For an efficient computation of the OSPA distance, the following procedure is suggested
in [SVV08]: expand the smaller set X by adding n − m state vectors x(j), j =
m+ 1, . . . , n which satisfy the condition

d(x(j), y(i)) > c ∀ i = 1, . . . , n. (3.75)

Thus, each of the added state vectors increases the OSPA distance by exactly the
same value as a cardinality error. Afterwards, the p-th order distance between all
points of the two subsets has to be calculated. Instead of evaluating (3.72) for all
possible permutations, an optimal assignment algorithm like the Hungarian method
[Kuh55] is used to determine the permutation which obtains the minimum distance.

3.8.2 Track Based Optimal Subpattern Assignment

The OSPA metric evaluates the result of a multi-object tracking system with respect
to the number of objects and the residual between the estimated and the true object
states for a single time step. Thus, the OSPA does not incorporate information about
track continuity or switching of track IDs.

In [RVCV11], Ristic et al. proposed the optimal subpattern assignment for tracks
(OSPAT), which extends the OSPA metric by incorporating labeling information in
the distance calculation. The distance of two labeled state vectors x = (x, l) and
y = (y, s) in the OSPAT is given by

d(x,y) =
(
d(x, y)p +

(
α(1− δl(s))

)p) 1
p

, (3.76)
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where l and s are the labels of the tracks and the parameter α ∈ [0, c] impacts the
penalty due to labeling errors.

Choosing α = 0, the second term of (3.76) disappears. Consequently, the OSPAT
distance is equivalent to the OSPA distance in this case and labeling errors are
neglected. In case of α = c, the distance (3.76) of two tracks with labels l 6= s
is d(x,y) = c and the mismatching labels are penalized like a missed detection.
The optimal assignment of the labels is determined using standard two-dimensional
assignment algorithms [RVCV11].

3.8.3 Multi-Object Divergence Detectors

In single-object tracking, online consistency checks of tracking filters are usually
performed using the NIS introduced in Section 2.5. In [Mah13a], Mahler proposes to
interpret the NIS given by (2.46) as an approximation of the generalized normalized
innovation squared (GNIS)

GNIS(z) = −2 log f(z), (3.77)

where

f(z) ,
∫
g(z |x)p+(x)dx (3.78)

is the normalization constant of the Bayes filter update (2.8).

In case of a Kalman filter, the GNIS is given by [Mah13a]

GNIS(z) = −2 log f(z)

= −2 log
(

1√
det2πS

· exp
(
−1

2γ
TS−1γ

))
= log det(2πS) + γTS−1γ = log det(2πS) + NIS(z), (3.79)

where S is the innovation covariance and γ = z − z+ is the residual between the
predicted and the actual measurement. Since the NIS only penalizes the residual
γ , it successfully detects underestimated process or measurement noises. However,
the NIS does not explicitly enforce accurate state estimates since the magnitude of
the innovation covariance matrix is neglected. The GNIS additionally penalizes high
uncertainties within the innovation covariance S. Thus, more accurate state estimates
result in a diminishing value of the GNIS. In contrast to the NIS, the GNIS is not χ2

distributed any more due to the additional term log det(2πS).
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The definition of the GNIS using the normalization constant of the Bayes filter enables
a rigorous extension of the GNIS to multi-object tracking. Using the normalization
constant

f(Z) ,
∫
g(Z|X)π+(X)δX (3.80)

of the multi-object Bayes filter, the multi-object generalized normalized innovation
squared (MGNIS) is given by [Mah13a]

MGNIS(Z) = −2 log f(Z). (3.81)

Although closed-form expressions for the MGNIS have been proposed for the PHD and
CPHD filters in [Mah13a], no results using simulated or real data have been presented
for these filters so far. The properties of the MGNIS as well as its application to
tracking algorithms using labeled RFSs are investigated in Section 5.4.





Chapter 4

Multi-Object Bayes Filter
Incorporating Object Interactions

The sequential Monte-Carlo (SMC) implementation of the multi-object Bayes filter has
not attracted much attention in the past since the enormous computational complexity
prevents a real-time implementation in applications comprising a huge number of
objects. However, the full multi-object Bayes filter facilitates the incorporation of object
interactions in the prediction step of the filter due to the representation of the entire
environment using random finite sets (RFSs). Compared to the PHD, CPHD, and CB-
MeMBer filter, this is a significant benefit. While the PHD and CPHD filter lose the set
representation of the multi-object state in consequence of the moment approximation,
the representation of the multi-object state by statistically independent Bernoulli
distributions prevents object interactions in the CB-MeMBer filter. Especially in
scenarios with closely spaced objects, the incorporation of object interactions is
expected to provide more accurate and physically meaningful predicted multi-object
states. Moreover, a simplification of the data association in the measurement update
is achieved. In order to enable a real-time capable implementation of the SMC
multi-object Bayes filter, an approximation of the multi-object likelihood function is
proposed which significantly reduces the computational complexity of the measurement
update. Further, an approach to determine the existence probability of an object
within the SMC multi-object Bayes filter is introduced. The approach is built upon
the proposed track extraction algorithm which uniquely assigns a track ID within a
realization of an RFS.

First, the SMC implementation of the full multi-object Bayes filter is reviewed.
Afterwards, several possibilities to incorporate object interdependencies into the
prediction step of the multi-object Bayes filter are proposed. Based on the improved
prediction step, an approximation of the multi-object likelihood function which allows
for a real-time capable implementation of the multi-object Bayes filter is presented.
Finally, a track extraction scheme is proposed which additionally facilitates the
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determination of an object’s existence probability.

4.1 Sequential Monte Carlo Implementation of the
Multi-Object Bayes Filter

The sequential Monte-Carlo (SMC) implementation of the full multi-object Bayes
filter is closely related to the SMC implementation of the single-object Bayes filter. A
particle of the single-object Bayes filter is a sample of the spatial distribution p(x),
i.e. usually a vector x(i) ∈ Rn. In contrast, a multi-object particle of the multi-object
Bayes filter is a sample of the multi-object probability density π(X) and is given by a
set of state vectors

X(i) ,
{
x(1), . . . , x(n)

}
, (4.1)

where n denotes the number of objects which are represented by the multi-object
particle X(i). A state vector x(i) within a multi-object particle is conveniently called
”particle” in the following. Finally, the multi-object probability density function is
approximated using ν multi-object particles:

π(X) ∼=
ν∑
i=0

w(i) · δX(i)(X). (4.2)

In the following, the SMC implementation of the full multi-object Bayes filter is
summarized. For further details, refer to [Mah07a; MVSB06; SW03; VSD05].

4.1.1 Prediction

The predictor step of the multi-object Bayes filter is introduced in Section 3.6 and is
given by

π+(X+) =
∫
f+(X+|X) · π(X)δX. (4.3)

While it is sufficient to predict each particle according to the Markov motion model in
the single-object Bayes filter, the prediction step of the multi-object Bayes filter has
to represent the multi-object motion model introduced in Section 3.5. Consequently,
the prediction of the multi-object particles has to incorporate object appearance and
disappearance in addition to the motion of persisting objects. Thus, a predicted
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multi-object particle is given by the union

X(i)
+ = X(i)

+,S ∪X(i)
B (4.4)

where X(i)
+,S is the set of surviving particles and X(i)

B is the set of new born particles.

In order to obtain the persisting multi-object particle, the set of persisting particles
within the multi-object particle X(i) = {x(1), . . . , x(n)} is required. The persisting
particles are determined using a multi-Bernoulli distribution where the persistence
probability pS(x(j)) is used as a parameter. Due to the multi-Bernoulli distribution,
the persistence probabilities of the objects within the multi-object particle are assumed
to be statistically independent. The probability that a subset {x(1), . . . , x(n′)} persists
is given by

π
({
x(1), . . . , x(n′)}∣∣X(i)

)
=

∏
x∈X(i)

(1− pS(x)) ·
∏

x∈{x(1),...,x(n′)}

pS(x)
1− pS(x) . (4.5)

Using (4.5), the probability that all of the particles within the multi-object particle
persist is given by

π
({
x(1), . . . , x(n)}∣∣X(i)

)
= pS(x(1)) · · · pS(x(n))

while the probability that none of the particles survives is given by

π
(
∅|X(i)

)
= (1− pS(x(1))) · · · (1− pS(x(n))).

Since a multi-Bernoulli distribution is the union of M independent Bernoulli distribu-
tions, the persistence of each particle is determined independently instead of drawing
the persisting objects directly from (4.5). Thus, a uniformly distributed random
number ζ(j) is drawn for each of the particles in X(i) and the set of persisting particles
is given by

X(i)
S =

{
x : ζ(j) < pS(x(j)) ∀ j = 1, . . . , |X(i)|

}
, (4.6)

i.e. a particle persists if the drawn random number is smaller than the state dependent
survival probability. Afterwards, each of the j = 1, . . . , n′ persisting particles is
predicted to the next time step according to the single-object Markov transition
density using

x
(j)
+ ∼ f+

(
·|x(j)

)
(4.7)
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and the predicted set of surviving particles is given by

X(i)
+,S =

{
x

(1)
+ , . . . , x

(n′)
+

}
. (4.8)

The set of new born particles X(i)
B is obtained by drawing the number of appearing

objects nB from the cardinality distribution

ρB(n) = e−λBλnB
n! , (4.9)

where λB is the expected number of new born objects. Afterwards, the state of each
particle is given by sampling from the birth distribution pB :

x
(j)
+ ∼ pB(·) ∀ j = 1, . . . , nB . (4.10)

Obviously, it is not always possible to sample the predicted particles and the new born
particles directly from the distribution. In these cases, the samples have be obtained
using importance sampling (see Section 2.3).

4.1.2 Update

In order to perform the measurement update step of the SMC multi-object Bayes
filter using the corrector equation

π(X) =
g(Z|X+) · π+(X+)

π(Z) (4.11)

introduced in Section 3.6, the evaluation of the multi-object likelihood function g(Z|X+)
is required. Following Section 3.4, the multi-object likelihood function for scenarios
with missed detections and false alarms is given by

g(Z|X+) = πC(Z)π(∅|X+)
∑
θ

∏
i:θ(i)>0

pD

(
x

(i)
+

)
· g
(
zθ(i)|x

(i)
+

)
(

1− pD(x(i)
+ )
)
· λcc(zθ(i))

, (4.12)

where

π(∅|X+) =
n∏
i=1

(
1− pD

(
x

(i)
+

))
, (4.13)
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πC(Z) = e−λc
∏
z∈Z

λcc(z), (4.14)

and λc is the expected number of Poisson distributed false alarms which follow
the spatial distribution c(z). Further, pD(·) denotes the state dependent detection
probability and g(·|·) is the single-object measurement likelihood. The multi-object
likelihood function averages over all possible association hypotheses θ : {1, . . . , n} →
{0, 1, . . . ,m} for n objects and m measurements where ”0” represents the missed
detection. By using the average, all association hypotheses are taken into account
equally which corresponds to the absence of knowledge about the correct association.
Further, each summand in (4.12) represents one association hypothesis θ.

An intuitive representation of all association hypotheses is a hypotheses tree [Mah09b;
Mas04; MMD10]. Figure 4.1 illustrates the hypotheses tree for an example with two
objects and two measurements. Each association hypothesis is represented by a path

θ(2)=0θ(2)=2 θ(2)=1 θ(2)=0 θ(2)=1 θ(2)=2 θ(2)=0

θ(1)=1 θ(1)=2 θ(1)=0

Figure 4.1: Hypotheses tree for two objects and two measurements: a node
θ(i) = j denotes the association of object i to measurement j,
where j = 0 denotes the missed detection.

from the root of the tree to a leaf. Compared to the trees for the JIPDA algorithm
in [Mah09b; MMD10], the following differences are observed: First, the nodes for
assigning measurements to the clutter source disappeared, since the factor πC(Z)
already assigns all measurements to the clutter source and the track to measurement
associations cancel out the clutter terms for the associated measurements. Second, the
assignment of a track to non-existence is not required any more, since the non-existence
of an object is represented by other multi-object particles.

The association tree enables a straight-forward recursive implementation of the multi-
object likelihood (4.12). Each edge of the association tree represents the likelihood of
an association θ(i). One summand in (4.12) is determined by the product of the edge
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likelihoods from the root of the tree to a leaf. Finally, the likelihoods for all paths are
accumulated and multiplied with the factor πC(Z)π(∅|X+) to obtain the multi-object
likelihood π(Z|X+).

Similar to the SMC implementation of the single-object Bayes filter, the update step
only changes the weight of the multi-object particles without modifying the states.
Consequently, the state of an updated multi-object particle is given by

X(i) , X(i)
+ . (4.15)

and its weight is obtained by normalizing the multi-object likelihoods of all ν multi-
object particles:

w(i) ,
g
(

Z|X(i)
+

)
ν∑
e=0

π
(

Z|X(e)
+

) . (4.16)

Similar to the SMC implementation of the single-object Bayes filter, the SMC multi-
object Bayes filter requires the use of resampling approaches since the weights tend
to concentrate on a few multi-object particles after a few cycles. However, the SMC
multi-object Bayes filter facilitates the application of the well-known resampling
approaches introduced in Section 2.3.

4.1.3 Discussion

The computationally intensive part of the filter is the calculation of the multi-object
likelihood. The complexity of the association tree for n tracks and m measurements,
m ≥ n, is given by

n∏
i=1

(m− i+ 1) ∈ O(mn) (4.17)

if the nodes for missed detections are neglected. Consequently, the complexity in (4.17)
can be considered as a lower bound since the nodes for missed detections significantly
increase the number of hypotheses. Due to the exponential growth of the complexity,
an evaluation of the multi-object likelihood is only feasible for a small number of
measurements and tracks. Similar to JPDA, JIPDA, and MHT, the assumption that a
measurement is generated by at most one object affects the computational complexity.
The influence of this assumption is illustrated in Figure 4.1. If measurement ”1” is
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assigned to track ”1” in the first stage (θ(1) = 1), it may not be associated to track ”2”
in the second stage (missing node θ(2) = 1). Consequently, the possible associations
in a stage of the tree depend on the associations in the previous stages.

Although a multi-object particle in the SMC implementation of the multi-object Bayes
filter represents the complete environment, the prediction step described in Section
4.1.1 propagates the state of an object independent of the other objects’ states within
the multi-object particle. In scenarios with closely spaced targets, neglecting the
presence of other objects in the proximity during prediction may lead to physically
impossible states. Hence, an integration of dependencies between objects into the
prediction step is expected to ensure valid multi-object states and to simplify the data
association.

In the following sections, enhancements of the SMC implementation of the multi-object
Bayes filter are proposed which address the integration of dependencies between the
objects, the reduction of the computational complexity and the incorporation of a
state dependent detection probability. Finally, a track extraction scheme is proposed
which additionally facilitates the determination of an existence probability for the
individual objects.

4.2 Methods to Model the Motion of Extended
Objects

In the standard multi-object motion model introduced in Section 3.5, the state
transition of all objects in the scene is assumed to be statistically independent. Using
this assumption, the motion of an object depends only on its current state and its
motion model. However, neglecting the influence of other nearby objects may lead
to physically impossible predicted multi-object states in applications with extended
objects. Figure 4.2 illustrates three predicted multi-object states of three circular
objects with identical diameter. Obviously, the predicted state in the middle depicts a
valid multi-object state while the predicted states on the left and the right are invalid
due to the collision of two of the objects. Additionally, the two invalid predicted
multi-object states increase the ambiguity of the data association in the measurement
update due to the small distance between the centers of the colliding objects. Hence,
the integration of object interactions in the prediction step is expected to provide a
significant performance gain.

In general, the multi-object Markov density facilitates the incorporation of object
interactions which is for example used to model a coordinated multi-object motion
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Figure 4.2: Prediction of closely spaced objects: prior multi-object state at
the top, possible predicted states at the bottom.

in the virtual leader follower model [Mah07a, pp. 478ff.]. Within the virtual leader
follower model, each object retains the same relative position (up to a random variation)
to the centroid of a group since all objects are predicted using a joint mean velocity.
However, the model does not ensure valid multi-object states due to the additional
random variation of the points. Consequently, the incorporation of object interactions
in the prediction step requires the definition of transition densities which ensure
valid multi-object predictions. In order to prevent a computationally demanding
determination of these transition densities, the objects within a multi-object particle
are predicted independently and the predicted multi-object particles are validated
using a distance constraint.

In order to simplify notations, the object interactions are considered on a two dimen-
sional space and all objects are assumed to be of circular shape with approximately the
same diameter. Due to the identical size of the objects, a point target representation
within the SMC multi-object Bayes filter is still feasible. However, an extension to
objects with arbitrary shape and size by appending the necessary information to the
state vectors of the particles is straightforward.

The example in Figure 4.3 is considered to exemplify the benefit of incorporating object
interactions and to demonstrate the differences between the proposed approaches:
Two objects with a radius of rp = 0.2 m are located at (x, y) = (−0.25, 0) m and
(x, y) = (0.25, 0) m. The initial uncertainty is Gaussian distributed with standard
deviation σx = σy = 0.07 m and the multi-object density is represented by ν = 150
multi-object particles. Each multi-object particle contains a state vector for both
of the objects and the corresponding prior distribution is illustrated in Figure 4.3a.
Within the multi-object Markov density, each object is assumed to follow a random
walk model with a Gaussian distributed uncertainty of σx = σy = 0.2 and the survival
probability is pS = 1. The prediction using the standard multi-object motion model
results in the multi-object particles illustrated in Figure 4.3b. Obviously, the particles
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(a) Prior multi-object particles.
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(b) Independent prediction.

Figure 4.3: Independent prediction of the multi-object particles of two closely
spaced objects.

of the two objects mingle around the origin of the coordinate system. Further, the
independent prediction of the particles within a multi-object particle obtains invalid
predicted states since the distance between the centers of the objects drops below
the physically impossible distance of d = 2rp = 0.4 m in some of the multi-object
particles.

In the following, two methods for the incorporation of the constraints into the multi-
object Bayes filter are presented. Beside thinning using hard-core point processes and
a set based weight adaption, a possible integration of destinations in the prediction is
discussed briefly.

4.2.1 Thinning Using Hard-Core Point Processes

In stochastic geometry, a hard-core point process [DV03; Mat60; Mat86; SKM95;
Str10] is a point process which ensures a minimum distance between individual points.
Obviously, the points of a hard-core point process are statistically dependent since
the state of one point restricts the possible states for all other points. The prior
multi-object state at the top of Figure 4.2 as well as the predicted multi-object state
in the middle of the bottom row are realizations of a hard-core point process since
the extended objects do not overlap. However, the other two predicted multi-object
states are not a realization of a hard-core point process. In [Mat60; Mat86], Matérn
proposes two thinning procedures which remove points from a homogeneous Poisson
point process (PPP) until the process is a realization of a hard-core point process.
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Matérn Method I

The Matérn method I determines all pairs of points in a realization of a point process
which do not fulfill the distance constraint. After the distances for all pairs of points
are evaluated, points with a minimum distance of d ≥ 2rp to all other points are
retained while points with a distance of d < 2rp to any other point are deleted. Since
the Matérn thinning is applied to each multi-object particle separately, its complexity
is quadratic in the number of objects per multi-object particle.

Using the Matérn I thinning to ensure a minimum distance of d = 0.4 m between
the particles of a multi-object particle, the multi-object particles of Figure 4.4a are
obtained for the predicted multi-object density of Figure 4.3b. While the particles of
the two objects are mingled in Figure 4.3b around the origin of the coordinate system,
the particles of the two objects are well separated in Figure 4.4a after removing a
large number of particles (Figure 4.4b).
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(b) Deleted points.

Figure 4.4: Result of the application of Matérn I thinning to the predicted
multi-object particles depicted by Figure 4.3b.

Matérn Method II

The Matérn method II is intended to obtain a hard-core point process with a higher
density compared to Matérn I. While Matérn I removes both points of a pair which
does not satisfy the required minimum distance, Matérn II keeps one of the points to
increase the density of the resulting hard-core process.
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Thus, Matérn II requires to add an additional mark u(i) to each of the points x(i) of
the point process. In general, the marks are random numbers of a uniform distribution
[SKM95; Str10]. A point x(i) is retained in the hard-core point process, if it does not
overlap with the sphere of a point x(j) with a smaller mark u(j) < u(i). Similar to
Matérn I, each point is determined to be deleted or to be retained before the actual
thinning is executed.

Applying the Matérn II thinning to the predicted multi-object density of Figure 4.3b
results in the hard-core processes illustrated by Figure 4.5a. Compared to the result
of Matérn I thinning in Figure 4.4a, the particles of the two objects are not equally
well separated. However, the number of thinned particles (Figure 4.5b) is significantly
smaller than the number of thinned particles for Matérn I.
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(b) Deleted points.

Figure 4.5: Result of the application of Matérn II thinning to the predicted
multi-object particles depicted by Figure 4.3b.

Weight Adaption

A thinning of the predicted multi-object particles using Matérn I or II implies a
correlation of the spatial proximity of the objects and the predicted mean cardinality,
since the thinning effectively reduces the cardinality of the multi-object particles.
However, a correlation between spatial proximity and persistence of an object is only
appropriate in a small number of applications (e.g. a person getting on a vehicle).
Hence, a penalization of the thinned multi-object particles using the survival probability
pS(x(j)) is appropriate. Since the thinning of object x(j) contradicts the survival of
object x(j) in the prediction step of the SMC multi-object Bayes filter, the weight of a
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thinned multi-object particle is given by

w̃
(i)
+ = w

(i)
+ ·

∏
x∈Di

1− pS(x)
pS(x) , (4.18)

where the set Di denotes the set of thinned particles of the multi-object particle X(i).
Since pS(x) � 0.5 in most applications, (4.18) significantly reduces the weight of
thinned multi-object particles.

4.2.2 Social Force Model

In the early 1970’s, Henderson [Hen71] investigated the motion of pedestrians and
observed significant correlations with fluid dynamics. Using fluid dynamics corresponds
to a macroscopic formulation, i.e. it delivers quantities like e.g. the mean velocity of
a group and its density. An application of fluid dynamics to traffic simulations is
discussed in [GH75]. In [HM95], Helbing and Molnar proposed a microscopic model
for pedestrian dynamics, the Social Force Model, which is based on the approach of
Lewin [Lew51] and models behavioral changes using social forces. Within this model,
it is assumed that the behavior of a human changes based on the current environment
and its personal aims. The influences of the environment as well as the personal aims
are modeled using repellent and attractive forces. The model additionally assumes,
that each object wants to reach a specific destination on the shortest possible path,
which is given by a straight line between the current position and the destination
or by a polygon which avoids obstacles. Additionally, the model captures that an
object generally prefers to move with a desired velocity which results in a force vector
modeling the necessary acceleration or deceleration to reach this speed. The forces
of the social force model are transferable to other applications by an adaptation of
the occurring forces. An application to the automotive environment perception may
for example use the forces to keep the vehicles on their lanes and to keep a minimum
distance to other vehicles.

Set Based Weight Adaption

An application of the entire social force model to multi-object tracking is not possible
in general, since quantities like the destination or the desired velocity of an object are
usually not available. Thus, the proposed set based weight adaption uses only the
distances between the particles of a multi-object and the desired distances to other
objects.
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The repellent forces due to other objects are commonly modeled using exponential
functions [PESG09]. Consequently, the likelihood of a multi-object particle comprising
two particles s and t is given by

Λd(x(s), x(t)) =
{

0 if d(x(s), x(t)) < 2rp
1− exp

(
− (d(x(s),x(t))−2rp)2

2σ2
d

)
otherwise (4.19)

where rp denotes the radius of the circular objects and d(x(s), x(t)) denotes their
Euclidean distance. While the thinning methods in Section 4.2.1 use a hard distance
threshold, the likelihood (4.19) uses the exponential function with parameter σd to
obtain a smooth transition between impossible object states and the preferred inter-
object distance. Subsequently, the likelihood Λd is used to adapt the weight of the
multi-object particle X(i) using

w̃
(i)
+ = min

s=1,...,|X(i)|

(
min

t=1,...,|X(i)|,t6=s

(
Λd(x(s), x(t))

))
· w(i)

+ , (4.20)

i.e. the minimum likelihood of all possible pairs (s, t) is used to modify the weight.
Thus, the weight of a multi-object particle with a minimum distance d(x(s), x(t)) < 2rp
is set to zero, while the weight is unchanged in case of d(x(s), x(t))� 2rp.

Obviously, the set based weight adaption assigns a weight of w̃(i)
+ = 0 to all multi-object

particles which are deleted by the Matérn I thinning (see Figure 4.4b). However,
the weight of retained multi-object particles with a minimum distance d < 2rp + 3σd
between two of the points is reduced while w̃(i)

+ ≈ w
(i)
+ for d ≥ 2rp + 3σd. Using the

parameter σd = 0.05 m, Figure 4.6 shows all retained multi-object particles whose
weight is adapted to 0 < w̃

(i)
+ < 0.95 · w(i)

+ .

While the results of set based weight adaption and Matérn I thinning are identical
(except for the reduced weight of some retained multi-object particles), significant
differences arise in case of multi-object particles with larger cardinality: On the one
hand, the set based weight adaption completely removes invalid multi-object particles
by setting the weight to zero. On the other hand, the Matérn I thinning just removes
the colliding particles within the corresponding multi-object particles (and reduces
the weight if the weight adaption is applied).

Integration of Destinations

As mentioned above, the destination of an object is generally not known in multi-object
tracking applications. However, in some applications an imprecise knowledge about
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Figure 4.6: Retained particles of the set based weight adaption with an
adapted weight of 0 < w̃

(i)
+ < 0.95 · w(i)

+ . The dashed lines connect
the particles of a multi-object particle to illustrate the distance
between the two states.

possible destinations of the objects is available and may be used to improve the state
prediction in case of low measurement rates or occlusions. Although the integration
of destinations is not investigated in this thesis, an example for future research is
discussed in the following. Figure 4.7 depicts an example for the incorporation of
destinations in the context of automotive environment perception. Using the context
information given by the road network, there are three possible situations: The blue
car

• turns right after the beige car passed by,
• waits at the stop line until both cars passed by,
• turns left after the beige car passed by.

Obviously, a critical situation only arises if the driver of the blue car fails to notice the
red car and starts a left turn immediately behind the beige car. In this example, an
adapted social force model which incorporates the lane constraints and the multiple
destinations facilitates an improved state prediction for the blue car during the
occlusion. An improved prediction is expected to facilitate an earlier intervention of a
driver assistance system in case of the critical situation compared to a system using
standard motion models.
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Figure 4.7: Exemplary scenario with three cars (red, blue, beige) where the
integration of destinations is promising. Using the road network
information, the blue car is expected to turn left, turn right, or
to wait at the stop line. Obviously, the left turn may result in a
critical situation for the red and blue car.

4.3 Approximation of the Multi-Object Likelihood

The evaluation of the multi-object likelihood function is only possible for a small
number of tracks and measurements due to the combinatorial complexity and the
limited computation time. As mentioned in Section 4.1.3, the assumption that a
measurement is generated by at most one object is responsible for the exponential
complexity. By neglecting this assumption, the measurement to track associations at
each stage are independent of the associations at previous stages. Figure 4.8 illustrates
the corresponding modifications of the association tree. Since a measurement may
now be associated to more than one track, two additional nodes are added to the tree
(marked by dashed lines).

Using this approximation, the calculation of the multi-object likelihood (4.12) simplifies
to

g̃(Z|X+) = πC(Z)π(∅|X+) ·
n∏
i=1

1 +
m∑
j=1

pD

(
x

(i)
+

)
· g
(
zj |x

(i)
+

)
(

1− pD(x(i)
+ )
)
λcc(zj)

 , (4.21)

where πC(Z) and π(∅|X+) are given by (4.14) and (4.13). Equation (4.21) simply
multiplies the multi-object likelihoods for all particles i, where the value one in each
factor represents the possibility of a missed detection and the sum accumulates the
single-object likelihoods of all measurements for the current particle i.
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Figure 4.8: Approximation of the multi-object likelihood: Two additional
nodes (marked by red dashed lines) are added to the tree of
Figure 4.1 to model multiple associations.

