Universität Ulm Klinik für Orthopädie Ärztlicher Direktor: Prof. Dr. med. Heiko Reichel

Etablierung eines Chondrozyten-basierten In-vitro-Modells zur Testung anti-inflammatorischer Substanzen für die Arthrosetherapie

Dissertation

zur Erlangung des Doktorgrades der Humanbiologie der medizinischen Fakultät der Universität Ulm

> Helga Ursula Joos geboren in Geislingen an der Steige

> > 2009

Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin

- 1. Berichterstatter: Prof. Dr. Rolf E. Brenner
- 2. Berichterstatter: Prof. Dr. Stefan Laufer
- Tag der Promotion: 15. Januar 2010

Inhaltsverzeichnis

1.	Einl	eitung		1
	1.1.	Bedeu	tung der Arthrose	1
	1.2.	Der K	norpel	2
		1.2.1.	Aufbau und Funktion des artikulären Knorpels	2
		1.2.2.	Veränderung des Knorpels in der Arthrose	4
	1.3.	Pharm	nakologische Therapie der Arthrose	10
		1.3.1.	Angewandte Medikation	10
		1.3.2.	Die Entwicklung neuer Wirkstoffe	11
	1.4.	Zielset	zung	15
2.	Mat	erial u	nd Methoden	16
	2.1.	Mater	ial	16
		2.1.1.	Patientenkollektiv	16
		2.1.2.	Geräte und Verbrauchsmaterial	16
		2.1.3.	Chemikalien und Kits	19
		2.1.4.	Inhibitoren, Primer und Antikörper	23
		2.1.5.	Kulturmedien, Puffer, Lösungen und Gele	31
		2.1.6.	Computerprogramme	35
	2.2.	Metho	den	35
		2.2.1.	Zellkultur	35
		2.2.2.	Molekularbiologische Methoden	39
		2.2.3.	Proteinbiochemische Methoden	49
		2.2.4.	Histologie und Zellfärbung	52
		2.2.5.	Datenauswertung und statistische Auswerteverfahren	55
3.	Exp	erimen	te und Ergebnisse	59
	3.1.	Etabli	erung eines In-vitro-Testsystems	59
		3.1.1.	Vergleich zwischen Monolayer- und Alginat-Bead-Kultur	59
		3.1.2.	Stimulationsstudien	61

	3.2.	Charal	kterisierung verschiedener Testsubstanzen auf semiquantitativer	
		Genex	pressionsebene	64
	3.3.	Genon	nweite Microarray-Analyse	67
		3.3.1.	Auswertung der Microarray-Analyse	67
		3.3.2.	GoMiner-Analyse der Microarray-Ergebnisse	69
		3.3.3.	Clusteranalyse der Microarray-Ergebnisse	73
	3.4.	Analys	se neuer involvierter Gene	75
		3.4.1.	Extrazelluläre Matrixkomponenten	75
		3.4.2.	Zytoskelettkomponenten	76
	3.5.	Quant	itative Charakterisierung anti-inflammatorischer Wirkstoffe $\ .\ .\ .$	83
		3.5.1.	Effekte der Wirksubstanzen auf den PGE_2 -Syntheseweg	. 84
		3.5.2.	Effekte der Wirksubstanzen auf den NO-Syntheseweg	93
		3.5.3.	Effekte der Wirksubstanzen auf die MMP13-Genexpression	96
		3.5.4.	Effekte der Wirksubstanzen auf die OPG-Genexpression	98
		3.5.5.	IC_{50} - und IC_{75} -Werte der Wirkstoffe	99
4.	Disk	ussion		101
	4.1.	Etablie	erung und Validierung des <i>In-vitro</i> -Inflammationsmodells	102
	4.2.	Genon	nweite Microarray-Analyse	104
	4.3.	Analys	se neuer involvierter Gene	107
		4.3.1.	Extrazelluläre Matrixkomponenten	107
		4.3.2.	Zytoskelettkomponenten	108
	4.4.	Charal	kterisierung anti-inflammatorischer Wirkstoffe	111
		4.4.1.	Effekte der Wirksubstanzen auf den PGE_2 -Syntheseweg	. 111
		4.4.2.	Effekte der Wirksubstanzen auf den NO-Syntheseweg	115
		4.4.3.	Effekte auf die MMP13- und OPG-Genexpression	117
		4.4.4.	Vergleich der Wirkstoffe anhand der Analyseergebnisse	119
5.	Zusa	ammen	ıfassung	122
Lit	teratı	urverze	ichnis	124
^	۸nh	ang		145
А.		Angoh	og der Sponderzahlen	145
	Δ 9	Liston		140
	п.2.		Listen regulierter Gene	1/6
		Δ99	Beeinflusste biologische Prozesse und Zollkomponenten	150
		$\Pi. \angle. \angle.$	Deciminasie protogische i rozesse und Zenkomponenten	199

Abkürzungsverzeichnis

AA	Arachidonsäure
Abb.	Abbildung
ADAM	"A Disintegrin and Metalloproteinase"
ADAMTS	"A Disintegrin and Metallo proteinase with Thrombospondin $\operatorname{Motif}\nolimits``$
AGC	Aggrekan
ANOVA	"Analysis of Variance"
AP-1	Aktivator-Protein 1
APS	Ammoniumperoxidsulfat
Aqua demin.	Demineralisiertes Wasser
bp	Basenpaar(e)
$^{\circ}\mathrm{C}$	Grad Celsius
cAMP	Zyklisches Adenosinmonophosphat
C/EBP	"CCAAT/Enhancer Binding Proteins"
cDNA	Komplementäre Desoxyribonukleinsäure
cm	Zentimeter
CO_2	Kohlendioxid
COL	Kollagen
COMP	"Cartilage Oligomeric Matrix Protein"
COX	Zyklooxygenase
CREB	"cAMP Responsive Element Binding Protein"
CRTL1	"Cartilage Linking Protein 1"
CTGF	"Connective Tissue Growth Factor"
DEPC	Diethylpyrocarbonat
DMEM	"Dulbecco's Modified Eagle's Medium"
DMOAD	"Disease-Modifying Osteoarthritis Drug"
DNA	Desoxyribonukleinsäure
DUSP	"Dual-Specifity Phosphatases"
EDTA	Ethylendiamintetraacetat
Elk-1	"Ets-like Transcription Factor"

EP	"Prostaglandin E_2 -Rezeptor"
ERK	"Extracellular Signal-Regulated Kinases"
EZM	Extrazelluläre Matrix
FDR	"False Discovery Rate"
FHL	"Four and a half LIM Domains"
FKS	Fetales Kälberserum
FLAP	"5-Lipoxygenase-Activating Protein"
FN1	Fibronektin 1
g	Gramm
GAPDH	Glyceraldehyd-3-Phosphat-Dehydrogenase
HOMER3	"Homo Sapiens Homer Homolog 3"
HSP	"Heat Shock Protein"
$I-\kappa B$	"Inhibitor of NF- κB "
IC_x	Inhibitorische Konzentration, bei der eine Hemmung von x $\%$ er-
	reicht wird
ICE	"IL-1 β Converting enzyme"
IKK	I- κ B Kinase
IL	Interleukin
IL-1R	Interleukin-1-Rezeptor
IL-1Ra	Interleukin-1-Rezeptor Antagonist
ITGA2B	Integrinkette α_{2b}
ITGB3	Integrinkette β_3
JAK	Janus Kinase
JNK	"Jun N-Terminal Kinase"
K _D	Dissoziationskonstante
kDa	Kilodalton
K-TEP	Knie-Totalendoprothese
1	Liter
LASP1	"LIM and SH3 Protein 1"
Log_{10}	Dekadischer Logarithmus
LOX	Lipoxygenase
LPS	Lipopolysaccharid
LTB_4	Leukotrien B_4
$\mu { m g}$	Mikrogramm
μ l	Mikroliter
$\mu { m m}$	Mikrometer
μM	Mikromolar

C_t	"Threshold Cycle"
М	Molar
mA	Milliampere
MAPK	"Mitogen-Activated Protein Kinase"
MEF-2	"Myelin Expression Factor 2"
mg	Milligramm
MKK	MAPK Kinase
MKKK	MAPK Kinase Kinase
ml	Milliliter
mМ	Millimolar
mm	Millimeter
MMP	Matrixmetalloproteinase
mRNA	"Messenger" Ribonukleinsäure
NaCl	Natriumchlorid
NCBI	"National Center for Biotechnology Information"
$NF-\kappa B$	"Nuclear Factor- κB "
ng	Nanogramm
nl	Nanoliter
nm	Nanometer
nM	Nanomolar
NO	Stickstoffmonoxid
NOS2A	Induzierbare NO-Synthase
NSAID	"Nonsteroidal Anti-Inflammatory Drugs"
OPG	Osteoprotegerin
р	Signifikanzwert
PBMC	"Peripheral Blood Mononuclear Cells"
PBS	Phosphat-gepufferte Salzlösung ("Phosphate Buffered Saline")
PCR	Polymerase-Kettenreaktion
PDE4	Phosphodiesterase 4
PDLIM1	"PDZ and LIM Domain 1"
PGE_2	Prostaglandin E_2
PGH_2	Prostaglandin H_2
PGJ_2	Prostaglandin J_2
PLA_2	Phospholipase A_2
$\mathrm{PPAR}\gamma$	"Peroxisome Proliferator-Activator Receptor $\gamma^{\!\prime\prime}$
PPRE	"PPAR Response Element"
PTGES	Prostaglandin E-Synthase

RANKL	"Receptor Activator of Nuclear Factor kappa B Ligand"
RNA	Ribonukleinsäure
rpm	Rotationen pro Minute
RQ	Relative Quantität
rRNA	Ribosomale Ribonukleinsäure
RT	Raumtemperatur
RT-PCR	Reverse Transkriptase-Polymerase-Kettenreaktion
RUNX2	"Runt-Related Transcription Factor 2"
RZB	Relative Zentrifugalbeschleunigung als Vielfaches der Erdbeschleu-
	nigung
S.	Seite
SAPK	"Stress-Activated Protein Kinase"
SD	Standardabweichung
SDS	Natriumdodecylsulfat
SOD	Superoxiddismustase
SOX9	"SRY (sex determining region Y)-Box 9"
Tab.	Tabelle
TAK1	$TGF\beta$ -aktivierte Kinase
TGF	"Tissue Growth Factor"
TIMP	"Tissue Inhibitor of Matrixmetalloproteinase"
TNF α	Tumornekrosefaktor α
TNFR	TNF-Rezeptor
TUBB	Tubulin β
U	"Units"
Upm	Umdrehungen pro Minute
V	Volt
VIM	Vimentin
VS	versus
W	Watt

1. Einleitung

1.1. Bedeutung der Arthrose

Aufgrund ihrer Häufigkeit nehmen die Arthrosen und ihre Behandlung unter den muskuloskeletalen Erkrankungen eine zentrale Stellung ein [35]. Das Risiko für die Entwicklung einer Arthrose steigt mit zunehmendem Alter kontinuierlich an [37]. So wurde in Deutschland bei mehr als 30 % der über 50-Jährigen eine Arthrose ärztlich diagnostiziert, die Selbstangaben zu arthrotischen Beschwerden liegen bei über 40 % [192]. Die alltäglichen Aktivitäten der Betroffenen werden durch die Krankheitssymptome eingeschränkt, was zu einem Verlust an Lebensqualität führt [106, 90]. Die demografische Entwicklung unserer Gesellschaft lässt eine weitere Zunahme der Prävalenz erwarten. Die Arthrose erlangt dadurch zusätzlich ökonomische Bedeutung. In Deutschland wurden 2006 Krankheitskosten in Höhe von 7.5 Milliarden Euro durch Arthrose verursacht, dies machte den größten Anteil im Bereich der muskuloskeletalen Erkrankungen aus [192]. Aber auch sekundäre Kosten der Krankheit belasten die Sozialsysteme [35]. In den kommenden Jahren entwickelt sich die Arthrose vermutlich zum Hauptgrund für Invalidität und führt damit zu steigendem Arbeitsausfall und krankheitsbedingter Frühverrentung [35]. Daher wurde zu Beginn dieses Milleniums von den Vereinten Nationen und der Weltgesundheitsorganisation die "Bone and Joint Decade 2000-2010" ausgerufen. Im Focus soll dabei die Behandlung und Prävention von muskuloskeletalen Störungen stehen [218].

Arthrose ist ein über das durch die normale Alterung bedingte Maß hinausgehender Gelenkverschleiß [192]. Am häufigsten sind davon Knie- und Hüftgelenke betroffen. Risikofaktoren sind neben dem Alter eine übermäßige Belastung des Gelenkes durch Übergewicht oder angeborene bzw. traumatische Fehlstellungen. Auch vorangegangene Verletzungen und Entzündungen oder genetische Dispositionen können eine Rolle spielen. Die Arthrose zeigt ein komplexes Krankheitsbild, das alle Bereiche des Gelenkes betrifft (Abb. 1). Sie manifestiert sich primär in der Degeneration des Knorpels, geht aber auch mit einer Sklerose des darunterliegenden Knochens und der Bildung von Osteophyten einher. Die Folgen der krankhaften Veränderungen im arthrotischen Gelenk sind eine Einschränkung der Beweglichkeit bis hin zum Funktionsverlust sowie starke chronische Schmerzen. Die Arthrose wird von der rheumatoiden Arthritis klar abgetrennt, bei der eine chronische Gelenkentzündung aufgrund einer Autoimmunreaktion im Vordergrund steht [125].

Abbildung 1.: Schematische Darstellung arthrotischer Veränderungen im Kniegelenk

A: Darstellung von gesundem Gewebe ohne Knorpelfissuren oder Synovitis. B: In der Arthrose zu beobachtende Knorpeldegeneration, die häufig mit Osteosklerose, der Bildung von Osteophyten sowie einer Synovitis einhergeht. Adaptiert nach Wieland et al. [215]

1.2. Der Knorpel

1.2.1. Aufbau und Funktion des artikulären Knorpels

Primär bei einer Arthrose betroffenes Gewebe ist der Gelenkknorpel [215]. Knorpel gehört zu den Binde- und Stützgeweben des menschlichen Körpers. Er überzieht die artikulierenden Knochenenden mit einer beim Kniegelenk etwa 5 mm dicken Schicht und ist von Synovialflüssigkeit bedeckt, die als Schmiermittel dient. Dadurch wird eine fast reibungslose Beweglichkeit des Gelenks ermöglicht. Durch die hohe Elastizität der Knorpelmatrix werden Stöße gedämpft und der darunterliegende Knochen vor Abreibung geschützt. Diese besonderen Eigenschaften des Knorpels sind auf den Aufbau der Matrix zurückzuführen. Im Gelenk ist hyaliner Knorpel zu finden, der sich im Vergleich zum Faser- bzw. elastischen Knorpel durch seine hohe Belastungsfähigkeit auszeichnet. Die Hauptbestandteile sind Wasser (60-80 %), Kollagene (10 % - 30 %) und Proteoglykane (5% -10%) [122]. Die arkadenförmig angeordneten Kollagenfasern bilden ein Grundgerüst und sorgen so für Zug- und Reißfestigkeit des Knorpels [184]. Von den 27 bekannten Kollagentypen kommt im Gelenkknorpel vorrangig das fibrilläre Kollagen Typ II (95%) vor, das mit den Kollagenen Typ IX und XI Heterofibrillen bildet, die zum Beispiel an Interaktionen mit Nicht-Kollagen-Proteinen beteiligt sind. Der Zwischenraum der extrazellulären Grundsubstanz wird von Hyaluronsäure, verschiedenen Glykoproteinen und Proteoglykanen, die aus einem Core-Protein und daran gebundenen Glykosaminglykanketten bestehen, ausgefüllt. Einen hohen Stellenwert für die funktionellen Anforderungen an den Gelenkknorpel hat das Proteoglykan Aggrekan, an dessen Core-Protein zahlreiche Chondroitinsulfat- und Keratansulfatketten kovalent gebunden sind. Es kann mit Hyaluronsäure riesige Aggregate bilden, die aufgrund ihrer Wasserbindung für die Elastizität des Knorpels verantwortlich sind [83]. Durch das Kollagengerüst wird eine unkontrollierte Schwellung begrenzt. Als Folge besteht ein stetiger Schwelldruck, der bei Druckeinwirkung von außen eine Deformation verhindert. Die extrazelluläre Matrix (EZM) wird von den im Knorpel befindlichen Zellen, den Chondrozyten, gebildet. Die Chondrozyten weisen eine inhomogene Verteilung in den verschiedenen Schichten des Knorpelgewebes auf und liegen in Knorpelhöhlen, teilweise zu Chondronen zusammengefasst, vor (Abb. 2). Die Zellen machen nur 5 % der Gesamtmasse des Knorpels aus. Da es sich um ein avaskuläres, alymphatisches und nicht innerviertes Gewebe handelt, erfolgt die Versorgung der Zellen über Diffusion durch die EZM, angetrieben durch die Kompression und Dekompression der Matrix bei Belastung des Gelenkes [121]. Chondrozyten zeigen eine hohe metabolische Aktivität zur Protein- und Kohlenhydratsynthese. Sie bestimmen die Zusammensetzung der EZM und damit die Art des ausdifferenzierten Knorpels.

Die EZM des Knorpels befindet sich in stetigem Umbau. Die Umbauvorgänge spielen beispielsweise bei der Signalweiterleitung oder auch der Zellmigration eine wichtig Rolle [193]. Eine Balance zwischen katabolen und anabolen Prozessen ist dabei von essentieller Bedeutung. Im gesunden Knorpel wird der enzymatische Abbau der Grundsubstanz durch die Synthese von anabolen Matrixbestandteilen kompensiert. Dieses komplexe Gleichgewicht wird durch ein streng kontrolliertes Netzwerk aus Zytokinen und Wachstumsfaktoren reguliert. Die Degradation der Matrixkomponenten erfolgt hauptsächlich durch substratspezifische Matrix-Metalloproteinasen (MMP) und Aggrekanasen. MMP gehören zu einer strukturell und funktionell vielfältigen Gruppe, die Kollagenasen (z. B. MMP1 und MMP13), Gelatinasen (MMP2 und MMP9), Stromelysine (z. B. MMP3 und

Abbildung 2.: Mikroskopische Aufnahmen von artikulärem Knorpel A: Safranin-O-Färbung eines Schnittes von Paraffin-präpariertem, leicht arthrotischem Knorpelgewebe mit angrenzendem Knochen. Die in der Matrix enthaltenen Proteoglykane erscheinen rot gefärbt. B: Transmissionselektronenmikroskopische Aufnahme eines Chondrozyten mit umgebender Matrix im Ultradünnschnitt.

MMP10) und weitere, teilweise transmembrane Enzyme umfasst. Sie weisen gemeinsame funktionelle Domänen und komplexe Aktivierungsmechanismen auf. Zytokine beeinflussen die Synthese und Sezernierung der MMP. Spezifische Antagonisten, die "tissue inhibitors of matrix metalloproteinases" (TIMP), binden an das aktive Zentrum von MMP und sind somit wichtige Gegenspieler dieser Enzyme. Die Aggrekanasen stellen eine Untergruppe der Metalloproteinasen dar und können in ADAM ("a disintegrin and metalloproteinase") und ADAMTS ("a disintegrin and metalloproteinase with thrombospondin motif") unterteilt werden. Im Gegenteil zu ADAM, die an die Zellmembran gebunden sind, werden die ADAMTS sezerniert und sind in die Matrixhomöostase involviert. Sie werden auf verschiedenen Ebenen in ihrer Expression reguliert und wie die MMP durch TIMP inhibiert [96, 164].

1.2.2. Veränderung des Knorpels in der Arthrose

1.2.2.1. Veränderung der Zell-Matrix-Biologie

Die EZM des Gelenkknorpels ist das Hauptziel arthrotischer Degeneration. Einerseits ist eine mechanische Schädigung des Knorpels bei einer Arthrose festzustellen, andererseits spielen biochemische Prozesse eine entscheidende Rolle. Ein gestörtes Gleichgewicht matrixbildender und -abbauender Vorgänge verändert die biomechanischen Eigenschaften des Knorpels und führt zu einem Teufelskreis aus Knorpeldegradation und der Bildung von Inflammationsmediatoren (Abb. 3).

Abbildung 3.: Schematische Darstellung verschiedener Faktoren, die in die Pathogenese der Arthrose involviert sind

Arthrotische Chondrozyten sind veränderten extrazellulären Bedingungen wie Entzündungsmediatoren (z. B. Interleukin 1, Tumornekrosefaktor α , Prostaglandin E₂, NO), Abbauprodukten der Matrix (z. B. Kollagen-, Fibronektin- und Aggrekanfragmente) oder mechanischer Belastung verstärkt ausgesetzt. Dadurch werden Zellreaktionen induziert, die dem Knorpelabbau durch Degradationsenzyme (z. B. Matrixmetalloproteinase 13, "a disintegrin and metalloproteinase with thrombospondin motif" 5), der Bildung von Inflammationsmediatoren und der Veränderung des chondrozytären Phänotypes weiteren Vorschub leisten. Abbildung adaptiert nach Aigner et al. [3]

Zu den Entzündungsfaktoren zählen verschiedene Zytokine, wobei dem pro-inflammatorischen Zytokin IL-1 β eine herausragende Rolle zukommt [54]. Diese Mediatoren werden nicht nur als autokrine Faktoren von den Chondrozyten selbst gebildet. Sie werden z. B. auch von Synoviozyten oder Leukozyten sezerniert und gelangen durch Diffusion in den Knorpel. In einer teilweise synergistischen Wirkungsweise steigern sie die Synthese proteolytischer Enzyme und hemmen die Synthese von Enzyminhibitoren in Chondrozyten. Zusätzlich führen sie zu einem Proteoglykanverlust und verändern die Zusammensetzung der EZM durch Beeinflussung der Matrixsynthese [178]. Dies führt zu einem fortschreitenden Ungleichgewicht, das zugunsten kataboler Vorgänge verschoben ist. Bei den Degradationsprozessen wird MMP13 eine Schlüsselrolle zugeschrieben [16, 66]. Diese Proteinase wird unter anderem durch IL-1 β , TNF α und Fibronektin-Fragmente positiv reguliert und ist in arthrotischem Gewebe vermehrt vorhanden. [209, 66]. Zusätzlich sind Aggrekanasen an der Pathogenese der Arthrose beteiligt [154, 38, 145]. Dadurch werden zum einen Abbauprodukte der Matrix freigesetzt, die wiederum als Entzündungsmediatoren wirken können [111, 167, 92]. Zum anderen wird die Belastungsfähigkeit der Knorpelmatrix geschwächt und mechanische Schädigung gefördert. Die Chondrozyten versuchen diesen Degradationsprozess durch gesteigerte Synthese von EZM-Komponenten und Erhöhung der mitotischen Teilungen zu kompensieren [178]. Diese Gegenregulation reicht aber häufig nicht aus, um die Degradation auszugleichen [77]. Teilweise wird durch das veränderte regulatorische Umfeld eine fehlgeleitete Differenzierung der Chondrozyten induziert, was zu einem hypertrophen oder dedifferenzierten Phänotyp oder auch zur Apoptose führen kann [3]. Zum Zelltod kann die Bildung des Mediators Stickstoffmonoxid (NO) beitragen [212]. Es wird unter anderem durch IL-1 β induziert und ist in arthrotischem Knorpel erhöht. Neben einer schädigenden Wirkung auf die DNA fördert NO katabole Prozesse [48].

1.2.2.2. Induktion intrazellulärer Vorgänge

Bei der Pathogenese der Arthrose erfolgt die Induktion inflammatorischer Prozesse über Signalkaskaden. Ein Überblick über die beteiligten Schlüsselwege gibt Abb. 4, S. 8. Zwei der wichtigsten pro-inflammatorischen Mediatoren bei entzündlichen Gelenkerkrankungen sind die Zytokine IL-1 und TNF α [22].

Von IL-1 existieren zwei Isoformen, IL-1 α und IL-1 β , die beide an denselben Rezeptor binden und ähnliche biologische Aktivitäten aufweisen [55]. Stimulierte Chondrozyten bilden vorrangig IL-1 β , weshalb dieser Form eine größere Bedeutung bei Gelenkerkrankungen zugeschrieben wird als IL-1 α [168]. Die Synthese, Sekretion und Aktivität von IL-1 β ist streng reguliert. Beispielsweise muß die Proform von IL-1 β durch das "IL-1 β converting enzyme" (ICE) aktiviert werden, dessen Expression ebenfalls von den Zellen moduliert werden kann [27]. Eine weitere Regulationsmöglichkeit ergibt sich durch den IL-1-Rezeptor Antagonisten (IL-1Ra), der aufgrund struktureller Ähnlichkeit zu IL-1 β den Interleukin-1-Rezeptor (IL-1R) blockiert [55]. Der durch IL-1 β induzierte Signalweg ist hochkonserviert und moduliert hauptsächlich Immun- und Entzündungsantworten [59]. Nach Bindung des Zytokins an IL-1R kommt es zu einer Komplexbildung mit dem "IL-1R accessory protein" [55] Dadurch wird eine Signalübertragung ermöglicht, im Zuge derer verschiedene Kinasen durch Phosphorylierungskaskaden aktiviert werden. Das Zytokin TNF α kann an die beiden TNF-Rezeptoren I und II (TNFR1 und TNFR2) binden. In Zellen, die nicht dem Immunsystem angehören, erfolgt die Signalübertragung hauptsächlich über TNFR1. Dadurch werden vielfältige biologische Effekte vermittelt wie z. B. die Rekrutierung von Transkriptionsfaktoren [17]. TNF α spielt nicht nur bei inflammatorischen sondern auch bei apoptotischen Prozessen eine Rolle und zeigt dabei einen stärkeren Effekt als IL-1 β [41]. In Chondrozyten wurde festgestellt, dass die beiden Zytokine IL-1 β und TNF α inflammatorische Reaktionen synergistisch induzieren und dadurch die Degradation von Knorpel vorantreiben [23, 39].

Die Aktivierung der Rezeptoren durch IL-1 β und TNF α löst eine Kaskade von Phosphorylierungen aus, an deren Beginn die Bildung Rezeptor-assoziierter Proteinkomplexe und unter anderem die Aktivierung der TGF β -aktivierten Kinase (TAK1) steht. Dadurch werden verschiedene Signalwege in Gang gesetzt. Zu den Schlüsselwegen gehört der MAPK ("mitogen-activated protein kinase")-Weg sowie der NF- κ B ("nuclear factor- κ B")-Weg. Unter anderem werden dabei weitere Mediatoren wie z. B. Prostaglandine gebildet, die wiederum inflammatorische Signale vermitteln.

Eine für Inflammationsprozesse wichtige Signalkaskade ist der MAPK-Weg (Abb. 4, S. 8). Bei den MAPK handelt es sich um hochkonservierte Serin/Threonin-Proteinkinasen. Der MAPK-Signalweg umfasst drei Gruppen an MAPK, nämlich die Familie der ERK ("extracellular signal-regulated kinase") und die zwei Stress-aktivierten Proteinkinase-Familien (SAPK) p38MAPK und JNK ("Jun N-terminal kinase") [198]. Die MAPK können durch unterschiedliche stromaufwärts gelegene MKK (MAPK Kinasen) phosphoryliert werden, die jeweils wiederum von MKKK (MAPK Kinase Kinasen) phosphoryliert werden. Jede dieser Kinasen weist eine spezielle Regulation, Substratspezifität und Aktivierungskinetik auf. Dadurch ist eine koordinierte und spezifische Aktivierung der verschiedenen MAPK durch eine breite Palette an Stimuli möglich [198]. Die negative "Feedback"-Inhibition durch "dual-specifity phosphatases" (DUSP) stellt eine weitere Regulationsmöglichkeit dar, die eine konstitutive Aktivierung der MAPK verhindert [180]. In Chondrozyten wird durch eine Stimulation mit IL-1 β vor allem JNK und p38 aktiviert [74]. Die Familie der p38MAPK besteht aus den vier Isoformen p 38α , p 38β , p 38γ und p38 δ , die jeweils unterschiedliche Substratspezifitäten aufweisen [166]. Es wird vermutet, dass die α -Isoform der Hauptmediator bei inflammatorischen Prozessen ist [182]. Ausgehend von der Aktivierung der p38MAPK sind vielfältige Signalweiterleitungen über die Phosphorylierung verschiedener Substrate möglich [133]. Hauptsächlich wird die Aktivierung und Synthese von Transkriptionsfaktoren induziert, aber auch die Stabilität der mRNA sowie die Translation reguliert [182]. Dadurch ist eine Regulation der Expression von Entzündungsprozess-assoziierten Genen möglich [133]. Daneben nimmt

Abbildung 4.: Schematische Darstellung Zytokin-aktivierter inflammatorischer Signalwege

Die drei MAPK-Phosphorylierungskaskaden sowie der NF- κ B-Weg vermitteln Zytokin-induzierte Genexpression und die damit verbundene Synthese von Entzündungsmediatoren. **AA**: Arachidonsäure; **ADAMTS**: "a disintegrin and metalloproteinase with thrombospondin motif"; **AP-1**: Aktivator-Protein 1; **C/EBP**: "CCAAT/enhancer binding proteins"; **COX2**: Zyklooxygenase 2; **Elk-1**: "Ets-like transcription factor"; **ERK**: "extracellular signal-regulated kinase"; **IL-1** β : Interleukin-1 β ; **I-\kappaB**: "inhibitor of NF- κ B"; **IKK**: "I- κ B kinase"; **JNK**: "Jun N-terminal kinase"; **MAPK**: "mitogen-activated protein kinase"; **MKK**: "MAPK kinase"; **MKKK**: "MAPK kinase kinase"; **MMP**: Matrix-Metalloproteinase; **NF-\kappaB**: "nuclear factor- κ B"; **NO**: Stickstoffmonoxid; **NOS2A**: induzierbare NO-Synthase; **PGE**₂: Prostaglandin E₂; **PGH**₂: Prostaglandin H₂; **PGJ**₂: Prostaglandin J₂; **PLA**₂: Phospholipase A₂; **PPAR** γ : "peroxisome proliferator-activator receptor γ "; **PTGES**: Prostaglandin E-Synthase; **TNF** α : Tumornekrosefaktor α . Adaptiert nach Thalhamer et al. [198] der p38MAPK-Weg über die Phosphorylierung der HSP27 auch Einfluss auf das Zytoskelett der Zelle [80]. In der Pathogenese der Arthrose spielen p38MAPK-vermittelte Prozesse eine wesentliche Rolle. So ist dieser Signalweg an der Induktion der Zyklooxygenase 2 (COX2) und der Prostaglandin E Synthase 1 (PTGES) beteiligt [199, 146] und beeinflusst dadurch die Synthese von Prostaglandinen. Auch die Expression der Matrix-Metalloproteinasen MMP1 und MMP13 sowie der induzierbaren NO-Synthase (NOS2A) ist p38-abhängig [151, 14]. Bei der Synthese von Aggrekan konnte ebenfalls eine Beteiligung des Signalweges nachgewiesen werden [168].

Als weiterer Signalweg bei Entzündungsreaktionen ist der NF- κ B-Weg zu nennen (Abb. 4, S. 8). Die NF- κ B-Familie schließt verschiedene Proteine ein, die Homo- oder Heterodimere bilden können. Die gängigste Form von NF- κ B besteht aus den p50/p65-Untereinheiten [196]. NF- κ B ist ein Transkriptionsfaktor, der im Zytosol in einer inaktivierten Form gebunden an das Protein I- κ B vorliegt. Durch die Aktivierung des IL-1oder TNF α -Rezeptors kommt es unter Beteiligung von reaktiven Sauerstoffverbindungen zur Auslösung einer Signalkaskade, die die Phosphorylierung von I- κ B verursacht. Das phosphorylierte I- κ B wird ubiquitinyliert und im Proteasom abgebaut. NF- κ B liegt nun frei im Zytosol vor und kann in den Nukleus translozieren und dort die Transkription verschiedener Gene aktivieren. Es werden vor allem die Expression inflammatorischer Faktoren wie z. B. Zytokine induziert. In Chondrozyten ist dieser Weg an der Transkription verschiedener Matrix-Metalloproteinasen (MMP-1, MMP-13) beteiligt [135, 151]. Außerdem wird auf diesem Wege die Expression von SOX9 inhibiert, einem Transkriptionsfaktor, der bei der Differenzierung der Chondrozyten eine Rolle spielt [187].

Neben IL-1 β und TNF α gibt es weitere Mediatoren der inflammatorischen Signalübertragung. Beispielsweise fungieren die aus Fettsäurederivaten synthetisierten Prostaglandine der Serie 2 entzündungsverstärkende Gewebshormone (Abb. 4, S. 8). Unter den Prostaglandinen spielt das inflammatorische Prostaglandin E₂ (PGE₂) die wichtigste Rolle bei Gelenkerkrankungen. Die daran beteiligten Enzyme Zyklooxygenase und Prostaglandin E-Synthase kommen sowohl als konstitutiv gebildete als auch als induzierbare Isoformen vor und ermöglichen dadurch eine strenge Syntheseregulation [189]. PGE₂ wird von Chondrozyten und Synoviozyten unter Zytokineinfluss gebildet und ist in arthrotischem Knorpel erhöht [47]. Es kann an die vier Rezeptortypen EP1-4 binden, die alle zu den G-Protein-gekoppelten Rezeptoren gehören [176]. Durch die induzierten Signalkaskaden wird die intrazelluläre Ca²⁺-Konzentration und der Aktivierungszustand der Adenylatzyklase kontrolliert [76]. Die verschiedenen Rezeptoren haben dabei unterschiedliche Funktionen. Es wird vermutet, dass EP2 anabole Effekte von PGE₂ vermittelt, während die anderen Subtypen eher katabole Reaktionen triggern [76]. Daneben fungiert PGE₂ als Schmerzmediator, indem es nozizeptive Nervenendigungen sensibilisiert [189]. Neben PGE₂ wird der PGJ₂-Familie besondere Bedeutung in der Arthrose zugeschrieben [30]. Es handelt sich um Metabolite von PGD₂, die direkt an PPAR ("peroxisome proliferator-activator receptors"), eine Familie von Transkriptionsfaktoren, binden. In Chondrozyten findet man PPAR α - und PPAR γ -Isoformen [29]. Nach Aktivierung durch den Liganden bindet der Faktor an die Promotersequenz PPRE ("PPAR response element") und reguliert die Transkription. Es wurde gezeigt, dass PPAR die Aktivierung des NF- κ B- und AP-1-Signalweges unterdrücken und der IL-1 β -induzierten Bildung inflammatorischer Zytokine in Chondrozyten entgegenwirken können [76, 30].

