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Abstract

Boolean networks are an important model of gene regulatory networks in systems and
computational biology. Such networks have been widely studied with respect to their stability
and error tolerance. It has turned out that canalizing Boolean functions and their subclass,
the nested canalizing functions, appear frequently in such networks. These classes have been
shown to have a stabilizing effect on the network dynamics. One measure for the stability
is the average sensitivity of Boolean functions. Using Fourier analysis, we provide upper
bounds on the average sensitivity for canalizing and nested canalizing functions. The latter
bound proves an open conjecture in the literature. Further, we state upper and lower bounds
on the noise sensitivity, based on an inductive proof of the spectra of the functions. The noise
sensitivity gives the error tolerance of functions with noisy inputs. We show that canalizing
functions maximize the mutual information between an input variable and the outcome of the
function. We provide relationships between the noise sensitivity and the mutual information
of functions with noisy inputs. Using these relationships we prove upper and lower bounds on
the mutual information for canalizing and nested canalizing functions. To prove our results
we derive spectral properties of canalizing and nested canalizing functions, which can also be
used to test membership of functions to these classes.

Finally, we present two algorithms solving the preimage problem of Boolean networks.
The first approach depends on the properties of canalizing functions, the second algorithm is
based on the well-known sum-product algorithm (belief propagation).
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Chapter 1

Introduction

B
oolean modeling plays an important role in systems and computational biology.
It turned out that canalizing and nested canalizing functions often appear in Boolean
networks [Kau74]. In this thesis we will investigate these functions with respect
to error tolerance, namely noise sensitivity and average sensitivity, and mutual

information, a measure for the information processing capability. Further, we will address
the preimage problem of Boolean networks.

In this chapter let us first briefly give the biological background and motivation. After
that the topics of this thesis are introduced, and finally the will state the outline of this work.

1.1. Biological Background

The smallest structural and functional entity of a living organism is the cell [Mun00]. All
actions and tasks of cells are performed by chemical reactions. These reactions are often
consecutive and form so-called reaction chains or cycles [KLW+09]. One famous example for
such a cycle is the citric acid cycle, which occurs in all organisms [AJL+04]. It metabolizes
nutrients into biochemical energy, mainly by oxidation [AJL+04]. If in such a chain or cycle
one reaction has a higher throughput than the other, the cell would have a lack of some
intermediate products and a overrun of others. Hence, all reactions need to be somehow
synchronized [KLW+09].

The process of such reactions is described in systems biology by so-called flux models. A
flux is a normalized measure describing the rate with which a certain reaction takes place,
assuming that the intermediate products are in a steady state [KLW+09]. The so-called flux
balance analysis is used to predict the behavior of a cell using this model. More specific, one
can perform in silico experiments to analyze how cells behave in certain environments and
under a certain nutrition. Hereby one assumes that the cell works in the most efficient way
[KLW+09, FET+07].

But those reactions do not happen uncontrolled in actual cells. To take place, most
reactions would need a much higher temperature than is usually the case. Therefore, cells
use enzymes, which are mostly proteins, as catalysts, where each enzyme controls only one
reaction [AJL+04]. Proteins are encoded as genes on the Deoxyribonucleic Acid (DNA).
The production of proteins is called gene expression and consists mainly of two parts (see
Figure 1.1). The first part is the transcription, which is the reading and copying of the DNA
and results in the mRNA (messenger ribonucleic acid), for which a special molecule, the
polymerase, docks and slides along the DNA performing the copying process. Then, during
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DNA

transcription unit (gene)Promoter

polymerase

. . . AGGCCGUUGCCGUUCGGG . . . mRNA

regulator
transcription stop

Transcription

Translation

. . .A1, A2, A3, A4, A5, A6 . . . Amino Acids

Figure 1.1.: [Sch13] Gene Expression

the translation, the mRNA is used to produce the protein out of amino acids [AJL+04]. Not
all proteins are acting as enzymes, they also perform a variety of tasks in a cell, e.g., they
serve as structure and motion elements [AJL+04].

The amount of a certain protein present in a cell directly controls the rate of the corre-
sponding chemical reaction. Hence, there is a need to control the rate with which a gene
is expressed. This is done through regulation. Therefore, other proteins can bind within
the so-called promoter region on the DNA, which is mostly located directly in front of
the gene [AJL+04]. Those bound proteins either act as repressors, i.e., they reduce the
probability of the polymerase to attach to the DNA at this point and, hence, reduce the
expression rate of the gene, or they act as activators magnifying the docking probability
of the polymerase and, hence, leading to an increase in the expression rate [JK08]. Let us
for example examine regulation of the gene coding for protein β-galactosidase, an enzyme
controlling the decomposition of lactose in the well-studied gut bacteria Escherichia coli
(E. coli). Another protein called LacI binds at the promoter region of β-galactosidase and
therefore prohibits this gene to be transcribed. However, if lactose is present in the cell, the
LacI can not bind anymore, hence, β-galactosidase can be produced, and finally the lactose
will be consumed [JK08]. This example also shows, how, by regulation, a cell can adapt to
different environmental conditions.

As stated by Stuart Kauffman [Kau93] many cellular and chemical processes react with an
S-shaped response to a change in the molecular input. Hence, small changes to the input
do not alter the reaction a lot, however, if the input exceeds a certain threshold, a drastic
change in the output occurs. Thus, one can consider genes to be either on or off and use
Boolean, i.e., binary, values to model the state (see Figure 1.2).

1.2. Boolean Networks

If more than one protein regulates the expression (on/off ) of a gene, the overall effect
on the expression of a particular gene can be modeled using a Boolean function [Kau93].
Consequently, all these genes, functions, and interactions form a Boolean network, modeling
the regulative relations within a cell [Kau93].

2
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Input
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Figure 1.2.: [Kau93] S-shaped Response and a Boolean function approximating it.

These networks, including random Boolean Networks, have been widely studied with
respect to their stability [Kau69b, Kau74]. A network is considered stable, if the effect on
the network caused by the perturbation of a node asymptotically vanishes after a certain
number of iterations. Kauffman investigated these networks numerically. Later, Lynch
[Lyn07] showed that stable networks can exist. Such stable networks are also called ordered
or non-chaotic. Further, it has been shown that a network only consisting of nested canalizing
functions is always stable [KPST04]. Canalizing Boolean functions and their subclass nested
canalizing functions have been classified by Kauffman [Kau93, KPST03] and he pointed
out that many important regulatory Boolean functions are in fact canalizing. A function is
canalizing, if one state of a certain input determines one output state alone.

In this thesis, we consider feed-forward networks, i.e., networks without feedback loops,
for example the regulatory network of E. coli as introduced by Covert et al. [CKR+04].
However, instead of investigating the network itself, we are focusing on the properties of the
Boolean functions attached to the nodes.

1.3. Topics of this Thesis

Many results indicate that it is of importance for regulative Boolean functions to have a high
error tolerance [SK04], i.e., are somehow more resistant to small changes on the inputs, which
may be caused by a mutation. Further, it is well known, that a low average sensitivity, a
measure for the error tolerance indicating the impact of inverting an input, is a prerequisite
for non-chaotic behavior of random Boolean networks [SB07]. A generalization of the average
sensitivity is the noise sensitivity, measuring the impact of noise added to the function’s
inputs.

It turns out that Boolean functions in such regulatory networks do not only need to
be robust against errors, they also need to pass on information. Therefore, we will also
investigate the mutual information, a measure to determine the information processing
capabilities, which is closely related to the noise sensitivity.

We will also address the so-called preimage problem of Boolean network. If we are

3
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observing feed-forward networks, i.e., networks without feedback loops, these networks
provide a direct mapping of the input states (environmental conditions) to the output
states (gene activities). The preimage problem inverts this mapping, i.e., finds the set of
environmental conditions leading to a certain gene activity.

1.4. Outline of this Thesis

This thesis is organized as follows. In Chapter 2 we will formally introduce Boolean functions,
canalizing and nested canalizing functions. Further, we will briefly recall the Fourier analysis
of Boolean functions, which is our main tool in this thesis. Next, we will discuss the concept
of restricted Boolean functions and prove the impact of this restriction to the Fourier spectra.
We call a function restricted, if one input is set to a certain value. Using the properties of
restricted functions, we prove the conditions a function’s spectra must fulfill in order to be
canalizing.

Chapter 3 starts with the definition of important concepts, including the average sensitivity
and the noise sensitivity. We will show the effect of restrictions on these sensitivities. Further,
we will give bounds on the noise sensitivity for canalizing functions, nested canalizing functions
and some specific nested canalizing functions, which indicate that the noise sensitivity of
those classes is remarkably low. Further we prove that the average sensitivity of nested
canalizing functions is always smaller than 4/3 as conjectured in literature.

In Chapter 4 the information processing capabilities of Boolean functions, namely the
mutual information, is addressed. We will first examine the mutual information between one
or more inputs and the function’s output and will show that it is maximized by canalizing
functions. After that, we will investigate the mutual information between the noisy input
and the output of a function. Here, the relationship between mutual information and noise
sensitivity is derived. Based on this we will then give upper and lower bounds on the
mutual information, which again indicate a high information throughput for nested canalizing
functions. Further, we will show that a subclass of nested canalizing functions asymptotically
reaches an upper bound conjectured in literature.

After addressing Boolean functions we will focus on Boolean networks in Chapter 5. In
particular we will present two algorithms to solve the preimage problem. The first approach
uses the fact that canalizing functions can be inverted under concrete circumstances. The
second algorithm only delivers parts of the set of preimages by using an adaption of the
well-known sum-product algorithm. We will evaluate our approaches for the regulatory
network of Escherichia coli and some randomly generated networks.

Finally, the results of this theses are summarized in Chapter 6.

4



Chapter 2

Boolean Functions and their Spectral
Properties

A
mathematical description of logic was first given by George Boole in 1847,
when he published his fundamental work The Mathematical Analysis of Logic [Boo47].

Other early important works1 establishing Boolean algebra were published by
Poretski (e.g., [Por84]), Schröder ([Sch90]), Löwenheim (e.g. [Lö08]) and Stone

([Sto35, Sto36]). In 1949 Claude Shannon used Boolean logic for analysis and synthesis of
switching circuits [Sha49]. Since then Boolean algebra and subsequently Boolean functions
have become a fundamental element of electrical engineering and computer science.

In a biological context the use of binary systems to describe gene expression has been
suggested –among others– by Jacob and Monod [JM62] and Kauffman [Kau67]. The latter
also proposed to use networks of Boolean functions to describe regulatory relations among
genes [Kau69b]. We will address Boolean networks in Chapter 5.

Spectral methods have first been applied on Boolean functions by Golomb [Gol59]. His
PhD student Titsworth was the first to propose a Fourier-type transform [Tit62]. Their
investigations, however, did not take the distribution of the input variables into account. This
was done much later by the authors of [FJS91], where the Fourier transform was extended by
using different basis functions, which takes the probability distributions of the input variables
into account and was proposed by Bahadur in 1961 [Bah61]. In this work we will use the
Fourier transform as our main tool.

Before Kauffman introduced canalizing functions (CF), sometimes also called forcible
or forcing functions, in the context of regulatory Boolean networks [Kau69b, Kau74], it
has long been known [Wad42] that canalizing effects play an important role in cellular
biology. It was conjectured that these functions have a stabilizing effect on the network
dynamics [Kau74, KPST04] and were therefore widely investigated [HV86, Sta87]. It has
further been shown that many regulatory network models contain mainly CFs, e.g., yeast
[HSWK02, LLL+04, DB08].

CFs are also significant in the field of signal processing when designing nonlinear filters,
namely stack filters [WCG86, YC90, GYC92]. For example, it turned out that if these filters
are defined on CFs, they have optimal convergence behavior [GYC92]. Finally, the number of
CFs and the probability of a random BF to be canalizing have been investigated in [JSK04].

In [SLE04] the so-called forcing transform was introduced to test the membership of a
function to the class of CFs. Furthermore, some spectral properties of canalizing functions

1See Preface of [Rud74]
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Chapter 2. Boolean Functions and their Spectral Properties

with respect to network stability have been investigated in [KRYH05].

This chapter is organized as follows: We start with the definition of Boolean random
variables and some other basic notations in Section 2.1. In Section 2.2 we define Boolean
functions and the Fourier transform. Further, we introduce the concept of restrictions and
prove some spectral properties of restricted functions. Several classes of Boolean functions
are addressed in Section 2.3. The main focus is on canalizing and nested canalizing functions,
which are analyzed in the Fourier domain.

2.1. Basic Notations

Traditionally, Boolean variables are used to describe binary states and hence their possible
values are often referred to as {TRUE,FALSE} or {ON,OFF}. In computer science,
where a Boolean variable is denoted by a bit, their states are represented by {0, 1}. For our
purposes, however, we define a Boolean variable x to be either −1 or +1, i.e.,

x ∈ Ω = {−1,+1},

where −1 represents TRUE and, respectively, +1 means FALSE. This choice has no
influence on the general validity of our results, however, it turns out that this representation
is advantageous as it simplifies the notation.

We denote random Boolean variables with capital letters, i.e., X ∈ Ω, and their probability
mass functions as

PX(x) = Pr [X = x] .

Given two jointly distributed random Boolean variables X,Y ∈ Ω, the conditional probability
mass function for Y given X is written as:

PY |X(y|x) = Pr [Y = y|X = x] .

Further, by E [X] we denote the expectation of X and by Var [X] its variance.

Random Boolean vectors are denoted by capital bold letters, e.g., X = (X1, . . . , Xn) ∈ Ωn,
where n is a natural number. In general we assume that random vectors are product
distributed, i.e.,

PX(x1, . . . , xn) = PX(x) = Pr [X = x] =
n∏
i=1

PXi(xi),

and, hence, that

PXi|Xj (xi|xj) = PXi(xi) for all i, j ∈ [n], i 6= j,

where [n] denotes the set of natural numbers from 1 to n:

[n] := {1, . . . , n}.

In this context, we abbreviate the expectation of the i-th component of X by µi = E [Xi]
and the variance by σ2

i = Var [Xi] = 1− µ2
i . It can been seen that

PXi(xi) =
1 + xiµi

2
. (2.1)

6
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X X ′

1− ε−1 −1

1− ε
+1 +1

ε

ε

Figure 2.1.: Binary symmetric channel

For the special case of a uniform distribution, PX(x) = 2−n.

Let us now look at a binary symmetric channel (BSC) with error probability ε as depicted
in the Figure 2.1. One can see that with probability ε the input is flipped, i.e., x′ = −x. The
transition probability of this channel is hence given as:

Pr
[
X ′ = x′|X = x

]
=

{
1− ε if x′ = x

ε else

If we are now considering a random vector X, which is transmitted over n parallel BSCs,
i.e., its elements are flipped with probability ε, we can give the transition probability as:

Pr
[
X′ = x′|X = x

]
=

n∏
i=1

Pr
[
X ′i = x′i|Xi = xi

]
, (2.2)

with

Pr
[
X ′i = x′i|Xi = xi

]
=

{
1− ε if x′i = xi

ε else.

Finally, let us define a noise-operator, which is equivalent to transmitting a vector over n
parallel BSCs:

Definition 2.1 ([O’D03, Definition 2.1.3])

Given a random vector X ∈ Ωn and 0 ≤ ε ≤ 1
2 , we define the noise-operator Nε(X) to be

the random variable given by flipping each element of X independently with probability ε.
Further, the operator, which only denoted the flip of one element i is denoted by Nε,i(Xi).

2.2. Boolean Functions

2.2.1. Basic Definitions and Examples

Let us now define a Boolean function (BF) as a mapping of an n-dimensional binary vector
to a binary output:

f : Ωn → Ω, f(x) := f(x1, . . . , xn) = y,

where n is the number of input variables, also called in-degree. In general, however, not all
input variables have an impact on the output, i.e., are relevant.

7



Chapter 2. Boolean Functions and their Spectral Properties

Definition 2.2 ([LAM+13])

A variable i is relevant to a BF f , if there exists an x ∈ Ωn such that

f(x) 6= f(x⊕ ei),

where x⊕ ei is the vector obtained from x by flipping its i-th entry.
Further we define rel(f) ⊆ [n] as the set containing all relevant variables of f . We will
denote the number of relevant variables by k = |rel(f)|.

If the inputs of a BF are random, e.g., can be described by a random Boolean vector X,
we can calculate the expectation of the function’s output, often also called bias as:

E [f(X)] =
∑
x∈Ωn

PX(x)f(x).

We call a function balanced, if its expectation is zero, i.e., if the probabilities for the function’s
output being either +1 or −1, are equal. The following example gives the truth-table
representation and the bias for three well-known BFs, namely the AND, OR, and XOR
functions, assuming uniformly distributed input vectors.

Example 2.1 (Uniform distribution)

x1 x2 AND OR XOR

+1 +1 +1 +1 +1
+1 −1 +1 −1 −1
−1 +1 +1 −1 −1
−1 −1 −1 −1 +1

E [f(X)] +1
2 −1

2 0

It can be seen that the XOR function is balanced, while AND, OR are unbalanced. However,
by adjusting the input distributions one can make, e.g., the OR function balanced. As
displayed in the next example, we can achieve this by setting the probabilities of the input

variables to: PX1(+1) = PX2(+1) =
√

2
2 .

Example 2.2 (PX1(+1) = PX2(+1) =
√
2
2

)

AND OR XOR

E [f(X)] ≈ 0, 83 0 ≈ 0, 17

2.2.2. Fourier Analysis of Boolean Functions

Let us consider a wider set of functions Fn = {f : Ωn → R}, i.e., all functions mapping n-ary
input tuples to real numbers. Note that the BFs are a subset of Fn. As seen in the examples,
the input distribution plays an important role when investigating and characterizing BFs.
Hence, according to [FJS91] we will define a Fourier-like transform for functions in Fn. We

8
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start by defining an inner product of two functions f, g ∈ Fn as

〈f, g〉PX
=
∑
x∈Ωn

f(x)g(x)PX(x).

This allows us to define the orthogonal functions φU (x) for any subset U ⊆ [n]:

φU (x) =

{
1 U = ∅∏
i∈U

xi−µi
σi

else
. (2.3)

The orthogonality follows from the fact that for U, S ⊆ [n]

〈φU , φS〉PX
=

{
1 U = S

0 else
.

Another important property of these functions follows directly from their definition:
Let A ⊆ U , then

φU (x) = φA(x) · φU\A(x). (2.4)

Using φU (x) as a basis we can express any function f ∈ Fn by its Fourier-expansion
[Tit62, FJS91]:

f(x) =
∑
U⊆[n]

f̂(U) · φU (x).

The Fourier coefficients f̂(U) can be recovered by

f̂(U) =
∑
x∈Ωn

PX(x) · f(x) · φU (x)

= E [f(X) · φU (X)] . (2.5)

The cardinality of U , i.e., |U | is also called the order of a coefficient. From now on we will
again only consider BFs, i.e. functions mapping Ωn → Ω.

Then, the square of a coefficient, i.e., f̂2(U) is often referred to as its energy. And, due to
Parseval’s theorem, we know that the sum of all squares equals one, i.e.,∑

U⊆[n]

f̂2(U) = 1.

For the special case that the input variables Xi are uniformly distributed, and hence,
µi = 0 and σi = 1, Eq. (2.3) reduces to

χU (x) ≡ φU (x) =
∏
i∈U

xi,

and consequently Eq. (2.5), becomes

f̂(U) = 2−n
∑
x

f(x) · χU (x).

In Examples 2.1 and 2.2 we gave the truth-table representation and the expected value
of a BF under uniformly and product distributed inputs. Now let’s look at their Fourier
representations:

9
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Example 2.3 (Uniform distribution)

The Fourier coefficients of the AND, OR, and XOR functions with uniformly distributed
inputs are given by:

U AND OR XOR

∅ 1/2 −1/2 0
{1} 1/2 1/2 0
{2} 1/2 1/2 0
{1, 2} −1/2 1/2 1

Equivalently written in polynomial form:

AND OR XOR
1/2 + 1/2x1 + 1/2x2 − 1/2x1x2 −1/2 + 1/2x1 + 1/2x2 + 1/2x1x2 x1x2

Example 2.4 (PX1(+1) = PX2(+1) =
√
2
2

)

Assuming an input distribution of PX1(+1) = PX2(+1) =
√

2
2 , the Fourier coefficients of

the AND, OR, and XOR functions are given as:

U AND OR XOR

∅ ≈ 0.83 0 ≈ 0.17
{1} ≈ 0.27 ≈ 0.64 ≈ 0.38
{2} ≈ 0.27 ≈ 0.64 ≈ 0.38
{1, 2} ≈ −0.41 ≈ 0.41 ≈ 0.83

Comparing the zero order coefficient f̂(∅) in Examples 2.1 and 2.2 with the values of their
corresponding expectation a direct relation between these entities becomes visible. In fact,
from the definition of the expectation and Eq. (2.5) it follows that:

E [f(X)] = f̂(∅) =
∑
x∈Ωn

PX(x) · f(x) · φ∅(x)︸ ︷︷ ︸
=1

, (2.6)

hence, the bias of a BF is directly given by its zero order coefficient f̂(∅). Let us now look at
the variance of f(X), which is defined as

Var [f(X)] = E
[
f2(x)

]
−E [(f(x))]2 .

Since f2(x) = 1 for all x, we get

Var [f(X)] = 1−E [(f(x))]2 = 1− f̂2(∅).

A simple way to calculate the Fourier coefficients in the uniform case is the (Fast) Walsh
Hadamard transform [Sha69]. Let f̂ be a vector containing the Fourier coefficients, i.e.,

f̂ =
(
f̂(∅), f̂({1}), f̂({2}), f̂({1, 2}), . . . , f̂({[n]})

)T
,

and f be a vector containing the function values for all inputs, i.e.,

f = (f(+1, . . . ,+1,+1), f(+1, . . . ,+1,−1), f(+1, . . . ,−1,+1), . . . , f(−1, . . . ,−1,−1))T ,

10
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then f̂ can be obtained by multiplying f with the corresponding Walsh Hadamard matrix:

f̂ =
1

2n
Hn · f .

