
Universität Ulm
Institut für Angewandte Informationsverarbeitung

On Effective and Efficient Mutation Analysis for
Unit and Integration Testing

Dissertation

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. an der Fakultät für
Ingenieurwissenschaften und Informatik der Universität Ulm

vorgelegt von

René Just

aus Berlin

Oktober 2012



Amtierender Dekan:
Prof. Dr.-Ing. Klaus Dietmayer

Gutachter:
1. Gutachter: Prof. Dr. Franz Schweiggert
2. Gutachter: Prof. Dr. Helmuth Partsch
3. Gutachter: Dr. Gordon Fraser

Tag der Promotion: 24. Januar 2013



Abstract

Software testing is the most common technique to verify that a program meets certain
quality standards. Sufficient manual testing is not only time consuming but also a com-
plex and error-prone task. Additionally, due to the rapidly growing size and complexity
of software systems, automating the software testing process is desirable for more cost-
effective testing. Besides automating the testing process, the quality of the applied testing
strategy has to be assessed to achieve reliable results. This is of particular importance to
ensure that the employed tests are also effective in terms of their fault-finding capabili-
ties, and hence the results adequately reflect the quality of the software. By focusing on
mutation analysis and testing with partial oracles, this thesis addresses the automation
and assessment of unit and integrations tests.

Mutation analysis, which is based on seeding artificial faults, is a well-known technique for
the evaluation of a test suite’s quality. It is, however, also associated with high, sometimes
even prohibitive, costs, still preventing this technique from being widely applicable for large
software projects. This thesis addresses this challenge and presents techniques to increase
the efficiency of mutation testing. In addition, it describes and evaluates approaches that
also improve the expressiveness of the corresponding metric.

While mutation testing is known to be computationally expensive and time consuming,
it also lacks proper tool support for various purposes. Therefore, this thesis also presents
a versatile and highly configurable mutation framework that implements the suggested
approaches to enable further research as well as the application of efficient and effective
mutation analysis for large software systems.

The automation of software tests often results in the oracle problem, another crucial
challenge in software testing. In an attempt to alleviate this problem, leveraging partial
oracles seem to be viable solution but their adequacy for different testing purposes has not
been examined sufficiently. Therefore, this thesis investigates whether partial oracles are
in principal adequate for unit and integration testing. By employing mutation analysis for
this purpose, the thesis also analyzes how such partial oracles can be improved.

i





Acknowledgement

First of all, I would like to thank my supervisor Franz Schweiggert for all his help, guidance,
and support while working on my PhD. I would also like to thank Helmuth Partsch and
Gordon Fraser for being the second and third reviewer of this thesis. Also, I am grateful to
Gregory M. Kapfhammer for his support and many valuable comments. Further thanks go
to Kristina Steih, Johannes Mayer, Norbert Heidenbluth, and Steffen Fritzsche for many
fruitful discussions and the always enjoyable working atmosphere. Finally, I am indebted
to my wife Claudia for always encouraging and supporting me.

This work was partially supported by the Landesgraduiertenförderung Baden-Württemberg
and by the Wilken Stiftung.

iii





Contents

Abstract i

Acknowledgement iii

List of Figures ix

List of Tables xi

I Preface and Introduction 1

1 Preface 3
1.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Introduction to Software Testing 7
2.1 Software Testing Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Automated Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Test Adequacy Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Control Flow Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Data Flow Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Fault-based Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Test Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II Efficient and Effective Mutation Analysis 17

3 Background and Limitations of Mutation Analysis 19
3.1 Mutation Analysis Background . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Hypotheses of Mutation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Competent Programmer Hypothesis . . . . . . . . . . . . . . . . . . 21
3.2.2 The Coupling Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Limitations of Mutation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Scalability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



Contents

3.3.2 Infinite Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Equivalent and Redundant Mutants . . . . . . . . . . . . . . . . . . 23

3.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Conditional Mutation 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Conditional Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Tail-Recursive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Runtime Optimization with Mutation Coverage . . . . . . . . . . . . 34
4.2.3 Support for Higher Order Mutation . . . . . . . . . . . . . . . . . . 36

4.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Space Overhead of Mutant Generation . . . . . . . . . . . . . . . . . 40
4.3.2 Time Overhead of Mutant Execution . . . . . . . . . . . . . . . . . . 41

4.4 Related Techniques and Limitations . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Mutant Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Bytecode Transformation . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Mutation Analysis in a Java Compiler 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Conditional Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Driver Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Major Mutation Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Grammar for Mml . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Integration with MAJOR . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3 Script Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Non-Redundant Mutation Operators 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 A Detailed View on Mutation Operators . . . . . . . . . . . . . . . . . . . . 65
6.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 The frequency of the COR and ROR mutants . . . . . . . . . . . . . 72
6.3.2 The number of connectors in conditional expressions . . . . . . . . . 72
6.3.3 Decreasing the runtime of the mutation analysis . . . . . . . . . . . 74
6.3.4 Increasing the precision of the mutation score . . . . . . . . . . . . . 77

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Test Suite Prioritization 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Non-Redundant Mutation Operators . . . . . . . . . . . . . . . . . . . . . . 86

vi



Contents

7.3 Efficient and Scalable Mutation Analysis . . . . . . . . . . . . . . . . . . . . 88
7.3.1 Mutation Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2 Precision of the Mutation Coverage . . . . . . . . . . . . . . . . . . . 92
7.3.3 Overlap of the Mutation Coverage . . . . . . . . . . . . . . . . . . . 94
7.3.4 Runtime of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.5 Visualizing the Overlap and Runtime . . . . . . . . . . . . . . . . . . 97

7.4 Optimized Mutation Analysis Workflow . . . . . . . . . . . . . . . . . . . . 97
7.4.1 Gather Mutation Coverage Information . . . . . . . . . . . . . . . . 99
7.4.2 Estimate Test Runtime and Prioritize Test Cases . . . . . . . . . . . 99
7.4.3 Threshold-based Splitting of Test Classes . . . . . . . . . . . . . . . 99
7.4.4 Complete Mutation Analysis Workflow . . . . . . . . . . . . . . . . . 100

7.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

III Assessing Partial Oracles with Mutation Analysis 109

8 Background on the Oracle Problem and Partial Oracles 111
8.1 The Oracle Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Partial Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.1 Assertions, Contracts, and Invariants . . . . . . . . . . . . . . . . . . 113
8.2.2 Metamorphic Relations . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Automating Unit and Integration Testing with Partial Oracles 117
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Preliminaries and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3.1 Evaluation of the Input Values . . . . . . . . . . . . . . . . . . . . . 127
9.3.2 Evaluation of the Partial Oracles . . . . . . . . . . . . . . . . . . . . 130
9.3.3 Efficiency and Effectiveness Improvements . . . . . . . . . . . . . . . 133
9.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

IV Conclusions and Appendix 139

10 Conclusion and Future Work 141
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A Major mutation language Grammar 145

Bibliography 149

vii





List of Figures

1.1 The big picture of the software testing areas addressed in this thesis. . . . . 4

2.1 Different levels of software testing. . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Overview of a simplified test process with an output-based test oracle. . . . 9
2.3 The control flow graph for the max method of Listing 2.1. . . . . . . . . . . 12
2.4 The data flow graph for the max method of Listing 2.1. . . . . . . . . . . . 13

4.1 AST subnode of an assignment with a binary expression as right hand side. 32
4.2 Multiple mutated binary expression as right hand side of an assignment. . . 33
4.3 Compiler runtime for generating and compiling the mutants for all investi-

gated projects except aspectj. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Overview of compiler-integrated conditional mutation with externalized
configuration and driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 UML class diagram of the necessary extensions of the Java compiler. . . . . 52
5.3 Syntax diagram for the definition of a statement. . . . . . . . . . . . . . . . 56
5.4 Syntax diagram for the definition of a statement scope. . . . . . . . . . . . 57
5.5 Syntax diagram for the definition of a flatname. . . . . . . . . . . . . . . . . 57
5.6 Integration of the Mml Compiler with Major using standard Java serial-

ization as intermediate output. . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Attributed mutation tree that provides replacement lists and enables/dis-

ables certain mutation operators. . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Ratio of the number of COR and ROR mutants to the number of all gen-
erated mutants for the investigated applications. . . . . . . . . . . . . . . . 73

6.2 Distribution of the number of logical connectors in conditional expressions
for the investigated applications. . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Function used to determine the timeout for mutants (base timeout factor=8). 76

7.1 Different levels of granularity in JUnit test suites. . . . . . . . . . . . . . . . 92
7.2 Coverage overlap distribution of the individual test classes related to the

corresponding test suite for all investigated applications. . . . . . . . . . . . 95
7.3 Runtime distribution of the individual test classes. . . . . . . . . . . . . . . 96
7.4 Mutation coverage with corresponding runtime for time. . . . . . . . . . . . 98

ix



List of Figures

7.5 Mutation coverage with corresponding runtime for num4j. . . . . . . . . . . 98
7.6 Optimized mutation analysis process that exploits mutation coverage and

runtime information of test cases. . . . . . . . . . . . . . . . . . . . . . . . . 101
7.7 Visualization of the complete mutation analysis process for math using the

original order and the class-hybrid approach. . . . . . . . . . . . . . . . . . 104
7.8 Visualization of the complete mutation analysis process for itext using the

original order and the class-hybrid approach. . . . . . . . . . . . . . . . . . 105

9.1 Input generation model for color images. . . . . . . . . . . . . . . . . . . . . 119
9.2 Gray-scale image and its corresponding coefficient matrix. . . . . . . . . . . 119
9.3 Exploiting the commutativity of the two-dimensional Wavelet Transforma-

tion as partial oracle by means of the matrix transposition. . . . . . . . . . 120
9.4 The investigated subsystem that is composed of several software units and

responsible for preprocessing and decorrelation. . . . . . . . . . . . . . . . . 123
9.5 Fitness landscapes of the mutation score related to the image dimensions

for the Wavelet transformation and the Decomposition. . . . . . . . . . . . 128
9.6 Fitness landscapes of statement and simple branch coverage for the Wavelet

transformation, as reported by Cobertura [2010]. . . . . . . . . . . . . . . . 129

x



List of Tables

4.1 Summary of the applications investigated in the empirical study. . . . . . . 37
4.2 Number of the generated and covered mutants for all investigated applications. 38
4.3 Implemented mutation opertors. . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Compiler runtime to generate and compile the mutants for the aspectj project. 39
4.5 Incurred space overhead when applying conditional mutation. . . . . . . . . 41
4.6 Incurred runtime overhead when applying conditional mutation. . . . . . . 42

6.1 Sufficient replacements for the logical connector AND. . . . . . . . . . . . . 68
6.2 Subsumed mutations for the logical connector AND. . . . . . . . . . . . . . 68
6.3 Sufficient replacements for the logical connector OR. . . . . . . . . . . . . . 69
6.4 Subsumed mutations for the logical connector OR. . . . . . . . . . . . . . . 69
6.5 Summary of the applications investigated in the empirical study. . . . . . . 71
6.6 Decrease in the number of generated and covered mutants. . . . . . . . . . 75
6.7 Decrease in the runtime of the mutation analysis. . . . . . . . . . . . . . . . 78
6.8 Divergence of the mutation score with regard to the generated and covered

mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9 Comparison of the mutation score with mutation coverage and code coverage. 80
6.10 Comparison of the runtimes for calculating code coverage and for determin-

ing the mutation score and mutation coverage. . . . . . . . . . . . . . . . . 81

7.1 Summary of the applications investigated in the empirical study. . . . . . . 88
7.2 Decrease in the number of generated mutants. . . . . . . . . . . . . . . . . . 89
7.3 Ratio of covered to generated mutants. . . . . . . . . . . . . . . . . . . . . . 91
7.4 Estimated overhead in hours for evaluating uncovered mutants. . . . . . . . 91
7.5 Precision of mutation coverage and total runtime at class level. . . . . . . . 93
7.6 Precision of mutation coverage and total runtime at method level . . . . . . 93
7.7 Cumulative runtime and extremum of all test classes. . . . . . . . . . . . . . 96
7.8 Runtimes for different prioritization and splitting strategies. . . . . . . . . . 102

9.1 Software packages and physical lines of code of the individual software units
integrated in the investigated subsystem. . . . . . . . . . . . . . . . . . . . . 123

9.2 Description of the investigated metamorphic relations. . . . . . . . . . . . . 126
9.3 Effectiveness of the applied partial oracles for the particular transformations

and the complete subsystem concerning the traditional mutants. . . . . . . 131

xi



List of Tables

9.4 Comparison of the effectiveness of the applied partial oracles for the com-
plete subsystem with respect to the different kind of mutants. . . . . . . . . 132

9.5 Increase in effectiveness of the applied partial oracles by means of combi-
nation of the two most effective oracles (Rx and Ry) and all oracles. . . . . 132

9.6 Complexity and effectiveness of the applied partial oracles (Params denotes
the number of parameters of the corresponding partial oracle and Inputs
represents the number of necessary runs of the SUT). . . . . . . . . . . . . 134

9.7 Complexity and effectiveness of enhanced partial oracles (Params denotes
the number of parameters of the corresponding partial oracle and Inputs
represents the number of necessary runs of the SUT). . . . . . . . . . . . . 135

xii



Part I

Preface and Introduction

1





Chapter 1
Preface

Software testing and debugging are crucial parts of the software development process and
the costs associated with these techniques are estimated to constitute between 30 and 50%
of the complete development process costs [Myers et al., 2011; Spillner et al., 2007]. This
ratio is even considerably larger in safety critical environments, such as nuclear or avionic
systems, where a more comprehensive test process is required.

Since the applicability of formal proofs of correctness are limited to small artifacts and
programs, software testing is usually applied to increase the confidence in the developed
system. Software testing cannot prove a system to be correct unless it is done exhaustively.
This is, however, not feasible in general since the number of inputs and corresponding
values leads to a tremendous number of combinations. As a consequence, software testing
is usually done systematically to eliminate certain types of errors and to achieve some
pre-defined end-of-test criteria.

Due to continuously growing software systems and the demand for reproducibility, au-
tomating the software test process is desirable. Moreover, the quality of software tests has
to be assessed to ensure that the possibly automated tests are not only efficient but also
effective. Therefore, this thesis addresses the generation as well as the evaluation of soft-
ware tests by focusing on effective and efficient mutation analysis for unit and integration
testing.

1.1 The Big Picture

Concerning the contributions of this thesis, Figure 1.1 illustrates the addressed areas and
also connects these areas to the corresponding parts and chapters. Moreover, the diagram
illustrates the connections between the different research fields and also shows perspectives
and possible future work.

3



Chapter 1 Preface

Software testing

Assessing
software tests

Automating
software tests

Mutation
analysis

Part II

Conditional
Mutation

Chap. 4

Tool Major

im
pl
em

en
ts

Chap. 5

Non-redundant
operators

Chap. 6

Test suite
prioritization

in
cl
ud

es

Chap. 7
evaluated with

Partial
oracles

Part III

Generating
and

assessing
partial oracles

Chap. 9

em
pl
oy
s

Perspective and
future work

Chap. 10

Figure 1.1: The big picture of the software testing areas addressed in this thesis.

4



1.2 Contributions

1.2 Contributions

This thesis makes several contributions to the ongoing research in the field of software test-
ing, especially mutation testing and testing with partial oracles. The suggested approaches
and presented results within this thesis have been published in refereed publications and
address the following aspects:

• Existing methods for cost reduction of mutation analysis are still not sufficient to
enable efficient and also effective mutation analysis for large software systems, thus
preventing this technique from being widely used in industry. To address these chal-
lenges, we suggest a new approach to mutant generation, called conditional mutation,
that minimizes the generation time and enables efficient mutation analysis. The al-
gorithm for conditional mutation and the empirical evaluation of this approach are
published in [Just et al., 2011a].

• State of the art mutation analysis tools and frameworks are designed for and often
limited to a certain testing scenario, yet they are mostly efficient for their purpose. To
provide a flexible and easy-to-use mutation tool, we separate the mutant generation
phase from the analysis part. While aiming at a fast, flexible, and lightweight
mutator for Java programs that is applicable in any Java-based environment, we
have implemented conditional mutation into the Java Standard Edition compiler.
Design and implementation details are published in [Just et al., 2011b].

• Mutation analysis is computationally expensive, primarily due to the substantial
number of generated mutants that have to be analyzed. However, when applying
the mutation operators with their original definitions, the resulting set of mutants
exhibits redundancies that are harmful to both efficiency and effectiveness. Con-
sidering the mutation operator that replaces conditional expressions, we define a
non-redundant version of this operator. The theoretical results in conjunction with
an empirical evaluation are published in [Just et al., 2012a,c].

• Assessing existing evolved and potentially long-running test suites is essential when
aiming at a wider acceptance of mutation analysis in industry. Therefore, we analyze
several real world software systems to identify certain characteristics of existing test
suites and to ultimately suggest an optimized workflow that significantly reduces
the runtime of mutation analysis. The results of the analyses, the workflow, and its
empirical evaluation are published in [Just et al., 2012b].

• Partial oracles are a suitable approach to alleviate the oracle problem but their
quality needs to be assessed due to their characteristics of potentially producing
false-negative results. Moreover, partial oracles are generally not equally suitable
for different testing phases such as unit and integration testing. They also manifest
a considerable discrepancy in effectiveness for different software units. Nevertheless,
their effectiveness can be improved by adequately combining several partial oracles.
Based on a bipartite approach, which employs mutation analysis, these findings are
published in [Just and Schweiggert, 2010] and [Just and Schweiggert, 2011].

5



Chapter 1 Preface

The contents of the aforementioned publications have been revised, extended, and partially
rewritten for this thesis.

1.3 Outline

The rest of this thesis is structured as follows: First, Chapter 2 provides an introduction to
software testing by focusing on the challenges associated with automating software tests.
This chapter also introduces techniques for test data generation and outlines some well
established criteria for assessing the adequacy of (generated) tests. Since this thesis makes
contributions to two areas of software testing, the subsequent chapters are divided into
two parts, where Part II deals with efficient and effective mutation analysis and Part III
examines the suitability of partial oracles for unit and integration testing.

Within the mutation analysis part, Chapter 3 discusses the necessary background of mu-
tation analysis and outlines its limitations and research challenges. Then, Chapter 4
presents and evaluates a new approach to mutant generation that minimizes the neces-
sary runtime to generate all mutants and enables efficient mutation analysis. Based on
this approach, Chapter 5 describes the design and implementation of the corresponding
compiler-integrated mutation tool. Furthermore, this chapter presents a domain specific
language for mutation analysis and also describes the implementation and integration of
a compiler for this domain specific language. Thereafter, the following chapters describe
and evaluate further research approaches that are enabled by the developed tool, where
Chapter 6 focuses on redundancies of mutation operators and presents a subsumption hi-
erarchy and a non-redundant version of the operator that mutates conditional expressions.
Finally, Chapter 7 suggests and empirically evaluates an optimized workflow for mutation
analysis that exploits redundancies and runtime differences in existing test suites, which
are to be assessed with mutation analysis.

With regard to Part III, which relies on mutation analysis to assess the effectiveness
of partial oracles, Chapter 8 provides an introduction to the oracle problem and partial
oracles. By focusing on metamorphic relations, a certain type of partial oracles, Chapter 9
thereafter investigates the adequacy of such partial oracles for unit and integration testing.
This chapter also presents possibilities for efficiency and effectiveness improvements for
the analyzed partial oracles.

By summarizing the results of all chapters in Part II as well as Part III, Chapter 10 finally
concludes this thesis and discusses possible extensions and areas for future work.

6



Chapter2
Introduction to Software Testing

Software testing is an integral part of the software development process to ensure that the
developed software meets certain quality requirements. According to Myers et al. [2011]
“Testing is the process of executing a program with the intent of finding errors.” This
definition of testing implies that a test is successful if it reveals an error. Conversely, the
quality of a given program cannot be related to the fault-finding capabilities of a test, if
this test does not detect any faults but is not assessed, based on a certain metric.

2.1 Software Testing Levels

Considering the different levels of abstraction within the software development process, the
software testing process can also be divided into several levels, as shown in Figure 2.1.

Unit Testing

Unit testing denotes testing at the lowest level where the individual software units or
modules are tested independently. Such a software unit may be a particular method or
even an entire class but it is crucial to state that unit testing does not consider any
dependencies or interactions between several units. Aiming at verifying the functionality
of the software units, usually a test driver is necessary to emulate the environment in
which the software unit is executed.

Integration Testing

At the integration testing level, the independently tested software units are integrated into
larger subsystems and there are different strategies on how to best integrate the individual
software units into subsystems (cf. [Spillner et al., 2007]). Regardless of which strategy
is used, integration testing generally aims at checking whether the software units exhibit
the expected behavior when integrated within a subsystem. That is, integration testing

7



Chapter 2 Introduction to Software Testing

Unit
testing

Integration
testing

System
testing

Point of time in software testing process

Le
ve
lo

fa
bs
tr
ac
tio

n

Figure 2.1: Different levels of software testing.

verifies the interfaces and the interactions between the individual software units. At this
testing level, a test driver is still necessary to emulate the missing components.

System Testing

Testing a software system in which all units and subsystems are fully integrated is referred
to as system testing. Since a software system that is verified at this testing level is fully
integrated, a test driver is not necessary to execute it. System testing is, for instance,
applied to verify the input and output characteristics of the system based on a given
specification.

This thesis focuses on the lower testing levels, namely unit and integration testing. Even
though the techniques and results presented in this thesis may also be transferable to a
higher testing level, this matter is not investigated and discussed. It is also important to
note that other higher testing levels, such as acceptance or robustness testing, exist that
investigate the fully integrated software system but have a different view on it.

2.2 Automated Software Testing

Since software systems are constantly growing in size and complexity, manual testing be-
comes time consuming, sometimes even prohibitively so. Therefore, software tests should
be automated, not only for efficiency reasons but also for reproducibility. Figure 2.2 illus-
trates a simplified testing process in which the system under test is executed with a certain
input and the corresponding output is verified by means of an output-based oracle.

8



2.2 Automated Software Testing

System
under test

Input

Test data
generator

Actual
output

Predictor
Expected
output Comparator

Pass/Fail

Output-based oracle

Figure 2.2: Overview of a simplified test process with an output-based test oracle.

Throughout this thesis, we use the term testing strategy to denote the union of the two
parts necessary to test a software system, namely a model for generating test data and a
test oracle to verify the corresponding output. It is important to state that we use the
term output as synonym for every observable state, behavior, or outcome of the system
under test. This might be, but is not limited to, the actual, observable outcome of the
investigated program. Furthermore, this definition of testing strategy also applies to man-
ual testing, where the test data may be predefined or hand-crafted and the human tester
plays the role of the test oracle. Considering the following four individual sub-processes
of the diagram in Figure 2.2:

• Generating input values

• Executing the system under test

• Predicting the expected output

• Comparing the actual to the expected output

In order to automate the entire software test process all of these four sub-processes have
to be automated. With regard to the execution of the system under test, several testing
frameworks exist that can automate this step. JUnit [2012] is for instance the most
popular framework for testing applications written in the Java programming language.
Furthermore, a lot of automated test data generation models exist that for instance rely
on random data generation or on a directed search guided by a certain test adequacy

9



Chapter 2 Introduction to Software Testing

criterion. An introduction to test adequacy criteria as well as test data generation models
is provided by the subsequent Sections 2.3 and 2.4.

Concerning the last two parts that form the test oracle, namely the determination of
the expected output and the comparison of the actual and expected one, the comparator
can also be easily automated if both the actual and the expected output are available.
However, the prediction of the correct output often results in the oracle problem if such
an predictor is not available or cannot be generated with a reasonable effort. Intuitively,
such a predictor can be generated by re-implementing the system under test. Yet, this
effort is considered to be disproportionate and testing the implemented predictor would
again result in the oracle problem. Concerning the oracle problem, various standard
solutions (cf. [Binder, 1999]) exist which are, however, only employable in rare situations.
On the other hand a promising class of oracles, the partial oracles [Weyuker, 1982], are
considered to be easily automatable, more often applicable and should therefore be used
for automating software tests [Bertolino, 2007].

Since Part III addresses testing with partial oracles, Chapter 8 provides a more detailed
introduction to the oracle problem and several types of partial oracles.

2.3 Test Adequacy Criteria

The famous corollary of Dijkstra [1970]: "Program testing can be used to show the presence
of bugs, but never to show their absence!" clearly indicates that a good software quality
cannot be deduced from software tests that do not find any faults. The applied testing
technique could simply be inadequate with regard to the assessed software system. As
a consequence, there is clearly a need for methods and metrics to also asses the quality
of software tests. This section provides a basic introduction to test adequacy criteria,
focusing on code coverage and fault injection. It is important to note that this section
does not aim at providing a comprehensive survey of test adequacy criteria but rather
gives an intuitive introduction to the different categories. A more detailed introduction
to test coverage and adequacy is, for instance, provided by the survey of Zhu et al. [1997]
and the introductory book of Ammann and Offutt [2008].

Generally, a coverage criterion defines rules or requirements that have to be fulfilled by
a test suite in order to be adequate with regard to this criterion. Consequently, the
corresponding metric is the level of coverage lc that can be generally defined as follows:

Definition 2.1 Level of coverage lc

lc = Number of satisfied requirements
Number of all (satisfiable) requirements

It is important to note that some requirements are unsatisfiable and therefore have to be
excluded to enable an investigated test suite to achieve a level of coverage of 100%.

10



2.3 Test Adequacy Criteria

1 public static int max(int a, int b){
2 int max = a;
3
4 if (b > max){
5 max = b;
6 }
7
8 return max;
9 }

Listing 2.1: Example method that determines the maximum of two integer values.

2.3.1 Control Flow Coverage

A control flow graph is a directed graph with two kinds of nodes and edges that represent
a flow between these nodes. With regard to the nodes, the graph contains the individual
statements of a program and decisions, that is every conditional statement in the program,
which result in two branches. Having only these two kinds of nodes is sufficient since loops
are represented by decisions with one branch being a back edge to the node representing
the loop header. Additionally, a sequence of statements that does not contain any decision
is referred to as basic block. Now, based on such a control flow graph, several coverage
criteria can be defined.

Two well-know, yet rather simple, control flow coverage criteria are statement and branch
coverage. Statement coverage only requires that every statement has to be executed at
least once. Branch coverage additionally requires that every branch has to be covered.
This is of particular importance for empty branches that occur for instance in if statements
without a corresponding else part. Hence, branch coverage is the stronger criterion and
subsumes statement coverage. Statement and branch coverage only lead to equivalent
results for programs that do not contain any empty branches – this is, however, rarely the
case for non-trivial programs.

Concerning the depicted control flow graph of Figure 2.3, statement coverage can easily be
achieved when the condition, that is b>max, is fulfilled due to the fact that the else part of
the condition does not contain any statements. In contrast, branch coverage requires the
execution of both paths, even though there is no additional statement on the path that is
executed when the condition is not fulfilled.

With regard to decisions that are composed of several sub-expressions, the modified condi-
tion/decision coverage (mc/dc), for instance required by the Radio Technical Commission
for Aeronautics (RTCA) [2011] for critical systems, is a much stronger criterion than
statement and branch coverage. It requires that the entire condition as well as every sub-
expression evaluates to true and false. Moreover, it requires that the impact of every
sub-expression on the outcome of the decision is tested independently. That is, the result

11



Chapter 2 Introduction to Software Testing

B
as
ic

bl
oc
k int a = <input 1>

int b = <input 2>

int max = a

b>max

return max

max = b
yes

no

Figure 2.3: The control flow graph for the max method of Listing 2.1.

of the decision should change when the boolean value of a sub-expression changes. This
implies that only combinations that fulfill this requirement have to be tested to avoid the
cost of combinatorial testing.

2.3.2 Data Flow Coverage

A data flow graph provides a different view on code abstraction and describes the cor-
relation of variable definitions and assignments with their use. Figure 2.4 illustrates a
data flow graph, again for the method shown in Listing 2.1. The following definitions are
usually used to describe a certain coverage criterion on such a data flow graph:

Definition
A definition (def) of a variable is either a declaration in conjunction with an initialization
or an assignment, where the variable is used as left hand side.

Use
A use occurs whenever a variable is accessed, meaning that its value is read and used.
Concerning the actual use of the variables value, two kinds can be distinguished:

c-use: A use of the value within a computation.

p-use: A use of the value within a predicate of a logical expression.

12



2.3 Test Adequacy Criteria

def (a)

def (b)

p-use (a)
de

f-u
se

pa
ir

def (max)

p-use (b)
p-use (max)

c-use (max)

c-use (b)
def-use pair

def (max)

b>max

b<=max

Figure 2.4: The data flow graph for the max method of Listing 2.1.

Definition-clear path

A definition-clear path within a data flow graph is a path from a def to a use node for a
given variable that does not contain other def nodes of the same variable.

Def-use pair

A def-use pair for a certain variable consists of a def and a use node of the same variable
connected by a definition-clear path. It is crucial to state that a def-use pair may have
several different definition-clear paths. A certain definition-clear path for a given def-use
pair is also referred to as def-use path.

Concerning these definitions, several criteria can be defined such as all-defs that requires
the coverage of all definitions with an arbitrary def-use path. In contrast, all-uses requires
the coverage of all def-use pairs with one definition-clear path. Apparently, the latter
criterion subsumes the first one and is generally much harder to fulfill. Figure 2.4 shows
the corresponding data flow graph of the simple max method.

13



Chapter 2 Introduction to Software Testing

2.3.3 Fault-based Criteria

All code coverage criteria, regardless of which category, manifest the same weakness with
regard to the assessment of tests. A fulfilled code coverage criterion does not imply that
the investigated test case or test suite is also effective in detecting faults. In fact, a test
case that reaches a 100% coverage may not detect any fault if the corresponding output
is not verified by an appropriate oracle. Hence, coverage criteria can only assess one part
of a testing strategy, namely the test data generation model.

To overcome this problem, fault-based approaches assess the quality of a given test set
with regard to its ability to reveal seeded faults. Hence, these approaches also assess the
second part of a testing strategy, namely the test oracle, since such an oracle is necessary
to eventually detect a fault. Usually, a fault-based technique is applied in order to increase
the confidence that the tested software does not contain a certain type or class of faults (cf.
[Morell, 1990]). Hence, the power of fault-based techniques clearly depends on whether the
seeded faults are subtle and representative for the type of faults intended to eliminate.

Error seeding is a classical fault-based approach, where an experienced software engineer
seeds faults led by the intuition where a programmer could have made a mistake (cf.
[Mills, 1972]). However, the faults obtained from this approach are hardly reproducible
and moreover they are based on the programmers opinion rather than on formal defini-
tions. Besides these generalizability issues, error seeding for larger software systems is
either almost prohibitively expensive or the number of the obtained faults is to small to
adequately assess a test suite for the corresponding application.

Mutation testing, which systematically injects artificial faults and also belongs to this cat-
egory of test adequacy criteria, tries to overcome the challenges of manual error seeding.

Since this thesis makes several contributions to the field of mutation analysis, this tech-
nique is introduced more detailed in Chapter 3.

2.4 Test Data Generation

With regard to automated test data generation, several approaches have been proposed.
This section summarizes some of these techniques and discusses their advantages and
drawbacks. Most systematic test data generation techniques aim at generating tests that
reach a certain level of coverage for a given criterion (e.g., statement or branch coverage).
Additionally, mutation is also a common criterion for test data generation – the goal for
these techniques is to generate test sets that reveal as much mutants as possible.

Random Generation

Intuitively, random test data generation is an easy and efficient way to obtain almost
arbitrary input values or more complex test data. However, a pure randomized generation
technique cannot guarantee that a certain level of coverage or particular paths are reached.
Nevertheless, due to the low computational costs, several randomized iterations can be

14



2.4 Test Data Generation

performed to achieve satisfying results. Since random testing is furthermore an unbiased
technique and offers very good scalability, even for large software systems, it is often used
to generate test data.

Randomly generated tests, however, may produce invalid or useless test cases, for instance
sequences of method calls that are interrupted during their executing due to a thrown
exception. Moreover, the probability of reaching a path that is rarely executed due to its
path constraints is low. As a consequence, the test suite size may become relatively large
to achieve a certain level of coverage. To overcome this problem Pacheco et al. [2007]
suggested a feedback-directed test generation, which builds valid sequences by reusing
already existing and verified results of prior method calls in the same sequence. Yet,
checking whether a method call or generally a sequence extension is valid, leads to consid-
erable effort. Nevertheless, the obtained test suites clearly outperform randomly generated
tests with respect to effectiveness.

Constraint-based Generation

Another popular approach is the generation of test data by solving path constraints uti-
lizing symbolic execution (cf. [King, 1976]). Instead of real input values symbolic values
are used and outputs are represented by a function of these symbolic values. Furthermore,
branches or paths within the code are represented by path conditions, that is the accumu-
lation of all constraints which have to be fulfilled to execute this path. Hence, a real input
value that eventually reaches a certain statement or branch in the code is determined by
solving the assembled path constraints. This technique is for example implemented in
Java PathFinder [Visser et al., 2004] or Pex [Tillmann and De Halleux, 2008]. Besides
these implementations, DeMillo and Offutt [1991] suggested constraint-based test data
generation using mutation instead of structural code coverage. Even though constraint-
based test data generation achieves generally a good level of coverage, it is compared with
other techniques rather costly in terms of memory consumption and runtime.

