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Furthermore, I want to thank Deniz Gündüz for serving as an assessor of this thesis
and for coming to Ulm for one afternoon to attend the colloquium.

As the daily life at the institute was very convenient for me, I want to thank all my
colleagues from the Institute of Communications Engineering for the good time we had
together. Especially, I want to thank my roommate Johannes Klotz for many interest-
ing and amusing discussions, the secretaries Ulrike Stier and Ilse Walter for helping me
with more things than I can mention here, and Henning Zörlein for accompanying me
through all joys and pains of evening festivities at the institute.

More than anything else, I want to thank my parents for all the love and support
they gave me my whole life and my girlfriend Diana as well as my son Marvin Ron for
their infinite patience, motivation, and support with all other things during the tough
days of writing this thesis. I love you.

Frederic Knabe
Ulm, January 2014

I



II



Contents

Abstract V

List of Symbols and Acronyms VII

1 Introduction 1

2 Considered Channel Models 7
2.1 Multiple-Access Relay Channel (MARC) . . . . . . . . . . . . . . . . . 8
2.2 Broadcast Relay Channel (BRC) . . . . . . . . . . . . . . . . . . . . . 10

3 Fundamentals 13
3.1 Gaussian MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Single-Antenna Gaussian MAC . . . . . . . . . . . . . . . . . . 13
3.1.2 Multi-Antenna Gaussian MAC . . . . . . . . . . . . . . . . . . . 17

3.2 Gaussian Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Single-Antenna Gaussian Broadcast Channel . . . . . . . . . . . 21
3.2.2 Multi-Antenna Gaussian Broadcast Channel . . . . . . . . . . . 23
3.2.3 Duality with Gaussian Multiple-Access Channel . . . . . . . . . 27

3.3 Gaussian Channels with AF-Relay . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Gaussian MAC with AF-Relay and No Direct Links . . . . . . . 30
3.3.2 Gaussian BC with AF-Relay and No Direct Links . . . . . . . . 32
3.3.3 Gaussian Single-User Channel with Direct Links . . . . . . . . . 36

4 Relaying for MISO Multi-User Channels without Direct Links 39
4.1 TDMA-based Relaying and Single-User Relay Channels . . . . . . . . . 39
4.2 Gaussian MISO MAC with AF-Relay . . . . . . . . . . . . . . . . . . . 41

4.2.1 Optimal Sum-Rate with Joint Relaying . . . . . . . . . . . . . . 41
4.2.2 Optimal Sum-Rate with TDMA . . . . . . . . . . . . . . . . . . 45
4.2.3 Comparison of TDMA and Joint Relaying . . . . . . . . . . . . 48

4.3 Gaussian MISO Broadcast Channel with AF-Relay . . . . . . . . . . . 52
4.3.1 Achievable Scheme Based on MAC-Broadcast Channel Duality . 52
4.3.2 Upper Bounds and Comparison . . . . . . . . . . . . . . . . . . 56

5 AF-Relaying for MISO Gaussian MAC with Direct Links 61
5.1 Upper Bounds on the Achievable Sum-Rate . . . . . . . . . . . . . . . 62

5.1.1 Single-User Upper Bound . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Upper Bounds for Joint Relaying . . . . . . . . . . . . . . . . . 67

III



Contents

5.2 Algorithms to Approach the Optimal Sum-Rate . . . . . . . . . . . . . 70
5.2.1 On the Complexity of Brute-Force Algorithms . . . . . . . . . . 71
5.2.2 An Efficient Iterative Algorithm . . . . . . . . . . . . . . . . . . 72

5.3 A Simplified Case: Single-Antenna Transmitters . . . . . . . . . . . . . 74
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Characteristics of Finite Alphabets in Low-SNR Broadcast Channels 87
6.1 Minimum Energy Per Bit and Wideband Slope . . . . . . . . . . . . . . 88
6.2 Slope Region of Broadcast Channels with Gaussian Alphabets . . . . . 89
6.3 Slope Region of Broadcast Channels with Finite Alphabets . . . . . . . 90

6.3.1 Slope Region with BPSK . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Slope Region with QPSK . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Evaluation of Slope Regions . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusion 97

A Water-Filling 103
A.1 The Scalar Water-Filling Algorithm . . . . . . . . . . . . . . . . . . . . 103
A.2 Water-Filling for MIMO channels . . . . . . . . . . . . . . . . . . . . . 105

B Proofs 107
B.1 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.3 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

IV



Abstract

The use of multiple input multiple output systems as well as the use of relay nodes are
without any doubt key elements of future wireless networks. Both techniques ensure
high data rates and wide-range coverage. Due to the variety of possibilities to precode
the signals before transmission and to process them at the relay, the search for the
optimal transmit strategy is an enormous challenge. This holds especially if the channel
is shared by multiple users and the interference among them becomes the main limiting
factor for the performance. Hence, for scenarios with multiple antennas, multiple users,
and a relay, the transmit strategies that achieve optimal rates are mostly unknown.

In this thesis, we aim for finding transmit strategies that achieve optimal or at least
near-optimal rates in multi-user channels with an amplify-and-forward relay, where
all nodes except the receiver(s) have multiple antennas. As amplify-and-forward re-
lays simply amplify the incoming signals without any decoding or re-encoding, a low
computational complexity and small delays are ensured. The channel models that we
consider are the multiple-access relay channel as well as the broadcast relay channel.
Moreover, we compare a time division multiple-access (TDMA)-based transmit scheme
to a strategy where all stations use the channel at the same time (referred to as joint
relaying).

In a first step, we neglect the direct links between the transmitter(s) and the re-
ceiver(s) and derive the optimal sum-rates of TDMA and joint relaying for the multiple-
access relay channel. Moreover, we show that TDMA achieves higher sum-rates than
joint relaying. For the broadcast relay channel without direct links we derive a heuristic
scheme. This scheme has a lower complexity than prevailing schemes and is shown to
achieve approximately the same sum-rates.

Subsequently, we generalize the model of the multiple-access relay channel by con-
sidering also the direct links between the transmitters and the receiver. For this gener-
alization, we find upper and lower bounds on the sum-rate both for TDMA and joint
relaying. As the respective upper and lower bounds are sufficiently close, TDMA and
joint relaying can be compared by means of simulation results. It turns out that the
superiority of TDMA persists for weak direct links but gets lost quickly if the direct
links become stronger.

Finally, we consider the use of finite alphabets in the broadcast channel at low signal-
to-noise ratio. Using the minimum required energy per bit and the wideband slope as
quality criteria, we show that the optimal performance of Gaussian alphabets is also
achieved by quadrature phase shift keying. As a consequence of this, the suboptimality
of TDMA at low signal-to-noise ratio, which was already shown for Gaussian alphabets,
persists if finite alphabets are used.
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1
Introduction

In today’s wireless communication systems, the demand for high data rates and wide-
range coverage is steadily growing. To meet these requirements, a high density of base
stations is necessary, which entails high costs for installation and maintenance. Two
other possibilities to increase throughput and coverage are the use of relay nodes as
well as the use of multiple input multiple output (MIMO) technology. The goal of this
thesis is to combine these two paradigms and optimize the transmit strategies such that
the highest possible data rate is achieved in the up- and downlink of wireless networks.

Relay channels were considered in [CG79] first and have been extensively studied
by researchers in the last decades. As there are several possibilities of processing
the signals at the relay, different types of relays are distinguished. One very power-
ful possibility, referred to as decode-and-forward (DF) or regenerative relaying, is to
decode the signals at the relay, re-encode them, and subsequently transmit them to
the destination(s). However, although very efficient decoding algorithms exist [Bos99],
this requires high computational power at the relay and entails large delays. Another
widely-used possibility, referred to as amplify-and-forward (AF) or non-regenerative re-
laying, is to simply amplify the received signal. The drawback of this scheme is that the
noise, which occurs at the relay, is also amplified and thus decreases the performance.

Also the use of relays in multi-user channels has been considered in numerous works.
A comparison of different relaying techniques as well as upper bounds on the achievable
data rates for the multiple-access relay channel (MARC) are given in [SKM04]. This
work is extended in [SKM07], where an improved scheme for the MARC based on DF
is presented. Moreover, [MDG13] introduces two joint source-channel coding schemes
for a MARC with correlated sources and DF-relay. Contrary to those works, we will
focus on AF-relaying techniques in this thesis, because AF has much lower delays and
ensures that the relay nodes remain cheap.

Similar to relay channels, MIMO channels have been the focus of many works in the
last years. During that time the capacity region was found for the most important
channels occurring in wireless communication like the point-to-point channel [Tel99],
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1 Introduction

the multiple-access channel (MAC) [CV93, YRBC04], and the broadcast channel [CS03,
YC01, WSS06].

However, if a MIMO AF-relay is added to those channels, both the distribution of
the transmit power to the antennas (identified by the transmit covariance matrix) as
well as the amplifying matrix at the relay have to be optimized. This turned out to be
an enormous challenge and therefore the capacity region is unknown for most scenarios.
Especially in case the direct links between the transmitter(s) and the receiver(s) are
not neglected, few results exist. Nevertheless, considerable progress has been made in
the field of MIMO channels with AF-relay during the last years:

The structure of the relay matrix and the transmit covariance matrices that leads to
the optimal sum-rate has been found both for the point-to-point channel without direct
links as well as for the MARC without direct links in [FHK06, YH10]. However, this
structure still contains parameters that are subject to optimization and the optimal
sum-rate of this channel remains unknown in general.

In [TH07], a single-user system was considered, where the transmit covariance matrix
was fixed to a scaled identity matrix. With this restriction, an algorithm was found that
optimizes the relay matrix. However, for the case of nonzero direct links, only upper
and lower bounds on the sum-rate could be provided. Different from all previously
mentioned works, a half-duplex relay was assumed in [VSBNS06]. Using this relay in
single-user systems both with and without direct links, suboptimal transmit strategies
based on iterative algorithms were derived.

The broadcast relay channel (BRC) is considered in [CTHC08, YH10]. For this
channel, only suboptimal algorithms are presented, which partly suffer from a high
computational complexity. A duality between the BRC and the MARC, as existent for
the corresponding channels without relay [VJG03], is found in [JGH07]. Unfortunately,
this duality only holds if the receiver(s) and transmitter(s) have only a single antenna.

In this thesis, our goal is to find the optimal sum-rates that are achievable with
AF-relays in the multiple input single output (MISO) BRC without direct links and
in the MISO MARC with and without direct links, i.e., we assume that the receiver(s)
has/have a single antenna. This assumption allows us to find either closed-form solu-
tions for the optimal sum-rate or close upper and lower bounds. Thus, it provides a
first step in finding the optimal sum-rate of general MIMO relay channels, where also
the receiver(s) has/have multiple antennas.

For this purpose, we generally assume Gaussian channels and Gaussian transmit
alphabets. An exception to this is Chapter 6, where we assume Gaussian channels but
finite alphabets. The reason for this is that Gaussian alphabets can not be used but
only approximated in practical applications.

In detail, the contributions of this thesis and the corresponding publications are the
following:

• MISO MARC without direct links (published in [KMH12b]): We adopt
the approach from [YH10] and derive a solution that reaches the optimal sum-
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rate for the MISO MARC without direct links in closed-form. Furthermore, we
propose a different transmission scheme based on time division multiple access
(TDMA). In contrast to the prevailing scheme (like in [YH10]), where all users
access the channel jointly (referred to as joint relaying), our scheme decomposes
the K-user MARC in K orthogonal single-user relay channels. After deriving
the optimal duration of the time slots, we obtain a closed-form solution for the
sum-rate achievable with TDMA. Subsequently, we show that this rate is always
higher than the sum-rate of joint relaying in practical channels.

• MISO BRC without direct links (unpublished): We present a heuristic
algorithm which exploits the duality of MAC and broadcast channels without
relays from [VJG03]. Compared to existing algorithms, our algorithm has a
much lower complexity and it is shown by means of simulation results that the
achieved rates are approximately the same.

• MISO MARC with direct links (unpublished): Contrary to the MISO
MARC without direct links, a closed-form solution of the achievable rates with
TDMA or joint relaying does not seem feasible for nonzero direct links. Instead,
we derive upper and lower bounds, which are shown to be close to each other
by means of simulation results. The lower bounds are achieved by an efficient
iterative algorithm, which is shown to converge within a few iterations by means
of simulation results. Further simulations reveal that the superiority of TDMA,
which was shown for absent direct links, only persists if the direct links are weak.
For strong direct links, it is observed that joint relaying delivers better results.

• SISO MARC with direct links (published in [KMH12a]): As a special
case of the MISO MARC with direct links, we consider the single input single
output (SISO) MARC with direct links. The single transmit antennas allow
to derive an algorithm which computes the optimal sum-rate achievable with
TDMA. Moreover, an analytic criterion for the asymptotic optimality of TDMA
is derived.

• Finite alphabets in broadcast channels (published in [KWHK09]): As
practical systems can not use the unbounded Gaussian alphabets, we also consider
the performance of finite alphabets at low signal-to-noise ratio (SNR) in broadcast
channels. As the low SNR entails low data rates, these rates are not an adequate
quality criterion for this case. Instead, Verdú defined the minimum energy per bit
and the wideband slope [Ver02] as quality criteria for low-SNR channels. Using
these criteria, we show that the optimal performance of Gaussian alphabets is
also achieved by quadrature phase shift keying (QPSK) in low-SNR broadcast
channels. Moreover, we show that the suboptimality of TDMA, which was found
for Gaussian alphabets in these channels [CTV04], persists if finite alphabets are
used.
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Outline of this Thesis

In Chapter 2, we introduce the two channel models considered in this work in their
most general form. Hence, we describe the MIMO MARC with direct links as well as
the MIMO BRC without direct links together with the constraints on the transmitted
signals that reflect the limited transmit power at the transmitter(s) and the relay. The
simplifications that result from assumptions like zero direct links or single receiver an-
tennas are mentioned in the chapters where they are assumed.

The fundamentals of multi-user systems with and without relay as well as the current
state of research are discussed in Chapter 3. First, we describe the MAC and broadcast
channel in Section 3.1 and 3.2, respectively. In both sections, we first consider the
respective SISO channel and describe the capacity achieving transmit strategy as well
as the capacity region. Subsequently, the MIMO case is considered and the solutions
to the new optimization problems that multiple antennas pose as well as the resulting
capacity regions are discussed. Moreover, for both channels and both SISO and MIMO,
we derive the rates achievable by TDMA.

As it turns out that the optimization problems for the MIMO broadcast channel
are, due to their nonconvexity, much harder to solve, we discuss the duality theory
from [VJG03] in Subsection 3.2.3. This theory builds a relation between the capacity
regions of the broadcast channel and its dual MAC, such that the problem of finding
the broadcast channel capacity region can be simplified.

Section 3.3 describes the current state of research in multi-user channels with AF-
relay. This includes a description of the results for the MARC without direct links in
Subsection 3.3.1 as well as for the broadcast channel without direct links in Subsection
3.3.2. For channels with direct links, results are only available for single-user channels.
These are described in Subsection 3.3.3.

Our work on multi-user channels with AF-relay and without direct links is described
in Chapter 4. This chapter starts with a description of our proposed TDMA-based
relaying scheme, which contains the consideration of single-user relay channels. Sub-
sequently, we consider the MISO MARC in Section 4.2, where we find the optimal
sum-rates of joint relaying in 4.2.1 and of our proposed TDMA scheme in 4.2.2. The
achieved rates are compared in Subsection 4.2.3, where it is also shown that the rates
achieved by TDMA are always superior in practical systems.

The BRC without direct links is considered in Section 4.3. In this section, we derive
an efficient algorithm to optimize the transmit strategy in Subsection 4.3.1 and com-
pare this strategy to prevailing schemes and upper bounds in Subsection 4.3.2.

Chapter 5 considers the MARC with direct links. We derive three upper bounds on
the achievable sum-rate in Section 5.1. The first upper bound is for single-user channels
and is used to provide an upper bound for TDMA. It is determined by an algorithm with
brute-force methods, where the structure of the corresponding optimization problem
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is exploited to reduce the complexity of the algorithm. The two other upper bounds
are intended for multi-user channels with joint relaying. One of these bounds is also
computed by a brute-force algorithm, while the other one is found by bounding the
expression for the sum-rate directly.

In Section 5.2, we describe achievable schemes for the MISO MARC with direct
links. First, we explain why, contrary to the upper bounds, the complexity of brute-
force methods seems to be too high to calculate solutions with an adequate precision.
Subsequently, in Subsection 5.2.2, we derive a heuristic and iterative algorithm with
low complexity. This algorithm computes covariance matrices and a relaying matrix
that achieve a sum-rate which is close to the optimum. The special case of a SISO
MARC is discussed in Section 5.3, where an algorithm is given to calculate the optimal
sum-rate achievable with TDMA. This allows the derivation of an analytic criterion for
the asymptotic optimality of TDMA.

Finally, Section 5.4 presents simulation results for the MISO and SISO MARC with
direct links. These results show how close the derived upper and lower bounds are and
allow a comparison of TDMA and joint relaying. Moreover, the convergence behavior
of the algorithm derived in Subsection 5.2.2 is analyzed.

The use of the more practical finite alphabets in broadcast channels at low SNR is
discussed in Chapter 6. For this purpose, the minimum energy per bit and the wide-
band slope, which were defined as quality criteria for low-SNR channels in previous
works, are introduced in Section 6.1. This definition is followed by a review of the
results for low-SNR broadcast channels with Gaussian alphabets in Section 6.2. Our
derivation of the wideband slope and minimum energy per bit for BPSK and QPSK
alphabets is conducted in Section 6.3. In Section 6.4, the obtained slope regions are
evaluated graphically for one example.

Finally, the thesis is closed by Chapter 7, which gives a summary of the results, some
concluding remarks and an outlook on possible future research in the considered fields.

Notation

Our notation follows the list of symbols and acronyms, which precedes this chapter.
However, due to the variety of the considered problems, the variables that are listed
there are only a basis, which is extended where necessary. Generally, we use boldface
lowercase letters to denote column vectors and boldface uppercase letters to denote
matrices.

Moreover, if multiple instances or transformations of one variable are required, we
use subscripts or decorations like tildes, bars, etc.. As we consider multi-user systems,
superscripts with numbers in braces are exclusively used to denote variables that can
be associated with one user.

To give an example, h denotes the channel gain if a channel is scalar, while for vector
channels we would use h and for channel matrices we use H. In a MIMO MARC, the
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1 Introduction

channel gain from transmitter k to the relay is denoted by H
(k)
r , while the channel gain

for the direct link between transmitter k and the receiver is called H
(k)
d .

As explained above, the goal of this thesis is to maximize the achievable (sum-)rates.
Therefore, if not otherwise identified, the attribute optimal means optimal with respect
to the maximum (sum-)rate throughout the whole thesis. Note that, as we restrict
ourselves to AF relaying schemes in this thesis, a scheme that is called optimal in this
context might be outperformed by a DF-based relaying scheme. The same holds for
the upper bounds derived here. A scheme that is not optimal (or can not shown to be
optimal) but could be realized under the given constraints, is referred to as “achievable
scheme”.
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2
Considered Channel Models

This section describes the two channel models that are discussed in Chapters 4 and
5 as well as in Section 3.3. For these descriptions, we use the most general form of
the channel models that is required in the following chapters. Thus, we describe the
multiple-access relay channel (MARC) with multiple antennas at all nodes, with direct
links between transmitters and receiver, and with an arbitrary number of users K. For
the broadcast relay channel (BRC), we use the same assumptions except the direct links,
because they are not considered for the BRC in this work. In the following chapters, we
will then describe the simplifications, e.g., the restriction to a single receive antenna,
where they are assumed.

In this chapter, we restrict ourselves to a description of the channel model without
any analysis or transmit strategies. The analysis of existing transmit strategies is done
step by step in Chapter 3.

The common channel properties that we assume throughout this whole thesis are
the following: We consider additive white Gaussian noise (AWGN) channels with inde-
pendent block Rayleigh fading. This means, the channel gains between two antennas
are Rayleigh distributed, independent of each other, and remain constant during the
transmission of one codeword. The number of antennas at the receiver and transmitter
are denoted by Nr and Nt, respectively. Due to the independence of the channel gains,
the channel matrices have rank min {Nr, Nt} with probability 1. Finally, we assume
perfect channel state information (CSI) at both the transmitter(s) and the receiver(s)
as well as, if existent, the relay. Hence, the received signal can be modeled as the sum of
the transmitted signal(s), multiplied by the channel matrix, and the additive Gaussian
noise.

As already stated in the introduction, we consider full-duplex and amplify-and-
forward (AF) relays. Moreover, we assume that the relay transmits in a different
frequency band than the transmitter(s). For the sake of conformity with the underly-
ing references [YH10, TH07], we do not account for the doubled bandwidth demand by
multiplying the rates (given in Bit/s/Hz) with a factor of 1/2. However, the additional
bandwidth requirement has to be considered when comparing the rates with those of
a channel without relay.
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2.1 Multiple-Access Relay Channel (MARC)

from the transmitters. This results in the received signal

y =




HF
K∑
k=1

H
(k)
r x(k) + HFzr + z1

K∑
k=1

H
(k)
d x(k) + z2


 ,

where zi ∼ CN (0, I) (i = 1, 2) denote the Gaussian noise vectors at the receiver.
As it can be seen, the first Nr components of y contain noise both from the relay

and from the receiver. This leads to a noise covariance matrix of

z ,

[
z1

z2

]
∼ CN

(
0,

[
S 0
0 I

])
,

where S = I + HFFHHH . As the formulation of the achievable rates is much easier
with unit noise covariance matrices, we will normalize the first Nr components of y by
multiplying the channel outputs with S−1/2. This does not change the achievable rates
and results in an equivalent output

ỹ =
K∑

k=1

H
(k)
eff x(k) + z̃

at the receiver, where z̃ ∼ CN (0, I), and H
(k)
eff ∈ C2Nr×N(k)

t is defined as

H
(k)
eff ,

[
S−1/2HFH

(k)
r

H
(k)
d

]
.

Of course, the available transmit power is limited both at the relay and at the

transmitters. If the transmitters’ covariance matrices are defined as E
(
x(k)x(k)H

)
,

Q(k), then the average transmit power constraints are given by

Q(k) � 0 ∀k ∈ {1, . . . , K}
tr
(
Q(k)

)
≤ P (k) ∀k ∈ {1, . . . , K}

E
(
tr
(
xrx

H
r

))
= tr

(
F

(
I +

K∑

k=1

H(k)
r Q(k)H(k)

r

H

)
FH

)
≤ Pr,

(2.1)

where tr (A) denotes the trace of a matrix A.

The parameters that are subject to optimization are the distribution of the available
transmit powers P (k) to the antennas of user k, which are determined by the covariance
matrix Q(k) as well as the construction of the relay’s output from its input, which is
determined by the relaying matrix F. Because of the complexity of finding a global
optimal solution for this problem, we will first explain the derivation of the optimal
covariance matrices Q(k) in the multiple-access channel (MAC) without relay. In a
second step, the relay is added to the channel, which raises the additional challenge of
finding the optimal relaying matrix F.
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2.2 Broadcast Relay Channel (BRC)

where z ∼ CN (0, I) is the additional noise at the receiver and H(k) ∈ CN
(k)
r ×Nf denotes

the channel between the relay and receiver k.
Also in the BRC there is noise both from the relay and the receiver such that the

total noise covariance matrix at user k is I + H(k)FFHH(k)H . However, the absence
of the direct links allows a compact formulation of the achievable rates such that a
normalization of the noise is superfluous.

As the BRC has only one transmitting station, there is in principle only one transmit
covariance matrix Q , E

(
xxH

)
, which is subject to optimization. However, it makes

sense to consider the covariance matrices Q(k) , E
(
x(k)x(k)H

)
instead, which, due to

the independence of the signals x(k), sum up to the total covariance matrix Q. Together
with the power constraint at the relay, the average power constraints can be formulated
as

Q(k) � 0 ∀k ∈ {1, . . . , K}

tr (Q) = tr

(
K∑

k=1

Q(k)

)
≤ P (2.3)

E
(
tr
(
xrx

H
r

))
= tr

(
F
(
I + HrQHr

H
)

FH
)
≤ Pr.