One prerequisite for the fast computation of this equation is the recursive defined Walsh
Hadamard matrix Hn:

H0 = [1] ,

Hm =

[
Hm−1 Hm−1

Hm−1 −Hm−1

]
, for m > 0.

This can be generalized for the product distributed case [Hec10]. Therefore, we define a
matrix Wn as:

W0 = [1] ,

Wm =

[
PXm(+1) ·Wm−1 PXm(−1) ·Wm−1√

PXm(+1) · PXm(−1) ·Wm−1 −
√
PXm(+1) · PXm(−1) ·Wm−1

]
, for m > 0.

Then, the Fourier coefficients can be obtained by

f̂ = Wn · f .

2.2.3. Restrictions of Boolean Functions

In this subsection we will discuss the concept of restricted functions and the implications for
the Fourier coefficients. In particular, we will give relations between the Fourier coefficients
of the original function and its restrictions and vice versa. A function is called restricted, if
an input variable is fixed. Thus, the number of relevant variables is reduced by one. We call
a BF f (i,ai) a restriction of f , if it is obtained by setting the i-th input variable of f to some
constant ai ∈ Ω. Every BF can be decomposed into two unique restricted functions for each
relevant variable, as stated by the following proposition:

Proposition 2.1

For any BF f and each i ∈ [n] there exist unique functions f (i,+), f (i,−) ∈ Fn, with
i /∈ rel(f (i,+)) and i /∈ rel(f (i,−)), such that2

f(x) = g(i,+)(x)f (i,+)(x) + g(i,−)(x)f (i,−)(x),

where the functions g(i,+), g(i,−) ∈ Fn are given by

g(i,+)(x) =

{
1 if xi = 1

0 else
and g(i,−)(x) =

{
1 if xi = −1

0 else
.

Proof : The proof follows directly from the definitions of g(i,+) and g(i,−).

Let us now characterize the Fourier coefficients of these restricted functions. The following
theorem gives a relation between the coefficients of the original function and its restriction.

2for the sake of readability we abbreviate f (i,−1) with f (i,−), etc.
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Theorem 2.1

Let f be a BF with n variables and f (i,ai) the restricted function obtained by setting
xi = ai, f

(i,ai), then

f̂ (i,ai)(U) = f̂(U) + φ{i}(ai) · f̂(U ∪ {i}), (2.7)

where U ⊆ [n] \ {i} and φ{i}(ai) = ai−µi
σi

.

Proof : Using the definition of the Fourier coefficients (Eq. (2.5)), we can rewrite Eq. (2.7)
as:

f̂ (i,ai)(U) =
∑
x

PX(x) · f(x) · φU (x) + φ{i}(ai) ·
∑
x

PX(x) · f(x) · φU∪{i}(x). (2.8)

By applying Eq. (2.4) and Eq. (2.3) we get

φU∪{i}(x) = φU (x) · φ{i}(x)

= φU (x) · xi − µi
σi

.

Hence, we can combine the two sums in Eq. (2.8) and obtain:

f̂ (i,ai)(U) =
∑
x

PX(x) · f(x) · φU (x) ·
(

1 + φ{i}(ai) ·
xi − µi
σi

)
=
∑
x

(PX(x) · f(x) · φU (x) · Ξi), (2.9)

where

Ξi = 1 + φ{i}(ai) ·
xi − µi
σi

.

Since,

φ{i}(ai) =
ai − µi
σi

=
ai − µi
σi

· ai + µi
ai + µi

=

=1︷︸︸︷
a2
i −µ2

i

σi · (ai + µi)
=

σi
ai + µi

,

we get

Ξi =

(
1 +

xi − µi
ai + µi

)
=
ai + xi
ai + µi

.

Let’s now investigate Ξi. Since ai ∈ Ω we rewrite ai = 1
ai

and together with Eq. (2.1),
we get:

Ξi =

{
2

1+ai·µi = 1
PXi (ai)

, if xi = ai

0 , if xi = −ai
.

Thus, the sum in Eq. (2.9) can be simplified to

f̂ (i,ai)(U) =
∑

x|xi=ai

PX(x)

PXi(ai)
· f(x) · φU (x)

12
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and finally to

f̂ (i,ai)(U) =
∑

x|xi=ai
PX|xi(x|ai) · f(x) · φU (x),

which is the definition of the Fourier coefficients from Eq. (2.5) and this concludes the
proof.

This theorem enables us to calculate the Fourier coefficients of the restricted functions given
the coefficients of the original function. The reverse approach is shown in the following
proposition. Please note that this result for uniformly distributed input variables can also be
retrieved using [Ber98, Lemma 2.17].

Proposition 2.2

Let i ∈ [n] be fixed. For any n-ary Boolean function f ,

f̂(U) =
∑
ai∈Ω

PXi(ai) ·
(
φ{i}(ai)

)|U∩{i}| · f̂ (i,ai)(U \ {i}),

or
f̂(U) = E

xi

[(
φ{i}(Xi)

)|U∩{i}| · f̂ (i,Xi)(U \ {i})
]
.

Proof : Starting from the definition of the Fourier coefficients (Eq. (2.5)), we obtain

f̂(U) =E
x

[f(X) · φU (X)]

=PXi(+1) · E
x|xi=+1

[f(X) · φU (X)|Xi = +1]

+ PXi(−1) · E
x|xi=−1

[f(X) · φU (X)|Xi = −1] .

If i ∈ U , we can write

E
x|xi=ai

[f(X) · φU (X)|Xi = ai] = φ{i}(ai) E
x|xi=ai

[
f (i,ai)(X) · φU\{i}(X)

]
,

and if i /∈ U

E
x|xi=ai

[f(X) · φU (X)|Xi = ai] = E
x|xi=ai

[
f (i,ai)(X) · φU\{i}(X)

]
.

Hence,

f̂(U) =PXi(+1) · φ{i}(+1)|U∩{i}| E
x|xi=ai

[
f (i,+1)(X) · φU\{i}(X)

]
+ PXi(−1) · φ{i}(−1)|U∩{i}| E

x|xi=ai

[
f (i,−1)(X) · φU\{i}(X)

]
.

Note that for ai = +1 or ai = −1

E
x|xi=−1

[
f (i,ai)(X) · φU\{i}(X)

]
= f̂ (i,ai)(U \ {i})

by definition, which concludes the proof.
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An immediate corollary of Proposition 2.2 shows that the zero coefficient of a function
only depends on the zero coefficients of the restricted functions:

Corollary 2.1

The zero Fourier coefficient of any BF f can be written as:

f̂(∅) = PXi(+1) · f̂ (i,+1)(∅) + PXi(−1) · f̂ (i,−1)(∅),

where i ∈ [n] is the index of some variable.

In the general case, if we restrict a function to more than one variable, namely to a
set of variables K ⊂ rel(f), we denote the restricted function with f (K,A), where A is a
set containing the values to which the function is restricted. Consequently, the number of
relevant variables of f (K,A) is given by |rel(f)| − |K|. The Fourier coefficients of f (K,A) are
given by the following proposition:

Proposition 2.3

Let f be a BF and f̂(U) its Fourier coefficients. Furthermore, let K be a set containing
the indices i of the input variables xi, which are fixed to certain values ai. The Fourier
coefficients of the restricted function f (K,A) are then given as:

f̂ (K,A)(U) =
∑
S⊆K

(
ΦS(A) · f̂(U ∪ S)

)
,

where A is the set containing all ai, i ∈ K.

Proof : The claim follows from recursive application of Theorem 2.1.

2.3. Classes of Boolean Functions

In this section we will introduce and discuss different classes of Boolean functions, namely
canalizing functions (CFs), their subclass, the nested canalizing functions (NCFs), and unate
functions. The section is organized as follows: In Subsection 2.3.1, we will first introduce
canalizing functions and show important spectral properties, then we will introduce the
notion of jointly canalizing functions. In Subsection 2.3.2 we will define the nested canalizing
functions, show their spectral properties and discuss some important subclasses. Finally we
will shortly introduce unate functions (Subsection 2.3.3).

2.3.1. Canalizing Functions

As an example let us first look at the function f(x) = (NOTx1)AND(x2XORx3), whose
truth-table is given as follows:

14



2.3. Classes of Boolean Functions

x1 x2 x3 (NOTx1)AND(x2XORx3)

+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1
−1 +1 +1 +1
−1 +1 −1 +1
−1 −1 +1 +1
−1 −1 −1 +1

One can see that the function’s output is always +1 = b1, if x1 equals −1 = a1, i.e., if the
restricted function f (1,a1) is a constant. We say that f(x) is canalizing in x1 with canalizing
value a1 and canalized value bi, respectively. More formally:

Definition 2.3 ([LAM+13])

A BF is called < i : ai : bi > canalizing, if there exists a canalizing variable xi and
constant Boolean values ai, bi ∈ Ω such that

f (i,ai)(x) = bi,

for all x1, ...xi−1, xi+1....xn.

It is quite obvious that all functions with n = 2 variables are canalizing, except for XOR
and its negation. However, this changes for larger n. It has been shown in [ACK03] that

there are at most 4n · 22(n−1)
canalizing functions. As there exist 22n BF in total, it becomes

clear that the fraction of CFs is at most 4n

22n−1 and hence double exponentially decreasing

with n. In [JSK04] it has been shown that the exact number of CFs is given as

#CF = 2 ((−1)n − n)−
n∑
j=1

(−1)j+1

(
n

j

)
2j+122n−j .

Thus, as the fraction of CFs is double exponential decreasing, it is quite unlikely to actually
get a CF for larger n, when drawing BFs randomly.

2.3.1.1. Spectral Properties of Canalizing Functions

As mentioned before, the authors of [SLE04] proposed a test of the membership of a BF
in the class of CFs using the so-called forcing transform. We will now generalize this to
the Fourier transform, which is a more intuitive and natural approach and gives a relation
between the Fourier coefficients and the canalizing property:

Theorem 2.2

A BF f is < i : ai : bi > canalizing in variable xi, with ai, bi ∈ Ω, if and only if the
Fourier coefficients f̂(U) fulfill the following condition:

f̂(∅) + φ{i}(ai) · f̂({i}) = bi.

15
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Proof : Using Definition 2.3 we can state that a function is canalizing, if and only if

E
[
f (i,ai)(X)

]
= bi.

By applying the relation described in Eq. (2.6), we get

f̂ (i,ai)(∅) = bi.

From Theorem 2.1 we know that

f̂ (i,ai)(∅) = f̂(∅) + φ{i}(ai) · f̂({i}),

which concludes the proof.

Further, it can be seen that in the uniformly distributed case

bi = sgn
(
f̂(∅)

)
, (2.10)

where sgn (·) gives the sign.

A similar result, namely the calculation of the Fourier coefficients of a canalizing BF from
the coefficients of the restricted functions f̂ (i,ai)(U), is addressed in [KRYH05]. These results
can also be achieved using Proposition 2.2.

Theorem 2.2 shows that the canalizing property can be tested by inspecting all Fourier
coefficients of order one. Using the Fast Walsh Transform (FWT) [Sha69], this test has the
same computational complexity as the one presented in [SLE04].

2.3.1.2. Jointly Canalizing Functions

If a BF is not canalizing in a single variable, but two or more variables act together as
canalizing influence, we call this function jointly canalizing.

Definition 2.4

A BF f with n variables is called jointly canalizing in a set of variables T ⊂ [n], if there
exists a constant bT ∈ Ω and a set of Boolean restrictive values A = {ai ∈ Ω : i ∈ T}
such that

f (T,A)(x) = bT ,

for all xi, i ∈ [n]\T , where f (T,A)(x) is a BF, whose inputs xj , j ∈ T are fixed to xj = aj .

Similar to CFs, we can prove the conditions jointly canalizing functions have to fulfill in the
Fourier domain.

Proposition 2.4

A BF f is jointly canalizing in T ⊂ [n], if there exists a set A = {ai ∈ Ω : i ∈ T}, a
constant bT ∈ Ω and its Fourier coefficients fulfill the following condition:∑

U⊆T
φS(A)f̂(U) = bT .
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Proof : From Definition 2.4, it follows directly that

E
[
f (T,A)(X)

]
= bT .

Since the zero order coefficient gives the expectation of a BF (see Eq. (2.6)) it follows
that

f̂ (T,A)(∅) = bT .

From Proposition 2.3 we know:

f̂ (T,A)(∅) =
∑
U⊆T

φU (A) · f̂(U),

which concludes the proof.

2.3.2. Nested Canalizing Functions

Nested canalizing functions (NCFs), which form a subclass of CFs, were introduced by
Kauffman et al. [KPST03] and they also appear in a large number of regulatory networks.
Since then, they have been studied mainly with respect to their positive influence on the
network stability [KPST04, LAM+13]. Further, in [JRL07] it has been shown that the class
of NCFs is identical to the class of the so-called unate cascade BFs, which are used in the
area of logic design [Mai62, Muk69] and show an optimal average path length in binary
decision diagrams [BSM05]. Hence, NCFs are also a subclass of unate functions, which are
defined later.

Before formally introducing NCFs, let us examine the following example to understand
the concept of NCFs.

Example 2.5

The truth-table below represents a BF f , which is clearly canalizing in x1. The canalizing
value is a1 = −1, the canalized value b1 = +1. One can see from the truth-table that the
function is not canalizing in either x2 or x3. However, if we restrict f to x1 = −a1 = +1
the restricted BF f (1,+1) is canalizing in x2 with canalizing value a2 = +1 and b2 = −1.
If we now restrict f (1,+1) again, we get another CF. Hence, we call f nested canalizing.

x1 x2 x3 f(x)

+1 +1 +1 −1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1
−1 +1 +1 +1
−1 +1 −1 +1
−1 −1 +1 +1
−1 −1 −1 +1

Now, we let’s give the definition of NCFs:
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Definition 2.5

For k = 1 and k = 0 any BF with k ≤ n relevant variables is a NCF.
For k > 1 a BF is a NCF, if there exists at least one variable i and constants ai, bi ∈ Ω,
such that f (i,ai) = bi and f (i,−ai) is a NCF with k − 1 relevant variables.

Let π be a permutation of length k and xπ(1), . . . , xπ(k) the variable order for which a NCF
fulfills the properties of Definition 2.5, then we call, following [LAM+13], such a function
{π : A : B} nested canalizing, where A and B are sets containing all ai and bi, respectively.
For convenience we will abbreviate π(i) by πi.

Example 2.6 ([LAM+13])

Let f be a BF with the following truth-table:

x1 x2 x3 f(x)

+1 +1 +1 +1
+1 +1 −1 +1
+1 −1 +1 −1
+1 −1 −1 +1
−1 +1 +1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 −1

We can see that f is a {π : A : B} = {(1, 2, 3) : (−1,+1,−1) : (−1,+1,+1)}-NCF as
well as a {(1, 3, 2) : (−1,−1,−1) : (−1,+1,−1)}-NCF.

Similar to Theorem 2.2, we can give the spectral properties of NCFs:

Proposition 2.5

Let f be a BF, then f is a {π : A : B}-NCF, if and only if the Fourier coefficients fulfill
the following condition for each j ∈ [n]:∑

S⊆[j]

(
φ{π(j)}(aj)

|S̃∩{π(j)}| · φ
S̃\{πj}(Ā) · f̂(S̃)

)
= bj ,

where Ā is a set containing all negated ai, i.e., āi = −ai and S̃ is a set, which is retrieved
by applying the permutation π to the elements of S.

Proof : The proof follows from Proposition 2.3 and Theorem 2.2.

This proposition does not give a simple test like Theorem 2.2, where only one equation
has to be fulfilled. Here, we have a set of k equations, which have to be fulfilled. In order to
illustrate the spectral properties of a NCF, consider the following two examples:
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Example 2.7

Let f be a {π : A : B}-NCF with k = 3 uniformly distributed relevant variables and π
such that S̃ = π(S) = S, then

b1 =f̂(∅) + a1f̂({1})
b2 =f̂(∅)− a1f̂({1}) + a2f̂({2})− a1a2f̂({1, 2})
b3 =f̂(∅)− a1f̂({1})− a2f̂({2}) + a3f̂({3}) + a1a2f̂({1, 2})− a1a3f̂({1, 3})

− a2a3f̂({2, 3}) + a1a2a3f̂({1, 2, 3}).

Example 2.8

Let us consider the BF from Example 2.5, assuming uniformly distributed variables.
Hence, the corresponding Fourier coefficients are given as:

S ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 4}
f̂(S) +0.25 −0.75 −0.25 −0.25 −0.25 −0.25 +0.25 +0.25

.

Set a3 = +1 and b3 = +1, then from the previous Example 2.7, we get

f̂(∅)− f̂({1}) = +1

f̂(∅) + f̂({1}) + f̂({2}) + f̂({1, 2}) = −1

f̂(∅) + f̂({1})− f̂({2}) + f̂({3})− f̂({1, 2}) + f̂({1, 3})− f̂({2, 3})− f̂({1, 2, 3}) = +1,

which shows that f is a NCF.

In this example we picked a3 = +1. However, we could have also picked a3 = −1. The
functions would have still been a NCF, as every BF with only one variable is a CF. This
concept is formally expressed in the following proposition taken from [LAM+13].

Proposition 2.6 ([LAM+13, Proposition 3.4])

The function f is a {π : A : B}-NCF, if and only if f is a {π : An : Bn}-NCF, where
An, Bn denote the sets A,B, respectively, with the n-th element flipped, i.e., an = −an
and bn = −bn.

2.3.2.1. Properties of Nested Canalizing Functions

Let us now state some properties of NCFs. From their definition it becomes clear that NCFs
are somehow recursive. The following proposition shows the recursive behavior of the Fourier
coefficients of NCFs.

Proposition 2.7

The Fourier coefficients of a {π : A : B}-NFC f can be recursively written as:

f̂(U) =

{
PXπ1

(ā1) ·
(
φ{π1}(ā1)

)|U∩{π1}| · f̂ (π1,ā1)(U \ {π1}) U 6= ∅
PXπ1

(ā1) · f̂ (π1,ā1)(∅) + PXπ1
(a1) · b1 else

.
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Proof : The claim follows from Proposition 2.2 and the fact that the restriction f (π1,a1)

of a NCF is a constant function.

If we look closer at the zero coefficient for uniformly distributed variables, we see from the
following proposition that it can be bounded as follows:

Proposition 2.8

The absolute value of the zero coefficient of a NCF f with k > 1 relevant and uniformly
distributed input variables can be bounded as:

1

2k−1
≤ |f̂(∅)| ≤ 1− 1

2k−1
.

Proof : First, we prove the right hand side: Using the triangle inequality we get from
Proposition 2.7:

|f̂(∅)| ≤ 1

2
|f̂ (π1,α1)(∅)|+ 1

2
.

Obviously the zero coefficient of a function with only one relevant variable i is zero. The
proposition now follows by induction. The left hand side can be shown using the inverse
triangle inequality and induction.

We will see later (Corollaries 2.3 and 2.5) that there exist two subclasses of the NCFs that
fulfill the upper and lower bound of this proposition with equality. We only investigate these
bounds for the uniform case, since the zero coefficient, i.e., the expectation of a BF, in the
product distributed case, can take any real value between −1 and +1, be choosing the input
distributions accordingly (see Example 2.2).

Next, we address most dominant variables, which are defined as follows:

Definition 2.6 ([LAM+13, Def 4.5])

The variable i is called a most dominant variable of f , if there exists a permutation π,
such that π(1) = i, for which f is {π : A : B} nested canalizing.

Hence, the set of most dominant variables of a BF f , is the set of variables in which f is
canalizing. This set has an impact on a number of Fourier coefficients, which is summarized
in the following proposition:

Proposition 2.9

Let K be the set of most dominant variables of a {π : A : B}-NCF f . Then the
corresponding Fourier coefficients all fulfill the following property , i.e., for all U ⊆ K,
U 6= {∅}:

(−1)|U |−1φU (A) · f̂(U) = c, c ∈ R, (2.11)

and
f̂(∅) = b− c, (2.12)

where b ∈ Ω is a constant and
bi = b ∀i ∈ K. (2.13)
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Proof : Let us first show Eq. (2.13). Let i, j ∈ K, then from Theorem 2.2 we know:

f̂(∅) + φi(ai) · f̂({i}) = bi (2.14)

f̂(∅) + φj(aj) · f̂({j}) = bj (2.15)

Further the restrictions of f to xi = −ai is canalizing for xj = aj and vice versa, hence:

f̂ (j,−aj)(∅) + φi(ai) · f̂ (j,−aj)({i}) = bi

f̂ (i,−ai)(∅) + φj(aj) · f̂ (i,−ai)({j}) = bj ,

applying Theorem 2.1 we get:

f̂(∅) + φj(−aj) · f̂({j}) + φi(ai) · f̂({i}) + φj(−aj) · φi(ai) · f̂({i, j}) = bi

f̂(∅) + φi(−ai) · f̂({i}) + φj(aj) · f̂({j}) + φi(−ai) · φj(aj) · f̂({i, j}) = bj .

Using Eq. (2.14) and (2.15) yields:

f̂({j}) + φi(ai) · f̂({i, j}) = 0 (2.16)

f̂({i}) + φj(aj) · f̂({i, j}) = 0. (2.17)

Solving Eq. (2.16) for f̂({i, j}) and substituting it into Eq. (2.17) leads to:

φi(ai) · f̂({i}) = φj(aj) · f̂({j}) = c.

From this, Eq. (2.11) follows directly for |U | = 1 and together with Theorem 2.2 it
proves Eqs. (2.12) and (2.13).