Search-based Generation

In order to avoid the drawbacks of pure random and constraint-based test data generation,
metaheuristic, that is search-based, approaches are another class of test data generation
techniques. McMinn [2004] surveyed and compared well-known algorithms and existing
approaches that belong to this class. While most approaches focus on one test goal at a
time and therefore generate quite large test sequences, Fraser and Arcuri [2012b] proposed
a technique that focuses on the entire test suite to achieve a high level of coverage and a
small test size at the same time.

Similar to random and constrained-based generation, mutation can also be used as fitness
function to search for adequate test cases. Fraser and Zeller [2012] investigated mutation’s
adequacy for this purpose on 10 open-source libraries and found that compared with the
manually written, existing test suites most of the generated test suites manifest shorter
sequences. Moreover, the generated test suites clearly outperformed the existing test suites
in terms of the detection rate of seeded faults. This approach is among others implemented
in the EvoSuite tool [Fraser and Arcuri, 2011].

15



Chapter 2 Introduction to Software Testing

Even though this thesis does not address research questions in test data generation, this
section clearly indicates, that mutation analysis plays an important role in current research
on test data generation. Hence, it is crucial to focus on efficient and also effective mutation
analysis in order to be able to employ mutation as criterion for test data generation.

16



Part II

Efficient and Effective
Mutation Analysis

17





Chapter3
Background and Limitations of
Mutation Analysis

This chapter is based on [Just et al., 2011a,b].

This chapter deals with the fundamentals of mutation analysis and provides the necessary
basic knowledge of this technique. After describing the history, background, and fun-
damental hypotheses of mutation analysis, this chapter also outlines several limitations.
Additionally, it discusses related work and the state of the art, both necessary to later
distinguish the contributions of this thesis presented in the subsequent chapters.

3.1 Mutation Analysis Background

Originally introduced in [Budd, 1980; DeMillo et al., 1978], mutation analysis is a well
known technique for assessing the quality of a given test set or testing strategy. In this
fault-based approach, artificial faults are systematically seeded into a System Under Test
(SUT) and the corresponding test sets or testing strategies are examined with respect
to their ability to reveal these faults. It is crucial to state that the faults are injected
methodically, contrary to the classical approach where error seeding is led by the intuition
of experienced engineers (cf. [Mills, 1972]). Thus, mutation analysis can be regarded as
an unbiased technique and leads, furthermore, to reproducible results.

The way of applying mutation analysis is specified by mutation operators and the resulting
faulty versions of the SUT are referred to as mutants. Examples of mutation operators
are the replacement of variables by constants or the swapping of operators in conditions
(cf. [King and Offutt, 1991; Ma et al., 2002, 2006]). Generally, mutation analysis is
programming language independent but the mutation operators depend on the chosen
language since they have to cover the corresponding syntax and semantics. If a test
case reveals a fault, the corresponding mutant is said to be killed and consequently, an
undetected mutant is referred to as live mutant. Hence, relating the number of all the

19



Chapter 3 Background and Limitations of Mutation Analysis

killed mutants to the number of generated mutants is intuitively an appropriate way to
measure the quality of the applied test set.

However, a mutant cannot be killed in certain circumstances. In fact, when there exists no
test case that can detect the mutant, it is said to be equivalent. It is important to note that
this equivalence applies to the semantics since a mutant represents a valid syntactic change
of the original program. Mutants manifest a semantic equivalence to the original program
if the mutation is either not reached and executed or it has no effect on any observable
state. Trivial examples for such equivalent mutants are the mutation of unused or dead
code fragments and the manipulation of a variable which is no longer used afterwards.
Let p be the original program with its corresponding set of input values and parameters
π, that is π denotes the union of all input values and parameters necessary to execute p.
For a given input domain Π, a mutant m is equivalent to p, written as m ≡ p, if and only
if it produces the same output as p for all possible input tuples:

m ≡ p⇔ m(π) = p(π), ∀π ∈ Π (3.1)

With regard to the aforementioned intuitive quality metric, the ratio of killed to generated
mutants cannot yield 100% if the set of mutants contains equivalent ones. Thus, it is
necessary to investigate live mutants in order to remove those which are equivalent. Even
though this task is mostly done manually, some sound and also heuristic approaches exist to
identify certain types of equivalent mutants automatically [Offutt and Pan, 1997; Schuler
and Zeller, 2010]. Disassociating the equivalent mutants from the complete set leads to a
more precise metric, and thus provides an improved assessment of the effectiveness of the
analyzed test set or testing strategy. This measure is referred to as mutation score S and
it is defined as follows:

Definition 3.1 Mutation Score S

S = Mk (Number of killed mutants)
Mt (Number of non-equivalent mutants)

It is important to note that mutation analysis is not feasible without appropriate tool
support. Mutation tools have been developed for many common programming languages,
such as Fortran, C, C#, or Java. While each system has its own strengths and weaknesses,
most of them are designed as a comprehensive framework for certain analyses.

3.2 Hypotheses of Mutation Analysis

The acceptance of mutation analysis being a good adequacy criteria is based on two
fundamental hypotheses, namely the competent programmer hypothesis and the coupling
effect. Both hypotheses were initially postulated, investigated, and discussed by DeMillo
et al. [1978], Acree et al. [1979], Budd [1980], and Budd et al. [1980].

20



3.3 Limitations of Mutation Analysis

3.2.1 Competent Programmer Hypothesis

The main assumption of the competent programmer hypothesis is that programmers write
programs that are almost perfect. This means that the developed program is close to being
correct, and thus within the neighborhood of the correct version. As a consequence, it
is sufficient to inject small defects to simulate or represent real faults. Moreover, the
determined adequacy of a test case or test suite that is based on artificial faults is a
good approximation of the test’s adequacy for real faults, provided that the competent
programmer hypothesis holds.

3.2.2 The Coupling Effect

The definition of coupling, either informal or formal, is inconsistently used in the literature
(e.g., [Offutt, 1989, 1992] and [Morell, 1984, 1990]). However, we refer to the term coupling
effect as the capability of a test case that detects simple faults also to reveal more complex
faults, which are composed of the simple ones. Transferred to mutation analysis, the
coupling effect implies that tests that kill first order mutants are likewise effective in
killing second or higher order mutants. Assuming that the coupling effect holds, it is
sufficient to use only first order mutants to assess the quality of a test set.

Given the strong evidence that the coupling effect actually holds [Lipton and Sayward,
1978], Offutt [1989, 1992] investigated the coupling effect for first, second, and third order
mutations. The results support the validity of the coupling effect but also showed the ex-
istence of decoupled higher order mutants, even though the number was almost negligible.
Moreover, Jia and Harman [2009] showed lately that higher order mutations exist that are
harder to detect than the simple defects, that is the first order mutation, of which they
were composed. Nevertheless, the hypothesis of the coupling effect in mutation testing is
still widely accepted due to the significant number of coupled first order mutants.

3.3 Limitations of Mutation Analysis

Even though many prior studies have shown that mutation analysis is a powerful metric
[Jia and Harman, 2011], it may be still prohibitively time consuming and computationally
expensive in comparison to other methods, such as those that rely on code coverage criteria.
So, mutation analysis is not only powerful but also associated with high costs in terms of
manual and computational effort. As a consequence, some limitations exist that preclude
an application of mutation analysis for large software systems. We therefore discuss several
limitations here since they are addressed within the following chapters.

3.3.1 Scalability Issues

Based on the underlying hypotheses, mutation analysis usually employs first-order mu-
tants, meaning that a mutant contains only one mutation at a time. Thus, the mutation

21



Chapter 3 Background and Limitations of Mutation Analysis

of large or complex applications results in a substantial number of mutants when all pos-
sible mutation operators are applied. In consideration of this large number of mutants,
there are two challenges concerning the scalability, namely the compilation time and the
runtime necessary to execute all the mutants. The limiting factor depends on the chosen
approach, that is interpretative or non-interpretative mutation analysis.

For instance, the compilation time can be avoided on interpretative systems. However,
the runtime of the mutation analysis is clearly longer on those systems. Obviously, the
complete runtime tt includes the compilation time and the execution time of the individual
mutants. With regard to a certain number of mutants M and a given test set of size N ,
the total runtime, made up of the compilation time per run tc and the mean execution
time for one test case te, can be described with the following equation:

tt = (M + 1) · tc︸ ︷︷ ︸
compilation

+ (M + 1) ·N · te︸ ︷︷ ︸
execution

(3.2)

It is important to note that both the compilation and the execution have to be executed
M + 1 times since, besides all mutants, the original version is also compiled and executed.
Considering the two individual parts of Equation 3.2, the compilation is usually faster
than the execution. Nevertheless, the compiler constitutes a significant proportion of the
total runtime and was regarded as a bottleneck in the late 1980s, thus explaining why
the first mutation systems were designed as interpretative ones [King and Offutt, 1991].
To provide some real numbers, we consider two examples. On the one hand we use the
triangle application, a very small yet widely-used example program that classifies triangles
[Myers, 1979] together with a manually created test suite. On the other hand we use the
apache commons-lang library, a medium-sized system, which includes a comprehensive
test suite, used in several empirical evaluations in this thesis. It has to be pointed out
that we do not aim at assessing the corresponding test suites but rather illustrate the
ratios between compile and execution time.

Triangle: tt = 36.5 = (21.4 + 15.1) seconds

• Mean compilation time tc: 170 milliseconds

• Number of mutants M : 125

• Number of test cases N : 20

• Mean runtime per test te: 6 milliseconds

Commons-lang: tt = 134.6 = (3.5 + 131.1) hours

• Mean compilation time tc: 380 milliseconds

• Number of mutants M : 33,065

• Number of test cases N : 2,039

• Mean runtime per test te: 7 milliseconds

22



3.3 Limitations of Mutation Analysis

While the compilation and execution times are similar for the triangle application, they
differ by two orders of magnitude for the commons-lang library. Generally, the execution
time is becoming the crucial factor if the system and the corresponding test suite are
growing. Nevertheless, the compilation process constitutes a significant proportion of the
total runtime.

3.3.2 Infinite Loops

Another challenge in mutation testing is the prolonged or even infinite runtime of mutants.
When, for instance, mutating loop conditions as shown in Listing 3.1 and 3.2, some muta-
tions lead to infinite loops. Generally, such non-terminating mutants have to be detected
or interrupted in order to prevent the mutation analysis process from getting stuck. It is,
however, undecidable in general whether or not a given mutation leads to an infinite loop,
and hence does not terminate. This problem is getting even worse if the mutant is only
non-terminating for certain inputs. As a consequence heuristic methods such as timeouts
or loop counters are applied to alleviate this problem.

3.3.3 Equivalent and Redundant Mutants

As previously mentioned, some mutants cannot be detected due to a semantic equivalence
to the original program. These equivalent mutants are harmful for two reasons. First, an
equivalent mutant clearly prolongs mutation testing since it has to be executed for every
test in the entire test suite – simply to draw the conclusion that this mutant cannot be
killed by the test suite. Also, unless detected and removed, equivalent mutants misrep-
resent the mutation score, and thus underestimate the quality of the analyzed test suite.
This point is crucial if the mutation score is used as an end-of-test criterion due to the
fact that a level of coverage of 100% cannot be achieved if the set of mutants contains
equivalent ones.

Besides the equivalent mutant problem, redundant mutants are also harmful. A mutant is
said to be redundant if the result of its execution can be predicted based on the execution of
other mutants. Mutants are, for instance, redundant if they are semantically equivalent to
each other or if they are subsumed by other mutations. As a consequence, these redundant
mutants overestimate the mutation score since they are easy to kill, provided that the
subsuming mutant or the counterpart is detected. Moreover, a redundant mutant also
incurs a runtime overhead due to its unnecessary execution – the result can be determined
a priori. Listing 3.3 and 3.4 illustrate the redundancy between two mutants that are
derived from two different mutation operators but manifest a semantic equivalence to
each other.

Overall, it is important to detect and remove equivalent and redundant mutants for effi-
ciency reasons and, even more important, to provide an accurate metric for the assessment
of a test suite’s quality.

23



Chapter 3 Background and Limitations of Mutation Analysis

1 public static int gcd(int a, int b){
2
3 while (b != 0) {
4 if (a > b) {
5 a = a - b;
6 } else {
7 b = b - a;
8 }
9 }

10
11 return a;
12 }

Listing 3.1: Original version of an iterative implementation that determines the greatest
common divisor of two integer numbers.

1 public static int gcd(int a, int b){
2
3 while (b >= 0) {
4 if (a > b) {
5 a = a - b;
6 } else {
7 b = b - a;
8 }
9 }

10
11 return a;
12 }

Listing 3.2: Faulty version of the greatest common divisor implementation of Listing 3.1
with a mutated loop condition leading to an infinite loop.

Original version:
b != 0

Infinite loop

24



3.3 Limitations of Mutation Analysis

1 public static int gcd(int a, int b){
2
3 while (b != 0) {
4 if (a > b) {
5 a = a + b;
6 } else {
7 b = b - a;
8 }
9 }

10
11 return a;
12 }

Listing 3.3: Mutated version of the greatest common divisor implementation of Listing 3.1
with a replaced binary arithmetic operator.

Original version:
a - b

1 public static int gcd(int a, int b){
2
3 while (b != 0) {
4 if (a > b) {
5 a = a - -b;
6 } else {
7 b = b - a;
8 }
9 }

10
11 return a;
12 }

Listing 3.4: Mutated version of the greatest common divisor implementation of Listing 3.1
with an inserted unary arithmetic operator.

Original version:
a - b

25



Chapter 3 Background and Limitations of Mutation Analysis

3.4 State of the Art

As already mentioned in Section 3.3, applying all suitable mutation operators to large
or complex implementations leads to a huge number of mutants, thus having a consider-
able impact on the runtime of mutation analysis. Considering the computational costs of
mutation analysis, several approaches have been discussed in the literature (cf. [Jia and
Harman, 2011]). As noted by Offutt and Untch [2000], all techniques and strategies aiming
at reducing these costs, and thus making mutation more efficient, can be related to one
of the three categories do fewer, do smarter, and do faster. In addition to this catego-
rization, higher order mutation is another technique that primarily aims at improving the
effectiveness of mutation analysis. Since it involves the reduction of mutants, higher order
mutation also has an effect on the efficiency.

Do Fewer

Do fewer approaches are sampling and selective techniques that reduce the number of
mutants either by decreasing the number of operators or by selecting just a subset of the
generated mutants. Offutt et al. [1996] investigated the effectiveness of mutation operators
and determined that the mutants generated with a smaller subset of sufficient operators
are almost as hard to kill as the complete set of mutants. Thus, the reduced set of mutation
operators can be applied much more efficiently without a major loss of information.

Do Smarter

Do smarter techniques exploit for instance the possibilities of running mutation analysis
in a distributed environment [Choi et al., 1989]. Since every mutant is generated inde-
pendently, the computation can be parallelized. Another do smarter approach is weak
mutation testing [Howden, 1982] where a mutant is said to be killed if its internal state,
after executing the mutated code, differs from the original program. Hence, only neces-
sary conditions can be verified by applying weak mutation. Nevertheless, the minor loss
of information is proportionate to the considerable decrease in time overhead.

Do Faster

Do faster approaches generally aim at improving the runtime of mutation analysis without
using reduction or parallelization. Considering the conventional way of applying mutation
analysis, every mutant is a copy of the original program apart from a small syntactical
change. According to that fact, compiling every mutant as an independent source file is a
substantial time overhead during compilation. In order to alleviate the costs of compiling
every mutant, DeMillo et al. [1991] proposed a compiler-integrated technique. They mod-
ified a compiler to create patches on the machine code level. Thus, the original program
was compiled just once and the mutants were created by applying corresponding patches
to the compiled original program. However, the effort to implement or adapt the necessary
compiler is significant.

26



3.4 State of the Art

With respect to the Java programming language, which uses an intermediate language,
bytecode transformation is a similar technique which directly transforms compiled code.
While these modifications are usually faster than source code transformations since they
obviate additional compilation steps, there are still some drawbacks to this approach.
First of all, the bytecode has been simplified or even optimized during the compilation
process. Therefore, errors might be injected which could never have been introduced by
a programmer at the source code level. Additionally, all semantic information collected
during compilation phases, such as building and attributing the abstract syntax tree, has
to be gathered redundantly by parsing the bytecode again.

The mutant schemata approach is another do faster technique that encodes all mutations
within generic methods and replaces the original instructions, which shall be mutated,
with a call of the corresponding generic method. Accordingly, the necessary time to
compile all mutants is reduced. As described by Untch et al. [1993], “A mutant schema
has two components, a metamutant and a metaprocedure set”. The effective mutation
of the metamutant is determined at runtime within the generic methods by means of
appropriate flags. An example for mutant schemata is the replacement of the built-in
arithmetic operators by a generic method AOP:

int a = AOP(b, c, ’+’); ←− [ int a = b + c;

The generic method AOP can now perform a different arithmetic operation at runtime
which leads to a mutation of the original statement.

Generally, the creation of metamutants can be regarded as a template-based technique.
However, the introduction of several indirections, when implemented with method calls
[Untch et al., 1993], implies an additional overhead which may have a significant impact
on the runtime of the compiled program.

Higher order mutation

Higher order mutation is, in addition to these three categories, another approach to gen-
erate fewer, but more subtle mutants. Generating mutants by means of the combination
of two simple mutants, called first order mutants, is referred to as second order mutation.
Accordingly, higher order mutation denotes generally the combination of two or more first
order mutants. The computational costs for second and higher order mutation are consid-
erably higher because of the huge number of possible combinations. Nevertheless, recent
work has shown that second and higher order mutants exist that are harder to kill than
the first order mutants of which they have been generated [Jia and Harman, 2009]. Hence,
applying these higher order mutants would provide a better assessment for mutation anal-
ysis. The problem, however, is to identify appropriate decoupled higher order mutants in
an efficient way. Search-based approaches seem to be a feasible solution for this problem
[Jia and Harman, 2009].

27



Chapter 3 Background and Limitations of Mutation Analysis

3.5 Summary

This chapter has provided the necessary basic knowledge about mutation analysis and
has outlined the fundamental hypotheses on which this technique is based on. Moreover,
it has discussed limitations and challenges of mutation analysis addressed in this thesis,
which can be summarized as follows:

• Scalability issues: A significant number of mutants can be generated for large and
complex systems, hence leading to a computational effort and runtime that is almost
prohibitive.

• Infinite loops: Mutants that result in infinite loops have to be detected in order to
ensure that the mutation analysis process will eventually terminate.

• Redundant and equivalent mutants: Mutants that are subsumed or that cannot be
detected are harmful to both efficiency and effectiveness.

28



Chapter4
Conditional Mutation

The content of this chapter has been published in [Just et al., 2011a]

This chapter describes and evaluates a versatile technique, called conditional mutation,
which increases the efficiency of mutation analysis. Conditional mutation is a compiler-
integrated approach that transforms the abstract syntax tree, significantly reduces the
time overhead for generating the mutants, and enables efficient mutation analysis.

4.1 Introduction

Mutation analysis is among other approaches suitable for assessing the quality of test suites
[Andrews et al., 2005]. However, applying mutation analysis to large software systems is
problematic since it is a time-consuming technique. Addressing this challenge, this chapter
describes and evaluates conditional mutation, an approach to increase the efficiency of
mutation analysis.

Conditional mutation is based on transforming the abstract syntax tree (AST) to provide
all mutants in conjunction with the original program within the resulting assembled code.
The name is derived from the conditional statements and expressions which are inserted to
encapsulate the mutants. In comparison to prior approaches, as for instance [Untch et al.,
1993; Ma et al., 2006; Schuler and Zeller, 2010], it is more general because it operates
at the source code level on expressions as well as statements. Furthermore, conditional
mutation can be integrated into the compiler as an additional AST transformation.

The evaluation of conditional mutation within this chapter is based on eight investigated
programs with a total of 750,000 lines of code leading to almost 800,000 generated mutants.
In order to obtain the corresponding performance results, conditional mutation has been
integrated into the Java 6 Standard Edition compiler, thus ensuring that it is widely
applicable in any Java-based environment and not limited to a certain testing tool or
framework.

29



Chapter 4 Conditional Mutation

In consideration of this compiler-integrated approach, the runtime to generate and compile
the mutants is reduced to a minimum. For instance, the total overhead for compiling
406,000 mutants for the largest investigated program, namely the aspectj compiler, is only
33% compared with the default compile time. This time overhead includes the cost of both
mutant generation and compilation and is thus orders of magnitude less than compiling
the mutants individually. In addition, the time to run the test suites, which are released
with the investigated programs, is on average only 15% higher than normal testing time
in the worst-case scenario. The worst-case scenario of testing the instrumented program
is associated with executing all of the conditional statements and expressions that enable
mutation analysis.

The remainder of this chapter is structured as follows: Section 4.2 motivates and presents
the approach. Besides a description of the implemented algorithm, this section also out-
lines several optimizations, the support for higher order mutation, and implementation
details. Thereafter, Section 4.3 evaluates the approach as well as the implementation by
means of an empirical study with eight software systems. Section 4.4 then discusses related
techniques by focusing on the mutant schemata approach and bytecode transformation and
it also outlines general limitations. Finally, Section 4.5 summarizes this chapter.

4.2 Conditional Mutation

The conventional way of generating mutants, as for instance implemented in MuJava
[2009], results in a set of source files with the convention that each file contains exactly
one mutant. This approach to mutant creation incurs a high time overhead because it
must repeatedly load and compile every mutant file. Moreover, the system under test has
to be executed repeatedly with every mutant to determine the mutation score. Now, if
every mutant is compiled to an individual class, every corresponding file has to be loaded
to execute the mutated code.

The basic idea of conditional mutation is to accomplish all mutations in the corresponding
source file and more precisely in the same entity. This means that all mutants are encoded
in the same block or scope and within the same method and class as the original piece of
code. Hence, a conditional mutant is a valid substitution of an arbitrary instruction based
on conditional evaluations and it contains all mutations as well as the original instruction.
Thus, every conditional mutant preserves the scope and visibility within the AST.

Regarding the example in Listing 4.1, we can distinguish between statements and ex-
pressions. Intuitively, every program instruction which is terminated, for example with a
semicolon, is a statement. An expression is also an instruction but it represents a value
which can be or has to be evaluated within a statement, depending on the corresponding
language. For instance, int a = 3 is a statement which can be used as a single instruction.
In contrast, the expression a * x represents a value and cannot be used as a statement,
in the Java programming language, by adding a terminating semicolon. So, an expression
is always part of a surrounding statement with the exception of so-called expression state-
ments. These are expressions like method calls, unary increment/decrement operators, or
assignment operators which can be used either as an expression or a statement.

30



4.2 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = a * x;
5
6 y += b;
7
8 return y;
9 }

Listing 4.1: Method with statements and expressions.

Original expression

Original statement

The conditional mutation approach aims at retaining the basic structure of a program’s
AST. This means that unnecessary local variables, statements, or blocks must not be in-
serted. Thus, every expression or statement which is to be mutated has to be replaced with
an appropriate expression or statement, respectively. Therefore, conditional statements or
conditional expressions are inserted where the THEN part contains the mutant and the ELSE
part the original code. The condition for these conditional expressions or statements may
contain an arbitrary expression which determines when the mutant should be triggered.
Regarding mutation analysis, where every mutant should be executed, the enumeration of
all mutants and the insertion of a global mutant identifier (e.g., a global variable M_NO)
is advisable. This variable makes it possible to dynamically choose the mutant to be ex-
ecuted. Thus, the expression of the condition is a comparison of the identifier with the
mutant’s number.

4.2.1 Tail-Recursive Algorithm

The proposed algorithm is applicable for both expressions and statements but it is ex-
plained based on expressions. In order to apply it to statements, expr has to be replaced
by stmt and a conditional statement CondStmt has to be used instead of CondExpr
within the recursive function (4.4).

The available mutation operators depend on the expression to be mutated. Thus, the
union of all applicable operators can be defined as a set for a certain expression:

MOP (expr) = {mop1, · · · ,mopn}, n ∈ N (4.1)

Considering a binary arithmetic expression, examples for the mutation operators mopi
would be the replacement of the arithmetic operator or the permutation of the operands.
Next, the syntax tree is traversed and every expression for which at least one mutation

operator exists will be replaced by an expression expr′:

expr′ ←− [ expr, ∀expr : MOP (expr) 6= ∅ (4.2)

31



Chapter 4 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = a * x;
5
6 y += b;
7
8 return y;
9 }

Figure 4.1: AST subnode of an assignment with a binary expression as right hand side.

AST representation

ASSIGN

IDENT

y

BINARY

*

a x

In order to apply the first k mutation operators given by the set MOP (expr), a recursive
algorithm can be defined. In the base case the expression expr is replaced by a conditional
expression CondExpr which contains the condition cond1, the mutant, determined by
the evaluation of mop1(expr), and the original expression expr. Any further mutation
is encapsulated within a conditional expression which in turn contains the result of the
previous mutation step.

expr′ = mutk, k ∈ N ∧ k ≤ n (4.3)

muti =


CondExpr(cond1,mop1(expr), expr), i = 1

CondExpr(condi,mopi(expr),muti−1), i > 1
(4.4)

Since function 4.4 is tail-recursive it can also be implemented as an iterative algorithm if
the compiler of the corresponding programming language does not support tail-recursion
elimination. By means of an appropriate ordering of the set MOP (expr) in conjunc-
tion with the parameter k, sampling strategies or selective mutation can be applied.
Exemplary results of using the algorithm are illustrated in Listing 4.2 and Figure 4.2. Re-
considering the assignment y = a * x, shown in Figure 4.1, the binary expression which
shall be mutated is a subnode of the statement’s AST. Hence, just this subnode is replaced
in accordance with the conditional mutation approach. It has to be pointed out that a
possible mutation operator mopi ∈ MOP (expr) for an expression expr ∈ stmt must not
occur in the set MOP (stmt) of the surrounding statement. For instance, this means that
the replacement shown in Listing 4.3 is invalid according to conditional mutation since
this mutation can be applied at the expression level. This constraint is of particular im-
portance for nested expressions, block statements, and loops because the complete outer
expression or statement should not be duplicated.

Regarding the modified AST in Figure 4.2, the framed node, including its children a and x,
is the original node of Figure 4.1. Therefore, any further transformations on child nodes,
such as replacing x by a constant literal, would be applied exclusively on the framed

32



4.2 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = (M_NO ==1)? a - x:
5 (M_NO ==2)? a + x:
6 a * x;
7
8 if(M_NO ==3){
9 y -= b;

10 }else{
11 y += b;
12 }
13
14 return y;
15 }

Listing 4.2: Mutated statement and expression.

Original expression

Original statement

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

-

a x

COND

(M_NO ==1)

ELSE

COND-EXPR

THEN

BINARY

+

a x

COND

(M_NO ==2)

ELSE

BINARY

*

a x

Figure 4.2: Multiple mutated binary expression as right hand side of an assignment.

33



Chapter 4 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 if(M_NO ==1){
5 y = a - x;
6 }else{
7 y = a * x;
8 }
9

10 y += b;
11
12 return y;
13 }

Listing 4.3: Invalid mutation of the eval method according to the criterion that only the
innermost expression or statement may be affected.

Invalid mutation:
Mutation can be applied

at expression level

node in order to have exactly one mutant in each THEN part. For nested expressions, this
condition is crucial for preventing the algorithm from recursively applying transformations
on already mutated nodes.

4.2.2 Runtime Optimization with Mutation Coverage

According to the characteristics proposed by Voas [1992], the following three necessary
conditions have to be fulfilled to ultimately kill a mutant:

1. The mutated code has to be covered (i.e., reached and executed).

2. The executed mutation has to observably change the internal state.

3. The changed internal state has to be propagated to the output.

This means in turn that all mutants which cannot be covered, meaning that they are not
reached and executed, cannot be killed under any circumstances. As a consequence, these
mutants could be declared as live mutants without executing the SUT. With respect to
conditional mutation where all mutants are encoded together with the original version,
the original expression or statement can be replaced again by a conditional expression
or statement which additionally collects coverage information. This information should
be gathered if and only if the original version is executed, represented by the mutant
identifier set to zero. For this purpose the condition condcov is inserted which is in turn

34



4.2 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = (M_NO ==1)? a - x:
5 (M_NO ==2)? a + x:
6 (M_NO ==0 && COVERED (1 ,2))?
7 a * x : a * x; // original expr
8
9 if(M_NO ==3){

10 y -= b;
11 }else{
12 if(M_NO ==0 && COVERED (3 ,3)){
13 y += b;
14 }else{
15 y += b; // original stmt
16 }
17 }
18
19 return y;
20 }

Listing 4.4: Collecting the coverage information with conditional mutation.

a concatenation of the equivalence condition cond0 (M_NO==0) and a call of the covered
method (COVERED), which collects the coverage information:

CondExpr(condcov, expr, expr)←− [ expr (4.5)

condcov = (cond0 && covered) (4.6)

The COVERED method takes, as depicted in Listing 4.4, a range as parameters in order
to efficiently record expressions or statements which are mutated more than once. In
addition, lazy evaluation is exploited by using the logical connector and (i.e., &&) within
the condition and the method always returns false in order to fulfill the condition that the
right most ELSE part contains the original expression or statement. It should be mentioned
that the original statement or expression in the THEN part could be omitted due to the
fact that it is never executed.

Concerning the realized implementation of the approach within the Java Standard Edi-
tion compiler, the conditional mutation step is an optional transformation, which can be
enabled and configured by means of certain compiler options. Additionally, the global
mutant identifier (M_NO) and the method to gather the coverage information (COVERED)
are implemented in an externalized driver class. Chapter 5 describes the compiler inte-
gration as well as implementation details and also provides an insight on the available
configuration options.

35



Chapter 4 Conditional Mutation

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = MUTANTS [1] ? a - x:
5 MUTANTS [2] ? a + x:
6 a * x;
7
8 if( MUTANTS [3] ){
9 y -= b;

10 }else{
11 y += b;
12 }
13
14 return y;
15 }

Listing 4.5: Enhanced conditional mutation to support higher order mutation.

Higher order mutation:
Both conditions can be
true at the same time

4.2.3 Support for Higher Order Mutation

Conditional mutation can also be extended to support higher order mutation. The key
advantage of having all mutations within one file triggered by a certain condition provides
the opportunity to adapt the conditions so that multiple mutants are executed. Depending
on the order of higher order mutation (i.e., the number of combined first order mutants),
there are, for instance, the two following options:

• Use a bitmask to encode several mutant identifiers

• Use an array of mutant identifiers

The bitmask option might be more efficient but is limited to a small number of identifiers.
The concrete number is determined by the trade-off between the maximum number of first
order mutants and the level of higher order mutation. Using 4 identifiers with 16 bits each
would therefore limit the number of first order mutants to 65,536.

A proof of concept using an array of mutant identifiers has also been implemented into
the compiler and preliminary runtime results are also promising. Listing 4.5 shows the
result of the higher order mutation transformation where the mutant identifier M_NO has
been replaced by an array access of MUTANTS. Now, several mutants can be enabled at the
same time by setting the corresponding boolean value in the array to true. However, since
the focus of this chapter is the design and empirical evaluation of conditional mutation,
we leave the complete investigation of higher order conditional mutation as future work,
which is further discussed in Chapter 10.

36



4.3 Empirical Study

Table 4.1: Summary of the applications investigated in the empirical study.

Application Source
files

Program
LOC*

Number of
mutants

Number
of tests Test LOC*

aspectj 1,975 372,751 406,382 859 17,069

apache ant 764 103,679 60,258 1,624 24,178

jfreechart 585 91,174 68,782 4,257 48,026

itext 395 74,318 124,184 63 1,393

java pathfinder 543 47,951 37,331 165 12,567

commons math 408 39,991 67,895 2,169 41,907

commons lang 85 19,394 25,783 1,937 32,503

numerics4j 73 3,647 5,869 219 5,273

total 4,828 752,905 796,484 11,293 182,916

*Physical lines of code as reported by sloccount (non-comment and non-blank lines)

4.3 Empirical Study

Conditional mutation has been integrated as an optional transformation in the Java Stan-
dard Edition (SE) 6 compiler in order to evaluate the approach. Two aspects are of
particular interest in this empirical study, namely, the runtime and the memory footprint
of the compiler with the enabled conditional mutation option and the runtime of the com-
piled and instrumented programs. For this purpose, we use the eight applications in Table
4.1 that range from 3,647 to 372,751 lines of code. All of the investigated applications
provide a corresponding test suite, whose size in terms of the number of source files and
lines of code is also illustrated in the table.