1.3. Pharmakologische Therapie der Arthrose

1.3.1. Angewandte Medikation

Als derzeit zur Verfügung stehende Medikation erfolgt bei akuten arthrotischen Beschwerden eine symptomatische Schmerztherapie, die jedoch nicht die Ursachen der Arthrose beseitigt. Gebräuchliche Analgetika mit relativ gutem Sicherheitsprofil wie Acetaminophen weisen bei vielen Patienten eine unzureichende Wirksamkeit auf [99]. Mit dem Fortschreiten der Arthrose und zunehmendem Schmerzempfinden bieten sich opioidartige Analgetika an, die ihre Wirkung vorrangig im Zentralnervensystem durch die Bindung an Opioidrezeptoren entfalten. Eine regelmäßige Verabreichung kann jedoch zu diversen Nebeneffekten wie Atemdepression und physischer Abhängigkeit führen [139]. Alternativ werden anti-inflammatorische Substanzen appliziert, die eine effiziente Schmerztherapie bei gleichzeitiger antiphlogistischer Wirkung ermöglichen. Als wichtigste Wirkstoffklassen lassen sich NSAID (nichtsteroidale Entzündungshemmer, "nonsteroidal anti-inflammatory drugs"), spezifische COX2-Hemmer oder auch Glukokortikoide anführen. Die Wirkung der NSAID beruht auf der Hemmung der beiden Isoformen der Zyklooxygenase COX1 und COX2. Dadurch wird die Synthese der Prostaglandine blockiert und Prostaglandin-vermittelte Entzündungs- und Schmerzsignale unterbunden. Da NSAID die in allen Gewebetypen vorkommende, konstitutiv exprimierte COX1 inhibieren, werden auch physiologische Funktionen von PGE_2 beeinträchtigt. PGE₂ spielt unter anderem eine wichtige Rolle bei der Regulierung der Magensäureproduktion sowie der Blutgerinnung, so dass Schädigungen der Magenschleimhaut, der Nieren und der Leber häufig auftretende Nebenwirkungen von NSAID darstellen [189]. Eine Lösung dieses Problems versprachen zunächst die seit 1999 erhältlichen spezifischen COX2-Inhibitoren, die nur die entzündungsvermittelte PGE₂-Produktion blockieren sollen. Allerdings wird dadurch die Synthese anderer inflammatorischer Derivate der Arachidonsäure, z. B. der Leukotriene, verstärkt [143]. Es stellte sich heraus, dass manche dieser Wirkstoffe bei Langzeitgabe kardiovaskuläre Störungen mit erhöhter Mortalitätsrate hervorrufen können, so dass entsprechende Medikamente 2004 vom Markt genommen wurden [57]. Glukokortikoide sind aufgrund ihres Sicherheitsprofils nicht für langfristige systemische Therapien geeignet und werden allenfalls direkt in das Gelenk appliziert. Eine sichere Behandlungsmöglichkeit bei Langzeitanwendung bietet die Verabreichung von Glukosaminoglykanen und Chondroitinsulfatderivaten sowie die intraartikuläre Gabe von Hyaluronsäure. Die Wirksamkeit dieser Substanzen ist jedoch umstritten beziehungsweise die Applikation mit einem erhöhten Infektionsrisiko verbunden [215]. Auch neue Behandlungsansätze wie z. B. der Einsatz des Antibiotikums Doxycyclin, das im Tiermodell Arthrose-mildernde Effekte zeigte, konnte in einer klinischen Studie die Erwartungen nicht erfüllen [120].

1.3.2. Die Entwicklung neuer Wirkstoffe

Aufgrund der beschriebenen Nachteile der verfügbaren Arthrosemedikamente fokussiert die pharmazeutische Forschung die Entwicklung neuer Wirkstoffe. Eine Möglichkeit stellt die Weiterentwicklung Symptom-modifizierender Arzneistoffe mit verbessertem Sicherheitsprofil dar. So sind beispielsweise verschiedene selektive COX2-Inhibitoren und modifizierte NSAID unter klinischer Prüfung, die eine reduzierte Toxizität aufweisen [215]. Ein neuer Ansatz der Wirkstoff-Forschung zielt darauf ab, den Krankheitsverlauf der Arthrose mit Hilfe von DMOAD ("Disease-Modifying Osteoarthritis Drug") zu beeinflussen. Die neuen Substanzen sollen an Schlüsselpositionen des Degenerationsprozesses eingreifen und so katabole Kaskaden blockieren [162]. Die Arthrose betrifft zwar das ganze Gelenk, trotzdem ist die Symptomatik vor allem durch den Abbau artikulären Knorpels und der Synthese inflammatorischer Mediatoren charakterisiert [77]. DMOAD sollen die Degeneration des Gelenkknorpels verlangsamen oder gar stoppen und so Schmerzen reduzieren und die Gelenkfunktion weitgehend erhalten [32]. Unter den vielen möglichen Angriffspunkten zellulärer Prozesse lassen sich einige Hauptziele der derzeitigen Wirkstoffentwicklung identifizieren [162], die in Abb. 5, S. 12 dargestellt sind.

Die p38MAPK stellt ein interessantes pharmazeutisches Ziel dar, das seit einigen Jahren im Fokus der anti-inflammatorischen Arzneimittelforschung steht [56]. Es ist an der Induktion vieler kataboler und inflammatorischer Faktoren und an der Schmerzmediation beteiligt [182, 140, 94]. Forschungsergebnisse aus *In-vitro-* und *In-vivo-*Studien weisen darauf hin, dass p38MAPK-Inhibitoren den Krankheitsverlauf positiv beeinflussen

Abbildung 5.: Schematische Darstellung pharmazeutischer Ziele anti-inflammatorischer Wirkstoffe

Signal-, Synthese- oder Degradationswegen, die am arthrotischen Knorpelabbau beteiligt sind, stellen mögliche pharmazeutische Ziele dar. Inhibitoren für die im Schema eingezeichneten Ziele (\neg) sind bereits unter pharmazeutischer Entwicklung [215, 162]. Beispielhaft sind drei p38MAPK-Inhibitoren sowie ein Inhibitor des PGE₂/LTB₄-Syntheseweges angegeben. SB203580 wurde bereits 1984 als prototypischer p38-Hemmer der Pyridinylimidazol-Klasse vorgestellt, der kompetitiv um die ATP-Bindungsstelle der p38MAP Kinase konkurriert [134, 133]. Das zur Klasse der Diaryl-Harnstoffe gehörende Birb 796 ist ein hochaffiner, allosterischer p38-Inhibitor [158]. Pamapimod, ein Pyridopyrimidin-Derivat, zeigte in klinischen Vorstudien eine hohe Selektivität und Wirksamkeit bei rheumatoider Arthritis [88], allerdings konnte die Wirkung herkömmlicher Arthritis-Medikamente nicht übertroffen werden [49]. Das Pyrrolizin-Derivat Licofelone blockiert als dualer Inhibitor sowohl die Synthese von PGE_2 als auch von LTB_4 , einem inflammatorisch wirkenden Leukotrien, und weist im Vergleich zu NSAID ein verbessertes Sicherheitsprofil auf [123]. AA: Arachidonsäure; ERK: "extracellular signalregulated kinase"; ICE: "IL-1 β converting enzyme"; IL-1 β : Interleukin-1 β ; JNK: "Jun Nterminal kinase"; LTB₄: Leukotrien B₄; MAPK: "mitogen-activated protein kinase"; MMP: Matrix-Metalloproteinase; **PGE**₂: Prostaglandin E₂; **PLA**₂: Phospholipase A₂.

[149, 140]. Viele Inhibitoren des p38-Signalweges wurden bisher beschrieben, allerdings zeigte die erste Generation der Substanzen meist toxische Effekte [67]. Von den nachfolgend entwickelten Inhibitoren wiesen ebenfalls viele ein mangelndes Sicherheitsprofil auf [56], weshalb die Arzneimittelforschung auf diesem Gebiet weiter vorangetrieben werden muss [224].

Abbildung 6.: Schematischer Überblick über den Verlauf der Arzneimittelentwicklung.

Die Pharmaindustrie entwickelt ein zugelassenes Medikament über mehrere Prüfungsphasen aus anfänglich etwa 10000 in die Testung einbezogenen chemischen Substanzen [139]. Thematisch beschäftigt sich diese Arbeit mit der Etablierung eines Zell-basierten *In-vitro*-Testverfahrens. Dieser Bereich der pharmazeutischen Entwicklung ist im Schema grün umrandet.

Die Entwicklung neuer Arzneimittel durchläuft verschiedene Phasen, die in Abb. 6 aufgeführt sind. Eine essentielle Voraussetzung für die Auffindung potenter Wirkstoffe ist die Verfügbarkeit von geeigneten Testsystemen. In der modernen Arzneimittelforschung kommen große Bibliotheken chemischer Substanzen zum Einsatz, deren biologische Wirksamkeit in einem automatisierten "high throughput screening" getestet wird [20]. Manche der im "screening" gefundenen Moleküle können als Leitstruktur herangezogen und weiter optimiert werden [211]. Die Beurteilung der Wirksamkeit und Spezifität erfolgt in biochemischen bzw. biologischen Testsystemen und soll potente Wirksubstanzen identifizieren. In den letzten Jahren wurde die Technologie zur Testung von Kinase-Inhibitoren entscheidend verbessert [61, 103]. In Enzym-Bindungsassays kann die Affinität und Spezifität von Hemmsubstanzen bezüglich hunderter Kinasen analysiert und verglichen werden, so dass auch Nebenaktivitäten der Inhibitoren entdeckt werden. Diese zellfreien Testsysteme finden allerdings außerhalb der normalen biologischen Umgebung statt und lassen den zellulären Kontext außer Acht, der Einfluss auf die Wirksamkeit von Hemmstoffen nehmen kann [88, 114]. Zudem ist es wichtig, die Effekte der Wirksubstanzen auf komplexe biologische Systeme wie Zellen oder ganze Organismen zu untersuchen. Neben Tiermodellen bieten Zell-basierte Testsysteme die

Möglichkeit, Wirkmechanismen der Inhibitoren im biologischen Umfeld zu analysieren. Zur Testung anti-inflammatorischer Substanzen kommen beispielsweise Wirkungstests auf der Basis von PBMC ("peripheral blood mononuclear cells") oder Zellinien zum Einsatz, mit deren Hilfe die Hemmung der Zytokin- oder Metabolitfreisetzung analysiert werden kann [130, 131, 173]. Diese In-vitro-Assays weisen eine gute Korrelation zu Enzym-Assays auf und sind in der Lage, p38MAPK-Inhibitoren zu erfassen [130]. Im speziellen Fall der Arthrosetherapie sollen die Wirkstoffe allerdings die in die Pathogenese involvierten Zellen im Gelenk und damit vorrangig Chondrozyten ansprechen. Die Wirkung von Inhibitoren kann zwischen verschiedenen Zelltypen variieren, da Signalwege häufig Zelltyp-spezifisch ablaufen [173]. Im Anschluss an die In-vitro-Testung erfolgt der Nachweis der Wirksamkeit im Tiermodell. Damit werden die Bedingungen im lebenden Organismus mit einbezogen und die Effekte der Wirksubstanzen auf das Zielgewebe nachweisbar. Allerdings sind die Befunde im Tiermodell nur bedingt prädikativ für die Wirkung des Arzneistoffes im Menschen. Eine Erweiterung der bisher verfügbaren Invitro-Testverfahren mit Systemen, die auf die Erfordernisse der Arthrose-Therapie zugeschnitten sind, ist daher von Interesse. Die Verwendung von am Krankheitsgeschehen beteiligter Zellen humanen Ursprungs sowie die Analyse Arthrose-assoziierter Parameter wäre dabei wünschenswert.

1.4. Zielsetzung

Das Ziel der vorliegenden Arbeit bestand darin, in Kooperation mit der Firma ratiopharm GmbH, Ulm, ein *In-vitro*-Modell zur Testung anti-inflammatorisch wirkender Substanzen zu etablieren. Um Probleme der Transferierbarkeit vom Tiermodell auf den Menschen zu vermeiden, sollten humane artikuläre Chondrozyten verwendet werden. Die Beibehaltung des chondrozytären Phänotypes unter den verwendeten Kulturbedingungen war sicherzustellen.

Zur Etablierung des Testsystems gehörte die Isolierung und angepasste Kultivierung von Chondrozyten aus dem Restgewebe von Knie-Totalendoprothese-Implantationen.

Durch eine geeignete Stimulation der *in vitro* kultivierten Zellen sollte das arthrotische Entzündungsgeschehen modellhaft dargestellt und typische Effekte anti-inflammatorisch wirkender Substanzen in entzündlichen Gelenkerkrankungen nachvollzogen werden.

Eine genomweite Genexpressionsanalyse des etablierten *In-vitro*-Inflammationsmodells sollte das Auffinden neuer, bisher nicht beachteter zellbiologischer Faktoren ermöglichen, die in die Pathogenese der Arthrose involviert sind.

Mit Hilfe der genomweiten Analyseergebnisse sollten neue Arthrose-relevante Zielgene identifiziert werden, deren Expressionsanalyse eine differenzielle Charakterisierung antiinflammatorisch wirkender Arzneistoffe erlaubt. Zusätzlich war die Analyse geeigneter Metabolite zur Überprüfung ausgewählter Genexpressionen vorgesehen.

Zur Verifikation des *In-vitro*-Inflammationsmodells war anschließend die Testung verschiedener, in der pharmazeutischen Entwicklung befindlicher Arzneistoffe geplant. Die Effekte der neuen Substanzen sollten mit etablierten Inhibitoren verglichen werden, um Unterschiede bezüglich Wirksamkeit und Wirkmechanismus zu erkennen und eine Selektion potenter Wirksubstanzen zu ermöglichen.

2. Material und Methoden

2.1. Material

2.1.1. Patientenkollektiv

Humane artikuläre Chondrozyten wurden von Knorpelgewebe aus Kniegelenken isoliert, die im Rahmen von routinemäßigen Knie-Totalendoprothese (K-TEP)-Implantationen asserviert wurden. Die Übereignung des Gewebes erfolgte nach Aufklärung durch den behandelnden Stationsarzt und nach Zustimmung der Patienten gemäß den Richtlinien der Ethik-Kommission der Universität Ulm. Es wurde Gewebe von 29 männlichen Patienten (Altersdurchschnitt: 67.1 \pm 6.5 Jahre) und 61 weiblichen Patienten (Altersdurchschnitt: 66.3 \pm 8.8 Jahre) verwendet. Patienten mit rheumatoider Arthritis oder systemischen Stoffwechselerkrankungen wurden ausgeschlossen.

2.1.2. Geräte und Verbrauchsmaterial

Altenrath GmbH, Wuppertal, Deutsch-
land
Amersham Biosciences Europe GmbH,
Freiburg, Deutschland
Applied Biosystems, Darmstadt,
Deutschland
BD GmbH, Heidelberg, Deutschland

50 ml Falcon-Zentrifugenröhr-	
chen	
Falcon T75 Zellkulturflasche	
Falcon T175 Zellkulturflasche	
Falcon Zellschaber	
"6 well"-Zellkulturplatten	
"24 well"-Zellkulturplatten	
"96 well"-Zellkulturplatten	
Kanüle Microlance [®]	
Spritze Plastipak [®]	
Allegra 64R Zentrifuge	Beckman Coulter GmbH, Krefeld,
	Deutschland
Blotkammer Fastblopt B43	Biometra GmbH i. L., Göttingen,
Elektrophoresekammer AGAgel	Deutschland
Standard ohne Kühlung	
Elektrophoresekammer 10 cm	
Hybridisierungsofen	
Stromversorgungsgerät	
Transilluminator	
Geldoc XR, PC-Version 170	Bio-Rad Laboratories GmbH, Mün-
	chen, Deutschland
Filtertips	Brand GmbH & Co., Wertheim,
Reaktionsgefäße	Deutschland
Stripetten	Costar Corning B.V., NE Schiphol-
	Rijk, Holland (VWR Deutschland)
Wasserbad Laktotherm 1, Modell	Dinkelberg-Labortechnik, Neu-Ulm,
LTH 232312	Deutschland
Elisa-Reader	Dynatech Laboratories, Chantilly, VA,
	USA
Wasserbad	GFL - Gesellschaft für Labortechnik
	mbH, Burgwedel, Deutschland
Pipette Pipetman 0.5-10 $\mu {\rm L}$	Gilson International B.V.,
Pipette Pipetman 2-20 $\mu {\rm L}$	Bad Camberg, Deutschland
Pipette Pipetman 20-200 $\mu {\rm L}$	
Pipette Pipetman 100-1000 $\mu {\rm L}$	
Kryoröhrchen Cellstar	Greiner Bio-One GmbH, Frickenhau-
	sen, Deutschland

Küvette Suprasil Quarzglas, 10	Hellma GmbH & Co KG,
mm	
Inkubator HeraCell240	Heraeus Holding GmbH, Hanau,
Megafuge 1.0	Deutschland
Sterilbank Laminair	
Pipettierhilfe "Pipetus"	Hirschmann Laborgeräte GmbH & Co.
	KG, Eberstadt, Deutschland
Stromversorgungsgerät Mighty	Hoefer, San Francisco, USA
Slim Sx 250	
Magnetrührer IKA MAG	IKA, Staufen, Deutschland
Mikroprozessor-pH-Meter	KNICK elektr. Meßgeräte GmbH & Co,
	Berlin, Deutschland
Gefrierschrank -80°C, Modell	Labotec, Göttingen, Deutschland
U85-360	
Ausgießstation EG 1140H	Leica Microsystems. Bensheim,
Histokinette Reichert-Jung 2050	Deutschland
Kühlplatte EG 1140C	
Mikrotom Reichert-Jung Super-	
cut 2050	
Kühl-Gefrier-Kombination pre-	Liebherr, Ochsenhausen, Deutschland
mium no-frost	
Stromversorgungsgerät 2301 Ma-	LKB, Bromma, Schweden
crodrive 1	
Streckbad	Medax Nagel GmbH, Kiel, Deutschland
Wärmeplatte Typ 13800	
Desinfector Automatic G7735	Miele, Gütersloh, Deutschland
Aqua Purificator G7749	
Immobilon TM-P Transfer Mem-	Millipore, Schwalbach, Deutschland
bran	
Deckgläser	Paul Marienfeld GmbH & Co. KG,
Objektträger	Lauda-Königshofen, Deutschland
Permanox-Objektträger	Nunc, New York, USA
Feinwaage	Sartorius AG, Göttingen, Deutschland
Feinwaage Zellzählgerät Casy TT	Sartorius AG, Göttingen, Deutschland Schärfe System GmbH, Reutlingen,

Whatman-Papier "Gel-Blotting	Schleicher & Schuell GmbH, Dassel,
Paper GB002"	Deutschland
Robocycler Gradient 96	Stratagene Europe, Amsterdam, Hol-
	land
Mikrotomklingen S35	Seidel Medipool (Feather)
Autoklav	Tuttnauer Europe b.v., GD Breda, Hol-
	land
Mikroskop Axioskop 2 mot plus	Zeiss, Oberkochen, Deutschland
Mikroskop Axiovert 35	
SDS-PAGE-Kammern vertikal	Wissenschaftlichen Werkstatt Fein-
	werktechnik, Universität Ulm,
	Deutschland

2.1.3. Chemikalien und Kits

dTTP, dATP, dCTP, dGTP	Amersham BiosciencesEurope GmbH,
Thermo Sequenase Primer Cycle	Freiburg, Deutschland
Sequencing Kit	
Natriumhydroxid	AppliChem, Darmstadt, Deutschland
Power SYBR Green PCR Master	Applied Biosystems, Darmstadt,
Mix	Deutschland
DMEM	Biochrom KG, Berlin, Deutschland
Dulbecco's Modified Eagle Medi-	
um(DMEM)	
Fetales Kälberserum (FKS, Cat.	
No.S0115,	
Lot. No. 627EE und 0973H)	
HAM's F-12 Medium	
L-Glutamin	
L-Glutamin	
Nicht-essentielle Aminosäuren	
(NEAS)	
Penicillin/Streptomycin	
Pyruvat	
$\mathrm{SES1/SolA} + \mathrm{SolB}$	
Trypan Blau	

Trypsin/EDTA	
PGE_2ELISA Correlate EIA^{TM}	Biotrend, Assay Designs, Köln
	Deutschland
Oligo (dT)15	biomers.net GmbH, Ulm, Deutschland
Oligonukleotide (Primer)	
SeaKem LE Agarose	Cambrex Bio Science German Office
	Apen
Agarose-Pulver NEEO	Carl Roth GmbH +Co. KG, Karlsruhe
APS (Ammoniumperoxidsulfat)	Deutschland
Cacodylsäure-Natriumsalz	
Dithiothreitol	
DMSO(Dimethylsulfoxid)	
EDTA (Ethylendiamintetraace-	
tat)	
Rotiphorese Gel A	
Rotiphorese Gel B	
TEMED (Tetramethylethylene-	
diamin)	
Alzianblau 8GS	Chroma-Gesellschaft Schmid
Eosin AG extra	GmbH&Co., Köngen, Deutschland
AEC+ High Sensitivity Substrate	Dako Deutschland GmbH, Hamburg
Chromogen	Deutschland
Antibody Diluent with Back-	
ground Reducing Components	
Blocking Buffer	
LSAB2 [®] HRP-Kit	
Aqua Spüllösung	DeltaSelect GmbH, Dreieich, Deutsch
	land
Safranin-O	Fisher Scientific Company, New Jersey
	USA
Bromphenolblau-Di-Natriumsalz	Fluka Biochemika, Buchs, Deutschlan
Chondroitin-6-Sulfat	
Coomassie Brillantblau	
D+-Saccharose	
Guanidinhydrochlorid	
Kernechtrot	
Natriumcitrat	

Paraformal dehyd 37 $\%$	
Phalloidin-FITC	
Propidiumiodid	
SDS (Natrium Dodecylsulfat)	ICN Biomedicals GmbH, Eschwege,
	Deutschland
Alginat Keltone [®]	International Speciality Products,
	Köln, Deutschland
Platinum [®] SYBR [®] qPCR Super-	Invitrogen GmbH, Karlsruhe, Deutsch-
MixUDG	land
TOP10 E.coli one shot	
TOPO TA Cloning Kit	
Borsäure	J.T.Baker, Deventer, Holland
Natriumchlorid	
Wasserstoff peroxid 30 $\%$	
NucleoSpin Plasmid Kit	Macherey-Nagel GmbH & Co. KG, Dü-
	ren
Aluminiumsulfat	Merck KGaA, Darmstadt, Deutschland
Bariumchlorid	
Calciumchlorid	
${ m Dinatriumhydrogenphosphat}$	
Essigsäure 100 $\%$ (Eisessig)	
Extran MA 02 neutral	
Formaldehydlösung, 37 $\%$	
Giemsa Lösung	
Glycerin, 87 $\%$	
Glycin	
Immersionsöl	
Kaiser's Glyceringelatine	
Kaliumchlorid	
Mercaptoethanol	
Natriumacetat, wasserfrei	
Natriumdihydrogenphosphat	
ortho-Pho sphorsäure 85 $\%$	
Triton-X 100	
Tween 20	
Eukitt	O. Kindler GmbH+Co. Freiburg,
	Deutschland

Aceton, techn.	Ölfabrik Schmidt, Ulm, Deutschland
Methanal Essence	
Dhaardat areas forta Calalian a	DAA Cille Deutechland
(DDC)	PAA, Colde, Deutschland
(FDS)	DogLah Diotochnologia CmhH Euler
100 op-Dasenpaarieiter	requasi Diotechnologie Ginori, Eria
Griess Beagent System	Promora Mannhoim Doutschland
DNase I	Oiagen GmbH Hilden Deutschland
dNTPs	Giagen Ginon, miden, Deutsemand
EndoFree Plasmid Mavi Kit	
HotStarTag [®] Master Mix Kit	
HotStarTag [®] Plus DNA Polyme-	
rase	
HotStarTag [®] Plus Buffer Set	
Omniscript BT Kit	
QIAfilter Plasmit Midi Kit	
QIAquick Gel Extractions Kit	
QiaShredder-Säulen	
RNase-Free DNase Set	
RNeasy Mini Kit	
Ampicillin-ratiopharm 5.0	ratiopharm, Ulm, Deutschland
Random Primer	Roche Diagnostics GmbH, Mannheim
RNase Inhibitor	Deutschland
Casyclean	Schärfe System GmbH, Reutlingen,
Casyton	Deutschland
ϵ -Amino-n-Capronsäure	Sigma-Aldrich
3-Aminopropyl-Triethoxysilan	Laborchemikalien GmbH,
Collagenase IV	Taufkirchen, Deutschland
DEPC (Diethylpyrocarbonat)	
Ethanol (96 %) absolut für Ana-	
lyse	
Ethidiumbromid, 10 mg/ml	
L-Ascorbinsäure-2-phosphat	
LB Agar (Lennox L Agar)	
LB Broth Flüssigmedium	

Mayer's Hämatoxylin	
Natriumformiat	
Phosphate buffered Saline, pH 7.4	
Protease	
Proteinstandard 50-200 kDa	
β -Glycerophosphat	
Tris buffered saline 10x	
Xylol, Isomerengemisch	
Magermilchpulver Sucofin	TSI GmbH, Zeven Deutschland
IL-1 β	TEBU, Offenbach, Deutschland
TNFa	
Paraplast Plus	Tyco Healthcare Deutschland GmbH,
	Neustadt/Donau, Deutschland
Tris base	USB Corporation Cleveland, USA
Tris	

2.1.4. Inhibitoren, Primer und Antikörper

2.1.4.1. Inhibitoren

Sämtliche Hemmstoffe, die für Inhibitionsversuche im Chondrozyten-Zellkulturmodell zum Einsatz kamen, wurden von der Firma ratiopharm GmbH, Ulm, Deutschland, zur Verfügung gestellt. In nachfolgender Tabelle sind die Inhibitoren mit zugehörigen Eigenschaften wie Molekulargewicht (MG in g/mol), Summenformel (SF), dem primären Target (PT), eventueller weiterer Spezifitäten (WS) und ihrer Strukturformel aufgelistet.

Substanz, Entwicklung	Eigens	schaften	Strukturformel
Birb 796 Böhringer- Ingelheim	MG: SF: PT: WS:	527.67 C ₃₁ H ₃₇ N ₅ O ₃ p38MAPK JNK2/3	

Substanz,	Eigenschaften		Strukturformel
Entwicklung			
CBS 3825	MG:	400.48	
ratiopharm,	SF:	$\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{FN}_{4}\mathrm{O}_{2}\mathrm{S}$	Diarvlimidazol-Derivat
Ulm	PT:	p38MAPK	
CBS 3868	MG:	432.52	
ratiopharm.	SF:	C ₂₄ H ₂₁ FN ₄ OS	NH
Ulm	PT:	p38MAPK	
		Former er	F N S.O
Licofelone	MG:	379.89	
ratiopharm,	SF:	$C_{23}H_{22}CINO_2$	
Ulm	PT:	COX1, COX2, 5-LOX	ОН
	WS:	PTGES	CI
Lu 151	MG:	421.54	0
ratiopharm,	SF:	$C_{26}H_{31}NO_4$	
Ulm	PT:	cytosolische Phospho-	ОН
		lipase A2	
ML 3408	MG:	356.42	н
ratiopharm,	SF:	$C_{18}H_{17}FN_4OS$	N /
Ulm	PT:	p38MAPK	N −s
			F
MT 0405	MC	270 40	\square
ML 3435	MG:	370.40 C H EN C	NH
ratiopharm,	SF:	$C_{21}H_{17}FN_4S$	N H
Ulm	$\mathbf{P}'\mathbf{\Gamma}$:	рЗ8МАРК	F N S
ML 3595	MG:	372.42	
ratiopharm,	SF:	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{FN}_4\mathrm{O}_2\mathrm{S}$	
Ulm	PT:	p38MAPK / PDE4	Diaryiimidazol-Derivat

Substanz,	Eigenschaften		Strukturformel
Entwicklung			
ML 3602 ratiopharm, Ulm	MG: SF: PT:	386.45 $C_{19}H_{19}FN_4O_2S$ p38MAPK / PDE4	Diarylimidazol-Derivat
ML 3624 ratiopharm, Ulm	MG: SF: PT: WS:	483.97 C ₂₆ H ₂₇ ClFN ₃ O ₃ p38MAPK JNK3	F C CI CI N
ML 3736 ratiopharm, Ulm	MG: SF: PT: WS:	358.44 $C_{18}H_{19}FN_4OS$ p38MAPK PDE4	Diarylimidazol-Derivat
Pamapimod Roche, Mannheim	MG: SF: PT: WS:	406.39 $C_{19}H_{20}F_{2}N_{4}O_{4}$ p38MAPK JNK3	
Rofecoxib Merck, Darmstadt	MG: SF: PT: WS:	314.36 C ₁₇ H ₁₄ O ₄ S COX2 JNK2/3	
SB203580 Lee et al., 1994 [134]	MG: SF: PT: WS:	377.44 C ₂₁ H ₁₉ FN ₃ OS p38MAPK JNK2/3	
Tepoxalin Argentieri et al., 1994 [9]	MG: SF: PT:	385.85 C ₂₀ H ₂₀ ClN ₃ O ₃ COX1, COX2, 5-LOX	

Substanz, Entwicklung	Eigen	schaften	Strukturformel
Zileuton	MG:	236.29	H ₂ N N S
Carter et al.,	SF:	$C_{11}H_{12}N_2O_2S$	
1989 [42]	PT:	5-LOX	

2.1.4.2. Primer

Die Primer für die RT-PCR sowie für die quantitative "realtime" PCR wurden mit dem Programm Primer3 [174] erstellt. Hierzu wurden publizierte DNA-Sequenzen aus der Gendatenbank von NCBI [71] ("GenBank") verwendet. Sequenzierprimer sind mit dem Fluoreszenzfarbstoff Cy5 markiert.

	Primer fü	: RT-PCR	und Sec	quenzier	$\operatorname{prim}\epsilon$
--	-----------	----------	---------	----------	-------------------------------

Gen	"GenBank"-	Länge d.	Primersequenz	
	Zugangs-	Amplif.	F ("forward") und R ("reverse")	
	nummer	in bp	5'	3'
RT-PCR-Prime	r			
ADAM15	$\rm NM_003815$	118	F: ctgtgacagcaacaggcact	
			R: taagaccaggaggctgagga	
ADAMTS5	NM_007038	80	F: cgctgccaccacactcaa	
			R: cgtagtgctcctcatggtcat	
AGC	NM_013227	498	F: ccatgcaatttgagaact	
			R: acaagaagaggacaccgt	
COL10A1	NM_000493	703	F: gcccaagaggtgcccctggaatac	
			R: cctgagaaagaggagtggacatac	
COL2A1	NM_033150	365	F: caggggtgaacgaggtttc	
			R: cacgagcaccagcacttcc	
COL4A6	NM_001847	123	F: gggcttcctggagataaagg	
			R: agtgcctggaaatcctgatg	
COL5A1	NM_000093	139	F: aggaatgcctggacaaactg	
			R: acccctttctccatcgtctc	
COL6A1	NM_001848	116	F: caagaggagaccctggtgaa	
			R: gcctcggtagcctttaggtc	

Gen	"GenBank"-	Länge d.	Primersequenz
	Zugangs-	Amplif.	F ("forward") und R ("reverse")
	nummer	in bp	5' 3'
COMP	NM_000095	100	F: agcagatggagcaaacgtattg
			R: tggaagacttcacagccttgag
COX2	NM_000963	158	F: tgagcatctacggtttgctg
			R: tgcttgtctggaacaactgc
CRTL1	NM_001884	123	F: gaaaatggcccccatctact
			R: atggattcctgagccaaatg
FN1	NM_002026	135	F: atgatgaggtgcacgtgtgt
			R: ctcttcatgacgcttgtgga
GAPDH	NM_002046	188	F: gagtccactggcgtcttcac
			R: ggtgctaagcagttggtggt
IL10	NM_000572	352	F: atgccccaagctgagaaccaagaccca
			R: tctcaaggggctgggtcagctatccca
IL1B	NM_000576	205	F: gggcctcaaggaaaagaatc
			m R: ttctgcttgagaggtgctga
IL6	NM_000600	610	F: aactccttctccacaagcg
			R: tggactgcaggaactcctt
ITGA2B	NM_000419	117	F: atgtcgagggctttgagaga
			${ m R}$: acatcgcgattcctatctgg
MMP13	NM_002427	97	F: tgg tcc agg aga tga aga cc
			m R: tcctcggagactggtaatgg
MMP24	NM_006690	115	F: ttaaggaggtgacggtggag
			R: taggtcttgcccacaggttc
MMP3	NM_002422	83	F: tgtggagttcctgacgttggt
			${ m R}$: acaatcctgtatgtaaggtgggtttt
NFKB,	M58603	174	F: cctggatgactcttgggaaa
DNA-bindende			R: tcagccagctgtttcatgtc
Untereinheit			

Gen	"GenBank"-	Länge d.	Primersequenz	
	Zugangs-	Amplif.	F ("forward") und R ("reverse")	
	nummer	in bp	5'	3'
NOS2A	$\rm NM_000625$	158	F: acaagcctacccctccagat	
			R: tcccgtcagttggtaggttc	
p38MAPKA	NM_001315	188	F: tgactcagatgccgaagatg	
			R: atcataaggatcggccactg	
PPARG2	NM_015869	628	F: gaatgtcgtgtctgtggaga	
			R: tgaggagagttacttggtcg	
PTGES	NM_004878	168	F: gaagaaggcctttgccaac	
			R: gggttaggacccagaaagga	
TIMP1	NM_003254	782	F: aattccgacctcgtcatcag	
			R: tgcagttttccagcaatgag	
TIMP2	NM_003255	470	F: ggcgttttgcaatgcagatgtag	
			R: cacaggagccgtcacttctcttg	
TNFA	NM_000594	380	F: tcagcctcttctccttcctg	
			R: gatgcggctgatggtgtg	
Sequenzierprime	er			
M 13 reverse			Cy5-caggaaacagctatgac	
T7 Promotor			Cy5-taatacgactcactataggg	

Primer für quantitative PCR

Gen und	Länge d.	Primersequenz	Schmelzkurve
"GenBank"-	Amplif.	F ("forward") und R ("reverse")	
Zugangsnr.	in bp	5' 3'	
18S-rRNA X03205	65	F: cgcagctaggaataatggaatagg R: catggcctcagttccgaaa	Pagetin ()
COX2 NM_000963	123	F: cccttgggtgtcaaaggtaa R: ggcaaagaatgcaaacatca	
Gen und GenBank"-	Länge d. Amplif	Primersequenz F ("forward") und B ("reverse")	Schmelzkurve
------------------------	--------------------	--	--
"cenDank Zugangsnr.	in bp	5' 3'	
FHL1 NM_001449	115	F: ctgcgtggattgctacaaga R: gtgccaggattgtccttcat	Negative ()
FHL2 NM_001450	102	F: ggtacccgcaagatggagta R: tttggggatgaaactcttg	equilation of the second secon
ITGB3 NM_000212	120	F: atggggacacctgtgagaag R: aacggttgcaggtattttcg	Periodic Line Periodic Line Period
LASP1 NM_006148	102	F: tgcgctacaaggaggagttt R: tgatctggtcctgggtcttc	And the second s
MMP13 NM_002427	97	F: tcctcttcttgagctggactcatt R: cgctctgcaaactggaggtc	en en esta de la companya de la comp
NOS2A NM_000625	117	F: attcactcagctgtgcatcg R: tcaggtgggatttcgaagag	Per la construcción de la constr
OPG NM_002546	117	F: ggcaacacagctcacaagaa R: cgctgttttcacagaggtca	Harmonic Arrows

Gen und	Länge d.	Primersequenz	Schmelzkurve
"GenBank"-	Amplif.	F ("forward") und R ("reverse")	
Zugangsnr.	in bp	5' 3'	
PDLIM1 NM_020992	112	F: aatgtggcactgggattgtt R: gaaatggcccttctgtttca	Paratin Car
PTGES NM_004878	155	F: cccccagtattgcaggag R: ggaagaccaggaagtgcatc	Paratita Care or display the second
TUBB NM_001069	140	F: tgacttgcagctggagagaa R: gtctgaagatctggccgaag	All data and the second
VIM NM_003380	144	F: gagaactttgccgttgaagc R: ctcaatgtcaagggccatct	And the second s

2.1.4.3. Antikörper

Bei den für Immunfärbung und Western-Blot verwendeten Antikörpern handelte es sich um monoklonale Maus-Antikörper:

Antigen	Klon	Hersteller
FHL2	F4B2-B11	Gabe von Prof. Dr. V. Wixler, Münster, Deutschland
Vimentin	V9	Sigma-Aldrich Laborchemikalien GmbH, Taufkir-
		chen, Deutschland

2.1.5. Kulturmedien, Puffer, Lösungen und Gele

2.1.5.1. Zellkulturmedien

Chondrozytenmedium

- 1:1 DMEM : HAM'S F-12 Medium
- 1 mM L-Glutamin
- 50 U/ml Penicillin
- 50 μ g/ml Streptomycin
- 10 μ g/ml L-Ascorbinsäure-2-phosphat
 - 10~% hitzeinaktiviertes fetales Kälberserum

Kryomedium

Zum Kultivierungsmedium wurde 5 % DMSO (Dimethyl
sulfoxid) zugegeben und bei $0^{\circ}\mathrm{C}$ verwendet.