We will show the remaining parts by induction and use Eq. (2.11) as the induction
hypothesis for Fourier coefficients with order |U | and smaller. We need to show that
Eq. (2.11) is also valid for coefficients with order |U |+ 1. Using Proposition 2.3,

f̂ (U,Ā)(T ) =
∑
S⊆U

(
φS(Ā) · f̂(S ∪ U)

)
,

and that, if f is canalizing in some variable i ∈ K, it follows that every restriction of f
must also be canalizing in variable i, i.e., f̂ (U,Ā)(∅) + φi(ai) · f̂ (U,Ā)({i}) = b, we get:

b =
∑
S⊆U

(
φS(Ā) · f̂(S)

)
+ φi(ai)

∑
S⊆U

(
φS(Ā)f̂(S ∪ {i})

)
b =

∑
S⊆U,S 6=∅

φS(Ā)
(
f̂(S) + φi(ai) · f̂(S ∪ {i})

)
+ f̂(∅) + φi(ai) · f̂({i})

0 =
∑

S⊆U,S 6=∅
φS(Ā)

(
f̂(S) + φi(ai) · f̂(S ∪ {i})

)
.

Now multiplying with (−1)|U |−1 · φU (A) = (−1)|U\S| · (−1)|S|−1 · φU\S(A) · φS(A) yields:

0 =
∑

S⊆U,S 6=∅
φS(Ā) · (−1)|U\S| · φU\S(A)

(
(−1)|S|−1 · φS(A) · f̂(S)

− (−1)|S| · φS∪{i}(A) · f̂(S ∪ {i})
)
. (2.18)
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For all S and for all |S ∪ {i}| ≤ |U | we can apply the induction hypothesis, hence, all
summands of the sum in Eq. (2.18) are zero, except for the one where S = U . This
leads us to:

0 = φU (Ā)
(
c− (−1)|U∪{i}|−1φU∪{i}(A)f̂(U ∪ {i})

)
,

and hence to

c = (−1)|U∪{i}|−1φU∪{i}(A)f̂(U ∪ {i}),

which concludes to proof.

If we restrict our observations to uniformly distributed inputs the following corollary
applies:

Corollary 2.2

Let K be the set of most dominant variables of a {π : A : B}-NCF f with uniformly
distributed inputs. Then the absolute values of the corresponding Fourier coefficients
are all equal, i.e., ∀U ⊆ K,

∣∣∣f̂(U)
∣∣∣ =

{
1− c if U = ∅
c else

where
c > 0.

2.3.2.2. Special cases of Nested Canalizing Functions

Now, let us examine some special cases or subclasses of NCFs as we will see later that these
functions have special properties with respect to noise sensitivity, average sensitivity and
mutual information.

NCFs with only most dominant variables (NCF-MDV) The first class we are examining,
is the class of NCFs, whose relevant variables are all most dominant (see Definition 2.6). For
these functions we can infer the following two corollaries from Proposition 2.9:
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Corollary 2.3

Let f be a {π : A : B}-NCF with n uniformly distributed variables of which k are
relevant, and all relevant variables are most canalizing, i.e., bi = b for all i ∈ rel(f).
Then the absolute values of the Fourier coefficients fulfill the following conditions:∣∣∣f̂(S)

∣∣∣ = c ∀S ⊆ rel(f), S 6= {∅},∣∣∣f̂(∅)
∣∣∣ = 1− c

with

c = 2−(k−1).

It can be seen that each of these functions is completely described by A and b, as the
permutation π does not have any impact. Hence, there are 2k+1 such functions. Further, it
becomes clear from Corollary 2.3 that the zero coefficient of such a NCF, assuming uniform
distribution, fulfills the upper bound in Proposition 2.8 with equality, i.e., the absolute value
of a NCF, whose variables are all most canalizing, is maximized. Further, the sign of the
zero coefficient is given by b.

NCFs with alternating canalized values (NCF-ACV) Another important subclass of NCFs
are the functions with alternating bi, i.e., where bi = −bi−1 and b1 ∈ Ω. The following
corollary to Proposition 2.7 gives an exact value for the zero order coefficient of such functions.

Corollary 2.4

The absolute value of the zero coefficient of a NCF-ACV f with k relevant and uniformly
distributed variables and alternating bi, i.e., with bi = −bi−1 and b1 ∈ Ω, is given as:

|f̂(∅)| = 1

3

(
1

2k−1
(−1)k + 1

)
.

NCFs with second order most dominant variables (NCF-SMD) This subclass is quite
similar to the NCF-MDV. A function f is called NCF-SMD, if it is canalizing in xπ1 , i.e.,
f (π1,a1) = b1 ∈ Ω and f (π1,ā1) is a NCF-MDV with b = −b1. Let’s look at the zero coefficient
of these functions:

Corollary 2.5

Let f be a NCF-SMD f with k relevant and uniformly distributed variables, then the
absolute value of the zero coefficient is given as:

f̂(∅) =
1

2k−1
,

and hence fulfills the lower bound in Proposition 2.8 with equality.
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Proof : Starting from Proposition 2.7 we know:∣∣∣f̂(∅)
∣∣∣ =

∣∣∣∣12 f̂ (π1,ā1)(∅) +
1

2
b1

∣∣∣∣ .
From Corollary 2.3 we know that |f̂ (π1,ā1)(∅)| = 1− 1

2k−2 , further sgn
(
f̂ (π1,ā1)(∅)

)
= −b1,

hence: ∣∣∣f̂(∅)
∣∣∣ =

∣∣∣∣12b1 1

2k−2

∣∣∣∣
=

1

2k−1
.

2.3.3. Unate Functions

Unate Boolean functions (UBFs), i.e., local monotone BFs, have been investigated in the
field of computer science since at least the early 60s [McN61]. However, their importance for
biological applications has been recognized later. As mentioned in [GKK06] a regulator can
only be either activating or repressing, i.e., its influence is monotone, hence BFs, which are
used to model regulatory relations, are always unate [GKK06].

To define unate functions we first need to take a look at monotone functions, as UBFs are
a simple extension of this class:

Definition 2.7

A BF f : Ωn → Ω is called monotone, if for each i ∈ {1, . . . , n} it holds that

f(x1, . . . , xi = −1, . . . , xn) ≤ f(x1, . . . , xi = 1, . . . , xn).

Now, UBFs can be defined as follows:

Definition 2.8

A BF f is unate, if there exists a vector (a1, a2, . . . , an) ∈ Ωn such that the function
f(a1 · x1, . . . , an · xn) is monotone.

Hence, a BF is unate, if it is monotone (either increasing or decreasing) in each of its
variables. The class of UBFs is closed under restrictions, since every restriction of a locally
monotone function yields again in a locally monotone function. To test whether a function
is unate or not, it is sufficient to use the definition, however, a necessary condition in the
Fourier domain for a function to be unate is given by the following proposition:

Proposition 2.10 (e.g., [BT96])

If f is a unate function, then for each relevant variable i

f̂({i}) 6= 0.

As mentioned before, the NCFs form a subclass of the unate functions.
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Chapter 3

Noise Sensitivity and Average Sensitivity

T
he noise sensitivity and the average sensitivity are two measures using
different channel models to quantify the impact of disturbances or errors at the
functions input on the output. The average sensitivity expresses the effect of
randomly flipping one input variable, while the noise sensitivity measures the

error probability taking binary erasure channels into account. The impact of a single input,
i.e., the influence of a variable, was introduced in [BOL85] and applied to BF in [KKL88].
The authors of the latter paper also showed that the sum of all influences equals the average
sensitivity. Further, they investigated the influence intensively using Fourier analysis in the
uniform case and a direct relation between this entity and the Fourier coefficients was derived.
The sensitivity, i.e., the error tolerance of a BF at a certain input, was first studied under
the term critical complexity (e.g., [CDR86, Weg87]) in the context of parallel random access
memories (PRAM). In [Sim83] an upper bound for the maximum sensitivity was presented
and further improved for symmetric functions in [Ber98].

In [KKL88] the authors investigated monotone functions, which were also studied in
[Shm05], further an upper bound for locally monotone functions was presented in [Hec10].
In [LAM+13] an upper bound for the average sensitivity of NCFs was conjectured. Later in
this chapter we will prove this bound. As mentioned earlier, the expectation of the average
sensitivity is also an order parameter of random Boolean networks [SB07].

As stated in [O’D03], the noise sensitivity of BFs was first studied by the authors of
[KKL88] and expressed in terms of Fourier coefficients, although they did not use the term
“noise sensitivity” nor did their definition match the one we will introduce later. In [BKS99]
the noise sensitivity of BFs was studied with focus on asymptotically noise stable behavior
and the weighted majority functions. Further, it was shown that in learning theory BFs,
which have low noise sensitivity, are more efficiently learnable [O’D03].

3.1. Definitions and Examples

Before we will introduce and define noise sensitivity and average sensitivity we need to look
at the influence of variables and the sensitivity of input vectors.

3.1.1. Influence

As discussed in the previous chapter (see Section 2.2.1) not all variables are relevant. However,
within the set of relevant variables there exist variables that have more impact on the functions
output than others. Let us illustrate this in the following example:
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Example 3.1

Let us consider the (NOTx1)AND(x2ORx3) function given by the following truth-table:

x1 x2 x3 f(x1, x2, x3)

+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 −1
−1 +1 +1 +1
−1 +1 −1 +1
−1 −1 +1 +1
−1 −1 −1 +1

If we assume uniformly distributed input variables, each row, i.e., each input vector
x = {x1, x2, x3} is equal probable. Hence, one can see that x1 almost always has an
impact on the functions output (except if x2 = x3 = +1). Here, by impact we mean that
the output changes if the input variable is flipped. As this happens in 6 out of 8 rows, it
occurs with probability 3

4 . Thus, we say x1 has an influence of I1(f) = 3
4 . Let us now

investigate x2. It has only an impact if x1 = +1 and x3 = −1, i.e., in 2 cases. Hence,
the influence of x2 is I2(f) = 1

4 . Finally, one can also see that I3(f) = 1
4 .

As seen in this example we define the influence of a variable as the probability that the
functions output changes if this variable is flipped. The notion of influence has been introduced
by the authors of [BOL85] and was first applied to BFs in [KKL88]. Formally we can write:

Definition 3.1 ([HM91])

The influence of a variable xi on the function f is defined as:

Ii = Pr [f(x) 6= f(x⊕ ei)] ,

where as before x⊕ ei is the vector obtained from x by flipping its i-th entry.

The following proposition establishes the relationship between the influence and the Fourier
coefficients:

Proposition 3.1 (e.g., [BT96])

Given any BF f with product distributed inputs and let f̂(S), S ⊆ [n] be its Fourier
coefficients, then the influence of variable xi is given by

Ii(f) =
∑
S:i∈S

1

σ2
i

f̂2(S),

where σi is the standard deviation of input i.

Let us illustrate this proposition by continuing the previous example:
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Example 3.2

The Fourier spectrum of the function from Example 3.1 is given by

S ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
f̂(S) 1

4 -3
4

1
4

1
4

1
4

1
4

1
4

1
4

Applying Proposition 3.1 we get for the influences:

I1(f) =

(
−3

4

)2

+

(
1

4

)2

+

(
1

4

)2

+

(
1

4

)2

=
12

36
=

3

4

I2(f) =

(
1

4

)2

+

(
1

4

)2

+

(
1

4

)2

+

(
1

4

)2

=
4

36
=

1

4

I3(f) =

(
1

4

)2

+

(
1

4

)2

+

(
1

4

)2

+

(
1

4

)2

=
4

36
=

1

4

Please note that we still assume uniform distribution, hence, σi = 1, ∀i ∈ [n].

The influence Ii(f) for a unate function f is directly related to the corresponding Fourier
coefficient:

Ii(f) =
|f̂({i})|
σi

, (3.1)

as it was shown for monotone functions in [BT96, Lemma 4.5] and can be easily extended to
unate functions.

The measure of influence can also be used to determine relevant variables of a BF (see
Section 2.2.1). One can see that a variable is relevant, if and only if its influence is larger
than zero.

3.1.2. Sensitivity

While the influence gives the probability that the output changes, if one input is flipped, the
sensitivity of a BF on a certain input vector x gives the number of variables for which the
output changes, if one of these variables is flipped. More formally we can write:

Definition 3.2 (e.g. [Ber98])

The sensitivity sx(f) of a BF f on a certain input vector x is defined as the number of
variables xi, i ∈ [n] for which f(x) 6= f(x⊕ ei), i.e.,

sx(f) =
1

4

∑
i∈[n]

(f(x)− f(x⊕ ei))2 .

The following example illustrates this concept graphically:
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Example 3.3

Let us draw the BF from Examples 3.1 and 3.2 as a 3-dimensional graph, where each
dimension represents one input variable. Each node represents one input vector and is
labeled accordingly, e.g., +−+ means, x1 = +1, x2 = −1 and x3 = +1.

+ + +

+ − +

+ + −

+ − −

− + +

− + −

− − +

− − −

s(+++)(f) = 2

s(++−)(f) = 2

s(+−−)(f) = 1

s(+−+)(f) = 2

s(−−−)(f) = 1

s(−−+)(f) = 1

s(−+−)(f) = 1

s(−++)(f) = 0

A shaded node means that the functions output is −1, otherwise the output is +1.
The sensitivity of a node, i.e., sx(f) is the number of neighbors with a different color
and can be found in the graph.

If we now take the average of all sensitivities, we get the average sensitivity, which is in this
case (assuming uniform distribution) as(f) = 5

4 . We will formally introduce the average
sensitivity in the next subsection.

3.1.3. Average Sensitivity

As mentioned before the average sensitivity (as) gives the influence of random disturbances
at the input on the output of a BF. This can be interpreted as an indicator for the robustness
of this BF.

The average sensitivity as(f) is the expected value over all arguments x:

as(f) = E [sx(f)] .

Hence, the as depends on the distribution of the input vector. For example a function having
a low average sensitivity for the uniform distribution may have a large average sensitivity for
other distributions. In general as(f) can be as large as the number of relevant variables k,
i.e.,

0 ≤ as(f) ≤ k.

Alternatively, the as can be defined using the influence. Referring to [KKL88], it can be
shown that,

as(f) = E [sx(f)] =
∑
i∈[n]

Ii(f).

Consequently the average sensitivity can also be expressed in terms of the Fourier coefficients
[Fri98] as:

as(f) =
∑

S⊆[n],S 6=∅
f̂(S)2

∑
i∈S

1

σ2
i

.
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In the uniform case this equation reduces to

as(f) =
∑

S⊆[n],S 6=∅
f̂(S)2|S|.

From its definition it becomes obvious that in general the as is upper-bounded by the
number of relevant variables k. Further from Poincare’s inequality a general lower bound
follows [KKL88], hence, we can state:

Var [f ] ≤ as(f) ≤ k. (3.2)

For unate functions we can write using Eq. (3.1):

as(f) =
n∑
i=1

|f̂({i})|
σi

,

and using the Cauchy-Schwarz inequality one can show that [Hec10]

as(f) ≤
√

Var [f ]

√√√√ n∑
i=1

(
1

σi

)2

.

For uniformly distributed inputs this bound reduces to

as(f) ≤ √n. (3.3)

It can be shown, that some functions get close to this upper bound. For example, it
is well-known that the average sensitivity of the majority function behaves like O(

√
n)

([O’D08]).

3.1.4. Noise Sensitivity

While the average sensitivity only measures the impact of a flip in the input, the noise
sensitivity (NS) also takes the probability with which this distortion may happen into account.
Let us recall the noise-operator Nε(·) from Definition 2.1 on page 7, then the NS is the
probability that f(X) differs from f(Nε(X)):

Definition 3.3 ([O’D03])

Let f : Ωn → Ω be a BF and let X be a product distributed random variable and
X′ = Nε(X) its noise copy. The noise sensitivity (NS) is defined as:

NSε(f) = Pr
[
f(X) 6= f(X′)

]
.

Note, that in general the NS can be defined for any kind of distortion. In this work, however,
we focus on the noise introduced by n parallel BSCs and the corresponding noise-operator
Nε. Similar to the notion of sensitivity we can define a conditional noise sensitivity (CNS)
as the NS of a BF with fixed inputs x:
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Definition 3.4

Given a BF with a fixed input X = x and let X′ be the corresponding noisy copy, then

NSε,x(f) = Pr
[
f(X) 6= f(X′)|X = x

]
.

As the as is the expectation of the sensitivities, the NS is the expectation of the CNS:

NSε(f) =
∑
x

Pr [X = x] NSε,x(f). (3.4)

For any Boolean function f the noise sensitivity with respect to the uniform distribution
can be expressed in terms of Fourier coefficients as [O’D03]:

NSε(f) =
1

2

(
1−

∑
U

f̂2(U)ρ|U |
)
, (3.5)

where

ρ = 1− 2ε.

By shifting the energy of all Fourier coefficients except f̂(∅) to the highest order |U | = k,
we can easily give an upper bound on the noise sensitivity for a fixed zero coefficient:

NSε(f) ≤ 1

2

(
1− f̂2(∅)− (1− f̂2(∅))ρk

)
. (3.6)

Likewise, by shifting all energy to the first order coefficient we get the following lower bound:

NSε(f) ≥ 1

2

(
1− f̂2(∅)− (1− f̂2(∅))ρ

)
. (3.7)

3.1.5. Relation between Average Sensitivity and Noise Sensitivity

We mentioned before that the noise sensitivity and average sensitivity are closely related.
The following proposition formally describes this fact:

Proposition 3.2 (Uniform case [O’D03], Product case e.g., [Hec10])

Let f be a BF with product distributed input values and 0 ≤ ε ≤ 1
2 the error probability

as defined in Definition 2.1, then

dNSε(f)

dε

∣∣∣∣
ε=0

= as(f).

With other words, the as is the slope of the NS at ε = 0. From that one can derive the
following commonly known bound for uniform distributed variables (e.g., [O’D03]):

NSε(f) ≤ as(f) · ε. (3.8)

Let us now look at some examples and calculate the as and NS for some functions:
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NSε(AND)

NSε(XOR)

NSε((NOTx1)AND(x2ORx3))

as(AND) · ε
as(XOR) · ε

as((NOTx1)AND(x2ORx3)) · ε

Figure 3.1.: Plot of Noise Sensitivity and Average Sensitivity for some exemplary Boolean
functions.

Example 3.4

The following table illustrates the as and the NS of the AND, OR, XOR and the
(NOTx1)AND(x2ORx3) (see Example 3.1) functions in the uniform case:

f as(f) NSε(f)

x1ANDx2 1 1
2

(
3
4 − 1

2ρ− 1
4ρ

2
)

x1ORx2 1 1
2

(
3
4 − 1

2ρ− 1
4ρ

2
)

x1XORx2 2 1
2

(
1− ρ2

)
(NOTx1)AND(x2ORx3) 5

4
1
2

(
15
16 − 11

16ρ− 3
16ρ

2 − 1
16ρ

3
)

Please remember that ρ = 1 − 2ε. We can see that the NS and consequently the as

of the AND and OR functions are equal, since their Fourier coefficients have the same
absolute value. Further, in Figure 3.1 we plotted the NS and the corresponding bound
of Eq. (3.8).

As one can see from the example and from Eq. (3.5) the NS is lower for more energy
being concentrated on the Fourier coefficients with low order. It is minimized for the two
constant functions, i.e., f(x) = +1 and f(x) = −1. On the other hand, functions with energy
concentrated on the high order coefficients have a large NS, hence, it is maximized by the
XOR functions.

However, finding non-trivial functions minimizing the NS is not easy, as not every set of
Fourier coefficients is a valid BF. In the next section we will discuss the NS of canalizing and
nested canalizing functions, as they show somehow an optimal behavior.

3.2. Noise Sensitivity for Different Classes of Boolean Functions

In this section we will investigate the noise sensitivity, mainly for CFs and NCFs. In the
next subsection we will summerize our findings and discuss them in Subsection 3.2.2. After
that we will state the proofs for the different results in the remaining subsections.
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3.2.1. Main Results of this Section

In Eq. (3.8) we stated a general upper bound for the NS. However, it is often desired to
compare only BFs with the same bias. The following proposition gives an upper and a lower
bound for a fixed bias.

Corollary 3.1

Let f be a BF with k uniformly distributed and relevant input variables with a fixed
zero coefficient f̂(∅), then the NS is bounded with:

1

2

(
1− f̂2(∅)− (1− f̂2(∅)) · (1− 2ε)

)
≤ NSε(f) ≤ 1

2

(
1− f̂2(∅)− (1− f̂2(∅)) · (1− 2ε)k

)
.

The upper bound is tight.

Proof : The result follows from Proposition 3.3 on page 37.

Let us now obverse CFs. From Proposition 3.4 on page 39 it follows:

Corollary 3.2

Let f be a CF with the zero order coefficient f̂(∅) , then the NS is upper bounded as:

NSε(f) ≤ 1

2

(
1−

(
1− 2|f̂(∅)|+ 2f̂(∅)2

)
(1− 2ε)

)
.

This bound can further be made independent of f̂(∅) by applying the fact that(
1− 2|f̂(∅)|+ 2f̂(∅)2

)
≥ 1

2
,

which leads us to:

Corollary 3.3

Let f be a CF, then the NS is upper bounded as:

NSε(f) ≤ 1

4
+

1

2
ε.

For NCFs we can again obtain bounds with or without taking the bias into account. The
following corollary states an upper bound for NCFs only depended on the number of relevant
variables and ε:

Corollary 3.4

Let f be a NCF with k = rel(f) relevant variables, then the NS is upper bounded as:

NSε(f) ≤4ε− 2−k · (1− ε)k−2 ·
(
3− 4ε+ 7ε2 − 2ε3 + (−1)k(1 + ε)2

)
· ε

3 + 2ε− ε2 .

Proof : The result directly follows from Theorem 3.2 on page 40.
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3.2. Noise Sensitivity for Different Classes of Boolean Functions

This result can be further bounded by:

NSε(f) ≤ 4ε

3 + 2ε− ε2 . (3.9)

As one can see, these bounds are only dependent on ε and k. However, as mentioned
before, sometimes it is desired to only compare functions with the same bias, i.e., the same
f̂(∅). Therefore, from Proposition 3.6 on page 42 we can derive the following additional
bound taking the bias into account:

Corollary 3.5

Let f be a {π : A : B}-NCF with a fixed bias of f̂(∅), then the NS is bounded as

NSε(f) ≤ ε4 + (1− ε)2 −
(
4− (1− ε)2

)
· |f̂(∅)|)

(3− ε)(1− ε2)
.