Moreover, the effectiveness of the individual test suites is shown in Table 4.2, where covered
means that the corresponding mutants were reached and executed whereas killed denotes
all mutants that were eventually detected by the test suite.

In accordance with the selective mutation approach [Offutt et al., 1996], a reduced, but
sufficient set of mutation operators [Namin et al., 2008] has been chosen to assess condi-
tional mutation. Table 4.3 shows the mutation operators that have been implemented in
a first step. Besides the description, the table also shows an example for each operator.
All implemented operators are configurable via compiler options, and thus can be enabled
or disabled for the empirical study.

37



Chapter 4 Conditional Mutation

Table 4.2: Number of the generated and covered mutants for all investigated applications.

Application Generated mutants Covered mutants

aspectj 406,382 20,144 (5.0%)

apache ant 60,258 28,118 (46.7%)

jfreechart 68,782 29,485 (42.9%)

itext 124,184 12,793 (10.3%)

java pathfinder 37,331 8,918 (23.9%)

commons math 67,895 54,326 (80.0%)

commons lang 25,783 21,144 (82.0%)

numerics4j 5,869 4,900 (83.5%)

Table 4.3: Implemented mutation opertors.

Description Example

AOR Arithmetic operator replacement a + b 7−→ a - b

LOR Logical Operator Replacement a ^ b 7−→ a | b

COR Conditional Operator Replacement a || b 7−→ a && b

ROR Relational Operator Replacement a == b 7−→ a >= b

SOR Shift Operator Replacement a >> b 7−→ a << b

ORB Operator Replacement Binary:

The union of AOR, LOR, COR, ROR, and SOR

ORU Operator Replacement Unary -a 7−→ ~a

LVR Literal Value Replacement:

Change to a positive or negative value and zero 0 7−→ 1

Reference initializations are replaced by null a = ref 7−→ a = null

38



4.3 Empirical Study

Table 4.4: Compiler runtime to generate and compile the mutants for the aspectj project.

Operator Mutants Runtime* Overhead Overhead per
1,000 mutants

NONE 0 18.94 0.00% 0.00%

AOR 70,989 21.15 11.67% 0.16%

LOR/ 81,733 21.71 14.63% 0.18%
COR

ROR 137,297 22.90 20.91% 0.15%

SOR 47,830 20.84 10.03% 0.21%

ORB 337,849 25.02 32.10% 0.10%

ORU 802 19.21 1.43% 1.78%

LVR 67,731 20.83 9.98% 0.15%

ALL 406,382 25.15 32.79% 0.08%

*Compiler runtime reported in seconds

Table 4.4 illustrates the necessary compile times for applying these operators to the as-
pectj project. All shown runtimes throughout the empirical study are the median of ten
individual runs1. We do not report additional descriptive statistics or perform further
statistical analysis since the runs are deterministic and the timing results exhibit little, if
any, dispersion. In addition to the total runtime and overhead, the last column shows a
normalized overhead per 1,000 mutants. A smaller value in this column means less over-
head and is thus the better result. Regarding the quantity of 406,382 mutants, the total
overhead of 33% for generating and compiling these mutants is almost negligible.

In addition to the detailed results for aspectj, Figure 4.3 shows the compiler runtimes
for all other analyzed projects. The trend lines in this diagram have been computed
by means of the gnuplot fit function which uses the method of least mean square error.
The gradients of all trend lines are decreasing for a larger number of mutants. That
implies that the relative overhead per mutant is decreasing for an increasing number of

1Reported runtimes are measured on a Linux machine with Intel Centrino CPU, 4GB of RAM, and kernel
version 2.6.32-5-amd64.

39



Chapter 4 Conditional Mutation

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  20000  40000  60000  80000  100000  120000  140000

C
o
m

p
il
er

 r
u
n
ti

m
e 

in
 s

ec
o
n
d
s

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Figure 4.3: Compiler runtime for generating and compiling the mutants for all investigated
projects except aspectj.

mutants. The relative overhead per mutant decreases in particular due to the overhead
of the initialization of the compiler and the conditional mutation approach. Since the
initialization is performed only once, it is less crucial for a larger number of mutants. In
order to avoid obscuring the visualization, Figure 4.3 does not contain the higher runtimes
associated with generating and compiling the many mutants for aspectj. Nevertheless, the
trend for the aspectj project is equal to the other investigated programs since the relative
overhead per 1,000 mutants is also decreasing for a larger number of mutants.

4.3.1 Space Overhead of Mutant Generation

Apart from the runtime of the compiler, we also consider the space overhead in terms of
compiler memory consumption and program size. As depicted in Table 4.5, the memory
consumption of the compiler ranges from 19.2% to 49.8% and the overhead due to the
larger program size varies between 18.0% and 66.1%. Generally, the space overhead is
predominantly determined by the ratio of number of mutants to lines of code, as shown
in Table 4.1. Concerning the memory footprint of the compiler, the average overhead is
36.2%. Thus, the enhanced compiler with conditional mutation can easily run on com-
modity workstations, even for large projects that yield a significant number of mutants.

40



4.3 Empirical Study

Table 4.5: Incurred space overhead when applying conditional mutation.

Application Memory consumption* Size of bytecode*

original instrumented original instrumented

aspectj 559 813 (45.4%) 18,368 30,508 (66.1%)

apache ant 237 293 (23.6%) 6,976 8,228 (17.9%)

jfreechart 220 303 (37.7%) 4,588 5,896 (28.5%)

itext 217 325 (49.8%) 4,140 6,580 (58.9%)

java pathfinder 182 217 (19.2%) 4,052 5,096 (25.8%)

commons math 153 225 (47.1%) 3,124 4,464 (42.9%)

commons lang 104 149 (43.3%) 968 1,456 (50.4%)

numerics4j 73 90 (23.3%) 408 508 (24.5%)

*Memory consumption of the compiler in MB and size of compiled program in KB

4.3.2 Time Overhead of Mutant Execution

Besides the incurred time and space overhead of the enhanced compiler, the execution time
of the instrumented and compiled programs is also important. In order to determine the
runtime overhead associated with the insertion of the conditional statements and expres-
sions, the analyzed applications are executed by means of their test suites. To establish an
upper bound on time overhead, we consider the worst-case scenario for conditional muta-
tion when M_NO==0 and thus every condition has to be evaluated. Furthermore, mutation
coverage, as described in Section 4.2, can be applied to determine the mutants that cannot
be killed by the test suite. This information is collected by means of method calls which
represent an additional time overhead. Therefore, we also measure the runtime of the test
suites with mutation coverage enabled.

The corresponding results for both runtime analyses are depicted in Table 4.6, where worst
case and cov denote worst-case scenario and coverage, respectively. The time overhead
for the worst-case scenario ranges from 1.2% for apache ant to 29.4% for java pathfinder.
For the worst-case scenario with mutation coverage enabled the overhead ranges between
4.5% and 70.6%. On average the overhead for worst case and worst case + cov is 15%
and 36%, respectively. Gathering the coverage information leads to a larger overhead due
to the additional method calls. Nevertheless, it has to be pointed out that the coverage
information is determined only once for an instrumented application with a corresponding
test suite and hence the overhead is not crucial. The actual overhead depends on the type
of application. For instance, apache ant does a lot of costly file system operations and thus
the additional costs for conditional mutation are negligible. In contrast, java pathfinder

41



Chapter 4 Conditional Mutation

Table 4.6: Incurred runtime overhead when applying conditional mutation.

Application Original* Instrumented*

worst case worst case + cov

aspectj 4.3 4.8 (11.6%) 5.0 (16.3%)

apache ant 331.0 335.0 (1.2%) 346.0 (4.5%)

jfreechart 15.0 18.0 (20.0%) 23.0 (53.3%)

itext 5.1 5.6 (9.8%) 6.3 (23.5%)

java pathfinder 17.0 22.0 (29.4%) 29.0 (70.6%)

commons math 67.0 83.0 (23.9%) 98.0 (46.3%)

commons lang 10.3 11.8 (14.6%) 14.8 (43.7%)

numerics4j 1.2 1.3 (8.3%) 1.6 (33.3%)

*Test suite runtime reported in seconds

and commons math represent applications that almost exclusively perform computations,
thus explaining why the overhead is more noticeable.

With regard to the empirical results, some threats to validity have to be considered. The
choice of the applied mutation operators could be a threat to internal validity since dif-
ferent operators may affect the runtime of the compiler. However, the chosen operators
are frequently used in the literature and therefore provide comparable results [Offutt and
Untch, 2000; Namin et al., 2008]. A potential threat to external validity might be the
representativeness of the selected applications. We cannot guarantee that the depicted
overheads will remain the same for other programs. Nevertheless, the investigated appli-
cations differ considerably in size, complexity, and operation purpose and most of them
are widely used. So, we judge that the reported results are meaningful. Defects in the
compiler-integrated prototype could be a threat to construct validity, but we controlled
this threat by testing our implementation with a developed test suite and by manually
checking the results of several example programs. Thus, we judge that the implementation
worked correctly.

4.4 Related Techniques and Limitations

This section discusses two related techniques, namely mutant schemata and bytecode
transformation, which both aim at improving the efficiency of mutation analysis.

42



4.4 Related Techniques and Limitations

4.4.1 Mutant Schemata

When compared with mutant schemata, conditional mutation is more general since it han-
dles expressions and statements within the scope of the mutated instruction. Furthermore,
not every mutation operator can be implemented by the method call approach described
by Untch et al. [1993]. For instance, if the parameter passing method is call by value,
which is used exclusively in Java, the following replacements are not valid because they
do not preserve the semantics of the original statement:

• int a = OP(b); X←− [ int a = ++b;

• OP(a,b); X←− [ a += b;

Even though these statements could be rewritten so that they preserve the semantics
while being mutated by means of method calls, this additional transformation can only be
achieved with an extension of the original mutant schemata approach. These mutations
can, however, be represented with conditional mutants since they exist in the same scope
as the original expression.

Moreover, while conditional statements can easily express faults of omission (e.g., a for-
gotten continue or break statement), method calls cannot represent this type of mutant.
Generally, the mutation with method calls is only applicable to expressions.

4.4.2 Bytecode Transformation

Another related technique is applying mutation at the bytecode level. Intuitively, an ad-
vantage of this technique is that the source code does not have to be available. Another
considerable benefit, with regard to the Java virtual machine (JVM), is that the manipula-
tion of bytecode provides mutations for all languages that compile to the JVM. Moreover,
the JVM bytecode language is much simpler than the Java programming language, thus
reducing the effort of implementing mutation operators.

However, there are several drawbacks to this approach. Since the compiled code is usually
simplified or even optimized, this approach might generate mutants that could not be
injected at the source code level. Furthermore, it could be infeasible to map the mutants,
injected at the bytecode level, back to the source code level due to irreversible mappings
or ambiguity. Listing 4.6 shows an example for the Java programming language where two
different looping constructs are compiled to identical bytecode due to the fact that the Java
compiler transforms the illustrated for-each loop to an ordinary for loop. Now, mutation
at the bytecode level would generate several mutants that could not be introduced at the
source code level. Moreover, mapping the generated mutants from bytecode to source
code is not feasible.

A similar problem arises when taking compiler optimization modifiers, such as final, into
account. These modifiers are not available at the bytecode level but are checked by the
compiler. Hence, a final variable, which is considered to be constant by the compiler,
could be manipulated at the bytecode level.

43



Chapter 4 Conditional Mutation

1 public void printArray (int [] array){
2 for(int i : array){
3 System .out. println (i);
4 }
5 }
6
7 public void printArray (int [] array){
8 int [] tmp = array;
9 int length = tmp. length ;

10 for(int i=1; i< length ; ++i){
11 int k = tmp[i];
12 System .out. println (k);
13 }
14 }

Listing 4.6: Two different looping constructs that compile to the same bytecode.

Identical bytecode
instructions:

aload_1
...

if_icmpge
...

return

Overall, we judge that mutation at the source code level provides a more realistic and
more comprehensive set of defects that could have been done by a programmer. We thus
exclusively rely on mutation at the source code level. However, the bytecode approach
might be more beneficial for other mutation purposes, such as mutation-based test data
generation (e.g., [Fraser and Arcuri, 2011]).

4.4.3 Limitations

The JVM specification [Lindholm and Yellin, 2000] defines an upper bound of 64k instruc-
tions for the size of a method represented in bytecode. Given this restriction, a large or
complex method could, when mutated many times, violate this constraint due to the em-
bedded conditional instructions. However, this restriction is generally a limiting factor for
all template-based approaches including those discussed in this section. Possible solutions
to overcome this problem are for instance:

• Reduce the number of mutants

• Add method clones and indirections where each clone contains a disjoint subset of
all generated mutants

During all empirical studies, we encountered only one case where the limitation was vio-
lated when a statically initialized array with more than 20,000 entries was mutated. So,
we judge that this limit is not a major problem in general and do not further investigate
this matter.

44



4.5 Summary

4.5 Summary

This chapter has addresses the challenges associated with increasing the efficiency of mu-
tation analysis. It presents a new method called conditional mutation that reduces the
generation time and enables efficient mutation analysis. It is, compared with the conven-
tional way, much more efficient and offers the possibility of applying mutation analysis
to large software systems. Moreover, mutation testing, where mutants are generated
and executed iteratively, becomes more feasible since the generation time is reduced to
a minimum. The approach is versatile, programming language independent, and can be
integrated within the compiler.

So far, conditional mutation has been implemented in the Java Standard Edition com-
piler and it has been applied to applications up to 372,751 lines of code. Furthermore,
conditional mutation can be easily combined with other do smarter and do fewer ap-
proaches since the set of mutation operators is configurable and the mutation analysis can
be parallelized and processed in a distributed environment. .

45





Chapter5
Mutation Analysis in a Java Compiler

Parts of the content of this chapter have been published in [Just et al., 2011b]

The previous chapter presented a new approach to mutant generation and provided an
empirical study for its evaluation. Within this chapter, we focus on the details of the
corresponding implementation, which is called Major. Besides presenting various config-
uration options of Major, this chapter also motivates, defines, and describes a domain
specific language for mutation analysis. Although this language is generally implementa-
tion independent and applicable for any mutation tool for Java programs, the correspond-
ing compiler is currently implemented to be compatible with Major. Therefore, this
chapter additionally outlines the characteristics and the integration of the implemented
domain specific language compiler.

5.1 Introduction

Mutation analysis is an effective, yet often time-consuming and also difficult-to-use method
for the evaluation of testing strategies. Generally, mutation analysis is not feasible for real-
world applications without proper tool support. With regard to the tool support, various
systems and frameworks for different programming languages have been developed, which
differ with respect to their efficiency, flexibility, available mutation operators, and the
degree of automation. While some tools such as MuJava [2009] are outdated due to
incompatibility with new language standards and common testing frameworks, others do
not provide configurable and adaptable mutation operators or simple fault seeding (e.g.,
[Irvine et al., 2007; Schuler et al., 2009]). Hence, there is a need for a new flexible tool
that enables basic research as well as the application of mutation analysis.

Addressing these aspects, this chapter presents Major, a compiler-integrated and non-
invasive tool that provides fast fault seeding for arbitrary purposes, thus enabling efficient
mutation analysis. Designed as a non-invasive enhancement of the Java Standard Edition
reference compiler [OpenJDK, 2012] for use in any Java-based development environment,

47



Chapter 5 Mutation Analysis in a Java Compiler

Major implements the conditional mutation approach as an optional transformation of
the abstract syntax tree. Moreover, Major’s configuration options for specifying and
adapting mutation operators also makes it flexible and extensible. The name Major
is an acronym reflecting that it is a tool for mutation analysis in a Java compiler. In
contrast to existing tools such as Jumble [Irvine et al., 2007], MuJava [Ma et al., 2006],
or Javalanche [Schuler et al., 2009], Major is integrated into the Java compiler and does
not require a specific mutation analysis framework. Hence, it can be used in any Java-
based development environment. The main contributions of Major can be summarized
as follows:

• Efficient mutation analysis by means of embedded mutants and mutation coverage
information

• Integrated into the Java Standard Edition compiler

• Non-invasive and compiler-integrated implementation

• Fast and flexible fault seeding with built-in mutation operators

• Extensibility through its domain specific language

In the remainder of this chapter, Section 5.2 briefly reviews the implemented approach to
mutation analysis to ensure that this chapter is self-contained. Next, Section 5.3 provides
detailed information about the implementation of the individual components in Major.
This section also focuses on the externalized configuration options and the necessary driver.
Then, Section 5.4 motivates and presents a domain specific language for mutation analysis,
which is called Mml. Moreover, this section explains implementation details and how the
Mml compiler is integrated with Major. Finally, Section 5.5 concludes this chapter.

5.2 Conditional Mutation

The conditional mutation approach generates mutants by transforming the abstract syn-
tax tree, as described in Chapter 4. It uses conditional expressions and statements to
encapsulate all of the mutants and the original version of the program in the same basic
block. A mutated example method is shown in Listings 5.1, where the binary expression
a * x is mutated. A concrete mutant can be triggered by setting the mutant identifier
M_NO to the mutant’s number at runtime. It is important to note that this mutant iden-
tifier has to be externalized to provide a unique access to it and a consistent mutation
numbering in multi class software systems.

A mutant that is not reached and executed cannot be detected under any circumstance.
In order to avoid evaluating these uncovered mutants, conditional mutation supports the
collection of additional information about the coverage of the mutations at runtime. List-
ing 5.2 shows the extension of the mutated binary expression, which provides the mutation
coverage information. For efficiency reasons, the covered mutants are reported as ranges
within the COVERED method, which again has to be externalized for consistency reasons.

48



5.3 Implementation Details

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = (M_NO ==1)? a + x:
5 (M_NO ==2)? a / x:
6 (M_NO ==3)? a % x:
7 a * x; // original
8
9 y += b;

10
11 return y;
12 }

Listing 5.1: Example method with an expression mutated with conditional mutation.

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = (M_NO ==1)? a + x:
5 (M_NO ==2)? a / x:
6 (M_NO ==3)? a % x:
7 (M_NO ==0 && COVERED (1 ,3))?
8 a * x : a * x; // original
9

10 y += b;
11
12 return y;
13 }

Listing 5.2: Gathering coverage information for a mutated expression with conditional
mutation.

5.3 Implementation Details

In general, a compiler transforms the source code representation of a given program into
intermediate or assembled code. With regard to the Java programming language, this pro-
cess of compiling a source file into bytecode can be divided into the following consecutive
compiler phases:

49



Chapter 5 Mutation Analysis in a Java Compiler

• Parse: Build the abstract syntax tree (AST) by parsing the source code

• Attribute: Enhance the AST with semantic information (e.g., type information)

• Flow: Traverse the AST and perform semantic and data flow analyses

• Lower: Simplify the AST and remove syntactic sugar

• Generate: Generate bytecode from simplified AST

Now the question arises as to the best method for integrating conditional mutation into
the compilation process. Obviously, a parsed AST is necessary to apply a transformation
to it. Furthermore, it is advisable to transform the AST before the flow analysis and the
lower step for two reasons. On the one hand the code which shall be mutated should not
be simplified or desugared previously. On the other hand the mutated code should also
be checked by the compiler in order to avoid an incorrect AST and thus invalid code.

As a consequence, only two options remain for the integration, namely before or after the
attribution step. Applying conditional mutation after the attribution step is slightly more
complex since the additional nodes and subtrees which shall be inserted also have to be
attributed by the mutation process. However, an attributed AST provides a lot of seman-
tic information (e.g., type information) which offers more subtle mutations. Overall, the
advantages of the second option outweigh the first and hence the conditional mutation ap-
proach is implemented as an additional, but optional, transformation after the attribution
step.

Within Major, conditional mutation is implemented as an optional transformation of the
compiler’s AST, which can be enabled by means of common compiler options. If the condi-
tional mutation step is not chosen, then the compiler works exactly as if it were unmodified.
The compile-time configuration of conditional mutation and the necessary runtime driver
are stored externally in order to avoid dependencies and to provide a non-invasive tool.
Overall, Major’s implementation was driven by the following considerations:

• The default behavior of the compiler must not be changed. This criterion is obliga-
tory in order to have one compiler applicable within the build environment.

• The necessary changes within existing compiler classes should be kept to a minimum
to ensure that conditional mutation can be implemented in future releases of the Java
compiler with little or no additional effort.

• All configuration possibilities have to be externalized to forestall the need to re-
compile Major for different purposes. Moreover, conditional mutation within the
compiler must support the default command-line interface so that it can be used
standalone, in integrated development environments (IDEs), and with frequently
used build systems such as Apache Ant.

• Major must provide a sufficient set of mutation operators in order to provide mean-
ingful results that are comparable to prior empirical studies [Offutt et al., 1996;
Namin et al., 2008].

50



5.3 Implementation Details

Parse Attribute Flow

Conditional
mutation

co
nt
ro
lle

d
by

Lower Generate

Compiler

Source files Class files

Configuration

Extended
compiler
options

Domain
specific
language

Driver

Mutant
identifier
(M_NO)

Mutation
coverage
(COVERED)

Figure 5.1: Overview of compiler-integrated conditional mutation with externalized con-
figuration and driver.

Figure 5.1 visualizes the integration of conditional mutation into the Java compiler. It
is important to note that the implementation of the optional mutation phase requires a
modification of the existing code base since there is currently no support for arbitrary tree
transformation phases. The diagram, moreover, depicts the two externalized components,
namely the configuration and driver, used to control the mutation phase.

Concerning the integration of this mutation phase into the OpenJDK [2012] Java compiler,
the existing architecture has to be taken into account. All transformation and analysis
phases are based on visitor implementations (cf. [Gamma et al., 1995]) performing a tree
traversal where two kinds can be distinguished:

• TreeVisitor: Traverses the tree without modification

• TreeTranslator: Traverses and modifies the tree

Figure 5.2 offers a more detailed view on the implementation by visualizing a simplified
UML class diagram of the extensions necessary to enhance the Java compiler.

51



Chapter 5 Mutation Analysis in a Java Compiler

tree

mutation

util

«use»

«use»

{abstract}
Visitor

«interface»
TreeVisitor

TreeTranslator

CondMutation Mutator TreeCopier

«interface»
MutationProvider

Driver

+M_NO:int

+COVERED(int,int):bool

ProviderOPT ProviderDSL

Options

Figure 5.2: UML class diagram of the necessary extensions of the Java compiler.

52



5.3 Implementation Details

As shown in Figure 5.2, the Mutator is the main component that modifies the AST, and
hence has to be a TreeTranslator. Based on a given MutationProvider, the Mutator
injects the chosen mutants by applying the CondMutation strategy. Since every mutant is
a slightly modified version of the original statement or expression, a TreeCopier is used
that provides an exact clone of an arbitrary AST node. Due to the fact that the copier
does not change the original AST nodes, it is implemented as a TreeVisitor.

5.3.1 Configuration

In order to use the mutation capabilities of Major, the conditional mutation step has to
be generally enabled at compile-time using the corresponding compiler option. Major
also provides either additional compiler options or mutation scripts to support the compile-
time configuration of the mutation process. The compiler options can be used to choose
from the various built-in mutation operators that apply predefined replacements (e.g., for
fast fault seeding). The following mutation operators and operator groups are currently
available within Major via compiler options (the operators are described with examples
in detail in Table 4.3, page 38):

• ORB: Operator Replacement Binary (AOR,LOR,ROR,COR,SOR)

• ORU: Operator Replacement Unary

• LVR: Literal Value Replacement

In order to avoid potential conflicts with future releases of the Java compiler, Major
extends the non-standardized -X options of the compiler. The conditional mutation step
can generally be enabled with -XMutator. Furthermore, this option provides a wildcard
and a list of valid sub-options, which correspond to the names of the mutation operators.
For instance, the following two commands enable all operators by means of the wildcard
ALL (1) and a specified subset of the available operators AOR, ROR, and ORU (2):

(1) javac -XMutator:ALL ...

(2) javac -XMutator:AOR,ROR,ORU ...

Instead of using compiler options, Major can parse mutation scripts written in a domain
specific language. These scripts enable a detailed definition and a flexible application of
mutation operators. For example, the replacement list for every operator in an operator
group can be specified and mutations can be enabled or disabled for certain packages,
classes, or methods. The scripting language enhances the predefined mutation options
while using the compiler options’ keywords for the operators. Major’s domain specific
language is explained and described in detail in the subsequent Section 5.4.

53



Chapter 5 Mutation Analysis in a Java Compiler

1 package major. mutation ;
2
3 public class Driver {
4 public static final int MAX_NO =100000;
5 public static int [] COV = new int[ MAX_NO ];
6
7 public static int M_NO =0;
8
9 public static boolean COVERED (int from , int to){

10 for(int i=from; i<=to; ++i){
11 COV[i]++;
12 }
13 return false;
14 }
15 }

Listing 5.3: Simple driver class with mutant identifier and coverage method.

5.3.2 Driver Class

The conditional mutation components reference the external driver to gain access to the
mutant identifier M_NO. Additionally, the driver has to furnish the mutation coverage
method COVERED if mutation coverage has been enabled within the compiler. Listing 5.3
shows an example of a driver class that provides both the mutant identifier and the mu-
tation coverage method that gathers the coverage information at runtime. The identifier
and the coverage method must be implemented in a static context to avoid any overhead
caused by polymorphism and instantiation. Nevertheless, the fully qualified name of the
driver class itself can be configured.

In order to keep Major non-invasive, the driver class does not have to be available on the
classpath during compilation. That means that Major does not try to resolve the driver
class at compile-time but instead assumes that the mutant identifier and the coverage
method will be available in this class at runtime. Thus, the mutants can be generated
without having a driver class available during compilation.

5.4 Major Mutation Language

As previously indicated in this chapter, mutation analysis can only be effective if the
applied mutation operators can be tailored to generate subtle mutants. Moreover, funda-
mental research and replications of previous studies require configurable mutation opera-
tors, and thus prevent from using a hard-coded integration. Overall, detailed control over

54



5.4 Major Mutation Language

the mutation process is desirable but demands a highly configurable mutation tool. For
instance, the following, not necessarily exhaustive, list of aspects have to be considered
when designing a mutation tool with adjustable parameters:

Extensive class hierarchies
Generally, object-oriented software systems are not designed to be monolithic and they
therefore contain several classes, mostly structured in hierarchical packages. In order to
focus on a specific part of the software system, a mutation tool has to provide an option
to define which package, class, or method should be included or excluded.

Several Mutation operators
There is a significant number of applicable mutation operators and especially the replica-
tion of previous studies and fundamental research in the field of selective mutation requires
a configuration possibility to define which operators shall be included or excluded.

Different Replacement lists
When applying mutation operators that replace programming language operators (e.g.,
binary arithmetic operators), different replacements for operators of the same type might
be sufficient. Hence, a mutation tool should provide the possibility to define replacement
lists for the individual mutation operators.

Even though the number of these example parameters is relatively small, the number of
their possible values is rather large, and thus leading to a tremendous number of feasible
combinations of all possible parameter values. As a consequence, using simple configu-
ration flags or files providing key-value pairs is not suitable to cover the whole range of
configuration options. To enable both fundamental research as well as empirical studies
and to take into account the aspects mentioned above, Major is designed to support a
wide variety of configurations by means of its own domain specific language. This sec-
tion describes this language called Mml (Major mutation language) in detail, provides
implementation details of the corresponding Mml compiler, and also gives some example
source files.

5.4.1 Grammar for Mml

We employ ANTLR [Parr, 2007; Parr and Fisher, 2011] to generate the lexer and parser
of the Mml compiler for two reasons. It is a sophisticated tool that has been successfully
applied to a wide variety of projects and it is based on the Java programming language,
hence providing many customization options for this language. In order to employ ANTLR
to generate a recursive descent parser, we have to provide a LL grammar that it can
process. The following syntax definitions focus on some selected properties of the domain
specific language that are necessary to later explain the implementation details. The
complete grammar for the Mml lexer and parser can be found in Appendix A.

55



Chapter 5 Mutation Analysis in a Java Compiler

Generally, a Mml script contains a sequence of an arbitrary number of statements, where
a statement represents one of the following entities:

• Variable definition (vardef_stmt)

• Invocation of an operator (call_stmt)

• Replacement definition (replace_stmt)

• Definition of own operators (opdef_stmt)

• Line comment (LINE_COMMENT)

Figure 5.3 visualizes the grammar rules by means of a syntax diagram in which all non-
terminals are represented by rectangles and lower-case labels. The terminal symbols are
visualized with upper-case labels in the rectangles with rounded corners. While the first
three statements are terminated by a semicolon, an operator definition is encapsulated by
curly braces and a line comment is terminated by the end-of-line.

vardef_stmt SEMI

call_stmt

replace_stmt

opdef_stmt

LINE_COMMENT

Figure 5.3: Syntax diagram for the definition of a statement.

In order to support the mutation of a certain package, class, or method within large soft-
ware systems, Mml provides statement scopes for replacement definitions and operator
invocations. Figure 5.4 depicts the definition of a statement scope, which can cover soft-
ware units at different levels of a given hierarchy, from a specific method up to an entire
software package. It is important to note that the first rule of Figure 5.4 implies that
such a statement scope is optional and can be omitted. That is, if no statement scope
is provided, the corresponding replacement definition or operator call is applied to the
highest level of the given hierarchy. The scope’s corresponding software entity, that is
package, class, or method, is determined by means of its fully qualified name, which is
referred to as flatname. Such a flatname can be either provided within delimiters (DELIM)
or by means of a variable identified by IDENT.

56



5.4 Major Mutation Language

LESS_THAN IDENT GREATER_THAN

DELIM flatname DELIM

Figure 5.4: Syntax diagram for the definition of a statement scope.

The grammatical rules for assembling a flatname are shown in Figure 5.5, again by means
of a syntax diagram. The naming conventions for valid identifiers (IDENT) are based on
those of the Java programming language due to the fact that a flatname identifies a certain
entity within a Java software system. The following three examples, are for instance valid
flatnames for a package, class, and method:

• "java.lang"

• "java.lang.System"

• "java.lang.System@exit"

It has to be pointed out that the definition of a flatname also supports the identification of
innerclasses and constructors, consistent with the naming conventions of the Java compiler.
For Example, the subsequent definitions address an inner class, a constructor, and a static
class initializer:

• "foo.Bar$InnerClass"

• "foo.Bar@<init>"

• "foo.Bar@<clinit>"

IDENT DOT IDENT DOLLAR IDENT AT IDENT

INT_LIT INIT

CLINIT

Figure 5.5: Syntax diagram for the definition of a flatname.

57



Chapter 5 Mutation Analysis in a Java Compiler

5.4.2 Integration with MAJOR

Recalling the design goals of Major, we have to consider the following two aspects in
order to decide how to integrate the Mml compiler with Major:

• The configuration has to be externalized to prevent recompilation.

• Major must not have any dependencies to be non-invasive.

In consideration of the second requirement, integrating the Mml compiler into Major is
only feasible if the Mml compiler does not manifest dependencies to any libraries apart
from the default ones provided by the Java runtime environment. Due to the fact that
we employ ANTLR for lexer and parser generation, we cannot fulfill this requirement
with the generated parts since they reference the ANTLR runtime library. Therefore,
we externalize the entire Mml compiler and use an intermediate output, which can be
interpreted by Major. Naturally, this output format has to be readable without any
additional libraries, again in compliance with the second requirement.

Mml
compiler

Mml
source file

Serialized
mutation
provider

Major
Symbol
table

«use» Java
source files

Mutated and
compiled
class files

Figure 5.6: Integration of the Mml Compiler with Major using standard Java serializa-
tion as intermediate output.

In order to avoid any additional parsing overhead within Major and also to provide a
checked intermediate output, we rely on the standard Java serialization. Figure 5.6 shows
an overview of the interaction between the Mml compiler and Major. It is important to
note that theMml compiler referencesMajor to gain access to its symbol table and to the
interface and class definition of the mutation provider. The former is essential to allow
the Mml compiler to semantically check the defined operator replacements and to use
the correct operator symbols when producing the output file by serializing the mutation
provider.

58



5.4 Major Mutation Language

The mutation provider is based on a tree structure and provides accessor methods for
getting the enabled mutation operators and the corresponding replacement lists. Figure 5.7
visualizes such a mutation tree that contains the defined operator replacement lists as well
as the enabled and disabled mutation operators, which are highlighted with the gray
rectangles. Generally, the accessor methods do not manipulate the tree and hence the
attributed tree is immutable, once it has been created by the Mml compiler. Within the
given example, the LVR mutation operator is enabled and three replacements for relational
operators are defined on the root node. Furthermore, the ROR mutation operator is
enabled for the package org and for the class de.uni.ulm.Foo. For the latter, the COR
mutation operator is also enabled and the LVR operator is disabled, thus overriding the
definition for the root node. It is crucial to state, that the enabled mutation operators
and replacement lists for a given node, that is a certain package, class, or method, is
determined by traversing the tree and analyzing all visited nodes, where the individual
definitions may carry additional flags.