Serumfreies Medium:

DMEM

- 1 mM L-Glutamin
- 1 mM Pyruvat
- 50 U/ml Penicillin
- 50 μ g/ml Streptomycin

nicht-essentielle Aminosäuren (L-Alanin: 8.9 mg/ml, L-Asparagin x H₂O: 15 mg/ml, L-Asparaginsäure: 13.3 mg/ml, L-Glutaminsäure: 14.7 mg/ml, Glycin: 7.5 mg/ml, L-Prolin: 11.5 mg/ml, L-Serin: 10.5 mg/ml

- 1:1000 SES1 Solution A
- 1:1000 SES1 Solution B, jeweils frisch zugegeben

Hitzeinaktivierung des FKS

Gefrorenes FKS wurde über Nacht im Kühlschrank bei 4°C aufgetaut und bei 56°C für 30 min erhitzt. Anschließend wurden Aliquots portioniert und bis zur Verwendung bei -20°C gelagert.

2.1.5.2. Medien für Bakterienkultivierung

Agarplatten mit Selektivmedium

35 g LB Agar 1 ml Ampicillin (50 mg/ml) Mit Aqua demin. auf 1 l auffüllen, den gelösten LB Agar 6 min bei 121°C autoklavieren, nach dem Abkühlen auf unter 42°C Ampicillin zugeben, Platten gießen und nach dem Erkalten lichtgeschützt bei 4°C lagern.

Selektivmedium

 $25~{
m g}$ LB Broth

1 ml Ampicillin (50 mg/ml)

Mit Aqua demin. auf 1 l auffüllen, das gelöste LB Broth 6 min bei 121°C autoklavieren und nach dem Abkühlen Ampicillin zugeben.

2.1.5.3. Puffer

Auflösepuffer für Alginat-Beads

0.055 mol Natriumcitrat

0.020 mol EDTA

0.15 mol Natriumchlorid

Mit Aqua demin. auf 1 l
 auffüllen und den Puffer mit NaOH auf $\rm pH=6.8$ einstellen.

Spülpuffer für Paraffineinbettung von Alginat-Beads

0.1 mol Cacodylsäure-Natriumsalz

50 mmol BaCl₂ 10 g Saccharose

Mit Aqua demin. auf 1 lauffüllen, den Puffer mit HCl auf pH = 7.4 einstellen. Vor der Verwendung 10 ml Eosin zugeben.

TBE-Puffer (pH 8.3)

$10.9 \mathrm{~g}$	Tris-Base	
$5.5~{ m g}$	Borsäure	Mit Aqua demin. auf 1 l auffüllen.
$0.93~{ m g}$	Di-Natrium-EDTA	
	(10	

ALP-Puffer 10x

$0.1 \mathrm{~mmol}$	ZnCl_2	
$1 \mathrm{mmol}$	$MgCl_2$	Mit Aque domin suf 1 l suffüllen
$1 \mathrm{ml}$	Triton-X	Mit Aqua dennii. aur 1-i aurunen.
20 mmol	Tris	
Probenpuffer für SDS-PAGE		

$125~\mathrm{ml}$	Tris (pH 6.8), 0.5 M	
$10 {\rm g}$	SDS	Mit Acua domin auf 1 lauffüllon
$150~\mathrm{ml}$	Glycerin	init Aqua dennii. auf 1 1 aufunen.
$2.3~{ m g}$	Dithiothreitol	
T C C		

Laufpuffer für SDS-PAGE (pH 8.3)

192 mmol Glycin 25 mmol Tris 1 g SDS

Mit Aqua demin. auf 1 l auffüllen.

Blotpuffer

	Blotpuffer I	BlotpufferII	Blotpuffer III
Tris basisch	$300 \mathrm{mM}$	$30 \mathrm{~mM}$	_
ϵ -Amino-n-Capronsäure	_	_	40 mM
Methanol	20~%	20~%	20~%

2.1.5.4. Gele

Agarosegele

- 50 ml TBE-Puffer (2.1.5.3, S. 32)
- 0.5g Agarose für ein 1 %-iges Gel, beziehungsweise
 - 1 g Agarose für ein 2 %-iges Gel
- $0.5 \ \mu g/ml$ Ethidiumbromid

TBE-Puffer mit Agarose aufkochen und nach Abkühlung auf unter 50°C Ethidiumbromid unter Rühren zugeben. Agarosegel in einer Gelkammer ca. 30 min polymerisieren lassen.

SDS-PAGE-Gele

Komponenten	Trenngel 11.5 %	Sammelgel
Acrylamid (30%)	$3.96 \mathrm{\ ml}$	$1.47 \ \mathrm{ml}$
Bisacrylamid (2 $\%$)	3.12 ml	$0.59 \ \mathrm{ml}$
$1.5~\mathrm{M}$ Tris-HCl (pH 8.8)	$3.75 \ \mathrm{ml}$	$2.50 \ \mathrm{ml}$
SDS (10 %)	$50 \ \mu l$	$50 \ \mu l$
Aqua demin.	_	$5.28 \mathrm{~ml}$
	gut miscl	hen
TEMED (100 %)	$10 \ \mu l$	$10 \ \mu l$
APS (10 %, frisch angesetzt)	$100 \ \mu l$	$100 \ \mu l$
Coomassie-Blue		ca. 20 μl

Zwei Glasplatten für Polyacrylamidgele (Anfertigung der Wissenschaftlichen Werkstatt Feinwerktechnik der Universität Ulm) fixieren und mit 2 %-iger Agaroselösung abdichten. Trenngel zwischen die Platten gießen und mit wassergesättigtem Butanol überschichten. Nach Polymerisation Botanol abgießen, Gel mit 1:4 verdünntem Laufpuffer (2.1.5.3, S. 33) spülen und mit Sammelgel überschichten, danach den Kamm einsetzen und das Gel über Nacht bei 4°C auspolymerisieren lassen.

2.1.5.5. Lösungen

Formalin nach Lillie (pH 7.0)

- 4.0 g Natriumdihydrogenphosphat
- 6.5 g Dinatriumhydrogenphosphat
- 100 ml Formaldehydlösung (37 %)

Mit Aqua demin. auf 1 l auffüllen.

EDTA-Lösung zur Entkalkung von Gewebeproben (pH 7.4)

200 g Di-Natrium-EDTA

20 g Natriumhydroxid (NaOH)

Di-Natrium-EDTA und NaOH in Aqua demin. aufschlämmen und durch Erhizen und Rühren auflösen. pH-Wert mit NaOH auf 7.4 einstellen und mit Aqua demin. auf 1 l auffüllen.

Bromphenolblaulösung (pH 8.0)

2.5	g Bromphenolblau Natriumsalz	
400	g Saccharose	Mit Aqua demin. auf 1 l auffüllen.
$125 \mathrm{~mm}$	ol Di-Natrium-EDTA	
Fixierlö	sung für Proteingele	
500 ml 125 ml	Methanol Essigsäure	Mit Aqua demin. auf 1 l auffüllen.
Entfärbe	er/Waschlösung für Proteingele	
100 ml	Methanol	Mit Agua domin auf 1 lauffüllen
$5 \mathrm{ml}$	Essigsäure	Mit Aqua demin. auf i i aufunen.
Coomassie-Färbung (1 %) für Proteingele		
100 ml	Methanol	
$5 \mathrm{ml}$	Essigsäure	Mit Aqua demin. auf 1 l auffüllen.
10 g	Coomassieblau	

2.1.6. Computerprogramme

- AbiPrism SDS 7000 system software, Version 1.2.3, Applera GmbH, Darmstadt, Deutschland
- ALFexpress Software, Amersham Biosciences Europe GmbH, Freiburg, Deutschland
- AxioVision 3.1, Zeiss Oberkochen, Deutschland
- BLAST (http://www.ncbi.nlm.nih.gov/BLAST/)
- CASY TT, Schärfe System GmbH, Reutlingen, Deutschland
- Genesis, Version 1.6.0 Beta 1 (http://genome.tugraz.at/)
- GoMiner (http://discover.nci.nih.gov/gominer/index.jsp)
- Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)
- Quantity One 1D Analysis Software, Version 4.6, Bio-Rad Laboratories GmbH, München, Deutschland
- Zoom Browser Ex, Version 4.5.1.148, Canon Deutschland GmbH, Fichtenhain, Deutschland

2.2. Methoden

2.2.1. Zellkultur

2.2.1.1. Präparation von Chondrozyten

Zur Isolation von Chondrozyten wurde Knorpelgewebe verwendet, das im Rahmen einer K-TEP-Operation entnommenen wurde. Die Überlassung des Gewebes erfolgte nach Aufklärung durch den behandelnden Stationsarzt und nach Zustimmung der Patienten gemäß den Richtlinien der Ethik-Kommission der Universität Ulm. Es wurde nur makroskopisch intakter Knorpel herangezogen, der eine glatte Oberfläche aufwies. Die Isolierung der Zellen wurde wie beschrieben durchgeführt [98]. Alle Arbeitsschritte erfolgten unter sterilen Bedingungen, sämtliche Medien und Lösungen wurden auf 37°C vorgewärmt.

• Restgewebe in sterile Nierenschale überführen, mit PBS spülen

- Mit Hilfe eines Skalpells Knorpel in etwa 1 mm dünnen Scheiben von der Gelenkfläche schneiden und in DMEM überführen, um Austrocknung zu verhindern
- Zerkleinerten Knorpel zweimal mit DMEM spülen und in 50 ml Falcon Röhrchen mit 30 ml Protease-Lösung (9 U/ml Protease in DMEM, steril filtriert) überführen
- Gewebe bei 37°C 45 min im Rotor des Hybridisierungsofens bei 7 Upm vorverdauen
- Angedautes Gewebe dreimal mit DMEM waschen und mit 30 ml Collagenase-Lösung (75 U/ml Collagenase in DMEM, steril filtriert) versetzen
- \bullet Gewebe 15 18 h bei
bei 37°C im Rotor des Hybridisierungsofens bei 7 Upm verdauen
- Die in der Verdaulösung befindlichen Zellen durch Zentrifugation (10 min bei 180 RZB) pellettieren und durch wiederholtes Resuspendieren in DMEM und zentrifugieren zweimal waschen
- Zellsuspension durch ein Zellsieb von 70 $\mu {\rm m}$ Porengröße filtrieren und nochmals zentrifugieren
- Zellen in Chondrozytenmedium (2.1.5.1, S. 31) resuspendieren, zählen und 2 Mio Zellen pro 75 cm² Zellkulturflasche aussähen und kultivieren
- Chondrozyten ein bis zwei Tage adhärieren lassen, mit PBS spülen und kryokonservieren

2.2.1.2. Zellzählung

Zur Zählung von Zellen wurden 100 μ l Zellsuspension in 10 ml Casyton gegeben, am Zellzählgerät Casy 1 analysiert und mit Hilfe des Software-Programmes CASY TT ausgewertet. Dabei wurde die Anzahl vitaler sowie toter Zellen, Zelltrümmer und Zellaggregate in einer dreifachen Messung bestimmt und daraus die Zellvitalität, der Aggragationsfaktor und schließlich die vitale Zellzahl berechnet.

2.2.1.3. Zellkultivierung

Die Kultivierung der Zellen erfolgte bei 37° C, 5 % CO₂ und 95 % Luftfeuchte, Medium wurde alle drei bis vier Tage gewechselt und die Zellen bei etwa 80 % Konfluenz passagiert.

2.2.1.4. Zellpassagierung

Zur Expansion oder Umsetzung von Zellen in andere Kulturgefäße wurden kultivierte Zellen passagiert, alle Medien und Lösungen wurden auf 37°C vorgewärmt:

- Medium aus Kulturgefäß abnehmen und Zellen zweimal mit PBS waschen
- Zellrasen mit Trypsin/EDTA (0.05 %/0.02 % in PBS ohne Ca²⁺, Mg²⁺) bedecken und 5 - 10 min bei 37°C ,5 % CO₂, 95 % Luftfeuchte inkubieren
- Ablösung der Zellen durch Klopfen des Kulturgefäßes unterstützen und optisch kontrollieren
- Enzymatische Reaktion durch Zugabe von serumhaltigem Medium abstoppen und Zellsuspension 10 min bei 180 RZB abzentrifugieren
- Zellpellet in Kulturmedium resuspendieren und wieder aussähen

2.2.1.5. Kryokonservierung

Zur Kryokonservierung wurden die Zellen passagiert (2.2.1.4, S. 37), nach dem Zentrifugieren in eiskaltem Kryomedium (2.1.5.1, S. 31) resuspendiert und in Kryoröhrchen mit jeweils $2 \cdot 10^6$ Zellen aliquotiert. Anschließend wurden die Röhrchen 12 h in der Gasphase von Flüssigstickstoff abgekühlt und danach zur Lagerung in die Stickstoffflüssigphase überführt.

2.2.1.6. Einbettung von Chondrozyten in Alginat-Beads

Die Immobilisierung von Chondrozyten in einer dreidimensionale Alginatmatrix wurde wie von Häuselmann et al. beschrieben [91] durchgeführt. Alle Arbeitsschritte erfolgten unter sterilen Bedingungen, sämtliche Medien und Lösungen wurden auf 37°C vorgewärmt.

- Chondrozyten dreimal mit HAMs F12-Medium waschen (Zentrifugation 10 min bei 180 RZB), um eine Ca²⁺-freie Zellsuspension zu erhalten
- Pelletierte Zellen in steril filtrierter Alginatlösung (1.2 % in 0.9 % NaCl-Lösung) aufnehmen, Zellzahl auf 4·10⁶ Zellen/ml einstellen
- Alginat-Zellsuspension in einer Spritze mit einer 0.4 mm x 19 mm Kanüle luftblasenfrei aufziehen

- Alginat-Zellsuspension unter Rühren in eine 135 mM CaCl₂-Lösung eintropfen und 10 min bei RT stehen lassen
- Beads einmal mit 0.9 % NaCl und dreimal mit DMEM waschen und anschließend in Chondrozytenmedium bei 37°C, 5 % CO₂ und 95 % Luftfeuchte kultivieren, alle drei bis vier Tage Medium wechseln

2.2.1.7. Auflösung von Alginat-Beads

Zur Weiterverwendung der in Alginat eingebetteten Zellen wurden die Alginat-Beads wie von Häuselmann et al. beschrieben [91] aufgelöst.

- Kulturüberstand der Bead-Kultur abnehmen und Beads zweimal mit PBS waschen
- Pro Bead 20 μl Auflösepuffer (2.1.5.3, S. 32) zugeben, 15 min inkubieren lassen und gründlich vortexen
- Suspension 10 min bei 180 RZB abzentrifugieren, Zellpellet vor der Weiterverwendung (Zelllyse oder Zellkultivierung) einmal mit PBS waschen

2.2.1.8. Stimulation und Inhibition von Zellen in Monolayer- oder Alginat-Bead-Kultur

Die Kultivierung von Chondrozyten mit verschiedenen Inhibitoren und Stimuli erfolgte nach folgendem Protokoll:

- Für Monolayerkulturen Zellen mit einer Dichte von 3
- $5\cdot10^4 \rm Zellen/\rm cm^2$ aussäen und zwei Tage adhärieren lassen
- Für Alginat-Bead-Kulturen Zellen nach Vorschrift in Alginat immobilisieren und kultivieren
- Zellen zweimal mit PBS waschen und 24 h in serumfreiem Medium (2.1.5.1, S. 31) kultivieren
- \bullet Die in DMSO (Dimethylsulfoxid) gelösten Inhibitoren mit DMEM auf die gewünschte Konzentration vorverdünnen, den DMSO-Gehalt auf 0.1 % im Endansatz einstellen

- Medium abnehmen und Zellen 15 min mit Inhibitor in serumfreiem Medium inkubieren (37°C, 5 % CO₂ und 95 % Luftfeuchte), Kontrollansätze in serumfreiem Medium mit 0.1 % DMSO kultivieren
- Stimulanz in gewünschter Konzentration zugeben und Zellen bei 37°C, 5 % CO₂ und 95 % Luftfeuchte stimulieren
- Nach erfolgter Stimulation Zellen zweimal mit PBS waschen und lysieren (2.2.1.9, S. 39)
 - Bei Monolayerkulturen erfolgt die Zelllyse direkt im Kulturgefäß
 - Alginat-Beads werden nach Vorschrift aufgelöst (2.2.1.7, S. 38) und anschließend lysiert

2.2.1.9. Zelllyse

Zur Analyse verschiedener intrazellulärer Komponenten wurden die Zellen wie folgt aufgelöst:

- Zur RNA-Isolierung die Zellen in 350 μ l RLT-Puffer (aus dem RNeasy Mini Kit der Fa. Qiagen GmbH, Hilden) mit 10 μ l/ml β -Mercaptoethanol aufnehmen, bei mehr als 10⁶ Zellen 600 μ l des Lysispuffer verwenden
- Zum SDS-PAGE die Zellen trypsinieren, waschen und Pellet in SDS-Probenpuffer (2.1.5.3, S. 32) aufnehmen
- Zur Proteinbestimmung oder DNA-Messung Zellen trypsinieren, waschen und Pellet in ALP-Puffer 1x (2.1.5.3S. 32) aufnehmen

2.2.2. Molekularbiologische Methoden

2.2.2.1. RNA-Isolierung

Zur Isolation der Gesamt-RNA aus Zelllysat für Genexpressionsanalysen wurde das RNeasy Mini Kit der Fa. Qiagen GmbH, Hilden, nach Herstelleranleitung verwendet.

- Zelllysat (2.2.1.9, S. 39) mit gleichem Volumen 70 % Ethanol mischen
- Lysat-Ethanol-Gemisch auf RNeasy mini spin-Säule in 2 ml Sammelröhrchen auftragen

- 15 s bei 15500 RZB zentrifugieren und Durchbruch entfernen
- 700 μl RW1-Puffer auf die Säule pipettieren
- 15 s bei 15500 RZB zentrifugieren und Säule in neues Sammelröhrchen stellen
- 500 μl RPE-Puffer auf die Säule pipettieren
- $\bullet~15$ s bei 15500 RZB zentrifugieren und Durchbruch entfernen
- Nochmals 500 μl RPE-Puffer auf die Säule pipettieren
- 2 min bei 15500 RZB zentrifugieren und Durchbruch entfernen
- 1 min bei 15500 RZB zentrifugieren und Säule in 1.5 ml Sammelröhrchen stellen
- Elution der RNA: 30 μl RNA
se-freies Wasser direkt auf die Membran der Säule pipettieren
- 1 min bei 15500 RZB zentrifugieren, Säule entfernen
- RNA-Lösung sofort auf Eis überführen
- Bei -80°C lagern

2.2.2.2. Reverse Transkription

Für die Durchführung von Genexpressionsanalysen wurde Gesamt-RNA (2.2.2.1, S. 39) mit Hilfe des Omniscript RT Kit der Fa. Qiagen GmbH, Hilden, nach Anleitung des Herstellers in cDNA umgeschrieben. RNA-Lösung und verwendete Reagenzien wurden auf Eis gehalten.

- RNA (maximal 2 $\mu {\rm g})$ mit RNA
se-freiem Wasser auf 12 $\mu {\rm l}$ Gesamtvolumen einstellen
- RNA-Lösung 5 min bei 65°C denaturieren und danach sofort auf Eis stellen
- Reaktionsmix zugeben aus

RT-Puffer	10x	$2 \ \mu l$
dNTP-Mix	je 5 mM	$2 \ \mu l$
Oligo dT_{15}	$20~\mu{\rm M}$	$1 \ \mu l$
Random-Primer	$100~\mu{\rm M}$	$1 \ \mu l$
RNAse-Inhibitor	$10~{ m units}/\mu{ m l}$	$1 \ \mu l$
Omniscript RT	$4 { m units}/\mu { m l}$	$1 \ \mu l$

• Gemisch vortexen und kurz anzentrifugieren

- 60 min bei 37°C inkubieren (Robocycler ohne beheizten Deckel)
- 60 min bei 42°C inkubieren
- cDNA bei -20°C einfrieren

2.2.2.3. RT-PCR

Zur semiquantitativen Genexpressionsanalyse wurde eine RT-PCR (Reverse Transkriptase-Polymerase-Kettenreaktion) mit dem HotStarTaq Master Mix Kit (Qiagen) in 20 μ l-Ansätzen nach Anleitung des Herstellers durchgeführt. Die Primer wurden 1 μ M im Ansatz eingesetzt. Alle Primersequenzen, die in der RT-PCR eingesetzt wurden, sind in Abschnitt 2.1.4.2, S. 26, zu finden. Die Amplifikationsreaktion erfolgte im Robocycler Gradient 96 (Stratagene) unter folgenden Bedingungen:

Zyklenzahl	Zeit	Temperatur
1	$15 \min$	96°C
30	$1 \min$	$95^{\circ}\mathrm{C}$
	$1 \min$	$60^{\circ}\mathrm{C}$
	$1 \min$	$72^{\circ}\mathrm{C}$
1	$20 \min$	72°C

2.2.2.4. Quantitative PCR

Die quantitative Genexpressionsanalyse wurde in einem AbiPrism7000 (Applied Biosystems) unter Verwendung von Platinum[®]SYBR[®]qPCR Super-Mix UDG, Invitrogen (FHL1, FHL2, ITGB3, LASP1, MMP13, PDLIM1 und TUBB) bzw. Power SYBR[®]Green PCR Master Mix, Applied Biosystems (18S-rRNA, COX2, NOS2A, OPG, PTGES, VIM) nach den jeweiligen Herstellerangaben in 20 μ l-Triplikatansätzen durchgeführt. Die in Vorversuchen optimierte Primerkonzentration for "forward"- und "reverse"-Primer betrug im Ansatz jeweils 1 μ M, nur die PTGES- und NOS2A-Primer wurden jeweils 0.3 μ M eingesetzt. Die Amplifikationsreaktion erfolgte unter den angegebenen Bedingungen:

Zyklenzahl	Zeit	Temperatur
1	$2 \min$	$50^{\circ}\mathrm{C}$
1	$10 \min$	$95^{\circ}\mathrm{C}$
40	$15 \mathrm{~s}$	$95^{\circ}\mathrm{C}$
	$1 \min$	$60^{\circ}\mathrm{C}$
1	$20 \min$	$72^{\circ}\mathrm{C}$

Alle Primersequenzen, die in der quantitativen PCR eingesetzt wurden, sind in Abschnitt 2.1.4.2, S. 28, zu finden. Zur Überprüfung der amplifizierten Sequenzen und zur absoluten Quantifizierung wurde für jedes Primerpaar das Amplifikat kloniert, in E.coli transformiert und die Amplifikatsequenz durch Sequenzierung verifiziert (siehe 2.2.2.6, S. 42 und 2.2.2.8, S. 47). Zur absoluten Quantifizierung wurden die Plasmide mit den inserierten Zielsequenzen aus den Klonen isoliert und die Nukleinsäure-Konzentration photometrisch bestimmt (2.2.2.7, S. 45). Die Plasmide dienten als quantitative Referenz und wurden in einer Konzentrationsreihe analysiert, die als Standardgerade diente.

2.2.2.5. Agarose-Gelelektrophorese

Die Amplifikate aus RT-PCR (2.2.2.3, S. 41) und quantitativer PCR (2.2.2.4, S. 41) wurden durch Gelelektrophorese im Agarosegel (2.1.5.4, S. 33) aufgetrennt. Dazu wurde 4 μ l 100 bp-Basenpaarleiter als Standard und 7 μ l Amplifikat aufgetragen. Zur Identifikation der Lauffront wurden die Proben zuvor mit 12.5 % Bromphenolblaulösung (2.1.5.5, S. 34) versetzt. Mit "Choral Buffer" angesetzte Proben konnten direkt aufgetragen werden. Die Auftrennung der Amplifikate erfolgte durch Anlegen von 120 V und 80 mA für 30 min. Anschließend wurden die Gele am GelDocXR (Bio-Rad) ausgewertet.

2.2.2.6. Klonierung und Transformation von PCR-Amplifikaten

Zur Verifizierung von PCR-Amplifikat-Sequenzen und zur absoluten Quantifizierung von cDNA-Molekülen in der quantitativen PCR wurden PCR-Amplifikate in E.coli transformiert. Die daraus gereinigten Plasmide dienten als quantitativ bestimmbare Referenz.

Herstellung und Reinigung von PCR-Produkten

Die PCR-Produkte wurden mit dem HotStarTaq[®]Master Mix Kit wie unter 2.2.2.3, S. 41, beschrieben hergestellt. Um eine ausreichende Menge an PCR-Produkten zu erhalten, wurden 50 μ l-Reaktionen angesetzt. Als Kontrolle wurden die Amplifikate zunächst auf ein Agarosegel (2.1.5.4, S. 33) aufgetragen und danach mit dem NucleoSpin Plasmid

Kit (Machery-Nagel, Düren) oder dem QIAquick Gel Extraktions Kit (Qiagen GmbH, Hilden) nach den jeweiligen Herstellerangaben extrahiert.

- Auf einem Gelträger ein 1 %-iges Agarosegel mit großen Taschen gießen (jeweils zwei Kammzinken mit Klebestreifen zusammengekleben)
- Amplifikat mit 5 μl Bromphenolblau mischen, 40 μl Probe pro Tasche auftragen und unter Standardbedingungen auftrennen
- Gel mit Amplifikat kurz auf den Transilluminator (Wellenlänge: 254 nm) legen und Bande mit Skalpell markieren
- Bande vollständig ausschneiden und in zuvor gewogenem Reaktionsgefäß auswiegen
- Reingiung mit NucleoSpin Plasmid Kit:
 - 3 Volumen NT1-Puffer zu einem Volumen Gel geben und 10 min bei 50°C inkubieren, alle 2 min vortexen bis Gelstücke vollständig gelöst sind
 - Auf NucleoSpin-Säule in 2 ml Sammelröhrchen auftragen und 1 min bei 8000 RZB zentrifugieren, Durchfluss verwerfen
 - $-~600~\mu l$ NT3-Puffer auftragen und 1 min bei 11000 RZB zentrifugieren, Durchfluss verwerfen
 - 200 μl NT3-Puffer auftragen und 2 min bei 11000 RZB zentrifugieren, Durchfluss verwerfen
 - Säule in 1.5 ml Röhrchen überführen, 30 μl NE-Puffer direkt auf die Säulenmembran pipettieren und 1 min bei RT inkubieren
 - 1 min bei 11000 RZB zentrifugieren
- Reinigung mit QIAquick Gel Extraktions Kit:
 - -3 Volumen QG-Puffer zu einem Volumen Gel geben und 10 min bei 50°C inkubieren, alle 2 min vortexen bis Gelstücke vollständig gelöst sind
 - -Nach Auflösen muss Farbe des pH-Indikators im Puffer gelb sein, sonst 10 μl 3 M Natriumacetat, pH 5.0 zugeben
 - Probe mit einem Gelvolumen Isopropanol mischen und vollständig auf QIAquick Spin-Säule in 2 ml Sammelröhrchen auftragen
 - -1 min bei 15500 RZB zentrifugieren, Durchfluss verwerfen

- 500 μl QG-Puffer auftragen und 1 min bei 15500 RZB zentrifugieren, Durchfluss verwerfen
- -750 μl PE-Puffer auftragen, 5 min bei RT inkubieren und 1 min bei 15500 RZB zentrifugieren, Durchfluss verwerfen
- Zum Trocknen erneut 1 min bei 15500 RZB zentrifugieren
- Säule in 1.5 ml Röhrchen überführen, 50 μ l EB-Puffer direkt auf die Säulenmembran pipettieren und 1 min bei RT inkubieren
- 1 min bei 15500 RZB zentrifugieren
- Eluat bei -20°C lagern

Klonierung und Transformation

Zur Klonierung der PCR-Produkte in einen Vektor wurde das TOPO TA Cloning[®] Kit mit dem pCR[®]2.1-TOPO[®] Vector (Invitrogen) nach Herstellerangaben benutzt:

- Klonierungsreaktionen auf Eis ansetzen und vorsichtig mischen: PCR-Produkt 4 μ l Salz-Lösung 1 μ l TOPO-Vektor 1 μ l
- Ansatz 7 min bei RT inkubieren, danach auf Eis stellen

Für die Transformation wurden kompetente TOP10 E.coli-Bakterien nach Herstellerangaben verwendet.

- Bakterien auf Eis auftauen und 2 μl der Klonierungsreaktion zugeben
- Vorsichtig mischen und 15 min auf Eis inkubieren
- Bakterien exakt 30 s bei 42°C im Wasserbad hitzeschocken und sofort auf Eis überführen
- 250 μ l auf RT temperiertes SOC-Medium zugeben
- 1 h bei 37°C horizontal schütteln (200 rpm)
- 1 min bei 200 RZB zentrifugieren
- Überstand dekantieren und Bakterien im Rücklauf resuspendieren
- 50 μ l der Bakteriensuspension auf einer ersten, den Rest auf einer zweiten ampicillinhaltigen, auf 30°C temperierten Agarplatte ausstreichen

- Platten mit leicht geöffnetem Deckel stehen lassen, bis Flüssigkeitsfilm getrocknet ist und bei 37°C über Nacht im Brutschrank inkubieren
- Von ausgewählten Klonen Ritzkulturen zur weiteren Verwendung anlegen

2.2.2.7. Plasmidisolierung

Es wurde das EndoFree Plasmid Maxi Kit oder alternativ das QIAfilterPlasmid Midi Kit (beide Qiagen) nach Anleitung des Herstellers benutzt.

- 50 100 ml Bakteriensuspension einer Übernacht-Kultur 15 min bei 6000 RZB abzentrifugieren
- Überstand dekantieren und vollständig ablaufen lassen
- Isolierung mit EndoFree Plasmid Maxi Kit:
 - Pellet durch Vortexen in 10 ml P1-Puffer vollständig lysieren
 - 10 ml P2-Puffer zugeben, Mischung sechs mal kippen und 5 min bei RT inkubieren
 - 10 ml gekühlten P3-Puffer zugeben und vorsichtig durch sechsmaliges Kippen mischen
 - Lysat unverzüglich auf eine vorbereitete QIAfilter Kartusche geben und 10 min bei RT inkubieren
 - Kartusche öffnen und Lysat mit Hilfe des Stempels in ein 50 ml Röhrchen filtrieren
 - Lysat mit 2.5 ml ER-Puffer versetzen, durch zehnmaliges Kippen mischen und 30 min auf Eis inkubieren
 - Lysat auf eine mit 10 ml QBT-Puffer equilibrierte QIAGEN-tip 500-Säule geben, Durchfluss verwerfen
 - Säule zweimal mit je 15 ml QC-Puffer waschen
 - DNA mit 5 ml QN-Puffer eluieren
- Isolierung mit QIAfilter Plasmid Midi Kit:
 - Pellet durch Vortexen in 4 ml P1-Puffer vollständig lysieren

- 4 ml P2-Puffer zugeben, Mischung sechs mal kippen und 5 min bei RT inkubieren
- 4 ml gekühlten P3-Puffer zugeben und vorsichtig durch zehnmaliges Kippen mischen
- Lysat unverzüglich auf eine vorbereitete QIAfilter Kartusche (10 ml) geben und 10 min bei RT inkubieren
- Kartusche öffnen und Lysat mit Hilfe des Stempels in ein 50 ml Röhrchen filtrieren
- Lysat auf eine mit 4 ml QBT-Puffer equilibrierte QIAGEN-tip 100-Säule geben, Durchfluss verwerfen
- Säule zweimal mit je 10 ml QC-Puffer waschen
- DNA mit 5 ml QF-Puffer eluieren
- DNA mit 3.5 ml kaltem Isopropanol (100 %) präzipitieren und 30 min bei 15000 RZB zentrifugieren, Überstand vorsichtig abnehmen und verwerfen
- Pellet mit 2 ml 70 % Ethanol waschen, 10 min bei 15000 RZB zentrifugieren, Überstand vorsichtig abnehmen und verwerfen
- Pellet 5 10 min trocknen lassen, in 300 μl TE-Puffer aufnehmen und bei -20°C lagern

Bestimmung der Nukleinsäure-Konzentration am Photometer

Die DNA- bzw. RNA-Konzentration wurde mit dem Spectrophotometer bestimmt. Gemäss dem Gesetz von Lambert-Beer besteht eine lineare Beziehung zwischen der gemessenen Extinktion und der Konzentration der entsprechenden Lösung.

- DNA-Proben ge
eignet mit 0.1 %-DEPC-Wasser verdünnen, um im linearen Meßbereich von 5 50
 $\mu {\rm g/ml}$ zu liegen
- Messung der Extinktion bei den Wellenlängen 260 nm und 280 nm gegen Referenz (entsprechend verdünnter Proben-Puffer)
- Berechnung der Nukleinsäure-Konzentration nach der Beziehung $c = \frac{E_{\lambda}}{\alpha_{\lambda}l}$, wobei E_{λ} = Extinktion bei der Wellenlänge λ , α_{λ} = Extinktionskoeffizient bei der Wellenlänge λ und l = Weglänge des Lichtes in der Lösung mit $\alpha_{260\text{DNA}} = 20 \text{ l/g cm}$ und $\alpha_{260\text{RNA}} = 25 \text{ l/g cm}$
- Berechnung der Ratio E_{260}/E_{280} zur Überprüfung der Reinheit

2.2.2.8. Sequenzierung mit ALFexpress

Zur Verifizierung der Inserts der erhaltenen Plasmide erfolgte eine Sequenzierung nach der Einstrangmethode nach Sanger [179]. Es wurde das Thermo Sequenase Primer Cycle Sequencing Kit (Amersham Biosciences) nach Anleitung des Herstellers eingesetzt. Gereinigte Plasmid-Lösung wurde direkt in der Sequenzierreaktion eingesetzt. Alternativ entfiel die Reinigung der Plasmide aus transformierten Bakterien. In diesem Fall erfolgte eine Amplifikation des Plasmids direkt aus dem entsprechenden Klon. Dazu wurde eine PCR mit M13 und T7 Primern wie unter 2.2.2.3, S. 41, dargestellt durchgeführt. Mit Hilfe einer Pipettenspitze wurden dafür aus Kolonien gepickte Bakterien in dem PCR-Reaktionsmix resuspendiert. Das erhaltene Amplifikat wurde mit dem Qiagen Purification Kit gereinigt und zur Sequenzierung verwendet.

Alle Reagenzien wurden auf Eis gehalten, die Primer M13 und T7 20 μ M eingesetzt. Die Annealing-Temperatur lag bei 55°C:

- Ansetzen des Reaktions-Mixes M pro Primer: Plasmid-Lösung 6 μl gereinigtes Amplifikat 8 μl Primer 1 μl bzw. Primer 1 μl Aqua demin. 6 μl Aqua demin. 4 μl
- Ansetzen der vier Terminierungsreaktionen für jedes Nukleotid (A, C, G und T): Nukleotid-Reagenz 3 μ l Reaktionsmix M 3 μ l
- Proben 25 Zyklen bei folgenden Temperaturen im Robocycler inkubieren: 30 s 95°C
 - 30 s
 55°C

 1 min
 72°C
- Reaktion mit je 6 μ l "Formamide loading dye" abstoppen
- ReproGel High Resolution (Polyacrylamidgel) mit einem Kamm der Zinkendicke
 0.3 mm gießen und 15 min unter der UV-Lampe aushärten lassen
- Pro Geltasche 5 μ l Probe auftragen und bei 1500 V, 60 mA, 30 W und 55°C mit einem Probenintervall von 2 s 450 min laufen lassen
- Sequenzierung mit ALFexpress Software auswerten, dann mit Hilfe von BLAST (2.1.6, S. 35) die erhaltene Sequenz analysieren

2.2.2.9. Microarray-Analyse

Zur genomweiten Analyse der Genexpression von Chondrozyten wurde ein Oligo-Microarray-Experiment an der Microarray-Core Facility der Universität Ulm von Herrn Dr. K. Holzmann durchgeführt. Um genügend Ausgangsmaterial zu erhalten, wurden die Chondrozyten von sechs Spendern vereinigt und in fünf Versuchsgruppen zu jeweils 3 Mio Zellen aufgeteilt. Die Zellen wurden bei einer Dichte von $5 \cdot 10^4$ Zellen/cm² in Monolayerkultur gehalten und wie unter 2.2.1.8, S. 38, beschrieben mit IL-1 β und verschiedenen Inhibitoren kultiviert. Das Experiment wurde mit drei unabhängigen Spendergruppen durchgeführt, so dass insgesamt 15 Versuchsansätze auszuwerten waren.