The most important differences to the MARC are the joint power constraint for the
covariance matrices and the fact that, from the receiver perspective, the interference and
the desired signal go through the same channel. Although the optimization parameters
are still F and the covariance matrices Q(k), we will see in the following chapters that
the latter point makes the optimization in the BRC much more complicated than the
one for the MARC. Concerning the explanation of the BRC, we will proceed in the
same way as for the MARC, i.e., give an explanation of the broadcast channel without
relay first.
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3
Fundamentals

This chapter discusses the fundamentals of MIMO multi-user systems. The MAC
and the broadcast channel are considered in Section 3.1 and 3.2, respectively. For
both channels the capacity achieving transmit technique is described and the capacity
region is formulated for both single- and multi-antenna systems. As, especially in
the MIMO BC, the optimization of the matrices in order to achieve the capacity is
very challenging, the duality between MAC and broadcast channels is discussed in
Subsection 3.2.3, which allows a simplification of this problem. Moreover, for both
channels the use of TDMA as alternative transmit strategy is considered.

In Section 3.3, we describe the current state of research on these two channels with
AF-relay. The MARC without direct links is discussed in Subsection 3.3.1, while the
BRC without direct links is considered in Subsection 3.3.2. Subsection 3.3.3 considers
a result on relay channels with direct links. However, this result is only for single-user
channels with fixed transmit covariance matrices.

All the results presented is this chapter are from existing works that serve as a basis
for this thesis. These results shall be extended by the contributions of this thesis in
Chapters 4, 5, and 6.

3.1 Gaussian MAC

One of the standard scenarios in multi-user wireless communications is the transmission
from K > 1 users to one receiving node. This scenario occurs for example in the uplink
of cellular networks. The corresponding channel is referred to as K-user MAC. In
this section, the single input single output (SISO) Gaussian MAC will be introduced
first. Hereafter, the more involved case of a multiple input multiple output (MIMO)
Gaussian MAC is described and the differences to the SISO MAC are explained.

3.1.1 Single-Antenna Gaussian MAC

The SISO Gaussian MAC is depicted in Figure 3.1. In this channel, the received signal
y is obtained as the sum of the user’s inputs x(k) multiplied by their corresponding

13







3 Fundamentals

Then, the achievable rate of user k is

R
(k)
TDMA = τ (k) log2

(
1 +
|h(k)|2P (k)

τ (k)

)
, (3.2)

where the τ (k) in the denominator inside the logarithm is due to an increased transmit
power. As user k occupies the channel only for τ (k) fraction of time and only the average
power is constrained, it can increase its transmit power to P (k)

τ (k) . Averaging over time,

this results in a transmit power of P (k) again.
The overall rate region achievable by TDMA is obtained by evaluating the user rates

(3.2) for all possible values of τ (1), . . . , τ (K) with
∑K

k=1 τ
(k) = 1. A point of this region,

which is of special interest, is the point that achieves the optimal sum-rate. In contrast
to the general capacity region, where the sum capacity

CΣ , max
K∑

k=1

R(k) = log2

(
1 +

K∑

k=1

|h(k)|2P (k)

)

follows directly from the constraints independent of the user order, the optimal sum-
rate of TDMA has to be found by optimizing the duration of the time slots, such
that

RΣ,TDMA , max∑K
k=1 τ

(k)=1

K∑

k=1

τ (k) log2

(
1 +
|h(k)|2P (k)

τ (k)

)
. (3.3)

The optimal duration of the time slots is given by (cf. [CT06])

τ (k) =
|h(k)|2P (k)

∑K
l=1 |h(l)|2P (l)

, (3.4)

i.e., each user’s time slot duration is proportional to the product of its channel gain
and its available transmit power. Combining (3.3) and (3.4) we obtain

RΣ,TDMA = log2

(
1 +

K∑

k=1

|h(k)|2P (k)

)
,

which is obviously the same as CΣ. This both verifies the optimality of (3.4) and shows
the sum-rate optimality of TDMA, although the achievable rate region of TDMA is
smaller, as can be seen in the following example.

For the case of K = 2, the achievable rate region of TDMA is also visualized as dash-
dotted line in Figure 3.2 (cf. [CT06]). It can be seen that the TDMA curve touches
the capacity region in 3 points, where points A and D are achievable by allocating
the complete time to user 1 or 2 and the third point is the optimal sum-rate point
described above. The equality of the sum-rates of TDMA and successive decoding will
be one of the major topics in the following chapters. In the following section, it will
be shown that TDMA does usually not achieve the sum capacity, if the receiver has
multiple antennas. On the other hand, the following chapter will show that TDMA can
also achieve higher rates than successive decoding if a relay is added to the channel.
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3 Fundamentals

YRBC04] and can be written as (cf. [Gol05])

CMAC =
⋃

Q(k)�0, tr(Q(k))≤P (k)∀k

{
(R(1), . . . , R(K)) :

∑

k∈S
R(k) ≤ log2

∣∣∣∣∣I +
∑

k∈S
H(k)Q(k)H(k)H

∣∣∣∣∣∀S ⊆ {1, . . . , K}
}
,

(3.5)

where |A| denotes the determinant of a matrix A. The union over all covariance
matrices Q(k) with Q(k) � 0 and tr

(
Q(k)

)
≤ P (k) is due to the fact that there is not a

single set of covariance matrices, which is optimal for all points of the capacity region.
One possibility to compute the set of covariance matrices that contribute to the ca-

pacity region is to sequentially optimize a weighted sum-rate
∑K

k=1 µ
(k)R(k), where

µ(k) ≥ 0 are weights which reflect the importance of the corresponding rate R(k)

[YRBC04]. These weights are varied until all “edges” of the capacity region are found.
Although the weighted sum-rate optimization is a convex problem, finding the exact
capacity region entails large computational complexity. Algorithms that compute the
capacity region can be found, e.g., in [CV93, VTA01].

If the goal is to find only the sum capacity instead of the whole capacity region, the
problem simplifies significantly, since it can be formulated as a single convex optimiza-
tion problem (cf . [YRBC04])

max
Q(1),...,Q(K)

log2

∣∣∣∣∣I +
K∑

k=1

H(k)Q(k)H(k)H

∣∣∣∣∣
s.t. tr

(
Q(k)

)
≤ P (k) ∀k,

Q(k) � 0 ∀k.

(3.6)

For this problem, a very simple and efficient algorithm was presented in [YRBC04].
This algorithm solves the problem of finding K covariance matrices by iteratively op-
timizing one transmit matrix at a time until the sum-rate converges. For this purpose,
it uses the fact that changing the decoding order of the users does not influence the
sum-rate. Hence, the covariance matrix which is currently optimized can always be
assumed to belong to the user which is decoded first and suffers from interference
from all other users. This optimization is than equivalent to finding the capacity of a
single-user MIMO channel, which has a simple water-filling solution [Tel99] (see also
Appendix A.2). The algorithm is listed in Algorithm 1 in terms of pseudo code.

As in the preceding subsection, the capacity region (3.5) is visualized for the case of
K = 2 in Figure 3.4. In contrast to the single-antenna case, the capacity region is not
quite a pentagon but rather a pentagon with rounded corners, which is due to the union
operation mentioned above. However, the pentagon given by R(1) ≤ C(1), R(2) ≤ C(2),
and R(1)+R(2) ≤ CΣ often gives a very good approximation of the capacity region. This
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3.1 Gaussian MAC

Algorithm 1 Iterative water-filling for solving (3.6) [YRBC04]

1: Set Q(k) = 0 ∀k
2: repeat
3: for k = 1 to K do
4: N = I +

∑K
l=1,l 6=k H(l)Q(l)H(l)H

5: Q(k) = arg maxQ log2

∣∣∣H(k)QH(k)H + N
∣∣∣

6: end for
7: until sum-rate convergence

C(1) CΣ

C(2)

RΣ,TDMA

TDMA

R(1)

R
(2

)

Figure 3.4: Capacity region of two-user MIMO MAC
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3 Fundamentals

approximation can be calculated with much less complexity, because C(1) and C(2) are
the capacities of the single-user MIMO channels with only user 1 or user 2, respectively,
which are simple to compute. The sum capacity CΣ can be calculated with Algorithm 1.

Also in the MIMO MAC, it is possible to use TDMA, which makes it much simpler to
find the achievable rate region. Similar to (3.2), the achievable rates can be calculated
as

R
(k)
TDMA = τ (k) log2

∣∣∣I + H(k)Q(k)H(k)H
∣∣∣ ,

where the covariance matrices are limited by tr
(
Q(k)

)
≤ P (k)

τ (k) . Hence, the optimal
covariance matrices can be found separately by simple water-filling as described in
Appendix A.2. The achievable region is then obtained by varying the duration of the
time slots τ (k).

Also here, the optimal sum-rate RΣ,TDMA is often of interest. However, for MIMO
systems there is in general no closed-form solution for the optimal τ (k) as in (3.4).
Moreover, the optimal sum-rate point of TDMA does in general not lie on the capacity
region of the MIMO MAC.

This can be observed in Figure 3.4, where the achievable TDMA region is also plotted
(using the same channel matrices as for the capacity region) and the optimal sum-rate
point is marked with an X. Obviously, there is now a gap between the TDMA region
and the capacity region and RΣ,TDMA < CΣ. The reason for this gap is that TDMA
can not benefit much from the spatial diversity gained by the multiple antennas.

A good example to illustrate this is a single input multiple output (SIMO) MAC
with K = 2, where the channel vectors of the users are orthogonal to each other.
Here, the capacity region is a rectangle because the orthogonality allows the users to
transmit without disturbing each other. On the other hand, TDMA can not benefit
from this orthogonality, because the users transmit in separate time slots. Thus, the ca-
pacity region is only touched at the points, where one user owns the channel exclusively.

One special case, which is of particular interest for the following chapters, is the
multiple input single output (MISO) MAC. Here, the channel matrices H(k) are row

vectors h(k)H ∈ C1×N(k)
t . Looking at the capacity region, the MISO MAC behaves like

a SISO MAC. The reason for this is that the expressions h(k)HQ(k)h(k) appearing in
the rate expressions can be upper bounded by

h(k)HQ(k)h(k) ≤ ||h(k)||2λmax

(
Q(k)

)
≤ ||h(k)||2tr

(
Q(k)

)
≤ ||h(k)||2P (k),

where ||a|| denotes the euclidean norm of a vector a and λmax (A) denotes the maximum
eigenvalue of a matrix A. As it can be seen, the choice

Q(k) =
h(k)h(k)H

h(k)Hh(k)
P (k)

achieves the upper bound and is therefore optimal for any Q(k) in all rate expressions
from 3.5. Therefore, the above choice of Q(k) is optimal for the whole capacity region,
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where x(k) ∈ C is the signal that contains the information for user k. The signal

y(k) = h(k)x+ z(k)

at receiver k consists of the sum of all signals multiplied by the respective channel gain
h(k) and the additive receiver noise z(k) ∼ CN (0, 1).

In the considered SISO case, the Gaussian broadcast channel is always degraded
[Cov72], which means the receivers can be ordered according to their channel quality.
The capacity region for degraded broadcast channels is well-known [Ber73, Gal74]. For
the channel in Figure 3.5 with a transmit power constraint of E (|x|2) ≤ P , it can be
written as (cf. [Gol05])

CBC =
⋃

∑K
k=1 P

(k)=P

{
(R(1), . . . , R(K)) :

R(k) = log2

(
1 +

|h(k)|2P (k)

1 +
∑K

l=1 |h(l)|2P (l)1 [|h(k)| ≤ |h(l)|]

)}
,

(3.7)

where 1[.] denotes the indicator function, which is 1 if its argument is true and 0
otherwise. This capacity region can be achieved by superposition coding with successive
interference cancellation [Cov72]. This means the signals x(k) are encoded as in a
single-user channel with E

(
|x(k)|

)
≤ P (k),

∑K
k=1 P

(k) = P and then superposed at the
transmitter. At receiver k, the degradedness of the channel allows to decode the signals
of all users l with |h(l)| < |h(k)| before decoding x(k).

Decoding the signals of these users is possible, because they have a worse channel and
their code rate is chosen such that their respective receiver can decode this signal. As
receiver k obtains a better version of the signal, it can also decode the signal. However,
for the signals of users with higher channel gains, this does not hold. Hence, the signals
of these users are treated as additional noise, which can be seen in the denominator in
(3.7).

Considering the sum-rate of the SISO Gaussian broadcast channel, the situation is
different to the MAC. Using (3.7), it can be shown that the sum capacity is achieved
when all power is allocated to the user with the highest channel gain. Therefore, we
can write the sum capacity as

CΣ = log2

(
1 + max

k
h(k)P

)
.

Also in the broadcast channel, it is possible to use TDMA. If the channel is divided
in time slots of lengths τ (1), . . . , τ (K), user k can achieve a rate of

R
(k)
TDMA = τ (k) log2

(
1 + h(k)P

)
.
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C(1)

C(2)

C(1)

R(1)

R
(2

)
Capacity region
TDMA

R(1) +R(2) = C(1)

Figure 3.6: Capacity region of two-user SISO broadcast channel

In contrast to the MAC, the transmitter is active all the time and can not increase the
transmit power due to partial inactivity and the duration of the time slots appears only
outside the logarithm. Thus, in the broadcast channel the rate region achievable with
TDMA is (only) the convex combination of the “corner points” of the capacity region,
i.e., the points where all the power is allocated to one user. As the region described by
(3.7) usually exceeds their convex combination, the TDMA region touches the capacity
region in general only at the corner points. However, as one of those points yields the
optimal sum-rate, TDMA achieves the sum capacity in the SISO broadcast channel as
well.

An example of a capacity region with K = 2 is plotted in Figure 3.6. As previously
mentioned, the corner points of the capacity region, where user 1 and 2 use the chan-
nel exclusively and achieve their single-user capacities C(1) and C(2), respectively, are
achievable both by TDMA and superposition coding. While the TDMA region is only
the convex combinations of those points, which is a straight line for K = 2, the capacity
region achievable by superposition coding with successive interference cancellation is
larger. It can also be seen, that the optimal sum-rate (indicated by the dashed line) is
achieved at R(1) = C(1) and R(2) = 0, i.e., CΣ = C(1).

3.2.2 Multi-Antenna Gaussian Broadcast Channel

As in the MAC, the computation of the capacity region becomes much more involved if
the transmitter has Nt > 1 antennas and the receivers are equipped with N

(1)
r , . . . , N

(K)
r
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(N
(k)
r > 1 ∀k) antennas. The output signal y(k) ∈ CN

(k)
r at receiver k now consists of

the channel matrix H(k) ∈ CN
(k)
t ×Nt , multiplied by the input vector x ∈ CNt , and the

additional noise z(k) ∼ CN (0, I), i.e.,

y(k) = H(k)x + z(k),

where x =
∑K

k=1 x(k). Since the only difference to Figure 3.5 is the change from scalars
to vectors and matrices, the channel model is not plotted again for the MIMO broadcast
channel. As in the MAC, it is possible to distribute the power between the multiple
transmit antennas. The power distribution of the signals x(k) is again given by the
covariance matrices Q(k) ∈ CNt×Nt defined by

Q(k) , E
(
x(k)x(k)H

)
,

where Q =
∑K

k=1 Q(k) denotes the covariance of the total transmitted signal x, which
has to fulfill the power constraint tr (Q) ≤ P . The main challenge of the transition
from scalar to matrix channel gains is that the degradedness of the channel does no
longer hold in general.

But, although the capacity region of the general nondegraded broadcast channel is
unknown, a transmission technique was proposed in [CS03, YC01], which was shown
to achieve the capacity region in [WSS06]. This scheme is based on dirty paper coding
(DPC) [Cos83], a technique which allows the cancellation of previously known interfer-
ence. As the interference in broadcast channels is given by the signals for the (other)
users and all signals are known at the transmitter, it is possible to sequentially encode
the user’s signals.

For this purpose let π : {1, . . . , K} → {1, . . . , K} be a permutation of the users
specifying the encoding order, such that user π(1) is encoded first, followed by user
π(2), etc. until user π(K) is encoded last. Hence, when user π(k) is encoded, the
transmitter knows the signals x(π(1)), . . . ,x(π(k−1)) and can use DPC to encode x(π(k))

such that it is not interfered by these signals. The achievable rate vector r (π,Q) with
user order π and covariance matrix Q =

∑K
k=1 Q(k) can be written as2 (cf. [Gol05])

r (π,Q) =
[
R(π(1)), . . . , R(π(K))

]
:

R(π(k)) = log2

∣∣∣∣∣∣
I +

H(π(k))Q(π(k))H(π(k))H

I + H(π(k))
[∑

j>k Q(π(j))
]

H(π(k))H

∣∣∣∣∣∣
∀k. (3.8)

Clearly, the encoding order influences the achievable rate of the users, such that a fix
ordering is not sufficient to achieve the capacity region. Instead, the capacity region

2The matrix division is used to shorten the formula. Due to the determinant rule that |I + AB| =
|I + BA| it does not matter whether the inverse of the denominator is multiplied from the left or
from the right
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3.2 Gaussian Broadcast Channel

can be described as convex hull over all possible orders π and covariance matrices
Q [Gol05], i.e.,

CBC = Co


 ⋃

π,Q�0,tr(Q)≤P
r (π,Q)


 . (3.9)

Unfortunately, finding the achievable rate region, even for a fixed user order π, can
not be formulated as convex optimization problem [Gol05]. The reason for this is that
the functions in (3.8) are not concave with respect to the covariance matrices. This
increases the complexity of solving this problem dramatically. Thus, the usual way of
computing the capacity region of the MIMO broadcast channel is to exploit the du-
ality with the MIMO MAC [VJG03], which will be discussed in the following subsection.

Another interesting suboptimal transmission technique is the so called zero-forcing
dirty paper coding (ZF-DPC) [CS03], which is a combination of DPC and a precoding
technique that orthogonalizes the channel. For this scheme, all channels are stacked in
one matrix Hc ∈ CNΣ×Nt

Hc =




H(1)

...
H(K)


 = RG,

where NΣ =
∑K

k=1N
(k)
r and RG is the QR decomposition [HJ90] obtained by applying

the Gram-Schmidt orthogonalization to the rows of Hc.
The resulting matrix R ∈ CNΣ×Nt is a lower triangular matrix, while G ∈ CNt×Nt is

a unitary matrix. By using GH to encode the transmitted signals, i.e., x = GH x̃, the
received vector yc ∈ CNΣ can be written as

yc = Hcx + zc = RGGH x̃ + zc = Rx̃ + zc.

Note that yc is a vector that contains the received signals of all antennas of all users.
The principle of ZF-DPC is to construct the transmitted signal, such that it can be

decoded by the first Nt antennas3 (corresponding to the first Nt rows of Hc). This
has two consequences: First, each antenna is treated as a separate entity. Second,
especially if NΣ is significantly larger than Nt, a lot of antennas (and thus also users)
can not receive any data. For the i-th (i = 1, . . . , Nt) receiving antenna, the received
signal can be written as

yci = Ri,ix̃i +
∑

j<i

Ri,jx̃j + zci.

As it can be seen, the precoding with GH eliminates the interference from the signals
x̃j with j > i. With the additional use of DPC and encoding the signals in the order

3We assume here that NΣ ≥ Nt. If this is not the case the number of transmitted signals reduces to
NΣ, but the principle remains the same
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x̃1, x̃2, . . . , x̃Nt , also the interference from the signals x̃j with j > i can be eliminated.
Thus, the the corresponding rate can be written as (cf. [CS03])

Ri = log2

(
1 + |Ri,i|2Pi

)
,

where Pi , E (|x̃i|2) and
∑Nt

i=1 Pi ≤ P .
Finally, besides the power allocation to the different signals, the diagonal entries of

R are the main factor for the achievable rates. As the relevant diagonal entries of R
depend only on the first Nt rows of Hc, these entries can be optimized by permuting
the rows of Hc. This means, the antennas that are provided with data (and also their
order) are switched. Although, there are

(
NΣ

Nt

)
Nt! = NΣ

(NΣ−Nt)! possibilities to select Nt

antennas and permute them, the computation of the ZF-DPC region is usually much
easier than computing the capacity region, whereas the rates, especially the achievable
sum-rates are often very close to the capacity.

Last but not least, also for the MIMO broadcast channel, the TDMA protocol can be
used. Contrary to the MAC, the differences of TDMA in SISO and MIMO broadcast
channels are not too big. Thus, we will only briefly mention TDMA in this subsection.

Similar to the SISO case, the achievable rate of user k with TDMA is given by its
single-user capacity multiplied by the time slot length τ (k), i.e.,

R
(k)
TDMA = τ (k) log2

∣∣∣I + H(k)Q(k)H(k)H
∣∣∣ .

By varying the duration of the time slots τ (k), it is possible to achieve the convex
combination of the corner points of the capacity region as explained in the previous
subsection. However, TDMA is not generally sum-rate optimal in the MIMO broad-
cast channel, because the optimal sum-rate point is usually not a corner point of the
capacity region as in the SISO case. Moreover, as TDMA can not exploit the diversity
as good as the capacity achieving DPC, the performance gap to the capacity region is
rather big. The advantage of TDMA that remains, is that the achievable rate region
is easy to compute, because it is sufficient to calculate the convex combinations of the
single-user capacities.

Also for the broadcast channel, the MISO case will be of special interest in the
following chapters. Again, the channel matrices H(k) can be written as row vectors

h(k)H ∈ C1×Nt . However, different from the MAC, the MISO broadcast channel has
more in common with the MIMO broadcast channel than with the SISO broadcast
channel: It is in general nondegraded and the performance of TDMA is rather poor.

This is illustrated in Figure 3.7, where an example of a MISO broadcast capacity
region for K = 2 is visualized. Furthermore, the figure shows that the performance of
ZF-DPC is very good. As there are only two single-antenna users, we have NΣ = 2 and
hence only two possible orders of the users. For order A, we assume HH

c = [h(1),h(2)],
while for order B we take HH

c = [h(2),h(1)]. At the corner points of the capacity
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C(1)

C(2)

R(1)

R
(2

)

Capacity region
ZF-DPC order A
ZF-DPC order B
TDMA

Figure 3.7: Capacity region of two-user MISO broadcast channel

region, ZF-DPC with the appropriate order touches the capacity region. Looking at
the optimal sum-rate point (indicated by an X), the ZF-DPC region does not touch
the capacity region although it is very close. Overall, the achievable region with ZF-
DPC is almost as large as the capacity region, while the effort to compute the transmit
strategies is much lower.

For the sake of completeness, the SIMO broadcast channel shall also be mentioned
at this point. Unlike the MISO broadcast channel, the properties of the SIMO channel
are more or less the same as in the SISO case. In detail, the SIMO broadcast channel is
always degraded and hence achieves the optimum sum-rate if the best user occupies the
channel exclusively. The same holds for TDMA, such that, as for SISO channels the
TDMA region touches the capacity region in that point. As, for the BRC, we focus on
optimizing the achievable sum-rate and this optimization degenerates to a single-user
problem for SIMO and SISO broadcast channels, the SIMO and SISO BRC are not
further discussed in this work.

3.2.3 Duality with Gaussian Multiple-Access Channel

As mentioned in the preceding section, the capacity region of the MIMO broadcast
channel in (3.9) is very hard to compute as the corresponding optimization problem is
nonconvex. However, a duality between MIMO BC and MIMO MAC has been shown
in [VJG03], which allows a much simpler computation of the capacity region. The
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duality is established by defining a dual MIMO MAC, where the channel matrices are
given by the Hermitian of the channel matrices of the broadcast channel. Thus, the
output signal ȳ of the dual MIMO MAC is obtained by

ȳ =
K∑

k=1

H(k)H x̄(k) + z̄(k),

where z̄(k) ∼ CN (0, I) and Q̄(k) , E
(
x̄(k)x̄(k)H

)
define the covariance matrix of the

input signals.