/

de

uni

ulm

Foo

-LVR +ROR +COR

+BIN

&& lhs rhs == false

|| lhs rhs != true

+LVR

+BIN

>= true > ==

<= true < ==

!= true < >

org

+ROR

Figure 5.7: Attributed mutation tree that provides replacement lists and enables/disables
certain mutation operators.

The mutation operators can either be enabled (+) or disabled (-) and this behavior can
be defined for each node. If there are several definitions on a given path, as for instance
shown in Figure 5.7, the innermost node, that is the last one on the path, determines the
result. With regard to the replacement definitions, there are two different possibilities.
Individual replacements can be added (+) to the list or the entire replacement list can be
overridden (!), where the latter possibility represents the default case if no additional flag
is provided.

59



Chapter 5 Mutation Analysis in a Java Compiler

1 // Define own replacement list for AOR
2 BIN (*) -> {/ ,%};
3 BIN (/) -> {* ,%};
4 BIN (%) -> {* ,/};
5
6 // Define own replacement list for ROR
7 BIN (>) -> { <= ,!= ,==};
8 BIN (==) -> {<,!=,>};
9

10 // Enable and invoke mutation operators
11 AOR;
12 ROR;
13 LVR;

Listing 5.4: Simple script to define replacements for the AOR and RORmutation operators
and to enable AOR, ROR, and LVR on the root node.

5.4.3 Script Examples

Listing 5.4 shows a simple example of a mutation script that includes the following tasks:

• Define specific replacement lists for AOR and ROR

• Invoke the AOR and ROR operators on reduced lists

• Invoke the LVR operator without restrictions

This script does not use any scoping or overriding capabilities and can thus be applied
to an arbitrary software system for which only AOR, ROR, and LVR mutants shall be
generated.

Reconsidering the mutation tree depicted in Figure 5.7, the corresponding script is shown
in Listing 5.5. Within this script we exploit the scoping capabilities of the Mml in line 8
and 12-17. Additionally, we take advantage of the possibility to define a variable in line 11
to avoid code duplication in the subsequent scope declarations. Both features are useful if
only a certain package, class, or even method shall be mutated in a hierarchical software
system.

In order to further avoid code duplication for the repeating application of equal definitions,
that is the same replacements and enabled mutation operators for several packages, classes,
or methods, the Mml provides the possibility to declare own operator groups. The last
given example in Listing 5.6 visualizes this grouping feature that allows for a definition of
an own mutation operator group. Such a group may in turn contain any statement that
is valid in the context of the Mml, apart from a call of another operator group.

60



5.4 Major Mutation Language

1 // Definitions for the root node
2 BIN (>=) ->{TRUE , > ,==};
3 BIN (<=) ->{TRUE , < ,==};
4 BIN (!=) ->{TRUE ,<,> };
5 LVR;
6
7 // Definition for the package org
8 ROR <"org" >;
9

10 // Definitions for the class Foo
11 foo="de.uni.ulm.Foo";
12 BIN (&&) <foo >->{LHS ,RHS ,==, FALSE };
13 BIN (||) <foo >->{LHS ,RHS ,!=, TRUE };
14
15 -LVR <foo >;
16 ROR <foo >;
17 COR <foo >;

Listing 5.5: Mutation script that produces the mutation tree illustrated in Figure 5.7.

1 myOp{
2 // Definitions for the operator group
3 BIN (>=) ->{TRUE , > ,==};
4 BIN (<=) ->{TRUE , < ,==};
5 BIN (!=) ->{TRUE ,<,> };
6 BIN (&&) ->{LHS ,RHS ,==, FALSE };
7 BIN (||) ->{LHS ,RHS ,!=, TRUE };
8
9 ROR;

10 COR;
11 }
12
13 // Calls of the defined operator group
14 myOp <"org" >;
15 myOp <"de" >;
16 myOp <"com" >;

Listing 5.6: Mutation script with a definition of an own mutation group and corresponding
calls for different scopes.

61



Chapter 5 Mutation Analysis in a Java Compiler

5.5 Summary

This chapter has described Major, a fault seeding and mutation analysis system inte-
grated into the Java Standard Edition compiler. Designed as a non-invasive tool, it is
applicable in every Java-based environment and customizable with common compiler op-
tions and its own domain specific languageMml. Major implements conditional mutation
to transform the attributed abstract syntax tree and enables efficient mutation analysis
by means of several optimizations, such as mutation coverage information. Its domain
specific language Mml also makes it extensible and configurable. Due to its ease-of-use,
efficiency, and extensibility, Major is an ideal platform for fundamental research and the
application of mutation analysis.

62



Chapter6
Non-Redundant Mutation Operators

The content of this chapter has been published in [Just et al., 2012a]

The high cost of mutation analysis is due, in part, to the fact that many mutation operators
generate redundant mutants that may both misrepresent the mutation score and increase
the runtime of the mutation analysis process. This chapter shows how the mutation
operator for the replacement of conditional operators can be defined in a redundant-free
manner. Furthermore, it investigates how prevalent redundant mutants are and how they
affect the effectiveness and efficiency of mutation analysis.

6.1 Introduction

A wide variety of mutation operators have been proposed for different purposes and pro-
gramming languages (cf. [King and Offutt, 1991; Ma et al., 2006; Jia and Harman, 2011]).
However, applying all mutation operators results in a substantial number of mutants, es-
pecially for large software systems, and thus executing and analyzing all of the mutants
can be very expensive. In response to this challenge, Offutt et al. [1996] studied the effec-
tiveness of a subset of mutation operators, revealing that this smaller group of sufficient
mutation operators could be applied without a substantial loss of information. Further-
more, Namin et al. [2008] confirmed the results that a subset of all applicable mutation
operators is sufficient to achieve a meaningful result. However, these studies focused on
reducing the number of mutation operators without incurring a major loss in the accuracy
of the mutation score and regarded the operators to be atomic. That is, an mutation
operator was either excluded or applied with all valid transformations or replacements.

This chapter considers these operators at a fine-grained level and shows that their original
definition implies redundancy in the resulting set of mutants. While the actual subset
of mutation operators that can be employed depends on the programming language, this

63



Chapter 6 Non-Redundant Mutation Operators

chapter considers the following set of operators that were commonly used in previous ex-
periments (e.g., [Namin et al., 2008; Schuler and Zeller, 2009]). A more detailed description
of the mutation operators is depicted in Table 4.3, page 38.

• Operator Replacement Unary (ORU): Replace all occurrences of unary operators
with all valid alternatives.

• Operator Replacement Binary (ORB): Replace all occurrences of binary operators
with all valid alternatives, including AOR, LOR, SOR, ROR, and COR.

• Unary Operator Insertion (UOI): Insert a unary boolean operator to negate boolean
expressions. This operator is also applied to subexpressions and boolean literals.

• Literal Value Replacement (LVR): Replace all literals with a positive value, a neg-
ative value, and zero. Additionally, all reference type variables are replaced by a
reference to null.

The empirical study in this chapter additionally demonstrates how prevalent redundancies
in mutant sets are in real-world applications and how the inclusion of redundant mutants
leads to an inaccurate mutation score, thus making this metric less meaningful. In addition
to focusing on effectiveness, this chapter empirically demonstrates how reducing the set
of mutants decreases the runtime of the mutation analysis process. In consideration of
the effect of redundant mutants on efficiency and effectiveness of mutation analysis, the
contributions of this chapter can be summarized as follows:

• A definition of non-redundant mutants that exhibit a minimal impact and collectively
form a sufficient set of replacements for binary operators.

• A demonstration, based on the given definition, that the COR operator for replacing
conditional binary operators with all valid alternatives should only apply a subset
of replacements to avoid the creation of redundant or trivial mutants.

• A determination of the actual number of mutants generated by applying the COR
and ROR operators. Using a well-known subset of mutation operators, the empirical
study computes the ratio of the number of COR and ROR mutants to the size of
the entire set of mutants.

• An empirical study that investigates how redundant mutants affect the effectiveness
and efficiency of mutation analysis for ten real-world programs that range in size
from 3,000 to more than 110,000 lines of code.

• A comparison of the computed mutation score with the mutation and code coverage
ratios for the same ten real-world applications. Additionally, the study measures the
necessary runtime to compute the three ratios and discusses the results with regard
to the quality of the investigated test suites.

In the rest of this chapter, Section 6.2 furnishes a more detailed view on the mutation
operators and defines a sufficient and minimal set of replacements for the COR operator.
Next, Section 6.3 describes the empirical study and reports on the corresponding results.
Section 6.4 discusses related work and, finally, Section 6.5 concludes.

64



6.2 A Detailed View on Mutation Operators

6.2 A Detailed View on Mutation Operators

To ensure that mutation analysis is effective, it is often important for a mutant to have
only a small impact on the output, thus making it hard to detect. Trivial and redundant
mutants also should be avoided to reduce the runtime of the mutation analysis process
and to not misrepresent the mutation score. We refer to mutants that result in a wrong
output for all possible input values as trivial mutants.

Previous studies on the effectiveness of mutation analysis that investigated the reduction
of mutation operators (e.g., [Offutt et al., 1996; Namin et al., 2008]) did not take the
definitions of the operators into account and considered them to be atomic. More recently,
Kaminski et al. [2011] investigated the relational operator replacement and showed that
only three replacements are necessary to subsume all the others. This section considers
the conditional operator replacement (COR) mutation operator for the logical connectors
&& and || at a fine-grained level. It first formally describes the requirements for mutants
that manifest a minimal impact in order to avoid the creation of subsumed and trivial
mutants. Based on the given definitions, it then suggest a sufficient set of mutations for
both logical connectors.

Generally, the COR mutation operator replaces an expression a <op> b where a and b
denote boolean expressions or literals and <op> is one of the logical connectors && or ||.
With regard to binary conditional operators, valid mutations belong to one of the following
three categories:

1. Apply conditional operator

• Apply logical connector AND: a && b

• Apply logical connector OR: a || b

• Apply equivalence operator: a == b

• Apply exclusive OR operator: a != b

2. Apply special operator

• Evaluate to left hand side: lhs

• Evaluate to right hand side: rhs

• Always evaluate to true: true

• Always evaluate to false: false

3. Insert unary boolean operator

• Negate left operand: !a <op> b

• Negate right operand: a <op> !b

• Negate expression: !(a <op> b)

65



Chapter 6 Non-Redundant Mutation Operators

It is important to note that we omit the three logical operators ^, |, and & for two
reasons. First, the logical exclusive OR operator ^ is, when applied to boolean values,
semantically equivalent to the included != operator. This means that (a^b) = (a!=b),
∀(a,b)∈ {0, 1}×{0, 1}. Hence, the inclusion of both operators would obviously introduce
redundancy. Furthermore, the logical operators | and & produce the same boolean output
as the conditional equivalent with the exception that they do not exploit the possible short-
circuit evaluation. Short-circuit means that the right hand side of a binary conditional
expression is only evaluated if and only if the output is not already defined by the value
of the left hand side. As a consequence, the mutants associated with the logical operators
can only be killed if the missing short-circuit evaluation leads to an exception or a side
effect that changes the internal state. Thus, we ignore the logical operators since this type
of fault is also represented by the mutations included in the three categories.

Generally, an expression a <op> b can also be expressed in prefix notation, which we use
throughout the following definitions:

a <op> b 7−→ op(a, b)

Let p be the original program with its corresponding set of input values and parameters
π. That is, π denotes the tuple of all input values and parameters necessary to execute
p. For a given input domain Π, a mutant m is semantically equivalent to p, written as
m ≡ p, if and only if it produces the same output as p for all possible input tuples:

Definition 6.1 Program equivalence

m ≡ p :⇔ m(π) = p(π), ∀π ∈ Π

With regard to this program equivalence definition, an equivalent mutant of a binary
operator op that maps input tuples (a, b) ∈ Π to an output o ∈ Ω can be defined as:

Definition 6.2 Equivalent mutant meq

meq(a, b) = op(a, b), ∀(a, b) ∈ Π

As previously mentioned, easy-to-kill or redundant mutants should be avoided by the
mutant generation process. To achieve this goal, the generated mutants should have a
minimal impact in order to be hard to detect. We refer to the number of input tuples
for which the resulting output of the mutant differs from the original version as impact
of the mutant. Moreover, we use the index set IΠ on the input domain Π with a bijec-
tive mapping, meaning that IΠ is an enumeration of all input tuples (a, b)i ∈ Π (e.g.,
IΠ = {0, ..., |Π| − 1}). A minimal impact mutant mi

min for a certain input tuple (a, b)i is
now defined as:

Definition 6.3 Minimal impact mutant mi
min

∃!i ∈ IΠ : mi
min(a, b)i 6= op(a, b)i

66



6.2 A Detailed View on Mutation Operators

This definition indicates that there is only one input tuple for which the outputs of the
minimal impact mutant and the binary operator differ. Having all possible minimal impact
mutants and a given index set IΣ ⊆ IΠ, we can now define the sufficient set of mutants
Msuf as the union of the mi

min mutants in compliance with the uniqueness of the inputs:

Definition 6.4 Sufficient set of mutants Msuf

Msuf := {mi
min : i ∈ IΣ} with |Msuf| = |IΣ|

It is important to note that the sufficient set is defined on the domain Σ ⊆ Π, which
contains only the valid, or feasible combinations, of the input domain Π. Moreover, the
constraint |Msuf| = |IΣ| is necessary to ensure that exactly one minimal impact mutant
per input tuple is included – there might be several minimal impact mutants for a certain
tuple. Based on Definition 6.3, the output of a minimal impact mutant differs from the
output of the binary operator for exactly one input combination. Now, if this tuple is not
an element of the domain Σ, the corresponding mutant is equivalent on Σ:

(a, b)i /∈ Σ⇒ mi
min(a, b)j = op(a, b)j , ∀(a, b)j ∈ Σ

⇒ mi
min is equivalent on Σ �

With regard to the minimal impact mutants, we can now define every additional and non-
equivalent mutant as subsumed mutant ms. Let I∆(ms) = {i ∈ IΠ : ms(a, b)i 6= op(a, b)i}.
A mutant ms is subsumed if:

Definition 6.5 Subsumed mutant ms

∃mi
min : mi

min(a, b)i = ms(a, b)i, ∀i ∈ I∆(ms)

Intuitively, I∆(ms) represents all input tuples for which the output of the mutant ms

differs from the original version. Since there is a minimal impact mutant for each of those
inputs, the mutant is subsumed. Additionally, we define a mutant that produces a wrong
output for every feasible input tuple as trivial mutant mt:

Definition 6.6 Trivial mutant mt

mt(a, b)i 6= op(a, b)i,∀i ∈ IΣ

Based on the given Definition 6.4 for a sufficient set of mutants Msuf, Table 6.1 shows
the sufficient replacements for the logical connector &&. The mutants within this set
are minimal impact mutants, in compliance with Definition 6.3, since they change the
output of the original clause for exactly one input tuple. The actual changes of the
corresponding outputs are highlighted with circles to show that the mutations indeed
manifest a minimal impact. Furthermore, all sufficient mutations are disjoint and their
union forms the sufficient set Msuf, as required by Definition 6.4.

67



Chapter 6 Non-Redundant Mutation Operators

Table 6.1: Sufficient replacements for the logical connector AND.

Literals Original clause Sufficient mutations

a b a && b false lhs rhs a==b

0 0 0 0 0 0 1

0 1 0 0 0 1 0

1 0 0 0 1 0 0

1 1 1 0 1 1 1

Table 6.2: Subsumed mutations for the logical connector AND.

Literals Original clause Subsumed mutations Subsumed operator UOI

a b a && b a ‖ b a!=b true !(a && b) !a && b a && !b

0 0 0 0 0 1 1 0 0

0 1 0 1 1 1 1 1 0

1 0 0 1 1 1 1 0 1

1 1 1 1 0 1 0 0 0

Table 6.2 shows the subsumed and trivial mutants for the logical connector &&. Besides
showing the output of the original expression, the table emphasizes the outputs of the
subsumed mutants that differ from the original clause within rectangles. All of the depicted
mutants do not fulfill Definition 6.3, since they change the output of more than one
input combination, as highlighted by the rectangles, and hence manifest a higher impact.
Therefore, none of the mutants can be included in the sufficient set Msuf. As already
discussed, the sufficient mutations of Table 6.1 collectively cover all possible combinations.
Hence, for every subsumed mutant there exists a minimal impact mutant that produces
the same wrong output for the corresponding input combination. Therefore, all subsumed
mutants fulfill Definition 6.5. For example, the lhs operator produces the wrong output
for a certain combination of the literals a and b, that is a=true and b=false. Additionally,
most of the subsumed mutations produce the same wrong output for this combination.

68



6.2 A Detailed View on Mutation Operators

Table 6.3: Sufficient replacements for the logical connector OR.

Literals Original clause Sufficient mutations

a b a ‖ b a!=b rhs lhs true

0 0 0 0 0 0 1

0 1 1 1 1 0 1

1 0 1 1 0 1 1

1 1 1 0 1 1 1

Table 6.4: Subsumed mutations for the logical connector OR.

Literals Original clause Subsumed mutations Subsumed operator UOI

a b a ‖ b a && b a==b false !(a ‖ b) !a ‖ b a ‖ !b

0 0 0 0 1 0 1 1 1

0 1 1 0 0 0 0 1 0

1 0 1 0 0 0 0 0 1

1 1 1 1 1 0 0 1 1

Thus, if a test detects the lhs mutant, it is also guaranteed that the same test detects
all of the other subsumed mutations. According to Definition 6.6, the logical negation of
the original clause leads furthermore to a trivial mutant since this mutant produces the
wrong output for every input combination, as visualized by the rectangle that covers all
four outputs.

With regard to the logical connector ||, Table 6.3 shows and highlights the minimal
impact mutants that form the sufficient set Msuf. Additionally, Table 6.4 illustrates the
subsumed mutants for this logical connector, where all subsumed mutants again exhibit a
higher impact, as visualized by the rectangles.

For both logical connectors, the sufficient set of mutations not only subsumes all of the
other mutations but also another entire mutation operator, namely the unary operator

69



Chapter 6 Non-Redundant Mutation Operators

1 public void pattern1 (int x){
2 Var v;
3
4 if(flag && (v= getVar ()) != null){
5
6 v.foo(x);
7 }
8 return ;
9 }

10
11
12 public void pattern2 (int x){
13 Var v;
14
15 if(flag || (v= getVar ()) == null){
16 return ;
17 }
18 v.bar(x);
19 }

Listing 6.1: Two common patterns with uninitialized local variables exploiting the short-
circuit property of the logical connectors && and ||.

Variable is guaranteed
to be initialized:

v is accessed iff right
hand side is evaluated

insertion (UOI). Hence, this mutation operator should be omitted when mutating condi-
tional expressions due to the manifested redundancy. It has to be pointed out that the
depicted subsumption hierarchy only holds for conditional expressions with one logical
connector. We do not further investigate composed conditional expressions and leave this
matter open for future research.

By employing only the four sufficient out of ten possible mutations, the reduction of the
number of mutants generated by the COR mutation operator is approximately 60%. The
actual saving depends on the applicability of the mutations and the number of feasible
input tuples. The latter one is related to the equivalent mutant problem, which is not
further discussed in this chapter. Concerning the applicability of the mutations within Java
programs, there are two common patterns that exploit the short-circuit property of the
logical connectors && and ||, as shown in Listing 6.1. Within this listing the short-circuit
property is utilized to avoid an unnecessary initialization of local variables.1 Since the
Java compiler strictly requires that every local variable is initialized before use, replacing
the logical connector && by ||, and vice versa, is not valid in the illustrated methods. The
application of the special operators true, false, and lhs also leads to invalid mutants
that may access an uninitialized local variable. Hence, the actual decrease depends on the

1The Java Virtual Machine is a stack machine, and thus a local variable is only stored on the stack once
it has been initialized.

70



6.3 Empirical Evaluation

Table 6.5: Summary of the applications investigated in the empirical study.

Application Version LOC* Relational
operators

Conditional
operators Tests

trove GNU Trove 3.0.2 116,750 7,937 1,945 544

chart jFreeChart 1.0.13 91,174 2,762 781 2,130

itext iText 5.0.6 76,229 5,293 1,760 75

math Commons Math 2.1 39,991 3,233 428 2,169

time Joda-Time 2.0 27,139 1,324 364 3,855

lang Commons Lang 3.0.1 19,495 1,618 695 2,039

jdom JDOM 2beta4 15,163 1,023 216 1,723

jaxen Jaxen 1.1.3 12,440 815 159 699

io Commons IO 2.0.1 7,908 345 139 309

num4j Numerics4j 1.3 3,647 312 133 218

total 409,936 24,662 6,620 13,761

*Physical lines of code as reported by sloccount (non-comment and non-blank lines)

number of occurrences of the depicted pattern. Moreover, the total reduction of the entire
mutation set depends on the ratio of COR mutants to all generated mutants.

6.3 Empirical Evaluation

To examine both the frequency and the effect of redundant mutants, we conducted an
empirical study with ten open-source applications. Table 6.5 summarizes the investigated
applications, showing how they differ in size, complexity, and operation purpose. Since
the study focuses on the reduction of mutants associated with applying the COR and
ROR mutation operators, the table also gives the counts for the occurrences of relational
and conditional operators, in addition to the number of files, tests, and lines of code.
The number of tests, depicted in the last column of Table 6.5, represents the quantity of
existing unit tests that are provided and released with the corresponding application.

Throughout the empirical study, we employ Major, the developed compiler-integrated
research tool for the mutation analysis of Java programs, to mutate the applications and
to perform the mutation analysis process. Major also provides all relevant data about

71



Chapter 6 Non-Redundant Mutation Operators

the number of generated mutants and the necessary runtime for the mutation analysis,
thus enabling an investigation of the following four research questions:

Q1: What is the ratio of the number of mutants generated by the COR and ROR oper-
ators to the number of mutants generated by applying all operators?

Q2: Are conditional expressions with only one logical connector, like those studied in
Section 6.2, predominant in real-world applications?

Q3: What is the actual savings in the runtime of mutation analysis due to the use of the
reduced set of mutants?

Q4: How does the elimination of redundant mutants affect the overall mutation score?

6.3.1 The frequency of the COR and ROR mutants

To answer the first research question, we determined the number of mutants generated by
applying the COR and ROR operators with all of the possible replacements, as defined
by Namin et al. [2008]. We also ascertained the number of mutants that can be generated
by using all of the operators, including COR and ROR. Figure 6.1 visualizes the ratio
of mutants associated with the COR and ROR operators (the dark gray and black bars)
to the number of mutants generated by applying all mutation operators (light gray bar).
Ranging from 30.9% for math to 63.6% for trove, the number of mutants generated by only
applying the COR and ROR operators is a substantial portion of all the induced mutants.
With a mean value of 45.1%, this range suggests that there is a notable potential for
effectiveness and efficiency improvements through the removal of the redundant mutants
associated with COR and ROR.

6.3.2 The number of connectors in conditional
expressions

As stated in Section 6.2, we can only guarantee that the reduced set of mutants generated
by the COR operator is sufficient and redundancy-free for conditional expressions with one
logical connector. Therefore, in order to ascertain the benefit of this partial solution, we
calculated the ratio of conditional expressions with one connector to the remaining number
of conditional expressions. For each application, Figure 6.2 illustrates the distribution of
the number of logical connections in the conditional expressions. With a mean value of
80.1% across the ten studied programs and a range between 63.3% for num4j and 85.9%
for math, the number of conditional expressions with only one connector is predominant
for all applications. Thus, for almost 80% of the conditional expressions, the suggested
subset of replacements, as given in Section 6.2, provides a sufficient and redundancy-free
set of mutants.

72



6.3 Empirical Evaluation

10,000 30,000 50,000 70,000 90,000 110,000 130,000 150,000

num4j

io

jaxen

jdom

lang

time

math

chart

trove

itext
10.9%

16.6%

9.6%

5.1%

11.9%

21.8%

14.2%

15.7%

15.3%

18.4%

24.7%

47.0%

32.5%

25.8%

32.1%

38.7%

44.0%

46.2%

27.7%

23.1%

Number of generated mutants

All mutants

ROR mutants

COR mutants

Figure 6.1: Ratio of the number of COR and ROR mutants to the number of all generated
mutants for the investigated applications.

73



Chapter 6 Non-Redundant Mutation Operators

100 300 500 700 900 1,100 1,300 1,500

num4j

io

jaxen

jdom

lang

time

math

chart

trove

itext
77.0%

78.5%

84.3%

85.9%

79.7%

80.7%

85.2%

82.9%

82.9%

63.3%

Number of conditional expressions

1 connector
2 connectors
≥3 connectors

Figure 6.2: Distribution of the number of logical connectors in conditional expressions for
the investigated applications.

6.3.3 Decreasing the runtime of the mutation analysis

The smaller subset of replacements for the COR and ROR operators means that fewer
mutants have to be generated and hence the number of necessary executions during the
mutation analysis process is also reduced. With regard to the reduction of mutants and the
decrease in runtime, we distinguish between generated and covered mutants, with covered
meaning that a mutant is reached and executed but not necessarily killed. Hence, the
mutation coverage is a necessary but not sufficient condition to kill a mutant. Table 6.6
shows the decrease in the number of generated and covered mutants according to the
following two sets of mutations:

• Mall: Set of mutants generated by applying all mutation operators with all valid
alternatives for replacement operators.

• Mred: Reduced set of mutants generated by all available mutation operators but
only with sufficient replacements for the COR and ROR operators.

74



6.3 Empirical Evaluation

Table 6.6: Decrease in the number of generated and covered mutants.

Generated mutants Covered mutants

Mall Mred Mall Mred

itext 160,891 126,781 (-21.2%) 25,650 19,541 (-23.8%)

trove 116,991 72,959 (-37.6%) 9,494 6,137 (-35.4%)

chart 92,000 68,503 (-25.5%) 50,735 36,298 (-28.5%)

math 81,577 66,787 (-18.1%) 74,327 60,148 (-19.1%)

time 32,380 23,781 (-26.6%) 27,661 19,577 (-29.2%)

lang 33,023 21,056 (-36.2%) 32,034 20,196 (-37.0%)

jdom 15,616 10,800 (-30.8%) 14,998 10,266 (-31.6%)

jaxen 10,247 7,132 (-30.4%) 6,675 4,679 (-29.9%)

io 9,901 7,319 (-26.1%) 5,166 4,255 (-17.6%)

num4j 7,234 5,437 (-24.8%) 7,007 5,243 (-25.2%)

total 559,860 410,555 (-26.7%) 253,747 186,340 (-26.6%)

The reduction of the mutations associated with the COR and ROR operators significantly
affects the number of generated mutants, even when applying all available mutation op-
erators. Depending on the ratio of the COR and ROR mutants to all other mutants,
the decrease ranges between 18.1% for math and 37.6% for trove, as shown in Table 6.6.
Concerning the covered mutants, also depicted in the last two columns of Table 6.6, the
decrease in the number of covered mutants is comparable to the decrease in the number
of generated mutants for all applications except io for two reasons. Apparently, the test
suite for io exhibits a low mutation coverage ratio of approximately 50%. In addition to
this relatively low ratio, a lot of COR and ROR mutants are not covered and hence, the
effect of reducing the replacements for COR and ROR is more noticeable for the number
of generated mutants than for the number of covered mutants.

In addition to calculating the reduction in the number of generated and covered mutants,
we also determined the actual improvement in the runtime while exploiting two runtime
optimizations. On the one hand, we do not analyze mutants that are not covered since they
cannot be killed and on the other hand we do not further investigate a mutant once it has
been killed. Moreover, some mutants lead to infinite loops, for instance the ones derived
from mutating loop conditions. To prevent the mutation analysis process from getting
stuck, these infinite loops have to be identified. Due to the fact that it is undecidable in
general whether or not a mutant produces an infinite loop, we apply a timeout heuristic

75



Chapter 6 Non-Redundant Mutation Operators

250 500 750 1,000 1,250 1,500 1,750 2,0000

1,000

2,000

3,000

4,000

Minimum timeout = 100ms

t · 8

t · 4

t · 2

Original test case runtime t in milliseconds

Te
st

ca
se

tim
eo
ut

in
m
ill
ise

co
nd

s

Figure 6.3: Function used to determine the timeout for mutants (base timeout factor=8).

that depends on the runtime of the unmutated version. Figure 6.3 visualizes the piecewise-
defined function used to determine the timeout for a certain test case. This function uses
a base timeout factor that decreases over time, down to a minimum of two. Because the
runtime of a short test is more likely to be influenced by small delays inherent in the
system, we use a considerably larger timeout factor for short-running tests. Moreover,
the lower bound for the timeout is 100 milliseconds to compensate for any measuring
inaccuracy when determining the timeout for test cases that exhibit an extremely small
runtime. It is important to note that most of the unit tests provided with the investigated
applications exhibit a small runtime below 50 milliseconds. Since mutants are usually
covered by several unit tests, it is also crucial to state that the timeout does not depend
on the mutant but rather on the test case that covers it.

In order to estimate the runtime of the original version on which the heuristic shown in
Figure 6.3 is based on, we ascertain the maximum runtime of two independent runs of
the original version. Reconsidering the characteristics of conditional mutation, which is
described in Chapter 4, this runtime is indeed an adequate approximation since for every
expression or statement that has been mutated with conditional mutation, the original
version is always the innermost node within a nested expression or statement, respectively.
Listing 6.2 provides an example for an expression and statement mutated with conditional
mutation, where M_NO denotes the mutant identifier necessary to trigger a certain mutant.
This example clearly shows that the execution of the original version is associated with the
highest runtime overhead in terms of evaluating all the injected conditional expressions
that enable conditional mutation. It is important to note that our heuristic, like all
heuristics, for infinite loop detection may produce false-positive results. Nevertheless, the
determined timeout only leads to an interruption of a mutant if its runtime is significantly

76



6.3 Empirical Evaluation

prolonged. In this case, interruption means that the execution of a test case that analyzes
a certain mutant is stopped and the corresponding mutant is then marked as being killed.
To the best of our knowledge, other mutation testing tools such as Javalanche [Schuler
et al., 2009] or MuJava [Ma et al., 2006] use a timeout that is constant for all test cases.
With regard to the individual test cases of which the runtimes differ by several orders of
magnitude, we judge that a variable timeout is more sensitive.

1 public int eval(int x){
2 int a = 3, b = 1, y;
3
4 y = (M_NO ==1)? a - x:
5 (M_NO ==2)? a * x:
6 a + x;
7
8 if(M_NO ==3){
9 y -= b;

10 }else{
11 y += b;
12 }
13 return y;
14 }

Listing 6.2: Expressions and statements mutated with conditional mutation.

Original version:
All conditional
expressions have
to be executed to
reach this point

Table 6.7 furnishes the execution time of a mutation analysis process that uses Major to
calculate a mutation score for each application’s test suite. With a reduction in runtime of
up to 37% for lang and a minimum of 11% for jaxen, the results demonstrate a significant
speed-up for all of the applications. Yet, the observed improvement in the runtime depends
on the distribution of the COR and ROR within the application and the runtimes of the
tests that do not cover these mutants. For instance, the test suites for math and jaxen
contain a few long-running tests that cover many mutants but only a few COR and ROR
mutations. Since the runtime of these tests is a considerable proportion of the total
runtime, the removal of the redundant COR and ROR mutants only yields a modest
decrease in the cost of mutation analysis for these applications.

6.3.4 Increasing the precision of the mutation score

Since redundant mutants lead to an imprecision in the mutation score, we also calculate
this score for both the generated and covered mutants for all of the investigated applica-
tions. Table 6.8 gives the mutation score for the generated mutants, with Mall and Mred
again denoting the mutation sets described in Section 6.3.3. The reduced sets result in a
decrease of the mutation score of more than 20% for programs like chart and an average

77



Chapter 6 Non-Redundant Mutation Operators

Table 6.7: Decrease in the runtime of the mutation analysis.

Total runtime* Covered mutants

Mall Mred Mall Mred

Tests

itext 618.0 426.6 (-31.0%) 25,650 19,541 (-23.8%) 75

trove 47.7 37.7 (-21.0%) 9,494 6,137 (-35.4%) 544

chart 783.4 582.1 (-25.7%) 50,735 36,298 (-28.5%) 2,130

math 536.8 473.0 (-11.9%) 74,327 60,148 (-19.1%) 2,169

time 433.4 340.1 (-21.5%) 27,661 19,577 (-29.2%) 3,855

lang 38.9 24.5 (-37.0%) 32,034 20,196 (-37.0%) 2,039

jdom 179.3 135.6 (-24.4%) 14,998 10,266 (-31.6%) 1,723

jaxen 482.9 430.9 (-10.8%) 6,675 4,679 (-29.9%) 699

io 7.4 5.0 (-32.4%) 5,166 4,255 (-17.6%) 309

num4j 2.8 1.8 (-35.7%) 7,007 5,243 (-25.2%) 218

avg -25.1% -27.7%

*Total runtime reported in minutes

decrease of almost 7%. Unless the redundant mutants are removed, the mutation score
is overestimated for all applications except io. For this application, the corresponding
test suite only covers 33% of the generated COR and ROR mutants. Thus, removing the
redundant mutants affects the number of generated mutants more significantly than the
number of killed mutants, leading to a 10% increase in the mutation score.