Due to the additional nodes, the complexity of the approximate multi-object likelihood
(4.21) is linear in the number of objects as well as in the number of measurements
(O(mn)) and facilitates an application of the SMC multi-object Bayes filter to scenarios
with a higher number of tracks and measurements. Further, (4.21) allows for a
straightforward implementation using two for-loops.

4.3.1 Approximation Error

The approximation error of (4.21) depends on the uncertainty of the track to measure-
ment associations. Considering again the example depicted by Figure 4.8, it is apparent
that measurements with a high spatial likelihood for more than one object lead to a
large approximation error, e.g. the association hypothesis with θ(1) = 1 and θ(2) = 1.
However, the approximation error is negligible if each measurement has a high spatial
likelihood for at most one of the objects. In this case, the proposed approximation
handles the uncertainty due to several feasible measurements for each of the objects
equally well. Further, all additional hypotheses created by the approximation have
negligible weight.

If an application uses one of the models presented in Section 4.2 to incorporate
the dependencies between the motion of the extended objects, a minimum distance
between all objects of a multi-object particle is ensured. In this case, the approximation
directly depends on the ratio of the measurement noise to the object size. Figure
4.9 illustrates two objects of radius rp whose centers exactly keep the minimum
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Figure 4.9: Dependence of approximation error on the measurement noise to
object size ratio: two circular objects x(1) and x(2) with radius rp
and a Gaussian distributed measurement z with standard deviation
σz, where 3σz = rp.

distance. Additionally, a Gaussian distributed measurement z with measurement
noise covariance R = σ2

zI2 is shown, where I2 is the two dimensional identity matrix.
The standard deviation of the measurement noise is 3σz = rp which corresponds
to the limiting case that a measurement has a very small likelihood for both of the
objects. If 3σz < rp, at most one object may be located within the 3σz bound of
a measurement and the approximation error is negligible. However, in applications
with a measurement noise of 3σz > rp the approximation error becomes apparent
since the centers of more than one object may be situated within the 3σz bound of a
measurement.

4.3.2 Marginalization

As shown above, the approximation error is negligible if the object size to measurement
noise ratio is large enough. However, this assumption is obviously not met for all
applications and the approximate multi-object likelihood function (4.21) may lead to
a bias in the cardinality estimate if a measurement has a high spatial likelihood for
more than one particle within a multi-object particle.

In [ML08], the linear multi-target integrated probabilistic data association (LM-IPDA)
algorithm is proposed as an computationally efficient approximation of the JIPDA



72 Multi-Object Bayes Filter Incorporating Object Interactions

algorithm. Similar to the approximation of the multi-object likelihood in (4.21), the
LM-IPDA reduces the complexity by permitting the association of a measurement to
more than one track. In [ML08], other objects in the proximity of a track are used to
adapt the clutter distribution, i.e. the other objects are considered as scatterers.

The promising simulation results of the LM-IPDA encourage the application of a
similar approach to reduce the approximation error of (4.21). Hence, the probability
for assigning a measurement zj to an object x(i) is obtained using marginalization:

p(x(i)|zj) =
g(zj |x(i))∑n(i)
i=1 g(zj |x(i))

, (4.22)

where n(i) = |X(i)| and

n(i)∑
i=1

p(x(i)|zj) = 1. (4.23)

The approximation error of (4.21) is reduced by multiplying each track to measurement
association with the marginal probability p(x(i)|zj), i.e.

g̃m(Z|X+) = πC(Z)π(∅|X+) ·
n∏
i=1

1 +
m∑
j=1

pD

(
x

(i)
+

)
· g
(
zj |x

(i)
+

)
· p(x(i)|zj)(

1− pD(x(i)
+ )
)
λcc(zj)

 .

(4.24)

Compared to the approximate multi-object likelihood (4.21), which explicitly allows to
assign a measurement to more than one track, the marginalized multi-object likelihood
(4.24) reduces the likelihood of a track to measurement association in ambiguous
situations where a measurement has a high likelihood for more than one track. Thus,
the marginalized likelihood reduces the approximation error in applications where the
minimum distance between the objects does not ensure a negligible approximation error.
For 3σz � rp, the marginalized multi-object likelihood is identical to the approximate
multi-object likelihood, since there is only one track which has a significant likelihood
for a measurement zj .

4.3.3 Real-Time Implementation

The SMC multi-object Bayes filter allows for a parallel implementation of the prediction
and the update steps since the calculations for the individual multi-object particles
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are independent of each other. In contrast, a parallelization of the resampling step
is more challenging since it typically requires the weights of all particles1. Hence, a
graphics processing unit (GPU) is well suited for an efficient implementation of the
prediction and update steps of the filter.

In the author’s workshop paper [RDH11], the first real-time capable SMC implemen-
tation of the multi-object Bayes filter using a GPU is proposed. Within the CUDA
programming language [Nvi14], the usage of recursive functions is restricted. Thus, a
GPU implementation of the exact multi-object likelihood function (4.12) is challenging
since the enumeration of all possible associations is typically realized using recursive
functions. In contrast, the proposed approximations (4.21) and (4.24) of the multi-
object likelihood function facilitate a GPU implementation using two nested for loops.
The resampling step is realized as follows: First, the cumulative sum of the weight
vector is copied from the GPU to the CPU. Based on the weights, the resampling is
performed on the CPU and an index vector is generated. Finally, the index vector is
transferred to the GPU again and the multi-object particles are copied to the positions
determined by the index vector. In [RWW+13], the GPU implementation is shown
to be able to process the prediction and update step (including the track extraction)
for a scenario with up to seven objects in less than 40 ms on a Tesla C2075 GPU
(using N = 25000 multi-object particles). Since the sensors operate with 12.5 Hz, the
proposed implementation is real-time capable.

4.4 State Dependent Detection Probability

In most multi-object tracking algorithms, the detection probability is considered to be
state independent within the field of view (FOV) of the sensor. However, the detection
probability is often affected by static obstacles in the FOV, e.g. due to buildings or
bushes in automotive environment perception or tunnels in ground moving target
indicator (GMTI) applications [UK06]. In such situations, it is common to represent
the state dependent detection probability using a static map [HM11; UK06] or to
estimate the detection probability only based on the occupancy grid mapping approach
[TBF05]. Further, the detection of an object is also obscured by the clutter notch
and the minimum detectable velocity [KK01; UEW07; UK06] in GMTI applications.
Consequently, applications using state dependent detection probabilities enable the
use of ”negative” sensor information [Koc04], e.g. the missed detection of an object
in the proximity of an occluded area incorporates the information that the object is
probably located within the occluded area.

The incorporation of extended, tracked objects into the determination of a state
1An approach for a parallel implementation of the resampling step is e.g. given by [HKG10]



74 Multi-Object Bayes Filter Incorporating Object Interactions

dependent detection probability is far more complex, since a multi-object state includes
the uncertainty in the number of objects and their individual states. However, the
representation of the entire environment using multi-object particles facilitates a
straightforward determination of a state dependent detection probability since the
uncertainty about the number of objects and their state is represented by other
multi-object particles.

sensor
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sensor
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Figure 4.10: State dependent detection probability of three objects within
a multi-object particle. Grey areas indicate occluded parts of
the measurement space. Objects are inserted by means of rising
distance (a)-(c) and the area behind an object is indicated as
occluded when the next object is inserted.

Figure 4.10 illustrates a procedure to obtain an object individual detection probability
in case of a sensor with a radial measurement principle. First, it is necessary to sort
the objects by means of rising distance to the sensor. Afterwards, the closest object is
inserted into the map for the state dependent detection probability (Figure 4.10a).
Obviously, the detection probability of the closest object is not affected by other
objects. The detection probability of object x(2) in Figure 4.10b is affected by the area
which is occluded due to the existence of object x(1). In Figure 4.10b, the detection
probability depends on the detection principle of the sensor. On the one hand, x(2)

has a high detection probability if the sensor data preprocessing delivers detections for
partially occluded objects. On the other hand, a low detection probability is obtained
if the detection algorithm is not able to detect partially occluded objects. Finally,
object x(3) has a vanishing detection probability since it is located in the occluded
area behind x(1). A state dependent detection probability for the current situation
may obtained by averaging over the detection probability maps of all multi-object
particles.
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4.5 Adaptive Birth Density

In applications with diffuse birth densities, a huge amount of multi-object particles is
required for an adequate representation of the birth density. In [RCV10; RCVV12],
an adaptive birth intensity for the SMC implementation of the PHD and CPHD filter
is proposed which significantly reduces the required number of particles. The adaptive
birth intensity concentrates around the measurements with a small spatial likelihood
for the persisting particles within the filter.

Since each multi-object particle of the SMC multi-object Bayes filter represents a
possible multi-object state, an adaptive birth density has to be determined for each of
the multi-object particles. Using the exact multi-object likelihood function (4.12), the
contribution of a measurement to an updated multi-object particle at time k is given
by the association probability

rU,k(zj |Z,X+) =

∑
θ

1θ(j)
∏

i:θ(i)>0

pD

(
x

(i)
+

)
· g
(
zθ(i)|x

(i)
+

)
(

1− pD(x(i)
+ )
)
· λcc(zθ(i))∑

θ

∏
i:θ(i)>0

pD

(
x

(i)
+

)
· g
(
zθ(i)|x

(i)
+

)
(

1− pD(x(i)
+ )
)
· λcc(zθ(i))

. (4.25)

While the nominator contains only hypotheses θ which comprise an association of
measurement zj to any of the objects, the denominator contains all association hy-
potheses. For the approximate multi-object likelihood function (4.21), the association
probability of measurement zj is given by

rU,k(zj |Z,X+) =
πC(Z)π(∅|X+)ΛU (zj |Z,X+)

g̃(Z|X+) (4.26)

where the nominator is obtained by the recursion

ΛU (zj |Z,X+) = ΛU (zj |x
(1)
+ )

n∏
i=2

(
1 +

m∑
l=1

ΛU (zl|x(i))
)

+(
1 +

∑
z∈Z\{z

j
}

ΛU (zl|x
(i)
+ )
)

ΛU (zj |Z,X+\{x
(1)
+ }) (4.27)

with

ΛU (z |x+) =
pD
(
x+
)
· g
(
z |x+

)(
1− pD(x+)

)
λcc(z)

. (4.28)
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Obviously, the calculation of (4.26) is combinatorial. Hence, the association probability
is approximated by

rU,k(zj |Z,X+) ≈ 1
gmax

· max
x∈X+

g(zj |x), (4.29)

where gmax denotes the maximum value of the measurement likelihood g which is
usually obtained for z+ = z in case of Gaussian distributed measurements.

Similar to the birth process in Section 4.1.1, the number of new-born particles nB
per multi-object particle at time k + 1 is drawn from a Poisson distribution with a
mean value of λB. On the one hand, a measurement which is not associated to any
of the existing objects during the update at time k is likely to correspond to a new
born object or to the clutter process. On the other hand, a measurement which is
associated to an object in all hypotheses with a significant weight is not likely to
belong to a new born object. Hence, the probability that measurement zj is used to
create one of the nB new born objects at time k + 1 is given by

rB,k+1(zj) =
1− rU,k(zj)∑

ξ∈Zk

1− rU,k(ξ)
. (4.30)

Using the probabilities of (4.30), a sample of a uniform distribution may be utilized
to determine which measurement should be used to sample the state of a new born
object. The state of the new born object is finally drawn from a birth distribution
pB(x|z) which depends on the application, the measurement z , and the measurement
noise of the sensor. Obviously, for more than one new born object per multi-object
particle, the used measurements have to be distinct.

4.6 Track Extraction and Existence Estimation

Since the multi-object Bayes filter avoids an explicit data association by averaging over
all possible associations, the filter delivers an estimate for the multi-object posterior
but does not produce object tracks. In [Mah07a, pp. 497ff.], Mahler proposes two
Bayes-optimal multi-object state estimators, the marginal multi-object estimator and
the joint multi-object estimator, to determine the number of objects and the individual
object states. While the joint multi-object estimator jointly estimates the number of
objects and their states, the marginal multi-object estimator estimates the number of
objects N̂ using the cardinality distribution and subsequently determines the N̂ states.
In general, the joint multi-object estimator outperforms the marginal multi-object
estimator since the estimated mean cardinality may differ from the number of objects
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during object birth or in case of track existence probabilities which are significantly
smaller than one.

The track extraction scheme proposed in this section can be considered as an compu-
tationally efficient approximation of the joint multi-object estimator. The algorithm
consists of two parts: First, an adapted k-means clustering is applied which addition-
ally estimates the number of cluster centroids. Afterwards, the clustering result is
validated to obtain unique track IDs within each multi-object particle. The unique
track IDs additionally facilitate the determination of a track existence probability.

4.6.1 Particle Labeling

In order to simplify the track extraction, a label or track ID ` is appended to the
individual object states ([Mah07a, pp. 505–508], [MVSB06]). Using the notation of
the class of labeled RFS (see Section 3.3), a labeled multi-object particle is denoted by

X(i) =
{
x(1), . . . ,x(n)

}
(4.31)

where
x(i) =

{
x(i), `(i)

}
. (4.32)

The appended label information is neglected in the prediction and update steps of the
SMC multi-object Bayes filter to prevent the impact of incorrect clustering results
on the performance of the filter. However, attaching the label information to each
of the particles significantly simplifies the extraction of individual tracks and their
trajectories. The labels allow for an accurate initialization of the clustering algorithm
and ensures that the same label is attached to an object in successive time steps. In
order to simplify the differentiation between persisting and new born particles, the
label `B = −1 is assigned to each new born particle. Similar to the class of labeled
RFSs, the labels within a multi-object particle X(i) are required to be distinct.

4.6.2 Track Existence Probability

The representation of the multi-object state using labeled multi-object particles X(i)

allows for the calculation of an object individual existence probability r(`) if the labels
within each multi-object particle are distinct. Similar to the existence probability of
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an object in a δ-GLMB RFS, the existence probability of track ` is given by

r(`) =
ν∑
i=1

w(i)1L(X(i))(`). (4.33)

where L(X(i)) is defined by (3.21) and simply returns the set of labels of the multi-
object particle. While the existence probability (3.35) of a track in a δ-GLMB RFS is
obtained by accumulating the weights of all hypotheses (I, ξ) with ` ∈ I, the existence
probability (4.33) accumulates the weight of all multi-object particles ν which contain
a particle with label `.

4.6.3 k-Means Clustering

The clustering of the particles is performed using a modified version of the k-means
clustering [Bis06]. Instead of a random initialization of the cluster centroids, the
proposed algorithm uses the clustering result of the previous time step for initialization
and automatically adjusts the number of clusters. Algorithm 4.1 illustrates a complete
cycle of the proposed clustering algorithm.

The clustering algorithm uses an internal member variable k = |L| to store the previous
number of clusters where |L| denotes the number of track labels. If k = 0, the first
centroid is initialized using a randomly chosen particle of a non-empty multi-object
particle. If the clustering algorithm is already initialized and the previous scene was
not empty (k > 0), the centroids of the clusters are initialized using the clustering
result of the previous time step. Hence, the updated centroid of a cluster l ∈ L is
given by the mean value of all particles with label l:

x̂(l) = 1
ν(l)

ν∑
i=1

|X(i)|∑
j=1

δl(`(i,j)) · x(i,j) (4.34)

where

ν(l) =
ν∑
i=1

1L(X(i))(l). (4.35)

In order to handle disappearing objects, all clusters l with ν(l) = 0 are removed using
the removeEmptyClusters() method in Algorithm 4.1.

After initialization, the k-means algorithm is applied to update the k centroids
(lines 9–14). First, all particles are assigned to their respective centroid using the
findAssignment() method which performs a nearest neighbor association based on the
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Algorithm 4.1 ClusterParticles()
1: if k = 0 then
2: addCentroid(x)
3: else
4: adjustCentroids()
5: removeEmptyClusters()
6: end if
7: while finished = 0 do
8: finished = 1
9: while converged = 0 do
10: converged = findAssignment()
11: if converged = 0 then
12: adjustCentroids()
13: end if
14: end while
15: [dmax, x] = getMaxDistanceToCentroid()
16: if dmax > dsplit then
17: addCentroid(x)
18: finished = 0
19: end if
20: if minCentroidDist > getMinCentroidDistance() then
21: mergeClusters()
22: finished = 0
23: end if
24: end while

Euclidean distance. If the labels of all particles are unchanged by findAssignment(),
the k-means clustering converges. Otherwise, the new labels of the particles are
exploited to calculate the updated state of the centroids using (4.34).

In the standard implementation of the k-means algorithms, the findAssignment()
method is based on the Euclidean distance between the current centroids and the
particles. However, an incorporation of the state dependent detection probability
is required to obtain realistic clustering results for occluded objects. Consider the
following scenario for illustration: Two objects enter an occluded area, one from the
left side, the other one from the right side. Figure 4.11a shows the standard clustering
result for the two objects after several time steps. Since the clustering is initialized at
every cycle with the result of the previous time step, the particles are still separated
by a hard boundary. If the size of the occluded area is large enough to allow the
objects to pass each other, a clustering result like the one in Figure 4.11b meets one’s
expectations since it is not clear if the objects switched their position in the mean
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time or not. The result in Figure 4.11b is easily obtained by retaining the labels of
occluded particles within the findAssignment() method.

occluded area

sensor

obstacle

(a) Standard clustering using Euclidean
distance.

occluded area

sensor

obstacle

(b) No update of labels for particles lo-
cated in an occluded area.

Figure 4.11: Example for the clustering result several measurement cycles
after the two objects entered the occluded area: clustering with
(b) and without (a) using the information about the detection
probability.

Obviously, the k-means algorithm assigns all new born particles to any of the already
existing clusters. This behavior is desired, since a new born particle in one of the
multi-object particles may correspond to an already existing cluster. Assuming that
the new born particle does not belong to any of the existing clusters, an additional
procedure is required which initializes a new centroid for this particle. Hence, the
getMaxDistanceToCentroid() method is used to determine the maximum distance
of any new born particle to the assigned centroid. If the distance exceeds a given
threshold dmax, an additional centroid is initialized using the state vector x of the
new born particle. Obviously, the threshold dmax depends on the application and
especially on the measurement noise. In case of Gaussian measurements, it is common
to use the standard deviation σz of the measurements to choose the threshold, e.g.
dmax = 3σz.

In Sections 4.2 and 4.3, all objects are assumed to have a circular shape with ap-
proximately the same diameter. Thus, the object extension limits the minimum
distance between any of the centroids. If the distance between two centroids is smaller
than a minimum distance minCentroidDist, the respective clusters are merged using
mergeClusters().

Obviously, if a new cluster is added or two existing clusters are merged, the k-means
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algorithm as well as the subsequent adding or merging of clusters have to be repeated
until none of them changes the clustering result any more. In order to prevent endless
loops, it is recommended to ensure that a maximum number of iterations is not
exceeded.

4.6.4 Set Based Validation of the Clustering Result

The k-means clustering of the previous section assigns a label to each of the particles
but does not ensure unique labels within a multi-object particle. The set based
validation of the k-means clustering results is performed using Algorithm 4.2.

Algorithm 4.2 SetBasedClusterValidation()
1: maxDimension = getDimensionOfLargestSet()
2: if k < maxDimension then
3: addCentroidsSet()
4: while converged = 0 do
5: converged = findAssignment()
6: if converged = 0 then
7: adjustCentroids()
8: end if
9: end while
10: end if
11: validateClusterResults()
12: adjustCentroids()

Obviously, the estimated number of clusters k has to be at least as large as the
dimension of the largest multi-object particle. If k is smaller, the largest multi-object
particle is used to initialize additional centroids and the clustering result is obtained
by an additional run of the k-means algorithm.

After ensuring the required number of clusters, the labels within each multi-object
particle are verified using the validateClusterResults() method in order to detect
duplicate assignments of a label. If the labels within a multi-object particle are not
unique, a global nearest neighbor algorithm is applied to find the optimal assignment of
the particles to the existing centroids. Since validateClusterResults() possibly changes
the labels of the particles, the position of the centroids has to be updated again to
achieve the final clustering result.
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4.7 Discussion

The proposed approximation of the multi-object likelihood function facilitates a
real-time implementation of the SMC multi-object Bayes filter. Further, the set
representation of the objects within the multi-object Bayes filter is used to enable the
incorporation of dependencies between the objects in the prediction step which is not
possible in the standard multi-object tracking algorithms introduced in Section 2.4.
Using the distance constraints of the thinning and the set based weight adaption, an
approximation of the obtained error, based on the ratio of the measurement noise
to the object size, is possible. The set based track extraction algorithm additionally
allows for the determination of an object individual existence probability which is
desired in a large amount of applications.

However, the representation of n objects within a multi-object particle requires to
draw samples from a space with dimension n · |x|, where |x| is the dimension of the
state vector of a single object. Hence, the maximum number of objects within the
SMC multi-object Bayes filter is limited due to the required number of samples for an
adequate representation of the multi-object posterior.

The application of an individual SMC multi-object Bayes filter to each group of
objects generally provides the possibility to track a higher number of objects. Since
the group compositions are time varying, an additional approach for splitting and
merging groups is required. The labeled multi-Bernoulli (LMB) filter proposed in the
next chapter addresses this problem based on the notation of labeled RFSs.



Chapter 5

Multi-Object Tracking Using
Labeled Random Finite Sets

The absence of an explicit data association in the SMC multi-object Bayes filter as
well as in the approximate multi-object filtering algorithms introduced in Section 3.7
requires an additional track extraction algorithm in the post-processing to obtain
trajectories of the individual objects. Especially in SMC implementations of the PHD
and CPHD filter, the track extraction is computationally expensive and error-prone.

The class of labeled random finite sets (see Section 3.3) enables the estimation of object
trajectories since a label ` is appended to each of the state vectors and unique labels
are ensured within a realization of a labeled RFS X. In [VV13b], the δ-generalized
labeled multi-Bernoulli (δ-GLMB) distribution is utilized to derive the δ-GLMB filter
which implicitly creates individual object tracks.

In Section 5.1, the δ-generalized labeled multi-Bernoulli (δ-GLMB) filter is summarized
and the issues concerning its computational complexity are discussed. Afterwards,
the labeled multi-Bernoulli (LMB) filter and its implementation using SMC and GM
methods are proposed. Additionally, a grouping procedure which significantly reduces
the computational complexity of the LMB filter is introduced. Further, an adaptive
birth density, a track extraction scheme, and the multi-target generalized NIS for the
LMB are proposed.
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5.1 The δ-Generalized Labeled Multi-Bernoulli
Filter

In [VV13b], the δ-GLMB RFS is shown to be a conjugate prior [RS68] with respect to
the update of the multi-object Bayes filter using the standard multi-object likelihood
function (3.38). Since a δ-GLMB RFS is also closed under the prediction using the
multi-object motion model given by (3.41), a δ-GLMB representation of the multi-
object state allows for an analytic implementation of the multi-object Bayes filter, the
δ-GLMB filter.

As mentioned in Section 3.3.3, the δ-GLMB filter uses a specific version of the δ-GLMB
RFS, where the discrete space Ξ represents the history of track label to measurement
associations. In this case, the multi-object density of the δ-GLMB RFS in (3.31)
simplifies to

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))
[
p(ξ)
]X

, (5.1)

where p(I,ξ) is abbreviated by p(ξ). The abbreviation is possible since the set of
track labels I is implicitly contained in the history of track label to measurement
associations ξ. Within a hypothesis (I, ξ), only tracks with a label ` ∈ I exist and the
history of track label to measurement associations is given by ξ ∈ Ξ. Assuming that
the associations between track labels and measurements at time k are given by an
association map θk, the history of track label to measurement associations for a set I
is given by concatenating all association maps up to time k:

ξ = (θ1, ..., θk). (5.2)

In the prediction step to time k + 1, measurements up to time k have been associated
to the tracks. Thus, the association maps are available up to θk. In the update step at
time k + 1, the track label to measurement associations for time k + 1 are explicitly
used and the history of association maps consequently contains associations up to
time θk+1. The normalized weight ω(I,ξ) can be interpreted as the probability of
hypothesis (I, ξ). The spatial distribution of a track ` depends on all associations up
to the current time step and is given by p(ξ)(x, `). Obviously, a history of association
maps ξ may be inconsistent with a set of track labels I, e.g. if one of the association
maps does not contain an association for one of the tracks. Hence, inconsistent pairs
(I, ξ) have zero weight.

Figure 5.1 exemplarily illustrates the δ-GLMB representation of the multi-object
posterior where a total number of four hypotheses is used to represent the uncertainty
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about the true multi-object state. In general, the δ-GLMB distribution facilitates
several hypotheses for the same set of track labels, if the track label to measurement
association is ambiguous.

w = 0.01 w = 0.2

w = 0.74 w = 0.05

Figure 5.1: Visualization of the δ-GLMB representation of the multi-object
posterior using an example of a vehicle tracking application.

5.1.1 Prediction

In [VV13b], the δ-GLMB RFS is shown to be closed under the prediction using the
standard multi-object motion model (3.41), i.e. the prediction of a δ-GLMB distributed
multi-object prior from time k to time k + 1 is again a δ-GLMB RFS. Hence, if the
multi-object prior at time k is given by (5.1), the predicted multi-object distribution
is given by the δ-GLMB RFS

π+(X) = ∆(X)
∑

(I+,ξ)∈F(L+)×Ξ

w
(I+,ξ)
+ δI+(L(X))

[
p

(ξ)
+

]X
. (5.3)

Since the multi-object motion model incorporates object persistence and object birth,
the predicted set of track labels I+ consists of the set of surviving tracks L = I+ ∩ L
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and the set of new born tracks J = I+ ∩ B. The label space B for new born targets
at the current time step has to be disjoint with the label space L, i.e. L ∩ B = ∅.
Consequently, the label space of the predicted set of track labels I+ is given by
L+ = L ∪ B.

The state of a persisting track ` ∈ L with association map ξ is predicted using the
single-object motion model f+(x|·, `) and the state dependent survival probability
pS(x, `). Thus, the predicted state is given by

p
(ξ)
S (x, `) =

〈
pS(·, `)f+(x|·, `), p(ξ)(·, `)

〉
η

(ξ)
S (`)

(5.4)

where the normalization constant

η
(ξ)
S (`) =

∫ 〈
pS(·, `)f+(x|·, `), p(ξ)(·, `)

〉
dx (5.5)

corresponds to the state independent survival probability of track `. The predicted set
of track labels I+ may be obtained from all sets I which include the set L = I+ ∩ L
of surviving tracks. In order to calculate the weight of the predicted set I+, the
probability that a track ` /∈ I+ disappears during prediction is required:

q
(ξ)
S (`) =

〈
qS(·, `), p(ξ)(·, `)

〉
. (5.6)

Here, qS(x, `) = 1−pS(x, `) is the state dependent probability that a track disappears.
Using (5.5) and (5.6), the weight of a persisting set of track labels L is given by

w
(ξ)
S (L) = [η(ξ)

S ]L
∑
I⊆L

1I(L)[q(ξ)
S ]I−Lw(I,ξ). (5.7)

Similar to other RFS based tracking algorithms, the δ-GLMB filter uses a birth
distribution in the prediction step. Following [VV13b], GLMB birth distributions,
which cover both labeled Poisson and labeled multi-Bernoulli distributions, are appli-
cable to the δ-GLMB filter. In this work, only labeled multi-Bernoulli (LMB) birth
distributions

πB(X) =
{
r

(`)
B , p

(`)
B

}
`∈B

(5.8)

are considered where the number of new born tracks |B|, the initial existence proba-
bilities r(`)

B and the spatial distributions p(`)
B depend on the application. Using (3.20),

the expected number of new born objects is N̂B =
∑
`∈B r

(`)
B and (3.26) yields the
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probability for a subset J ∈ B of new born tracks:

wB(J) =
∏

i∈B(M)

(
1− r(i)

B

)∏
`∈J

1B(M)(`)r
(`)
B

1− r(`)
B

. (5.9)

Using (5.7) and (5.9), the weight of a predicted hypothesis (I+, ξ) is given by

w
(I+,ξ)
+ = wB(I+ ∩ B)w(ξ)

S (I+ ∩ L) (5.10)

and the predicted spatial distribution of a track with label ` follows

p
(ξ)
+ (x, `) = 1L(`)p(ξ)

S (x, `) + 1B(`)pB(x, `). (5.11)

Using the inclusion functions 1L(`) and 1B(`), (5.11) returns either the spatial distri-
bution of the persisting track (` ∈ L) or the spatial distribution of a new born track
(` ∈ B). The history of association maps is not affected by the prediction.

