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Abstract

coding, cryptography, space-time coding and distributed storage. An optimal-cardinality alge-

braic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin
and Roth. This Reed-Solomon-like code class is based on the evaluation of linearized polynomials and
is nowadays called Gabidulin codes.

R\NK-METRIC CODES recently attract a lot of attention due to their possible application to network

This dissertation considers block and convolutional codes in rank metric with the objective of
designing and investigating efficient decoding algorithms for both code classes.

After giving a brief introduction to codes in rank metric and their properties, we first derive
sub-quadratic-time algorithms for operations with linearized polynomials and state a new bounded
minimum distance decoding algorithm for Gabidulin codes. This algorithm directly outputs the
linearized evaluation polynomial of the estimated codeword by means of the (fast) linearized Euclidean
algorithm.

Second, we present a new interpolation-based algorithm for unique and (not necessarily polynomial-
time) list decoding of interleaved Gabidulin codes. The unique decoding algorithm recovers most error
patterns of rank greater than half the minimum rank distance by efficiently solving two linear systems
of equations. The list decoding algorithm guarantees to return all codewords up to a certain radius.

As a third topic, we investigate the possibilities of polynomial-time list decoding of rank-metric
codes in general and Gabidulin codes in particular. For this purpose, we derive three bounds on the list
size. These bounds show that the behavior of the list size for both, Gabidulin and rank-metric block
codes in general, is significantly different from the behavior of Reed-Solomon codes and block codes
in Hamming metric, respectively. The bounds imply, amongst others, that there exists no polynomial
upper bound on the list size in rank metric as the Johnson bound in Hamming metric, which depends
only on the length and the minimum rank distance of the code.

Finally, we introduce a special class of convolutional codes in rank metric and propose an efficient
decoding algorithm for these codes. These convolutional codes are (partial) unit memory codes, built
upon rank-metric block codes. This structure is crucial in the decoding process since we exploit the
efficient decoders of the underlying block codes in order to decode the convolutional code.
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Résumé Francais —
Décodage des codes en bloc et des codes convolutifs
en métrique rang

cation possible au codage réseau linéaire aléatoire (random linear network coding [SKK08, Sil09,
Gad09]), a la cryptographie a clé publique [GPT91a, Gib96, BL02, OG03, BL04, FL05, Ove06,
Loi10], au codage espace-temps [GBL00, LGB03, LK04, ALR13] et aux systémes de stockage dis-
tribué [SRV12, RSKV13]. Une construction de codes algébriques en métrique rang de cardinalité
optimale a été introduite par Delsarte, Gabidulin et Roth il y a quelques décennies. Ces codes sont con-
sidérés comme I’équivalent des codes de Reed-Solomon et ils sont basés sur I’évaluation de polynémes
linéarisés. Ils sont maintenant appelés les codes de Gabidulin.

E CODES EN METRIQUE RANG attirent I’attention depuis quelques années en raison de leur appli-

Depuis peu, le codage réseau linéaire aléatoire est devenu un théme de recherche important. C’est
un moyen efficace pour diffuser 'information dans les réseaux des quelques sources vers quelques
destinations (cf. [ACLY00, HKM ™03, HMK™"06]). Le operator channel a été introduit par Kotter et
Kschischang [KK08] comme une abstraction du codage réseau linéaire aléatoire non-cohérent. Dans ce
modele, les données par paquets sont des vecteurs d’un corps fini et la structure interne du réseau est
inconnue. Chaque noeud du réseau transmet des combinaisons linéaires aléatoires de tous les paquets
regus jusqu’alors. En raison de ces combinaisons linéaires, un seul paquet erroné peut se propager
largement dans le réseau et peut rendre toute la transmission inutile. Cette propagation forte des
erreurs rend essentielle les codes correcteurs d’erreurs dans le codage réseau linéaire aléatoire pour
reconstruire les paquets transmis.

Lorsqu’on considére les paquets transmis comme étant les lignes d’une matrice, les combinaisons
linéaires des nceuds ne sont rien d’autre que des opérations élémentaires sur les lignes de cette matrice.
Dans une transmission sur le operator channel sans erreurs et sans effacements, I’espace des lignes
de la matrice transmise est donc préservé. Basés sur cette observation, Kotter et Kschischang [KK08]
ont introduit des codes de sous-espaces pour la correction d’erreurs et d’effacements dans le codage
réseau linéaire aléatoire. Un code de sous-espaces est un ensemble non-vide de sous-espaces d’'un
espace vectoriel de dimension n sur un corps fini. Chaque mot de code est un sous-espace. Comme
une mesure de distance pour les codes de sous-espaces, on utilise la distance de sous-espaces (subspace
distance), cf. [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13].

Silva, Kschischang et Kotter [SKK08] ont montré que les codes de Gabidulin relevés (lifted) résultaient
en des codes de sous-espaces presque optimaux pour le codage réseau linéaire aléatoire. Les codes de
Gabidulin sont les analogues en métrique rang des codes de Reed—Solomon et ils ont été introduits par
Delsarte, Gabidulin et Roth [Del78, Gab85, Rot91]. Un code en métrique rang de longueur n < m peut
étre considéré comme un ensemble de matrices m X n dans un corps fini F; ou, de maniere équivalente,
comme un ensemble de vecteurs de longueur n dans I'extension de corps ;. Le poids rang d’un tel
«mot» est simplement le rang de sa représentation matricielle et la distance rang entre deux mots est
le rang de leur différence. Ces définitions s’appuient sur le fait que la distance rang est une métrique.



Plusieurs constructions de codes et des propriétés de base de la métrique rang possédent de fortes
similarités avec les codes en métrique de Hamming.

Superficiellement, un code de Gabidulin relevé est un code de sous-espaces spécial ou chaque mot de
code est I'espace des lignes d’une matrice [I CT], ou I désigne la matrice identité et C est un mot de
code (en représentation matricielle) d’'un code de Gabidulin fixé.

Cette these traite des codes en bloc et des codes convolutifs en métrique rang avec 1’objectif de
développer et d’étudier des algorithmes de décodage efficaces pour ces deux classes de codes. Cette
thése est structurée comme suit.

Le chapitre 1 donne une bréve motivation pour l'utilisation des codes en métriques rang dans le
cadre de 'application au codage réseau linéaire aléatoire et présente un apercu de cette these.

Le chapitre 2 fournit une introduction rapide aux codes en métrique rang et leurs propriétés. Apres
avoir introduit des notations pour les corps finis et les bases normales, nous indiquons les définitions
des codes en bloc et codes convolutifs en général. On donne quelques propriétés élémentaires et le
principe de base du décodage des codes en bloc. Les codes de Gabidulin peuvent étre définis comme
des codes d’évaluation de polynoémes linéarisés, pour cette raison, nous définissons cette classe des
polynémes et montrons comment on peut effectuer les opérations mathématiques de base sur ces
polynomes.

La derniere section du chapitre 2 couvre les codes en métriques rang. On définit d’abord la métrique
rang et on donne des propriétés de base pour les codes en métrique rang (par exemple, les équivalents
des bornes de Singleton et de Gilbert-Varshamov). Ensuite, on définit les codes de Gabidulin, on montre
qu’ils atteignent la borne supérieure de Singleton pour la cardinalité et on donne leur matrices généra-
trice et de controle. Nous généralisons par la suite leur définition aux codes de Gabidulin entrelacés
et on montre explicitement comment les codes de Gabidulin relevés constituent un code de sous-espaces.

Dans le chapitre 3, on considére des approches efficaces pour décoder les codes de Gabidulin. La
premiere partie de ce chapitre traite des algorithmes rapides pour les opérations sur les polynémes
linéarisés. Dans ce contexte, on analyse la complexité des approches connues pour les opérations
dans un corps finis avec des bases normales ainsi que pour les opérations mathématiques avec des
polyndmes linéarisés. Ensuite, nous présentons de nouveaux algorithmes en temps sous-quadratique
pour accomplir efficacement la composition linéarisé et 'algorithme d’Euclide linéarisé.

La deuxiéme partie de ce chapitre résume tout d’abord les techniques connues pour le décodage
jusqu’a la moitié de la distance rang minimale (bounded minimum distance decoding) des codes de
Gabidulin, qui sont basées sur les syndromes et sur la résolution d’une équation clé. Ensuite, nous
présentons et nous prouvons un nouvel algorithme efficace pour le décodage jusqu’a la moitié de la
distance minimale des codes de Gabidulin. Cet algorithme peut étre considéré comme un équivalent
de l'algorithme de Gao pour le décodage des codes de Reed-Solomon. Nous montrons comment
I'algorithme d’Euclide linéarisé peut étre utilisé dans ce contexte pour obtenir directement le polynome
de degré restreint d’évaluation du mot de code estimé. De plus, nous étendons cet algorithme de
décodage afin de corriger non seulement des erreurs, mais aussi deux types d’effacements en métrique
rang: effacements de lignes et de colonnes.
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Le codage réseau linéaire aléatoire peut directement profiter d’un tel algorithme de décodage efficace
pour les codes Gabidulin, car il accélére immédiatement la reconstruction des paquets transmis et donc
il réduit le délai nécessaire. L’extension de notre algorithme de décodage aux combinaisons d’erreurs et
d’effacements est cruciale pour gérer les pertes de paquets dans le codage réseau linéaire aléatoire.

Le chapitre 4 est consacré aux codes de Gabidulin entrelacés et a leur décodage au-dela de la moitié
de la distance rang minimale. Un mot de code d’un code de Gabidulin entrelacé peut étre considéré
comme s mots de code paralléles de s codes de Gabidulin normaux (pas nécessairement différents). Ces
s mots de code sont corrompus par s matrices d’erreur. Lorsque ces s matrices d’erreur additives ont un
espace de lignes ou de colonnes en commun, il est possible de décoder les codes de Gabidulin entrelacés
au-dela de la moitié de la distance rang minimale avec une grande probabilité. Jusqu’a présent, deux
approches probabilistes pour le décodage unique sont connues pour ces codes.

Dans ce chapitre, nous décrivons d’abord les deux approches connues pour le décodage unique
et nous tirons une relation entre eux et leurs probabilités de défaillance. Ensuite, nous présentons
un nouvel algorithme de décodage des codes de Gabidulin entrelacés basé sur I'interpolation des
polynomes linéarisés. Nous prouvons la justesse de ses deux étapes principales — I'interpolation et la
recherche des racines — et montrons que chacune d’elles peut étre effectuée en résolvant un systéme
d’équations linéaires.

On peut utiliser I’algorithme comme algorithme de décodage en liste des codes de Gabidulin en-
trelacés, qui garantit de trouver tous les mots de code dans un certain rayon. Cependant, la taille de la
liste, et donc aussi au pire la complexité d’algorithme du décodage en liste, peut devenir exponentielle
en la longueur du code. On peut également utiliser notre décodeur comme un décodeur probabiliste
unique, en temps quadratique, avec le méme rayon de décodage et la méme borne supérieure de la
probabilité de défaillance que les décodeurs connus. En clair, pour n’importe quel décodeur unique,
au-dela de la moitié de la distance rang minimale il y aura toujours une probabilité de défaillance car il
n’existe pas toujours une solution unique. Nous généralisons notre décodeur pour décoder en méme
temps des erreurs et des effacements de lignes et de colonnes.

Dans le codage réseau linéaire aléatoire, un code de Gabidulin relevé entrelacé contient les espaces
des lignes de [I cOoTcT | C(S)T], ot les C, pour tout i € [1, 5], sont des mots de code des
codes de Gabidulin sous-jacents. Ainsi, par rapport aux codes de Gabidulin relevés, le relévement
(lifting) des codes entrelacés de Gabidulin réduit relativement les frais généraux, qui sont causés par la
matrice d’identité jointe.

Jusqu’a présent, aucun algorithme de décodage en liste en temps polynomial pour les codes de
Gabidulin n’est connu et en fait il n’est méme pas clair que cela soit possible. Cela nous a motivé a
étudier, dans le chapitre 5, les possibilités du décodage en liste en temps polynomial des codes en
métrique rang. Cette analyse est effectuée par le calcul de bornes sur la taille de la liste des codes en
métriques rang en général et des codes de Gabidulin en particulier.

On rappelle d’abord les bornes connues sur le décodage en liste des codes en métrique de Hamming,
puis on déduit des bornes sur la taille de la liste des codes en métrique rang. Nous considérons en fait le
nombre maximal de mots de code dans une boule en métrique rang de rayon 7, qui est appelé la taille
(maximale) de la liste. Etonnamment, ces trois nouvelles bornes révélent toutes un comportement des
codes en métrique rang qui est complétement différent de celui des codes en métrique de Hamming.
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La premiere borne montre que la taille de la liste pour un code de Gabidulin de longueur n et
de distance rang minimale d peut devenir exponentielle quand 7 est au moins le rayon de Johnson
n — y/n(n — d). Cela implique qu’il ne peut pas exister un algorithme de décodage en liste en temps
polynomial pour les codes de Gabidulin au-dela du rayon de Johnson. I est intéressant de noter qu’on
ne sait pas ce qui se passe pour les codes de Reed—Solomon si 7 est 1égerement supérieur au rayon de
Johnson.

Notre deuxiéme borne est une borne supérieure sur la taille de la liste de tous les code en métrique
rang, qui est prouvé par des liens entre les codes de rang constant (constant-rank codes) et les codes de
dimension constante (constant-dimension codes).

Ce sont précisément ces liens qui nous permettent de dériver la troisiéme borne. Avec cette borne,
nous pouvons prouver qu’il existe un code en métrique rang dans F,= de longueur n < m tel que
la taille de la liste peut devenir exponentielle pour tout 7 supérieur a la moitié de la distance rang
minimale. Cela implique d’une part qu’il n’y a pas de borne supérieure polynémiale, semblable a la
borne de Johnson en métrique de Hamming, et d’autre part que notre borne supérieure est presque
optimale.

La pertinence d’une algorithme de décodage en liste pour le codage réseau linéaire aléatoire est
évidente, car un tel décodeur pourrait tolérer plus de paquets erronés qu un décodeur de distance
minimale bornée pour les codes de Gabidulin relevés.

Enfin, dans le chapitre 6, on introduit des codes convolutifs en métrique rang. Ce qui nous motive a
considérer ces codes est le codage réseau linéaire aléatoire multi-shot, ou le réseau inconnu varie avec
le temps et est utilisé plusieurs fois. Les codes convolutifs créent des dépendances entre les utilisations
différentes du réseau afin de se adapter aux canaux difficiles.

Nous proposons des mesures de la distance pour les codes convolutifs en métrique rang par analogie
avec la métrique de Hamming, & savoir la distance rang libre (free rank distance), la distance rang active
des lignes (active row rank distance) et la pente (slope) de la distance rang active des lignes, et on prouve
des bornes supérieures pour ces mesures. Basé sur des codes en bloc en métrique rang (en particulier
les codes de Gabidulin), nous donnons deux constructions explicites des codes convolutifs en métrique
rang : une construction a haut taux basée sur la matrice de controle et une construction a faible taux
basée sur la matrice génératrice. Les deux définissent des codes (partial) unit memory et atteignent la
borne supérieure de la distance rang libre.

Les codes en bloc sous-jacents nous permettent de développer un algorithme de décodage des erreurs
et des effacements efficace pour la deuxiéme construction, qui garantit de corriger toutes les séquences
d’erreurs de poids rang jusqu’a la moitié de la distance rang active des lignes. La complexité de
l’algorithme de décodage est cubique en la longueur de la séquence transmise. Nous prouvons sa
justesse et décrivons explicitement comment nos codes convolutifs en métrique rang peuvent étre
appliqués au codage réseau linéaire aléatoire multi-shot.

Un résumé et un apercu des problémes futurs de recherche sont donnés a la fin de chaque chapitre.
Finalement, le chapitre 7 conclut cette these.
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Notations

Finite Fields
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F;XTL

Fm = Fon"

B = {ﬁ(bﬁla cee 76m—1}
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Sets and Vector Spaces
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Matrices
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rk(A)
ker(A)
im(A) = C, (A)
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B (a) = BY)(A)
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qvang((ap a1 ... an—1))

Power of a prime
g-power for some integer ¢

Finite field of order ¢

Extension field of IF, of degree m

Set of all s x n matrices over I,

Set of all row vectors of length n over Fym

Basis of Fym over I,
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CHAPTER 1

Motivation and Overview

where he proved that nearly error-free discrete data transmission is possible over any noisy

channel when the code rate is less than the channel capacity. This statement is nowadays
called the (noisy) channel coding theorem. The channel capacity depends on the physical properties of
the channel and it is an active research area to determine the capacity of non-trivial communication
channels. However, the proof of the channel coding theorem is non-constructive and therefore it is
not clear how to construct error-correcting codes which actually achieve the Shannon limit. A steady
stream of publications and textbooks about code constructions, their properties and decoding methods
has emerged with Hamming’s class of codes [Ham50] and has not yet come to an end. For most data
transmission and data storage systems, the Hamming metric is the “proper” metric and codes defined in
this metric practically perform quite well.

ERROR—CORRECTING CODES have their origin in Shannon’s seminal publication from 1948 [Sha48],

Quite recently, random linear network coding (RLNC) attracts a lot of attention. It is a powerful means
for spreading information in networks from sources to sinks (see e.g., [ACLY00, HKM* 03, HMK ™ 06]).
The operator channel was introduced by Kotter and Kschischang [KK08] as an abstraction of non-
coherent RLNC. In this model, the packets are assumed to be vectors over a finite field while the
internal structure of the network is unknown. Each node of the network forwards random linear
combinations of all packets received so far. Due to these linear combinations, one single erroneous
packet can propagate widely throughout the whole network and can render the whole transmission
useless. This strong error propagation makes error-correcting codes in RLNC essential in order to
reconstruct transmitted packets.

When the transmitted packets are considered as rows of a matrix, then the linear combinations of
the nodes are nothing but elementary row operations on this matrix. During an error- and erasure-free
transmission over the operator channel, the row space of the transmitted matrix is therefore preserved.
Based on this observation, Kétter and Kschischang [KK08] used subspace codes for error control in
RLNC. A subspace code is a non-empty set of subspaces of the vector space of dimension n over a
finite field and each codeword is a subspace itself. The so-called subspace distance is used as a distance
measure for subspace codes, compare e.g., [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13].

Silva, Kschischang and Kétter [SKK08] showed that lifted Gabidulin codes result in almost optimal
subspace codes for RLNC. Gabidulin codes are the rank-metric analogs of Reed-Solomon codes and
were introduced by Delsarte, Gabidulin and Roth [Del78, Gab85, Rot91]. Codes in rank metric, in
particular Gabidulin codes, can be seen as a set of matrices over a finite field. The rank of the difference
of two matrices is called their rank distance, which is induces a metric for matrix codes, the rank metric.

Informally speaken, a lifted Gabidulin code is a special subspace code, where each codeword is
the row space of a matrix [I CT], I denotes the identity matrix and C is a codeword (in matrix
representation) of a fixed Gabidulin code.
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For this reason, codes in rank metric are an active research area in the context of RLNC. Apart
from RLNC [SKKO08, Sil09, Gad09], the application of codes in rank metric ranges from cryptogra-
phy [GPT91a, Gib96, BL02, OG03, BL04, FL05, Ove06, L0i10] to space-time coding [GBL00, LGB03,
LK04, ALR13] and distributed storage systems [SRV12, RSKV13, SRKV13].

metric. In the following overview of the thesis, we motivate our results with their application to

RLNC, but all of them are independently valid in a wider context of coding theory. Hence, we do
not explicitly explain the application of our results to RLNC or other possible applications within the
chapters (except for Chapter 6). This dissertation is structured as follows.

THIS DISSERTATION deals with decoding approaches for block and convolutional codes in rank

Chapter 2 provides a brief introduction to codes in rank metric and their properties. After giving
basic notations for finite fields and normal bases, we state the definitions of block and convolutional
codes in general. We give some elementary properties and basic decoding principles for block codes.
Since Gabidulin codes can be defined by evaluating linearized polynomials, we define this class of
polynomials and show how basic mathematical operations are performed on them. Finally, the last
section of Chapter 2 covers codes in rank metric. We first define the rank metric and give basic
properties and bounds on the cardinality of codes in rank metric (namely, equivalents of the Singleton
and the Gilbert-Varshamov bound). Then, we define Gabidulin codes, show that they attain the
Singleton-like upper bound on the cardinality and give their generator and parity-check matrices. We
generalize this definition to interleaved Gabidulin codes and describe explicitly how lifted Gabidulin
codes constitute a class of subspace codes.

Within Chapter 3, efficient approaches for decoding Gabidulin codes are considered. The first part
of this chapter deals with fast algorithms for operations with linearized polynomials. In this context, we
analyze the complexity of known approaches and present new algorithms to accomplish the linearized
composition and the linearized extended Euclidean algorithm (LEEA) efficiently. The second part of this
chapter describes known syndrome-based decoding techniques and presents a new efficient bounded
minimum distance (BMD) decoding algorithm for Gabidulin codes. Our algorithm uses the (fast) LEEA
in order to output directly the linearized evaluation polynomial of the estimated codeword. Further,
we show how our algorithm can be used for error-erasure decoding of Gabidulin codes. RLNC can
directly take advantage of such an efficient decoding algorithm for Gabidulin codes, since it accelerates
immediately the reconstruction of the transmitted packets and reduces therefore the involved delay.

Chapter 4 is devoted to approaches for decoding interleaved Gabidulin codes. A codeword of an
interleaved Gabidulin code can be considered as s parallel codewords of usual Gabidulin codes. When
the s additive error matrices have one common row or column space, we can decode beyond half the
minimum rank distance with high probability. We first describe two known approaches for unique
decoding of interleaved Gabidulin codes and derive a relation between them. Then, we present a new
interpolation-based decoding algorithm for interleaved Gabidulin codes. We prove the correctness
of its two main steps—interpolation and root-finding—and show that both can be carried out by
solving a linear system of equations. We outline how our decoder can be used as a (not necessarily
polynomial-time) list decoder as well as a quadratic-time probabilistic unique decoder. In this context,
we upper bound the failure probability of the unique decoder. In RLNC, a lifted interleaved Gabidulin
code consists of the row spaces of [I cOT cr | C(S)T], where the C(i), foralli € [1,s], are
codewords of the underlying Gabidulin codes. Hence, compared to lifted Gabidulin codes, the lifting of
interleaved Gabidulin codes relatively reduces the overhead, which is caused by the appended identity
matrix.



So far, no polynomial-time list decoding algorithm for Gabidulin codes is known and it is not even
clear if it is possible at all. Therefore, Chapter 5 deals with bounds on list decoding block codes in
rank metric in general and Gabidulin codes in particular. We first recall known bounds on list decoding
of codes in Hamming metric and then derive three bounds on list decoding codes in rank metric.
Surprisingly, the rank-metric bounds are all significantly different from the known bounds in Hamming
metric. In particular, we prove that in rank metric there exists no polynomial upper bound on the
list size similar to the Johnson bound in Hamming metric. Further, one of our bounds shows that the
list size can become exponential directly beyond the Johnson radius when decoding Gabidulin codes.
Remarkably, it is not known if this property holds for Reed—Solomon codes. The relevance of a list
decoding algorithm for RLNC is obvious, since such a decoder could tolerate more erroneous packets
than a BMD decoder for the (lifted) Gabidulin code.

Finally, Chapter 6 introduces convolutional codes in rank metric. The motivation of considering
such codes lies in multi-shot RLNC, where the unknown and time variant network is used several
times. Convolutional network codes create dependencies between the different shots in order to cope
with difficult channels. First, we define distance measures for convolutional codes in rank metric
and prove upper bounds on them. Then, we construct a special class of convolutional codes—partial
unit memory (PUM) codes—based on rank metric block codes in two different ways. We present
an algorithm which efficiently decodes these PUM codes when both, errors and erasures occur and
prove its correctness. The decoding complexity of this decoding algorithm is cubic in the length of a
transmitted block. Further, it is explicitly described how lifting of these codes can be applied for error
correction in multi-shot RLNC.

Chapter 7 concludes this dissertation.
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CHAPTER 2

Introduction to Codes in Rank Metric

field IF, or equivalently as a set of vectors of length n over the extension field F;». The rank

weight of such a “word” is simply the rank of its matrix representation and the rank distance
between two words is the rank of their difference. These definitions rely on the fact that the rank
metric is indeed a metric. Several code constructions and basic properties of the rank metric show
strong similarities to codes in Hamming metric.

C ODES IN RANK METRIC of length n < m can be considered as a set of m X n matrices over a finite

Error-correcting codes in rank metric were first considered by Delsarte in 1978 [Del78], who proved
a Singleton-like upper bound on the cardinality and constructed a class of codes achieving this bound.
This class of codes was reintroduced in 1985 by Gabidulin in his fundamental paper [Gab85], where in
addition several properties of codes in rank metric and an efficient decoding algorithm were shown.
Since Gabidulin’s publication contributed significantly to the development of error-correcting codes in
rank metric, the most famous class of codes in rank metric—the equivalents of Reed—Solomon codes—are
nowadays called Gabidulin codes. These codes can be defined by evaluating non-commutative linearized
polynomials, proposed by Ore [Ore33a, Ore33b]. Independently of the previous work, Roth discovered
in 1991 codes in rank metric in order to apply them for correcting crisscross error patterns [Rot91].

This chapter gives a brief introduction to the theory of error-correcting codes in rank metric.
Section 2.1 provides definitions and notations used in this thesis for codes in finite fields. Section 2.2
introduces linearized polynomials and their main properties. Finally, Section 2.3 deals with general
properties and explicit constructions of codes in the rank metric.

2.1 Codes over Finite Fields

Throughout this thesis, we consider algebraic codes over finite fields and hence, this section introduces
notations and basic properties of finite fields (Subsection 2.1.1) and codes over them. In Subsection 2.1.2,
we show properties of normal bases since they enable us to accomplish calculations in finite fields
quite efficiently. We clarify our notations for block codes and explain well-known decoding principles
for block codes in Subsection 2.1.3: bounded minimum distance decoding, nearest codeword decoding
and list decoding. Further, we introduce notations and basic properties of convolutional codes in
Subsection 2.1.4.

2.1.1 Notations for Finite Fields

This subsection provides notations concerning finite fields, without going into detail about their
theory. An extensive study of finite fields, their properties and applications can be found in standard
literature about finite fields, e.g., [LN96, MBG193], and also in books about coding theory, e.g.,
[Ber84, Bla03, Rot06, HP10].

Let p be a prime, then IF, = {0, 1,...,p — 1} denotes the prime field of order p. Let ¢ be a power of
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the prime p, then we denote by I, the finite field of order ¢. This finite field I, contains q elements and
p is called its characteristic. An extension field (of extension degree m) of IF, is denoted by F,m. This
extension field F,m can be constructed from F;, and a polynomial p(x) of degree m, which is irreducible
in [F; and whose coefficients are in [F;. For any m there is at least one such irreducible polynomial of
degree m [LN96, Corollary 2.11]. Since all fields of the same size are isomorphic [LN96, Theorem 1.78],
the field Fym does not depend on the explicit choice of p(z) and is isomorphic to the polynomial ring
over Fy modulo p(x):

Fgm = Fy/(p(2))-
Thus, different irreducible polynomials give different representations of the same extension field F,m
over ;. The construction of Fym can be done by using a root of p(z) in Fym.
A primitive element v of Fym is an element such that it generates the multiplicative group Fy. by its

powers, i.e.,
def

Fiw 2 By \ {0} = {o/,w € [0,q™ — 2]},
and 04" ~! = 1. A primitive element exists in any finite field [LN96, p. 51]. If the irreducible polynomial
p(z) has a primitive element as root, i.e., if p(«) = 0, then p(x) is called a primitive polynomial. If we
use a primitive polynomial for the construction of the extension field, we can take advantage of the
fact that Fym is a cyclic group [MS88, Chapter 4, Theorem 1].

The extension field Fgm can be represented as a vector space over Fy, using a basis B = {, 01, . . .,
Bm—1} of Fgm over Fy,. If the order of the basis elements is important, we denote the ordered basis by
B=(BopP1 ... Bm—1). InSection 2.1.2, we will explain a type of basis which is of special interest for
efficient computations in finite fields, the so-called normal basis.

Remark 2.1 (Properties).
The following further properties/notations concerning finite fields are used in this thesis:

e For any integer i, we denote the g-power by [i] o q.

e Foranya € Fym: al™ = a and for any a € Fym and integer i, the g-power is calculated modulo m:
a[z] — a[i mod m]

e Forany A € F and any integer i: Alll = A

e Foranya,b inFgm and any integeri: (a + W)l = ol 4+ bl) [LN96, Theorem 1.46].

The set of all subspaces of Iy is called the projective space and denoted by Py(n). A Grassmannian of
dimension 7 is the set of all subspaces of Iy of dimension 7 < n and denoted by G,(n, ). Clearly, the
projective space is Py(n) = [J,_, Gq(n, 7). The cardinality of G,(n, r) is given by the g-binomial (also
called Gaussian binomial coefficient) as follows.

Lemma 2.1 (Number of Subspaces [Ber84, Theorem 11.52]).
The number of r-dimensional subspaces of ¥y over Fy is

r—1 o
m Gy (n,r) = ] L.

" i0d —¢
The g-binomial has the following upper and lower bounds (see e.g., [KK08, Lemma 4]):

qr(n—r) < |:7”L

} < 4q7n0), (2.1)
T

In this thesis, we use F;X” to denote the set of all s x n matrices over I, and Fgm = F(llnxln for the set
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of all row vectors of length n over Fym. For a given basis B of Fym over [Fy, there exists a one-to-one
mapping for each vector a € Fy, on a matrix A € Fy**". This mapping is formally defined as follows.

Definition 2.1 (Mapping to Ground Field).

Let B = {fo,1,---,Bm—1} denote a basis of Fym over F,. Fix an order of this basis 3 =
(Bo B1 -.. Bm—1) and let a be a vector in Fym. The extension of a over the ground field is given
by the following bijective map:

. n mxn
extg : qu — IFq

Ao App oo Ao
Ap Aig o0 Al
a=(apay ... an—1)+— A= _ _ _ 7
An—10 Am-11 - Ap_ina
where A € F"*" is defined such that
m—1
a; = ZAi’jﬁi’ Vj € [0,’!7,—1]‘
i=0

Therefore, a = 3 - A. If we apply extg to a single element a € Fym, it is mapped to a column vector
extg (a) € IF;”“. Throughout this thesis, we will therefore use the following notations to switch
between the two representations:

A =extg(a), a= extg1 (A).

Further, let rk(a) denote the (usual) rank of A = extg (a) over Iy and let R, (A) and C, (A) denote
the row and column space of A in Fy and [Fj", respectively. The right kernel of a matrix is denoted by
ker(A) and as a notation, ker(a) = ker(extg(a)) = ker(A).

For any m x n matrix, the rank nullity theorem states that dim ker(a) + rk(a) = n. We use the
notation as a vector a € Fym or matrix A € [Fj"*" equivalently, whatever is more convenient.

2.1.2 Normal Bases

Normal bases facilitate calculations in finite fields and can therefore be used to reduce the compu-
tational complexity. This fact is crucial for our efficient decoding algorithm for Gabidulin codes in
Subsection 3.2.4. We shortly sum up the main properties of normal bases here; however, for further
theory, the interested reader is referred to the literature, e.g., [Gao93, LN96, MBG™'93].

Abasis B = {fo, b1, ..., Bm—1} of Fgm over Fy is a normal basis if §; = Bl for all i and we denote
itby By = {B[O],Bm, e ﬁ[m_l}} in the following. We call 8 € Fym a normal element. Lemma 2.2
shows that choosing a normal basis is not restricted to certain extension fields. o

Lemma 2.2 (Existence of Normal Basis [LN96, Theorem 2.35]).
There is a normal basis for any finite extension field Fyn over ¥y, i.e., for any prime power q and any
positive integer m.

The following lemma about the existence of normal bases is even stronger.
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Lemma 2.3 (Existence of Normal Basis [BJ86]).
In a finite extension field F,m over Fy, there is a normal basis of Fys over I, for every positive divisor s of

m. For the normal element of this basis Blsl = 3 holds.

The so-called dual basis B+ of a basis 13 is needed in order to switch between a polynomial and its
g-transform (compare Definition 2.12). To define the dual basis for a given basis B, we need the trace
function of [Fym over I, for an element a € Fym:

Tr : qu — Fq

a— Tr(a) &f Z all.

The trace function is an F,-linear map from F,m to F, and hence, Tr(a) € F, [LN96, Chapter 2.3]. A
basis B+ = {85, B¢, -, B_1} of Fym over F,, is called a dual basis to B = {f0, B1, - - -, Bm—1} if:

1 fori=yj,

Tr(BiB;) = { (2.2)

0 else.

Lemma 2.4 (Dual of a (Normal) Basis [MBG 193, Theorem 1.1 and Corollary 1.4]).
For any given basis B of Fym over F, there exists a unique dual basis B+. The dual basis of a normal basis
is also a normal basis.

If a basis is dual to itself, i.e., if B = B+, we call it a self-dual basis and if it is additionally normal, we
call it a self-dual normal basis By = By;. A self-dual basis of F,m over I, exists if and only if either ¢
is even or both ¢ and m are odd [MBG 93, Theorem 1.9]. Self-dual normal bases of F,m over F, exist
if m is odd or if ¢ is even and m = 2 mod 4 [MBG™'93, Theorem 1.14].

We explain now basic mathematical operations on two elements a,b € Fy» using a normal basis
By = {0, gl ... glm=1} of Fym over Fy. Apply the mapping extg from Definition 2.1 in order to
represent these two elements as vectors in [Fy: o

(Ao A1 ... Ap1)" < extg (a) € FI7Y,
(BoBi ... Bpn1)T ¥ extg (b) € FIP¥1,

An important observation is that in a normal basis representation, the g-power of an element a in
F,m corresponds to a cyclic shift of the corresponding vector extg (a) over F:

extg (am) = (Am_j Am_j+1 oL Ag AL Am_j_l)T déf extg (a)“ S anx17 (2.3)
where the down arrow denotes a cyclic shift of the vector by j positions to the bottom. The efficiency of
calculations with normal bases stems exactly from this property and from the application of a so-called
multiplication table (compare [Gao93, MBG'93]).

Definition 2.2 (Multiplication Table).
Let By = {5[0], gl ,5[’”*”} be a normal basis of Fym over Fy. The multiplication table of By is a
matrix T,,, € FZ”X"‘ such that:

gO (g g . B[m—u)T =T, (8980 5[m—1}>T
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The number of non-zero entries in T, is called the complexity of T,, of Bn and is denoted by comp(T,,).

The addition a + b in Fym can be done component-wise by the addition extg (a) + extg (b) € Fj"**
and is therefore easy to implement. By means of the multiplication table, the product of a - b € Fym
can be calculated over the ground field Fy:

m—1 .
A
Fora,b € Fym : extg(a-b) = E B (T% - extg (a)ﬁ) e Ft, (2.4)
=0

where the up/down arrows denote cyclic shifts of the vector by ¢ positions to the top/bottom.
If one of the elements is a basis element, i.e., b = (3 [ﬂ, then the vector extg (b) is non-zero only in
the j-th row and (2.4) becomes

1
e Ft. (2.5)

Fora,B € Fym,B € By : extﬁ(a . Bm) = <Tfl - extg (a)Tj>
It becomes clear from (2.4) and (2.5) that the number of operations in [F; in order to determine extg (a - b)
directly depends on the number on non-zero entries of T',,, i.e., on its complexity comp('T};, ). Therefore,
it is desirable that T, is sparse.

This complexity is lower bounded by comp(T,;,) > 2m — 1 [MBG™93, Theorem 5.1]. A normal basis
with comp(T,,) = 2m — 1 is an optimal normal basis. We call normal bases with complexity in the
order of O(m) low-complexity normal bases. Optimal normal bases exist for several values', but for our
applications low-complexity (but not necessarily optimal) normal bases are sufficient. Low-complexity
normal bases with O(comp(T,,)) = O(m) of Fyn over F, exist in many cases, e.g. for ¢ = 2° if
ged(m, s) = 1 and 8 1 m. For ¢ = 2° and odd m, all these low-complexity normal bases are self-dual
(see also [Gao93, Chapter 5]).

The complexity of the mentioned operations will be analyzed in detail in Subsection 3.1.1.

2.1.3 Basics of Block Codes and Decoding Principles

This subsection gives basic notations and properties of block codes. A deeper investigation of code
classes, constructions and properties can be found in books on algebraic coding theory, e.g., [PW72,
Bla83, Ber84, MS88, v198, Bos98, JH04, Rot06]. In the following, we show the definition of a metric,
give the notations of a (linear) block code and explain encoding and decoding principles.

Definition and Basic Properties of Block Codes

Assume, a set A (e.g., of vectors or matrices) is given. In order to define error-correcting codes, we
need a measurement of distance between the elements in this set. A distance measure on this set A is
called a metric if it fulfills the following conditions.

Definition 2.3 (Metric).
Let A be a set (e.g., of vectors or matrices). A distance measure d4(a, b) on any two elements a, b in this
set A is a metric if it satisfies for alla, b, c € A:

e positive definiteness: d4(a,b) > 0, where d4(a,b) = 0 if and only ifa = b,

e symmetry: da(a,b) = da(a,b),

e triangle inequality: d4(a,b) + da(b,c) > d(a,c).

'See [MBG ™93, Table 5.1] for all values of m < 2000 with an optimal normal basis of Fym over F,.
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Classical error-correcting codes are defined in Hamming metric and they have been subject of a large
number of publications. Among codes in Hamming metric, the well-known classes of Hamming
codes [Ham50], Reed—Muller codes [Ree54, Mul54], Reed—Solomon codes [RS60], cyclic codes (also
called BCH codes) [Hoc59, BR60] and many others can be found. In this thesis, we consider codes in
rank metric. This metric will be given in Subsection 2.3, Definition 2.13, for block codes in [Fm.

From a practical point of view, a block code of length n is a code, where each “block” of length 7 can
be decoded independently from the other blocks. Based on a given metric, a block code can be defined
as follows.

Definition 2.4 (Block Code).
Let a metric in ¥y be given, fulfilling the requirements of Definition 2.3.

An (n, M, d) block code C over Iy is a set of vectors in IFy of cardinality M, where the minimum
distance (in the given metric) between any two vectors of this code is d.

A block code C over Fy is called linear if it is a k-dimensional subspace of Fy over Fy and its parameters
are denoted by [n, k, d|. The parameter k is called the dimension of C.

The fraction R &f (log, M) /n is called the code rate of C. If C is linear, then R = k/n.

We call all vectors in Ffj information words. The vectors in Fy in an (n, M, d) code are called

codewords. The cardinality of a linear [n, k, d] block code C over I, is therefore M = ¢* and since C is
a subspace of F?, for any codewords ¢!, ¢(?) € C and any elements a, b € [F,, the linear combination

ac)) + be?) is also a codeword of C.
A linear code can be defined by its generator matrix using a basis of the k-dimensional subspace.

Definition 2.5 (Generator Matrix).
Let C be a linear [n, k, d] code over Fy, i.e., it is a k-dimensional subspace of Fyy over F,. A k x n generator
matrix G of C is a matrix whose rows are a basis of this k-dimensional vector space over IF.

The generator matrix can be used to encode the information words in Fl; into codewords in . Thus, a
codeword of an [n, k, d] code is any vector in F; which can be obtained by u - G, for some u € ]F]; .
Encoding defines the bijective map of the information vectors in IF]; to the codewords in Fy:

. k n
enc : Fq — Fq

u=(upuj ... up—1)—~c=_(cpecr ... cp—1).

Notice that there is more than one generator matrix for a given [n, k, d] code C, since we can use any
basis of the k-dimensional subspace C over I, in an arbitrary order.

Definition 2.6 (Dual Code).
For two vectors a, b € [y, let (a, b) &f S "4 a;b; define the inner product and let C be a linear [n, k, d
code over . Then, the set of vectors

ct df {cL EF!: (et c) =0, vcec}

is called the dual code to C.

The dual code of an [n, k, d] code over I, is also a linear code over IF, and has dimension k* = n — k
and length n. Its minimum distance is denoted by d*, but its value is not necessarily determined by

10



2.1 CobEs OVER FINITE FIELDS

the parameters of the [n, k, d] code®. Therefore, the dual code C* is an [n,n — k,d"] code, i.e. an
(n — k)-dimensional subspace of F7', which can be used to define the parity-check matrix of C.

Definition 2.7 (Parity-Check Matrix).
An (n — k) x n matrix H over IF is called a parity-check matrix of an [n, k, d] code C over F if and only
if it is a generator matrix of the [n,n — k, d*] dual code C* over F,.

Thus, for any ¢ € C, the multiplication with the parity-check matrix gives ¢ - H = 0 and G - H = 0.
A parity-check matrix is therefore a matrix whose right kernel is the code C.

Definition 2.8 (Syndrome).
For any a € Fy and a parity-check matrix H of an [n, k, d] code C, the vectors = a - HT ¢ Fgﬂ—k is
called the syndrome of a.

If and only if a € C, then the syndrome is s = 0.

Decoding Principles of Block Codes

After introducing these basic notations, let us now proceed to basic decoding principles.

Lemma 2.5 (Unique Decoding Capability [MS88]).
Let C be an (n, M,d) block code over F, with minimum distance d in a given metric da(-,-) (see
Definition 2.3) and let r be a word in Fy;.

Then, there is at most one codeword ¢ € C such that da(r,c) < T & | (d=1)/2]. Further, if there is a

codeword ¢ € C such that0 < da(r,c) < d—1, thenr ¢ C.

The process of reconstructing the codeword from a received word is called decoding and we use
the expression “number of errors” throughout this thesis for d4(r, c¢) (in the corresponding metric).
Lemma 2.5 shows that we can always decode uniquely up to 79 = | (d-1)/2] errors and detect up to d — 1
errors.