Versuchsschema:

Versuchsansatz	Kultivierungsbedingung
1:	Kontrollansatz
2:	Kultivierung mit 10 ng/ml IL-1 β
3:	Kultivierung mit 10 $\mu {\rm M}$ Birb 796 und 10 ng/ml IL-1 β
4:	Kultivierung mit 10 $\mu {\rm M}$ ML 3595 und 10 ng/ml IL-1 β
5:	Kultivierung mit 10 $\mu {\rm M}$ SB203580 und 10 ng/ml IL-1 β

Nach 24 h Stimulation wurden die Zellen zur RNA-Isolierung wie unter 2.2.1.9, S. 39, beschrieben mit 1.2 ml Lysispuffer pro Versuchsgruppe lysiert und mit einem Zellschaber vollständig von der Zellkulturflasche gelöst.

Die weiteren Schritte erfolgten alle an der Microarray-Core Facility wie von Buchholz et al. [36] beschrieben. Das Array-Design und sämtliche Protokolle sind hinterlegt bei ArrayExpress [10] unter der Identifikationsbezeichnung "A-MEXP-716" und dem Namen "SBGB homo sapiens Operon Chip 21K v2.0". Zunächst wurden die Oligonukleotide des "Human Genome Oligo Set Version 2.0" (Operon,Germany) auf einen Aminosilanträger gespottet. Aus den Zelllysaten wurde RNA isoliert, revers transkribiert in cDNA und in einem Amplifikationsschritt wiederum in anti-sense-RNA umgeschrieben. Danach erfolgte die Markierung der Proben-RNA mit Cy5 (rot) sowie einer Referenz-RNA mit Cy3 (grün), die daraufhin zur Co-Hybridisierung auf den Träger aufgebracht wurden. Die Farbsignale wurden mit Hilfe eines Laserscanners visualisiert und nach Print-Tip-Loess normalisiert. Die statistische Auswertung erfolgte wie unter 2.2.5.5, S. 58, beschrieben.

2.2.3. Proteinbiochemische Methoden

2.2.3.1. Bestimmung der Proteinkonzentration

Die Bestimmung der Proteinkonzentration wurde nach der Methode von Bradford [31] mit Roti[®]-Quant (Roth) durchgeführt. Durch die Bindung eines Farbstoffes an Protein erfolgt eine Absorptionsänderung, die über einen weiten Konzentrationsbereich linear verläuft.

- Auftragung von jeweils 50 μ l der BSA-Standardreihe (5 200 μ g/ml) und der geeignet verdünnten Proben auf eine 96-Well-Mikrotiterplatte in Duplikaten
- Zugabe von 200 μ l einer 1:4 verdünnten Roti[®]-Quant-Lösung
- Messung der Extinktion bei $\lambda=590$ nm im "ELISA-Reader"
- Ermittlung der Probenkonzentration mit Hilfe der Standardgeraden

2.2.3.2. SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Die elektrophoretische Auftrennung von Proteinen aus Zelllysat wurde mit Hilfe der SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) nach Laemmli [127] in vertikalen Kammern (Anfertigung der Wissenschaftlichen Werkstatt Feinwerktechnik der Universität Ulm) für 10 x 10 cm große Platten durchgeführt.

- Polyacrylamidgel mit 11.5 %-igem Trenngel und 4.5 %-igem Sammelgel (2.1.5.4, S. 33) gießen
- Gel in Gelkammer mit Laufpuffer für SDS-PAGE (2.1.5.3, S. 33) befestigen
- Nach erfolgter Proteinbestimmung der Probe (2.2.3.1, S. 49) geeignete Menge und 3 μl Precision Plus Protein Standard Dual Color (Bio-Rad) mit den Molekulargewichten [kDa] (250; 150; 100; 75; 50; 37; 25; 20; 15; 10) auf das Gel auftragen
- Gellauf von etwa 3.5 h mit folgenden Einstellungen: Sammeln 50 V 30 mA Auftrennen 100 V 50-60 mA
- Coomassie-Färbung des Gels:
 - Gel 30 min in Fixierlösung (2.1.5.5, S. 34) inkubieren
 - Färbung in Coomassie-Färbelösung (2.1.5.5, S. 34) für 10 min

- Entfärben des Gels in Waschlösung (2.1.5.5, S. 34) über Nacht
- Bei Einsatz des Gels im Western-Blot entfällt Coomassie-Färbung

2.2.3.3. Immunoblot (Western-Blot)

Zur Detektion einzelner Proteine mit spezifischen Antikörpern wurden die aufgetrennten Proteine aus dem Polyacrylamid-Gel auf eine Nitrozellulose-Membran der Porengröße $0.45 \ \mu m$ übertragen (Methode modifiziert nach Towbin et al. [200]):

- Transfer-Membran 10 s in Methanol aktivieren und 10 min in Blotpuffer III (2.1.5.3, S. 33) äquilibrieren
- Blotten der Proteine bei 70 mA und 40 V für 1 h in einer Blotkammer mit folgendem Blotaufbau:
 - 1. Schicht: Sechs Lagen Whatman[®]Papier in Blotpuffer I (2.1.5.3, S. 33) getränkt
 - 2. Schicht: Drei Lagen Whatman[®]Papier in Blotpuffer II (2.1.5.3, S. 33) getränkt
 - 3. Schicht: Transfer-Membran
 - 4. Schicht: Polyacrylamidgel mit aufgetrennten Proteinen
 - 5. Schicht: Neun Lagen Whatman[®]Papier in Blotpuffer III getränkt
- Immunochemische Detektion spezifischer Proteine mit einem Chromogen-Detektionssystem von Dako:
 - Blocken der Membran mit 5 % Magermilchpulver über Nacht bei 4°C
 - Inkubation (1.5 h bei RT oder über Nacht bei 4°C) mit Primärantikörper (2.1.4.3, S. 30), anschließend dreimaliges Waschen mit PBS-Tween (250 μ l Tween 20 pro l PBS) für jeweils 10 min. Die Antikörper wurden in folgender Verdünnung in "Antibody Diluent" eingesetzt: α FHL₂ 1:5, α Tubulin 1:500 und α Vimentin 1:1000.
 - 1 h Inkubation bei RT mit biotinyliertem Sekundärantikörper (LSAB2[®] System-HRP), anschließend dreimaliges Waschen mit PBS-Tween für jeweils 10 min

- 30 min Inkubation mit Streptavidin-HRP (LSAB2[®] System-HRP), anschließend dreimaliges Waschen mit PBS-Tween f
 ür jeweils 10 min
- Inkubation mit AEC Chromogen bis zum Sichtbarwerden der Proteinbanden, anschließend Waschen der Membran mit H₂O
- Dokumentation und densitometrische Auswertung der Proteinbanden mit dem Dokumentationssystem Geldoc XR

2.2.3.4. PGE₂-ELISA

Zur Bestimmung der PGE₂-Konzentration in Zellkulturüberständen wurde der "Correlate EIATM PGE₂-ELISA" (Biotrend, Assay Designs) nach Herstellerangaben eingesetzt. Es handelt sich dabei um einen kompetitiven ELISA, bei dem das PGE₂ der Proben mit einem alkalische Phosphatase-Konjugat um Bindungsstellen eines Antikörpers konkurriert. Das alkalische Phosphatase-Konjugat wiederum katalysiert eine Farbreaktion, die mit einem "ELISA-Reader" gemessen werden kann.

- Auftragung von jeweils 100 μ l der PGE₂-Standardreihe (39-5000 pg/ml) und der geeignet verdünnten Proben auf eine 96-Well-Mikrotiterplatte in Duplikaten
- Zugabe von je 50 μ l Konjugat und monoklonalem α PGE₂-Mausantikörper
- 2 h Inkubation bei RT im Dunkeln unter Schütteln
- Auswaschen und Ausklopfen der Platte
- Zugabe von 200 µl Substratlösung (p-Nitrophenylphosphat)
- 45 min Inkubation bei RT im Dunkeln unter Schütteln
- Messung der Extinktion bei $\lambda = 405$ nm (Test-Filter) und $\lambda = 590$ nm (Referenz-Filter) im "ELISA-Reader"
- Logarithmische Auftragung der Standardkurve und Annäherung des Kurvenverlaufs mit einem Polynom zweiten Grades
- Ermittlung der Probenkonzentration mit Hilfe der Standardkurve

2.2.3.5. Nitrit-Bestimmung im Griess-Assay

Das im Zellkulturüberstand vorhandene Nitrit entsteht durch Oxidation des von Chondrozyten abgegebenen Stickstoffmonoxid und ist daher ein Maß für die Bildung von NO. Der Griess-Assay ("Griess Reagent System" von Promega) beruht auf einer quantitativ auswertbaren Farbreaktion, bei der Nitrit zu einem violetten Azofarbstoff umgesetzt wird. Der Assay wurde nach Herstellerangaben durchgeführt.

- Auftragung von jeweils 50 μ l der Nitrit-Standardreihe (1.56-100 μ M) und der geeignet verdünnten Proben auf eine 96-Well-Mikrotiterplatte in Duplikaten
- Zugabe von 50 μl Sulfanilamid-Lösung (1 % Sulfanilamid in 5 %
iger Phosphorsäure)
- 10 min Inkubation bei RT im Dunkeln
- Zugabe von 50 μl NED-Lösung (0.1 % N-1-Naphthyle
thylendiamindihydrochlorid in Wasser)
- 10 min Inkubation bei RT im Dunkeln
- Messung der Extinktion bei $\lambda=530$ nm im "ELISA-Reader"
- Ermittlung der Probenkonzentration mit Hilfe der Standardgerade

2.2.4. Histologie und Zellfärbung

2.2.4.1. Paraffineinbettung

Gewebeproben von Knorpel und Knochen wurden nach Fixierung und angemessener Entkalkung für histologische Untersuchungen in Paraffin eingebettet:

- Fixierung des Gewebes in Formalin nach Lillie (2.1.5.5) je nach Größe des Gewebestückes für 3 14 Tage
- 2 h wässern unter fließendem Leitungswasser
- Entkalkung von kalzifiziertem Gewebe mit EDTA-Lösung (2.1.5.5), regelmäßiger Wechsel der EDTA-Lösung und Überprüfung des Entkalkungsgrades durch Anstechen des Gewebestückes
- 2 h wässern unter fließendem Leitungswasser
- Dehydrierung der Probe mit einer Histokinette

- Einbettung der Probe in Paraffin an einer Ausgießstation
- An fertigung von 3.5 $\mu \mathrm{m}\text{-}\mathrm{Schnitten}$ an einem Microtom
- Aufziehen der Schnitte auf Objektträger

2.2.4.2. Färbungen von Paraffinschnitten

Vorbehandlung von Paraffinschnitten bei Färbungen

Paraffinschnitte wurden für Färbungen zunächst bei 65°C 30 min entparaffiniert und anschließend in einer absteigenden Alkoholreihe rehydriert:

Xylol	kurz spülen
	10 min
Alkohol $100~\%$	kurz spülen
	10 min
Alkohol 96 $\%$	kurz spülen
	10 min
Alkohol 75 $\%$	kurz spülen
	10 min
Aqua demin.	kurz spülen, danach Durchführung von Färbungen

Hämatoxylin- und Eosin-Färbung (HE-Färbung)

Übersichtspräparate wurden nach der Entparaffinierung mit Hilfe von Hämatoxylin und Eosin gefärbt:

Kernfärbung in Hämalaun nach MAYER	8 - 10 min
Bläuen unter fließendem Leitungswasser	10 min
Matrixfärbung mit 0.5 % Eosin AG extra	3 - 5 min
Aqua demin.	kurz spülen
Anschließend wurden die Schnitte in einer au	ıfsteigenden Alkoholreihe wieder entwässert

und mit Eukitt eingedeckt.

Safranin-O-Färbung

Nach der Entparaffinierung und Rehydrierung bis 96 % Alkohol wurden Proteoglykane mit Safranin-O angefärbt:

Kernfärbung mit Weigerts saurem Eisenhämatoxylin	6 - 8 min
Aqua demin.	zweimal kurz spülen
Bläuen unter fließendem Leitungswasser	10 min
Gegenfärbung mit 1:5000 wässrigem Fastgreen	$3 \min$
1 % Essigsäure	kurz spülen
Proteoglykanfärbung mit 0.1 % Safranin-O	4 - 6 min
(mit HCl auf pH<3 eingestellt)	

Anschließend wurden die Schnitte in einer aufsteigenden Alkoholreihe ab 96 % Alkohol wieder entwässert und mit Eukitt eingedeckt.

2.2.4.3. Einteilung des Knorpelschädigungsgrades nach Mankin

Die Bestimmung des Schädigungsgrades erfolgte an HE- und Safranin-O-gefärbten Paraffinschnitten (siehe Abschnitt 2.2.4.1 und 2.2.4.2) von Knorpelgewebe mit angrenzendem Knochen durch zwei unabhängige Beobachter. Die Bewertung geht auf Mankin et al. [142] zurück und ordnet den aufgeführten Merkmalen eine bestimmte Punktzahl zu:

Struktur	normal	0
	Unregelmäßigkeiten an der Oberfläche	1
	Pannus und Unregelmäßigkeiten an der Oberfläche	2
	Spalten bis zur Übergangszone	3
	Spalten bis zur radialen Zone	4
	Spalten bis zur calcifizierenden Zone	5
	komplette Disorganisation	6
Zellen	normal	0
	diffuse Hyperzellularität	1
	Cloning	2
	Hypozellularität	3
Safranin-O-Färbung	normal	0
	leicht verringert	1
	moderat verringert	2
	schwer verringert	3
	keine Färbung	4
Integrität der Tidemark	intakt	0
	von Blutgefäßen durchkreuzt	1

Die Punktzahlen der vier Bereiche werden addiert und geben den Schädigungsgrad zwischen 0 (ungeschädigt) und 14 (maximale Schädigung) an.

2.2.4.4. Färbung von Monolayer-Zellkulturen

FHL2-spezifische Immunfärbung

Zur FHL2-spezifischen Färbung wurden Zellen auf Permanox-Objektträger (Nunc) mit vier Kammern ausgesät und nach jeweiliger Angabe kultiviert. Die Färbung erfolgte mit dem Chromogen-Detektionssystem LSAB2[®] System-HRP bei RT in den angegebenen Inkubationsschritten, dazwischen wurde jeweils dreimal mit PBS gewaschen:

$5 \min$
$2 \min$
1 h
$30 \min$
$30 \min$
$30 \min$

Das Präparat wurde in H₂O gewaschen und mit Kaisers Glyceringelatine eingedeckt.

Fluoreszenzfärbung von Aktinfasern mit Phalloidin-FITC

Zur Fluoreszenzmarkierung von Aktinfasern wurden Zellen auf Permanox-Objektträger mit vier Kammern ausgesät und nach jeweiliger Angabe kultiviert. Die Färbung erfolgte lichtgeschützt bei RT in den angegebenen Inkubationsschritten, dazwischen wurde jeweils dreimal mit PBS gewaschen:

Fixierung mit 3.7 % Formaldehyd in PBS 5 min

 $25 \ \mu \text{g/ml}$ Phalloidin-FITC in PBS 40 min

Das Präparat wurde in H_2O gewaschen, mit Kaisers Glyceringelatine eingedeckt und die grün fluoreszierende Färbung durch Fluoreszenzmikroskopie am Zeiss Axioskop 2 mot plus, Filterset 05 (Exzitation 395 - 440 nm, Emission 470 nm), ausgewertet.

2.2.5. Datenauswertung und statistische Auswerteverfahren

2.2.5.1. Auswertung von quantitativen PCR-Daten

Absolute Quantifizierung

Zur absoluten Quantifizierung von Zielsequenzen in cDNA-Proben wurde parallel zu den Proben das Referenzplasmid in einer Konzentrationsreihe von 100 bis 1 Mio Plasmidkopien in Zehnerschritten aufgetragen. Die Konzentration an Plasmidkopien (c_{Pl} in nmol/l) errechnet sich aus der photometrisch bestimmten DNA-Konzentration der Plasmidlösung (c_{DNA} in μ g/ml, siehe 2.2.2.7), der Größe des verwendeten Vektors (a_{V} , pCR2.1-TOPO mit 3931 bp), der Größe des inserierten Amplikons (a_A , siehe 2.1.4.2) und dem Durchschnittsgewicht eines Basenpaares (m_{bp}) von 650 g/mol:

$$c_{\rm Pl} = \frac{c_{\rm DNA}}{m_{\rm bp}(a_{\rm V} + a_{\rm A})}$$

Das verwendete Computerprogramm AbiPrism SDS 7000 ermittelte mit Hilfe der Standardkonzentrationsreihe die Anzahl an Zielsequenzen in der analysierten Probe. Anschließend wurden die Ergebnisse gegen die endogene Kontrolle 18S-rRNA abgeglichen, um unterschiedliche RNA-Mengen aufgrund unterschiedlicher Zellzahlen zu normalisieren.

Relative Quantifizierung

Mit dieser Methode wurden die relativen Mengen der cDNA-Zielsequenzen verschiedener Proben verglichen. Zur Auswertung wurde ein Schwellenwert t (Threshold) der Fluoreszenz festgelegt. Die Anzahl der PCR-Zyklen, die nötig sind, um den Schwellenwert zu erreichen, bezeichnet man als C_t-Wert, er wurde von der Auswertungssoftware AbiPrism SDS 7000 angegeben. Die Ergebnisse der genspezifischen Reaktionen wurden auf 18SrRNA als endogene Kontrolle durch Subtraktion der C_t-Werte (ΔC_t) normalisiert. Für den Vergleich der Expression eines Gens in behandelten Zellen zu Kontrollzellen wurden die jeweiligen ΔC_t -Werte voneinander abgezogen ($\Delta C_{\text{tbehandelt}} - \Delta C_{\text{tKontrolle}}$) und der negative Differenzwert $-\Delta\Delta C_t$ in Potenz zur Basis 2 gesetzt ($2^{-\Delta\Delta C_t} = RQ = \text{relative}$ Menge). Der RQ-Wert entspricht also der relativen Expression der mRNA in behandelten Zellen gegenüber der mRNA-Expression in Kontrollzellen. Um die RQ-Werte anschaulicher zu machen, wurden sie logarithmisch dargestellt ($\log_{10}RQ$).

2.2.5.2. Darstellung von Daten im Boxplot

Der Boxplot dient zur graphischen Darstellung einer Reihe numerischer Daten. Es werden der Median, die zwei Quantile und die beiden Extremwerte wie folgt angegeben:

2.2.5.3. Auswertung von Microarraydaten

Zur Auswertung großer Datenmengen wurden verschiedene frei zugängliche Computerprogramme verwendet.

GoMiner

Mit Hilfe der GoMiner-Software [78] können Daten aus einer Microarrayanalyse ausgewertet werden. Es erfolgt eine Zuordnung der insgesamt analysierten und der regulierten Gene zu den in den Gene Ontology Datenbank definierten Bereichen. Durch einen Verteilungstest können Bereiche mit überdurchschnittlich vielen regulierten Genen erkannt werden. Zur Analyse in dieser Arbeit wurden Datensätze in Macintosh-Formatierung mit Tabulatortrennung verwendet. In der Liste aller analysierten Gene wurden nur die Gensymbole angegeben. In den Listen der durch die verschiedenen Behandlungen regulierten Gene waren in der ersten Spalte die Gensymbole und in der zweiten Spalte die Regulationsrichtung aufgeführt (1: verstärkte Expression, -1: verminderte Expression). Die Benutzung des Programms erfolgte nach Anleitung von GoMiner. Für die Auswertung wurden die "Go Ontology"-Kategorien "biological processes" und "cellular components" verwendet.

Genesis

Mit Hilfe der Genesis-Software [73] kann eine Clusteranalyse großer Datenmengen durchgeführt werden. In die Auswertung wurden jene Gene eingeschlossen, die durch mindestens eine der durchgeführten Behandlungsarten eine signifikante Regulation aufwiesen. Für jedes Gen wurden alle Regulationen als Logarithmus des Expressionsverhältnisses des Versuchsansatzes zur jeweiligen Kontrolle angegeben (log₂Ratio). Die Liste dieser Daten wurde mit den Einstellungen: "Hierarchical Clustering", "Average linkage clustering" und "Cluster genes" wie in der zugehörigen Software-Dokumentation angegeben analysiert.

2.2.5.4. Auswertung von Messreihen

Berechnung der Hemmung

Um die Wirkung von inhibitorischen Substanzen untereinander vergleichbar zu machen, wurde sowohl bei der quantitativer PCR (2.2.2.4, S. 41) als auch bei der Bestimmung von Metaboliten (2.2.3.4 und 2.2.3.5, S. 51) eine prozentuale normierte Hemmung bestimmt. Die Berechnung wurde mit folgender Formel durchgeführt:

$$H_{\rm PN} = 100(1 - \frac{q_{\rm I} - q_{\rm K}}{q_{\rm S} - q_{\rm K}})$$

- $H_{\rm PN}$: prozentuale, normierte Hemmung
- $q_{\rm K}$: Messwert des Kontrollansatzes
- $q_{\rm S}$: Messwert des Stimulationsansatzes
- $q_{\rm I}$: Messwert des Inhibitionsansatzes

Berechnung der IC₅₀ und IC₇₅-Werte

Um die Hemmwirkung der einzelnen Inhibitoren untereinander vergleichbar zu machen, wurde die Inhibitorkonzentration berechnet, bei der eine 50 %ige bzw. 75 %ige Hemmung erreicht wurde. Dazu wurden die beiden Konzentrationen herangezogen, die Hemmwerte oberhalb und unterhalb von 50 % bzw. 75 % erreichten. Mit Hilfe der Auswertungssoftware Excell wurde eine Geradengleichung aus den beiden Meßpunkten erstellt und die Konzentration zum interessierenden Hemmwert ermittelt. Lagen alle gemessenen Hemmwerte einer Substanz ober- oder unterhalb der 50 % bzw. 75 %-Schwelle, wurde kein IC-Wert berechnet sondern der Konzentrationsbereich unter- oder oberhalb der eingesetzten Grenzkonzentration angegeben.

2.2.5.5. Statistische Auswerteverfahren

Die Ergebnisse der quantitativen PCRs, Western-Blots und ELISA-Bestimmungen wurden entweder als Mittelwert±Standardabweichung im Balkendiagramm oder im Boxplot-Diagramm dargestellt. Statistische Signifikanz der Unterschiede zwischen verschiedenen experimentellen Ansätzen wurde mit Hilfe eines zweiseitigen, gepaarten Student'schen T-Tests beurteilt, wobei ein Wert von p<0.05 als statistisch signifikant, p<0.01 als statistisch hochsignifikant eingestuft wurde. Wurden Ergebniswerte unterschiedlicher Spender aufeinander bezogen, so wurde ein zweiseitiger, ungepaarter Student'schen T-Test unter der Annahme gleicher Varianz durchgeführt.

Die Ergebnisse aus der Microarray-Analyse wurden mit Hilfe eines "moderated t-test" [191] ausgewertet. Im Vergleich zweier Proben wurden Gene als differenziell reguliert bewertet, wenn der modifizierte T-Test einen Wert unter 0.05 erreichte und die Genexpressionswerte sich mindestens um den Faktor zwei unterschieden.

3. Experimente und Ergebnisse

3.1. Etablierung eines In-vitro-Testsystems

Ziel dieser Arbeit war die Etablierung eines *In-vitro*-Testsystems auf der Basis kultivierter humaner Chondrozyten, das es erlaubt, zelluläre Antworten auf therapeutische Wirkstoffe zu beschreiben. Die Zellen wurden aus makroskopisch intaktem Knorpelgewebe gewonnen, das im Rahmen von Knieendoprothese-Implantationen bei Arthrosepatienten an der Orthopädischen Universitätsklinik in Ulm asserviert wurde. Der Schädigungsgrad des verwendeten Knorpels wurde mit Hilfe eines Mankin-Scores bei 23 Proben repräsentativ bestimmt. Der Durchschnittswert von 4.6 ± 2.8 im Mankin-Score wurde von zwei Personen in unabhängigen Beurteilungen ermittelt (Abschnitt 2.2.4.3, S. 54). Das entspricht einer leichten Knorpelschädigung.

Die Testbedingungen im Zellkultursystem wurden in Vorversuchen dahingehend optimiert, dass alle anti-inflammatorischen Substanzen unter gleichen Kulturbedingungen *in vitro* getestet werden konnten. Zur Verifikation wurden Differenzierungs- und Stimulationsmarker auf Genexpressionsebene analysiert.

3.1.1. Vergleich zwischen Monolayer- und Alginat-Bead-Kultur

Chondrozyten können nach der Isolation aus dem Knorpelgewebe auf unterschiedliche Art kultiviert werden. Zum Einen wurden die Zellen im Monolayer kultiviert, wobei sie in serumhaltigem Medium innerhalb von 24 h adhärierten. Diese Kultivierungsform bietet den Vorteil einer Selektion von vitalen Zellen über deren Adhärenzverhalten sowie der Möglichkeit einer Zellexpansion. Die Chondrozyten zeigten in Monolayer-Kultur zunächst eine kompakte, annähernd dreieckige Zellform, die sich im Laufe von etwa 5 Tagen abflachte (Abb. 7 A+B). Bei weiterführender Kultivierung begannen die Zellen nach etwa 8 Tagen stark zu proliferieren und eine fibroblastenartige, langgezogene Form anzunehmen.

Abbildung 7.: Chondrozyten in verschiedenen Kultivierungsformen A+B zeigen Chondrozyten in Monolayer-Kultur (A): nach einem Tag Adhärenz, Vergrößerung 200× und (B): nach sechs Tagen Adhärenz, Vergrößerung 100×. C+D zeigen immobilisierte Chondrozyten in Alginat-Bead-Kultur (C): im Phasenkontrastmikroskop, Vergrößerung 100× und (D): Alcianblau-gefärbt, Vergrößerung 25×

Eine alternative Kultivierungsform stellte die Einbettung der Chondrozyten in eine dreidimensionale Alginat-Matrix dar, die den Bedingungen der Zellen *in vivo* näher kommt (Abb. 7 C+D). Allerdings verhindert die Immobilisierung der Zellen weitgehend die Zellteilung und bindet sowohl vitale als auch tote Zellen ein.

3.1.1.1. Differenzierungsverhalten in der Genexpression

Die Proliferation von Chondrozyten führte zum Verlust des chondrozytären Phänotypes. Dabei war eine verringerte Genexpression der Differenzierungsmarker Kollagen Typ II, Aggrekan und Cartilage Oligomeric Matrix Protein (COMP) zu beobachten. Dagegen zeigte sich der chondrozytäre Phänotyp bei kurzer Kultivierungsdauer in Monolayer und bei mehrwöchiger Kultivierung in dreidimensionaler Alginat-Bead-Kultur stabil. Abb. 8 S. 61 zeigt die Genexpression ausgewählter Differenzierungsmarker bei unterschiedlicher Kultivierungsart und -dauer.

Abbildung 8.: Genexpression von chondrozytären Differenzierungsmarkern bei unterschiedlicher Kultivierung.

Gezeigt ist die elektrophoretische Auftrennung von DNA-Fragmenten einer semiquantitativen PCR-Analyse von Kollagen Typ II (COLII), Aggrekan (AGC), "Cartilage Oligomeric Matrix Protein" (COMP) und dem Referenzgen Glyceraldehyd-3-Phosphat-Dehydrogenase (GAPDH) im Ethidiumbromid-gefärbten 2 %-igen Agarosegel. M bezeichnet den 100 bp-Marker. A: Kurzzeitige Kultivierung von Chondrozyten im Monolayer (1): direkt nach dem enzymatischen Verdau, (2): nach einem Tag Adhärenz (Passage 0), (3): drei Tage, (4): fünf Tage und (5): sechs Tage Kultivierung nach Kryokonservierung (Passage 1). B: Kultivierung von Chondrozyten (1): vier Tage in Alginat, (2): 36 Tage in Alginat, (3): 47 Tage in Alginat, (4): 81 Tage in Alginat und (5): 35 Tage in Monolayer-Kultur nach fünf Passagen

3.1.2. Stimulationsstudien

Grundlage für das Testen anti-inflammatorischer Substanzen ist ein *In-vitro*-Inflammationsmodell, das typische Entzündungswege des arthrotischen Gelenkes nachvollzieht. Inflammatorische Signalwege können durch verschiedene Zytokine ausgelöst werden. In der Pathogenese der Arthrose spielen vor allem IL-1 β und TNF α eine wichtige Rolle und wurden bereits in Zellkulturmodellen eingesetzt [2, 208, 23]. In den unter 3.1.1 beschriebenen Kulturmodellen wurden diese beiden Stimuli vergleichend getestet, wobei TNF α aufgrund seiner geringeren inflammatorischen Potenz in 10fach höherer Konzentration verwendet wurde [39]. Es wurde die Expression von acht entzündungsrelevanten Genen mit semiquantitativer RT-PCR (2.2.2.3, S. 41) bei verschiedenen Zytokinkonzentrationen und Inkubationszeiten untersucht. Zur Auswertung wurden die Amplifikate gelelektrophoretisch aufgetrennt (2.2.2.5, S. 42), die Bandenstärke optisch bestimmt und subjektiv gegen das Referenzgen GAPDH normiert. Die Banden der mit IL-1 β und TNF α kultivierten Proben wurden mit der zugehörigen Kontrolle (unbehandelte Zellen) verglichen und eine unterschiedliche Bandenintensität qualitativ bewertet. Abb. 9 zeigt exemplarisch die Analyse der IL6 (Interleukin 6)-Expression bei unterschiedlichen Kultivierungsbedingungen durch RT-PCR im Agarosegel.

Abbildung 9.: IL-1 β - und TNF α -induzierte Genexpression von IL6 in Monolayer- und Alginat-Bead-Kultur

Gezeigt ist die elektrophoretische Auftrennung von DNA-Fragmenten einer semiquantitativen PCR-Analyse von IL6 (Interleukin 6) und dem Referenzgen GAPDH (Glyceraldehyd-3-Phosphat-Dehydrogenase) im Ethidiumbromid-gefärbten 2 %-igen Agarosegel. Humane Chondrozyten wurden für die angegebene Inkubationszeit (Inkub.zeit) mit der angegebenen Konzentration (Konz.) an IL-1 β bzw. TNF α im Monolayer bzw. in Alginat-Beads (Bead-Kultur) kultiviert.

Tab. 7, S. 63 zeigt die Ergebnisse einer semiquantitativen Genexpressionsanalyse aus jeweils zwei unabhängigen Experimenten. Eine zusätzlich abgebildete Farbcodierung in der Auswertungstabelle veranschaulicht die Regulation der Genexpression durch die Zytokine. Durch IL-1 β -Stimulation konnte bei allen untersuchten Genen konzentrationsabhängig eine verstärkte Expression beobachtet werden. Die IL-1 β -induzierte TNF α -Expression erreichte bereits nach 4 h den höchsten Expressionswert, während die MMPs nach 24 h IL-1 β -Stimulation stärker exprimiert wurden als nach 4 h. Die Stimulation mit TNF α erhöhte ebenfalls abhängig von der verwendeten Konzentration die Expression der untersuchten Gene, wobei dieser Effekt in der Monolayer-Kultur deutlicher zu beobachten war als in der Alginat-Bead-Kultur. Der Einfluss von IL-1 β und TNF α bezüglich Konzentration und Kultivierung wurde mit Hilfe einer Varianzanalyse (ANOVA) ohne Messwiederholung untersucht. Die Signifikanzwerte sind in Tab. 8, S. 64 angegeben. Die qualitative Beurteilung der Genexpressionsstärke wurde dafür in ein Zahlensystem von

Tabelle 7.: Auswertung der semiquantitativen Genexpressionsanalyse ausgewählterGene, die in der Pathogenese der Arthrose eine Rolle spielen.

Es wurden Chondrozyten in Monolayer- und in Alginat-Bead-Kultur 4 h und 24 h mit IL-1 β und TNF α in den angegebenen Konzentrationen stimuliert. Anschließend wurde eine RT-PCR durchgeführt und die Amplifikate im Ethidiumbromid-gefärbten Agarosegel aufgetrennt. Die Bandenstärke der PCR-Produkte wurde optisch bestimmt und gegen das Referenzgen GAPDH normiert. (•) : keine Expression, (•): schwache Expression, (••): mittlere Expressionsstärke, (••): starke Expression, (••): sehr starke Expression.

Monolayer	· 4 h			24 h			Monolayer	4 h				24 h					
IL-1β									TNFα								
(ng/ml)	0	0.1	1	10	0	0.1	1	10	(ng/ml)	0	1	10	100	0	1	10	100
COX2	+	++	++	+++	+	+	+	+++	COX2	+	++	++	+++	+	+	+	++
IL-6	+	+	++++	++++	+	+	+++	++++	IL-6	+	+	+++	++++	+	++	++	++++
MMP3	+	+	++	++	+	+	++	+++	MMP3	+	+	++	++	+	+	+	+
MMP13	+	+	+	+	+	+	+	+++	MMP13	-	+	+	++	+	+	+	+++
ΝϜκΒ	+	+	+	++	+	+	+	++	ΝFκB	++	++	++	+++	+	++	++	++
NOS2A	-	-	+	+++	-	-	+	++++	NOS2A	-	-	+	+++	-	-	+	+++
PTGES	+	+	+	+++	-	-	+	++++	PTGES	-	+	+	++	-	+	+	+++
TNFα	-	-	+	++++	-	-	-	+	TNFα	-	-	+	++	-	-	-	+
					24 h												
Beads		4	h			24	l h		Beads		4	h			24	l h	
Beads IL-1β		4	h			24	l h		Beads TNFα		4	h			24	l h	
Beads IL-1β (ng/ml)	0	4 0.1	h 1	10	0	24 0.1	ih 1	10	Beads TNFα (ng/ml)	0	4	h 10	100	0	24 1	∔h 10	100
Beads IL-1β (ng/ml) COX2	0	4 0.1	h 1 +	10	0	24 0.1	lh 1 +	10	Beads TNFα (ng/ml) COX2	0	4 1 ++	h 10 ++	100	0	24 1 +	1 h 10	100
Beads IL-1β (ng/ml) COX2 IL-6	0	4 0.1	h 1 +	10 +++ ++++	0 - -	24 0.1 +	h 1 + +++	10 +++ ++++	Beads TNFα (ng/ml) COX2 IL-6	0++++	4 1 ++ +	h 10 ++ +	100 +++ ++	0 ++ -	24 1 + -	1 h 10 +++ +	100 +++ +++
Beads IL-1β (ng/ml) COX2 IL-6 MMP3	0 - - +	4 0.1 - +	h 1 ++ ++	10 +++ ++++ +	0 - +	24 0.1 + +	h 1 + +++	10 +++ ++++	Beads TNFα (ng/ml) COX2 IL-6 MMP3	0 + + +	4 1 ++ + +	h 10 ++ + +	100 +++ ++ ++	0 ++ - +	24 1 + -	1 h 10 +++ + ++	100 +++ +++
Beads IL-1β (ng/ml) COX2 IL-6 MMP3 MMP13	0 - - + +	4 0.1 - + +	h 1 ++ ++ +	10 +++ ++++ + +	0 - - + +	24 0.1 + + +	h 1 +++ +++ ++	10 +++ +++ ++	Beads TNFα (ng/ml) COX2 IL-6 MMP3 MMP13	0+++++++	4 1 ++ + +	h 10 ++ + ++ ++	100 +++ ++ ++ ++	0 +++ - + +	24 1 + - + +	10 ++++ ++ +++	100 ++++ +++ ++
Beads IL-1β (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB	0 - + + +	4 0.1 - + + +	h 1 ++ ++ + +	10 +++ ++++ + +	0 - - + + +	24 0.1 + + + +	h 1 ++ +++ ++ +	10 +++ +++ ++ ++	Beads TNFα (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB	0 + + + + +	4 1 ++ + + ++	h 10 +++ ++ ++ ++	100 +++ ++ ++ ++ ++	0 ++ - + + + +	24 1 + + + + +	10 ++++ ++ ++ ++	100 ++++ +++ ++
Beads IL-1β (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB NOS2A	0 - + + +	4 0.1 - + + + +	h 1 ++ ++ + +	10 ++++ ++++ ++ ++	0 - + + +	24 0.1 + + + +	l h 1 ++++ +++ + +	10 ++++ +++ ++ +++	Beads TNFα (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB NOS2A	0 + + + + +	4 1 ++ + + ++ ++	h 10 ++ ++ ++ ++ ++	100 +++ ++ ++ ++ ++	0 ++ - + + + + +	24 1 + + + + +	10 ++++ ++ ++ ++	100 +++ +++ ++ ++
Beads IL-1β (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB NOS2A PTGES	0 - + + + +	4 0.1 + + + +	h 1 ++ + + + + + +	10 +++ +++ + + ++ ++ ++	0 - + + + +	24 0.1 + + + + +	+ + +++ ++ + + +	10 ++++ +++ +++ +++	Beads TNFα (ng/ml) COX2 IL-6 MMP3 MMP13 NFκB NOS2A PTGES	0 + + + + + + +	4 1 ++ + + ++ ++ +	h 10 ++ + ++ ++ ++ ++ ++	100 +++ ++ ++ ++ ++ ++	0 +++ - + + + + + + + -	24 1 + + + + + +	10 ++++ ++ ++ ++ ++ ++	100 ++++ +++ ++ ++ ++ ++

0 bis 4 überführt. Die Ergebnisse entsprechen keiner quantitativen statistischen Auswertung, p-Werte im Bereich des Signifikanzniveaus von 5 % deuten jedoch auf eine Abhängigkeit hin. Aufgrund von Datensymmetrien war bei manchen Genexpressionswerten keine ANOVA möglich. Die Varianzanalyse zeigte, dass der Faktor "IL-1 β -Konzentration" sowohl nach 4 h als auch nach 24 h auf die Expression der untersuchten Gene Einfluss nahm. Dagegen hatte die Art der Kultivierung bei IL-1 β -Stimulation keine Auswirkung. Bei Stimulation mit TNF α zeigte die ANOVA nur in Einzelfällen signifikanten Einfluss der untersuchten Faktoren.