The result of [VJG03] is that the capacity region of the MIMO broadcast channel from
(3.9) is equal to the capacity region of the dual MIMO MAC if the power constraints
of the latter are replaced by the single constraint

K∑

k=1

tr
(
Q̄(k)

)
≤ P.

Hence, the individual power constraints of the conventional MIMO MAC described
in Subsection 3.1.2 are changed into one sum power constraint such that (as in the
dual MIMO BC) the power can be arbitrarily divided among the users. This new
constraint changes neither the convexity of the corresponding optimization problem nor
the optimal transmit strategy, which is still superpositioning with successive decoding
at the receiver. Thus, the capacity region of the MIMO BC and its dual MAC are
given by (cf. [VJG03])

CBC = C̄MAC =
⋃

Q̄(k)�0,
∑K
k=1 tr(Q̄(k))≤P

{
(R(1), . . . , R(K)) :

∑

k∈S
R(k) ≤ log2

∣∣∣∣∣I +
∑

k∈S
H(k)HQ̄(k)H(k)

∣∣∣∣∣∀S ⊆ {1, . . . , K}
}
.

Besides the proof of duality, [VJG03] also provides formulas to calculate the covari-
ance matrices Q(k) of the broadcast channel that achieve the same point of the region
as the corresponding dual matrices Q̄(k) in the dual MAC. As in the MIMO MAC with
individual power constraints, the capacity region can be computed, e.g., by weighted
sum-rate optimization. However, also with one sum power constraint and although the
problem is convex, the computational complexity is high.

If, instead, only the sum capacity is of interest, the complexity can be reduced. As
for the conventional MAC (cf. (3.6)) the convex problem of finding the optimal sum
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capacity can be written as

max
Q̄(1),...,Q̄(K)

log2

∣∣∣∣∣I +
K∑

k=1

H(k)HQ̄(k)H(k)

∣∣∣∣∣

s.t.
K∑

k=1

tr
(
Q̄(k)

)
≤ P

Q̄(k) � 0 ∀k.

(3.10)

Motivated by the results of [YRBC04] (Algorithm 1 from Subsection 3.1.2), another
algorithm was proposed in [JRV+05] which maximizes (3.10). This algorithm also
proceeds in an iterative way, where the main difference is that, due to the joint power
constraint, water-filling has to be done jointly for all covariance matrices. The pseudo
code of this algorithm is given in Algorithm 2.

Algorithm 2 Iterative block water-filling for solving (3.6) [JRV+05]

1: Set Q̄(k) = 0 ∀k
2: repeat
3: for k = 1 to K do

4: G(k) = H(k)
(
I +

∑K
l=1,l 6=k H(l)Q̄(l)H(l)H

)−1/2

5: end for
6:

{
Q̄(k)

}K
k=1

= arg maxQ(l)

∑K
l=1 log2

∣∣∣I + G(l)HQ(l)G(l)
∣∣∣

7: until sum-rate convergence

It can be seen that the algorithm is closely related to Algorithm 1. The differences
are the computation of G(k) and the water-filling in line 6. Due to the joint power
constraint, the water-filling has to be done jointly for all covariance matrices. This
water-filling is equivalent to a single-user water-filling with a block diagonal channel
H = diag

(
G(1), . . . ,G(K)

)
[JRV+05].

It is shown in [JRV+05] that Algorithm 2 always converges for K = 2. However,
for K > 2, some modifications are necessary in order to ensure convergence. These
modifications shall not be further mentioned here, because their description is lengthy
and they do not change the principle of the algorithm. They are precisely explained
in [JRV+05], together with the proof of convergence for any K.

3.3 Gaussian Channels with AF-Relay

As already mentioned in the introduction, the use of relays can increase throughput
and coverage of wireless networks, where the restriction to AF-relays ensures that
complexity and costs of the relays remain reasonable. If relays are used in multi-user
channels like the MAC or broadcast channel, especially with multiple antennas, the
computation of the capacity region becomes an enormous challenge.

29



3 Fundamentals

The main reason for the high complexity of optimizing MIMO relay channels is
that both the relay amplifying matrix and the transmit covariance matrices have to
be optimized. To make things worse, these two optimization problems can not be
considered separately but are highly dependent on each other. Therefore, this thesis
and most of the existing publications on this subject focus on maximizing the achievable
sum-rate only. As it could be seen in subsection 3.1.2, the sum-rate (together with the
single-user capacities) already gives a good approximation for the capacity region of
the MIMO MAC.

Another parameter with significant influence on the complexity of the optimization
problems is the consideration of the direct links between transmitter and receiver. If
they are considered, the complexity of the optimization problems grows even further.
Thus, there are few publications that consider direct links and, to our knowledge, the
problem of considering direct links in combination with MAC or broadcast channels
has not been addressed yet in a comparable setup.

In this section, we will describe the existing results that can be viewed as a basis
for the results of this thesis: First, we describe the results for MAC and broadcast
channels without direct links and then proceed with the results for single-user channels
with direct links.

3.3.1 Gaussian MAC with AF-Relay and No Direct Links

If the direct links of the MARC are neglected, i.e., set to zero, the model introduced
in Section 2.1 simplifies significantly. As the receiver obtains the signal from the relay
only, the last Nr rows of the equivalent channel matrices H

(k)
eff can be ignored, such that

H
(k)
eff = S−1/2HFH(k)

r

can be used instead, whereas the power constraints described in (2.1) remain the same.
Assuming that the relay matrix F is fixed, the channel can be considered as a k-user

MIMO MAC with channel matrices H
(1)
eff , . . . ,H

(K)
eff . As discussed in Subsection 3.1.2,

the achievable sum-rate can be written as

RΣ = log2

∣∣I + S−1/2HFRFHHHS−H/2
∣∣ ,

where R ,
∑K

k=1 H
(k)
r Q(k)H

(k)
r

H
. Together with the transmit power constraints the

problem of optimizing the achievable sum-rate in the K-user MIMO MARC without
direct links can be summarized and reformulated as (cf. [YH10])

max
F,Q(1),...,Q(K)

RΣ = log2

∣∣HFRFHHH + HFFHHH + I
∣∣

|HFFHHH + I|
s.t. Q(k) � 0 ∀k

tr
(
Q(k)

)
≤ P (k) ∀k

tr
(
F (I + R) FH

)
≤ Pr.

(3.11)
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Compared to the classical MAC without relay, the additional challenge in the MARC
is not only to find the optimal relaying matrix F, but also that there are now three
instead of two constraints for Q(1), . . . ,Q(K). The consequence of this is that, even if
the optimal F would be known, the optimal covariance matrices can in general not be
found by water-filling, because the additional constraint inhibits a diagonalization of
all constraints. Thus, although the problem of finding the optimal covariance matrices
is still convex for fixed F, the optimization has to be done with matrices which entails
a high computational complexity.

To make things worse, the optimal relay matrix F and the set of covariance matrices
Q(1), . . . ,Q(K) depend on each other. Hence, if the relay matrix is changed, also the
channels H

(k)
eff change and the optimal covariance matrices have to be calculated again.

This is especially crucial, because finding the optimal relaying matrix is very difficult.
To put it in a nutshell, a general optimal solution for this problem with acceptable
complexity or even in closed-form seems infeasible.

Therefore, two suboptimal algorithms for optimizing the sum-rate are presented
in [YH10]. One of those algorithms is based on a joint gradient search over F and
Q(1), . . . ,Q(K). The other one optimizes these matrices separately and in a cyclic
fashion. For the scenarios simulated in [YH10], both algorithms achieve the same per-
formance. But, as the joint gradient search is computationally intensive and a good
choice of the search gradient parameters is difficult and crucial, we will focus on the
latter algorithm here.

This algorithm, referred to as Algorithm 6 in [YH10], can be divided into two steps,
where the first step optimizes the covariance matrices and the second step optimizes
the relay matrix. These two steps are iteratively executed until the matrices remain
constant.

For the covariance matrix optimization, there is another (inner) iteration over the
users. For each user k, all matrices except Q(k) are fixed and the definitions c =
log2

∣∣I + HFFHHH
∣∣ and

G(k) = HF
(
R−H(k)

r Q(k)H(k)
r

H
)

FHHH + HFFHHH + I

are used to rewrite the sum-rate as

RΣ = log2

∣∣∣∣I + G(k)− 1
2 HFH(k)

r Q(k)H(k)
r

H
FHHHG(k)−H2

∣∣∣∣+ log2

∣∣G(k)
∣∣− c.

The relevant power constraints for maximizing RΣ with respect to Q(k) are formulated
as

tr
(
Q(k)

)
≤ P (k)

tr
(
FH(k)

r Q(k)H(k)
r

H
FH
)
≤ Pr − tr

(
F
(
I + R−H(k)

r Q(k)H(k)
r

H
)

FH
)
.
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The resulting optimization problem for Q(k) is convex and solved for all k = 1, . . . , K.
For the optimization of the relay matrix, all covariance matrices are fixed and the

singular value decomposition (SVD) of H is given by H = UhΣhV
H
h , where Σh =

diag (σ1, . . . , σn) with descending diagonal order and n = min {Nr, Nf}. Furthermore,
R = UrΣrU

H
r represents the eigenvalue decomposition (EVD) of R, where Σr =

diag
(
λ1, . . . , λNf

)
with descending diagonal order. As shown in [FHK06], the optimal

structure of the relaying matrix is given by

F = VhΣfU
H
r , (3.12)

where Σf = diag
(
f1, . . . , fNf

)1/2
is a diagonal matrix whose entries have to be found

by optimization. Using these decompositions, the optimization with respect to F can
be reformulated as (cf. [YH10])

max
f1,...,fNf

RΣ =
n∑

i=1

log2

(
1 +

σ2
i λifi

1 + σ2
i fi

)

s.t.

Nf∑

i=1

(1 + λi)fi ≤ Pr

fi ≥ 0 ∀i.

(3.13)

As derived in [YH10] by exploiting the Karush-Kuhn-Tucker (KKT) conditions, the
solution of this problem can be written as

fi =
1

2σ2
i (1 + λi)

·max

{
0,
√
λ2
i + 4λiσ2

i µ− λi − 2

}
,

where the parameter µ is chosen such that the power constraint is fulfilled, i.e.,

Nf∑

i=1

1

2σ2
i

·max

{
0,
√
λ2
i + 4λiσ2

i µ− λi − 2

}
= Pr.

Although an optimal solution is obtained in both steps, it can not be ensured that
the algorithm reaches the global optimum for two reasons. First, there is no proof of
convergence. Second, even if the algorithm would converge it can not be ensured that
it will find the global optimum, because the overall problem is not convex and both
steps of the algorithm find the optimal solution only for the parameters calculated in
the other step, for which global optimality can not be ensured.

3.3.2 Gaussian BC with AF-Relay and No Direct Links

For broadcast channels with an additional relay, as introduced in Section 2.2, the
problems concerning the computation of the capacity region or the sum capacity are
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3.3 Gaussian Channels with AF-Relay

the same as in the broadcast channel without relay. The main issue is again the
nonconvexity of the problems, which makes the computation very complex. As in the
MARC, the optimization of the relay can not be done separately, which increases the
complexity even further.

This subsection will give an overview of existing approaches for the BRC. First, we
briefly describe a result on the establishment of a duality between BRC and MARC
[JGH07]. Unfortunately, this duality is only shown for single-antenna transmitters and
receivers, such that it is not usable for most of the cases considered in this work. Sub-
sequently, we describe approaches for the MISO BRC based on ZF-DPC [CTHC08].
Like the duality approach, we do not explain these results in detail. The reason for this
is that [YH10], which describes results both for DPC and ZF-DPC in MIMO channels,
has a more general channel model. Hence, we use these results for a detailed explana-
tion.

Looking at the results for the broadcast channel without relay, the most obvious
approach for simplifying the search for optimal covariance matrices in the BRC is the
use of some kind of duality with the MARC. However, the duality of MAC and BC
from [VJG03] can not be directly transferred to channels with relay. Even if the relay
matrix F would be fixed and only the covariance matrices are considered, the creation of
a duality relationship as in [VJG03] collapses with the relay power constraint, because
the matrices between transmitter and relay are different in the dual channels.

A novel approach to establish a duality between BRC and MARC has been made
in [JGH07]. It is shown, that a MARC with AF-relay and sum power constraint P and
relay power Pr is dual to the BRC with opposite transmit direction, transmit power
Pr, and relay power P . Thus, the relay power of the dual MARC is the transmit power
of the BRC and the total transmit power of the dual MARC is the relay power of the
BRC. Although the dual MARC is different from the one discussed in the preceding
section (because of the sum transmit power constraint instead of individual per user
constraints), this duality is an enormous simplification for finding the capacity region
of a class of BRCs.

As the model in [JGH07] also encompasses multiple hops and relays, it is in some
parts more general than the models considered here. However, there is one restriction,
which makes the model unusable for most of the cases considered in this work: It is
assumed that all nodes except the relay have a single antenna. Furthermore, the model
is restricted to real signals and the necessary phase optimization for the complex case
is not discussed. The authors of [JGH07] only conjecture that their results also hold
for channels with MIMO nodes, but state that the duality with MIMO nodes would be
especially challenging as the structure of the transmitted signal covariance matrix on
the dual MAC and BC will be different.

Another approach, which is also applicable with MIMO nodes, is the use of ZF-
DPC. As in the broadcast channel without relay, this simplifies the optimization of the
transmit strategy significantly. However, also here the joint search for optimal relaying
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and transmit covariance matrices poses an enormous challenge.
This challenge is faced in [CTHC08], where several algorithms are described to opti-

mize the sum-rate in MISO BRCs:

• As first simple idea, the authors of [CTHC08] use a so-called all-pass relay with
relaying matrix F = γI, where γ is chosen such that the relay power constraint
is met. Although this approach is far away from being optimal, it has the same
complexity as finding the optimal sum-rate of a broadcast channel using ZF-DPC.

• A more involved approach optimizes also the relay by using a relaying matrix
with a structure similar to the one in (3.12). By using a high signal-to-noise
ratio (SNR) approximation of the sum-rate the problem is then turned into a
convex problem, which allows for an easier solution, although the complexity
is still considerable. Furthermore, the optimum selection of the active users in
ZF-DPC (cf. Subsection 3.2.2) is done by exhaustive search, which makes the
complexity even higher.

• In order to reduce the complexity of the preceding approach, a third algorithm is
presented in [CTHC08]. This algorithm uses a reduced-complexity algorithm for
selecting the active users, which is based on a lower bound. This lower bound in-
cludes an equal power distribution on the active users in the system, which yields
a further reduction of the complexity. The remaining optimization parameter,
the power allocation at the relay can then be found by water-filling.

A generalization to MIMO BRCs with both DPC and ZF-DPC is given in [YH10].
Using DPC with encoding order π as described in Subsection 3.2.2 for the model de-
scribed in Section 2.2, the rate of user π(k) can be written as (cf. [YH10])

Rπ(k) = log2

∣∣∣H(k)FHr

∑
i≥k Qπ(i)HH

r FHH(k)H + H(k)FFHH(k)H + I
∣∣∣

∣∣∣H(k)FHr

∑
i>k Qπ(i−1)HH

r FHH(k)H + H(k)FFHH(k)H + I
∣∣∣
.

Together with the power constraints for the transmitter and the relay, the problem of
finding the optimal sum-rate can be written as

max
F,Q(1),...,Q(K)

RΣ =
K∑

k=1

Rπ(k)

s.t. tr

(
K∑

k=1

Q(k)

)
≤ P

tr

(
F

(
I + Hr

K∑

k=1

Q(k)HH
r )

)
FH

)
≤ Pr

Q(k) � 0 ∀k.
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Unfortunately, this problem is nonconvex and hard to solve. In [YH10] a joint gradi-
ent algorithm is used to solve the problem. However, as in the MARC, the joint gradient
search is computationally intensive and a good choice of the search gradient parameters
is difficult and crucial. Therefore, this solution is not further considered in this thesis.
Instead, we propose a solution of the problem based on duality in the following chap-
ter and give a more detailed explanation of the ZF-DPC based approach of [YH10] here.

As explained in Subsection 3.2.2, ZF-DPC can simplify the problem of finding good
transmit strategies for the MIMO broadcast channel. The same holds in the BRC, but
as in the MARC, the additional optimization of the relay matrix makes the problem
more involved and requires some modifications. Instead of considering the full channel
from transmitter to receiver, the stacked channel matrix Hc ∈ CNΣ×Nf is built with
the channel matrices from the relay to the receivers in [YH10], i.e.,

Hc =




H(1)

...
H(K)


 = RG, (3.14)

where NΣ =
∑K

k=1N
(k)
r and RG is the QR-decomposition of Hc, where R ∈ CNΣ×Nf

is lower triangular and G ∈ CNf×Nf is unitary.
Defining the SVD of Hr as Hr = UhΣhV

H
h , where Σh = diag (σ1, . . . , σn) with de-

scending diagonal elements and n = min {Nf , Nt}, the authors of [YH10] (cf. [CTHC08])
construct the relay matrix as

F = GHΣfU
H
h

Σf = diag
(
f1, . . . , fNf

)1/2
.

This construction is a heuristic choice without any proof of optimality, but the moti-
vation of this choice becomes clear when looking at the received vector yc ∈ CNΣ . As
the input signals are precoded as x = Vhx̃, the received vector can be written as

yc = HcFHrx + HcFzr + zc = RΣfΣhx̃ + RΣf z̃r + zc,

where zr ∼ CN (0, I) is the noise from the relay and z̃r = UH
h zr. It can be seen that the

above choice of the matrix F ensures that the overall matrix between the transmitted
vector x̃ and the received vector yc (without noise) remains lower triangular.

As in the broadcast channel without relay, yc contains the signals of all receive
antennas, where at most the first Nt antennas are in use, such that the signal of the
i-th receiving antenna can be written as

yci = Ri,if
1/2
i σix̃i +

∑

j<i

Ri,jf
1/2
j σjx̃j +

∑

j≤i
Ri,jf

1/2
j z̃j + zci.

The second term, which contains the interference from the signals x̃j with j > i can
again be eliminated by the use of DPC as in Subsection 3.2.2. On the contrary, the
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additional noise terms from the relay z̃j (j ≥ i) can not be mitigated by DPC, also not
for j > i. Hence, signals that are encoded early in DPC suffer from more relay noise.

Finally, using Pi , E (|x̃i|2) to denote the power given to the i-th data stream, the
problem of finding the optimal sum-rate is given by (cf. [YH10])

max
f1, . . . , fNf ,
P1, . . . , PNt

RΣ =
Nt∑

i=1

log2

(
1 +

|Ri,i|2|σi|2fiPi
1 +

∑i
j=1 |Ri,j|2fj

)

s.t.
Nt∑

i=1

Pi ≤ P

Nt∑

i=1

fi
(
1 + |σi|2Pi

)
≤ Pr

Pi ≥ 0 ∀i.

(3.15)

Note that this optimization problem assumes a fix order of the channel matrices from
the relay to the receivers in Hc, where the order given in (3.14) is only one example.
As mentioned in Subsection 3.2.2, further gains can be achieved by permuting the rows
of Hc.

In [YH10], two approaches are used to solve the optimization problem (3.15). The
first approach is adopted from [CTHC08], where the sum-rate is lower bounded by

RΣ ≥
Nt∑

i=1

log2

(
|Ri,i|2|σi|2fiPi

1 +
∑i

j=1 |Ri,j|2fj

)
= − log2

Nt∏

i=1

(
1 +

∑i
j=1 |Ri,j|2fj

|Ri,i|2|σi|2fiPi

)
,

which is a good approximation at high SNR. Optimizing this lower bound is a geometric
program, which can be transformed into a convex problem and solved with well-known
standard algorithms [BV04].

The second approach separates the optimization of f1, . . . , fNf and P1, . . . , Pt and
optimizes both parameter sets alternately, similar as in the MARC. While the problem
of finding P1, . . . , Pt is convex and can again be solved by standard algorithms for
convex problems, the relay matrix parameters f1, . . . , fNf are found by gradient search.

3.3.3 Gaussian Single-User Channel with Direct Links

A more general model for relay channels is obtained if also the direct links between
transmitter(s) and receiver(s) are taken into consideration. Especially if a direct link
is strong, which might be the case if the receiver is closer to the transmitter than
the relay, a model that neglects the direct link does not reflect the situation and the
achievable performance correctly. However, integrating direct links in the relay channel
is mathematically challenging. Therefore, most of the work on relay channels with
direct links make use of some other simplifications.
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In the following, we will review the most interesting result for the models considered
in this work, which is given in [TH07]. This paper considers a single-user MIMO channel
with MIMO AF-relay, where the transmitter does not know the channel. Thus, the
transmitter can not distribute its power on the antennas according to a precoding
matrix that fits the channel conditions. Nevertheless, this assumptions lie in the scope
of our channel model introduced in Section 2.1 if we set4 K = 1 and Q = P

Nt
I. Hence,

the remaining variable for optimization is only the relay matrix F.
Using the well-known formula, the achievable rate of this single-user channel can be

written as

R = log2

∣∣∣∣I + Heff
P

Nt

I HH
eff

∣∣∣∣ = log2

∣∣∣∣I +
P

Nt

HH
effHeff

∣∣∣∣ ,

where Heff is the effective channel defined in Section 2.1. A form of the rate that is
better suited for optimizing over F is obtained by expanding Heff, such that

R = log2

∣∣∣∣I +
P

Nt

[
HH
r FHHHS−H/2 HH

d

] [S−1/2HFHr

Hd

]∣∣∣∣

= log2

∣∣∣∣I +
P

Nt

(
HH
r FHHHS−1HFHr + HH

d Hd

)∣∣∣∣

= log2

∣∣∣∣I +
P

Nt

(
HH
r Hr −HH

r

(
I + FHHHHF

)−1
Hr + HH

d Hd

)∣∣∣∣ .

For further simplification, [TH07] introduces H̃ , Hr

(
I + P

Nt
HH
d Hd

)−1/2

, which can

be interpreted as the “projection” of Hr onto Hd, and write

R = log2

∣∣∣∣
(

I +
P

Nt

HH
d Hd

)(
I +

P

Nt

(
H̃HH̃− H̃H

(
I + FHHHHF

)−1
H̃
))∣∣∣∣

= log2

∣∣∣∣I +
P

Nt

HH
d Hd

∣∣∣∣
︸ ︷︷ ︸

,c

+ log2

∣∣∣∣I +
P

Nt

(
H̃H̃H − H̃H̃H

(
I + FHHHHF

)−1
)∣∣∣∣ .

In this form of R, the first term is a constant denoted as c. For optimizing the second
term, we introduce the SVDs H̃ = ŨΣ̃ṼH , H = UhΣhV

H
h and fix the structure of F

as
F = VhΣfV

H
f ,

where Vf is an arbitrary unitary matrix and Σf is arbitrary and not necessarily diag-
onal. Hence, this choice of F does not restrict the possible solutions for F. Using this
notations, the rate can be further rewritten as

RΣ = c+ log2

∣∣∣∣I +
P

Nt

(
Σ̃Σ̃H − Σ̃Σ̃HŨH

(
I + VfΣ

H
f ΣH

h ΣhΣfV
H
f

)−1
Ũ
)∣∣∣∣

= c+ log2

∣∣∣∣I +
P

Nt

(
Σ̃Σ̃H − Σ̃Σ̃HŨHVf

(
I + ΣH

f ΣH
h ΣhΣf

)−1
VH
f Ũ
)∣∣∣∣ .

4As there is only one user, we omit the superscript
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Clearly, it can be seen that choosing Vf = Ũ and using a diagonal Σf would diago-
nalize the determinant and allow a simplified optimization with respect to the diagonal
elements. However, looking at the relay power constraint, we obtain

tr

(
F

(
I +

P

Nt

HrH
H
r

)
FH

)
= tr

(
Σf

(
I +

P

Nt

VH
f HrH

H
r Vf

)
ΣH
f

)
≤ Pr,

i.e., choosing Vf = Ũ with a diagonal Σf would not diagonalize the power constraint.
For this purpose Vf should be the left singular vectors of Hr. The reason for this
problem is that the direct links influence the sum-rate and hence also the choice of F
that maximizes the sum-rate, while for the power constraint the direct links do not
play a role. Consequently, the optimal structure of F is not known.