Figure 5.2 illustrates the δ-GLMB filter prediction for a hypothesis (I, ξ). Due to
appearance and disappearance of objects, the predicted set of track labels I+ differs
from I in all but one of the predicted hypotheses.

Figure 5.2: Example for the δ-GLMB prediction of a single hypothesis (I, ξ):
prior hypothesis at the top, possible predicted hypotheses at the
bottom.
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5.1.2 Update

In [VV13b], the δ-GLMB RFS is shown to be a conjugate prior with respect to the
update of the multi-object Bayes filter using the multi-object likelihood function, i.e.
the multi-object posterior of a δ-GLMB RFS is again a δ-GLMB RFS. However, due
to the association uncertainties in the update step, the number of hypotheses increases.
Consequently, a truncation of the distribution is required to ensure computational
tractability. The multi-object posterior of the predicted δ-GLMB RFS (5.3) is given
by the δ-GLMB RFS

π(X|Z) = ∆(X)
∑

(I+,ξ)∈F(L+)×Ξ

∑
θ∈Θ

w(I+,ξ,θ)(Z)δI+(L(X))
[
p(ξ,θ)(·|Z)

]X
, (5.12)

where Θ denotes the space of track label to measurement associations θ : L+ →
{0, 1, ..., |Z|}, where 0 represents the missed detection. Since a measurement is
assumed to be generated by at most one object, the property θ(i) 6= θ(j) > 0 has to
be fulfilled for all i 6= j. Observe that the posterior sets of track labels are equivalent
to the predicted sets of track labels, i.e. I = I+.

Depending on the association map θ, a track ` is either assumed to be updated by a
measurement zθ(`) (θ(`) > 0) or to be miss detected (θ(`) = 0). The updated spatial
distribution of a track ` is given by

p(ξ,θ)(x, `|Z) =
p

(ξ)
+ (x, `)ψZ(x, `; θ)

η
(ξ,θ)
Z (`)

(5.13)

where the normalization constant

η
(ξ,θ)
Z (`) =

〈
p

(ξ)
+ (·, `), ψZ(·, `; θ)

〉
(5.14)

corresponds to the likelihood of the track label to measurement association. The
generalized measurement likelihood ψZ(x, `; θ) in (5.13) is defined by

ψZ(x, `; θ) = δ0(θ(`))qD(x, `) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
(5.15)

and consequently incorporates both missed detection and measurement update. Here,
the state dependent detection probability of the track is denoted by pD(x, `) and the
probability of a missed detection is qD(x, `) = 1− pD(x, `). Further, κ(z) = λcc(z)
represents the intensity function of the Poisson distributed clutter process with a
mean number of λc clutter measurements and g(zθ(`)|x, `) is the spatial likelihood of
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the measurement zθ(`) given a track with label `.

The updated weight of a hypothesis (I, ξ, θ) is finally obtained using the association
likelihoods ηZ :

w(I,ξ,θ)(Z) =
δθ−1({0:|Z|})(I)w(I,ξ)

+ [η(ξ,θ)
Z ]I∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)
+ [η(ξ,θ)

Z ]I
. (5.16)

Here, the denominator normalizes the weights to ensure that they sum up to one.

Figure 5.3 illustrates the δ-GLMB filter update for a hypothesis (I+, ξ). The hypothesis
on the left illustrates the correct association (two objects are detected, one object is
not detected, and the two additional measurements are considered as false alarms).
Due to the different track label to measurement associations, each image in the bottom
row corresponds to a distinct posterior hypothesis (I, ξ).

Figure 5.3: Example for the δ-GLMB update of a predicted hypothesis (I+, ξ)
shown in the upper row. Bottom row illustrates three possible
track label to measurement associations where red stars depict
the measurements and blue circles represent missed detections.

5.1.3 Discussion

An analytical implementation of the δ-GLMB filter is possible using both GM and
SMC methods. In [VV11; VV12; VV13b], first simulation results of the GM and SMC
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implementations are presented which indicate that the δ-GLMB filter significantly
outperforms the CPHD filter. Since the prediction and update steps of the δ-GLMB
filter are combinatorial, the number of hypotheses increases exponentially. Thus, it is
necessary to prune hypotheses with insignificant weights. A straight-forward solution
is to evaluate all hypotheses and subsequently prune the ones with weights w < ϑ
where ϑ is the pruning threshold. A computationally more efficient solution is the
use of Murty’s algorithm [Mur68] (see Section 2.4.3, page 17), which is also used in
MHT implementations to reduce the computational complexity. Murty’s algorithm
can be applied in the prediction step to find the M most likely predicted sets I+ for a
set I and in the update step to find the M best association maps θ for a hypothesis
(I, ξ). The main benefit of Murty’s algorithm is that it provides the M best solutions
without evaluation of all possible solutions. In the prediction step, the truncation
can also be performed using the k shortest paths algorithm [Epp98; Yen71], which is
computationally more efficient than Murty’s algorithm.

Although the truncation using Murty’s algorithm significantly reduces the computa-
tional costs, an implementation of the δ-GLMB filter is only possible for a limited
number of objects. Consider the following example for illustration: Assume a prior
set of track labels I with cardinality |I| = 20. If the predicted hypotheses have to
represent that up to five objects out of I may disappear, a total number of

Nhyp =
20∑
i=15

(
20
i

)
= 21700

hypotheses is required to cover all possible predicted sets I+. Hence, significant
cardinality changes in combination with a high number of objects considerably increase
the required number of hypotheses and consequently the computational complexity of
the δ-GLMB filter.

At a conceptual level, the δ-GLMB filter resembles the track-oriented multi-hypothesis
tracking (MHT). Within the measurement update, both algorithms require the com-
putation of data associations. Further, the multi-object likelihood function only differs
from the MHT likelihood function by a constant factor in case of a constant detection
probability [Mah07a, pp. 422ff.]. However, the prediction step of the δ-GLMB filter dif-
fers, since it generates multiple sets of predicted tracks for a set of posterior tracks and
explicitly adds new tracks using a birth model. The main benefit of the δ-GLMB filter
is that no additional techniques like track or hypothesis scoring for track maintenance
are required since the problem is completely cast into a fully probabilistic framework.
Hence, the δ-GLMB filter proposed in [VV13b] is the first Bayes optimal approach for
multi-object detection and tracking since it estimates both states and identities of the
objects and provides a benchmark for approximate multi-object tracking algorithms.
The probabilistic framework allows for further approximations along the way and still
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enables the characterization of the obtained error.

5.2 The Labeled Multi-Bernoulli Filter

The concept behind the labeled multi-Bernoulli (LMB) filter is the representation
of the predicted and posterior multi-object densities using an LMB RFS. The main
advantage of an LMB representation compared to a δ-GLMB representation is the
linear increase of the number of components in the number of objects. Hence, an LMB
approximation is expected to significantly reduce the computational cost in scenarios
with a large number of objects.

The idea to represent the predicted and posterior multi-object densities using the
parameters of a multi-Bernoulli RFS was already considered in the derivation of the
multi-target multi-Bernoulli (MeMBer) filter [Mah07a] and the CB-MeMBer filter
[VVC09]. Although the CB-MeMBer filter drastically reduces the cardinality error of
the MeMBer filter, the approximations within the derivation of the update step still
require a considerably high detection probability together with a relatively low false
alarm rate to prevent a bias in the cardinality estimate. The aim of the proposed
LMB filter is to provide a significantly better tracking accuracy compared to the
CB-MeMBer filter due to a more precise update step and the integrated estimation of
the track identity.

5.2.1 Prediction

In the LMB filter, the multi-object posterior is assumed to follow an LMB RFS with
state space X and label space L which is given by

π(X) = ∆(X)w(L(X))pX , (5.17)

where

w(L) =
∏
i∈L

(
1− r(i)

)∏
`∈L

1L(`)r(`)

1− r(`) , (5.18)

p(x, `) = p(`)(x). (5.19)
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Further, the multi-object birth density is an LMB RFS with state space X and label
space B which is given by

πB(X) = ∆(X)wB(L(X)) [pB ]X , (5.20)

where

wB(I) =
∏
i∈B

(
1− r(i)

B

)∏
`∈L

1B(`)r(`)
B

1− r(`)
B

, (5.21)

pB(x, `) = p
(`)
B (x). (5.22)

Obviously, the labels ` ∈ B of new born objects have to be distinct to ensure unique
track labels. Further, the sets L and B have to be disjoint, i.e. L ∩ B = ∅.

Although the prediction of a GLMB or a δ-GLMB RFS is closed under the prediction
using the Chapman Kolmogorov equation [VV13b], it does not imply that an LMB
RFS is also closed under the prediction. However, using the property that an LMB
RFS is a special case of a GLMB RFS, the prediction of an LMB RFS is given by the
GLMB RFS

π+(X+) = ∆(X+)w+(L(X+))
[
p+
]X+ (5.23)

with state space X and finite label space L+ = L ∪ B where

w+(I+) = wB(I+ ∩ B)wS(I+ ∩ L), (5.24)
p+(x, `) = 1L(`)p+,S(x, `) + 1B(`)pB(x, `), (5.25)

p+,S(x, `) =
〈
pS(·, `)f+(x|·, `), p(·, `)

〉
ηS(`) , (5.26)

ηS(`) =
∫ 〈

pS(·, `)f+(x|·, `), p(·, `)
〉
dx, (5.27)

wS(L) = [ηS ]L
∑
I⊇L

[1− ηS ]I−Lw(I), (5.28)

pS(x, `) denotes the state dependent survival probability, and f+(x|·, `) is the single-
object Markov transition density. Equations (5.23)–(5.28) directly correspond to the
prediction equations of the δ-GLMB filter but, due to the LMB prior, the history of
association maps ξ is missing. Following the discussion in Section 3.3.2 and Section
3.3.3, the sum over all hypotheses (I, ξ) in (5.3) reduces to the single term in (5.23).

Proposition 5.1. The predicted multi-object density (5.23) is the GLMB representa-
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tion of the LMB RFS

π+ =
{(
r

(`)
+ , p

(`)
+

)}
`∈L+

=
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L
∪
{(
r

(`)
B , p

(`)
B

)}
`∈B

, (5.29)

where

r
(`)
+,S = ηS(`)r(`), (5.30)

p
(`)
+,S =

〈
pS(·, `)f+(x|·, `), p(·, `)

〉
/ηS(`), (5.31)

pS(x, `) denotes the state dependent survival probability, f+(x|·, `) is the single-object
Markov transition density, and ηS(`) is given by (5.27).

Proof. Since the GLMB RFS (5.23) comprises only a single component, (5.23) is an
LMB RFS if the weight (5.24) follows the weight of an LMB RFS. Obviously, the
weights wB(I+ ∩ B) of the new born objects follow an LMB RFS since they are given
by (5.21). Thus, if the predicted weights wS(L) in (5.28) can be rewritten in the LMB
form

wLMB
S (L) =

∏
i∈L

(
1− r(i)ηS(i)

)∏
`∈L

1L(`)r(`)ηS(`)
1− r(`)ηS(`)

= (1− r(·)ηS)L
(

r(·)ηS
1− r(·)ηS

)L
, (5.32)

the predicted GLMB RFS (5.23) is equivalent to (5.29).

The weight wS(L) denotes the probability that all tracks with label ` ∈ L of a superset
I ⊇ L survive while all tracks of the supersets with a label ` /∈ L disappear. By
enumerating the labels L = {`1, ..., `M}, the weight wS(L) can be rewritten in the
following form using (5.18):

wS(L) =
∑
I⊇L

(1− r(·))LηLS
(1− ηS)I

(1− ηS)L

(
r(·)

1− r(·)

)I
. (5.33)

Next, the equality of (5.32) and (5.33) is shown by induction. Since I = L is the only
superset of L = L, (5.33) simplifies in this case to

wS(L) =
(
ηSr

(·)
)L

.

Obviously, this result is equivalent to the result of (5.32). Having proven the equality
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for L = L, the inductive step is to proof that the proposition for a set L = {`1, ..., `n}
implies the validity of the proposition for a set L\{`n}. For notational convenience
the summands of (5.33) are abbreviated by

f (L)(I) , (1− r(·))LηLS
(1− ηS)I

(1− ηS)L

(
r(·)

1− r(·)

)I
(5.34)

in the following. For any set L\{`n}, the weight wS(L) is given by

wS(L\{`n}) ,
∑

I⊇L\{`n}
f (L\{`n})(I) (5.35)

=
∑
I⊇L

[
f (L\{`n})(I) + f (L\{`n})(I\{`n})

]
, (5.36)

where the second equality follows from the fact, that only the sets I ⊇ {`1, ..., `n}
and the sets I\{`n} contain the set L = {`1, ..., `n−1}. Using (5.34), the summands
in (5.36) can be expressed as functions of f (L)(I):

f (L\{`n})(I) = 1− ηS(`n)
ηS(`n) f (L)(I) = r(`n) − r(`n)ηS(`n)

r(`n)ηS(`n)
f (L)(I), (5.37)

f (L\{`n})(I\{`n}) = 1− r(`n)

r(`n)ηS(`n)
f (L)(I). (5.38)

The weight of the set L\{`n} can be rewritten in terms of the weight of the set L by
applying (5.37) and (5.38) to (5.36):

wS(L\{`n}) = 1− r(`n)ηS(`n)
r(`n)ηS(`n)

∑
I⊇L

f (L)(I). (5.39)

Representing the weight of the set L using the proposition (5.32), the weight of the
set L\{`n} simplifies to

wS(L\{`n}) =
(

1− r(`n)ηS(`n)
r(`n)ηS(`n)

)
(1− r(·)ηS)L

(
r(·)ηS

1− r(·)ηS

)L
= (1− r(·)ηS)L

(
r(·)ηS

1− r(·)ηS

)L\{`n}
.

Thus, the weight wS(I+ ∩ L) in (5.24) follows an LMB RFS and (5.23) is an LMB
RFS.
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Since the prediction using (5.29) is equivalent to (5.23), an LMB RFS is closed under
the prediction using the standard multi-object motion model. Further, the LMB
prediction is identical to the prediction step of the unlabeled CB-MeMBer filter in
Section 3.7.3, if the component indices in (3.60) are interpreted as track labels.

5.2.2 Update

The standard multi-object measurement model assumes that a measurement is gener-
ated by at most one object. Consequently, the association of a measurement m to a
track `n (i.e. θ(`n) = m) within a set of track labels I+ implies that the measurement
may not be associated to any other track (i.e. θ(`i) 6= m ∀ i 6= n) within the same
association map. Hence, the possible track to measurement associations depend on
all tracks of the set I+ and consequently the tracks are not independent of each
other any more. Since an LMB RFS is defined as the union of independent Bernoulli
components, an LMB RFS is not a conjugate prior with respect to the update using
the multi-object likelihood function. Consequently, an LMB approximation of the
multi-object posterior density is required.

Proposition 5.2. If the predicted multi-object density follows an LMB RFS with
state space X, finite label space L+, and parameter set π+ = {(r(`)

+ , p
(`)
+ )}`∈L+

, the
LMB RFS

π(X|Z) = {(r(`), p(`))}`∈L+
(5.40)

with parameters

r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`) (5.41)

p(`)(x) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(θ)(x, `) (5.42)

and

w(I+,θ)(Z) =
δθ−1({0:|Z|})(I+)w+(I+)[η(θ)

Z ]I+∑
(I+,θ)∈F(L+)×ΘI+

δθ−1({0:|Z|})(I+)w+(I+)[η(θ)
Z ]I+

, (5.43)

p(θ)(x, `|Z) =
p+(x, `)ψZ(x, `; θ)

η
(θ)
Z (`)

, (5.44)

η
(θ)
Z (`) =

〈
p+(·, `), ψZ(·, `; θ)

〉
, (5.45)
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ψZ(x, `; θ) = δ0(θ(`))qD(x, `) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
(5.46)

exactly matches the first moment, i.e. the PHD, of each individual track and conse-
quently the PHD of the multi-object posterior density. Here, ΘI+ denotes the space of
mappings θ : I+ → {0, 1, . . . , |Z|} where θ(i) 6= θ(j) > 0 implies i = j, i.e. the map-
ping ensures that one measurement is generated by at most one object. Further, pD(x, `)
denotes the state dependent detection probability of the track, qD(x, `) = 1− pD(x, `)
is the missed detection probability, κ(z) = λcc(z) represents the intensity function of
the Poisson distributed clutter process with a mean number of λc clutter measurements,
and g(zθ(`)|x, `) is the spatial likelihood of the measurement zθ(`) given a track with
label `.

Proof. Using (3.36), the predicted LMB RFS (5.29) can be equivalently rewritten in
δ-GLMB form:

π+(X+) = ∆(X+)
∑

I+∈F(L+)

w+(I+)δI+(L(X+))
[
p+
]X+ . (5.47)

Since a δ-GLMB RFS is a conjugate prior with respect to the update of the multi-
object Bayes filter using the multi-object likelihood function, the multi-object posterior
is again a δ-GLMB RFS. Due to the LMB representation of the tracks, the history
of association maps is not available any more in (5.47). Hence, the δ-GLMB update
(5.12) introduced in Section 5.1.2 simplifies to

π(X|Z) = ∆(X)
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)δI+(L(X))
[
p(θ)(·|Z)

]X
(5.48)

and the measurement updated weights w(I+,θ)(Z) and spatial distributions p(θ)(·|Z) are
given by (5.43) and (5.44) which correspond to the update equations of the δ-GLMB
filter if no history of association maps is available.

Since the LMB filter requires the representation of the multi-object posterior distribu-
tion by an LMB RFS, an approximation of the measurement updated δ-GLMB RFS
(5.48) is necessary. An intuitive approximation is the representation of the posterior
distribution using its PHD which corresponds to the first statistical moment. Using
(3.33), the PHD of (5.48) is given by

v(x) =
∑

(I+,θ)∈F(L+)×Θ

∑
`∈L+

p(θ)(x, `)
∑
L⊆L+

1L(`)w(I+,θ)(Z)δI+(L)
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=
∑
`∈L+

∑
(I+,θ)∈F(L+)×Θ

w(I+,θ)(Z)1I+(`)p(θ)(x, `). (5.49)

As introduced in Section 3.3.3, the unlabeled PHD of a δ-GLMB distribution comprises
the PHDs of the individual tracks. Thus, the PHD of track ` is given by

v(`)(x) =
∑

(I+,θ)∈F(L+)×Θ

w(I+,θ)(Z)1I+(`)p(θ)(x, `). (5.50)

The integral over the PHD of an individual track ` may be interpreted as the existence
probability of the track `. Using (3.35) and (5.50), the existence probability of a track
` is given by

r(`) =
〈
v(`), 1

〉
=

∑
(I+,θ)∈F(L+)×Θ

w(I+,θ)(Z)1I+(`), (5.51)

and its spatial distribution is obtained by normalization:

p(`)(x) = v(`)(x)〈
v(`), 1

〉 = 1
r(`)

∑
(I+,θ)∈F(L+)×Θ

w(I+,θ)(Z)1I+(`)p(θ)(x, `). (5.52)

Following (3.19), the PHD of the unlabeled version of (5.40) is

vLMB(x) =
∑
`∈L+

r(`)p(`)(x) =
∑
`∈L+

〈
v(`), 1

〉 v(`)(x)〈
v(`), 1

〉 =
∑
`∈L+

v(`)(x). (5.53)

which matches the PHD (5.49) of the full multi-object posterior. The matching PHDs
of the distributions comprise identical mean cardinalities, i.e. both distributions
deliver the same estimate for the number of objects. Further, the proposed LMB
approximation preserves the spatial distribution of each track.

The main difference between the LMB and the δ-GLMB filter is the representation of
the data association uncertainties. While the δ-GLMB filter represents the uncertainty
using hypothesis (I, ξ), the LMB filter captures the association uncertainty within the
spatial distributions of the individual tracks. Compared to the δ-GLMB filter, the
LMB approximation loses information about the cardinality distribution due to the
approximation of the multi-object posterior by its PHD. The cardinality distribution
of (5.40) is given by the cardinality distribution of a multi-Bernoulli RFS (3.18) which
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is unimodal with a variance of (Lemma A.1, Appendix A)

σ2
MB =

M∑
i=1

(1− r(i)) · r(i). (5.54)

In contrast, the cardinality distribution (3.32) of a δ-GLMB RFS is not restricted to
a specific distribution. Thus, the cardinality distribution may be multi-modal and the
variance may be lower or higher than the one of the LMB approximation.

While the approximations in the derivation of the CB-MeMBer filter update require a
high detection probability and a relatively low clutter density, the LMB approximation
using the first moment of the full multi-object posterior is not restricted to scenarios
which fulfill these restrictions. Thus, the LMB filter is expected to significantly
outperform the CB-MeMBer filter in scenarios with low detection probability and
high clutter density. Further, the less drastic approximations in the derivation of the
LMB filter update promise more accurate estimation results without a bias in the
cardinality estimate at the cost of a higher computational complexity.

5.2.3 Approximation Error

The following example illustrates the obtained error due to the approximation of a
δ-GLMB RFS by an LMB RFS with matching PHD. Assume a scenario comprising
two tracks with labels `1 and `2 whose spatial distributions are represented by a
Gaussian distribution. Figure 5.4 shows an arbitrary δ-GLMB distribution of the two
tracks which represents all possible hypotheses and their corresponding weights. The
upper plot illustrates the hypothesis for X = ∅, the two plots in the middle show the
two hypotheses for cardinality |X| = 1, and the hypothesis for cardinality |X| = 2 is
represented by the plot at the bottom. Using (3.32), the cardinality distribution of
the δ-GLMB RFS in Figure 5.4 is

ρ(n) =

 0.2
0.3
0.5

n = 0,
n = 1,
n = 2,

which corresponds to a mean cardinality of N̂ = 1.3 with a variance of σ2
DGLMB = 0.61.

The approximation of the δ-GLMB distribution depicted by Figure 5.4 using an
LMB RFS with matching PHD and mean cardinality results in the tracks `1 and
`2 shown in Figure 5.5. The spatial distributions and the existence probabilities of
the tracks are calculated using (5.52) and (5.51). Due to the matching PHD, the
spatial distribution of each track is not affected by the approximation. However, the
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Figure 5.4: δ-GLMB representation of two tracks with labels `1 and `2.

cardinality distribution of the approximate LMB process follows (3.18) and is given by

ρ(n) =

 0.12
0.46
0.42

n = 0,
n = 1,
n = 2.

Obviously, the LMB approximation of a δ-GLMB RFS implicates a loss of information
which results in a different cardinality distribution. As expected due to the matching
PHD, the mean cardinality N̂ = 1.3 of the LMB approximation matches the mean
cardinality of the original δ-GLMB distribution. In this example, the variance of the
estimated number of objects decreases to σ2

LMB = 0.45 due to the LMB approximation.
However, it is also possible that the variance increases due to the approximation.

Using (3.37), the LMB approximation may be equivalently rewritten in δ-GLMB form.
The obtained δ-GLMB RFS is illustrated in Figure 5.6. The cardinality distribution of
the δ-GLMB form is equivalent to the one of the LMB distribution and consequently
differs from the original cardinality distribution. In contrast to the original δ-GLMB
process in Figure 5.4, the spatial distribution of each track ` is identical in each of the
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Figure 5.5: LMB approximation of the δ-GLMB distribution shown in Fig-
ure 5.4. Both tracks are represented by a mixture of Gaussian
distributions and a corresponding existence probability.

hypotheses depicted by Figure 5.6. The spatial distribution of a track is given by the
weighted sum of its distributions in the original δ-GLMB process. Both effects are
due to the approximation of the original δ-GLMB by an LMB.

5.3 Implementation of the Labeled Multi-Bernoulli
Filter

Although the proposed labeled multi-Bernoulli (LMB) filter significantly reduces the
computational complexity of the prediction step, the representation of the predicted
LMB RFS in δ-GLMB form still requires a huge amount of hypotheses in scenarios
with a large number of objects. However, the LMB representation allows for principled
approximations which significantly reduce the computational complexity. Figure 5.7
conceptually illustrates the proposed implementation of the LMB filter.

In order to reduce the complexity of the update step, a grouping procedure partitions
the predicted LMB density in groups of closely spaced objects and their associated
measurements. Using a sufficiently large gating value in the grouping procedure,
the groups can be considered to be statistically independent. Hence, the LMB filter
update may be applied to each group instead of the entire multi-object state which
significantly reduces the required number of hypotheses. The LMB filter update of
each group consists of three steps: First, the LMB RFS has to be represented in
δ-GLMB form. Afterwards, the full δ-GLMB update is performed which results in a
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Figure 5.6: δ-GLMB representation of the LMB tracks shown in Figure 5.5.

δ-GLMB posterior. Finally, the δ-GLMB posterior is approximated by an LMB RFS
which exactly matches the first multi-object moment. Since the groups are considered
to be statistically independent, the posterior LMB RFS for the entire multi-object
state is simply given by the union of the LMB RFSs of the N groups. Afterwards,
the track management is applied to extract the track estimates and to prune tracks
with a small existence probability.

The following subsections provide full details of the LMB filter implementation as well
as explicit equations for the sequential Monte-Carlo (SMC) and Gaussian mixture (GM)
implementation. The notation of the multi-object densities in Figure 5.7 corresponds
to the notation used in the following subsections.
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Figure 5.7: LMB filter schematic (cf. [RVVD14]).

5.3.1 Prediction

The prediction step of the LMB filter directly implements the result of Section 5.2.1.
Hence, if the multi-object posterior is an LMB RFS with label space L and parameter
set

π =
{(
r(`), p(`)

)}
`∈L

,

the predicted LMB distribution with label space L+ = L ∪ B is given by

π+ =
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L
∪
{(
r

(`)
B , p

(`)
B

)}
`∈B

.

Here, the first parameter set corresponds to the surviving Bernoulli tracks while the
second parameter set represents new born objects. While the existence probability
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and the spatial distribution of each surviving Bernoulli track is modified using the
multi-object motion model, the label of a surviving track is unchanged. The labels of
the new born tracks have to be distinct and the parameters of the distribution depend
on the application.

Sequential Monte Carlo Implementation

In an SMC implementation of the LMB filter, the posterior spatial distribution p(`) of
a track ` is represented by a set of weighted samples δx(`,j)(x):

p(`) =
ν∑
j=1

w(`,j)δx(`,j)(x).

Using (5.30) and (5.31) of Proposition 5.1, the predicted existence probability and
the predicted spatial distribution of each track are obtained by:

r
(`)
+,S = r(`)

ν∑
j=1

w(`,j)pS(x(`,j)), (5.55)

p
(`)
+,S(x) =

ν∑
j=1

w
(`,j)
+,S δx(`,j)

+,S
(x). (5.56)

If the predicted samples

x
(`,j)
+,S ∼ f+(·|x(`,j)), ∀ j = 1, ..., ν

can be drawn directly from the distribution (e.g. for Gaussian and uniform transition
densities f+(·|x(`,j)), the weights are unchanged during prediction. Otherwise, the
predicted samples

x
(`,j)
+,S ∼ q

(`)(·|x(`,j)), ∀ j = 1, ..., ν

have to be drawn from a proposal density q(`)(·|x) which fulfills the condition

p
(`)
+,S(x) > 0⇒ q(`)(·|x) > 0 ∀ x ∈ X.
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Then, the importance weights w̃(`,j)
+,S of the predicted samples are given by

w̃
(`,j)
+,S =

w(`,j)f+

(
x

(`,j)
+,S |x(`,j)

)
pS(x(`,j))

q(`)
(
x

(`,j)
+,S |x(`,j)

)
and the normalized importance weights

w
(`,j)
+,S =

w̃
(`,j)
+,S∑ν

j=1 w̃
(`,j)
+,S

are used to weight the particles within the predicted spatial distribution p(`)
+,S(x).