Sowohl die Monolayer- als auch die Alginat-Bead-Kultur sind ein geeignetes Kultivierungssystem für ein *In-vitro*-Inflammationsmodell von Chondrozyten. IL-1 β wurde bereits häufig in etablierten Arthrosemodellen eingesetzt [2, 46] und für das in dieser Arbeit verwendete Inflammationsmodell als Stimulanz ausgewählt. Eine Stimulation mit 10 ng/ml IL-1 β verstärkte die Expression aller untersuchten Gene, weshalb in den weiTabelle 8.: Signifikanzwerte einer Varianzanalyse zum Einfluss der Zytokinkonzen-tration und der Kultivierungsart auf die Genexpression.

Es wurden Chondrozyten in Monolayer- und in Alginat-Bead-Kultur 4 h und 24 h mit IL-1 β und TNF α in unterschiedlichen Konzentrationen stimuliert und die Genexpression semiquantitativ bestimmt. Der Einfluss der Konzentration (Konzentr.) und Kultivierungsform (Kultiv.) wurde mit Hilfe einer Varianzanalyse (ANOVA) bestimmt. p-Werte ≤ 0.05 sind gelb hinterlegt, p-Werte ≤ 0.06 sind hellgelb hinterlegt. –: Aufgrund von Datensymmetrien ist keine Analyse möglich.

	IL-1β,	4h	IL-1β, 2	24h	TNFα,	4h	TNFα, 24h		
	Konzentr.	Kultiv.	Konzentr.	Kultiv.	Konzentr.	onzentr. Kultiv.		Kultiv.	
COX2	0.072	0.092	0.022	0.182	-	-	0.236	0.092	
IL-6	0.019	0.092	0.006	0.391	0.120	0.215	0.011	0.015	
MMP3	0.500	0.182	0.052	0.391	-	-	0.500	0.182	
MMP13	-	-	0.052	0.391	0.082	0.058	0.196	1.000	
NFkB	-	-	-	-	0.292	0.182	0.157	0.391	
NOS2A	0.015	0.391	0.006	0.391	0.157	0.391	0.157	0.391	
PTGES	0.052	0.391	0.052	0.638	0.037	0.391	0.101	0.638	
TNFα	-	-	0.088	0.182	0.022	0.391	0.088	0.182	

teren Analysen diese Konzentration verwendet wurde. Der Einfluss von 10 ng/ml IL-1 β auf die Vitalität von Chondrozyten wurde in einer Trypanblaufärbung untersucht. Sie ergab mit und ohne IL-1 β -Stimulation einen Anteil von 80 bis 90 % vitaler Zellen in Monolayerkultur.

3.2. Charakterisierung verschiedener Testsubstanzen auf semiquantitativer Genexpressionsebene

Das etablierte *In-vitro*-Testsystem wurde zur Charakterisierung von pharmazeutischen Substanzen eingesetzt. Die getesteten Inhibitoren wurden von der Firma ratiopharm GmbH, Ulm, zur Verfügung gestellt und wiesen unterschiedliche Spezifität auf. Die pharmazeutischen Targets der Testsubstanzen sind Abschnitt 2.1.4.1, S. 23 zu entnehmen.

In Vorversuchen wurde der Einfluss der verschiedenen Inhibitoren auf die Genexpression von Chondrozyten im Inflammationsmodell semiquantitativ untersucht. Es wurden Gene ausgewählt, denen in der Literatur bereits eine Rolle bei entzündlichen Gelenkserkrankungen zugeschrieben wird. Die Kultivierung der Chondrozyten erfolgte 4 h und 24 h mit 10 μ M Inhibitor und 10 ng/ml IL-1 β wie unter 2.2.1.8 S. 38 beschrieben. Nach anschließender RT-PCR (Abschnitt 2.2.2.3, S. 41) wurden die Amplifikate im Ethidiumbromid-gefärbten Agarosegel aufgetrennt und die Bandenstärke am Geldoc
XR optisch ausgewertet. Die Bandenstärke wurde auf die GAPDH-Expression normiert. Die Expression in inhibierten und stimulierten Zellen wurde auf stimulierte Zellen ohne Inhibitor bezogen. Tab. 9, S. 66 zeigt einen Überblick der getesteten Inhibitoreffekte. Die jeweils zugehörige Kultivierungsform und Spenderanzahl der Hemmstoffexperimente ist in Tab. 19, S. 145 im Anhang angegeben.

Die Darstellung in Tab. 9, S. 66 erlaubt einen qualitativen Vergleich der getesteten Substanzen untereinander. Die verschiedenen p38MAPK (Mitogen-aktivierte Proteinkinase)-Inhibitoren zeigten unterschiedliche Wirkung. Beispielsweise verringerten SB203580, ML 3408 und ML 3435 die IL-1 β -induzierte COX2-Genexpression stark. Die MMP13-Genexpression wurde durch ML 3435, SB203580 und ML 3595 am stärksten gehemmt, die Genexpression von NOS2A durch die Inhibitoren ML 3435 und SB203580. Durch die p38MAPK-Inhibition mit ML 3408 und SB203580 wurde die Expression von TIMP1 verstärkt. Im Vergleich dazu modulierten die p38MAPK-Inhibitoren Birb 796, ML 3624 und ML 3736 die Genexpression von COX2, MMP13, NOS2A und TIMP1 nur schwach oder gar nicht. Die Substanzen ML 3595 und ML 3602, die sowohl die p38MAPK als auch die PDE4 (Phosphodiesterase 4) spezifisch hemmen, unterschieden sich ebenfalls in der Regulation der TIMP1- und COX2-Expression von den anderen p38MAPK-Inhibitoren. Auch die beiden Inhibitoren der PGE₂/LTB₄-Synthese stimmten in ihrer Wirkung nicht überein. Während z. B. Tepoxalin die TIMP1-Expression stimulierte, hatte Licofelone darauf keinen Einfluß.

Trotz gleicher pharmazeutischer Targets der Hemmstoffe ergaben sich in diesen Vorversuchen Wirkunterschiede auf die Expression bekannter Arthrose-assoziierter Gene. Da zur Charakterisierung pharmazeutischer Substanzen deren Wirkung verglichen werden soll, sind Unterschiede der Inhibitoreffekte von Interesse. Es stellt sich die Frage, ob weitere Arthrose-relevante Gene von Inhibitoren gleicher Spezifität unterschiedlich reguliert werden. Aus einer solchen Gengruppe kann ein geeignetes Panel für eine quantitative Charakterisierung pharmazeutischer Substanzen ausgewählt werden.

Ein weiterer Aspekt der Inhibitorcharakterisierung stellen unerwünschte Nebeneffekte der Hemmsubstanzen dar. Eine Analyse der Expression aller Gene des menschlichen Genoms bei Behandlung mit den Testsubstanzen kann Hinweise auf mögliche Nebenwirkungen geben. Aus diesen Gründen wurde in einem Oligo-Microarray eine genomweite Genexpressionsanalyse von Chondrozyten durchgeführt, die im etablierten Inflammationsmodell mit verschiedenen Testsubstanzen behandelt wurden.

Tabelle 9.: Auswertung der semiquantitativen Inhibitoranalyse

Es wurden IL-1 β -stimulierte Chondrozyten 4 h und 24 h mit verschiedenen Inhibitoren kultiviert, unbehandelte Zellen und IL-1 β -stimulierte nichtinhibierte Zellen dienten als Kontrollen. Die Amplifikate einer semiquantitativen PCR wurden elektrophoretisch aufgetrennt, die Bandenstärke der PCR-Produkte optisch bestimmt und gegen das Referenzgen GAPDH normiert. Die Spalte "Stimulation" gibt die relative Änderung der Genexpression IL-1 β -stimulierter Zellen im Vergleich zu nichtstimulierten Zellen wieder, wobei zwischen verstärkter (rot), verminderter (grün) und unveränderter Genexpression (weiss) unterschieden wird. Die nachfolgenden Spalten zeigen die relativen Änderungen der Genexpression IL-1 β -stimulierter, inhibierter Zellen im Vergleich zu stimulierten, nichtinhibierten Zellen. Bei den Inhibitoren handelt es sich um die unter 2.1.4.1 S. 23 beschriebenen Substanzen. 0: unveränderte Expression, -: Expressionsrückgang (blau), +: Expressionsverstärkung (gelb), wobei Verdopplungen einen vergleichsweise starken Effekt beschreiben. COX: Zyklooxygenase, cPLA: zytosolische Phospholipase A, LOX: Lipoxygenase, LTB₄: Leukotrien B₄, MAPK: Mitogen-aktivierte Proteinkinase, PDE4: Phosphodiesterase 4, PGE₂: Prostaglandin E₂

							P	harma:	zeutisc	hes Zi	el:				
	h				p38 l	ИАРК			p38 M PD	IAPK, E4	cPLA	COX2	PGE ₂ Synthe	/LTB ₄ - eseweg	LOX
Gen	Stim.zeit in	Stimulation	Birb 796	ML3408	ML3435	ML3624	ML3736	SB203580	ML3595	ML3602	Lu 151	Rofecoxib	Licofelone	Tepoxalin	Zileuton
	4		0	0	0	0	0	0	0	0	0	0	0	0	0
ADAM155	24		0	0	-	0	0	-	0	0	-	0	-	0	-
COX2	4 24		- 0	-		0	0		0	0	-	0	0 0	0	0
	4		-	-	-	-	-	-	0	0	0	-	-	0	0
IL1B	24		-	+	0	0	0	0	0	0	-	0	0	0	0
IL6	4 24		-	 0		0	0		0	0	0	-	- 0	0	0
IL10	4		0	-	-	-	-	-	0	0	0	0	0	0	0
-	24		0	0	0	0	0	0	-	0	0	0	0	0	0
ММР3	4 24		-	- 0	-	-	0		-	0	0	- 0	-	0	0
	4		0	0	0	0	0	-	0	0	0	-	0	-	-
	24		-	-		0	-			0		0	-	-	-
NOS2A	4 24		0	-	0	0	0		0	0	-	0	-	-	- 0
NFKB	4		-	0	0	0	0	-	0	0	+	0	0	+	+
	24		0	0	-	0	0	0	0	0	-	0	0	0	0
р38 МАРК	4 24		0	+	++	0	+ 0	0	0	0	+ 0	0	0+	0	0+
PPARG	4		0	0	0	0	0	0	0	0	+	+	+	+	0
	24		0	-	-	0	0	-	0	0	0	++	+	0	0
PTGES	4 24		0	0	0	0	-	-	0	0	0	- 0	-	- 0	0
TIMP	4		+	+	0	0	0	+	+	0	++	0	0	++	++
	24		0	++	0	0	0	++	0	0	-	0	0	++	0
TIMP2	4		0	0	0	0	0	0	0	0	0	0	0	0	0
	<u>-24</u>		0	0		0	0	-	0	0	0	+	+	0	0
INFA	24		0	-		0	0	-	-	_		+	0	0	0

3.3. Genomweite Microarray-Analyse

Es wurde eine genomweite Microarray-Analyse der Genexpression im etablierten Zellkulturmodell IL-1 β -stimulierter Chondrozyten durchgeführt. Damit sollte untersucht werden, ob in diesem Testsystem Zellreaktionen nachvollzogen werden können, die für die Pathogenese der Arthrose beschrieben sind. Ein weiteres Ziel war es, zellbiologische Prozesse und dazugehörige Gene zu finden, die in entzündlichen Gelenkserkrankungen eine Rolle spielen, bisher aber nicht in diesem Zusammenhang untersucht wurden. In der Gruppe dieser Arthrose-assoziierten Gene sollten Wirkeffekte der getesteten Hemmsubstanzen aufgedeckt werden. Mögliche Wirkunterschiede von Inhibitoren mit gleichem pharmazeutischen Target erlauben eine differenzielle Charakterisierung der Substanzen. Auch der Frage möglicher Nebeneffekte der Inhibitoren sollte in der genomweiten Analyse nachgegangen werden.

In diesem Experiment wurden Zellen von sechs Spendern vereinigt und mit 10 μ M Inhibitor und 10 ng/ml IL-1 β wie unter 2.2.2.9 S. 48 beschrieben 24 h kultiviert. Es wurden exemplarisch die drei verschiedenen Inhibitoren der p38MAPK Birb 796, ML 3595 und SB203580 in der Microarray-Analyse zur Behandlung der Zellen eingesetzt. Anschließend wurde die Wirkung der IL-1 β -Stimulation und der p38MAPK-Inhibition auf die Genexpression in einer Microarray-Analyse an der Microarray-Core Facility der Universität Ulm untersucht. Das Experiment wurde dreimal mit Zellen von unterschiedlichen Spendern durchgeführt. Der Altersdurchschnitt in den drei Spendergruppen lag zwischen 66 und 69 Jahren.

In einem Vorversuch wurde die Wirkung der Inhibitoren Birb 796, SB 203580 und ML 3595 auf die Genexpression nicht stimulierter Chondrozyten semiquantitativ untersucht. Die basalen Expressionen von $\text{TNF}\alpha$, IL6, MMP13, NOS2A und COL2 wurden durch die Testsubstanzen bei 24-stündiger Inkubation nicht verändert. ML 3595 hatte im Gegensatz zu den beiden anderen Inhibitoren einen leicht stimulierenden Effekt auf die COX2- und PTGES-Expression.

3.3.1. Auswertung der Microarray-Analyse

Die Analyse der Genexpression IL-1 β -stimulierter und hemmstoffinkubierter Chondrozyten zeigte eine Vielzahl differenziell regulierter Gene. Tab. 10 gibt einen Überblick über die Anzahl regulierter Gene bei verschiedenen Zellbehandlungen im Vergleich zum jeweiligen Kontrollansatz. Dabei wurden IL-1 β -stimulierte Zellen im Vergleich zum Kontrollansatz mit unbehandelten Zellen analysiert, während als Referenz der hemmstoffinkubierten und IL-1 β -stimulierten Zellen der Stimulationsansatz ohne Inhibitorzugabe diente. Den größten Einfluss auf die Genexpression zeigte IL-1 β , durch das 1141 Gene in ihrer Expression moduliert wurden. Das entspricht einem Anteil von 5 % aller im Array untersuchten Gene. Auf zwei Drittel dieser Gene wirkte IL-1 β stimulierend, bei dem anderen Drittel wurde die Expression verringert. Unter den am stärksten regulierten Genen befanden sich z. B. die verstärkt exprimierten Gene COX2, IL6, SOD2 (Superoxiddismutase 2) oder MMP13. Die Expression der Gene CTGF ("Connective tissue growth factor"), FHL1 ("Four and a half LIM domains 1") und HOMER-3 ("Homo sapiens homer homolog 3") wurde am stärksten verringert.

In der Arrayanalyse konnte eine Wirkung der p38MAPK-Inhibitoren auf die Genexpression IL-1 β -stimulierter Chondrozyten festgestellt werden, wobei der stimulierende und hemmende Effekt ausgeglichen war. Birb 796 nahm auf 502 Gene und damit 2 % der untersuchten Gene Einfluß. ML 3595 wirkte auf die Expression von 295 Gene, was einem Anteil von 1 % der untersuchten Gene entspricht. Durch SB203580 wurden mit 646 Gene 3 % aller im Array untersuchten Gene reguliert. Diese Substanz beeinflusste damit doppelt so viele Gene wie ML 3595 und 30 % mehr Gene als Birb 796. Unter den im Array untersuchten Genen gibt es einige Oligosequenzen, die unbekannte oder hypothetische Gene repräsentieren. Werden diese ausgeschlossen, so erhält man Listen bereits bekannter Gene. In Tab. 22, S. 146 im Anhang sind die am stärksten regulierten,

Tabelle 10.: Anzahl differenziell regulierter Gene im Microarray.

Angegeben ist die Anzahl der in der Microarray-Analyse differenziell regulierten Gene bezogen auf den Vergleich unterschiedlicher Behandlungsregime. IL- 1β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierten Zellen ohne Inhibitorzugabe verglichen. Bei den Inhibitoren handelt es sich um die unter 2.1.4.1 S. 23 beschriebenen Substanzen.

Vergleich der	Beh	andlungsregime	Anzahl der regulierten Gene				
			Gesamt-	verstärkt	vermindert		
			anzahl	exprimiert	$\operatorname{exprimiert}$		
IL-1 β ohne Inhibitor vs		Kontrolle	1.141	721	420		
IL-1 β + Birb 796	VS	IL-1 β ohne Inhibitor	502	212	290		
IL-1 β + ML 3595	VS	IL-1 β ohne Inhibitor	295	133	162		
IL-1eta + SB203580 vs		IL-1 β ohne Inhibitor	646	338	308		

bekannten Gene aufgelistet.

Des Weiteren wurden Gene bestimmt, die sowohl durch IL-1 β als auch durch einen Hemmstoff gemeinsam reguliert wurden. In Tab. 11, S. 70 ist die Anzahl der Koregulationen im Mengendiagramm angegeben, wobei auch die Richtung der Expressionsmodulation durch den Inhibitor bzw. durch IL-1 β aufgezeigt wird. Von den insgesamt 502 durch Birb 796 beeinflussten Gene waren 41 % (208 Gene) durch IL-1 β koreguliert. 98 % dieser Gene wurden gegenläufig zu IL-1 β reguliert. 54 der insgesamt 295 durch ML 3595 regulierten Gene zeigten eine gleichzeitige Beeinflussung durch IL-1 β , was einem Anteil von 18 % an koregulierten Genen entspricht. 98 % dieser Gene wurden gegenläufig reguliert. Durch SB203580 wurden 116 (18 %) der insgesamt 646 beeinflussten Gene mit IL-1 β gemeinsam reguliert. Die Regulation verlief bei 87 % gegenläufig, 13 % der Gene wurden durch IL-1 β und SB203580 gleichgerichtet reguliert.

Im Anhang sind die koregulierten bekannten Gene aufgelistet (Tab. 23 bis 25, S. 147-154), wobei auch die zugehörigen Zugangsnummern der NCBI-Gendatenbank [71], eine Genbeschreibung sowie die Expressionsänderungen angegeben sind. In Tab. 26, S. 154 ist außerdem die Schnittmenge von zehn bekannten Genen aufgeführt, deren Expression sowohl durch IL-1 β als auch durch alle Inhibitoren gemeinsam beeinflusst wurde.

3.3.2. GoMiner-Analyse der Microarray-Ergebnisse

Eine weitere Möglichkeit der Übersichtsauswertung von Microarray-Ergebnissen bietet die Analyse mit Hilfe der frei verfügbaren Software GoMiner [78, 222]. Dabei wurden sämtliche untersuchten Gene den in der Gene Ontology Datenbank [72] definierten Kategorien und Bereichen zugeordnet. Eine Übersichtseinteilung erfolgte in die Kategorien "biologische Prozesse", "Zellkomponenten" und "molekulare Funktionen" der Zelle, die wiederum in eine Vielzahl von Unterbereichen aufgeteilt sind. Daraufhin wurde die Verteilung der im Experiment regulierten Gene auf die verschiedenen Bereiche analysiert. Trat eine statistisch signifikante Häufung beeinflusster Gene bei einem Prozess auf, so wurde dieser als reguliert gewertet. Vor allem die Kategorien "biologische Prozesse" und "Zellkomponenten" wiesen interessante Kumulationen regulierter Genen auf.

3.3.2.1. Zuordnung zu biologischen Prozessen

Die Analyse der durch IL-1 β und Birb 796, ML 3595 beziehungsweise SB203580 beeinflussten Gene mit Hilfe des GoMiner-Programmes ergab eine Reihe betroffener biologischer Prozesse. Die Anzahl dieser Prozesse ist in Tab. 12, S. 72 angegeben. Es ist zu-

Tabelle 11.: Anzahl koregulierter Gene im Microarray

In den dargestellten Mengendiagrammen ist angegeben, wieviele Gene in der Microarray-Analyse durch die Stimulation mit IL-1 β verstärkt (IL-1 β \uparrow) bzw. verringert (IL-1 β \downarrow) exprimiert wurden im Vergleich zu nichtstimulierten Zellen. Ebenfalls angegeben ist die Anzahl an Genen, die durch die Kultivierung mit Inhibitor und IL-1 β verstärkt (Inhibitor \uparrow) bzw. verringert (Inhibitor \downarrow) exprimiert wurden im Vergleich zu nichtinhibierten, stimulierten Zellen. Die Schnittmengen geben die Anzahl an koregulierten Genen an. Bei den Inhibitoren handelt es sich um die unter 2.1.4.1 S. 23 beschriebenen Substanzen.

sätzlich aufgeführt, wieviele dieser Bereiche sich bei verschiedenen Behandlungen überschneiden. Die Stimulation mit IL-1 β führte zu 215 regulierten Prozessen. Birb 796 nahm auf 145 biologische Prozesse Einfluss, von denen ein Fünftel (27 Bereiche) auch von IL-1 β beeinflusst war. ML 3595 wirkte auf 85 Prozesse ein, von denen sieben (8 %) durch IL-1 β koreguliert wurden. Am wenigsten Einfluss auf biologische Prozesse zeigte SB203580. Es regulierte 58 Bereiche, von denen fünf (9 %) durch IL-1 β koreguliert wurden. Es fanden sich drei Prozesse, die durch drei der vier Behandlungsregime gemeinsam beeinflusst wurden. Die zwei biologischen Prozesse "oxygen and reactive oxygen species metabolic process" und "defense response" wurden von IL-1 β , Birb 796 und SB203580 gemeinsam reguliert, der Prozess "programmed cell death" wurde von IL-1 β , Birb 796 und ML 3595 gemeinsam reguliert.

Die Einzelprozesse konnten häufig thematisch zu Hauptbereichen zusammengefasst werden, von denen viele mit der Pathogenese der Arthrose assoziiert sind. So fielen bei einer Stimulation von Chondrozyten mit IL-1 β 29 der insgesamt 215 regulierten biologischen Prozessen in den Bereich der Abwehrreaktionen wie z. B. den Immun- und Entzündungsantworten. Eng damit verknüpft sind Prozesse in der Zytokinproduktion und bei der Antwort auf oxidativen Stress, auf die jeweils sieben Teilbereiche vereinigt werden konnten. Des Weiteren waren Vorgänge im Themenbereich Signalwege und Zytoskelett mit zwölf beziehungsweise acht Teilbereichen vorrangig betroffen. Die von Birb 796 regulierten Gene spielten vorrangig in den Hauptbereichen eine Rolle, die auch schon durch IL-1 β beeinflusst wurden, nämlich der Abwehrreaktion (20 Teilbereiche), des oxidativen Stresses (sechs Teilbereiche) und der Signalwege (drei Teilbereiche). Dagegen ließen sich zwölf Prozesse zu dem Hauptbereich Apoptose und Zelltot zusammenfassen, den eine Behandlung mit IL-1 β kaum ansprach. Ein Effekt von Birb 796 auf das Zytoskelett oder die Zytokinproduktion war bei dieser Analyse nicht zu erkennen.

Im Vergleich dazu unterschied sich der Inhibitor ML 3595 in seiner Wirkung auf die zellbiologischen Prozesse. Zwar ließen sich auch die Hauptbereiche Signalwege (zwölf Teilbereiche), oxidativer Stress (fünf Teilbereiche), Apoptose (vier Teilbereiche) und Cytoskelett (drei Teilbereiche) identifizieren. Allerdings wurde außer dem Bereich "oxidativer Stress" kein biologischer Prozess angesprochen, der der Abwehrreaktion der Zelle zugeordnet werden konnte. Dagegen fanden sich auffallend viele Bereiche, die bei Differenzierungsprozessen eine Rolle spielen.

SB203580 zeigte nur wenig kumulierbare Prozesse, die aber die von IL-1 β regulierten Bereiche widerspiegelten. So fanden sich zehn Teilbereiche zu Abwehrreaktionen, fünf Teilbereiche zum Zytoskelett und drei Teilbereiche zum oxidativen Stress. Tabelle 12.: Anzahl der im Microarray beeinflussten biologischen Prozesse. Angegeben ist die Anzahl der biologischen Prozesse, die durch IL-1 β oder die Testsubstanzen Birb 796, ML 3595 und SB203580 reguliert bzw. durch zwei dieser Faktoren koreguliert wurden. Die Analyse der Microarray-Daten erfolgte mit Hilfe der GoMiner-Software [78], die differenziell regulierte Gene den in der "Gene Ontology"-Datenbank definierten Prozesse zuordnet und signifikante Häufungen regulierter Gene in Prozessen ermittelt. IL-1 β -regulierte Gene wurden im Vergleich zu nichtstimulierten Zellen festgestellt. Als Inhibitor-reguliert galten die Gene, deren Expression nach IL-1 β - und Inhibitorbehandlung verändert war im Vergleich zur Genexpression in stimulierten, nichtinhibierten Zellen. Bei den Inhibitoren handelt es sich um die unter 2.1.4.1 S. 23 beschriebenen Substanzen.

Regulation durch	Anzahl der	Anzahl de	ei Faktoren		
	regulierten Prozesse	koregulierten Prozesse			
		Birb 796	ML 3595	SB203580	
IL-1 β	215	27	7	5	
Birb 796	145		8	6	
ML 3595	85			1	
SB203580	58				

Die als signifikant reguliert eingestuften biologischen Prozesse sind in den Tab. 29 bis 32 S. 159-165 im Anhang benannt. Es wurden zusätzlich der Signifikanzwert p, die Anzahl der regulierten und der insgesamt dem Bereich zugeordneten Gene sowie die Identifikationsnummern der Prozesse aufgelistet. Die Liste wurde auf jene Bereiche beschränkt, denen in der "Gene Ontology"-Datenbank mindestens zehn Gene (IL-1 β -Regulation) beziehungsweise mehr als ein Gen (Regulation durch die Inhibitoren) zugeordnet werden. Prozesse mit wenig involvierten Genen stellen in der Regel kleine Unterbereiche eines übergeordneten Pozesses dar.

3.3.2.2. Zuordnung zu Zellkomponenten

Die unter den verschiedenen Behandlungsregimen regulierten Gene wurden den in der "Gene Ontology"-Datenbank definierten Zellkomponenten zugeordnet. Durch IL-1 β -Behandlung waren 32 verschiedene Bereiche signifikant betroffen. Durch die Inhibitoren wurden 19 (Birb 796 und SB203580) beziehungsweise 13 (ML 3595) verschiedene Zellkomponenten angesprochen. Ähnlich wie bei der Zuordnung zu biologischen Prozessen ließen sich auch hier wieder Hauptbereiche identifizieren, die regulierte Unterbereiche einschließen. IL-1 β -regulierte Gene fanden sich vor allem in dem Hauptbereich "Extrazelluläre Matrix und Kollagene", dem zehn Unterbereiche zugeordnet werden konnten, sowie im Zytoskelett (5 Teilbereiche) und in MHC-Proteinkomplexen (3 Teilbereiche). Eine vollständige Liste der durch IL-1 β -Stimulation signifikant beeinflussten Zellkomponenten gibt Tab. 33, S. 165 im Anhang wieder. Die Behandlung mit den Inhibitoren beeinflusste vor allem MHC-Proteinkomplexe (Birb 796), Ribosomen (Birb 796 und SB203580) sowie intrazelluläre Membranen (ML 3595).

Abbildung 10.: Abbildung eines aus den Microarray-Daten erhaltenen Genclusters

Gezeigt ist exemplarisch eine Gengruppe, die aus den Daten der Microarray-Analyse in einer hierarchischen Clusteranalyse mit Hilfe der "Genesis"-Software ermittelt wurde. Dabei wurden Gene zusammengefasst, die eine ähnliche Regulation zeigten. Die Farbkodierung gibt die Richtung und Stärke der Regulation als Zweier-Logarithmus des Expressionsverhältnisses zur jeweiligen Kontrolle an. Die Wirkung der IL-1 β -Stimulation (IL) wurde auf unbehandelte Zellen bezogen, die Effekte der Inhibitoren (ML: ML 3595, Bi: Birb 796, SB: SB203580) auf IL-1 β -stimulierte Chondrozyten wurde auf nichtinhibierte, stimulierte Zellen bezogen. GB-Acc: "GenBank"-Zugangsnummer [71].

3.3.3. Clusteranalyse der Microarray-Ergebnisse

Die Clusteranalyse ermöglicht es, Gene zu Gruppen zusammenzufassen, die eine ähnliche Regulation zeigen. Durch eine farblich abgestufte Darstellung der Regulationsrichtung und -stärke kann das Ergebnis leicht optisch ausgewertet werden. Eine solche Analyse wurde mit Hilfe der frei verfügbaren Software "Genesis" [73] durchgeführt, die verwendeten Parameter sind im Abschnitt 2.2.5.3, S. 57 angegeben. Abb. 10, S. 73 zeigt exemplarisch ein Gencluster, aus dem die zwei Gene MMP13 und COX2 (COX2 ist im verwendeten "Human Genome Oligo Set" von Operon als PTGS2 bezeichnet) für spätere Einzelexpressionsanalysen ausgewählt wurden. Gemeinsames Regulationsmerkmal der Gengruppe war die Stimulation durch IL-1 β um einen Faktor ≥ 8 . Die blau markierte Untergruppe zeigte außerdem einen starken Rückgang der Expression bei Inhibition sowohl mit SB203580 als auch mit Birb 796, während in dem braun markierten Genbündel meistens Birb 796 die stärkste Inhibition hervorruft. Auf der Grundlage der Clusteranalyse wurden Gene für die in Abschnitt 3.5, S. 83 beschriebene Charakterisierung von Inhibitoren ausgewählt. Als Auswahlkriterium wurde zunächst die Bedeutung der Gene in der Arthrose herangezogen, so dass vor allem Gene in Betracht kamen, die bei entzündlichen Gelenkserkrankungen beschrieben sind. Des Weiteren wurden Gene ausgewählt, deren Expression durch IL-1 β stimuliert und durch die Inhibitoren unterschiedlich reguliert wurde. Tab. 13, S. 74 zeigt die Genauswahl, bei der eine differenzielle Wirkung der Inhibitoren erkennbar ist. Während die MMP13-Genexpression durch alle Inhibitoren zurückgeht, zeigt ML 3595 diese Wirkung auf die COX2-, NOS2A- und **OPG-Genexpression** nicht.

Tabelle 13.: Ausgewählte Gene aus der Clusteranalyse für die Inhibitorcharakterisierung

Aufgeführt ist die Regulation der ausgewählten Gene mit der in der Clusteranalyse verwendeten Farbcodierung und den zugehörigen Zahlenwerten. Die Regulation ist als Zweier-Logarithmus des Expressionsverhältnisses (Ratio) zur jeweiligen Kontrolle angegeben. Die Wirkung der IL-1 β -Stimulation (IL) wurde auf unbehandelte Zellen bezogen. Die Effekte der Inhibitoren (ML: ML 3595, Bi: Birb 796, SB: SB203580) auf IL-1 β -stimulierte Chondrozyten wurde auf nichtinhibierte, stimulierte Zellen bezogen. Farbkodierung der Log₂Ratio:

Gen	"GenBank"-	Farbkodierung	R	Regulation $[\log_2 \text{Ratio}]$ durch					
	Zugangsnr.	IL ML Bi SB	IL-1 β	ML 3595	Birb 796	SB203580			
MMP13	NM_002427		6.07	-1.68	-4.53	-3.77			
COX2	NM_000963		7.77	-0.39	-4.35	-1.56			
NOS2A	$\rm NM_000625$		4.56	-0.22	-2.10	-2.46			
OPG	NM_002546		3.35	-0.57	-2.06	-1.08			

3.4. Analyse neuer involvierter Gene

Zusätzlich zu den Überblicksanalysen der Array-Ergebnisse wurden einzelne Gengruppen näher betrachtet, die bestimmten Arthrose-relevanten Zell- oder Funktionsbereichen zugeordnet werden können. Die in der Chipanalyse gefundene Genregulation wurde dabei mit anderen Methoden verifziert und teilweise weiterführend charakterisiert. Der Schwerpunkt lag auf der Untersuchung der Stimulationseffekte von IL-1 β und den Wirkungen des Hemmstoffes SB203580. Dieser Inhibitor ist ein gebräuchlicher p38MAPK-Hemmer, so dass Vergleiche mit Ergebnissen aus der Literatur möglich sind.

3.4.1. Extrazelluläre Matrixkomponenten

Die in Abschnitt 3.3.2.2, S. 72 beschriebene Zuordnung regulierter Gene zu Zellkomponenten zeigte signifikant viele durch IL-1 β regulierte Gene aus dem Bereich der extrazellulären Matrix (EZM). Die EZM spielt in der Knorpelbiologie und der Pathogenese der Arthrose eine wichtige Rolle. Deshalb wurde der Einfluss von IL-1 β und SB203580 auf Gene untersucht, die mit der EZM assoziiert sind. Zur Erstellung einer Liste EZMassoziierter Gene wurden Knorpelmatrix-relevante Gene ausgewählt, deren Bedeutung in der Pathogenese der Arthrose bereits in der Literatur beschrieben wurde oder die die Homöostase des Knorpels beeinflussen. Zusätzlich wurden weitere Adhäsions- und Matrixkomponenten der Auswahl hinzugefügt. Dies ergab insgesamt eine Gruppe von etwa 350 EZM-assoziierten Genen, die in der durchgeführten genomweiten Arrayanalyse enthalten waren. Aus dieser Gruppe zeigten 83 Gene eine Regulation durch IL-1 β und 16 Gene durch SB203580, vier davon waren koreguliert. In Tab. 27, S. 154 im Anhang sind die Gene mit Beschreibung, Regulation und "GenBank"-Zugangsnummer [71] aufgeführt. Unter den IL-1 β -regulierten Genen fanden sich eine Reihe von Kollagenen, Zytokinen und Rezeptoren.