In this dissertation, we distinguish three decoding principles for an (n, M, d) code C over F,, which
are illustrated in Figure 2.1 and explained in the following. For each of them, we assume that a received
word r € [y is given and denote by B (r) a ball in the given metric around r of radius e.

Nearest codeword decoding (see Figure 2.1a). A nearest codeword decoder maps the received word
r to the closest codeword, i.e., the codeword with the smallest distance to r. If there is more than one
codeword in smallest distance to r, we can either output all of them or choose one randomly. For a
given metric d4(-, -), the decoding result is hence*:

c =arg (migdA(r,c)) cC.

ce
The output of a nearest codeword decoder is therefore always at least one codeword; a decoding
failure is never declared. If we assume that a smaller error weight (in the corresponding metric) is

more likely than a greater error weight, then nearest codeword decoding is equivalent to maximum
likelihood (ML) decoding. For codes in Hamming metric, ML decoding of general linear block codes

However, for some classes of codes, there is a direct connection, e.g. for maximum distance separable and maximum rank
distance (MRD) codes.

*We have to define arg min,, f(x) either such that it returns the set of all values for which f(x) attains its minimum or
such that it chooses one randomly.

11
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V,<—>o c(3) !

V) d—1 { d—1 *c® |
eoud K [T K
A P \\

7
~ - ~ -

(a) Nearest codeword decoding (b) BMD decoding (c) List decoding

Figure 2.1. [llustration of explained decoding principles, where the arrows show on which codeword(s) the
received word is mapped. The dashed balls have radius |(d—1)/2] and the gray balls have radius 7y
and 7, respectively.

is NP complete [BMVT78], and for codes in rank metric this is also conjectured. In any case, nearest
codeword and ML decoders are hardly feasible due to their high computational complexity.

Bounded minimum distance decoding (see Figure 2.1b). A bounded minimum distance (BMD)
decoder guarantees to find all codewords in radius at most 7y = |(d—1)/2] from the received word. Due
to Lemma 2.5, there is at most one such codeword and the decoding result is

¢ = (c N B(TO)(r)> e(Cu{}).

Therefore, we obtain either a unique codeword or the empty set, in which case we can declare a
decoding failure. For several algebraic code classes as Reed—Solomon or Gabidulin codes, there are
efficient BMD decoding algorithms in the corresponding metric.

List decoding (see Figure 2.1c). The concept of list decoding can be seen as a generalization of BMD
decoding and was introduced by Elias [Eli57] and Wozencraft [Woz58]. A list decoder guarantees to
find all codewords around r up to a certain radius 7. Hence, the decoder outputs a list of codewords:

L= {c(l),c@),...,c(z)} = (CﬂB(T)(r)) - (CU{})

If the output is the empty set, a decoding failure is declared. Such a list decoder makes sense from a
practical point of view, if either the probability that the list size is greater than one is very small or
if we can use the whole list in the further decoding process, e.g. in concatenated coding schemes or
in iterative decoding. The design of efficient list decoding algorithms (with 7 > |(d=1)/2]) is a widely
investigated topic for some classes of codes and the existence of such a polynomial-time algorithm for
codes in rank metric is investigated in Chapter 5.

For explicit decoding algorithms there are two important properties: its performance and its complex-
ity. The performance measures the fraction of correctable errors and directly depends on the minimum
distance of the code. The complexity measures the feasibility of an algorithm by counting the number
of calculations in the corresponding finite field.

12
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2.1.4 Basics of Convolutional Codes

In contrast to block codes, convolutional codes create a dependency between the different transmitted
blocks of length n. For certain channels (e.g., when the number of errors in different blocks fluctuates
a lot), their use might be superior to using block codes. In this subsection, we will shortly give basic
notations of convolutional codes, mostly based on [Pir88, McE98, Bos98, JZ99]. We also introduce
notations for (partial) unit memory (P)UM) codes and prove rate restrictions on them. Distance
measures, constructions and decoding of convolutional codes in rank metric are established in Chapter 6.

Definition and Basic Properties of Convolutional Codes

The algebraic theory and description of convolutional codes was investigated by Forney [For70, For73],
showing that a g-ary convolutional code of rate R = k/n is a k-dimensional subspace of the n-
dimensional vector space F,[D]* over the field of g-ary causal Laurent series (see McEliece’s chapter in
the handbook of coding theory [McE98] for a detailed description of Laurent series), where D is also
called the delay operator. Thus, encoding of convolutional codes is given by the following map:

enc-conv: F,[D]* — F,[D]" (2.6)
uD)=u® +uD+uPD?+ .. D) =uD) - GD)=c +cPD+cPD>4 ..,

where u(®) = (u[()i) ugi) e u,(ﬁl) and c() = (c((f) cgi) - cff),l), for all integers ¢. This map shows
how to encode the semi-infinite information sequence u(D) into a semi-infinite code sequence c(D).

We call the vectors u? and ¢ of lengths k and n, respectively, information and code blocks. The
important observation is that c(¥) is a function of not only u(”, but also of u(~9 u*=2_ . where
the length of this influence is determined by the memory of the convolutional encoder. Further, we
consider only causal sequences, i.e., u® = 0 and c® = 0 for all i < 0. For short-hand notation, we
also denote the semi-infinite sequences by u = (u(® u® u® .. yandc = (¢ ¢ c? .. .).

The matrix G(D) € F,[D]¥*™ is called generator matrix and defines a convolutional code as follows.

Definition 2.9 (Convolutional Code).
A linear convolutional code C over F of rate R = k/n is defined by its k x n generator matrix of rank k:

i€[0,k—1
G(D) = (gi;(D)) 01

where g; (D) = g§3)+g§71j)D+- : -—i—g%)D“ andg;lj)» e F,, Vi€ [0,u],Vie€[0,k—1] and¥j € [0,n—1].
The parameter 1 denotes the memory of G(D) (see Definition 2.10).

In general, g; ;(D) is a rational function, Vi € [0,k — 1], j € [0,n — 1]. If g; ;(D) is a polynomial in D,
for all i, j, then G(D) is called polynomial generator matrix and it can be realized by a finite impulse
response filter, see [JZ99, Bos98]. We restrict ourselves to such generator matrices in the following.

We strictly distinguish the terms “convolutional code”, “generator matrix” and “convolutional
encoder”. A convolutional code is a set of infinite cardinality, which contains all sequences, defined
by the mapping enc-conv (2.6). The generator matrix G(D) explicitly defines the mapping between
information and code sequences and therefore, there are several generator matrices G(D) for one code.
The encoder is a linear sequential circuit, which realizes G (D), and for one generator matrix, there are
several encoders.

The memory and constraint length are properties of the generator matrix. In the literature, there are
different notations for them; we follow Forney’s notations [For70].

13



2 INTRODUCTION TO CODES IN RANK METRIC

Definition 2.10 (Constraint Length and Memory).
The i-th constraint length of a polynomial generator matrix G(D) is

def .
- deggi; (D)}, Viel0,k—1].
v je%,ifu{ eg gij( )} i€l ]

. def . . def _
The memory is ;1 = maxX;e(o k—1]1¥i}, and the overall constraint length is v = Zf:ol v;.

The following remark shows several further properties of the generator matrix, most of them are
due to Forney [For70] and Johannesson and Zigangirov [JZ99].

Remark 2.2 (Further Definitions and Properties).
e Two convolutional generator matrices are called equivalent, if they generate the same code.
e A convolutional generator matrix is catastrophic if there is an information sequence u(D) with
infinitely many non-zero elements that results in a code sequence with finitely many non-zero

elements.

)

Z?]

e A convolutional generator matrix G(D) is called basic if it is polynomial and has a polynomial
right inverse G~ (D) such that I, = G(D) - G=Y(D), where I}, is the k x k identity matrix.

e A convolutional generator matrix G (D) is an encoding matrix if G(0) has full rank. An encoding
matrix is delay-free. A basic encoding matrix is non-catastrophic.

o A convolutional generator matrix is delay-free if at least one of its entries g, . is non-zero.

e A convolutional encoder is called obvious realization of G(D) if it has k shift registers and the
length of the i-th register is v;.

o A basic convolutional generator matrix G (D) is called minimal if its overall constraint length v in
the obvious realization is equal to the maximum degree of its k X k subdeterminants.

A polynomial parity-check matrix H(D) € F,[D]("~*)*" of C has full rank and is defined such that
for every codeword c(D) € C:
c(D)-HT(D) = 0.
We denote the entries of the parity-check matrix by H(D) = (h; (D))zi[[%?;:ﬁ}_l]’ where h; j(D) =

RO+ ) D+ D2 4 D DR and hY) € B, W1 € [0, ppr] and i € [0,n—k—1],j € [0,n—1].

The value ;177 denotes the memory of the dual code, shortly called dual memory.
We can rewrite G(D) = GO + GWD + GA D2 ...+ GWDF and H(D) = HO + HVD +
H® D? 4 ... 4+ H##) D1 and represent both as semi-infinite matrices over Fg:

HO)
HO 70
v 28 c G G o HO
H(HH)

where G0 ¢ Fkxm and HU) ¢ Fén_k)xn, Vi € [0, ], 7 € [0, ). These matrices are defined such
thatc = (c@c® c¢@ .. )=u-G=uPu®u® .. ). Gandc-H” = (00 ...). In general,
the memories are not equal, i.e.,  # pg. If both G and H are in minimal basic encoding form, the
overall constraint length v is the same in both representations [For70, Theorem 7].

14



2.1 CobEs OVER FINITE FIELDS

In practical realizations, it does not make sense to consider (semi-)infinite sequences and therefore,
throughout this thesis, we consider only linear zero-forced terminated convolutional codes. Such a code
C is defined by the following Nk x (n(NN + p)) terminated generator matrix Gierm over Fy, for some
integer N:
cO g® . g

g g . g

Gterm = ) (2-8)

g0 O . g

i.e., we cut the matrix G from (2.7) after N rows. Each codeword of C is a sequence of N + p blocks of

length n over Fy, ie., c = (c(o) c) . cWHn=1)y,

Convolutional codes can be described by a (minimal) code trellis and ML decoding is possible
with the Viterbi algorithm [Vit67]. However, we do not explain this here and refer to the literature
[McE98, Bos98, JZ99].

(Partial) Unit Memory Codes

(P)UM codes are a special class of convolutional codes of memory i = 1, introduced by Lee and

Lauer [Lee76, Lau79]. The semi-infinite generator matrix consists therefore of two k X n submatrices

G and G, These matrices both have full rank & if we construct a UM(n, k) unit memory code.
For a PUM(n, k|k(1)) partial unit memory code over F, rk(G(?)) = £ and rk(G™)) = k() < £ has

to hold. W.lo.g., for PUM codes, we assume that the lowermost k£ — kD rows of G are zero and we

denote: (00) (10)
o _ (G m_ (G
o = (SI). - () 29

where G(°) and G(19) are k(1) x n matrices and GOV is a (k — k(1)) x n-matrix over [F,. The encoding
rule for each code block of a (P)UM code is given by

c® =u®. GO fu-D.cH wvi=o0,1,..., (2.10)

where u” and u-1 ¢ F’; for all 2. The memory of (P)UM codes is u = 1, the overall constraint
length of UM codes is v = k and of PUM codes v = k(!) due to Definition 2.10.

In the following, we derive restrictions on the code rate of (P)UM codes when a certain number
of full-rank submatrices of H, denoted by H® as in (2.7), should exist. This full-rank condition,
rk(H®) = n — k, Vi € [0, ug], is used in one of our constructions of PUM codes based on Gabidulin
codes (see Subsection 6.2.1).

Lemma 2.6 (Rate Restriction for Unit Memory Codes).

Let the parity-check matrix H of a UM(n, k) code be in minimal basic encoding form and let it consist of
wr + 1 full-rank submatrices H(i), see (2.7), for g > 1. Then, the UM(n, k) unit memory code with
overall constraint length v = k has code rate

HH

R = .
pr+1

Proof. The overall constraint length v is the same for the generator matrix G and the parity-
check matrix H if both are in minimal basic encoding form [For70]. Since tk(H®) = n — k,
Vi € [1,up], we obtain v = ppg - (n — k). On the other hand, the UM code is defined by a
generator matrix G with v = k, hence, k = g - (n — k) and the statement follows. [
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2 INTRODUCTION TO CODES IN RANK METRIC

In a similar way, we can establish a rate restriction for PUM codes.

Lemma 2.7 (Rate Restriction for Partial Unit Memory Codes).
Let the parity-check matrix H of a PUM(n, k|k:(1)) code be in minimal basic encoding form and let it
consist of iy + 1 full-rank submatrices H( see (2.7), for pg > 1. Then, the partial unit memory code
PUM(n, k[k™M) with v = k() < k has code rate

k K

R=-> .
n  pug+1

Proof. As before, v is the same for G and H in minimal basic encoding form, [For70]. Since
rk(H(i)) = n — k for all 4, we have v = pp - (n — k). For a PUM code v = k) < k. hence,
- (n—k) <k. |

The following theorem guarantees that for any parity-check matrix of certain rate, there is always a
corresponding generator matrix having memory p = 1 and thus, defines a (P)UM code. This fact is
useful in order to construct (P)UM codes based on a parity-check matrix.

Theorem 2.1 (P)UM Code from Parity-Check Matrix).
Let H be a semi-infinite parity-check matrix as in (2.7) in minimal basic encoding form of a convolutional
code C, where H® ¢ F,gn_k)xn has full rank, Vi € [0, ug], and let R = k/n > pp /(g + 1) with
pg > 1

Then, there is a generator matrix G of C such that C is a (partial) unit memory code.

Proof. The constraint length of His v = ug(n — k). Since n < k(ug + 1)/pp, we obtain:
v=pgn—=Fk) <k(pg+1)—kuy = k.

Due to [For70], the overall constraint length v of dual minimal encoders is equal and thus, of G
and H if both are in minimal form. We choose G to be in minimal basic encoding form (which is
always possible). Since it is in encoding form, rk(G(O)) =k.

Since v > 0, the memory is ¢t > 1. Corollary 2 and the corresponding remark in [For73] imply
that G can be chosen such that u is equal to [v/k] < [k/k]| = 1 (in [For73, Corollary 2] the roles
of G and H are interchanged). Hence, we can choose G such that ;n = 1.

Since rk(G)) = k and = 1, the generator matrix G defines a (partial) unit memory code. N

2.2 Linearized Polynomials

Linearized polynomials constitute a non-commutative ring and will later provide the definition of
Gabidulin codes. Apart from their application to coding theory, linearized polynomials are used e.g. in
root-finding of usual polynomials and as permutation polynomials in cryptography.

They are also called g-polynomials and were introduced in 1933 by Ore [Ore33a] as a special case
of skew polynomials [Ore33b]. The theory of skew polynomials is quite rich and widely investigated
[Ore33b, Jac43, Gie98, Jac10] and it is even possible to construct error-correcting codes based on skew
polynomials [BGU07, BU09b, BU09a, CLU09, BU12]. Skew polynomials become linearized polynomials
when the derivation is zero and the Frobenius automorphism is used, i.e., when we consider only F,-
linear maps. Gabidulin codes are based on linearized polynomials and therefore, we restrict ourselves
to their description without going into detail about the theory of skew polynomials.
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After basic definitions and properties (Subsection 2.2.1), we briefly show how operations with
linearized polynomials work (Subsection 2.2.2), give their connection to linear maps (Subsection 2.2.3)
and define the g-transform and its inverse (Subsection 2.2.4). In Chapter 3, the g-transform turns out to

be a useful tool when establishing an efficient decoding algorithm for Gabidulin codes.

2.2.1 Definition and Properties

Definition 2.11 (Linearized Polynomial).
A polynomial a(x) is a linearized polynomial if it has the form

a(z) =Y azll,  a; € Fgm, Vi € [0,d,].

The non-commutative univariate linearized polynomial ring with indeterminate x, consisting of all such
polynomials over Fym, is denoted by Lym [z].

If the coefficient ay, is non-zero, we call deg, a(x) 4 4, the g-degree of a(x).

Recall that for any B € F,, B (] = B holds for any integer ¢. This provides the following lemma
about evaluating linearized polynomials.

Lemma 2.8 (Evaluation of a Linearized Polynomial [Ber84, Theorem 11.12]).

Let B = {Bo,51,...,Bm-1} be a basis of Fym over F,, let a(x) be a linearized polynomial as in
Definition 2.11 and let b € Fgm. Denote extg (b) = (Bo B1 ... Bn1)T € F7"1 as in Definition 2.1
Then,

m—1

1=0

Lemma 2.8 establishes the origin of the name linearized polynomials: for all A;, Ay € FF; and all
bi,by € Fym and a(z) € Lym [z], the following holds:

a(A1b1 + Agbz) = Ala(bl) + Aga(bg).
Hence, any [F,-linear combination of roots of a linearized polynomial a(z) is also a root of a(x).

Theorem 2.2 (Roots of a Linearized Polynomial [Ber84, Theorem 11.31]).

Let a(x) € Lgm[x] be a linearized polynomial and let the extension field Fys of Fym contain all roots of
a(z). Then, its roots form a linear space over IF, (a subspace of F s ) and each root has the same multiplicity,
which is a power of q.

The roots of a(x) form a linear space of dimension d, < d,. Let {fo, 51, .., B4,—1} be a basis of this
d,-dimensional root space. Then, each distinct root r € Fys of a(x) can be expressed uniquely as
r= Z?;gl R;3;, where R; € Fy, Vi. Conversely, the following lemma shows that the unique minimal
subspace polynomial is always a linearized polynomial.

Lemma 2.9 (Minimal Subspace Polynomial [LN96, Theorem 3.52]).
Let U be a linear subspace of ¥, considered as a vector space over . Let ug, u1, . . ., Ugim@s)—1 € Fgm
be a basis of this subspace. Then, the minimal subspace polynomial

def —
M'U«Oyulw--vudim(u)—l (13) = H (1: - eXtﬁl (u) )7
ueld
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is a linearized polynomial over Fym of q-degree dim(U).

The g-Vandermonde matrix was introduced by Moore in [M0096] and plays an important role in
linearized interpolation, evaluation and the g-transform. For a vector a = (agp a1 ... an—1) € Fym, we
obtain the s x n g-Vandermonde matrix by the following map:

quan, :  Fn — Fon"

ag ai oo Qp-—1
ol a[ll] N 1

a=(apa ... ap—1) — qvany(a) def E] i ' S (2.11)
ags_l} a[ls_” o agf:f]

Lemma 2.10 (Determinant of g-Vandermonde Matrix [LN96, Lemma 3.15]).
Leta = (ap a1 ... an—1) € Fym. Then, the determinant of the square n X n g-Vandermonde matrix,

defined as in (2.11), is

n—2

det (qvan,,(a)) = ag 11 (ajﬂ —~ ;Bhah)

7=0 Bo,...,B]'GFq

Hence, det (qvan,(a)) # 0 if and only if ag, a1, ..., a,—1 are linearly independent over F,. If ao,
ai, ..., ap—1 are linearly independent over Iy, then qvang(a) has rank min{s, n}.

2.2.2 Basic Operations

The usual multiplication of two linearized polynomials a(x) and b(z) is not necessarily a linearized
polynomial. However, the (usual) addition and the composition a(b(x)) convert the set of linearized
polynomials into a non-commutative ring with identity element 2’} = . The linearized composition
is often called symbolic product and will be denoted by a(z) o b(xz) = a(b(x)). It is associative and
distributive, but in general for a(z), b(z) € Lgm[z], it is non-commutative*, i.e., a(b(z)) # b(a(x)).

Let d, and d;, denote the g-degrees of a(x) and b(x), respectively. Then, the linearized composition

c(z) = Z?i—gd” c;jzbl = a(b(z)) has g-degree at most d, + dj, and its coefficients are:

J A
¢j = [a(b(@)], =Y b, Vi€ 0,dy+dy), (2.12)
i=0
with a; = 0 for ¢ > d, and b; = 0 for ¢ > dp. When we consider the linearized composition modulo

(a;[m] —x),ie,c(z) = 2371;01 cjx[j] = a(b(z)) mod (a:[m] — x) for dg, dp < m, then its coefficients
can be calculated by:

m—1 m—1
¢; = [a(b(x)) mod (xm — x)]] = aibg-l_i = Z aj_hbgfh], Vi e [0,m— 1], (2.13)
1=0 h=0

with a; = 0 for ¢ > d, and b; = 0 for i > d}, and all indices are calculated modulo m.

In Subsection 3.1.3, we will show that the composition of two linearized polynomials modulo
(zI™ — 2) is equivalent to multiplying their associated evaluation matrices, which provides an efficient
algorithm for calculating the linearized composition.

*When all coefficients of a(x) and b(z) lie in the ground field IF,, the linearized composition is commutative.
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Ore showed in [Ore33a, Theorem 1] that for any two linearized polynomials a(z) and b(x) in Lgm [x]
with d, > dp, there exist unique polynomials qr(z), rr(z) and gz (), 1 (x) such that

a(z) = qR(b(w)) +rgr(x) and a(z)= b(qL(x)) +rp(z), (2.14)

where deg, rr(z), deg, r1(x) < dp. Determining qg(z) and rg(x) is called right linearized (or sym-
bolic) division, where qr(x) is the right (linearized) quotient and rg(x) the right (linearized) remainder.
Equivalently, finding g7, (x) and r1,(x) is called left linearized division. The right/left linearized division
can be done by a recursive procedure (compare [Ore33a, p. 561]). Throughout this thesis, we denote
the algorithmic calculation of this right/left linearized division by

qr(z);rr(x) + RicHTDIV (a(z); b(z)) and qr(z);rp(z) < LertDiv(a(z); b(x)).

The right and left divisions are shown in the following two algorithms (compare [Ore33a, p. 561]),
where the subscripts “R” and “L” for “right” and “left” are omitted.

Algorithm 2.1. Algorithm 2.2.
q(x); r(x) < RigHTDIV (a(); b(x)) q(x); r(x) < LErtD1v (a(x); b(x))
Input: a(z); b(x) # 0 € Lgm [x] with Input: a(x); b(x) # 0 € Lgm [z] with
deg, a(x) > deg, b() deg, a(x) > deg, b()
Initialize: 7 <+ 1, Initialize: 7 <+ 1,
a(l)( ) + a(x) aM(z) + a(x)
ef
dy < deg, b(x) dy © deg, b(x)
1 while d; < deg, al)(z) > d; do 1 while d; + deg, a'(z) > dj do
. all) NG
2 ¢ (z) « [d-—ld,] . gpldi—ds] ) ¢ (z) Pd; . pldi—dy)]
bdbz b bdb
3 a ™ (2) « a(2) — ¢ (b(x)) 3 a ) (z) « o (z) — b(q (z))
4 14 1+1 4 1 i+1
5 <; Z] lq 5 ( ) — Z] 1 q ( )
6 r(x) —al(z) 6 7(z) « a(x)
Output: ¢(z); r(z) Output: ¢(z); r(x)

Both algorithms terminate such that deg, r(x) < deg, b(x).

Since unique right/left linearized quotients and remainders always exist in Fgm such that (2.14) holds
(compare [Ore33a, Theorem 1]), there is a right and left linearized extended Euclidean algorithm (LEEA)
in the non-commutative ring of linearized polynomials L,m [z]. Throughout this thesis, we consider
only the right LEEA, which is given in Algorithm 2.3. The subscript “R” for quotients and remainders
is omitted when there is no ambiguity.

Let (=1 (z) = a(z) and r(©) () = b(x) be two linearized polynomials with deg, a(x) > deg, b(x).
The right LEEA with a stopping degree d o, > 0 calculates a linearized quotient q® (x) and linearized
remainder r”) (z) in each step i > 0 such that

r(i)(m) = r(i=2) (x) — q(i) (r(i_l)(x)), (2.15)

while degq T(i_l)(x) > dstop- In each of its steps, the g-degree of the remainders decreases, i.e.,
deg, r@(z) < deg, r(=D(z). If dgtop = 1, the last non-zero remainder =1 (z) # 0 is the right
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2 INTRODUCTION TO CODES IN RANK METRIC

linearized greatest common divisor of a(z) and b(z). The polynomials () () and ¢*) (z) are unique
in each step of Algorithm 2.3 due to [Ore33a, Theorem 1]. The algorithm returns, amongst others, the
first remainder 74, () such that deg, Tout () < dstop-

Algorithm 2.3.
Tout ()5 Uout (X); Voue () RIGHTLEEA(CL(I); b(x); dstop)

Input: a(v); b(z) € Lym[z] with deg, a(x) > deg, b(z);
stopping degree d;qp
Initialize: 7 + 1,
7"( () ¢ a(x ) 7"(0)( ) « b(x),
1)( ) 0,u0(z) « 0,
D(z) 2l 2O (z) « 0
1 while deg, T'( )( ) > dstop do
q(i_>(m);r(i)(:§) <—RIGHTDIV( =D (z); 7= (z))
ul(z) ¢ u2)(z) - q D(ulD(2))
V@ (@) v (@) = ¢ (0D (2))

11+ 1

G W N

Output: 7, (z) r(i’l)(ac); Uout (T) ul (3:)

Vout () < v~V (z)
The matrix-matrix multiplication for two matrices A = (ai7j(aj));€€[[%’f__ll]] € Lgm[z]™*™ and
B = (bw(x));ee[[?)gl:ll]] € Lym[z]"*!is amatrix C = Ao B = (czj(x))zee[ﬁ):i;]l] € Lym[z]™*! with

elements:

cij(®) =Y ain(bnj(x), Vie[0,m—1],j€(0,1-1].

In order to use matrix-matrix multiplication in the description of the LEEA, define the following
matrices:

. [0] .
Q) «f ([)o} 327;) . Qi) Qi oQliDo...oQW), Vi>j>1. (2.16)
a2 —qW(z)

Hence, Q") = Q). The recursion (2.15) of the LEEA can then be rewritten by:

(i—l)( ) (i— 2)( ) (j—2)( ) ( 1)( )
T (%) xT (1] T ' x G, ) T
Further, we introduce auxiliary polynomials, needed for decoding Gabidulin codes. Let u(~) (z) = 0,

u®(z) = 219 and vV (2) = 2[00 (2) = 0 (see also Algorithm 2.3). Then, we calculate u")(z)
and v(® (z), for i > 0, recursively, similar to the remainders:

(ifl)( ) 4 (i72)( ) (ifl)( ) 4 (if2)( )

u ' X —0® u‘ xz v ' T —0® U‘ T

(o) =27 () (o) =2 G-

By means of these auxiliary polynomials () (x), v (x), each remainder can be rewritten as follows
[Gab85, Equation (28)]:

r@(z) = v (a(z)) +u®(b(z)),  Vi>0. (2.18)
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Similar to (2.17), we obtain

-1 (0 -1 o (0
(uuu)(g)) =Qte (wm) : (Umw(g)) =Q"We <xo > | (219)

Thus, it is sufficient to calculate QU-1) if we want to determine ) (z), ul9) (z) and vU) (z).

2.2.3 Connection to Linear Maps

Recall that Lemma 2.8 implies for any a(z) € Lgm[z] that a(A1by + A2bz) = Aja(br) + A2a(b2) holds
for all Ay, Ay € I, and for all by,by € Fym. Hence, the linearized polynomial a(z) € Lgym[z] of
g-degree d, < m induces an [F,-linear map a from Fym to itself. The kernel of this map a is equivalent
to the root space of a(x), ie.,

ker(a) = {b € Fgm : a(b) = 0},

and can also be seen as the right kernel of an associated matrix A. This associated matrix can be
obtained by evaluating a(x) at a basis B = {fo, 51, ..., Bm—1} of Fgm over F and representing the

result over Fy, ie.:
def

A = eXtI@( (a(ﬂo) a(ﬁl) - a(ﬁm_l))) € F(r]nxm‘
We call this matrix associated evaluation matrix in the following. The kernel of the map a, denoted by
ker(a), is equivalent to the right kernel of A, denoted by ker(A). The rank nullity theorem relates the
dimensions of the (right) kernel and the image (column space) of this matrix, respectively of this map:

dim(ker(a)) + dim(im(a)) = m.

Moreover,

dim(im(a)) = rk(A).

The following lemma shows the connection between roots of a(z) and the rank of the associated
matrix.

Lemma 2.11 (Root Space and Rank).
Let a(z) € Lgm[z] be a non-zero linearized polynomial of q-degree d, < m. Then, the rank of the
associated evaluation matrix is tk(A) > m — d,,.

Proof. Since deg, a(x) = d,, it has at most q% roots in Fym and the dimension of the root space
is at most d,,. This root space is equivalent to the right kernel of A, hence, dim ker(A) < d,. Due
to the rank nullity theorem and since dim im(a) = rk(A), the statement follows. |

The kernel of the map a is therefore the root space of a(x), represented as a vector space over [F,.
Consider now a second linearized polynomial b(z), then the composition b(a(z)) mod (zI™ —z)isa
linear map b(a), whose kernel includes the kernel of a. This is formally stated in the following lemma,
which we use when decoding (interleaved) Gabidulin codes.

Lemma 2.12 (Row Space of Composition).
Let a(z) and b(x) denote two linearized polynomials in Lym [x] with deg, a(z), deg, b(z) < m. Let
c(xz) = bla(zx)) and let B = {Po, b1, ..., Bm—1} be a basis of Fym overF,. Let

A= extg( (a(Bo) a(B1) ... a(Bm-1)) ), C= extﬁ( (c(Bo) c(B1) ... e(Bm-1)) )
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2 INTRODUCTION TO CODES IN RANK METRIC

Then, for the row spaces the following holds:

Ry (C) € Ry (A).

Proof. Consider the linearized polynomials as linear maps over [Fym. Then, the kernel of the map
a is equivalent to the roots of a(z) in Fym, considered as a vector space over F,. Since the roots of
a(x) are also roots of ¢(z) = b(a(x)), the kernels are connected by ker(a) C ker(c). Hence, for
the right kernels ker(A) C ker(C) holds, and the row spaces are related by R, (C) C R, (A). 1

2.2.4 The (Inverse) g-Transform

Gabidulin codes can be defined either by means of evaluation and interpolation of linearized poly-
nomials or by means of the ¢-transform. This subsection shows basic properties of the (inverse)
g-transform.

Lemma 2.3 guarantees that for any s dividing m, there is a normal basis in F,m of Fys over IF,.
For such a normal basis By, the g-transform of a linearized polynomial a(x) is defined as follows.

Definition 2.12 (g-Transform).

Let a linearized polynomial a(x) = Zf;ol a;izl! € Lym[x] (or a vectora = (ag ay ... as_1) € Fom) be
given, where s | m, and let By = {B[O],ﬂm, e ,6[3*1]}, for 8 € Fym, be a normal basis of Fys over .
Then, the q-transform of a(x) with respect to By is the linearized polynomial a(x) = »3_ (1) a;al] (or

the vector (ag @y ... ds—1) € Fym), given by

s—1
a; =a(pl) => a;pM, Vjelo,s—1]. (2.20)
Let extg(a;) o (Aoj A1j ... Apm_1j)T, with A;; € F, for i € [0,m — 1], denote the vector

representation of a; € Fym over F; according to Definition 2.1 using a basis of F;m over ;. As
done in Subsection 2.1.2 for the multiplication of two elements, we can use the multiplication table
T;, € F"*™ (compare Definition 2.2) to calculate the elements of the g-transform over the ground
field FF,. o

extg (@;) = extg (a(ﬁm)> = iextg (aiﬂ[iﬂ'])
=0

_Z( extg (ap) )T (2.21)

where d, = deg, a(r) < s, i.e.,a; =0 fori > d, and @; can then be obtained by extg1 (extg (a;)).

In order to switch between the polynomial and its transformed polynomial, we need an inverse
mapping, called the inverse g-transform. The following theorem shows that we actually retrieve
the original polynomial from its transform. In [SK09a] this was proved for the special case s = m.

Theorem 2.3 (Inverse g-Transform).

Leta(z) = 3777, @zl € Lyn[x] denote the g-transform of a(x) = 32520 a;zl!l € Lym[z] as in
Definition 2.12, where s divides m, and By = {B[O}NB[”, .. ’5[5—1}} is a normal basis in Fgm of Fys
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2.3 CobpESs IN RANK METRIC

over F,,. Further, let By = {Bﬂo], BL[”, e BL[S_”} be a normal basis, which is dual to By
Then,
. m_l . .
a;=a (BM) => ajﬁwﬂ], Vi e [0,s —1]. (2.22)
=0

We call this the inverse q-transform of @(x) with respect to By;.

Proof. The condition s | m guarantees that there exists a dual normal basis B3 (see Lemma 2.3).
Let us denote the following two matrices:

5[0] Bm /B[S_l] ﬁl[o] BLU] o BL[S—U
o BFl] 5?2] 5?0] Bl BJ_U] BJ_[Q] o BJ_[O] o)
g1 gl gl Bﬂ;—u 8 Lo | B“:H]
By definition, (g a1 ... @s—1) = (ap a1 ... an—1) - B, see (2.20). Now, if we calculate a’ by
a, = a(ﬂL[i]) for i € [0, s — 1] as in (2.22), we obtain:
a':(a{)a'l a;_l) = (6061 ’a\s_l)-BL:(aoal an_l)-B-BL:a'B-BL.

Moreover, due to the definition of the dual basis (compare (2.2)) and since Tr(g[i] ﬁl[i]) —
Tr(88H) = Tr(BBL), we obtain:

Test) sty o mesttY) .
O B I e I L N I
Tr(ﬁ[s._l}ﬁL) Tr(@[s_'llﬁ“”) | Tr(ﬁ[s_ljﬁL[s—l]) 1
Hence, a’ = a, which proves the statement. 5

Recalling Subsection 2.2.3 shows that the g-transform and its inverse transform provide an efficient
tool for switching between the map and its associated evaluated matrix. In terms of interpolation and
evaluation, the inverse ¢-transform can be seen as the evaluation of a(x) at the dual normal basis.
Equivalently, the determination of a(x) out of a(z) can be seen as the unique linearized univariate
interpolation polynomial of g-degree less than s. In Subsection 3.2.2, we explain how to calculate this
unique interpolation polynomial based on linearized Lagrange basis polynomials.

2.3 Codes in Rank Metric

Gabidulin codes, introduced by Delsarte [Del78], Gabidulin [Gab85] and Roth [Rot91], are so-called
maximum rank distance (MRD) codes since they attain the Singleton-like upper bound with equality.
Further, they are also maximum distance separable codes when considered as codes in Hamming metric.
In Subsection 2.3.1, we introduce the rank metric and show fundamental bounds as the Singleton-like
and the Gilbert—Varshamov-like bound. We introduce the notation of MRD codes, define Gabidulin
codes as the evaluation of degree-restricted linearized polynomials in Subsection 2.3.2, derive their
minimum rank distance and show how generator and parity-check matrices can be constructed.

Interleaved Gabidulin codes are defined in Subsection 2.3.3 and their minimum rank distance is
proven. Finally, we briefly give basic notations of lifted Gabidulin codes, which constitute a special
class of constant-dimension codes (Subsection 2.3.4).
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2 INTRODUCTION TO CODES IN RANK METRIC

2.3.1 Rank Metric and its Properties

The mapping from Definition 2.1 plays a fundamental role in the context of rank-metric codes. It shows
that for a given basis B of F;m over Iy, there exists a bijective mapping for each vector a € Fi/» on a
matrix A € F;"*". Based on this mapping, the rank weight and rank distance are defined as follows.

Definition 2.13 (Rank Weight and Rank Distance).

Leta= (apay ... ap—1),b=(bo b1 ... by—1) € i and let A = extg (a),B = extg (b) € F**"
denote the matrix representations with respect to a basis B of F,m over F, according to Definition 2.1. The
rank weight of a is the rank of its matrix representation over F, i.e., o

wtr(a) © rk(a) = rk(A).

The rank distance between a and b is the rank of the difference of the two matrix representations:
dr(a,b) ¥ 1k(a — b) = k(A — B).

Lemma 2.13 (Rank Distance is a Metric).
The rank distance as given in Definition 2.13 is a metric, fulfilling the requirements from Definition 2.3.

Proof. For any matrices A, B, C € FZ“X”:
e k(A — B) > 0 with equality if and only if A = B, proving positive definiteness;
e rk(A — B) = rk(B — A), proving symmetry;
e the known fact rk(A + B) < rk(A) + (B) shows that the triangle inequality is fulfilled, since
rk(A —C) =rk(A-B+B - C) <rk(A - B) +rk(B - C).
|

A sphere in rank metric of radius 7 around a word a € F.n is the set of all words in rank distance
exactly 7 from a and a ball is the set of all words in rank distance at most 7 from a. Such a sphere will
be denoted by Sg) (a) = 81({) (A) and such a ball by Bg) (a) = Bg) (A). The cardinality of Bg) (a)
can obviously be obtained by summing up the cardinalities of the spheres around a of radius from zero
up to 7. The number of matrices of a certain rank is given for example in [MMOO04]. Therefore,

55 (a { ]Uq —q),
’a)\zgsz(?(an:;[ }1:1

Note that the cardinalities of Bg) (a) and Sg) (a) are independent of the choice of their center.

Recall from Definition 2.4 that a block code over Fym of length n is a set of vectors in . The
size of this set is the cardinality of the block code. A linear block code can be seen as a k-dimensional
subspace of I and its cardinality is M = q"™*, where k denotes the dimension of the code. Analog to
Definition 2.4, we denote a code in rank metric (not necessarily linear) over F;m of length n, cardinality
M and minimum rank distance d by (n, M, d)g. A linear code in rank metric of length n, dimension %
and minimum rank distance d is a special case of the aforementioned and is denoted by [n, k, d|r. The
codewords of both can be seen as vectors in F or equivalently as matrices in IFj"*". The minimum
rank distance of a block code is defined as follows.
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Definition 2.14 (Minimum Rank Distance).
For a given (n, M, d)r block code C over F ym, the minimum rank distance is defined by

def . 1) 2y — 1) _ 2
d cufﬁ%ec{dﬂc e) =rk(e ¢ )}
cW£c)

Corollary 2.1 (Minimum Rank Distance of a Linear Code).
For a linear [n, k, d] g block code C, the minimum rank distance is the minimum rank weight:

d = min {th(c) - rk(c)}.
c£0

The following theorem shows how the minimum rank distance of a linear block code can be
determined based on its parity-check matrix.

Theorem 2.4 (Minimum Rank Distance from Parity-Check Matrix [Gab85, Theorem 1]).
Let the (n — k) x n matrix H over Fym denote the parity-check matrix of a linear [n, k, d] p block code C

over Fym. If and only if for any matrix A € F((f_l)xn of rank 0 — 1 the following holds:
rk(AHT) =6 — 1,
and if there exists a matrix B € ngn of rank 9 such that
rk(BHT) < ¢,
then C has minimum rank distance d = 0.

The maximum cardinality of a code of length 7 and minimum rank distance d over Fym is denoted
by AL (n,d). On the one hand, A%, (n,d) is an upper bound on the cardinality of any (n, M,d)r
code over Fym, ie, M < Affm (n,d). On the other hand, the definition of the maximum cardinality
Aqu (n,d) implies that an (n, M, d) g code of cardinality M = Affm (n,d) exists.

The following theorem states analogs of the sphere packing (Hamming) and Gilbert—Varshamov
bound in rank metric, which can be proved similar to Hamming metric [GY06, Loi08, GY08b, Loi12].

Theorem 2.5 (Sphere Packing and Gilbert-Varshamov Bound in Rank Metric [GY06]).
Let Affm (n,d) denote the maximum cardinality of an (n, M, d)g block code over Fym of length n and
minimum rank distance d and let 7o = |(d=1)/2|. Then,

— < AR (n,d) < ———. (2.24)
_ q T
1BY1(0)] 185 (0)]

The LHS of (2.24) is the Gilbert-Varshamov bound in rank metric and the RHS of (2.24) is the sphere
packing bound in rank metric. The rank-metric Gilbert-Varshamov bound from [L0i08, Proposition 3]

is slightly different from the one stated in [GY06] and in Theorem 2.5. Note moreover that \Bgo) (0)]
and |BE§71> (0)| are independent of their centers.

A code is called perfect in rank metric if it fulfills the RHS of (2.24) with equality. For a perfect code,
the balls of radius 79 = [(d—1)/2] around all codewords cover the whole space. However, in contrast to
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Hamming metric, there are no perfect codes in rank metric [Loi08, Proposition 2].
The Singleton bound in rank metric is given in the following theorem.

Theorem 2.6 (Singleton Bound in Rank Metric [Del78, Theorem 5.4]).
Let C be an (n, M,d)r code over Fyn of length n, cardinality M and minimum rank distance d. The
cardinality M of C is restricted by:

M < qmin{n(m—d+1),m(n—d+1)} _ qmax{n,m}(min{n,m}—d—i-l)' (2.25)

If the cardinality of a code fulfills (2.25) with equality, the code is called maximum rank distance
(MRD) code. We denote an MRD (not necessarily linear) code over Fym of length n, cardinality
M = gmax{nm}(min{n,m}=d+1) 3nd minimum rank distance d by MRD(n, M).

For linear codes of length n < m and dimension k, Theorem 2.6 implies that d < n — k + 1, see
also [Gab85, Corollary, p. 2]. A linear MRD code over [F;m of length n < m, dimension £ and minimum
rank distance d = n — k + 1 is therefore denoted by MRD|n, k] and has cardinality M = ¢™*. If
n > m, we simply transpose all matrices and apply the previous considerations. The complete (rank)
weight distribution of MRD codes was derived in [Del78, Theorem 5.6] and [Gab85, Section 3].

A special class of rank-metric codes are g-cyclic codes, which can be seen as the analogs to cyclic
codes in Hamming metric.

Definition 2.15 (g-Cyclic Code).
Let C be an (n, M, d)r code over Fgm of length n, cardinality M and minimum rank distance d. Then,
this code is called q-cyclic if

(cg}_j CE}_j_H cg] c[lj] cg]_j_l) eC,
for any integer j and any codeword (co ¢1 ... cp—1) € C.