The Bernoulli components for new born tracks are obtained using the birth model.
The existence probability r

(`)
B of each component as well as the number of birth

components are parameters of the birth model. The spatial distribution of the birth
components is approximated by a set of weighted samples:

p
(`)
B (x) ≈

νB∑
j=1

w
(`,j)
B δ

x
(`,j)
B

(x). (5.57)

If the birth density p(`)
B (x) follows a Gaussian or a uniform distribution, the samples

may be directly drawn from the distribution. Otherwise, the samples are obtained
using a proposal density b(`)(x) which fulfills the condition

p
(`)
B (x) > 0⇒ b(`)(x) > 0 ∀ x ∈ X.

Hence, the samples for the spatial distribution of the birth components and their
corresponding weights are given by

x
(`,j)
B ∼ b(`)(·) ∀ j = 1, ..., νB ,

w̃
(`,j)
B = pB(x(`,j)

B )
b(x(`,j)

B )
,

w
(`,j)
B = w̃

(`,j)
B∑νB

j=1 w̃
(`,j)
B

.

Finally, the predicted LMB distribution is represented by the union of surviving and
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new born tracks:

π+ =
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L
∪
{(
r

(`)
B , p

(`)
B

)}
`∈B

. (5.58)

Gaussian Mixture Implementation

In a GM implementation, the posterior probability densities p(`) of all labeled Bernoulli
tracks ` ∈ L are given by a mixture of Gaussians

p(`)(x) =
J(`)∑
j=1

w(`,j)N
(
x; x̂(`,j),P(`,j)

)
,

where x̂(`,j) is the mean value of each Gaussian component and P(`,j) is the according
estimation error covariance. Similar to the GM implementation of the CB-MeMBer
filter [VVC09], the weights w(`,j) have to be normalized. The GM implementation
requires each object to follow a linear Gaussian process model

f+(x|ξ) = N
(
x; Fξ,Q

)
using the state transition matrix F and the process noise covariance Q. Additionally,
the survival probability is assumed to be state independent, i.e.

pS(x) = pS . (5.59)

Using the derivations in Appendix B.2, the predicted existence probability (5.30) and
the predicted spatial distribution (5.31) of a track ` in the GM implementation of the
LMB filter are given by

r
(`)
+,S = r(`)pS , (5.60)

p
(`)
+,S(x) =

J(`)∑
j=1

w(`,j)N
(
x; x̂(`,j)

+ ,P(`,j)
+

)
, (5.61)

where

x̂
(`,j)
+ = Fx̂(`,j),

P(`,j)
+ = FP(`,j)FT + Q.

Thus, each of the J (`) Gaussian distributions of a track ` is predicted using the standard
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Kalman filter equations and the existence probability of the track is reduced by the
multiplication with a survival probability pS < 1. An application of the proposed
prediction step to slightly non-linear motion models is possible using the EKF or
the UKF implementation of the Kalman filter. The derivation of the corresponding
prediction equations is analog to the ones for the standard Kalman filter [BF88; JU04].
The explicit equations are identical to the ones of the CB-MeMBer filter given by
[Vo08, pp. 210ff.].

The number of new born tracks |B| as well as the according existence probabilities
r

(`)
B , ` ∈ B, are application dependent. The GM implementation requires the spatial
distributions of the new born Bernoulli tracks to be comprised of a mixture of Gaussian
distributions

p
(`)
B =

JB∑
j=1

w
(`,j)
B N

(
x; x̂(`,j)

B ,P(`,j)
B

)
, (5.62)

where the number of Gaussian components JB, the states x̂(`,j)
B , and the according

estimation error covariances P(`,j)
B are given by the birth model. The expected number

of new born objects at time k is given by the sum of the existence probabilities r(`)
B ,

i.e.

N̂B =
∑
`∈B

r
(`)
B ,

and the predicted LMB RFS (5.29) is again given by the union of the surviving and
new born tracks.

5.3.2 Measurement Updates

In order to calculate the posterior existence probability (5.41) as well as the posterior
spatial distribution (5.42) of the individual tracks in Proposition 5.2, the update step
of the LMB filter requires the innovations of each track ` with all measurements
zθ(`). This subsection proposes explicit forms for SMC and GM implementation of
the likelihoods

η
(θ)
Z (`) =

〈
p+(·, `), ψZ(·, `; θ)

〉
(5.63)
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and the measurement updated posterior distributions

p(θ)(x, `|Z) =
p+(x, `)ψZ(x, `; θ)

η
(θ)
Z (`)

, (5.64)

given by (5.45) and (5.44), respectively. The obtained likelihoods are essential for
the grouping procedure in Section 5.3.3 and for the calculation of the weights of
the hypotheses (5.43) in Section 5.3.4. Thus, the likelihoods for all all association
hypotheses are required, while the calculation of the updated posterior distribution is
only necessary for association hypotheses which are actually used in the filter update
in Section 5.3.4.

Sequential Monte Carlo Implementation

The predicted spatial distribution of each track ` in the SMC implementation of the
LMB filter is represented by a set of weighted samples:

p
(`)
+ (x) =

ν(`)∑
j=1

w
(`,j)
+ δ

x
(`,j)
+

(x).

The likelihood (5.45) for a track label to measurement association θ(`) > 0 is given by

η
(θ)
Z (`) = 1

κ(zθ(`))

ν(`)∑
j=1

w
(`,j)
+ pD

(
x

(`,j)
+

)
g
(
zθ(`)|x

(`,j)
+

)
, (5.65)

where g(zθ(`)|·) is the spatial likelihood of the measurement zθ(`) conditioned on the
jth particle of track `, pD(·) is the state dependent detection probability, and κ(·)
is the intensity of the Poisson clutter process. Given an association θ(`) > 0, the
updated spatial distribution (5.44) of a track ` is

p(θ)(x, `|Z) =
ν(`)∑
j=1

w(`,j,θ)(Z)δx(`,j)(x), (5.66)

where

w(`,j,θ)(Z) =
1

κ(z
θ(`)) · w

(`,j)
+ pD

(
x

(`,j)
+

)
g
(
zθ(`)|x

(`,j)
+

)
η

(θ)
Z (`)

,

x(`,j) = x
(`,j)
+ .
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The likelihood for a missed detection of track `, i.e. θ(`) = 0, is given by

η
(θ)
Z (`) =

ν(`)∑
j=1

w
(`,j)
+ qD(x(`,j)), (5.67)

where qD(x(`,j)) = 1 − pD(x(`,j)) is the state dependent probability of a missed
detection. For θ(`) = 0, the updated spatial distribution (5.44) of track ` follows

p(θ)(x, `|Z) =
ν(`)∑
j=1

w(`,j,θ)(Z)δx(`,j)(x), (5.68)

where

w(`,j,θ)(Z) =
qD(x(`,j))w(`,j)

+

η
(θ)
Z (`)

, (5.69)

x(`,j) = x
(`,j)
+ . (5.70)

Observe, that the state dependent missed detection probability affects the weights of the
particles. In case of a state independent missed detection probability qD(x(`,j)) = qD,
the posterior weight (5.69) of each particle matches the predicted weight since the
missed detection probability is canceled out. Consequently, the predicted and the
updated spatial distribution are equivalent in this case:

p(θ)(x, `|Z) ≡ p(`)
+ (x).

Gaussian Mixture Implementation

In a GM implementation of the LMB filter, the predicted spatial distribution of a
track ` is a mixture of Gaussians:

p
(`)
+ (x) =

J
(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j)

+ ,P(`,j)
+

)
.

In order to simplify notations, the measurement matrix H and the measurement noise
R are assumed to be constant. Similar to the GM implementations of the PHD,
CPHD, and CB-MeMBer filters, the detection probability is assumed to be state
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independent, i.e.

pD(x) = pD. (5.71)

The derivations of the proposed update equations in this subsection are given in
Appendix B.3.

The likelihood for the assignment of measurement zθ(`) to track ` is given by

η
(θ)
Z (`) = pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
(5.72)

where the innovation covariance S(`,j) and the predicted measurement z(`,j)
+ are

calculated using the standard Kalman filter equations

S(`,j) = HP(`,j)
+ HT + R, (5.73)

z
(`,j)
+ = Hx̂(`,j)

+ (5.74)

and κ(·) is the intensity of the Poisson distributed false alarm process. The posterior
spatial distribution for the update of track ` with measurement zθ(`) is given by

p(θ)(x, `|Z) =
J

(`)
+∑
j=1

w(`,j,θ)(Z)N
(
x; x̂(`,j,θ),P(`,j)

)
(5.75)

where the posterior weight of each Gaussian component j follows

w(`,j,θ)(Z) =
1

κ(z
θ(`))pDw

(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
η

(θ)
Z (`)

(5.76)

and the posterior mean value and estimation error covariance are obtained using the
Kalman filter equations

x̂(`,j,θ)(Z) = x̂
(`,j)
+ + K(`,j)

(
zθ(`) − z

(`,j)
+

)
, (5.77)

K(`,j) = P(`,j)
+ HT

[
S(`,j)

]−1
(5.78)

P(`,j) = P(`,j)
+ −K(`,j)S(`,j)

[
K(`,j)

]T
. (5.79)

An application of the proposed measurement update equations to slightly non-linear
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motion models is possible using the EKF or the UKF implementation of the Kalman
filter. The derivation of the EKF and the UKF measurement update is straight-forward
and resembles the CB-MeMBer filter equations given by [Vo08, pp. 210ff.].

The likelihood for the association of track ` to a missed detection, i.e. θ(`) = 0,
corresponds to the missed detection probability:

η
(θ)
Z (`) = qD, (5.80)

where qD = 1 − pD. Due to the state independent missed detection probability,
the posterior spatial distribution of the track corresponds to the predicted spatial
distribution and is given by

p(θ)(x, `|Z) =
J

(`)
+∑
j=1

w(`,j,θ)(Z)N
(
x; x̂(`,j,θ),P(`,j)

)
, (5.81)

where

w(`,j,θ)(Z) = w
(`,j)
+ , (5.82)

x̂(`,j,θ)(Z) = x̂
(`,j)
+ , (5.83)

P(`,j) = P(`,j)
+ . (5.84)

5.3.3 Gating and Grouping

Although the LMB prediction facilitates the direct application of the full δ-GLMB
update, the calculation of the update step is only feasible in scenarios with a small
number of objects. However, the LMB representation of the predicted multi-object
density enables a partitioning of the LMB parameters into mutually exclusive subsets
which are obtained using an additional partitioning of the set of measurements. The
partitioning of the measurements is performed using a standard gating procedure.
Using sufficient gate sizes during partitioning, the obtained groups of tracks and
measurements have insignificant influence on each other and facilitate a parallel
update. Observe that the proposed grouping procedure requires birth distributions
with moderate spatial uncertainties to prevent huge partitions. Hence, uniform
birth densities over the complete state space contradict with the proposed grouping
procedure and lead to a complexity of the LMB filter update which is similar to the
one of the δ-GLMB filter since all tracks are within one partition. In case of a uniform
birth density, an adaptive birth density (see Section (5.3.6)) may be used to obtain a
meaningful grouping result.
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Gating

The objective of the gating procedure is to provide a set of feasible measurements Z(`)

for each track ` where a feasible measurement has a non-zero spatial likelihood g(z |x(`))
for track `. For notational convenience, the set of measurements Z = {z1, . . . , zm} is
enumerated by M = {1, . . . ,m} where m = |Z|. The set M(`) ⊆M represents the set
of measurements Z(`) which are located within the gate of track `.

In Kalman filter implementations, the Mahalanobis distance (MHD) is commonly
used for gating (see Section 2.4.1). Within the GM implementation of the LMB filter,
the spatial distribution of each track is represented by a mixture of Gaussians. A
conservative strategy is to calculate the minimum MHD

d2
MHD(`) , min

j∈J(`)

[(
zθ(`) − z

(`,j)
+

)T
S(`,j)

(
zθ(`) − z

(`,j)
+

)]
(5.85)

over all Gaussian components j of a track `, where the innovation covariance S(`,j)

and the predicted measurement z(`,j)
+ are given by (5.73) and (5.74), respectively.

Hence, a measurement zθ(`) is assumed to be within the gate of track ` if the condition
d2

MHD(`) < ϑ is met for any of the Gaussian components J (`). In scenarios with low
detection probabilities, this conservative strategy may result in unnecessarily large
gates since the gating procedure is dominated by the Gaussian components with low
weights and huge spatial uncertainties which correspond to several successive missed
detections. In such scenarios, adaptive gating procedures which incorporate the weight
of the Gaussian components in the gating threshold [MD12] may be used to reduce
the influence of unlikely Gaussian components to the gating result.

In an SMC implementation, the gating for a track to measurement association θ(`) is
performed using the following inequality:

ν(`)∑
j=1

w
(`,j)
+ g

(
zθ(`)|x

(`,j)
+

)
> ϑSMC (5.86)

where ϑSMC is the gating threshold. If (5.86) is met, the measurement zθ(`) is assumed
to be within the gate of track `. An alternative solution is the approximation of the
spatial distribution by a mixture of Gaussians using the expectation maximization
(EM) algorithm [DLR77]. The obtained mixture of Gaussians facilitates the usage of
the MHD based gating procedure (5.85) for SMC implementations.
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Grouping

The purpose of the grouping procedure is to obtain groups of tracks which share at least
one measurement. The principle of the grouping procedure is illustrated in Figure 5.8.
Obviously, if no measurement is located within the gating distance of a track, a group
comprising a single track and no measurement is obtained. Further, a measurement is
not necessarily contained in any of the groups. Thus, measurements with a vanishing
likelihood for all tracks are assigned to the set of not assigned measurements M0.

−1,000−750 −500 −250 0 250 500 750 1,000
−1,000

−750

−500

−250

0

250

500

750

1,000

x [m]

y
[m

]

Figure 5.8: Grouping result (dashed rectangles) of the proposed partitioning
scheme. Tracks are illustrated by red squares, measurements by
blue stars.

The grouping procedure partitions the set of predicted track labels L+ = L ∪ B into
N groups using

L+ =
N⋃
n=1

L(n)
+ .

A track label may only be contained in one of the partitions, i.e. n 6= m implies
L(n)

+ ∩ L(m)
+ = ∅. The partitions L(n)

+ are obtained by an additional partitioning of
the received measurements into the set of not assigned measurements M0 and the
sets of measurements for the N partitions of track labels. The partitioning of the
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measurements is consequently given by

M = M0 ∪
N⋃
n=1

M(n)

where n 6= m ≥ 1 implies M(n) ∩M(m) = ∅. Finally, a grouping G(n) is defined by

G(n) =
(
L(n)

+ ,M(n)
)
. (5.87)

Obviously, there are several approaches to obtain the groupings G(n). One solution is
the clustering approach proposed in [DB93] which performs a clustering decomposi-
tion of the gating matrix in order to obtain subproblems with a smaller number of
measurements and tracks. The approach used in this work is based on the sets of
measurements within the gate of a track. Using the set representation significantly
reduces the computational load in case of sparse gating matrices, since it only requires
the calculation of the intersecting set of two measurement sets instead of comparing
complete rows of the gating matrix.

The set based calculation of the groupings proceeds as follows: First, using the result
of the gating in Section 5.3.3, a grouping for each LMB component ` is initialized
using

G(`) =
(
{`} ,M(`)

)
(5.88)

where M(`) is the set of measurements within the gate of track `. Obviously, the
obtained groupings do not fulfill the requirements, since the property M(n)∩M(m) = ∅
is not ensured for all n 6= m. Thus, groupings which share at least one measurement
have to be merged using

G(i) = G(i) ∪
{
G(j) : M(i) ∩M(j) 6= ∅

}
, (5.89)

where the merging of two groupings i and j is defined by

G(i) ∪ G(j) =
(
L(i)

+ ∪ L(j)
+ ,M(i) ∪M(j)

)
. (5.90)

After merging a grouping G(j) with grouping G(i), the grouping G(j) is deleted. The
merging procedure terminates if the sets of measurements for all groupings are disjoint.

Using the resulting number of N groupings, the predicted LMB distribution may also
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be partitioned into

π+ =
N⋃
i=1

{(
r

(`)
+,i, p

(`)
+,i

)}
`∈L(i)

+

(5.91)

where the subsets or groups of Bernoulli tracks are abbreviated by

π
(i)
+ =

{(
r

(`)
+,i, p

(`)
+,i

)}
`∈L(i)

+

(5.92)

in the following.

5.3.4 Group Updates

δ-GLMB Representation of the Predicted LMB RFS

The update of the LMB filter requires the representation of the predicted LMB density
in δ-GLMB form. Thus, the predicted LMB density (5.92) of each group i has to
be rewritten in the corresponding δ-GLMB form (5.47) in order to allow for the
application of the δ-GLMB update. For a grouping G(i) with the corresponding set of
track labels L(i)

+ , the predicted δ-GLMB density is given by

π
(i)
+ (X̃(i)

+ ) = ∆(X̃(i)
+ )

∑
I+∈F(L(i)

+ )

w
(I+)
+,i δI+(L(X̃(i)

+ ))
[
p+
]X̃(i)

+ (5.93)

where the weight of each set of track labels I+ follows

w
(I+)
+,i =

∏
j∈L(i)

+

(
1− r(j)

+

) ∏
`∈I+

1L(i)
+

(`)r(`)
+

1− r(`)
+

and the multi-object state X̃(i)
+ is defined by

X̃(i)
+ =

{
x : L(x) ∈ L(i)

+ ∀ x ∈ X
}
.

The conversion of an LMB to a δ-GLMB distribution facilitates a straightforward
parallelization since the parameters of the predicted δ-GLMB density for each grouping
i may be calculated independently.

Section 5.2.3 already showed an example of representing an LMB RFS in δ-GLMB
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form. In this example, the hypotheses of the δ-GLMB distribution are enumerated
in a brute-force way, i.e. a hypothesis is generated for all possible combinations of
the predicted labels L(i)

+ and at least one hypothesis is generated for each cardinality
n = 0, 1, . . . , |L(i)

+ |. Obviously, the brute-force approach is only feasible for small |L(i)
+ |

since the number of hypotheses per cardinality n follows the binomial coefficient

C
|L(i)

+ |
n =

|L(i)
+ |!

n!(|L(i)
+ | − n)!

and the total number of hypotheses is given by 2|L
(i)
+ |. Since the number of hypotheses

grows exponentially in the number of track labels, the group based conversion signifi-
cantly reduces the number of hypotheses required for the δ-GLMB representation.

Although the grouping procedure in Section 5.3.3 is intended to obtain groups with a
small number of track labels |L(i)

+ |, it does not ensure tractable group sizes. Experi-
mental results showed that the brute-force conversion is only suitable for groups with
|L(i)

+ | . 10. However, the threshold is highly dependent on the compute capabilities
and the number of groups. Hence, an approximate δ-GLMB representation is required
to ensure that a maximum number of hypotheses is not exceeded during conversion.
An intuitive approximation is a truncation of the δ-GLMB distribution which preserves
the hypotheses I+ with the highest weights w(i)

+ (I+). The obtained approximation
error of the truncation is negligible if the number of hypotheses is sufficient to repre-
sent all hypotheses with significant weights. The truncation may be realized using
the k-shortest path algorithm [Epp98; Yen71]. An alternative to the approximation
using the k-shortest path algorithm is to sample the desired amount of hypotheses.
Algorithm 5.1 illustrates the sampling of a predicted hypothesis I+. Obviously, the
algorithm has to be repeated until the desired amount of unique hypotheses is obtained.
A subsequent validation of the nth sampled hypothesis using

I
(n)
+ 6= I

(j)
+ ∀ j < n

is required since the sampling procedure does not ensure unique hypotheses.

Algorithm 5.1 Hypothesis Sampling
1: I+ = ∅;
2: for ` ∈ L(i)

+ do
3: sample u ∼ U(0, 1);
4: if u ≤ r(`)

+ then
5: I+ = I+ ∪ {`};
6: end if
7: end for
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δ-GLMB Update

The predicted δ-GLMB distributions π(i)
+ (X̃(i)

+ ), i = 1, . . . , N, facilitate the parallel
computation of the update step for each grouping i. Using the predicted δ-GLMB
RFSs (5.93), the posterior δ-GLMB RFS of each grouping i is obtained using the
δ-GLMB update equation (5.48):

π(i)(X̃(i)|Z(i)) = ∆(X̃(i))
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

w(I+,θ)(Z(i))δI+(L(X̃(i)))
[
p(θ)(·|Z(i))

]X̃(i)

.

(5.94)

Due to the grouping procedure, only the subset Z(i) of measurements has to be
considered for the update of X̃(i). Hence, the track to measurement associations are
given by the mapping θ : L(i)

+ → {0} ∪M(i) where θ(i) = θ(j) > 0 implies i = j. The
posterior weight for the update of a set of track labels I+ using an association map θ
is given by

w(I+,θ)(Z(i)) =
δθ−1({0∪M(i)})(I+)w(i)

+ (I+)[η(θ)
Z(i) ]I+∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

δθ−1({0∪M(i)})(I+)w(i)
+ (I+)[η(θ)

Z(i) ]I+
. (5.95)

Since a mapping θ only contains track to measurement associations for the current set
of measurements Z(i), the association likelihood and the measurement updated spatial
distributions may be equivalently rewritten using the entire set of measurements Z:

η
(θ)
Z(i)(`) = η

(θ)
Z (`),

p(θ)(x, `|Z(i)) = p(θ)(x, `|Z).

Thus, the likelihood and the updated spatial distributions for given associations are
already given by the results in Section 5.3.2.

In order to obtain the posterior existence probability (5.41) and the posterior spatial
distribution (5.42) of each LMB track, the weights w(I+,θ) of the hypotheses have to
be evaluated. The weight of all possible association hypotheses may be calculated
using an association tree (see Figure 4.1 in Section 4.1.2). Following the discussion
in Section 4.1.3, the complexity of the evaluation of all association hypotheses grows
exponentially and an evaluation of all hypotheses is only possible for small sets of
track labels I+ and a small number of measurements |Z(i)|. Thus, the complexity of
the calculation directly depends on the result of the grouping procedure.
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In [VV13b], the usage of Murty’s algorithm [Mur68] is proposed to truncate the
posterior distribution (5.94). Murty’s algorithm facilitates the evaluation of the k(i)

most significant hypotheses for grouping i without calculating the weights of all possible
hypotheses. Murty’s algorithm starts with finding the best association map θ for a set
of track labels I+ using one of the optimal assignment algorithms introduced in 2.4.2,
e.g. the Hungarian method [Kuh55]. Based on the best association map, additional
association maps are obtained by removing a track to measurement association of
the best association map as an assignment possibility. A detailed example of Murty’s
algorithm is given in [BP99, p. 346ff.]. The complexity of Murty’s algorithms is only
cubic [MSC97] which is significantly smaller than the complexity for evaluating the
entire association tree.

Similar to the implementation of the δ-GLMB filter in [VV13b], the number of
evaluated association maps k(I+) per set of track labels I+ is chosen to be proportional
to the predicted weight w(I+)

+,i :

k(I+) =
⌈
w

(I+)
+,i · k

(i)
⌉

(5.96)

where k(i) is the total number of calculated hypotheses for group i. The cost matrix for
a predicted set I+ ∈ F(L(i)

+ ) containing n track labels and m = |Z(i)| measurements is
given

C
(I+)
Z(i) =


η̃

(1)
Z (`1) η̃

(2)
Z (`1) · · · η̃

(m)
Z (`1) η̃

(0)
Z (`1) · · · η̃

(0)
Z (`1)

η̃
(1)
Z (`2) η̃

(2)
Z (`2) · · · η̃

(m)
Z (`2) η̃

(0)
Z (`2) · · · η̃

(0)
Z (`2)

...
...

. . .
...

...
. . .

...
η̃

(1)
Z (`n) η̃

(2)
Z (`n) · · · η̃

(m)
Z (`n) η̃

(0)
Z (`n) · · · η̃

(0)
Z (`n)

 , (5.97)

where

η̃
(i)
Z (`n) = − log

(
w

(i)
+ (I+) · η(θ(`n)=i)

Z (`n)
)
.

Observe that the cost matrix has n = I+ rows (one for each track label) and m+ n
columns, where the first m columns represent the association of a track label `n to a
measurement j = 1, . . . ,m whereas the additional n columns are required to be able
to assign each track label to a missed detection.

Using the cost matrix and Murty’s algorithm, the cost of the lth best track label to
measurement assignment θl is given by

c
(I+)
Z(i)

(
θl
)

=
|I+|∑
i=1

C
(I+)
Z(i)

(
i, θl(`i)

)
(5.98)
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which corresponds to the hypothesis with the lth best weight

w̃(I+,θ
l)(Z(i)) = exp

(
−c(I+)

Z(i)

(
θl
))
. (5.99)

The posterior weight of an association hypothesis θl is finally obtained by normalizing
(5.99) using the weight of the k best associations:

w(I+,θ
l)(Z(i)) = w̃(I+,θ

l)(Z(i))∑
I+∈F(L(i)

+ )

k(I+)∑
j=1

w̃(I+,θ
j)(Z(i))

. (5.100)

Labeled Multi-Bernoulli Approximation

As introduced in Section 5.2.2, the measurement updated δ-GLMB distributions have
to be approximated by LMB RFSs in order to allow for the LMB recursion. Thus, the
posterior δ-GLMB RFSs π(i)(·|Z(i)) of all groups G(i), i = 1, ..., N , are approximated
by

π(i)(·|Z(i)) ≈ π̃(i)(·|Z(i)) =
{(
r(`), p(`)

)}
`∈L(i)

+

.

The existence probability r(`) and the spatial distribution p(`) of each track ` are
calculated according to (5.41) and (5.42). As discussed in Section 5.2.2, the LMB
approximation matches the δ-GLMB RFS with respect to the unlabeled PHD which
incorporates a matching mean cardinality.

Finally, the LMB approximation of the full multi-object posterior is given by the
union of the LMB approximations π̃(i) of the N groups:

π(·|Z) ≈ π̃(·|Z) =
N⋃
i=1

{(
r(`), p(`)

)}
`∈L(i)

+

. (5.101)

Grouping Error

Since an LMB RFS is defined as the union of M independent labeled Bernoulli RFSs,
the predicted LMB RFS can be equivalently rewritten by

π+(X+) = π
(1)
+

(
X̃(1)

+

)
· · ·π(N)

+

(
X̃(N)

+

)
. (5.102)
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For sufficiently large gating values, the single object measurement likelihood for a
track x ∈ X̃(i)

+ of group G(i) and a measurement of any other group G(j), j 6= i, is
negligible:

g(zθ(`)|x, `) ≈ 0 ∀ zθ(`) /∈ Z(i), x ∈ X̃(i)
+ . (5.103)

Additionally, a measurement of group G(i) has an insignificant likelihood for all tracks
of a grouping G(j), j 6= i:

g(zθ(`)|x, `) ≈ 0 ∀ zθ(`) ∈ Z(i), x /∈ X̃(i)
+ (5.104)

Under the assumptions (5.103) and (5.104), an approximate decomposition of the
multi-object likelihood function is given by

g(Z|X) ≈ g
(

Z(1) ∣∣ X̃(1)
)
· · · g

(
Z(N) ∣∣ X̃(N)

)
. (5.105)

Using the alternative representation of the predicted LMB density (5.102) and the
decomposed multi-object likelihood function (5.105), the multi-object posterior is
given by

π(X|Z) ∝ π+(X)g(Z|X) (5.106)

≈ π(1)
+

(
X̃(1)

)
g
(

Z(1) ∣∣ X̃(1)
)
· · ·π(N)

+

(
X̃(N)

)
g
(

Z(N) ∣∣ X̃(N)
)

(5.107)

= π(1)
(

X̃(1) ∣∣ Z(1)
)
· · ·π(N)

(
X̃(N) ∣∣ Z(N)

)
. (5.108)

Consequently, sufficiently large gating values in the grouping procedure ensure that
the error due to the parallel group updates is negligible.