Zur Verifzierung der Microarray-Ergebnisse wurde eine semiquantitative PCR (Abschnitt 2.2.2.3, S. 41) durchgeführt. Dafür wurden entsprechend dem Microarray-Experiment Zellen von sechs verschiedenen Spendern gepoolt und wie beschrieben mit IL-1 β und SB203580 kultiviert (2.2.2.9). Es wurde die Genexpression der im Array IL-1 β -regulierte Kollagene Typ V α 1 (COL5A1), Typ VI α 1 (COL6A1) und Typ X α 1 (COL10A1) sowie der Matrixmetalloproteinase 24 (MMP24) untersucht. Ebenfalls überprüft wurde die Genexpression der im Array durch den Inhibitor SB203580 regulierten Gene ADAM15 ("A Disintegrin And Metalloproteinase 15"), CRTL1 ("Cartilage Linking Protein 1") und FN1 (Fibronektin 1) sowie die koregulierten Gene MMP13 (Matrixmetalloproteinase 13), NOS2A ("Nitric Oxide Synthase 2"), ITGA2B (Integrinkette α_{2b}) und COL4A6 (Kollagen Typ IV α 6). Tab. 14, S. 76 stellt die erhaltenen Ergebnisse den Befunden aus der Arrayanalyse gegenüber. Es konnte bei acht der insgesamt elf untersuchten Gene die in der Arrayanalyse gefundene Regulation bestätigt werden. Für FN1 und ITGA2B zeigte die RT-PCR ein anderes Ergebnis, eine COL4A6-Genexpression konnte nicht detektiert werden.

Tabelle 14.: EZM-assoziierte Gene: Verifizierung der Microarray-Ergebnisse in der semiquantitativen PCR.

Ergebnisse aus der Microarray-Analyse und einer semiquantitativen PCR-Analyse sind einander gegenübergestellt. –: keine Änderung der Genexpression, \uparrow : verstärkte Expression, \downarrow : verminderte Expression, 0: kein Amplifikat.

Gen	Array-	Ergebnisse:	PCR-I	Ergebnisse:	Vergleich der
	Regulation durch		Regula	ation durch	Ergebnisse
	IL-1 β	SB203580	IL-1 β	SB203580	Array vs PCR
ADAM15	-	\downarrow	_	\downarrow	Ergebnis bestätigt
COL4A6	↑	\downarrow	0	0	Ergebnis nicht bestätigt
COL5A1	↓	-	↓	-	Ergebnis bestätigt
COL6A1	↓	-	↓ ↓	-	Ergebnis bestätigt
COL10A1	↓	-	↓	-	Ergebnis bestätigt
CRTL1	-	\downarrow	_	\downarrow	Ergebnis bestätigt
FN1	-	\downarrow	_	-	Ergebnis nicht bestätigt
ITGA2B	↑	\downarrow	↓	-	Ergebnis nicht bestätigt
MMP13	↑	\downarrow	↑	\downarrow	Ergebnis bestätigt
MMP24	↓	-	↓	-	Ergebnis bestätigt
NOS2A	↑	\downarrow	↑	\downarrow	Ergebnis bestätigt

3.4.2. Zytoskelettkomponenten

Aus der GoMiner-Analyse der Microarraydaten (Abschnitt 3.3.2, S. 69) wurde deutlich, dass sowohl die Stimulation von Chondrozyten mit IL-1 β als auch deren Inhibition mit SB203580 die Genexpression signifikant vieler Zytoskelett-assoziierter Gene beeinflusste. Unter den IL-1 β - und SB203580-regulierten Genen fanden sich insgesamt 68, die dem Zytoskelett zugeordnet werden konnten. Elf davon wurden durch beide Behandlungen gemeinsam reguliert, 37 Gene wurden nur durch IL-1 β und 20 nur durch SB203580 beeinflusst. Diese Gene samt "GenBank"-Zugangsnummer [71], Beschreibung und Regulation sind in Tab. 28, S. 157 im Anhang aufgelistet.

Zur Verifizierung und weiterführenden Analyse auf quantitativer Genexpressionsebene wurden vier Zytoskelett-assoziierte Gene mit LIM-Domänen, nämlich FHL1, FHL2, LASP1 ("LIM and SH3 protein 1") und PDLIM1 ("PDZ and LIM domain 1") ausgewählt. LIM-Proteine vermitteln Protein-Protein-Interaktionen und spielen häufig eine Rolle bei Zytoskelett-vermittelter Signaltransduktion, die möglicherweise auch bei IL-1 β -induzierten Signalwegen von Bedeutung ist. Des Weiteren wurde die Genexpression von Vimentin (VIM), Tubulin β (TUBB) und der Integrinuntereinheit β_3 (ITGB3) als Bausteine der Intermediärfilamente, Makrotubuli beziehungsweise der Integrine in das Panel mitaufgenommen. Dazu wurden Chondrozyten-Monolayer-Kulturen von sechs verschiedenen Spendern 4 h und 24 h mit 10 ng/ml IL-1 β und 10 μ M SB203580 kultiviert (Abschnitt 2.2.1.8, S. 38). Es wurde eine absolute Quantifizierung der Genexpression wie in den Abschnitten 2.2.2.4, S. 41 und 2.2.5.1, S. 55 beschrieben durchgeführt und auf die 18S-rRNA-Expression normalisiert. In den revers transkribierten Proben unbehandelter Zellen befanden sich etwa 3000 Kopien von FHL2, PDLIM1 und ITGB3. Von TUBB und LASP1 waren etwa 100000 Kopien und von FHL1 und VIM etwa 1 Mio Kopien vorhanden. Um den Einfluss der Stimulation und p38MAPK-Inhibition zu bestimmen, wurde das Expressionsverhältnis zwischen IL-1 β -stimulierten und Kontrollzellen bzw. zwischen stimulierten, inhibierten und stimulierten, nicht inhibierten Zellen berechnet. In Abb. 11 und 12 sind die Effekte der Zellbehandlung auf die Expression der aufgeführten Gene in einer Boxplot-Darstellung, die unter 2.2.5.2 näher erläutert wird, wiedergegeben.

Die Expression aller untersuchten Gene wurde durch die Stimulation mit IL-1 β verringert (Abb. 11). Während die FHL1-, FHL2- und LASP1-Genexpression zu beiden Messzeitpunkten zurückging, konnte für PDLIM, TUBB und VIM nur nach 24 h ein signifikanter Effekt beobachtet werden. Die ITGB3-Genexpression wurde dagegen nur nach 4 h beeinflusst. Der Faktor, um den die Genexpression verändert wurde, bewegte sich meist im Rahmen von 2 bis 6, nur die FHL1-Genexpression wurde nach 24 h um den Faktor 44 vermindert. Die Richtung und der Umfang der 24-stündigen Genexpressionsänderungen stimmten in fast allen Fällen mit den Ergebnissen aus der Microarray-Analyse überein. Die im Array beobachtete signifikant verstärkte Genexpression von ITGB3 war in der quantitativen PCR als Tendenz zu erkennen.

Den Effekt der p38MAPK-Inhibition bei IL-1 β -Stimulation zeigt Abb. 12. SB203580 bewirkte bei FHL2- und TUBB-Genexpression nach 4 h beziehungsweise 24 h eine signifikante Gegenregulation zum Stimulationseffekt, die tendenziell auch an den anderen Zeitpunkten zu erkennen war. Auch LASP1 und VIM zeigten nach 24 h eine verstärkte Genexpression um den Faktor 1.7 (p = 0.05) beziehungsweise um den Faktor 2.7 (p = 0.2). Die Expression der anderen IL-1 β -regulierten Gene wurde nicht durch SB203580 verändert. Ein Vergleich der 24 h-Werte mit den Array-Daten zeigte eine Übereinstimmung der Genregulation von FHL1, FHL2, TUBB, ITGB3 und, in der Tendenz, von LASP1 und VIM. Im Gegensatz dazu konnte die im Array beobachtete Expressionsverstärkung von PDLIM1 in der quantitativen PCR nicht bestätigt werden.

Abbildung 12.: Auswertung der quantitativen Genexpressionsanalyse Zytoskelett-assoziierter Gene nach Behandlung mit SB203580 und IL-1 β Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und 10 μ M SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Effekte des Inhibitors auf IL-1 β -stimulierte Chondrozyten wurden auf nichtinhibierte, stimulierte Zellen bezogen. Aufgetragen ist der dekadische Logarithmus des Expressionsverhältnisses (Log₁₀Ratio) in einer Boxplot-Darstellung (siehe Abschnitt 2.2.5.2) mit n = 6.

3.4.2.2. Untersuchung von Zytoskelettkomponenten auf Proteinebene

Morphologie und Aktinzytoskelett In der Genexpressionsanalyse konnte gezeigt werden, dass verschiedene Zytoskelett-assoziierte Gene durch die Behandlung mit inflammatorischen und anti-inflammatorischen Faktoren in ihrer Expression verändert wurden. In nachfolgenden morphologischen Studien sollte geklärt werden, ob es dadurch zu Änderungen des Aktinzytoskeletts kommt. Eine Untersuchung des Zytoskelettes erfolgte durch Anfärbung der Aktinfasern mit fluoreszenzmarkiertem Phalloidin. In Abb. 13 sind die IL-1 β -Effekte auf die Chondrozytenmorphologie zu sehen. Kontrollzellen zeichneten sich durch eine flache Zellform aus (Abb. 13 A). Die Aktinfärbung wies auf gute Adhärenz durch fokale Adhäsionen hin und zeigte ein Netzwerk von Aktinbündeln und

Abbildung 13.: Morphologie und Aktinzytoskelett von Chondrozyten nach IL-1 β -Stimulation

A+C: Kontrollzellen; B+D: Chondrozyten nach 24-stündiger Stimulation mit 10 ng/ml IL-1 β ; A+B: Phasenkontrastmikroskopie von Monolayer-Kulturen, Vergrößergung 200x; C+D: Fluoreszenzmikroskopie von Chondrozyten, die mit FITC-gekoppeltem Phalloidin gegen F-Aktin gefärbt wurden. Im Bild erscheint F-Aktin grün fluoreszierend.

Stressfasern (Abb. 13 C). Im Vergleich zur Kontrolle zeigten IL-1 β -stimulierte Chondrozyten nach 24 h ein anderes Aussehen. Viele Zellen hatten sich zusammengezogen und abgekugelt (Abb. 13 B+D), die Aktinfärbung ließ keine Zytoskelettstrukturen mehr erkennen (D). Eine Kokultivierung mit dem p38MAPK-Inhibitor konnte diese morphologischen Änderungen nicht verhindern.

Expression und Verteilung des FHL2-Proteins Um die Befunde in der Genexpressionsanalyse auf Proteinebene zu verifizieren, wurde exemplarisch die Expression von Vimentin und von FHL2, dem prominentesten der LIM-Proteine, im Western-Blot untersucht. Um genügend Material zu erhalten, wurden jeweils Chondrozyten von vier verschiedenen Spendern vereinigt. Vier unterschiedliche Spendergruppen wurden im Mo-

Abbildung 14.: Densitometrische Auswertung der FHL2-Proteinexpression von Chondrozyten nach Behandlung mit IL-1 β und SB203580.

Chondrozyten wurden 24 h und 48 h mit 10 ng/ml IL-1 β mit und ohne 10 μ M SB203580 kultiviert, unbehandelte Zellen dienten als Kontrolle. Das Zelllysat wurde im Western-Blot FHL2-spezifisch gefärbt, die Intensität der Banden densitometrisch mit dem Geldoc XR (Bio-Rad) bestimmt und relativ zur jeweiligen Kontrolle als Mittelwert ± SD aufgetragen. Es wurden Zellen von jeweils vier Spendern zu einer Spendergruppe vereinigt und vier (K und IL) bzw. zwei (SB+IL) unabhängige Gruppen untersucht. (K: Kontrolle, IL: IL-1 β -Stimulation, SB+IL: Kultivierung mit SB203580 und IL-1 β)

nolayer 24 h und 48 h mit 10 ng/ml IL-1 β stimuliert, bei zwei Spendergruppen erfolgte zusätzlich die Koinkubation mit 10 μ M SB203580. Anschließend wurden die Zelllysate wie unter 2.2.3.3, S. 50 beschrieben mit FHL2- und VIM-spezifischen Antikörpern gefärbt. Es wurde von allen Proben die Proteinkonzentration bestimmt (Abschnitt 2.2.3.1, S. 49) und gleiche Proteinmengen aufgetragen. Abb. 14, S. 81 zeigt die Ergebnisse des FHL2-spezifischen Immunoblots, die die Befunde aus der quantitativen PCR-Analyse bestätigten. Nach 48 h IL-1 β -Inkubation ließ sich ein signifikanter Rückgang der FHL2-Expression beobachten, der auch schon nach 24 h zu erkennen war. Die Inhibition mit

		24 h			48 h		
	М	ĸ	IL	SB+IL	к	IL	SB+IL
75 kD		No.		NORM.			
50 kD	and the			1.94		-	

Abbildung 15.: Analyse der VIM-Proteinexpression von Chondrozyten nach Behandlung mit IL-1 β und SB203580.

Chondrozyten wurden 24 h und 48 h mit 10 ng/ml IL-1 β mit und ohne 10 μ M SB203580 kultiviert, unbehandelte Zellen dienten als Kontrolle. Das Zelllysat wurde im SDS-Gel aufgetrennt und im Western-Blot VIM-spezifisch gefärbt. (K: Kontrolle, IL: IL-1 β -Stimulation, SB+IL: Kultivierung mit SB203580 und IL-1 β)

SB203580 konnte den IL-1 β -Effekt nicht hemmen. Die Vimentin-spezifische Färbung der Zellproteine im Western-Blot zeigte keine Änderung der Vimentin-Expression durch IL-1 β -Stimulation, wie Abb. 15 zeigt.

Abbildung 16.: FHL2-spezifische Färbung von Chondrozyten nach IL-1 β -Stimulation.

A: Kontrollzellen und B: IL-1 β -stimulierte Chondrozyten (24 h, 10 ng/ml), die mit einem α FHL2-Antikörper immunhistochemisch gefärbt wurden. Im Bild erscheint das FHL2-Protein rot.

In Abb. 16 ist die FHL2-spezifische Färbung von Chondrozyten in Monolayer-Kultur zu sehen. Unbehandelte Zellen wiesen eine typische Verteilung von FHL2 an Adhäsionspunkten, aber auch um und im Zellkern auf. Die Stimulation mit IL-1 β veränderte wie im vorigen Absatz bereits beschrieben die Zellmorphologie. Dabei wurde auch die Lokalisierung von FHL2 gestört, in abgerundeten Zellen war eine gleichmäßige Färbung zu beobachten. Zellen, die trotz der Stimulation noch eine ausgebreitete Zellform behielten, zeigten kaum mehr FHL2-Lokalisierung an den Adhäsionspunkten.

3.5. Quantitative Charakterisierung anti-inflammatorischer Wirkstoffe

Um Inhibitoren im etablierten Zellkulturmodell quantitativ charakterisieren zu können, wurde deren Wirkung auf verschiedene IL-1 β -abhängige Reaktionen untersucht. Dazu wurde die Genexpression der Gene COX2, NOS2A, MMP13 und OPG quantitativ analysiert, deren Auswahl in Abschnitt 3.3.3, S. 73 beschrieben wurde. Als Ergänzung erfolgte die Genexpressionsanalyse der induzierbaren Prostaglandin E Synthase PTGES, die wie die Cyclooxygenase COX2 an der Synthese von Prostaglandinen beteiligt ist. Zusätzlich zu den Genexpressionsanalysen erfolgte die Bestimmung der Metabolite Prostaglandin E₂ (PGE₂) und Nitrit aus dem Zellkulturüberstand der behandelten Zellen (Abschnitt 2.2.3.4, S.51 und 2.2.3.5, S. 52). PGE₂ ist ein Produkt des Arachidonsäurestoffwechselweges, an dem die Enzyme COX2 und PTGES beteiligt sind. Für die Synthese von Stickstoffmonoxid (NO) ist die NO-Synthase NOS2A verantwortlich. NO wird im Überstand schnell zu Nitrit weiter oxidiert, dessen Konzentration als Maß für die NO-Bildung dient.

Als Hemmstoffe wurden eine Reihe verschiedener Substanzen eingesetzt. Es handelte sich um die bereits charakterisierten p38MAPK-Inhibitoren SB203580, Birb 796 und Pamapimod sowie den PGE_2/LTB_4 -Synthesehemmer Licofelone, die als Referenzsubstanzen in die Analyse eingeschlossen wurden. Zudem wurden die gegen die p38MAPK gerichteten Hemmstoffe CBS 3825, CBS 3868 und ML 3736 sowie das p38MAPK- und PDE4-spezifische ML 3595 getestet, die derzeit in der pharmazeutischen Entwicklungsphase sind.

Für diese Experimente wurden Chondrozyten von zwei Spendern vereinigt, in Monolayer kultiviert und mit 10 ng/ml IL-1 β und dem entsprechenden Inhibitor 4 h und 24 h inkubiert. Die Substanzen Birb 796, CBS 3868, Licofelone, ML3736 und SB203580 wurden in den Konzentrationen 0.1 μ M, 1 μ M und 10 μ M eingesetzt. Pamapimod wurde 0.1 μ M und 1 μ M und CBS 3825 und ML 3595 1 μ M und 10 μ M getestet. Die im Anhang aufgeführten Tab. 20, S. 145 und 21, S. 146 geben die genaue Anzahl an Spendergruppen der einzelnen Experimente wieder. Die quantitative PCR wurde wie in den Abschnitten 2.2.2.4, S. 55 und 2.2.5.1, S. 55 beschrieben durchgeführt und ausgewertet. Die Expressionswerte wurden auf die 18S-rRNA-Expression normalisiert. Die Durchführung der Metabolit-Messungen ist unter 2.2.3.4, S. 51 und 2.2.3.5, S. 52 beschrieben.

3.5.1. Effekte der Wirksubstanzen auf den PGE₂-Syntheseweg

Zur Beurteilung der Inhibitoreffekte auf den Arachidonsäurestoffwechselweg wurde die Genexpression von COX2 und PTGES in behandelten Zellen im Vergleich zu Kontrollzellen gemessen und der PGE₂-Gehalt im Zellkulturüberstand bestimmt.

Abbildung 17.: Auswertung der quantitativen COX2-Genexpressionsanalyse nach Behandlung mit IL-1 β und Referenz-Inhibitoren

Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und Birb 796, Licofelone, Pamapimod oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Unbehandelte Zellen dienten als Kontrolle. Aufgetragen ist der dekadische Logarithmus des Expressionsverhältnisses zur Kontrolle (Log₁₀Ratio) als Mittelwert \pm SD mit n ≥ 4 .

Abbildung 18.: Auswertung der quantitativen COX2-Genexpressionsanalyse nach Behandlung mit IL-1 β und Inhibitoren aus der pharmazeutischen Entwicklung

Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und CBS 3825, CBS 3868, ML 3595 oder ML 3736 kultiviert und anschließend die Genexpression quantitativ bestimmt. Unbehandelte Zellen dienten als Kontrolle. Aufgetragen ist der dekadische Logarithmus des Expressionsverhältnisses zur Kontrolle (Log₁₀Ratio) als Mittelwert \pm SD mit n \geq 4.

3.5.1.1. Genexpression von COX2

Abb. 17, S. 84 und 18 zeigen die relative quantitative Genexpression von COX2 in stimulierten und Hemmstoff-inkubierten Chondrozyten. Es war eine Induktion durch IL-1 β um den Faktor 30 (p < 0.001) und 150 (p < 0.001) nach 4- bzw. 24-stündiger Behandlung zu beobachten. Sämtliche p38MAPK-Inhibitoren bewirkten zu beiden Beobachtungszeitpunkten eine konzentrationsabhängige Verringerung der Genexpression. Der PGE₂/LTB₄-Synthesehemmer Licofelone verringerte nur bei einer Konzentration von 10 μ M nach 24 h die COX2-Genexpression. Um die Inhibitoreffekte vergleichend beurteilen zu können, wurden für die Expressionswerte jedes Behandlungsansatzes ein Hemmwert wie unter 2.2.5.4, S. 57 angegeben bestimmt. Die Hemmung wurde auf die Stimulationsfähigkeit der jeweiligen Spender normiert und prozentual angegeben. Eine 100 %-ige Hemmung bedeutet eine Genexpression auf dem Niveau von Kontrollzellen, eine 0 %-ige Hemmung entspricht der Expression auf Stimulationsniveau. Signifikanzangaben beziehen sich auf die Differenz zum Stimulationswert und beschreiben eine signifikante Hemmung der Stimulation durch den Inhibitor zum Signifikanzniveau von 5 %. Zusätzlich wurde die Inhibitorkonzentration wie unter 2.2.5.4, S. 58 beschrieben bestimmt, bei der eine 50 %ige bzw. 75 %ige Hemmung erreicht wurde. Alle IC₅₀- und IC₇₅-Werte sind in Tab. 17, S. 99 zusammengestellt. In Abb. 19 und 20 ist die normierte prozentuale Hemmung der COX2-Genexpression zu sehen.

Konzentration in µM

Abbildung 19.: Normierte prozentuale Hemmung der IL-1 β -induzierten COX2-Genexpression durch Referenz-Inhibitoren.

Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und Birb 796, Licofelone, Pamapimod oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind in Tab. 15, S. 88 angegeben. (*: p < 0.05, **: p < 0.01)

Die p38MAPK-Hemmer Birb 796, Pamapimod, CBS 3825, CBS 3868 und ML 3736 zeichneten sich bei allen eingesetzten Konzentrationen durch eine hochsignifikante Verringerung der IL-1 β -induzierten COX2-Genexpression von mindestens 50 % aus. Die IC₅₀-Werte lagen alle unterhalb oder im Bereich von 0.1 μ M. Nach 24 h Kultivierung

Konzentration in µM

Abbildung 20.: Normierte prozentuale Hemmung der IL-1 β -induzierten COX2-Genexpression durch Inhibitoren aus der pharmazeutischen Entwicklung. Es wurden Chondrozyten 4 h und 24 h mit IL-1 β und CBS 3825, CBS 3868, ML 3595 oder ML 3736 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit $n \geq 4$. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind in Tab. 15, S. 88 angegeben. (*: p < 0.05, **: p < 0.01)

mit 10 μ M dieser Inhibitoren wurde eine Hemmung von etwa 90 % erreicht. 10 μ M SB203580 verringerte die COX2-Genexpression um 75 % (p < 0.001), der IC₅₀ betrug 0.6 μ M. ML 3595 war bei keiner der eingesetzten Konzentrationen ein signifikanter Einfluss nachzuweisen. 10 μ M Licofelone zeigte nach 24 h eine 46 %ige Hemmung (p = 0.003), wohingegen nach 4 h durch 0.1 μ M Licofelone eine signifikante Verstärkung der COX2-Genexpression zu verzeichnen war (p = 0.021). Um mögliche Konzentrationsabhängigkeiten zu erkennen, wurden die Hemmwirkungen unterschiedlicher Konzentrationen statistisch ausgewertet. Signifikanzen sind in Tab. 15 angegeben. Für die Substanzen Birb 796, Pamapimod und ML3595 war weder nach 4 h noch nach 24 h eine Konzentrationsabhängigkeit zu verzeichnen. Dagegen wurde bei SB203580 und CBS 3825 durch eine Erhöhung der Konzentration von 0.1 μ M auf 1 μ M beziehungsweise von 1 μ M auf 10 μ M zu beiden Zeitpunkten eine signifikant stärkere Hemmung erreicht. Die Erhöhung

Tabelle 15.: Abhängigkeit der COX2-Expressionshemmung von der Inhibitorkonzentration.

Angegeben sind die Signifikanzen (p-Werte) der Unterschiede der in Abb. 19 und 20 dargestellten Hemmung zwischen den verschiedenen Konzentrationsstufen der Inhibitoren nach 4 h bzw. 24 h Kultivierung. CBS 3825, ML 3595 und Pamapimod wurden in zwei Konzentrationsstufen eingesetzt, so dass ein Vergleich möglich war. Birb 796, CBS 3868, Licofelone, ML 3736 und SB203580 wurden in drei Konzentrationsstufen eingesetzt, so dass drei Vergleiche möglich waren. (Kultiv.: Kultivierung, $-: p \ge 0.05$, /: nicht bestimmbar)

Kultiv	Verg	gleich	der	Birb	CBS	CBS	Lico-	ML	ML	Pama-	SB
zeit	Kor	nz. in	μM	796	3825	3868	felone	3595	3736	pimod	203580
4 h	0.1	VS	1	_	/	0.012	0.001	/	_	0.001	0.017
	1	VS	10	_	0.044	-	0.034	_	-	/	_
	0.1	vs	10	-	/	0.003	-	/	-	/	0.007
24 h	0.1	vs	1	_	/	-	-	/	0.001	-	0.002
	1	VS	10	_	0.019	_	0.044	_	0.019	/	_
	0.1	VS	10	_	/	_	0.005	/	0.013	/	0.007

der CBS 3868-Konzentration von 0.1 μ M auf 1 μ M bzw. 10 μ M zeigte nach 4 h eine signifikante Verbesserung der Hemmwirkung. Nach 24 h verstärkte die Erhöhung der Licofelone-Konzentration von 1 μ M auf 10 μ M die Hemmung, während beide Konzentrationserhöhungen von ML 3736 signifikante Wirkung zeigten.

3.5.1.2. Genexpression von PTGES

Durch Stimulation der Chondrozyten mit IL-1 β konnte eine signifikante Zunahme der PTGES-Genexpression nach 4 h um den Faktor 3 (p = 0.001) und nach 24 h um den Faktor 11 (p < 0.001) verzeichnet werden. Abb. 21 und 22 zeigen die inhibitorische Wirkung der Hemmsubstanzen auf die PTGES-Genexpression nach 24-stündiger Behandlung der Chondrozyten. Fast alle p38MAPK-Inhibitoren zeigten eine Hemmung der Genexpression um 50 %. Die IC₅₀-Werte lagen im Bereich von 1 μ M (Tab. 17, S. 99), wobei Birb 796 mit IC₅₀ = 3 μ M den höchsten und CBS 3868 mit IC₅₀ = 0.6 μ M den niedrigsten Wert unter den p38-Hemmern aufwies. ML 3595 hatte keinen signifikanten Einfluss auf die PTGES-Genexpression. Licofelone hemmte die PTGES-Genexpression bei einer Konzentration von 10 μ M zu 50 %. Die Erhöhung der Konzentration von 1 μ M auf 10 μ M zeigte eine signifikante Verbesserung der Hemmwirkung (p = 0.049). Die 4-stündige Kultivierung der Zellen mit den Testsubstanzen zeigte aufgrund hoher

Konzentration in µM

Abbildung 21.: Normierte prozentuale Hemmung der IL-1 β -induzierten PTGES-Genexpression durch Referenz-Inhibitoren.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und Birb 796, Licofelone, Pamapimod oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

Standardabweichungen keine signifikante Hemmung. Die Reaktion verschiedener Spenderzellen variierte vor allem bezüglich der Substanzen ML 3736 und SB203580 stark.

Abbildung 22.: Normierte prozentuale Hemmung der IL-1 β -induzierten PTGES-Genexpression durch Inhibitoren aus der pharmazeutischen Entwicklung.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und CBS 3825, CBS 3868, ML 3595 oder ML 3736 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. (*: p < 0.05, **: p < 0.01)

3.5.1.3. Freisetzung von PGE₂

Die Bildung des Prostaglandins PGE_2 kann als Maß der Aktivität von COX2 und PT-GES herangezogen werden, da es das Produkt dieser beiden Enzyme ist. Für eine Auswahl von Inhibitoren wurde die Freisetzung von PGE_2 gemessen. IL-1 β -Stimulation bewirkte nach 4 h eine Zunahme der PGE_2 -Menge im Überstand von durchschnittlich 0.9 ng/ml um den Faktor 6.6 auf 6.0 ng/ml (p = 0.01). Nach einer Stimulationszeit von 24 h erhöhte sich die Prostaglandinkonzentration um das 9-fache von 1.3 ng/ml auf 11.6 ng/ml (p < 0.001). Abb. 23 zeigt die inhibitorische Wirkung von SB203580 und Licofelone im Konzentrationsbereich von 0.1 bis 10 μ M. In Abb. 24 sind die Ergebnisse der p38MAPK-Inhibitoren CBS 3825, CBS 3868, ML 3736 und Pamapimod

dargestellt, die bereits im Konzentrationsbereich von 0.1 und 1 μ M die COX2- und PTGES-Genexpression hemmen konnten, so dass die Analyse auf diese Konzentrationen beschränkt blieb.

Abbildung 23.: Normierte prozentuale Hemmung der IL-1 β -induzierten PGE₂-Freisetzung durch Licofelone und SB203580.

Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und Licofelone oder SB203580 kultiviert und anschließend die PGE₂-Konzentration im Überstand bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind in Tab. 16, S. 93 angegeben. (*: p < 0.05, **: p < 0.01)

Durch die Hemmsubstanzen Birb 796, CBS 3868, Licofelone, ML 3736, Pamapimod und SB203580 wurde die PGE₂-Freisetzung signifikant zu beiden Messzeitpunkten um ≥ 60 % gehemmt. Nur Pamapimod (0.1 μ M) und SB203580 (0.1 μ M) zeigten nach 4 h beziehungsweise 24 h keinen signifikanten Einfluss. Licofelone (1 μ M und 10 μ M) erreichte nach 24 h eine Inhibition der PGE₂-Freisetzung von über 90 % (p < 0.001). Die IC₅₀-Werte der Inhibitoren lagen unterhalb 0.1 μ M, nur Pamapimod und SB203580 zeigten Werte von 0.6 μ M und 0.9 μ M (Tab. 17, S. 99). Die Hemmwirkungen unterschiedlicher Konzentrationen wurden statistisch ausgewertet. Nach 4-stündiger Inkubation waren

Abbildung 24.: Normierte prozentuale Hemmung der IL-1 β -induzierten PGE₂-Freisetzung durch verschiedenen Inhibitoren.

Es wurden Chondrozyten 4 h und 24 h mit 10 ng/ml IL-1 β und CBS 3825, CBS 3868, ML 3736 oder Pamapimod kultiviert und anschließend die PGE₂-Konzentration im Überstand bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert ± SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind in Tab. 16, S. 93 angegeben. (*: p < 0.05, **: p < 0.01)

keine signifikanten Unterschiede zu beobachten, Signifikanzen nach 24 h sind in Tab. 16 angegeben. Bei allen Inhibitoren außer Birb 796 zeigten sich signifikante Unterschiede zwischen 0.1 μ M und 1 μ M eingesetzter Konzentration. Eine Erhöhung der SB203580-Konzentration sowohl von 0.1 μ M auf 1 μ M (p = 0.014) als auch von 1 μ M auf 10 μ M (p = 0.041) bewirkte eine stärkere Hemmung. Tabelle 16.: Abhängigkeit der PGE₂-Bildung von der Inhibitorkonzentration. Angegeben sind signifikante Unterschiede der in Abb. 23 und 24 dargestellten Hemmung zwischen den verschiedenen Konzentrationsstufen der Inhibitoren nach 24 h Kultivierung. Birb 796, CBS 3868, ML 3736 und Pamapimod wurden in zwei Konzentrationsstufen eingesetzt, so dass ein Vergleich möglich war. Licofelone und SB203580 wurden in drei Konzentrationsstufen eingesetzt, so dass drei Vergleiche möglich waren. (-: $p \ge 0.05$, /: nicht bestimmbar)

Verg	gleich	der						
Kon	z. in	μM	Birb 796	CBS 3868	Licofelone	ML 3736	Pamapimod	SB203580
0.1	vs	1	_	0.015	0.001	0.023	0.023	0.014
1	\mathbf{vs}	10	/	/	-	/	/	0.041
0.1	VS	10	/	/	-	/	/	0.005

3.5.2. Effekte der Wirksubstanzen auf den NO-Syntheseweg

3.5.2.1. Genexpression von NOS2A

Die Stimulation mit IL-1 β bewirkte eine 250-fache Zunahme der NOS2A-Genexpression nach 4 h (p < 0.001) und eine 370-fache Zunahme nach 24 h (p = 0.003). Die Inhibitorbehandlung von Chondrozyten zeigte nach 4 h keine signifikante Hemmung der IL-1 β -stimulierten NOS2A-Genexpression, 0.1 μ M Licofelone verstärkte die Expression sogar um 60 % (p = 0.006). Die Ergebnisse für die Inhibitorkonzentrationen von 1 und $10 \ \mu M$ nach 24 h sind in Abb. 25 zu sehen. Für die meisten p38MAPK-Inhibitoren war eine signifikante, konzentrationsabhängige Hemmung zu verzeichnen, die ihre Maxima zwischen 50 und 70 % erreichte. Die IC₅₀-Werte lagen im Bereich von 2 μ M (CBS 3868) bis 7 μ M (Birb 796 und ML 3736), nur SB203580 zeigte einen IC₅₀ > 10 μ M (Tab. 17, S. 99). 1 μ M ML 3595 wirkte gegenläufig zu den anderen Inhibitoren und verstärkte die NOS2A-Genexpression (p = 0.024). Die Chondrozyten verschiedener Spender reagierten unterschiedlich auf 10 μ M ML 3595, wodurch die große Standardabweichung der Hemmwerte bedingt ist. Licofelone (10 μ M) vermochte die NOS2A-Genexpression mit 82 % am stärksten zu hemmen (p = 0.003, $IC_{50} = 5 \mu M$). Der Einsatz von 0.1 μM der Inhibitoren sowie die Verwendung von Pamapimod bewirkte keine signifikante Hemmung, weshalb auf die Darstellung dieser Ergebnisse verzichtet wurde. Signifikante Konzentrationsabhängigkeiten konnten für CBS 3868 und Licofelone nachgewiesen werden.

Abbildung 25.: Normierte prozentuale Hemmung der IL-1 β -induzierten NOS2A-Genexpression durch verschiedenen Inhibitoren.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und Birb 796, CBS 3825, CBS 3868, Licofelone, ML 3595, ML 3736 oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

3.5.2.2. Freisetzung von Nitrit

Nitrit wurde als Maß für die Bildung von Stickstoffmonoxid durch die NO-Synthase herangezogen. Durch die Stimulation mit IL-1 β wurde die Nitritmenge im Überstand nach 24 h um den Faktor 5 von durchschnittlich 1.2 μ M auf 6.2 μ M erhöht (p < 0.001), nach 4 h war dagegen keine Zunahme zu beobachten. Abb. 26 zeigt die Hemmung der Nitrit-Abgabe nach 24 h. Licofelone vermochte bei einer Konzentration von 10 μ M die Nitritbildung um 80 % zu hemmen (p = 0.005, IC₅₀ = 6 μ M). Eine Verringerung der Nitritmenge war durch die p38MAPK-Inhibition mit Birb 796 (p = 0.083, IC₅₀ = 6 μ M), CBS 3868 (p = 0.113, IC₅₀ = 6 μ M) und in geringerem Ausmaß mit ML 3736 (p = 0.073, IC₅₀ > 10 μ M) und SB203580 (p = 0.131, IC₅₀ > 10 μ M) bei einer Konzentration von 10 μ M zu beobachten. Nach 4-stündiger Hemmstoffinkubation war dagegen kein Effekt auf die Freisetzung von Nitrit zu sehen. Der statistische Vergleich der verschiedenen Licofelonekonzentrationen wies auf hochsignifikante Wirkunterschiede zwischen den Konzentrationen 1 μ M und 10 μ M hin (p = 0.005).