As we will see later, g-cyclic Gabidulin codes are a subclass of Gabidulin codes.

In order to introduce the notation, we also mention shortly constant-rank codes. A constant-rank
code is a rank-metric code, where all codewords have the same rank. Such a constant-rank code over
Fgm of length n, minimum rank distance d, cardinality ) and rank r is denoted by CRym (n, M, d, r).

2.3.2 Gabidulin Codes

Gabidulin codes [Del78, Gab85, Rot91] are a special class of linear MRD codes and are often considered
as the analogs of Reed—Solomon codes in rank metric. They are the main class of block codes in rank
metric considered in this thesis.

In the following, we define Gabidulin codes as evaluation codes of degree-restricted linearized
polynomials, prove that they are MRD codes and give their generator and parity-check matrices.

Definition 2.16 (Linear Gabidulin Code).
A linear Gabidulin code Gab[n, k| over Fym of lengthn < m and dimension k < n is the set of all words,
which are the evaluation of a q-degree-restricted linearized polynomial f(x) € Lgm[z]:

def

Gabln, k] { (F(g0) F(91) - flgn-1)) = f(g) : deg, f(x) < k.

where the fixed elements go, g1, . . ., gn—1 € Fgm are linearly independent over IF,.
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Alternatively, we can define the codewords of Gab[n, k| as the inverse g-transform (see Theorem 2.3)
of the evaluation polynomials f(x) of g-degree less than k. In order to do so, we need a normal basis®
By = {,BJ‘[O},ﬁLm, .. ,Bﬂn 1 } of Fgn over Fy. Recall from Lemma 2.3 that such a normal basis
exists in Fym if n divides m and clearly for n = m. The coefficients of the codewords can then be given
by the inverse g-transform of f(z) as in Theorem 2.3:

= r(g+" Z £ viejo,n—1). (2.26)

7=0

Definition 2.16 and Equation (2.26) agree if we choose g; = L0, However, the calculation of (2.26) is
only possible if there is a normal basis in [Fgm of Fy» over IF;, which imposes a restriction on the length
of the code. On the other hand, Definition 2.16—and also the definitions based on generator/parity-check
matrix, see (2.27) and (2.28)—is valid for any n < m.

Clearly, a more general definition of the (inverse) ¢-transform by using an arbitrary basis and its
dual is the same as the evaluation/interpolation of a linearized polynomial. However, we use the name
“g-transform” only together with a normal basis in order to indicate that this transform can be done
with low complexity (see Subection 3.1.1).

Theorem 2.7 (Minimum Rank Distance of a Gabidulin Code).
The minimum rank distance of a Gab[n, k] Gabidulin code over Fgm withn < misd =n —k+ 1.

Proof. The evaluation polynomials f(z) have g-degree less than k and therefore the dimension
of their root spaces over Fym is at most k — 1.

Let C = extg (c) € "™ denote the representation of ¢ € Gab[n, k] as in Definition 2.1. Since
the evaluation of a linearized polynomial at a basis is an IF,;-linear map, it follows with Lemma 2.11
that the dimension of the right kernel of C € [F;"*" is equal to the dimension of the root spacm
the corresponding evaluation polynomial f(z). Therefore,

dimker(c) < k—1, Vc € Gab[n,k].

There is a codeword ¢ in Gab|n, k] of rank d and due to the rank nullity theorem, for this codeword
dim ker(c) = n — d holds. Hence,

dimker(c)=n—-d<k-1 <= d>n—-k+1.

However, the Singleton-like bound (2.25) implies that d < n — k 4+ 1 and hence,d =n —k + 1.

Thus, Gabidulin codes are MRD codes.
Based on Definition 2.16, we can give the generator matrix of a Gabidulin code using the elements

90,915 - - - > gn—1 € Fgm, which are linearly independent over F,,.
a9 g
g([]l] ggl] o g[l} .
G = qvani((go g1 -+ gn-1)) = | 7 R B (2.27)
S Gy

since the evaluation of a linearized polynomial of g-degree less than k is the same as multiplying its
coefficients with the aforementioned ¢g-Vandermonde matrix.

*For consistency with Theorem 2.3, we denote this normal basis by B3 as dual basis to By
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Lemma 2.14 (Parity-Check Matrix of Gabidulin Code).
Let G be a generator matrix of a Gab[n, k] code as in (2.27), where go, g1, . . ., gn—1 € Fgm are linearly
independent over IF;. Let hg, h1, ..., h,—1 be a non-zero solution for the following n — 1 linear equations:

n—1
S 9/hi=0, Vjel-n+k+1k-1]. (2.28)
=0

Then, the (n — k) X n matrix

pl0] h[lo} h[O]_I
hl! p R
H =qvan, ;((hoh1 ... hp_1)) = ) _ ' ] ,
) plnh=)

is a parity-check matrix of the Gab[n, k| code.

Proof. Since the dual of a Gab[n, k] code is a Gab[n, n — k] code [Gab85, Theorem 3], we have
to prove that H is a generator matrix of this dual code, i.e., G - H” = 0 has to hold, which is
equivalent to the following n — 1 linear equations:

n—1
Sl =0, Wie[ok-1,je0n—k-1),
=0
n—l4

— Zgz[j]hiZO, Viel-n+k+1,k—1].
=0

Therefore, if hg, h1, ..., h,—1 are linearly independent over IF,, H is a generator matrix of the

dual code Gab[n,n — k|. To prove this, denote g = (g([)—n+k+1] QE_H’“*” . g7[:11+k+1}). Then,

(2.28) is equivalent to
qvann_l(g) (ho hy ... hn_l)T =0. (2.29)

The matrix qvan,,_,(g) is a parity-check matrix of a Gab[n, 1] code, since g([]_n+k+1], gg_n—’_k“]

. L__nfrkﬂ} € Fym are linearly independent over F,. Hence, the vector (hg hy ... hyp—1)isa

codeword of the Gab[n, 1] code. This Gab|n, 1| code has minimum rank distanced = n—1+1 =n
and therefore rk((ho h1 ... hn—1)) = n. Thus, H is a generator matrix of the dual Gab[n,n — k|
code and therefore a parity-check matrix of the Gab[n, k| code. [

5

The following lemma investigates g-cyclic Gabidulin codes.

Lemma 2.15 (g-cyclic Gabidulin Code).
Letg = (go g1 --- gn1) = (B0 g0 . gLin=1ly be an ordered normal basis of Fyn over F, and let
Gabl[n, k| be a Gabidulin code over Fym as in Definition 2.16.

Then, Gab|n, k] is g-cyclic as in Definition 2.15.

Proof. We have to show that for any integer j and any codeword ¢ = (cp ¢1 ... ¢p—1) €
Gab[n, k|, the g-cyclic shift

c=(coc1 ... Cp—1) o (cg]_j cg}_j_H c[[)j] c[lj] CE]_j_l)

28



2.3 CobpESs IN RANK METRIC

is also a codeword of Gab[n, k]. The coefficients of ¢ (indices calculated modulo n) are given by:
i = = (£aH) T =allo ()

m:lBi[i_J‘]

Vi e [0,n —1].

z:ﬁl i)
Therefore, for f(z) = Zf:_ol s, we obtain:

Flz) € 2l o f(2) 02l = Flglol g bl fk[ﬂlx[k*l]’
and deg, f(m) = deg, f(x) < k. Thus,

E=(@a .. cor) = flg) = (50 F(3*1) .. fHt))
is a codeword of Gab|[n, k|. |

Lemma 2.3 provides directly the following corollary.

Corollary 2.2 (Existence of g-cyclic Gabidulin Code).
A g-cyclic Gabidulin code Gab[n, k| of lengthn < m and dimension k < n over Fm as in Lemma 2.15
exists for any n dividing m.

Thus, when we recall (2.26), we see that defining Gabidulin codes by the (inverse) g-transform yields
g-cyclic Gabidulin codes. This property allows to reduce the complexity of encoding and decoding (see

Section 3.2.4).

Lemma 2.16 (Parity Check Matrix of g-cyclic Gabidulin Code).
Let Gab[n,k] be a g-cyclic Gabidulin code over Fgm as in Lemma 2.15, where g =

(B0 gLl gLin=1)y s an ordered normal basis of Fyn over By, m | m, and (B gl ... gl=11) s
a dual normal basis to g,.

Then, for h def (Bl gl gletn=1]) “the (n — k) x n matrix

gk g+l glk=1]
k+1]  glk+2] gkl
H = qvan,_,(h) = & ) & ) ) /8

g1 gl gl
is a parity-check matrix of the Gab|n, k| code.

Proof. The proof follows from the proof of Theorem 2.3: Let H consist of the last n — k rows of
B (defined as in (2.23) with s = n) and let G” be the n x k submatrix of B+ (defined as in (2.23)
with s = n), consisting of the first k& columns of B+. Then, G is exactly the generator matrix
from (2.27) and H - G* = 0 as shown in the proof of Theorem 2.3.

Since h = (Bl glk+1 - glk+n=1]) consists of n linearly independent elements, H is a parity-
check matrix of this Gab|n, k| code. n

2.3.3 Interleaved Gabidulin Codes

Interleaved Gabidulin codes can be seen as s horizontally or vertically arranged codewords of (not
necessarily different) Gabidulin codes. They are the analog of interleaved Reed—Solomon codes in
Hamming metric, see [KL97, KL98, BKY07, Kra03, BMS04, JTH04, SSB09, WZB12].
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Vertically interleaved Gabidulin codes were introduced by Loidreau and Overbeck in [LO06, Ove07]
and rediscovered by Silva, Kschischang and Kétter [SKKO08, Sil09] as the Cartesian product of s trans-
posed codewords of Gabidulin codes. Later, Sidorenko and Bossert introduced horizontally interleaved
Gabidulin codes [SB10, S]JB11].

We consider vertically interleaved Gabidulin codes in this thesis. However, if an application requires
matrices with the dimensions of a horizontally interleaved Gabidulin code, we can simply transpose
the codewords of the vertically interleaved code. Known decoding approaches and a new interpolation-
based decoding approach for interleaved Gabidulin codes are considered in Chapter 4.

Definition 2.17 (Interleaved Gabidulin Code).

Letg = (9o g1 ... gn—1), where go, g1,-..,9gn—1 € Fgm are linearly independent over F,. A linear
(vertically) interleaved Gabidulin code 1Gab[s;n, k™), ... k()] over Fym of lengthn < m, elementary
dimensions kU ... k®) < n and interleaving order s is defined by
c fM(g)
aor | | € P (g)

IGab[s;n,k(l), A k(s)} = ) : deg, f(i)(x) < kW <nVie 1, s]

C(s) f(s).(g)

For s = 1, this defines a usual Gabidulin code Gab[n, k] = IGab[1;n, k]. Using the map extg from
Definition 2.1, we can either represent the codewords of the interleaved code as a vector in Iﬁ‘gm, a
matrix in IFZ_Q” or over the ground field as a matrix in Fy™*". Throughout this thesis, we will use any
representation, whatever is more convenient and indicate which one is meant if there are ambiguities.
This is illustrated in Figure 2.2.

Analog to interleaved Reed-Solomon codes, we call an interleaved Gabidulin code homogeneous if all
elementary dimensions are equal, i.e., if k") = k, Vi € [1, s].

Lemma 2.17 (Homogeneous Interleaved Gabidulin Codes are MRD).
Let1Gab[s;n, k, ..., k] be a linear interleaved Gabidulin code over Fym as in Definition 2.17 with kD =k,
Vi € [1, s]. Its minimum distance is d = n — k + 1 and it is an MRD code. S

Proof. On the one hand, any non-zero codeword of 1Gabl[s;n, k, ..., k] contains at least one
non-zero codeword of a Gabidulin code Gab|n, k| and therefore, d > n — k + 1. On the other
hand,

e

€ IGab[s;n, k, ..., k.

We can choose c¢!) € Gab[n, k] such that rk(c()) = n — k + 1 and therefore the minimum
distance of IGab[s;n, k, ..., k| is exactly d = n — k + 1 and it is an MRD code. |

For arbitrary elementary dimensions, we can use the same reasoning and the minimum distance of
1Gab[s;n, kM, ... k)] is d = n — max;{k(®} + 1. Notice that this is no MRD code.

Known decoding approaches and a new interpolation-based decoding approach for interleaved
Gabidulin codes is described in Chapter 4.
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c
c > <
c(2 c@®)

n R SXn SMXn
Ce) €Fu = 1 el = | Jem

Figure 2.2. Representations of codewords of an interleaved Gabidulin code of length n and interleaving order s.

2.3.4 Lifted Gabidulin Codes

This subsection will give a brief definition of a special class of constant-dimension codes, constructed by
lifted Gabidulin codes. These constant-dimension codes are used in Chapter 5 to establish bounds on list
decoding block rank-metric codes. Constant-dimension codes and, more general, codes in the projective
space were thoroughly investigated e.g. in [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13, ES13].

As defined in Subsection 2.1.1, let F:} denote the vector space of dimension n over the finite field I,
P,(n) the projective space and G,(n, r) the Grassmannian of dimension .

A distance measure for codes in the projective space is the so-called subspace distance. For two
subspaces U,V in P,(n), we denote by I/ + V the smallest subspace containing the union of ¢/ and V.
The subspace distance between U,V in P,(n) is defined by

ds(U,V) =dimU + V) — dimU NV)
= 2dim(U + V) — dim(U) — dim(V). (2.30)

It can be shown that the subspace distance is indeed a metric (see e.g., [KK08, Lemma 1]) and it is
connected to the so-called injection distance d; as follows (see [SK09b, Equation (28)]):

di(U,V) = % ds(U, V) + %] dim(U) — dim(V)|. (2.31)

Throughout this thesis, we will use the subspace distance as a distance measure between subspaces.

A code in the projective space (also called subspace code) is a non-empty collection of subspaces of
Py(n), i.e., each codeword is a subspace. A constant-dimension code (also called Grassmannian code) is
a special subspace code, where each codeword has the same dimension. Let CDy(n, M, ds, ) denote
a constant-dimension code in G, (n, r) with cardinality M and minimum subspace distance d;. This
code is therefore a subset of the Grassmannian G,(n, 7).

For constant-dimension codes, (2.31) shows that the minimum injection distance is half the minimum
subspace distance. Further details can be found e.g., in [KSK09], which provides a survey (up to the
year 2009) on codes in the projective space and constant-dimension codes.

The lifting of a block code defines a constant-dimension code as follows.
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Definition 2.18 (Lifting of a Matrix or a Code).
Consider the mapping

lift : IFZX("_T) — Gy(n,r)
X — R, (I X]),
where 1, denotes the r x r identity matrix. The subspace lift(X) = R ([L. X]) is called lifting of the

matrix X. If we apply this map on all codewords (in matrix representation) of a block code C, then the
constant-dimension code lift(C) is called lifting of C.

The following lemma shows the properties of a lifted linear MRD code.

Lemma 2.18 (Lifted MRD Code).
Let a linear MRD(r, k] code C over Fn—» of lengthr < n — r, minimum rank distanced = r — k + 1
and cardinality Mp = ¢"~"* be given.

Then, the lifting of the transposed codewords, i.e.

Lift(CT) < {hft(cT) =R, (I, CT]): Ce c}

is a CDgy(n, My, ds, ) constant-dimension code of cardinality My = Mp = q(”_r)k, minimum subspace
distance ds = 2d and lies in the Grassmannian Gg(n,r).

Proof. Let C; € ]F((Jnfr)w, Vi € [1, MR], denote the codewords of C in matrix representation.
The dimension of each subspace lift(C?') is r since rk([I, C¥]) = r, for all i € [1, Mg]. The
cardinality of this constant-dimension code is the same as the cardinality of the MRD code, which
is Mr = ¢ "% The subspace distance of the constant-dimension code is two times the rank
distance of the MRD code (see [SKKO08, Proposition 4]) since for any two C;, Co € C with (2.30):

ds (lift(CT ), 1ift(CJ)) = 2dim (lift(CT) + Lift(C3)) — dim (lift(CY)) — dim (lift(C3))

I, Cf I, Cf
_2rk<I,. CQT>—2r—2rk<O C%—C{ — 2r

=2 [tk(I,) + 1k(C3 — CT)] — 2r = 21k(Cy — C;) = 2dR(Cy, Cy).

32



CHAPTER 3

Decoding Approaches for Gabidulin Codes

codes and are therefore equivalents of well-known decoding algorithms in Hamming metric.

The first bounded minimum distance (BMD) decoding algorithm by Gabidulin [Gab85] is based
on solving a key equation with the linearized extended Euclidean algorithm (LEEA) and can be seen as
an equivalent of the Sugiyama-Kasahara-Hirasawa—Namekawa decoding algorithm for Reed-Solomon
and Goppa codes [SKHN75]. The oldest decoding principle for Reed—Solomon codes is the Peterson—
Gorenstein—Zierler approach [Pet60, GZ61]. A similar algorithm for Gabidulin codes was introduced
in 1991 by Roth [Rot91] and independently also by Gabidulin in 1992 [Gab92]. In this approach, the
solution to the key equation is found by solving a linear system of equations based on the syndrome
coefficients.

Due to its efficient use of shift-register synthesis, the Berlekamp-Massey algorithm [Ber68, Mas69]
is probably the most established decoding algorithm for Reed—Solomon and cyclic codes. A linearized
equivalent of it was given by Paramonov and Tretjakov [PT91] and Richter and Plass [RP04a, RP04b].
The proof of this algorithm was given later by Sidorenko, Richter and Bossert in [SRB11].

DECODING PRINCIPLES FOR GABIDULIN CODES mostly rely on the similarities to Reed—Solomon

While the previously mentioned approaches solve a key equation and return an error-span poly-
nomial, interpolation-based decoders directly output the evaluation polynomial of a codeword. A
Welch-Berlekamp-like decoder [WB86] for interpolation-based BMD decoding of Gabidulin codes was
presented by Loidreau in 2006 [Loi06, Loi07].

Apart from increasing the decoding radius of Gabidulin codes (which is considered in some sense in
Chapters 4 and 5), the research interest lies in accelerating BMD decoding algorithms [SK09a, HS10,
SB12, WAS13, SWC12] and in error-erasure decoding [SKKO08, Sil09, GP08, LSC13].

This chapter deals with efficient decoding of Gabidulin codes. First, in Section 3.1, we present
new methods to accomplish efficient calculations with linearized polynomials. Second, Section 3.2
briefly explains known decoding approaches for Gabidulin codes and presents a new BMD decoding
algorithm, which is based on solving a transformed key equation with the LEEA and directly outputs
the evaluation polynomial of the estimated codeword. Finally, we establish how this algorithm can be
accelerated and generalize it for error-erasure decoding.

The results of Subsections 3.1.2 and 3.1.4 were partly published in [WSB10] and the results from
Subsections 3.1.3, 3.2.2 and 3.2.4 in [WAS11, WAS13].

3.1 Fast Algorithms for Linearized Polynomials

Efficient implementations of operations with linearized polynomials are essential in order to develop
fast decoding algorithms for codes in rank metric, in particular for (interleaved) Gabidulin codes.
Throughout this thesis, the computational complexity is considered as operations (multiplications and
additions) in Fym or in I, where the corresponding field will be indicated.
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3 DECODING APPROACHES FOR GABIDULIN CODES

Subsection 3.1.1 explains the complexity of known approaches and states some problems, which are
treated in the subsequent subsections. In Subsections 3.1.2 and 3.1.3, we present fast algorithms for
calculating the linearized composition and in Subsection 3.1.4, we give a fast equivalent of the LEEA
based on the Divide & Conquer strategy.

3.1.1 Complexity of Known Approaches and Overview of New Approaches

A summary of efficient calculations in finite fields using normal bases is given in Table 3.1. Further,
Table 3.2 provides an overview of the complexity of standard implementations for operations with
linearized polynomials. As a last part of this subsection, we state some problems concerning efficient
operations of linearized polynomials, which are picked up in the following subsections.

Operations with Normal Bases

Throughout this thesis, we assume that we can switch between the representation of a vector in F;m
and a matrix in F, (i.e., the map from Definition 2.1) without any cost. Recall Section 2.1.2 about normal
bases, where we showed in (2.3) that a q—powe%f an element a € Fym corresponds to a cyclic shift
of extg (a) € Fg”“, when a normal basis is used. Hence, the complexity of g-powers is negligible
whenever we consider a normal basis representation.

The addition a + b of a,b € Fym can be implemented by extg (a) + extg (b) € Fy™! in O(m)
operations over [F,.

The product a - b of any two elements a,b € F,m can be calculated as in (2.4), showing that
extg(a-b) € IFZ”XI can be obtained by m multiplications of a vector in IF‘;”Xl with the multiplication
table T, and summing these m resulting vectors up (times a scalar in F;)). Since T,,, has comp(T,,)
non-zero entries, the multiplication of T, with a vector costs Comp(Tm) operations over [F, and the
whole calculation of extg (a - b) costs O(m comp(Ty,)) > O(m?) operations in the ground field F,.

If one of the two multiplied elements is a basis element, e.g. b = U/, and we want to compute
a - 811, then (2.5) shows that the summation step from (2.4) disappears and the complexity is reduced
to O(comp(T,,)) operations over F,.

For the calculation of the (inverse) g-transform of a linearized polynomial a(x) € Lgm[z] of ¢-degree

Table 3.1. Complexity of operations in finite fields using normal bases.

Operation Notation Method Complexity

g-power of a € Fym al’ Eq. (2.3),p. 8 negligible

Addition of a,b € Fym a+b extg (a) +extg (b) O(m)inF,
Multiplication of a, b € Fym a-b Eq. (2.4),p. 9 O(mcomp(T;,)) inF,
Multiplication of a, 3171 € Fym, a - B! Eq. (2.5),p. 9 O(comp(T,,)) in F,

where U] € By

g-transform of a(x) € Lgm ] a(x) Eq. (2.21), p. 22 O(d,dg comp(Ty,))
with deg, a(z) = d, < s,s|m o < O(s? comp(T,)) in F,
Inv. g-transform of a(z) € Lym[z]  a(x) analog to O(dqdg comp(Ty,))
with deg, a(z) =dz < s,s|m Eq. (2.21), p. 22 < O(s? comp(T,,)) in Fy
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d, < s (see Definition 2.12 and Theorem 2.3) recall (2.21), which shows how to obtain the coefficients

of the transformed polynomial a(x) = Z?i_o @z, represented as vectors over . For each coefficient

aj, we calculate d, + 1 < s times the product of an element a; € Fy» and a basis element [i+7] ag

in (2.5). Hence, the calculation @; for j € [0, d3] requires O(dqdg comp(Ty,)) < O(s? comp(T,y))

operations over [F,. The calculation of the inverse g-transform can be done analogously to (2.21). To

our knowledge, this efficient calculation of the (inverse) g-transform was first observed in [SK09a].
Table 3.1 summarizes the complexity of the mentioned operations using normal bases.

Operations with Linearized Polynomials

Let M(dg, dp) denote the complexity of calculating the composition of two linearized polynomials, i.e.,
a(b(z)) € Lym[z] with d, = deg, a(z) and d, = deg, b(x). The straight-forward calculation of the
coefficients of a(b(x)) can be done as in (2.12), where the calculation of all coefficients requires

do+dyp do+dp+1
. . (de+dy+1)(dg +dp +2
Z(]+1): Z ]:( b )2< b )NO((da+db)2)

J=0 J=1

additions and multiplications over =, when we assume again that g-powers are negligible.

The complexity of calculating the linearized composition modulo (l’[m] — ) as in (2.13) requires
therefore at most O(m?) operations in F,m and is denoted by M., (m) = O(m?) over Fym.

The right/left linearized division can be calculated as in Algorithm 2.1 and 2.2, respectively, and its
complexity for two linearized polynomials a(x), b(z) € Lgm [z] is denoted by D(d,, dp). The standard
implementations from Algorithm 2.1 and 2.2, for d, > dy, terminate after at most d, — dj + 1 iterations.
The complexity of each iteration is dominated by the linearized composition in Line 3. Since ¢ (x) has
only one non-zero coefficient, Line 3 can be computed with dj, + 1 multiplications of elements in [Fym.
Hence, the complexity of the linearized division is D(d, d) = O((da — dy)dy) operations in Fm.

The standard implementation of the LEEA from Algorithm 2.3 for two input polynomials a(z), b(z) €
L,m[z] with d, > dj, requires O(d?) operations over F,m (see [GY08a]). In detail, this complexity
also depends on the stopping degree dcp, but the order of the complexity is independent of d .y, and
therefore we do not analyze this dependency in detail here.

Table 3.2 shows an overview of these standard implementations for linearized polynomials.

Table 3.2. Complexity of standard implementations for linearized polynomials.

Operation Notation Method Complexity
Linearized composition a(b(x)) Eq. (2.12),p. 18  M(dy, dp) =

of a(x), b(x) € Lym[z] T O((dg + dp)?) inFym
Linearized composition a(b(x)) mod (z!"™ — z) Eq. (2.13),p. 18 M (m) = O(m?)
modulo (2" — z) ~ inFgm

Linearized division of ~ RiGHTDIV(a(z); b(z)) Algo.2.1,p.19  D(dg,dp) =

a(x), b(x) € Lgm[x] LErTDIV (a(2); b(x)) Algo.2.2,p.19  O((dgq — dp)dp)inFym
with d, > dp -

LEEA of a(x), b(x) € RIGHTLEEA (a(2); b(x); dstop) Algo. 2.3,p.20  Opa(da, dp) = O(d2)
]Lqm [fU] with da Z db T - in ]qu
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Problem Statement and Overview of New Approaches
The following subproblems provide the starting point of the remainder of this section.

Problem 3.1 (Fast Linearized Operations).
Let a(r),b(z) € Lym[z] with d, = deg, a(z) and d, = deg, b(z) be given.

(a) Fast Linearized Composition.
Let n = max{d,,dy} + 1. Find a linearized polynomial

c(z) = a(z) o b(x) = a(b(x)),
see also (2.12), with complexity M(d,, dy) < O(n?) operations in Fym.

(b) Fast Linearized Composition modulo (z™ — x).
Let d, < m, dy < m. Find a linearized polynomial

c(z) = a(z) o b(x) = a(b(x)) mod (2™ —2),
see also (2.13), with complexity M, (m) < O(m?) operations in Fym.

(c) Fast Linearized Multi-Point Evaluation.
Letd, < m and let the s points by, b1, ... ,bs_1 € Fym, wheres | m, be given. Find the s evaluation
values

a(bo), a’(bl), s 7a(b871)
with complexity less than O(m?) operations in Fym.

(d) Fast Linearized Euclidean Algorithm.
Let d, > dp. Find the output of RIGHTLEEA(a(:U); b(x); dstop), Algorithm 2.3, for some d, >
dstop > da /2, with complexity Opa(dq, dy) < O(d2) operations in Fym.

As a preview, Table 3.3 provides an overview of our new algorithms which give solutions to the
aforementioned problems and are explained and proven in detail in the following subsections.

In order to compare the different algorithms, recall Table 3.1 to compare operations in Fy» with
operations in F,,. An addition of two elements in F m costs O(m) operations in F, and a multiplication
of two elements in Fym» can be realized with O(m comp(T,,)) operations in F,. If there exists a
low-complexity normal basis of F,m over [F,, this multiplication can be done with O(m?) operations
in F,, and therefore, any operation in F;m can be implemented with at most O(m?) operations in F,,.

Hence, Algorithm 3.1 for calculating a(b(z)) mod (2™ — ) costs at most O(m ')
over F,m and can be realized in O(m3-%%)

If we want to compare Algorithm 3.1 and Algorithm 3.3 for calculating the linearized composition,
we first have to remark that Algorithm 3.1 can also calculate the linearized composition without modulo.
However, when we use low-complexity normal bases, Algorithm 3.3 is more efficient for calculating the
linearized composition modulo (;L“[m] — x). Moreover, the complexity improvement is achieved also for
small polynomials whereas the complexity of Algorithm 3.1 is only valid for large polynomials since
the fast matrix multiplication (by the Coppersmith—-Winograd algorithm) is only efficient for large
matrices.

operations
operations over F,.

Notice that there are also asymptotically faster algorithms for realizing one operation over [Fym
in F, and therefore, it depends on the concrete implementation, which algorithm for the linearized
composition is faster.
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Table 3.3. Complexity of new algorithms for operations with linearized polynomials.

Operation Notation Method Complexity

Linearized composition  a(b(x)) Algo.3.1,p. 39, M(dg,dp) =

of a(x), b(x) € Lym[z] Subsec. 3.1.2 O((max{dg, dp})*%?) in Fym
Linearized composition  a(b(x)) Algo.3.1,p.39, My, (m) =

of a(z), b(z) € Lym|[x] mod (zI™ — ) Subsec. 3.1.2 O(m - (max{d,, dy})%%)

modulo (2™ — z) < O(m%) inFym

Algo.3.3,p. 42, My, (m) =
Subsec. 3.1.3 O(max{d,, s}m comp(Ty,))
< O(m? comp(Ty,)) inF,

Linearized multi-point a(bg),...,a(bs—1) Algo.3.2,p.41, O(max{dgs,s}mcomp(T,,))
evaluation of a(z) € Subsec. 3.1.3 < O(m? comp(Ty,)) in F,
Lqm[fL’] at bg,b1,...,bs_1 o

€ Fym, where s | m

First half of LEEA of a(z), FasTHALFLEEA Algo.3.4,p. 45, Opa(da,dpy) =

b(x) € Lym[z] with (a();b(z); dstop) ~ Subsec. 3.1.4 O (max{D(d,,ds),

dg > dy o M(dq, dp)} log dg) in Fgm

3.1.2 Fast Linearized Composition Using Fragmented Polynomials

In this subsection, we present a fast algorithm that calculates the linearized composition a(b(z))
with complexity M(dq,dp) = O(max{d,,d,}'%°) operations in F m instead of O((d, + dp)?) as
in (2.12). The approach is based on splitting a(z) into smaller linearized polynomials and on fast
matrix multiplication. A similar fragmentation was used in [BK78, Algorithm 2.1] for calculating the
composition of power series. We explain the idea of the fast composition in the following, summarize
it in Algorithm 3.1 and prove its complexity. Our algorithm provides a solution to Problem 3.1 (a) of
calculating the linearized composition efficiently. A solution to Problem 3.1 (b) follows directly and is
stated in Corollary 3.1.

Let the assumptions of Problem 3.1 (a) be satisfied and let n* aof [V = [ymax{da,dp} + 1.

We fragment a(z) = Z?io a;2zl! into n* smaller polynomials a(*) (z) of g-degree less than n*:

n*—1
aV(z) = Z Qin*4j 2l i e [0,n* — 1], (3.1)
j=0
with a;, = 0if h > d,. Therefore,
n*—1 A n*—1n*—1 ‘ A
a(z) = Z () = Z Z Qin*+j g+l
i=0 i=0 j=0

The following lemma shows how a(b(x)) can be calculated by one (fast) matrix multiplication.
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Lemma 3.1 (Calculation by Matrix Multiplication).

Let two linearized polynomials a(x) = Zg“oazx“ b(x) = E?io bixll € Lym[z] be given and let
n* = [y/max{da,dp} + 1 ] Denote c(x) = a(b(x)) and let a\¥) () be defined as in (3.1). Let ¢\¥) () =
aW (b(x)), foralli € [0,n* — 1], and denote the coefficients of ) () by

db+n*fl

c(z) (1‘) _ Z Cg )I[W +]}

§=0

Then, c(z) = Z?:*(;l () and the coefficients of () (x))l=""], for alli € [0, n* — 1], are given by the
following matrix multiplication:

(0) 0 . (0)

Co Cdptn*—1
[-n* D[—n* 1)[—
e e Cfib)+[n*—]1 —A.BY (3.2)
n*)[— ;1*71 n* n*)[— 7.1*71 n* . n n*fl n
cé )= yn*] cg )=( mt CEler)q[m*( . yn*]
ap ai cee Ap*—1 b[o()] b[10] - bgi]
a£;" ] ag;j_l] e a[%f ]1 . bél] b[ll] o bgb]
[nt (-] et -n) ()] T el e
(n*—1)n* a(n*—l)n*+1 R | b([) ] . bgb ]

Proof. Since a(z) = Z?:*al a9 (z), we immediately obtain ¢(x) = > 7~ 61 ¢ (z) and it remains
to prove the calculation of the coefficients of ¢(x) as in (3.2).

Note that (a(z))" = al’l(z) = Z?io agh]x[h”] for any a(z) € Lyn[z] and any integer h. Hence,
with (3.1), we obtain Vi € [0,n* — 1]:

(c(i) (x))[—in*] _ a(i)[—in Z aEn”—l‘r]] plin*+j—in* Z a"Eniqjll—j (ibg]aj[ﬂh})

h=0

The important observation is that the expression in the sum over i does not depend on 4. The
coefficients of (¢ (z))[=""] are therefore:
(c(()i)[_mﬂ cgi)[_mﬂ C&Z)L;Tj]l) = (a;fnﬂ a%fﬁ:ﬂ a;ﬁl*q) - B, Vi e [0,n" —1],

where the n* x (dp + n*) matrix B is defined as in (3.2). Since B is independent of i, we can write
the calculations for all ¢ as matrix multiplication and the statement follows. |

Hence, we obtain the coefficients of (¢ (x))l=""] by the matrix multiplication from (3.2) and the
coefficients of ¢\ () from (¢ (z))[=""] by a simple g-power. Finally, we sum up over i to obtain the
linearized composition ¢(z) = a(b(z)) = Y ;" 51 D ().

This principle is summarized in Algorithm 3.1 and the complexity is analyzed in Theorem 3.1.
Theorem 3.1 (Linearized Composition with Algorithm 3.1).
Let two linearized polynomials a(z) = Zf“o a;xld b(x) = Z?io bixll € Lym[x] be given. Then,
Algorithm 3.1 calculates c(z) = a(b(z)) with complexity M(dq, dy) = O((max{dq,, dy})'*?) operations
inFym and is therefore a solution to Problem 3.1 (a).
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Proof. Lemma 3.1 proves that Algorithm 3.1 correctly calculates ¢(x) = a(b(z)). The complexity

of Algorithm ﬂz analyzed in the followigg, where we denote again n = max{d,, dp} + 1.

e Line 1: The complexity of this step is negligible since it only splits the polynomial a(x).

e Line 2: The complexity of g-powers is negligible (see Section 3.1.1).

e Line 3: This step dominates the overall complexity of Algorithm 3.1 and can be accomplished
by a fast matrix multiplication as follows. o
We split the n* x (dp + n*) matrix B into [(dy + n*)/n*] < [Vn+1] < /n+2 <
max{dg, dp} + 3 matrices of size n* x n* and multiply each of these matrices from the left by
A. Calculating A - B is then equivalent to multiplying at most \/n + 2 times a n* X n* matrix.
Let A/(n) denote the complexity of multiplying two n x n matrices. The Coppersmith—Winograd
algorithm has complexity N'(n) = O(n?379), see e.g. [GG03]. Thus, Line 3 can be computed
with O(v/n N (n*)) = O(v/n N(y/n)) = O(n®3(n0)2376) — O(n'89) operations in Fym.

e Line 4: The g-powers are again negligible.

e Line 5: Since consecutive ¢(!)(z) overlap at most in dj, coefficients, the overall sum requires at
most n* - d, < n* - n = n'-5 additions over F,m, i.e., this step has complexity O(n!®) in Fym.

The overall complexity of Algorithm 3.1 is therefore dominated by the matrix multiplication and

is M(n) = O(n'%%) = O((max{d,, dy})*) operations in Fgm. n

Algorithm 3.1.
c(x) < FasTLINComp (a(z); b(x))

Input: a(z); b(z) € Lym [z] with deg, a(x) = dq, deg, b(z) = dp

Initialize: n* < [v/max{dq,dp} + 1 |
1 Fragmentation (see (3.1)): a(z) Z?;El Qin*+j 2" +3] for all

ie0,n* —1]
2 Calculate g-powers: ag_n*i], forall j € [0,d,] and i € [1,n* — 1]

bgi], forall j € [0,dp] and ¢ € [0, n* — 1]

3 Set up matrices A and B as in (3.2) and calculate A - B
4 Calculate g-powers: obtain ¢(¥) () out of (¢ (z))[=™"], for all i € [0, n* — 1]
5 Summation: ¢(z) = 37 ot ¢ (z)

Output: c(z) = a(b(z)) € Lym[r] with deg, c(x) = do + dp

In order to apply Algorithm 3.1 to Problem 3.1 (b), we replace B by a g-circulant matrix.

Corollary 3.1 (Linearized Composition modulo (z[™ — z) with Algorithm 3.1).
Let two linearized polynomials a(x) = Z?io aizll b(z) = E?io bzl € Lym[x] with d,,dy < m be
given. Replace then* x (dy, + n*) matrix B in Line 3 of Algorithm 3.1 by the following n* x m matrix

by b O
1 1 1 1
B, _| o b nlo |
n*;l n*;l n*il A n’;—l
b[m—n*}—l—l bL@—n*]+2 bLn—'rL*]—Hi T bgnfn*]

with b; aef 0 fori > dy,.
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Then, Algorithm 3.1 calculates c(z) = a(b(x)) mod (zI™] — x) with complexity M, (m) =
O(m(max{da, dp})*%?) < O(m"%) operations in Fym and is therefore a solution to Problem 3.1 (b).

The complexity of Algorithm 3.1 might be further reduced when we use a fast matrix multiplication
algorithm which takes advantage of the fact that B and B,,, are highly structured matrices.

3.1.3 Fast Linearized Composition Using Fast Multi-Point Evaluation

This subsection provides an algorithm for efficiently calculating the linearized multi-point evaluation
as well as an algorithm for fast linearized composition modulo (m‘[m} — ). The complexity of both
algorithms is in the order of O(m?) over the ground field F,,.

The following theorem provides the basis of the algorithms presented in this subsection and can be
seen as an equivalent of the convolutional theorem for linearized polynomials’.

Theorem 3.2 (Transformed Values of Composition).

Let two linearized polynomials a(z) = Z?io a;zl b(z) = Z?io bzl € Lym 2] be given. If possible,

let s be an integer such that d, + dp < s and s divides m. If such an integer does not exist, let s = m.
Letg(m) = Zf;ol izl denote the q-transform of b(z) with respect to an ordered normal basis 3 =

(Bl gl gls=1]y in Fgm of Fys over Fy according to Definition 2.12. Moreover, let

c(z) = a(b(z)) mod (zI™ — ),
and let ¢(x) = f;& ¢zl denote its g-transform with respect to 3. Then,
¢ = a(?)\i), Vi e [0,s —1].

Proof. If an integer s exists which divides m and additionally, d, + dj, < s, we obtain ¢(z) =
a(b(z)) mod (z[™ — z) = a(b(z)) mod (z1¥] — z). Clearly, this holds also if s = m.

Since s | m, there is a normal basis in Fym of ;s over I, (Lemma 2.3). Due to Definition 2.12, the
transformed coefficients are ¢; = ¢(8) and b = b(B) for all i € [0, s — 1]. For do + dj < s,
the modulo operation is useless and for s = m, we know that 3 [m] — 3 holds and the modulo
operation is implicitly included. Hence, ¢; = ¢(3) = a(b(8[)) = a(?)\i). |

Theorem 3.2 indicates that a fast linearized composition can be realized by fast linearized multi-point
evaluation. Hence, finding a solution to Problem 3.1 (c) is considered as the first task on the way to fast
linearized composition. An algorithm for fast linearized multi-point evaluation is of general interest,
e.g. for encoding Gabidulin codes with g; # 8. The following lemma shows how we can use a matrix
multiplication over the ground field IF, to accomplish this multi-point evaluation.

Lemma 3.2 (Multi-Point Evaluation with Matrices). R R
Let a linearized polynomial a(x) € Lym[z] with d, = deg, a(x) < m and s points by, b1, ...,bs 1 €

m—1 -~

Fym be given, for some s dividing m. Leta(z) = S 1*" @zl denote the g-transform of a(x) with respect
to an ordered normal basis 3 = (5[0] I B[mfl]) of Fym overIF. Denote

extg (@;) = (Aoi Ari - Amo12)T, Vie[0,m—1],

)

eXtﬁ( z) = (B\O,i Bl ... Em—l Z')T, Vi € [0,8 — 1].

)

"The convolutional theorem for (usual) polynomials over finite fields states that polynomial multiplication modulo (z™ — 1)
is equivalent to element-wise multiplication of the coefficients in the transform domain, see e.g. [Bla03, Theorem 6.1.3],
[Bos98, Theorem 3.6].
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Then, for;& € Fy"™™ and Be g%, the extension of the multi-point evaluation is given by:

o) alb > ~ o def
extg ((a(bo) a(b) ... a(bH))) _A.p
Ao Aoy o Agma Boo  Box ... Bosa
Ap Ain oo A B Bii ... Bis.
: : ' : , . : (3.3)
jzl\m_LO A\m—l,l e A\m—l,m—l -/B\m—l,o Em—l,l A B\m—l,s—l

Proof. Since Bl = Bforany B € [F, and all ¢, we can rewrite the evaluation values by:

m—

m—1
a(@z) :a<z Ejﬂﬁ[]]) Z B[J] , Vi € [O,S—l].
§=0

7=0

Hence, all s evaluation values can be calculated by the following vector-matrix multiplication:

~ o~ o~

(a(bo) a(by) ... a(bs—1)) = (a(B%) a(BMy ... a(g™~1)) - B.
Due to the definition of the g-transform,

m—1

a(Bl) = Aji- BV vie[o,m—1].
=0
Therefore, the evaluation values are (a(/b\o) a(/l;l) e a(gs,l)) =3-A-B. |

When the number of evaluation points s does not divide m, we pad with zeros until the number
of points divides m. Lemma 3.2 is connected to considering a(x) as an Fy-linear map as in Subec-
tion 2.2.3 and looking at its associated matrix. Similar transform-based ideas were used in [GAS86].
Thus, Problem 3.1 (c) of linearized multi-point-evaluation can be solved efficiently by the following
Algorithm 3.2.