In order to approach the optimal achievable rates, two lower bounds and one upper
bound are given in [TH07]. The upper bound is obtained by relaxing the relay power
constraint as

tr

(
F

(
I +

P

Nt

HrH
H
r

)
FH

)
= tr

(
F

(
I +

P

Nt

H̃H̃H

)
FH

)

+
P 2

N2
t

tr
(
FH̃HH

d HdH̃
HFH

)

≥ tr

(
F

(
I +

P

Nt

H̃H̃H

)
FH

)
,

i.e., the relationship between Hr and H̃ is used to split up the power constraint in
two terms, where the second one is neglected. Obviously, this constraint is now also
diagonalized by choosing Vf = Ũ and Σf diagonal. This leads to the optimal solution
for the upper bound, which is explained in detail in [YH10].

The first lower bound is directly computed from this solution, the optimal F for the
upper bound is multiplied by a scalar γ ∈ R, such that the original (and not the relaxed)
power constraint is fulfilled with equality. For the second lower bound, the direct link
is simply neglected, i.e., the relay matrix that would be optimal if Hd = 0 is used which
leads to Vf being the left singular values of Hr and a diagonal Σf (details about the
channel without direct links can be found in [TH07]). This solution is then simply
used in the channel with nonzero direct links, although this is clearly not optimal. The
simulation results in [TH07] show that usually the first lower bound performs better.
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4
Relaying for MISO Multi-User
Channels without Direct Links

In this section, the results for multi-user channels with AF-relay and without direct links
between the transmitter(s) and receiver(s) are presented, where we restrict ourselves to
MISO channels. First, we introduce a novel transmit strategy for relay channels based
on TDMA, which is especially useful in the MARC. In Section 4.2, we will compare this
technique which divides the channel by using time slots to the prevailing strategy of
transmitting all signals jointly. We will show that the TDMA-based strategy achieves
strictly higher sum-rates in the MISO MARC. Subsequently, we will consider the MISO
BRC in Section 4.3. As the use of ZF-DPC for this channel is well studied [CTHC08,
YH10] but the issues concerning the complexity remain, we will introduce an efficient
algorithm which makes use of the duality between MAC and BC (without relay). This
algorithm has a reduced complexity and achieves approximately the same rates as the
best possible ZF-DPC algorithms.

4.1 TDMA-based Relaying and Single-User Relay

Channels

As described in the preceding section, finding the optimal transmit strategy for channels
with relay can be very challenging in multi-user channels. As in channels without relay,
the use of TDMA can simplify this problem. The main reason for this is that only one
user is active at a time, i.e., there is no interference and the optimization of the transmit
covariance matrices becomes simpler. On the other hand, the duration of the time slots
has to be optimized, which increases the complexity again. However, this optimization
is usually much easier to solve such that the overall complexity is smaller.

But complexity is not the only advantage of TDMA. With the TDMA strategy
proposed here, the relay also incorporates the time slot structure, i.e., a different relay
matrix can be chosen in each time slot. This allows to choose the relay matrix such
that it exactly fits to the channel of the active user only, which is an advantage. If
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4.2 Gaussian MISO MAC with AF-Relay

By simplifying the sum-rate and considering the power constraints at the transmit-
ter and the relay, we can formulate the optimization problem of the single-user relay
channel as (cf. [FHK06, KMH12b])

max
f

(k)
1 , . . . , f

(k)
Nf

q
(k)
1 , . . . , q

(k)

N
(k)
t

R =
n∑

i=1

log2

(
1 +

σ2
i λ

(k)
i q

(k)
i f

(k)
i

1 + σ2
i f

(k)
i

)

s.t.
Nr∑

i=1

(λ
(k)
i q

(k)
i + 1)f

(k)
i ≤ Pr, f

(k)
i ≥ 0 ∀i

N
(k)
t∑

i=1

q
(k)
i ≤ P (k), q

(k)
i ≥ 0 ∀i,

(4.1)

where n = min
(
N

(k)
t , Nf , Nr

)
. Unfortunately, although there is only a single user, the

problem above is nonconvex and therefore hard to solve. However, in the following we
will see that by considering MISO channels this problem has a simple solution, which
allows several interesting insights about the performance of TDMA in MISO channels.

4.2 Gaussian MISO MAC with AF-Relay

If we consider a MISO MARC instead of a MIMO MARC, the basic problem remains
the same: both the transmit covariance matrices and the relay matrix have to be
optimized. However, there is one advantage which finally gives us the opportunity
to solve the problem. The former channel matrix H between relay and receiver now
becomes a row vector denoted by hH .

We will show that for this case a relaying matrix of rank 1 is optimal both with joint
relaying and with TDMA, for which we can give a closed-form solution. Using this
solution, we will also identify the optimal covariance matrices and obtain a closed-form
solution for the sum-rate, again both for joint relaying and TDMA. This allows us to
finally compare the achievable sum-rates of the two schemes in Subsection 4.2.3, where
we will see that TDMA achieves always at least the same performance as joint relaying.
Moreover, in practical scenarios, TDMA is strictly better.

4.2.1 Optimal Sum-Rate with Joint Relaying

If the signals are all transmitted at the same time, the optimization of the sum-rate is
basically the same as in (3.11). However, considering the single-antenna receiver and
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4 Relaying for MISO Multi-User Channels without Direct Links

recalling that R =
∑K

k=1 H
(k)
r Q(k)H

(k)
r

H
the problem reduces to

max
F,Q(1),...,Q(K)

RΣ = log2

(
1 +

hHFRFHh

hHFFHh + 1

)

s.t. Q(k) � 0 ∀k
tr
(
Q(k)

)
≤ P (k) ∀k

tr
(
F (I + R) FH

)
≤ Pr,

(4.2)

i.e., the determinant vanishes because the respective left and right matrices in the
expression are now row and column vectors, respectively.

Now, let Q(1), . . . ,Q(K) be fixed and consider the optimization with respect to F.
Recall from [FHK06] and Subsection 3.3.1 that the optimal structure for the relaying
matrix is given by (3.12). Thus, we can give the same scalar reformulation of the
optimization with respect to F as in (3.13). The difference is only that here n = 1 (as
Nr = 1), such that there is only one logarithmic term. Thus, we obtain

max
f1,...,fNf

RΣ = log2

(
1 +

hHhλ1f1

1 + hHh f1

)

s.t.

Nf∑

i=1

(1 + λi)fi ≤ Pr

fi ≥ 0 ∀i.

Clearly, the squared norm of h replaces the largest squared singular value σ1 of H,
because hH has only one singular value, which is its norm.

Obviously, the solution of this optimization problem is to assign all possible relay
power to f1, because it is the only value from f1, . . . , fNf that contributes to the rate.

This results in f1 = Pr (1 + λ1)−1 , f2 = . . . = fNf = 0 being the optimal solution of
the scalarized problem, whereas the optimal relaying matrix can be written as

F =
h vHmax (R)

||h||

√
Pr

1 + λ1

, (4.3)

where vmax (R) denotes the eigenvector corresponding to the largest eigenvalue
λmax (R) = λ1 of the matrix R. Using this result in the sum-rate expression of (4.2),
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4.2 Gaussian MISO MAC with AF-Relay

we get

RΣ = log2

(
1 +

Prh
HhvHmax (R) Rvmax (R) hHh

hHhvHmax (R) vmax (R)PrhHh + ||h||2(1 + λmax (R))

)

= log2

(
1 +

||h||2Prλmax (R)

1 + ||h||2Pr + λmax (R)

)

= log2

(
(1 + ||h||2Pr) (1 + λmax (R))

(1 + ||h||2Pr + λmax (R))

)

= log2

(
1 + ||h||2Pr

)
− log2

(
1 +

||h||2Pr
1 + λmax(R)

)
.

Hence, the optimization with respect to F is complete and maximizing the achiev-
able sum-rate is equivalent to maximizing λmax (R), which can be done by optimizing
the covariance matrices Q(1), . . . ,Q(K). Before we state a theorem about the optimal
solution of this problem, we need to introduce two lemmas.

Lemma 1

Let A,B ∈ Cn×n be positive semidefinite matrices. Then, if A − B is positive
semidefinite (A � B), we have λmax (A) ≥ λmax (B).

Proof : Let vmax (B) be the eigenvector corresponding to the eigenvalue λmax (B) with
||vmax (B) || = 1. Then, we have

λmax (B) = vmax (B)H Bvmax (B)

≤ vmax (B)H Bvmax (B) + vmax (B)H · (A−B) · vmax (B)

=
vmax (B)H Avmax (B)

vmax (B)H vmax (B)

≤ λmax(A),

where the first inequality is due to the positive semidefiniteness of A − B and the
last inequality can be derived from the Rayleigh quotient.

Lemma 2

Let Π ∈ Cn×n be a positive semidefinite matrix with tr(Π) ≤ P and A ∈ Cm×n .
Then,

AAHP � AΠAH .

Proof : The lemma can be equivalently formulated as

xHA(P I−Π)AHx ≥ 0 ∀x ∈ Rm.

Hence, it is sufficient to show that P I − Π is a positive semidefinite matrix. Let
λ1, . . . , λn be the eigenvalues of Π with λ1 ≥ λ2 ≥ . . . ≥ λn. Then, we have

P ≥ tr(Π) =
n∑

i=1

λi ≥ λ1,
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4 Relaying for MISO Multi-User Channels without Direct Links

where the second inequality holds because we have Π � 0 and thus λi ≥ 0 ∀i. Using
λmin(P I−Π) to denote the minimum eigenvalue of P I−Π, we can write

λmin(P I−Π) = P − λmax(Π) = P − λ1 ≥ 0,

i.e., P I−Π is positive semidefinite.

With these two lemmas, we can now formulate the following theorem.

Theorem 3

The optimal value of λmax (R) given by the nonconvex optimization problem

max
Q(k)

λmax (R)

s.t. tr
(
Q(k)

)
≤ P (k) ∀k

is λmax

(∑K
k=1 H

(k)
r H

(k)
r

H
P (k)

)
.

Proof : Define R̃ =
∑K

k=1 H
(k)
r H

(k)
r

H
P (k). Using Lemmas 1 and 2, it is directly seen

that λmax(R) ≤ λmax

(
R̃
)

. For showing the achievability of this solution, let

Q(k) =
H

(k)
r

H
vvHH

(k)
r

vHH
(k)
r H

(k)
r

H
v
P (k) (4.4)

with v = vmax(R̃). Apparently, tr
(
Q(k)

)
≤ P (k) is satisfied and we can write

λmax(R) = vmax(R)H

(
K∑

k=1

H(k)
r Q(k)H(k)

r

H

)
vmax(R) (4.5)

≥ vH

(
K∑

k=1

H(k)
r Q(k)H(k)

r

H

)
v (4.6)

=

K∑

k=1

vHH(k)
r H(k)

r

H
P (k)v = λmax

(
R̃
)
, (4.7)

where (4.6) follows from the Rayleigh quotient and (4.7) is obtained by using (4.4)
and writing v and vH inside the sum. Thus, choosing Q(k) as in (4.4) leads to the

optimal value λmax

(
R̃
)

.

Using this optimal choice of the covariance matrices together with the optimal relaying
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4.2 Gaussian MISO MAC with AF-Relay

matrix the achievable sum-rate for joint relaying can be finally expressed as

RΣ = log2

(
1 + ||h||2Pr

)
− log2


1 +

||h||2Pr
1 + λmax

(
R̃
)


 . (4.8)

4.2.2 Optimal Sum-Rate with TDMA

If the proposed TDMA scheme is used in the MISO MARC, the channel is, as described
in Section 4.1, divided in K single-user MISO channels. For these single-user channels,
we face the same optimization problem as for MIMO single-user channels from (4.1).
However, we have the simplification of a single receive antenna, which makes n = 1
and reduces the sum of logarithms to a single logarithm, i.e.,

max
f

(k)
1 , . . . , f

(k)
Nf

q
(k)
1 , . . . , q

(k)

N
(k)
t

R = log2

(
1 +

hHhλ
(k)
1 q

(k)
1 f

(k)
1

1 + hHhf
(k)
1

)

s.t.
Nr∑

i=1

(λ
(k)
i q

(k)
i + 1)f

(k)
i ≤ Pr, f

(k)
i ≥ 0 ∀i

N
(k)
t∑

i=1

q
(k)
i ≤ P (k), q

(k)
i ≥ 0 ∀i.

As with joint relaying, the squared norm of h replaces the squared largest singular
value σ1 of the former matrix H, because they are the same. And again, the solution
of this problem is simple, because also here only f

(k)
1 contributes to the rate, which

makes it optimal to assign all possible relay power to f
(k)
1 . But, contrary to the case of

joint relaying, exactly the same holds for q
(k)
1 , i.e., q

(k)
2 , . . . , q

(k)

N
(k)
t

do not contribute to

the rate and all transmit power should be assigned to q
(k)
1 .

Hence, the optimal solution for the optimization problem given above is q
(k)
1 = P (k),

q
(k)
2 = . . . = q

(k)

N
(k)
t

= 0, f
(k)
1 = Pr

(
1 + λ

(k)
1 P (k)

)−1

, f
(k)
2 = . . . = f

(k)
Nf

= 0. Using this

solution, the optimal rate in MISO single-user relay channels can be written as

R = log2

(
1 +

hHhλ
(k)
1 P (k)Pr

1 + hHhPr + λ
(k)
1 P (k)

)

= log2

(
1 + ||h||2Pr

)
− log2

(
1 +

||h||2Pr
1 + λ

(k)
1 P (k)

)
.

When this optimal transmit strategy shall be combined with the use of TDMA with
time slots of duration τ (1), . . . , τ (K) in a MARC, two things have to be considered when
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4 Relaying for MISO Multi-User Channels without Direct Links

calculating the rate of a user. First, as user k is only active for τ (k) fraction of time, its
rate has to be multiplied by τ (k). Second, for the same reason user k can increase its
transmit power to P (k)

τ (k) and still have an average transmit power of P (k). Taking this
into account the rate of user k in a MISO MARC with TDMA structure is given by

R
(k)
TDMA = τ (k)

[
log2

(
1 + ||h||2Pr

)
− log2

(
1 +

||h||2Pr
1 + λ

(k)
1

P (k)

τ (k)

)]

As it can be seen, the remaining optimization variables to maximize the sum-rate
RΣ,TDMA =

∑K
k=1R

(k)
TDMA are the duration of the time slots τ (1), . . . , τ (K). Their optimal

values are given by the following theorem.

Theorem 4

For the considered TDMA transmission scheme in the K-user MISO MARC with-
out direct links, the duration of the time slots τ (1), . . . , τ (K) that maximizes the
sum-rate is given by

τ
(k)
opt =

λ
(k)
1 P (k)

K∑
l=1

λ
(l)
1 P

(l)

. (4.9)

Proof : Consider the optimization problem

max
τ (1),...,τ (K)

RΣ,TDMA(τ )

s.t. h(τ ) = 1−
K∑

k=1

τ (k) = 0,

where we introduced the vector τ =
[
τ (1), . . . , τ (K)

]
and wrote RΣ,TDMA as a func-

tion of τ to be more consistent with the notation used in optimization theory. As

R
(k)
TDMA depends only on τ (k) but not on the other components of τ , the first deriva-

tive of RΣ,TDMA(τ ) can be calculated as

∂RΣ,TDMA

∂τ (k)
=

∂

∂τ (k)

(
R

(k)
TDMA

)
= log2

(
1 + ||h||2Pr

)
− log2

(
1 +

||h||2Pr
1 + λ

(k)
1

P (k)

τ (k)

)

− log2(e)||h||2Prλ(k)
1 P (k)

τ (k)
(
1 + λ

(k)
1

P (k)

τ (k)

)(
1 + λ

(k)
1

P (k)

τ (k) + ||h||2Pr
) .

Hence, this derivative depends only on τ (k), such that the Hessian matrix of
RΣ,TDMA is diagonal, where the diagonal elements are the second derivatives with
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respect to τ (k) given by

∂2RΣ,TDMA

∂τ (k)2 =
∂2

∂τ (k)2R
(k)
TDMA

= −
log2(e)

(
2τ (k) + 2λ

(k)
1 P (k) + ||h||2Prτ (k)

)
P (k)2

λ
(k)
1

2
||h||2Pr

(
τ (k) + λ

(k)
1 P (k) + ||h||2Prτ (k)

)2 (
τ (k) + λ

(k)
1 P (k)

)2 .

As
∂2RΣ,TDMA

∂τ (k)2 < 0, the target function RΣ,TDMA is concave with respect to τ , which

makes the optimization problem convex.

Therefore, the Karush-Kuhn-Tucker (KKT) conditions provide necessary and suf-
ficient conditions for optimality. For the underlying problem, the KKT conditions
of a solution τ ∗ with dual variable ν∗ to be optimal can be formulated as

h(τ ∗) = 0

∇RΣ,TDMA(τ
∗) + ν∗∇h(τ ∗) = 0,

where ∇ denotes the gradient of a function. If we choose τ ∗ as suggested in Theorem
4, the first condition is obviously fulfilled. For the second condition we can calculate
the derivatives of RΣ,TDMA and h at the point τ = τ ∗ as

∂RΣ,TDMA

∂τ (k)

∣∣∣∣
τ=τ∗

= log2

(
1 + ||h||2Pr

)
− log2

(
1 +
||h||2Pr
1 + S

)

− ||h||2PrS
(1 + S) (1 + S + ||h||2Pr)

∂h

∂τ (k)
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τ=τ∗

= −1,

where S =

(
K∑
k=1

λ
(k)
1 P (k)

)−1

. As the derivatives with respect to τ (k) are the same in

all components k = 1, . . . ,K, we can select ν∗ = ∂RΣ,TDMA

∂τ (k)

∣∣∣
τ=τ∗

and also the second

KKT condition is fulfilled.

Employing these optimal duration of the time slots, the maximum achievable sum-rate
for the TDMA-based transmission scheme can be written as

RΣ,TDMA = log2

(
1 + ||h||2Pr

)
− log2


1 +

||h||2Pr
1 +

K∑
k=1

λ
(k)
1 P (k)


 . (4.10)
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4.2.3 Comparison of TDMA and Joint Relaying

The superiority of the proposed TDMA-based scheme compared to the previously con-
sidered joint relaying scheme is established by the following theorem.

Theorem 5

In the considered K-user MARC, the TDMA-based transmission scheme, where
the duration of the time slots τ (k) is given by (4.9), achieves at least the same
sum-rate as the joint relaying scheme, i.e.,

RΣ,TDMA ≥ RΣ. (4.11)

Proof : Comparing the rate expressions of RΣ,TDMA and RΣ from (4.10) and (4.8), re-

spectively, it can be seen that it is sufficient to show that
∑K

k=1 λ
(k)
1 P (k) ≥ λmax

(
R̃
)

.

Recalling that R̃ ,
∑K

k=1 H
(k)
r H

(k)
r

H
P (k), this is obtained by writing

K∑

k=1

λ
(k)
1 P (k) =

K∑

k=1

λmax

(
H(k)
r H(k)

r

H
P (k)

)
(4.12)

≥ λmax

(
R̃
)
, (4.13)

where (4.13) follows from the convexity of the maximum eigenvalue operation [BV04].

Note that (cf. [KT01]) in (4.13), and therefore also in Theorem 5, equality holds

only if all eigenvalues λmax

(
H

(k)
r H

(k)
r

H
P (k)

)
have the same eigenvector. However, if

the matrices H
(k)
r are statistically independent, which is a valid assumption in practical

systems, this happens with probability zero if Nr > 1. The consequence of this is that
the TDMA-based approach is strictly better in practice.

A plausible explanation for this fact is obtained by assuming the relay matrix F is
fixed to the optimal value for joint relaying given in (4.3). The remaining optimization
problem of finding Q(1), . . . ,Q(K) is then equivalent to the one that has to be solved
for a MISO MAC. As explained at the end of Subsection 3.1.2, the optimal sum-rates
of TDMA and successive decoding (which corresponds to joint relaying) are equal in
the MISO MAC. If F is chosen as in (4.3), this sum-rate equals the optimal sum-rate
of joint relaying in the MISO MARC. Concerning TDMA in the MISO MARC, this
rate is also achievable by setting all F(1), . . . ,F(K) as in (4.3). However, as in TDMA
the relay matrices must not be equal in all time slots, this choice does not achieve the
optimal sum-rate. Finally, the advantage of TDMA is that the relay matrices can be
perfectly adjusted to the channel of the single active user. On the contrary, there is
only one relay matrix in joint relaying, which has to find a compromise such that not
only one but all incoming signals are amplified as good as possible.
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Figure 4.2: Sum-rates in the MISO MARC with K = 10 and Nr = Nt = 3

Although Theorem 5 clearly states the superiority of TDMA, the question for the
quantitative gain in practical systems remains. In order to give a rough estimate, what
gain can be expected, we will present a set of simulation results in the following. These
simulations assume channels with independent Rayleigh fading, i.e., all entries of the
channel matrices are ∼ CN (0, 1) and independent from each other. Furthermore, the

transmitters are assumed to have the same number of antennasN
(1)
t = . . . = N

(K)
t = Nt,

and the same transmit power P (1) = . . . = P (K) = P . All results presented in this
subsection are obtained by averaging over 1000 channel realizations

The achievable sum-rates with joint relaying and the TDMA-based scheme for a sys-
tem with K = 10 users are visualized in Figure 4.2. We assumed that all transmitters
and the relay have Nt = Nf = 3 antennas, while, as a prerequisite of this scenario, the
receiver is assumed to have a single antenna. As we assume a unit noise variance the
available power at transmitters and relay equals the associated SNRs, which are iden-
tified by SNRt and SNRr, respectively. While for SNRt, we consider the three values 4
dB, 10 dB, and 16 dB, SNRr is varied between −10 and 40 dB in steps of 1 dB. It can be
observed that, especially for high values of SNRr, the performance of the TDMA-based
scheme is up to 10% better than that of the joint relaying scheme.

For a broader evaluation of the two investigated AF-based schemes, we also plotted
the sum-rate achieved by decode-and-forward (DF). It can be shown that DF, with
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4.3 Gaussian MISO Broadcast Channel with

AF-Relay

As already mentioned in the previous chapter, the problem of finding optimal transmit
strategies for broadcast channels is usually much harder to solve than for MACs. While
for channels without relay, this problem can be simplified by utilizing the duality with
the MAC, there is no general duality between the BRC and the MARC. So far, the most
promising approach for the BRC is the use of ZF-DPC as explained in Subsection 3.3.2,
which uses a heuristic choice of the relaying matrix to scalarize the problem. However,
also this scalar problem is nonconvex and hard to solve such that the complexity remains
high.

In the following subsection, we are going to introduce an algorithmic structure, which
attempts to find a good transmit strategy for the MISO BRC with DPC instead of ZF-
DPC. This algorithmic structure is heuristic and solves only parts of the problem.
However, already this structure provides some significant simplifications such that the
remaining optimization problems are much easier to solve than those of ZF-DPC. Using
brute-force approaches for the remaining optimization problems of both ZF-DPC and
our DPC algorithm, we will show in Subsection 4.3.2 that the performance of both
schemes is approximately the same.

A key technique in our algorithmic structure is the use of the duality theory, which
relates the capacity region of MAC and broadcast channels. Although this duality can
not be directly extended to channels with a relay, we will use the MAC domain to solve
a part of the problem.

4.3.1 Achievable Scheme Based on MAC-Broadcast Channel
Duality

For the considered MISO BRC, the channel model described in Section 2.2 holds.
Similar to the MARC, the restriction to a single receive antenna allows us to write

the channel matrices from the relay to the destinations as row vectors h(1)H , . . . ,h(K)H

instead of matrices H(1), . . . ,H(K). Hence, the signal at receiver k can be written as
(cf. (2.2))

y(k) = h(k)HFHrx + h(k)HFzr + z(k) = h(k)HFHr

K∑

k=1

x(k) + h(k)HFzr + z(k),

where the receiver noise z(k) ∼ CN (0, 1) is now scalar. In order to simplify the notation,
we will normalize the receiver output such that the overall noise has unit variance.
Hence, we consider the equivalent output

ỹ(k) = s(k)−1/2
h(k)HFHrx + z̃(k)
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with s(k) = 1 + h(k)HFFHh(k) and z̃(k) ∼ CN (0, 1), such that the underlying MISO

BRC can also be considered as MISO broadcast channel with channel vectors h
(k)
eff

H
=

s(k)−1/2
h(k)HFHr.