Finally, let us investigate the previously introduced subclasses of NCFs. The following
three corollaries state the corresponding results:

Corollary 3.6

Let f be a {π : A : B}-NCF-MDV with k uniformly distributed relevant input variables,
then

NSε = 2−k+1
(

1− (1− ε)k
)
.

Proof : The result directly follows from Proposition 3.7 on page 42.

If the number of relevant variables increases, these functions become more and more biased,
i.e., |f̂(∅)| → 1, the NS tend to zero:

rε,c(f) = 0
NSε(f) = 0

for k →∞.

Corollary 3.7

Let f be a {π : A : B}-NCF-ACV with k uniformly distributed relevant input variables,
then

NSε(f) =
4ε

3(1 + ε)
− 2ε(−2)−k

3(2− ε) +
2−k+1ε(1− ε)k+1

2 + ε− ε2 .

Proof : The result directly follows from Proposition 3.8 on page 43.

If we now let k grow to infinity, i.e., if we observe a large number of relevant variables, we
obtain the following corollary:

Corollary 3.8

Let f be a {π : A : B}-NCF-ACF, then for an infinite number of relevant variables we
can write

NSε(f) =
4ε

3(1 + ε)
.
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Figure 3.2.: Upper bounds on the NS for different classes of functions, with k = 3 and
k = 6 relevant variables, respectively. (The bound for CFs is independend of
k.)

Further, it is worth to note that in this case the bias tends to 1
3 .

Corollary 3.9

Let f be a {π : A : B}-NCF-ACV with k uniformly distributed relevant input variables,
then

NSε(f) = ε− 2−k+1 + 2−k+1(1− ε)k.

Proof : The result directly follows from Proposition 3.9 on page 44.

Again, if we investigate these functions for an infinite number of relevant inputs, we obtain
the following corollary. Further, these function then become balanced.

Corollary 3.10

Let f be a {π : A : B}-NCF-SMD, then for an infinite number of relevant variables we
can write

NSε(f) = ε.

3.2.2. Discussion and Implications

In Figure 3.2 the upper bounds of the NS versus the error probability ε for all BFs, unate
BFs, CFs, and NCFs have been plotted for k = 3 and k = 6, respectively. We can see
the general upper bound for all BFs, which is the combination of Eqs. (3.2) and (3.8), i.e.,
NSε(f) ≤ k · ε is highest, followed by the bound for unate BFs, NSε(f) ≤

√
k · ε (see Eqs. (3.3)

and (3.8)). These bounds both increase strongly with k. The bounds of the CFs and NCFs,
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Figure 3.3.: Upper bounds on the NS for NCFs with different numbers of relevant vari-
ables k.

however, remain lower. In fact, the bound for CFs is independent of k, while the NCFs
bound only changes a little with k. This is further investigated in Figure 3.3, where the
upper bound for NCFs derived in Corollary 3.4 for different numbers of relevant variables
k are depicted and compared to the general bound for NCFs (Eq. 3.9). One can see that
all curves – except for k = 2 – are relatively close to the general bound, in fact, they tend
towards this bound for increasing k. Hence, it is sufficient to use only this general bound.
Further, for comparison we added the NSs for NCF-MDVs, NCF-ACVs and NCF-SMDs to
the graphs of Figure 3.2.

In Figure 3.4 we plotted the NS of all BFs with k = 3 and k = 4 relevant variables against
their bias for ε = 0.1. The CFs and NCFs are marked explicitly. Additionally, we added the
bounds derived above. One can see, as indicated by the bounds, that the NCFs have optimal,
i.e., lowest, NS and CFs also perform quite well. From this we conjecture a optimality of
NCFs with respect to the NS.

Finally, we can state that in opposition to BFs in general and unate BFs, the NS of
canalizing and nested canalizing functions does not become larger than a certain bound,
which is independent of the number of relevant variables. Hence, they are more robust to
random changes of the inputs.

3.2.3. General Bounds

We will derive our results in the remainder of this section for a generalization of the NS, as
we will need this later to derive some bounds for the mutual information. Let us define a
function rε,c(f) as follows:

rε,c(f) =
1

2
(1−

∑
U

f̂(U)2(1− 2ε)c|U |), (3.10)
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compared to some bounds.
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3.2. Noise Sensitivity for Different Classes of Boolean Functions

where c ∈ R+ is some constant and 0 ≤ ε ≤ 1
2 . Obviously,

NSε(f) = rε,1(f).

The following proposition gives an upper and a lower bound on rε,c(f) for a fixed bias.

Proposition 3.3

Let f be a BF with k uniformly distributed and relevant input variables with a fixed
zero coefficient f̂(∅), then rε,c is bounded with:

1

2

(
1− f̂2(∅)− (1− f̂2(∅)) · ρc

)
≤ rε,c(f) ≤ 1

2

(
1− f̂2(∅)− (1− f̂2(∅)) · ρc·k

)
.

The upper bound is tight.

Proof : The proof is analog to Eqs. (3.6) and (3.7). The XOR function fulfills the upper
bound.

3.2.4. Noise Sensitivity of Restricted Functions

To investigate CFs and NCFs we first need to look at the effect of restricted BFs. As seen
before, such restricted functions play an important role when describing CFs and NCFs.
First, let us define the function ξ : Fn ×Fn → R by

ξε,c(f, g) =
1

2

1−
∑
U⊆[n]

f̂(U)ĝ(U)(1− 2ε)c|U |

 , (3.11)

where f and g are two BFs.

If we now apply the concept of restricted functions (see Subsection 2.2.3) to the definition
of rε,c, we obtain the following theorem for the uniform case:

Theorem 3.1

Let f (i,+), f (i,−) be the restrictions of f to some relevant variable i of f . Then

rε,c(f) = λ(1)
ε,c · rε,c(f (i,+)) + λ(1)

ε,c · rε,c(f (i,−)) + λ(2)
ε,c · ξε(f (i,+), f (i,−)), (3.12)

where

λ(1)
ε,c =

1

4
(1 + (1− 2ε)c)

λ(2)
ε,c =

1

2
(1− (1− 2ε)c) .

Proof : Starting from the definition of rε,c(f), we can partition the Fourier coefficients
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according to Proposition 2.2. This yields into:

rε,c(f) =
1

2

(
1−

∑
U

(
1

2

(
f̂ (i,+)(U \ {i}) + (−1)|U∩{i}| · f̂ (i,−)(U \ {i})

))2

(1− 2ε)c|U |
)

=
1

2

(
1− 1

4

∑
U

(
f̂ (i,+)2

(U \ {i}) +
(

(−1)|U∩{i}|
)2

︸ ︷︷ ︸
=1

·f̂ (i,−)2
(U \ {i})

+ 2f̂ (i,+)(U \ {i})(−1)|U∩{i}|f̂ (i,−)(U \ {i})
)
· (1− 2ε)c|U |

)
,

which leads us to

rε,c(f) =
1

2

(
1− 1

4

∑
U

f̂ (i,+)2
(U \ {i}) · (1− 2ε)c|U | − 1

4

∑
U

f̂ (i,−)2
(U \ {i}) · (1− 2ε)c|U |

− 1

2

∑
U

f̂ (i,+)(U \ {i}) · (−1)|U∩{i}| · f̂ (i,−)(U \ {i}) · (1− 2ε)c|U |
)
.

Since f (i,a)(U) = 0 for all U : i ∈ U , we can write

rε,c(f) =
1

2

(
1− 1

4

∑
U

f̂ (i,+)2
(U) · (1− 2ε)c|U | − 1

4

∑
U

f̂ (i,+)2
(U) · (1− 2ε)c|U |+c

− 1

4

∑
U

f̂ (i,−)2
(U) · (1− 2ε)c|U | − 1

4

∑
U

f̂ (i,−)2
(U) · (1− 2ε)c|U |+c

− 1

2

∑
U

f̂ (i,+)(U) · f̂ (i,−)(U) · (1− 2ε)c|U |

+
1

2

∑
U

f̂ (i,+)(U) · f̂ (i,−)(U) · (1− 2ε)c|U |+c
)
,

rε,c(f) =
1

2

(
1− 1

4
(1 + (1− 2ε)c)︸ ︷︷ ︸

=λ
(1)
ε,c

∑
U

f̂ (i,+)2
(U) · (1− 2ε)c|U |

− 1

4
(1 + (1− 2ε)c)︸ ︷︷ ︸

=λ
(1)
ε,c

∑
U

f̂ (i,−)2
(U) · (1− 2ε)c|U |

− 1

2
(1− (1− 2ε)c)︸ ︷︷ ︸

=λ
(2)
ε,c

∑
U

f̂ (i,+)(U) · f̂ (i,−)(U) · (1− 2ε)c|U |
)
.

Since 1 = 2λ
(1)
ε,c + λ

(2)
ε,c , we can write:

rε,c(f) = λ(1)
ε,c ·

1

2
(1−

∑
U

f̂ (i,+)2
(U) · (1− 2ε)c|U |) + λ(1)

ε,c ·
1

2
(1−

∑
U

f̂ (i,−)2
(U) · (1− 2ε)c|U |)

+ λ(2)
ε,c ·

1

2
(1−

∑
U

f̂ (i,+)(U) · f̂ (i,−)(U) · (1− 2ε)c|U |),
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and by applying the definition of rε,c we finally get:

rε,c(f) = λ(1)
ε,c · rε,c(f (i,+)) + λ(1)

ε,c · rε,c(f (i,−)) + λ(2)
ε,c · ξε,c(f (i,+), f (i,−)).

This theorem shows that the NS of any BF f is basically the sum of the NSs of its two
restrictions plus a correlation term. This is an important property, which will be used in the
remainder of this chapter.

3.2.5. Canalizing Functions

Based on our findings so far, we can directly state and prove the following proposition, giving
an upper bound on the NS, respectively rεc(f), for a fixed bias.

Proposition 3.4

Let f be a Boolean function with k uniformly distributed input variables and a zero
coefficient of f(∅), which is canalizing in some variable j, i.e. f̂(∅) + aj f̂(j) = bj , then
rε,c is upper-bounded with:

rε,c(f) ≤ 1

2

(
1− f̂2(∅)−

(
1− |f̂(∅)|

)2
· (1− 2ε)c −

(
2|f̂(∅)| − 2f̂2(∅)

)
· (1− 2ε)c·k

)
(3.13)

≤ 1

2

(
1−

(
1− 2|f̂(∅)|+ 2f̂2(∅)

)
· (1− 2ε)c

)
(3.14)

Proof : Since f̂({j}) = aj(bj − f̂(∅)) (see Theorem 2.2) and by applying Eq. (2.10), i.e.,

bj = sgn
(
f̂(∅)

)
, we can write:

f̂({j})2 = (bj − f̂2(∅)) = 1− 2bj f̂(∅) + f̂2(∅)
= 1− 2|f̂(∅)|+ f̂(∅)2.

Starting from Eq. (3.10) we get:

rε,c(f) =
1

2

1− f̂2(∅)− f̂2({j}) · ρc −
∑

i∈[k],i 6=j
f̂2({i}) · ρc −

∑
U,|U |>1

f̂2(U) · ρc|U |
 .

The energy of f̂(∅) and f̂({j}) is fixed. Hence, we shift the remaining energy, 1− f̂2(∅)−
f̂2({j}, to the highest order coefficient:

rε,c(f) ≤ 1

2

(
1− f̂2(∅)− f̂2({j}) · ρc −

(
1− 2|f̂(∅)|+ f̂2(∅)

)
ρc·k
)
,

from which Eq. (3.13) follows. This term can be further simplified:

rε,c(f) ≤ 1

2

(
1− f̂2(∅)− f̂2({j}) · ρc

)
,

which leads us to Eq. (3.14) and concludes the proof.
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3.2.6. Nested Canalizing Functions

First, we take advantage of the recursive behavior of NCFs to derive the following proposition,
which gives us a recursive description of rε,c(f).

Proposition 3.5

Let f be a {π : A : B}-NCF, then rε,c(f) can be recursively written as:

rε,c(f) = λ(1)
ε,c · rε,c(f (π1,ā1)) +

1

2
λ(2)
ε,c ·

(
1− f̂ (π1,ā1)(∅) · b1

)
.

Proof : This proposition follows directly from Proposition 3.1 by applying the spectral
properties of NCFs.

Let us illustrate this in a small example:

Example 3.5

Let f be a BF with k = 1 relevant variable, i.e., the identity function or its negation,
then

rε,c(f) = λ(2)
ε,c .

Now, let f be a NCF with two relevant variables, from Proposition 3.5 follows:

rε,c(f) = λ(1)
ε,c · λ(2)

ε,c +
1

2
λ(2)
ε,c ,

since f (π1,ā1) is a BF with only one relevant variable, hence, rε,c(f
(π1,ā1)) = λ

(2)
ε,c ,

b1 = sgn
(
f̂ (π1,ā1)(∅)

)
and |f̂ (π1,ā1)(∅)| = 1.

Now, we can derive an upper bound on rε,c(f) for NCFs:

Theorem 3.2

Let f be a {π : A : B}-NCF with k relevant and uniformly distributed variables. Then

rε,c(f) ≤ λ
(2)
ε,c

1− λ(1)
ε,c

2 −
1 + (−1)k(1− λ(1)

ε,c )2 − 2λ
(1)
ε,c + λ

(1)
ε,c

2
+ 4λ

(1)
ε,c

3

4λ
(1)
ε,c

2
(1− λ(1)

ε,c

2
)

λ(1)
ε,c

k
λ(2)
ε,c , (3.15)

or more general

rε,c(f) ≤ λ
(2)
ε,c

1− λ(1)
ε,c

2 . (3.16)

Proof : Let us recall Proposition 3.5:

rε,c(f) = λ(1)
ε,c · rε,c(f (π1,ā1)) +

1

2
λ(2)
ε,c ·

(
1− f̂ (π1,ā1)(∅) · b1

)
.
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If we apply it again and use Proposition 2.7, we get:

rε,c(f) =λ(1)
ε,c

(
λ(1)
ε,c · rε,c(f (π1,ā1)(π2,ā2)

) +
λ

(2)
ε,c

2

(
1− f̂ (π1,ā1)(π2,ā2)

(∅) · b2
))

+
λ

(2)
ε,c

2

(
1−

(
f̂ (π1,ā1)(π2,ā2)

(∅) + b2

)
· b1

2

)
=λ(1)

ε,c

2 · rε,c(f (π1,ā1)(π2,ā2)

) +
λ

(1)
ε,c · λ(2)

ε,c

2
− b2 · λ(1)

ε,c · λ(2)
ε,c

2
f̂ (π1,ā1)(π2,ā2)

(∅)

+
λ

(2)
ε,c

2
− b·1λ

(2)
ε,c

4
f̂ (π1,ā1)(π2,ā2)

(∅)− λ
(2)
ε,c · b1 · b2

4

=λ(1)
ε,c

2 · rε,c(f (π1,ā1)(π2,ā2)

) +
λ

(1)
ε,c · λ(2)

ε,c

2
+
λ

(2)
ε,c

2

− λ
(2)
ε,c

2

(
b2 · λ(1)

ε,c +
b1
2

)
f̂ (π1,ā1)(π2,ā2)

(∅)− λ
(2)
ε,c · b1 · b2

4
.

Since b1, b2 ∈ {−1,+1} and |f̂ (π1,ā1)(π2,ā2)
(∅)| ≤ 1, we can upper bound as:

−λ
(2)
ε,c

2

(
b2 · λ(1)

ε,c +
b1
2

)
f̂ (π1,ā1)(π2,ā2)

(∅)− λ
(2)
ε,c · b1 · b2

4
≤ λ

(2)
ε,c

2
− λ

(1)
ε,c · λ(2)

ε,c

2

and, finally, upper bound rε,c(f) as

rε,c(f) ≤ λ(1)
ε,c

2 · rε,c(f (π1,ā1)(π2,ā2)

) + λ(2)
ε,c , (3.17)

where f (π1,ā1)(π2,ā2)
has k − 2 relevant variables. We will now show the theorem by

induction. For k = 1, Eq. (3.15) simplifies to

rε,c(f) ≤ λ(2)
ε,c ,

which is obviously true. For k = 2, Eq. (3.15) results in

rε,c(f) ≤
(

1

2
+ λ(1)

ε,c

)
λ(2)
ε,c ,

which is also true (see Example 3.5).

Using Eq. (3.15) as the induction hypothesis, we will now show that Eq. (3.15) is true

for k, if it is true for k− 2. Since f (π1,ā1)(π2,ā2)
in Eq. (3.17) has k− 2 relevant variables,

we can apply our hypothesis:

rε,c(f) ≤λ(1)
ε,c

2

(
λ

(2)
ε,c

1− λ(1)
ε,c

2 −
1 + (−1)k(1− λ(1)

ε,c )2 − 2λ
(1)
ε,c + λ

(1)
ε,c

2
+ 4λ

(1)
ε,c

3

4λ
(1)
ε,c

2
· (1− λ(1)

ε,c

2
)

λ(1)
ε,c

k · λ(2)
ε,c

)
+ λ(2)

ε,c

=

(
λ

(1)
ε,c

2

1− λ(1)
ε,c

2 + 1− 1 + (−1)k(1− λ(1)
ε,c )2 − 2λ

(1)
ε,c + λ

(1)
ε,c

2
+ 4λ

(1)
ε,c

3

4(1− λ(1)
ε,c

2
)

· λ(1)
ε,c

k

)
λ(2)
ε,c

=

(
1

1− λ(1)
ε,c

2 −
1 + (−1)k(1− λ(1)

ε,c )2 − 2λ
(1)
ε,c + λ

(1)
ε,c

2
+ 4λ

(1)
ε,c

3

4(1− λ(1)
ε,c

2
)

λ(1)
ε,c

k

)
λ(2)
ε,c ,
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which concludes the induction. The generalization follows from the positivity of the
second term of Eq. (3.15).

Proposition 3.6

Let f be a {π : A : B}-NCF with a fixed bias of f̂(∅), then rε,c(f) is bounded as

rε,c(f) < λ(2)
ε,c

1 + λ
(1)
ε,c

2
−
(

1− λ(1)
ε,c

2
)
· |f̂(∅)|

2(1− λ(1)
ε,c

2
)λ

(1)
ε,c

.

Proof : Using Proposition 3.5 and Theorem 3.2 we get:

λ(1)
ε,c rε,c(f

(π1,ā1)) + λ(2)
ε,c

1

2

(
1− f̂ (π1,ā1)(∅)b1

)
≤ λ

(2)
ε,c

1− λ(1)
ε,c

2

λ(1)
ε,c rε,c(f

(π1,ā1))− λ(2)
ε,c

1

2
f̂ (πi,ā1)(∅)b1 ≤

λ
(2)
ε,c

1− λ(1)
ε,c

2 −
λ

(2)
ε,c

2
.

Since b1 ∈ {+1,−1} and b1 is independent of f (π1,ā1)(∅), we can write:

λ(1)
ε,c rε,c(f

(π1,ā1)) + λ(2)
ε,c

1

2
|f̂ (π1,ā1)(∅)| ≤ λ

(2)
ε,c

1− λ(1)
ε,c

2 −
λ

(2)
ε,c

2
,

rε,c(f
(πi,āi)) ≤

λ
(2)
ε,c

(
1 + λ

(1)
ε,c

2
)
− λ(2)

ε,c |f̂ (πi,āi)(∅)|
(

1− λ(1)
ε,c

2
)

2(1− λ(1)
ε,c

2
)λ

(1)
ε,c

.

Substituting f (πi,āi) by f concludes the proof.

3.2.7. Noise Sensitivity for specific Nested Canalizing Functions

In this subsection we will investigate the NS, respectively rε,c, for the special cases of NCFs
as introduced in the previous chapter.

NCFs with only most dominant variables (NCF-MDV)
Let us first look at NCFs, whose relevant variables are all most canalizing, then the following
proposition states an upper bound:

Proposition 3.7

Let f be a {π : A : B}-NCF-MDV with k uniformly distributed input variables, then

rε,c(f) =
2(2−k − λ(1)

ε,c

k
)

1− 2λ
(1)
ε,c

λ(2)
ε,c .
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Proof : Recalling Proposition 3.5 and with |f̂(∅)| = 1− 1
2k−1 and bi = sgn

(
f̂(∅)

)
for all

i, we can write:

rε,c(f) = λ(1)
ε,c rε,c(f

(π1,ā1)) + λ(2)
ε,c

1

2k−1
.

Solving the recursion concludes the proof.

NCFs with alternating canalized values (NCF-ACV)
In the case of alternating bis we can derive the following formula for rε,c(f):

Proposition 3.8

Let f be a {π : A : B}-NCF-ACV under uniform distribution, then

rε,c(f) =
2λ

(2)
ε,c

3(1− λ(1)
ε,c )
− 2(−2)−kλ(2)

ε,c

3(1 + 2λ
(1)
ε,c )

+
2λ

(1)
ε,c

k+1
λ

(2)
ε,c

(1− λ(1)
ε,c )(1 + 2λ

(1)
ε,c )

, (3.18)

where k = rel(f) is the number of relevant variables of f .