It is important to remark that the g-transform in Line 1 of Algorithm 3.2 is done with regard to a
basis of F;m over IF, (and not of [Fys over [Fy), even if d, < s, since this is required by the proof of
Lemma 3.2.

Algorithm 3.2. R R
(a(bo) a(by) ... a(bs_1)) +FasTLINMULTEVAL (a(2); {bo, b1, . .., bs—1}; B)

Input: a(a") € Lgm [x] with deg, a(z) = dy < m;
B0, b1, ..., bs_1 € Fyn;
normal basis 3 = (Bl gl ... glm=1y of Fym over Fy
1 Calculate g-transform of a(z) w.r.t. to 3: obtain @; = a(B8%), i = [0, m — 1] as in (2.21)
2 Calculate extg (@;) and extg( ) foralli € [0,m —1],j €[0,s — 1]
3 Set up matrices A and B asin (3.3) and calculate a <— 3 - A-B

Output: a = (a@g) a(gl) a(/l;s_l)) € Fym
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3 DECODING APPROACHES FOR GABIDULIN CODES

Lemma 3.3 (Linearized Multi-Point Evaluation with Algorithm 3.2).
Let a linearized polynomial a(x) € Lym [x] withd, = deg, a(x) < m and the s pointsbg, b1, ..., bs—1 €
[Fym, where s | m, be given. Then, Algorithm 3.2 finds the s evaluation values

o~ o~ o~

a(bo), a(bl), . ,a(bsfl)

with complexity O(max{d,, s}m comp(T,,)) < O(m? comp(T,,)) operations in F, and is therefore a
solution to Problem 3.1 (c).

Proof. Due to Theorem 3.2 and Lemma 3.2, Algorithm 3.2 returns the correct result. For the

complexity, let us analyzeae steps of Algc;ithm 3.21in detail.

e Line 1: The g-transform of length m for a polynomial of ¢-degree d, costs O(md, comp(T,,))
operz;tions in [F; (compare Table 3.1).

e Line 2: The mapping extg (Definition 2.1) requires no cost.

e Line 3: A is an m x m matrix and B is an m X s matrix over [F, and therefore with straight-
forward matrix multiplication, this step costs O(sm?) operations in F,.

Thus, Algorithm 3.2 requires overall complexity O(max{dg, s}m comp(T,,)) in F,. |

Based on Theorem 3.2 and Algorithm 3.2, we can calculate the linearized composition efficiently.
This is shown in Algorithm 3.3, which computes the composition ¢(x) = a(b(z)) mod (zI™ — z) in
three main steps. It relies on the fact that ¢; = a(b;) as proven in Theorem 3.2,

Algorithm 3.3.
c(z) < FasTLINCOMPTRANS (a(x); b(x); B)

Input: a(z); b(z) € Lym[z] with deg, a(x) = da, deg, b(x) = dy;
normal basis 3 = (81 gl ... gm=1]) of Fgm over Fy
Initialize: Define transform length:
if 3i: i | mand d, + dp < i then
L st

else
L S<m

Find normal basis 3, = (BLO] Ll] e ﬁﬁf‘”) of Fys over I, and its dual basis ﬁi

1 Calculate the g-transform of b(z) w.r.t. to 3,: obtain b; = b(B), foralli € [0,s — 1], as in
(221

2 Multi-point evaluation:
(@7¢1 ... Cs—1) + FasTLINMULTEVAL (a(2); {bo, b1, - . ., bs—1}; B) with Algorithm 3.2
3 Define linearized polynomial ¢(z) = 3 570 ¢l
4 Calculate inverse g-transform of ¢(z) wrt. to B2 ¢; = ¢(8L [i]), foralli € [0, s — 1], as in (2.22

Output: ¢(z) = a(b(z)) mod (zI™ — z) € Lym[z] with deg, c(x) < min{d, + dp,m — 1}

We assume in the following that the ordered normal bases 3 and 3, are known and therefore, finding
these bases requires no additional complexity.

Lemma 3.4 (Linearized Composition modulo (2™ — ) with Algorithm 3.3).
Leta(x) = ch‘lio a;zl and b(x) = Z?io bzl with d,, dy, < m be given. If existing, let s be an integer
such that d, + dp < s and s divides m. If such an integer does not exist, let s = m.
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Then, Algorithm 3.3 calculates
¢(z) = a(b(z)) mod (2™ — )

with complexity M,,(m) = O(max{d,, s}m comp(T;,)) < O(m? comp(Ty,)) operations inF, and
is therefore a solution to Problem 3.1 (b).

Proof. The correctness of the result of Algorithm 3.3 follows from Theorem 3.2 and Lemma 3.2.

For the complexity, we analyze the steps of Algorit}ﬁ 3.3 in the following. o o

e Line 1: The first step is a g-transform of length s and requires therefore O(sd, comp(T,,))
opera_tions in F; (compare Table 3.1).

e Line 2: The call of Algorithm 3.2 costs O(max{d,, s}m comp(T,,)) operations in I, (Lemma 3.3).

e Line _2: This step has negligil% complexity. o

e Line 4: The last step is an inverse g-transform of length s and costs at most O(s* comp(T,,))
operations in Iy, since deg, ¢(x) < s (compare Table 3.1).

Hence, the overall complexity of Algorithm 3.3 is in the order of O( max{d,, s}m comp(T,,)) <

O(m? comp(T,,)) operations in F,,. |

Algorithm 3.3 establishes a connection between the linearized composition and matrix multiplication.
This relation can also be used vice versa: assume, two matrices A, B € Fg”xm are given; represent
them as vectors in [y, calculate their inverse g-transforms and compute the composition of the
corresponding linearized polynomials. The g-transform of this result is the matrix multiplication
A - B. Thus, provided that (inverse) g-transforms are efficient, matrix multiplication and the linearized
composition are equivalent. Linearized composition faster than matrix multiplication would imply a
major breakthrough in matrix multiplication. Therefore, it is quite unlikely to find an algorithm for the
linearized composition faster than Algorithm 3.3 (up to using a faster matrix multiplication algorithm).

3.1.4 Fast Linearized (Extended) Euclidean Algorithm

In the following, we derive an efficient LEEA (see Algorithm 2.3 for the standard algorithm), which is a
generalization of the fast extended Euclidean algorithm for usual polynomials by Aho and Hopcroft
[AH74] and Blahut [Bla85]. Our fast LEEA is based on the so-called Divide & Conquer strategy, which
splits a problem of “size” n into two halves, each of “size” /2. The structure of these halves should be
the same as the original problem. The calculation can be accelerated if there exist fast solutions for the
halved problems and if they can be combined with low complexity [AH74, Bla85, GGO03].

In order to break the LEEA into two halves, recall from (2.16) that we can write

Q(i,l) — Q(i,h+1) o (Q(h,l)7

for any integer 1 < h < i — 1. Calculating Q(»") = Q') is equivalent to one step of the LEEA as in
(2.15). The first half of the splitted LEEA hence consists of the first & iterations and outputs Qb
The second uses Q1) as input and considers the problem of calculating QU1 To reduce the
complexity, Q1) and Q("1) have to be calculated efficiently. For that purpose, we use the fact that
the first calculations of the LEEA only depend on some leading coefficients of the input polynomials.

Theorem 3.3 (Upper Coeflicients of the Input Polynomials of the LEEA).
Let a(x),b(x) € Lym[z], with g-degrees d, > d}, be given. Split these polynomials into two parts:

a(x) = a'(:z:[h}) +ad"(x), bz)= b'(:z[h}) +b"(x), (3.4)
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for some h, satisfying 0 < h < 2dy — d,. Let q(x),7(z) and ¢'(x),r'(z) € Lym[x] with deg, r(z) < dy
and deg, r'(z) < deg, V'(x) be defined such that

a(z) = q(b(:c)) +r(x), d(x)= q (b/(a:)) + r/(a:). (3.5)

Then,
a(z) = ¢'(2), r(z)=7r"(a) +1"(2),
for somer" () € Lym [z] with deg, r"(x) < h + dy — dbp.
Proof. The proof can be found in Appendix A.1. |

Therefore, Theorem 3.3 shows that if h < 2dj, — d,,, the quotient polynomial ¢(x) does not depend
on the h lower coefficients of a(z) and b(z). Further, these h lower coefficients influence only the
h + dg — dj lowest coefficients of the remainder r(z). The following lemma shows that about half of
the iterations of the LEEA can be calculated correctly without knowing " (x).

Lemma 3.5 (Quotients in the Iterations of the LEEA).

Let a(x),b(x) € Lgm[x], with q-degrees d, > dp, be given and let them be fragmented into smaller
polynomials as in (3.4) with0 < h < 2dy, — d,. Let Q" and Q') denote the matrices as in (2.16) in step
i of RIGHTLEEA (a(x); b(x); dstop) and RIGHTLEEA (o' (2); V' (2); dly,,), respectively. Then,

Q¥ = QW (3.6)

for each i where deg, PO(z) > (dy — h)/2 and 'D(x) is the remainder in step i of
RIGHTLEEA (' (); V' (2); diy,)-

Proof. The proof is similar to the proof of [Bla85, Theorem 10.7.3]. |

A fast realization of the whole LEEA can be given based on Lemma 3.5 and consists of two parts as
in [Bla85]. However, for decoding, we only need the first steps of the LEEA—sometimes even less than
half of the iterations. The acceleration of the first steps of the LEEA is given in Algorithm 3.4, called
FasTHALFLEEA. If we choose dgtop = dy/2, then Algorithm 3.4 is the linearized equivalent of Blahut’s
HarrEucALG [Bla85, Figure 10.8]. o

Recall from (2.17) and (2.19) that when we know Q"1 we can immediately calculate (") (), u(" (z)
and v(") (z). For this reason, Algorithm 3.4 outputs only Q).

As typical for Divide & Conquer algorithms, Algorithm 3.4 consists of two halves (Lines 1-9 and
Lines 10-21). Each of these two halves implies a recursive call. The first recursive call is done in Line 8
with truncated polynomials. Then in Line 11, one linearized division is done, which is necessary to
obtain the quotients in the recursions. In Lines 17-18, the polynomials are again truncated and the
second recursive call follows in Line 20.

Assume, Q is the output of Algorithm 3.4, then we can calculate as in (2.17):

(o) =2 () 02

These polynomials 1) (z), 79 (z) satisfy the following lemma.
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Lemma 3.6 (Degree of Output of Algorithm 3.4).
Let Q < FASTHALFLEEA(a(a:); b(x); dstop) be the output of Algorithm ﬁfor some dg > dspop > dg /2,
where d, = deg, a(z) > deg, b(z). Let U1 () and r)(2) € Lym[z] be as in (3.7). Then,

degq T(j_l) (l’) > dStOp and degq r(j) (-75) < dstop- (3.8)

Proof. The proof can be found in Appendix A.1. |

Algorithm 3.4.
Q < FAsTHALFLEEA (a(z); b(2); dstop)

Input: a(z); b(z) € Lym [z] with d, = deg, a(z) > dj = deg, b(z);

stopping degree dsiop, Where dg > dgiop > da/2

1 if dy < dgp0p then

(-2 NS B )

10

11

12

13

14

15

16

17
18

19

20

21

z 0
e (5 2)

Ise

h <« |da/2]
aM(z) (a(z) — (a(z) mod z[h])) ® zl="
bW (z) + (b(z) — (b(z) mod z)) @ x[-"

dlioy < | %22 - degga (@) |

Recursive Call: Q) ¢+ FasTHALrLEEA (a() (2); b0 (2); d;),)
a(z) (1) a(z)

(o) =@ (5

if deg, b(x) > ""” -deg, a(r) then
q(z);7r(x) <—R1GHTDIV(a( ); b(z)) with Algorithm 2.1

i)
(ZEB) e (i)
Q+—QeqQW
if deg, b(x) > d‘zlt:” -deg, a(r) then

o | dnltetoato) |
a—Ustop

aM(z) + (a(x) — (a(z) mod z!")) @ [~
b (z) « (b(z) — (b(z) mod z)) @ ="

d de# - deg, a(l)(x)J

stop
Recursive Call: QY «— FasTHALFLEEA (a™V) (z); b)) (z); dgip)
Q+-QP®Q

Output: Q € Lym [z]?*2

Hence, Algorithm 3.4 outputs the matrix Q, which provides the last remainder of ¢-degree at least
the stopping degree dsiop. The degree constraints in Lines 10 and 15 of Algorithm 3.4 correspond
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to improvements from [GY79, BGY80]. They remarked that without these degree constraints, the
algorithms by Aho and Hopcroft [AH74] and Blahut [Bla85] do not work properly. Our Algorithm 3.4 is
a generalization of the algorithms by [AH74, Bla85], considering the improvements from [GY79, BGY80].
It is equivalent to their algorithms if the stopping degree is dgop = do/2 and if m = 1, ie., if we
consider the field F,, since then Alll = A for all elements A € F,.

Lemma 3.7 (Complexity of Algorithm 3.4).
Algorithm 3.4 requires complexity Oga(d,, dy) = O(max{D(d,,dp), M(dq,dp)} logd,) operations if

dy = deg, a(x) > dy = deg, b(z).

Proof. The complexity of the splitting operations in Lines 5, 6, 17, 18 and the value assignments
are negligible. The linearized compositions from Lines 9, 13, 14, 21 cost in the order of M (d,, dy)
operations. The linearized division in Line 11 requires in the order of D(d, dp,) operations. Recall
from the proof of Lemma 3.6 that both recursive calls are done with polynomials of degree at most

d,/2. Hence, OpA(dg, dp) is upper bounded by:
OEA(da, db) <2 OEA(da/Q, db/2> + M(da, db> + D(da, db).

It is known from the master theorem for linear recurrence relations (see e.g. [GG03]) that this

inequality implies Oga(d,, dp) < O(max{M(d,,dp), D(da,dp)} logd,). n
Using fast linearized composition, this results in the following corollary.

Corollary 3.2 (Fast LEEA Using Fast Composition).
If we use Algorithm 3.1 from Subsection 3.1.2 for the linearized composition, then Algorithm 3.4 has
complexity O(max{D(dq, dy), max{d,, dy, } %} log d,) operations inF m. o

If dg,dy, < m and we use Algorithm 3.3 (Subsection 3.1.3) for the linearized composition, then Algo-
rithm 3.4 has complexity O(max{D(dy, dp), dam comp(Ty,)} logd,) operations inF,.

Corollary 3.2 shows therefore that a fast linearized division would immediately provide a fast LEEA.

3.2 Decoding of Gabidulin Codes

Decoding of Gabidulin codes can generally be accomplished by two different principles: syndrome-
based decoding (which relies on solving a key equation) as in [Gab85, Rot91, PT91, Gab92, RP04a] and
interpolation-based decoding as in [L0i06].

In the course of this section, we first describe a known syndrome-based decoding principle of
Gabidulin codes (Subsection 3.2.1) and second, we derive a new decoding algorithm in Subsection 3.2.2,
which can be seen as the rank-metric equivalent of Gao’s algorithm for decoding Reed-Solomon
codes [Gao03]. Further, we show in Subsection 3.2.3 how this algorithm can be extended to error-erasure
decoding of Gabidulin codes and how it can be accelerated based on the g-transform (Subsection 3.2.4).
The results of Subsections 3.2.2 and 3.2.4 were partly published in [WAS11, WAS13].

3.2.1 Known Syndrome-Based Decoding Approaches

Following the descriptions of [Gab85, Rot91, Gab92], we explain the idea of syndrome-based BMD
decoding (as defined in Section 2.1.3), without going into detail about the different algorithmic possibil-
ities.

Letr = c + e € Fym be the received word, where ¢ € Gab[n, k|. The goal of decoding is now to
reconstruct c, given only r and the code parameters. Clearly, this is possible only if the rank of the
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error e is not too big. Syndrome-based BMD decoding of Gabidulin codes follows similar steps as
syndrome-based BMD decoding of Reed—Solomon codes. For Reed-Solomon codes, the two main steps
are determining the “error locations” and finding the “error values”, where the second step is considered
to be much easier. Algebraic BMD decoding of Gabidulin codes also consists of two steps; however,
the second one is not necessarily the easier one. The starting point of decoding Gabidulin codes is to
decompose the error, based on the well-known rank decomposition of a matrix.

Lemma 3.8 (Rank Decomposition [MS74, Theorem 1]).

For any matrix X € F"*" of rank r there exist full rank matrices Y € F**" and Z € F*" such
that X = YZ. Moreover, the column space of X is Cy (X) = Cy (Y) € Gy(m, 1) and the row space is
Rq(X) =Ry (Z) € Gg(n, 7).

Therefore, we can rewrite the matrix representation of e with rk(e) = ¢ by:

E =extg(e) =A-B, withA ¢ IFZLXt, Be FZX",
and if we define a & extg1 (A) € Flm:

e=exty' (E) =ext;' (A)-B=a-B=(agas ... a1)-B. (3.9)

This decomposition is clearly not unique, but any of them is good for decoding. The two main steps
of decoding Gabidulin codes are therefore: first, determine “a basis of the column space” of the error,
i.e., find the vector a of a possible decomposition, and second, find the corresponding matrix B, which
fixes the row space®. Both steps are based on the syndrome, which can be calculated out of the received
word (see Definition 2.8) by

S = (SO S1 ... Sn—k:—l) :r-HT:e-HT, (3.10)

where H is a parity-check matrix of the Gab|n, k] code (see (2.14)). We denote the associated syndrome

polynomial by s(x) = Z?:_Ok_l sizll € Lym [z]. Tts coefficients are:

n—1 n—1t—1 t—1
si= > ehlt =55 B h €N qdf!, vieon k- 1), (3.11)
j=0 =0 1=0 1=0
with .
def
d =) Byjhj. (3.12)
=0

We define the error span polynomial as the minimal subspace polynomial of the vector a:

q—1 q—1 t—1
A(z) def Moy ay,.ar 1 (x) = H e H (m — Z Biai). (3.13)
i=0

Bo=0 Bi_1=0

Hence, due to Lemma 2.9, the error span polynomial A(x) is a linearized polynomial of ¢-degree ¢ and
any [F,-linear combination of roots of A(x) is also a root of A(z).

The first part of the decoding process is to determine A(z), given the syndrome polynomial s(x),
and it is strongly based on the following theorem, the key equation for decoding Gabidulin codes.

®Note that it is possible to change the order of these two steps and search for a basis of the row space first and then find a
corresponding matrix A. This is a big difference to Reed—Solomon codes, where we cannot interchange the two main
steps.
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Theorem 3.4 (Key Equation for Decoding Gabidulin Codes [Gab85, Lemma 4]).

Letr = c +e € [ be given, where ¢ € Gab[n, k] over Fym and rk(e) = t < n — k. Denote by

s= (5061 ... Sp_p_1) =r-HT € Fq%k the syndrome as in (3.10) and by s(z) = Z?:_Ok_l sgll its

associated polynomial.

Let the error span polynomial A(x) with deg, A(x) = t be defined as in (3.13), where a =
(ap ay ... ai—1) is a basis of the column space of e. Then,

Q(z) = A(s(z)) = A(z) o s(z) mod z["H, (3.14)
for some Q(z) € Lym [z] with deg, Q(z) < t.

Proof. With (2.12) and (3.11), the i-th coefficient of A(s(z)) can be calculated by

i i t—1 bl =1 i
def i i i .
Q= [A(s@))], = Y Ast = DA (Zazdg ﬂ) =543 A0 (315)
7=0 j=0 1=0 =0  j=0
For any 7 > t this gives:
-1
Q=Y d'Aa)=0, Vieltn—k-1-1], (3.16)
1=0

since A(x) has a;, Vi € [0, — 1], as roots, see (3.13), and therefore deg, Qx) < deg, Alz)=t.1

Alternatively, we can derive a key equation for the row space of the error word (compare e.g. [SK09a]).

Theorem 3.5 (Row Space Key Equation for Decoding Gabidulin Codes).

Letr = c + e € Fym be given, where ¢ € Gab[n, k| over Fym and tk(e) =t < n — k. Denote by

s=(sgs1 ... 5p_p_1) =1 -H € F’q@;k the syndrome as in (3.10) and by s(x) = ?;()k*l sgall its

associated polynomial.
Let the row error span polynomial be I'(x) = Mg, 4, .....d,_, (z) with deg, I'(x) = t, where d; is defined
as in (3.12), Vi € [0,t — 1]. Further, let
Si=si e 0,n—k—1] (3.17)
and 5(z) = Z?:_Ok_l 5z, Then,
®(x) = T(3(z)) mod 2"kl (3.18)
for some ®(z) € Lym[z] with deg, ®(z) < t.

Proof. From (2.12) and (3.12), we obtain
=1
5= o g, (3.19)
1=0

The i-th coefficient of the linearized composition I'(s(x)) can then be calculated by

i i t—1 Ul =1 i
®, def [F(g(m))]i _ Z Fﬁﬁj _ Z r; (Z ay_j_"JrkH]dl) _ Z al[i—n+k+1] Z T;- dl[j]-
=0 j=0 1=0 =0

=0
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For any ¢ > t this gives:
=1
®; =Y o "I(d) =0, Vilt,n—k—1-1],

since I'() has all d;, Vi € [0, — 1], as roots and therefore deg, () < deg, I'(x) =t. n

Based on the key equation from Theorem 3.4, we explain the different steps of the standard decoding
process of Gabidulin codes in the following and summarize them in Algorithm 3.5. Similar steps have to
be accomplished when we solve the row space key equation instead of the column space key equation.

Syndrome Calculation

As mentioned before, the first step of decoding Gabidulin codes is calculating the syndrome based on a

(n—k)xn

parity-check matrix H € F m " and the received word r € F g

= (50851 ... Sp_p_1)=r-H =e- HTEIF(T,Lk)

Solving the Key Equation

The direct way to find A(z) is to solve a linear system of equations based on the key equation (3.14).

Due to (3.15) and (3.16):
QZ-:Z s ZAJSE =0, Vit,n—k-1-1].

This is equivalent to the following homogeneous linear system of equations:

. [E])] S[[ll]l - Sg o
Qi1 _ 5t+1 S e 51 ) = =0 (3.20)
o 1 . t : :
Q-1 SL]—k—l SL]_,C_Q e 7[1] h—1—t A

If the dimension of the solution space of (3.20) is one, then any solution of (3.20) provides the coefficients
of the error span polynomial A(z), defined as in (3.13), except for a scalar factor. This scalar factor
does not pose a problem, since it does not change the root space. The following lemma provides a
criterion to obtain the actual number of errors out of the syndrome matrix, see [Gab92, Lemma, p. 132].

Lemma 3.9 (Rank of Syndrome Matrix).
Letr = c+e € Fym, wherec € Gab[n, k| andrk(e) =t < |(n=K)/2] and let (o 51 ... Sp—k—1) € Fgﬁk
denote the corresponding syndrome. Then, for any u > t, the u X (u + 1) matrix

g
S(u) déf Su+1 Sr'u e 81. (3.21)
0 1 u
3[211 1 5[211—2 e SLll
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has full rank v if and only if u = t, where the i-th row of S) is defined to be all-zero ifi+u > n—k —1,
Vi =[0,u — 1].

Proof. Since there are n — k non-zero syndrome coefficients, we can provide only n — k —
non-zero rows of S(*). Therefore, for u > |(n—k)/2|, the matrix S has only n — k — u < u
non-zero rows and therefore rank less than u.

Let a;,d; = 0 for i > t. For u < | (n—F)/2|, we can decompose S*) with (3.11) as follows:

T N 2 BC B
s(u) — d([JUH] d[lu“] dq[fjll] ' a[lo} a[ll} a[lu}
d([)Zu—l] d[12u—1] o dffl_ﬂ aq[?]—l a51_1 o aq[ﬂ 1

Both matrices are g-Vandermonde matrices and due to Lemma 2.10, they both have full rank if and
only ifdy,d,...,dy—1 and ag, a1, ..., a,—_1 are sets of elements which are linearly independent
over IF,. If u > ¢, this is not true, since a;, d; = 0 for ¢ > ¢. If u = ¢ this is true and the left matrix
is a square matrix of rank u and the right is a u X (u + 1) matrix of rank u. Since the first u
columns of the right matrix constitute a matrix of rank u, the statement follows. [ |

Thus, Lemma 3.9 proves that for ¢ < [(d-1)/2] = [(n—k)/2], S® has full rank and the dimension of
the solution space of (3.20) is one. For the algorithmic realization, we can set up S for u = |(d-1)/2]
and check its rank. If the rank is not full, we decrease u by one, control the rank, and so on, until we
find u such that the rank is full. Since we have to solve several linear systems of equations over [Fm,
the complexity of this step is in the order of at least O(t?) < O(n?) operations in F,m with Gaussian
elimination (see [Rot91, Gab92]).

However, the matrix S is highly structured, it is a g-circulant matrix. The algorithm based on the
LEEA from [Gab85] and the Berlekamp—Massey-like algorithms from [PT91, RP04a, RP04b, SRB11] take
advantage of this structure and can therefore solve the key equation with complexity O(n?) operations
in qu.

Finding the Root Space of A(x)

After solving the key equation (3.20) for the coefficients of A(x), we have to find a basis of the root
space of A(z). This basis corresponds to one possible a = (ag a1 ... a;—1) in the decomposition of
(3.9). Finding a basis of the root space of a linearized polynomial is relatively easy due to the structure
of their roots. Recall Subsection 2.2.3, where it is shown that we can find the root space of A(z) by
finding the right kernel of its associated evaluated matrix, i.e., for some basis B = {fo, 51, -, Bm—1}
of Fym over I, we have to determine:

ker (extg( (A(Bo) A(B1) ... A(Bm_1)) )).

The kernel of this matrix is equivalent to extg (a) of one possible a. Thus, finding the root space of
A(z) involves solving a linear system of equations of size m over F,, which has complexity at most
O(m?) over F,. This root-finding procedure was explained in detail in [LN96, Ber84].

Determining the Error

Knowing a possible vectora € Zm, we have to find the corresponding matrix B € F’;X" such that
e = a-B asin (3.9). This is basically done in two substeps. Based on (3.11), we can set up the following
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3.2 DEcoDpING OF GABIDULIN CODES

system of equations,i which we have to solve ford = (dy dy ... di—1):
0 0 0 0
N & N O T
a0 T I T U e
ag—(n—k—l)] a[l—(n—k—l)} o al[t:(ln—k—l)] di—1 Si—jz:f—l)}

Solving this system of equations with Gaussian elimination requires complexity O(n?) operations over
FF,m, whereas the recursive algorithm from [Gab85] requires complexity O(n?) over F m by using the
g-Vandermonde structure of the involved matrix.

After having found d, we determine the matrix B out of d; = Z?:_ol By ;h; foralll € [0,¢ — 1]. The
complexity of this calculation is negligible, since (hg h1 ... hp—1) has rank n and we are looking for
the representation of d over I, using these linearly independent elements.

Finally, we calculate e = a- B and can reconstruct ¢ = r — e. A summary of this decoding procedure
is given in Algorithm 3.5. Notice that the decoding procedure most probably fails when ¢ > |(d-1)/2].

Algorithm 3.5.
¢ or “decoding failure” <~ DECODEGABIDULIN (r; H)

Input:r = (rgry ... Tp_1) € Fim with n < m;
parity-check matrix H = qvan,,_;((ho k1 ... hn—1)) of Gab[n, k]

1 Syndrome calculation: s + r- H” ¢ Fym k
2 if s = 0 then

3 t Estimated codeword: ¢ < r

4 else

5 Setup S®) asin (3.21) for t = |(n — k) /2]

while rk(S®)) < t do

6 t+—t—1

7 L Set up S() as in (3.21)

s | SolveS®.AT =0for A= (Ag Ay ... A) € FL!

9 Find basis (ap a1 ... a.—1) € Fym of the root space of A(x) = ZE:O Azl over

Fym
10 if ¢ = t then
11 Findd = (do dy ... d;—1) € Flm by solving (3.22)
12 Find B = (By;) o ) € FL" such that d; = $77) Bi jh;
13 Estimated codeword: c < r —a-B
14 else
15 L Declare decoding failure

Output: Estimated codeword ¢ € Fym or “decoding failure”

We can use the fast LEEA from Subsection 3.1.4 in order to reduce the complexity of the algorithm
from [Gab85]. However, this only accelerates the step of solving the key equation, whereas the overall

*Notice that this system of equations from (3.22) can be used for row-erasure-only correction, i.e., when a is known in
advance due to the channel (compare Subsection 3.2.3).
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complexity remains in the order of O(n?) over Fym. Algorithm 3.6 in the next subsection shows how
we can directly obtain the g-degree-restricted evaluation polynomial of the codeword by the LEEA and
therefore, we do not have to solve (3.22).

3.2.2 A Gao-like Decoding Algorithm

In contrast to the two-step procedure of the previous subsection, Loidreau’s Welch—Berlekamp-like
interpolation based decoding algorithm [Loi06] directly outputs the evaluation polynomial of the
estimated codeword and therefore, the second step of finding d and B is not necessary.

In this subsection, we present a new approach, where the LEEA directly provides the g-degree
restricted evaluation polynomial of the estimated codeword. This algorithm is an equivalent of Gao’s
algorithm for decoding Reed—Solomon codes [Gao03, Fed05]. The advantage compared to [Loi06] is
that we can accelerate our decoding algorithm based on the fast LEEA from Subsection 3.1.4 for g-cyclic
Gabidulin codes. Compared to solving directly the key equation from Theorem 3.4 with the LEEA as
in [Gab85], our advantage is that we do not need the (computationally intensive) step of ﬁnding B.

Letr = c+e, where ¢ € Gab[n, k] and t = rk(e), denote the received word and r(z) = """ Ll
its associated linearized polynomial. Let G = {go, g1, - . . , gn—1} consist of n elements from Fym, which
are linearly independent over [, and which are used as evaluation points of the Gab[n, k] code as in
Definition 2.16. Let 7(z) € Lgm[z] denote the unique linearized polynomial of ¢g-degree less than n
such that 7(g;) = 74, Vi € [0,n — 1], holds. This polynomial can be calculated as follows:

(3.23)

where L;(z) denotes the i-th linearized Lagrange basis polynomial of q-degree n — 1, see also [SK07],
which is defined as the minimal subspace polynomial of G \ g; = {90, - - -, 9i—1, Gi+1, - - s Gn—1}, L.€.:

n—1
Li(x) = Mg\g, (x H H H H ( > ngj). (3.24)
Bi—1=0 B;+1=0 Br—1=0 j=0,j#i

Therefore,

Li(gi)
It is important to remark that for the case of n | m and when G is a normal basis of Fy» over F,, then
7(z) is the g-transform of r(x) as in Definition 2.12. This fact is used in Subsection 3.2.4 to accelerate
our decoding algorithm for g-cyclic Gabidulin codes. Here, we describe the decoding algorithm in
general for any Gab[n, k| code by using linearized Lagrange interpolation and a transformed key
equation.

Li(g5) {1 if i = j,

0 else.

Theorem 3.6 (Transformed Key Equation).
Letr = (rory ... rn—1) be given and let 7(x) be defined as in (3.23), where G = {40, 91,---,gn—1} isa
set of n elements, which are linearly independent over F,. Leta = (ag a1 ... a;—1) denote a basis of the
column space of v — (f(go) f(g1) - f(gn-1)), for some f(x) € Lym[x] with deg, f(z) < k.

Then, the linearized error span polynomial A(x), defined as in (3.13), satisfies the transformed key
equation:

A(7(z) = f(z)) =0 mod Mg(x). (3.25)
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Proof. Due to the definition of A(x) in (3.13) and the definition of the linearized Lagrange basis
polynomial (3.24):

A(?(gi) - f(gz)) = A(Tz‘ - Ci) = EBM‘A(G]‘) =0, Viel0,n—1],
=0

where B; j € F, foralli,jandc = (co¢1 ... ¢p—1) € Gab[n, k.
Hence, for any Go, G1,...,Gp—1 € Fy:

A(?(J}) - f(.%’)) nilG g - GIA(T’I - C,’) = 0, VG(), Gl, ey Gn—l S Fq.
= i =0
=0

Therefore, (m— Z?:_ol Gigi) divides (in the usual sense) A(?(:z:) — f(:n)) forany Go,G1,...,Gp—1
€ [F,. This implies that
A(7(z) = f(z)) =0 mod Mg(x).
|

For n = m, the minimal subspace polynomial is Mg(z) = (™ — z) and due to Theorem 3.6,

A(F(z) — f(z)) =0 mod (zI™) — ). This special case was also proven by Silva and Kschischang

in [SK09a, Sil09, Theorem 5] using properties of the g-transform. Moreover, for n | m, we can choose

G = {90,091, -+, gn_1} such that it is a basis in Fym of Fn over F, and then, Mg(z) = (zI" — ),

since then the unique subfield Fy» of F,m consists precisely of the roots of (zI" — ) [LN9s, p. 50].
The problem of solving the transformed key equation can be stated as follows.

Problem 3.2 (Solving Transformed Key Equation).
Let 7(x) € Lgn[z] as in (3.23) for G = {g0,91,--.,9n—1} withtk(go 91 ... gn—1) = n be given,
where v € Fym denotes the received word. Let dgr(r,c) = rk(r —¢) < [(n=k)/2| for some codeword
c = f(g) € Gab[n, k].

Find A(z) € Lym|x] of g-degreet < |(n—=k)/2| and f(z) of q-degree less than k such that A(z) =
M (x) for some set A = {ap,a1,...,a;—1} withrk(ag a1 ... a;—1) =t and such that

A(F(z) — f(z)) =0 mod Mg(z). (3.26)

We solve Problem 3.2 with a generalization of Gao’s algorithm [Gao03] for linearized polynomials,
given in Algorithm 3.6. The transformed key equation (3.25), Theorem 3.6, can be rewritten with a
polynomial (z) € Lym [x]:

A(F(z) — f(z)) = —=Q(Mg(z)) =0 mod Mg(z),

and thus,
A(f(z)) = Q(Mg(z)) + A(7(2)). (3.27)

Recall that RIGHTLEEA (a(z); b(2); dsop) with deg, a(z) > deg, b(x) (Algorithm 2.3) returns unique
linearized polynomials 74t (), tout () and vout () such that deg, rout () < dstop and

Tout (T) = Vout (a(x)) + Uoyt (b(:c)) (3.28)

If we compare (3.27) and (3.28), we obtain the idea for Algorithm 3.6: we run the LEEA with the input
polynomials a(z) < Mg(z) and b(z) < 7(z) and the stopping degree dgsiop < |(n=F)/2] + k =
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| (n+k)/2]. If there exists a codeword ¢ € Gab[n, k] such that rk(r —c) < |[(n—k)/2|, Theorem 3.7 proves
that the remainder roy¢(2) is equal to @ - A( f(x)) and the auxiliary polynomials are vy (z) = a - Q(x)
and oyt () = a - A(x) for some scalar a € Fym. Hence, we can find f(x) by a left linearized division
of 7out () by Uout(z). If no such codeword exists, the remainder of this linearized division is unequal
to zero, and we declare a decoding failure.

This idea is given in pseudo-code in Algorithm 3.6 and its correctness is proven in Theorem 3.7.
Our proof does not use the same strategy as in [Ga003] since Gao’s proof does not work directly for
linearized polynomials, instead we use some properties of the transformed key equation.

Theorem 3.7 (Correctness of Algorithm 3.6).
Letr € Fym andg = (9o g1 ... gn-1) with1k(g) = n be given. Ift = rk(r —c) < |(n-k)/2]
for a codeword ¢ = f(g) € Gab[n, k], then Algorithm 3.6 solves Problem 3.2. Hence, it returns f(z)
of deg, f(z) < k and A(x) = Ma(x), where A = {ag,a1,...,a;-1} € Fym, such that (r — c) =
(apai ... az—1)-Basin(3.9).

If there is no such codeword, Algorithm 3.6 returns “decoding failure”.

Algorithm 3.6.
f(x); A(z) or “decoding failure” - DECODEGAOGABIDULIN (T; g0, g1, - - - , n—1)

Input: r = (ro 71 ... 7p—1) € Fym with n <m;
90,915 - - -, Gn—1 € Fgm, linearly independent over I,

Li(z)
Li(g:)
2 Tout(); Uout (2); Vout () — RIGHTLEEA (Mg (2); 7(2); dstop = [(*+F)/2] ) with
Algorithm 2.3
f(@);7(2) = LEFTDIV(70ut(2); Uout () with Algorithm 2.2
4 if r(z) = 0 then

Output: Estimated evaluation polynomial f(x) with deg, f(x) < k;
Estimated error span polynomial A(x) < gyt ()

1 Calculate 7(z) « Z i as in (3.23)

w

5 else
L Output: “Decoding failure”

Proof. First, we show that, given 7(z) and Mg(z), the transformed key equation (3.26) has a
unique solution for A(z) of minimal ¢g-degree and f(x) of g-degree less than k. Second, we show
that Algorithm 3.6 finds this solution. Third, we prove if the rank distance of r to any codeword
c is greater than | (n—k)/2|, there is no f(z) of degree less than k, fulfilling the transformed key
equation.

1.) We assume that there is a codeword ¢ € Gab[n, k] such that t = rk(r — ¢) < |(n—k)/2| and we
prove that there is a unique solution of (3.26) (except for a constant factor), where deg, f(z) < k
and deg, A(x) = t. This follows either from reducing the transformed key equation (3.26) to
the “classical” key equation (3.14) (which has a unique solution due to Lemma 3.9) or directly
from [Loi06, Proposition 2].

2.) Now, we show that the result of the LEEA is a solution of the transformed key equation. Due
to (3.28), the RIGHTLEEA (Mg (2); 7(2); dstop = [ (»+k)/2] ) outputs unique polynomials such that:

Tout (@) = Uout (T(x)) mod Mg(z). (3.29)
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On the one hand, 7oy¢(2) = =Y (z) is the first remainder in the iterations of the LEEA of ¢-
degree less than | ("+k)/2] and wy () is such that deg, uout () = deg, a(z) — deg, r(=2)(z) <
| (n=k)/2|. On the other hand, the transformed key equation can be rewritten as

A(f(z)) = A(F(z)) mod Mg(z), (3.30)

with deg, A(z) =t < [(n—k)/2] and deg, f(z) < k. In [Loi06, Propositions 1 and 2] it was shown
that for ¢ < |(n—k)/2], the polynomials A(x) and f(x) provide a solution to (3.30) if and only if
A(x) and some ®(x) of g-degree less than | (n+k)/2] provide a solution to

I
A(7(z)) mod Mg(z). (3.31)

If we compare (3.29) and (3.31), it becomes clear that the output of the LEEA is such a solution,
including the degree constraints. [Loi06, Proposition 2] shows that there exists only one pair of
polynomials ®(x), A(x) such that (3.31) is fulfilled with the required degree constraints. Hence,
there is also only one pair of polynomials A(x), f(z) such that (3.30) and its degree constraints
are fulfilled and we find exactly this solution by the LEEA.

3) Lett > |(n—k)/2|, and assume nonetheless that Algorithm 3.6 returns f’(z) with deg, f'(z) <
k. The following holds for the output of the LEEA:

Uout (T(2)) = Uout (f'(2)) mod Mg(x),

and hence also

Uout (?(gj) — f’(gj)) = uout(rj — c;) =0, Vi€ [0,n—1].

Due to the stopping condition, deg, uou(7) < [(»=k)/2] and hence, the dimension of the root
space of Uyt () is at most | (n—k)/2]. Therefore, for j € [0,n — 1], there exists a ¢’ such that
there are at most | (»—k)/2] linearly independent r; — ¢ and thus, rk(r — ¢’) < [(»=k)/2|. This
is a contradiction to the assumption and thus, Algorithm 3.6 fails when the rank distance of r is
greater than |(n—k)/2| to any codeword. n

With straight-forward implementation, Algorithm 3.6 has complexity O(n?) operations in F,m

3.2.3 Error-Erasure Decoding

Applications like random linear network coding might provide additional information about the
occurred error. Such information can be used to declare erasures and thus, to increase decoding
performance. In comparison to classical erasure decoders in Hamming metric, we distinguish two types
of erasures in rank metric: row erasures and column erasures.

We thereby consider the most general form of such row and column erasures as in [SKK08, GP08]
and show how the additional information can be incorporated into our decoding algorithm from
Subsection 3.2.2. We consider only the case n = m in this subsection. On the one hand this helps to
simplify the notations, but on the other hand this is since Lemma 3.10 only holds for n = m and it is
not clear how to extend it for arbitrary n < m.

We apply the g-transform in this subsection, but all considerations except Lemma 3.10 hold straight-
forward for linearized Lagrange interpolation polynomials as in the previous section. The presented
error-erasure decoder is able to reconstruct a codeword of a Gab[n, k| code over Fym for n = m with
asymptotic complexity O(n?) operations over Fym if

2t+o+v7<d—-1=n—k, (3.32)
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where t denotes the rank of the error, g the rank of the row erasures and ~y the rank of the column
erasures. Compared to the approaches from [GP08, SKK08, LSC13], again the advantage of our approach
is that the acceleration of the LEEA (Algorithm 3.4) can be used.

In the following, we explain our notations of row/column erasures, derive a generalization of the
transformed key equation and show how our decoder can be modified to incorporate also erasures.

Row and Column Erasures and Generalized Transformed Key Equation

Consider a Gab|n, k| code over Fym with n = m, defined in its g-cyclic form as in Lemma 2.15 with

g=(9ag - gn-1) = (5L[0} /Bﬂll 5L[n—1})
h = (gl g+l glk+n=1l) from Lemma 2.16.

and the corresponding parity-check matrix with

The additional side information of the channel is assumed to be given in form of:
e o row erasures (in [SKKO08] called “deviations”) and
e ~ column erasures (in [SKKO08] called “erasures”),
such that the received matrix can be rewritten in accordance to (3.9) by

extg (r) = extg (c) + ABE) + AOBO) + ABIBWE) ¢ prmxn, (3.33)

d:efE

where AR € Fg*¢, BB € F&", A € Fg*7, BO) € Fg*", AB) ¢ Fmxt, BE) ¢ Fixn,
and A®) and B(©) are known to the receiver. Further, ¢ denotes the number of errors without side
information. This decomposition is also shown in Figure 3.1.

n 0 0 t

> > <> <>

Figure 3.1. [llustration of row erasures, column erasures and (full) errors in rank metric. The known matrices
(given by the channel) are filled with gray.