Assuming a fix relay matrix F, it is known from the duality approach [VJG03] for
channels without relay that this channel with power constraint P has the same sum
capacity as the SIMO MAC with channel gains h

(k)
eff and sum power constraint P . The

sum capacity of this channel is found by solving the optimization problem (3.10), which
can be written as

max
P (1),...,P (K)

log2

∣∣∣∣∣I + HH
r FH

K∑

k=1

h(k)P (k)h(k)H

1 + h(k)HFFHh(k)
FHr

∣∣∣∣∣

s.t.
K∑

k=1

P (k) ≤ P

P (k) ≥ 0 ∀k

(4.15)

in this case. Although the optimization variables P (k) are scalar, the solution of this
problem is not trivial such that Algorithm 2 from Subsection 3.2.3 has to be used to
compute the optimal power distribution.

Furthermore, the relay matrix F has to be found, which is much harder. Unfortu-
nately, the structure of F that achieves the optimal sum-rate in the MARC does not
generally achieve the optimal sum-rate in the BRC and an analytic solution seems in-
feasible. Therefore, we use a heuristic choice of F that is based on a similar structure
as in the MARC. For this purpose, we define

D ,
K∑

k=1

h(k)P (k)h(k)H (4.16)

and use the SVDs D = UdΣdV
H
d and Hr = UhΣhV

H
h .

Looking at the sum-rate expression of (4.15), it can be seen that F is multiplied with
Hr from the right side and with the sum expression from the left side. Our heuristic
approach is to approximate the sum expression by D, i.e., the denominator is ignored.
If we use this approximation, choosing

F = VdΣfU
H
h , (4.17)

with Σf = diag
(
f1, . . . , fNf

)1/2
diagonalizes HH

r FHDFHr to ΣH
h ΣH

f ΣdΣfΣh.
From the Hadamard inequality [HJ90], it follows that this choice of F is optimal

for the approximated version. However, we rather consider (4.17) as a heuristic choice
for the exact problem instead of an optimal choice for the approximated problem. The
advantage of choosing F as in (4.17) is that the number of scalar variables reduces from
N2
f to Nf , which makes it easier to solve the problem by standard tools of optimization,

e.g., a gradient search algorithm.
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4 Relaying for MISO Multi-User Channels without Direct Links

If the matrix F is determined and Algorithm 2 is applied to find the optimum power
distribution P (1), . . . , P (K), the transformation back to the broadcast channel domain
has to be done. Using the transformation from [VJG03], the corresponding transmit
covariance matrices Q(1), . . . ,Q(K), which fulfill the transmit power constraint can be
computed. However, as the duality transformation does not consider the relay power
constraint, it has to be ensured that this is also fulfilled. In our heuristic algorithm, we
achieve this by calculating the preliminary relay power

P̃r , tr


F


I + Hr

K∑

k=1

Q(k)Hr

H

FH


 ,

which is obtained by the current choices of F and Q(1), . . . ,Q(K). In order to meet the

relay power constraint with equality, the relay matrix is multiplied by γ =
√

Pr
P̃r

.

The disadvantage of this approach is that the user order becomes important again.
Although the user order does not influence the sum-rate in the dual SIMO MAC or in
the broadcast channel directly, different user orders lead to different covariance matri-
ces Q(1), . . . ,Q(K) in the transformation from MAC to broadcast channel domain. The
consequence of this is that also P̃r depends on the user order. As it is obtained from
(4.15), the sum-rate is monotonically increasing with γ. Hence, the best user order is

the one, which leads to the lowest P̃r. However, especially if Pr is large, the influence
of the user order on P̃r is marginal, such that the user order does not play such an
important role as in the ZF-DPC approaches.

In order to evaluate the approach presented in this section, we will determine the
remaining variables f1, . . . , fNf by brute-force search, where the choice with the highest
(preliminary) sum-rate is picked. Doing the same with the remaining optimization
problem (3.15) of ZF-DPC, the capabilities of both schemes can be well estimated. In
order to keep the computation time reasonable, we restrict ourselves to K = 2 users.
The algorithmic structure explained above with the brute-force extensions for K = 2
is listed in Algorithm 3 in terms of pseudo code.

As there are only two users, it can be seen from (4.16) that D has only two nonzero
eigenvalues. Although, our structure of F from (4.17) is only a heuristic choice and the
matrix appearing in the real sum-rate is not exactly D, making the rank of F larger
than the number of eigenvalues of D is not reasonable. Therefore, we set all diagonal
elements of Σf to zero except f1 and f2. Moreover, as F is scaled in line 27 to meet
the power constraint, only the ratio between these two values has to be determined.
This is done by setting f1 = β and f2 = 1 − β, where β ∈ [0, 1]. The best possible
β is determined by brute force search in lines 11-15 of Algorithm 3, where β is varied
between 0 and 1 in steps of ∆β.

Unfortunately, the interdependence of the best possible F and P (1), P (2) is the same
as in the MARC. Hence, after changing β the power distribution P (1), P (2) has to
be recalculated. This is done by Algorithm 2 from Subsection 3.2.3 (abbreviated by
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4.3 Gaussian MISO Broadcast Channel with AF-Relay

Algorithm 3 Duality-based algorithm for the MISO BRC with K = 2 users

1: Initialize: P (1) = P (2) = P
2

; β = 0.5; Σf = diag
(√

β,
√

1− β, 0, . . . , 0
)

2: D =
∑K

k=1 h(k)P (k)h(k)H ; UdΣdV
H
d = svd(D)

3: F = VdΣfU
H
h

4: for k = 1 : 2 do
5: s(k) = 1 + h(k)HFFHh(k)

6: h
(k)
eff = s(k)−1/2

h(k)HFHr

7: end for
8:
[
P (1), P (2)

]
= BlockIWF

([
h

(1)
eff ,h

(2)
eff

]
, P
)

9: repeat

10: D =
∑K

k=1 h(k)P (k)h(k)H ; UdΣdV
H
d = svd(D)

11: for β = 0 : ∆β : 1 do
12: Σf = diag

(√
β,
√

1− β, 0, . . . , 0
)

13: Recalculate F and s(k),h
(k)
eff ∀k as in lines 3-7

14: R̃Σ (β) = log2

∣∣∣I +
∑2

k=1 h
(k)
eff P

(k)h
(k)
eff

H
∣∣∣

15: end for
16: β∗ = arg maxβ R̃Σ (β)
17: Σf = diag

(√
β∗,
√

1− β∗, 0, . . . , 0
)

18: Recalculate F and s(k),h
(k)
eff ∀k as in lines 3-7

19:
[
P (1), P (2)

]
= BlockIWF

([
h

(1)
eff ,h

(2)
eff

]
, P
)

20: R̃∗Σ = log2

∣∣∣I +
∑2

k=1 h
(k)
eff P

(k)h
(k)
eff

H
∣∣∣

21: until F and
[
P (1), P (2)

]
converge

22: for all possible decoding orders π do

23:
[
Q(1) (π) ,Q(2) (π)

]
= MAC2BC

([
h

(1)
eff ,h

(2)
eff

]
,
[
P (1), P (2)

])

24: P̃r (π) = tr
(
F
(
I + Hr

(
Q(1) + Q(2)

)
HH
r

)
FH
)

25: end for
26: π∗ = arg minπ P̃r (π)

27: F =
√

Pr
P̃r(π∗)

F

28: Recalculate s(k),h
(k)
eff ∀k as in lines 4-7

29: RΣ =
∑2

k=1 log2

∣∣∣∣I +
h

(π∗(k))
eff Q(π∗(k))(π∗)h

(π∗(k))
eff

H

I+h
(π∗(k))
eff [

∑
j>k Q(π∗(j))(π∗)]h(π∗(k))

eff

H

∣∣∣∣
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4 Relaying for MISO Multi-User Channels without Direct Links

BlockIWF in Algorithm 3). As the new values of P (1), P (2) also require a recalcula-

tion of β, these two steps are repeatedly executed until the preliminary sum-rate R̃∗Σ
converges. Convergence is ensured by the facts that first, both the optimization with
respect to β and with respect to P (1), P (2) can never decrease the sum-rate and second,
the achievable sum-rate is limited.

After convergence, the final step is the transformation back to the BC according
to [VJG03], which is indicated by MAC2BC in Algorithm 3. As already explained above,
this transformation is done for every possible user order π in order to find the user
order with the lowest preliminary relay power P̃r (π). This order is used and the relay
matrix is scaled, such that the achievable sum-rate can finally be calculated.

Extending the algorithm to K > 2 users is possible but the complexity of the brute
force parts for finding F in lines 11-15 and for running MAC2BC for all possible decoding
orders grows exponentially. However, the complexity of finding F is limited by the
number of eigenvalues of D, which is at most min (K,Nf ), so if Nf is not too large the
complexity remains reasonable. Moreover, the optimal decoding order only achieves
small gains in the scaling factor γ, such that this step could be simplified by choosing
a random decoding order.

4.3.2 Upper Bounds and Comparison

As a main benchmark for our algorithm, we consider the maximal achievable rate
with ZF-DPC. This rate is approximated by a brute-force solution of the ZF-DPC
optimization problem (3.15) with K = 2. For this purpose we transform our variables
such that

P1 = αP

P2 = (1− α)P

f1 =
βPr

1 + |σ1|2P1

f2 =
(1− β)Pr
1 + |σ2|2P2

,

i.e., α and β are the new optimization variables. This simplifies the constraints signifi-
cantly, as they can be equivalently written as 0 ≤ α, β ≤ 1. As writing the sum-rate as
function of α and β delivers a bulky expression, it is not reformulated here but with the
transformation given above it is possible to calculate the sum-rate with (3.15). Using
the new variables, the optimal sum-rate with ZF-DPC can be approximated by varying
α and β between 0 and 1 in steps of ∆α and ∆β, respectively.

Another simplified scheme, which will be investigated in the following simulation
results is obtained by transmitting data to only one user. Of course, the user with the
highest possible rate is chosen in that scheme and the optimal relay and covariance
matrices can be derived as in Subsection 4.2.2. Recalling from Subsection 3.2.2 that
the rate of serving only the best user equals the maximal sum-rate of TDMA in the
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Figure 4.5: Achievable rates in MISO BRC for SNRt = 4 dB and K = 2

broadcast channel, this simple scheme gives an idea of the performance of TDMA in
the MISO BRC.

An evaluation of the schemes mentioned above for K = 2 is given by simulation
results. As in the MARC, we assume channels with independent Rayleigh fading.
However, due to the increased complexity of the algorithms we take the average of 100
instead of 1000 channel realizations. The results are plotted in Figures 4.5, 4.6, and
4.7 for transmit power to noise ratios of SNRt = 4 dB, SNRt = 10 dB, and SNRt = 16
dB, respectively. The relay power to noise ratio SNRr is varied between −10 and
30 dB in steps of 1 dB. Moreover, the precision of the brute-force searches is set to
∆α = ∆β = 0.01 for ZF-DPC and ∆β = 0.02 for Algorithm 3. Again, we also compare
the achievable rates with the sum capacity achieved by DF, which can be expressed
similar to (4.14). The difference is that here the channel from the transmitter to the
relay is a MIMO single-user channel, while the channel from the relay to the receivers
is a MISO BC.

It can be seen that the achievable rates of Algorithm 3 are almost the same as those
of ZF-DPC, although the complexity of this algorithm is much lower. In order to see
that the decoding order, which is determined at the end of Algorithm 3, does not
influence the rate too much, we also plotted the rate that is achieved by selecting the
worst decoding order for each channel as dotted line. Obviously, this does not decrease
the performance too much. For higher values of Pr, there is no difference at all. The
scheme where only one user is served achieves a reasonable performance only for low
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Figure 4.6: Achievable rates in MISO BRC for SNRt = 10 dB and K = 2

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

SNRr [dB]

R
Σ

[b
it

/s
/H

z]

ZF-DPC
Algorithm 3
Algorithm 3 worst order
One user only
DF sum capacity

Figure 4.7: Achievable rates in MISO BRC for SNRt = 16 dB and K = 2
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4.3 Gaussian MISO Broadcast Channel with AF-Relay

values of Pr. At higher values, the performance loss is significant, i.e., a TDMA-based
relaying scheme does not make sense in the BRC. Finally, comparing the sum-rates to
the sum capacity achieved by DF, it can be seen that the performance gap is not too
big. Contrary to the MARC, the maximum performance loss is not obtained at high
but at medium Pr. The reason for this might be that in the BRC the channel from
the relay to the transmitter is not always the bottleneck, such that at high values of
Pr, also the performance of DF is limited by the channel from the transmitter to the
relay.
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5
AF-Relaying for MISO Gaussian
MAC with Direct Links

In the preceding chapter, we were able to find the optimal relaying and transmit co-
variance matrices for the MISO MARC without direct links both for our proposed
TDMA-based relaying scheme and for joint relaying. In this section, we consider also
the direct links between the transmitters and the receiver, such that the channel model
explained in Section 2.1 holds without simplifications except for the single antenna
at the receiver. Of course, this makes the problem of finding the optimal relay and
transmit covariance matrices much harder to solve.

As the solutions for this problem could only be found for a few special cases, our
approach is to find upper and lower bounds on the achievable sum-rate, where the
upper bounds are only valid given the constraint that AF is used as relaying technique.
Contrary to the MARC without direct links, neither does DF necessarily achieve the
cut-set bound nor it is clear whether the cut-set bound is achievable at all or which
relaying technique achieves the optimal sum-rate.

In order to obtain upper bounds, we relax the relay power constraint and find the
optimal relaying matrix either in closed-form or with some kind of brute-force maxi-
mization for both joint relaying and TDMA. For the lower bounds, we first consider an
approach which uses both brute-force and convex optimization methods to tackle the
problem. However, as this approach suffers from an immense computational complex-
ity, it does not seem feasible to deliver useful results in reasonable computation time.
Therefore, we focus on an iterative algorithm, which has a much lower complexity and
gets close to the upper bounds for a large set of parameters. This algorithm is designed
for use with joint relaying but can easily be adapted for use with TDMA. Although
the question for the exact achievable sum-rate with AF remains open, the question
whether TDMA is also superior in case of direct links can be investigated.

This chapter is structured as follows: In Section 5.1, we derive three upper bounds
for the MISO MARC with direct links. While the first upper bound is for single-user
channels to be used with TDMA, the second and third upper bounds are for multi-user
channels. Subsequently, in Section 5.2 we explain why brute-force methods are not

61



5 AF-Relaying for MISO Gaussian MAC with Direct Links

suitable for lower bounds and describe our iterative algorithm, which is used to obtain
achievable sum rates for joint relaying and TDMA. The special case of a SISO MARC
is considered in Section 5.3, where the optimal solution for TDMA can be found with
very low complexity and an analytic comparison of joint relaying and TDMA is possible
for large relay power. Finally, Section 5.4 gives a set of simulation results. These allow
some insights how tight upper and lower bounds are and whether the superiority of
TDMA persists for the MARC with direct links.

5.1 Upper Bounds on the Achievable Sum-Rate

Recalling the definitions from Section 2.1 and considering the single antenna at the
receiver, the receive signal in a MISO MARC is given by

ỹ =
K∑

k=1

H
(k)
eff x(k) + z̃,

where z̃ ∼ CN (0, I), and

H
(k)
eff =

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]
(5.1)

with s = 1 + hHFFHh. Using the sum-rate formula for the MAC, we can formulate
the optimization problem for the MISO MARC with direct links as

max
F,Q(1),...,Q(K)

RΣ = log2

∣∣∣∣∣I +
K∑

k=1

H
(k)
eff Q(k)H

(k)
eff

H

∣∣∣∣∣
s.t. Q(k) � 0 ∀k

tr
(
Q(k)

)
≤ P (k) ∀k

tr
(
F (I + R) FH

)
≤ Pr,

(5.2)

where R =
∑K

k=1 H
(k)
r Q(k)H

(k)
r

H
. In the following subsections, this problem is consid-

ered for the cases of K = 1 and K > 1, where algorithms are found that compute the
solution for a relaxation of the relay power constraint. These solutions can be used as
an upper bound for the general problem.

5.1.1 Single-User Upper Bound

The first upper bound that we derive is for the case of K = 1, i.e., for a single-user
relay channel. The technique of relaxing the relay power constraint is similar to the
approach from [TH07] explained in Subsection 3.3.3. However, contrary to [TH07], the
challenge here is that the covariance matrix is not fixed to a scaled identity matrix, but
also subject to optimization.
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5.1 Upper Bounds on the Achievable Sum-Rate

For this upper bound, we assume

tr
(
FFH

)
≤ Pr (5.3)

as relaxed relay power constraint and use the definitions

h = UhΣhV
H
h = UhΣh

H(1)
r = UΣVH

Σ = diag
(
σ1, . . . , σN(1)

t

)

a ,
VHh

(1)
d

||h(1)
d ||

F = UhF̃UH ,

(5.4)

where the first two equations denote the SVDs of h and H
(1)
r . As h is a vector, we have

VH
h = 1 and Σh = [||h||, 0, . . . , 0]H . Moreover, the last line defines a structure of F,

which does not reduce it’s generality as no assumptions are made about F̃ and both
Uh and UH are unitary.

Considering (5.1) and that hHFH
(k)
r = ΣhF̃ΣVH , it can be seen that only the

first row of F̃ influences the sum-rate. As the power constraint can be rewritten as

tr
(
F̃F̃H

)
≤ Pr, it is not beneficial to set any of the elements outside the first row of

F̃ to a nonzero value. Therefore, we can restrict F̃ to be

F̃ =




f1 f2 · · · fNf
0 · · · 0
...

. . .
...

0 · · · 0


 , (5.5)

where f1, . . . , fNf ∈ C. Moreover, we make use of the result that for single-user channels
the capacity of the Hermitian channel, which is obtained by taking the Hermitian of
the channel matrix, is the same [VJG03, Tel99]. Hence, for the case of K = 1, problem
(5.2) can be rewritten as

max
F,Q̃(1)

RΣ = log2

∣∣∣I + H
(1)
eff

H
Q̃(1)H

(1)
eff

∣∣∣

s.t. Q̃(1) � 0

tr
(
Q̃(1)

)
≤ P (1)

Nf∑

n=1

|fn|2 ≤ Pr,

(5.6)
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where Q̃(1) is the transmit covariance of the Hermitian channel which can be written
as

Q̃(1) =

[
q1 q̃
q̃H q2

]
.

As Q̃(1) is a covariance matrix, the parameters can not be chosen freely. While the
restrictions q1, q2 ≥ 0 and q1 + q2 ≤ P (1) follow directly from the constraints, the
condition |q̃|2 ≤ q1q2 follows implicitly.

Using all the definitions from above, the sum-rate RΣ can be rewritten as

RΣ = log2

∣∣∣I + H
(1)
eff H

(1)
eff

H
Q̃(1)

∣∣∣

= log2

∣∣∣∣∣∣
I +

[
s−1/2ΣhF̃Σ

||h(1)
d ||aH

]
VHV

[
s−1/2ΣhF̃Σ

||h(1)
d ||aH

]H [
q1 q̃
q̃H q2.

]∣∣∣∣∣∣
(5.7)

= log2

∣∣∣∣∣I +

[
s−1/2||h|| [f1σ1, . . . , fnσn]

||h(1)
d ||

[
aH1 , . . . , a

H
n

]
] [
s−1/2||h|| [f1σ1, . . . , fnσn]

||h(1)
d ||

[
aH1 , . . . , a

H
n

]
]H [

q1 q̃
q̃H q2

]∣∣∣∣∣ ,

where for a simpler notation we used n = N
(1)
t and set fNf+1 = . . . = f

N
(1)
t

= 0 for the

case of N
(1)
t > Nf . These definitions allow us to give a reformulation of the sum-rate

in the following lemma.

Lemma 6

A reformulation of the sum-rate under the aforementioned definitions and the
constraints specified in (5.6) is given by

RΣ = log2


1 + s−1||h||2q1Φ + ||h(1)

d ||2q2 + 2
||h||2||h(1)

d ||2|Ψ|2(q1 − q2)

||h||2Φ− ||h(1)
d ||2s

+ s−1||h||2||h(1)
d ||2

(
Φ− |Ψ|2

)

q1q2 −

s||h||2||h(1)
d ||2|Ψ|2(q1 − q2)2

(
||h||2Φ− ||h(1)

d ||2s
)2





 ,

(5.8)

where Φ ,
∑n

i=1 |fi|2σ2
i and Ψ ,

∑n
i=1 fiσiai.

Proof : The proof is given in Appendix B.1.

In the following, (5.8) shall be used to optimize the upper bound. This is done by an
algorithm which optimizes f1, . . . , fn by a brute-force method first and then uses the
classical single-user water-filling method to find the optimal covariance matrix Q̃(1).

However, contrary to the MISO MARC without direct links, the optimal structure of
F is unknown, especially F̃ is not diagonal. Moreover, f1, . . . , fn can be complex, such
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5.1 Upper Bounds on the Achievable Sum-Rate

that not only their absolute value but also their phases are subject to optimization.
Therefore, we introduce the notation

fi , |fi| ejθi ∀i = 1, . . . , n

to denote absolute value and phase separately. Moreover, we denote the phase of a
complex number a by ∠(a), i.e., ∠ (fi) = θi. As it can be seen from (5.6), the absolute
values are restricted by the relay power constraints, while the phases can be chosen
freely. However, optimizing both the phases and the absolute values in a brute-force
fashion requires an enormous complexity. Therefore, considering that the phases only
influence |Ψ| but not Φ, we give the possible optimal solutions for θ1, . . . , θn and the
corresponding value of |Ψ| in the following theorem.

Theorem 7

Consider the optimization problem

max
θ1,...,θn

RΣ,

where for RΣ we consider the expression from (5.8) and assume all variables except
θ1, . . . , θn are fixed. Then the optimal solution of this problem is to choose θ1, . . . , θn
such that |Ψ| is either minimized or maximized, which is achieved by one of the
following choices of θ1, . . . , θn:

• θi = −∠ (ai) ∀i, such that |Ψ| = ∑n
i=1 |fiai|σi.

• θ1, . . . , θn are chosen such that |Ψ| = 0.

• θk = −∠ (ak) for k = arg maxl |flal|σl and θi = −∠ (ai) + π ∀i 6= k, such that
|Ψ| = 2 maxk |fkak|σk −

∑n
i=1 |fiai|σi.

From these choices, the first one maximizes |Ψ| and the latter two minimize |Ψ|,
where the choice that sets |Ψ| = 0 is only feasible if maxk |fkak|σk ≤ 1

2

∑n
i=1 |fiai|σi

and n > 2. The third choice is only made if one of these condition does not hold.

Proof : The proof is given in Appendix B.2.