Proof : Since the bias of a NCF-ACV is given as (see Corollary 2.4):

|f̂(∅)| = 1

3

(
(−1)k

2k−1
+ 1

)
,

and sgn
(
f̂ (π1,ā1)

)
= b2 = −b1, we can rewrite Proposition 3.5 as

rε,c(f) = λ(1)
ε,c rε,c(f

(π1,ā1)) + λ(2)
ε,c

1

2

(
1 +

1

3

(
(−1)k−1

2k−2
+ 1

))
= λ(1)

ε,c rε,c(f
(πi,āi)) + λ(2)

ε,c

1

3

(
−(−1)k

2k−1
+ 2

)
. (3.19)

Let us now show the proposition using induction. For k = 1, Eq. (3.18) becomes

rε,c(f) = λ(2)
ε,c ,

which is obviously true. If we now apply our induction hypothesis (Eq. (3.18)) on
Eq. (3.19) we get

rε,c(f) =
2λ

(1)
ε,cλ

(2)
ε,c

3(1− λ(1)
ε,c )
− 2(−2)−k+1λ

(1)
ε,cλ

(2)
ε,c

3(1 + 2λ
(1)
ε,c )

+
2λ

(1)
ε,c

k+1
λ

(2)
ε,c

(1− λ(1)
ε,c )(1 + 2λ

(1)
ε,c )

+ λ(2)
ε,c

1

3

(
−2(−2)−k + 2

)

=
2λ

(2)
ε,c

3(1− λ(1)
ε,c )
− 2(−2)−kλ(2)

ε,c

3(1 + 2λ
(1)
ε,c )

+
2λ

(1)
ε,c

k+1
λ

(2)
ε,c

(1− λ(1)
ε,c )(1 + 2λ

(1)
ε,c )

,

which concludes the induction.

If we now let k grow to infinity, i.e., if we observe a large number of relevant variables, we
obtain the following corollary:
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Corollary 3.11

Let f be a {π : A : B}-NCF-ACF, then for an infinite number of relevant variables we
can write

rε,c(f) =
2λ

(2)
ε,c

3(1− λ(1)
ε,c )

.

NCFs with second order most dominant variables (NCF-SMD)
Finally, we will discuss NCFs, whose restriction to xπ1 = ā1 consists of only most dominating
variables. For this class, which has a bias of 2−k+1(see Corollary 2.5), we obtain the following
rε,c(f):

Proposition 3.9

Let f be a {π : A : B}-NCF-SMD, i.e., with b1 ∈ {−1,+1} and bi = −b1 ∀i ∈ {2, . . . , k},
with k uniformly distributed relevant variables, then

rε,c(f) =
1− 2−k+1 − 2λ

(1)
ε,c − 2λ

(1)
ε,c

k
+ 2−k+3λ

(1)
ε,c

1− 2λ
(1)
ε,c

λ(2)
ε,c .

Proof : Since f (π1,ā1) is a function, whose variables are all most dominant, we can rewrite
Proposition 3.5 using Proposition 3.7 as:

rε,c(f) = λ(1)
ε,c

2(2−k+1 − λ(1)
ε,c

k−1
)

1− 2λ
(1)
ε,c

λ(2)
ε,c +

1

2
λ(2)
ε,c

(
1− f̂ (π1,ā1)(∅)b1

)
,

further, since sgn
(
f̂ (π1,ā1)

)
= −b1 and |f̂ (π1,ā1)| = 1− 1

2k−2 , we get

rε,c(f) = λ(1)
ε,c

2(2−k+1 − λ(1)
ε,c

k−1
)

1− 2λ
(1)
ε,c

λ(2)
ε,c + λ(2)

ε,c

(
1− 1

2k−1

)
,

which concludes the proof.

Again, if we investigate these functions for an infinite number of relevant inputs, we obtain
the following corollary. Further, these function then become balanced.

Corollary 3.12

Let f be a {π : A : B}-NCF-SMD, then for an infinite number of relevant variables we
can write

rε,c(f) = λ(2)
ε,c .
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3.3. Average Sensitivity of Canalizing and Nested Canalizing
Functions

3.3.1. Restricted and Canalizing Functions

First, we show the relation between the average sensitivity of a BF and the average sensitivity
of its two restricted functions.

Theorem 3.3

Let f (i,+), f (i,−) be the restrictions of f to some relevant variable i of f . Then

as(f) =
1

2
as(f (i,+)) +

1

2
as(f (i,−)) + ξε,1(f (i,+), f (i,−)).

Proof : Follows directly from Theorem 3.1 using:

as(f) =
drε,1(f)

dε

∣∣∣∣
ε=0

.

Using this result we can prove the following upper bound of the as of CFs:

Proposition 3.10

Let f be a CF with k relevant and uniformly distributed variables, then its as is bounded
as follows:

as(f) ≤ 1

2
(k + 1)− |f̂(∅)|

or

as(f) ≤ 1

2
(k − 1).

Proof : Let us start with Theorem 3.3 and apply the facts that as(f (i,ai)) = 0 and
as(f (i,āi)) can be any BF with k − 1 relevant variables, hence, as(f (i,āi)) ≤ k − 1. This
leads us to:

as(f) ≤ 1

2
(k − 1) +

1

2

(
1− f̂ (i,āi)(∅) · bi

)
.

From Proposition 2.2 we know that:

f̂(∅) =
1

2

(
f̂ (i,ai)(∅) + f̂ (i,āi)(∅)

)
=

1

2

(
f̂ (i,āi)(∅) + bi

)
.

Hence,
1

2
f̂ (i,āi)(∅) · bi = f̂(∅) · bi −

1

2
.

Finally, we can write:

as(f) ≤ 1

2
(k − 1) + 1− f̂(∅) · bi.

Applying |f̂(∅)| = f̂(∅) · bi leads to the first statement and from |f̂(∅)| ≤ 1 the second
statement follows.
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Let us recall that in general the as of BFs is upper-bounded by k, hence, CFs have a lower
as. However, it is still larger than the as of unate functions. Note, that although all NCFs
are unate, not all CFs are. For example, a CF, whose restriction is an XOR function, is not
unate. Our findings go along with those of [SK04], where an upper bound on the expected
average sensitivity of random CFs has been shown.

3.3.2. Average Sensitivity of Nested Canalizing Functions

Using Theorem 3.3 we can directly obtain the following corollary, recursively describing the
as of NCFs:

Corollary 3.13

The average sensitivity of a {π : A : B}-NCF with uniformly distributed input variables
can recursively be described as:

as(f) =
1

2

(
as(f (π1,ā1)) + 1− f̂ (π1,ā1)(∅) · b1

)
. (3.20)

In [LAM+13] an upper bound on the average sensitivity of NCFs has been conjectured. In
the following theorem, we prove this conjecture to be correct.

Theorem 3.4

The average sensitivity of a NCF with k = rel(f) relevant and uniformly distributed
variables is bounded by

k

2k−1
≤ as(f) ≤ 4

3
− 2−k − 1

3
· 2−k · (−1)k. (3.21)

The bounds in Eq. (3.21) will turn out to be tight.

Proof : We first prove the upper bound in Eq. (3.21). Let us recall Corollary 3.13:

as(f) =
1

2

(
as(f (π1,ā1)) + 1− f̂ (π1,ā1)(∅) · b1

)
.

If we apply Corollary 3.13 again on as(f (π1,ā1)) and use Proposition 2.7 on f̂ (π1,ā1)(∅),
we get:

as(f) =
1

2

[
1

2

(
as(f (π1,ā1)(π2,ā2)

) + 1− f̂ (π1,ā1)(π2,ā2)
(∅) · b2

)
+ 1−

(
1

2
f̂ (π1,ā1)(π2,ā2)

(∅) +
1

2
b2

)
b1

]
=

1

4
as(f (π1,ā1)(π2,ā2)

) +
3

4
− 1

4
f̂ (π1,ā1)(π2,ā2)

(∅) · b2

− 1

4
f̂ (π1,ā1)(π2,ā2)

(∅) · b1 −
1

4
b2 · b1

=
1

4
as(f (π1,ā1)(π2,ā2)

)− 1

4
f̂ (π1,ā1)(π2,ā2)

(∅) · (b1 + b2)

− 1

4
b2·b1 +

3

4
.
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Since b1, b2 ∈ {−1,+1} and |f̂ (π1,ā1)(π2,ā2)
(∅)| ≤ 1,

−1

4
f̂ (π1,ā1)(π2,ā2)

(∅) · (b1 + b2)− 1

4
b2 · b1 ≤

1

4
.

Thus we obtain

as(f) ≤ 1

4
as(f (π1,ā1)(π2,ā2)

) + 1, (3.22)

where f (π1,ā1)(π2,ā2)
has k − 2 relevant variables. We will now show the theorem by

induction. For k = 1 the upper bound in Eq. (3.21) simplifies to

as(f) ≤ 1,

which is obviously true by definition. For k = 2 the upper bound in Eq. (3.21) results in

as(f) ≤ 1,

which is also true and can be verified by inspecting all possible functions.

Using Eq. (3.21) as the induction hypothesis, and applying it on f (π1,ā1)(π2,ā2)
in

Eq. (3.22), which has k − 2 relevant variables, yields to:

as(f) ≤ 1

4

(
4

3
− 2−(k−2) − 1

3
· 2−(k−2) · (−1)k−2

)
+ 1

=
4

3
− 2−k − 1

3
2−k(−1)k,

which concludes the induction.

The lower bound in Eq. (3.21) can be proven along the lines of the proof of the
upper bound, using the following inequality, which follows from Corollary 3.13 and
Proposition 2.8:

as(f) ≥ 1

2

(
as(f (π1,ā1)) +

1

2k−2

)
.

The tightness of the bounds in Eq. (3.21) is shown in Propositions 3.11 and 3.12.

We can further upper-bound the right hand side of Theorem 3.4 in order to make it
independent of the number of relevant variables k:

Corollary 3.14

The average sensitivity of a NCF with uniformly distributed variables satisfies

as(f) <
4

3
.

We next show that the bounds in Theorem 3.4 are tight.

Proposition 3.11

Let f be a NCF-MDV, then f satisfies the lower bound in Theorem 3.4 with equality.
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Proof : Starting from Corollary 3.13 and using that |f̂(∅)| = 1− 1
2k−1 (see Corollary 2.3)

and bi = sgn(f̂(∅)) for all i, we get:

as(f) =
1

2

(
as(f (π1,ā1)) + 1−

(
1− 1

2k−2

))
=

1

2

(
as(f (π1,ā1)) +

1

2k−2
)

)
. (3.23)

Since as(f) depends on k relevant variables, while as(f (π1,ā1)) depends only on k − 1
relevant variables, Eq. (3.23) becomes:

as(k) =
1

2

(
as(k − 1) +

1

2k−2
)

)
.

The proof is concluded by solving this recursion using induction.

Proposition 3.12

Let f be a NCF-ACV, i.e., with alternating bi, then f fulfills the upper bound in
Eq. (3.21) of Theorem 3.4 with equality.

Proof : Similar to the proof of the previous proposition we start from Corollary 3.13 and
use |f̂(∅)| = 1

3

(
1

2k−1 (−1)k + 1
)
. The proof is established by solving the recursion.

Proposition 3.11 shows that the maximum is achieved, if the absolute value of the zero
coefficient is minimal. If we are interested in the behavior of the as, if the zero coefficient is
maximal, we need to investigate NFC-SMDs:

Proposition 3.13

The as of a NCF-SMD with k relevant and uniformly distributed input variables is given
as:

as(f) = 1 + 2−k+1(1− k).

Proof : The proof goes along the lines of the proofs of the two previous propositions.

Hence, for k →∞ the as becomes 1.

In general, we can give a bound on the average sensitivity for fixed |f̂(∅)|, as shown in the
following proposition:

Proposition 3.14

Let f be a NCF with uniformly distributed inputs. Then

as(f) ≤ 5

3
− |f̂(∅)|.

Proof : Combining Corollaries 3.13 and 3.14, we get:

as(f (π1,ā1))− b1 · f̂ (π1,ā1)(∅) ≤ 5

3
,
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−1 −0.5 0 0.5 1
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f̂(∅)
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s
(f

)

Corollary 3.14 Theorem 3.4, k=5 (left-hand side)

lower bound Eq. (3.2) Proposition 3.14

Figure 3.5.: Bounds on the average sensitivity: The dotted-area corresponds to the possible
values for the average sensitivity of a NCF, the lined area to BFs with k = 5
input variables.

and since bi ∈ {−1,+1}:

as(f (π1,ā1)) + |f̂ (π1,ā1)(∅)| ≤ 5

3
.

Substituting f (π1,ā1) by f concludes the proof.

3.3.3. Discussion and Implications

In Figure 3.5 we summarize the bounds from the previous subsections. Specifically, we plot
the average sensitivity versus the zero coefficient. Additionally, we include a lower bound on
the average sensitivity, which is independent of the number of relevant variables and applies
for any BF and can be found in Eq. (3.2). One can see that this bound intersects with our
lower bound from Theorem 3.4 (which we plotted for k = 5), though we stated that our
bound is tight. However, this is not a contradiction, since this lower bound is achieved for
functions with large absolute zero coefficients, which are located outside the intersection.

For k = 5 our lower bound forms a triangle with the upper bound as formulated in
Proposition 3.14. The NCFs with all variables being most dominant are located in the left
and right corners of that triangle. However the lower bound decreases in k and with it the
most dominant NCFs.

The upper bound in Corollary 3.14 also intersects with the bound of Proposition 3.14.
Again, this is not a contradiction, since NCFs reach this bound only for small absolute zero
coefficients.
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Chapter 3. Noise Sensitivity and Average Sensitivity

In general the average sensitivity is upper bounded by k, i.e., as(f) ≤ k, as previ-
ously discussed. Further, for unate functions, the average sensitivity is upper bounded by

as(f) ≤
√

(1− f̂(∅))k. This bound is tight up to a multiplicative constant, see e.g., [MO03].
NCFs form a subclass of unate functions. Thus, our results show that even within the class
of unate functions, the average sensitivity of NCFs is remarkably low. Since a low average
sensitivity has a positive effect on the stability of Boolean networks [SK04], our result gives
an explanation for the remarkable stability of Boolean networks with NCFs.

It is worth noting that all those results rely on the assumption of uniformly distributed
inputs. This rises the question, if the results can be generalized to other distributions. The
recursive representations can easily be extended to product distributed input variables. But
without further constraints there always exists a distribution, which maximizes the average
sensitivity, i.e., for any function with k relevant variables the average sensitivity can be k.
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Chapter 4

Mutual Information of Boolean Functions

M
utual Information of Boolean functions is a key measure of informa-
tion processing abilities of Boolean networks. It has been stated that networks,
whose dynamical behavior is critical, i.e., at the edge between stable and
chaotic behavior, have somehow an optimized information processing ability

[Lan90, SML+96, LF00]. We have seen before that canalizing and nested canalizing Boolean
functions seem to have a stabilizing effect as they have a low average sensitivity.

The mutual information based on Shannon’s theory [Sha48] is a measure for the statistical
relation between the input and output of a system. It has already been applied in the context
of Boolean networks and functions, such as cellular automata [Lan90], random Boolean
networks [LF00, RKLP+08] and iterated function systems [CY90].

In this chapter, we will investigate two scenarios. In this first scenario, we examine the
mutual information between one input or a set of inputs and the function’s output(Section 4.2).
Secondly, we investigate the mutual information between all inputs, which are distributed by
BSCs, and the function’s output (Section 4.3). To do so, let us first revisit the fundamentals
of mutual information.

4.1. Fundamentals

The mutual information (MI) between two random variables is defined as:

MI(Y ;X) = H(Y )−H(Y |X),

where

H(X) = −
∑
x∈X

PX (x) log2(PX (x))

is Shannon’s entropy in bits of some discrete random variable X with its domain X . For the
special case that |X | = 2, it reduces to the binary entropy function:

h(p) = −p log2(p)− (1− p) log2(1− p),

with p = PX (+1). Further, H(Y |X) is the conditional entropy between two discrete random
variables X ∈ X and Y ∈ Y

H(Y |X) =
∑
x∈X

PX (x)H(Y |X = x),
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with

H(Y |X = x) = −
∑
y∈Y

PY |X (y|x) log2 PY |X (y|x) .

Similar, we can give the conditional entropy between a discrete vector X ∈ X n, n being
an integer, and Y as

H(Y |X) =
∑
x∈Xn

PX (x)H(Y |X = x),

with

H(Y |X = x) = −
∑
y∈Y

PY |X (y|x) log2 PY |X (y|x) .

4.2. Mutual Information of Boolean Functions

Recently, a relation between the mutual information and the Fourier spectra has been derived
[HSB13]. It was shown that the MI between a set of input variables T ⊆ [n] and the functions
output is given as:

MI(f(X); XT ) = h

(
1

2

(
1 + f̂(∅)

))
− E

XT

h
1

2

1 +
∑
S⊆T

φS(XT )f̂(S)

 , (4.1)

where XT = {Xi : i ∈ T}. In particular, it has been shown that the mutual information
between one input variable and the output only depends on two coefficients, namely the zero
coefficient and the first order coefficient of this variable, i.e.,

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
− E
Xi

[
h

(
1

2

(
1 + f̂(∅) + f̂({i}) · φ{i}(Xi)

))]
. (4.2)

We will first investigate the single-variable MI in the following section before we will generalize
our results for the multi-variable case.

4.2.1. Single-Variable Mutual Information of Boolean Functions

The fact that the MI depends only on f̂(∅) and f̂({i}) coincides with our statement in
Chapter 2 that the canalizing property also depends on these two coefficients. Hence, we will
only focus on those two Fourier coefficients in the following considerations. The remaining
coefficients can be chosen arbitrarily and have no influence on our findings. Also, the number
of input variables n does not restrict our investigations, it only determines the possible values
f̂(∅) and f̂({i}), since they are a multiple of 2−n.

4.2.1.1. Mutual Information under Uniform Distribution

For sake of clarity and ease of comprehension we will first focus on canalizing functions in the
uniform case. After that we will then generalize this result to product distributed variables.
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Theorem 4.1

Let X ∈ Ωn be a uniformly distributed Boolean vector and let −1 ≤ µ ≤ +1 be a
constant. A BF g maximizes the mutual information between one input variable Xi and
the output of a BF with fixed expectation µ, i.e.,

max
f :E[f ]=µ

{MI(f(X);Xi)} = MI(g(X);Xi),

if and only if g is canalizing in xi.

Proof : Since f̂(∅) = E [f(X)] is constant, the only remaining degree of freedom in
Eq. (4.2) is f̂({i}). First, we show that the mutual information is convex with respect
to f̂({i}). Since the first summand of Eq. (4.2) only depends on f̂(∅) we can consider it
constant. We hence can focus on the second part, which we can write as:

E
Xi

[
−h
(

1

2

(
1 + f̂(∅) + f̂({i}) · χ{i}(Xi)

))]
.

The binary entropy function h(·) is concave and since its argument is an affine mapping,

−h
(

1
2

(
1 + f̂(∅) + f̂({i})χ{i}(Xi)

))
is convex [BV04]. Finally, the expectation is a

non-negative weighted sum, which preserves convexity, i.e., the mutual information is
convex.

Obviously, for f̂({i}) = 0 the mutual information is minimized, hence, due to the
convexity, the maximum can be found on the boundaries of the domain. The domain is
limited by the non-negativity of the arguments of h, i.e.,

0 ≤ 1

2

(
1 + f̂(∅) + f̂({i}) · χ{i}(xi)

)
≤ 1.

Thus, the boundaries are given by

f̂(∅) + f̂({i}) · χ{i}(xi) = ±1. (4.3)

Hence, a BF g, which maximizes the MI, satisfies Eq. (4.3) for a particular xi.

It can be seen from Theorem 2.2 that all functions, which are canalizing in variable i,
are located on the boundary of the domain of the mutual information. The converse
also holds, i.e., any function on the boundary of the domain is canalizing. Thus, any BF
g, which maximizes the MI, is canalizing.

Finally, we need to show that any canalizing function with fix E [f(X)] = µ maximizes
the MI. We will do so by showing that all these canalizing functions have the same MI.
We have seen before (Theorem 2.2) that these functions are constrained with:

f̂({i}) =
bi − f̂(∅)
χ{i}(ai)

.

Since ai, bi ∈ {−1,+1}, there exist four such types of functions on the boundary.
Examining their mutual information leads us to:

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
− E
Xi

[
h

(
1

2

(
1 + f̂(∅) +

(
bi − f̂(∅)

) χ{i}(Xi)

χ{i}(ai)

))]
,
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which yields into:

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
− PXi (ai)h

(
1

2

(
1 + f̂(∅) +

(
bi − f̂(∅)

) χ{i}(ai)
χ{i}(ai)

))
︸ ︷︷ ︸

=0

− PXi (−ai)h
(

1

2

(
1 + f̂(∅) +

(
bi − f̂(∅)

) χ{i}(−ai)
χ{i}(ai)

))
,

and hence:

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
(4.4)

− PXi (−ai)h
(

1

2

(
1 + f̂(∅) +

(
bi − f̂(∅)

) χ{i}(−ai)
χ{i}(ai)

))
.

For the uniformly distributed case we write:

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
− 1

2
h

(
1− bi

2
+ f̂(∅)

)
.

Due to bi = sgn
(
f̂(∅)

)
and the symmetry of h, we finally get:

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
− 1

2
h
(
|f̂(∅)|

)
.

Hence, the mutual information is independent from ai and bi, which concludes the proof.

4.2.1.2. Mutual Information under Product Distribution

The result from the previous section can be extended to product distributed input variables.
We will see that the probability distribution of the canalizing variable plays a key role in
maximizing the MI.

Theorem 4.2

Let X ∈ Ωn be a product distributed Boolean vector and let −1 ≤ µ ≤ +1 be a constant.
A BF g maximizes the mutual information between one input variable Xi and the output
of a BF with fixed expectation µ, i.e.,

max
f :E[f ]=µ

{MI(f(X);Xi)} = MI(g(X);Xi),

if and only if g is < i : ai : bi >-canalizing, where ai and bi are chosen as follows:

(ai, bi) =


(sgn (µi) , sgn (E [f(X)])) |E [f(X)] | ≥ |µi|

(−sgn (µi) ,−sgn (E [f(X)])) |E [f(X)] | < |µi|.
(4.5)
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Proof : The first part of this proof follows the proof of Theorem 4.1, where we simply
replace χU (x) by φU (x). Hence, we can again show that the MI is convex and that the
boundary consists of the canalizing functions. Hence, any function g, which maximizes
the MI, is canalizing. Now, we need to show that any canalizing function that satisfies
the constraints from Eq. (4.5) maximizes the MI.