Similar to (3.9), we can represent the error word as a vector as follows:

e=r—c=a®BW® L a OB 4 a(F)BE) def e +e@ 1 e ¢ F’;m, (3.34)
where al®) € F¢,,, a(®) € F,. and al¥) € F.,, and let e(F)(z), e“) (2) and e)(z) € Lgm [2] denote
the linearized polynomials associated to e/, e(©) and e(?).

Figure 3.2 illustrates the simplest case of row erasures, where the known matrix A has only o
non-zero elements. This case was considered in earlier publications as [GPT91b, GP03, RP04b], but
in the general model (introduced in [GP08, SKK08]), A can be any arbitrary matrix of rank g over
IF,. The notation of (generalized) row erasures and codes correcting such erasures were also shown
in [RS96] using a different terminology:.

Similar to Subsection 3.2.1, we use the known matrix B(®) in order to calculate:

n—1 n—1
A =5"B Vgt =" BB, vielo,y-1l. (3.35)
=0 §=0

56



3.2 DEcoDpING OF GABIDULIN CODES

However, it is important to note that this definition differs from (3.12) by using g;* = 3 (il here and

h; = B+ in (3.12).

n 0
B S EE— <>
s 2 T
BgR) : 1 #)
: B(R)
m = m 1 - ——— - _0 ______ Q
(R) : B{"
By 1 !
| J | :_/
E®) = AR - B®)

Figure 3.2. Illustration of the simplest case of row erasures, where ¢ = 2 and the known matrix A (*) has only
two non-zero entries.

As before, we define error span polynomials, but now three different types. In particular, we define
L) (z), AP (z) and AF)(z) as the linearized polynomials of smallest g-degree such that:

(@) =0, Vielo,y-1],
AR (@) =0, Vie0,0—1], (3.36)

AE (AR @) =0, Vielo,t—1].

Therefore, I'C)(z) = M ) ) o) (z)and AB)(z) = M ) (ry (w () can be calculated at
dy 7 dy ,...,d,y_1 G 70q @y
the beginning of the decoding process since B(®) and a/) are known.

Let p(x) = Z?:ol P2l denote the full q-reverse linearized polynomial of p(x) € Lym[x], defined by
the coefficients p;, = p[_ﬂi mod m @S in [SK09a, Sil09]. The following lemma shows that for n = m, the full
g-reverse is related to the transpose of the associated evaluated matrix of p(z) (see Subsection 2.2.3).
Lemma 3.10 (Evaluated Matrix of g-Reverse [Sil09, Lemma 6.3]). '

Let p(z) € Lym[z] with deg, p(z) < m and its full g-reverse p(x) with the coefficients p; = p[ﬂi —
fori € [0,m — 1], be given. Let A = {ag, 01, ..., am—1} and B = {fo, 1, ..., Bm—1} be bases of Fym
over Fy and let AX = {ag, af,...,a;5 1} and BY = {By, Bi, . .., B _1} denote their dual bases. Let

(p(ao) p(aa) ... plam-1)) = (Bo B1 ... Bm—1) - P,

where P € Fglxm. Then,
(p(65) B(8E) - BBr1)) = (o ot .. agy) - P

Based on the previous lemma, we can establish the generalized transformed key equation, incorporating
errors and row/column erasures.

Theorem 3.8 (Generalized Transformed Key Equation).
Letr = c + e, forc € Gab[n, k| over Fym withn = m, be the given received word and let 7(z) =
f(x) + &(z) be its g-transform as in Definition 2.12. Let T\©)(x), A®)(x) and AF)(z) be defined as in

(3.36).
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Then, these polynomials satisfy the generalized transformed key equation:

A® (A<R> (Q(W(x)))) =0 mod (zI™ — ). (3.37)

Proof. The proof can be found in Appendix A.2. |

Error-Erasure Decoding with Gao-like Algorithm

The idea of our error-erasure decoding algorithm is to modify the transformed received word in the
beginning of the decoding process as follows:

i) = AP (FTO(l)) mod (a1 —a),

which can immediately be calculated since all polynomials on the RHS are known from the channel.
This modified transformed received word can be rewritten as

J(a) = AP (£ (2D1))) +AP @TV (@1))) mod (2" — 2), (3.38)

deg,<k+v+o

where f(z) with deg, f(x) < k is the evaluation polynomial of the transmitted codeword such that
c = f(g) € Gab[n, k].

The idea is now to pass the modified transformed received word y(x) from (3.38) (instead of 7'(x))
to Algorithm 3.6. The polynomial A(?) (f(r©) (azm))) on the RHS of (3.38) has g-degree less than
k + 0+ 7 and can therefore be seen as the evaluation polynomial of a Gab[n, k + ¢ + 7] codeword. The
polynomial A(%) (e(r© (1] ))) is called modified transformed error in the following and it is shown in
Lemma 3.11 that its evaluation has rank at most ¢. Therefore, error-erasure decoding of a Gab[n, k] is
reduced to errors-only decoding of a Gab[n, k + ¢ + 7] code. In principle, any error decoding algorithm
for Gabidulin codes can now be applied.

Lemma 3.11 (Rank of Modified Error Word).
Let e'5O) (z) (respectively e(€) ¢ Fgm) with n = m denote the inverse q-transform of the modified

transformed error word A0 (e(r© (x[”’]))). Further, let e\") be defined as in (3.34) with rk(e(¥)) = t.
Then,
rk (e(Rc)) <rk (e(E)) =t.

Proof. Due to the proof of Theorem 3.8, AP (@B (z) +el) (z)) oI )z )) =0 mod (zl™ —
z) holds and therefore also A ((e(®)(z) + e (2)) o T (211))) =0 mod (2™ — ) holds

and we obtain
AR) (g(p(c)(xh}))) AR )(A(E)( ) (z [7]))) mod (z™ — ).

Let G = (Giy) iyt € F*™ be such that T€) (")) = Y7 Gy jg; and thus, V;j €
[0,m — 1]:

e = AP (@T©(g)))) = AP @[T O(g)) = 37 Giy AT (@) (g1).

Hence,
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Due to Lemma 2.12, (A(R) @) (go)) AB@EE) (gy)) ... AB(EE) (9m—1))) lies in the same
row space as e(F) = (€<E> (go) eF)(gy) ... e®) (9m-1)) and hence, has rank at most ¢. The
multiplication with G does not increase the rank. |

Since deg, AB(f(r©) (:UM))) < k4 o + v and since rk(e(#%)) < t, we can call Algorithm 3.6
by DECODEGAOGABIDULIN (7(); g) and have to skip Step 1. This outputs AR) (fT© (JZM))) and
AE) () if

n—deg, (A (FOOE@EM))+1 n-k—0-y d-1-0-7
2 B 2 N 2 '

rk (eF9) <t <

This follows directly from Theorem 3.7. After calling Algorithm 3.6, we have to divide the output
AR (f(r©) (1] ))) from the left/right by the known error span polynomials A¥)(z) and I'(©) (20
in order to obtain f(x). Thus, with these modifications, we can use Algorithm 3.6 for error-erasure
decoding. This error-erasure decoding principle is shown in Algorithm 3.7 in the next section together

with an acceleration based on the g-transform.

3.2.4 Fast Error-Erasure Decoding of g-cyclic Gabidulin Codes

For g-cyclic Gabidulin codes, linearized Lagrange interpolation (see e.g. (3.23)) coincides with the
g-transform (see Definition 2.12). A g¢-cyclic Gab[n, k] Gabidulin code over Fym exists for any n
dividing m as shown in Corolljy 2.2. In this section, we show how to accelerate the error-erasure
approach from the previous section for n = m using the g-transform. As before, the idea is based on
the comparison of the output of RIGHTLEEA(x[m] — #;9(2); dstop), which is:

Tout (%) = oyt (§(2)) mod (2™ — z),

where g(x) = AU (F((C)(x1))), and the generalized transformed key equation, shifted by + (com-
pare Theorem 3.8):

ABAD(FTO D)) = AB (MO FETO@)) = AP (f(x)) mod (2" — ),

where the g-degree of the LHS is less than ¢ + ¢ + k + +. Similar to Subsection 3.2.2, the decoding
algorithm follows from this comparison and is given in Algorithm 3.7.

Theorem 3.9 (Correctness and Complexity of Algorithm 3.7).
Let v € Fym, a low-complexity normal basis B = (B} gl glm=1l) of Fym over Fy with
comp(T,,) ~ O(m), the vector al?) ¢ F2n and the matrix B(©) € FJ*" as in (3.34) be given.

Ifa codewordc = f (g) € Gab[n, k] and the corresponding decomposition of r — c from (3.34) satisfy
2t + 0+ < n —k, then Algorithm 3.7 returns f(z) of deg, f(x) < k. If there is no such codeword,
Algorithm 3.7 returns “decoding failure”.

If there is a fast (right and left) linearized division such that D(m) = M, (m), then error-only decoding
can be accomplished with complexity O(m?>logm) operations over F, and if, in addition, there is also
a method to calculate the minimal subspace polynomial with complexity M,,(m), then error-erasure
decoding can be accomplished by Algorithm 3.7 with complexity O(m?log m) operations over F,.

Else, the overall complexity is O(m?) operations over F m.
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Algorithm 3.7.
f(x) or “decoding failure” «+— FASTDECODEGAOGABIDULIN (1 (z); ali®); B(C); B)

Input: 7(z) € Lym[z] with deg, r(z) < n =m;

alf) = (a(()R) agR) a(glj)l) € Fgm;
i€[0,y—1] n
B(C) = (Bi’j)jE[O,’ZLfl] € ]ng 5

Ordered normal basis 3 = (31 gl ... gIm=1) of Fym over I,
1 Calculate dl(»c) +— Z;'l:_()l Bi(g)ﬁ[j],w € [0,7 — 1], as in (3.35)
2 Calculate minimal subspace polynomials: T'(¢)(z) M o) yo g0 (@)
0 @1 by

A(R)(:r) —~ M (r) (r)
ag ’,a

1 e

) ()
o—1

3 Caculate g-reverse I'©) () with @ = F(_C;)Eﬂod m Vi € [0,m — 1]
4 Calculate 7(x) by g-transform: 7; < r(ﬁ[i]), Vi € [0,m — 1] as in Definition 2.12
5 Calculate g(z) « AU (?(W(xhl))) mod (z[™ — )
6 Tout(T), Uout (), Vout () < FASTHALFLEEA (:r[m] —z;yY(x); dstop = {%D with Algorithm 3.4
7 f(2);7'(z) < LEFTDIV (T0ut (2); ot (A (2))) with Algorithm 2.2 o
s f(z);7(x) + RiutDv(f' (2); 7€) (1)) mod (z — z)) with Algorithm 2.1
9 if r(z) = 0 and 7'(z) = O then
‘ Output: Estimated evaluation polynomial f(z) with deg, f(z) < k

10 else
| Output: “Decoding failure”

Proof. The correctness follows directly from Theorem 3.7 and Theorem 3.8. The complexity can

be analyzed as follows, where the complexity of not-mentioned steps is negligible.

e Line 2: The minimal subspace polynomials can be calculated recursively with complexity 0(?)
and O(?) over F,m with the recursive procedure described in [SKK08, pp. 3961-3962].

e Line 4: The g-transform can be accomplished with O(n? comp(T,,)) ~ O(n?m) operations
in F; as shown in Table 3.1.

e Line 5: The linearized composition modulo (2™ — ) can be done with M, (m) < O(m!'%)
operations in F,m if we use Algorithm 3.1 or with M, (m) < O(m? comp(T,)) ~ O(m?)
operations over [, if we use Algorithm E

e Line 6: The call of the LEEA can be accomplished by using the fast LEEA from Algorithm 3.4
with complexity O(max{D(m), M(m)}logm). It is important to remark that both of our
algorithms for calculating the linearized composition, Algorithms 3.1 and 3.3, depend on the
degree of the involved polynomials and not only on m. This is necessary, since the polynomials
in the recursions of the fast LEEA have degree much smaller than m and the whole algorithm
can only be accelerated if the complexity of each step depends on this degree and not on m.

e Lines 7 and 8: The left and right division require complexity D(m).

|

Hence, Theorem 3.9 shows that as soon as an efficient way to calculate the linearized division and the
minimal subspace polynomial is found, we obtain a fast error-erasure decoding algorithm for Gabidulin
codes with complexity O(m?logm) over the ground field F,. The complexity of known decoding
approaches are all in the order O(n?) over F,m, with some improvements of sub-steps. An overview of
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decoding approaches is given in Table A.1 in Appendix A.3.

3.3 Summary and Outlook

The first part of this chapter deals with efficient algorithms for operations with linearized polynomials.
We have analyzed the complexity of operations in finite fields using normal bases and of standard
implementations for operations with linearized polynomials. Then, we have shown two methods for
reducing the complexity of the linearized composition, one based on a fragmentation of the involved
polynomials and one using linearized multi-point evaluation in the transform domain. In this context,
also an efficient algorithm for calculating the linearized multi-point evaluation was given. Based on the
Divide & Conquer principle, a fast linearized Euclidean algorithm was presented.

The second part of this chapter covers decoding approaches for Gabidulin codes. First, we have
briefly summarized a well-known syndrome-based decoding approach by deriving two types of key
equations and showing how to reconstruct the transmitted codeword if the rank of the additive error is
at most half the minimum rank distance. Second, we have presented a new BMD decoding approach,
which solves a transformed key equation by means of the linearized Euclidean algorithm and directly
outputs the evaluation polynomial of the estimated codeword. This algorithm can be seen as the rank-
metric equivalent to Gao’s algorithm. Finally, we have shown how this algorithm can be extended to
correct not only errors, but also row and column erasures simultaneously and how it can be accelerated
by means of the fast linearized Euclidean algorithm.

In future, a fast linearized division and a fast calculation of the minimal subspace polynomial
should be found. This will immediately speed up our decoding algorithm. Further, polynomial-time
decoding of Gabidulin codes beyond half the minimum rank distance is a challenging open problem.
An investigation of the possibilities of list decoding Gabidulin codes will be given in Chapter 5.
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CHAPTER 4

Decoding Approaches for Interleaved
Gabidulin Codes

codewords of Gabidulin codes. When applied to random linear network coding, they can be

advantageous compared to usual Gabidulin codes since only one identity matrix is appended to s
Gabidulin codewords in order to construct constant-dimension codes. Therefore, the relative “overhead”
is reduced. Independently from this application, for certain types of errors, the decoding capability of
interleaved Gabidulin codes is higher than the usual BMD decoding capability.

INTERLEAVED GABIDULIN CODEs were introduced in Subsection 2.3.3 and can be seen as s parallel

This chapter is devoted to decoding interleaved Gabidulin codes. First, in Section 4.1, we explain two
known decoding approaches [LO06, SB10] and prove a connection between them. In the subsequent
sections, a new interpolation-based approach for decoding interleaved Gabidulin codes of length 7,
interleaving order s and elementary dimensions k(*), Vi € [1, s], is presented. Our decoding principle
relies on constructing a multi-variate linearized polynomial by interpolating the received words. We
prove that the evaluation polynomials (of g-degree less than k(%)) of any interleaved Gabidulin codeword
in rank distance less than (sn — 3"7_; k() 4 ) /(s + 1) are roots of this multi-variate polynomial. Our
decoding approach uses similar principles as Guruswami and Wang for folded/derivative Reed—Solomon
codes [Gur11l, GW13] and Mahdavifar and Vardy for folded Gabidulin codes [MV12].

Section 4.2 explains the basic principle of this decoder and shows how the two main steps—
interpolation and root-finding—can each be accomplished by solving a linear systems of equations.
Our decoder is first interpreted as a (not necessarily polynomial-time) list decoding algorithm in
Subsection 4.3.1 and second, as a unique decoding algorithm with a certain failure probability in
Subsection 4.3.2. To our knowledge, it is the first list decoding algorithm for interleaved Gabidulin
codes. For the unique decoder, we derive a connection to the known unique decoding approaches
from [LO06, SB10], which provides an upper bound on the failure probability. Finally, in Section 4.4,
we show how our algorithm can be generalized to error-erasure decoding.

Parts of the results in Sections 4.2 and 4.3 were published in [WZ13].

4.1 Known Decoding Approaches

So far, there exist two approaches for decoding interleaved Gabidulin codes: one based on solving a
system of equations constructed by the received words by Loidreau and Overbeck [LO06] and one
based on the syndromes by Sidorenko and Bossert [SB10]. Both are unique probabilistic decoding
algorithms and correct with high probability up to the radius 7 = | s(n=%)/(s+1)| when k() = k for all
iell,s].

In the following, we shortly summarize the two principles and prove a relation between them. It is
important to remark that the approach from [SB10] was originally shown for horizontally interleaved
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Gabidulin codes, i.e., where an interleaved codeword is defined by (f(V(g) f@(g) ... f)(g)).
However, in the following, we describe it for vertically interleaved Gabidulin codes as in Definition 2.17.

Let rl) = (T((]i) r&i) 7’531), Vi € [1,s], denote the s elementary received words, i.e., r) =

c® + e and ¢ € Gab[n, k?] as in Definition 2.17. Further, let t) = rk(e()) and let ¢ def

rk(eMT e@T | e®)T) We assume throughout t}Fchapter that every interleaved error matrix
(eWT T eI ¢ 2™ of rank t is equi-probable.

With a usual BMD decoder, we could correct up to the radius |(n=k")/2|, Vi € [1, s], with each
elementary Gab[n, k(¥)] code. However, if the row spaces of the error words are connected, interleaved
Gabidulin codes can correct more errors with high probability.

For the explanation of the two decoding principles, we assume that we know the actual rank of the
error t, which enables us to directly set up the corresponding system of equations in the appropriate
size. A straight-forward algorithmic realization would therefore solve this system of equations for
every t, where | (d-1)/2] + 1 < ¢ < 7, but this principle can easily be improved.

A Decoding Approach based on the Received Word

In [LO06], Loidreau and Overbeck established an approach for unique decoding of interleaved Gabidulin
codes with k() = k, Vi € [1, s], up to the radius 7 = | s(n—k)/(s+1)| with high probability. Clearly, their
algorithm also works when the k(*) are different. We show the main properties of this general case in
the following; for details the reader is referred to [LO06, Ove07, Ove08]. For some ¢ < 7, the main step
of their decoding algorithm is to solve a linear system of equations

Rr - AT =0, (4.1)

for A= (Ao A1 ... A\y_1), where the (n —t — 1+ s(n —t) — >.7_, k) x n matrix R depends on
g=1(9091 ... gn—1) and the received words:

G}(}l%) qvann—t—l(g)
R qvannfkﬂﬂt(r(l))

Ry = | RY | & [ qvan, 0)_,(r®) (4.2)
R quan,, o (r"*)

If the right kernel of Ry has dimension one, the nearest interleaved codeword can be reconstructed
since any vector A in this right kernel has rank weight n — ¢ and reveals the error pattern, see [LO06]
and [Ove07, Algorithm 3.2.1]. However, when Ry has rank less than n — 1, the codeword cannot be
reconstructed in most cases. Thus, the probability that rk(Rpg) is less than n — 1, upper bounds the
probability of a decoding failure (or equivalently, the fraction of non-correctable errors of rank ¢).

The first () rows of G, for i € [1, s], constitute the generator matrix of the Gab[n, k()] code,
which is the i-th elementary code of the IGab([s;n, kD ,k(s)] code. This is due to the fact that
t<1t<n-— maxi{k‘(i)} —1,and hence, k) <n —t—1,Vi € [1, s]. Therefore, the right kernel of
R R can also be expressed in terms of the elementary error words:

qvan,_, ;(g)
qvann_ku)_t(e(l;)

ker (Rp) = ker | @van, e (€®) | < ker (Bj) . (4.3)

quan,, . (e)
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The rank of G is n —t — 1 (compare Lemma 2.10) and the overall rank of the lower s submatrices

of Er is t < 7. Hence, the overall rank is rk(Rg) = rk(Egr) < n — 1. For s < t, the probability that
rk(Rp) < n — 1 was upper bounded by [LO06, Equation (6)], [Ove07, Equation (12)] as follows:

_ (- AN (o )
P(rk(Rg) <n—1) <1 (1 qm> (1 q t). (4.4)

A Syndrome-Based Decoding Approach

The Sidorenko-Bossert approach [SB10, SJB11] considers unique decoding of interleaved Gabidulin
codes of arbitrary dimensions k() and is to some extent a generalization of the key equation-based
decoding approach for Gabidulin codes (see Subsection 3.2.1). Here, we will use the row space key
equation from Theorem 3.5, but the principle was originally described for the “usual” column space key
equation (Theorem 3.4). Denote the s syndrome vectors of length n — k() by:

s = p . HOT = o0 HOT = (500 o) 0 ) vielLs]
where H() is a parity-check matrix of Gab[n, k()]. Further, define the coefficients of the s modified
syndromes as in (3.17) by:

g@ . S(z’)[j—nﬂc(“ﬂ]

j n—k(—1—j ) Vi € []‘a 5]7 \V/] € [O,TL - k(z) - 1]7

and denote the s corresponding (modified) syndrome polynomials by 3(*) (x). Then, we obtain a row
space key equation for each of the s modified syndromes as in (3.18):

rO(E0(2) = 2@ (z) mod 2+, viel1,4,

where deg, I (z) =" = rk(e?) and deg, o0 (z) < deg, O ().
Since we assume that ¢ = rk (e(l)T e@T e(s)T), for the row space of the elementary errors
Ry (e(i)) C Rq (B) holds for some B € F.*" of rank t < 7 and i € [1, s]. Hence, we can search for

one common (row) error span polynomial I'(x) for all s key equations:

F(E(Z)(:c)) = & (z) mod x["_km}, Vi e [1,s],
where I'(z) = Y!_ T;zl!l = Mp(z), where D is a basis of the overall row space, i.e., of R, (e(l)) +
Ry (@) + -+ R, (e®), of dimension ¢ < 7.

Setting up these s key equations as a system of equations with the coefficients of I'(x) as unknowns
(similar to (3.14)) provides the following linear system of equations (see also [Gab92, Equation (16)]):

s-tT=|[" [|.tT =0, (4.5)
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whereI' = (I'yI'; ... I';) and

QLU0 C RS Ol

t—1 S0
i)[0 i)[1 i)t
S0 _ 5§42[1} S§ (1] g(l)[]
=(9)[0] =(9)[1] =(9)[t]
k-1 Sp_pi_a - Sp_ k14
S(z‘)[t—_n+k<’?)+1] S(z’)[t—_n+k(i)+1] . S(z’)[t—_n+k(i)+1]
n—k(l)—l—_t n—k( —¢ ] n—k(® -1 )
O[t—n+ED+2]  ()[t—n+kD+2] (D) [t—n+k(D42]
— | Fn—k 2t n—k() —t—1 A O . (4.6)
Séi)[ol Sgi)[o} Sgi)[o}

Thus, if rk(S) = ¢, we obtain a unique solution of I'(x) (except for a scalar factor) and we continue
with finding the error vectors for each elementary Gabidulin code separately as in Subsection 3.2.1.
The matrix S from (4.5) provides at most » ;_, (n — @) — t) linearly independent equations. In order
to obtain rk(S) = t, the parameters have to satisfy

S

> (n—kD —1) >t

=1

When k() = k, Vi € [1, s], the maximum decoding radius, which can be achieved by solving the linear
system of equations from (4.5), is then 7 = [s(n—=k)/(s+1)].

For the approach from [SB10], the probability of failure can be upper bounded by the probability
that S from (4.5) has rank less than ¢, which is bounded in [SB10, Theorem 5] for s < 7 as follows:

P(1k(S) < 1) < 3.5 —m((s+1)(r—t+1) _ 4
<35¢q < prt
This bound improves the bound from [LO06] and in general we can use Py < 4/¢" as simplified upper
bound on the failure probability of both cases.

Moreover, in [SB10, SJB11] an efficient algorithm based on linearized multi-sequence shift-register
synthesis for decoding interleaved Gabidulin codes was developed, which implicitly finds the real
value of ¢ and solves (4.5). However, for analyzing the connection to [LO06] and to our approach, the
interpretation as a linear system of equations is more convenient.

Connection Between the two Known Approaches

In the following lemma, we derive a connection between the two approaches from [LO06] and
from [SB10] when decoding interleaved Gabidulin codes with k(") = k, Vi € [1, s].

Lemma 4.1 (Relation Between Ranks of Decoding Interleaved Gabidulin Codes).
Let k) =k, Vi € [1,s], lett < 7 = |s(n=k)/(s+1)| and let R and S be defined as in (4.2) and (4.5),
(4.6). Then, 1k(S) < t ifand only iftk(Rgr) < n — 1.

Proof. First recall the matrix Ry from (4.2). The submatrix Gp is a generator matrix of a

Gab[n,n —t —1] code. Let h = (hg hy ... hy,_1) define an (n — k) x n parity-check matrix H(®)
of the elementary Gab[n, k] code (which defines the IGab[s;n, k, ..., k] code) as in Lemma 2.14.
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4.2 PRINCIPLE OF INTERPOLATION-BASED DECODING

Then, H = qvantﬂ((h%"_k_t_l] h[ln_k_t_l] . hg?__lk_t_l])) isa (t+ 1) x n parity check matrix

of a Gab[n,n — t — 1] code and is a (¢ + 1) x n submatrix of H(®), consisting of the lowermost
t + 1 rows of H).
Multiplying R by H” and comparing the result to (4.6) gives:

qvan,_;_(g) qvan,,_,_;(g) 0
qvann_k_t(r(l)) qvann_k_t<e(1)) S()[n—k—t—1]
Rp-H' = [qvan, , (@) | .H” = | qvan, , ,(e®) [ -HT = [ S@l=F=t=11 ] (47

qvann_k_t(r(s)) qvann_k_t(e(s)) S(s)[n—k—t-1]

For any integer 7, k(A) = rk(Al!), where Al means that every entry is taken to the g-power i.
Based on (4.7), we first prove the if part. Calculate by Gaussian elimination of R the matrix

~ GR
E= (2
(ER)
such that rk(Rp) = Q{(E) = rk(Gg) + rk(Eg) = n — t — 1 + rk(ER) (ie., such that the ranks

sum up). Notice that Er does not necessarily consist of the s lower submatrices of Eg from (4.3).
These elementary row operations do not change the rank and we obtain from (4.7)

rk (S) = rk (SPFt7U) = 1k (Rg - HT) = 1k (E- HT) = 1k (Ex - HY).

Now, if tk(R) < n—1, then tk(Eg) < ¢ since rk(Gg) = n—t— 1. Then, also rk (ER HT) <t
and therefore rk(S) < t.
Second, let us prove the only if part. Due to Sylvester’s rank inequality

tk (Rg) + 1tk (HY) —n < 1tk (Rp - HT) =tk (SF171) =k (8).

Clearly, rk(H) = ¢ + 1. Hence, if rk(S) < t, then rk (RR) <n—t—1+r1k (S) <n-—1.
[ |

Thus, we proved that both approaches fail for exactly the same error matrices and clearly also have
the same fraction of correctable error matrices when k() = k, Vi € [1, s]. This means that the tighter
bound on the failure probability from [SB10] can also be used to bound the failure probability of [LO06].

However, for arbitrary k(@) — k, it is not clear if the matrix on the RHS of (4.7) has the same rank as
S since the g-powers of each submatrix differ.

4.2 Principle of Interpolation-Based Decoding

Sudan [Sud97] and Guruswami and Sudan [GS99] introduced polynomial-time list decoding of Reed—
Solomon and Algebraic Geometry codes based on interpolating bivariate (usual) polynomials. For
linearized polynomials, however, it is not clear how to define mixed terms (i.e., monomials containing
more than one indeterminate) and how to design a list decoding algorithm for Gabidulin codes similar
to [Sud97, GS99]. When we define bivariate linearized polynomials without mixed terms, it is possible
to decode a Gab|n, k] code up to the BMD radius |(n—F)/2|, which was done in [L0i06].
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Our decoding approach for interleaved Gabidulin codes relies on interpolating a multi-variate
linearized polynomials without mixed terms. The principle consists of an interpolation and a root-
finding step. First, we give interpolation constraints for a multi-variate linearized interpolation
polynomial Q(x, Y1, . ..,ys) = Qo(z) + Y ;_; Qi(v;) and prove that the g-degree-restricted evaluation
polynomials f(1)(z),..., ) (x) of the interleaved Gabidulin codeword are roots of Q(z, 1, . . ., ¥s)
up to a certain radius 7. Second, we show how the root finding step can be accomplished by solving a
linear system of equations.

4.2.1 Interpolation Step

The conditions on our multi-variate linearized interpolation polynomial are as follows.

Problem 4.1 (Interpolation Step for Decoding Interleaved Gabidulin Codes).
Let 1 (z) = Z?:_& 7“3(1) Ul € Lym[z], Vi € [1,5], and go,91,-- -, Gn-1 € Fym, which are linearly
independent over I, be given.

Find an (s + 1)-variate linearized polynomial of the form

Q(‘Tayla .. '7y8) = Q0($) + Ql(yl) +-+ Qs(ys)a

which satisfies for given integersn, 7, k), ... k():
e Q) = 0,95 € 0,0 — 1],

e deg, Qo) <n'— 1,
o deg, Qi(y;) <n—7— (k¥ —1),Vi e [1,s].
Let us denote the coefficients of the univariate polynomials by

n—1—1 n—r—k®

Q@)= > a2, Q)= > gigyl, Yie[l,s).
j=0 Jj=0

A solution to Problem 4.1 can be found by solving a linear system of equations, which is denoted by

R-q" =0,whereg = (go g1 ... gn—1)and Risann x (n — 7+ >7_, (n — 7 — k@ + 1)) matrix
as follows:

R = (qvannfT(g)T qvannfok(l)H(r(l))T qvannfT,k(s)H(r(S))T> , (4.8)

andq = (q0,0 -+ Qo190 -+ Qv | - [ G50 -+ Agprps))-

Lemma 4.2 (Maximum Radius).
There exists a non-zero Q(x, y1, . . . ,ys), fulfilling the conditions of Problem 4.1 if

sn—37_ k@ +s
s+1 '

T< (4.9)

Proof. The number of linearly independent equations is given by the interpolation constraints
(i.e., the number of rows of R in (4.8)), which is is at most n and has to be less than the number
of unknowns (given by the length of q) in order to guarantee that there is a non-zero solution.
Hence:

n<n—7+i<n—7—k(i)+1> = T(s+1)<sn+s—ik(i).
i=1 i=1
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4.2 PRINCIPLE OF INTERPOLATION-BASED DECODING

For the special case k() = k, Vi € [1, s], this gives 7 < s(n — k4 1)/(s + 1).

The unique decoding approaches from [LO06, SB10] (see Section 4.1) have maximum decoding radius
7w = (sn — 30_ k@) /(s + 1). A comparison to the maximum value of 7 given by Lemma 4.2 provides
the following corollary, showing that our decoding radius is at least the same as 7. o

Corollary 4.1 (Decoding Radii for Interpolation-Based and Joint Decoding).
Let T be the greatest integer fulfilling (4.9) and let 7, = | (sn — >_7_, kD) /(s + 1)]. Then,1 > 7—7, >
0.

The following theorem shows that the evaluation words of the interleaved Gabidulin code are a root
of any interpolation polynomial, which fulfills Problem 4.1.

Theorem 4.1 (Roots of Interpolation Polynomial).

Let ¢ = f)(g), where deg, fO(z) < k9, and let v = ¢ 4 e, Vi € [1,s]. Assume, t =
rk (e(l)T e®@T e(s)T) < T, where T satisfies (4.9). Let a non-zero Q(x, y1, . . ., ys) be given, fulfilling
the interpolation constraints from Problem 4.1. Then,

def

F@)_Q(%ﬂU@%”wﬂW@):u (4.10)

Proof. Define 7¥)(z) and ) () such that 7 (g;) = r]@ and ) (g;) = e?) = TJ@ - cy),
Vj € [0,n — 1] and Vi € [1, s] using linearized Lagrange interpolation as in (3.23), (3.24).

Further, denote R(x) def Q(z, O (z),..., 70 (z)). Since all polynomials are linearized,
R(z) — F(z) = Q(0,6W(x),...,e") (2))
= QW (@) + Q2@ (@) + - + Qs(€ (@)
Then,

R(g) - F(g) = Y Qi@ (@) = > Qi(e")
=1 =1
_ (Zgi@gﬂ) S Qi) . ZQi(eff)_l)).
=1 =1 =1

Lemma 2.12 shows that the row spaces fulfill

Ry <Z Qi (e(i))> CR, ((e(l)T AT e(s)T)T) '
=1

Because of the interpolation constraints, R(g) = 0 and hence rk (F(g)) = rk(>2;_, Q:(e)) <
rk(eMWT e@T | ey =t < 7.

If tk(F(g)) < 7, then the dimension of the root space of F'(z) in Fym has to be at least n — 7,
which is only possible if its g-degree is at least n — 7. However, deg, I'(z) <n — 7 — 1 due to
the interpolation constraints and therefore F'(z) = 0. [

The interpolation step can be accomplished by solving the linear system of equations based on the
matrix R from (4.8), which requires cubic complexity in F,=» when using Gaussian elimination. Instead
of this, the efficient interpolation from [XYS11] can be used and the complexity of the interpolation step
is reduced to O(s*n(n — 7)) operations over Fym (in their notation L = s,C =nand D=n—7—1
and the complexity of their algorithm is O(L2C'D)).
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4 DECODING APPROACHES FOR INTERLEAVED GABIDULIN CODES

4.2.2 Root-Finding Step

Similar to Guruswami and Wang in [Gur11, GW13] for folded/derivative Reed—Solomon codes and to
Mahdavifar and Vardy in [MV12] for folded Gabidulin codes, the root-finding step of our approach
results in solving a linear system of equations.

Assume, Q(z,y1,...,Ys) is given, fulfilling the interpolation constraints from Problem 4.1. Then,
the task of the root-finding step is to find all tuples of polynomials f(V)(z), f®)(z),..., f®)(x) such
that

F(x) = Qo(x) + Q1(fP(@)) + Q2P (@) + - + Qu(fP (@) =0
The important observation is that this is a linear system of equations over F,» in the coefficients of

fO(x), fA(z),..., £ (2). Recall for this purpose that (a + )l = al¥l + bl for any a,b € Fym and
any integer ¢ and let us demonstrate the root-finding step with an example.

Example 4.1 (Root-Finding).

Lets =2,n=m =7,k =k® =2 and r = 3. Find all pairs fV (), @ (z) with deg, fO(z) =
deg, f@(z) < 2 such that F(x) = Fozl® + Fyzll .. + F,,_,_12"=7=1 = 0. Due to the constraints
of Problem 4.1, deg, F'(v) <n — 7 — 1 = 3. Thus,

FO:OZQUO+Q10f(§1)+QQOf(§2)a

P i @0 )

1 QO1+Q11fo +Q1of +Q2 ot a0fi”,
Fz—O—QO2+Q12fo ]+q 1f1 +q fo ]+q f1 !
F3—0—QO3+Q12f1 ]—I—q f(Q)[2

Therefore, given Q(z,y1,2), we can calculate the coefficients of all possible pairs f)(z), f(x) of
q-degree less than two by the following linear system of equations:

q1,0 420 fél) —q0,0
-1 1 1 1 -1
q%’lzj q% 12} q% 02} [ 21 N (52) = —q{)%} (4.11)
NI EV DR oy B
2 _
12" 429 f1( = —4do3
In order to set up (4.11) in general, we can use more than one Q(z,y1, ..., ys). Namely, we can use all

polynomials corresponding to different basis vectors of the solution space of the interpolation step.
This also decreases the probability that the system of equations for the root-finding step does not have
full rank (see also Subsection 4.3.2). In order to calculate the dimension of the solution space of the
interpolation step, denoted by d;, we need the rank of the interpolation matrix.

Lemma 4.3 (Rank of Interpolation Matrix).
Let tk (e(l)T e@T | e(S)T) =t < 7, where T satisfies (4.9). Then, for the interpolation matrix from
(4.8), tk(R) < n — 7+t holds.

Proof. The first k) columns of R contain the (transposed) generator matrices of the Gabidulin
codes Gab[n, k(?)]. Hence, for calculating the rank of R, we can subtract the codewords and their
g-powers from the s right submatrices such that these submatrices only depend on the error.
Hence, the rank of R depends on rk(qvan,,__(g)), which is n — 7, and on the rank of the error
matrix, which is . Hence, rk(R) < n — 7+ t. |
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4.2 PRINCIPLE OF INTERPOLATION-BASED DECODING

The dimension of the solution space of the interpolation step is therefore:

d; < dimker(R) > (s + 1)(n — ) — i(k;(i) —1)—(n—T+1)
=1

s(n—71+1 Zk”—t (4.12)

and for k) = k for all i € [1, 5], we obtain d; > s(n — 7 — k 4+ 1) — t.
In the following, let Q™ (z,1,...,ys), Vh € [1,d;], denote the interpolation polynomials corre-
sponding to different basis vectors of the solution space of the interpolation step. Let us denote the

following matrices:

i i i i i
q§,}” q( - q;j)[] f]( )il q(()u)[]
et q(2)[i} (2)[2] el et FL et g
S e o P DV B (@.13)
qsz’]z)[ﬂ qéfljr)[l] o qﬁ‘fj)[’] f](s)[i} qéfljz)[l]
For k = max;{k(®}, the linear system of equations for finding the roots of Q(z, y1, . .., ys) is

QW (z, fD (@), ..., fO ) = QP (@) + QP (f V(@) + - + QW (fO(x)) =0, Vhel,df]

<
Q)
—1 —1
et
Q[2_2] Q[l_Q] Q[[)_2] fo —q0,0
| | | . ol
! - qf)’l . (4.14)
n—r— —(n—71— (n—7 —(k—1 n—1—1
QL ('r— i QL—(T—k—f)} Qn T k— 3} flg—(l ) _q([)é T—1 )
—(n—7-2 (n—1-2
QL—(T—R ) Qn ‘r k— 1)}
Q (n ]: 1)]
—_—
Q : f = qo

where Q is a ((n — 7)d;) x sk matrix and where we assume that f;i) =0ifj > k% and g;; = 0
whenj>n—7— k@ Vie 1, s].

Lemma 4.4 (Complexity of the Root-Finding Step).

Let QM (2,51, ..,ys), Vh € [1,d;], be given, satisfying the interpolation constraints from Problem 4.1

Then, the basis of the subspace, which contains the coefficients of all tuples £V (), ..., f®)(z) such that
F(z) = Q (2. /D (@),.... f9@)) = Qo(@) + Q(fV (@) + -+ Qu(F (@) = 0,

can be found recursively with complexity at most O(s3k?) operations over Fym
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Proof. The complexity of calculating g-powers is negligible (compare Table 3.1). The solution
of (4.14) can be found by the following recursive procedure. First, solve the linear system of
equations Q[[)O] -fo = —qp, of size d; x s for fy with complexity at most (’)(33) when using
Gaussian elimination. Afterwards, calculate Q[fl] - £y with sd; ~ s2 multiplications over [Fm
and solve the system Q[l_l} -fo + Q%_I] . fl[_l] = —q([)jll] for f; with complexity at most O(s?)
operations. We continue this until we obtain all coefficients of f()(z),..., f*)(z), where for
f;, we first have to calculate (j — 1) - s - d; multiplications over F,m and solve a d; x s linear
system of equations. Hence, the overall complexity for the root-finding step is upper bounded by

Z?Zl ((j—1)-s-dr +5%) <O(s*k* + s°k) < O(s*k?) operations over Fgm. n

4.3 Interpolation-Based Decoding Approaches

The decoding principle from the previous section can either be used as a list decoding algorithm, which
returns all codewords of the interleaved Gabidulin code in rank distance at most 7 from the received
word, where 7 satisfies (4.9) (described in Subsection 4.3.1), or as a probabilistic unique decoding
algorithm (described in Subsection 4.3.2). For the probabilistic algorithm, we derive a relation to the
known unique decoding algorithms and bound the failure probability.

4.3.1 A List Decoding Approach

Our decoding approach for interleaved Gabidulin codes can be seen as a list decoding algorithm,
consisting of solving two linear systems of equations. Except for pruning the solution space of the
root-finding step, we find the solution(s) with complexity at most O(s3n?) operations in F;m. However,
our algorithm is not a polynomial-time list decoding algorithm (with respect to n) for interleaved
Gabidulin codes since the list size can become exponential in n as shown in the following lemma.

Lemma 4.5 (Maximum List Size).
Letr®, Vi [1, s], be given and let T satisfy (4.9). Then, the list size ([, i.e., the number of codewords
from1Gab[s;n, k), ... k)] in rank distance at most T tor = (r(MT T p(&IT)T g

0% max {\Icab[s; n, kM, K@) B <r)|} < (S kO —ming (kO})

X
rG]FZm"

Proof. The list size can be upper bounded by the maximum number of solutions for the root-
finding step (4.14). There exists an integer 7 € [1, s] such that Q;(x) # 0, since Q(z, y1, . ..,Ys) #
0. Note that Qo(z) # 0 and Q;(z) = 0, Vi € [1,s], is not possible since (qvan, _(g))? is a
full-rank matrix.