Although the above theorem does not give a general solution for the phases, it re-
duces the number of possible solutions to three, which is a significant simplification
compared to a brute-force search over all possible values. Using this simplification, we
can construct Algorithm 4, which is given here in terms of pseudo code. This algo-
rithm divides the relay power by the parameters β1, . . . , βn, where βi = |fi|2P−1

r . As

an example, we assume Nf = 3 and N
(1)
t ≥ 3 in this algorithm. The algorithm can be

extended to larger values of Nf and N
(1)
t . But of course, due to the brute-force search

for the optimal values of βi, the complexity grows exponentially.
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Algorithm 4 Upper bound for the MISO single-user relay channel with direct links

1: for β1 = 0 : ∆β : 1 do
2: for β2 = 0 : ∆β : 1− β1 do
3: β3 = 1− β1 − β2

4: for i = 1 : 3 do
5: fi =

√
βiPre

−j∠(ai)

6: end for
7: F = UhF̃UH

8: H
(1)
eff =

[
s−1/2hHFH

(1)
r

h
(1)
d

H

]

9: Q̃(1) = WF
(
H

(1)
eff , P

(1)
)

10: RΣ,1 = log2

(
I + H

(1)
eff H

(1)
eff

H
Q̃(1)

)

11: k = arg maxl |flal|σl
12: if |fkak|σk ≥ 1

2

∑n
i=1 |fiai|σi then

13: for i = 1 : 3 do
14: fi = −fi
15: end for
16: fk = −fk
17: else
18: Calculate θ1, . . . , θk such that |Ψ| = 0 (see Appendix B.2)
19: for i = 1 : 3 do
20: fi =

√
βiPre

−jθi

21: end for
22: end if
23: F = UhF̃UH

24: H
(1)
eff =

[
s−1/2hHFH

(1)
r

h
(k)
d

H

]

25: Q̃(1) = WF
(
H

(1)
eff , P

(1)
)

26: RΣ,2 = log2

(
I + H

(1)
eff H

(1)
eff

H
Q̃(1)

)

27: R̃Σ (β1, β2) = max (RΣ,1, RΣ,2)
28: end for
29: end for
30: RΣ = maxβ1,β2 R̃Σ (β1, β2)
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As it can be seen in the algorithm, the absolute values of fi are fixed at the begin-
ning by the brute-force search over β1, . . . , βn. Subsequently, it is checked which of
the three possible phase selections from Theorem 7 provides the best rate. The phase
selection of θi = −∠(ai), which maximizes |Ψ| is assigned in lines 4-6. Afterwards the
resulting effective channel is calculated and the single-user water-filling algorithm from
Appendix A.2, referred to as WF, is executed to compute the optimal covariance matrix
Q̃(1). Finally, the achievable sum-rate RΣ,1 with this selection of θ1, . . . , θn is computed.
In lines 11-26 this procedure is repeated to compute the rate RΣ,2, which is achieved
by choosing the phases such that |Ψ| is minimized. For this purpose it is checked in
line 12 whether it is possible to achieve |Ψ| = 0. If this is not the case, we set fi to −fi
for all i 6= k. Otherwise, the phases are chosen as explained in the proof of Theorem 7
in Appendix B.2. While the sum-rate for the current selection of β1, β2 is computed as
the maximum of RΣ,1 and RΣ,2, the final upper bound is calculated as the maximum
over all β1, β2 in the final line of the algorithm.

Although this derived upper bound is only valid for K = 1, it is not only useful for
single-user channels. If the number of antennas is not too large, it can be combined with
TDMA to be used also in the “real” MISO MARC. However, a closed-form optimal
solution for the duration of the time slots does not seem feasible. Hence, this solution
needs to be approximated in a brute-force fashion as well.

5.1.2 Upper Bounds for Joint Relaying

If we consider joint relaying instead of the TDMA-based approach, the upper bound
derived in the preceding section can not be used. Even worse, it does not seem feasible
to obtain a bound for joint relaying in a similar way. The reason for this is that in
the sum-rate expression the rule |I + AB| = |I + BA| can not be applied. Moreover,
the determinant inside the logarithm contains a sum and multiple covariance matrices,
which makes it harder to bring it in a tractable scalar form. Therefore, we present
two upper bounds in this subsection. The first one is obtained by an algorithm which
follows a similar approach as Algorithm 4, while the second one is based on an analytic
reformulation of the sum-rate.

For both bounds, we fix F = UhF̃ as structure of the relay matrix, where UhΣhV
H
h

is still the SVD of h. As for the single-user bound, Σh contains only one eigenvalue.
From (5.1) and (5.2), it is obvious that choosing F̃ as in (5.5) is sufficient.

For the first bound, we use the relaxed relay power constraint (5.3) as in the single-
user bound. The main problem in adapting Algorithm 4 for K > 1 is that it seems
not feasible to derive something similar to Theorem 7. Hence, the optimal phases can
not be computed and have to be approximated in a brute-force fashion, such that we
obtain the code which is listed in Algorithm 5 for the case of Nf = 3.

Again, we use βi = |fi|2P−1
r to distribute the relay power between the variables

f1, . . . , fn. Additionally, there are now three for-loops for choosing the optimal phases
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Algorithm 5 Upper bound for the MISO MARC with direct links

1: for β1 = 0 : ∆β : 1 do
2: for β2 = β1 : ∆β : 1 do
3: β3 = 1− β1 − β2

4: for θ1 = 0 : ∆θ : π do
5: for θ2 = 0 : ∆θ : π do
6: for θ3 = 0 : ∆θ : π do
7: for i = 1 : 3 do
8: fi =

√
βiPre

−jθi

9: end for
10: F = UhF̃
11: for k = 1 : K do

12: H
(k)
eff =

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]

13: end for
14:

[
Q(1), . . . ,Q(K)

]
= IWF

([
H

(1)
eff , . . . ,H

(K)
eff

]
,
[
P (1), . . . , P (K)

])

15: R̃Σ (β1, β2, θ1, θ2, θ3) = log2

(
I +

∑K
k=1 H

(k)
eff Q(k)H

(k)
eff

H
)

16: end for
17: end for
18: end for
19: end for
20: end for
21: RΣ = maxβ1,β2,θ1,θ2,θ3 R̃Σ (β1, β2, θ1, θ2, θ3)
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by brute force. By these loops the possible intervals for the absolute values and phases
are scanned with accuracy ∆β and ∆θ, respectively, for the optimal solution. As soon as

F is set to the current value, the effective channel matrices H
(k)
eff are calculated in lines

11-13. Subsequently, the optimal transmit covariance matrices for the current choice
of F are determined by Algorithm 1, which is abbreviated by IWF here. This allows a
calculation of the achievable rate for the current selection of the absolute values and
phases of fi. The final upper bound is again calculated as maximum over all those
values in the last line of the algorithm.

The second upper bound is derived in the following theorem.

Theorem 8

An upper bound to the achievable sum-rate of the MISO MARC with direct links
is given by

RΣ ≤ log2



(

1 +
K∑

k=1

||h(k)
d ||2P (k)

)
1 +

||h||2Prλmax

(
R̃
)

1 + ||h||2Pr + λmax

(
R̃
)




 ,

where R̃ =
∑K

k=1 H
(k)
r H

(k)
r

H
P (k).

Proof : Given the abbreviations

T(k) , H(k)
r Q(k)1/2

(5.9)

w(k) , Q(k)H/2h
(k)
d . (5.10)

and using f̃H = [f1, . . . , fn] to denote the first row of F̃, we can write

RΣ = log2

∣∣∣∣∣∣
I +

K∑

k=1

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]
Q(k)

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]H ∣∣∣∣∣∣

= log2

∣∣∣∣∣∣
1 + s−1||h||2f̃H∑K

k=1 T(k)T(k)H f̃ s−1/2||h||̃f∑K
k=1 T(k)w(k)

∑K
k=1 w(k)HT(k)H f̃ ||h||s−1/2 1 +

∑K
k=1 w(k)Hw(k)

∣∣∣∣∣∣
(5.11)

= log2

(
1 +

K∑

k=1

w(k)Hw(k) + s−1||h||2f̃HDf̃

)
,

where

D =

(
1 +

K∑

k=1

w(k)Hw(k)

)
K∑

k=1

T(k)T(k)H −
(

K∑

k=1

T(k)w(k)

)(
K∑

k=1

w(k)HT(k)H

)
.

(5.12)
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The upper bound on RΣ is now established by observing that

w(k)Hw(k) ≤ ||h(k)
d ||2P (k)

D �
(
1 +

K∑

k=1

w(k)Hw(k)

)
K∑

k=1

T(k)T(k)H .

While the first inequation is obtained by using Lemma 2 from Subsection 4.2.1, the
second inequation is due to the fact that the subtracted matrix in the definition of D
is a product of two matrices that are mutually Hermitian. Therefore, the subtracted
matrix term is positive semidefinite. Hence, we can formulate the upper bound as

RΣ ≤ log2

((
1 +

K∑

k=1

||h(k)
d ||2P (k)

)(
1 + s−1||h||2f̃H

(
K∑

k=1

T(k)T(k)H

)
f̃

))
.

In this expression, only the last term is subject to optimization. As
∑K

k=1 T(k)T(k)H =
∑K

k=1 H
(k)
r Q(k)H

(k)
r

H
= R, it can be seen that the optimization of this expression is

equivalent to the optimization for the MISO MARC without direct links from (4.2).
Adapting the corresponding optimal relay matrix from (4.3) it follows that

f̃H =

√
Pr

1 + λmax (R)
vHmax (R) .

When also the optimal covariance matrices from (4.4) are used, it follows that the
upper bound is given by the expression in the theorem.

Although this bound is clearly not tight, it is a reasonable addition to the preceding
bound computed with Algorithm 5. As the preceding bound relaxes the power con-
straint, it is good especially for high values of Pr. However, for lower values of Pr the
overestimation of the relay power makes the bound very loose. On the contrary, the
second bound overestimates the terms in the sum-rate formula. This makes the bound
loose at high Pr, while at low Pr it is much closer to the actually achievable rates than
the first bound.

5.2 Algorithms to Approach the Optimal Sum-Rate

In this section, we consider strategies to compute rates that are definitely achievable in
the MISO MARC with direct links. The main problem for these strategies is that the
optimization problem (5.2) becomes very challenging when the relay power constraint
is not relaxed as in the preceding section. The reason for this is that the covariance
matrices also appear in the relay power constraint. This makes it impossible to select
F by brute-force methods and find Q(1), . . . ,Q(K) separately by water-filling as in the
preceding section, because F and Q(1), . . . ,Q(K) are now strongly interdependent.

70



5.2 Algorithms to Approach the Optimal Sum-Rate

Therefore, we consider two different approaches to the problem. As a first approach,
we try to modify the brute-force approach of Algorithm 5, such that it can be used
when all constraints are considered. Although this algorithm is theoretically capable of
finding the optimal solution, its complexity is too high to achieve a reasonable accuracy.
The reasons for this are explained in Subsection 5.2.1. A different philosophy is followed
by the algorithm presented in Subsection 5.2.2, which is possibly suboptimal but keeps
the computational complexity low. It uses a heuristic approach and is designed for use
with joint relaying. However, with some modifications, which are explained at the end
of Subsection 5.2.2, it can also be used with TDMA.

5.2.1 On the Complexity of Brute-Force Algorithms

Contrary to the upper bounds calculated in the preceding section, a calculation of
achievable rates by brute-force methods seems infeasible, because the complexity be-
comes too high. The main reason for this is that, if the relay power constraint has to be
fulfilled in its original version, there is a interdependence between F and Q(1), . . . ,Q(K)

which makes it hard to find the solution of the relay or the covariance matrices without
considering the other matrices.

To our knowledge, no efficient possibility of calculating the optimal covariance ma-
trices exists, even if F is fixed. This is due to the existence of both individual and
sum power constraints on the covariance matrices. As the Algorithms 1 and 2 support
either sum or individual power constraints but not both together, they can not be
used. Even worse, it is not clear whether the optimal covariance matrices diagonalize
the determinant of the sum-rate, such that a brute-force search over Q would be very
complex.

Also the other part of the solution, finding the optimal relay matrix F, is harder
although setting F = UhF̃ with F̃ as defined in (5.5) can be used without loss of
generality. In general, even for single-user channels, Lemma 6 and Theorem 7 do not
hold, such that there is no solution how to optimally chose the phases of f1, . . . , fn.
Furthermore, fn can not be computed from f1, . . . , fn−1 as in Algorithm 5, such that
the number of parameters that has to be found by brute-force increases.

Considering all these properties, we present an approach that could find the optimal
solution of our problem. However, the complexity is so high, that the brute-force search
has to scan the search space with very big steps. Therefore, the approximation of the
solution is too imprecise to be considered as a benchmark. Nevertheless, we briefly
explain the idea of the algorithm here. By either improving the algorithm or by better
hardware, it might be possible to compute solutions with this algorithm in the future.

From the basic structure, this brute-force algorithm is the same as Algorithm 5.
Therefore, we use the same assumptions and definitions as in Subsection 5.1.2 (except
the relaxed relay power constraint) and describe only the differences to Algorithm 5.
These are:
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5 AF-Relaying for MISO Gaussian MAC with Direct Links

• As mentioned above, β3 can not be computed as β3 = 1 − β1 − β2. Therefore,
line 3 in Algorithm 5 is replaced by a further for-loop to calculate also β3 in a
brute-force fashion. However, the range of β3 is [0, 1− β1 − β2] instead of [0, 1].

• As also described above, Algorithm 1 (abbreviated by IWF in Algorithm 5) can not
be used any more because the relay power constraint has to be considered as well
when computing the covariance matrices. Fortunately, the resulting optimization
problem is at least convex. Therefore, line 14 in Algorithm 5 is replaced by a con-
vex optimization program which computes the optimal solution of Q(1), . . . ,Q(K).

• Of course, RΣ is now also a function of β3, which has to be considered in the final
maximization.

The main issue that makes the complexity enormous is of course the convex opti-
mization, which is not as efficient as the iterative Algorithms 1 and 2 and executed
for each possible combination of absolute values and phases of f1, . . . , fn. While opti-
mization of the convex program or solver (in this case CVX [CVX12]) is not expected
to reduce the performance significantly, the introduction of an iterative algorithm that
converges to the optimal solution, if possible, would be much more beneficial.

5.2.2 An Efficient Iterative Algorithm

As finding the optimal solution with brute-force methods seems infeasible, even for a
low number of users and antennas, we present a heuristic iterative algorithm to find a
possibly suboptimal solution in this section. The targets of this algorithm are a low
computational complexity as well as a performance that is as close as possible to the
optimal solution. As the optimal solution is not known, we will compare the achieved
rates with the derived upper bounds in Section 5.4.

The algorithm is given in terms of pseudo code in Algorithm 6. The basic strategy of
the algorithm is to alternately optimize Q(1), . . . ,Q(K) and F until they converge. As
the optimal solution of Q(1), . . . ,Q(K) is hard to find, a suboptimal solution is found by
ignoring the relay power constraint. Thus, Algorithm 1 (abbreviated by IWF) can be
used to efficiently find the covariance matrices in line 6. However, as the relay power
constraint might be violated, F has to be rescaled by a scalar. This is done in line 8,
where the root at the end of the expression ensures that the relay power constraint is
fulfilled with equality. Moreover, the general structure of F is heuristically chosen as
the outer product of h and the eigenvector corresponding to the maximum eigenvalue
of D. Using the notation from the previous subsection, this is equivalent to setting
f̃H = vHmax (D) γ, where

γ =

√
Pr

tr (vHmax (D) (I + R) vmax (D))
.
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Algorithm 6 Iterative algorithm for the MISO MARC with direct links

1: Initialize: Q(k) = I P
(k)

N
(k)
t

∀k; F = I
√

Pr
tr(I+R)

2: for k=1:K do

3: H
(k)
eff =

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]

4: end for
5: repeat

6:
[
Q(1), . . . ,Q(K)

]
= IWF

([
H

(1)
eff , . . . ,H

(K)
eff

]
,
[
P (1), . . . , P (K)

])

7: Calculate T(k), w(k), and D as given in (5.9),(5.10), and (5.12)

8: F = h
||h||v

H
max (D)

√
Pr

tr(vHmax(D)(I+R)vmax(D))

9: for k=1:K do

10: H
(k)
eff =

[
s−1/2hHFH

(k)
r

h
(k)
d

H

]

11: end for
12: RΣ = log2

∣∣∣I +
∑K

k=1 H
(k)
eff Q(k)H

(k)
eff

H
∣∣∣

13: until sum-rate convergence or decline

The reasons for this choice of F is seen when considering the last line of (5.11). If
Q(1), . . . ,Q(K) are fixed and Pr is large, we can write

lim
Pr→∞

s−1||h||2f̃HDf̃ = lim
Pr→∞

||h||2f̃HDf̃

1 + ||h||2f̃H f̃
=

f̃HDf̃

f̃H f̃
≤ λmax (D) ,

where the last inequality is due to the Rayleigh quotient and we have equality for
f̃H = vmax (D). Thus, for the given covariance matrices this choice of F is optimal
when Pr tends to infinity.

As it can be seen, the complexity of Algorithm 6 does not scale exponentially with
the number of antennas as the brute-force approaches. Also the number of users only
influences the complexity of IWF, which is low anyway. A much more important point
for the complexity is the speed of convergence of the solutions. As the choices of F and
Q(1), . . . ,Q(K) are heuristic, an analytic proof of convergence seems infeasible. How-
ever, the termination of Algorithm 6 is ensured by stopping it as soon as RΣ decreases.
Concerning the speed of convergence, we will show by means of simulation results in
Section 5.4 that the algorithm converges very fast and that already after one iteration,
the achieved rates are quite good.

Although Algorithm 6 is intended for joint relaying it can easily be redesigned in
order to use it in combination with TDMA. As TDMA turned out to be superior in
channels without direct links, this might be beneficial for some cases with direct links as

73



5 AF-Relaying for MISO Gaussian MAC with Direct Links

well. However, the additional optimization of the duration of the time slots τ (1), . . . , τ (k)

is not as easy as in the MARC without direct links. In detail, it seems infeasible to
obtain a closed-form solution for the optimal values of τ (1), . . . , τ (k). Therefore, we
approximate the optimal values by a brute-force search. If the number of users is not
too large, the complexity of the resulting algorithm still remains reasonable.

In detail, Algorithm 6 can be redesigned for use with TDMA by the following changes:

• Outer loops are added, which select the possible values of τ1, . . . , τ
(K) between 0

and 1 with intervals of ∆τ in a way that
∑K

k=1 τ
(k) = 1.

• As each user is considered separately and has a separate relaying matrix F(k),
a further outer loop is added that iterates over the users k. In return the two
for-loops to calculate H

(k)
eff are no longer necessary.

• The use of Algorithm 1 (IWF) in line 6 can be replaced by a simpler single-user
water-filling as explained in Appendix A.2, which is not iterative and therefore
reduces the complexity.

• Due to the partial inactivity of the users, the transmit powers P (1), . . . , P (K) can
be replaced by P (1)

τ (1) , . . . ,
P (K)

τ (K) . Also the rates have to be multiplied with τ (k).

• Finally, the best sum-rate is found by a maximization over all tested values of
τ1, . . . , τ

(K).

Overall, from a computational complexity point of view, it can be stated that the use
of TDMA is not as desirable as in channels without direct links. The reason for this is
that especially the brute-force search of the optimal duration of the time slots makes
the computation time of the TDMA version of Algorithm 6 much longer than in its
original version. Whether the performance of TDMA is better at all in channels with
direct links will be discussed in more detail in the following sections.

5.3 A Simplified Case: Single-Antenna

Transmitters

An interesting special case is obtained if also the transmitters have only a single an-
tenna, i.e., a SISO MARC is considered. Although this case is less general, the op-
timal rates are easier to obtain. The reason for this is that the covariance matrices
Q(1), . . . ,Q(K) are no longer subject to optimization because they are simply the scalar
power values P (1), . . . , P (K).

For joint relaying this means that the iteration between F and the covariance matrices
in Algorithm 6 is no longer necessary. Instead, the heuristic choice of F is made only
once and the achievable rate is directly calculated without any iterations. Moreover,
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as we will see in Section 5.4, the upper bounds and the achievable rates become much
tighter.

If TDMA is used, the simplifications obtained by the single transmit antennas have
even higher effects, such that it is possible to compute the optimal transmit strategy
with a very efficient iterative algorithm. Using the same steps as in (5.11), the rate of
user k can be written as

R
(k)
TDMA = τ (k) log2


1 + |h(k)

d |2
P (k)

τ (k)
+

hHF(k)h
(k)
r

P (k)

τ (k) h
(k)
r

H
F(k)Hh

1 + hHF(k)F(k)Hh


 .

As the first two terms inside the logarithm do not depend on F and the optimization of
the third term is similar to the one discussed in Subsection 4.2.1, the optimal solution
is similar to the one given in (4.3). Hence, in this case, the optimal F is given by

F(k) =
hh

(k)
r

H

||h||||h(k)
r ||

√
Pr

1 + ||h(k)
r ||2 P (k)

τ (k)

and the optimal rate of user k can be written as

R
(k)
TDMA = τ (k) log2

(
1 + |h(k)

d |2
P (k)

τ (k)
+

||h||2||h(k)
r ||2 P (k)

τ (k) Pr

1 + ||h||2Pr + ||h(k)
r ||2 P (k)

τ (k)

)
. (5.13)

As in the MARC without direct links it remains to find the optimal duration of the
time slots that maximize the sum-rate RΣ,TDMA =

∑K
k=1R

(k)
TDMA, which is given by the

following optimization problem (cf. Theorem 4)

max
τ (1),...,τ (K)

RΣ,TDMA(τ )

s.t. h(τ ) = 1−
K∑

k=1

τ (k) = 0,

where τ =
[
τ (1), . . . τ (K)

]
. The derivative of RΣ,TDMA(τ ) can be calculated as

∂RΣ,TDMA

∂τ (k)
=
∂R

(k)
TDMA

∂τ (k)
= log2

(
1 + |h(k)

d |2
P (k)

τ (k)
+

||h||2||h(k)
r ||2 P (k)

τ (k) Pr

1 + ||h||2Pr + ||h(k)
r ||2 P (k)

τ (k)

)
+

log2(e)

− |h
(k)
d |2P (k)

τ (k)2 − ||h||2P (k)||h(k)
r ||2Pr(1+||h||2Pr)(

||h||2Prτ (k)+P (k)||h(k)
r ||2+τ (k)

)2

1 +
|h(k)
d |2P (k)

τ (k) + ||h2||P (k)||h(k)
r ||2Pr

||h||2Prτ (k)+P (k)||h(k)
r ||2+τ (k)

.

As the calculation of the second derivative results in a very lengthy expression, it is
omitted here. However, it is straightforward to reformulate the second derivative such
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that
∂2RΣ,TDMA

∂τ (k)2 =
∂2R

(k)
TDMA

∂τ (k)2 < 0 can be observed if 0 ≤ τ (k) ≤ 1 ∀k, i.e., the problem is
convex.

Hence, the KKT conditions provide necessary and sufficient conditions for a solution
τ ∗ with dual variable ν∗ to be optimal. For this problem, these conditions can be
written as

h(τ ∗) = 0 (5.14)

∇RΣ,TDMA(τ ∗) + ν∗∇h(τ ∗) = 0 (5.15)

Unfortunately, a closed-form solution can not be directly obtained from the derivatives
as in Theorem 4 for the MARC without direct links. However, considering that ∂h

∂τ (k) =
−1 ∀k, it follows from (5.15) that the optimal solution has to fulfill the property

∂R
(1)
TDMA

∂τ (1)

∣∣∣∣∣
τ (1)=τ (1)∗

= . . . =
∂R

(K)
TDMA

∂τ (K)

∣∣∣∣∣
τ (K)=τ (K)∗

.

Moreover, it can be seen that the first derivatives are strictly monotonic decreasing

with
∂R

(k)
TDMA

∂τ (k)

∣∣∣∣
τ (k)=0

→∞ and
∂R

(k)
TDMA

∂τ (k)

∣∣∣∣
τ (k)=1

= 0 ∀k. Therefore, the solution can always

be found by an iterative algorithm, which is given in Algorithm 7 in terms of pseudo
code.