5.3.5 Track Extraction

Track extraction algorithms for RFS based multi-object filters commonly use the
maximum a posteriori (MAP) estimate of the cardinality distribution to obtain the
estimated number of objects N̂ . Hence, a straightforward track extraction procedure
for a δ-GLMB filter is to pick the hypothesis (I, ξ) with the highest weight for the
cardinality N̂ . Since the LMB filter does not provide a single δ-GLMB posterior, this
procedure is only applicable to the posterior δ-GLMB distributions of the groupings
π(i)(X̃(i)|Z(i)).

In an LMB filter, the track extraction is not restricted to the approach based on
the MAP estimate of the cardinality distribution. Similar to the track extraction for
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the JIPDA tracker in [Mun11], the posterior LMB distribution enables an intuitive
and straightforward track extraction scheme which selects all tracks whose existence
probability exceeds an application dependent threshold ϑ. Hence, the set of extracted
tracks is given by

X̂ = {(x̂, `)|r(`) > ϑ}.

The application dependent threshold ϑ allows to adapt the output of the tracking
system to the requirements of arbitrary applications. A high value for ϑ increases
the delay for including a new born track in the output of the tracking system and
decreases the number of false tracks. Smaller values for ϑ decrease the output delay
for new born tracks in conjunction with an increasing number of false tracks.

The difference between cardinality based and existence based track extraction is
illustrated using the example in Section 5.2.3. The MAP estimate for the cardinality
in the example is N̂ = 1. A basic approach just picks the hypothesis with the highest
weight for the estimated cardinality. Thus, only track `2 is extracted and reported to
an operator or a higher level fusion system. Obviously, the cardinality based track
extraction does not allow to adapt the output of the tracking system to the application
dependent requirements. Using the existence based track extraction, three different
outputs are possible:

X̂ =

 (x̂1, `1) ∪ (x̂2, `2) if ϑ < 0.6,
(x̂2, `2) if 0.6 ≤ ϑ < 0.7,
∅ if ϑ ≥ 0.7.

In applications with high detection probabilities, a single missed detection significantly
reduces the existence probability of an object. In combination with a high value for
ϑ, the missed detection may lead to a temporary rejection of the track by the track
extraction algorithm. In order to obtain a continuous output of the tracks in these
situations, a hysteresis is used within the track extraction. The output for a track `i is
only activated, if its maximum existence probability r(`i)

max exceeds an upper threshold
ϑu and its current existence probability r(`i) is not below a lower threshold ϑl:

X̂ = {(x̂, `)|r(`)
max > ϑu ∧ r(`) > ϑl} (5.109)

5.3.6 Adaptive Birth Distribution

In Section 5.3.1, the prediction step of the LMB filter assumed the availability of a
priori distributions for new born objects. In applications like air surveillance, where
new objects may only appear close to airports or at the borders of the FOV of the
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sensor, sufficient knowledge about the birth distribution is available. In applications
like vehicular environment perception, the spatial distribution of the birth locations
is usually unknown and also time varying. In GM implementations of the PHD and
the CPHD filter, a common approach is to use uniform or widespread birth densities
[BVVA12]. In the context of the proposed LMB filter, these densities contradict with
the group oriented updates, since the large spatial uncertainties prohibit a partitioning
into statistically independent groups.

In order to utilize the computational savings of group oriented updates in applications
without accurate a priori information about possible birth locations, a measurement
driven birth density is proposed. The measurement driven birth density is based on
the concept of the adaptive birth intensities for the PHD and CPHD filters [RCVV12].
In contrast to the adaptive birth intensity which consists of a single intensity function,
the adaptive birth distribution for the LMB filter is required to follow an LMB process
which prevents a straightforward adaptation of [RCVV12].

The adaptive LMB birth distribution πB,k+1 used within the prediction to time k + 1
is obtained using the set of measurements Zk at time k. For each measurement, a
Bernoulli birth component is initialized using the adaptive LMB birth distribution

πB,k+1 =
{
r

(αi)
B,k+1(zi), p(αi)

B,k+1(x|zi)
}|Zk|
i=1

,

where the labels αi are obtained from B = {αi : i ∈ {1, . . . , |Zk|}}. The spatial
distribution p(αi)

B,k+1(x|zi) of each Bernoulli component is obtained by transforming
the measurement zk and its according measurement noise into the state space X. In
[RCVV12], the adaptive birth intensity for the PHD and CPHD filter concentrates
around the measurements which are far away from any of the existing tracks. In case of
an LMB birth density, the existence probabilities r(`)

B,k+1(zk) of the birth components
have to represent this behavior.

For each grouping G(i), a measurement z ∈ Z(i) is assigned to an existing track with
probability

rU,k(z) =
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

1θ(z)w(I+,θ)
k (Z(i)), (5.110)

where w(I+,θ)
k (Z(i)) is given by (5.95) and the inclusion function 1θ(z) ensures that the

sum only incorporates the weight of the hypotheses which assigned the measurement
z to any of the existing tracks. All measurements z ∈ Z(0) are neglected in the track
update due to the large distance to any of the tracks. Consequently, an association
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probability of

rU,k(z) = 0 (5.111)

is assigned to the measurements z ∈ Z(0).

To concentrate the birth density around the measurements which are far away from any
of the existing tracks, the existence probability of the birth component corresponding
to measurement z has to be proportional to the probability that z is not assigned to
any of the existing tracks. Hence, the existence probability of a birth component is
given by

rB,k+1(z) = min

rmax
B,k+1 ,

1− rU,k(z)∑
ξ∈Zk

1− rU,k(ξ)
· λB

 , (5.112)

where λB is the expected number of new born objects. In case of λB > 1, the second
term may be larger than one (e.g. if the birth density concentrates around a single
measurement). Thus, it is necessary to apply the minimum operator to restrict the
existence probabilities to rmax

B ∈ [0, 1]. Further, using lower values for rmax
B reduces

the number of false tracks at the cost of an increasing time until a track is confirmed.
Due to the capping using rmax

B , the expected number of new born objects is given by∑
z∈Zk

rB,k+1(z) ≤ λB .

Obviously, equality applies if rmax
B,k+1 is not used for any of the measurements z ∈ Zk.

The proposed adaptive birth density is not restricted to the application within the
LMB filter. Since the calculation of the existence probabilities is based on the weights
of the δ-GLMB update, the proposed LMB birth density may also be applied to
the δ-GLMB filter. Further, the approach also applies to the CB-MeMBer filter
which calculates rU,k(z) within the filter update by default. Simulation results for the
CB-MeMBer filter with adaptive birth density are presented in the authors conference
paper [RMWD13].
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5.4 Multi-Object Divergence Detectors

5.4.1 Multi-Object Generalized NIS

In Section 3.8.3, the multi-object generalized normalized innovation squared (MGNIS)
was introduced as a multi-object divergence detector. Since the update equation of
the δ-GLMB filter provides an analytic solution for the normalization constant of
the multi-object Bayes filter, the calculation of the MGNIS for the δ-GLMB filter is
possible. Using the update equation (5.12), the normalization constant is given by
the denominator of the updated weights (5.16). Within the derivation of the update
equations in [VV13b], the clutter factor

πC(Z) = e−λc
m∏
j=1

κ(z) (5.113)

canceled out due to appearance in nominator and denominator. Thus, the normaliza-
tion constant of the δ-GLMB filter is given by

f(Z) = πC(Z)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)
+ [η(ξ,θ)

Z ]I . (5.114)

The MGNIS of the δ-GLMB filter is obtained by inserting (5.114) into (3.81):

MGNIS(Z) = −2 log(f(Z))

= −2 log πC(Z)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)
+ [η(ξ,θ)

Z ]I (5.115)

= −2 log πC(Z)− 2 log
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)
+ [η(ξ,θ)

Z ]I ,

(5.116)

where each summand of the inner sum represents the contribution of a track to
measurement association for a given set of track labels I. Although the MGNIS
incorporates the target detection and the clutter process, (5.116) allows for a separation
into a clutter part MGNISC(Z) and a object detection part MGNIST (Z) which are
given by

MGNISC(Z) = −2 log πC(Z), (5.117)

MGNIST (Z) = −2 log
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)
+ [η(ξ,θ)

Z ]I . (5.118)
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Observe, that MGNIST (Z) involves a dependency on clutter due to the appearance
of κ(z) in η

(ξ,θ)
Z (`) given by (5.14). Further, the MGNISC(Z) is calculated using

all measurements and the number of object detections consequently impacts the
MGNISC(Z).

The properties of the MGNIS are illustrated in Figure 5.9 for a scenario with a single
object in clutter. At each time step, only one hypothesis (I, ξ) with I = {`1} exists,
i.e. the existence probability of the track with label `1 is r(`1) = 1. Further, the
detection probability is chosen to pD = 0.98. The object is detected at every time
step k with differing Mahalanobis distances between the predicted and the actual
measurement (see Figure 5.9a). Additionally, a mean number of λc = 10 Poisson
distributed clutter measurements with c(z) = 0.001 is received at every time step.
Using only the detection dependent MGNIST (Z) in Figure 5.9b, the filter divergence
for 50 < k < 70 is easily detected. Due to the high variance of the Poisson distributed
clutter (σ2 = λc) and κ � 1, the clutter contribution MGNISC(Z) has an even higher
variance (see Figure 5.9c). Figure 5.9d indicates that the clutter dominates the MGNIS
since it is not possible to observe that the measurements for the tracked objects are
diverging for 50 < k < 70.
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Figure 5.9: MGNIS result for different Mahalanobis distances between the
predicted and actual measurement of a single object. Additionally,
Poisson distributed clutter with λc = 10 occur and pD = 0.98.
The x-axis denotes the time steps k.
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The LMB filter facilitates the evaluation of the MGNIS for each group of objects
due to the usage of the δ-GLMB update equations. However, the determination of a
single MGNIS value over all groups of objects may be desirable in some applications.
Following (5.108), the multi-object posterior is given by the product of the multi-object
posteriors of each group:

π(X|Z) ≈ π(1)
(

X̃(1) ∣∣ Z(1)
)
· · ·π(N)

(
X̃(N) ∣∣ Z(N)

)
. (5.119)

Consequently, the normalization constant of the LMB filter is given by the product of
the normalization constants of the N groups:

f(Z) = πC(Z) · f (1)(Z(1)) · · · f (N)(Z(N)). (5.120)

where

f (i)(Z(i)) =
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

δθ−1({0∪M(i)})(I+)w(i)
+ (I+)[η(θ)

Z(i) ]I+ (5.121)

is the normalization constant of (5.95). Thus, the MGNIS of the LMB filter follows

MGNIS(Z) = MGNISC(Z) +
N∑
i=1

MGNIS(i)
T (Z(i)). (5.122)

5.4.2 Approximate Multi-Target NIS

The approximate multi-target normalized innovation squared (AMNIS) is intended to
be the multi-object analog of the single-object NIS with similar characteristics. Since
an influence of the clutter process is not desired, the AMNIS is based on the detection
part MGNIST of the MGNIS. In single-object tracking, the NIS approximates the
GNIS by neglecting the magnitude of the innovation covariance matrix. Consequently,
the NIS only penalizes the residuals between the measurement z and the predicted
measurement z+. Due to the approximation, the NIS follows a χ2 distribution which
facilitates an intuitive interpretation of the obtained NIS value.

In the following, only the AMNIS for the LMB filter is considered. In order to achieve
similar characteristics to the NIS, the likelihood (5.72), which is given by

η
(θ)
Z (`) = pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
(5.123)
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for θ(`) > 0, is approximated by

η̄
(θ)
Z (`) = pD

J
(`)
+∑
j=1

w
(`,j)
+ exp

((
zθ(`) − z

(`,j)
+

)T (
S(`,j)

)−1 (
zθ(`) − z

(`,j)
+

))
(5.124)

where the influence of the clutter intensity as well as the influence of the magnitude
of the innovation covariance are neglected. For θ(`) = 0, the likelihood is equivalent
to (5.80):

η̄
(θ)
Z (`) = 1− pD. (5.125)

Using the approximate likelihoods (5.124) and (5.125), the AMNIS for a group G(i) of
the LMB filter is given by

AMNIS(i)(Z(i)) = −2 log
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

δθ−1({0∪M(i)})(I+)w(i)
+ (I+)[η̄(θ)

Z(i) ]I+ ,

(5.126)

while the AMNIS corresponding to the full multi-object distribution is obtained by

AMNIS(Z) =
N∑
i=1

AMNIS(i)(Z(i)). (5.127)

5.4.3 Simplification of the AMNIS for High SNR Cases

The AMNIS follows a χ2 distribution and reveals a behavior similar to the NIS in
case of a high signal to noise ratio (SNR) which is characterized by

• the AMNIS(Z) is dominated by a single association hypothesis,
• the detection probability is pD ≈ 1 and all targets are detected.

The AMNIS is obviously dominated by a single association hypothesis (I+, θ) if the
objects are well separated and only a single measurement has non-zero likelihood for
each track. In this case, the AMNIS simplifies to

AMNIS(i)(Z(i)) = −2 log[η̄(θ)
Z(i) ]I+ , (5.128)

Due to the high SNR, each track ` is usually represented by a single Gaussian
component and all objects are detected. Using the assumption pD ≈ 1, the AMNIS
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for high SNR is given by

AMNIS(i)(Z(i)) = −2 log p|I+|
D

∏
`∈I+

exp
((

γ(`,θ)
)T (

S(`)
)−1

γ(`,θ)
)

(5.129)

= −2|I+| log pD +
∑
`∈I+

(
γ(`,θ)

)T (
S(`)

)−1
γ(`,θ) (5.130)

≈
∑
`∈I+

(
γ(`,θ)

)T (
S(`)

)−1
γ(`,θ). (5.131)

Obviously, each summand of (5.131) follows a χ2 distribution since it matches the
single-object NIS of the track `. Since the χ2 distribution is additive and the objects
are assumed to be independent of each other, the AMNIS follows a χ2 distribution
in case of a high SNR. Consequently, the AMNIS is χ2 distributed with |I+| · dim(Z)
degrees of freedom for a measurement space with dimension dim(Z).

5.5 Discussion

The proposed LMB filter may be interpreted in two ways: On the one hand, the
LMB filter may be considered as a more accurate approximation of the multi-object
Bayes filter compared to the CB-MeMBer filter which additionally estimates the track
labels. The improved accuracy of the LMB filter is due to the more precise update
step which does not require restrictions of the detection probability or the false alarm
density. Consequently, the LMB filter is not prone to the bias in the cardinality
estimate which is observed for the CB-MeMBer filter in scenarios with a high false
alarm density. However, the computational complexity of the LMB filter update is
significantly higher than the one of the CB-MeMBer filter for groups with more than
one track. On the other hand, the LMB filter may be considered as an approximation
of the δ-GLMB filter which approximates the multi-object posterior using an LMB
RFS in order to simplify the prediction step. Further, the LMB representation
significantly reduces the computational complexity of the δ-GLMB filter update due to
the possibility of applying a grouping procedure and the parallel group updates. Due
to the approximation of the δ-GLMB posterior after each measurement update using
an LMB RFS, the LMB filter loses information about the cardinality distribution
while preserving the mean cardinality as well as the spatial distribution of each track.
Additionally, the LMB filter does not provide a history of association maps since
the association maps are dropped during the approximation of the δ-GLMB RFS
by an LMB RFS. However, this is not a limiting factor in most applications since
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the previous association maps are not required for filtering the multi-object state.
Appendix C provides a brief summary illustrating the main differences between the
δ-GLMB, the LMB filter, and the approximations introduced in Section 3.7.

The LMB filter provides several interesting topics for future research projects: Com-
pared to the SMC multi-object Bayes filter in Chapter 4, the proposed LMB filter does
not facilitate the integration of object interactions at the moment since all tracks are
predicted independently. Using an additional grouping procedure before the prediction
step, possibly interacting tracks can be identified. The interacting tracks may be used
to initialize the SMC multi-object Bayes filter. After prediction and update of the
group, the posterior multi-object particles can be approximated by an LMB RFS
again.

The proposed grouping procedure for the LMB filter does not ensure a maximum
computing time per filter update due to the fixed gating threshold. In [Mun11], an
agglomerative grouping procedure for the JIPDA filter is proposed which ensures a
maximum number of nodes in the association trees using adaptive gating thresholds.
An adaptation of the agglomerative grouping procedure to the LMB filter to ensure a
maximum computing time is promising but the reduced gating thresholds affect the
assumption of statistically independent groupings. Hence, a detailed evaluation of the
corresponding effects will be required.

Further possible extensions of the LMB filter include the support of multiple-model
approaches, the application to SLAM, and the integrated estimation of the clutter
distribution.



Chapter 6

Evaluation

In this chapter, the performance of the proposed filter algorithms is evaluated using
simulated and real world sensor data. Sections 6.1 and 6.2 present simulation results
for the sequential Monte-Carlo multi-object Bayes (SMC-MOB) filter and the LMB
filter, respectively. Afterwards, an approach to incorporate sensor specific true positive
probabilities in multi-object Bayes filters is introduced in Section 6.3. The SMC-MOB
filter is applied to pedestrian tracking in an indoor scenario which comprises closely
spaced objects as well as occlusions. Finally, the performance of the LMB filter is
compared to the JIPDA tracker for several typical scenarios in vehicle environment
perception to illustrate possible performance gains. The tracking results of the
algorithms are compared using the optimal subpattern assignment (OSPA) distance
and the optimal subpattern assignment for tracks (OSPAT) distance which provide
the average distance between the ground truth positions and the estimates in meters
since they are solely calculated using the Cartesian x and y positions.

6.1 SMC Multi-Object Bayes Filter - Simulations

6.1.1 Multi-Object Likelihood Approximation

The approximation of the multi-object likelihood function in Section 4.3 allows for the
assignment of a measurement zj to multiple tracks within an association hypothesis.
If the minimum distance between the objects is sufficiently larger than the standard
deviation of the measurement noise, the approximation error is expected to be negligible.
In order to illustrate the approximation error, a static scenario comprising five objects
is investigated. Figure 6.1 depicts the positions of the objects for the three scenarios
S1, S2, and S3. The simulated sensor delivers Cartesian position measurements with
a measurement noise of σ = σx = σy = 0.07 m. The SMC-MOB filter uses a constant
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detection probability of pD = 0.95. The target dynamics follow a random walk model
with a standard deviation of σv = 0.08 m/s. Object interactions are modeled using
the set based weight adaption introduced in Section 4.2.2 which decreases the weight
of a multi-object particle if the distance between any of the objects is smaller than
the required minimum distance. The minimum object distance is set to d = 0.3 m for
scenario S1 and to d = 0.4 m for the other scenarios.
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Figure 6.1: Ground truth object positions for the scenarios S1, S2, and S3.

The results of the SMC-MOB filter with N = 10000 multi-object particles are summa-
rized in Table 6.1 by means of the expectation value of the OSPA and the OSPAT
distance. Obviously, the OSPA distance of the filters using the approximate multi-
object likelihood is only slightly higher than the one of the filters which apply the
computationally more expensive exact multi-object likelihood function. However, the
OSPAT distance indicates that the approximation increases the possibility of switching
track IDs in the scenarios S1 and S2 since a measurement may update more than one
of the state vectors within a multi-object particle.

The approximate multi-object likelihood function (4.21) requires a minimum distance
d > 6σ between the objects to ensure negligible approximation errors. Although this
requirement is not fulfilled for the scenario S1 (d ≈ 4.3σ) as well as the scenarios S2
and S3 (d ≈ 5.7σ), the approximate and the exact multi-object likelihood function
achieve approximately the same performance as the with respect to the OSPA distance.
Hence, the utilization of the computationally less expensive approximation is suggested
if continuous track IDs are not required and the minimum distance is slightly below the
required minimum distance. However, the usage of the exact multi-object likelihood
function is recommended for applications which require accurate track IDs and do not
ensure negligible approximation errors (i.e. d < 6σ).
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Scenario Algorithm E(OSPA) [m] E(OSPAT) [m]
S1 Exact Likelihood 0.0595 0.0608
S1 Approx. Likelihood 0.0635 0.2674
S2 Exact Likelihood 0.0588 0.0600
S2 Approx. Likelihood 0.0621 0.1552
S3 Exact Likelihood 0.0585 0.0587
S3 Approx. Likelihood 0.0612 0.0815

Table 6.1: Comparison of the approximate and exact multi-object likelihood
using scenarios S1, S2, and S3: mean value and standard deviation
of the OSPA distance (cut-off c = 1 m, order p = 1) and the OSPAT
distance (α = c) averaged over 50 Monte Carlo runs.

6.1.2 Object Interactions

In Section 4.2, several methods to model the motion of extended objects have been
proposed. In contrast to the set based weight adaption, which adjusts the weight
of a multi-object particle with respect to the minimum distance between any of the
included objects, the thinning procedures based on the Matérn methods remove state
vectors from the multi-object particles until they fulfill the distance constraint. The
performance of the methods is compared using the scenario S2 given in the previous
subsection.

The mean values of the OSPA and the OSPAT distance for the five methods to
model the motion of extended objects are given by Table 6.2. The SMC-MOB filter
uses N = 10000 particles and the approximate multi-object likelihood function. The
algorithms RFS Matérn I and RFS Matérn II perform only the thinning procedure,
while the algorithms with ”PS” also adapt the weights of the thinned multi-object
particles. With respect to the OSPA distance, the algorithms using thinning obtain
almost identical results while the set based weight adaption performs slightly better.
If labeling errors are penalized using the OSPAT distance, the algorithm using set
based weight adaption outperforms the thinning methods without weight adaption.
Combining the thinning procedures with an additional weight adaption reduces the
average OSPAT distance, but still leads to slightly worse performance than the set
based weight adaption.

In applications which require continuous track IDs, the utilization of the set based
weight adaption is recommended since the thinning procedures increase the possibility
of track ID switches. The superior performance of the set based weight adaption is
explained as follows: While the set based weight adaption invalidates a multi-object
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Algorithm E(OSPA) [m] E(OSPAT) [m]
RFS Set Based Weight Adaption 0.0621 0.1552
RFS Matérn I 0.0696 0.2006
RFS Matérn I PS 0.0693 0.1725
RFS Matérn II 0.0674 0.1929
RFS Matérn II PS 0.0683 0.1728

Table 6.2: Simulation results for the methods to model the motion of extended
objects: mean values of the OSPA and the OSPAT distance (c =
1 m, p = 1, α = c) averaged over 50 Monte Carlo runs.

particle if two of the objects do not fulfill the distance constraint, the thinning methods
only delete the colliding state vectors which increases the area of possible states of
the retained state vectors. Thus, it is possible that one of the retained state vectors
moves to a position which would be occupied by one of the deleted state vectors and
obtains the ID of the deleted state vector after the measurement update.

6.1.3 Marginalization

In the scenarios S1 and S2, the approximation of the multi-object likelihood function
leads to a higher OSPAT distance. Especially in scenario S1, the minimum distance of
the objects does not ensure a negligible approximation error due to d < 6σ. In Section
4.3.2, an alternative approximation of the multi-object likelihood function based on the
marginal probability p(x(i)|zj) is proposed to reduce the approximation error in these
situations. Especially in situations where a measurement zj has a significant likelihood
for two or more tracks, the marginal probability reduces the approximation error by
penalizing association hypotheses which assign the measurement zj to multiple tracks.

The performance of the marginalized multi-object likelihood is evaluated using the
scenario depicted by Figure 6.2. First, the five objects are well separated. At k = 125,
three of the objects meet around the origin of the coordinate system and the two
objects at the bottom pass each other. The minimum distance of the objects drops
below 0.4 m at this time. The motion model is again a random walk model with
σv = 0.08 m/s. The measurement noise of the Cartesian position measurements is
σ = 0.07 m, the detection probability is pD = 0.95, and a mean number of λc = 10
clutter measurements is obtained with each scan which are uniformly distributed over
the region depicted by Figure 6.2.
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Figure 6.2: Ground truth trajectories of five objects: start position marked
by a circle, end position by a triangle. The object starting at
y = 5 m appears at k = 25, the other objects at k = 0.

In order to illustrate the effect of the marginalization, a minimum distance of d = 0.1 m
is used in the filter. Figure 6.3 depicts the simulation results for the exact, the
approximate, and the marginalized multi-object likelihood function. Figure 6.3a
indicates that the approximate likelihood tends to initialize an additional object
after k = 125. Since the minimum distance is significantly smaller than 6σ and the
approximation permits the association of a single measurement to more than one
object, the filter may not get rid of the additional track. In contrast to the approximate
multi-object likelihood function, the marginalized likelihood function has no bias in
the cardinality estimate and its OSPA distance (see Figure 6.3b) is almost identical to
the one obtained using the exact multi-object likelihood function. Considering track
ID switches using the OSPAT distance, the filter using the marginalized multi-object
likelihood function is only slightly outperformed by the filter using the exact likelihood
function. However, the performance gain compared to the approximate multi-object
likelihood is significant in this case.

The simulation results show that the approximation may lead to a bias in the cardinality
estimate if the minimum distance does not ensure negligible approximation errors.
By incorporating the marginal probability p(x(i)|zj) into the approximation of the
multi-object likelihood function, the bias in the cardinality estimate disappears and
the approximation achieves nearly the performance of the exact multi-object likelihood
function at a significantly lower computational complexity.

The marginalized multi-object likelihood function (4.24) is recommended for applica-
tions with a minimum distance d < 6σ since it reduces the approximation error by
incorporating the marginal probability. For higher minimum distances, the influence
of the marginal probability on the multi-object likelihood is negligible since a measure-
ment may not have a high likelihood for more than one track in this case. Thus, the
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(a) Cardinality estimates.
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(b) OSPA distances (order p = 1, cut-off c = 300 m).
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Figure 6.3: Cardinality estimates and OSPA/OSPAT distances for the scenario
depicted by Figure 6.2 averaged over 50 Monte Carlo runs. The
SMC-MOB filter uses N = 50000 multi-object particles, the mean
number of false alarms is λc = 10, and the minimum distance for
the set based weight adaption is set to d = 0.1 m.

computationally less expensive approximate multi-object likelihood (4.21) achieves
identical results for d� 6σ.
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6.2 Labeled Multi-Bernoulli Filter - Simulations

6.2.1 Sequential Monte Carlo Implementation

Figure 6.4: Object trajectories for the evaluation of the SMC implementation.
Start points are marked by a circle, end points by a triangle. The
half-disc has a radius of 2000 m and the sensor is located at the
bottom center.

The performance of the SMC LMB filter is evaluated using a scenario comprising a
total number of 10 objects and several objects appearances and disappearances. The
trajectories of the objects are illustrated by Figure 6.4. The object states are given by
the state vector x = [ px, vx, py, vy, ω ]T which contains the two dimensional Cartesian
positions p and velocities v as well as the turn rate ω. Within the coordinated turn
process model [VV13b], the standard deviation of the acceleration noise is σa = 15 m/s2
and the standard deviation of the yaw rate is σω = π/180 rad/s. Further, the survival
probability is assumed to be state independent and is given by pS(x) = 0.99.

Within the simulation, objects may only appear at four different locations which are
modeled using a multi-Bernoulli birth RFS

πB = {(r(i)
B , p

(i)
B )}4i=1,

where the spatial distribution of each birth track is a Gaussian distribution p(i)
B (x) =

N (x; x̂(i)
B ,PB). The existence probabilities of the Bernoulli distributions and the mean

values of the Gaussian distributions are given by

r
(1)
B = 0.02, x̂

(1)
B = [−1500, 0, 250, 0, 0]T,

r
(2)
B = 0.02, x̂

(2)
B = [−250, 0, 1000, 0, 0]T,

r
(3)
B = 0.03, x̂

(3)
B = [250, 0, 750, 0, 0]T,
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r
(4)
B = 0.03, x̂

(4)
B = [1000, 0, 1500, 0, 0]T,

and the covariance matrix follows PB = diag([50, 50, 50, 50, 6(π/180)]T )2.