Hence, let ¢ € [1, s] be such that Q;(z) # 0 and let j be the smallest integer such that ¢; ; # 0.
Consider the submatrix of Q, which consists of the columns corresponding to the coefficients of
f®(z). For some h € [1, 5], this submatrix contains at least one k(") x k() lower triangular matrix

with qz-(z)[_j],qglj)[_(jﬂ)], ... ,qi(z)[_(ﬁk(i)_l)} on the diagonal. Therefore, rk(Q) > min;{k(¥}
and the dimension of the solution space is at most (>25_; k") — min;{k("}). n

It is not clear whether the list size ¢; can really be that great. Moreover, finding the actual list of
codewords out of the solution space of (4.14) further reduces the list size.
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When /7 > 1, the system of equations for the root-finding step (4.14) cannot have full rank. The
following lemma estimates the average list size. For most parameters, this value is almost one (see
Example 4.2). The proof proceeds similar to McEliece’s proof for the average list size in the Guruswami-
Sudan algorithm [McE03].

Lemma 4.6 (Average List Size).

Let ¢ = fUO(g), Vi € [1,s], where deg, fOx) < k9 and let v = c@ + e, Let
rk(e(l)T e@T e(S)T) = t < 7 and let T satisfy (4.9). Then, the average list size, i.e., the aver-
age number of codewords (c(VT ¢ ¢TI € 1Gab[s;n, kW), ..., k)] such that

rk ((r(l)T r@T Ty (DT T C(S)T)) <,

is upper bounded by

2

E <144 (qule JMONS 1) q(sm+n)7'f‘r —smn_

Proof. Let R be a random variable, uniformly distributed over all matrices in F;én and let
r be a realization of R, i.e., the s elementary received words written as rows of a matrix. Let
c € IGab[s;n, k... k()] be the fixed transmitted codeword. Then, P(rk(r — ¢) < 7) =
P(rk(r) < 7), which is the probability that a random sm X n matrix over [, has rank at most
7. Let IGab*[s;n, k(1. ... k()] be the code IGab[s;n, k1, ... k()] without the transmitted
codeword.

Let us further consider another random variable X, which depends on R:

X(R) = ({Icab* N B (r)})

)

where r € F;.". Denote by 1(..) the indicator function, then the expectation of X is given by:

EX]= ) P(R=r)X(R)

rerXn

= Z Z 1(tk(r —¢) < 7)P(R =)

celGab* reIFS X

= Z E[1(rk(r —c) < 7)]

celGab*
= ) Plkir—c)<7)
celGab*
= ) Pk(r) <7).
celGab*
Therefore
BIX] = [1Gabr | . [REF™" tk(R) < 7]
o gsmn
s ) 4q(sm+n)7—7—2
< ((gm==" ~1) e
The average list size is /; = E[X] + 1, since we have to add the transmitted codeword. [
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Unfortunately, it is not clear if it is possible that £; = 1 and nonetheless, the system of equations for
the root-finding step (4.14) does not have full rank. Thus, Lemma 4.6 does not bound the probability
that the rank of Q is not full; this will be done in Lemma 4.9.

Theorem 4.2 summarizes the properties of our list decoding algorithm.

Theorem 4.2 (List Decoding of Interleaved Gabidulin Codes).

Let the interleaved Gabidulin code 1Gab([s;n, kY k(s)] over Fgm consist of the elementary codewords

c) = £ (g), where deg, fO(x) < k) and let the elementary received words vV, Vi € [1, s], be given.
Then, we can find a basis of the subspace, containing all tuples of polynomials fV(z), ..., f®)(z),

such that their evaluation at g is in rank distance

sn— S0 k0 45
s+1

T <

to (rMWT r@T ()T wyith overall complexity at most O(s*n?).

The complexity of finding the basis of the list is quadratic in n, but the worst-case complexity for
finding explicitly the whole list can be exponential in n. Therefore, this is not a polynomial-time list
decoder, although in most cases the list size is one and in then, the complexity of finding the unique
solution is quadratic in the length of the code.

4.3.2 A Probabilistic Unique Decoding Approach

In this section, we consider our decoding approach as a probabilistic unique decoding algorithm. Since
the list size might be greater than one, there is not always a unique solution. We accomplish the
interpolation step as before and declare a decoding failure as soon as the rank of the root-finding matrix
Q (see (4.14)) is not full. We upper bound this probability and call it failure probability. Moreover, we
show a relation to the unique decoding approaches from [LO06, SB10]. The upper bound as well as
simulation results show that the failure probability is quite small. Therefore, we can use our decoder
as probabilistic unique decoder which basically consists of solving two structured linear systems of
equations and has overall complexity at most O(s®>n?), where s < n is usually a small fixed integer.

It is important to observe that we always set up the system of equations for the interpolation step
(Problem 4.1) with maximum possible 7, but—in contrast to solving the systems of equations from (4.1)
and (4.5) — we also find the unique solution (if it exists) if ¢ < 7 without decreasing the size of the
matrix, since the rank of the matrix R from (4.8) is not important.

Recall the matrix notations from (4.13) and denote additionally the d; x (s + 1) matrix

1 1 1
IR
Q=1 : i i (4.15)
asg’ a4y - Y

The rank of any matrix A € ]F'f;n" satisfies rk(Al1) = rk(A) for any integer i since the g-power on
the whole matrix is a linear operation. The matrix Q of the root finding step (4.14) contains a lower
block triangular matrix, providing the following lemma.

Lemma 4.7 (Rank of Root-Finding Matrix).
Let Q be defined as in (4.14) and ng] as in (4.13). If rk( %0}) = s, thentk(Q) = sk.
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Proof. This holds since Q contains a lower block triangular matrix with Qg)], .. Q[k U on the
diagonal of the first k blocks and since rk(Q[OO}) = rk(Qg]). n

The d; x s matrix Q([)O] can have rank s only if d; > s, which is guaranteed for ¢t = 7 if (compare (4.12)):

A A0
d; = dimker(R) > s(n — 7 + 1) Zk = tgsn(%i. (4.16)
S

This is equivalent to the decoding radius of joint decoding and slightly different to (4.9), which is the
maximum decoding radius when we consider our algorithm as a list decoder (see Section 4.3.1).

In the following, we will show a connection between the probability that Q does not have full rank
and that the matrix R from [LO06], see (4.2), does not have full rank.

Lemma 4.8 (Connection Between Matrices of Different Approaches).

Let Q be defined as in (4.15) and Ry as in (4.2) fort = 7 = [(sn — 37_, kD) /(s + 1) |. Iftk(Qq) < s
thentk(Rp) < n — 1.

Proof. 1frk(Qq) < s, then by linearly combining the d; > s dimensional basis of the solution
space of the interpolation step, there exists a non-zero interpolation polynomial Q(x, Ylye v Ys)s
which fulfills Problem 4.1 and has the coefficients gop = 10 = -+ = ¢s0 = 0. Since
Q(x,y1,...,ys) # 0 (Lemma 4. 4.2), the interpolation matrix without the first column of each
submatrix (i.e., the columns corresponding to go,0,¢1,0, - - - , gs,0), denoted by R, does not have full
rank.

Moreover Rg — RT and hence,

rk(Rg) = rk(R <Zdequz) (s+Dmn—7)=> k-1

=0 =1

—38 (©)
For 7 = {%J , this gives tk(Rg) < n — 1. |
Combining the last two lemmas, we obtain the following theorem.

Theorem 4.3 (Connection Between Failure Probabilities of Different Approaches).
Assume that v() Vi € [1, s], consists of random elements uniformly distributed over Fym. Let Ry be as in

(4.2) and S as in (4.5) fort =7 = |(sn — >, @)Y/ (s + 1)]. Then, for k = max;{k @)1
P(1k(Q) < sk) < P(1k(Qq) < s) < P(rk(Rg) <n —1). (4.17)
Therefore, for T > s:
4 m(s—7)\"
P(rk(Q) < sk) < 1-— <1—qm> (1—q ( >> .

IfkW = k, Vi € [1, 5], additionally P(rk(Q) < sk) < P(rk(S) < 7) holds.

Proof. Since 7 = [(sn— 37_, k©¥)/(s+1)|, we obtain d; = s and 1k(Q,) = rk(Q[O]) The

first inequality of (4.17) follows from Lemma 4.7 and the second from Lemma 4.8. Hence, we can

bound P(1k(Q) < sk) by the failure probability from [LO06]. Due to Lemma 4.1, the failure
probability from [LO06] is the same as the failure probability of [SB10] for k() = k, Vi € [1,s]. 0
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4 DECODING APPROACHES FOR INTERLEAVED GABIDULIN CODES

The assumption of random received vectors and the restriction 7 > s follow from [Ove07, Theo-
rem 3.11]. We conjecture that 7 > s is only a technical restriction and that the results hold equivalently
for 7 < s.

Alternatively, we can bound the failure probability as follows. Assume, the matrix ng] consists of
random values over [F;». This assumption seems to be reasonable, since in [LO06] and [SB10] it is

assumed that rV, ..., r(®) are random vectors in Ffm. In our approach, the values of Q[OO} are obtained

from a linear system of equations, where each g; o is multiplied with the coefficients of a different r(@,

Lemma 4.9 (Alternative Calculation of Failure Probability).

Lettk (eWT e@T | e®T) =t < 7, whereT = |(sn— >0 k) /(s + 1)], let k = max; {k")},
let Q be defined as in (4.14) and let qg), q%, e ,qgg forj =1,...,d; be random elements uniformly
distributed over Fym. Then,

4 —m(s(n—1)=35_, k() —
P(rk(Q) < Sk) S m = 4q ( ( ) 2271 t+l).

Proof. Due to d; > s and Lemma 4.7, ifrk(Q([)O]) = s, then rk(Q) = sk. Hence, P (rk(Q) < sk)

< P(rk(Q[OO}) < 8). When q%, . ,_q.i,]g for j = [1,d;] are random elements from [y, we bound

P (rk(Q[OO]) < s) by the probability that a random (d; x s)-matrix over Fym has rank less than s:

P(rk(Q) < sk) < P(rk(QL)) < 5)
3—1j_1 dr _ hj_l .
> 2= T — )
§=0 h=0 i=0

qmsd[

g (i) (s=)=(s=1)?)

<

Lemma 4.9 does not have the technical restriction 7 > s as Theorem 4.3 and the bounds from
[LO06, SB10]. The following theorem summarizes our results.

Theorem 4.4 (Unique Decoding of Interleaved Gabidulin Codes).

Let the interleaved Gabidulin code 1Gab[s;n, k™), ... k()] over [Fym consist of the elementary codewords
c® = fO(g), where deg, f@(x) < kW, Vi € [1,s], and let the given elementary received words r(¥),
Vi € [1, s], consist of random elements uniformly distributed over Fym. Then, with probability at least

1— 4q—m(s(n—7)—Zf:1 k(i)—t—l—l)7

we can find a unique solution f(V(x), ..., f)(x) such that its evaluation at g is in rank distance
S 10
f<r— [sn Yook J
s+1
to (rWT r@T v (OTYT wyith overall complexity at most O(s°n?).
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Example 4.2 (Failure Probabilities).
Consider the IGab[s = 2;n = 7, kD =2, k®) = 2] code over Fyr. The maximum decoding radius for
unique as well as for list decoding according to (4.9) and (4.16) is T = 3 whereas a BMD decoder guarantees
to correct all errors of rank at most Ty = 2.

In order to estimate the failure probability, we simulated 107 random error matrices
(eMT T e&TT ¢ Fom", uniformly distributed over all matrices of rank t = 7 = 3. The
following simulated probabilities occurred:

P(1k(Q) < sk) = P(1k(S) < 7) = P(vk(Rg) <n—1) =6.12-107°.

As a comparison, the average list size calculated with Lemma 4.6 is {1 < 1 + 6.104 - 1075, the upper
bound from Theorem 4.3 (and therefore the upper bound from (4.4), [LO06]) gives

P(rk(Q) < sk) < P(rk(Rg) <n—1) < 0.04632,
and the bound from Lemma 4.9 gives P( rk(Q) < sk) < 4g—msn—k=r)=T+1) — 9 44 . 1074,

Due to the simulation results, we conjecture that if and only if tk(Q) < sk, then rk(S) < 7 and
rk(Rpg) < n — 1. Hence, we believe that Lemma 4.8 holds in both directions.

4.4 Error-Erasure Decoding

This section is in some sense a generalization of Subsection 3.2.3 and outlines briefly how interpolation-
based error-erasure decoding of interleaved Gabidulin codes over Fym with n = m can be done. We
assume that v column erasures and g(i) row erasures, Vi € [1, s], occurred. This notation is based on
the following decomposition of the interleaved error, which generalizes (3.34):

e(l) a(lvR) . B(LR) a(lvc) a(lvE)
(2) (2,R) . B(2.R) (2,0) (2,B)
e a a a
= , +| . [ BO+| . | B®erx",  (18)
o) alsB) . B(R) ee) )

where a®R) ¢ F,) BOR ¢ 77X a(0) ¢ F7,, B € FJ*", al-P) € F,., BP) € F* for
all i € [1,s], and allb®) a@R) 4R and B(©) are known on the receiver side. Lemma 4.10
shows later why the a(»® and B(:f) can be different whereas B(®) has to be common for all
i € [1, s]. Moreover, this model of errors and erasures is slightly more general than the one in [LSC13,
Equation (19)], since there the a(»/¥) are assumed to be equal.

Based on the known matrix B(©) and as in (3.35), we can calculate the following basis of the row
space of the column erasures prior to the decoding process:

n—1 n—1
A =3"BVgt =3B, vie o,y -1]. (4.19)
j=0 J=0

As in (3.36), we define T(©)(z) and AR (), Vi € [1,s], as linearized polynomials of smallest
g-degree such that:

C) (4O _
¢ )(dj )_

J

07 VJE [077_1]7
0, Vjel0,0”—1],iell,s] (4.20)
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4 DECODING APPROACHES FOR INTERLEAVED GABIDULIN CODES

Let 7(%) (z) denote the g-transform of 7(!)(x), Vi € [1, 5], as in Definition 2.12, then we define s modified
transformed received words (similar to Subsection 3.2.3) by:

79 (z) & AGR (7O (211))) mod (2™ — ), Viell,s],

where I'(©)(z) is the full g-reverse of I'(“) (z) as in Lemma A.1.

Lemma 4.10 (Rank of Modified Interleaved Error).

Let n = m and let e = AGR) (20T O)(ghl))) € Fym, Vi € [1,s]. Further, let ef) —
aE) . BE) v ¢ [1, s], as in (4.18) withrk (e(l’E)T e@ET e(S’E)T) =t. Then,

e(LRC) e(l,E)
o(2.R0) o(2.5)

rk . <rk . =t
e(s,RC) e(sE)

Proof. The proof is a straight-forward generalization of the proof of Lemma 3.11 and we obtain:

e(L,RC) ALR) (/e\(l,E) (90)) ALR) (/e\(l,E) (91)) . ALR) (/é(l,E) (gmfl))
e(2,RC) A2R) (é\(Q,E) (QO)) A2R) (é\(Q,E) (91)) AR (é{zE) (gm_1))
e(s,RC) AsR) (/e\(s,E) (90)) A(s,R) (/e\(s,E) (91)) AR (é\(&E) (gmfl))

where G = (Gi,j);ee[[%:z;_jl]] € F7"™™™ is defined such that I'(©)(g;) = S Gijgi and the

statement follows as in Lemma 3.11. |
Lemma 4.10 requires that I'©)(z) is common for all i € [1, 5], whereas A/ (z) can be different. This
clarifies why B(®) has to be independent of .

Hence, similar to error-erasure decoding of Gabidulin codes in Subsection 3.2.3, we use 7\ (g),
Vi € [1,s], as the input of interpolation-based decoding and treat 7(”)(g) in the same way as the
transform of a codeword of an interleaved Gabidulin code of elementary dimensions k() + () + ~,
which is corrupted by an error of overall rank ¢.

As in Problem 4.1, we look for an (s + 1)-variate linearized polynomial Q(z, y1, .. .,ys) = Qo(x) +
Q1(y1) + - - - + Qs(ys), which satisfies for given integers n, 7, k@), Q(i), v, Vi € [1,s]:

o Qg5 7V (g), 5P (g5),- - 7 (g;)) =0, Vje[0,n—1]
e deg,Qo(z) <n—r,
o deg, Qi(yi) <n—171— (k) —~y — 0@ 1), Viell,s]

Similar to Lemma 4.2, a non-zero interpolation polynomial Q(x,y1,...,¥s), which satisfies the
above mentioned conditions, exists if

<
g s+1

If k) =k, and o) = o, Vi € [1, 5], we obtain 7 < s(n —k +1— 0 —~)/(s + 1).

The interpolation and root-finding procedure is straight forward to the errors-only approach from
Section 4.2 and returns AGR) (f(i)(f‘(c) (:UM))), Vi € [1,s], in rank distance at most 7. In order to
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obtain f)(z), we have to divide from the left and right by A% (z) and T(©) (z1)), respectively,
Vi € [1, s, as in Subsection 3.2.3.

With this principle, our interpolation-based decoding algorithm can be applied to (unique or list)
error-erasure decoding of interleaved Gabidulin codes.

For interpolation-based error-erasure decoding in Hamming metric it is more common to puncture
the code at the erased positions and interpolate an (interleaved) code of smaller length and same
dimension(s) as the original code, whereas we interpolate a code, which has the same length as the
original code, but higher dimension(s).

4.5 Summary and Outlook

This chapter considers decoding approaches for interleaved Gabidulin codes. First, two known decoding
principles are described and a relation between them is proven. Second, we have presented a new
approach for decoding interleaved Gabidulin codes based on interpolating a multi-variate linearized
polynomial. The procedure consists of two steps: an interpolation step and a root-finding step, where
both can be accomplished by solving a linear system of equations. This new decoder for interleaved
Gabidulin codes can be used as a list decoder as well as a unique decoder with a certain failure
probability. The complexity of the unique decoder as well as finding a basis of all solutions of the
list decoder is quadratic in the length of the code. The output of both decoders is a unique decoding
result with high probability. Further, we have derived a connection to the two known approaches for
decoding interleaved Gabidulin codes. This relation provides an upper bound on the failure probability
of our unique decoder.

For future work, the big challenge is to increase the decoding radius (for Gabidulin as well as
interleaved Gabidulin codes). Nearby goals are to apply re-encoding in order to reduce the complexity
and to use subspace evasive subsets for the elimination of the valid solutions in the list decoder as
Guruswami and Wang did in [GW13].
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CHAPTER 5

Bounds on List Decoding of Block Codes
in Rank Metric

a list decoder returns the list of all codewords in distance at most 7 from any given word. The

Johnson bound in Hamming metric [Joh62, Bas65, Gur99] shows that for any code of length
n and minimum Hamming distance dp, the size of this list is polynomial in n for any 7 less than
the Johnson radius, ie., 7 < 77 = n — y/n(n — dg). Although this fact has been known since the
1960s, a polynomial-time list decoding algorithm for Reed-Solomon codes up to the Johnson radius
was found not earlier than 1999 by Guruswami and Sudan [GS99] as a generalization of the Sudan
algorithm [Sud97]. Moreover, in Hamming metric, it can be shown that there exists a code such that
the list size becomes exponential in n beyond the Johnson radius [GRS00], [Gur99, Chapter 4]. It is
not known whether such an exponential list beyond the Johnson radius also exists for Reed-Solomon
codes. Several publications show an exponential behavior of the list size for Reed-Solomon codes only
for a radius rather greater than 7 (see e.g. Justesen and Hgholdt [JH01] and Ben-Sasson, Kopparty and
Radhakrishnan [BKR10]).

However, for Gabidulin codes, so far there exists no polynomial-time list decoding algorithm (beyond
half the minimum distance) and it is not even known whether it can exist or not. The contributions
by Mahdavifar and Vardy [MV10, MV12] and by Guruswami and Xing [GX12] provide list decoding
algorithms for special classes of Gabidulin codes and subcodes of Gabidulin codes.

THE IDEA OF LIST DECODING was introduced by Elias [Eli57] and Wozencraft [Woz58] stating that

In this chapter, we investigate bounds on list decoding rank-metric codes in general and Gabidulin
codes in particular in order to understand if polynomial-time list decoding algorithms can exist or
not. We derive three bounds on the maximum list size when decoding rank-metric codes. In spite
of the numerous similarities between Hamming metric and rank metric and even more between
Reed-Solomon and Gabidulin codes, all three bounds reveal a strongly different behavior compared to
Hamming metric.

On the one hand, a lower bound on the maximum list size, which is exponential in the length n of
the code, rules out the possibility of polynomial-time list decoding since already writing down the list
has exponential complexity. On the other hand, a polynomial upper bound—similar to the Johnson
bound for Hamming metric—shows that a polynomial-time list decoding algorithm might exist.

In Section 5.1, we state (partly informally) known bounds on list decoding in Hamming metric. In
Section 5.2, we explain connections between constant-dimension codes, constant-rank codes and the list
of codewords and state the problem. We derive a lower bound (Bound I) for Gabidulin codes of length
n and minimum rank distance d in Section 5.3. It proves that the list size can become exponential if the
radius is at least the Johnson radius 7; = n — \/n(n — d). The second bound (Bound II, Section 5.4) is
an exponential upper bound for any rank-metric code, which provides no conclusion about polyno?qial—
time list decodability. Finally, in Section 5.5, the third bound (Bound III) shows that there exists a
rank-metric code over [Fym of length n < m such that the list size is exponential in the length n when
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the decoding radius is greater than half the minimum distance. An interpretation of our bounds and a
comparison to bounds on list decoding in Hamming metric is shown in Section 5.6.

The bound presented in Section 5.3 was published in [Wac12] and the bounds from Sections 5.4 and
5.5 in [Wac13b]. The journal paper [Wac13a] contains a detailed description of all three bounds.

5.1 Known Bounds on the List Size for Codes in Hamming Metric

Without going into depth, we want to state some of the bounds on list decoding of codes in Hamming
metric, in particular Reed-Solomon codes.

Definition 5.1 (Hamming Weight and Hamming Distance).
The Hamming weight ofa = (ag a1 ... an—1) € Fy is defined as

wirr(a) < [supp(a)] < |a; # 0,i € [0,n— 1],
and the Hamming distance between a and b € [y is the Hamming weight of the difference:

dir(a,b) ¥ wty(a—b) = |supp(a — b)|.
In conformance with the notations for codes in rank metric, an (n, M, d) g code C over [ is a code of
length n, cardinality M and minimum Hamming distance d.

The g-ary and the alphabet-independent Johnson bounds in Hamming metric (stated in the following)
show that from a combinatorial point of view, list decoding of any (not necessarily linear) code
in Hamming metric is feasible up to the Johnson radius. A thorough discussion of the Johnson
bound and related combinatorial aspects can be found in Guruswami’s books [Gur07, Chapter 3]
and [Gur99, Chapter 3].

Theorem 5.1 (g-ary Johnson Bound in Hamming Metric [Joh62, Joh63, Bas65]).
For any (n, M, d) i code C over F of length n and minimum Hamming distance d and any integer T such
that 72 > (1 — 1/q) (27 — d)n, the list size {3 is upper bounded by

def (r) (1-1q)nd
n ® ma{ BP0} < S = G

where Bg) (r) denotes a ball around r of radius T in Hamming metric.

The alphabet-independent (or generic) Johnson bound (5.2) follows from upper bounding (5.1) for any
g > 1. Clearly, when ¢ is large, then (1 — 1/g) — 1 and the two bounds are equivalent. However, for
small ¢ (especially for binary codes), it can be much better to take into account the alphabet size and to
use (5.1).

Corollary 5.1 (Johnson Bound in Hamming Metric).
For any (n, M,d)y code C over Iy of length n and minimum Hamming distance d and any integer

T Ty ety — Vn(n — d), the list size {57 is upper bounded by

def (1) < nd _ nd
b gé%%({}CﬂBH (r)‘} 72— 2r—dn (n—-7)2-nn-d)’ (5.2)
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The restriction 7 < 7; holds since the denominator has to be greater than zero. An improvement of
the numerator of (5.2) from nd to n(d — 7) was shown by Cassuto and Bruck in [CB04].

Thus, the Johnson bound proves that any ball in Hamming metric of radius less than the Johnson
radius 77 = n — /n(n — d) always contains a polynomial number of codewords of any code in
Hamming metric of length n and minimum Hamming distance d.

From a combinatorial point of view, the Johnson bound is tight as a relation between list decodability
and the minimum Hamming distance since it can be shown that there exist codes in Hamming metric
such that the list size becomes exponential in n if the radius is slightly greater than the Johnson radius.
For general (not necessarily linear) codes this was shown by Goldreich, Rubinfeld and Sudan [GRS00].
Guruswami extended this result to linear codes, stating that there exists a linear code in Hamming
metric such that the size of the list grows super-polynomially in n when the radius of the ball is at least
the Johnson radius [Gur99, Chapter 4]. However, he proved this only using a widely-accepted number
theoretic conjecture [Gur99, Theorem 4.7]. These results do not imply that the Johnson bound is tight
for any code in Hamming metric—it rather means that there are some codes for which it is tight.

In particular, it is not known whether such an exponential list slightly beyond the Johnson radius
also exists for Reed-Solomon codes. Justesen and Heholdt [JH01] and Ben-Sasson, Kopparty and
Radhakrishnan [BKR10] showed an exponential behavior of the list size for Reed-Solomon codes only
for a radius rather greater than 7;. However, Guruswami and Rudra’s limits to list recovery (which is a
more general scenario) of Reed-Solomon codes indicate that the Johnson bound might be tight also for
Reed-Solomon codes [GRO06].

1 1
—— BMD radius o BMD radius )
! - 1
- - - Johnson radius K I | Lower exponential bound !
0.8 | ) 0.8 --- Johnson radius !
B There is a code with “boly- u . “boly-
- 0.6 1 S . pgly 0.6 exponential S pis pgly
T exponential list size _-"nomial | T ,-“ nomial
n 7 ,’ 7’ ‘ ‘
04| e 04| .
02| . 02| .
_2F unique 2P unique
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
d=d/n d=d/n=1-R
(a) General codes in Hamming metric (b) Reed-Solomon codes

Figure 5.1. Decoding regions of codes in Hamming metric

Figure 5.1 illustrates the asymptotic behavior of the list size depending on the relative distance
d = d/n. The existence of a code in Hamming metric with exponential list size beyond the Johnson
radius is shown in Figure 5.1a. For Reed-Solomon (and maximum distance separable codes in general),
the relative distance is 0 = d/n = 1 — R + 1/n and for large lengths, 0 ~ 1 — R and therefore the list
size is displayed in dependency of the code rate in Figure 5.1b.
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5.2 Codes Connected to the List of Decoding and Problem Statement

This section shows relations between constant-dimension and constant-rank codes, states the problem
and shows a connection between constant-rank codes and the resulting list when list decoding codes
in rank metric. These relations are used for our bounds in Sections 5.4 and 5.5.

5.2.1 Connection between Constant-Dimension and Constant-Rank Codes

This section recalls and generalizes some of the connections between constant-dimension and constant-
rank codes by Gadouleau and Yan [GY10]. The first lemma shows a connection between the subspace
distance and the rank distance and is a special case of [GY10, Theorem 1].

Lemma 5.1 (Connection between Subspace and Rank Distance [GY10, Theorem 1]).
Let X, Y € F™ withtk(X) = rk(Y). Then:
1 1
5 dS(Rq (X) 7Rq (Y)) + 5 dS(Cq (X) ’Cq (Y))
< dR(X7 Y)
.1 1
< min {2 ds(Rq (X),Rq (Y)), B ds(Cq (X),Cq (Y) )} + rk(X).

Proof. Let us denote r def rk(X) = rk(Y). As in Lemma 3.8, we decompose X = CTR

and Y = DTS, where C,D ¢ Fg*™ and R, S € F;*" and all four matrices have full rank.
Hence, X — Y = (CT| — DT) - (RT|ST)T. In general, it is well-known that rk(AB) <
min{rk(A),rk(B)} and rk(AB) > rk(A) + rk(B) — n when A has n columns and B has n

rows. Therefore,
rk(CT| — D) + rk(R7|ST) — 2r <1k(X - Y) =1k ((CT| - DT) - (RT|ST)T) (5.3)
< min {rk(C”| - D7), 1k(R"|ST)} .
Let C, (CT) +Cq (DT) denote the smallest subspace containing both column spaces. Then,
tk(CT| - D7) = dim(C, (CT) +C, (D))
= dim(C, (C") + ¢, (DT)) - % {dim(C, (C")) + dim(C, (D"))}
+ % {dim(c, (C")) + dim(C, (D"))}
= 5 (€ () .Cy (D7) 7 = 5 (€, (X).C, (¥) +
and in the same way
rk(RT|ST) = = dy(Ry (X), Ry (Y)) + -
Inserting this into (5.3), the statement follows. i

Lemma 5.1 can equivalently be derived using [MS74, Equation (4.3)], which also results in (5.3) and
then we can use the same reformulations for the subspace distance.

For the proof of the upper bound in Theorem 5.3 (see Section 5.4), the following upper bound on the
maximum cardinality of a constant-rank code is applied. It shows a relation between the maximum
cardinalities of a (not necessarily linear) constant-rank and a constant-dimension code.
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Proposition 5.1 (Maximum Cardinality [GY10]).
Forallq and1 < § <r <n < m, the maximum cardinality of a CRym(n, M,dr = § + r,r) constant-
rank code over Fym is upper bounded by the maximum cardinality of a constant-dimension code as
follows:
Afm (nydp=90+r71) < A;Ig (n,ds = 26,r).

However, the connections between constant-dimension and constant-rank codes are even more
far-reaching. The following proposition shows explicitly how to construct constant-rank codes out of
constant-dimension codes and is a generalization of [GY10, Proposition 3] to arbitrary cardinalities.

Proposition 5.2 (Construction of a Constant-Rank Code).

Let M be a CDy(m, [M|,ds ar,7) and N be a CDy(n, |N|, ds v, 1) constant-dimension code with r <
min{n, m} and cardinalities M| and |N|. Then, there exists a CRym (n, Mg, dr,r) constant-rank code
C of cardinality Mp = min{|M|, |N|} with C; (C) C M and R, (C) C N. Further, the minimum rank
distance dp of C is

1 1
dR > 5 ds,M + 5 ds,Nv

and if IM| = |N| additionally:

1
dr < §min {d37M,ds,N} +r.

Proof. Let G; € Fi*™ and H; € F,*", Vi € [1, min{|M|, N[}, be full-rank matrices, whose row
spaces are min{|M|, |N|} codewords (which are subspaces themselves) of M and N, respectively.
Let Cbe a CRym (n, Mg, dg, rg) constant-rank code, defined by the set of codewords A; = G?HZ
Vi € [1,min{|M],|N|}]. All such codewords A; are distinct, since the row spaces of all Gy,
respectively H;, are different. These codewords A; are m X n matrices of rank exactly rg = r
since G; € Fy*™ and H; € F{*" have rank r. The cardinality is |C| = Mg = min{|M|,[N|} and
Cy(C) € Mand R, (C) € N by Lemma 3.8.

The lower bound on the minimum rank distance follows from Lemma 5.1 for different A Aj:

1 1
dp > 5 dS(Rq (AZ) qu (Aj)) + 5 dS(Cq (Az) ch (A )) > = d N5 dS,M~

1
2
If M| = is s(Rq(A;), Ry (Aj)) = ds n. Then,
Lemma 5.1 gives dg < ds v + 7. If we choose A; and A such that d,(C, (A;),Cq (Aj)) = ds u1,
then dr < ds s + r and the upper bound on the rank distance follows. |

5.2.2 Problem Statement

We analyze the question of polynomial-time list decodability of rank-metric codes. Thus, we want to
bound the maximum number of codewords in a ball of radius 7 around a received word r. This number
will be called the maximum list size £ in the following. The worst-case complexity of a possible list
decoding algorithm directly depends on /.

Problem 5.1 (Maximum List Size).
Let C be an (n, M,d)r code over Fyn of length n < m, cardinality M and minimum rank distance
dr = d. Let T < d. Find lower and upper bounds on the maximum number of codewords { in a ball of
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rank radius T around a wordr = (1o 11 ... Tp—1) € Fym. Hence, find bounds on
¢ et K(m,n,d, 7) def max {‘C N Bg)(rﬂ}.
re ;Lm

Whenever the parameters m, n, d, T are clear from the context, we will use the short-hand notation ¢
for the maximum list size. For an upper bound on ¢, we have to show that the bound holds for any
received word r, whereas for a lower bound on / it is sufficient to show that there exists (at least) one r
for which this bound on the list size is valid.

W.lo.g. we assume throughout this chapter that n < m. If this is not the case, we consider the
transpose of all matrices such that also n < m holds. We call n the length of such a block code in rank
metric over Fym.

Moreover, if we restrict ourselves to Gabidulin codes rather than arbitrary rank-metric codes, the
task becomes more difficult due to the additional imposed structure of the code.

Let us denote the list of all codewords of an (n, M, d)r code C in the ball of rank radius 7 around a
given word r by:

£(Cr) ¥ cnB? @) = {c<1>, @, clD ¢ e Cand rk(r — @) < 7, w}. (5.4)

Clearly, the cardinality is |[£(C,r)| < /.

5.2.3 Connection between Constant-Rank Codes and the List of Decoding

Before proving our bounds, let us explain the connection between the list size for decoding a certain
rank-metric code and the cardinality of a certain constant-rank code. As in (5.4), denote the list of
codewords for an (n, M,dr = d)g code C and for 7 < d by

T

ﬁ((; I‘) — {C(l)7 C(Z), . C(|E|)} =Cn Bg)(r) — Z (C N S}(gf)@))j
1=0
for some (received) word r € Fyn. If we consider only the codewords with rank distance exactly 7

from the received word, i.e., on the sphere Sg) (r):
{c(l), c@, ... ,c(z)} “en Sg)(r),

we obtain a lower bound on the maximum list size: £ > ¢ = |C N Sg) (r)].
Now, consider a translate of all codewords on the sphere of radius 7 as follows:

Z(C,r) « {r— C(l)ar—C(Q),...,r — C(Z)}_

This set Z(C, r) is a CRym(n, Mr,dr > d, T) constant-rank code over F,m since rk(r — c(i)) =T,
Vi € [1, /], and its minimum rank distance is at least d, since

rk(r —c@ —r 4+ cW)) = rk(c® — V) > d, Vi,je[1,7),i#j.

The cardinality of this constant-rank code is Mg = /. For 7 < d, this constant-rank code is non-linear
(or a translate of a linear code if C is linear), since the rank of its codewords is 7, but its minimum
distance is at least d.

Hence, a translate of the list of all codewords of rank distance exactly 7 from the received word can
be interpreted as a constant-rank code. This interpretation makes it possible to use bounds on the
cardinality of a constant-rank codes to obtain bounds on the list size ¢ for decoding rank-metric codes.
This is also illustrated in Figure 5.2.
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10)

ol

Figure 5.2. Interpretation of the decoding list as a constant-rank code, where all codewords (gray and black)
constitute the decoding list and the black codewords constitute a constant-rank code.

5.3 A Lower Bound on the List Size for Gabidulin Codes

In this section, we provide a lower bound on the list size when decoding Gabidulin codes. The proof is
based on the evaluation of linearized polynomials and is inspired by Justesen and Hegholdt’s [JH01]
and Ben-Sasson, Kopparty, and Radhakrishnan’s [BKR10] approaches for bounding the list size of
Reed-Solomon codes.

Theorem 5.2 (Bound I: Lower Bound on the List Size).
Let the linear Gabidulin code Gab[n, k] over Fgm withn < m and dp = d = n — k + 1 be given. Let
7 < d. Then, there exists a wordr € ]Fgm such that the maximum list size { satisfies

L
—

{=10(m,n,d,T) > ‘Gab[n, KNS (r) (qm)yn—T—F

> qqu(m—l—n)—’rQ—md’ (5.5)

and for the special case of n = m:
0> qnq2nT—T2—nd

Proof. Since we assume 7 < d=mn —k + 1,also kK —1 < n — 7 holds. Let us consider all monic
linearized polynomials of ¢-degree exactly n — 7 whose root spaces have dimension n — 7 and all
roots lie in Fyn. There are exactly (see e.g. [Ber84, Theorem 11.52]) [n:] such polynomials.

Now, let us consider a subset of these polynomials, denoted by P: all polynomials where the
g-monomials of g-degree greater than or equal to k£ have the same coefficients. Due to the

pigeonhole principle, there exist coefficients such that the number of such polynomials is

"]

Pl 2 ==
| | <qm)n—7'—k

since there are (¢")" "~ possibilities to choose the highest n — 7 — (k — 1) coefficients of a

monic linearized polynomial with coefficients Fym.
Note that the difference of any two polynomials in P is a linearized polynomial of ¢-degree strictly
less than k and therefore the evaluation polynomial of a codeword of Gab[n, k.
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Let r be the evaluation of p(x) € P at a basis A = {ag, a1, ..., an—1} of Fgn over Fy:

r=(rori ... rn—1) = (p(awo) p(aa) ... plan-1)).

Further, let also ¢(x) € P, then p(z) — q(z) has g-degree less than k. Let ¢ denote the evaluation
of p(z) — q(x) at A. Then, r — c is the evaluation of p(x) — p(x) 4+ ¢(x) = ¢(x) € P, whose
root space has dimension n — 7 and all roots lie in Fyn. Thus, dimker(r — c¢) = n — 7 and
dimCy(r—c) =r1k(r—c) =r.

Therefore, for any q(z) € P, the evaluation of p(z) — ¢(x) is a codeword of Gab|n, k| and has
rank distance 7 from r. Hence,

Gab[n, k] NS ()| > |P|.
Using (2.1), this provides the following lower bound on the maximum list size:

q(niT)T > qm T(m+n)—72—md

(P> L ,
*| |* (qm)n—T—k - q

and for n = m the special case follows. |

This lower bound is valid for any 7 < d, but we want to know, which is the smallest value for 7 such
that this expression grows exponentially in n.
For arbitrary n < m, we can rewrite (5.5) by

0> qm(l—s) . qT(m—i—n)—TQ—m(d—E)’

where the first part is exponential in n < m for any 0 < € < 1. The second exponent is positive for

2
T> mEn _ \/(m—i—n) —m(d—e€) déij.
2 4
For n = m, this simplifies to
T>n-— n(n—d—ke)déft]. (5.6)

Therefore, our lower bound (5.5) shows that the maximum list size is exponential in n for any 7 > 77.
For n = m, the value 77 is basically the Johnson radius for codes in Hamming metric.

Faure obtained a similar result in [Fau06, Fau09] by using probabilistic arguments.

This reveals a difference between the known limits to list decoding of Gabidulin and Reed—Solomon
codes. For Reed-Solomon codes, polynomial-time list decoding up to the Johnson radius can be
accomplished by the Guruswami-Sudan algorithm. However, it is not proven that the Johnson radius
is tight for Reed-Solomon codes, i.e., it is not known if the list size is polynomial in n between the
Johnson radius and the known exponential lower bounds (see e.g. [JH01, BKR10]).

The result of Theorem 5.2 can also be obtained by interpreting the decoding list as a constant-rank
code as in Subsection 5.2.3. For this purpose, we can use [GY10, Lemma 2] as follows.

Let C be a Gab[n,n — d + 1] code of minimum rank distance d and B be a Gab[n,d — 7] code
of minimum rank distance n — d + 7 + 1. Let C be defined as in Definition 2.16 with the ele-

ments go, g1, -.,9n—1 € Fgn, which are linearly independent over [Fy, and let B be defined with
g([)n_dH] , ggn_dﬂ], ceey gLn__ld+1]. The corresponding generator matrices according to (2.27) are denoted
by G¢ and Gg.

Then, the direct sum code C & B has the generator matrix (GL GL)” and is a Gab[n,n — 7 + 1]
code with minimum rank distance 7.
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The rank weight distribution of MRD codes was given in [Gab85, Section 3] and therefore the number
of codewords of rank 7in C @ B is

W,(C @ B) = m (™ — 1).

The cardinality of the code B is |[B| = ¢"™%=7) and therefore, with the pigeonhole principle, there exists
a vector b € B such that the number of codewords in the translated code C & b is lower bounded by

A -1

W,(C@b) > [ (5.7)

qm(d—T)
Hence, the number of codewords of C in rank distance 7 from b is W(C & b) and (5.7) yields the same
lower bound on ¢ as Theorem 5.2.

Example 5.1 (List Decoding of Gab[12, 6] Code).

For the Gabidulin code Gab[12, 6] over Fy12 with d = 7, the BMD decoding radius is 7o = |(d=1)/2| = 3.
The radius from (5.6) with e = 0.9 is 7y = [3.58| = 4. Hence, for this code of rate k/n = 1/2, no
polynomial time list-decoding beyond Ty is possible.

5.4 An Upper Bound on the List Size for Rank-Metric Codes

In this section, we will derive an upper bound on the list size when decoding rank-metric codes. This
upper bound holds for any rank-metric code and any received word.

Theorem 5.3 (Bound II: Upper Bound on the List Size).
Let |[(d-1)/2] <7 < d <n <m. Then, for any (n, M,d)r code C in rank metric, the maximum list size
is upper bounded as follows:

(= E(m,n,d,T) = max {‘CﬂBg)(r)‘}

re]Fj;m
~ a1 dl
<14+ Z 2t+tl_d
t:L%J‘H [2t+1fd]

T

S 1 4 4 Z q(2t7d+1)(n7t)

t=[ 451 |+1
<14+4- (T _ L%J ) .q(2T—d+1)(n—L(d—1)/2j—1)‘ (5.8)
Proof. Let {cV),c® ... ¢} denote the intersection of the sphere Sg)(r) in rank metric

around r and the code C. As explained in Section 5.2.3,
Z(C,r) = {I‘ —cWr—c® . r— c(z)}

can be seen as a CRym(n, Mg,dr > d,t) constant-rank code over F,m for a word r € Fgm.
Therefore, for any word r € Fjm, the cardinality of Z(C, r) can be upper bounded by the
maximum cardinality of a constant-rank code with the corresponding parameters:

£(C,r)| = [CNSY ()| < AL (n,dg > d,t) < AR, (n,d,t).
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We can upper bound this maximum cardinality by Proposition 5.1 with 6 = d — ¢ and r = ¢ by the
maximum cardinality of a constant-dimension code:

R S
Agn (n,d,t) <A (n,ds =2(d —1),t).