Algorithm 7 Iterative optimization of τ (k)∗ for the MISO MARC with direct links

1: Set τ (k)∗ = 1
K
∀k = 1, . . . , K

2: while true do

3: i = arg mink
∂R

(k)
TDMA

∂τ (k)

∣∣∣∣
τ (k)=τ (k)∗

4: j = arg maxk
∂R

(k)
TDMA

∂τ (k)

∣∣∣∣
τ (k)=τ (k)∗

5: if
∂R

(j)
TDMA

∂τ (j)

∣∣∣∣
τ (j)=τ (j)∗

− ∂R
(i)
TDMA

∂τ (i)

∣∣∣∣
τ (i)=τ (i)∗

> ε then

6: Find 0 < δ < min{τ (i), 1− τ (j)}, such that

∂R
(j)
TDMA

∂τ (j)

∣∣∣∣∣
τ (j)=τ (j)∗+δ

=
∂R

(i)
TDMA

∂τ (i)

∣∣∣∣∣
τ (i)=τ (i)∗−δ

7: τ (j)∗ = τ (j)∗ + δ
8: τ (i)∗ = τ (i)∗ − δ
9: else
10: break
11: end if
12: end while
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5.3 A Simplified Case: Single-Antenna Transmitters

The main idea of the algorithm is to iteratively equalize the derivatives of R
(k)
TDMA

by changing the duration of the time slots τ (k)∗. Therefore, the users i and j with the
smallest and largest derivative are selected. Their derivatives are equalized by numer-
ically finding a value δ, which is added to τ (j) and subtracted from τ (i). Due to the
properties of the functions discussed above this value can always be found in the inter-
val (0,min{τ (i), 1−τ (j)}), and the other derivatives remain unchanged. This procedure
is repeated iteratively until the difference of the largest and smallest derivative is at
most ε, which can be selected very small to approximate the optimal solution as good
as desired.

Although the simplifications obtained by single-antenna transmitters allow a much
simpler calculation of the achievable rates, a closed-form solution is obtained neither
for joint relaying nor for TDMA. Hence, a direct analytic comparison as for the MARC
without direct links can not be made. However, it is possible to derive the sum-rates
that are achieved for Pr → ∞ as closed-form solution. Although the relay will never
have infinite power, it follows from the cut-set bounds that the sum-rates have to
saturate for high values of Pr. Thus, the rates at infinite Pr, which are given in the
theorem below provide a good approximation for finite but large enough values of Pr.
Moreover, the following corollary allows a comparison of TDMA and joint relaying for
Pr →∞.

Theorem 9

As Pr → ∞, the achievable sum-rates of joint relaying and TDMA in the SISO
MARC with direct links are given by

RΣ,∞ = log2

(
1 +

K∑

k=1

|h(k)
d |2P (k) + λmax(D)

)

and

RΣ,TDMA,∞ = log2

(
1 +

K∑

k=1

P (k)
(
|h(k)
d |2 + ||h(k)

r ||2
))

,

respectively.

Proof : The proof is given in Appendix B.3.

Corollary 10

The superiority of TDMA obtained for the MARC without direct links persists in
the SISO MARC with direct links at Pr →∞ if and only if

K∑

k=1

||h(k)
r ||2P (k) ≥ λmax (D) ,

Proof : The corollary follows by comparing the rate formulas of Theorem 9.

77



5 AF-Relaying for MISO Gaussian MAC with Direct Links

A relation to Theorem 5 can be obtained by rewriting the expression for D. Using

(5.12) and considering that w(k) reduces to a scalar w(k) = |h(k)
d |P (k)1/2

and T(k) reduces

to a vector t(k) = h
(k)
r P (k)1/2

, we can write

D =

(
1 +

K∑

k=1

h
(k)
d

H
h

(k)
d P (k)

)(
K∑

k=1

h(k)
r h(k)

r

H
P (k)

)

−
(

K∑

k=1

h(k)
r h

(k)
d P (k)

)(
K∑

k=1

h
(k)
d

H
h(k)
r

H
P (k)

)

= R̃ +
1

2

K∑

l=1

K∑

k=1

(
h

(k)
d h

(k)
d

H
h(l)
r h(l)

r

H
P (k)P (l) + h

(l)
d h

(l)
d

H
h(k)
r h(k)

r

H
P (k)P (l)

− h(k)
d h

(l)
d

H
h(k)
r h(l)

r

H
P (k)P (l) − h(l)

d h
(k)
d

H
h(l)
r h(k)

r

H
P (k)P (l)

)

= R̃ + W,

where

R̃ =
K∑

k=1

h(k)
r P (k)h(k)

r

H
(5.16)

W =
1

2

K∑

l=1

K∑

k=1

(
h

(l)
d h(l)

r − h(k)
d h(k)

r

)(
h

(l)
d h(l)

r − h(k)
d h(k)

r

)H
P (l)P (k). (5.17)

Obviously, for the case of zero direct links (h
(k)
d = 0 ∀k), we obtain D = R̃ and the

condition of Corollary 10 is the same as in the proof of Theorem 5. This condition is
always fulfilled, which shows the superiority of TDMA. Hence, Theorem 5 is a special
case of Theorem 9 and Corollary 10. However, if the strength of the direct links is

increased, W and thus also λmax

(
R̃ + W

)
increases rapidly, which compensates the

disadvantage of joint relaying. More details about the comparison of TDMA and joint
relaying are given in the following section.

5.4 Simulation Results

In this section, we evaluate the achievable rates and the upper bounds for both joint
relaying and TDMA by means of simulation results. The goal of these simulations is
to obtain a quantitative estimation of the gap between achievable schemes and upper
bounds as well as the gain or loss of TDMA compared to joint relaying. Although an
existing gap between upper bounds and achievable schemes leaves some uncertainty
about the exact rate, we will be able to state whether TDMA or joint relaying is better
for many cases.
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5.4 Simulation Results

While the achievable rates are computed with Algorithm 6 and its modified version
for TDMA as explained in Subsection 5.2.2, the upper bounds that will be plotted in
the following figures are always the minimum of two upper bounds. For joint relaying,
we use Algorithm 5 (with ∆β = 0.02 and ∆θ = 0.1π) and Theorem 8 to derive upper
bounds, where the former provides a tighter upper bound for high values of Pr and
the latter is tighter for moderate and low values of Pr. For TDMA, we simply use
the single-user upper bounds, which are obtained from Algorithm 4 (with ∆β = 0.01)
and Theorem 8 with K = 1. These bounds are computed for every user, where the
duration of the time slots τ (1), . . . , τ (K) are set by an outer loop in a brute-force fashion.
In detail, τ (1), . . . , τ (K) are selected between 0 and 1 with intervals of ∆τ = 0.05 such
that

∑K
k=1 τ

(k) = 1. Although the brute-force scheme only allows an approximation of
the bounds, the precision can be made arbitrarily high by decreasing ∆τ .

The further assumptions for the simulations are mostly the same as in the preceding
sections. Thus, we consider independent Rayleigh fading channels, i.e., all entries of
the channel matrices are ∼ CN (0, 1) and independent from each other. An exception

are the entries of the vectors h
(k)
d . In order to be able to evaluate the influence of the

strength of the direct links, their entries are independent but have a variance of σ2
d. We

assume that the number of users is K = 2 and that both users have the same number of
antennas N

(1)
t = N

(2)
t = Nt and the same transmit power P (1) = P (2) = P . Unless oth-

erwise specified, we set the number of transmitter and relay antennas to Nt = Nf = 3,
while, as we consider MISO channels, we have a single receive antenna. Furthermore,
all results are obtained by averaging over 100 channel realizations and, as we assume
unit noise variance, the SNRs at transmitter and relay are given by SNRt = P and
SNRr = Pr, respectively. Finally, in order to allow for a compact notation in the plots,
we abbreviate the terms “upper bound” and “joint relaying” by “UB” and “JR”, re-
spectively.

First, we present the sum-rates that are achieved for the simplified case with Nt = 1,
i.e., for single-antenna transmitters. As explained in Section 5.3, the TDMA rates can
be computed exactly for this case with Algorithm 7, while for joint relaying we have
an upper and lower bound. These rates are plotted in Figure 5.1 for SNRt = 4 dB
and in Figure 5.2 for SNRt = 16 dB. As it can be seen, the upper and lower bounds of
joint relaying are tight enough to make a clear comparison between joint relaying and
TDMA. Obviously, the superiority of TDMA, which was found for channels without
direct links in Section 4.2, persists only for the case of SNRt = 4 dB and σ2

d = 0.1.
For all other cases joint relaying clearly outperforms TDMA, where the gap grows
dramatically with the strength of the direct links and the relay power. Moreover, the
gap also grows with the transmit power, but this influence is not as significant as the
one of σ2

d and SNRr.

A mathematical explanation for this observation is given in Theorem 9, where it
can be seen that the matrix W grows enormously with the direct links, which rapidly
compensates the disadvantage of joint relaying if the direct links are zero. A more in-
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Figure 5.1: Sum-rates in the SISO MARC with direct links at SNRt = 4 dB
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Figure 5.2: Sum-rates in the SISO MARC with direct links at SNRt = 16 dB
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Figure 5.3: Sum-rates in the MISO MARC with direct links at SNRt = 4 dB

tuitive explanation follows when looking at the system from a MIMO multi-user point
of view: If the direct links are added, the receiver virtually has a second antenna, i.e.,
the effective channel is a SIMO MAC. As already mentioned at the end of Subsection
3.1.2, this allows the parallel reception of two dimensions, i.e., we gain spatial diversity.
As in TDMA, only one single-antenna user accesses the channel at a time, the spatial
diversity can not be exploited. On the contrary, multiple users access the channel in
joint relaying, such that the spatial diversity can be used, which is an enormous ad-
vantage.

If multi-antenna transmitters, i.e., the MISO MARC with direct links is considered,
the situation changes. First, the exact rates of TDMA are not known for this case,
such that they can only be estimated by upper and lower bounds, too. Of course, this
makes it harder to give a clear statement whether TDMA or joint relaying is better. The
achieved sum-rates as well as the upper bounds are plotted in Figure 5.3 for SNRt = 4
dB and in Figure 5.4 for SNRt = 16 dB.

It can be observed that, while the gap between upper and lower bounds grows only
slightly for joint relaying, it is considerably larger for TDMA. Nevertheless, the sub-
optimality of TDMA obtained for single-antenna transmitters can also be shown for
multi-antenna transmitters if the achievable rate of joint relaying lies above the upper
bound of TDMA. As it can be seen, this is the case if Pr is large enough. However,
compared to the single-antenna case, the gaps between joint relaying and TDMA have
decreased considerably, even for much stronger direct links. An explanation for this
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Figure 5.4: Sum-rates in the MISO MARC with direct links at SNRt = 16 dB

is that with multiple transmit antennas, the effective channel is now a MIMO MAC.
Thus, also TDMA, where one user uses the channel exclusively can benefit from the
spatial diversity by transmitting as in a MIMO single-user channel.

More insights about the difference of TDMA and joint relaying are found if the
achievable sum-rates for Pr → ∞ are considered. In Figures 5.5, 5.6, and 5.7 the loss
of TDMA compared to joint relaying is plotted over several parameters.

In Figure 5.5 a medium SNR of SNRt = 10 dB is considered, while σ2
d is varied

between 0 and 1 and the number of transmit antennas Nt is varied between 1 and 10.
Obviously, the rate loss of TDMA reduces significantly with the number of transmit
antennas, especially if the direct links are strong. While the rate loss for σ2

d = 1 is
about 30% for Nt = 1, it reduces to about 5% for Nt = 10. Moreover, TDMA can also
achieve higher rates than joint relaying. However, this is only the case for low values
of σ2

d.

The influence of the transmit power is considered in Figures 5.6 and 5.7, where for
Figure 5.6 we consider the SISO channel with Nt = 1 and for Figure 5.7 we consider
the MISO channel with Nt = 3. The observation from Figures 5.1 and 5.4 that the rate
loss of TDMA grows with the transmit power is confirmed by Figure 5.6. However, the
dependence on the strength of the direct links is much stronger, such that for σ2

d = 1
and SNRt = 20 dB the loss of TDMA is almost 40%. On the other hand, if the transmit
power is low such that SNRt = 2 dB, TDMA can achieve gains as long as σ2

d ≤ 0.35.

As it can be expected from the previous plots, the situation is different if the MISO
channel is considered. Figure 5.7 shows that multiple antennas do not only reduce the
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Figure 5.8: Convergence of Algorithm 6 for SNRt = 10 dB and σ2
d = 1

However, also for high values of SNRr, the rate increase after 5 iterations is negligible.
Furthermore, already after one iteration, the achieved rate lies only 4% below the finally
achieved rate for high SNRt, for low SNRt the performance decrease is only 0.5%. Thus,
using no iterations at all would also deliver results which are not much worse. For the
case considered here, using 3 iterations would be sufficient to have a good trade-off
between convergence time and performance.

As the convergence behavior for other values of SNRt and σ2
d does not differ much

from the one shown here, we omit further plots for these cases. The TDMA version of
Algorithm 6 has a similar convergence behavior but manages to converge with fewer
iterations. The reason for this is that the iteration only optimizes one instead of K
covariance matrices. However, it has to be considered that the TDMA version optimizes
the relaying matrix and the covariance matrix of each user separately, such that the
inner iteration is executed K times more often than with joint relaying. Moreover, the
outer loop which optimizes the duration of the time slots in a brute-force fashion has to
be considered which increases the complexity even further. Thus, as already stated in
Subsection 5.2.2, the complexity of the TDMA version of Algorithm 6 is much higher.
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6
Characteristics of Finite Alphabets
in Low-SNR Broadcast Channels

This chapter considers the use of finite instead of Gaussian alphabets for transmission.
Although Gaussian alphabets are optimal for the channels considered here, they are
continuous and unbounded, which makes them unusable for practical systems. Instead
those systems have to use finite alphabets like M-PSK or M-QAM, where one of M
constellation points is transmitted. Contrary to Gaussian alphabets, the finite constel-
lation generally limits the achievable rate by log2M . Nevertheless, if M is chosen large
enough, it is possible to achieve rates that are close to the optimal rates of Gaussian
alphabets, although a shaping loss [FGL+84] has to be tolerated.

Here, we consider a SISO broadcast channel, where the users are operating at low
SNR level. For simplicity, the channel does not contain a relay. As described in chapter
4.3, fixing the relaying matrix of the AF-relay in a BRC effectively delivers a broadcast
channel, such that for the problems considered here, it is not of importance whether
the channel contains a relay or not.

The low SNR level entails that the energy per bit of each user is close to the minimum
that allows for reliable transmission. In [Ver02], the wideband slope was introduced,
which describes the behavior of the capacity as SNR tends to zero. It has already
been shown [Ver02] that in single-user channels, quadrature phase shift keying (QPSK)
achieves the optimum slope reached by Gaussian alphabets, while binary phase shift
keying (BPSK) only achieves half the slope. In this chapter, we show that the same
holds for the slope region of the broadcast channel. Furthermore, we consider the
performance of TDMA and show that the suboptimality of TDMA, which was already
shown for multi-user channels with Gaussian inputs in [CTV04], persists.

This chapter is structured as follows: In Section 6.1, we introduce the minimum
energy per bit and the wideband slope as quality criteria for channels at low SNR.
Subsequently, we consider previous results for broadcast channels at low SNR with
Gaussian alphabets in Section 6.2. Similar results are established for the broadcast
channel with finite alphabets in Section 6.3, where we consider BPSK and QPSK as
modulation schemes. Finally, Section 6.4 evaluates the obtained slope regions and
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presents an example, for which the achievable slope regions are plotted.

6.1 Minimum Energy Per Bit and Wideband Slope

Considering channels at low SNR is of special importance if, e.g., the bandwidth is
increased considerably while the transmit power remains constant, such as in ultra
wideband channels. Contrary to the preceding chapters in this work, taking the channel
capacity as quality criterion is not suitable, because as the SNR tends to zero the
channel capacity also tends to zero. In order to have a criterion also for low-SNR
channels, Verdú introduced the capacity per unit cost [Ver90] first, and considered the
spectral efficiency in channels at low SNR later in [Ver02].

This spectral efficiency C equals the capacity C, but is a function of the energy per
information bit to noise ratio instead of SNR, i.e., we have

C

(
Eb
N0

)
= C (SNR) , (6.1)

where SNR is defined as the ratio of the transmit power per symbol P and the noise
power N0. Hence, assuming transmission at the capacity, the energy per information
bit is given by the ratio of the transmit power P and the capacity, i.e., Eb = P

C(SNR)
.

Using (6.1), the relationship between SNR and Eb
N0

can also be described as (cf. [Ver02])

Eb
N0

C (SNR) = SNR. (6.2)

Of course, as SNR tends to zero, also the spectral efficiency tends to zero. However, it
can be used to define two quality criteria for channels at low SNR [Ver02].

First, the minimum required energy per information bit is of interest. As C (SNR) is
a monotonically increasing concave function, it follows from (6.2) that

Eb
N0 min

= lim
SNR→0

SNR

C (SNR)
=

ln 2

Ċ (0)
,

where Ċ (0) denotes the first derivative of the capacity with respect to SNR.
Second, for comparing setups with equal minimum energy per bit, Verdú introduced

the wideband slope S0. It is defined as the slope of the spectral efficiency C
(
Eb
N0

)
in

bit/s/Hz/(3 dB) at Eb
N0min

, i.e.,

S0 = lim
Eb
N0
↓Eb
N0 min

C
(
Eb
N0

)

10 log10
Eb
N0
− 10 log10

Eb
N0 min

10 log10 2,

where ↓ indicates convergence from above. Moreover, it is shown in [Ver02, Theorem
9] that the wideband slope S0 can also be calculated from the capacity by

S0 = −2
Ċ (0)2

C̈ (0)
.
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6.2 Slope Region of Broadcast Channels with Gaussian Alphabets

In the following sections, we will use these quality criteria to evaluate the performance
of Gaussian and finite alphabets in the broadcast channel at low SNR with and without
TDMA.

6.2 Slope Region of Broadcast Channels with

Gaussian Alphabets

In [CTV04], the minimum energy per bit and the wideband slope were derived for two-
user broadcast channels as described in Subsection 3.2.1, for the case that Gaussian
alphabets are used for transmission. In the following, we will describe the results
without proofs, which can be found in [CTV04].

For the sake of consistency, we use the notation introduced in Subsection 3.2.1 for
the SISO broadcast channel in the remainder of this chapter. Moreover, we assume
without loss of generality that |h(1)| ≥ |h(2)|, i.e., receiver 1 has a higher channel gain
and receiver 2 is degraded. Therefore, the capacity region of this channel, achieved by
superpositioning, is given by (cf. [CTV04])

⋃

0≤α≤1

{
R(1) ≤ log2

(
1 + α|h(1)|2SNR

)

R(2) ≤ log2

(
1 +

(1− α)|h(2)|2SNR
1 + α|h(2)|2SNR

)}
,

while the rate region achievable with TDMA is

⋃

0≤τ≤1

{
R(1) ≤ τ log2

(
1 + |h(1)|2SNR

)

R(2) ≤ (1− τ) log2

(
1 + |h(2)|2SNR

)
}
.

As in [CTV04] the energy per information bit E
(k)
b of user k as well as the received

energy per information bit E
(k)
b

r
of user k can be calculated as

E
(k)
b

N0

r

, |h(k)|2E
(k)
b

N0

,
ln 2

Ṙ(k) (0)
k = 1, 2 (6.3)

and the slopes of the users are given by

S(k)
0 = −2

Ṙ(k) (0)2

R̈(k) (0)
. (6.4)
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In analogy to the capacity region at nonzero SNR, we obtain a slope region at zero
SNR. In order to parameterize this region properly, the ratio of the rates is fixed to
ϑ = R(1)

R(2) and one point of the slope region is found for each ϑ ∈ [0,∞].
Using these definitions, the minimum received energies per bit found in [CTV04,

Theorem 5] for both superpositioning and TDMA with Gaussian alphabets are given
by

E
(1)
b

N0

r

=

(
1 +

|h(1)|2
|h(2)|2ϑ

)
ln 2

E
(2)
b

N0

r

=

(
1 +
|h(2)|2ϑ
|h(1)|2

)
ln 2.

(6.5)

Moreover, the slope region of TDMA was shown to be (cf. [CTV04, Theorem 6])

⋃

ϑ∈[0,∞)

{(
S(1)

0 ,S(2)
0

)
: 0 ≤ S(1)

0 ≤ 2ϑ

1 + ϑ
, 0 ≤ S(2)

0 ≤ 2

1 + ϑ

}
, (6.6)

while the slope region achieved by superpositioning can be formulated as (cf. [CTV04,
Theorem 7])

⋃

ϑ∈[0,∞)




(
S(1)

0 ,S(2)
0

)
: 0 ≤ S(1)

0 ≤
2ϑ
(
ϑ+ |h(1)|2

|h(2)|2

)

ϑ2 + 2ϑ+ |h(1)|2
|h(2)|2

, 0 ≤ S(2)
0 ≤

2
(
ϑ+ |h(1)|2

|h(2)|2

)

ϑ2 + 2ϑ+ |h(1)|2
|h(2)|2



 .

(6.7)

6.3 Slope Region of Broadcast Channels with

Finite Alphabets

In this section, we consider M -PSK constellations for transmission, where M ∈ {2, 4},
i.e., we use BPSK and QPSK. For superpositioning the BPSK alphabets of the users are
given by A(1)

2 = {±√αA} and A(2)
2 =

{
±
√

1− αA
}

, respectively, while for QPSK we

use A(1)
4 = {√αA(±1± j)} and A(2)

4 =
{√

1− αA(±1± j)
}

, respectively. For the case
of TDMA, both users use the alphabet A2 = {±A} for BPSK and A4 = {A(±1± j)}
for QPSK. Note that for BPSK the SNR is given by SNR = A2

N0
, while for QPSK, we

have SNR = 2A2

N0
.

Contrary to transmissions with Gaussian alphabets, the achievable rates can not
be calculated by simple formulas if finite alphabets are used. Instead, the rates have
to be calculated through the mutual information of the channel input and output at
the respective receiver. Using the random variables X(1),X(2) for the channel inputs
x(1),x(2) and Y (1), Y (2) for the channel outputs y(1), y(2), the rates can be written
as R(1) = I

(
X(1);Y (1)|Y (2)

)
and R(2) = I

(
X(2);Y (2)

)
. These expressions have been
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calculated for broadcast channels in [DR09]. However, they are very lengthy, contain
expected values, and their derivatives can not directly be calculated. Therefore, we
follow a different approach to calculate the rates achievable by BPSK in the following
subsection. Subsequently, the rates achievable by QPSK are obtained by exploiting a
simple relationship between the BPSK and QPSK rates.

Throughout this section, we write the rates as R
(k)
M , where M denotes the cardinality

of the alphabet (M ∈ {2, 4}). Moreover, we use the rate ratio ϑ =
R

(1)
M

R
(2)
M

as defined

in the preceding section. As a consequence of this, the power dividing variable α in
superpositioning depends not only on SNR but also on ϑ, which will be indicated by
writing αϑ instead. The same holds for the time dividing variable τ in TDMA, which
will be denoted as τϑ.

6.3.1 Slope Region with BPSK

In superpositioning, the first user does not experience any interference from user two
and effectively uses a single-user channel. Hence, for the expression of the mutual infor-
mation we can take the result from [Ver02], where single-user channels were considered.
In this work, a Taylor expansion of the mutual information was given, which can be
written as

R
(1)
2 (SNR) = |h(1)|2αϑ(SNR)SNR− |h(1)|4αϑ(SNR)2SNR2 + o(SNR2)

for the channel considered here. As only the first two derivatives of the rates are of
importance, this expression is sufficient for the calculation of the minimum energy per
bit and the wideband slope.

However, for the second user, which is subject to interference from the first user,
this expression can not be used. Instead, we can use a reformulation of the mutual
information [Ver02] given by

I
(
X(2);Y (2)

)
= Ex(2){D

(
pY (2)|X(2)=x(2)‖pY (2)|X(2)=0

)
} −D

(
pY (2)‖pY (2)|X(2)=0

)
, (6.8)

where D(p‖q) denotes the Kullback-Leibler divergence between the distributions p
and q, pY (2)|X(2)=x(2) denotes the conditional output distribution given input x(2), and

Ex(2){T} denotes the expectation value of the term T with respect to x(2). Using (6.8),
we can write

R
(2)
2 =

1

2

∑

x(2)∈A(2)
2

∫

C
pY (2)|X(2)=x(2)(y) log2

pY (2)|X(2)=x(2)(y)

pY (2)|X(2)=0(y)
dy

−
∫

C
pY (2)(y) log2

pY (2)(y)

pY (2)|X(2)=0(y)
dy,

(6.9)
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where

pY (2)|X(2)=x(2)(y) =
1

2

∑

x(1)∈A(1)
2

1

π
e−|y−h

(2)x(2)−h(2)x(1)|2

pY (2)(y) =
1

2

∑

x(2)∈A(2)
2

pY (2)|X(2)=x(2)(y)
(6.10)

are the probability densities appearing inside the integrals.
Through some reformulations1, it is possible to express R

(2)
2 as

R
(2)
2 (SNR) = |h(2)|2(1− αϑ(SNR))SNR− |h(2)|4(1− αϑ(SNR)2)SNR2 + o(SNR2).