Table 6.8 also shows how the removal of the redundant mutants affects the mutation score
that is calculated for the number of covered mutants. Once again, there is a notable 7%
average decrease in the mutation score that ranges between 1% for io and 18% for chart.
Overall, redundant mutants tend to overestimate the mutation score for the applications
in this empirical study, thus causing this metric to become a less accurate assessment of
test suite quality.

To better assess the improved mutation score, we relate it to mutation coverage and two
code coverage criteria, namely line2 and branch coverage. In addition to the mutation
score, Table 6.9 also gives both the ratio of covered mutants (i.e., the number of mutants
reached and executed) and the ratio of covered lines and branches. While the mutation
and code coverage results are similar, the mutation score is considerably lower for all
applications except for io. This clearly indicates that the test oracles used in io are suitable

2The term line coverage is used in Cobertura, but it is also known as statement coverage [Zhu et al.,
1997].

78



6.3 Empirical Evaluation

Table 6.8: Divergence of the mutation score with regard to the generated and covered
mutants.

Generated mutants Covered mutants

Mall Mred Mall Mred

itext 0.04 0.04 (-13.1%) 0.28 0.25 (-10.2%)

trove 0.05 0.05 (-8.5%) 0.66 0.58 (-11.7%)

chart 0.24 0.19 (-20.7%) 0.44 0.36 (-17.5%)

math 0.76 0.73 (-3.0%) 0.83 0.82 (-1.8%)

time 0.76 0.72 (-5.4%) 0.89 0.88 (-1.9%)

lang 0.77 0.71 (-7.4%) 0.79 0.74 (-6.3%)

jdom 0.80 0.76 (-4.1%) 0.83 0.80 (-3.1%)

jaxen 0.36 0.31 (-14.6%) 0.56 0.47 (-15.2%)

io 0.41 0.45 (10.5%) 0.78 0.78 (-0.8%)

num4j 0.66 0.64 (-3.1%) 0.69 0.67 (-2.7%)

avg -6.9% -7.1%

since they kill a substantial number of covered mutants. Yet, the corresponding test suite
does not adequately cover the entire project. In contrast when considering a program
such as num4j, the mutation coverage yields a satisfying result but the mutation score is
significantly lower. This could be caused either by a large number of equivalent mutants or
by a weakness of the applied test oracles. Since we primarily focus on redundant mutants
in this chapter, we leave the investigation of equivalent mutants in the generated mutation
sets open for future work. Overall, the results confirm that the mutation score has to be
calculated as accurately as is possible to adequately reflect the quality of the test inputs as
well as test oracles (cf. [Andrews et al., 2006]). An accurate mutation score is of particular
importance if it is further used, for instance for test data generation [Fraser and Zeller,
2012]. The elimination of the redundant mutants therefore improves the expressiveness of
the mutation score.

Besides calculating the scores of all three criteria, we also measure the necessary runtime
to generate those values. With regard to the mutation coverage and score, we again apply
both mutation sets Mall and Mred since the number of mutants may have an effect on the
runtime. Because of the fact that the code coverage is mutant independent, there is only
one runtime for gathering the code coverage. Table 6.10 shows the runtimes necessary
to determine the individual scores. Intuitively, the runtime for the complete mutation

79



Chapter 6 Non-Redundant Mutation Operators

Table 6.9: Comparison of the mutation score with mutation coverage and code coverage.

Mutation score Mutation coverage Code coverage*

Mall Mred Mall Mred line branch

itext 4.4% 3.8% 15.9% 15.4% 20.0% 11.0%

trove 5.3% 4.9% 8.1% 8.4% 7.0% 6.0%

chart 24.2% 19.2% 55.1% 53.0% 57.0% 46.0%

math 75.7% 73.5% 91.1% 90.1% 88.0% 85.0%

time 76.2% 72.1% 85.4% 82.3% 90.0% 80.0%

lang 76.6% 71.0% 97.0% 95.9% 93.0% 90.0%

jdom 79.5% 76.3% 96.0% 95.1% 95.0% 94.0%

jaxen 36.2% 30.9% 65.1% 65.6% 78.0% 55.0%

io 40.8% 45.1% 52.2% 58.1% 39.0% 29.0%

num4j 66.5% 64.4% 96.9% 96.4% 97.0% 96.0%

*As reported by Cobertura [Cobertura, 2010]

analysis process is several orders of magnitude larger than the runtime for the mutation
and code coverage. This is in particular due to the iterative executions of the test suite
when analyzing all (covered) mutants to determine the mutation score. In contrast, the
mutation and code coverage can be ascertained with only one execution of the test suite.
Moreover, it turns out that the mutation coverage, which is additionally an upper bound
for the mutation score, can be calculated faster than the code coverage for nine out of ten
applications, regardless of which mutant set is applied.

Since the mutation coverage provides a coverage criterion that is as effective as the used
code coverage criteria, but at lower costs in terms of runtime, one could exclusively employ
mutation analysis. This, however, may depend on the employed coverage tool as well as
on the analyzed application. Therefore, additional studies are necessary to confirm our
results – but we leave further investigations open for future work.

As for every empirical study, it is important to examine the threats to the validity of the
reported results. The chosen subset of sufficient mutation operators could be a threat to
internal validity. Different or additional operators may affect both the number and the
ratio of the generated mutants. However, the operators employed in the presented study
are frequently used in the literature and therefore provide comparable results [Namin et al.,
2008; Offutt and Untch, 2000]. In addition to the mutation operators, the chosen function
to determine the timeout for the mutants could be another threat to internal validity. A

80



6.4 Related Work

Table 6.10: Comparison of the runtimes for calculating code coverage and for determining
the mutation score and mutation coverage.

Mutation score Mutation coverage

Mall Mred Mall Mred

Code coverage

itext 618.0 426.6 0.3 0.2 0.4

trove 47.7 37.7 0.3 0.3 0.2

chart 783.4 582.1 0.9 0.9 11.7

math 536.8 473.0 1.3 1.2 4.7

time 433.4 340.1 0.5 0.5 4.2

lang 38.9 24.5 0.3 0.2 0.8

jdom 179.3 135.6 0.5 0.4 1.0

jaxen 482.9 430.9 0.2 0.2 0.4

io 7.4 5.0 0.3 0.3 0.5

num4j 2.8 1.8 0.1 0.1 0.1

*Runtimes reported in minutes

timeout factor that is too small would result in a noticeable number of false-positives and
therefore underestimate the runtime improvements. In contrast, a timeout factor that is
too large slightly overestimates the runtime improvements since the set with all mutants
leads to more timeouts than the reduced set. Nevertheless, the first aspect of the timeout
factor is much more severe and we controlled this threat by manually analyzing samples
of mutants that ran into a timeout and also by comparing the numbers of timeouts for
different timeout factors. The analyzed mutants exhibited syntactic changes that caused
the test suite to run exceptionally long or infinitely. The representativeness of the selected
applications might be a potential threat to external validity. Thus, the presented results
may be different for other programs. The analyzed applications, nevertheless, vary in
terms of their size and operation purpose. Therefore, we judge that the reported results
are meaningful.

6.4 Related Work

As previously mentioned in Chapter 3, employing all available mutation operators with all
valid replacements results in a significant number of mutants, especially for large software
systems. In addition to the runtime overhead caused by the many mutants, there are also

81



Chapter 6 Non-Redundant Mutation Operators

redundant and trivial mutants that prolong the runtime of the mutation analysis and,
moreover, may misrepresent the mutation score. Within this section, we now discusses
related work that has also focused on efficiency improvements for mutation analysis.

In an attempt to reduce the computational costs, different selective and sampling-based
approaches have been proposed in the literature (e.g., [Jia and Harman, 2011], [Offutt and
Untch, 2000]). These techniques reduce the quantity of mutants either by decreasing the
number of operators or by selecting only a subset of the generated mutants. Yet, all of
these approaches view the mutation operators, in their originally defined form, as atomic.
Hence, there are still redundancies within the selected subset that affect both the runtime
and the mutation score.

Kaminski et al. [2011] investigated the ROR operator in detail and showed that a subset
of three out of seven valid replacements is sufficient for this operator. They additionally
claimed, without further investigation or evidence, that this reduction would improve effi-
ciency. Similar to our focus on conditional and relational operators, [Tai, 1996] developed
a theory for testing the predicates in conditional logic statements.

In connection with our method that avoids redundant mutants and minimizes the impact
of mutations, higher order mutation aims at generating fewer, but more subtle mutants
[Jia and Harman, 2009]. Mutants created by means of the combination of two first order
mutants are referred to as second order mutants. Accordingly, higher order mutation
generally denotes the combination of two or more first order mutants. Jia and Harman
[2009] showed the existence of higher order mutants that are harder to kill than the first
order mutants out of which they were created. Nevertheless, the computational costs for
higher order mutation are significantly greater because of the combinatorial explosion.

Apart from redundant mutants, the equivalent mutant problem is another crucial con-
sideration in mutation testing. Equivalent mutants are harmful to the runtime of the
mutation analysis process since they cannot be detected by any test. Additionally, em-
ploying a set of mutants that includes equivalent mutants results in an underestimation
of the mutation score. Approaches that try to alleviate the equivalent mutant problem
can be divided into two categories. On the one hand, there are techniques focusing on the
detection of equivalent mutants (e.g., [Offutt and Craft, 1994; Hierons et al., 1999]). On
the other hand, approaches exist for reducing the number of equivalent mutants during
the mutant generation process (e.g., [Offutt, 1992]).

6.5 Summary

This chapter has investigated how redundant mutants affect the effectiveness and effi-
ciency of mutation analysis. Focusing on three well-known mutation operators, namely
the relational operator replacement (ROR), the conditional operator replacement (COR),
and the unary operator insertion (UOI), this chapter makes several contributions. First,
it develops a subsumption hierarchy for COR and UOI and reveals a sufficient set of re-
placements. Using this sufficient set, in conjunction with the reduced set of ROR mutants,

82



6.5 Summary

it reports on a study that empirically demonstrates how redundant mutants affect both
the mutation score and the runtime of the mutation analysis process.

After determining how prevalent relational and conditional operators are in real-world
applications, this chapter examines the ratio of the number of mutants generated by
the COR and ROR mutation operators to the total number of mutants. With a mean
value of 45.1% and a range from 30.9 to 63.6%, the high percentage of COR and ROR
mutants clearly reveals the potential for improving mutation analysis by focusing on the
mutants produced by these operators. The experiments also show that employing the
sufficient replacements for the COR and ROR operators leads to a commensurate drop in
the number of generated mutants that ranges from 18.1 to 37.6%.

Moreover, reducing the number of generated mutants leads to a decrease in the runtime
of the mutation analysis process that is between 10.8 and 37%. Finally, the empirical
results show that, depending on the application, improving the precision of the mutation
score can lead to a value that is greater than or less than the score resulting from the
use of the original set of mutants. For nine out of ten applications, using the reduced set
of mutants yields a reduction in the mutation score ranging from 3.0 to 20.7%. Overall,
by applying the mutant set that includes the redundant mutations, the mutation score is
overestimated by 7% on average.

Furthermore with regard to assessing the quality of the investigated test suites, the muta-
tion score is compared with the ratios derived from code coverage, much more meaningful
but the costs of determining the mutation score are considerably higher. However, the
study reveals that the mutation coverage, which is an upper bound for the mutation score,
possesses a similar effectiveness as the code coverage. Since the necessary runtime to deter-
mine the mutation coverage ratio is lower than the runtime for the code coverage analysis,
it is advisable to use mutation coverage instead.

83





Chapter7
Test Suite Prioritization

The content of this chapter has been published in [Just et al., 2012b]

The previous chapters presented a new approach to mutant generation in conjunction
with its corresponding implementation and basic research on non-redundant mutation
operators. This chapter builds upon these results and makes several contributions to sig-
nificantly improve the efficiency and scalability of mutation analysis. Since the isolated
use of non-redundant mutation operators does not ensure that mutation analysis is effi-
cient and scalable, especially with regard to large software systems, this chapter presents
and empirically evaluates an optimized workflow for mutation analysis. This workflow
exploits the redundancies and runtime differences of test cases to reorder and split the
corresponding test suite.

7.1 Introduction

Compared with testing techniques that rely on various code coverage criteria, mutation
analysis is rather expensive because of the fact that many mutated versions of the analyzed
program have to be executed. With regard to the costs of mutation analysis, several
approaches have been proposed that try to either reduce the number of generated mutants
or to speed-up the analysis process (cf. [Offutt and Untch, 2000; Jia and Harman, 2011]).
However, the runtime of mutation analysis on large and complex software systems is still
quite long, sometimes even prohibitively so.

Addressing the challenge of applying mutation analysis to real-world programs, this chap-
ter investigates the potential for efficiency improvements by employing test suite priori-
tization. For this purpose, this chapter first investigates existing test suites to identify
redundancies, runtime differences, and room for improvements. Then, this chapter devel-
ops an optimized workflow for mutation analysis based on the given observations. Besides
motivating and describing, this chapter also evaluates this workflow that notably reduces
the runtime. Overall, this chapter makes the following contributions:

85



Chapter 7 Test Suite Prioritization

• An investigation of the test suite characteristics of real-world applications that enable
runtime improvements.

• A presentation and visualization of an optimized mutation analysis workflow that is
based on reordering and splitting test suites to exploit the identified redundancies
and runtime differences of test cases.

• An empirical study that evaluates the presented approach on ten real-world appli-
cations. By utilizing non-redundant mutation operators, the optimized workflow
reduces the total runtime by 30% on average for a set of 410,000 mutants in total.

In the remainder of this chapter, Section 7.2 briefly reviews the necessary background
on non-redundant mutation operators to ensure that the chapter is self-contained. Next,
Section 7.3 investigates characteristics of existing test suites for real-world applications
and Section 7.4 presents an approach for significant efficiency improvements by exploiting
mutation coverage and test runtime information. Thereafter, Section 7.5 empirically eval-
uates the approach and Section 7.6 describes related work. Finally, Section 7.7 summarizes
this chapter.

7.2 Non-Redundant Mutation Operators

Subsumed mutants lead to redundancies in the generated set of mutants and thus affect
the efficiency of mutation analysis and misrepresent the mutation score. Hence, removing
such subsumed mutants yields immediate savings in terms of runtime. Chapter 6 has inves-
tigated redundancies in the mutation operators for replacing conditional operators and for
the insertion of boolean unary operators. Besides showing that these operators introduce
redundancies, it also provides a non-redundant-free definition for sufficient replacements.
Moreover, Kaminski et al. [2011] investigated redundancies in the mutated relational op-
erators and proposed a non-redundant version of replacements by means of a subsumption
hierarchy. This section summarizes the essential results since this chapter employs the
non-redundant versions of the mutation operators in the subsequent analyses.

Non-Redundant ROR Operator
The RORmutation operator replaces all binary relational operators (i.e., ==,!=,<,<=,>,>=)
with both all valid alternatives and the special operators true and false. The following
three replacements per operator are sufficient when mutating relational operators:

• < Z=⇒ <=,!=,false

• > Z=⇒ >=,!=,false

• == Z=⇒ <=,>=,true

• <= Z=⇒ <,==,true

• >= Z=⇒ >,==,true

• != Z=⇒ <,>,true

86



7.3 Efficient and Scalable Mutation Analysis

As a consequence, the application of the sufficient set of three out of seven possible muta-
tions yields a reduction of 57% for the ROR mutants.

Non-Redundant COR Operator

Generally, the COR mutation operator replaces an expression a <op> b, where a and b
denote boolean expressions or literals and <op> is one of the logical connectors && or ||.
With regard to binary conditional operators, valid mutations belong to one of the following
three categories:

1. Apply conditional operator (COR)

• Apply logical connector AND: a && b

• Apply logical connector OR: a || b

• Apply equivalence operator: a == b

• Apply exclusive OR operator: a != b

2. Apply special operator (COR)

• Evaluate to left hand side: lhs

• Evaluate to right hand side: rhs

• Always evaluate to true: true

• Always evaluate to false: false

3. Insert unary boolean operator (UOI)

• Negate left operand: !a <op> b

• Negate right operand : a <op> !b

• Negate expression: !(a <op> b)

By employing only the following sufficient four out of ten possible mutations, the reduction
of the number of mutants generated for the conditional operators is 60%:

• && Z=⇒ lhs, rhs, ==, false

• || Z=⇒ lhs, rhs, !=, true

Interestingly, the entire UOI operator is subsumed by the sufficient set of COR mutants,
and hence also redundant.

87



Chapter 7 Test Suite Prioritization

Table 7.1: Summary of the applications investigated in the empirical study.

Application Version LOC* Mutants Test LOC*

trove GNU Trove 3.0.2 116,750 116,991 13,279

chart jFreeChart 1.0.13 91,174 92,000 48,026

itext iText 5.0.6 76,229 160,891 1,612

math Commons Math 2.1 39,991 81,577 41,906

time Joda-Time 2.0 27,139 32,380 51,901

lang Commons Lang 3.0.1 19,495 33,065 32,699

jdom JDOM 2beta4 15,163 15,616 22,194

jaxen Jaxen 1.1.3 12,440 10,247 8,514

io Commons IO 2.0.1 7,908 9,901 13,608

num4j Numerics4j 1.3 3,647 7,234 5,273

total 409,936 559,902 239,012

*Physical lines of code as reported by sloccount (non-comment and non-blank lines)

7.3 Efficient and Scalable Mutation Analysis

Since redundant mutants are harmful to the efficiency of mutation analysis and they fur-
thermore misrepresent the mutation score, as shown in Chapter 6, it is strongly advisable
to apply only the non-redundant sets of the ROR and COR mutants. Therefore, the
approach to efficient mutation analysis presented in this chapter always uses the non-
redundant operators in order not to overestimate its efficiency improvements.

By focusing on the ten applications given in Table 7.1, this section makes several moti-
vating observations concerning mutation coverage, the differences in test runtime, and the
redundancies in a test suite. Ultimately, these insights lead to an optimized workflow that
performs test suite prioritization and splitting. It is important to note that the depicted
data about the test size in Table 7.1 reflects the characteristics of the existing JUnit test
suites provided and released with the corresponding application.

By employing the non-redundant versions of the ROR and COR operators, we can decrease
the number of generated mutants by almost 27% in total for the investigated applications,
as shown in Table 7.2. However, the remaining number of mutants, which is 410,000 for

88



7.3 Efficient and Scalable Mutation Analysis

Table 7.2: Decrease in the number of generated mutants.

All mutants Reduced Set Decrease

trove 116,991 72,959 -37.6%

chart 92,000 68,519 -25.5%

itext 160,891 126,781 -21.2%

math 81,577 66,787 -18.1%

time 32,380 23,781 -26.6%

lang 33,065 21,074 -36.3%

jdom 15,616 10,800 -30.8%

jaxen 10,247 7,132 -30.4%

io 9,901 7,319 -26.1%

num4j 7,234 5,437 -24.8%

total 559,902 410,589 -26.7%

all of the investigated applications, is still substantial. Therefore, we focus on further
runtime improvements that do not rely on the reduction of mutants.

7.3.1 Mutation Coverage

Recalling the hierarchy of the three conditions that have to be fulfilled to ultimately to
kill a mutant, as proposed by Voas [1992]:

1. Execution: The mutated code must be covered, meaning that it has to be reached
and executed.

2. Infection: The execution of the faulty code segment has to change the internal state
of the program.

3. Propagation: The infected internal state must be propagated to the output in order
to be detectable.

While the first two conditions are necessary, the last one is also sufficient to kill a mutant.
Besides, the last condition can be generalized to oracles that are not output-based. In
this case, the infected internal state has to be propagated to a state that is observable
by the test oracle (cf. [Fraser and Zeller, 2012; Harman et al., 2011]). An example

89



Chapter 7 Test Suite Prioritization

for such an observable state is the violation of invariants or contracts in general. Since
the first condition is necessary, it implies that if a mutant is not covered it cannot be
killed. As a consequence, mutants that are not covered can be excluded and marked
alive without execution. Utilizing this implication can significantly reduce the number of
executions, especially if a test suite exhibits poor mutation coverage. Nevertheless, it is
important to note that the mutation coverage has to be determined at runtime. Employing
a code coverage tool for this purpose and mapping the covered statements and branches
to mutants is feasible, but rather laborious, since code coverage tools are not designed for
this purpose.

More advanced mutation analysis systems that encode all mutants within the original
program can provide the mutation coverage information at runtime by means of additional
code instrumentation (e.g., Javalanche [Schuler and Zeller, 2009], EvoSuite [Fraser and
Arcuri, 2011], andMajor). This chapter relies onMajor, the developed mutation system
presented in Chapter 5, which gathers the mutation coverage information efficiently at
runtime. For performance reasons, it only records the mutation coverage if and only if
the original, which means the unmutated version of the SUT, is executed. Due to the
overhead incurred by determining the mutation coverage, this feature is disabled during
the execution of mutants.

For all of the investigated applications, Table 7.3 shows the number of generated and
covered mutants. In addition to these numbers, it gives the corresponding ratios of covered-
to-generated mutants. The results exhibit a notable divergence between the applications,
ranging between 8.2% for trove and 94.7% for num4j, with a total mutation coverage of
43.5% for all analyzed applications. The reason for the extremely low mutation coverage
for the trove application is that it contains a lot of generated source files, of which only a
minor proportion is tested by the test suite. Overall, the coverage results clearly indicate
the considerable potential for runtime improvements by excluding uncovered mutants from
the mutation analysis (cf. [Schuler et al., 2009]).

Due to the necessary conditions to detect a fault, a test suite cannot kill a mutant that
it does not reach and execute. Hence, a mutation analysis process that does not employ
coverage information would have to execute the entire test suite for all of the uncovered
mutants. In order to estimate the overhead originating from uncovered mutants, that is
running the mutation analysis without coverage information, we use the total runtime of
the existing JUnit test suites and the number of mutants that are not covered by the
corresponding test suite. Table 7.4 shows the corresponding results for all applications.
In this table, the overhead of the first three applications, which is more than ten days, is
huge because of the fact that an enormous number of mutants is not covered. Even though
the mutation coverage for the math application yields an acceptable ratio of 88.6%, the
overhead of 160 hours caused by the long test runtime is still prohibitive. It is important
to state that the total runtime of a mutation analysis process would include the estimated
overhead and additionally the runtime necessary to analyze all covered mutants. Thus,
mutation analysis for large real-world applications is not feasible without mutation cover-
age information. Therefore, we always exploit this mutation coverage information in the
subsequent analyses.

90



7.3 Efficient and Scalable Mutation Analysis

Table 7.3: Ratio of covered to generated mutants.

Generated mutants Covered mutants

trove 72,959 6,016 (8.2%)

chart 68,519 35,659 (52.0%)

itext 126,781 16,521 (13.0%)

math 66,787 59,195 (88.6%)

time 23,781 18,971 (79.8%)

lang 21,074 19,112 (90.7%)

jdom 10,800 9,519 (88.1%)

jaxen 7,132 4,419 (62.0%)

io 7,319 4,170 (57.0%)

num4j 5,437 5,149 (94.7%)

total 410,589 178,731 (43.5%)

Table 7.4: Estimated overhead in hours for evaluating uncovered mutants.

Uncovered mutants Test runtime Overhead

trove 66,943 15.2 sec 282.6 h

chart 32,860 27.3 sec 249.2 h

itext 110,260 8.4 sec 257.3 h

math 7,592 76.2 sec 160.7 h

time 4,810 13.8 sec 18.4 h

lang 1,962 14.1 sec 7.7 h

jdom 1,281 30.4 sec 10.8 h

jaxen 2,713 12.1 sec 9.1 h

io 3,149 17.4 sec 15.2 h

num4j 288 1.8 sec 0.1 h

91



Chapter 7 Test Suite Prioritization

test suite

class#1

method#1 ...

... ... class#m

... method#nLo
w
er

ov
er
he

ad
H
igher

presision

Figure 7.1: Different levels of granularity in JUnit test suites.

7.3.2 Precision of the Mutation Coverage

A test suite of JUnit tests is typically a hierarchical composition of test classes containing
several test methods. Regarding such a composed test suite, as visualized in Figure 7.1,
there are three different levels of granularity at which the mutation coverage can be mea-
sured. The highest one, with a coarse granularity, is the test suite level at which the
mutation coverage determines which mutants are covered by the entire test suite. Consid-
ering the individual test classes, or even test methods, provides a finer level of granularity,
leading to a higher precision in terms of the mutation coverage measure. However, exe-
cuting test methods independently incurs a much higher overhead caused by additional
class loading and, moreover, the instantiation and initialization of the corresponding test
classes and the SUT.

Tables 7.5 and 7.6 show the differences in the total runtime and the number of covered
mutants when executing the test suite at the class and method level. For all applications,
the maximum number of mutants covered by a single test class is clearly lower than the
number of mutants covered by the entire test suite, as indicated by the sixth column of
Table 7.5. Thus, a mutation analysis process should always operate at minimum at the
class level. The average numbers of covered mutants in the last column show that certain
mutants have to be covered several times since the product of the average number and
the number of tests is greater than the total number of covered mutants given in the first
column of the table.

At the method level, the number of covered mutants is in turn lower than the one at the
class level for almost all of the applications — and yet, the results are divergent. While io
and lang exhibit a significant reduction, the maximum number of covered mutants for itext
remains unchanged. Moreover, the average coverage per method is even higher for itext and
jaxen, thus indicating that there are a lot of methods that cover numerous mutants. This
result again implies a remarkable overlap in terms of the mutation coverage. Generally,
the method level provides the most precise mutation coverage information. However,
running the test methods independently leads to a higher overhead in terms of runtime,

92



7.3 Efficient and Scalable Mutation Analysis

Table 7.5: Precision of mutation coverage and total runtime at class level.

Covered per classMutants Tests Runtime
Min Max Avg

trove 6,016 25 15.2 sec 41 2,150 954

chart 35,659 353 27.3 sec 1 4,702 665

itext 16,521 26 8.4 sec 94 9,537 3,906

math 59,195 234 76.2 sec 1 5,957 769

time 18,970 123 13.8 sec 37 6,032 3,011

lang 19,112 101 14.1 sec 1 2,437 310

jdom 9,519 78 30.4 sec 1 3,715 777

jaxen 4,419 78 12.1 sec 1 3,769 1,895

io 4,170 48 17.4 sec 1 2,474 134

num4j 5,149 63 1.8 sec 18 654 195

Table 7.6: Precision of mutation coverage and total runtime at method level

Covered per methodMutants Tests Runtime
Min Max Avg

trove 6,016 544 16.8 sec 2 1,053 516

chart 35,659 2,130 80.2 sec 1 3,599 293

itext 16,521 75 18.3 sec 70 9,537 4,861

math 59,195 2,169 138.8 sec 1 3,606 381

time 18,970 3,855 335.4 sec 1 4,939 1,636

lang 19,112 2,039 43.5 sec 1 780 87

jdom 9,519 1,723 127.1 sec 1 3,418 362

jaxen 4,419 699 60.9 sec 1 2,847 2,156

io 4,170 309 19.7 sec 1 598 68

num4j 5,149 218 3.2 sec 4 654 100

93



Chapter 7 Test Suite Prioritization

as previously stated. As shown in the fourth column of Table 7.6, some applications such
as trove, math, io, and num4j exhibit a moderate overhead compared to the runtime at
the class level in Table 7.5. In contrast, time, jdom, and jaxen incur a significant increase
in runtime. Hence, the results clearly document the existing tradeoff between precision
and runtime overhead.

7.3.3 Overlap of the Mutation Coverage

The previous section showed that the investigated applications exhibit an overlap in the
coverage of mutants. Therefore, we now measure this overlap of the individual test classes.
Due to the combinatorial explosion of pairwise comparisons between individual test classes,
we focus on relating test classes to their encapsulating test suite and define the overlap
O(ti, T ) of a certain test class ti with its corresponding test suite T as follows:

Definition 7.1 Overlap O(ti, T ) ∈ [0, 1], ti ∈ T

O(ti, T ) :=


1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)| , |Cov(ti)| > 0

In this definition, the set T denotes a test suite containing all its test classes tx, meaning
that T := ∪{tx}. Without loss of generality, the definition assumes that the test class ti,
of which the overlap is determined, is an element of the set T . Moreover, the operator |s|
represents the cardinality of the set s and the function Cov provides the set of mutants
covered by the corresponding set of test classes. Intuitively, this overlap metric describes
the similarity of a test class to all other test classes within the same test suite.

Figure 7.2 illustrates the distribution of the overlap for all analyzed applications using
a box-and-whisker plot, where the thick line in the middle represents the median. The
box itself shows the distribution of the data between the upper and lower quartile, thus
including 50% of the data. By excluding the outlier values, the lower and upper whiskers
denote the minimum and maximum value, respectively. The extreme values themselves are
visualized by means of the circles beyond the whiskers. Within the plot, two exceptional
patterns can be identified. On the one hand, there are applications such as jaxen and time,
where even the minimum overlap of the outlier values is at least 50% and the median is
almost 100%. On the other hand, the median of the overlap is only 75% for applications
such as num4j and lang. Moreover, these programs contain test classes that have no
overlap at all, indicated by an overlap value of 0%.

Recalling the three necessary conditions for killing a mutant, a high overlap of the mutation
coverage does not imply that the test cases within the test suite are highly redundant since
the mutation coverage only refers to the reachability condition. However, the probability
of killing a mutant is much higher if the mutant is covered by several test classes.

94



7.3 Efficient and Scalable Mutation Analysis

●

●●

●●
●

●
●

●●●

●

●

●

●●●

●
●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●●
● ●●

●

●
●

●

●

●

●

●●●

●

●

●

●●●●●

trove chart itext math time lang jdom jaxen io num4j

0

20

40

60

80

100
O

ve
rla

p 
of

 te
st

 c
la

ss
es

 in
 %

Figure 7.2: Coverage overlap distribution of the individual test classes related to the cor-
responding test suite for all investigated applications.

7.3.4 Runtime of Test Cases

Intuitively, the runtime of a test suite has an essential impact on the total time needed
for the mutation analysis because every covered, and yet not killed, mutant has to be
evaluated by executing the test suite. As previously mentioned, regarding the test suite
at the class or method level leads to more precise mutation coverage information, which
reduces the number of mutants that have to be evaluated for a certain test. Nevertheless,
a very long-running test case can still result in a prolonged mutation analysis, even for a
small number of covered mutants. Hence, the number of covered mutants and the runtime
of the individual test cases are the determining factors for the total runtime.

Therefore, we investigate how the individual test classes collectively form the total runtime
of the corresponding test suite. The runtime distribution of the individual test classes
for all analyzed applications is again visualized by means of box-and-whisker plots in
Figure 7.3. The extremely thin boxes and the short, if existing, whiskers clearly indicate
that most of the test classes have a short runtime of less than 1 second. Even though the
majority of the test classes have a rather low runtime, there are a few extreme values for
which the runtime differs by an order of magnitude. Thus, for all applications, Table 7.7
additionally shows the number of test classes, along with both the cumulative runtime and
the extremum of all test classes. This table demonstrates that the outlier values constitute
a substantial proportion, sometimes even most, of the total runtime. For instance, in
consideration of a total number of 353 test classes for the chart application, the test class
with the longest runtime of 10.2 seconds forms more than 37% of the total runtime.

95



Chapter 7 Test Suite Prioritization

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

T
es

t 
cl

as
s 

ru
n

ti
m

e 
in

 s
ec

o
n

d
s

Figure 7.3: Runtime distribution of the individual test classes.

Table 7.7: Cumulative runtime and extremum of all test classes.

Test classes Cumulative* Extremum*

trove 25 15.2 4.6 (30.3%)

chart 353 27.3 10.2 (37.4%)

itext 78 8.4 2.5 (29.8%)

math 234 76.2 19.8 (26.0%)

time 123 13.8 5.7 (41.3%)

lang 101 14.1 4.8 (34.0%)

jdom 78 30.4 18.9 (62.2%)

jaxen 78 12.1 0.9 (7.4%)

io 48 17.4 13.6 (78.2%)

num4j 63 1.8 0.2 (11.1%)

*Runtimes reported in seconds

96



7.4 Optimized Mutation Analysis Workflow

7.3.5 Visualizing the Overlap and Runtime

In order to examine the correlation between the runtime and the mutation coverage overlap
of the tests, we use scatter plots to visualize the overlap in conjunction with the individual
test runtime. Due to the large number of analyzed applications, and to avoid a confusing
set of diagrams, we focus on the two identified overlap patterns as representatives for all of
the chosen applications. Figure 7.4 shows the plot for time, an application representative
of those with high overlap, while Figure 7.5 gives the plot for num4j as a representative
of those applications with a distinctive distribution in the coverage overlap.