Konzentration in µM

Abbildung 26.: Normierte prozentuale Hemmung der IL-1 β -induzierten Nitrit-Freisetzung durch verschiedene Inhibitoren.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und Birb 796, CBS 3868, Licofelone, ML 3736, Pamapimod oder SB203580 kultiviert und anschließend die Nitrit-Konzentration im Überstand bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

3.5.3. Effekte der Wirksubstanzen auf die MMP13-Genexpression

Abbildung 27.: Normierte prozentuale Hemmung der IL-1 β -induzierten MMP13-Genexpression durch Referenz-Inhibitoren.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und Birb 796, Licofelone, Pamapimod oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

Nach 4-stündiger Inkubation der Chondrozyten mit IL-1 β verdreifachte sich die MMP13-Genexpression (p = 0.08). Die Reaktion der verschiedenen Spenderzellen war allerdings uneinheitlich, weshalb die Hemmwerte vor allem bezüglich Birb 796, ML 3736 und SB203580 variierten (jeweils 0.1 μ M und/oder 1 μ M). Nur die Substanzen CBS 3825 (10 μ M, p = 0.037), CBS 3868 (0.1 μ M, p = 0.020; 1 μ M, p = 0.016 und 10 μ M, p = 0.016) und Licofelone (1 μ M, p = 0.043) zeigten zu diesem Zeitpunkt eine signifikante Hemmung der MMP13-Stimulation. Nach 24 h war bei allen Spendern eine einheitliche Reaktion auf die Stimulation zu beobachten mit einer Expressionsverstärkung um den Faktor 43 (p = 0.014). Fast alle Inhibitoren konnten diese signifikant hemmen, wie Abb. 27 und 28 zeigen. Bei einer Inhibitorkonzentration von 10 μ M betrug die Hemmung dabei durchgängig über 80 %. Die IC₅₀-Werte von Licofelone, Pamapimod und SB203580 betrugen 4 μ M, 0.7 μ M und 0.6 μ M während die IC₅₀-Werte von Birb 796, CBS 3868 und ML 3736 unter 0.1 μ M lagen (Tab. 17, S. 99). ML 3595 hatte keinen signifikanten Einfluss auf die MMP13-Genexpression, ebenso niedrige Konzentrationen von Licofelone (0.1 μ M und 1 μ M), Pamapimod (0.1 μ M) und SB203580 (0.1 μ M). Die Hemmstoffe Licofelone, SB203580, CBS 3825 und CBS 3868 zeigten nach 24 h signifikante Unterschiede der Hemmwirkung bei verschiedenen Konzentrationen.

Abbildung 28.: Normierte prozentuale Hemmung der IL-1 β -induzierten MMP13-Genexpression durch Inhibitoren aus der pharmazeutischen Entwicklung.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und CBS 3825, CBS 3868, ML 3595 oder ML 3736 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert \pm SD mit n \geq 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

3.5.4. Effekte der Wirksubstanzen auf die OPG-Genexpression

Abbildung 29.: Normierte prozentuale Hemmung der IL-1 β -induzierten OPG-Genexpression durch verschiedene Inhibitoren.

Es wurden Chondrozyten 24 h mit 10 ng/ml IL-1 β und CBS 3825, CBS 3868 Licofelone, ML 3736 oder SB203580 kultiviert und anschließend die Genexpression quantitativ bestimmt. Die Hemmung wurde wie unter 2.2.5.4, S. 57 beschrieben berechnet. Als Referenz dienten sowohl unbehandelte als auch IL-1 β -stimulierte nichtinhibierte Zellen. Aufgetragen ist der Mittelwert ± SD mit n ≥ 4. Signifikante Unterschiede der Hemmwerte zwischen den Konzentrationsstufen sind im Diagramm angegeben. (*: p < 0.05, **: p < 0.01)

Die OPG-Genexpression wurde durch Stimulation der Chondrozyten mit IL-1 β nach 4 h um das dreifache (p = 0.002) und nach 24 h um das 5-fache (p < 0.001) im Vergleich zu den Kontrollzellen erhöht. Ähnlich wie die MMP13-Genexpression reagierte auch die OPG-Genexpression der Spenderzellen nach 4 h uneinheitlich auf die Inhibitorbehandlung mit Birb 796, ML 3736 und SB203580 (jeweils 1 μ M). Die Substanzen CBS 3868 (1 μ M, p = 0.0103), Licofelone (1 μ M, p = 0.002), ML 3736 (10 μ M, p = 0.018) und Pamapimod (1 μ M, p = 0.037) zeigten zu diesem Zeitpunkt signifikant hemmenden Einfluss auf die IL-1 β -induzierte OPG-Genexpression. Nach 24 h wurde durch fast alle Wirksubstanzen bei Konzentrationen von 1 μ M und 10 μ M eine signifikante Hemmung erreicht, wie Abb. 29 zeigt. CBS 3825 (IC₅₀ = 2 μ M), CBS 3868 (IC₅₀ < 0.1 μ M) und ML3736 (IC₅₀

= 2 μ M) konnten bei einer Konzentration von 10 μ M die Genexpression um über 80 % hemmen, 10 μ M Licofelone erreichte eine Hemmung von 130 % (p < 0.001, IC₅₀ = 2 μ M). Damit fiel die Expressionstärke unter das Niveau von Kontrollzellen. Birb 796, ML 3595 und Pamapimod zeigten bei keiner der eingesetzten Konzentrationen einen hemmenden Effekt. Signifikante Abhängigkeit der Hemmung von den eingesetzten Wirkstoffkonzentrationen wurden für CBS 3868 (p = 0.003) und Licofelone (p = 0.03) festgestellt. Bei beiden verstärkte die Erhöhung von 1 μ M auf 10 μ M Inhibitor die Hemmung.

3.5.5. IC₅₀- und IC₇₅-Werte der Wirkstoffe

Tabelle 17.: Zusammenstellung der IC₅₀- und IC₇₅-Werte der Testsubstanzen.

Angegeben sind die Inhibitorkonzentrationen in μ M, bei denen eine 50 %ige bzw. 75 %ige Hemmung (IC₅₀ bzw. IC₇₅) bezüglich der IL-1 β -induzierten Genexpression (COX2, PTGES, NOS2A, MMP13 und OPG) und Metabolitfreisetzung (PGE₂ und NO) erreicht wurde.

IC₅₀-Werte

		Zeit	Birb 796	CBS 3825	CBS 3868	Licofelone	ML 3736	Pamapimod	SB203580
	COX2	4 h	< 0.1	< 1	< 0.1	> 10	< 0.1	0.1	0.9
sion	COX2	24 h	< 0.1	< 1	< 0.1	> 10	< 0.1	0.2	0.6
res	PTGES	24 h	3	1	0.6	10	0.8	1	0.7
exp	NOS2A	24 h	7	4	2	5	7	> 1	> 10
Gen	MMP13	24 h	< 0.1	< 1	< 0.1	4	< 0.1	0.7	0.6
-	OPG	24 h	> 10	2	< 0.1	2	2	> 1	0.9
يد- 1	PGE ₂	4 h	< 0.1		< 0.1	0.2	< 0.1	0.9	0.1
eise zunç	PGE ₂	24 h	< 0.1		< 0.1	< 0.1	< 0.1	0.6	0.9
цт и	NO	24 h	6		6	6	> 10	> 1	> 10

IC₇₅-Werte

		Zeit	Birb 796	CBS 3825	CBS 3868	Licofelone	ML 3736	Pamapimod	SB203580
	COX2	4 h	4	4	0.9	> 10	> 10	1	> 10
sion	COX2	24 h	< 0.1	2	0.5	> 10	0.5	0.9	10
ress	PTGES	24 h	> 10	> 10	> 10	> 10	> 10	> 1	> 10
exp	NOS2A	24 h	> 10	> 10	10	9	> 10	> 1	> 10
Gen	MMP13	24 h	1	3.2	2	8	0.9	> 1	3
-	OPG	24 h	> 10	8	6	5	8	> 1	> 10
st- J	PGE ₂	4 h	< 0.1		1	0.8	0.1	> 1	10
eise	PGE ₂	24 h	0.9		0.7	0.3	> 1	> 1	6
Er Z	NO	24 h	> 10		9	9	> 10	> 1	> 10

K_p-Werte der 0.37 nM ca. 1 nM ca. 1 nM - 1.6 nM 1.3 nM

p38MAPK-Bindung

Farblegende:

IC < 0.1
$0.1 \leq IC < 1$ bzw. $IC < 1$
$1 \leq IC \leq 10$ bzw. IC > 1
IC > 10

12 nM

Um die verschiedenen Inhibitoren vergleichend bewerten zu können, wurden die Einzelergebnisse der durchgeführten Analysen zusammengestellt. In Tab. 17, S. 99 sind die IC_{50} - und IC_{75} -Werte aus den Genexpressions- und Metabolitanalysen aufgelistet. Diese Werte geben die Inhibitorkonzentration an, bei der eine 50 %ige bzw. 75 %ige Hemmung erreicht wurde (2.2.5.4, S. 58). Tab. 18, S. 100 gibt den Quotienten der IC_{50} -Werte von SB203580 und der anderen Testsubstanzen an. Diese Darstellung erlaubt die Bewertung der Hemmstoffe im Vergleich zur Referenzsubstanz SB203580. Der Quotient gibt den Faktor an, um den die Testsubstanz effektiver ist als die Referenz.

Tabelle 18.: Effektivität der Testsubstanzen bezüglich der Referenz SB203580 Angegeben sind die Quotienten der IC_{50} -Werte von SB203580 und der anderen Testsubstanzen. Der Quotient gibt den Faktor an, um den die Testsubstanz effektiver ist als die Referenz.

		Zeit	Birb 796	CBS 3825	CBS 3868	Licofelone	ML 3736	Pamapimod	
	COX2	4 h	> 8.8	> 0.88	> 8.8	< 0.09	> 8.8	8.80	
sion	COX2	24 h	> 6.2	> 0.62	> 6.2	< 0.06	> 6.2	3.44	
res	PTGES	24 h	0.22	0.57	1.18	0.06	0.86	0.54	
exp	NOS2A	24 h	1.69	3.05	4.99	2.68	1.74	< 1.21	
Gen	MMP13	24 h	> 6.1	> 0.61	> 6.1	0.16	> 6.1	0.92	
-	OPG	24 h	< 0.09	0.60	> 9.1	0.42	0.59	< 0.91	Earb-
st- J	PGE2	4 h	> 1		> 1	0.45	> 1	0.11	legende:
eise :unç	PGE2	24 h	> 9.3		> 9.3	> 9.3	> 9.3	1.58	~ 5
ц	NO	24 h	> 1.57		> 1.77	> 1.68	n.b.	n.b.	< 0.2
4. Diskussion

Das Ziel dieser Arbeit bestand in der Etablierung eines Zell-basierten Testsystems, mit dessen Hilfe anti-inflammatorische Substanzen auf ihr Wirkspektrum bezüglich arthrotisch degenerativer Prozesse untersucht werden können. Bei der Entwicklung pharmazeutischer Wirkstoffe werden häufig zellfreie Enzym-Assays zur Testung eingesetzt, die zwar exakte Aussagen über Bindungsaffinitäten erlauben, jedoch die komplexen Bedingungen in der Zelle vernachlässigen [103, 61]. Eine andere Möglichkeit bieten Testsysteme mit Blutzellen [131, 132] oder kommerziell verfügbaren Zelllinien. Allerdings wird damit der avisierte Wirkungsort, das arthrotische Gelenk, außer Acht gelassen. Die Wirksamkeit von Inhibitoren in zellulären Assays kann stark vom verwendeten Zelltyp beeinflusst werden [173]. Chondrozyten eignen sich als Zielzellen einer pharmakologischen Arthrosetherapie, da sie für die Matrixhomöostase des Knorpels verantwortlich sind und eine entscheidende Rolle bei der Pathogenese der Arthrose spielen [22]. In der vorliegenden Arbeit wurden daher humane primäre Chondrozyten zur Etablierung des In-vitro-Inflammationsmodells verwendet. Die Zellen wurden aus Knorpelgewebe präpariert, das im Rahmen von Knieendoprothese-Implantationen bei Arthrosepatienten asserviert wurde. Es ist zu berücksichtigen, dass arthrotische Chondrozyten möglicherweise anders auf Umgebungsreize reagieren als ungeschädigte Zellen [63]. Andererseits sollen die untersuchten Wirkstoffe zur Arthrosetherapie eingesetzt werden und damit ebenfalls an geschädigten Zellen wirken. Eine Alternative zu primären arthrotischen Chondrozyten bieten humane immortalisierte Chondrozyten. Diese Zellinien besitzen zwar chondrozytäre Merkmale, zeigen jedoch Unterschiede zu primären Zellen [69]. Durch die Verwendung von Primärzellen können zusätzlich Variabilitäten zwischen verschiedenen Spendern erkannt und abgeschätzt werden [126]. Die individuellen Reaktionen der Patienten auf pharmakologische Wirkstoffe wird in der Therapie zunehmend berücksichtigt und gewinnt bei der Entwicklung neuer Arzneimittel an Bedeutung [205, 214, 141].

4.1. Etablierung und Validierung des In-vitro-Inflammationsmodells

Zur Etablierung des In-vitro-Inflammationsmodells wurden in verschiedenen Experimenten sowohl die Auswirkungen der Kultivierungsform als auch die Reaktion auf die Gabe von inflammatorisch wirkenden Zytokinen untersucht und zur Validierung des neuen Modells anschließend mit bekannten Literaturdaten verglichen. Verschiedene Studien zeigen, dass Chondrozyten ihren Phänotyp verändern, wenn sie aus ihrer natürlichen Matrix isoliert und in zweidimensionaler Zellkultur gehalten werden [51, 28]. Die Dedifferenzierung geht mit einem Expressionsrückgang chondrozytärer Marker einher. Dieser Prozess kann aber durch eine Kultivierung der Zellen in einer dreidimensionalen Matrix vermieden werden [28]. In dieser Arbeit konnte gezeigt werden, dass die Chondrozyten nach der Präparation aus arthrotischem Knorpelgewebe typische Differenzierungsmarker wie Kollagen Typ II, Aggrekan und "Cartilage oligeomeric matrix protein" (COMP) exprimierten [221]. Auch von Gebhard et al. wurde beschrieben, dass kein genereller Phänotyp-"Shift" in arthrotischen Chondrozyten stattfindet [70]. Vergleichbar mit publizierten Daten blieb der chondrozytäre Differenzierungsstatus bei einwöchiger Kultivierung in Monolayer-Kultur wie auch bei einmonatiger Kultivierung in Alginat-Bead-Kultur erhalten [221, 84]. Daher war für Kurzzeitstudien sowohl die zwei- als auch dreidimensionale Kultivierung der Chondrozyten geeignet. Die Kultivierung in Monolayer bietet Vorteile bezüglich der Aufbereitung der Zellen zur molekularbiologischen Analyse.

Der Einfluss inflammatorischer Substanzen in Form von IL-1 β (Interleukin 1 beta) und TNF α (Tumornekrosefaktor alpha), die *in vivo* im entzündlichen Gelenk beispielsweise von Chondrozyten und Synovialzellen gebildet werden, wurde auf Genexpressionsebene analysiert. Durch Stimulation der Chondrozyten mit den Zytokinen wurde die Genexpression bekannter Inflammationsmarker wie COX2 (Zyklooxygenase 2), IL6 (Interleukin 6), MMP13 (Matrixmetalloprotease 13) und NOS2A (induzierbare NO-Synthase) in beiden Kultivierungsformen induziert [22]. Wie auch von Kojima et al. beobachtet [115], zeigte sich IL-1 β wesentlich potenter als TNF α . Außerdem weisen verschiedene Arbeiten auf die prominente Bedeutung von IL-1 β in der Pathogenese der Arthrose hin [65, 5]. Eine genetische Disposition für Arthrose wurde mit einem Polymorphismus im IL-Cluster assoziiert [65]. Deshalb wurde für die weiteren Experimente nur IL-1 β verwendet. Eine gleichzeitige Stimulation mit IL-1 β und TNF α , die synergistische Effekte zeigt [23], wurde nicht in Erwägung gezogen, da zur Testung von Inhibitoren in der Etablierungsphase die Signalwege des Inflammationsmodells möglichst eng umschrieben sein sollten. Es wurde eine IL-1 β -Konzentration von 10 ng/ml gewählt, bei der in den Vorversuchen eine Stimulation aller untersuchten entzündungsrelevanten Gene stattfand. Diese Konzentration liegt im Bereich der IL-1 β -Konzentration in der Synovialflüssigkeit, die bei Gelenkentzündungen bis zu 5 ng/ml betragen kann [89]. Allerdings spielen *in vivo* natürliche IL-1 β -Inhibitoren eine Rolle, die möglicherweise eine Bioaktivität des Zytokins verringern [89]. Jedoch gibt es Hinweise, dass Chondrozyten aus arthrotischem Gewebe weniger sensitiv als normale Chondrozyten auf IL-1 β reagieren und deshalb eine vergleichsweise hohe Zytokinkonzentration zur Stimulation benötigen [63]. Zusammenfassend stellt sich das *In-vitro*-Inflammationsmodell wie folgt dar: Humane Chondrozyten wurden für die Experimente im Monolayer unter Stimulation mit 10 ng/ml IL-1\$ in einer Zelldichte von 5 ·10⁴ Zellen pro cm² kultiviert. In Vergleichsexperimenten wurde alternativ eine Kultivierung in Alginat-Beads durchgeführt [91].

Zur Validierung des In-vitro-Inflammationsmodells wurde die Wirkung verschiedener bekannter anti-inflammatorisch wirkender Substanzen getestet. Prinzipiell konnten auf Genexpressionsebene die in der Literatur beschriebenen Effekte der Wirkstoffe beobachtet werden. Die Inhibition der p38MAPK (Mitogen-aktivierte Proteinkinase) mit SB203580 modulierte die IL-1 β -induzierte Genexpression von COX2, PTGES (Prostaglandin E-Synthase), NOS2A, MMP13, IL6 und TIMP1 ("tissue inhibitor of matrix metalloproteinase 1"). Diese Wirkung wurde in verschiedenen Arbeiten bestätigt [156, 146, 150, 160, 168, 195]. Auch die Wirkung von Licofelone auf die Genexpression von ADAMTS5 ("a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 15"), IL1B (Interleukin 1 beta) und MMP13 wurde in anderen In-vitro- bzw. In-vivo-Arthrosemodellen beschrieben [161, 100, 26]. Der COX2-spezifische Inhibitor Rofecoxib (Merck, Darmstadt, Deutschland) hemmte die IL-1 β -induzierte Genexpression von IL6, MMP3, NOS2A und PTGES und verstärkte die PPARG ("peroxisome proliferator activated receptor gamma")-Expression. Die beschriebene Hemmung durch eine COX2-Inhibition konnte auch in verschiedenen anderen Arbeiten gezeigt werden [177, 204, 6]. Eine Genexpressionsverstärkung von PPARG zeigte sich auch in Magenkarzinomen von Patienten, die mit Rofecoxib behandelt wurden [117]. Es wird vermutet, dass die Stimulation von PPARs und anderen Transkriptionsfaktoren eine wichtige Rolle im Wirkmechanismus von NSAID ("Nonsteroidal anti-inflammatory drugs") spielt [190].

Des Weiteren konnte gezeigt werden, dass Inhibitoren mit gleichem pharmazeutischem Ziel die Expression Arthrose-assoziierter Gene unterschiedlich modulierten. Multifaktorielle Wirkmechanismen wurden z. B. auch von Sanchez et al. für eine Reihe von COX-Inhibitoren bezüglich der Aggrekan-, IL-6- und IL-8-Produktion festgestellt [177]. Masuko-Hongo et al. berichteten dagegen von zwei p38MAPK-Inhibitoren mit unterschiedlicher Wirkung auf die PTGES-Genexpression in Chondrozyten [146]. Diese Befunde zeigen, dass pharmazeutische Substanzen trotz gleicher Ziele Unterschiede in ihrer Wirkung auf Signalwege aufweisen können. Ein Grund dafür können Interaktionen der Hemmstoffe mit weiteren Bindungspartnern darstellen. Karaman et al. konnten z. B. für Kinase-Inhibitoren eine Vielzahl an Bindungspartnern nachweisen [103]. Pharmazeutische Substanzen gleicher Spezifität können sich in ihrer Selektivität und damit in ihrem Wirkungsspektrum unterscheiden. In der vorliegenden Arbeit konnte gezeigt werden, dass diese Wirkunterschiede sich nicht auf die Expressionsregulation der bisher ausgewählten Arthrose-assoziierten Gene beschränken, sondern alle zellbiologischen Bereiche betreffen.

In der Zusammenfassung ist für das neue *In-vitro*-Inflammationsmodell festzuhalten, dass die Ergebnisse der Wirkstofftestung mit denen der Literatur korrelieren und diesbezüglich ein valides Testsystem etabliert werden konnte.

4.2. Genomweite Microarray-Analyse

Mit Hilfe einer genomweiten Untersuchung der Genexpression (Microarray-Analyse) sollte die Wirkung von Testsubstanzen auf breiter Basis analysiert werden, um eventuell neue Kandidaten-Gene, Wirkmechanismen oder unerwünschte Nebeneffekte zu finden [8, 68, 113, 2, 223]. Es wurde daher der Einfluss der p38MAPK-Inhibitoren Birb 796, SB203580 und ML 3595 auf die Genexpression von Chondrozyten unter IL-1 β -Stimulation untersucht. Bisher wurden noch keine Studien zu einer genomweiten Expressionsanalyse p38-inhibierter Chondrozyten veröffentlicht. Um genügend Ausgangsmaterial für die Analyse zu erhalten, wurden die Zellen mehrerer Spender vereinigt und das Experiment mit drei unabhängigen Spendergruppen wiederholt. Durch dieses experimentelle Design konnte trotz Gruppenbildung die biologische Variabilität der Spender abgebildet werden [108].

Die Stimulation mit IL-1 β zeigte in der Chipanalyse einen starken Einfluss auf die Genexpression. 5 % aller im Array untersuchten Gene wurden durch das Zytokin in ihrer Expression moduliert, wobei IL-1 β die Expression in den meisten Fällen verstärkte. Dieser Befund ist in Übereinstimmung mit der Beobachtung, dass IL-1 β in Chondrozyten die Expression vieler inflammatorischer Gene induziert oder verstärkt [22]. Durch eine Analyse mit dem GoMiner-Programm [222] wurden die durch IL-1 β regulierten Gene biologischen Vorgängen in der Zelle zugeordnet. Unter den regulierten zellbiologischen Bereichen fanden sich vor allem Prozesse, die mit der Abwehrreaktion, der Antwort auf oxidativen Stress und dem Zytoskelett verknüpft waren. Diese Wirkungen von IL-1 β sind auch in der Literatur beschrieben [181, 53, 155].

Es konnte erstmals in einer Arrayanalyse eine differenzielle Wirkung von p38MAPK-Inhibitoren auf die Genexpression IL-1 β -stimulierter Chondrozyten festgestellt werden. Es wurde gezeigt, dass eine Inhibition mit SB203580 nur 18 % der Zielgene von IL-1 β betraf, wobei die Regulation teilweise gleichgerichtet verlief. Dagegen beeinflusste Birb 796 über 40 % der Zielgene von IL-1 β . Die Regulation verlief fast vollständig gegenläufig. Dieses Ergebnis weist darauf hin, dass Birb 796 der Wirkung von IL-1 β stärker entgegenwirkt als SB203580. ML 3595 beeinflusste die wenigsten Gene in ihrer Expression und zeigte eine relativ kleine Überschneidung mit Zielgenen von IL-1 β . Die Regulation verlief jedoch gegenläufig.

Die Zuordnung der regulierten Gene zu biologischen Prozessen mit Hilfe des GoMiner-Programms ließ Unterschiede im Wirkspektrum der Testsubstanzen erkennen. Verglichen mit den anderen beiden p38MAPK-Inhibitoren beeinflusste SB203580 trotz einer größeren Anzahl regulierter Gene weniger biologische Prozesse. Die regulierten Gene waren auf viele verschiedene biologische Prozesse verteilt, meist ohne diese signifikant zu beeinflussen. Dies deutet auf einen breit gestreuten, relativ unspezifischen Effekt des Inhibitors hin. Überschneidungen mit IL-1 β -regulierten Prozessen lagen in den Bereichen Abwehrreaktion, oxidativer Stress und Zytoskelett. Eine Zuordnung der durch IL-1 β und SB203580 gemeinsam regulierten Gene betraf hauptsächlich die Bereiche "response to stimulus" und "oxygen and reactive oxygen species metabolism" [97]. Der beobachtete Einfluss von SB203580 stimmt mit publizierten Befunden überein. [46, 156, 157].

Birb 796 beeinflusste mehr als doppelt so viele biologische Prozesse wie SB203580 trotz einer geringeren Anzahl an regulierten Genen. Die meisten regulierten Prozesse ließen sich zu wenigen Hauptbereichen zusammenfassen. Die durch Birb 796 regulierten Gene sind vornehmlich in die Abwehrreaktion und oxidativen Stress involviert. Damit konkurriert der Inhibitor direkt mit IL-1 β -regulierten Bereichen. In einer klinischen Studie wurde ebenfalls eine anti-inflammatorische Wirkung des Inhibitors nachgewiesen, durch die eine LPS (Lipopolysaccharid)-induzierte Zytokinproduktion in Leukozyten der Testpersonen stark gehemmt wurde [33]. Als weiterer Hauptbereich wurde in der vorliegenden Arbeit Apoptose und Zelltot von Birb 796 angesprochen. Weder IL-1 β noch SB203580 wiesen im Bereich Apoptose eine Kumulation regulierter Gene auf [97]. In einer Studie von Yasui et al. konnte gezeigt werden, dass Birb 796 in Myelomzellen eine Caspase-Aktivierung induzierte und die Zytotoxizität anderer Wirkstoffe verstärkte [220]. Vertiefende Analysen zu diesen Nebeneffekten sind daher von Interesse und müssten in weiterführenden Studien durchgeführt werden.

ML 3595 wirkte auf eine größere Anzahl biologischer Prozesse als SB203580. Es konnte gezeigt werden, dass außer in den Bereichen des oxidativen Stresses kaum inflammatorische Prozesse beeinflusst wurden. Dies korreliert mit dem Befund, dass ML 3595 eine relativ geringe Überschneidung mit IL-1 β -regulierten Prozessen aufwies. ML 3595 modulierte hauptsächlich Differenzierungsprozesse. Möglicherweise ist dieser Effekt auf eine Hemmung der PDE4 (Phosphodiesterase 4) zurückzuführen. Beispielsweise vermag der PDE4-Inhibitor Rolipram (Bayer Schering Pharma AG, Berlin, Deutschland) in einer Kokultur von murinen Knochenmarkszellen und Osteoblasten die Osteoklasten-Differenzierung zu induzieren [44].

Der experimentelle Ansatz einer Microarray-Analyse kann ursächlich für falsch positive wie auch falsch negative Ergebnisse sein, deren Möglichkeit nicht außer Acht gelassen werden darf [165]. Bei Studien mit einer großen Anzahl an Replikaten kann diese Wahrscheinlichkeit anhand der FDR ("false discovery rate") statistisch bestimmt werden [165]. Bei kleinen Studien wie dem hier vorliegenden Experiment kann diese Kennzahl nicht verwendet werden. Die aus der Array-Analyse erhaltenen Einzelergebnisse müssen deshalb mit einer weiteren Methode verifiziert werden, um einen falsch positiven Befund auszuschließen. Im Rahmen dieser Arbeit wurde eine Überprüfung der Array-Daten für insgesamt 22 interessierende Gene mit Hilfe einer quantitativen oder semiquantitativen PCR durchgeführt. Für 19 der untersuchten Genexpressionen konnte das Array-Ergebnis nachvollzogen werden. Drei Genexpressionsergebnisse (14 %) stellten sich als falsch positiv herausstellten. Ausnahmen waren bei den Expressionen von COL4A6 (Kollagen Typ IV6), FN1 (Fibronektin 1) und ITGA2B (Integrinkette 2β) nachweisbar. Insgesamt liegt dies unter dem Durchschnitt der zu erwartenden Fehlerrate von etwa 30 % (persönliche Mitteilung von Dr. Holzmann, Microarray-Core Facility, Universität Ulm).

Zusammengefasst kann aus der Auswertung der Microarray-Analyse festgehalten werden, dass zum einen das neu entwickelte Inflammationsmodell ein valides *In-vitro*-System für die Testung neuer Wirkstoffe darstellt. Zum anderen konnte gezeigt werden, dass dieses System auch dazu geeignet ist, antagonistische Wechselwirkungen und Wirkunterschiede von Inhibitoren zu erkennen. Zuletzt erlaubt die Microarray-Analyse, neue, bisher nicht erkannte Ziele zu identifizieren, die im Folgenden diskutiert werden sollen.

4.3. Analyse neuer involvierter Gene

4.3.1. Extrazelluläre Matrixkomponenten

Die extrazelluläre Matrix (EZM) erfüllt im Knorpel essentielle mechanische und biochemische Funktionen [121, 193]. Bei entzündlichen Gelenkerkrankungen wird die Matrixhomöostase empfindlich gestört [178]. Zytokine spielen dabei als Entzündungsmediatoren eine entscheidende Rolle, weshalb der Einfluss von IL-1 β auf Komponenten der EZM von besonderem Interesse ist. Die im Rahmen dieser Arbeit durchgeführte Microarray-Analyse zeigte, dass IL-1 β signifikant viele Gene beeinflusste, die mit der EZM assoziiert sind. Ein Effekt des Zytokins auf EZM-Komponenten, insbesondere auf Proteoglykane und Kollagen Typ II, wird vielfach in der Literatur bestätigt [75, 19, 112, 185, 168]. In der durchgeführten Array-Analyse konnte erstmalig ein Einfluss von IL-1 β auf die Expression anderer Kollagene nachgewiesen werden, denen zum Teil bereits eine Rolle in der Arthrose zugeschrieben wurde. So wurde die Genexpression der Kollagene Typ V (COL5A1), Typ VI (COL6A1), Typ X (COL10A1) und des am Knorpelaufbau beteiligten Kollagen Typ XI (COL11A1) durch IL-1 β reduziert. Kollagen Typ V wird als fibrilläres Kollagen vor allem von den Zellen des Faserknorpels exprimiert [21]. Kollagen Typ VI ist typischerweise in der perizellulären Matrix des Knorpels zu finden [4]. Ein Fehlen dieses Kollagens beeinträchtigt die biomechanischen Eigenschaften und beschleunigt im Tiermodell die Entwicklung einer Arthrose [4]. Typ X Kollagen wird vor allem von hypertrophen Chondrozyten im Rahmen der enchondralen Ossifikation gebildet [138]. Eine terminale Differenzierung von Chondrozyten spielt auch im Rahmen der Arthrose eine Rolle [43], allerdings kann keine allgemeine Entwicklung der Zellen hin zur Hypertrophie beobachtet werden [34]. Die Bedeutung der Expression von Kollagen Typ X in der Arthrose wird kontrovers diskutiert. Während manche pro-inflammatorischen Signale eine COL10A1-Expression induzieren [43], hemmt IL-1 β dessen Expression im hier verwendeten Zellkulturmodell. Auch in Chondrozyten aus der Wachstumsfuge von Kaninchen konnte eine Hemmung beobachtet werden [105]. In der vorliegenden Arbeit wurden weitere IL-1 β -regulierte Gene gefunden, die mit der terminalen Differenzierung von Chondrozyten assoziiert sind ohne einheitlichen Bezug auf eine hypertrophe Differenzierung unter inflammatorischen Bedingungen [183]. Vermutlich beeinflussen in vivo weitere Arthrose-assoziierte Faktoren die Regulation hypertropher Marker. Andererseits ist es auch möglich, dass die Änderung der Genexpression sich nicht auf Proteinebene widerspiegelt, da an der Translation weitere regulative Prozesse beteiligt sein können [194, 7].

Neben Kollagenen wurden mehrere Enzyme durch IL-1 β beeinflusst, die am Matrix-Um-

bzw. -Abbau beteiligt sind. So wurde die Expression des in der Knorpeldegradation vorherrschenden MMP13 erhöht [38] während die Expression von MMP24 reduziert wurde. MMP24 aktiviert die Vorstufe der Gelatinase A (MMP2), die wiederum die Knorpelmatrix remodelliert. MMP2 wird in der Arthrose verstärkt exprimiert und wirkt als Aktivator von pro-MMP13 [85, 58]. Allerdings exprimiert auch ungeschädigter Knorpel MMP2 in relevanten Mengen, was für eine physiologische Rolle der Protease spricht. Ob eine verringerte MMP24-Expression damit dem Knorpelabbau entgegenwirkt oder aber die physiologische Knorpel-Homöostase stört bleibt offen und muß in weiteren Experimenten geklärt werden. Es kann allerdings festgestellt werden, dass IL-1 β Einfluss auf die Expression Matrix-relevanter Gene ausübt. Damit kann das Gleichgewicht zwischen katabolen und anabolen Prozessen empfindlich gestört werden und zu irreversiblen Knorpelschäden führen [104].

4.3.2. Zytoskelettkomponenten

Das Zytoskelett der Zelle bildet ein Gerüst, das nicht nur die viskoelastischen Eigenschaften von Chondrozyten beeinflusst, sondern auch an der intrazellulären Signalweiterleitung beteiligt ist [201, 110]. Eine potentielle Rolle des Zytoskeletts wurde auch in der Pathogenese der Arthrose diskutiert [40]. Mit Hilfe der Microarray-Analyse konnten neben EZM-verknüpften Genen auch verschiedene Zytoskelettkomponenten als signifikant durch IL-1 β reguliert identifiziert werden. Diese Ergebnisse wurden für sieben funktionell bedeutsame Gene durch quantitative PCR-Analyse verifiziert, deren Regulation durch IL-1 β in Chondrozyten erstmalig gezeigt wurde. Es handelte sich dabei zum einen um die bekanntermaßen in Chondrozyten exprimierten Strukturkomponenten VIM (Vimentin) und TUBB (Tubulin β) sowie das für die Integrinkette β 3 kodierende Gen ITGB3. Zum anderen wurde die Expression der in Chondrozyten erstmalig beschriebenen Gene FHL1 ("four and a half LIM domains 1"), FHL2 ("four and a half LIM domains 2"), LASP1 ("LIM and SH3 protein 1") und PDLIM1 ("PDZ and LIM domain 1") analysiert. Die kodierten Proteine besitzen als gemeinsames Merkmal sogenannte LIM-Domänen. Diese Domänen bestehen aus Zink-bindenden, Cystein-reichen Modulen, die Interaktionen verschiedenster Proteine vermitteln [13]. Viele dieser LIM-Proteine, wie auch die hier untersuchten, sind mit dem Aktin-Zytoskelett assoziiert [109]. Es konnte gezeigt werden, dass IL-1 β die Expression der überprüften Gene in Übereinstimmung mit den Array-Ergebnissen signifikant reduzierte. Die Stimulation ging mit einer Veränderung der Zellmorphologie sowie dem Abkugeln und Ablösen der Zellen von den Adhäsionspunkten einher. Gleichzeitig wechselte die FHL2-Lokalisierung im Kern und an den Adhäsionspunkten zu einer gleichmäßigen Verteilung im Zytoplasma. Dies ist die erstmalige Beschreibung, dass IL-1 β Einfluss auf die Organisation des Zytoskeletts von Chondrozyten nimmt [98]. Die Inhibition der p38MAPK durch SB203580 konnte dem IL-1 β -Effekt auf die FHL2- und TUBB-Genexpression signifikant entgegenwirken. Dieses Ergebnis deutet auf eine mögliche Beteiligung des p38MAPK-Signalweges hin. Von Bedeutung scheint die Beeinflussung von FHL2 zu sein. FHL2 gehört zu der "four and a half LIM domains"-Familie, die aus fünf verschiedenen Proteinen besteht [109]. Es kann mit über 50 Proteinen wie z. B. Transkriptionsfaktoren, Integrinen oder Strukturproteinen des Zytoskeletts interagieren. Da dem FHL2 bisher keine enzymatische Aktivität nachgewiesen werden konnte, wird eine Funktion als Gerüstprotein vermutet [95]. Die Lokalisation an den fokalen Adhäsionen in Chondrozyten legt nahe, dass FHL2 durch seine Bindung an Aktin andere Proteinbindungen stabilisiert. In Mausfibroblasten wurde die hier beobachtete Verteilung von FHL2 an Adhäsionspunkten bestätigt [152]. Zusätzlich wurde FHL2 im Zellkern lokalisiert, so dass eine Funktion als Transkriptionsfaktor nahe liegt [95]. In mehreren Studien wurde gezeigt, dass FHL2 als Übermittler verschiedener Signalwege fungiert, die in der Organisation des Aktin-Zytoskeletts oder an der Anordnung extrazellulärer Matrixproteine beteiligt sind [152, 159]. Des Weiteren interagiert FHL2 mit dem Transkriptionsfaktor RUNX2 ("runt-related transcription factor 2") und spielt damit nicht nur in der Osteogenese [81] sondern auch in der Chondrogenese eine Rolle. RUNX2 trägt zur Expression von MMP13 bei [213] und wird in einem frühen Stadium der Arthrose induziert [102]. Dies legt die Vermutung nahe, dass FHL2 nicht nur mit Änderungen im Zytoskelett sondern auch mit Arthrose-assoziierten Vorgängen in IL-1 β -stimulierten Chondrozyten verknüpft ist. Die Abschwächung des IL-1 β -Effektes durch SB203580 legt eine Beteiligung des p38MAPK Signalweges an der Transkriptionsregulation nahe. Der FHL2-Promoter enthält tatsächlich eine Bindungsstelle für den Transkriptionsfaktor MEF-2, der durch p38 reguliert wird [95, 82]. Eine signifikante Beeinflussung der FHL2-Expression durch SB203580 konnte allerdings auf Proteinebene nicht bestätigt werden. Zum einen könnte eine zu geringe Sensitivität der semiquantitativen Western-Blot-Analyse dafür verantwortlich sein, so dass geringe Anderungen der Proteinmenge nicht detektiert wurden. Zum anderen sind vielleicht weitere posttranskriptionale Mechanismen an der Regulation beteiligt, wie z B. die Regulation der Bildung des Initiationskomplexes [206, 225, 194].