Therefore, the derivatives of the rates at SNR = 0 can be calculated as

Ṙ
(1)
2 (0) = |h(1)|2αϑ(0)

Ṙ
(2)
2 (0) = |h(2)|2(1− αϑ(0))

R̈
(1)
2 (0) = −2|h(1)|4αϑ(0)2 + 2|h(1)|2α̇ϑ(0)

R̈
(2)
2 (0) = −2|h(2)|4 + 2|h(2)|4αϑ(0)2 − 2|h(2)|2α̇ϑ(0).

(6.11)

As ϑ =
R

(1)
M

R
(2)
M

holds for all SNR, it follows that
Ṙ

(1)
2 (0)

Ṙ
(2)
2 (0)

=
R̈

(1)
2 (0)

R̈
(2)
2 (0)

= ϑ and we can further

derive

αϑ(0) =
ϑ|h(2)|2

|h(1)|2 + ϑ|h(2)|2

α̇ϑ(0) = −ϑ|h(2)|4|h(1)|2 (1− ϑ)|h(1)|2 + 2ϑ|h(2)|2
(|h(1)|2 + ϑ|h(2)|2)3

.

(6.12)

Combining (6.11),(6.12), and (6.3), the minimum required received energies per bit
are given by the same expressions as in (6.5), i.e., they are the same as for Gaussian
alphabets. The slope region follows from (6.4) and is given by

⋃

ϑ∈[0,∞)




(
S(1)

0 ,S(2)
0

)
: 0 ≤ S(1)

0 ≤
ϑ
(
ϑ+ |h(1)|2

|h(2)|2

)

ϑ2 + 2ϑ+ |h(1)|2
|h(2)|2

, 0 ≤ S(2)
0 ≤

(
ϑ+ |h(1)|2

|h(2)|2

)

ϑ2 + 2ϑ+ |h(1)|2
|h(2)|2



 ,

i.e., the slope of each user is halved compared to the slope region of Gaussian alphabets
from (6.7).

If TDMA is used instead of superpositioning, the Taylor expansions of both users’
rates can be derived from the single-user Taylor expansion [Ver02] and are given by

R
(1)
2 (SNR) = |h(1)|2τϑ(SNR)SNR− |h(1)|4τϑ(SNR)SNR2 + o(SNR2)

R
(2)
2 (SNR) = |h(2)|2(1− τϑ(SNR))SNR− |h(2)|4(1− τϑ(SNR))SNR2 + o(SNR2).

1due to their lengthiness, these reformulations are not mentioned here, for details see [KWHK09]
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Hence, the derivatives at SNR = 0 can be calculated as

Ṙ
(1)
2 (0) = |h(1)|2τϑ(0)

Ṙ
(2)
2 (0) = |h(2)|2(1− τϑ(0))

R̈
(1)
2 (0) = −2|h(1)|4τϑ(0) + 2|h(1)|2τ̇ϑ(0)

R̈
(2)
2 (0) = −2|h(2)|4 + 2|h(2)|4τϑ(0)− 2|h(2)|2τ̇ϑ(0).

(6.13)

Again, the ratio ϑ =
R

(1)
M

R
(2)
M

holds for all derivatives, such that τϑ(0) and τ̇ϑ(0) are given

by

τϑ(0) =
ϑ|h(2)|2

|h(1)|2 + ϑ|h(2)|2

τ̇ϑ(0) = ϑ|h(1)|2|h(2)|2 |h(1)|2 − |h(2)|2
(|h(1)|2 + ϑ|h(2)|2)2

.

(6.14)

Thus, also for TDMA it follows from the combination of (6.11),(6.12), (6.3), and (6.4)
that the minimum required received energies per bit are the same as in (6.5), while the
slope region is given by

{(
S(1)

0 ,S(2)
0

)
: 0 ≤ S(1)

0 ≤ ϑ

1 + ϑ
, 0 ≤ S(2)

0 ≤ 1

1 + ϑ

}
,

i.e., the slope of each user is again halved compared to the slope region achieved with
TDMA and Gaussian alphabets from (6.6).

6.3.2 Slope Region with QPSK

As QPSK can be interpreted as two orthogonal BPSK transmissions, where one takes
place in the real and the other in the complex dimension, it seems natural that there
is a fix relationship between the rates. As the number of dimensions doubles, while the
power per dimensions is halved one can conjecture that

R
(k)
4 (SNR) = 2R

(k)
2

(
SNR

2

)
(6.15)

holds for the rates of both users in the broadcast channel. As this relationship was
shown for single-user channels in [Ver02], this also holds for the first user in super-
positioning and both users in TDMA. For the second user in superpositioning, (6.15)
was shown in our work [KWHK09]. The main idea of the proof is to use the rate
expression from (6.9) and reformulate the probability distributions as products of two
distributions, one for the real and one for the imaginary part, like the ones in (6.10).
This allows to write the logarithms as the sum of two logarithms, which finally results
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in a doubling of the rate with half the SNR. However, as the proof is lengthy, we refer
to our work [KWHK09] for details.

Using (6.15), it follows that

Ṙ
(k)
4 (0) = Ṙ

(k)
2 (0)

R̈
(k)
4 (0) =

1

2
R̈

(k)
2 (0)

for k = 1, 2 and for both superpositioning and TDMA. Hence, as the first derivatives at
SNR = 0 are the same, QPSK achieves the same minimum received energies per bit as
BPSK and Gaussian alphabets described in (6.5). Moreover, as the second derivatives
are halved compared to BPSK, it follows for the slopes of QPSK that

S(k)
0,QPSK = −2

Ṙ
(k)
4 (0)2

R̈
(k)
4 (0)

= −4
Ṙ

(k)
2 (0)2

R̈
(k)
2 (0)

= 2S(k)
0,BPSK,

i.e., the slope of each user is doubled compared to BPSK. Thus, the slopes of QPSK are
again the same as that of Gaussian alphabets described in (6.7) for superpositioning
and (6.6) for TDMA. The superiority of QPSK compared to BPSK is not surprising,
because QPSK uses the whole complex space, while BPSK only uses the real dimension.

6.4 Evaluation of Slope Regions

As shown in the preceding section, BPSK and QPSK achieve the same minimum re-
ceived energy per bit as Gaussian alphabets. Therefore, those constellations can be
compared by their wideband slopes, for which we found the relation

2S(k)
0,BPSK = S(k)

0,QPSK = S(k)
0,Gauss,

for k = 1, 2 and for both superpositioning and TDMA. Thus, BPSK achieves half the
slope of QPSK and Gaussian alphabets. Up to now, this relation was only known for
the single-user extreme cases obtained by setting ϑ = 0 and ϑ =∞ from [Ver02]. The
results from above show that this relation also holds for all intermediate values of ϑ.

As an example, the slope regions of a broadcast channel with h(1) = 10 and h(2) = 7
are plotted in Figure 6.1. It can be seen that the slope of each user halves when using
BPSK instead of QPSK as modulation scheme. Furthermore, it is observed that the
slope region of superpositioning is larger than the one of TDMA. Comparing their slope

regions in detail, it can be seen that the advantage of superpositioning grows with |h
(1)|2
|h(2)|2 .

For the extreme case of |h(1)| = |h(2)|, the slope regions of TDMA and superpositioning
are equivalent, which was already shown in [CTV04] for Gaussian alphabets.
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BPSK Sup.
QPSK TDMA
BPSK TDMA

Figure 6.1: QPSK and BPSK slope regions for h(1) = 10, h(2) = 5
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7
Conclusion

In this thesis, we considered different types of multi-user MIMO channels with an AF-
relay. Our goal was to find transmit strategies, which allow to achieve sum-rates that
are close to the optimum.

A fundamental question in this problem is how the users should access the channel.
In existing works, it is mostly assumed that all users access the channel jointly and the
relay forwards the sum of the signals to the receiver. On the contrary, we suggested
a scheme based on TDMA, where each user is assigned one time slot, in which it can
use the channel and the relay exclusively. While for both schemes it is necessary to
optimize the transmit covariance matrices as well as the relay matrix, an additional
optimization of the duration of the time slots is required for TDMA.

These optimization problems are another very important aspect, which was consid-
ered in this thesis. Concerning the performance of the overall system, it is of course
desirable to find the global optimal solution of this problems. However, if this requires
algorithms with too large complexity, suboptimal solutions with lower complexity and
small performance loss might be more desirable.

For the MISO MARC without direct links, closed-form solutions could be found for
joint relaying and TDMA. Thus, the effort to compute the optimal transmit covariance
and relay matrices is low for both schemes. Comparing the achievable rates of TDMA
and joint relaying, we could show that the TDMA-based scheme achieves higher rates.
By means of simulation results, we could show that, if the number of users and antennas
is large, the sum-rate gain of TDMA can be up to 20%.

A different situation emerges in the MISO BRC without direct links. As the opti-
mization problems are much harder to solve and a duality with the MARC exists only
for special cases, a closed-form solution for the problem seems infeasible. Therefore, our
main focus in the BRC was to reduce the complexity of existing algorithms. We created
an algorithm that uses joint relaying and is based on the duality of MAC and broad-
cast channel without relay. As it is shown by simulation results, this algorithm achieves
the same rates as existing strategies, which require a higher complexity. Moreover, we
could show that the use of TDMA is not beneficial in the BRC.
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7 Conclusion

The most involved channel that we considered was the MISO MARC with direct
links. As a closed-form solution for the achievable rates seems infeasible for both joint
relaying and TDMA, we derived two upper bounds for both schemes. While these upper
bounds are partly based on brute-force methods, using such methods for computing an
achievable solution turned out to be too complex. Instead, we constructed an efficient,
iterative, and heuristic algorithm to compute an achievable solution. This algorithm
can be used with both joint relaying and TDMA and achieves rates which are close
to the upper bounds. A special case is obtained for single-antenna transmitters, for
which we found an algorithm that computes the optimal rates of TDMA. For large
relay power, we were even able to formulate a condition for the superiority of TDMA.

Through a set of simulation results, we could show that the superiority of TDMA
only persists if the direct links are weak. Especially for single-antenna transmitters, the
loss of TDMA can be up to 40%. For multi-antenna transmitters, the loss of TDMA
is rather around 10%, depending on the strength of the direct links and the transmit
powers. However, as multiple antennas increase the complexity of finding the duration
of the time slots for TDMA considerably, we can state that the use of TDMA in the
MARC with direct links is mostly not advantageous. Finally, we have shown that the
number of iterations that our constructed algorithm requires to converge is low and
already after one iteration the rates are close to the finally achieved ones.

A step towards practical systems has been made by considering the use of finite
alphabets in broadcast channels. Using the minimum energy per bit and the slope
region as quality criteria, it could be shown that QPSK achieves the same performance
as Gaussian alphabets, while BPSK achieves only half the slope. Furthermore, the
suboptimality of TDMA for broadcast channels was shown to hold also with finite
alphabets.

Outlook

Due to the variety of schemes and possible assumptions in MIMO multi-user systems,
especially in combination with relays, it is possible to extend the results of this thesis
in many directions. For example, an extension to complete MIMO channels as consid-
ered in [YH10, TH07], where also the receiver has more than one antenna, would be
desirable. As finding closed-form solutions for this case might be difficult, the schemes
presented here can already be used as lower bounds. Other interesting extensions might
be the assumption of no or only partial channel knowledge, the consideration of the
whole capacity region instead of only the sum-rate, or the investigation of the inter-
ference channel (IC) [Sha61, Ahl74, Car78] with an AF-relay. However, the latter one
could be really challenging, because even the capacity region of the SISO IC is only
known partially [Car75, Sat81, HK81, AV09] or to within one bit [ETW08]. With
multiple antennas, this problem is even harder to solve.

For the open problems in the MARC with direct links, namely the gap between upper
and lower bounds, it might be possible to find solutions in the near future. As, at least
for some parameters, the upper bounds derived in this thesis are clearly not tight, one
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approach might be to find tighter upper bounds. But of course, also better lower bounds
can possibly be found. The latter could be done by investing high computational power
to find solutions in a brute-force fashion, or maybe by new approaches using methods
from optimization theory, which could result in the derivation of new algorithms with
low complexity.

Finally, the role of TDMA in multi-user channels with AF-relay could be further
considered. Due to the superiority of TDMA for the MISO MARC, it can be stated
that joint relaying is not generally sufficient to achieve the best possible rates in the
MARC with AF-relay. However, considering the results for channels with direct links
where the receiver virtually has two antennas, joint relaying could be better than
TDMA in the MIMO MARC, which would be an interesting observation. In order to
benefit from the advantages of both joint relaying and TDMA, also hybrid schemes
could be constructed that create L < K time slots for K users and allow that time
slots are shared by two or more users.
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A
Water-Filling

In this appendix, we discuss the use of the famous water-filling algorithm for calculating
the capacity in MIMO channels. In the first section, the scalar water-filling problem and
its solution are described. Subsequently, we consider the problem of finding the capacity
in a single-user MIMO channel. It is shown, that this problem can be reformulated
as a scalar water-filling problem. As the algorithms for finding the capacity both for
the MIMO MAC and MIMO broadcast channel are based on iteratively solving the
MIMO single-user capacity problem, the importance of this problem goes far beyond
single-user systems.

A.1 The Scalar Water-Filling Algorithm

Let hk, pk ∈ R+
0 (k = 1, . . . , K), then consider a problem of the form

max
p1,...,pK

K∑

k=1

log2 (1 + hkpk)

s.t.
K∑

k=1

pk ≤ P

pk ≥ 0 ∀k.

(A.1)

First, it can be observed that a necessary condition for a solution is that
∑K

k=1 pk = P ,
because the target function is strictly increasing with pk ∀k. The inequality in the
problem is only used for reasons of conformance with the matrix problems. Second,
the problem is convex. Hence, the KKT conditions are necessary and sufficient for
optimality of a solution p , [p1, . . . , pK ] [BV04]. Using µ and λ , [λ1, . . . , λK ] as
Lagrange multipliers, the Lagrangian of the problem is

L(p,λ, µ) =
K∑

k=1

log2 (1 + hkpk)− µ
(

K∑

k=1

pk − P
)

+
K∑

k=1

λixi.
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A.2 Water-Filling for MIMO channels

A.2 Water-Filling for MIMO channels

The capacity of a standard single-user MIMO channel with channel matrix H ∈ CMr×Mt

is obtained by solving the optimization problem1

max
Q

log2

∣∣I + HQHH
∣∣

s.t. tr (Q) ≤ P

Q � 0.

The solution for this problem is found in [Tel99] and shall be quickly repeated here.
Let H = UΣVH be the SVD of H and optimize over the similar matrix Σq , VHQV
instead. Then, the optimization problem can be rewritten as

max
Σq

log2

∣∣I + ΣΣqΣ
H
∣∣

s.t. tr (Σq) ≤ P (A.3)

Σq � 0,

where the determinant identity |I + AB| = |I + BA| was used. From the Hadamard
inequality [HJ90], it follows that

log2

∣∣I + ΣΣqΣ
H
∣∣ ≤ log2

(
n∏

i=1

1 + ΣiiΣqiiΣ
H
ii

)
=

n∑

i=1

log2

(
1 + ΣiiΣqiiΣ

H
ii

)
,

where n = min {Nr, Nt} and equality only holds if Σq is diagonal. Hence, the optimiza-
tion problem (A.3) is solved by a diagonal matrix Σq. Using q1, . . . , qMt and σ1, . . . , σn
as diagonal entries of Σq and Σ, respectively, the problem can be rephrased as

max
q1,...,qMt

n∑

i=1

log2

(
1 + |σi|2qi

)

s.t.
Mt∑

i=1

qi ≤ P

qi ≥ 0 ∀i,

which is equivalent to the scalar water-filling problem (A.1) for n = k and hk = |σk|2,
pk = qk ∀k.

1If the noise covariance matrix N ∈ CMr×Mr is not a unit matrix, the same problem is obtained by
considering the channel H̃ = N−1/2H instead
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B
Proofs

B.1 Proof of Lemma 6

Using the formulation (5.7) of RΣ, we can write
∣∣∣I + H

(1)
eff H

(1)
eff

H
Q̃(1)

∣∣∣ (B.1)

=

∣∣∣∣∣∣

1 + s−1||h||2q1Φ + s−1/2||h||||h(1)
d ||q̃HΨ s−1||h||2q̃Φ + s−1/2||h||||h(1)

d ||q2Ψ

s−1/2||h||||h(1)
d ||q1ΨH + ||h(1)

d ||2q̃H 1 + s−1/2||h||||h(1)
d ||q̃ΨH + ||h(1)

d ||2q2

∣∣∣∣∣∣
(B.2)

= 1 + 2s−1/2||h||||h(1)
d ||Re

(
q̃ΨH

)
+ s−1||h||2q1Φ + ||h(1)

d ||2q2

+ s−1||h||2||h(1)
d ||2

(
q1q2 − |q̃|2

) (
Φ− |Ψ|2

)
(B.3)

Considering the definitions of Φ and Ψ in the theorem, it follows that q1, q2, q̃ and
f1, . . . , fn remain as optimization variables. As in the preceding problems, these pa-
rameters depend on each other and are difficult to find. However, as we have modified
the relay power constraint such that it does not depend on Q(1) or Q̃(1), the problem
can be simplified. The reason for this is that irrespective of the choice of the other
variables, it is clear that Q̃(1) has to be chosen such that it diagonalizes the expression

(B.1) (cf. Appendix A.2). Thus, if the EVD of H
(1)
eff H

(1)
eff

H
is UeffΣeffUH

eff, the structure

of Q̃(1) has to be Q̃(1) = UeffΣqU
H
eff, where Σq is diagonal.

As a consequence of this, we have

H
(1)
eff H

(1)
eff

H
Q̃(1) = UeffΣeffΣqU

H
eff = UeffΣqΣeffUH

eff = Q̃(1)H
(1)
eff H

(1)
eff

H
,

i.e, H
(1)
eff H

(1)
eff and Q̃(1) commute [HJ90]. As both matrices are also Hermitian, it follows

that their product is Hermitian as well. Also the identity matrix and the sum of
Hermitian matrices are Hermitian. Hence, the expression inside the determinant in
(B.2) has to be Hermitian as well. From this we can derive the condition that

s−1||h||2q̃Φ + s−1/2||h||||h(1)
d ||q2Ψ = s−1/2||h||||h(1)

d ||q1Ψ + ||h(1)
d ||2q̃
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has to hold. Equivalently this can be written as the condition

q̃ =
s1/2||h||||h(1)

d ||Ψ(q1 − q2)

||h||2Φ− ||h(1)
d ||2s

, (B.4)

i.e, q̃ is already determined by the condition on the structure of Q̃(1). Combining (B.3)
and (B.4), the expression in Lemma 6 is obtained.

B.2 Proof of Theorem 7

It can be observed that RΣ is a function of |Ψ|2. Therefore, we use ξ , |Ψ|2 in order
to simplify the notation and derivations in this proof. As any phase of ai can be
compensated by choosing θi = θ̃i−∠ (ai), we assume ai ∈ R and ai ≥ 0 ∀i without loss
of generality. Moreover, throughout this proof we define

k = arg max
l
|fl|alσl,

and, as rotating the phase of the whole expression Ψ does not influence its absolute
value, we can assume θk = 0 without loss of generality.

First, we show that

max



0,

(
2|fk|akσk −

n∑

i=1

|fi|aiσi
)2


 ≤ ξ ≤

(
n∑

i=1

|fi|aiσi
)2

. (B.5)

As ξ =
∣∣∑n

i=1 |fi|ejθiσiai
∣∣2, the right side of the inequation follows from the triangle

inequality. Concerning the left side, if |fk|akσk ≤ 1
2

∑n
i=1 |fi|aiσi, ξ ≥ 0 is clear from

its definition. For the opposite case, we can write

|fk|akσk ≥
∑

i 6=k
|fi|aiσi ≥

∣∣∣∣∣
∑

i 6=k
|fi|ejθiaiσi

∣∣∣∣∣ ,

where the first inequality is a reformulation of the condition |fk|akσk ≥ 1
2

∑n
i=1 |fi|aiσi

and the second inequality is due to the triangle inequality again. Using this, it can be
seen that

|Ψ| =
∣∣∣∣∣|fk|akσk +

∑

i 6=k
|fi|ejθiaiσi

∣∣∣∣∣ ≥
∣∣∣∣∣|fk|akσk −

∣∣∣∣∣
∑

i 6=k
|fi|ejθiaiσi

∣∣∣∣∣

∣∣∣∣∣

= |fk|akσk −
∣∣∣∣∣
∑

i 6=k
|fi|ejθiaiσi

∣∣∣∣∣ ≥ |fk|akσk −
∑

i 6=k
|fi|aiσi

= 2|fk|akσk −
n∑

i=1

|fi|aiσi
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Next, we show that RΣ is convex with respect to ξ, which is done by calculating

∂RΣ

∂ξ
= 2
||h||2||h(1)

d ||2(q1 − q2)

||h||2Φ− ||h(1)
d ||2s

− s−1||h||2||h(1)
d ||2


q1q2 −

s||h||2||h(1)
d ||2ξ(q1 − q2)2

(
||h||2Φ− ||h(1)

d ||2s
)2




− (Φ− ξ) ||h||
4||h(1)

d ||4(q1 − q2)2

(
||h||2Φ− ||h(1)

d ||2s
)2

∂2RΣ

∂ξ2
= 2
||h||4||h(1)

d ||4(q1 − q2)2

(
||h||2Φ− ||h(1)

d ||2s
)2 .

Hence, it is obvious that ∂2RΣ

∂ξ2 > 0 and the convexity is shown.

As RΣ is convex and ξ lies in the interval specified in (B.5), it follows that the optimal
value of ξ lies on the edge of the interval. Thus, it is optimal to make ξ either as small
or as large as possible, which is achieved by the choices of θ1, . . . , θn mentioned above.

B.3 Proof of Theorem 9

For joint relaying, we can use the sum-rate formulation of the last expression from
(5.11). Contrary to the MISO case, w(k) is now a scalar, such that

RΣ,∞ = lim
Pr→∞

log2

(
1 +

K∑

k=1

|h(k)
d |2P (k) +

||h||2f̃HDf̃

1 + ||h||2f̃H f̃

)

= log2

(
1 +

K∑

k=1

|h(k)
d |2P (k) +

f̃HDf̃

f̃H f̃

)
,

where the second equality follows from the fact that as Pr → ∞, f̃ can be made arbi-
trarily large. From the Rayleigh quotient, it follows that the last term in the logarithm
is upper bounded by λmax (D), which can be achieved by setting f̃ = vmax (D). There-
fore, the optimal sum-rate with joint relaying is given by the expression in the theorem
as Pr →∞. From (5.13), it follows that

R
(k)
TDMA,∞ = lim

Pr→∞
R

(k)
TDMA = τ (k) log2

(
1 +

P (k)

τ (k)

(
|h(k)
d |2 + ||h(k)

r ||2
))

.

Considering the optimization of RΣ,TDMA,∞ =
∑K

k=1R
(k)
TDMA,∞ over the duration of the

time slots, we have a similar situation as for the SISO MAC without relay described in
(3.3). Therefore, the solution is given by (cf. [CT06])

τ (k) =
|h(k)
d |2 + ||h(k)

r ||2
∑K

l=1

(
|h(l)
d |2 + ||h(l)

r ||2
) (B.8)

and we obtain the optimal TDMA sum-rate as given in the theorem.
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