Within the scatter plots, every data point indicates that the mutant on the vertical axis
is covered by the test class or test classes on the horizontal axis. Intuitively, the plot
visualizes a matrix representing a mutant-covered-by-test-class map. Since the introduced
overlap metric is a measure for the similarity of each data line to all others, the plot for
time clearly reveals that there is indeed a substantial overlap for almost all of the test
classes. In contrast to this obvious overlap, the plot for num4j reveals that only a fourth
of the mutants are overlapped by several test classes.

Besides the overlap, the plots visualize the runtime of the individual test classes. The test
runtime in milliseconds is color coded by means of the color palette that is aligned to the
right of the scatter plot. According to the chosen color gradient, the darker the color of
a data line, the longer is the runtime of the corresponding test class. Both plots manifest
that long-running tests, represented by the dark data lines, have a notable overlap with a
lot of short-running tests. Moreover, when considering the original ordering of the tests
for num4j, the test class with the longest runtime is placed before many of the overlapping
short-running test classes. As a consequence, the long-running test has to be executed for
all covered, and yet not killed, mutants – even though those mutants are also covered by
test classes with a much shorter runtime. Since the results from the other applications
conform to these observations, the characteristics of these plots suggest that a reordering
according to the runtime could significantly improve the mutation analysis process.

7.4 Optimized Mutation Analysis Workflow

We now present an optimized mutation analysis workflow based on the observations and
evidence given in the previous Section 7.3, which can be summarized as follows:

OBS 1 The mutation coverage is 43.5% on average and ranging between 8.2% and 94.7%.

OBS 2 Analyzing the mutation coverage on the class or method level is much more precise.
However, executing the test methods independently incurs a significant overhead.

OBS 3 Most tests within a test suite have a notable overlap with all remaining tests in
terms of mutation coverage.

97



Chapter 7 Test Suite Prioritization

 0  5000  10000  15000  20000  25000

Index of mutant in set of generated mutants

 0

 20

 40

 60

 80

 100

 120

In
d
ex

 o
f 
te

st
 i
n
 o

ri
g
in

a
l 
te

st
 s

u
it

e

 0

 1

 2

 3

 4

 5

 6

 7

R
u
n
ti

m
e 

o
f 
te

st
 i
n
 s

ec
o
n
d
s

Figure 7.4: Mutation coverage with corresponding runtime for time.

 0  1000  2000  3000  4000  5000  6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
ex

 o
f 
te

st
 i
n
 o

ri
g
in

a
l 
te

st
 s

u
it

e

 0

 50

 100

 150

 200

 250

R
u
n
ti

m
e 

o
f 
te

st
 i
n
 m

il
li
se

co
n
d
s

Figure 7.5: Mutation coverage with corresponding runtime for num4j.

Test case with
longest runtime

Overlapping
test cases

98



7.4 Optimized Mutation Analysis Workflow

OBS 4 The runtime of individual test classes within a test suite differs, sometimes even
by an order of magnitude.

OBS 5 Long-running tests have an essential overlap with many short-running tests but
the investigated existing JUnit test suites are not ordered according to runtime.

7.4.1 Gather Mutation Coverage Information

Due to the fact that a lot of mutants are not covered by the test suite, we exploit the
mutation coverage information provided by Major’s driver. A program instrumented
by Major reports the coverage information to the driver if and only if the unmutated
version is executed and the corresponding flag is enabled. This condition is crucial since
gathering the coverage information involves method calls and incurs a notable overhead.
Hence, determining the coverage information during the mutation analysis process would
significantly increase the total runtime. Depending on the level of granularity, the coverage
information is cached for each test class or test method.

7.4.2 Estimate Test Runtime and Prioritize Test Cases

Given the overlap of the individual tests and the runtime, which differs significantly,
the runtime is estimated for every test method and entire class by executing the original
version. Attempting to produce a runtime approximation that is as precise as possible, this
step executes the original version of the program without enabling the mutation coverage.
Section 6.3 within the previous chapter provides further details on this approximation and
also discusses the used timeout-based heuristic for long-running mutants.

Next, based on the runtime results, the tests are sorted in descending order to ensure that
the long-running tests will be executed last. This prioritization strategy is based on the
assumption that unit tests have no dependencies, and hence the order is irrelevant. Even
though this assumption is also specified for unit testing frameworks such as JUnit, we
verify that reordering the tests does not break the test suite by executing the unmutated
version with the prioritized test suite. In order to increase the confidence in the test’s
independence, a randomized order of the tests is also executed.

7.4.3 Threshold-based Splitting of Test Classes

In light of the tradeoff between precision of the mutation coverage on the one hand and
runtime overhead on the other hand, we present two hybrid approaches. Extracting test
methods with an exceptionally long runtime or splitting entire long-running test classes

99



Chapter 7 Test Suite Prioritization

seems to be the most promising. Therefore, we define the following two hybrid approaches
that represent both kinds of splitting strategies.

Class-hybrid: Extract an individual test method from its corresponding test class if
and only if the runtime of the pre-initialized test method is greater than a given thresh-
old thm.

Method-hybrid: Split a test class into all of its individual test methods if and only if
the total runtime of the pre-initialized test class is greater than a given threshold thc.

With regard to the threshold parameters that are used in both approaches, we determine
an appropriate value by taking into account the average initialization time of a test class
for thm and the mean number of test classes within a test suite for thc. Additionally, based
on the observation that the test suites of all applications exhibit a significant mutation
coverage overlap, the overhead of executing a test method separately should not exceed
100% of its runtime. For instance, the average initialization time of a test class ranges
between 10 and 50 milliseconds for all applications. Thus, a threshold thm of 50 millisec-
onds ensures that an individual test method is not extracted if its runtime is smaller than
the initialization time of the enclosing test class.

7.4.4 Complete Mutation Analysis Workflow

Integrating the individual steps into a complete process leads to the optimized mutation
analysis workflow that is illustrated in Figure 7.6. Generally, this process consists of three
individual but consecutive phases:

1. Mutant generation phase that generates and compiles all mutants into the system
under test.

2. Preprocessing step that gathers the mutation coverage and test case runtime infor-
mation.

3. Mutation analysis with reordered and potentially split test suite employing the mu-
tation coverage.

The dashed line within the diagram indicates that the threshold for the splitting strategy
is estimated based on the mutation coverage overlap. It is important to note that we do
not calculate the overlap of every test method with its test class but rather use the overlap
of the test classes within a corresponding test suite. The splitting strategy may be more
effective with an accurate overlap value for test methods within their encapsulating test
classes. However, the investigation of this matter is left open for future research.

7.5 Empirical Evaluation

To empirically evaluate the workflow shown in Figure 7.6, we implemented it in Major’s
analysis component that extends the Apache ant build system. Therefore, all of the chosen

100



7.5 Empirical Evaluation

Compile
mutants

Instrumented
program

Execute
test suite

Runtime of
test cases

Original
test suite

Mutation
coverage

Prioritize
test cases

Reordered
test suite

Mutation
analysis

Figure 7.6: Optimized mutation analysis process that exploits mutation coverage and run-
time information of test cases.

applications provide an ant-like build configuration. With regard to the performance eval-
uation, of particular interest are the runtime improvements due to reordering and splitting
and the variation in efficiency due to differences in the coverage overlap and the effective-
ness of the test suite. Table 7.8 reports the runtimes for the complete mutation analysis
when employing the different reordering and splitting strategies for all applications. To
better visualize the results, the fastest approach is highlighted for every application.

In order to minimize any potential side effects, all analyses were performed on a single
machine1 that did not take advantage of parallelization. Additionally, we measured the
real runtime instead of CPU time due to the fact that most analyzed applications are not
CPU-bound. Hence, the CPU time is much lower and does not adequately reflect the time
needed to perform the entire mutation analysis.

Within the table, Original denotes the mutation analysis of the test suite without any
prioritization or splitting. Method-level and Class-level describe the results for sorting
and executing the test suite at the method level and class level, respectively. The runtime
results for the two suggested approaches, namely Method-hybrid and Class-hybrid, are
shown in the corresponding columns. The last column of Table 7.8 additionally shows
the mutation score since the effectiveness of the investigated test suites is also a crucial
factor. It is important to consider the mutation score because the prioritization technique
is based on the assumption that a test suite kills a certain number of mutants, and hence
the number of live mutants decreases over time. Furthermore, a mutant is always killed by
the fastest test case that can detect it within the sorted test suite. Thus, if the mutation
score is extremely low, reordering will only yield a marginal improvement since the entire
test suite has to be executed for the majority of the mutants.

1Commodity GNU/Linux workstation with Intel Xeon CPU @2.4GHz, 16GB of RAM, and kernel version
2.6.32-5-amd64.

101



Chapter 7 Test Suite Prioritization

Ta
bl
e
7.
8:

R
un

tim
es

fo
r
di
ffe

re
nt

pr
io
rit

iz
at
io
n
an

d
sp
lit
tin

g
st
ra
te
gi
es
.

*O
ri
gi
na

l
*M

et
ho

d-
le
ve
l

*M
et
ho

d-
hy

br
id

1
*C

la
ss
-l
ev
el

*C
la
ss
-h
yb

ri
d2

M
ut
at
io
n
sc
or
e

tr
ov
e

10
7.
81

41
.6
8
(-
61

.3
%
)

44
.9
3

(-
58

.3
%
)

55
.9
6
(-
48

.1
%
)

36
.8
9

(-
65

.8
%
)

66
.6
%

ch
ar
t

60
8.
60

95
0.
55

(5
6.
2%

)
56

4.
14

(-
7.
3%

)
27

0.
40

(-
55

.6
%
)

30
9.
88

(-
49

.1
%
)

36
.3
%

ite
xt

64
4.
43

13
81

.5
1
(1
14

.4
%
)

11
27

.2
5

(7
4.
9%

)
62

7.
89

(-
2.
6%

)
67

4.
18

(4
.6
%
)

24
.0
%

m
at
h

79
3.
19

39
4.
60

(-
50

.3
%
)

38
8.
39

(-
51

.0
%
)

67
4.
73

(-
14

.9
%
)

38
1.
10

(-
52

.0
%
)

79
.1
%

tim
e

50
4.
44

11
82

.6
1
(1
34

.4
%
)

55
9.
62

(1
0.
9%

)
47

0.
03

(-
6.
8%

)
41

0.
59

(-
18

.6
%
)

85
.7
%

la
ng

42
.7
5

27
.5
8
(-
35

.5
%
)

23
.3
1

(-
45

.5
%
)

29
.9
3
(-
30

.0
%
)

19
.1
1

(-
55

.3
%
)

74
.2
%

jd
om

12
0.
53

13
5.
53

(1
2.
4%

)
18

9.
08

(5
6.
9%

)
11

7.
42

(-
2.
6%

)
10

5.
01

(-
12

.9
%
)

83
.4
%

ja
xe
n

34
3.
40

17
73

.1
5
(4
16

.4
%
)

15
21

.7
9

(3
43

.2
%
)

33
8.
51

(-
1.
4%

)
35

7.
16

(4
.0
%
)

43
.6
%

io
5.
72

5.
64

(-
1.
5%

)
4.
11

(-
28

.1
%
)

4.
83

(-
15

.5
%
)

4.
35

(-
23

.9
%
)

78
.0
%

nu
m
4j

2.
54

2.
12

(-
16

.5
%
)

1.
95

(-
23

.1
%
)

1.
99

(-
21

.6
%
)

1.
94

(-
23

.5
%
)

68
.1
%

av
g

56
.9
%

27
.3
%

-1
9.
9%

-2
9.
2%

63
.9
%

*R
un

tim
es

re
po

rt
ed

in
m
in
ut
es
;1

T
hr
es
ho

ld
th

c
=

50
0
m
ill
ise

co
nd

s;
2 T

hr
es
ho

ld
th

m
=

50
m
ill
ise

co
nd

s

102



7.5 Empirical Evaluation

When analyzing the entire test suite at the method level, meaning that every test method is
executed independently, the two identified overlap patterns give distinction to the results.
The runtime for the applications itext, time, and jaxen, which have a huge overlap, is
increasing dramatically due to the incurred overhead. Yet, applications with a lower
overhead such as trove and math yield a considerable runtime decrease of up to 61.3%.

The Method-hybrid approach reduces the number of individual test methods by only
splitting long-running test classes. Due to the reduction, this approach improves the
runtime for all applications but cannot compensate for the huge overhead of itext, time,
and jaxen.

Sorting the test suite at the class level according to the runtime of the individual test classes
yields an improvement for all of the applications due to the existing overlap between test
classes and the divergent runtimes of the individual tests. Ranging between 1.4% for jaxen
and 55.6% for chart, sorting at class level yields an average decrease of almost 20%. The
improvement for jaxen is relatively low for two reasons. The runtime of the individual test
classes is very homogeneous with a maximum of only 900 milliseconds and furthermore
the mutation score is only 43.6%.

By additionally employing the splitting of the Class-hybrid approach, the runtime can
be considerably reduced even further for most of the applications. With a speedup of
65.8% for trove and an average improvement of 29.2% for all applications, this approach
yields the best results overall. However, the necessary runtime increases by approximately
4% for two applications, namely itext and jaxen. The reason is again the low mutation
score in conjunction with the huge overlap of the individual test classes. For instance,
some long-running test methods of itext cover exactly the same number of mutants as the
entire, enclosing test class. Hence, the extraction of such methods introduces a higher
overhead without increasing the precision of the mutation coverage.

For the math and itext applications, the diagrams in Figure 7.7 and 7.8 visualize the
mutation analysis process using the original test suite and the Class-hybrid approach,
which is the most efficient approach for all applications. Within these diagrams, the upper
plot illustrates the runtime of the individual test cases and the lower plot depicts the ratio
of analyzed-to-covered mutants. This lower-is-better ratio decreases if mutants covered by
a certain test are already killed, and hence will not be executed again. Additionally, the
width of the boxes exhibits the time needed to execute the corresponding test for all of
the covered, and yet not killed, mutants.

With regard to the original test suite of themath application, the test class with the longest
runtime is placed in the middle and the time necessary to execute this individual test class
for all covered mutants is a considerable proportion of the total runtime of the complete
process. Furthermore, the ratio of analyzed-to-covered mutants is still 60%. By means
of the Class-hybrid approach, this long-running test class is split, so that the methods
with a runtime larger than the threshold are extracted and the resulting set of individual
tests is sorted. Accordingly, the last individual test possesses the longest runtime which
is, however, with 16 seconds, smaller than the entire long-running test class from which
it has been extracted. Given the coverage overlap of the tests and a mutation score of
almost 80%, the ratio of analyzed-to-covered mutants is rapidly decreasing, and hence the

103



Chapter 7 Test Suite Prioritization

 0

 5

 10

 15

 20

T
es

t-
R

u
n
ti

m
e 

in
 s

ec
on

d
s

Original order (math)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800R
at

io
 o

f 
an

al
y
ze

d
 t

o 
co

v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

 0

 5

 10

 15

T
es

t-
R

u
n
ti

m
e 

in
 s

ec
on

d
s

Class-hybrid (math)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400R
at

io
 o

f 
an

al
y
ze

d
 t

o 
co

v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

Figure 7.7: Visualization of the complete mutation analysis process for math using the
original order and the class-hybrid approach.

104



7.5 Empirical Evaluation

 0

 1

 2

 3

T
es

t-
R

u
n
ti

m
e 

in
 s

ec
on

d
s

Original order (itext)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700R
at

io
 o

f 
an

al
y
ze

d
 t

o 
co

v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

 0

 1

 2

 3

T
es

t-
R

u
n
ti

m
e 

in
 s

ec
on

d
s

Class-hybrid (itext)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700R
at

io
 o

f 
an

al
y
ze

d
 t

o 
co

v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

Figure 7.8: Visualization of the complete mutation analysis process for itext using the
original order and the class-hybrid approach.

105



Chapter 7 Test Suite Prioritization

extracted long-running test method is only executed for approximately 10% of the covered
mutants.

An example of an application with both an extremely low mutation score and a better-
ordered original test suite is itext, for which Figure 7.8 illustrates the mutation analysis
process. The runtime characteristics of the other applications conform to these two exam-
ples, and thus are not separately depicted.

As with every empirical study, it is crucial to discuss the threats to validity. The represen-
tativeness of the chosen applications might be again a potential threat to external validity.
However, we controlled this threat by examining programs that differ significantly in their
size, complexity, and operation purpose. Starting with an initial set of the five applica-
tions math, time, lang, io, and num4j, we improved the generalizability by successively
adding new applications with varying operation purposes and originations from different
developer communities. While adding more programs to the empirical study, we could
identify the two exceptional overlap patterns to which all of the investigated applications
can be related. Therefore, we judge that the reported results are meaningful and indeed
transferable to other applications. Relying on the sufficient set of mutation operators
could be a threat to internal validity. Different or additional operators may affect the
improvement results due to differences in the mutation coverage overlap and the mutation
score. However, the applied operators are frequently used in the literature, and thus pro-
vide comparable results [Offutt and Untch, 2000; Namin et al., 2008; Schuler and Zeller,
2009]. Moreover, the investigated test suites exhibit a significant divergence with regard
to the mutation score and therefore the study also examines boundary cases.

7.6 Related Work

Considering the efficiency of mutation analysis, several approaches proposed in the lit-
erature belong to one of three categories: do fewer, do smarter, and do faster [Jia and
Harman, 2011; Offutt and Untch, 2000]. Do fewer approaches employ selective or sam-
pling strategies to reduce the number of generated mutants by either (randomly) selecting
a subset of all generated mutants or by reducing the number of applied mutation oper-
ators. Namin et al. [2008], as well as Offutt et al. [1996], determined a sufficient set of
mutation operators that can be applied without a major loss of information.

Concerning this relationship between reduction and accuracy, the utilization of non-
redundant mutation operators is a special case of a do fewer approach since the exclusion
of subsumed mutants even increases the accuracy of the mutation score. As described in
detail in Chapter 6, using the non-redundant versions of the mutation operators signifi-
cantly reduces the number of generated mutants, and hence the necessary runtime to run
the mutation analysis. The presented workflow employs such non-redundant mutation op-
erators and improves the efficiency without loss of information by reordering and splitting
the analyzed test suites.

While do smarter methods exploit distributed or multi-core systems to parallelize the
mutation analysis, do faster approaches aim at improving the efficiency without reduction

106



7.7 Summary

or parallelization. Even though the presented optimized workflow belongs to the group of
do faster techniques, it can nevertheless be combined with sampling or selective approaches
and it also can be easily parallelized to fully utilize the computational power of current
machines.

To the best of our knowledge, this is the first approach that employs test suite prioritization
to achieve efficient and scalable mutation analysis. Nevertheless, a wide variety of software
testing techniques leverage mutation analysis for test suite prioritization. For instance,
Elbaum et al. [2002] use mutation testing tools to support the reordering of a test suite
according to the fault exposing potential of a test case. Furthermore, both Andrews et al.
[2005] and Do and Rothermel [2006] use mutation analysis to empirically evaluate test
suite prioritization techniques. It is, however, crucial to state that the described workflow
does not aim at reducing or optimizing a given test suite but rather speed-up the mutation
analysis process to assess its quality.

7.7 Summary

This chapter has addressed the challenges associated with the efficiency and scalability
of mutation analysis and makes several contributions to this field. By leveraging existing
definitions of non-redundant mutation operators, an empirical evaluation shows that the
reduced sets result in a considerably decreased total number of generated mutants. How-
ever, the remaining number of mutants for large applications is still substantial. In order
to further improve the runtime of mutation analysis for those applications, this chapter
also ascertains several characteristics of existing unit test suites.

Drawing on the observations concerning these characteristics of real-world test suites, this
chapter presents an optimized mutation analysis process that exploits mutation coverage
and test runtime information. Empirically evaluated on ten open-source applications with
410,000 lines of code and 550,000 generated mutants in total, the suggested approach
reduces the runtime by up to 65% and 30% on average.

Overall, the results given in this chapter convincingly demonstrate that mutation anal-
ysis is indeed applicable to large programs, and hence ready for a transfer and a wider
integration into industry.

107





Part III

Assessing Partial Oracles with
Mutation Analysis

109





Chapter8
Background on the Oracle Problem
and Partial Oracles

This chapter is based on [Just and Schweiggert, 2011].

As previously mentioned, a testing strategy is composed of two parts, namely a model for
test data generation and an appropriate test oracle to verify the outputs. The model for
generating the test data provides adequate input values, where the suitability is usually
determined with regard to an adequacy criterion, for instance a certain code coverage
criterion. Models for test data generation as well as several adequacy criteria have been
discussed in Chapter 2.

The test oracle is responsible for the decision whether a given test case passes or fails. The
oracle therefore consists of two entities, one to determine the expected output for a given
input and one to compare this expected output to the actual output of the system to be
tested. Hence, a simple comparator cannot be considered as test oracle due to the missing
capability of predicting the correct output (cf. [Binder, 1999]). This section introduces the
oracle problem and approaches to overcome this problem by focusing on partial oracles.
After describing the basics of assertions, contracts, and invariants in the context of partial
oracles, this section provides the necessary background on metamorphic testing.

8.1 The Oracle Problem

Finding or generating an adequate test oracle is not a straightforward task and may be
associated with a significant effort. Now, the oracle problem describes the situation when
such an oracle is unattainable or if the generation requires an excessive effort. Even though
not well-defined, the effort to generate an oracle is excessive if it is equal to or greater than
the effort to develop the system under test. For instance, this is clearly the case when
the system under test is re-implemented as test oracle. Another example for systems
that can also cause the oracle problem is the implementation of a randomized algorithm.

111



Chapter 8 Background on the Oracle Problem and Partial Oracles

Furthermore, Davis and Weyuker [1981] and Weyuker [1982] refer to programs for which
a test oracle is not available as non-testable programs. The term non-testable may be
misleading because of the fact that such programs can be indeed tested to a certain extent
with partial oracles, as further explained in Section 8.2.

Perfect Oracle

The perfect oracle denotes an oracle that can produce the correct output for every given
input. This perfect oracle, however, cannot exist for non-trivial programs. If the perfect
oracle was existing, there would not be a need for implementing a system that is function-
ally equivalent to this oracle – one could simply use the perfect oracle instead. Hence, the
perfect oracle is more of theoretical importance.

Gold Standard Oracle

A gold standard oracle [Binder, 1999] is an existing pendant of the system to be im-
plemented. Gold standard oracles are for instance trusted legacy systems or generally
speaking equivalent, technically mature applications developed in a different program-
ming language or build for a different operating system. It is crucial to state that a gold
standard oracle is not claimed to be the perfect oracle since the legacy implementation,
even though sophisticated, may still contain defects.

8.2 Partial Oracles

Concerning the oracle problem, various standard solutions exist which are, however, only
employable in rare situations (cf. [Binder, 1999]). To alleviate the oracle problem for
non-testable programs, Weyuker [1982] proposed the usage of partial oracles, a promising
class of oracles that are considered to be easily automatable, more often applicable, and
therefore employable for automating software tests [Bertolino, 2007].

These oracles are referred to as partial oracles because they cannot predict the correct
output of a system for all possible inputs. In fact, most partial oracles do not determine
an expected output but rather exploit constraints of the underlying function or algorithm
in order to identify faults within the tested system. A trivial example for a partial oracle
concerning the trigonometric sine function is for instance the equation:

sin(x) = sin(x+ 2π) (8.1)

Now, if equation 8.3 is not fulfilled by an implementation of the sine function, this imple-
mentation can be judged to be faulty even without the knowledge of the correct output of
sin(x) and sin(x+ 2π), respectively. In contrast, an implementation that does not violate
this constraint may still contain a defect if it computes the same wrong output for sin(x)
and sin(x + 2π). It is crucial to state that the machine accuracy has to be taken into
account when implementing such equations in order to avoid false-positives.

112



8.2 Partial Oracles

In addition to this oracle that is based on well-defined equivalence relations, checking the
range of the outputs is another example for a partial oracle. Concerning the sine function,
a correct implementation has to fulfill the necessary condition that the outputs are within
the range [−1, 1]. Such a partial oracle, however, accepts all outputs within this range, and
hence might be less powerful. In contrast to testing equivalence relations or the output
range, testing with special values provides a precise result for these special cases since the
expected output is know in advance. With regard to the sine function various special cases
such as sin(0), sin(π2 ), or sin(π), for which the output is well-known, can be tested with
this method. It is important to note that the corresponding oracle of this testing technique
is also a partial one since it can only predict the expected output for a few inputs.

8.2.1 Assertions, Contracts, and Invariants

Generally, assertions are used to ensure that certain constraints are fulfilled at a particular
point in the program. Lots of programming languages have the concept of assertions
already defined in their language specification, thus enabling an easy implementation of
checks. The Java programming language [Gosling et al., 2005], for instance, provides
assertions by means of the following statement:

assert <boolean-expr>; (8.2)

By means of such an assertion statement, every condition that evaluates to a boolean
value can be verified. As defined in the Java programming language, an exception is
thrown if the checked condition is violated, that is the boolean expression evaluates to
false. While most conditions, which are checked with such an assertion statement, are
necessary ones, assertions can generally be used to verify sufficient conditions for outputs
too. For example, when applying special value testing, the actual output can be verified
with an assertion that compares the actual to the expected output. Hence, assertions
are not limited to particular oracles and can always be employed to verify conditions for
certain values or states.

Contracts
Meyer [1997] suggested the class design technique Design-by-Contract that defines rules
and constraints that have to be fulfilled by a client and a server in order to enable a proper
execution. In this scenario the server is usually a certain class and the client is the caller
of a particular method of this class. Moreover, the rules clearly define what the client has
to provide and what the server has to deliver. Even though defined for class design with
several methods involved, this principle can also be applied at the method level where
the contract has to be fulfilled between the caller and the method itself. Generally, when
considering a contract, the following three types of conditions can be distinguished:

• Preconditions

• Invariants

• Postconditions

113



Chapter 8 Background on the Oracle Problem and Partial Oracles

1 public static int gcd(int a, int b){
2
3 assert (a>0 && b >0);
4
5 while (b != 0) {
6 if (a > b) {
7 a = a - b;
8
9 assert (a >=1);

10
11 } else {
12 b = b - a;
13 }
14
15 assert (b >=0);
16
17 }
18
19 assert (a >=1);
20
21 return a;
22 }

Listing 8.1: Iterative implementation that determines the greatest common divisor of two
positive integer numbers.

Precondition:
Method expects
positive integers

Invariant:
Value of a is

always positive

Invariant:
Value of b never
becomes negative

Postcondition:
Result is guaran-
teed to be positive

Listing 8.1 shows the iterative implementation of a method that determines the greatest
common divisor of two positive integer values. Even for this trivial example, several
necessary conditions can be defined, as highlighted within the code. These conditions are
checked within the illustrated method by means of assertions.

Preconditions

All requirements and conditions that have to be fulfilled before the method can be prop-
erly executed are referred to as preconditions. With regard to the implementation of List-
ing 8.1, the algorithm is only defined for positive numbers and therefore the first assert
statement verifies whether the provided inputs are indeed positive integers. Whether or not
such a check is necessary depends on the type system of the corresponding programming
language. Since Java does not support unsigned data types, this particular precondition
has to be verified with a separate assertion, the required data type itself (i.e., integer
numbers) can be enforced by the method signature, though.

114



8.2 Partial Oracles

Invariants

An invariant is a property (e.g., for a variable or state) that holds at a certain point within
a program. Examples for invariants include the following:

1. x > 3

2. ptr != null

3. Array array is sorted

4. Tree tree is a binary tree

Invariants can also express properties of more complex data structures, as indicated by
the third and fourth property. However, the necessary check and the implementation of
corresponding assertion might be complex as well.

Ernst et al. [2001] developed a technique and a research tool to dynamically detect invari-
ants by analyzing program traces. This is particularly useful for testing purposes since
the detected invariants can be exploited as partial oracles, if they hold in general.

With regard to mutation testing, Schuler and Zeller [2010] investigated the adequacy of
dynamic invariants for identifying mutants that are not semantically equivalent, and hence
violate several invariants detected in the original program.

Postconditions

Conditions that are guaranteed to be fulfilled at the end of an execution are referred to as
postconditions. The necessary postcondition of the implementation in Listing 8.1, again
checked with an assertion, is that the greatest common divisor of two whole numbers is
always a positive integer. It is crucial to state that this assumption is only valid if and
only if the aforementioned preconditions hold. Therefore, both the pre- and postconditions
form the contract of this method.

8.2.2 Metamorphic Relations

Testing with metamorphic relations is a generalization of testing with the aforementioned
equivalence relations. Proposed by Chen et al. [2003], metamorphic relations also belong
to the class of partial oracles and exploit properties of the SUT in order to evaluate the
corresponding dependencies between inputs and outputs. These properties are used to
form metamorphic relations [Chen et al., 2003] that consist of two relations RI and RO.
Assume I to be the input domain, O the output range, and f a mapping f : I → O. In
addition, RI ⊆ In and RO ⊆ In×On. The pair (RI , RO) is called a metamorphic relation
if and only if the following implication is fulfilled:

Definition 8.1 Metamorphic relation (RI , RO)

(i1, . . . , in) ∈ RI ⇒ (i1, . . . , in, f(i1), . . . , f(in)) ∈ RO

115



Chapter 8 Background on the Oracle Problem and Partial Oracles

Compared to equivalence relations, this definition is indeed a generalization since it allows
for arbitrary relations between inputs and outputs. It is also important to note that an
actual match of the outputs for two related inputs is not required. With regard to the
generation of test cases that fulfill these metamorphic relations, an additional test case,
called follow-up test case, is usually generated based on a given relation RI . The results
of both inputs, computed by the system under test, then have to fulfill the corresponding
relation RO. Considering the properties of the sine function again, the following equation
has to be fulfilled by a correct implementation:

sin(x) = − sin(−x) (8.3)

Now in order to test for defects in a given implementation, this equation can be used as
a metamorphic relation. Starting with an arbitrary input i1, a follow-up test case i2 is
generated by means of the negation of i1. The outputs of the two individual computations
sin(i1) and sin(i2) are then verified with the corresponding output relation, which is again
a negation. More complex metamorphic relations can be developed when considering, for
instance, the relations between the sine and cosine functions.

8.3 Summary

This chapter has introduced the oracle problem and various partial solutions to alleviate
it. With a main focus on metamorphic relations, this chapter describes several existing
partial oracle approaches that have been proposed to overcome the oracle problem. Fur-
thermore, it discusses the main characteristics of partial oracles, which can be summarized
as follows:

• Partial oracles can only verify necessary conditions since they cannot predict the
correct output in general

• Due to the partial evaluation of outputs they may produce false-negative results

• The quality of partial oracles has to be assessed to achieve reliable results

116



Chapter9
Automating Unit and Integration
Testing with Partial Oracles

The content of this chapter has been published in [Just and Schweiggert, 2010] and [Just
and Schweiggert, 2011]

The oracle problem is a crucial part of current research on automating software tests.
Partial oracles seem to be a viable solution, but their suitability for different testing steps
and the general applicability for various systems remains still to be shown. As stated in
Chapter 3, the evaluation of such testing strategies is a common application domain for
mutation analysis. We therefore apply a bipartite approach that is based on mutation
analysis to assesses the adequacy of partial oracles for both unit and integration testing.

This chapter investigates metamorphic relations, a certain type of partial oracles, and
presents a study in which these partial oracles are applied in order to automatically test
a jpeg2000 encoder as an example for a modular software system with several integrated
units and components. Additionally, this chapter presents possibilities for improving the
effectiveness as well as the efficiency of the employed partial oracles. It shows how the
knowledge of certain characteristics of the system under test, such as linearity or time-
invariance, may lead to a better choice of partial oracles and thus to an improved effec-
tiveness and efficiency.

9.1 Introduction

Increasing the level of automation is essential with regard to cost effectiveness in all areas
of software engineering and especially software testing. However, automating software
tests is a non-trivial and complex task which concerns, besides the automated execution
of test cases, the automated generation of appropriate input values and the evaluation
of the corresponding outputs by means of an appropriate testing strategy. In order to
achieve reliable results from testing, this testing strategy has to cover the structure as

117



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

well as the semantics of the implementation which is to be investigated. Moreover, the
adequacy of a certain test data generation model and the corresponding test oracle may
vary for different applications.

Regarding the test data generation, random or adaptive random testing is an established
approach since it is suitable for most environments and an unbiased technique (cf. [Hamlet,
1994; Mayer, 2005]). However, the use of randomly generated inputs often results in the
oracle problem if an appropriate test oracle is unattainable since its creation is associated
with an excessive effort. With respect to integration testing, where several units are
combined to form a subsystem, partial oracles have to be capable to verify necessary
conditions of the complete subsystem in order to be applicable. In comparison with unit
testing, these necessary conditions of the complete subsystem might be less restrictive than
the conditions of the individual units since they must hold for the complete subsystem. If,
for instance, a software unit implements a linear time-invariant system, we can exploit the
linearity to define necessary conditions which have to be fulfilled by the implementation.
Now, if a subsystem which contains this unit is no longer linear and time-invariant, these
necessary conditions do not hold for the integrated system and cannot be used as partial
oracles. As a consequence, partial oracles applicable for the complete (sub)system could
be less effective than partial oracles constructed for an individual unit of this system.
Therefore, the question arises whether partial oracles are in principle adequate in the field
of integration testing and, if so, how suitable they are.