The measurement vector z = [ϕ, r]T of the sensor comprises the angle ϕ and the
range r. The simulated sensor is assumed to deliver measurements up to a distance
of 2000 m and the opening angle is 180◦, i.e. ϕ = [−π/2, π/2]. The measurement
noise of the sensor follows a Gaussian distribution and the standard deviations for
angle and range measurements are σϕ = (π/180) rad and σr = 5 m, respectively. The
detection probability of the sensor is range dependent and is given by

pD(x) = pD,max exp
(
[px, py]TΣ−1

D [px, py]
)

ΣD = 60002I2

where I2 denotes the identity matrix of dimension two. In addition to the object
measurements, the sensor delivers Poisson distributed clutter measurements with
κ(z) ≈ 10−5 which coincides with a mean number of λc = 60 false alarms per scan.

The LMB filter performance is compared to the δ-GLMB filter, the CB-MeMBer
filter, and the CPHD filter. Within the prediction and the update step, the δ-GLMB
filter incorporates the 1000 components with the highest weights determined by the
k-shortest paths and the Murty algorithm, respectively. Further, components with a
weight w < 0.00001 are pruned. The δ-GLMB filter represents the spatial distribution
of each track within a set of track labels I using N = 1000 particles. In contrast, the
LMB filter and the CB-MeMBer filter use N = 1000 particles for each track and prune
tracks with an existence probability r < 0.001. Further, the LMB filter uses only

h(i) = 1 + 2|L
(i)
+ |

association hypotheses per group G(i) = (L(i)
+ ,M(i)) in the update step. The CPHD

filter uses N = 1000 · N̂ particles where N̂ represents the estimated number of objects.
In contrast to the δ-GLMB, the LMB, and the CB-MeMBer filter, the CPHD filter
does not facilitate the application of a multi-Bernoulli birth model. Hence, the CPHD
filter uses a Poisson birth model whose intensity matches the one of the multi-Bernoulli
birth model.

Figure 6.5a shows the cardinality estimates of the four filters for the scenario depicted
by Figure 6.4. The δ-GLMB filter provides the most accurate cardinality estimates for
the investigated scenario while the LMB filter slightly underestimates the cardinality
for k > 50. The CPHD filter also delivers a satisfactory result, although the filtering
of the cardinality distribution causes a low pass behavior of the cardinality estimate
during object appearance and disappearance. As expected, the cardinality estimate of
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the CB-MeMBer filter is biased due to the high clutter density.
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(a) Cardinality estimates.

10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

125

150

measurement k

O
SP

A
[m

]

LMB
δ-GLMB
CB-MeMBer
CPHD

(b) OSPA distances (order p = 1, cut-off c = 300 m).

Figure 6.5: Cardinality estimates and OSPA distance for the SMC implementa-
tions of the LMB, δ-GLMB, CB-MeMBer, and CPHD filter for the
scenario depicted by Figure 6.4 with λc = 60 and pD,max = 0.98
(averaged over 100 MC runs).

Figure 6.5b shows the corresponding OSPA distances of the filters. As expected,
the δ-GLMB filter provides the smallest OSPA distance for almost all time steps.
However, the OSPA distance of the LMB filter is only slightly larger than the one of
the δ-GLMB filter which is expected due to the approximation of the δ-GLMB RFS
by an LMB RFS. However, the OSPA distance is also influenced by the effectively
used number of association hypotheses in the prediction and update step as well as
the different number of particles per object. While the LMB filter represents each
object using N = 1000 particles, the δ-GLMB filter represents an object’s state with
N = 1000 particles for each history of association maps. Thus, a total number of
(m + 1) · N particles is used to represent the ambiguity of a state update with m
measurements inside the gate of a track. Due to the bias in the cardinality estimate,
the OSPA distance of the CB-MeMBer filter is significantly higher than the ones of
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the LMB and the δ-GLMB filter. Although the CPHD filter provides a more accurate
cardinality estimate than the CB-MeMBer filter, the OSPA distance of the CPHD
filter is higher than the one of the CB-MeMBer filter due to the error-prone clustering
algorithm which is required for track extraction.

While the δ-GLMB filter may use most of its association hypotheses to resolve the
uncertainty about the track to measurement association for a small subset of tracks,
the LMB filter uses a fixed amount of association hypotheses which only depends
on the number of tracks within the group. Figure 6.6 illustrates the influence of the
number of hypotheses per group on the tracking result. In three different experiments,
the hypotheses per group are limited to

h
(i)
3 = min(1 + 3|L

(i)
+ |, 1000), h

(i)
5 = min(1 + 5|L

(i)
+ |, 1000), h

(i)
1000 = 1000.

Since the number of tracks and measurements per group restrict the quantity of
feasible hypotheses, the limits for the hypotheses per group denote an upper bound.
Obviously, the filter using h(i)

5 hypotheses per group significantly outperforms the one
with h(i)

3 hypotheses. However, increasing the number of hypotheses to up to 1000
per group does not provide a huge gain. Due to the higher amount of hypotheses,
the LMB filter performance is close to the one of the δ-GLMB filter although the
computational complexity is still significantly smaller due to the grouping procedure.

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

measurement k

O
SP

A
[m

]

h
(i)
3

h
(i)
5

h
(i)
1000
δ-GLMB

Figure 6.6: Comparison of the OSPA distances (p = 1, c = 300 m) of LMB
filters with different numbers of evaluated association hypotheses
with the OSPA distance of the δ-GLMB filter (averaged over 100
MC runs).
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6.2.2 Gaussian Mixture Implementation

The Gaussian mixture (GM) implementation of the LMB filter is evaluated using a
scenario on the two dimensional region [−1000, 1000]× [−1000, 1000]. The trajectories
of the 12 objects are depicted by Figure 6.7. Similar to the SMC scenario, the GM
scenario comprises the appearance and disappearance of several objects. The motion
of the objects follows a two dimensional CV model and the standard deviation of the
process noise in x and y direction is σa = 5 m/s2. Further, the survival probability
pS = 0.99 is assumed to be state independent. Within the observed region, the
sensor delivers measurements for the x and y positions of the objects with a standard
deviation of σx = σy = 10 m. The detection probability of the sensor is assumed to
be state independent and is given by pD = 0.98. Similar to the SMC implementation,
clutter follows a Poisson distribution with intensity κ(z) = 1.5 · 10−5 which coincides
again with a mean number of λc = 60 clutter measurements per scan.

−1,000 −500 0 500 1,000
−1,000

−500

0

500

1,000

x [m]

y
[m

]

Figure 6.7: Object trajectories for the evaluation of the GM implementation.
Start points are marked by a circle, end points by a triangle.

Similar to the SMC implementation, appearing objects are modeled using a multi-
Bernoulli birth RFS

πB = {(r(i)
B , p

(i)
B )}4i=1. (6.1)

The spatial distribution of the birth tracks follows a Gaussian distribution p(i)
B (x) =

N (x; x̂(i)
B ,PB). The existence probabilities of the Bernoulli distributions and the mean
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values of the Gaussian distributions are given by

r
(1)
B = 0.04, x̂

(1)
B = [0, 0, 0, 0]T,

r
(2)
B = 0.03, x̂

(2)
B = [−200, 0, 800, 0]T,

r
(3)
B = 0.03, x̂

(3)
B = [−800, 0,−200, 0]T,

r
(4)
B = 0.02, x̂

(4)
B = [400, 0,−600, 0]T,

and the covariance matrix follows PB = diag([10, 10, 10, 10]T )2.

The GM implementation of the LMB filter is again compared to the δ-GLMB, CPHD,
and CB-MeMBer filter. The LMB and the CB-MeMBer filter prune tracks with an
existence probability r < 0.001. Additionally, Gaussians with a weight w < 0.01 are
pruned and Gaussians with a Mahalanobis distance dMHD < 0.5 are merged. The
CPHD filter prunes Gaussians with a weight of w < 0.00001 and uses the same
threshold for merging as the LMB filter. The δ-GLMB filter uses a total number of
2000 hypotheses and prunes hypotheses with weight w < 0.00001. Figure 6.8a shows
the cardinality estimates of the filters for the linear Gaussian scenario depicted by
Figure 6.7. Again, the CB-MeMBer filter has a significant bias in the cardinality
estimate while the other filters provide excellent cardinality estimates. Similar to the
SMC results in Figure 6.5a, the estimate of the CPHD filter shows a low pass behavior.
The δ-GLMB filter has some issues with disappearing objects (e.g. for k > 90) which
is due to the restriction of the number of hypotheses to 2000 during prediction. The
LMB filter slightly underestimates the cardinality since it only uses

h
(i)
0 = 2|L

(i)
+ |

association hypotheses within the filter update.

The OSPA distances of the filters are depicted by Figure 6.8b. In contrast to the
results for the SMC implementations, the CPHD filter outperforms the CB-MeMBer
filter since the error-prone particle clustering is not required in a GM implementation.
For k ≤ 90, the δ-GLMB filter obtains the smallest OSPA distance, while the LMB
filter performs best for k > 90. However, the δ-GLMB filter is expected to show at
least the same accuracy for k > 90 if the number of components in the prediction step
is significantly increased.

The GM implementations of the δ-GLMB filter and the LMB filter allow for a more
precise comparison of the filters with respect to the number of association hypotheses
used in the update step. While the δ-GLMB filter uses 2000 hypotheses, the LMB
filter implementation is evaluated for the following upper bounds of hypotheses per
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(a) Cardinality estimates.
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(b) OSPA distances (order p = 1, cut-off c = 100 m).

Figure 6.8: Cardinality estimates and OSPA distance for the GM implemen-
tations of the LMB, δ-GLMB, CB-MeMBer, and CPHD filter for
the scenario depicted by Figure 6.7 with λc = 60 and pD = 0.98
(averaged over 100 MC runs).

group:

h
(i)
0 = min(2|L

(i)
+ |, 1000), h

(i)
2 = min(1 + 2|L

(i)
+ |, 1000), h

(i)
1000 = 1000.

Figures 6.9a and 6.9b indicate that the cardinality error and the OSPA distance
of an LMB filter are already smaller than the ones of the δ-GLMB filter if the
LMB filter utilizes h2 association hypotheses per group. Using h1000, the LMB filter
significantly outperforms the δ-GLMB filter although the posterior δ-GLMB density
is approximated by an LMB RFS after each filter update.

Since the δ-GLMB filter is expected to show a superior performance compared to the
LMB filter, a more detailed investigation is required. As indicated by the results in
Figure 6.9, the number of association hypotheses within the filter update is essential
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Figure 6.9: Comparison of the OSPA distances of LMB filters with differ-
ent numbers of evaluated association hypotheses with the OSPA
distance of the δ-GLMB filter (averaged over 100 MC runs).

for the filter performance. Figure 6.10 illustrates the total number of hypotheses

hj =
|G|∏
i=1

h
(i)
j

of the LMB filter where |G| denotes the number of groups. Although the LMB filter
with h0 already computes a significantly larger amount of hypotheses than the δ-GLMB
filter in some cases, the δ-GLMB filter shows superior tracking results. Due to the high
detection probability and the high false alarm rate, the number of measurements |M(i)|
for group i is usually higher than the number of track labels |L(i)

+ |. Consequently, h
(i)
0

hypotheses are almost always feasible for group i. Consequently, the approximation of
the posterior δ-GLMB RFS within the LMB filter is the main reason for the slightly
worse performance in case of h0 hypotheses.
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Figure 6.10: Amount of evaluated hypotheses in the update step of the LMB
filter.

6.2.3 Adaptive Birth Distributions

The simulation results in the previous paragraphs are based on fixed birth locations
which are concentrated at four different locations. If no context knowledge about
possible birth locations is available, an alternative solution is to concentrate the birth
distribution at the end of the sensor’s FOV. However, both approaches do not facilitate
the re-initialization of lost tracks at arbitrary positions which could be realized using
wide-spread birth distributions covering the complete state space. Since a wide-spread
birth distribution counteracts the computational savings of the grouping procedure,
the LMB filter requires an adaptive birth distribution (see Section 5.3.6) to allow
for new-born objects all over the state space. The linear simulation scenario of the
previous subsection is used to illustrate the difference between an LMB filter with
adaptive birth distribution and an LMB filter with fixed birth locations. The LMB
filter evaluates (if possible) a total number of 1000 hypotheses per group.

The adaptive birth distribution uses the parameter

λB = rmax
B,k+1 =

4∑
i=1

r
(i)
B

where r(i)
B are the existence probabilities of the multi-Bernoulli birth model given

by (6.1). The existence probability of the individual birth tracks is calculated by
(5.112). Since the sensor delivers x and y positions, the mean value of a track’s
spatial distribution is located at the position of the measurement and the velocity
is set to zero. The spatial uncertainty of the birth track is represented by PB =
diag([102, 102, 102, 102]T ), which is identical to the covariance used in the birth model
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with fixed locations.
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Figure 6.11: Comparison of fixed and adaptive birth model: Cardinality
estimates and OSPA distance for the GM-LMB filter for the
scenario depicted by Figure 6.7 with λc = 60 and pD = 0.98
(averaged over 100 MC runs).

Figure 6.11a shows the cardinality estimates for both versions, the simulation parame-
ters are identical to the ones of the previous paragraph. Obviously, the confirmation
of new objects in case of an adaptive birth model is delayed by approximately two
measurement cycles. While the LMB filter with fixed birth locations utilizes the first
measurement of a new born track to update a component of the birth model, the
adaptive birth distribution requires the first measurement to create a birth candidate.
Further, the existence probability of a birth track is significantly lower in case of the
adaptive birth model, since the expected number of new born objects λB is distributed
over the set of all measurements at time k. Except for the delayed object initialization,
the cardinality estimate of the LMB filter with adaptive birth matches the one of the
filter with fixed birth locations. Thus, the LMB filter successfully prevents clutter
tracks in scenarios with a huge number of false alarms even if tracks may appear all
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over the state space.

The OSPA distances for the different birth models are depicted by Figure 6.11b. Due
to the delayed object confirmation, the OSPA distance of the filter with adaptive
birth is significantly higher for a few measurement cycles after a new object appeared.
However, the adaptive birth distribution obtains a slightly smaller OSPA distance for
large k since it facilitates the re-initialization of a lost object which is not possible in
case of fixed birth locations.

6.2.4 Approximate Multi-Object NIS

The results of the previous subsection required the availability of an accurate ground
truth position of all objects to calculate the OSPA or the OSPAT. In online applications,
a ground truth is in general not available. The AMNIS proposed in Section 5.4.2
facilitates a consistency check for the LMB filter in such situations.

Figure 6.12a shows the AMNIS for a single run of the scenario depicted by Figure 6.7.
The LMB filter uses a matching measurement noise and a mean number of λc = 60
Poisson distributed clutter measurements is obtained with each scan. The black line
corresponds to the χ2 value for a confidence level of 0.95. The χ2 distribution has
2 · N̂ degrees of freedom where N̂ represents the estimated number of objects. The
AMNIS indicates a consistent multi-object tracking algorithm since it is significantly
below the χ2 threshold.

Similar to the NIS, the AMNIS is expected to indicate an underestimated process
or measurement noise. Figure 6.12b illustrates the AMNIS for an LMB filter which
significantly underestimates the measurement noise using σx = σy = 5 m (the actual
measurement noise is σx = σy = 10 m). Obviously, the AMNIS is significantly higher
in this case and exceeds the χ2 threshold for a huge number of measurement cycles.

The results in Figure 6.12a and 6.12b lead to the assumption that the approximate χ2

property of the AMNIS may also be applicable to scenarios with low SNR although a
high SNR is required by the definition in Section 5.4.3.

6.3 Multi-Bernoulli Clutter Model

The RFS based tracking algorithms conveniently model the clutter measurements
using a Poisson distribution. While the Poisson distribution is adequate in air
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Figure 6.12: AMNIS for LMB filters with matching process noise. The black
line depicts the χ2 threshold for a confidence level of 0.95 with
2 · N̂ degrees of freedom.

surveillance applications using radar sensors, the clutter distribution in applications
like vehicle environment perception significantly differs from a Poisson distribution
with fixed parameters. For example, false alarms are often state dependent and the
expected number of false alarms is usually time and environment dependent. However,
sensors may also facilitate the determination of measurement specific true positive
probabilities pTP (zj) [Mah09b; Mun11]. The true positive probability is defined as
the probability that the received measurement is originated by an object of interest,
e.g. a car. In pattern classification, the receiver operating characteristics (ROC)
[DHS01] is commonly used to obtain the true positive probability pTP (zj) and the
false positive probability is given by pFP (zj) = 1− pTP (zj). In [Mah09b; Mun11], the
incorporation of a measurement’s true positive probability into the calculation of the
track to measurement associations of the JIPDA algorithm is proposed.

Similar to the object detection process, the probability that measurement zj is a false
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positive measurement is modeled using the Bernoulli distribution

πFP (Z) =
{

1− pFP (zj), if Z = ∅,
pFP (zj) · c(zj), if Z = {zj}.

(6.2)

Obviously, the false positive probability pFP (zj) is only available after the current
set of measurements is received. Thus, the spatial distribution c(z) of a false positive
measurement is concentrated at the position of the measurement zj , i.e. it is given by
the Dirac delta function δz

j
(z). Assuming the received false positive measurements to

be independent of each other, the probability density of the resulting multi-Bernoulli
process is obtained by the union of |Z| independent Bernoulli distributions:

πFP (Z) = {pFP (·), c(·)}z∈Z . (6.3)

Following [Mah07a, Appendix G.18], the multi-object likelihood function for Poisson
distributed clutter measurements is obtained by the convolution of the object detection
process πD and the clutter process πC :

π(Z|X+) =
∑

W⊆Z
πD(W|X+)πC(Z −W). (6.4)

Here, the multi-Bernoulli object detection process πD assumes that each object is
detected with probability pD(x) and does not generate a measurement with 1− pD(x).
In (6.4), each measurement z ∈ Z is exclusively assigned to the object detection or to
the Poisson clutter process. Since the false positive distribution πFP depends on the
set of all measurements, πFP and πD are not independent. Consequently, replacing
πC with πFP in (6.4) affects the validity of the convolution equation [Mah07a, pp.
385–386]. By neglecting the correlation of the multi-object probability densities, the
multi-object likelihood for measurements with false positive probabilities results in

π(Z|X+) ≈
∑

W⊆Z
πD(W|X+)πFP (Z −W), (6.5)

where a measurement is either an object detection or a false positive. Since the false
positive measurements follow a multi-Bernoulli distribution, the false positive density
in (6.5) may be equivalently rewritten by

πFP (Y) = (1− pFP )Z ·
(

pFP
1− pFP

)Y
(6.6)

= (1− pFP )Z ·
(

pFP
1− pFP

)Z
·
(

1− pFP
pFP

)W
(6.7)
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= (pFP )Z ·
(

1− pFP
pFP

)W
, (6.8)

where Y = Z −W and c(z) = 1. Consequently, the probability that all measurements
are false positives is given by

πFP (Z) = (pFP )Z
. (6.9)

Using (6.8) and (6.9), the convolution formula in (6.5) can be rearranged:

π(Z|X+) ≈ πFP (Z) ·
∑

W⊆Z
πD(W|X+)

(
pTP
pFP

)W
, (6.10)

where pTP (·) = 1− pFP (·).

Analog to [Mah07a, Appendix G.18], the probability that a set X+ of tracks does not
generate any measurement is given by

π(∅|X+) =
∏
x∈X+

(1− pD(x)) (6.11)

which is independent of the false positive process since πFP (∅) = 1. Finally, the
multi-object likelihood function (6.10) is rewritten by means of the proof in [Mah07a,
Appendix G.18]:

π(Z|X+) ≈ πFP (Z)π(∅|X+) ·
∑
θ

∏
i:θ(i)>0

pD(x(i)
+ ) · g(zθ(i)|x

(i)
+ )pTP (zθ(i))

(1− pD(x(i)
+ )) · pFP (zθ(i))

. (6.12)

The properties of the proposed multi-object likelihood function (6.12) are illustrated
using a predicted multi-object state which is given by the Bernoulli distribution

π+(X+) =
{

1− r+, if X+ = ∅,
r+ · p+(x), if X+ = {x}

(6.13)

with r+ = 0.4. The sensor delivers only a single measurement and the detection
probability is pD = 0.9. Figure 6.13 depicts the posterior existence probability r of
the object depending on the false positive probabilities pFP and the spatial likelihood
g(z |x+). A measurement with a false positive probability pFP > 0.5 reduces the
posterior existence probability of the object for all 0 < g(z |x+) < 1. In contrast,
a false positive probability pFP < 0.5 increases the object’s existence probability if
the spatial likelihood exceeds a threshold which depends on pFP . For pFP = 0.5,
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the posterior existence probability matches the predicted existence probability if
g(z |x+) = 1. In GM implementations, a limitation of the spatial likelihood to
0 < g(z |x+) < 1 is obtained by neglecting the normalizing constant of the Gaussian
distribution N (z ; z+,S).
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Figure 6.13: Posterior existence probability r of an object with r+ = 0.4
for different measurement likelihoods g(z |x+) and false positive
probabilities pFP . The detection probability is pD = 0.9.

The observed results meet one’s expectations and indicate that (6.12) is a suitable
approximation for applications where the clutter process does not follow a Poisson
distribution and the sensor measurements provide a false positive probability. Further,
the result of the update using the proposed multi-object likelihood function (6.12)
matches the result of the JIPDA update for the example in [Mun11, pp. 46ff.] which
comprises only one track and one measurement.

6.4 Pedestrian Tracking in Indoor Applications

The SMC multi-object Bayes filter is applied to pedestrian tracking in an indoor
application where two laser range finders are mounted in the corners of a room. The
static sensor setup facilitates a background suppression using occupancy grid mapping
[TBF05] in order to reduce the number of measurements. However, the short distances
between the sensors and the objects lead to multiple measurements per object.
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6.4.1 System Setup

Segmentation

In order to be able to use the point target assumption within the SMC-MOB filter, a
segmentation algorithm has to be applied to the raw data of the laser range finders to
obtain object hypotheses. In scenarios with closely spaced objects, it is not possible
to determine a single distance threshold for the segmentation algorithm which ensures
that each object generates exactly one object hypothesis. While a distance threshold
delivers the correct segmentation result in one situation, it may lead to over or under
segmentation in the next situation. Obviously, any false decision in the segmentation
algorithm directly affects the performance of the tracking algorithm.

In the author’s conference paper [RD09], a fuzzy segmentation approach is proposed
which avoids hard decisions in the segmentation algorithm by returning several seg-
mentation hypotheses. Further, the fuzzy segmentation approach assigns a confidence
value to each hypothesis which depends on the spatial proximity of the measure-
ments in a hypothesis and the dimension of the obtained segment. Using the angular
measurement principle of the laser range finders, the likelihood that two succeeding
measurements belong to the same object depends on the radial and the angular
distance. While the maximum radial distance of two succeeding measurements de-
pends on the object type, the maximum angular distance depends on the detection
probability of the sensor. The likelihood is obtained using two fuzzy membership
functions which model the connectedness of the measurements based on their radial
and angular distance. Afterwards, the set of all measurement points is split recursively
at the positions with the smallest likelihood until the minimum likelihood for the
set of measurements is above an application specific threshold. During the splitting
procedure, the likelihoods are used to attach a confidence value to each of the obtained
subsets. If the minimum likelihood for a set of points is very small, a high confidence
value is assigned to the subsets obtained by the splitting and vice versa. Since the
fuzzy segmentation is applied separately to the data of the two laser range finders, a
subsequent cross-validation is used to associate corresponding subsets of both sensors
and to obtain segmentation hypotheses and their corresponding confidence values
cc(zj).

Within the SMC-MOB filter, the confidence values of the segmentation algorithm are
interpreted as true positive probabilities of the segmentation hypotheses. To avoid
numerical instability, the true positive probability is defined as

pTP (zj) =


ε if cc(zj) < ε
cc(zj) if ε < cc(zj) < 1− ε
1− ε if cc(zj) > 1− ε,

(6.14)
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where the parameter ε ensures that the true positive probability is in the open interval
(0, 1). Within the SMC-MOB filter, using several segmentation hypotheses does not
lead to a bias in the cardinality estimate since a multi-object particle with several
objects at approximately the same position obtains a reduced weight in the prediction
step in case of the set based weight adaption. Additionally, the adaptive birth intensity
assigns a small birth probability rB(zj) to measurements which are close to existing
objects and consequently mitigates the initialization of new objects in this case.

State Dependent Detection and Survival Probabilities

In Section 4.4, an approach for the calculation of a state dependent detection proba-
bility is proposed. However, the approach requires the calculation of the detection
probability for each multi-object particle. Since the considered application is only
intended to track pedestrians, it facilitates the approximation of the state depen-
dent detection probability using a measurement grid [KSD10; TBF05]. Since the
background subtraction using an occupancy grid already requires the calculation of
the measurement grid, the computational cost is negligible compared to the separate
calculation for each multi-object particle.

A measurement grid facilitates the partitioning of the grid cells into the three categories
occupied, free, and hidden. In principle, the measurement grid is built up as follows:
First, all grid cells mi are initialized with pm(mi) = 0.5. Afterwards, all measurements
have to be incorporated in the measurement grid considering the corresponding
measurement uncertainties. Hence, the value of a grid cell is increased, if it is located
within the measurement uncertainty of one of the measurements. Grid cells with a
value pm(mi) > 0.5 are treated as occupied. All grid cells between the sensor and
occupied cells are considered as free space. In [KSD10], several possibilities for free
space models are presented. However, for the considered application a free space
modeling using a constant value of pm(mi) = 0.1 is sufficient. The occupancy grid
is updated with the measurement grid using the binary Bayes filter [TBF05] which
calculates the occupancy probability of each grid cell independently.

Based on the current measurement, the measurement grid represents hidden or
occluded grid cells mi by the probability pm(mi) = 0.5. Thus, the measurement grid
approximately represents the state dependent detection probability which is desired
for the SMC-MOB filter. Since laser range finders only measure object contours and
the resolution of the grid cells is 5 cm, all grid cells within the extend of an object
are marked as hidden. In order to mitigate this effect, the average size of pedestrians
(circular shape with diameter 40 cm) is integrated into the measurement grid and only
grid cells which are more than 40 cm behind a measurement are marked as hidden.
Thus, an application of this approach to tracking systems for multiple object classes
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is not possible in general and the detection probability has to be determined using
the approach proposed in Section 4.4.

The sensor setup comprises two laser range finders and the measurement grid as well
as the adapted measurement grid for the representation of the detection probability
are calculated independently for both sensors. Since the segmentation approach allows
the generation of an object hypothesis if an object is only visible for one of the sensors,
a grid cell is only considered as occluded if both sensors are not able to detect objects
in this cell. Thus, the state dependent detection probability of each grid cell is given
by

pD(mi) =
{

1− pD if p(1)
m (mi) = p

(2)
m (mi) = 0.5,

pD otherwise,
(6.15)

where p(1)
m and p

(2)
m denote the sensor individual measurement grids. Further, pD

represents the state independent detection probability of the laser range finders.

The state dependent detection probability pD(mi) = 1− pD is visualized in Figure
6.14 using red circles. The measurements of the laser range finders are separated into
static (marked by black diamonds) and dynamic (marked by blue and green dots)
points using the occupancy grid. Five pedestrians are located in the visible area and
the black ellipses illustrate the result of the fuzzy segmentation algorithm. Another
person stands in the occluded area at (x, y) ≈ (−0.9m, 5.4m). As expected, a small
detection probability is assigned to the area next to the occluded pedestrian. The
area covered by the five visible pedestrians obtains a high detection probability since
the object extend is considered in the detection probability model.