Starting from Eq. (4.4), we get

MI(f(X);Xi) = h

(
1

2

(
1 + f̂(∅)

))
−H(f(X)|Xi),

where

H(f(X)|Xi) = PXi (−ai)h
(

1

2

(
1 + f̂(∅)−

(
bi − f̂(∅)

) (µi + ai)
2

σ2
i

))
.

Obviously, there are four possible sets of ai and bi. However, for each choice of f̂(∅)
there exist two possible choices of ai and bi, of which only one maximizes the MI.

Let’s first look at the possible combinations of ai and bi in dependence of f̂(∅). From
Parseval’s theorem we know that

f̂(∅)2 + f̂({i})2 ≤ 1,

and hence

f̂(∅)2 +

(
bi − f̂(∅)
φ{i}(ai)

)2

≤ 1.

Solving this inequation for f̂(∅) leads us to the possible sets of ai and bi:

ai = ±1 and bi = −1 if − 1 ≤ f̂(∅) ≤ −|µi|
ai = −sgn (µi) and bi = ±1 if − |µi| ≤ f̂(∅) ≤ |µi|
ai = ±1 and bi = 1 if |µi| ≤ f̂(∅) ≤ 1.

Hence, to maximize the MI, we have to minimize H(f(X)|Xi) for each possible choice
of f̂(∅). We can rewrite H(f(X)|Xi) for all four combinations of ai and bi as follows:

H(f(X)|Xi) =



s(f̂(∅)) = PXi (−1)h
(
f̂(∅)−µi

1−µi

)
if ai = +1 and bi = +1

t(f̂(∅)) = PXi (+1)h
(
f̂(∅)+µi

1+µi

)
if ai = −1 and bi = +1

q(f̂(∅)) = PXi (−1)h
(
f̂(∅)+1
1−µi

)
if ai = +1 and bi = −1

r(f̂(∅)) = PXi (+1)h
(
f̂(∅)+1
1+µi

)
if ai = −1 and bi = −1.

Now, let’s assume −1 ≤ f̂(∅) ≤ −|µi|, i.e., bi = −1. Hence, we have to compare q(f̂(∅))
and r(f̂(∅)) and search for the correct choice of ai that maximizes the MI. Lemma 1
(see Appendix A.1) shows that this is achieved by choosing ai = sgn (µi).
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If |µi| ≤ f̂(∅) ≤ 1, i.e., bi = +1, we have again to compare the choices of ai = +1 and
ai = −1. As above, ai must be chosen to be sgn (µi) in order to maximize the MI (see
Lemma 2 in Appendix A.2).

Now let −|µi| ≤ f̂(∅) ≤ |µi|, hence we need to choose between bi = −1 and bi =
+1. Lemma 3 (Appendix A.3) shows that in this case the MI is maximized, if bi =

−sgn
(
f̂(∅)

)
= −sgn (E [f(X)]), which concludes the proof.

4.2.2. Multi-Input Mutual Information

So far, we only considered the MI between one variable and the function’s output. Now, let’s
look at the MI between a set T ⊆ [n] of variables and the output. The following theorem
shows that this MI is maximized by jointly canalizing functions (see Subsection 2.3.1.2).

Theorem 4.3

Let X ∈ Ωn be a product distributed Boolean and let −1 ≤ µ ≤ +1 be a constant. A BF
g maximizes the mutual information between a set T ⊆ [n] of variables and the output
of a BF with fixed expectation µ, i.e.,

max
f :E[f ]=µ

{MI(f(X);XT )} = MI(g(X);XT ),

if g is jointly canalizing in T .

Proof : Again, the MI is convex with respect to f̂(S), S ⊆ T (see proof of Theorem 4.1)
and has its minimum at f̂(S) = 0∀S ⊆ T . Hence, the maximum is again at the
boundary of the domain. The domain is limited by the non-negativity of the arguments
of h, i.e.,

0 ≤ 1

2

1 +
∑
S⊆T

φS(XT )f̂(S)

 ≤ 1,

and hence, we can write ∑
S⊆T

φS(XT )f̂(S) = ±1.

One can see from Proposition 2.4 that the boundary consists only of jointly canalizing
functions, which concludes the proof.

It remains open, which actual choice of A and bT has to be done in order to determine the
actual jointly canalizing functions, which maximize the MI.

4.2.3. Discussion and Implications

To visualize our findings we plotted in Figure 4.1 a 3D diagram of the single variable mutual
information of a BF with uniformly distributed input variables versus f̂(∅) and f̂({i}). In
Figure 4.2 we present a projection of the surface in the (f̂(∅),MI)-plane. It can be seen
from these pictures that the canalizing functions form the boundary of the domain of the MI.

Further, the symmetry with respect to ai and bi = sgn
(
f̂(∅)

)
can be seen. In addition, it
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Figure 4.1.: Mutual information of BFs with uniformly distributed input variables versus
f̂(∅) and f̂({i}), all in i canalizing functions are located on the border (blue
line).
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Figure 4.2.: Mutual information of Fig. 4.1 projected in the (f̂(∅),MI)-plane, all in variable
i canalizing functions are located on the border (blue line).

57



Chapter 4. Mutual Information of Boolean Functions

−1 −0.5
0

0.5
1−1

0

1

0

0.5

f̂(∅)
f̂({i})

M
I
(f
(X

);
X

i)

Figure 4.3.: Mutual information of a BF with product distributed input variables versus
f̂(∅) and f̂({i}), pi = 0.3, all in variable i canalizing functions are located on
the border (blue line).
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Figure 4.4.: Mutual information of Fig. 4.3 projected in the (f̂(∅),MI)-plane, all in i
canalizing functions are located on the border (blue line).
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becomes clear, that the mutual information also depends on the actual zero coefficient. This
is mainly due to the first term of the MI (Eq. 4.2), the entropy of the function’s output.

In Figures 4.3 and 4.4 the same plots can be found for product distributed input variables,
with pi = 0.3. Here, the skew of the mutual information towards the more probable canalizing
value and the symmetry with respect to bi can bee seen.

One can clearly see from the plots of the uniform case that the maximal MI becomes
larger, the smaller the absolute value of f̂(∅). Due to the fact that for canalizing variables
|f̂(∅)| + |f̂({i})| = 1, |f̂({i})| has to become large. Hence, the BF becomes similar to a
dictatorship function, which is controlled by only one input. We have seen before that |f̂(∅)|
of NCF-SMDs becomes close zero for a large number of relevant inputs k. Further, we have
shown before that these functions have a remarkably low as, namely as ≤ 4

3 . This proves
that these functions are epsilon-close to a function depending only on a few variables as
shown in [Fri98]. Two functions f, g are called epsilon-close, if Pr [f 6= g] ≤ ε. This leads us
to the conclusion that those functions, which maximize the MI, have a bias close to zero and,
though they have a large number of relevant variables, only a few variables have a significant
influence.

4.3. Mutual Information with Noisy Inputs

The channel model, we will discuss in this section, is equal to the one for investigating the
noise sensitivity, which is formally defined as:

Definition 4.1

Let X be a uniformly distributed Boolean vector, which is transmitted over n parallel
BSCs, i.e., X′ = Nε(X). The obtained noisy copy X′ is then applied to the BF f (see
Figure 4.5).

BSC f
X X′ Y

Figure 4.5.: Boolean Function with Noisy Inputs.

In the following subsection we will derive some relations between the MI and the NS,
which we will then use to establish some bounds. We limit our investigations to the uniform
case. This implicates that X and consequently X′ = Nε(X) are both uniformly distributed.
Furthermore, the probability distribution of the function’s output also remains unchanged
when adding noise to the input.

4.3.1. Relationship between Noise Sensitivity and Mutual Information

First, let us prove a relation between the noisy MI and the conditional noise sensitivity
(CNS):
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Proposition 4.1

Given the system of Definition 4.1, the mutual information between an input X and the
output Y is given as:

MIf (Y,X) = h

(
1

2

(
1 + f̂(∅)

))
−E [h (NSε,x(f))] .

Proof : If we define p(x) = Pr [X = x], we can write:

MIf (Y,X) = H(Y )−H(Y |X)

= H(Y )−
∑
x

p(x)H(Y |X = x)

= H(Y )−
∑
x

p(x)h (Pr [Y = +1|X = x])

= H(Y )−
∑
x

p(x)h (Pr [Y = −1|X = x]) ,

where the last step follows from Pr [Y = +1|X = x] = 1− Pr [Y = −1|X = x] and the
symmetry of h(p). Since f(X) is either +1 or −1, we can write

MIf (Y,X) = H(Y )−
∑
x

p(x)h (Pr [Y 6= f(X)|X = x])

= H(Y )−
∑
x

p(x)h
(
Pr
[
f(X′) 6= f(X)|X = x

])
= H(Y )−

∑
x

p(x)h (NSε,x(f)) ,

which concludes the proof.

Using this proposition we can directly give a relation between the MI and the NS of a BF.

Proposition 4.2

Given the system of Definition 4.1, the mutual information between an input X and the
output Y can be lower-bounded as:

MIf (Y,X) ≥ h
(

1

2

(
1 + f̂(∅)

))
− h (NSε(f)) .

Proof : The proposition follows from the convexity of −h(p), Jensen’s inequality and
Eq. (3.4).

Hence, with every upper bound on the NS we can directly give a lower bound on the MI.
This on the other hand, means that a low NS directly yields a high MI, if f̂(∅) is fixed. In
particular, this indicates that in general CFs and NCFs have a higher MI than other BFs. A
further very simple general lower bound on the MI can be derived by combining Eqs. (3.2)
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and (3.8) with Proposition 4.2:

MI(Y,X) ≥ h
(

1

2

(
1 + f̂(∅)

))
− h(as(f) · k). (4.6)

Let us establish another relationship, this time between rε,2 as defined in Eq. (3.10) on
page 35 and the MI.

Proposition 4.3 (Steffen Schober, personal communication [Sch])

Given the system of Definition 4.1, then

2 · rε,2(f) ≤ H(Y |X) ≤ (2 · rε,2(f))
1

ln 4

and hence

h

(
1

2

(
1 + f̂(∅)

))
− (2 · rε,2(f))

1
ln 4 ≤MI(Y,X) ≤ h

(
1

2

(
1 + f̂(∅)

))
− 2 · rε,2(f).

Proof : From Topsøe [Top01] we know that, if 0 ≤ p ≤ 1, then,

4p(1− p) ≤ h(p) ≤ 4p(1− p) 1
ln 4 ,

and equivalently, if X ∈ Ω,

Var [X] ≤ H(X) ≤ Var [X]
1

ln 4 ,

since

H(Y |X) = H(f(Nε(X)|X)

= E [H(f(Nε(x)|X = x)]

= E [H(f(Nε(x))] .

Thus, we are interested in E [Var [f(Nε(x)]]. For a fixed x we get

Var [f(Nε(x)] = 1−E [f(Nε(x)]2 ,

where

E [f(Nε(x)] =
∑
U

f̂(U)E [χU (Nε(x))]

=
∑
U

f̂(U)
∏
i∈U

E [χU (Nε,i(xi))]

=
∑
U

f̂(U)
∏
i∈U

(1− 2ε)|U |χU (x).

This leads us to

E [Var [f(Nε(x)]] = 1−E [E [f(Nε(x)]]2

= 1−E

[
f̂(U)

∏
i∈U

(1− 2ε)|U |χU (x)

]2

.

Thus, for any given rε,2(f) we can give a corridor using these upper and lower bounds, in
which the MI of a BF is located.
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Figure 4.6.: Lower bounds for the MI of BFs, ε = 0.1.

4.3.2. Bounds on the Mutual Information for Specific Functions

Using the relations from the previous section we can now derive some bounds on the noisy
MI for different classes of BFs. In Theorem 3.2 we derived an upper bound on rε,c for NCFs.
Let us now combine this bound with Propositions 4.2 and 4.3 to obtain the following two
corollaries.

Corollary 4.1

Given the system of Definition 4.1, and let f be an NCF with uniformly distributed
input variables, then the MI is lower-bounded by:

MIf (Y,X) ≥ h
(

1

2

(
1 + f̂(∅)

))
− h

(
4ε

3 + 2ε− ε2
)
.

Corollary 4.2

Given the system of Definition 4.1, and let f be an NCF with uniformly distributed
input variables, then the MI is lower-bounded by:

MIf (Y,X) ≥ h
(

1

2

(
1 + f̂(∅)

))
− 16ε(1− ε)

3 + 4ε− 8ε2 + 8ε3 + 4ε4
.

Figure 4.6 depicts the bounds discussed so far for ε = 0.1. It becomes visible that the
lower bounds for NCFs are much higher than the general bound. Although, we did not prove
the tightness of the general bound, this indicates a higher MI of NCFs. Further, we see that
the bounds from Corollaries 4.1 and 4.2 are almost equivalent.

Next, let us take the bias into account, when estimating the conditional entropy. Combining
Proposition 3.3 with Proposition 4.3 leads us to the following corollary, giving us a general
lower and upper bound on the MI for all BF.
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Corollary 4.3

Given the system of Definition 4.1, and let f be a BF with k uniformly distributed and
relevant input variables with a fixed zero coefficient f̂(∅), then the MI is bounded with:

h

(
1

2

(
1 + f̂(∅)

))
−
(

1− f̂2(∅)− (1− f̂2(∅)) · ρ2·k
) 1

ln 4 ≤MI(Y,X)

≤ h
(

1

2

(
1 + f̂(∅)

))
−
(

1− f̂2(∅)− (1− f̂2(∅)) · ρ2
)
,

which is equivalent to

h

(
1

2

(
1 + f̂(∅)

))
−
(
Var [f ]

(
1− ρ2·k

)) 1
ln 4 ≤MI(Y,X)

≤ h
(

1

2

(
1 + f̂(∅)

))
−Var [f ]

(
1− ρ2

)
, .

Please note that according to [Top01] the entropy of the function’s output can be further

bounded by h
(

1
2

(
1 + f̂(∅)

))
≤ Var [f ]

1
ln 4 , which leads us to

MI(Y,X) ≤ Var [f ]
1

ln 4 −Var [f ]
(
1− ρ2

)
.

Next, let us investigate CFs. In Proposition 3.4 we gave an upper bound on rε,c for CFs.
Again, we can apply this to the lower bound in Proposition 4.3 to obtain the following lower
bound on the MI of CFs.

Corollary 4.4

Given the system of Definition 4.1, and let f be a BFs with k uniformly distributed
input variables and a zero coefficient of f̂(∅), which is canalizing in some variable j, then
the MI(Y,X) is lower-bounded as follows:

MI(Y,X) ≥ h
(

1

2

(
1 + f̂(∅)

))
−
(

1− f̂2(∅)−
(

1− |f̂(∅)|
)2
· ρ2 −

(
2|f̂(∅)| − 2f̂2(∅)

)
· ρ2·k

) 1
ln 4

.

Finally, let us examine NCFs. Therefore, we combine Proposition 3.6 with Proposition 4.3
to obtain the following relation:
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Figure 4.7.: Bounds on the MI of BFs, k = 3, ε = 0.1.
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Figure 4.8.: Bounds on the MI of BFs, k = 4, ε = 0.1.

Corollary 4.5

Given the system of Definition 4.1, and let f be an NCF with a fixed bias of f̂(∅), then
the mutual information MI(Y,X) is bounded as

MI(Y,X) ≥h
(

1

2

(
1 + f̂(∅)

))
−
(

2|f̂(∅)|
(

1− 2

1 + ρ2

)
+ 2

(
1 +

2

1 + ρ2
+

2

−3 + ρ2
− 6

5 + ρ2

)) 1
ln 4

,

with ρ = 1− 2ε.

The results of this subsection are summarized in Figures 4.7 and 4.8 for BFs with k = 3
and k = 4, respectively. We included the actual values of the MI of all BFs, splitted into
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CFs, NCFs and the remaining functions. One can see that the lower bound for NCFs gives a
higher MI than the one for CFs, while the general lower bound is the lowest. This leads us
to the conjecture that in general the CFs have a higher MI than non-canalizing functions,
and, in particular, NCFs have a very high MI. Actually, it follows from the figures that for
a fixed bias the MI is almost always maximized by either a CF or an NCF. This coincides
with the findings for the non-noisy MI, which is maximized by CFs. It seems that for a fixed
bias maximizing the MI is equivalent to minimizing the NS and, hence, finding a BF with
a low Fourier concentration. One can see that Eq. (3.5) is minimized by shifting as much
energy to the Fourier coefficients with low order, while still obtaining a valid BF (not all
Fourier coefficients which satisfy

∑
U f̂(U)2 = 1 are valid BFs). We conjecture that the class

of NCFs, contains the BFs with the lowest possible Fourier concentration.

4.3.3. Mutual Information of some Special Classes of Nested Canalizing
Functions

To conclude our investigations of the MI of BFs, let us examine some specific subclasses of
NCFs, namley the previously discussed NCF-MDVs, NCF-ACVs, and NCF-SMDs.

In Subsection 3.2.7 we derived exact expressions for rε,c for those classes. Hence, we can
use the bounds of Proposition 4.3 to estimate the MI, which leads us to the following three
corollaries:

Corollary 4.6

Let f be a {π : A : B}-NCF-MDV with k uniformly distributed input variables, then
the MI of the system from Definition 4.1 is bounded by:

h
(

1− 2−k
)
−
(

2−k+2
(

1− (1− 2(1− ε)ε)k
)) 1

ln 4 ≤

MI(Y,X) ≤ h
(

1− 2−k
)
− 2−k+2

(
1− (1− 2(1− ε)ε)k

)
.

Proof : The result follows from Propositions 3.7, 4.3 and Corollary 2.3.

Corollary 4.7

Let f be a {π : A : B}-NCF-ACV under uniform distribution, then the MI of the system
from Definition 4.1 is bounded by:

h

(
(−1)k

3 · 2k +
2

3

)
−
(

4

3
τ

(
4

1 + 2τ
− (−2)−k

1− τ +
3 · 2−k(1− 2τ)k+1

1 + τ(1− 2τ)

)) 1
ln 4

≤

MI(Y,X) ≤ h
(

(−1)k

3 · 2k +
2

3

)
− 4

3
τ

(
4

1 + 2τ
− (−2)−k

1− τ +
3 · 2−k(1− 2τ)k+1

1 + τ(1− 2τ)

)
,

where k = rel(f) is the number of relevant variables of f and τ = (1− ε) · ε. In the case
of an infinite number of input variables we obtain:

h

(
2

3

)
−
(

16τ

3 + 6τ

) 1
ln 4

≤MI(Y,X) ≤ h
(

2

3

)
− 16τ

3 + 6τ
.
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Proof : The result follows from Propositions 3.8, 4.3 and Corollaries 3.11 and 2.4.

Corollary 4.8

Let f be a {π : A : B}-NCF-SMD with k uniformly distributed relevant variables, then

h

(
1

2

(
1 +

1

2k−1

))
−
(

2−k+2
(

1− 4τ + 2kτ − (1− 2τ)k
)) 1

ln 4 ≤

MI(Y,X) ≤ h
(

1

2

(
1 +

1

2k−1
)

))
− 2−k+2

(
1− 4τ + 2kτ − (1− 2τ)k

)
,

where τ = (1− ε) · ε. In the case of an infinite number of input variables we obtain:

1− (4τ)
1

ln 4 ≤MI(Y,X) ≤ 1− 4τ.

Proof : The result follows from Propositions 3.9, 4.3 and Corollaries 3.12 and 2.5.

In Figure 4.9 we plotted the results from these corollaries for k = 3 and k = 6, respectively.
It becomes visible that, equivalent to our findings regarding the NS, NCF-SMDs perform
best, followed by NCF-ACVs, while NCF-MDVs have the lowest MI. In particular, one can
see that the MI of NCF-MDVs becomes smaller and tends to zero with increasing number
of relevant variables. This can be explained by looking at the absolute values of the zero
coefficient of these functions, which is given by (see Corollary 2.3)

|f̂(∅)| = 1− 2−(k−1).

For growing k this value tends to one, hence, the functions get closer to the constant function,
hence the MI tends to zero.

Further, the MI of NCF-ACVs remains - again as their bias - relatively stable, while
the MI of NFC-SMDs grows. This is also reflected in Figure 4.10, where we plotted the
asymptotic results. Interestingly, if we use Corollary 4.1 and the asymptotic NS of NCF-SMDs
(Corollary 3.12) to obtain an alternative lower bound, we get:

MI(Y,X) = 1− h(ε),

which coincides with a conjectured upper bound on the MI of BFs in general by the authors
of [KC13]. Hence, if this conjecture holds, NCF-SMDs asymptotically maximize the MI.
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Figure 4.9.: Upper (dashed) and lower (solid) bounds on the MI (see Figure 4.5) for NCF-
MDVs, NCF-ACVs and NCF-SMDs witk k = 3 and k = 6 relevant variables,
respectivitly, compared to the conjectured upper bound of [KC13].
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Figure 4.10.: Upper (dashed) and lower (solid) bounds on the MI (see Figure 4.5) for
NCF-ACVs and NCF-SMDs witk k →∞ relevant variables.
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Chapter 5

The Preimage Problem of Boolean Networks

B
oolean networks for biological applications have been first studied by
Kauffman in the late 1960s [Kau69b, Kau69a]. He investigated random Boolean
networks to model large scale regulatory control networks. In a cell complex
chemical reactions and reaction chains take place in order to fulfill the task of

the cell. These reactions and their interactions can be represented by using the so-called
metabolic flux model [FHR+07]. Some of the reactions are regulated by one or more proteins,
i.e., the reactions need certain proteins to take place. These proteins are coded in the genome
of the cell, i.e., a certain gene has to be expressed in order to obtain a protein. Which genes
are expressed and which not is again regulated. Regulative factors are external environmental
conditions, such as the presence of oxygen or the temperature, external metabolites and
other proteins. These influences, which can be inhibiting or activating, can be represented
in a Boolean regulative network. Using this model and given a set of variables describing
the environmental conditions and the presence of external metabolites, we can directly get a
list of possibly expressed genes by evaluating the network. However, it is also of interest to
reverse that problem: To check, if a set of fluxes, which is necessary to perform a certain task
or to produce a certain side product, is feasible, the Boolean network needs to be inverted.
The aim is to get a set of possible environmental variables, which lead to the expression of
desired genes. This so-called predecessor problem or preimage problem has been addressed
by Wuensche in [Wue94] and has been shown to be NP-hard in general [AHZ+09], which
makes it infeasible to solve for large networks.