This chapter presents a case study of constructing, applying, and assessing partial ora-
cles in order to automatically test several parts of an image processing application. The
investigated program is a modular and object-oriented jpeg2000 encoder written in the
Java programming language, representing a system with several integrated software units.
The study relies on random test data generation and, furthermore, on mutation analysis
to assess the effectiveness of the generated inputs as well as the applied partial oracles.
It analyzes the adequacy of the chosen partial oracles for unit and integration testing
and investigates, additionally, the complexity of the partial oracles as well as possible
improvements of their effectiveness and efficiency.

The remainder of this chapter is organized as follows. First, Section 9.2 discusses pre-
liminaries and provides the necessary background. Thereafter, Section 9.3 describes the
study and the applied methodology in detail and discusses the corresponding results. This
section also highlights the possibilities for effectiveness and efficiency improvements of the
applied partial oracles. Finally, Section 9.4 concludes this chapter.

9.2 Preliminaries and Related Work

Concerning the input values, which have to be complete images in our case, it is obviously
infeasible to cover all possibilities of the whole input range. Moreover, creating input values
manually is time-consuming, particularly for image processing applications which operate
on complex input values, and hence not convenient. Thus, we rely on random input
generation to create the inputs efficiently since this technique is simple and versatilely
applicable in most environments. Various models for generating gray level images exist,

118



9.2 Preliminaries and Related Work

R

G

B

RGB

Figure 9.1: Input generation model for color images.

such as the random or boolean model [Guderlei and Mayer, 2007]. This study uses the
random model, which determines the gray scale value of each pixel independently.

In order to obtain color images, this study uses and extends the random model for gray-
level images, as shown in Figure 9.1. Each color component of the RGB color space is
created independently by means of the random model and the complete image is achieved
by merging all three components. That means that a gray-scale image is randomly gen-
erated for every color component red (R), green (G), and blue (B). Then these images
are interpreted as color components, i.e., their gray-scale values represent the according
color values of red, green, or blue. Finally, the union of the color components forms the
resulting, randomly generated, color image. Generating a gray-scale image randomly is
equivalent to computing a matrix in which every coefficient, which represents a pixel, is
randomly generated. Since the resulting matrix shall represent a gray-scale image, the
values of all coefficients have to be restricted to the interval [0, 255]. An example for a
gray-scale image and the corresponding matrix that represents the color values of each
pixel is illustrated in Figure 9.2.

⇐⇒



128 128 128 128 128 128

128 128 128 128 128 128

70 70 70 70 70 70

70 70 70 70 70 70

170 170 170 170 170 170

170 170 170 170 170 170



Figure 9.2: Gray-scale image and its corresponding coefficient matrix.

119



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

RI RO

SUT

SUT

Pass/fail?

Figure 9.3: Exploiting the commutativity of the two-dimensional Wavelet Transformation
as partial oracle by means of the matrix transposition.

With regard to the randomly generated input values, we face the oracle problem which is
in our case to be alleviated by means of partial oracles. However, this class of oracles can
only check necessary conditions but cannot verify sufficient conditions. Thus, one of the
main characteristics of partial oracles is that their results may be false-negative, meaning
that if the oracle judges the System Under Test (SUT) to be correct, it may still contain
a fault since it only fulfills the necessary conditions. On the other hand, if such an oracle
reveals a defect in the SUT, the system definitively contains a fault. It thus becomes
clear that assessing the oracles is necessary since they may not detect every fault and the
effectiveness of the applied testing strategy depends on the quality of the oracle.

Among others, metamorphic relations, which have been introduced in Chapter 8, are
associated with the class of partial oracles. The corresponding workflow for metamorphic
testing can be summarized as given below (cf. [Zhou et al., 2004]):

1. Generate a follow-up test case from an arbitrary input according to a relation RI

2. Execute the SUT independently with both inputs

3. Verify whether the resulting outputs fulfill the corresponding relation RO

An example for testing with such partial oracles is depicted in Figure 9.3 where the relation
between the inputs RI is the matrix transposition. The relation between the resulting

120



9.2 Preliminaries and Related Work

outputs RO is also the matrix transposition because of the commutativity of the two-
dimensional Wavelet Transformation which is the SUT in this case.

As previously stated, partial oracles may produce false-negatives, and hence reliable results
from testing can only be achieved if the employed partial oracles are assessed. For this
purpose, we apply mutation analysis to determine the adequacy of partial oracles, more
precisely metamorphic relations, for unit and integration testing. In order to kill a mutant,
three necessary conditions have to be fulfilled (cf. [Voas, 1992]):

1. The mutated code has to be reached and executed

2. The mutation has to change the state of the program

3. The change has to be propagated to the output

Obviously, the first condition (reachability) is solely related to the input values, apart from
dead code fragments, and the latter can be reduced to the question of semantic equivalence.
Since a testing strategy consists of a test data generation model and an oracle to evaluate
the outputs, the adequacy of a strategy depends on both the quality of the input values
and the capability of the oracle. However, the effectiveness of the oracle is correlated with
the quality of the input values according to the reachability condition.

Mutation analysis can be employed to assess both parts of the strategy. First, the input
values can be evaluated with the original implementation as a perfect oracle. The resulting
mutation score Si for the inputs provides an upper bound for the mutation score of the
complete strategy since the perfect oracle (i.e., the best available oracle) is applied in this
step. The (partial) oracle of the strategy can then be assessed with the input values which
have been determined in the first step. Only the mutants killed by the perfect oracle
are used in the second step because all other mutants cannot be killed. It is important
to note that the perfect oracle is never applied in this second step because a mutant
is said to be killed by the oracle which is to be assessed, if and only if it violates the
constraints represented by the applied (partial) oracle. Hence, the mutation score So of
the investigated oracle represents the number of mutants killed by this oracle related to
the number of killable mutants (i.e., mutants killed by the perfect oracle). Now, in order
to express the dependency of So and Si, we have to define the overall mutation score Ss
for a complete testing strategy as:

Definition 9.1 Separated Mutation Score Ss

Ss = Si · So

Let Mp
k be the number of mutants killed by the perfect oracle with respect to the applied

test data generation model. Furthermore, Mt denotes again the total number of non-
equivalent mutants of the SUT and Mk represents the number of mutants killed by the
employed (partial) oracle. The mutation score Ss is equal to S:

Ss = Si · So = Mp
k

Mt
· Mk

Mp
k

= Mk

Mt
= S � (9.1)

121



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

The separated evaluation, however, provides a better view on the effectiveness of the
individual parts of the testing strategy. Let us consider the following example:

• Number of non-equivalent mutants: 900

• Mutants killed by the perfect oracle: 882

• Mutants killed by the (partial) oracle: 750

By employing Definition 9.1, we obtain the corresponding mutation scores:

Ss = 882
900 ·

750
882 = 0.98 · 0.85 = 0.83 = 750

900 = S (9.2)

In order to increase the effectiveness of the assessed testing strategy it would be advisable
in this case to focus on the applied oracle because the test data generation model yields
a satisfying result of 0.98. Aiming at evaluating the applied oracle exclusively, reliable
results can only be achieved for almost perfect input values, i.e., Si ≈ 1.

The suitability of the generated inputs might be assessed with other metrics. The degree
of certain code coverage criteria such as statement or branch coverage is, for example,
also applicable for this purpose (cf. [Zhu et al., 1997]). Nevertheless, we rely exclusively
on mutation analysis in this study. In order to fully automate the executions of the
experiments in the case study, proper tool support for the mutation analysis is essential.
Throughout the case study, we employ MuJava [Ma et al., 2005; MuJava, 2009], a mutation
tool for the Java programming language due to the availability of a wide variety of mutation
operators, especially class-based mutation operators.

9.3 Case Study

The selected SUT is a Java implementation of the jpeg2000 encoder which is part of the
JJ2000 library [JJ2000, 2010; Jpeg, 2010]. This encoder is a system consisting of several
concatenated subsystems which in turn consist of various combined transformations.

The system to be investigated, illustrated in Figure 9.4, is a complex and integrated
subsystem which is responsible for preprocessing and decorrelation. The size, measured
in Lines of Code (LOC), of the individual parts and the complete subsystem is given in
Table 9.1. In addition it should be mentioned that the overall size of the jpeg2000 encoder
and the jj2000 library is 14k LOC and 30k LOC, respectively.

Generally, the selected SUT takes, as shown in Figure 9.4, an uncompressed color image
as an input value and executes the following workflow:

1. Split color image into color components red (R), green (G), and blue (B)

2. Shift the color values of each color component

3. Transform RGB color components into YCbCr components

4. Decompose components by applying the two-dimensional wavelet transformation

122



9.3 Case Study

RGB

D
C
-S
hi
ft

C
ol
or

tr
an

sf
or
m
at
io
n

D
ec
om

po
sit

io
n

W
av
el
et

tr
an

sf
or
m
at
io
n

Preprocessing and decorrelation

Figure 9.4: The investigated subsystem that is composed of several software units and
responsible for preprocessing and decorrelation.

Table 9.1: Software packages and physical lines of code of the individual software units
integrated in the investigated subsystem.

Softeware unit LOC* Package

DC-Shift/ 1,422 jj2000.j2k.image
Color transformation

Decomposition 964 jj2000.j2k.wavelet

Wavelet transformation 2,010 jj2000.j2k.wavelet

Complete subsystem 4,396 jj2000.j2k

*LOC as reported by sloccount (non-comment and non-blank lines)

123



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

As a consequence of this workflow, the outputs of the SUT are three individually decom-
posed color components where each of them contains a DC component (approximation of
the color values) and three detail components (differences between pixels). Further back-
ground information on the encoder as well as the complete jpeg2000 standard is described
in detail, e.g., in [Christopoulos et al., 2000; Skodras et al., 2001].

Generally, the use of randomly generated inputs, as applied in this study, results in the
oracle problem for image processing applications. Therefore, handcrafted or well-known
standard test images are usually employed for which the expected output can be defined
in advance. However, the oracle problem is avoided in our study, as already mentioned
in Section 9.1, by means of partial oracles. Aiming at automatically testing this inte-
grated subsystem with partial oracles, the oracles have to be applicable to the complete
subsystem. Therefore, the following partial oracles have been chosen.

Partial oracle I:

A constant offset is added to every color value of the input image. Because of this constant
offset, the mean color value of each color component changes but the difference between
two pixels remains the same. Therefore, only the DC component must be increased (or
decreased if the offset is a negative value) by the constant offset.

RI=⇒ RO⇐⇒

Partial Oracle II:

The color values of the input image are multiplied by a constant factor. As a consequence,
the mean color value as well as the differences between pixels are affected. Thus, the DC
component and all detail components have to be changed with respect to the constant
factor.

RI=⇒ RO⇐⇒

124



9.3 Case Study

Partial Oracle III:

The input image is transposed by means of the standard matrix transposition. Because
of the linearity of the SUT and the commutativity of the two-dimensional wavelet trans-
formation, the resulting components (DC component and detail components) have to be
transposed as well.

RI=⇒ RO⇐⇒

Partial Oracle IV:

The pixel values of each row within the input image can be regarded as a discrete signal and
since the SUT is linear and time-invariant, these signals can be shifted. For this purpose,
the image width is enlarged with a defined number (constant for all rows) of leading
zeros. Consequently, the resulting components also have to be shifted with unchanged
color values.

RI=⇒ RO⇐⇒

Partial Oracle V:

Applying an inverted image to the SUT has to result in inverted components due to the
linearity of the SUT. Hence, the color values of the input image are inverted and all
resulting components have to be affected.

RI=⇒ RO⇐⇒

The constraints of these described partial oracles can be defined as metamorphic relations
by means of input and output relations. Table 9.2 summarizes all five metamorphic
relations with a brief description of the input relation RI and the corresponding output
relation RO.

125



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

Table 9.2: Description of the investigated metamorphic relations.

Relation Description

R1 RI Add an offset to the color values.

RO Only the DC component must be affected.

R2 RI Multiply the color values by a coefficient.

RO Every pixel has to be affected.

R3 RI Transpose the pixel array of the input image.

RO The resulting components have to be transposed.

R4 RI Enlarge the input image with zero-padding.

RO The resulting components have to be shifted.

R5 RI Invert the color values of the input image.

RO The color values of the resulting components have to be inverted.

The metamorphic relations are implemented as matrix transformations. This means that
on the one hand the color components of the randomly generated input values are mapped
to follow-up matrices (according to RI). On the other hand, the resulting outputs of the
execution of the follow-up test cases are normalized (i.e., they are transformed according
to the corresponding relation RO) and then they are compared with the output of the
SUT when executed with the randomly generated input.

Based on the bipartite approach already mentioned in Section 9.2, we investigate the ade-
quacy of these partial oracles for testing purposes with respect to the integrated subsystem.
In total, 1,977 non-equivalent traditional mutants can be generated for the complete sub-
system. Additionally, 206 non-equivalent class-based mutants can be obtained (e.g., in
interfaces between the transformations). The following examples of mutation operators
illustrate the difference between traditional and class-based mutants:

Traditional mutants

• int a = b + c; Z=⇒ int a = b - c;

• if( a && b ){...}; Z=⇒ if( a || b ){...};

126



9.3 Case Study

Class-based mutants

• component. setWidth(5); Z=⇒ component. setHeight(5);

• A obj = new A1(); Z=⇒ A obj = new A2();

The class-based mutants represent structural defects in contrast to the traditional mutants,
which are injected at the functional level. Thus, the class-based mutants can be regarded
as faults that could have been introduced by a programmer during the integration of
software units. It has to be pointed out that the class-based mutants are obligatory in
this study since we aim at assessing the adequacy of partial oracles for integration testing.
Instead of the developed mutation tool, presented in Chapter 5, MuJava was applied due
to the existing support of class-based mutants. However, it has to be pointed out that the
runtime of the tool was significant, which might be a limiting factor for further studies.

9.3.1 Evaluation of the Input Values

Corresponding to the reachability condition, the mutated code has to be covered in order
to be detected. Hence, the effectiveness of the partial oracles is heavily dependent on
the input values. Consequently, we assess the input values in a first step, as described
in Section 9.2, to provide the most adequate inputs for evaluating the partial oracles.
Considering the input values, different properties like the image dimension (i.e., width
and height) or the color depth may affect the suitability. However, it turned out that only
the image dimension has an impact. Thus, images with different width and height are
applied to determine the most appropriate inputs.

In order to achieve the highest possible mutation score for the input values MSI , we
use an exhaustive search over a limited and reduced search space. Therefore, we apply
randomly generated images, employ the original implementation as a gold standard oracle,
that is a trusted oracle, and use the mutation score as fitness function. The remaining
mutants not killed after the search are inspected to eliminate the equivalent mutants and
to determine the correct mutation score. This task is done manually but approaches
exist that could be used to automatically identify certain types of equivalent mutants
(cf. [Offutt and Pan, 1997]). Two examples for resulting fitness landscapes are shown in
Figure 9.5(a) and 9.5(b). The input values are classified according to their effectiveness,
that is the mutation score. This means that all images within a certain equivalence class
yield exactly the same mutation score when employing them as input value and applying
the perfect oracle. More precisely, the same mutants are killed by all images of the same
equivalence class. Considering, for example, the fitness landscape of the Decomposition in
Figure 9.5(b), we could identify exactly three equivalence classes in this case:

1. width < height

2. width = height

3. width > height

127



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

 0
 5

 10
 15

 20
 25

 30
 35 0

 5

 10

 15

 20

 25

 30

 35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Width

Height

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) Quadratic mutation score for the Wavelet transformation.

 0
 5

 10
 15

 20
 25

 30
 35 0

 5

 10

 15

 20

 25

 30

 35

 84

 86

 88

 90

 92

 94

 96

Width

Height

 84

 86

 88

 90

 92

 94

 96

(b) Mutation score for the Decomposition.

Figure 9.5: Fitness landscapes of the mutation score related to the image dimensions for
the Wavelet transformation and the Decomposition.

128



9.3 Case Study

 0
 5

 10
 15

 20
 25

 30
 35 0

 5

 10

 15

 20

 25

 30

 35

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Width

Height

 70

 75

 80

 85

 90

 95

 100

(a) Statement coverage.

 0
 5

 10
 15

 20
 25

 30
 35 0

 5

 10

 15

 20

 25

 30

 35

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Width

Height

 55
 60

 65

 70

 75
 80

 85

 90

 95

 100

(b) Branch coverage.

Figure 9.6: Fitness landscapes of statement and simple branch coverage for the Wavelet
transformation, as reported by Cobertura [2010].

129



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

However, no class achieves a mutation score of 100%, indicating that several runs of
the SUT are necessary to collectively reach the full mutation score. In general, if the
input images related to the most effective class are sufficient to kill all non-equivalent
mutants, then a conjunction of multiple classes, which implies several runs of the SUT,
is not necessary. Otherwise the classes have to be combined to collectively kill all of the
mutants. As shown in Figure 9.5(a), multiple executions are not necessary in this case
since input images exist which achieve a mutation score of 100%.

As already mentioned in Section 9.2, another metric could be applied as a fitness function in
this first step. For this reason, we investigate two code coverage metrics as fitness function
in addition to the mutation analysis. We use statement and simple branch coverage
within the same search space. An advantage of both code coverage metrics is that of
their being less expensive than mutation analysis with regard to the necessary runtime
to determine the level of coverage. For every input value the SUT has to be evaluated
just once. However, it turns out that both metrics are weaker criteria than mutation
analysis. Considering the three conditions to kill a mutant, the first one (reachability) is
obviously a necessary condition for all three metrics. In contrast to the mutation analysis
this condition is, however, also sufficient for the code coverage metrics. Since we apply all
mutation operators, available within the mutation tool, every basic block and expression
is mutated. In addition, almost every statement is mutated. Thus, mutation analysis
implies both code coverage criteria in this case and is according to this fact the stronger
criterion. Example results of the exhaustive searches are depicted in Figure 9.6(a) and
9.6(b). Both diagrams manifest that the investigated coverage criteria achieve quite often
a level of coverage of 100%. By comparing these results to the mutation score, shown
in Figure 9.5(a), it becomes clear that input values exist that cover all statements and
branches but they are not able to kill all of the mutants.

It has to be pointed out that search-based techniques [McMinn, 2004] may be more efficient
for larger search spaces. Additionally, the exhaustive approach is no longer feasible for huge
input domains. Since the location of the mutation within the source code is exactly known,
the problem of searching adequate inputs that cover the mutation can be transformed into
a path problem (cf. [Visser et al., 2004; Fraser and Arcuri, 2011]).

9.3.2 Evaluation of the Partial Oracles

We now investigate the partial oracles with regard to both the capability to reveal faults in
each transformation and the overall effectiveness for the complete subsystem. It is impor-
tant to note that roughly 40% of the traditional and 20% of the class-based mutants throw
a runtime exception, when the corresponding mutated code is covered, mostly because of
invalid array indexes or references. Due to the restrictions of the Java virtual machine,
which lead to a thrown exception in such cases [Lindholm and Yellin, 2000], these faults
could thus be revealed without a particular oracle. However, all partial oracles catch these
exceptions and mark the corresponding mutants as killed in this study. Consequently, the
number of detected faults includes those mutants killed by an exception.

130



9.3 Case Study

Table 9.3: Effectiveness of the applied partial oracles for the particular transformations
and the complete subsystem concerning the traditional mutants.

DC-shift/Color
transformation Decomposition Wavelet

transformation
Complete
subsystem

608 441 928 1977

R1 504 (82.9%) 402 (91.2%) 860 (92.7%) 1766 (89.3%)

R2 489 (80.4%) 381 (86.4%) 859 (92.6%) 1729 (87.5%)

R3 482 (79.3%) 413 (93.7%) 904 (97.4%) 1799 (91.0%)

R4 394 (64.8%) 398 (90.3%) 876 (94.4%) 1668 (84.4%)

R5 456 (75.0%) 372 (84.4%) 781 (84.2%) 1609 (81.4%)

The effectiveness of the partial oracles varies notably with respect to a specific trans-
formation, as illustrated in Table 9.3. Concerning the DC-Shift in conjunction with the
Color Transformation, the relation R1, which kills 504 mutants, is for instance much more
effective than R4, which reveals only 394 defects. In reference to the total number of
608 non-equivalent mutants, this represents a considerable discrepancy in the mutation
score between 83% and 65%. In addition, the effectiveness of the applied oracles differs
with regard to the specific parts of the subsystem and thus, none of them is adequate for
all transformations. Considering, for example, the DC-Shift and Color Transformation,
the relation R1 yields the highest mutation score for this part of the subsystem. How-
ever, in the field of the Wavelet Transformation, the effectiveness of R1 is only average in
comparison with the other relations.

Furthermore, the different kinds of mutants exhibit a substantial difference in effectiveness,
as shown in Table 9.4. The relation R3 is for instance the most effective oracle concerning
the traditional mutants with an overall mutation score of 91% and ranging between 80%
and 97% with regard to the individual transformations. It is, however, rather poor in
killing the class-based mutants with a ratio of approximately 58%. Hence, it would be a
fallacy to conclude that an oracle which is highly effective for testing a specific transfor-
mation, or more generally an individual unit of a subsystem, is as a consequence of this
equally suitable for integration testing. Moreover, the effectiveness of the applied relations
is insufficient concerning the class-based mutants, even though the results achieved by the
relations are predominantly sufficient with respect to the traditional mutants.

In order to increase the effectiveness and achieve satisfying results, the partial oracles may
be combined (cf. [Mayer and Guderlei, 2006]). Therefore, the two most effective oracles
are combined pairwise and additionally the overall effectiveness of the partial oracles alto-
gether is investigated. A combination in this case means that all of the combined partial

131



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

Table 9.4: Comparison of the effectiveness of the applied partial oracles for the complete
subsystem with respect to the different kind of mutants.

Traditional mutants Class-based mutants

1,977 206

R1 1,766 (89.3%) 151 (73.3%)

R2 1,729 (87.5%) 146 (70.9%)

R3 1,799 (91.0%) 119 (57.8%)

R4 1,668 (84.4%) 84 (40.8%)

R5 1,609 (81.4%) 87 (42.2%)

Table 9.5: Increase in effectiveness of the applied partial oracles by means of combination
of the two most effective oracles (Rx and Ry) and all oracles.

(a) Increase in effectiveness for the traditional mutants.

Total Rx Ry Rx & Ry All Oracles

DC-shift/Color
transformation 608 R1 R2 544 (89.5%) 553 (91.0%)

Decomposition 441 R3 R1 422 (95.7%) 430 (97.5%)
Wavelet
transformation 928 R3 R4 923 (99.5%) 923 (99.5%)

Complete
subsystem 1,977 R3 R1 1,889 (95.6%) 1,906 (96.4%)

(b) Increase in effectiveness for the class-based mutants.

Total Rx Ry Rx & Ry All Oracles

Complete
subsystem 206 R1 R2 193 (93.7%) 200 (97.1%)

132



9.3 Case Study

oracles are applied individually and the mutation score collectively achieved equates to
the effectiveness of the combined oracles. The results for each transformation as well as
for the complete subsystem are depicted in Table 9.5 where Rx and Ry represent the most
effective and the second most effective oracle with respect to the corresponding trans-
formation. Regarding, for instance, the Wavelet transformation, R3 is the most effective
oracle and R4 is the second most effective one. Thus, the column ”Rx & Ry“ denotes the
mutation score collectively achieved by the combination of these both oracles.

The results clearly show that the combination of the partial oracles can significantly in-
crease their effectiveness, especially with regard to the class-based mutants. The conjunc-
tion of the two most effective relations leads to a mutation score of 94% for the class-based
mutants and an overall mutation score of 95% for all traditional mutants. In addition, the
variance is reduced significantly since all ratios are at least 90%.

On the other hand, the additional benefit of combining all partial oracles is rather small
compared with the pairwise combination of the two most effective ones. The necessary
effort of applying two more oracles is disproportionate compared to the further increase
of at most 2% for the traditional and 3% for the class-based mutants.

9.3.3 Efficiency and Effectiveness Improvements

Considering the complexity of the partial oracles, we can distinguish between code and
model complexity. Metrics for the code complexity are, for instance, physical lines of code
or McCabe’s cyclomatic complexity [McCabe, 1976], which is a measure for the structural
complexity. Based on the control flow graph G, let n be the number of nodes, e the number
of edges, and p the number of connected components. McCabe’s cyclomatic complexity
C(G) is then defined as:

C(G) = e− n+ 2 · p (9.3)

The physical lines of code as well as McCabe’s cyclomatic complexity are indicators for
the effort to understand and implement the corresponding partial oracle.

On the other hand we use the term model complexity to describe the costs of applying
the partial oracle. The model complexity is predominantly defined by the number of
parameters and additionally by the number of necessary inputs, which is equal to the
number of required runs of the SUT. Obviously, the number of parameters is more severe
since the partial oracle has to be applied by executing the SUT for every parameter value
which is to be investigated. Considering for example the oracle R2 which can be described
by the following equation:

SUT (c · I)︸ ︷︷ ︸
run#1

= c · SUT (I)︸ ︷︷ ︸
run#2

(9.4)

The only parameter of this oracle is the factor c which has to be chosen. In addition,
the SUT has to be executed twice in order to apply this oracle. Thus, the partial oracle
expects the parameter c and two inputs, namely I and c · I. It is crucial to state that the
difference between parameters and inputs is of particular importance. The oracle needs to

133



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

Table 9.6: Complexity and effectiveness of the applied partial oracles (Params denotes the
number of parameters of the corresponding partial oracle and Inputs represents
the number of necessary runs of the SUT).

LOC* McCabe Params Inputs Mutation Score

RI RO traditional class-based

R1 363 17 11 1 2 89.3% 73.3%

R2 352 17 6 1 2 87.5% 70.9%

R3 327 10 5 0 2 91.0% 57.8%

R4 398 20 11 1 2 84.4% 40.8%

R5 331 17 6 0 2 81.4% 42.2%

*LOC as reported by sloccount (non-comment and non-blank lines)

be calibrated if it contains a parameter and the choice of the parameter value may have
an impact on the effectiveness. Table 9.6 gives the code and model complexity, as well as
the overall mutation score of the investigated oracles.

Given the complexity and effectiveness in terms of the mutation score of the employed
partial oracles, we focus on the oracles R1 and R3 for further improvements of effective-
ness and efficiency since they achieve the highest mutation score for the class-based and
traditional mutants, respectively. In order to avoid the additional parameter of R1, the
constant offset, we can generalize this partial oracle by adding a randomly generated offset
to each coefficient. For this purpose, the new partial oracle R6 generates another random
image I ′ with the same dimension as the input I and adds both inputs together with the
standard matrix addition. Because of the linearity of the SUT, the necessary condition
which has to be fulfilled by the SUT can be described by the following equation:

R6: SUT (I + I ′)︸ ︷︷ ︸
run#1

= SUT (I)︸ ︷︷ ︸
run#2

+SUT (I ′)︸ ︷︷ ︸
run#3

(9.5)

Therefore, the additional parameter has been replaced by another input and thus an extra
run of the SUT. Moreover, the implementation of RO for R6 is even simpler compared
with R1 because we do not have to locate the DC component in the outputs.

According to the increase in effectiveness by combining partial oracles, a combination of
the oracles R3 and R6 seems to be promising for further improvements. With respect to
efficiency, especially execution time, we can again exploit the linearity and furthermore
the commutativity of the SUT. To combine both necessary conditions of R3 and R6 within
one oracle, we define a new partial oracle R7:

R7: SUT ((I + I ′)T )︸ ︷︷ ︸
run#1

= (SUT (I)︸ ︷︷ ︸
run#2

+SUT (I ′)︸ ︷︷ ︸
run#3

)T (9.6)

134



9.3 Case Study

Table 9.7: Complexity and effectiveness of enhanced partial oracles (Params denotes the
number of parameters of the corresponding partial oracle and Inputs represents
the number of necessary runs of the SUT).

LOC* McCabe Params Inputs Mutation Score

RI RO traditional class-based

R6 368 18 9 0 3 93.2% 88.8%

R7 391 24 13 0 3 96.3% 96.6%

*LOC as reported by sloccount (non-comment and non-blank lines)

The model complexity of this partial oracle is equal to that of R6 because we do not
have additional parameters and the required number of executions of the SUT is still 3.
Hence, this oracle leads to an efficiency improvement by reducing the runtime by 40% in
comparison with single executions of R3 and R6. Table 9.7 shows the complexity and the
mutation score of the enhanced partial oracles. Overall, both oracles manifest a higher code
and model complexity due to the additional input and the more comprehensive calculation.
They achieve, however, a significant increase in effectiveness for the traditional and the
class-based mutants. Concerning the traditional mutants, the variance of the mutation
score, which ranges between 91.4% and 98.8% for the individual software units, is also
considerably reduced. Hence, these partial oracles can be regarded as being suitable for
the SUT.

9.3.4 Discussion

Regarding the results, it seems that partial oracles are indeed applicable for integration
testing, but a few aspects have to be considered. First of all, the partial oracles derived
from the characteristics of the integrated (sub)system may be less effective than partial
oracles for the individual software units of this system. In addition, the effectiveness of
oracles for testing at the functional level of individual system parts most likely differs from
the effectiveness for testing the integration of these parts. In order to compensate such
variations and to increase the effectiveness, it is advisable to combine partial oracles.

As shown in the case study, combining the most effective oracles is nearly as powerful
as joining all oracles. Thus, the testing effort can be reduced without a major loss of
effectiveness by prioritizing the partial oracles with regard to their fault-finding capability
and joining just the most effective ones. Since the SUT has to be executed for every partial
oracle and every input value, the time needed to run all of the tests is proportional to the
number of partial oracles. Concerning the investigated subsystem, processing the input
values and executing the SUT is a time-consuming task and thus applying only two out
of four relations notably reduces the time totally needed. This decrease of the execution

135



Chapter 9 Automating Unit and Integration Testing with Partial Oracles

time, and hence testing effort, may be of particular importance in the field of regression
testing.

According to our results of the efficiency and effectiveness improvements, some sugges-
tions on the selection and construction of partial oracles can be given. First of all, it is
advisable to exploit constraints like equivalence relations in conjunction with properties
such as commutativity, distributivity, or associativity. For efficiency reasons the combina-
tion of necessary conditions should be implemented within one partial oracle even though
the model and code complexity of the corresponding oracle is increasing. Additional pa-
rameters should be avoided or kept to a minimum since they extend the search space.
Moreover, with respect to automated (adaptive) random testing, a partial oracle like R7
would be preferable (e.g., via prioritization) because it generates a follow-up value with
different properties (cf.[Chen et al., 2004]). As a consequence, the input values are better
distributed in the search space and the convergence rate of the mutation score is most
likely higher.

Since the investigated SUT is a Java implementation, there are many mutants that result in
an exception due to violating restrictions. As previously mentioned in Section 9.3.2, these
mutants can be killed without a specific oracle, for instance with smoke tests. Considering
the properties of partial oracles, such smoke tests can be regarded as the simplest partial
oracle, which checks for the necessary condition that the system under test should not
crash during execution. As a consequence, partial oracles can be implicitly combined with
such smoke tests, for instance, by means of an adequate exception handling, or smoke
tests can be used in a first step to reveal invalid indexes and references. However, this is
language dependent and may be less suitable for other languages.

With regard to the discussed results, some threats to validity have to be considered.
The chosen mutation operators could be a threat to internal validity. Different operators
or hand seeded faults may affect the mutation score of the investigated partial oracles.
However, we applied all possible operators, provided by the mutation tool, in order to
cover a wide variety of defects. Furthermore, most of the applied operators are frequently
used in the literature and therefore provide comparable results [Andrews et al., 2005]. A
potential threat to external validity might be the representativeness of the selected appli-
cation. There is no guarantee that the depicted results and the achieved improvements of
effectiveness and efficiency of the partial oracles will be similar for other systems. The in-
vestigated subsystem, nevertheless, represents a modular object-oriented application with
several integrated units, and hence is comparable to other software systems. So, the re-
ported results might be transferable but a replication of this study, especially for other
programming languages and larger software systems, is necessary. This matter is left open
for future research and further discussed in Chapter 10. However, it is important to note
that the presented case study clearly reveals that in general the effectiveness of partial
oracles for integration testing cannot be derived from their adequacy with regard to unit
testing. Defects in the mutation tool or in our testing framework could be a threat to
construct validity, but we controlled this threat by analyzing the generated mutants and
by testing our implementation. Every partial oracle was applied to the original imple-
mentation and executed with all input values to ensure that the implemented constraints

136



9.4 Summary

are fulfilled by the investigated system. Thus, we judge that the mutants were properly
generated and that our implementation worked correctly.