For upper bounding the cardinality of such a constant-dimension code, we use the Wang-Xing—
Safavi-Naini bound [WXS03] (often also called anticode bound) and obtain:

[t—(dﬁt)—&-l}

AS (n,dy =2(d—t),t) < (5.9)

@bl

In the ball of radius |(d—1)/2] around r, there can be at most one codeword of C and therefore, the
contribution to the list size is at most one. For higher ¢, we sum up (5.9) from ¢t = [(d=1)/2] 4+ 1 to
7, use the upper bound on the ¢-binomial (2.1) and upper bound the sum. |

In [Wac12, Theorem 2], we showed an alternative proof of Theorem 5.3 based on the intersection of
subspaces, but implicitly it re-derives the Wang—Xing—-Safavi-Naini bound [WXS03].

The bound can slightly be improved if we use better upper bounds on the maximum cardinality of
constant-dimension codes instead of (5.9) in the derivation, for example the iterated Johnson bound for
constant-dimension codes [XF09, Corollary 3]. In this case, we obtain:

T qn_l qnfl_l qn+d72t_1
€:€(m,n,d,7’)§1+ Z {qt—l{qt—l—lkn{ s wl K .

t=| 41 [+1

However, the Wang—-Xing-Safavi-Naini bound provides a nice closed-form expression and is asymp-
totically tight. Therefore, using better upper bounds for constant-dimension codes does not change the
asymptotic behavior of our upper bound. Unfortunately, our upper bound on the list size of rank-metric
codes is exponential in the length of the code and not polynomial as the Johnson bound for Hamming
metric. However, the lower bound in Section 5.5 will show that any upper bound depending only on
the length n < m and the minimum rank distance d will be exponential in (7 — [(d=1)/2])(n — 7),
since there exists a rank-metric code with such a list size.

5.5 A Lower Bound on the List Size for Rank-Metric Codes

The bound presented in this section shows the most significant difference to bounds for codes in
Hamming metric. We show the existence of a rank-metric code with exponential list size for any
decoding radius greater than half the minimum distance. First, we prove the existence of a certain
constant-rank code in the following theorem.

Theorem 5.4 (Constant-Rank Code).
Let [(d-1)/2] +1 <7 <d<n<mandt <n— 7. Then, there exists a CRym(n, Mp,dr > d,T)
constant-rank code over Fym of cardinality Mp = g T=La=Df]),

Proof. First, assume d is even. Let us construct a CDy(m, | M|, d, T) constant-dimension code M
and a CDy(n, |N|,d, ) code N by lifting an MRD|7, 7 — d/2 4- 1] code over F m-- of minimum
rank distance d/2 and an MRD([7, 7 — 4/2 + 1] code over IF ;- of minimum rank distance d/2 as
in Lemma 2.18. Then, with Lemma 2.18:

‘N| = q(nfT)(de/QJrl) S |M’ — q(m—T)(de/2+1)'
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From Proposition 5.2, we know therefore there exists a CR;m (n, Mg, dg, T) code of cardinality
Mp = min{|N|, ]|\/||} — q(n—r)(T—d/erl) _ q(nfT)(Tft(d—l)/zJ).

For its rank distance by Proposition 5.2, the following holds:

1 1
dr > 3 ds.m + B dsn =d.

Second, assume d is odd. Let M be a CDy(m, |M|,d — 1, 7) code constructed by the lifting of an
MRDIr, 7 — (d=1)/2 4 1] code over F m-- and let N be a CD,(n,|N|,d + 1, 7) code, constructed
by lifting an MRD[7, 7 — (d+1)/2 + 1] code over Fn-- code as in Lemma 2.18. Then,

“\” _ q(nf‘r)(‘rf(d+1)/2+1) < ||\/|‘ _ q(qu-)(Tf(d—1)/2+1).
From Proposition 5.2, we know that there exists a CRym (1, Mg, dg, T) code of cardinality
Mp = min{|N|, ||\/||} = ||\|| — q(n—’T)(’T—(d—l)/Q) _ q(TL—T)(T—L(d—l)/QJ)‘

With Proposition 5.2, the rank distance dg is lower bounded by:

1 1 1 1
dp > =d —d =—-(d—-1 —(d+1)=d.
RZ 5 dsm + 5 ds 2( )+2(+)

This constant-rank code can now directly be used to show the existence of a rank-metric code with
exponential list size.

Theorem 5.5 (Bound III: Lower Bound on the List Size).
Let [(d-1)/2| +1 <7 <d <mnandT <n — 7. Then, there exists an (n, M,dr > d)r code C over Fym
of lengthn < m and minimum rank distance dg > d, and a wordr € Fim such that

0= t(m,yn,d,7) > |CNBY ()] > gL, (5.10)

Proof. Let the CRym(n, Mg,dg > d,T) constant-rank code from Theorem 5.4 consist of the
codewords:

fa®,a® . a(ND},

This code has cardinality Mz = |[N| = ¢("~"(7=L*"Y/2]) (see Theorem 5.4). Choose r = 0, and
hence, rk(r — a() = rk(a?) = 7, Vi € [1, |N|] since the a(*) are codewords of a constant-rank
code of rank 7. Moreover, dg(a(?,a(?)) = rk(a(¥ — al9)) > d since the constant-rank code has
minimum rank distance at least d.

Therefore, all), a? ... alND are codewords of an (n,M,dr > d)g code C over Fym in rank
metric, which all lie on the sphere of rank radius 7 around r = 0 (which is not a codeword of C).
Hence, there exists an (n, M,dr > d)r code C over Fym of length n < m such that £ >

€N B (@) > 1CN ST ()] = N| = g7 T-Le172) x

Notice that this (n, M,dr > d)g code in rank metric is non-linear since it has codewords of weight
7 < d, but minimum rank distance at least d.
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For constant code rate R = k/n and constant relative decoding radius 7/n, where 7 > [(d-1)/2],
(5.10) gives

0> qn2(1—7'/n)(7'/n—(1—R)/2) _ qn2~const'

Therefore, the lower bound for this (n,M,dr > d)r code is exponential in n < m for any
7 > [(d-1)/2]. Hence, Theorem 5.5 shows that there exist rank-metric codes, where the number
of codewords in a rank-metric ball around the all-zero word is exponential in n, thereby prohibiting a
polynomial-time list decoding algorithm. However, this does not mean that this holds for any rank
metric code. In particular, the theorem does not provide a conclusion if there exists a linear code or
even a Gabidulin code with this list size.

Remark 5.1 (Non-Zero Received Word).
The rank-metric code C shown in Theorem 5.5 is clearly not linear. Instead of choosing r = 0, we can

choose for exampler = a(l). The codeword;f the CRym (n, Mp,dr > d,T) constant-rank code from
Theorem 5.4 of cardinality Mr = |N| = g ==Y are denoted by:

a® a® . alND,
Then, the following set of words
{C(l)7 c? . C(INl)} def {073(1) —a® al _ B a0 _ a(\ND}

consists of codewords of an (n, M,dr > d) g code C over Fym since dg(c¥,cl)) = rk(c(®) — cU)) =
rk(a®) —a® —a +al)) = rk(al) —a®) > d fori # j sincea®,al) are codewords of the constant-
rank code of minimum rank distance dg. Moreover, all codewords ¢(") have rank distance exactly T from r
sincerk(r — ¢V) = rk(a”) = 7 and the same bound on the list size of C follows as in Theorem 5.5. This
(n, M,dr > d)g rank-metric code over Fym is not necessarily linear, but also not necessarily not linear.

The next corollary shows that the restriction 7 < n — 7 does not limit the code rate for which
Theorem 5.5 shows an exponential behavior of the list size. For the special case of 7 = |(d-1)/2| 41,
the condition 7 < n — 7 is always fulfilled for even minimum distance since d < n. For odd minimum
d — 1 < n has to hold. Notice that d = n is a trivial code.

Corollary 5.2 (Special Case 7 = |(d—-1)/2]| 4 1).
Letn <m,7 = [(d=1)/2] + 1 andd < n — 1 be odd. Then, there exists an (n, M,dr > d)g code C and
awordr € Fim such that |C N Bg)(r)\ > ¢,

This corollary hence shows that for any n < m and any code rate there exists a rank-metric code of
rank distance at least d whose list size can be exponential in n.

For the special case when d is even, 7 = d/2 and n = m, the minimum rank distance of C is exactly
d since the lower and upper bound on dy in Proposition 5.2 coincide.

Corollary 5.3 (Special Case 7 = d/2).
Letn = m, d be even and T = d /2. Then, there exists an (n, M,dr = d)r code C in rank metric and a

() _
wordr € Fgm such that |C N By (r)| > q(n 7).
Corollaries 5.2 and 5.3 show that the condition 7 < n — 7 does not restrict lists of exponential size

to a certain code rate. However, the following remark shows anyway what happens if we assume
T>n-—T.
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Remark 5.2 (Case 7 > n — 7).
Let |(d-1)/2| +1 <7 <d<n<mandT >n— 7. Here, we can apply the same strategy as before:
construct a constant-dimension code and show the existence of a constant-rank code of certain cardinality.
For simplicity, let us consider only the case when d is even, the case of odd minimum distance follows
straight-forward. Consider the lifting of a linear MRD[n —7,n—7—d/2+1] code C over Fyr of minimum
rank distance d/2. The lifting is denoted by lift(C), i.e., we consider [L. C;] with C; € F;X(R_T) for all
i=1,...,|C|. In contrast to Lemma 2.18, we do not transpose the codewords of the MRD code here. The
subspaces defined by this lifting are a CDy(n,|N|,ds = d,T) constant-dimension code of cardinality
qT(TL—T—d/2+1).

Then, with the same method as in Theorems 5.4 and 5.5 and a CD4(m,|M|,d,T) code M and a
CD,(n,|N|,d, ) code N, there exists an (n, Mg, dp > d)g code C in rank metric and a wordr € Fym
such that

|C N Bg) (r)‘ > (=T =d/2+1),

However, the interpretation of this value is not so easy, since it depends on the concrete values of T, d and n
if the exponent is positive and if this bound is exponential in n or not. Moreover, as mention before, we do
not need this investigation for polynomial-time list decodability as we recall that Theorem 5.5 shows that
the list size is lower bounded by ¢"~7) if we choose T = | (d=1)/2] 4 1 for codes of any rate, since then
T <n — 7 is fulfilled.

The following lemma shows an improvement in the exponent of the lower bound of Theorem 5.5 for
the case 7 = d/2 or when m is quite large compared to n.

Lemma 5.2 (Bound of Theorem 5.5 for 7 = d /2 or Large Extension Degree m).

Let [(d-D/)2] <7 <d<nandT <n—r7.Ifeithert =d/20orm > (n—7)(27 —d+1)+7+1, then
there exists an (n, M, dr = d)r code C over Fym of length n < m and minimum rank distance d, and a
wordr € Fym such that

0= t(myn,d,7) > |CNBY (r)] > g7 CT=dD), (5.11)

Proof. We use [GY10, Theorem 2], which shows that for 2r <n < mand 1 < < r there exists
a constant-rank code of cardinality

R _ AS —
Agm (0,6 +7,7) = AJ (n,ds = 20,7)

ifeitherd =rorm>(n—r)(r—d+1)+r+1.
Thus, similar to the proof of Theorem 5.3, we choose r = 7 and 6 = d — 7. Hence, there exists a
CRym (n, MR, d, ) constant-rank code of cardinality

MR — AS (TL, ds — 2(d _ 7_),7_) > q(’nfT)(Tf(dfT)+1) — q(nf‘r)(Q‘rfdJrl)7

where we used the cardinality of a constant-dimension code based on a lifted MRD code (see
Lemma 2.18) as lower bound. Analog to Theorem 5.5, we can use this constant-rank code to bound
the list size. [ |

For the case 7 = d/2, this results in Corollary 5.3. Hence, for the cases of Lemma 5.2, the lower bound
on the list size (5.11) and the upper bound (5.8) show the same asymptotic behavior and the upper
bound is therefore asymptotically tight.
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5.6 Summary, Comparison to Hamming Metric and Outlook

Let us interpret the results from the previous sections and compare them to known bounds on list
decoding in Hamming metric (see e.g. [Gur99, Chapters 4 and 6]).

Theorem 5.5 (Bound III) shows that there is a code over Fym of length n < m of rank distance at least
d such that there is a ball of any radius 7 > |(d-1)/2], containing a number of codewords that grows
exponentially in the length n. For this rank-metric code, no polynomial-time list decoding algorithm
beyond half the minimum distance exists. This bound is tight as a function of d and n, since below
we can clearly always decode uniquely. It does not mean that there is no code in rank metric with a
polynomial list size for a decoding radius greater than half the minimum distance, but in order to find a
polynomial upper bound, it will be necessary to use further properties of the code in the derivation of
such bounds (linearity or the explicit code structure).

In particular, for Gabidulin codes, there is still an unknown region between half the minimum distance
and the Johnson radius. With Bound I, we have proven that the list size can become exponential if the
radius is at least the Johnson radius (see Theorem 5.2). These decoding regions are shown in Figure 5.3,
depending on the relative normalized minimum rank distance § = d/n.

1 1

—— BMD radius —— BMD radius
- - - Johnson radius y
0.8 | | 0.8 | y
- 0.6 | There is a code with 1 0.6 |- exponential R 2
- exponential list size - L
n n ,’/
04 [ 04 P
0.2 | . 0.2 = .
unique 2 unique
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
d=d/n 0=d/n=1-R
(a) General codes in rank metric (b) Gabidulin codes

Figure 5.3. Decoding regions of codes in rank metric

Further, our lower bound from Theorem 5.5 (Bound III) shows that there does not exist a polynomial
upper bound depending only on n and d similar to the Johnson bound for Hamming metric. Hence,
our upper bound from Theorem 5.3 is relatively tight (except for a factor of two in the exponent), since
it has the same asymptotic behavior as the lower bound from Theorem 5.5.

These results show a surprising difference to codes in Hamming metric. Any ball in Hamming metric
of radius less than the Johnson radius 7; = n — y/n(n — d) always contains a polynomial number of
codewords of any code of length n and minimum Hamming distance d (compare Section 5.1). Moreover,
it can be shown that there exist codes in Hamming metric with an exponential number of codewords if
the radius is at least the Johnson radius [GRS00, Gur99]. However, it is not known whether this bound
is also tight for special classes of codes, e.g. Reed—Solomon codes. This points out another difference
between Gabidulin and Reed-Solomon codes: For Reed—Solomon codes, the minimum radius for which

an exponential list size is proven is much higher [JH01, BKR10] than for Gabidulin codes (see Bound I,
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Theorem 5.2).

Nevertheless, it is often believed that the Johnson bound is tight not only for codes in Hamming
metric in general, but also for Reed—Solomon codes. Drawing a parallel conclusion for Gabidulin codes
would mean that the maximum list size of Gabidulin codes could become exponential directly beyond
half the minimum distance—but this requires additional research.

For future research, it is challenging to find a bound for the unknown region when list decoding
Gabidulin codes. However, this seems to be quite difficult since the gap between the Johnson radius
and the known lower exponential bounds for Reed—Solomon codes seems to translate into the gap
between half the minimum distance and the Johnson radius for Gabidulin codes. Despite numerous
publications on this topic, nobody could close the gap for Reed—Solomon codes so far. As a first step
towards revealing the gap for Gabidulin codes, it might be possible to prove something like Theorem 5.5
for linear codes in rank metric.
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CHAPTER 6

Convolutional Codes in Rank Metric

tion 2.1.4). All convolutional codes can be written as (P)UM codes when we join several blocks

PARTIAL UNIT MEMORY (PUM) cODEs are convolutional codes with memory one (compare Subsec-
i

nto one block as in [Bos98, Theorem 8.28].

Further, they can be constructed based on block codes, e.g., Reed—Solomon [Z594, PMAS8S, Jus93]
or cyclic codes [DS93, DS92]. The underlying block codes make an algebraic description of the
convolutional code possible, enable us to estimate the distance properties and allow us to take into
account existing efficient block decoders in order to decode the convolutional code.

A convolutional code in Hamming metric can be characterized by its active row distance, which in
turn is basically determined by the free distance and the slope. These distance measures determine the
error-correcting capability of the convolutional code. In [Lee76, Lau79, TJ83, PMA88], upper bounds on
the free (Hamming) distance and the slope of (P)UM codes are derived.

In the context of network coding, dependencies between different blocks transmitted over a network
can be created by convolutional codes. In multi-shot network coding, the network is used several times
to transmit several blocks. In such a scenario, dependencies between the different shots can help to
correct more errors than the classical approach based on rank-metric block codes.

In this chapter, we introduce (P)UM codes in (sum) rank metric. The sum rank metric is motivated
by multi-shot network coding [NU10] and we use it to define the free rank distance and the active
row rank distance in Subsection 6.1.1. In Subsection 6.1.2, we derive upper bounds on the free rank
distance and the slope of the active row rank distance of (P)UM codes. Section 6.2 provides two explicit
constructions of UM and PUM codes based on Gabidulin codes. The construction in Subsection 6.2.1
is based on the parity-check matrix and we give a lower bound on its distance parameters for dual
memory gy = 1. In Subsection 6.2.2, we construct PUM codes based on the generator matrix of
Gabidulin codes and calculate their distance properties. Section 6.3 provides an efficient decoding
algorithm based on rank-metric block decoders, which is able to handle errors and row/column erasures.
This decoding algorithm can be seen as a generalization of the Dettmar—Sorger algorithm [DS95].
Finally, in Section 6.4, we show—similar to [SKK08]—how lifted PUM codes can be applied in random
linear network coding (RLNC) and how decoding in RLNC reduces to error-erasure decoding of PUM
codes based on Gabidulin codes.

The results presented in Section 6.1 and Subsection 6.2.1 were partly published in [WSBZ11a,
WSBZ11b] and the results from Subsection 6.2.2 and Sections 6.3 and 6.4 in [WS12].
6.1 Distance Measures for Convolutional Codes in Rank Metric
In this section, we define distance measures for convolutional codes based on a special rank metric and

prove upper bounds on them. This special rank metric—the sum rank metric—was proposed by Nobrega
and Uchda-Filho under the name “extended rank metric” in [NU10] for multi-shot transmissions in a
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network. Furthermore, they modified the lifting construction such that it suits the sum rank metric.

6.1.1 Definition of Distance Parameters

In [NU10], it is shown that the sum rank distance and the subspace distance of the modified lifting

construction are related in the same way as the rank distance and the subspace distance of the lifting

construction, see [SKK08] and Lemma 2.18. Hence, the use of the sum rank metric for multi-shot

network coding can be seen as the analog to using the rank metric for single-shot network coding.
The sum rank weight and distance are defined as follows.

Definition 6.1 (Sum Rank Weight and Sum Rank Distance).
Let two vectors a,b € Fg,],Y be given and let them be decomposed into N subvectors of length n such that:

A= (@@ al) _ alD) b (B0 B0 | pD)

witha® bl ¢ Fym, Vi € [0, N — 1]. The sum rank weight of a is the sum of the ranks of the subvectors:

N-1 N-1
def i 7
wtzr(a) © ) wtr(a®) =3 rk(al). (6.1)
i=0 i=0
The sum rank distance between a and b is the sum rank weight of the difference of the vectors:
ds,r(a,b) = wtg g(a—b) = > rk(a? — b)), (6.2)
i=0

Since the rank distance is a metric (see Lemma 2.13), the sum rank distance is also a metric.
An important measure for convolutional codes in Hamming metric is the free distance, and conse-
quently, we define the free rank distance in a similar way in the sum rank metric.

Definition 6.2 (Free Rank Distance).
The free rank distance of a convolutional code C is the minimum sum rank distance (6.2) between any two
different codewords a,b € C:

def i — mi N @) _ p@)
d¢r aI,EleI(l:, {dg,R(a, b)} ar})nera {Z rk(a b )} .
a#b azb ‘=0

For a linear convolutional code df p = minaecc axo { wty, R(a)} holds. Throughout this chapter, we
consider only linear convolutional codes.

Any convolutional code can be described by a minimal code trellis, which has a certain number of
states and the input/output blocks are associated to the edges of the trellis. The current state in the
trellis of a (P)UM code over [F, can be associated with the vector s = u-DGM), see e.g., [Jus93],
and therefore there are qkm possible states. We call the current state zero state if s() = 0. A code
sequence of a (P)UM code with N non-zero consecutive blocks can therefore be considered as a path in
the trellis, which starts in the zero state and, after IV edges (with non-zero output blocks), ends in the
zero state.

The error-correcting capability of convolutional codes is determined by active distances—a fact
that will become obvious in view of our decoding algorithm in Section 6.3. In the following, we
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define the active row/column/reverse column rank distances analog to active distances in Hamming
metric [TJ83, HJZZ99, JZ99]. In the literature, there are different definitions of active distances in
Hamming metric. Informally stated, for a j-th order active distance of C, we simply look at all sequences
of length j, including conditions on the passed states in the minimal code trellis of C.

Let C;T) denote the set of all codewords in a convolutional code C, corresponding to paths in the
minimal code trellis which diverge from the zero state at depth zero and return to the zero state for
the first time after j branches at depth j. W.Lo.g., we assume that we start at depth zero, as we only
consider time-invariant convolutional codes. This set is illustrated in Figure 6.1.

Time

States

Figure 6.1. [llustration of the set C;T): it consists of all codewords of C having paths in the minimal code trellis
which diverge from the zero state at depth 0 and return to the zero state for the first time at depth j.

Definition 6.3 (Active Row Rank Distance).
The active row rank distance of order j of a linear convolutional code is defined as

dy])% df min {wtgﬁ(c)}, Vi > 1.
’ CEC;r)

Clearly, for non-catastrophic encoders, the minimum of the active row rank distances of different
orders is the same as the free rank distance, see Definition (6.2):

drr= mjin {dgr])%}

The slope of the active row rank distance is defined as follows.

Definition 6.4 (Slope of Active Row Rank Distance).
The average linear increase (slope) of the active row rank distance (Definition 6.3) is

d’)
OR def lim {]’R}
J—0 ]

As in Hamming metric [JPZ04, Theorem 1], [Jor02, Theorem 2.7], the active row rank distance of
d\")

order j can be lower bounded by a linear function iR max{j - or + B, ds r} for some maximum

B <dyR.
Similar to Hamming metric, we can introduce an active column rank distance and an active reverse

(
J
and ending in any state at depth j and let C

) denote the set of all codewords leaving the zero state at depth zero

(

J

column rank distance. Let C

") denote the set of all codewords starting in any state at
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depth zero and ending in the zero state in depth j, both without zero states in between (see Figure 6.2).
The active column rank distance and the active reverse column rank distance are then defined by:

dg.f})% def mi](a {Wtng(C)}, d;rg df nin {wtng(c)}, Vj > 1. (6.3)
CEC]-C

’ (rc)

States

(a) C;C): all codewords of C diverging from the (b) Cyc): all codewords of C ending in the zero
zero state at depth 0. state at depth j.

Figure 6.2. Illustration of the sets Cgc) and CETC), where no zero states between depths 0 and j are allowed.

6.1.2 Upper Bounds on Distances of (Partial) Unit Memory Codes

In this section, we derive upper bounds on the free rank distance dy g (Definition 6.2) and the slope o
(Definition 6.4) for UM and PUM codes based on the sum rank metric (6.1), (6.2). The derivation of the
bounds uses known bounds for (P)UM codes in Hamming metric [Lee76, Lau79, PMA88].

Theorem 6.1 (Connection between Distances in Hamming and Sum Rank Metric).
Let the free rank distance be defined as in Definition 6.2 and the active row rank distance as in Definition 6.3.

The active row Hamming distance dy:}l and the free Hamming distance dy i are defined by replacing the

sum rank weight/distance in Definitions 6.2 and 6.3 by the Hamming weight/distance. Then,

dyr <dfm,
(r) (r) .
dip<d;y, Vj=1

Proof. The rank and Hamming weight of a vector a € . are rk(a) < wty(a). Hence:

N-1
wty r(a) = Z rk(a®) < wty(a©@ a® ... a1y,
i=0
and the statement follows with (6.1) and Definitions 6.2, 6.3. .

Thus, the upper bounds for the free Hamming distance and the slope of (P)UM codes from [T]J83, PMA88]
also hold for (P)UM codes in sum rank metric.

Corollary 6.1 (Upper Bounds).
For a UM(n, k) code, where v = k, the free rank distance is upper bounded by:

dep<2n—k+1. (6.4)
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For a PUM(n, k|k(M) code, where v = k(1) < k, the free rank distance is upper bounded by:
dprp<n—k+v+1. (6.5)
For both, UM and PUM codes, the average linear increase (slope) is upper bounded by:

or <n—k. (6.6)

6.2 Constructions of Convolutional Codes in Rank Metric

This section provides two constructions of (P)UM codes based on Gabidulin codes. One of them uses
the parity-check matrix (Subsection 6.2.1) and the other one the generator matrix (Subsection 6.2.2) of
the convolutional code for the definition.

6.2.1 PUM Codes Based on the Parity-Check Matrix of Gabidulin Codes

The construction in this subsection is similar to the construction of (P)UM codes based on Reed-
Solomon codes from [Z594]. Theorem 6.2 shows sufficient conditions that the parity-check matrix
(based on Gabidulin codes) defines a (P)UM code.

Theorem 6.2 ((P)UM Code Based on Gabidulin Codes).
Let iy > 1 and let H be the semi-infinite parity-check matrix of a convolutional code C over Fym as in
(2.7) with code rate R = k/n > g /(um + 1). Let each submatrix H® be the parity-check matrix of a
Gab|n, k| code, i.e.:

HO = qvan, (b)) = qvan,_, ((h§" b ... b)), Vi€ [0, ),

n

where h(()i), hgi), e ,hff)_l € Fym are linearly independent over F . Additionally, let
HO)
aor | HO
H() < . define a Gab[n,n — (ug + 1)(n — k)] code, (6.7)
()
and let H () H® HOED . HO) define a Gab[(i + 1)n, in + k| code, Vi € [1, pp].

Then, H is the parity-check matrix of a rate R > pp /(pg + 1) (partial) unit memory code over IFym.

Proof. The proof follows from Theorem 2.1 (since the rate restriction is fulfilled and all H® have
full rank) and from Lemma 6.2, which shows that H is in minimal basic encoding form. |

Hence, not only each submatrix H® defines a Gabidulin code, but also specified blocks of submatrices.
The latter one is not necessary to guarantee that it is a (P)UM code, but it results in good distance
properties (see Theorem 6.3). Lemma 6.1 gives an explicit construction, satisfying all requirements of
Theorem 6.2.

In order to fulfill (6.7), H(®) has to be a g-Vandermonde matrix:

c 0 0 0
H( ) = ann(MH_,'_l)(n_k,) (h(o)) = qvan(MH+1)(n—k)((h((] ) h;(l ) N hizl)) (68)
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To satisfy also the conditions on H"()), Vi € [1, jup], we have to ensure that all elements in the set

n

0 0 0)[n—k 0)[n—k
:{hgx...,hgzl,hgﬂ L p Ok

def 0 0
3 {hg>,...,h(jl,h(gl),_”’hg_)lwwhéuH)w_?h?(#_Hl)} y
O [kr (n—F)] .

yeeesy g

b1

PRI O |

of cardinality |H| = (umg + 1) - n, are in Fym and are linearly independent over IF,,.

Therefore, if the elements of H (6.9) are linearly independent and H(®) ¢ F(%HH)(nfk)Xn is a
g-Vandermonde matrix as in (6.8), all requirements of Theorem 6.2 are fulfilled.

The following lemma shows explicitly how to choose the set H using a normal basis of [F;m over I,
(see also Subsection 2.1.2) in order to construct a (P)UM code based on Gabidulin codes.

Lemma 6.1 (Explicit Construction with Normal Basis).
Let ug > 1, the code rate R = k/n > ug/(pw + 1) and By = {p10, g1, ... pl"=1} be a normal
basis of Fym over IF,, where the field size satisfies

n
m > pug(n—k) {n—k—‘ +n. (6.10)
Further, defineh(©) € Fym by
h — (5[0} g gin=k=1] glka+D(n=k)] gllua+D)n=k)+1] - gllur+2)(n=k)=1] | (6.11)
BRUua+1)(n=k)] gR(pa+D)(n=k)+1] - gR(ka+2)(n—k)—1] | ).

Let H®) be defined by (6.8) using h(©). Let the semi-infinite parity-check matrix H as in (2.7) be defined
with the set H from (6.9).

Then, H consists of iy + 1 submatrices H) and satisfies all requirements of Theorem 6.2.

Proof. To prove that H("(?)) defines a Gabidulin code, Vi € [1, su5], with the parameters as in
Theorem 6.2, it is sufficient that all elements in # are linearly independent (6.9). There are at
most m linearly independent elements in Fym. If (n — k) divides n, then h(© can be divided into
subvectors, each of length (n — k) as in (6.11), and the field size has tobe m > (ug + 1) - n. In
general, the last subvector in h(®) might be shorter than n — k and the linear independence within
H (6.9) is guaranteed if (6.10) is fulfilled.

Therefore, hl(j ) = pOUC=R] o in (6.8) and the elements in H (6.9) are linearly independent.

7 .
Hence, H(®) and H("())) define Gabidulin codes with the parameters required in Theorem 6.2. B

The following lemma shows that the parity-check matrix constructed in such a way is in minimal
basic encoding form.

Lemma 6.2 (Construction is in Minimal Basic Encoding Form).
Let a (P)UM code based on Gabidulin codes be defined by its parity-check matrix H as in Theorem 6.2,
explicitly written e.g. as in Lemma 6.1. Then, H is in minimal basic encoding form.

Proof. Let us denote the corresponding polynomial parity-check matrix by H(D) = HO +
HWD + ... + H®#) Dre and compare Remark 2.2 for the required properties.

First, H is in encoding form since H(%) is a g-Vandermonde matrix and therefore has full rank.
Second, we show that H is in basic form. According to [For70, Definition 4], H(D) is basic if it is
polynomial and if there exists a polynomial right inverse H~!(D), such that H(D) - H~!(D) =
L(n—k)x (n—k)- By definition, H(D) is polynomial. A polynomial right inverse exists if and only
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if H(D) is non-catastrophic and hence if the slope is o > 0 [Det94, Theorem A.4]. We will
calculate the slope in Theorem 6.4, proving that g > 0.

Third, we show that H(D) is in minimal form by analyzing the degree of the determinants of all
(n — k) x (n — k) submatrices of H(D). Denote these submatrices by Hy(D) for ¢ = 0,1, .. ..
Clearly, deg(h;;(D)) = pg foralli € [0,n — k — 1], j € [0,n — 1]. Thus, deg[det(H,(D))] <
i (n — k). The coefficient of D#("=k) of det(H, (D)) is exactly det(Hé“H)), where Hé’”{) is
a (n — k) x (n — k)-submatrix of H(##)_ Since HE“H) isan (n — k) x (n — k) g-Vandermonde
matrix, det(HE“H)) # 0 and deg[det(Hy(D))] = pu(n — k), V£ = 0,1,. ... This is equal to the
constraint length in obvious realization v = pg(n — k) and hence, H(D) is in minimal basic
encoding form. [

Alternatively, we could use [JZ99, Theorem 2.22, (iii)] to prove that H is in basic form. Since we
consider non-binary convolutional codes, notice that the corresponding matrix [H(D)]}, (in the notation
of [JZ99]) is a matrix in Fym with the highest coefficient of h; ;(D) at entry (¢, j) and with the entry
0 if h; j(D) = 0. For our construction, [H(D)];, = H*#), which has full rank and therefore, due
to [JZ99, Theorem 2.22, (iii)], H is a basic encoding matrix.

Example 6.1 (Construction of PUM Code based on Parity-Check Matrix).
Let us construct a PUM(6,4|2) code C with iy = 1 and code rate R = 2/3 > pg /(g +1) = 1/2. Due
to (6.10), the field size ism > 12 and we define the code over Fym = Fo12. Let By = {810, gl ... g1}
be a normal basis of Fy12 over Fa.

With (6.11) and (6.9), we obtain

h(U):(ﬁ[O} gl | g Bl | g8l 5[9})7
h(l):(g[ﬂ BBl | 5[6] Bl | 5[10] 5[11])‘

The semi-infinite parity-check matrix H is then given by

5[0] g[l} ﬁ[4} 5[5} 5[8] 5[9]
ﬂ[l} 5[2} 5[5} 5[6} 5[9] 5[10]
ﬂ[2} ﬁ[?)} ﬁ[ﬁ} 5[7} 5[10] /3[11} 5[0] 5[1] 5[4] 5[5] 5[8] 5[9]
H = 5[3} 5[4} 5[7} 5[8} 5[11] 5[12} 5[1] 5[2] 5[5] 5[6] 5[9] 5[10]
5[2] 5[3] 5[6] 5[7] 5[10] g[ll]
5[3] 5[4] 5[7] 5[8] 5[11] ﬁ[12]

(0)
As required by Theorem 6.2, the matrices HO), H) (H©) HW) and <E(1)> define Gabidulin codes.

Theorem 6.2 guarantees that there is a generator matrix of C with memory p = 1, consisting of two
(4 x 6)-submatrices G©) and GO, The submatrices GO0, GOV, G119 gre all (2 x 6)-matrices, since
kM) = v = py(n — k) = 2. Hence, H defines a rate R = 2/3 PUM code based on Gabidulin codes.

Let us now calculate the active row rank distance of the construction of Theorem 6.2 with dual
memory jz = 1. Implicitly, this calculation provides the free rank distance ds g and the slope op.
Denote the minimum rank distances of the codes defined by the parity-check matrices H(®), H(!) and
(H(l) H(O)) by do, d1 and dyg, respectively. They are dy = d; =dyjg =n—k + 1.
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Theorem 6.3 (Active Row Rank Distance of our Construction).
Let a PUM(n, k|k(D) code of rate R > 1/2 with i = 1 be given, where the submatrices of H define

Gabidulin codes as in Theorem 6.2. Then, the active row rank distance dyl)%, (Definition 6.3) is bounded by

) 11 (6.12)
d;l)%ZPJQF-‘-(n—k—Fl), j>2.

Proof. The derivation of the active row rank distances for py = 1 is similar to the analysis
by Zyablov and Sidorenko [ZS94]. In order to estimate the active row rank distance dg.rl)% from

Definition 6.3, consider all paths in the set Cgr) (compare Figure 6.1) for j > 1.

e For the active row rank distance of order one, we have to consider only code sequences of the
form (c(© 00 ...). Using the 2(n — k) x n parity-check matrix H = (HOT HOT)T the
codewords have to satisfy H - c¢(O7T = 0. Since H defines a Gabidulin code of minimum rank
distance 2(n — k) + 1, we obtain dg}i =2(n—k)+1.

e For j = 2, we have to investigate all code sequences of the form (C(O) cbo... ). These code
sequences are defined by the 3(n — k) x 2n parity—check matrix

Due to the definition of the sum rank distance, d( ) >do+dy =2(n—k+1).
e For j = 3 and code sequences of the form (c( ) c(l) c?o .. .), the same two equations have

to hold and therefore, dé% >do+dy = 2(n —k+1).

(3

e For j = 4 and code sequences (C(O) cMc@ ¢ ) we have to consider the 5(n — k) x 4n

parity-check matrix H, for which H - (c ©) ¢ c(Q) 0(3))T = 0 and in particular:

HO . cOT _g  HO.OT 1 5O . @ g HD.BT g

)

and therefore, df&)% >do+dio+di=3n—k+1).

Similarly, dé% >do+dio+di =3(n—k+1)and dg;% >do+dio+dio+di =4(n—k+1).
In general, by continuing this strategy, we obtain the statement. |

The following theorem shows that our construction achieves the upper bound on the free rank distance
for PUM codes (6.5) and half the optimal slope (6.6).
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Theorem 6.4 (Free Rank Distance and Slope of our Construction for ug = 1).
For R > 1/2, the PUM(n, k|k(M)) code based on Gabidulin codes as in Theorem 6.2 with ju;; = 1 achieves
the upper bound on the free rank distance (6.5) and half the optimal slope (6.6):

dip=2n—k)+1=n—-k+v+1,
n—k+1

OR — B

Proof. The overall constraint length is v = n — k. Hence,
df7R:mjin{d§fl)%} :dgt) =2n—k)+1l=n—-k+v+1

The slope is calculated as in Definition 6.4:

However, it is not clear what happens when pug > 1. Based on simulations, we conjecture the
following.

Conjecture 6.1 (Free Rank Distance and Slope of our Construction for Arbitrary g gr).
For R > pgr/ (g +1), the PUM(n, k|k() code based on Gabidulin codes as in Theorem 6.2 with pigr > 1
achieves o

dip=(pu+1n—k)+1l=n—k+v+1,
n—k+1

o .
= pg+1

The lower bound on the slope can actually be proven similar to Theorem 6.3, but for the free rank
distance it is not clear if dﬁ% is the minimum of the active row rank distances.

This conjecture implies that the free rank distance increases with higher 1y and the slope decreases.
Hence,—if the conjecture is true—a trade-off between the free rank distance and the slope is possible. A
similar behavior was observed by Jordan, Pavlushkov and Zyablov [JPZ04] in Hamming metric, since
they showed that for general convolutional codes, the upper and lower bounds on the free distance

increase with increasing memory whereas the upper and lower bounds for the slope decrease.

6.2.2 PUM Codes Based on the Generator Matrix of Gabidulin Codes

In the previous subsection, (P)UM codes were constructed such that the submatrices of the parity-check
matrix define Gabidulin codes. In this subsection, we construct such codes based on the generator
matrix. Our construction is an adaptation of the construction from [DS95] to rank metric.

Definition 6.5 ((P)UM Code based on Generator Matrices of Gabidulin Codes).
Let k 4+ kM) < n < m, where V) < k, and let gy, g1, ..., gn-1 € Fym be linearly independent over
F,. For kY = k we define a UM(n, k) code and for k") < k a PUM(n, k|k™)) code over Fym by a

zero-forced terminated generator matrix Gierm as in (2.8) with u = 1 and the k x n submatrices GO
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and GO
g0 g1 In—1
1 1 1
gé] g i
KD_1 D1 D1
(G JEO1 -] -1
G = \G(Ol)) - [k<1>] k()] kO] |7
k(l) 1 gklu) 1 e
[ +1] gg +1] 9L—1+ ]
g([)k—l} ggk—l] g7[1k: 11]
and
R )
[k+1] [k+1] [k+1]
g(] gl n—1
cw _ (6 : : :
= = (1) _ (1) _ (1)
0 R NSV Gk

0

(6.13)

(6.14)

Table 6.1 denotes the Gabidulin codes, defined by submatrices of the generator matrix, their minimum
rank distances and their block rank-metric error-erasure bounded minimum distance (BMD) decoders—
realized e.g. by the decoder from Subsection 3.2.3. These BMD decoders decode correctly if (3.32)
is fulfilled for the corresponding minimum rank distance. If we consider unit memory codes with

k=kW thendyg =dio=n—k+1,d, =n — 2k +1and dy; =

Table 6.1. Submatrices of (P)UM code from Definition 6.5 and their block codes.

00, since G (1) does not exist.

Generator Defined Code Minimum rank BMD
matrix code parameters distance decoder
GO Co Gab|n, k] dy=n—k+1 BMD(Cy)
(gﬁ’;ﬁ) C Gabln, &] dy=n—k+1 BMD(Cy)
G(00) Coo Gab[n, k(1] doo =n — kM +1 not needed
GO Co1 Gab[n E—kW]  dy=n—-k+kM4+1  BMD(Cp)
G19) Cio Gab[n, k(1] dio=n—kM +1 not needed
G (00)
G, = (GE(H;) Co Gab[n,k+kM]  dy=n—k—kM+1  BMD(C,)
G 10

Lemma 6.3 (Construction is in Minimal Basic Encoding Form).

Let a (P)UM code based on Gabidulin codes be defined by its generator matrix G as in Definition 6.5. Then,

G is in minimal basic encoding form.

Proof. The proof is straight-forward to the proof of Lemma 6.2.
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In the following, we calculate the active row rank distance (Definition 6.3) by cutting the semi-infinite
generator matrix of the PUM code from Definition 6.5 into parts. Pay attention that each code block of
length n can be seen as a codeword of C,.

Theorem 6.5 (Lower Bound on Active Distances).
Let k 4+ k1) < n < m, where k) < k. Let C be a UM(n, k), respectively PUM(n, k|k(1)), code over

Fym as in Definition 6.5. The active row, column and reverse column rank distances ! })%, dg 22 nd d(rc)
(Definition 6.3 and Equation (6.3)) of C are lower bounded by

d\'y = o)
() (e
dj,R =z 6]

(re) (re
djr 290

v

)

=dy, Ay >0y =do+(j—2) dy+di, Vj>2,
:d0+(]71) do’a VJZL
=(j—1) de+di, Vi1,

v:Uv vhd

where dy; :n—k+k(l)+1fork(1) < k and do; :oofork:(l) =kidy=dy =n—k+1and
do =n—k—k® +1.

Proof. For the estimation of the active row rank distance, the encoder starts in the zero state

(r)

hence, u(~1) = 0. For the first order active row distance dy > We look at all code sequences of the
form (... 0¢(® 0 ...), which is only possible if u® = (0 ... 0 ugg . ué ) ) and u® =0,
Vi > 1. In this case, ¢(?) € Cy; and the encoder returns immedlately to the zero state. For the UM

case, also u©® = 0 and the only codeword in Cg) is the all-zero codeword and thus, dgf}z = 00.

r)

For higher orders of d; 7» we have to consider all code sequences, starting with c® ¢ ¢

(since u(= = 0), followed by Jj—2 codewords of C, and one final code block, resulting from
ud=Y=0...0 ug(l)l) e ufj:ll)) and for the UM case ulU~1) = 0. For the UM and the PUM

case, the block uU=2) is arbitrary, therefore cU—1 = w0~ . GO) 4 uU-2 . GM ¢ C;.
(c)

For the estimation of d\° iR the encoder starts in the zero state but ends in any state. Thus, c 0) ¢ Co
is followed by j — 1 arbltrary information blocks resulting in codewords from C,.