Besides randomly generated networks, we will examine a large-scale Boolean model of the
transcriptional network of Escherichia coli, a well-known and well-studied gut bacteria. We
extended the network model of the transcriptional network of E. coli (Covert et al. [CKR+04])
by mapping genes to their corresponding fluxes in the flux-balance model presented by
[FHR+07]. The network has a layered feed-forward structure and shows characteristic
topological features, such as a long-tail like out-degree distribution.

In this chapter, we will first formally introduce Boolean networks, and then in Section 5.2
we will address the preimage problem and propose two algorithms, one for networks consisting
mainly of canalizing functions and another based on the well-known sum-product algorithm.

5.1. Fundamentals of Boolean Networks

A Boolean network (BN) can be represented as a directed graph consisting of a set of K
nodes connected by edges. Each node i ∈ [K] has a binary state, i.e., it is turned either on
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x1 x2 x3

f7 f8 f9 f10 f11

f4 f5 f6

f12 f13 f14 f15 f16

Figure 5.1.: Example of a Feed-Forward Network.

or off. In terms of biological interpretation, this means that the gene is either expressed or
not. We use values from Ω to represent these states. On is denoted by −1, off by +1. An
edge between two nodes implicates that one node has a controlling influence on the other
node. As we are only considering feed-forward networks, i.e., networks without feedback
loops, there is a set of nodes I, which have no incoming edges. These so-called input-nodes
are the inputs to the network and may represent the environmental conditions. Consequently,
there exists also a set of nodes O, which have no outgoing edges. These nodes contain the
outcome or result of the network and are therefore called output-nodes.

Each node except the input-nodes of this graph i ∈ [K] \ I contains a BF fi to determine
the actual state xi based on the states of the nodes located on the other side of the incoming
edges, i.e., an edge from node j ∈ [K] to node i indicates that the state of node i is an input
to the BF of node j. In this case a node i is called a controlling node of j. Obviously the
number of edges leading to a node is equal to the in-degree ni of its function fi. The number
of edges emerging from a node is called out-degree mi. Input-nodes have an in-degree of
zero, while output-nodes have an out-degree of zero. In Figure 5.1 we depicted an exemplary
network with K = 16 nodes. It consists of N = 3 input-nodes I = {1, 2, 3} and M = 5
output-nodes O = {12, 13, 14, 15, 16}.

Further, let’s define the set ñ(fj) as the incoming nodes of node j. For example in
Figure 5.1, ñ(f5) = {1, 3}.

Due to the fact that we are limiting ourselves to feed-forward networks, after a certain
number l of synchronous updates, the states of the network, in particular the output nodes
willnot change anymore, if we let the input nodes unchanged. An update means that each
node updates its one value by using its BF and the values stored in the nodes, located at the
end of the incoming edges. With other words, if we set the input nodes to certain states,
the outcome of the BN, if formed by the states of the output-nodes after l updates. l can
also be seen as the maximum number of hops between an input and an output node. In this
context one often speaks of a layered network, where l̃ = l+ 1 is the number of layers, i.e., we
can partition the BN into layers L1, L2, . . . , Ll, Ll̃. If a node i is an element of layer Lh, all
controlling nodes are elements of layer Lm with m < h. The first (highest) layer L1 consists
of the input-nodes, while the lowest layer Ll̃ consists of the output-nodes.
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x1 x2 x3

f4

f5 f6

OR

AND
AND

Figure 5.2.: Small exemplary Boolean Network

Hence, we can represent such BNs as functions mapping the N input values uniquely to
the M output values:

f : ΩN → ΩM .

Given a vector of input values x ∈ ΩN ,x = (x1, x2, . . . , xN ), the corresponding output of f
is y = f(x),y ∈ ΩM .

5.2. The Preimage Problem

As mentioned before we can interpret a BN as a function mapping the N input values
uniquely to the M output values:

f : ΩN → ΩM .

We are interested in finding an inverse to this function, i.e., the sets of input-values x
which lead to a specific output y. However, in general there does not exist a unique inverse
function f−1. Instead the cardinality of the set

Ψy := {x : f(x) = y}

will be larger one. We call Ψy the set of preimages of y. Consequently, the problem of
finding this set is called preimage problem or predecessor problem [Wue94].

Before introducing our proposed algorithms, we will first describe the general solution for
the preimage problem according to Wuensche [Wue94].

5.2.1. Wuensche Algorithm [Wue94]

First, we create a global matrix where each of the K columns represents a node of our
network. A row represents a possible solution vector x of the solution set Ψy for a determined
y. The entries of this matrix can be either −1, +1 or a wildcard ∗. The wildcard means that
this input-node has no relevance within this solution vector.

For initialization only one row of this matrix is created, containing the desired output
values y and wildcards for all other nodes.
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Example 5.1 (Initialized global matrix for the BN of Figure 5.2)

For the exemplary network of Figure 5.2 and y = (−1,+1) the initialized vector would
look as follows:

x1 x2 x3 f4 f5 f6

* * * * −1 +1

Now we traverse the graph and perform the following two steps for each node containing a
Boolean function.

Step 1: Create a local copy of the global matrix and fill it with rows according to the
input leading to the desired output of the function. If the node itself is marked as unknown
or both values are possible in the current global matrix, we add all rows of input values
leading to the output of −1 and all rows leading to an output of +1. The output itself is
also added to the rows. Columns representing nodes, which have no influence on the output,
are set to the wildcard.

Step 2: In this step the local matrix is merged with the global matrix to receive a new
global one. Therefore, each row of the global matrix is compared with each row of the local
one. If two rows are equal or only differ at columns, where one matrix contains wildcards,
the row is added to the new global matrix. All wildcards are set to known values, if possible.
If the resulting global matrix is empty, there is no solution for this inverse problem.

Example 5.2 (Update of global matrix for the BN of Figure 5.2)

Let us continue with the BN from the previous example and perform steps 1 and 2 for
the BFs of this network. We start with f4, which is an OR function. Let us create a
local matrix for f4. As the column representing f4 in the global matrix contains the
wildcard, we basically need to add the whole truth-table of f4 to our local matrix, which
is hence given as:

x1 x2 x3 f4 f5 f6

+1 +1 * +1 * *

+1 −1 * −1 * *

−1 +1 * −1 * *

−1 −1 * −1 * *

As the global matrix only contains non-wildcard values for f5 and f6 and the local matrix
contains only wildcards for these nodes, the merging (step 2) is straight forward and
results in the new global matrix:

x1 x2 x3 f4 f5 f6

+1 +1 * +1 −1 +1

+1 −1 * −1 −1 +1

−1 +1 * −1 −1 +1

−1 −1 * −1 −1 +1
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Next, we examine f5, which is an AND function. As the output of f5 is supposed to be
always −1 we only need to add the corresponding row to the local matrix:

x1 x2 x3 f4 f5 f6

−1 * * −1 −1 *

Now, we will merge this row with the global matrix. One can see that there is a
contradiction between the row of the local matrix and rows 1 and 2 of the global matrix.
Hence, we will delete this rows, and merge the remaining. This leads to a new global
matrix:

x1 x2 x3 f4 f5 f6

−1 +1 * −1 −1 +1

−1 −1 * −1 −1 +1

Finally, we perform these two steps for f6 which leads to the final global matrix:

x1 x2 x3 f4 f5 f6

−1 +1 +1 −1 −1 +1

−1 +1 −1 −1 −1 +1

−1 −1 +1 −1 −1 +1

This matrix is the whole preimage Ψy of the BN of Figure 5.2 for y = (−1,+1).

After repeating the two steps for all nodes with functions attached, there may still be
columns with wildcards in the global matrix. These wildcards then have to be replaced by
both possible values, i.e. Ω, and for each one, a new row has to be created. Finally, the
global matrix contains the set of all input vectors x leading to the desired output.

As discussed before, the Wuensche algorithm itself has exponential complexity, so, if this
algorithm is applied to the whole network of size K, the complexity is thus enormous that
the problem becomes infeasible. However, the algorithm proposed in the next subsection
will show us a way to divide the network into smaller subnets, which can then be solved
independently.

5.2.2. Approach for Networks with Canalizing Functions

In this subsection we will provide an algorithm, which gives us the complete solution set Ψy,
like the algorithm in the previous subsection. Our algorithm uses the divide and conquer
method and makes use of the properties of canalizing functions, which allow us to invert
some Boolean functions and hence reduce the size and the in-degrees of the BN. The BN is
also split into much smaller subnets. The preimages of these subnets can then be obtained
using the Wuensche algorithm.

The remainder of this subsection is organized as follows: first we take a look at the
possibility of inverting canalizing functions, before we discuss the method to reduce the size
of the network and to split the network into subnets. After that, we will present the complete
algorithm and briefly discuss the computational complexity.
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5.2.2.1. Inverting Canalizing functions

As discussed in the previous chapters, canalizing and nested canalizing functions have some
important properties. Another advantage of these class of functions is that they are invertible
under certain conditions.

Proposition 5.1

Assume a BF f is canalizing for input variable i with canalizing value ai and canalized
value bi. If the output of the function is f(x) = −bi, then the i-th input must be
xi = −ai if y = −bi.

Proof : The proof follows directly from the definition of canalizing functions.

For nested canalizing functions even more variables can be determined by this method. Also
note that functions with in-degree one are also canalizing and hence can always be inverted.
We will give a short example to clearify Proposition 5.1.

Example 5.3

Let f be the AND function with two input variables x1 and x2, i.e., f(x) = x1 AND x2.
Obviously f(x) is canalizing for x1 = +1, since f (1,+1)(x) is always +1 independent from
the value of x2. For the same reason f(x) is also canalizing for x2 = +1.
If the output y of f(x) is now supposed to be y = +1, we can now state from Proposition
5.1 that x1 and x2 must be both equal +1.

5.2.2.2. Reducing the Size of the BN and Splitting the BN into Subnets

The complete method to reduce the network is listed in Algorithm 1 on page 77 and is
illustrated for a small example in Figures 5.3 and 5.4. It will be described here briefly. Let
us define a vector z containing the values of all nodes in the network. All entries are set
to a wildcard ∗, i.e., they are marked as unknown, except the out-nodes y, which shall be
located at the end of the vector z, i.e., y = (y1, y2, . . . , yM ) = (zK−M , zK−M+1, . . . , zK) (see
Figure 5.3(a)).

Now, let’s define a set C, which contains all fixed nodes. In this set we will store all nodes,
for which the actual value is known. Initially, this set only contains the values of y, hence
C = {(i, zi) : i = K −M . . .K}.

Now, this set is stored to Cstore for later comparison. Then, for each fixed tuple (i, zi) ∈ C
we check, if fi is canalizing towards zi using Theorem 2.2. If the function is canalizing, then
let zj be the canalizing variable and we invert the function, if possible, using Proposition 5.1
(see Figure 5.3(b)). If the resulting input value zj is already known and differs from the
calculated one, an error is produced. This means that this Boolean network is not invertible
for the given output values.

If no error occurs, the new tuple is added to C and the values can now be fed forward to
the nodes attached to zj , and, since this value is fixed now, the functions can be restricted
to this fixed value. Hence, the in-degree of these functions are reduced and the new function
can be calculated using Theorem 2.1. After that, the edges can be removed from the graph
as they do not represent an influence anymore (Figure 5.3(c)). The new functions received
by the restricting operation may now be canalizing so that the described methods can be
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(a) Initialization of the Network: All nodes
are set to wildcards, except for the output nodes
(red), which are set to the desired output, for
which the predecessors should be found.
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(b) Inverting canalizing functions: The canalizing
functions are identified and inverted, if possible. The
inputs are fed back (red nodes).
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(c) Feed Forward: The values of recovered nodes
are fed forward and the nodes are added to the
constrained sets (orange nodes). Further, the
functions are restricted and corresponding edges
are removed.
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(d) Repetiton I: Steps (b) and (c) are repeated
until there is no change in the constrained set.

Figure 5.3.: Small example for Algorithm 1, Part I
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(a) Repetiton II: Steps (b) and (c) are repeated
until there is no change in constrained set.
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(b) Repetiton III: Steps (b) and (c) are repeated
until there is no change in constrained set.

∗ ∗

∗ ∗

0 1 11

0

1

0

1

∗

∗ ∗

0 0 1 1 1

(c) End of Algorithm: At the termination of
the algorithm the graph has fallen apart into in-
dependent subgraphs.

Figure 5.4.: Small example for Algorithm 1, Part II
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Algorithm 1

Let y = {y1, y2, . . . , yM} = {zK−M , zK−M+1, . . . , zK} be the set of initial determined
nodes.
Let C = {(i, zi) : i = K −M . . .K} be the constraint set of nodes already fixed.
repeat

Store constraint set Cstore ← C
for each (i, bi) ∈ C do

Calculate first order Fourier coefficients for fi
if fi is canalizing towards −bi then

Let j be the canalizing variable of fi, zj the value of the corresponding node and

aj the canalizing value, i.e. f
(j,aj)
i = −bi

if zj is already fixed, i.e., (j, bj) ∈ C and bj 6= −aj then
Return with error, no solution possible

else
Set zj to −aj and add to constraint set C = C ∪ (j,−aj)
For all nodes k, where zj is input of function fk, restrict function fk

(j,−aj)(x)
and remove edges between j and k.

end if
end if

end for
until no increase in constrained set happened, i.e., Cstore = C

applied iteratively. Therefore, we repeat these steps beginning from storing C, if at least one
new tuple has been added to C, i.e., as long as C 6= C ∪ (j,−aj) (Figures 5.3(d)-5.4(b)).

Obviously, in these steps each node is only assigned one value. At the end of this process
there might be a number of nodes, whose value are still set to the wildcard and, hence,
unknown. However, the values found in these steps are unique, i.e., they remain constant for
all solutions in the solution space Ψy.

Due to the removal of edges and the growing number of known edges, the network will
split itself into independent subnets (Figure 5.4(c)). These subnets are smaller than the
original one. Due to that fact, we now can apply the Wuensche algorithm, which may now
be feasible.

5.2.2.3. Complete Algorithm

Let us now give a complete and comprehensive sketch of the algorithm (see Algorithm 2).
First, all nodes have to be marked as unknown and the desired output values have to be
written into the graph. Then, we repeatedly perform the actions as described in Algorithm
1. As mentioned before, the values found in this step are unique, i.e., they remain constant
for all solutions in the solution space Ψy.

Due to the restrictions on the Boolean functions and the accompanying removing of edges,
the graph splits itself up in several subgraphs. For each of these subgraphs the Wuensche
algorithm described in Subsection 5.2.1 is performed. The results calculated in this step are
not unique anymore, hence several possible input vectors are received, i.e., we receive the
complete solution space Ψy.
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5.2.2.4. Complexity analysis

Finally, let us analyze the complexity of this algorithm. Again, we split our investigations
into two parts. First, we will analyze the computational complexity of the first step, described
in the previous subsection. We are interested in the complexity in dependence of the total
number of nodes in the network K and the number of layers l.

Since, in the worst case, Algorithm 1 consists of a run through all nodes in the network,
the complexity is growing linear with the number of nodes K. The complexity of the actions
performed at each node depends on the in-degree of the function, which we can assume very
small in relation to K. The first part is iteratively repeated. The number of the repetitions
depend on the number of layers of the network l. Hence the complexity of the first step is
linear with respect to l and K.

The problem, which is addressed in Section 5.2.1, is at least NP-hard. We can state this,
since as shown in [AHZ+09] the problem of finding one predecessor of a state of a BN is
NP-hard, hence finding the complete solution space is at least NP-hard, too. The Wuensche
algorithm itself has exponential complexity. However, since in our algorithm some nodes
of the network are already inverted in advance and the remaining nodes are finally split
into several subnets i with a very reduced number of nodes Ki << K, the computational
complexity is much smaller and the problem becomes feasible.

5.2.3. Approach using the Sum-Product Algorithm

Now, we will introduce an algorithm, which finds only parts of the set of preimages Ψy.
However, this algorithm has a inear (with K), hence a much lower, complexity and works
independent of canalizing functions. It solves this problem in linear time with respect to the
number of nodes in the network and is based on a variation of the well-known sum-product
algorithm (SPA) [KFL01], which is used for a variety of tasks, including decoding error
correction codes in communication engineering [Gal63, Bos13].

Suppose there is a probability distribution Py on ΩN such that

Py{x} =

{
1
|Ψy| if x ∈ Ψy

0 else
.

If we knew the probability distribution Py, we could solve the problem, as we could draw
input vectors x according to Py{x}. Each of these x would hence be part of Ψy. Our main
idea now is to approximate Py with the product of the marginal distributions Pi on the

Algorithm 2

For all nodes in the graph, set values to wildcard, i.e., mark nodes as unknown
Set output values to the desired values y
Perform Algorithm 1
{The graph is now split into several independent subgraphs}
for each subgraph do

solve inversion problem locally with Wuensche Algorithm (Subsection 5.2.1)
end for
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individual xi, i.e.,

Py ≈
N∏
i=1

Pi,

as the well-known SPA can be used to compute the marginals efficiently. If the approximation
is good enough, sampling out the product of the marginals will yield an element in Ψy with

reasonable probability. Thus, by sampling, we may obtain a subset Ψ̃y ⊆ Ψy.

We will first discuss the basic principles of factor graphs and the SPA. Then we will
describe the BN as factor graph and will formulate the actual algorithm to find the marginals.
Finally, the sampling itself is described.

5.2.3.1. Factor Graphs and Sum-Product Algorithm

Assume some function g(x1, . . . , xn), defined on some domain An, which can be factorized
in m local functions hj , j ∈ [m], i.e.,

g(x1, . . . , xn) =
∏
j

hj(Xj),

where Xj is the subset of [n] containing the argument of hj . We can then define a factor graph
[KFL01] as a bipartite graph consisting of n nodes representing the variables {x1, . . . , xn}
(variable nodes) and of m nodes representing functions {h1, . . . hm} (function nodes). An
Edge exists between a function node and a variable node, if and only if xi is an input to
function hj .

The marginal function gi(xi) is defined as [KFL01]

gi(xi) =
∑
∼{xi}

g(x1, . . . , xn),

where
∑
∼{xi} g(x1, . . . , xn) is defined as∑

∼{xi}
g(x1, . . . , xn)

=
∑
x1∈A

. . .
∑

xi−1∈A

∑
xi+1∈A

. . .
∑
xn∈A

g(x1, . . . , xn).

In general the computation of the gi is difficult, but due to the factorization of g the task
can be efficiently solved using the so-called sum-product algorithm [KFL01].

The algorithm iteratively passes messages between the nodes of the graph. At each
iteration the messages µ are sent from the function nodes to the variable nodes, containing
the corresponding marginal function of the local function. These messages are computed as
follows [KFL01] (the indices of the functions are omitted):

function to variable node:

µh→x(x) =
∑
∼{x}

h(n(h))
∏

y∈n(h)\{x}
λy→h(y)

 ,

where n(i) give the set of neighboring nodes of node i.
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At the variable nodes, these messages are then combined to a marginal function λ and
sent back to the function nodes [KFL01]:

variable to function node:

λx→h(x) =
∏

q∈n(x)\{h}
µq→x(x).

After a certain number of iterations the messages µ converge to the desired marginal
functions gi(xi).

5.2.3.2. The Boolean Network as Factor Graph

Next, we apply the concept of factor graphs to BNs. Each node in the network represents
one variable xi ∈ Ω, i ∈ [K] of the factor graph, hence we have K variable nodes. Each
BF fj of the BN (j ∈ [K] \ I) is a function node and is connected to the node j and the

incoming nodes ñ(fj). Let’s define X̃j as the variables of the incoming nodes of node j, i.e.,

the argument of the BN fj . Further, we define X̃
(i)
j as X̃j without the node i.

Finally, if we consider the variables at each node as random variables, we have a common
distribution of all variable nodes described by the density function,

gx1,...,xn(x1, . . . , xn) ≡ g(x1, . . . , xn).

For the sake of readability, we will omit the subscripts of the density function, if they are
obvious from context.

We are interested in finding the marginal distributions of the in-nodes, which can be
described by the density functions

gxi(xi) =
∑
∼xi

gx1,...,xn(x1, . . . , xn) ∀i ∈ I.

This problem is an instance of the problem described in Subsection 5.2.3.1, hence we apply
the same methods here.

Update Rule: function to variable node
For one function node j ∈ [n] \ I, there exists a common distribution of all variables relevant
for this node. Namely, these relevant variables are the ones located in X̃j of the BF fj and
the value of node j. We can write the density of this distribution as:

p(xj , X̃j).

Let’s define ñ(fj) as the set of indices for the input nodes of the BF fj .

We need to send the local marginal distribution of each variable i ∈ {j} ∪ ñ(fj) back to
the variable node, or more formally:

µj→i(xi) =
∑
∼{xi}

p(xj , X̃j) =
∑
∼{xi}

p(xj , xi, X̃
(i)
j ). (5.1)
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If i = j, i.e., if the message is designated for the node containing the output of the BF, the
density of the marginal distribution becomes:

µj→j(xj) =
∑
∼{xj}

p(xj |X̃j) · p(X̃j)

=
∑
∼{xj}

fj(X̃j) · p(X̃j),

which is the probability distribution of the function’s output. We can assume that the
elements of X̃j are pairwise independent:

p(X̃j) =
∏

o∈ñ(fj)

λo(xo),

where λo is the probability distribution of variable node o and will be defined in Eq. 5.3.