9.4 Summary

This chapter has studied the adequacy of partial oracles for integration testing. In order
to evaluate the applicability of partial oracles for this purpose, an integrated subsystem
of an object oriented image processing application is investigated by means of mutation
analysis. The applied partial oracles are assessed with regard to their capability to reveal
faults in the individual parts of the subsystem and their suitability for the integrated
subsystem in its entirety. It turns out that the effectiveness of the investigated partial
oracles varies concerning the different parts of the subsystem and none of the oracles is
sufficient for the complete subsystem. Additionally, the adequacy of the partial oracles
for integration testing cannot be inferred from the effectiveness for testing the particular
parts of the subsystem. However, the combination of the partial oracles yields satisfying
results for both unit and integration testing. Moreover, exploiting certain characteristics
of the system under test provides partial oracles which lead to a significant increase in
effectiveness and efficiency. Hence, this kind of oracles seems to be suitable for testing
purposes and especially test automation with respect to the oracle problem.

In summary, the results suggest that partial oracles are suitable for automating various
parts of the software testing process but further research is necessary to confirm and
generalize the findings. In addition, the results should be transferable to other linear and
time-invariant systems as well as transformations which meet the exploited constraints.
However, examining the transferability to other partial oracles as well as different software
systems is left open for future work.

137





Part IV

Conclusions and Appendix

139





Chapter 10
Conclusion and Future Work

This chapter concludes the thesis by summarizing the main contributions. Additionally,
it discusses possible extensions and areas for future research.

10.1 Conclusions

This thesis makes several contributions to the ongoing research in the field of mutation
testing and testing with partial oracles.

Effective and Efficient Mutation Analysis

With regard to the improvements of mutation analysis, this thesis first presented condi-
tional mutation, an approach to mutant generation that transforms the abstract syntax
tree and embeds mutants for expressions and statements within the scope of the orig-
inal instruction. Due to the embedded mutants and several optimizations, conditional
mutation enables efficient mutation analysis.

The corresponding implementation Major enhances the Java Standard Edition compiler
and is, thus, applicable in every Java-based environment. The runtime overhead of this
enhanced compiler is negligible in consideration of the total number of generated mutants.
Moreover, Major provides its own domain specific language Mml that makes it highly
configurable and extensible.

Focusing on the definition of mutation operators, we could identify redundancies in two
frequently used mutation operators and we also presented a non-redundant version. Em-
ploying Major for several evaluations, this thesis reveals that applying the non-redundant
mutation operators considerably improves the runtime of mutation analysis. Moreover, the
non-redundant set of mutants yields a more precise mutation score, and hence improves
the expressiveness of this metric.

141



Chapter 10 Conclusion and Future Work

Due to the fact that the non-redundant mutation operators still generate a substantial
number of mutants, this thesis further analyzed runtime improvements that do not rely
on the reduction of mutants. By investigating existing test suites of several real-world
projects, we ascertained some essential characteristics such as test case overlap and run-
time and ultimately suggested an optimized workflow for the mutation analysis of com-
prehensive test suites for large software systems.

To sum up, the combination of the suggested approaches and the corresponding imple-
mentation Major has resulted in an efficient, scalable, and thoroughly-studied framework
for the mutation analysis of Java programs.

The presented and implemented techniques within this thesis, enabled us to perform mu-
tation analysis on several large real-world projects. To the best of our knowledge, these
were the largest studies on mutation analysis to date. Given the presented efficiency and
effectiveness improvements, the results suggest that mutation testing is indeed ready for
being transferred and wider integrated into industry.

Testing with Partial Oracles
Concerning the oracle problem, partial oracles seem to be an applicable solution for unit
and integration testing. By employing mutation analysis, this thesis has conducted a study
that evaluates the adequacy of partial oracles for both testing levels. Yet, the presented
results reveal that the suitability of partial oracles for integration testing cannot be derived
from their adequacy for unit testing. Based on these findings, this thesis, furthermore,
investigated possible efficiency and effectiveness improvements, which finally led to partial
oracles that exhibit comparable adequacy for unit and integration testing.

10.2 Future Work

This section suggests several possible extensions of the work described in this thesis. While
some of the aspects have already been considered in this thesis but were not fully evaluated,
others represent areas for further research. By reconsidering the contributions of this work,
we suggest extensions of the presented approaches and implementations. Furthermore, we
discuss possible empirical research to further evaluate and generalize the results.

Conditional Mutation
The conditional mutation approach could be further enhanced with respect to the runtime
by balancing the abstract syntax tree with further conditional expressions and statements.
This would decrease the necessary evaluations and thus the runtime overhead – the space
overhead would increase, though. Moreover, further investigations and optimizations of
higher order conditional mutation is another direction for future research.

With regard to the necessary conditions to kill a mutant, side-effect free expression-based
mutations do not have to be analyzed when the corresponding expression value does not
differ from the original version. Conditional mutation can be enhanced to support the

142



10.2 Future Work

verification of this necessary condition by extending the mutation coverage implementa-
tion. This extension might be in particular useful for mutants with a minimal impact, like
those discussed in Chapter 6.

Mutation Analysis Framework
Major, the mutation tool presented in Chapter 5 currently supports a commonly used
set of traditional mutation operators, which are configurable by means of the domain
specific language Mml. Implementing new mutation operators, especially class-based
ones would enable further experiments and the replication and extension of previous,
possibly limited, studies. This is, for instance, essential when aiming at an extension of
the study on partial oracles that was presented in Chapter 9. Besides the implementation
of the existing class-based mutation operators, Mml could be enhanced and generalized to
support the customization and definition of operators based on arbitrary transformations
of the abstract syntax tree.

Redundancies in Mutation Operators
Because of the considerable improvements reported in Chapter 6, a determination of suf-
ficient sets of replacements for other mutation operators is desirable. For instance, the
mutation operator that replaces arithmetic operators forms a substantial proportion of
the total number of generated mutants. Hence, eliminating redundancies in this muta-
tion operator would further improve the efficiency and also increase the precision of the
mutation score. With regard to composed conditional expressions, the establishment of
a subsumption hierarchy for expressions with more than one logical connector is another
area for extensions.

Equivalent Mutant Problem
Concerning the equivalent mutant problem, further investigations are necessary to deter-
mine whether mutants with a minimized impact, like the ones studied in Chapter 6, are
more or less likely to be equivalent. Furthermore, due to the minimal impact of those
mutants, a certain combination of the input values is necessary to detect them. Therefore,
static analysis techniques might be applicable to determine whether this combination is
feasible. The crucial part of this extension is the fact that the necessary (path) constraints
need to be efficiently extracted and solved.

Test Suite Prioritization
The splitting approaches suggested in Chapter 7 are parameterized with a threshold that
is currently determined with a heuristic based on the test class initialization time. This
technique could benefit from taking the overlap at the method level into account to only
split methods with a sufficiently small overlap. Moreover, to better assess the quality of
the heuristics, the optimally sorted test suite could be calculated. This, however, implies
a tremendous computational expense since every test case has to be executed for every
covered mutant to identify the fastest test case that not only covers but also kills the
mutant.

143



Chapter 10 Conclusion and Future Work

Empirical Research
As already indicated in the empirical studies, we cannot generally claim that the results
are transferable to all types of software systems, even though the investigated applications
differ in terms of size, complexity, and operational purpose. Most of the applications em-
ployed to evaluate the proposed techniques in this thesis have been used in other empirical
studies, and hence provide meaningful and comparable results. Nevertheless, the applica-
tions were not randomly selected and could therefore miss boundary cases. More recently,
Fraser and Arcuri [2012a] randomly selected 100 open-source applications to enable sound
empirical studies. Hence, the techniques presented in this thesis as well as the developed
mutation tool could be applied to this set of applications in order to obtain more general-
izable results and, moreover, a more precise mean value of the improvements in terms of
effectiveness and efficiency.

Concerning the testing with partial oracles, an extension of the case study presented in
Chapter 9 is desirable to confirm, extend, and generalize the results. This is, however, not
feasible with the current setup due to the limitations of the applied mutation testing tool.
Yet, implementing the class-based mutation operators into Major will enable further
research and considerably larger empirical studies in this field.

144



AppendixA
Major mutation language Grammar

This appendix provides the grammar for the domain spcific languageMml. It is important
to note that the implementation details, such as symbol table or error handling, have been
omited in order not to confuse the visualization of the lexer and parser rules. For the sake
of clarity, the grammar is devided into the following three categories:

• Terminal symbols for keywords, operators, and special characters

• Lexer rules of Mml

• Parser rules of Mml

1 BIN = ’BIN ’ ;
2 UNR = ’UNR ’ ;
3
4 ORU = ’ORU ’ ;
5 LVR = ’LVR ’ ;
6 AOR = ’AOR ’ ;
7 COR = ’COR ’ ;
8 ROR = ’ROR ’ ;
9 SOR = ’SOR ’ ;

10 LOR = ’LOR ’ ;
11
12 LHS = ’LHS ’ ;
13 RHS = ’RHS ’ ;
14 FALSE = ’FALSE ’ ;
15 TRUE = ’TRUE ’ ;

Listing A.1: Mutation keywords of Mml.

145



Appendix A Major mutation language Grammar

1 AND = ’&&’ ;
2 ARROW = ’->’ ;
3 ASSIGN = ’=’ ;
4 AT = ’@’ ;
5 BIT_AND = ’&’ ;
6 BIT_OR = ’|’ ;
7 BIT_SHIFT_R = ’>>>’ ;
8 COLON = ’:’ ;
9 COMMA = ’,’ ;

10 DEC = ’--’ ;
11 DELIM = ’"’ ;
12 DIV = ’/’ ;
13 DOLLAR = ’$’ ;
14 DOT = ’.’ ;
15 EQUAL = ’==’ ;
16 GE = ’>=’ ;
17 GT = ’>’ ;
18 INC = ’++’ ;
19 LBRACK = ’[’ ;
20 LCURLY = ’{’ ;
21 LE = ’<=’ ;
22 LT = ’<’ ;
23 LOGICAL_NOT = ’!’ ;
24 LPAREN = ’(’ ;
25 MINUS = ’-’ ;
26 MOD = ’%’ ;
27 MUL = ’*’ ;
28 NOT = ’~’ ;
29 NOT_EQUAL = ’!=’ ;
30 OR = ’||’ ;
31 PLUS = ’+’ ;
32 RBRACK = ’]’ ;
33 RCURLY = ’}’ ;
34 RPAREN = ’)’ ;
35 SEMI = ’;’ ;
36 SHIFT_L = ’<<’ ;
37 SHIFT_R = ’>>’ ;
38 UNDERSCORE = ’_’ ;
39 XOR = ’^’ ;

Listing A.2: Operators and special characters used by Mml.

146



1 IDENT_START : (’a’..’z’ | ’A’..’Z’ | UNDERSCORE )
2 ;
3
4 IDENT_REST : (’0’..’9’)
5 ;
6
7 IDENT : IDENT_START ( IDENT_START | IDENT_REST )*
8 ;
9

10 INT_LIT : ’0’
11 | ’1’..’9’ (’0’..’9’)*
12 ;
13
14 FLOAT_LIT : ’1’..’9’+ DOT ’0’..’9’*
15 | ’0’ DOT ’0’..’9’*
16 | DOT ’0’..’9’+
17 ;
18
19 COMMENT : ’//’ ~(’\n’|’\r’)* (’\r\n’ | ’\r’ | ’\n’)?
20 ;
21
22 WS : (’ ’ | ’\r’ | ’\t’ | ’\u000C ’ | ’\n’ )
23 ;
24
25 INIT_NAME : LT (’init ’ | ’clinit ’) GT
26 ;

Listing A.3: Lexer rules of Mml.

147



Appendix A Major mutation language Grammar

1 script : stmt* ;
2
3 stmt : ( | vardef | call | repl_stmt ) SEMI
4 | opdef
5 | COMMENT ;
6
7 repl_stmt : prefix mut_kind LPAREN op RPAREN
8 stmt_scope ARROW ( op_list | IDENT) ;
9

10 prefix : | PLUS | LOGICAL_NOT ;
11
12 stmt_scope : | LT (IDENT | DELIM flatname DELIM) GT ;
13
14 flatname : IDENT (DOT IDENT)*
15 ( DOLANDR (IDENT | INT_LIT ))*
16 (AT (IDENT | INIT_NAME ))? ;
17
18 mut_kind : BIN | UNR ;
19
20 mut_op : (PLUS | MINUS)?
21 (AOR | LOR | COR | ROR | SOR | ORU | LVR) ;
22
23 op_list : LCURLY op (COMMA op)* RCURLY ;
24
25 op : MUL | DIV | MOD | PLUS | MINUS // AOR/ORU
26 | LT | LE | GT | GE | EQUAL | NOT_EQUAL // ROR
27 | AND | OR // COR
28 | XOR | BIT_AND | BIT_OR // LOR
29 | SHIFT_L | SHIFT_R | BIT_SHIFT_R // SOR
30 | NOT | LOGICAL_NOT // ORU
31 | LHS | RHS | FALSE | TRUE ; // ROR/COR
32
33 vardef : IDENT ASSIGN (DELIM flatname DELIM | op_list );
34
35 opdef : IDENT LCURLY ( op_block )* RCURLY ;
36
37 op_block : prefix mut_kind LPAREN op RPAREN ARROW
38 ( op_list | IDENT ) SEMI
39 | ( | mut_op | IDENT) SEMI | COMMENT ;
40
41 call : ( mut_op | IDENT) stmt_scope ;

Listing A.4: Parser rules of Mml.

148



Bibliography

[Acree et al., 1979]
Acree, A. T., Budd, T. A., DeMillo, R. A., Lipton, R. J., and Sayward, F. G.
Mutation analysis. techreport GIT-ICS-79/08, Georgia Institute of Technology, Atlanta,
Georgia, 1979.

[Ammann and Offutt, 2008]
Ammann, P. and Offutt, J. Introduction to Software Testing. Cambridge University
Press, 1 edition, 2008.

[Andrews et al., 2005]
Andrews, J. H., Briand, L. C., and Labiche, Y. Is mutation an appropriate tool for
testing experiments? In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 402–411, 2005.

[Andrews et al., 2006]
Andrews, J. H., Briand, L. C., Labiche, Y., and Namin, A. S. Using mutation
analysis for assessing and comparing testing coverage criteria. IEEE Transactions on
Software Engineering, volume 32(8):608–624, 2006.

[Bertolino, 2007]
Bertolino, A. Software testing research: Achievements, challenges, dreams. In Future
of Software Engineering, FOSE ’07, pages 85–103, 2007.

[Binder, 1999]
Binder, R. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

[Budd, 1980]
Budd, T. A. Mutation Analysis of Program Test Data. Ph.D. thesis, Yale University,
1980.

[Budd et al., 1980]
Budd, T. A., DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Theoretical
and empirical studies on using program mutation to test the functional correctness of
programs. In Proceedings of the 7th ACM Symposium on Principles of Programming
Languages, POPL ’80, pages 220–233. Las Vegas, Nevada, 1980.

149



Bibliography

[Chen et al., 2004]
Chen, T. Y., Huang, D. H., Tse, T. H., and Zhou, Z. Q. Case studies on the
selection of useful relations in metamorphic testing. In Proceedings of the 4th Ibero-
American Symposium on Software Engineering and Knowledge Engineering, JIISIC ’04,
pages 569–583, 2004.

[Chen et al., 2003]
Chen, T. Y., Tse, T. H., and Zhou, Z. Q. Fault-based testing without the need of
oracles. Information and Software Technology, volume 45(1):1–9, 2003.

[Choi et al., 1989]
Choi, B., Mathur, A., and Pattison, B. PMothra: scheduling mutants for execution
on a hypercube. Software Engineering Notes, volume 14:58–65, 1989.

[Christopoulos et al., 2000]
Christopoulos, C., Skodras, A., and Ebrahimi, T. The jpeg2000 still image coding
system: An overview. IEEE Transactions on Consumer Electronics, volume 46(4):1103–
1127, 2000.

[Cobertura, 2010]
Cobertura. The official web site of the Cobertura project, 2010. [accessed July 2010].
URL http://cobertura.sourceforge.net

[Davis and Weyuker, 1981]
Davis, M. D. and Weyuker, E. J. Pseudo-oracles for non-testable programs. In
Proceedings of the Association for Computing Machinery ’81 conference, ACM ’81, pages
254–257. ACM, 1981.

[DeMillo et al., 1991]
DeMillo, R. A., Krauser, E. W., and Mathur, A. P. Compiler-integrated pro-
gram mutation. In Proceedings of the 5th Annual Computer Software and Applications
Conference, COMPSAC ’91, pages 351–356, 1991.

[DeMillo et al., 1978]
DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, volume 11(4):34–41, 1978.

[DeMillo and Offutt, 1991]
DeMillo, R. A. and Offutt, A. J. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, volume 17(9):900–910, 1991.

[Dijkstra, 1970]
Dijkstra, E. W. Notes on Structured Programming. Techni-
cal Report 70-WSK-03, Technological University Eindhoven, 1970.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[Do and Rothermel, 2006]
Do, H. and Rothermel, G. On the use of mutation faults in empirical assessments
of test case prioritization techniques. IEEE Transactions on Software Engineering, vol-
ume 32(9):733–752, 2006.

150

http://cobertura.sourceforge.net


Bibliography

[Elbaum et al., 2002]
Elbaum, S., Malishevsky, A. G., and Rothermel, G. Test case prioritiza-
tion: A family of empirical studies. IEEE Transactions on Software Engineering, vol-
ume 28(2):159–182, 2002.

[Ernst et al., 2001]
Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, volume 27(2):99–123, 2001.

[Fraser and Arcuri, 2011]
Fraser, G. and Arcuri, A. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages
416–419. ACM, 2011.

[Fraser and Arcuri, 2012a]
Fraser, G. and Arcuri, A. Sound empirical evidence in software testing. In Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages
178–188. IEEE Press, 2012.

[Fraser and Arcuri, 2012b]
Fraser, G. and Arcuri, A. Whole test suite generation. IEEE Transactions on
Software Engineering, volume 99(PrePrints), 2012.

[Fraser and Zeller, 2012]
Fraser, G. and Zeller, A. Mutation-driven generation of unit tests and oracles.
IEEE Transactions on Software Engineering, volume 38(2):278–292, 2012.

[Gamma et al., 1995]
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

[Gosling et al., 2005]
Gosling, J., Joy, B., Steele, G., and Bracha, G. The Java Language Specification.
Addison-Wesley Professional, 3rd edition, 2005.

[Guderlei and Mayer, 2007]
Guderlei, R. andMayer, J. Towards automatic testing of imaging software by means
of random and metamorphic testing. International Journal of Software Engineering and
Knowledge Engineering, volume 17(06):757–781, 2007.

[Hamlet, 1994]
Hamlet, R. Random testing. In Encyclopedia of Software Engineering, pages 970–978.
Wiley, 1994.

[Harman et al., 2011]
Harman, M., Jia, Y., and Langdon, W. B. Strong higher order mutation-based
test data generation. In Proceedings of the 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE ’11, pages 212–222, 2011.

151



Bibliography

[Hierons et al., 1999]
Hierons, R., Harman, M., and Danicic, S. Using program slicing to assist in
the detection of equivalent mutants. Software Testing, Verification and Reliability,
volume 9:233–262, 1999.

[Howden, 1982]
Howden, W. E. Weak mutation testing and completeness of test sets. IEEE Transac-
tions on Software Engineering, volume 8:371–379, 1982.

[Irvine et al., 2007]
Irvine, S. A., Pavlinic, T., Trigg, L., Cleary, J. G., Inglis, S., and Utting,
M. Jumble Java byte code to measure the effectiveness of unit tests. In Proceedings of
the Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION, pages 169–175, 2007.

[Jia and Harman, 2009]
Jia, Y. and Harman, M. Higher order mutation testing. Information and Software
Technology, volume 51:1379–1393, 2009.

[Jia and Harman, 2011]
Jia, Y. and Harman, M. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, volume 37(5):649–678, 2011.

[JJ2000, 2010]
JJ2000. Official web site of the jj2000 project, 2010. [accessed January 2010].
URL http://jj2000.epfl.ch

[Jpeg, 2010]
Jpeg. Official web site of the joint photographic experts group, 2010. [accessed January
2010].
URL http://www.jpeg.org

[JUnit, 2012]
JUnit. The official web site of the JUnit project, 2012. [accessed August 2012].
URL http://www.junit.org

[Just et al., 2011a]
Just, R., Kapfhammer, G. M., and Schweiggert, F. Using conditional mutation
to increase the efficiency of mutation analysis. In Proceedings of the 6th ACM/IEEE
International Workshop on Automation of Software Test, AST ’11, pages 50–56. ACM
Press, 2011.

[Just et al., 2012a]
Just, R., Kapfhammer, G. M., and Schweiggert, F. Do redundant mutants affect
the effectiveness and efficiency of mutation analysis? In Proceedings of the 7th IEEE
International Workshop on Mutation Analysis, Mutation ’12, pages 720–725. IEEE Com-
puter Society, 2012.

[Just et al., 2012b]
Just, R., Kapfhammer, G. M., and Schweiggert, F. Using non-redundant mu-
tation operators and test suite prioritization to achieve efficient and scalable mutation

152

http://jj2000.epfl.ch
http://www.jpeg.org
http://www.junit.org


Bibliography

analysis. In Proceedings of the 23rd IEEE International Symposium on Software Relia-
bility Engineering, ISSRE ’12. IEEE Computer Society, 2012. To appear.

[Just et al., 2012c]
Just, R., Kapfhammer, G. M., and Schweiggert, F. Using non-redundant mu-
tation operators to improve the efficiency and effectiveness of mutation analysis, 2012.
Working paper (submitted, under review).

[Just and Schweiggert, 2010]
Just, R. and Schweiggert, F. Automating software tests with partial oracles in
integrated environments. In Proceedings of the 5th ACM/IEEE International Workshop
on Automation of Software Test, AST ’10, pages 91–94. ACM Press, 2010.

[Just and Schweiggert, 2011]
Just, R. and Schweiggert, F. Automating unit and integration testing with partial
oracles. Software Quality Journal, volume 19:753–769, Springer, 2011.

[Just et al., 2011b]
Just, R., Schweiggert, F., and Kapfhammer, G. M. MAJOR: An efficient and
extensible tool for mutation analysis in a Java compiler. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’11,
pages 612–615. IEEE Computer Society, 2011.

[Kaminski et al., 2011]
Kaminski, G., Ammann, P., and Offutt, J. Better predicate testing. In Proceedings
of the 6th International Workshop on Automation of Software Test, AST ’11, pages
57–63. ACM Press, 2011.

[King, 1976]
King, J. C. Symbolic execution and program testing. Communications of the ACM,
volume 19(7):385–394, 1976.

[King and Offutt, 1991]
King, K. N. and Offutt, A. J. A Fortran language system for mutation-based
software testing. Software Practice and Experience, volume 21(7):685–718, 1991.

[Lindholm and Yellin, 2000]
Lindholm, T. and Yellin, F. The Java Virtual Machine Specification. Addison-
Wesley, 2 edition, 2000.

[Lipton and Sayward, 1978]
Lipton, R. J. and Sayward, F. G. The status of research on program mutation.
In Proceedings of the Workshop on Software Testing and Test Documentation, pages
355–373, 1978.

[Ma et al., 2002]
Ma, Y.-S., Kwon, Y.-R., and Offutt, J. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–363, 2002.

153



Bibliography

[Ma et al., 2005]
Ma, Y.-S., Offutt, J., and Kwon, Y. R. MuJava: an automated class mutation
system. Software Testing, Verification, and Reliability, volume 15(2):97–133, 2005.

[Ma et al., 2006]
Ma, Y.-S., Offutt, J., and Kwon, Y.-R. MuJava: A mutation system for Java.
In Proceedings of the 28th international conference on Software engineering, ICSE ’06,
pages 827–830, 2006.

[Mayer, 2005]
Mayer, J. Lattice-based adaptive random testing. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’05,
pages 333–336. ACM, 2005.

[Mayer and Guderlei, 2006]
Mayer, J. and Guderlei, R. An empirical study on the selection of good meta-
morphic relations. In Proceedings of the 30th Annual International Computer Software
and Applications Conference, COMPSAC ’06, pages 475–484. IEEE Computer Society,
2006.

[McCabe, 1976]
McCabe, T. J. A complexity measure. IEEE Transactions on Software Engineering,
volume 2(4):308–320, 1976.

[McMinn, 2004]
McMinn, P. Search-based software test data generation: a survey. Software Testing,
Verification, and Reliability, volume 14(2):105–156, 2004.

[Meyer, 1997]
Meyer, B. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., 2nd
edition, 1997.

[Mills, 1972]
Mills, H. On the Statistical Validation of Computer Programs. Technical report,
Federal Systems Division, IBM, 1972.

[Morell, 1984]
Morell, L. J. A Theory of Error-Based Testing. Ph.D. thesis, University of Maryland
at College Park, 1984.

[Morell, 1990]
Morell, L. J. A theory of fault-based testing. IEEE Transactions on Software Engi-
neering, volume 16(8):844–857, 1990.

[MuJava, 2009]
MuJava. The official web site of the MuJava project, 2009. [accessed November 2009].
URL http://www.cs.gmu.edu/~offutt/mujava

[Myers, 1979]
Myers, G. J. The Art of Software Testing. John Wiley & Sons, Inc., New York, NY,
USA, 1st edition, 1979.

154

http://www.cs.gmu.edu/~offutt/mujava


Bibliography

[Myers et al., 2011]
Myers, G. J., Sandler, C., and Badgett, T. The Art of Software Testing. Wiley
Publishing, 3rd edition, 2011.

[Namin et al., 2008]
Namin, A. S., Andrews, J. H., and Murdoch, D. J. Sufficient mutation operators
for measuring test effectiveness. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 351–360, 2008.

[Offutt, 1989]
Offutt, A. J. The coupling effect: Fact or fiction. ACM SIGSOFT Software Engi-
neering Notes, volume 14(8):131–140, 1989.

[Offutt, 1992]
Offutt, A. J. Investigations of the software testing coupling effect. ACM Transactions
on Software Engineering Methodology, volume 1(1):5–20, 1992.

[Offutt and Craft, 1994]
Offutt, A. J. and Craft, W. M. Using compiler optimization techniques to de-
tect equivalent mutants. The Journal of Software Testing, Verification, and Reliability,
volume 4:131–154, 1994.

[Offutt et al., 1996]
Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., and Zapf, C. An exper-
imental determination of sufficient mutant operators. ACM Transactions on Software
Engineering and Methodology, volume 5(2):99–118, 1996.

[Offutt and Pan, 1997]
Offutt, A. J. and Pan, J. Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification, and Reliability, volume 7(3):165–192, 1997.

[Offutt and Untch, 2000]
Offutt, J. and Untch, R. H. Mutation 2000: Uniting the orthogonal. In Proceedings
of Mutation 2000: Mutation Testing in the Twentieth and the Twenty First Centuries,
pages 45–55, 2000.

[OpenJDK, 2012]
OpenJDK. The official web site of the OpenJDK project, 2012. [accessed November
2011].
URL http://openjdk.java.net

[Pacheco et al., 2007]
Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. Feedback-directed ran-
dom test generation. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 75–84. IEEE Computer Society, 2007.

[Parr, 2007]
Parr, T. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

155

http://openjdk.java.net


Bibliography

[Parr and Fisher, 2011]
Parr, T. and Fisher, K. LL(*): The foundation of the antlr parser generator. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, pages 425–436. ACM, 2011.

[Radio Technical Commission for Aeronautics (RTCA), 2011]
Radio Technical Commission for Aeronautics (RTCA). Software considerations
in airborne systems and equipment certification, 2011. RTCA/DO-178C.

[Schuler et al., 2009]
Schuler, D., Dallmeier, V., and Zeller, A. Efficient mutation testing by checking
invariant violations. In Proceedings of the 18th International Symposium on Software
Testing and Analysis, ISSTA ’09, pages 69–80. ACM, 2009.

[Schuler and Zeller, 2009]
Schuler, D. and Zeller, A. Javalanche: efficient mutation testing for java. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ES-
EC/FSE ’09, pages 297–298. ACM, 2009.

[Schuler and Zeller, 2010]
Schuler, D. and Zeller, A. (Un-)covering equivalent mutants. In Proceedings of the
3rd International Conference on Software Testing, Verification and Validation, ICST
’10, pages 45–54, 2010.

[Skodras et al., 2001]
Skodras, A., Christopoulos, C., and Ebrahimi, T. The jpeg 2000 still image
compression standard. IEEE Signal Processing Magazine, volume 18(5):36–58, 2001.

[Spillner et al., 2007]
Spillner, A., Linz, T., and Schaefer, H. Software Testing Foundations: A Study
Guide for the Certified Tester Exam. Rocky Nook, 2007.

[Tai, 1996]
Tai, K.-C. Theory of fault-based predicate testing for computer programs. IEEE
Transactions on Software Engineering, volume 22(8), 1996.

[Tillmann and De Halleux, 2008]
Tillmann, N. and De Halleux, J. Pex: White box test generation for .net. In
Proceedings of the 2nd International Conference on Tests and Proofs, TAP ’08, pages
134–153. Springer-Verlag, 2008.

[Untch et al., 1993]
Untch, R. H., Offutt, A. J., and Harrold, M. J. Mutation analysis using mutant
schemata. In Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’93, pages 139–148, 1993.

[Visser et al., 2004]
Visser, W., Pǎsǎreanu, C. S., and Khurshid, S. Test input generation with Java
PathFinder. In Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’04, pages 97–107, 2004.

156



Bibliography

[Voas, 1992]
Voas, J. M. PIE: a dynamic failure-based technique. IEEE Transactions on Software
Engineering, volume 18:717–727, 1992.

[Weyuker, 1982]
Weyuker, E. J. On Testing Non-Testable Programs. The Computer Journal, vol-
ume 25(4):465–470, 1982.

[Zhou et al., 2004]
Zhou, Z. Q., Huang, D. H., Tse, T. H., Yang, Z., Huang, H., and Chen, T. Y.
Metamorphic testing and its applications. In Proceedings of the 8th International Sym-
posium on Future Software Technology, ISFST ’04, 2004.

[Zhu et al., 1997]
Zhu, H., Hall, P. A. V., and May, J. H. R. Software unit test coverage and
adequacy. ACM Computing Surveys, volume 29(4):366–427, 1997.

157


	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Preface and Introduction
	Preface
	The Big Picture
	Contributions
	Outline

	Introduction to Software Testing
	Software Testing Levels
	Automated Software Testing
	Test Adequacy Criteria
	Control Flow Coverage
	Data Flow Coverage
	Fault-based Criteria

	Test Data Generation


	Efficient and Effective Mutation Analysis
	Background and Limitations of Mutation Analysis
	Mutation Analysis Background
	Hypotheses of Mutation Analysis
	Competent Programmer Hypothesis
	The Coupling Effect

	Limitations of Mutation Analysis
	Scalability Issues
	Infinite Loops
	Equivalent and Redundant Mutants

	State of the Art
	Summary

	Conditional Mutation
	Introduction
	Conditional Mutation
	Tail-Recursive Algorithm
	Runtime Optimization with Mutation Coverage
	Support for Higher Order Mutation

	Empirical Study
	Space Overhead of Mutant Generation
	Time Overhead of Mutant Execution

	Related Techniques and Limitations
	Mutant Schemata
	Bytecode Transformation
	Limitations

	Summary

	Mutation Analysis in a Java Compiler
	Introduction
	Conditional Mutation
	Implementation Details
	Configuration
	Driver Class

	Major Mutation Language
	Grammar for Mml
	Integration with MAJOR
	Script Examples

	Summary

	Non-Redundant Mutation Operators
	Introduction
	A Detailed View on Mutation Operators
	Empirical Evaluation
	The frequency of the COR and ROR mutants
	The number of connectors in conditional expressions
	Decreasing the runtime of the mutation analysis
	Increasing the precision of the mutation score

	Related Work
	Summary

	Test Suite Prioritization
	Introduction
	Non-Redundant Mutation Operators
	Efficient and Scalable Mutation Analysis
	Mutation Coverage
	Precision of the Mutation Coverage
	Overlap of the Mutation Coverage
	Runtime of Test Cases
	Visualizing the Overlap and Runtime

	Optimized Mutation Analysis Workflow
	Gather Mutation Coverage Information
	Estimate Test Runtime and Prioritize Test Cases
	Threshold-based Splitting of Test Classes
	Complete Mutation Analysis Workflow

	Empirical Evaluation
	Related Work
	Summary


	Assessing Partial Oracles with Mutation Analysis
	Background on the Oracle Problem and Partial Oracles
	The Oracle Problem
	Partial Oracles
	Assertions, Contracts, and Invariants
	Metamorphic Relations

	Summary

	Automating Unit and Integration Testing with Partial Oracles
	Introduction
	Preliminaries and Related Work
	Case Study
	Evaluation of the Input Values
	Evaluation of the Partial Oracles
	Efficiency and Effectiveness Improvements
	Discussion

	Summary


	Conclusions and Appendix
	Conclusion and Future Work
	Conclusions
	Future Work

	Major mutation language Grammar
	Bibliography