The state dependent detection probability given by (6.15) does not deliver an accurate
estimate for the detection probability of an object whose center is located close to
a transition between a high and a low detection probability. Assuming again that
pedestrians have approximately a circular shape with a diameter of 40 cm, the object
extend is incorporated in the detection probability grid using a convolution with a
circular kernel function [RD10] which smooths the transition between high and low
detection probability.

Due to the static obstacles in the environment, a constant survival probability within
the field of view of the sensors is generally not sufficient. However, the occupancy
grid provides the required information to obtain a state dependent survival proba-
bility. Since pedestrians may be located at grid cells which are not occupied by a
static obstacle, a survival probability of pS = 0.995 is assigned to all objects whose
corresponding grid cell mi has an occupancy probability of po(mi) < 0.5. In contrast,
a pedestrian may not be located at grid cells which are occupied by a static obstacle.
Thus, a survival probability of pS = 0.1 is assigned if po(mi) > 0.5. In addition to
free and occupied grid cells, the occupancy grid usually comprises grid cells which
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Figure 6.14: Pedestrian tracking scenario: black diamonds depict measure-
ments of static objects, blue and green dots represent measure-
ments of dynamic objects. Black ellipses illustrate the results of
the segmentation algorithm. Areas which are occluded for both
sensors are marked by red circles. The dashed blue lines depict
the FOV of the sensors.

have never been observed by the sensor. In order to allow for the continuous tracking
of an object over a small unobservable area and to mitigate objects spinning around
in unobservable areas for a long time, a survival probability of pS = 0.8 is assigned to
objects located within these cells. Obviously, the choice of pS depends on the size of
the areas which are outside of the sensor’s field of view. Empirical tests have shown,
that pS = 0.8 is a good choice for the considered sensor setup, since the unobservable
areas are quite small and the pedestrians typically need only a few measurement cycles
to pass these areas.

Adaptive Birth Probability in Scenarios with Occlusion

Scenarios with state dependent detection probabilities and occlusions pose a challenge
for the birth model which is part of the prediction step. The adaptive birth density
proposed in Section 4.5 tends to initialize a new born object and to keep the occluded
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object when the occluded object reappears. Similar effects are also expected in case
of a static birth density. Since the particles corresponding to the occluded object are
scattered over the occluded area, a multi-object particle may contain a particle for the
object at one end of the occluded area while the object reappears at the other end.
Thus, the measurement of a reappearing object may have an insignificant likelihood
for the existing particle of the object since the spatial uncertainty of the object is
not represented within a single multi-object particle. Consequently, the measurement
tends to initialize a new object in this situation.

In order to mitigate this effect, the label information is incorporated into the calculation
of the birth probability in case of a state dependent detection probability. Thus, a
very low birth probability is assigned to a measurement zj if the measurement has
a high likelihood for an object with label ` in any of the multi-object particles and
the current multi-object particle already contains an object with label `. In contrast,
a high birth probability is assigned if a measurement has only high likelihoods for
objects whose label is not contained in the current multi-object particle.

6.4.2 Results

The SMC-MOB filter is evaluated for a scene with up to seven pedestrians and several
occlusions. The sequence is labeled in order to obtain ground truth positions of
the objects. Using a state dependent detection probability, the SMC-MOB filter is
expected to keep track of objects which are occluded for a short time. Since the
scenario only contains occlusions with less than 0.8 seconds or more than 2.4 seconds,
the OSPAT distance assumes the filters to be able to deliver continuous tracks for
objects which are occluded for at most 0.8 seconds. In other words, track ID switches
after an occlusion of less than 0.8 seconds are penalized while a track ID switch is
expected after an occlusion with more than 2.4 seconds.

The results of the SMC-MOB filter which uses a state dependent detection and survival
probability are compared to the results of a GM-LMB filter with state independent
detection and survival probabilities. Furthermore, two variants of the SMC-MOB
filter are compared. Both versions use N = 25000 multi-object particles. One of
the SMC-MOB filters uses the approximate multi-object likelihood function. Due to
the approximation, the filter is capable to handle all object hypotheses of the fuzzy
segmentation algorithm and runs in real-time on a Nvidia Tesla C2075 GPU. The
second SMC-MOB filter uses the exact multi-object likelihood function and is not
real-time capable. Since the filter is not capable to handle the huge number of object
hypotheses of the fuzzy segmentation algorithm, the object hypotheses are merged to
reduce the computational load. The LMB filter also uses the merged hypotheses.
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(a) SMC-MOB filter using approximate multi-object likelihood function.
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(b) SMC-MOB filter using exact multi-object likelihood function.

200 400 600 800 1,000 1,200
4
5
6
7

measurement k

C
ar

di
na

lit
y

E
st

im
at

e

(c) LMB filter.

Figure 6.15: Cardinality estimates of the SMC-MOB filter (with exact and
approximate likelihood calculation) and the LMB filter for the
pedestrian tracking scenario averaged over 50 Monte Carlo runs.
The thick black line depicts the number of objects in the scene,
while the thin grey line illustrates the number of objects which
are not occluded for the sensors.

Figure 6.15 shows the cardinality estimates of the three tracking algorithms. Due
to the state dependent detection probability, the SMC-MOB filters are capable to
keep track of an object which is occluded for a short time (e.g. around k ≈ 900). The
cardinality estimates for the SMC-MOB filters also illustrate that the filters continue
to track occluded objects for quite a long time (e.g. before k = 1200). In contrast,
the GM-LMB filter with constant detection probability loses these tracks in the same
situation. Since the SMC-MOB filter with approximate likelihood calculation uses
all object hypotheses obtained from the fuzzy segmentation algorithm, its cardinality
estimates are more accurate at the beginning of the scenario (k < 200) than the ones
of the other filters. Between k ≈ 200 and k ≈ 300, the SMC-MOB filters lose one of
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(a) OSPA distances (order p = 1, cut-off c = 2 m).
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(b) OSPAT distances (order p = 1, cut-off c = 2 m, α = c).

Figure 6.16: OSPA and OSPAT distances for the pedestrian tracking scenario
(averaged over 50 MC runs).

the tracks in approximately every second run since one of the persons leans against
the back of a chair which is registered in the occupancy grid as a static obstacle.
Hence, approximately half of the particles representing this person are located within
occupied grid cells and obtain a small survival probability which consequently leads
to the track loss.

The OSPA and OSPAT distances of the three algorithms are depicted by Figure
6.16. The OSPA distance in Figure 6.16a indicates that all algorithms provide almost
identical results in situations without occlusions (e.g. 900 < k < 1100). However,
the GM-LMB filter is prone to lose tracks during short-term occlusions which is e.g.
illustrated by the small peaks around k = 900. Since the SMC-MOB filter uses a
state dependent detection probability, it outperforms the GM-LMB filter in these
situations. In case of long-term occlusions (e.g. after k ≈ 700), the SMC-MOB filters
tend to have a higher OSPA distance than the GM-LMB filter due to the fact that
they may still keep track of the occluded object although it is already occluded for
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more than nine measurement cycles. Penalizing switches of the track IDs using the
OSPAT distance in Figure 6.16b, the SMC-MOB filters significantly outperform the
GM-LMB filter due to the capability of keeping track of objects which are occluded for
a short time. Additionally, the SMC-MOB filter using the approximate multi-object
likelihood function has a smaller OSPAT distance than the SMC-MOB filter which
uses the exact multi-object likelihood function. This behavior is due to the fact that
the filter with the approximate likelihood calculation uses all object hypotheses of the
fuzzy segmentation algorithm which significantly reduces the loss of information due
to pre-processing.

6.5 Multi-Object Tracking in Automotive
Applications

First, two additional simulations for typical scenarios in automotive applications are
investigated to illustrate the possible performance gain of an LMB filter compared
to the JIPDA filter. Afterwards, the system setup of the experimental vehicle is
introduced. In Section 6.5.3, the JIPDA filter and the LMB filter are applied to two
typical scenarios for automatic cruise control systems to illustrate the almost identical
performance of the algorithms in unambiguous situations. Afterwards, three examples
using unresolved measurements, challenging track initialization, and state dependent
detection probabilities are presented to illustrate the capabilities of the LMB filter
and the possible performance gains in automotive applications.

6.5.1 Simulations

Split and merge scenarios are challenging in multi-object tracking applications. Figure
6.17 depicts a typical scenario, where the starting positions of the objects are marked
by a square and the destinations are illustrated by a triangle. Both objects move with
an identical velocity of vx = 10 m/s in x direction. The distance between the objects
in y direction is decreasing from 9 m to a minimum of 3 m. Afterwards, the objects
move parallel to each other for 40 measurement cycles (k = 60 to k = 99) before they
are separating again. The objects are assumed to follow a constant velocity model
with a standard deviation of the process noise of σa = 4 m/s2 in x and y direction.
The simulated sensor delivers Cartesian x and y position measurements at a frequency
of 10 Hz. The standard deviation of the measurement noise is σx = σy = 1 m, the
state independent detection probability is chosen to pD = 0.9, and a true positive
probability of pTP = 0.95 is assigned to all measurements.
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Figure 6.17: Ground truth for the split and merge scenario with two objects.
Starting positions are marked by a square, destinations by a
triangle.

The scenario is used to compare the performance of the LMB filter with the JIPDA
and the SMC-MOB filter. All filters use matching process and measurement noises
and the track extraction algorithm only outputs tracks with a maximum existence
probability of rmax > 0.5 and a current existence probability r > 0.05. The LMB
filter merges all Gaussian distributions with a Mahalanobis distance dMHD < 0.2 and
prune Gaussians with a weight w < 0.01. One of the main differences between the
JIPDA filter and the LMB filter is the representation of the posterior PDF of a track.
While the JIPDA filter approximates the posterior by a single Gaussian distribution,
the LMB filter retains a mixture of Gaussians. In order to illustrate the influence of
this approximation, the LMB-PDA filter approximates the posterior using a single
Gaussian distribution whose parameters are calculated using the PDA equations (2.40)
and (2.41).

Figure 6.18a shows the OSPA distances of the five filters for the split and merge
scenario. Obviously, the performance of LMB, LMB-PDA, and SMC-MOB is almost
identical. However, the SMC-MOB filter has a slightly smaller OSPA distance
during 60 ≤ k < 100 since it incorporates a minimum distance of the two objects
of dmin = 2.5 m. The JIPDA filter obtains a marginally higher OSPA distance
for 60 ≤ k < 120, i.e. while the objects move parallel to each other and start to
diverge from each other. Since the LMB-PDA outperforms the JIPDA filter, the
approximation of the posterior PDF using a single Gaussian distribution is not the only
reason for the performance drop. The significant difference between the JIPDA filter
and the LMB-PDA filter is mainly due to the different birth models. While the JIPDA
implementation [MMD10] directly incorporates birth nodes in the hypotheses tree,
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Figure 6.18: OSPA and OSPAT distance of the filters for the split and merge
scenario using a cut-off value of c = 5 m and order p = 1
(averaged over 100 MC runs). The OSPAT distance penalizes
Track ID switches like missed detections using α = c.

the LMB-PDA uses the adaptive birth model introduced in Section 5.3.6. The birth
nodes of the JIPDA implementation require an accurate spatial birth density pB(x)
which depends on the scenario and the current track estimates. However, an adequate
modeling of pB(x) is very difficult in scenarios with closely spaced objects and an
erroneous pB(x) may prevent the initialization of an appearing object.

The investigated split and merge scenario is typically prone to swap the track IDs of
the objects. Figure 6.18b shows the OSPAT distance which additionally penalizes the
track ID switches using the parameter α = c, i.e. a switching track ID is penalized
like a missed detection. In contrast to the OSPA results in Figure 6.18a, the OSPAT
distance of the LMB-PDA filter significantly deviates from the results of the LMB and
the SMC-MOB filter. Thus, an approximation of a track’s posterior PDF using the
PDA equations increases the number of track ID switches in the considered scenario.
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The split and merge scenario depicted by Figure 6.17 starts with well separated objects.
Thus, the filters are not required to handle ambiguities during object initialization.
However, systems like adaptive cruise control or emergency break assists are required
to initialize tracks at high distances. Due to the radial measurement principle of
radar sensors, the standard deviation of a measurement increases with the range.
Consequently, the track to measurement association for two closely spaced objects
at a high distance is often ambiguous. Consider a scenario where the ego vehicle is
heading towards the end of a traffic jam. Assume that the sensor is able to detect two
non-moving cars at the end of the traffic jam whose centers are initially located at
(x, y) = (200, 3.5) m and (x, y) = (200,−3.5) m. The ego vehicle is driving towards
them with a velocity of vx = 55 m/s. The detection probability is pD = 0.9 and the
standard deviations of the measurements for angle and range are given by σϕ = 1.25◦
and σr = 0.2 m. As in the previous scenario, a true positive probability of pTP = 0.95
is assigned to all of the received sensor measurements.

Figure 6.19 shows the OSPA distance for the LMB, JIPDA, and LMB-PDA filter
for the traffic jam scenario. Obviously, the LMB filters outperform the JIPDA filter
which is mainly due to the different birth models. The LMB filter and the LMB-PDA
filter deliver almost identical results for distances x < 60 m and x > 160 m between
the ego vehicle and the two objects. However, for 60 m < x < 160 m the LMB filter
shows superior performance compared to the LMB-PDA filter since the more accurate
representation of the posterior within the LMB filter facilitates the separation of the
two objects at a higher distance.
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Figure 6.19: OSPA distances for LMB, JIPDA, and LMB-PDA filter for the
traffic jam scenario plotted against the true distance between
ego vehicle and the objects (averaged over 100 MC runs).

Assuming a width of 2 m for each of the cars, there is no need for an emergency break
since there is enough space between the two cars. Consequently, it is crucial to know as
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soon as possible that the space between the cars is sufficient to pass by with a reduced
velocity. Figure 6.20 shows the distances for 100 Monte Carlo runs, after which the
distance between the objects (including one standard deviation of the uncertainty in
y position) does not fall below a threshold of 2.4 m. In general, the LMB filter is able
to separate the two cars at a higher distance since the LMB-PDA filter tends to have
both tracks around y = 0 at high distances due to the approximation of the posterior
PDF using a single Gaussian distribution.
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Figure 6.20: Distance to the objects after which the minimum space between
the objects does not fall below 2.4 m (including one standard
deviation).

6.5.2 System Setup

The GM-LMB and the JIPDA filter applied to vehicle environment perception in
this section use an EKF implementation due to the non-linear constant turn rate
and constant velocity (CTRV) motion model. Additionally, the measurement models
of some of the sensors are non-linear and require a linearization. In order to obtain
comparable results, both filters use identical measurement models. For tracking
performance evaluation, ground truth information is required. The reference data is
recorded using three vehicles equipped with an automotive dynamic motion analyzer
(ADMA). The ADMA is a differential global positioning system (GPS) combined
with a high precision inertial measurement unit. Under good receiving conditions, the
ADMA achieves an accuracy of 0.02 m, which is approximately an order of magnitude
more precise than the sensor data.
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Ego Motion

Automotive tracking applications require the consideration of the vehicle’s ego motion
which causes an additional relative motion of the tracked objects between succeeding
sensor measurements. The relative motion of the ego vehicle between two sensor
measurements is usually represented using the absolute velocity and the yaw rate. The
estimation of the ego motion is realized using the EKF implementation proposed in
[Mah09b]. The measurement vector contains the wheel speeds of all wheels as well as
the yaw rate which are available from the vehicle’s electronic stability control system.
Additionally, the pitching of the car is modeled by a stochastic noise process. The
compensation of the ego motion is performed as follows: First, the filter algorithm
predicts each object using its motion model. Afterwards, the motion of the ego vehicle
is compensated using an additional state transition and the estimation error covariance
P+ of the tracked objects is increased by the uncertainty of the ego motion.

Sensor Setup

Figure 6.21: Sensor setup of the experimental vehicle, colored areas illustrate
the fields of view of the sensors: laser range finders (blue), camera
(beige), long-range radar (red). Maximum distance of the sensors
is scaled down.

The experimental vehicle is equipped with a complementary sensor setup including
radar, laser, and video sensors. Figure 6.21 illustrates the fields of view of the sensors
and their mounting positions. Figure 6.22 shows an image of the gray scale video
camera mounted behind the windshield of the car. The red rectangles depict the
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measurements obtained by the vehicle detector [GLW+13]. The detector is based on
the architecture proposed by Viola and Jones in [VJ01] which uses Haar features and a
cascaded processing scheme to obtain high detection rates in combination with tractable
computational cost. The detector additionally assigns a true positive probability
pTP (z) to each of the detections which corresponds to the inverse probability that
the detection actually represents a car.

Figure 6.22: Video image of a test-run in a suburban area. Detections of the
classifier are illustrated by red boxes.

Figure 6.23a shows the raw data of the imaging radar sensor Continental ARS 310
mounted in the grill of the experimental vehicle. Using the Doppler effect, the radar
is able to distinguish between stationary and dynamic objects. While the video
camera provides a high angular resolution, the radar provides very accurate range
measurements. Consequently, a multi-sensor tracking system with radar and video
sensors combines the strengths of both sensor types and achieves accurate estimates
in range and angle.

The measurements of the three IBEO LUX laser range finders, which are integrated
in the front bumper, are depicted by Figure 6.23b. Similar to the radar, the laser
range finders deliver accurate range measurements. While the advantage of the radar
sensor is the higher range coverage, the laser range finders provide a significantly
higher angular resolution. Since the sensor returns multiple measurements per object,
a segmentation algorithm is applied which fits boxes or lines into the raw data. For
additional details about the segmentation algorithm, refer to [Mun11].
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(a) Radar image. (b) Laser point cloud and object hypotheses.

Figure 6.23: Raw data and pre-processing results of the radar and the laser
range finder for the scene in Figure 6.22: (a) shows the raw data
of the imaging radar and the extracted peaks of stationary (red)
and dynamic (green) objects. (b) shows the raw measurements
of the three laser range finders where the colors illustrate the
clustering result and the object hypotheses are represented by
green boxes.

Temporal Alignment and Spatial Calibration of the Sensors

A crucial point in multi-sensor tracking systems is the integration of the measurements
in chronological order. Thus, a time stamp of a common time base has to be assigned
to each of the measurements. Even if a correct time stamp is assigned to each
measurement, it is still possible that the measurements do not arrive in correct order
at the tracking system due to transmission latencies or varying computation time
during pre-processing. In tracking applications, these measurements are commonly
called out-of-sequence measurements [BWT11]. In order to ensure the correct order, a
buffering strategy is used (e.g. [KD03; Mun11]). The tracking system only processes
the oldest measurement in the buffer, if the buffer contains at least one measurement of
each sensor. This ensures the correct temporal order of the measurements at the cost
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of a delay which depends on the minimum measurement frequency of all sensors and
the latencies. In applications requiring minimum delays like e.g. a vehicle’s pre-crash
system [MAZ+10], a buffering strategy is usually not sufficient and more sophisticated
approaches like reprocessing or retrodiction [Bar02; BCM04; MAZ+10; WDM+12]
have to be applied to handle out-of-sequence measurements.

In addition to the temporal alignment of the sensor measurements, a precise spatial
calibration of the sensors is crucial for a multi-sensor tracking system. For details
about the calibration, refer to [Kam07; Mun11].

Extended Object Tracking Using Reference Points

In vehicle environment perception, the commonly used point target assumption is
not feasible since some of the sensors return more than one measurement per object.
Similar to [SWBH12], cars are represented using a rectangle with nine reference points:
one at the center of the rectangle, four at the corners, and another four at the center
of each side of the rectangle. The object dimensions are represented by the length
and the width of the rectangle.

The reference point approach requires additional information about the measured
reference points. The video detector for rear and front views of a car measures
either rear center or front center. In parallel traffic, the radar sensor also returns
measurements of rear center and front center while the possible reference points for
the laser range finder are more complicated. If the laser range finder obtains an
L-shape for the object, the most accurate reference point is the corner of the object.
In case of an I-shape, the center of the line is the best choice. Consequently, the
measurement models for the sensors are required to calculate predicted measurements
for all possible reference points.

6.5.3 Comparison of LMB and JIPDA in Basic Applications

In this section, the performance of the LMB filter and the JIPDA filter is compared for
two typical applications of an automatic cruise control system. In both scenarios, the
distance between the vehicle in front and the ego vehicle varies between 10 m an 100 m.
Due to high detection rates, accurate measurements, and a low object density in
these scenarios, there is almost no ambiguity in the track to measurement association.
Consequently, the posterior distribution of the track is supposed to be dominated by
a single Gaussian distribution and the impact of the PDA approximation within the
JIPDA filter is expected to be negligible in these scenarios. Thus, the performance of
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the JIPDA implementation proposed in [Mun11] should be almost identical to the
one of the LMB filter in these situations. Both filters prune tracks with an existence
probability r < 0.001. Additionally, the LMB filter prunes Gaussian mixtures with a
weight w < 0.01 and merges Gaussian distributions with MHD dMHD < 0.3.

Figure 6.24 shows the OSPA distance for a 25 minute run on a highway where the
two other vehicles equipped with an ADMA enter and leave the observed area several
times. The huge peaks of the OSPA distance are either due to cardinality errors
during object appearance and disappearance or due to inaccurate reference positions
provided by the ADMA system. Obviously, the OSPA distances of the LMB and the
JIPDA filter are almost identical in this scenario.
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Figure 6.24: OSPA distances (order p = 1, cut-off c = 2 m) of the LMB filter
and the JIPDA filter for the vehicle in front of the observing
vehicle. The gray background indicates time steps where the
ADMA systems did not provide the highest possible accuracy.

Figure 6.25 depicts the RMS error of the LMB filter for an 8 minute run on a winding
rural road including three roundabouts. The LMB filter is able to track the vehicle in
front continuously. Due to the lack of highly accurate reference positions of the ADMA
systems for a long time, the RMS error for 2905 < k < 5429 is significant. However,
the very small RMS error for k ≥ 5429 indicates that the LMB filter delivered excellent
state estimates for the track during the time steps with imprecise ADMA positions.
Most of the time, the estimated existence probability of the tracked vehicle is close to
one. The two significant spikes are due to a few missed detections in a row.

In contrast to the highway scenario depicted by Figure 6.24, the run on the rural
road comprises several situations with high accelerations in longitudinal direction
and in orientation. Figure 6.26a shows the difference between the RMS error of the
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Figure 6.25: Tracking results of the LMB filter for a test run on a winding
rural road with three roundabouts. The gray background again
depicts measurement times with inaccurate ADMA reference
positions.

LMB and the JIPDA filter. The noisy difference between the two RMS errors is
due to the different ways to obtain the state estimates. While the LMB filter simply
returns the Gaussian distribution with the highest weight, the JIPDA filter returns
the mean value of the Gaussian distribution obtained by the PDA approximation.
The negligible difference between the RMS errors indicates comparable tracking result
of the LMB and the JIPDA filter during 2905 < k < 5429. Additionally, Figure
6.26b illustrates that the existence probabilities of the LMB and the JIPDA filter
are almost identical. However, there are four time windows with slightly higher
variance between the existence probabilities. The time slots correspond to the three
roundabouts and a sharp corner where the deviation between the predicted state and
the actual measurement is higher and a higher number of false alarms is returned by
the sensor.

6.5.4 Partially Unresolved Measurements in Ambiguous
Situations

In vehicle environment perception, tracking two cars driving side by side at a high
distance is a challenging scenario. Since current radar sensors are not able to separate
the two objects due to identical radial distance and velocity and a small angular
difference, the sensor is likely to return only a single measurement for the two cars
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Figure 6.26: Comparison of the tracking results of the LMB filter and the
JIPDA filter for the test run on a winding rural road with three
roundabouts.

which may be located on one of the cars or even between the cars. Thus, this scenario
is even more challenging than the split and merge scenario evaluated in Section 6.5.1.
Figure 6.27 exemplarily shows the estimated y positions for two cars obtained by
an LMB filter using only radar measurements. Obviously, the filter is only able to
separate the tracks during the first seconds. Afterwards, the tracks are switching
several times due to the unresolved measurements. Further, the estimates for the car
on the left lane (corresponding to the higher y value) tend to even higher y values
due to reflections at the guardrail which occur at the same time as the unresolved
measurements.

Since the video sensor has a significantly higher angular resolution, a multi-sensor
tracking algorithm using radar and video is supposed to show significantly better
tracking results in this situation. Due to the ambiguities in the scenario, a filter
which facilitates a state representation using a Gaussian mixture is expected to show
superior performance compared to a filter which represents the posterior using a single
Gaussian distribution. In order to prevent the influence of the birth model used in
the JIPDA implementation, the LMB filter is compared to the LMB-PDA filter.

Figure 6.28 shows the results for the LMB and the LMB-PDA filter for a scenario
whose distance profile is depicted by Figure 6.28b. The LMB filter merges all Gaussian
distributions with a Mahalanobis distance below 0.3. While the LMB filter is able
to track both objects continuously (see Figure 6.28c), the LMB-PDA filter loses
and re-initializes the track with the smaller y position (see Figure 6.28d) due to the
decreasing distance between the objects. In addition to several unresolved radar
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Figure 6.27: Radar only tracking using the LMB filter in case of unresolved
measurements. Black lines illustrate the ground truth y positions
of the two cars, green and blue line depict the estimated y
positions.

measurements, several succeeding detections of the video sensor in between the two
cars increase the ambiguity of the scenario at the time of the track loss. Due to the
more accurate representation of the posterior PDFs of the tracks, the LMB filter
significantly outperforms the LMB-PDA filter with respect to the OSPAT distance
depicted by Figure 6.28a. Since the OSPAT determines the best match of ground
truth tracks and estimated tracks, the blue and the green track are assigned to the two
cars. Consequently, the OSPAT distance of the LMB-PDA filter during the first 15
seconds is significantly higher than the one of the LMB filter due to the mis-matching
label of the red track and the subsequent cardinality error.

6.5.5 Multi-Hypotheses Track Initialization

In object tracking applications, sensors commonly observe only a part of the object’s
state vector. If the sensor is not able to measure the object’s velocity, tracks are often
initialized using a two-step initialization, which calculates the velocity of an object
using two successive position measurements. However, the two-step initialization
requires accurate range measurements to obtain a suitable velocity estimate. Since
a video camera projects the three dimensional world to the two dimensional image
plane, the range information is lost. However, the distance of an object detected in a
video image is proportional to the width of the corresponding detection (see Figure
6.22). Using a prior width wcar for vehicles, the object’s distance is determined using
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Figure 6.28: Results for a highway scenario with two cars driving side by side
at a high distance. In (c) and (d), the black lines illustrate the
ground truth y positions. The green, blue, and red lines depict
the estimated y positions where each color represents a specific
track ID.

the width of the current detection1. While the obtained distance is quite accurate for
objects at low distances, the calculated distances of objects which are far apart are
very uncertain. Consequently, a two-step initialization is likely to initialize objects
with erroneous velocities which may even point to the opposite direction.

Figure 6.29 shows the tracking results of an LMB filter with two step initialization
for an oncoming vehicle using only a mono video camera. The relative speed of the
oncoming vehicle is approximately 55 m/s, which is typical for rural roads. Although
the filter initializes a track at a distance of about 150 meters, it is not able to deliver

1Using the flat-world assumption, the intrinsic and the extrinsic camera parameters also facilitate
the calculation of an object’s distance. However, this approach delivers inaccurate range estimates
at high distances if the flat-world assumption is not fulfilled (e.g. due to pitching).
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satisfactory state estimates due to the error-prone initialization of the vehicle’s velocity.
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Figure 6.29: OSPA distance (c = 30 m, p = 1) for video-only tracking of an
oncoming vehicle using an LMB filter with two-step initialization.
The x axis illustrates the ground truth distance of the other
vehicle.