In the other cases, i.e., i 6= j, Eq. (5.1) becomes:

µj→i(xi) =
∑
∼{xi}

p(xi|xj , X̃(i)
j ) · p(xj , X̃(i)

j ).

We still can assume that the elements of X̃
(i)
j are pairwise independent, hence:

p(xj , n(fj) \ xi) = p(xj |X̃(i)
j ) · p(X̃(i)

j )

= p(xj |X̃(i)
j )

∏
o∈ñ(fj)\{i}

λo(xo).

If the Boolean function’s output xj = fj(X̃j) is already completely determined by X̃
(i)
j ,

i.e., if the variable xi has no influence on the output for this particular choice of the other
variables, we assume xi to be uniformly distributed:

p(xi|xj , X̃(i)
j ) =

1

2
pxj (f(X̃

(i)
j , xi) = xj),

and since xj is completely determined by X̃
(i)
j , we can write

p(xj , X̃
(i)
j ) =

∏
o∈ñ(fj)\{i}

λo(xo).

Otherwise, xi is totally determined by xj and the other variables, i.e., xi is +1 or −1
depending on the BF. Hence:

p(xi|xj , n(fj) \ xi) = pxj (f(X̃
(i)
j , xi) = xj),

where pxj (f(X̃
(i)
j , xi) = xj) is either +1 or −1.

Further, we can assume xj independent of X̃
(i)
j :

p(xj , X̃
(i)
j ) = λj(xj)

∏
o∈ñ(fj)\{i}

λo(xo).
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Finally, we can summarize for i 6= j:

µj→i(xi) =
∑
∼{xi}

ξi,jpxj (f(X̃
(i)
j , xi) = xj)

∏
o∈ñ(fj)\{i}

λo(xo), (5.2)

with

ξi,j =

{
1
2 , if fj(X̃

(i)
j , xi = +1) = fj(X̃

(i)
j , xi = −1)

λj(xj) , else
.

Update Rule: variable to function node
The update rule is the same for all variable nodes j ∈ [n] and is independent of the function
node, to which they are directed:

λj(xj) =
∏
o∈Sj

µo→j(xj), (5.3)

where Sj is the set of all function nodes, which have node j as input.

Finding the Input Distributions

In our algorithm, we use the log-likelihood ratio (LLR) to represent the probability distribution
of binary variables [HOP96], defined as:

LX = ln
p(x = +1)

p(x = −1)
. (5.4)

An overview of the algorithm is given in Algorithm 3.

The probability distribution of each node j ∈ [n] at iteration t is given as L
(t)
j and are

initialized with L
(0)
j = 0, which is equivalent to the uniform distribution. Then we set the

LLRs for the out-nodes to either −∞ or +∞, depending on the desired output y of the BN.
At each iteration the algorithm can be split into two steps. The first step iterates over all

function nodes j ∈ [n] \ I and all input variables i ∈ ñ(fj), calculating the LLR L
(t)
j→i using

Eq. (5.2) and Eq. (5.4).

In the second step we update all variable nodes, where the LLRs Lj represents the
distributions λj and, hence, the product of Eq. (5.3) becomes a summation. Please note that
the LLR of the previous iteration is also added to the sum, in order to prevent rapid changes
of the distributions.

After performing a certain number of iterations tmax, the desired marginal distributions of
the input variables are found.

5.2.3.3. Sampling

The sampling part of this approach is straightforward. Using the marginal distributions

L
(tmax)
j , j ∈ I we randomly draw vectors x and check, if they satisfy y = f(x). If so, they are

added to the set Ψ̃y. This procedure is repeated for a certain number of samples.
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5.2. The Preimage Problem

Algorithm 3

Initialize L
(0)
j = 0 for all nodes.

Set the desired LLRs of the out-nodes, i.e., L
(0)
j is either −∞ or +∞, for all out-nodes

j ∈ O.
t=0
repeat

t=t+1
for each non-in-node j ∈ [n] \ I do

for each input variable i ∈ ñ(fj) do
calculate Lj→i using Eq. (5.2) and Eq. (5.4)

end for
end for
for each non-out-node v do
L

(t)
j = L

(t−1)
j +

∑
o∈Sj L

(t)
o→j

end for
until maximum number of iterations reached

x1 x2 x3

f4

f5 f6

Figure 5.5.: Small Examplary Boolean Network

5.2.3.4. Small Example

Let us consider the exemplary network as shown in Figure 5.5. If we extract the functions into
separate nodes and reorder them, we get the factor graph depicted in Figure 5.6 with variable
nodes x1, x2, x3, x4, x5, x6 and function nodes f4, f5, f6 In this picture we also included the
initialized LLRs of the variable nodes. As x5 and x6 are the output nodes of the network,
they are fixed. Here we choose x5 = −1 and x6 = +1, and consequently, L5 = −∞ and
L6 = +∞. The other variable nodes are undetermined, hence Li = 0 for i ∈ {1, 2, 3, 4}.

Next, let’s discuss the update rules. The update of the variable nodes is performed by
summing up the LLR values of all incoming messages, except the one to which the update is
to be sent back (see last for -loop in Algorithm 3). The calculation of the messages from the
function nodes to the variable nodes are more complicated. We will exemplary calculate the

update messages L
(t)
f6→x6

and L
(t)
f6→x3

, i.e., the outgoing messages of function node f6. Let us
assume that the truthtable of f6 is given as follows:
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x1 x2 x3 x4 x5 x6

f4 f5 f6

L
(0)
1 = 0 L

(0)
2 = 0 L

(0)
3 = 0 L

(0)
4 = 0 L

(0)
5 = −∞ L

(0)
6 = +∞

Figure 5.6.: Factor Graph of the BN from Figure 5.5

x1 x2 x3 f6

+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 −1
−1 +1 +1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 −1

Let us recall that the message µfi→xj (+1) gives the probability that variable node xj is +1.
Hence,

L
(t)
fi→xj = ln

µfi→xj (+1)

1− µfi→xj (+1)
,

since, obviously, µfi→xj (−1) = 1− µfi→xj (+1) and likewise:

L
(t)
xj→fi = ln

λxj→fi(+1)

1− λxj→fi(+1)
.

As f6 is only +1 if all three inputs are x1 = x2 = x3 = +1, the update rule µf6→x6(+1)
calculates as:

µf6→x6(+1) = λx1→f6(+1) · λx2→f6(+1) · λx3→f6(+1).

Now let’s examine the message sent from node f6 to x3, which is the probability distribution
of x3 given the distributions of x1, x2, x6 and the BF f6. If x1 = x2 = +1, which is the case
with probability λx1→f6(+1) · λx2→f6(+1), the value of x3 depends on the function’s output,
i.e., on its probability distribution given by λx6→f6(·). For other choices of x1 and x2 the
function’s output is always −1, i.e., x3 has no influence. Thus, we assume that x3 can be
either +1 or −1, each case with probability 1

2 . Hence, the update message can be calculated
as:

µ4→3(0) = λx1→f6(+1) · λx2→f6(+1) · λx6→f6(+1)

+ λx1→f6(+1) · λx2→f6(−1) · 1

2

+ λx1→f6(−1) · λx2→f6(+1) · 1

2

+ λx1→f6(−1) · λx2→f6(−1) · 1

2
.

The remaining messages can be obtained in the same fashion.
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Figure 5.7.: Success rate of Algorithm 3 for Random BNs with 5 and 8 Layers plotted
against the maximum number of iterations tmax.

5.2.3.5. Finding the Optimal Number of Iterations

Choosing the maximum number of iterations tmax is obviously a trade-off between compu-
tational complexity and the quality of the algorithm. In Figure 5.7 we plotted the success
rate against the number of iterations for two randomly generated networks, with K = 5 and
K = 8, respectively. We define the success rate as the fraction of networks and outputs, for
which the algorithm found at least one valid preimage. One can see that the success rate
converges at around 8 and 14 iterations, respectively. This corresponds to 2 · (K − 1), which
is the maximum number of hops in the network needed, to travel from the bottom layer to
the top layer and back. As we are only considering networks up to 8 layers, we will choose
tmax = 14 for the remainder of this chapter.

5.2.4. Investigated Networks

In this subsection we will briefly describe the Boolean networks, which we will investigate in
this chapter. They basically consist of two variations of the regulatory network of Escherichia
coli as presented by Covert et al. [CKR+04] and randomly generated networks with a similar
topology.

5.2.4.1. The Regulatory Network of Escherichia coli

The regulatory network of E. coli, as presented in [CKR+04], provides Boolean formulas
leading to an BN that describes how environmental conditions act on gene expression via a
transcriptional regulatory network. We slightly modified this network as follows. Some nodes
with in-degree zero, i.e., potential input nodes to the network, have a constant function (their
outputs are either one or zero) attached. Therefore, we did not treat these nodes as input
nodes, but fed their value to their successive nodes. Hence, we could restrict the functions
of these successive nodes and reduce their in-degree. After that, the original nodes with
constant functions became obsolete and were removed.
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Figure 5.8.: In-degree and out-degree distribution of the regulatory network of E. coli
(EcoliA).

Original Regulatory Network of Escherichia Coli (EcoliA) The resulting network has a
total of 723 nodes on l̃ = 7 layers. The first layer (input-layer) represents the environmental
conditions. It consists of 143 nodes, describing the presence or absence of certain chemicals or
metabolites (e.g. oxygen or glucose) and general states the cell may be in (e.g. heat-shock).
The output-layer (472 nodes) contains mainly genes coding for proteins. The remaining
nodes are regulatory genes. In Figure 5.8 we plotted the in- and out-degree distribution of
this network. The in-degree distribution (without the nodes with zero in-degree) follows
an exponential distribution. The average in-degree is 1.91897. Further, the out-degree
distribution shows a typical long tail behavior [Ald03]. Please note that all BFs in this
network are unate.

Extended Regulatory Network of Escherichia coli (EcoliB) The second network we con-
sider, is an extension of the EcoliA-network introduced above. Feist et al. [FHR+07] published
a mapping of the genes coding for proteins to the fluxes in the flux-balance model. Basically,
this is a model, in which each flux represents a chemical reaction that can take place in the
cell. This means, if certain proteins are present, we consider a flux as on, i.e., the reaction
may take place. This relations are again described as BFs. We combined these two networks.
If a gene occurs only in the latter network, i.e., it is not regulated by the Covert-network, we
set it permanently to on and reduce the network and the successive nodes accordingly.

Thus, we obtain a network consisting of l̃ = 8 layers and 1253 nodes of which 143 are
input-nodes and 594 are output-nodes. The in- and out-degree distribution (see Figure 5.9)
show the same properties as before. Further, all BFs are again unate.

5.2.4.2. Random Generated Networks

To show that our proposed algorithms work also for more general networks, we will test them
also for four different random generated networks. Their basic statistics can be found in the
following table:
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Figure 5.9.: In-degree and out-degree distribution of the extended regulatory network of E.
coli (EcoliB).

name #{nodes} #{input-nodes} #{output-nodes} #{layers} BFs class

RandomA 1550 150 600 8 unate
RandomB 1550 150 600 8 all
RandomC 2600 200 1200 8 unate
RandomD 2600 200 1200 8 all

Further, the in-degree of each function is drawn randomly from an exponential distribution
with parameter λ = 0.5. Algorithm 4 in Appendix B shows the exact generation process.
Further, as to our knowledge it is not possible to generate unate functions directly, one has
to draw BFs randomly and check, if they are unate. However, the probability of drawing
a unate function with k > 5 relevant variables is very small. In order to generate unate
functions with a higher in-degree, we combine several unate functions, as a composition of
unate functions is again unate.

5.2.5. Evaluation of the Proposed Algorithms

For each network type we evaluated 1000 networks and inputs, respectively. The results are
listed in the following table. We first state the success rate of Algorithm 2 and the average
size of set of preimages Ψy. Then we give the success rate of Algorithm 3, followed by the
average number of preimages found by Algorithm 3 after 1000 samples.

network success rate Alg. 2 avg. size of Ψy success rate Alg. 3 avg. size of Ψ̃y

EcoliA 100% 5.38 · 1016 99.1% 216.687
EcoliB 100% 3.71 · 1017 96.8% 122.27
RandomA 99.2% 5248 61.7% 24.51
RandomB 100% 10.75 52.6% 3.99
RandomC 100% 1189 91.07% 52.96
RandomD 100% 4.92 81.0% 3.62

The results show that Algorithm 2 is almost always successful, hence the graph can be split
in feasible subsets. Further one can see that the average size of the set of preimages of the E.
coli networks is rather high. One possible explanation for this effect may be that a large
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number of input-nodes have only small influence on the output (see [Hec10]). However, these
numbers are only a small fraction of the total number of possible input vectors (≈ 2140).

Algorithm 3 also performs quite well. One can see from the results that in general for
most networks, except the smaller random networks, at least one preimage can be found. If
we increased the number of samples, we would get a larger Ψ̃y for the E. coli networks. This
is also due to the fact that there exist a few inputs, which completely determine the output
[Hec10]. The other input variables then have no influence and, hence, a marginal distribution
of 0.5. Further, the results for the unate networks are much better than for non-unate ones.
It seems that the marginal distributions for unate functions produce a better estimation of
the actual distribution than the marginal distributions for non-unate functions.

As already mentioned, the fraction of preimages found for the E. coli networks is rather
small. However, for the random networks we find large parts of Ψy. This is particularly of
interest, since Algorithm 3 performs much faster.

By replacing the fixed output values of the network with probabilities, one can simply apply
Algorithm 3 to networks, whose designated output is described by probability distributions.
Further, the algorithm may be easily adjusted to work on stochastic, e.g., Bayesian, networks,
where the nodes only contain transition probabilities instead of Boolean functions. Therefore,
the update rules have to be adapted accordingly.

It remains an open question, which influence topographical properties such as the number
of layers and the number of nodes in these layers, have on the performance of the proposed
algorithms, since we only investigated networks which are similar to the regulatory network
of E-coli.
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Chapter 6

Concluding Remarks

W
ithin this thesis, we discussed important properties of canalizing and nested

canalizing Boolean functions as well as the preimage problem of Boolean
networks. First, we proved important spectral properties of those classes of

Boolean functions, for which we applied Fourier analysis of Boolean functions,
where functions are represented as multivariate, multilinear real polynomials. To this end,
we stated spectral relationships between so-called restricted Boolean functions and their
unrestricted counter part and gave a recursive expression for the zero coefficient of nested
canalizing functions.

Next, we investigated the noise sensitivity, a measure for the error tolerance of Boolean
functions. We gave an expression for this entity for the case of restricted Boolean functions
and for the case of nested canalizing functions, we found a recursive description. Based on
these findings, we derived several upper bounds for canalizing and nested canalizing functions,
which showed that these functions have in general a very low noise sensitivity in comparison
to other Boolean functions.

The derivative of the noise sensitivity yields into the so-called average sensitivity, which is
also a measure for the error tolerance with a different channel model. Using the recursive
expression, we provided a tight upper and lower bound on the average sensitivity for nested
canalizing functions. We showed that the lower bound is achieved by functions, whose input
variables are all most dominant and which maximize the absolute zero coefficient. The upper
bound is reached by functions, whose canalized values are alternating. Using this bound,
we proved an upper bound conjectured in literature on the average sensitivity of nested
canalizing functions, namely as(f) < 4

3 .

We also investigated the mutual information of Boolean functions in two scenarios. In the
first scenario we were interested in the mutual information between one input variable and
the function’s output. We proved that canalizing functions maximize this mutual information,
if the bias of the function is fixed. We also extended this result to the mutual information
between a set of input variables and the output, which is maximized by joint canalizing
functions. The second scenario covers, like the noise sensitivity, the mutual information
between all inputs, each of which is disturbed by a binary symmetric channel, and the output.
We stated two relations between the noise sensitivity and this mutual information. Based
on this and our findings for the noise sensitivity, we established upper and lower bounds on
the mutual information. These bounds indicate a high information processing capability of
canalizing and nested canalizing functions.

Finally, we addressed the preimage problem of Boolean networks. This is of interest when
designing experiments, in which certain regulators are supposed to be in a specific state.
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It has been shown in literature that this problem is NP-hard. Hence, it is infeasible for
large Boolean networks, like the regulatory network of Escherichia coli. We proposed two
algorithms to solve this problem. The first algorithm reduces the size of the network and
splits the network into several independent subgraphs, using the property that canalizing
functions can be inverted under certain conditions. The known Wuensche algorithm for
finding the predecessors can now be applied to these reduced subgraphs, since the problem
has now become feasible. Secondly, we introduced a probabilistic method based on the
well-known sum-product algorithm, which does not find the whole set of predecessors, but at
least parts of it. We evaluated our algorithms by applying them to random Boolean networks
and to the regulatory network of E. coli.
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Appendix A

Proof of Lemmas from Chapter 4

A.1. Lemma 1

Lemma 1

If −1 ≤ f̂(∅) ≤ −|µi|, then

q(f̂(∅)) < r(f̂(∅)) if µi > 0

q(f̂(∅)) > r(f̂(∅)) if µi < 0.

Proof : First, let’s recall that

q(f̂(∅)) =
1− µi

2
h

(
f̂(∅) + 1

1− µi

)

and

r(f̂(∅)) =
1 + µi

2
h

(
f̂(∅) + 1

1 + µi

)
.

Let’s assume that µi > 0. Due to the concavity and the parabolic form of q(f̂(∅)) and
r(f̂(∅)), they can intersect at most two times. Obviously, q(−1) = r(−1) = 0 and
q(−µi) = 0 < r(−µi). Hence, if the slope of r at f̂(∅) = −1 is larger than the slope of s,
then q(f̂(∅)) < r(f̂(∅)) in the interval −1 ≤ f̂(∅) ≤ −µi.

Building the derivative of q(f̂(∅)) leads us to

q′(f̂(∅)) = PXi (−1) log

1− f̂(∅)+1
1−µi

f̂(∅)+1
1−µi


= PXi (−1) log2

(
−µi − f̂(∅)
f̂(∅) + 1

)
,

and similarly to

r′(f̂(∅)) = PXi (+1) log2

(
+µi − f̂(∅)
f̂(∅) + 1

)
.
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One can see that

lim
f̂(∅)→−1

(
r′(f̂(∅))− q′(f̂(∅))

)
= +∞,

which concludes the proof for µi > 0. The proof for µi < 0 goes along the lines as for
µi > 0.

A.2. Lemma 2

Lemma 2

If |µi| ≤ f̂(∅) ≤ 1, then

s(f̂(∅)) < t(f̂(∅)) if µi > 0

s(f̂(∅)) > t(f̂(∅)) if µi < 0.

Proof : First, let’s recall that

s(f̂(∅)) =
1− µi

2
h

(
f̂(∅)− µi

1− µi

)
and

t(f̂(∅)) =
1 + µi

2
h

(
f̂(∅) + µi

1 + µi

)
.

Now we assume that µi > 0. Due to the concavity and the parabolic form of s(f̂(∅))
and t(f̂(∅)), they can intersect at most two times. Obviously, s(+1) = t(+1) = 0 and
s(µi) = 0 < t(µi). Hence, if the slope of t at f̂(∅) = −1 is larger than the slope of s,
then s(f̂(∅)) < t(f̂(∅)) in the interval µi ≤ f̂(∅) ≤ 1.

Building the derivative of s(f̂(∅)) leads us to

s′(f̂(∅)) = PXi (−1) log2

1− f̂(∅)−µi
1−µi

f̂(∅)−µi
1−µi


= PXi (−1) log2

(
1− f̂(∅)
f̂(∅)− µi

)
and similarly to

t′(f̂(∅)) = PXi (+1) log2

(
1− f̂(∅)
f̂(∅) + µi

)
.

One can see that

lim
f̂(∅)→1

(
t′(f̂(∅))− s′(f̂(∅))

)
= −∞,

which concludes the proof for µi > 0. The proof for µi < 0 goes along the lines as for
µi > 0.
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A.3. Lemma 3

Lemma 3

If µi > 0 and |f̂(∅)| ≤ |µi|, then

t(f̂(∅)) < r(f̂(∅)) if f̂(∅) < 0

t(f̂(∅)) > r(f̂(∅)) if f̂(∅) > 0.

If µi < 0 and |f̂(∅)| ≤ |µi|, then

s(f̂(∅)) < q(f̂(∅)) if f̂(∅) < 0

s(f̂(∅)) > q(f̂(∅)) if f̂(∅) > 0.

Proof : Let’s first assume µi > 0. One can easily see that

t(−µi) = PXi (+1)h

(−µi + µi
1 + µi

)
= 0

< r(−µi) = PXi (+1)h

(−µi + 1

1 + µi

)
,

and

t(µi) = PXi (+1)h

(
µi + µi
1 + µi

)
> r(µi) = PXi (+1)h

(
µi + 1

1 + µi

)
= 0.

Further,

t(0) = PXi (+1)h

(
µi

1 + µi

)
= PXi (+1)h

(
1− µi

1 + µi

)
= PXi (+1)h

(
1

1 + µi

)
= r(0),

which due to concavity of t and r proves the first part of the Lemma. The proof of the
second part goes along the lines.
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Appendix B

Algorithm to randomly generate Boolean
Networks

Algorithm 4

Given: number of layers l.
Given: total number of nodes K.
Given: number of nodes on the first layer K1.
Given: number of nodes on the last layer Kl.
Draw number of nodes on layers 2, . . . , l − 1 uniformly, so that

∑l−1
i=2Ki = K −K1 −Kl.

Add nodes 1 to K1 to the network.
for each layer i,1 < i ≤ l do

for 0 < j < Ki do
draw k from exponential distribution with λ = 0.5;
randomly draw function with k relevant variables;
add new node to network;
draw k input nodes from all nodes with layer < i;
add corresponding edges;

end for
end for
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