For the active reverse column rank distances, we start in any, hence, all first 7 — 1 blocks are from
C,. The last block is from C; in order to end in the zero state. |

We call the lower bounds of dg.%, dg.i)q, d(.7 °) designed active distances 5 (r) 5](61)2, ) (re) ; in the following,.

Corollary 6.2 (Free Rank Distance and Slope of our Construction).
Let k + kM < n < m, where k) < k. Let C be a UM(n, k), respectively PUM(n, k|k(1)), code over
Fym as in Definition 6.5. The free rank distance dy g for kD =k is
ds r >mm{5§ )} do+dy = 2(n—k+ 1),
J
and for k) < k:

Wﬁzn?{%%}Z&n:n—k+M”+1:n—k+u+L
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The slope o of C for both cases is:

s\
op > lim { jiR}:dJ:n—k—k(l)Jrl.

Thus, for any k(1) < k, the construction achieves the upper bound on the free rank distance of PUM
codes (6.5). When k() = k = 1, we meet the upper bound on the free rank distance of UM codes (6.4).
For k() = 1 < k, the upper bound on the slope is attained.

If we compare this to the construction from Subsection 6.2.1,—with free rank distance and slope as
in Theorem 6.4—we see that they both attain the upper bound on the free rank distance for k& < kM 1t
depends on the concrete parameters n, k, k(!), which slope is higher.

The construction based on the parity-matrix (Theorem 6.2) requires that R = k/n > pug /(g + 1)

and provides therefore a high-rate code, whereas the construction based on the generator matrix
(Definition 6.5) results in a low-rate code since £k + k() < n has to hold.

6.3 Error-Erasure Decoding of PUM Gabidulin Codes

This section provides an efficient error-erasure decoding algorithm for (P)UM codes as in Definition 6.5,
using the block rank-metric decoders of the underlying Gabidulin codes of Table 6.1.

6.3.1 Bounded Row Distance Condition and Decoding Idea

We consider the terminated generator matrix of a (P)UM code as in (2.8) and therefore we look at blocks

of length N + ju = N + 1. Let the received sequence r = (r(® r(V) .. r(V)) ¢ IF:}(”NH) be given and

let the matrix sequence R = (RO R(M ... RM)) ¢ IE‘ZLX"(NH) denote the matrix representation of
r according to the mapping from Definition 2.1. Let r® = ¢ 4 e, foralli € [0, N]. The matrix
representation R() € [Fg"*™ can be decomposed as in (3.33), including () errors, o) row erasures
and () column erasures in rank metric, for all i € [0, N].

Analog to Justesen’s definition in Hamming metric [Jus93], we define a bounded (row rank) distance
decoder for convolutional codes in rank metric, incorporating additionally erasures.
Definition 6.6 (Bounded Row Distance Error-Erasure Decoder in Rank Metric).
Given a received sequencer = c + e € Fgr(nNH), a bounded row distance (BRD) error-erasure decoder in
rank metric for a convolutional code C guarantees to find the code sequence c € C if

i+j—1
3 (2 ) g o) W)) <oh<dh,  Wielo,N],jel0,N—i+1], (6.15)
h=1i

where t(h), g(h), 'y(h) denote the number of errors, row and column erasures in block e ¢ Fgm as in
(3.34).

In Algorithm 6.1, we present such a BRD rank-metric error-erasure decoder for (P)UM codes constructed
as in Definition 6.5. It is a generalization of the Dettmar-Sorger algorithm [DS95] to rank metric and to
error-erasure correction. The generalization to error-erasure decoding can be done in a similar way in
Hamming metric.

In the course of this subsection, we explain the idea and the different steps of Algorithm 6.1 in detail.

108



6.3 ERROR-ERASURE DECODING OF PUM GABIDULIN CODES

In Subsection 6.3.2, we prove that the algorithm is actually a BRD error-erasure rank-metric decoder as
in Definition 6.6 and we show that its complexity is cubic with the length n of a code block.

The main idea of Algorithm 6.1 is to take advantage of the algebraic structure of the underlying
block codes and their efficient decoders (see Table 6.1). We use the outputs of these block decoders
to build a reduced trellis. As a final step of our decoder, the usual Viterbi algorithm is applied to this
reduced trellis, which has only very few states and therefore the Viterbi algorithm has low complexity.

The first step of Algorithm 6.1 is to decode r(V, Vi € [1, N — 1], with BMD(C,), since each code
block c?) is a codeword of C,,, Vi € [1, N — 1]. Because of the termination, the first and the last block
can be decoded in the codes Cy and Cyj, respectively, which have a higher minimum rank distance
than C,. Let ¢, for all i € [0, N], denote the result of decoding r(") if it is successful.

For all i € [0, N], we draw an edge in a reduced trellis with the following metric:

rk(r® — (@), if BMD(C, ), BMD(Cp), BMD(Cp1)
4 . in blocks 0, [1, N — 1], N is successful,
{dg +1+ 09+ W)J
5 , else.

m) = Vi e [0,N]. (6.16)

The metric for the successful case is always smaller than the metric for the non-successful case since

- ) 4 (D)
k(@ — U)—#>+¢>+¢><{%+4+@ +9 J_L

2

If the block error-erasure decoder BMD(C,) decodes correctly, the result is ¢ = u() G +

( u(()i—l) ugi_l) . u;(j(:)l_)l) - GU19), Since the minimum distance d, > 1, we can reconstruct the whole
@, (@) (4) )

information vector u®”) = (ug” wy’ ... uy”,) and the mentioned part of the previous information

( (i—1) gi—l)”. u(z’—l) )

Yo k(-1

Assume, we reconstructed u(” and (uéiil) ugifl) e ulgi(:)lzl) in Step 1, then with (2.9) and the
encoding rule (2.10), we can calculate:
P+ (u(()i) ugi) . (l()l) ) G10) — ) GO) 4 gli+1) (6.17)

i i— i— i i— i i— i G i
pl=1 (ué 2 ug D ul(c<1)131) G0 — (ué(l)l) o u,(q_ll) | u(() 2 ul(g(li)l) (G(l);) +el—D),

Hence, Step 2 uses the information from block ¢ to decode E}i) blocks forward with BMD(Cp) and El(f)
blocks backward with BMD(Cy) from any node found in Step 1. This closes (most of) the gaps between
two blocks correctly decoded by BMD(C,) (of course, it is not known, which are decoded correctly).

The values Kgf) and €l()i) are defined as follows.

' J sl J (Q(1+h) +7(z+h))
i) z+h R
f = mln ( ‘ Z 2 5 ), (6.18)
h=1
' j A stre) _ i (i=h) 4 ~(i=h)
ﬁ Q- mln ( ‘ (do — ) > -2 R h=1 (g i )> (6.19)
h=1

These definitions are chosen such that we can guarantee correct decoding if the BRD condition (6.15) is
fulfilled (see Section 6.3.2).
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Step 4:
Viterbi

Figure 6.3. Illustration of the different steps of Algorithm 6.1: The received sequence (r©@ M r(N)y s
given and the different steps and their decoding results are shown. Dashed blocks/edges illustrate
that they were found in a previous step.

For Step 3 and some i € [0, N — 1], assume we know (u(()iH) u&iﬂ) e ulii(j;l_)l) and u(® from Step 1
or 2, then as in (6.17), we can calculate

P+ _ (u(()z‘+1) u§i+1) “S(Jlr)l_)l) .q00) _ ( (()i) u(li) “1(5()1>_1) .qlo) —

(i+1) | (i+1) u(i+1))-G(01)+e(i+1),

(uy) Upaypq o Ug—1

which shows that we can use BMD(Cp;) to close a remaining gap in block ¢ + 1.
After Step 3, assign as metric to each edge

rk(r® — c@"), if BMD(Cq), BMD(Cy)
or
m®) = 4 ' BMD(Co1) is successful, Vi € [0, N, (6.20)
{dm +1+ 0@ + V(Z)J
5 , else,

where ¢ denotes the result of a successful decoding. For one received block r(?), there can be several
decoding results ¢’ from the different BMD decoders. Thus, there can be more than one edge in the
reduced trellis at depth ¢. Each edge is labeled with regard to (6.20) using its corresponding code block.

Finally, we use the Viterbi algorithm to find the path with the smallest sum rank weight in this
reduced trellis. As in [DS95], we use m(?), for all i € [0, N], as edge metric and the sum over different
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edges as path metric. The different steps of our decoding algorithm are roughly summarized in
Algorithm 6.1, the details can be found in the preceding description and Figure 6.3 illustrates our
decoding algorithm.

Algorithm 6.1.
¢ < BouNDEDROWDISTANCEDECODERPUM (1)

Input: Received sequence r = (r(® r() . +(V)) ¢ Fyn n(N+1)
1 Step 1: Decode block r(®) with BMD(Co)
2 Decode block r¥) with BMD(C,), for all i € [1, N — 1]
3 Decode block r(™) with BMD(Co;)
4 Assign metric m(¥) as in (6.16), for all i € [0, N]
5 Step 2: For all found blocks ¢(¥): decode ffj) steps forward with BMD(Cyp),
6 decode Kl(j) steps backward with BMD(C;)
7 Step 3: For all found blocks ¢(¥): decode r(*+1) with BMD(Co;)
8 Assign metric m¥ as in (6.20), for all i € [0, N]

9 Step 4: Find complete path with smallest sum rank metric using the Viterbi algorithm

Output: Codeword sequence ¢ = (¢ ¢V ... c¢(M) e Fym n(N+1)

In Section 6.3.2, we prove that if (6.15) is fulfilled, then after the three block decoders, all gaps are
closed and the Viterbi algorithm finds the path with the smallest sum rank weight.

6.3.2 Proof of Correctness of the Error-Erasure Decoding Algorithm

In the following, we prove that decoding with Algorithm 6.1 is successful if the BRD condition (6.15) is
fulfilled. The proof follows the proof of Dettmar and Sorger [Det94, DS95]. Lemma 6.4 shows that the
gaps between two correct results of Step 1 are not too big and Lemmas 6.5 and 6.6 show that the gap
size after Steps 1 and 2 is at most one if the BRD condition (6.15) is fulfilled. Theorem 6.6 shows that
these gaps can be closed with BMD(Cp;) and the Viterbi algorithm finds the correct path.

Lemma 6.4 (Gap Between two Correct Results of Step 1).
If the BRD condition (6.15) is satisfied, then the length of any gap between two correct decisions in Step 1 of
Algorithm 6.1, denoted by c(i), c(+9) is less than min {LSZ), Ll(j) }, where

, J 5 J (i+h) 4 ~(i+h)
Lgf —mln( |Z Z+h)2 J ~ L (2 ! )),
h=

1
i~ T (@7 + v“‘—’”))

‘ J
Ll(f—mln(|z )2]’ - 5

h=1

Proof. Decoding of a block r(") in Step 1 fails or outputs a wrong result if there are at least
(dy — 0 —~(D) /2 errors in rank metric. In such a case, the metric m9 = | (d, 41+ 0@ 4+~9) /2]
is assigned.
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In order to prove the statement, assume there is a gap of at least Lgf) blocks after Step 1. Then,

.

f i+h i+h f
3l > Z do — 9( kS < m<i+h))
h=1 h=1 h=1
L(” . Zh— ( (i+h) 4 ,.Y(erh))

- 2 )

which follows from the definition of the metric (6.16) and from the definition of ng). This

contradicts the BRD condition (6.15). Similarly, we can prove this for Ll()iﬂ ) and the gap size is
less than min {L?), Ll()l) } |

Lemma 6.5 (Correct Path for Few Errors).
Let ¢ and c(19) be decoded correctly in Step 1 of Algorithm 6.1. Let Step 2 ofAlgorlthm 6.1 decode €( D
blocks in forward direction starting in ¢\ and Elglﬂ) blocks in backward direction starting in c(19) (see
also (6.18), (6.19))

Then, the correct path is in the reduced trellis if the BRD condition (6.15) is satisfied and if in each block
less than min { (dy — oD —~D) /2 (dy — o) — ’y(i))/2} rank errors occurred.

Proof. If there are less than min {(do — o) — ~+9)/2, (d1 — ¢@® — 4()/2} errors in a block,

BMD(Cp) and BMD(C;) always yield the correct dec151on. Due to the definition of ng), see (6.18),
the forward decoding with BMD(Cy) terminates as soon as

e(i) g(‘) [(
dy — Q(H—h) _ ,y(z-i-h)

thJrh >Z ZZ Z+h

(i+h) (i+h) (i) , ,
g(z) Z ( + ) B @ N (é(’b) B 1>di B Zfzle (Q(Z-‘rh) 4 ’Y(H_h))
- 2 2 ! 2 2 ’

where the first inequality holds since the decoding result could not be found in Step 1 and the

second and third hold due to the definition of the metric (6.16) and the definition of f?).
Similarly, the backward decoding with BMD(C;) terminates if

T G Girioh) o (iti—h)
Z li+i=h) > @ + (g(iﬂ') _ 1)d70 . >t (Q + )
=2 b 2 2 '
h=1
The correct path is in the reduced trellis if E(i) + E(H_j ) > j — 1, since the gap is then closed.
Assume now on the contrary that E( D4 E(Zﬂ ) — 1. Since Step 1 was not successful for

the blocks in the gap, at least (d, — 0" — 4( )/2 rank errors occured in every block r("),

Vh € i+ ﬁgj) +1,i4+75— ééiﬂ) — 1], i.e, in the blocks in the gap between the forward and the
backward path.
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Then,

4(1) €(1+J) Z(H']) ) )
d _Q(z-i-h)_'_,y(z-i-h)

7j—1
¢ (i+h) > t(z+h t(z+] h) o
s B e 6

h=t{) +1

(2)

¢
do () o g (@M + 4
> 1) _
25+ (¢ ) 5
wHD i (i)
+@+(€(i“>_1)dg_zh=1 (0 +7 )
2 b 2 9
; it j =G Gen) (i)
. (j—1- EE}) _ E}()HJ)) ] Zh:é?)—i—l (o + )
- 2
S i (G=3), M (6 )
2 2 2 2
1 G ;
g lR — 32170 (UM 4 4R
2 )

which is a contradiction to the bounded row distance condition (6.15) and the statement follows. B

Lemma 6.6 (Gap Size is at Most One After Steps 1 and 2).
Let ¢ and c"+9) be decoded correctly in Step 1 of Algorithm 6.1 (with no other correct decisions in

between) and let the BRD condition (6.15) be fulfilled. Let dy = d.
Then, there is at most one error block e™, h € [i + 1,1+ j — 1], of rank at least (dg — o) — ~() /2.

Proof. To fail in Step 1, there have to be at least (d, — 0¥ — 4())/2 errors in r(, Vi €
[i + 1,4 + j — 1]. If two error blocks in this gap have rank at least (dg — 0¥ — v("))/2, then

Jj—1 J=1 ( (i+h) (i+h)
: do | . do  Yoh (@M 4+ 40HM)
(i+h) > o . 20 —3). 22
hz_:lt > 5 +(j-3) 5 5
y 5](7“_)1’1% B S2IL () 4y (ih))
- 2 2 )
which contradicts (6.15). [ |

Lemmas 6.5 and 6.6 show that if the BRD condition is satisfied, then the correct path is in the reduced
trellis after | Steps 1 i1and 2, except for at most one block.

Theorem 6.6 (Correct Path is in Reduced Trellis after Steps 1-3).
If the BRD condition (6.15) is satisfied, then the correct path is in the reduced trellis after Steps 1-3 of
Algorithm 6.1.

Proof. Lemma 6.6 guarantees that after Step 2, at most one block is missing from the correct
path. This gap can be closed in Step 3 with BMD(Cp; ), which is able to find the correct solution

since dg; > 5§ 1)% =dy R. |

The complexity is determined by the complexity of the BMD rank block error-erasure decoders from
Table 6.1 (realized e.g., as in [SKK08, GPB10] and Subsection 3.2.3), which are all in the order O(n?)
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operations in IF;m. Hence, the calculation of the complexity is straight-forward to [DS95, Theorem 3]
and we can give the following bound on the complexity without proof.

Theorem 6.7 (Bounded Row Distance Decoding with Algorithm 6.1).
Let k4 kM < n < m, where k") < k. Let C be a zero-forced terminated UM(n, k) or PUM(n, k|k(1))

code over Fym as in Definition 6.5. Let a received sequence r = (r(o) rD r(N)) € FZT(RNH) be given.
Then, Algorithm 6.1 finds the code sequence ¢ = (c(© ¢V ... c(V)) e F:}&NH) with smallest sum

rank distance to r if the BRD condition is satisfied (6.15). The complexity of decoding one block of length n
is upper bounded by

O(d,n?) < O(n?).

The analysis of what happens if too many errors occur or if the BRD condition (6.15) is not fulfilled
in one or several blocks, is analog to [DS95]. We can give a condition similar to (6.15) for a single block
and see that the algorithm returns to the correct path relatively fast.

6.4 Application to Random Linear Network Coding

The motivation for considering convolutional codes in rank metric is to apply them in multi-shot
random linear network coding (RLNC). In this section, we first explain the model of multi-shot network
coding and show how to define lifted (P)UM code in rank metric. Afterwards, we show how decoding
of these lifted (P)UM codes reduces to error-erasure decoding of (P)UM codes in rank metric.

There are other contributions devoted to convolutional network codes (see e.g. [EF04, LY06, PR10,
GCSM11]). However, none of these code constructions is based on rank metric and deals with the
transmission over the operator channel as ours. Our contribution can be seen as an equivalent for
convolutional codes to the block code construction from [SKK08].

6.4.1 Multi-Shot Transmission of Lifted PUM Codes

As network channel model we assume a multi-shot transmission over the so-called operator channel.
The operator channel was defined by Kotter and Kschischang in [KK08] and the concept of multi-shot
transmission over the operator channel was first considered by Nobrega and Uchéa-Filho [NU10].

In this network model, a source transmits packets (which are vectors over a finite field) to a sink.
The network has several directed links between the source, some internal nodes and the sink. The
source and sink apply coding techniques for error control, but have no knowledge about the structure
of the network. This means, we consider non-coherent RLNC. In a multi-shot transmission, we use
the network several times and the internal structure may change in every time instance. In detail, we
assume that we use it NV + 1 times. In the following, we shortly give basic notations for this network
channel model. The notations are similar to [SKK08], but we include additionally the time dependency.

Let X() ¢ ng(n+m), Vi € [0, N]. The rows represent the transmitted packets X(()i), Xfi), N Xffll
. ) ,
€ ]FZJ”” at time instance (shot) 4. Similarly, let YO ¢ Fy X(tM) be a matrix whose n rows
correspond to the received packets Yo(i), Yl(i), cee erg)il € IFZH'". Notice that 7 and n(*) do not have
to be equal since packets can be erased and/or additional error packets might be inserted.
The term random linear network coding originates from the behavior of the internal nodes: they

create random linear combinations of the packets received so far in the current shot i, Vi € [0, N].
Additionally, erroneous packets might be inserted into the network and transmitted packets might be
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lost or erased.

Let the links in the network be indexed from 0 to ¢ — 1, then, as in [SKK08], let the rows of a matrix
yAQNS ng(ner) contain the error packets Z(()i), Zfi), e Zéi_)l inserted at the links 0 to ¢ — 1 at shot 3.
If Z](i) =0, j € [0,¢ — 1], then no corrupt packet was inserted at link j € [0,¢ — 1] and time 4. Due to
the linearity of the network, the output can be written as:

YO = AOX0O L BOZO) (6.21)

where A() ¢ Fg(i> *m and BO e Fgm <L are the (unknown) channel transfer matrices at time 1.

When there are no errors or erasures in the network, the row space of Y () is the same as the row
space of X (). In [KK08, SKK08] it was shown that subspace codes constructed by lifted MRD codes (as
in Lemma 2.18) provide an almost optimal solution to error control in the operator channel. Such lifted
MRD codes are a special class of constant-dimension codes (see Subsection 2.3.4). In the following, we
define lifted PUM codes based on Gabidulin codes in order to use these constant-dimension codes for
error correction in multi-shot network coding.

Definition 6.7 (Lifted (Partial) Unit Memory Code).
Let C be a zero-forced terminated PUM(n, k|k™)) code over Fym as in Definition 6.5. Represent each code
block ¢ € Fym, Vi € [0, N], as matrix CcO ¢ g™ according to Definition 21

Then, the lifting of C is defined by the following set of subspace sequences:

lift(C) = {(Rq([ln cOT)) R, (L, ¢V ... R,(L, C(N)TD) :

(extgl(C(O)) extgl(C(l)) extgl(C(N))> € C}.

As in Definition 2.18, we denote lift(CT) = R, (L, C(i)T]), Vi € [0, N|. We transmit this sequence
of subspaces over the operator channel such that each transmitted matrix is a lifted block of a codeword
of the rank-metric PUM code, i.e., X\) = [I,, CT], Vi € [0, N]. Of course, any other basis of the row
space can also be chosen as transmitted matrix.

By means of this lifted PUM code, we create dependencies between the different shots in the
network. Since each code block of length n is a codeword of the block code C,, each transmitted
subspace is a codeword of a CD4(n + m, ds = 2d,, n) constant-dimension code, lying in G4(n + m, n),
see [SKKO08, Proposition 4] and Lemma 2.18.

However, the lifted (P)UM code contains additionally dependencies between the different blocks
and for decoding, we obtain therefore a better performance than simply lifting the block code C, as in
Lemma 2.18. Since the PUM code transmits & information symbols per shot, a comparison with a lifted
block code of rate k/n is much fairer than comparing it with C, (see Example 6.2).

6.4.2 Decoding of Lifted PUM Codes in the Operator Channel

In this section, we will show how the decoding problem in the operator channel reduces to error-erasure
decoding of PUM codes based on Gabidulin codes—analog to [SKK08], where it reduces to error-erasure
decoding of Gabidulin codes. Since each code block of length 7 of a PUM(n, k|k(")) code is a codeword
of the block code C,, we can directly use the reformulations of Silva, Kschischang and Kétter [SKK08].

Let the transmitted matrix at time instance i be X(?) = [I,, C)”] and denote by Y ) = [:&(i) ?(i)] €
IFg(z) x(

") the received matrix after the multi-shot transmission over the operator channel as in (6.21).
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The channel transfer matrices A and B(Y) can be time-variant. Moreover, assume rk(Y(i)) = n(i),
since linearly dependent received packets are directly discarded. Then, as in [SKK08], we denote the
column and row deficiency of A by:

A E k(ADoK 0 (A, vie[o,N].

If we calculate the reduced row echelon (RRE) form of Y ) (and fill it up with zero rows, if necessary), we
(n+0l))x (n+m)

obtain the following matrix in I, (similar to [SKKO08, Proposition 7], but in our notation):
A I, + BGOTIL ~ ROT
RRE, (YW) = < n 0 U AGRT ) (6.22)

foraset U C {1,2,...,n} with [UD| = v() such that Ig(i)R(i)T = 0 and IZ(i)B(i’C)T =-L,

and I;; denotes the submatrix of I, consisting of the columns indexed by ¢/ (@) Moreover, B:OT' ¢
ng'ym and AGRAT ¢ Fgmxn.

Furthermore, it was shown in [SKK08] that R(?) can be decomposed into
R = )  AGRIBER) L AGOIBEC) L AGEIBEE) i e [0, N],

where (extgl(C(O)) extgl(C(l)) e extgl(C(N))) € Cand AGF) and BG:C) are known to the
receiver, since the matrix from (6.22) can be calculated from the channel output. Comparing this
equation to (3.33) makes clear that the problem of decoding lifted PUM codes in the operator channel
reduces to error-erasure decoding of the PUM code in rank metric. For this purpose, we can use our
decoding algorithm from Section 6.3, which is based on rank-metric error-erasure block decoders.
Now, let the received matrix sequence Y = (Y@ Y1) | Y V)) a5 output of the operator channel
be given, then we show in Algorithm 6.2 how to reconstruct the transmitted information sequence.

Algorithm 6.2.
u=(u®u® ... u®V)+ NerworkPUMDEcoDER(Y)

Input: Received sequence Y = (YO YO vy,
where YO € F2 X0+ v ¢ [0, N]
1 4@ n —rk(A®), Vi € [0, N]
0 « n( — tk(A®), Vi € [0, N]
3 Calculate RRE(Y ")) and therefore R as in (6.22), Vi € [0, N]
r= (@™ V) (extgl(R(o)) extEI(R(l)) extgl(R(N)))

[

'S

5 c=(c®c® ... ™)« BounpEDROWDISTANCEDECODERPUM (r) with Algorithm 6.1
6 Reconstruct u = (u® u® ... uM-1)
Output: Information sequence u = (u® u® ... uV-1) ¢ Fgﬁ\[

The asymptotic complexity of Algorithm 6.2 for decoding one matrix Y@ of size ) x (n 4+ m)
scales cubic in n, since calculating the RRE is at most cubic in n if we use Gaussian elimination. Also,
Algorithm 6.1 has asymptotic complexity O(n?*). The reconstruction of the information sequence out
of the code sequence is negligible.
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Example 6.2 (Lifted PUM Code for Network Coding).

Lt N +1=7n=8<m, k=4 k") =2 and therefore dy = dy = 5, dg1 = 7 and d, = 3 (Table 6.1).
Let C be a PUM(n, k|k™M)) code as in Definition 6.5. Construct the lifting of C as in Definition 6.7. Assume,
Y = (Y(O) YD Y(6)) is given as output of the operator channel and apply Algorithm 6.2.

After calculating the RRE (and filling the matrix up with zero rows as in (6.22)), let the number of errors,
row erasures and column erasures in each block be as in Table 6.2. The results of the different decoding
steps of Algorithm 6.1 for error-erasure decoding of PUM codes are also shown. In this example the BRD
condition (6.15) is fulfilled and correct decoding is therefore guaranteed due to Theorem 6.6.

The code rate of C is 1/2 and as a comparison with the (lifted) Gabidulin codes from [SKKO08], the last
line in Table 6.2 shows the decoding of a block Gabidulin code of rate 1/2 and minimum rank distance
d = 5. For fairness, the last block is also decoded with a Gab[8, 2] code. The block decoder fails in Shots 1
and 5.

However, similar to the ongoing discussion whether block or convolutional codes are better, it depends on
the distribution of the errors and erasures, i.e., on the channel, whether the construction from [SKK08] or
ours performs better.

Table 6.2. Example for error-erasure decoding of lifted (partial) unit memory codes based on Gabidulin codes.

Shot 7 0 1 2 3 4 5 6
oW + 41 0 1 3 1 1 0 2
@ 2 2 0 1 0 3 2
PUM code Decoding with C,, X X X v X
block 0 with Cg, v
block N with Cyg v
Decoding with Cy, C; X v v X
Decoding with Cq; v v
Block code Decoding with Gab[8,4] v X v v v X v

6.5 Summary and Outlook

The topic of this chapter are convolutional codes in rank metric, their decoding and their application to
random linear network coding.

First, we have defined general distance measures for convolutional codes based on a modified rank
metric—the sum rank metric—and have derived upper bounds on the free rank distance and the slope
of (P)UM codes based on the sum rank metric.

Second, we have given two explicit constructions of (partial) unit memory codes based on Gabidulin
codes and have calculated their free rank distances and slopes. The first (high-rate) construction is
based on the parity-check matrix and the second (low-rate) construction on the generator matrix.
Both constructions achieve the upper bound on the free rank distance and it depends on the concrete
parameters whose slope is higher.

Third, we have presented an efficient error-erasure decoding algorithm for the (P)UM construction
based on the generator matrix. The algorithm guarantees to correct up to half the active row rank
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6 CoNvOoLUTIONAL CODES IN RANK METRIC

distance and its complexity is cubic in the length. Finally, we have shown how constant-dimension
codes, which were constructed by lifting the (P)UM code, can be applied for error control in random
linear network coding.

As an outlook, it will be interesting to prove Conjecture 6.1 and, more far reaching, to find new
codes for error control in network coding, e.g. low-density-parity-check codes in rank metric.
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CHAPTER 7

Concluding Remarks

considered. Since the invention of codes in rank metric by Delsarte, Gabidulin and Roth,

several authors have investigated the properties of such codes. A couple of efficient decoding

algorithms for a class of maximum rank distance codes—nowadays called Gabidulin codes—were

presented within the last years, most of them similar to renown decoding algorithms for Reed-Solomon
codes.

W ITHIN THIS THESIS, decoding of block and convolutional codes in rank metric has been

In the course of this dissertation, we have developed a new efficient bounded minimum distance
decoding algorithm for Gabidulin codes and an interpolation-based decoding procedure for interleaved
Gabidulin codes. Further, we have derived bounds on the list decoding radius of rank-metric codes,
and introduced and decoded a class of convolutional codes in rank metric. The main results of this
dissertation are summarized in the following.

Chapter 3 is dedicated to decoding of Gabidulin codes. First, we have shown efficient algorithms
for calculations with linearized polynomials, including two algorithms for calculating the linearized
composition with sub-quadratic complexity. Second, we have presented a bounded minimum distance
decoding algorithm for Gabidulin codes, similar to Gao’s decoding algorithm for Reed—Solomon codes.
We have proven how the linearized Euclidean algorithm can be used in this context to output directly
the ¢-degree-restricted linearized evaluation polynomial of the estimated codeword. Moreover, we
have extended this decoding algorithm in order to incorporate not only errors, but also two types of
erasures in rank metric: row and column erasures.

Chapter 4 covers interleaved Gabidulin codes and their decoding beyond half the minimum distance.
So far, two probabilistic unique decoding approaches have been known for these codes, which both
fail with a certain probability since there might be more than one codeword within the decoding
radius. We have presented an interpolation-based decoding approach, which relies on solving two
linear systems of equations, one for the interpolation step and one for the root-finding step. It can be
used as a list decoding algorithm for interleaved Gabidulin codes and guarantees to find all codewords
within a certain radius. However, the list size and therefore also the worst-case complexity of the list
decoder can become exponential in the length of the code. Alternatively, our decoder can be used as a
probabilistic unique decoder, with the same decoding radius and the same upper bound on the failure
probability as the known decoders. We have further generalized our decoder to error-erasure decoding.

Up to now, there exists no algorithm which decodes Gabidulin codes beyond half the minimum
distance. This motivated us to investigate in Chapter 5 the possibilities of polynomial-time list decoding
of rank-metric codes in general and Gabidulin codes in particular. We have derived three bounds on
the list size, i.e., on the maximum number of codewords in a ball of radius 7. All three bounds reveal
a behavior which is completely different from the one of codes in Hamming metric. The first bound
shows that the list size for Gabidulin codes can become exponential when 7 is at least the Johnson
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radius. This implies that there cannot be a polynomial-time list decoding algorithm of Gabidulin
codes beyond the Johnson radius. Interesting enough, it is not known for Reed-Solomon codes what
happens if 7 is slightly greater than the Johnson radius. Our second bound is an upper bound on the
list size of any code in rank metric, which we have proven by connections between constant-rank and
constant-dimension codes. Exactly these connections helped us to derive the third bound. This bound
proves that there exists a code in rank metric over F;m of length n < m such that the list size can
become exponential for any 7 greater than half the minimum distance. This implies on the one hand
that there is no polynomial upper bound similar to the Johnson bound in Hamming metric and on the
other hand, it also shows that our upper bound is almost tight.

Finally, Chapter 6 deals with convolutional codes in rank metric. We have proposed distance
measures for convolutional codes in rank metric analog to Hamming metric, namely, the free rank
distance, the active row rank distance and the slope and we have derived upper bounds on them.
Based on rank-metric block codes (Gabidulin codes), we have given two explicit constructions of
convolutional codes in rank metric, one high-rate construction based on the parity-check and one
low-rate construction based on the generator matrix. Both define so-called (partial) unit memory codes
and achieve the upper bound on the free rank distance. The underlying block codes have enabled us to
design an efficient error-erasure decoding algorithm for the second construction, which guarantees to
correct all error sequences of rank weight up to half the active row rank distance. We have proven its
correctness and have outlined how our convolutional rank-metric codes can be applied to multi-shot
random linear network coding.

Future research directions have been given in a short outlook at the end of each chapter.
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Appendix

A.1 Proofs for the Linearized Extended Euclidean Algorithm
Proof of Theorem 3.3. With (3.4) and (3.5):
a(x) = ¢ (/' (@) + '(2) + a"(2) = ¢ (b(x)) — ¢ (V' (2)) + ' (2) + " ().

Define 7" (x) o d"(x) — ¢ (V"(z)) and therefore a(z) = ¢ (b(z)) + 7' (z!") + +"(z). If
deg, (r'(x!) + " (2)) < dp, then ¢(z) = q() since the linearized division is unique [Ore33a,
Theorem 1].
We verify this degree constraint by showing that it holds for each of the terms:
o deg, (r'(z")) < deg, b'(z) + h = deg, b(x) = dy,
e deg, (a”(:):)) < h<2dy—d, <dp,
o deg, (¢'(t"(x))) < deg, ¢ (z) + h < deg, d'(z) — deg, V' (x) + h
< (do—h)—(dp—h)+h < dp.
Hence, deg, 7" (z) < dy — dp + h and q(z) = ¢'(z). |

Proof of Lemma 3.6. We can prove this lemma by induction, assuming that for the outputs of
the recursions Eq@[ion (3.8) holds with the corresponding stopping degrees. We analyze the
degrees of the polynomials in the different lines of Algorithm 3.4 in the following.

e Lines 5-6: deg, aWM(z) = dy — h and deg, b () =dy — h < dy/2.

e Line 8: For the explanation, let us define

<T;1<)1(;<;>1()9E:)6)) =QVe (Z&) ((g) ’

where Q1) is the output of the recursive call. Due to the induction assumption, the degrees
of these remainders are restricted by: deg, rMG=1(z) > dggp = V‘:l% - deg, a(l)(:c)J and
degq r(l)(j)(m) < dg())p.

e Line 9: After the linearized matrix-multiplication with Q(!), we obtain deg, a(z) =

deg,rMU (@) + h > d), + h > dstop + %71 (da — ditop) = (da + dstop) — 1, where
the “~1” comes from the floor operation in cases where d, is odd. Moreover, deg, b(z) =
deg, T(l)(j)(l‘) +h < %(da + dgtop), since |dq/2] < d,/2. Note that these values lie in the
middle between d, and dp, i.e., we have already accomplished the first half of the degree
reduction.

e Line 13: After the linearized division in Line 11, a(z) becomes the previous b(x) from Line 9
and therefore, deg, a(z) < 2(da + dstop)- Moreover, the g-degree of b(z) reduces by at least
one, ie., deg, b(x) < 3(da + dstop)-

e Line 16: We obtain 1 > dstp/2 due to the g-degree restriction of a(x) from Line 13.

e Lines 17-18: The truncation results in polynomials with the following g-degrees: deg, aM(z)

= deg,a(z) — h < 3(da + dstop) — dstop/2 = da/2 and deg, bV (z) < dg/2. Thus, the
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recursive call in Line 20 is done with polynomials having at most half the g-degree of the
original input polynomials.
e Line 20: For the derivation of the ¢g-degree, let us define again

rMG=1 () ) (1)(90)
F(06) () =QWa ( D(g))
where Q) is the output of the recursive call. Then, deg, rMG=1(z) > dgt))p and deg,, r(M0) ()

< dgt)p Ldegq a(l)(x)dstop/daJ S dstop/z-
e Output: We define 7= () and ) (z) as in (3.7) and therefore,

deg, r07D(2) = deg, V0 ™D(@) + h = d), + h = | %2 - (degy a(e) — )| + b
> h(1— %) + Loz (deg, alx) — 1)
= dutop — 2 deg, a(z) + %22 (deg, a(z) — 1) > dytop — 1,

ie., deg, r(jfl)(:v) > dstop and deg, r(j)(x) = deg, r(l)(j)(x) +h < dg())p +h < dstop.

The same holds inductively within the recursions and the statement follows. |

A.2 Proof of the Generalized Transformed Key Equation

First, the following lemma is needed.

Lemma A.1 (Transformed Key Equation for Column Erasures).
Let T(O)(z) be the full g-reverse of T\C)(x), which is defined as in (3.36) and let &\©) (x) denote the
q-transform of €\©) (). Then,

@) (z)) =0 mod (zI™ — ).

Proof. The statement holds if and only if e(C)(I'(©) (z)) = 0 mod (z[™ —z). The i-th coefficient
of a linearized polynomial a(z) is denoted by [a(z)]; in the following. Hence, the i-th coefficient
of the aforementioned g-reverse polynomial is (the indices are calculated modulo m):

2O (O (2 @] S gonp@ s stp©)
)| = [0 @] - Y AT,
i =0 j=0
With - -
~C) _NO) " o)
€ =€ ’ Jj—i =T J?
we obtain
o =0t o) _ = @) O) (5T
[A(C) ] Ze i) e ) T :{ﬂ >(€<C>(:c))], Vi € [0, m—1].

Let g = B+ (and g- = @) and &) (g) = &) (Bt) = ,8 extﬁ( ) = B-E©). Then,
Lemma 3.10 states that ¢(C) ) (B) = @0 (g) =g+ - EOT = 8. ET Thus,

PO E(BY) =T EC(g) =T (B (exta () ) =T (3. BOT. AOT).
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Hence,

(@) (@0 (g,)) = F(C)( d@A@)

I
=
=
a
—
w%‘\
a
SN—
|
o
<C
-~
Mm
=)
3
|
Pl

where the d§C) are defined as in (3.35) and similar to the proof of Theorem 3.6, the statement
follows. o

Based on this, we can now give the proof of the generalized transformed key equation (Theorem 3.8).

Proof of Theorem 3.8. Let us split the transformed error into three parts, which correspond to
row erasures, column erasures and (full) errors: é(z) = e(f) 4 &(©) 4 &(F),

1.) First, consider only column erasures. Due to Lemma A.1, &) (T (x)) =0 mod (zI™ — )
and therefore also A(®) (AR (e(©) (m(z‘)))) =0 mod (zI™ — ).

2.) Second, consider the row erasures. Since any element in F;m can be represented as a linear
combination of the elements g; with coefficients from IF;, we can rewrite W( gi) = Z;”:_Ol Gi j95,
where G; ; € . Moreover, e (g;) = eg-R) = z;é Bg)ag ) with B}(l J) e[,

Hence, for all i € [0,m — 1]:

A <3R) (F(C)(gi))) = ( el <m§:1 ,ggy>> = Tsz,jA(R) (Q(R)(gj))

7=0 7=0
m—1 o—1 m—1 o—1
=3 G AR < By" ]?agR)) =36 Y BIAB (o) = 0,
j=0 h=0 J=0 h=0

due to the definition of A (z). Hence, A(F) (A(R) (BT (©) )(9:)))) = 0foralli € [0,m — 1]
and thus, A (A @B)(T(©)(2)))) =0 mod (™ — z).

3.) Third, consider the errors. We denote again I'(C)(g;) = ZT_Ol G jgj, where G; ; € F, and
eBl(g;) =0 1()Bh J) (E) with B}(Lj) € F,. Hence, for all i € [0, m — 1]

m—1
A(R)<€(E)(F(C)(gi))> A(R)<A<E > G 739J> ZG AL (A(E)( ))

7=0 7=0
m—1 t—1 m—1 t—1
=S G (LB ) = X G Y BT @),
j=0 h=0 j=0 h=0
and thus,
m—1 t—1
A (A(R) (e (m(gi)))) =Y Gigy_B)A® (A(R) (agE))> =0,

=0 h=0

due to the definition of A(¥)(z) and similar to the proof of Theorem 3.6, it follows that
A® (AR (@[T (2)))) =0 mod (2™ — z).
The sum of the three parts gives exactly the LHS of (3.37) and the statement follows. |
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A.3 Comparison of Decoding Approaches for Gabidulin Codes

Let us compare the complexity of our decoding approach from Subsection 3.2.4 to the complexity of
known approaches for decoding Gabidulin codes in Table A.1, where the degree of all input polynomials
is in the order of n and we do not consider constant factors (which would result in a slight difference
between the decoding algorithms from [Gab85, PT91, RP04b, Loi06]).

If we assume that each operation in F;m costs O(m?) operations over F, (see Table 3.1), then
O(m3log m) operations over F, is smaller than O(n?) operations over F,. -

Table A.1. Complexity of decoding Gabidulin codes

Algorithm

Overall decoding
complexity

Methods/Details

Gabidulin [Gab85]

Gabidulin [Gab92]

Paramonov-Tretjakov
[PT91], Richter—Plass
[RP04a, RP04b]

Loidreau [L0i06]

Silva-Kschischang [SK09a]

Hassan-Sidorenko [HS10]

This thesis (Section 3.2.4)

O(n?) over Fym
O(n?) over Fym

O(n?) over Fym

O(n?) over Fym

O(n*m?) over F,,

O(n?) over Fym

O(n?) over Fym

Solves key equation by LEEA, recursive
procedure to determine error

Solves key equation by Gaussian elimina-
tion

Berlekamp—-Massey-like algorithm to
solve the key equation

Welch-Berlekamp-like algorithm, out-
puts evaluation polynomial of codeword

Syndrome calculation with O(m?) in Fy,

Calculating the root space of the error
span polynomial: O(m?) over F, as in
[Bers4].

Solves key equation with fast Berlekamp—
Massey-like algorithm with complexity
O(My,(m) logm)

Gao-like algorithm, solves transformed
key equation with LEEA; error-erasure

decoding
If D(m) = Mp,(m) and if the calcula-

tion of a minimal subspace polynomial
costs M,,,(m), then O(m3logm) over
F,.
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