Since the spatial distribution of each LMB track comprises a mixture of Gaussians,
an LMB RFS enables a track initialization using multiple hypotheses, where each
hypothesis represents a possible object state. The possible velocities of the objects
depend on the permitted maximum velocity for the current road. For a rural road,
the absolute velocity of other road users is approximately in the range [0, 30] m/s. To
handle preceding and oncoming vehicles, five hypotheses with the velocities

v1 = −100
3.6 m/s, v2 = − 50

3.6 m/s, v3 = 0 m/s, v4 = 50
3.6 m/s, v5 = 100

3.6 m/s

are used and the standard deviation of the velocity is chosen to σv = 25 m/s. In
addition to the velocities of the objects, the width is also unknown. To handle the
range between small cars and trucks, four different object widths are used:

w1 = 1.6 m, w2 = 1.8 m, w3 = 2 m, w4 = 2.5 m.

The corresponding standard deviation for the width is chosen to σw = 0.1 m. Con-
sequently, each new born object is initialized using a total number of 20 hypotheses
with equally distributed weights.

Figures 6.30a and 6.30b show the video only tracking results of the LMB filter in case
of an initialization with several hypotheses. The number of Gaussian distributions
is truncated using a merging procedure which merges Gaussians with Mahalanobis
distance dMHD < 0.3. Additionally, mixture components with weight w < 0.01 are
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pruned. Due to the improved track initialization, the LMB filter is able to track
the oncoming vehicle continuously. The OSPA distance for the oncoming vehicle is
below 5 m for ground truth distances below 80 m. Since the video sensor does not
provide range information, the OSPA distance is dominated by the uncertain range
estimate. In addition, Figures 6.30c and 6.30d depict the results of the LMB-PDA filter
which approximates the posterior distribution of each track using a single Gaussian
distribution. Obviously, the approximation significantly affects the filter performance
since the multi-modal PDFs of the tracks are approximated using a single Gaussian
distribution.

25 50 75 100 125 150 175
0
5

10
15
20
25
30

ground truth distance [m]

O
SP

A
[m

]

(a) LMB: Sequence 1

25 50 75 100 125 150 175
0
5

10
15
20
25
30

ground truth distance [m]

O
SP

A
[m

]

(b) LMB: Sequence 2

25 50 75 100 125 150 175
0
5

10
15
20
25
30

ground truth distance [m]

O
SP

A
[m

]

(c) LMB-PDA: Sequence 1

25 50 75 100 125 150 175
0
5

10
15
20
25
30

ground truth distance [m]

O
SP

A
[m

]

(d) LMB-PDA: Sequence 2

Figure 6.30: OSPA distance (c = 30 m, p = 1) for video-only tracking of
an oncoming vehicle using an LMB filter with multi-hypotheses
initialization. The x axis illustrates the ground truth distance of
the other vehicle. Results depicted by a red circle use all widths
w1 to w4 while only w1 to w3 are used for the results with the
blue star.



6.5 Multi-Object Tracking in Automotive Applications 173

6.5.6 Using State Dependent Detection Probabilities in
Multi-Sensor Systems

In multi-sensor fusion systems with complementary sensor setup, the measurements
of two sensor types are often contradictory due to different detection capabilities. A
typical example is given by the following situation: two observed cars are driving in a
row. If the ego vehicle is located on the same lane, the foremost car is occluded for
the video camera due to the other car. However, the radar sensor is usually able to
deliver detections for both of the cars. In this scenario, the association of a detection
in the video image is ambiguous if a track for both objects is initialized and a state
independent detection probability is used for the video camera.

The update step of the LMB filter allows for an explicit modeling of a state depen-
dent detection probability by incorporating the occlusion due to other objects. By
representing the predicted LMB distribution in δ-GLMB form (see Section 5.3.4),
the considered scenario results in four different predicted sets of track labels I+.
Obviously, the sets with cardinality |I+| ≤ 1 do not require the calculation of a state
dependent detection probability, since at most one object exists. In case of |I+| = 2,
the detection probability of the furthermost car is significantly reduced due to the
occlusion by the other car. In order to limit computational cost, the calculation of
the state dependent detection probability neglects the state uncertainty of the objects.
Hence, the predicted measurements for the video sensor are simply given by unrotated
rectangles in the image plane. Consequently, an object is marked as occluded for the
video sensor if its corresponding rectangle intersects with at least one rectangle of an
object located closer to the sensor.

In the considered scenario, the video sensor has a detection probability of pVD = 0.9
and the detection probability of an occluded object is set to poccD = 0.01pVD. Figure
6.31 depicts the ground truth positions and the tracking results for two vehicles in
front which overtake each other several times on a highway. The LMB filter with
occlusion modeling significantly outperforms the filter with state independent detection
probability in terms of the OSPA and the OSPAT distance. The OSPA distance
in Figure 6.31c illustrates that the LMB filter with state independent detection
probability has major difficulties to resolve the two occlusions starting at t ≈ 15 s
and t ≈ 57 s. These difficulties are due to additional detections of the video sensor
within the gate of the occluded track. Additionally, the OSPAT distance in Figure
6.31d indicates that the LMB filter without occlusion modeling loses the foremost
track at t ≈ 64 s due to several missed detections of the radar. In contrast, the LMB
filter with occlusion modeling is capable to keep track of the object since the reduced
detection probability of the video sensor results in a higher existence probability of
the occluded object.
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(c) OSPA distance (c = 3 m, p = 1).
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(d) OSPAT distance (c = 3 m, p = 1, α = 3).

Figure 6.31: Results for a highway scenario with several occlusions due to
two vehicles in front which overtake each other several times.
The OSPA and OSPAT distances compare the performance of an
LMB filter with occlusion modeling to one with state independent
detection probability.
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6.6 Discussion

The results for the SMC-MOB filter illustrate the possible performance gains due to
the incorporation of object interactions and state dependent detection probabilities.
Further, the proposed approximations of the multi-object likelihood function are
shown to achieve comparable results to the exact multi-object likelihood function if
the minimum distances of the objects are large enough or the marginalized multi-object
likelihood is used. In the application of the SMC-MOB filter to the pedestrian tracking
scenario, the SMC-MOB filter outperforms the LMB filter due to its ability to model
interactions and the very accurate representation of the state dependent detection
probability.

The LMB filter is shown to achieve approximately the same performance as the com-
putationally more complex δ-GLMB filter. As expected, the LMB filter significantly
outperforms the CB-MeMBer and the CPHD filter. Using real-world sensor data,
the LMB filter and the JIPDA filter yield approximately identical tracking results in
unambiguous situations where the posterior of each track is dominated by a single
Gaussian. In more challenging scenarios, the PDA approximation of the posterior
distribution significantly impacts the performance of the tracking algorithms and
the LMB filter outperforms the LMB-PDA filter in case of unresolved measurements
and multi-hypotheses track initialization. Further, the δ-GLMB representation of the
tracks within the measurement update of the LMB filter facilitates a straightforward
calculation of a state dependent detection probability for each set of predicted track
labels which involves improved tracking results for a video and radar fusion system
during occlusions.





Chapter 7

Conclusion and Future Work

7.1 Conclusion

The key contributions of this dissertation are a real-time capable implementation of the
SMC multi-object Bayes filter and a novel multi-object tracking algorithm, the labeled
multi-Bernoulli (LMB) filter. The SMC implementation of the multi-object Bayes filter
uses an approximate multi-object likelihood function which significantly reduces the
computational complexity. Additionally, the filter explicitly models interactions using
the social force model or hard-core point processes. Both approaches avoid physically
impossible object states after the prediction step which additionally simplifies the data
association within the filter update. The simulation results of the SMC multi-object
Bayes filter as well as the results using real world sensor data indicate an excellent
performance of the algorithm. However, the required number of particles for the
representation of the multi-object states limits the maximum number of objects which
may be tracked with the filter.

The LMB filter is an approximation of the δ-GLMB filter which approximates the
posterior δ-GLMB distribution by an LMB RFS with matching intensity function.
While the prediction of a δ-GLMB RFS is combinatorial, the LMB prediction features
a linear computational complexity. Additionally, the LMB representation facilitates
the partitioning of the predicted set of tracks and the set of measurements into
independent groups, which significantly reduces the computational complexity of the
filter update if the partitioning results in more than a single group. The LMB filter
may also be considered as a generalized version of the CB-MeMBer filter which is not
prone to a bias in the cardinality estimate due to the more accurate approximation
of the multi-object posterior. Compared to the JIPDA algorithm, the LMB filter is
superior since it does not require the approximation of the multi-object posterior by a
single Gaussian distribution. A benefit of the LMB filter in comparison with MHT
approaches is the enclosed estimation of the track existence probability and the usage
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of an explicit model for new born objects. The LMB filter significantly outperforms
the PHD, the CPHD, and the CB-MeMBer filters and achieves approximately the
same performance as the δ-GLMB filter at a significantly lower computational cost.
Within the context of vehicle environment perception, the LMB filter and the JIPDA
filter obtain almost identical results in situations with high detection probabilities
and accurate sensor measurements. However, in challenging situations the LMB filter
provides more accurate state estimates due to the more precise approximations.

7.2 Future Work

The incorporation of object destinations in the SMC multi-object Bayes filter has
not been considered yet since destinations of pedestrians are not available in general.
However, in the context of "Companion"-systems [WB12] a knowledge base is available
which has information about upcoming activities of a user that may be utilized in
the prediction step of the filter. In the context of vehicle environment perception, the
destinations of the other road users are restricted by the road network. Hence, the
topology of the road network as well as other information sources like the current
state of traffic lights could improve the predicted object states.

The proposed implementations of the SMC multi-object Bayes filter and the LMB
filter represent extended objects as circles or rectangles and require error-prone seg-
mentation algorithms for the pre-processing of the sensor data. In case of elliptical
objects, a representation of the object’s size using random matrices [Koc08] is suitable
and computationally tractable. In [GO12; LGO13], an incorporation of the random
matrices approach into the PHD and the CPHD filter is presented and an extended
object tracking using random matrices within the LMB filter is expected to show
superior tracking results. However, ellipsoids are not a suitable representation for cars
and trucks in vehicle environment perception applications due to the required state
estimation accuracy and the approximately rectangular shape of the objects. An ap-
proach for elliptical an rectangular objects, which explicitly uses sensor characteristics
to obtain the predicted measurements, is proposed in [GLO11]. In [BH11], Baum et
al. propose a shape tracking algorithm using star-convex random hypersurface models
which is able to represent arbitrary convex shapes. Within both approaches, the
initialization of new born objects is critical if the objects are closely spaced. However,
both approaches avoid error-prone segmentation algorithms and a combination of the
approaches with the LMB filter is promising.

In addition to extended object tracking, an adequate modeling of unresolved objects
is essential for further improvements of the tracking performance. The radar only
tracking example in Section 6.5.4 illustrates the effect of unresolved objects: the radar
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sensor is not able to separate the two objects due to their small angular distance and
approximately equal range and velocity. Since each object exists with a probability of
one in a hypothesis of the LMB filter update, the structure of the LMB filter facilitates
the modeling of unresolved measurements which is expected to provide a significant
performance gain in such situations. An incorporation of object interactions in the
prediction step of the LMB filter is also expected to improve the tracking results.
Obviously, this requires δ-GLMB distributions during prediction which may be realized
by a grouping procedure prior to the prediction step. An alternative solution is the
utilization of an SMC multi-object Bayes filter for each group of interacting objects.

In addition to the state estimates provided by multi-object tracking algorithms, object
classes present useful information for higher level applications like situation analysis
or decision-making. Hence, multi-object tracking algorithms with integrated object
identification and classification are desirable. In [VV13a], a first theoretical approach
using the notation of labeled random finite sets is proposed. A conceivable approach
to incorporate object classification in an LMB filter is the Dempster-Shafer [DLR77;
Sha76] approach introduced in [Mun11]. Further, the classification may also be utilized
to obtain class specific detection probabilities.

Finally, a comparison of the LMB filter as well as the δ-GLMB filter with MHT imple-
mentations is of great interest. The huge amount of possible MHT implementations
available in the literature is counterproductive since it renders a fair comparison of
the MHT filter with the LMB filter impossible. Hence, a public database contain-
ing simulated or real sensor data for a range of typical tracking scenarios would be
beneficial. The experts for specific tracking algorithms may provide their simulation
results for the reference data sets to ensure a fair comparison using sophisticated
implementations of the algorithms.





Appendix A

Mathematical Derivations

Lemma A.1. The variance of a multi-Bernoulli distribution {(r(i), p(i))}Mi=1 is given
by

σ2
MB =

M∑
i=1

r(i)(1− r(i)).

Proof. The expected number of objects represented by a Bernoulli distribution

π(X) =
{

1− r, if X = ∅,
r · p(x), if X = {x}.

(A.1)

is given by

N̂ = (1− r) · 0 + r · 1 = r. (A.2)

Thus, the variance of the number of objects is given by

σ2
Ber = (1− r) · (0− N̂)2 + r · (1− N̂)2

= (1− r) · r2 + r · (1− r)2

= r2 − r3 + r − 2r2 + r3

= r(1− r). (A.3)

Since the multi-Bernoulli distribution is defined as the union of M independent
Bernoulli distributions, the estimated number of objects of a multi-Bernoulli distribu-
tion is given by the sum of the expected values of all M Bernoulli distributions

N̂ =
M∑
i=1

r(i), (A.4)
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and the variance is given by

σ2
MB =

M∑
i=1

(1− r(i)) · r(i). (A.5)

Under the assumption that the existence probability of all Bernoulli distributions is
identical, (A.5) simplifies to the variance of a Binomial distribution σ2

Bin = M · (1−
r) · r.



Appendix B

Derivation of the Gaussian Mixture
Labeled Multi-Bernoulli Filter

B.1 Gaussian Identities

The derivation of the Gaussian mixture LMB filter extensively uses the following
Gaussian identities which have been used in [HL64] to derive the Kalman filter from a
Bayesian point of view.

Lemma B.1. Using a linear Gaussian process model with system matrix F and
covariance matrix Q, the prediction of a Gaussian distribution with mean x̂ and
covariance P is given by∫

N
(
x; Fζ,Q

)
N (ζ; x̂,P) dζ = N

(
x; Fx̂,FPFT

)
(B.1)

Lemma B.2. Using a linear Gaussian measurement model with measurement matrix
H and measurement noise covariance R, the innovation of a Gaussian distributed
predicted object state with mean x̂+ and covariance matrix P+ is given by

N (z ; Hx,R)N
(
x; x̂+,P+

)
= q(z)N (x; x̂,P) (B.2)

where

q(z) = N
(
z ; Hx̂+,HP+HT + R

)
x̂ = x̂+ + K(z −Hx̂+)
P = P+ −KSKT

S = HP+HT + R
K = P+HTS−1
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B.2 Derivation of the GM-LMB Prediction

Assume that the prior density of a track with label ` is given by a Gaussian mixture

p(`)(x) =
J(`)∑
j=1

w(`,j)N
(
x; x̂(`,j),P(`,j)

)
(B.3)

with mean values x̂(`,j) and covariance matrices P(`,j). Further, the linear Gaussian
process model follows

f+(x|ξ) = N
(
x; Fξ,Q

)
(B.4)

with the state transition matrix F and the according process noise covariance Q.
Additionally, the survival probability is assumed to be state independent:

pS(x) = pS . (B.5)

Using equations (B.3)–(B.5) and the Gaussian identity (B.1), the nominator of the
predicted density p+,S(x, `) in (5.26) simplifies to〈

pS(·, `)f+(x|·, `), p(·, `)
〉

=

=
∫
pSN

(
x; Fξ,Q

) J(`)∑
j=1

w(`,j)N
(
ξ; x̂(`,j),P(`,j)

)
dξ (B.6)

= pS

J(`)∑
j=1

w(`,j)
∫
N
(
x; Fξ,Q

)
N
(
ξ; x̂(`,j),P(`,j)

)
dξ (B.7)

= pS

J(`)∑
j=1

w(`,j)N
(
x; Fx̂(`,j),FP(`,j)FT + Q

)
. (B.8)

Consequently, the survival probability (5.27) of the track is obtained using integration:

ηS(`) =
∫ 〈

pS(·, `)f+(x|·, `), p(·, `)
〉
dx (B.9)

=
∫
pS

J(`)∑
j=1

w(`,j)N
(
x; Fx̂(`,j),FP(`,j)FT + Q

)
dx (B.10)
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= pS

J(`)∑
j=1

w(`,j)
∫
N
(
x; Fx̂(`,j),FP(`,j)FT + Q

)
dx (B.11)

= pS

J(`)∑
j=1

w(`,j) = pS . (B.12)

Finally, the predicted PDF (5.26) of track ` is given by

p+,S(x, `) =
〈
pS(·, `)f+(x|·, `), p(·, `)

〉
ηS(`) (B.13)

=
pS
∑J(`)

j=1 w
(`,j)N

(
x; Fx̂(`,j),FP(`,j)FT + Q

)
pS

(B.14)

=
J(`)∑
j=1

w(`,j)N
(
x; Fx̂(`,j),FP(`,j)FT + Q

)
. (B.15)

B.3 Derivation of the GM-LMB Update

Assume that the predicted density of a track with label ` is a Gaussian mixture

p
(`)
+ (x) =

J
(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j)

+ ,P(`,j)
+

)
(B.16)

with mean values x̂(`,j)
+ and covariance matrices P(`,j)

+ . The linear Gaussian measure-
ment model is given by

g(z |x) = N (z; Hx,R) (B.17)

using the measurement matrix H and the measurement noise covariance R. Further,
the detection probability is assumed to be state independent:

pD(x) = pD. (B.18)

If a measurement is associated to track `, i.e. θ(`) > 0, the measurement likelihood
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(5.46) is given by

ψZ(x, `; θ) =
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
(B.19)

= pD
κ(zθ(`))

N
(
zθ(`); Hx,R

)
. (B.20)

Using the Gaussian identity (B.2), the multiplication of the predicted density (B.16)
with the measurement likelihood (B.20) yields

p+(x, `)·ψZ(x, `; θ) =
J

(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j)

+ ,P(`,j)
+

)
· pD
κ(zθ(`))

N
(
zθ(`); Hx,R

)
(B.21)

= pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
N
(
x; x̂(`,j,θ),P(`,j)

)
, (B.22)

where

S(`,j) = HP(`,j)
+ HT + R, (B.23)

z
(`,j)
+ = Hx̂(`,j)

+ (B.24)

x̂(`,j,θ)(Z) = x̂
(`,j)
+ + K(`,j)

k+1

(
zθ(`) − z

(`,j)
+

)
, (B.25)

K(`,j) = P(`,j)
+ HT

[
S(`,j)

]−1

(B.26)

P(`,j) = P(`,j)
+ −K(`,j)S(`,j)

[
K(`,j)

]T

. (B.27)

The normalization constant (5.45) is given the integral over (B.22):

η
(θ)
Z (`) =

〈
p+(·, `), ψZ(·, `; θ)

〉
(B.28)

=
∫

pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
N
(
x; x̂(`,j),P(`,j)

)
dx (B.29)

= pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)∫
N
(
x; x̂(`,j),P(`,j)

)
dx (B.30)
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= pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
. (B.31)

Finally, the measurement updated posterior distribution (5.44)

p(θ)(x, `|Z) =
p+(x, `) · ψZ(x, `; θ)

η
(θ)
Z (`)

(B.32)

=

pD
κ(z

θ(`))
∑J

(`)
+
j=1 w

(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
N
(
x; x̂(`,j),P(`,j)

)
p
D

κ(z
θ(`))

∑J
(`)
+
j=1 w

(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

) (B.33)

=
J

(`)
+∑
j=1

w(`,j,θ)(Z)N
(
x; x̂(`,j,θ),P(`,j)

)
(B.34)

is again a Gaussian mixture where the posterior weights are given by

w(`,j,θ)(Z) =

pD
κ(z

θ(`))w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
η

(θ)
Z (`)

. (B.35)

The update of track ` for the association of a missed detection, i.e. θ(`) = 0, differs
from the update using one of the received measurements. The measurement likelihood
(5.46) is simply given by the missed detection probability:

ψZ(x, `; θ) = qD(x, `) = qD, (B.36)

where qD = 1 − pD. The multiplication of the predicted density (B.16) with the
measurement likelihood yields

p+(x, `)·ψZ(x, `; θ) =
J

(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j)

+ ,P(`,j)
+

)
· qD (B.37)

= qD

J
(`)
+∑
j=1

w(`,j,θ)N
(
x; x̂(`,j,θ),P(`,j)

)
(B.38)

where the updated weight, mean value, and covariance correspond to the predicted
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values:

w(`,j,θ) ≡ w(`,j)
+ , (B.39)

x̂(`,j,θ)(Z) ≡ x̂(`,j)
+ , (B.40)

P(`,j) ≡ P(`,j)
+ . (B.41)

Due to the constant detection probability, the normalization constant (5.45) simplifies
to

η
(θ)
Z (`) =

〈
p+(·, `), ψZ(·, `; θ)

〉
(B.42)

=
∫
qD

J
(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j),P(`,j)

)
dx (B.43)

= qD

J
(`)
+∑
j=1

w
(`,j)
+

∫
N
(
x; x̂(`,j),P(`,j)

)
dx (B.44)

= qD

J
(`)
+∑
j=1

w
(`,j)
+ = qD. (B.45)

Finally, the posterior distribution (5.44) of track ` for the update with the missed
detection is given by

p(θ)(x, `|Z) =
p+(x, `) · ψZ(x, `; θ)

η
(θ)
Z (`)

(B.46)

=
J

(`)
+∑
j=1

w(`,j,θ)N
(
x; x̂(`,j,θ),P(`,j)

)
. (B.47)



Appendix C

Comparison of Random Finite Set
Based Tracking Algorithms

The tables on the next pages illustrate the main differences of the random finite set
based tracking algorithms used in this thesis. For additional details, refer to the
corresponding sections within this thesis and the references therein.

Within the prediction step, all algorithms use the following properties:
• the motion of each object follows a single-object Markov transition density
f+(x+|x).
• an existing object with state x survives from time step k to k + 1 with probability
pS(x).

In the PHD and the CPHD filter, new objects appear at time k + 1 according to the
birth intensity b(x) while the CB-MeMBer, the LMB, and the δ-GLMB filter use
a multi-Bernoulli birth distribution πB. In order to ensure comparable results, the
intensity function (or PHD) of πB is expected to match the birth intensity b(x).

The update steps of the filter are based on the standard multi-object measurement
model, i.e.:
• the likelihood that an object with state x generates a measurement z is given
by the single-object measurement likelihood g(z |x).

• an object with state x is detected by the sensor with detection probability pD(x).
• the false alarm process follows a Poisson distribution and creates an average

number of λc false alarms whose spatial distribution is given by the probability
density c(z).

Observe that the CPHD filter uses the more general i.i.d. cluster process for the
clutter distribution, i.e. the number of false alarms is not required to follow a Poisson
distribution.
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Acronyms

ADMA automotive dynamic motion analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
AMNIS approximate multi-target normalized innovation squared . . . . . . . . .125

CA constant acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CB-MeMBer cardinality balanced multi-target multi-Bernoulli . . . . . . . . . . . . . . . . . 46
CPHD cardinalized probability hypothesis density . . . . . . . . . . . . . . . . . . . . . . . 43
CTRV constant turn rate and constant velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CV constant velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

δ-GLMB δ-generalized labeled multi-Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 83

EKF extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EM expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

FISST finite set statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FOV field of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

GLMB generalized labeled multi-Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
GM Gaussian mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 101, 139
GM-CPHD Gaussian mixture cardinalized probability hypothesis density . . . . . 45
GM-PHD Gaussian mixture probability hypothesis density . . . . . . . . . . . . . . . . . . 41
GMTI ground moving target indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
GNIS generalized normalized innovation squared . . . . . . . . . . . . . . . . . . . . . . . . 52
GNN global nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
GPS global positioning system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
GPU graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

i.i.d. independent identically distributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
IPDA integrated probabilistic data association . . . . . . . . . . . . . . . . . . . . . . . . . . 18

JIPDA joint integrated probabilistic data association . . . . . . . . . . . . . . . . . . . . . 18



194 Acronyms

JPDA joint probabilistic data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

LM-IPDA linear multi-target integrated probabilistic data association . . . .18, 71
LMB labeled multi-Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 86, 91, 100

MAP maximum a posteriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
MeMBer multi-target multi-Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
MGNIS multi-object generalized normalized innovation squared . . . . . . 53, 123
MHD Mahalanobis distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 111
MHT multi-hypothesis tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 90
MM-PHD multiple model probability hypothesis density . . . . . . . . . . . . . . . . . . . . 42

NEES normalized estimation error squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
NIS normalized innovation squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
NN nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

OMAT Optimal Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
OSPA optimal subpattern assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 129
OSPAT optimal subpattern assignment for tracks . . . . . . . . . . . . . . . . . . . . 51, 129

PDA probabilistic data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PDF probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
PGFL probability generating functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PHD probability hypothesis density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 39
PPP Poisson point process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
PPT point process theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

RFS random finite set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RMS root mean square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ROC receiver operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

SLAM simultaneous localization and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
SMC sequential Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10, 56, 101
SMC-MOB sequential Monte-Carlo multi-object Bayes . . . . . . . . . . . . . . . . . . . . . . 129
SNR signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

UKF unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



List of Symbols

Notations
a vector or scalar value
A matrix
A−1 inverse of a matrix
AT transpose of a matrix
A random finite set
a labeled vector or scalar
A labeled random finite set
|a| dimension of a vector
|A| cardinality of a random finite set
〈a, b〉 inner product of two functions a and b
pA multi-object exponential (

∏
a∈A p

a)
δA(B) generalized Kronecker delta function
1A(B) inclusion function
θ association hypothesis, e.g. track label to measurement
Cnk binomial coefficient
Pnk permutation coefficient

Subscripts
k time step k
+ predicted value of a variable or density
B variable or density corresponding to a new born object
C variable or density corresponding to clutter process
S variable or density corresponding to a surviving object

Scalars and vectors
γ residual of predicted and actual measurement
J number of Gaussian mixtures
` track label
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λ expected value of the Poisson distribution
M number of multi-Bernoulli components
N̂ estimated number of objects
ν number of particles
w weight (e.g. of a particle or a hypothesis)
x state vector
x̂ expected value of the spatial distribution p(x)
x labeled state vector
z measurement vector
z+ predicted measurement of for a state vector x

Matrices
F process (or state transition) matrix
H measurement matrix
I identity matrix
K Kalman gain
P estimation error covariance matrix
Q covariance matrix of the process noise
R covariance matrix of the measurement noise
S innovation covariance matrix

Sets
I set of track labels (within a hypothesis)
L set of track labels
X set of state vectors
X set of labeled state vectors
Z set of measurements at time k + 1
Z1:k+1 set of all measurements up to time k + 1
∆(X) distinct label indicator (|X| = |L(X)|)

Spaces
B label space of new born objects
C index space
L label space of existing objects
M index space of current measurements
N space of natural numbers
R space of real numbers
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Θ space of track label to measurement assignments
X state space
Ξ discrete space
Z measurement space
F(X) finite subsets of the space X
Fn(X) finite subsets of the space X with cardinality n
L projection from X× L to L

Densities
p spatial distribution p
π multi-object probability density
π labeled multi-object probability density
ρ(n) cardinality distribution
c(z) probability density of clutter measurements
f+(x|·) Markov transition density
κ(z) probability hypothesis density of the clutter process
v(x) probability hypothesis density (equivalent to intensity density)
N (x;µ, σ) normal distribution over x with mean µ and standard deviation σ
Pr(|X| = n) probability that the cardinality of set X is equal to n
q proposal density for Markov transition
b proposal density for birth distribution

Specific probabilities
pD(x) detection probability of an object with state x
qD(x) missed detection probability of an object with state x
pS(x) survival (or persistence) probability of an object with state x
qS(x) disappearance probability of an object with state x
ηS(`) state independent survival probability of track `
pTP (z) true positive probability of measurement z
pFP (z) false positive probability of measurement z
r existence probability

Measurement likelihoods
g(z|x) likelihood for a measurement z given an object with state x
ψZ(x; θ) generalized measurement likelihood for object x and association θ
ηθZ(`) likelihood for assigning track label ` to measurement θ(`)
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