FHL1, das ebenfalls zu der "four and a half LIM domains"-Familie gehört, wurde in Myoblasten näher charakterisiert [171]. Es ist dort an fokalen Adhäsionen, Stressfasern und im Kern lokalisiert und an Integrin-vermittelten Vorgängen wie dem Umbau des Zytoskelettes oder der Differenzierung von Muskelzellen beteiligt. Vermutlich reguliert es involvierte Transkriptionsfaktoren [171, 148]. Wenn eine ähnliche Rolle von FHL1 in Chondrozyten angenommen wird, könnte der starke IL-1 β -induzierte Expressionsrückgang die von den Integrinen ausgehende Signalübermittlung zum Kern beeinträchtigen und damit die Zell-Matrix-Interaktion beeinflussen. LASP1 besitzt neben LIM-Motiven auch eine SH₃-Domäne, die eine Bindung an verschiedene fokale Adhäsionsproteine wie z. B. Zyxin ermöglicht. Es fungiert durch weitere Bindungsstellen für F-Aktin als Gerüstprotein, das die Bildung von Proteinkomplexen an fokalen Adhäsionen vermittelt und dient als Signalmediator, der vor allem Signale der extrazellulären Matrix übermittelt

dient als Signalmediator, der vor allem Signale der extrazellulären Matrix übermittelt [79, 137]. Eine ähnliche Funktion von LASP1 in Chondrozyten ist naheliegend. Tatsächlich ist LASP1 ein relevanter Faktor bei der Chondrozytendifferenzierung während der Skelettentwicklung der Wirbelsäule [87]. gehört zu den PDZ-LIM-Proteinen und bindet an α -Aktinin und Aktinfasern. Es ist in verschiedenen Zelltypen an der Bildung von Stressfasern und fokalen Adhäsionen beteiligt [18, 197]. Bei ähnlicher Funktion in Chondrozyten könnte eine durch IL-1 β verminderte PDLIM-Expression das Zytoskelettgefüge empfindlich stören oder assoziierte Signalwege beeinträchtigen.

Das Strukturprotein Tubulin β ist eine Komponente der Mikrotubuli und wesentlich am intrazellulären Transport beteiligt. Eine Störung dieser Strukturen in Chondrozyten vermindert die Synthese von Kollagen Typ II und Proteoglykanen [25]. Vimentin ist am Aufbau der Intermediärfilamente beteiligt, die für die Stabilität der Zelle sorgen. Zerstörte Intermediärfilamente verursachen ebenfalls einen Rückgang der anabolen Prozesse in Chondrozyten und könnten so zu einem Ungleichgewicht in der Homöostase des Knorpels beitragen [25]. Zusätzlich werden die viskoelastischen Eigenschaften von Chondrozyten verändert und könnten mit einer erhöhten Steiffigkeit der Zellen in arthrotischem Knorpel zusammenhängen [201]. In einem Arthrose-Modell in Ratten wurde eine verminderte Anzahl Vimentin- und Tubulin-positiver Zellen festgestellt [40]. Auch in humanem arthrotischen Knorpel wurden Veränderungen der Chondrozyten-Morphologie beschrieben [119]. Vor allem Zellen der oberen Knorpelschicht wiesen eine gestörte Aktin-, Vimentin- und Tubulinverteilung auf. Diese Knorpelschicht ist direkt pro-inflammatorischen Faktoren aus der Synovialflüssigkeit ausgesetzt. Möglicherweise spielt dabei die hier nachgewiesene Hemmung der Vimentin- und Tubulin-Genexpression durch IL-1 β eine Rolle. Das Integrin $\alpha v \beta 3$ ist als Rezeptor extrazellulärer Matrixkomponenten (Kollagene, Fibrinogen, Fibrinektin, Vitronektin, Osteopontin) unter anderem bei inflammatorischen Prozessen von Bedeutung und möglicherweise bei Gelenkserkrankungen involviert [216]. Dieses Integrin wird auch von Chondrozyten exprimiert [217]. Untersuchungen von arthrotischem Knorpel ergaben, dass $\alpha v\beta 3$ bei der IL-1 β vermittelten Induktion von Entzündungsmediatoren wie Interleukinen, MMPs und NO regulierend wirkt [11]. Eine Deregulation von ITGB3 durch IL-1 β könnte inflammatorische Prozesse verstärken. Zusammengefasst zeigen die untersuchten Zytoskelettkomponenten vielschichtigen Einfluss auf Signaltransduktion, anabole und katabole Prozesse, viskoelastische Eigenschaften oder die Ansprechbarkeit auf extrazelluläre Reize. Die Regulation dieser Prozesse durch IL-1 β könnte ein Faktor in der Pathogenese der Arthrose sein.

4.4. Charakterisierung anti-inflammatorischer Wirkstoffe

In der pharmazeutischen Entwicklung kann auf eine Vielzahl an chemischen Substanzen zurückgegriffen werden [20]. Um potente Wirkstoffe selektieren zu können, sind geeignete Testsysteme von entscheidender Bedeutung [93]. Das in dieser Arbeit etablierte In-vitro-Inflammationsmodell wurde zur quantitativen Charakterisierung neu entwickelter Wirksubstanzen herangezogen und so die Qualität dieses Testsystems bewertet. Als Goldstandard wurden die bereits in der Literatur beschriebenen Inhibitoren Birb 796, Licofelone, Pamapimod und SB203580 eingesetzt. Birb 796, Pamapimod und SB203580 hemmen spezifisch die α -Isoform der p
38MAPK mit Dissoziationskonstanten $K_{\rm D}$ von 0.37 nM, 1.3 nM bzw. 12.0 nM [103, 88]. Licofelone dagegen hemmt spezifisch die Synthese von Prostaglandin E_2 und Leukotrien B_4 [202, 114]. Getestet wurden die vier in der pharmazeutischen Entwicklung befindlichen p38MAPK-Inhibitoren CBS 3825, CBS 3868, ML 3595 und ML 3736, wobei ML 3595 zusätzlich die PDE4 hemmt. Um die inhibitorischen Effekte der Substanzen vergleichen zu können, wurden Konzentrationen gewählt, die eine unterschiedliche Affinität zum Primärtarget berücksichtigen. Als Maß der Inhibitoreffizienz wurde die Hemmung der IL-1 β -induzierten Expression verschiedener Gene sowie die damit verknüpfte Bildung von Metaboliten herangezogen [118]. Als Uberblick sind in Abbildung 30 die im Folgenden diskutierten Einflüsse der wichtigsten Inhibitoren zusammenfassend dargestellt.

4.4.1. Effekte der Wirksubstanzen auf den PGE₂-Syntheseweg

In der Arthrose kann die Zytokin-induzierte Bildung von PGE_2 Entzündungsreaktionen wie Schmerzen, Gewebeschwellung oder Knorpeldegradation verstärken [189, 76]. Zur Charakterisierung der Wirksubstanzen wurde deshalb deren Hemmung auf den PGE_2 -Syntheseweg bestimmt. Dazu erfolgte sowohl eine Untersuchung der COX2- und PTGES-Genexpression als auch der PGE_2 -Freisetzung IL-1 β -stimulierter Chondrozyten.

Abbildung 30.: Schematische Darstellung der Inhibitoreffekte auf die analysierte Genexpression und Metabolitfreisetzung. Die Stärke der roten Balken gibt die Affinität von Birb 796, Licofelone, Pamapimod und SB203580 zu ihrem jeweiligen Ziel gemäß ihrer K_d-Werte an [88, 103, 114]. Die Affinitäten von CBS 3868, ML3595 und ML 3736 wurden anhand von IC₅₀-Bestimmungen abgeschätzt [169]. Gestrichelte Pfeile markieren Signalwege mit nicht abgebildeten Zwischenstufen, durchgezogene Pfeile geben schematisierend Expressions-, Synthese- oder Sekretionswege an. 5'-AMP: 5'-Adenosinmonophosphat; AA: Arachidonsäure; cAMP: zyklisches Adenosinmonophosphat; COX2: Zyklooxygenase 2; IL-1 β : Interleukin 1 β , JNK: c-jun N-terminale Kinase; MAPK: Mitogen-aktivierte Proteinkinase; MMP13: Matrixmetalloproteinase 13; NOS2A: induzierbare NO-Synthase; OPG: Osteoprotegerin; PDE4: Phosphodiesterase 4; PLA₂: Phospholipase A₂; PGE₂: Prostaglandin E₂; PTGES: Prostaglandin E-Synthase.

Bereits nach 4 h bewirkte IL-1 β eine 30fache Erhöhung der COX2-Expression und bestätigte damit die beschriebene Regulation der induzierbaren COX2 [50]. Alle Inhibitoren der p38MAPK außer ML 3595 zeigten eine starke Hemmung der IL-1 β -induzierten COX2-Genexpression nach 4 h sowie nach 24 h. Der zeitnahe Hemmeffekt der Testsubstanzen deutet darauf hin, dass die direkte Induktion der COX2-Transkription über die p38MAPK blockiert wurde. Dieses Ergebnis stimmt mit Befunden von Nieminen et al. überein [156]. Fast alle Inhibitoren zeigten eine signifikante Konzentrationsabhängigkeit ihrer Hemmwirkung, nur der IC_{50} -Wert von Birb 796 lag unterhalb der kleinsten eingesetzten Konzentration von $0.1 \,\mu$ M. Dieses Ergebnis kann mit der vergleichsweise höheren Affinität zur p38MAPK erklärt werden. Zwar weist Birb 796 als allosterischer Inhibitor eine zeitabhängige Hemmung der p38MAPK auf, die nach 15 min Vorinkubation noch nicht ihr Maximum erreicht hat [124, 158]. Jedoch stimmen die Ergebnisse mit Befunden von Kuma et al. überein, nach denen der IC₅₀-Wert 0.08 μ M ohne Vorinkubation bzw. $0.07 \ \mu M$ bei 30 min Vorinkubation betrug [124]. Bei den in der vorliegenden Arbeit eingesetzten Konzentrationen von $\geq 0.1 \ \mu$ M muss also der zeitliche Effekt der allosterischen Hemmung bezüglich der IC_{50} -Wert-Bestimmung nicht berücksichtigt werden.

Licofelone zeigte nach 24 h bei der höchsten eingesetzten Konzentration von 10 μ M ebenfalls eine fast 50 %ige Hemmung der COX2-Genexpression. Möglicherweise ist dafür die Hemmung der PGE₂-Synthese verantwortlich. Wie für Synovialfibroblasten gezeigt wurde, kann PGE₂ die Stabilität der COX2-mRNA über einen p38MAPK-vermittelten Weg erhöhen [64]. In einer Studie von Alvarez-Soria et al. bewirkten NSAID ebenfalls einen Rückgang der COX2-Expression in Chondrozyten *in vivo* und *in vitro* [6]. Dagegen verstärkte 0.1 μ M Licofelone in der vorliegenden Arbeit die IL-1 β -induzierte COX2-Genexpression nach 4 h signifikant. Möglicherweise zeigen geringe Konzentrationen des Hemmstoffes eine kurzzeitige stimulationsverstärkende Wirkung. Dieser Effekt ist nicht mit den bisher bekannten Regulationsmechanismen der COX2-Induktion zu erklären und sollte mit einer größeren Anzahl von Spendern verifiziert werden.

Die Genexpression der PTGES wurde durch Stimulation der Chondrozyten mit IL-1 β nach 24 h 14fach erhöht, nach 4 h zeigte sich dagegen nur eine schwache Expressionsverstärkung. Eine signifikante Hemmung der IL-1 β -Induktion nach 24 h zu etwa 40 % bis 60 % war durch alle p38MAPK-Inhibitoren außer ML 3595 zu beobachten. In Übereinstimmung mit einer Studie von Kojima et al. trat die Induktion der PTGES-Expression im Vergleich zur COX2 zeitlich verzögert auf [115]. Dafür könnten unterschiedliche Transkriptionsmechanismen verantwortlich sein [175]. Masuko-Hongo et al. zeigten eine Hemmung der IL-1 β -stimulierten PTGES-Induktion durch SB203580 (1 μ M und 10 μ M) um etwa 65 % [146]. Interessanterweise konnte dort der p38 α -spezifische Inhibitor SC906 die PTGES-Expression nicht hemmen, weshalb ein p38 β -spezifischer Signalweg vermutet wurde, den SB203580 ebenfalls anspricht ($K_{\rm D} = 70$ nM [103]). In der vorliegenden Arbeit hemmte Birb 796 mit einem IC₅₀-Wert von 3 μ M im Vergleich zu den anderen p38-Inhibitoren (IC₅₀ $\leq 1 \mu$ M) die PTGES-Induktion am schwächsten. Dieses Ergebnis korreliert mit dessen geringen Affinität zu p38 β [103] und deutet auf eine Rolle dieser Isoform bei der Regulation der PTGES-Genexpression hin. In der Literatur sind jedoch widersprüchliche Angaben zur p38 β -Spezifität von Birb 796 zu finden [124]. Es könnten weitere Effekte der Inhibitoren wie beispielsweise die Hemmung des ERK-1/2-Signalweg an der beobachteten PTGES-Expressionshemmung beteiligt sein [146]. Eine Signalweiterleitung über diesen Weg könnte erklären, weshalb die Inhibition der p38MAPK nur eine teilweise Hemmung bewirkte. Die Inhibition des Eicosanoidstoffwechsels durch 10 μ M Licofelone hemmte die PTGES-Genexpression ebenfalls um etwa 50 %. Diese Wirkung wird auch von NSAID *in vivo* und *in vitro* beschrieben [6].

Die Freisetzung von PGE_2 wurde durch IL-1 β -Stimulation bereits nach 4 h auf die sechsfache und nach 24 h auf die neunfache Menge im Vergleich zur Kontrolle verstärkt. Auch COX2 wurde im Gegensatz zu PTGES bereits nach 4 h stark induziert. Dieser zeitnahe Effekt auf die PGE₂-Freisetzung deutet darauf hin, dass vor allem die verstärkte COX2-Expression für die PGE_2 -Zunahme verantwortlich ist. Kojima et al. zeigten in einer zeitlichen Verlaufsstudie, dass das COX2-Enzym in humanen Chondrozyten bereits innerhalb der ersten 6 Stunden der IL-1 β -Stimulation verstärkt synthetisiert wurde, während eine Erhöhung der PTGES-Enzymmenge erst nach 12 h nachzuweisen war [115]. Dementsprechend beruht die Wirkung der p38MAPK-Inhibitoren wahrscheinlich vor allem auf der Hemmung der COX2-Genexpression und nur sekundär auf der Hemmung der PTGES-Expression. Jedoch wurde auch der Induktion der PTGES bei inflammatorischen Reaktionen eine wichtige Rolle zugeschrieben [153]. Möglicherweise ist die Hemmung der PTGES-Genexpression nach 24 h für eine längerfristige Reduktion der PGE₂-Synthese von Bedeutung. Birb 796, CBS 3868 und ML 3736 konnten bei Konzentrationen von 0.1 μ M und 1 μ M die IL-1 β -induzierte PGE₂-Bildung um 60 % bis 80 % hemmen. Im Vergleich dazu wirkte Pamapimod und SB203580 schwächer. Die Wirkung der Substanzen auf die PGE₂-Freisetzung korreliert also mit der Hemmwirkung auf die COX2-Genexpression. 10 μ M SB203580 erreichte nach 24 h mit über 90 % den stärksten Hemmeffekt unter den p38-Inhibitoren in Übereinstimmung zur Literatur [156]. Es wurde gezeigt, dass neben der p38MAPK auch JNK (Jun N-terminale Kinase) eine Rolle bei der IL-1 β -stimulierten COX2-Expression und PGE₂-Bildung spielt [156]. SB203580 weist eine sekundäre Spezifität für JNK auf $(K_{\rm D} = 35 \text{ nM} [103])$, die für die signifikante Verstärkung des Hemmeffektes mit zunehmender Konzentration und die vergleichsweise hohe Wirkkraft verantwortlich sein könnte. Für Birb 796, CBS 3825, CBS 3868 und ML 3736 wurde in einem Enzym-Test ebenfalls eine Spezifität für JNK beobachtet ($K_{\rm D}$ = 7.3 nM [103]) bzw. persönliche Mitteilung, ratiopharm GmbH, Ulm, Deutschland). Allerdings konnte für Birb 796 in verschiedenen Arbeiten gezeigt werden, dass diese Spezifität in zellulärer Umgebung keine Hemmung der JNK bewirkt [124, 15].

Licofelone konnte ab einer Konzentration von 1 μ M die Bildung des Prostaglandins fast vollständig hemmen. In anderen zellbasierten Assays wurde eine vergleichbare Effizienz des Wirkstoffes von IC₅₀ = 0.1 μ M festgestellt [114]. Die Inhibition der PGE₂-Synthese durch Licofelone wurde von Koeberle et al. vor allem auf die Hemmung der PTGES-Aktivität zurückgeführt [114]. Die Wirksamkeit im etablierten Inflammationsmodell spiegelt sich auch *in vivo* in verschiedenen Tierarthrosemodellen wider [100, 128].

4.4.2. Effekte der Wirksubstanzen auf den NO-Syntheseweg

Neben Zytokinen und anderen biochemischen Faktoren vermitteln auch reaktive Sauerstoffverbindungen wie Stickstoffmonoxid (NO) inflammatorische Signale [86]. Sie sind beispielsweise an der Regulation der Matrixdegradation und der Apoptose beteiligt [86]. Die Effekte der Wirksubstanzen auf den NO-Syntheseweg wurden anhand der NOS2A-Genexpression sowie der Konzentration von Nitrit im Kulturmedium als Maß für die Freisetzung von NO analysiert.

Eine etwa 300fache Induktion der NOS2A durch IL-1 β war bereits nach 4-stündiger Stimulation zu beobachten und hielt während der Inkubationszeit von 24 h vor. Die zeitnahe Regulation wird von verschiedenen Arbeiten auf Genexpressions- und Proteinebene bestätigt [60, 45, 210]. Die IL-1 β -stimulierte Produktion von NO in Chondrozyten ist vor allem auf die induzierbare NO-Synthase NOS2A zurückzuführen [172]. Trotz zeitnaher Induktion des Enzyms war nach 4 h noch keine signifikante Erhöhung des NO-Spiegels messbar. Dieses Ergebnis wird von Rosa et al. bestätigt, die einen komplexen Regulationsmechanismus der Zytokin-induzierten NO-Synthese vorschlagen [172]. Dabei regulieren IL-1 β und NO konzertant den Abbau der konstitutiven NO-Synthase und die Expression und den Abbau der induzierbaren NO-Synthase sowie die Aktivität des Transkriptionsfaktors NF κ B. Dadurch erfolgt die IL-1 β -induzierte Bildung von NO zeitverzögert. Für die Bedeutung des Inflammationsgeschehens *in vivo* bleibt zu berücksichtigen, dass auch andere Zellen im Gelenk wie z. B. Synovialzellen an der Produktion von Entzündungsmediatoren wie NO beteiligt sind [24].

In Übereinstimmung mit Literaturdaten führte eine Behandlung der Chondrozyten mit p38MAPK-spezifischen Hemmsubstanzen bei Konzentrationen von 1 μ M bis 10 μ M zu einer Inhibition der NOS2A-Genexpression [14, 150], wobei erst nach 24 h eine signifikante Hemmung von etwa 50 % erreicht wurde. Diese Ergebnisse zeigen, dass die p38-Inhibition die IL-1 β -Induktion der NOS2A-Expression nicht vollständig verhindern kann. Tatsächlich spielt bei der Transkriptionsregulation des Enzyms in Chondrozyten der NF κ B-Signalweg, der ebenfalls durch IL-1 β aktiviert wird, eine wichtige Rolle [207, 136, 45]. Auch die Kinasen JNK, JAK2 (Janus Kinase 2) und ERK1/2 (Extrazelluläre-Signal-regulierte Kinase 1/2) sind möglicherweise involviert [60, 157]. Mendes et al. erreichten mit 40 μ M SB203580 in einer semiquantitativen Analyse eine fast vollständige Hemmung der NOSA-Expression in IL-1 β -induzierten Chondrozyten, sowohl auf mRNA- als auch auf Proteinebene [150]. Da SB203580 mit steigender Konzentration Affinitäten zu weiteren Kinasen aufweist [103], könnten möglicherweise in die Regulation der NOS2A-Transkription involvierte Kinasen inhibiert und dadurch der Hemmeffekt verstärkt werden. Im Gegensatz zu den hier dargestellten Ergebnissen konnten Badger et al. in bovinen Chondrozyten bereits nach 4 h eine Hemmung der IL-1 β -induzierten NOS2A-Expression durch 10 μ M SB203580 nachweisen [14]. Die Diskrepanz ist möglicherweise speziesbedingt oder lässt sich auf das unterschiedliche Verhalten von ungeschädigten und arthrotischen Chondrozyten zurückführen. Die p38MAPK-Inhibitoren zeigten bei höchster Konzentration von 10 μ M eine nicht signifikant hemmende Wirkung auf die NO-Freisetzung der IL-1 β -stimulierten Chondrozyten. In einer Arbeit von Vuolteenaho et al. wurde bei murinen Chondrozyten nach 24 h ebenfalls kein Effekt durch 1 μ M SB203580 auf die IL-1 β -induzierte NO-Freisetzung beobachtet [210]. Badger et al. dagegen konnten in bovinen Knorpelgewebe- und Chondrozyten-Alginat-Kulturen einen signifikant hemmenden Effekt von SB203580 ab einer Konzentration von $0.1 \ \mu M$ auf die IL-1 β -induzierte NO-Synthese nach 72 h Inkubation nachweisen. Möglicherweise sind diese Unterschiede auf eine längere Behandlungszeit oder die verwendete Spezies zurückzuführen.

10 μ M Licofelone inhibierte die NOS2A-Genexpression nach 24 h mit 82 % stärker als die p38MAPK-Hemmer. Damit konnte zum ersten Mal gezeigt werden, dass Licofelone die Synthese der NOS2A in IL-1 β -stimulierten Chondrozyten auf mRNA-Ebene beeinflusst. In Korrelation zu diesem Ergebnis konnte ebenfalls eine signifikante Hemmung der NO-Freisetzung von 80 % beobachtet werden. Damit ist die Hemmwirkung von Licofelone effizienter als die der p38MAPK-Inhibitoren. Martel-Pelletier et al. konnten eine signifikante Hemmung der NO-Freisetzung durch Licofelone in humanen Chondrozyten unter TGF β - und 1,25(OH)₂D₃-Stimulation nachweisen [144]. Der COX1/2-Hemmer Naproxen zeigte in diesem Testsystem vergleichbare Wirkung. Diese Ergebnisse deuten darauf hin, dass die Hemmung der Prostaglandin E₂-Synthese sekundär den NO-Syntheseweg beeinflusst. Der mögliche Einfluss der PGE₂-Konzentration muss in weiterführenden Experimenten näher untersucht werden. Eine fast vollständige Hemmung der PGE₂- Synthese konnte bereits bei einer Licofelone-Konzentration von 1 μ M beobachtet werden, eine Beeinflussung der Genexpression und der NO-Freisetzung erst bei 10 μ M. Möglicherweise sind noch weitere regulatorische Mechanismen an einer Inhibition beteiligt. Licofelone hemmt die mikrosomale PGE₂-Synthase [114]. Dadurch könnte die Synthese anderer Prostaglandine wie beispielsweise PGJ₂ gefördert werden. PGJ₂ inhibiert die IL-1 β -induzierte Expression von NOS2A sowie MMP13 und COX2 [62] und ist ein Aktivator des Transkriptionsfaktors PPAR γ , der wiederum an der Regulation vieler Entzündungsfaktoren beteiligt ist [24]. Allgemein wurde für NSAID eine Transrepression inflammatorischer Prozesse über PPAR nachgewiesen [190]. Auch MK-886, ein dem Licofelone ähnlicher PTGES- und FLAP ("5-lipoxygenase-activating protein")-Inhibitor, verursacht eine Translokation von PPAR γ in den Kern [147]. Diese Befunde legen eine vielschichtige und komplexe Regulation des NO-Syntheseweges nahe. Möglicherweise beruht die Wirkung der p38-Inhibitoren hier auf einer Kombination verschiedener Mechanismen, an der die Reduktion des PGE₂-Spiegels beteiligt ist.

4.4.3. Effekte auf die MMP13- und OPG-Genexpression

MMP13 wird eine wesentliche Rolle bei der Matrixdegradation im arthrotischen Gelenk zugeschrieben [66]. In Übereinstimmung mit Literaturdaten wurde in der vorliegenden Arbeit die MMP13-Genexpression nach 24 h mehr als 20fach verstärkt [170, 66, 1]. Die Inhibition der p38MAPK hatte bei Inhibitorkonzentrationen von 1 μ M bis 10 μ M eine Hemmung der IL-1 β -induzierten MMP13-Genexpression von 70 % bis 90 % zur Folge. SB203580 und Pamapimod zeigten im Gegensatz zu den anderen p38MAPK-Inhibitoren bei einer Konzentration von $0.1 \,\mu\text{M}$ keine signifikant hemmende Wirkung. Diese Befunde korrelieren mit der Hemmwirkung der beiden Substanzen auf die COX2-Genexpression und die PGE₂-Freisetzung. Eine Reduktion der MMP13-Expression durch SB203580 wurde von Pei et al. in einer Chondrosarkoma-Zelllinie schon bei einer Konzentration von 0.1 μ M festgestellt [160]. Abweichungen zu den hier aufgeführten Ergebnissen könnten auf die Unterschiede von Zelllinie und primären Zellen oder das unterschiedliche Verhalten arthrotisch geschädigter Zellen zurückzuführen sein. Die Inhibitoren CBS 3825, CBS 3868 und SB203580 zeigten eine signifikante Steigerung der Hemmwirkung mit steigender Konzentration. Eine Erklärung für die beobachtete Wirkungssteigerung könnten sekundäre Spezifitäten der Inhibitoren darstellen. Tatsächlich sind weitere Signalwege an der komplexen Regulation der MMP13-Genexpression beteiligt [209]. Der p38MAPK/PDE4-spezifische Inhibitor ML 3595 zeigte in der vorliegenden Arbeit eine Inhibition der MMP13-Genexpression. Für keine der anderen untersuchten Zellreaktionen mit Beteiligung des p38MAPK-Signalweges war eine Hemmung durch

ML 3595 nachweisbar. Deshalb ist anzunehmen, dass der Hemmeffekt auf die MMP13-Genexpression nicht p38-vermittelt ist. Möglicherweise ist die Inhibition der PDE4 für die gemessene Hemmung verantwortlich. Phosphodiesterasen hydrolysieren zyklische Nukleotide wie cAMP (zyklisches Adenosinmonophosphat), die als "second messenger"-Moleküle fungieren. PDE4-Inhibitoren bewirken eine Erhöhung des zellulären cAMP-Spiegels und führen zu vielfältigen Zellreaktionen [52]. In verschiedenen Studien mit Arthritis-Tiermodellen zeigten PDE4-Inhibitoren einen positiven Effekt [188, 219]. Vielleicht könnte die Wirkung einer PDE4-Hemmung auf die MMP13-Genexpression hierzu beitragen.

Licofelone konnte bei einer Konzentration von 10 μ M nach 24 h die Genexpression von MMP13 zu 85 % hemmen. Boileau et al. beobachteten eine 75 %ige Hemmung der IL-1 β -induzierten MMP13-Genexpression durch 8 μ M Licofelone, die auch auf Proteinebene nachvollzogen werden konnte. Dabei zeigte sich, dass sowohl die IL-1 β -induzierte p38MAPK-Aktivität als auch die Aktivierung von Transkriptionsfaktoren des MMP13-Promoters (CREB und AP-1) durch Licofelone inhibiert wurden [26]. Dafür könnte teilweise die Hemmung der PGE₂-Freisetzung verantwortlich sein. Eine Beteiligung des Prostaglandins an der IL-1 β -induzierten MMP13-Sekretion wurde bereits nachgewiesen [12]. Auch *in vivo* in einem Arthrosemodell im Hund konnte eine Reduktion der MMP13-Expression durch Licofelone nachgewiesen werden [161].

Osteoprotegerin (OPG) reguliert in einem Balanceakt mit seinem Gegenspieler RANKL ("receptor activator of nuclear factor kappa B ligand") die Differenzierung von Osteoklasten und damit den Knochenumbau [107]. OPG wird auch von Chondrozyten gebildet und ist in arthrotischer Synovia erhöht, weshalb ihm eine Rolle in der Arthrose zugeschrieben wird [163]. Übereinstimmend mit einer Studie von Komuro et al. [116] wurde in der vorliegenden Arbeit die OPG-Genexpression durch IL-1 β -Stimulation in Chondrozyten signifikant verstärkt. Die geringe Expressionsverstärkung (Faktor 5 nach 24 h) ist möglicherweise auf ein bereits erhöhtes basales Expressionsniveau in arthrotischen Chondrozyten zurückzuführen [116] und erschwert den Nachweis eindeutiger Inhibitoreffekte. Jedoch konnten fast alle p38-Inhibitoren die OPG-Expression hemmen, nur Birb 796 und ML 3595 zeigten keinen signifikanten Effekt. Da Birb 796 als ein hochwirksamer p38 α -Inhibitor kaum Hemmwirkung aufwies, sind vermutlich weitere Faktoren an der Regulation der OPG-Expression beteiligt. Es könnten z. B. andere Isoform der p38MAPK oder andere IL-1 β -induzierte Signalwege involviert sein [166, 22]. SB203580 und Pamapimod hemmen außer p38 α auch die β -Isoform der p38MAPK ($K_{\rm D}$ = 70 nM bzw. 120 nM [103, 88]). Auch die Substanzen CBS 3825, CBS 3868 und ML 3637 weisen eine p38 β -Spezifität auf [169], wohingegen Birb 796 kaum daran bindet ($K_{\rm D} = 1.5 \ \mu {\rm M}$). Die Inhibition dieser Isoform könnte also eine Rolle spielen. Lambert et al. konnten zeigen, dass in Osteosarkomzellen die IL-1 β -induzierte OPG-Synthese bei Inhibition der p38MAPK mit SB203580 signifikant reduziert wird. Dagegen hatte die Inhibition der JNK-, ERK- und NF κ B-Signalwege keinen Einfluss auf die Genexpression von OPG [129]. Dies weist darauf hin, dass die sekundäre Spezifität der Wirkstoffe für JNK wahrscheinlich auch in Chondrozyten keinen Einfluss ausübt.

Licofelone hemmte bei einer Konzentration von 10 μ M die OPG-Genexpression zu über 100 % und senkte damit das OPG-Expressionsniveau unterhalb des basalen Niveaus. In dieser Arbeit konnte zum ersten Mal gezeigt werden, dass die Inhibition der p38MAPK-Aktivität sowie der PGE₂-Synthese die IL-1 β -stimulierte Expression von OPG in Chondrozyten reduziert. Diese Wirkung der Inhibitoren könnte bei der therapeutischen Behandlung der Arthrose von Bedeutung sein, da OPG in arthrotischem Gewebe verstärkt exprimiert wird und eine Korrelation zum Schädigungsgrad zeigt [163]. Andere Arbeiten berichten allerdings von einem chondroprotektiven Effekt des Osteoprotegerins, das Knorpel und Knochen vor Schädigung schützt und der Apoptose von Chondrozyten entgegenwirkt [101, 186]. Möglicherweise handelt es sich bei der IL-1 β -induzierten Expressionsverstärkung um einen Schutzmechanismus im Knorpel, der durch therapeutische Substanzen nicht unterbunden werden sollte. Die Rolle von OPG in der Arthrose und seine Bedeutung als pharmakologisches Ziel sollte durch weiterführende Arbeiten genauer geklärt werden.

4.4.4. Vergleich der Wirkstoffe anhand der Analyseergebnisse

Um die Wirksamkeit der verschiedenen Inhibitoren vergleichbar zu machen, wurde die Konzentration bestimmt, bei der eine 50 %ige beziehungsweise 75 %ige Hemmung zu beobachten war (IC₅₀- bzw. IC₇₅-Wert). Durch diese Bewertung der Wirksubstanzen war ein Vergleich mit Literaturdaten möglich. So bewegten sich die IC₅₀-Werte von SB203580 in der vorliegenden Arbeit meist im Bereich von 0.1 bis 1 μ M und korrelierten damit sehr gut mit publizierten IC₅₀-Werten [88, 203]. Auch für die anderen Substanzen korrelierten die ermittelten IC₇₅-Werte mit publizierten K_D -Werten [103, 88, 114] beziehungsweise mit unveröffentlichten Daten aus der pharmazeutischen Entwicklung [169]. Diese Übereinstimmungen sind zusätzliche Indizien für die Validität des Chondrozytenbasierten Inflammationsmodelles und des ausgewählten Analyse-Panels. Darüber hinaus waren die IC₅₀- und IC₇₅-Werte spezifisch für die untersuchten Genexpressionen und die Freisetzung der Metabolite und ließen Unterschiede zwischen den verschiedenen Inhibitoren erkennen. Es wurde deutlich, dass sich die Analyse des PGE₂-Syntheseweges sowie der MMP13- und OPG-Genexpression sehr gut für die differenzielle Inhibitorcharakterisierung eignen. Dagegen zeigte die Analyse des NO-Syntheseweges kaum Unterschiede zwischen den verschiedenen p38-Hemmern. Es konnte beobachtet werden, dass die Hemmung der PGE_2 -Synthese und des NO-Syntheseweges durch Licofelone eine ähnliche Potenz wie die p38-Inhibition aufwies, weshalb die Beteiligung eines PGE_2 -vermittelter Effektes vermutet werden kann. Durch eine Analyse des NO-Syntheseweges werden daher vermutlich vor allem sekundäre Effekte der p38MAPK-Inhibitoren erfasst und beurteilt.

Die Normierung der IC_{50} -Werte der verschiedenen p38MAPK-Inhibitoren auf die Referenzsubstanz SB203580 ermöglichte einen Vergleich zur Wirksamkeit. Verglichen mit SB203580 erwies sich die Effizienz von Birb 796, CBS 3868 und ML 3736 bezüglich der Hemmung der COX2- und MMP13-Genexpression sowie der PGE₂-Freisetzung als deutlich höher. Diese Befunde korrelieren mit den unterschiedlichen Affinitäten der Inhibitoren zu p38MAPK. Pamapimod jedoch zeigte ein divergentes Bild. Obwohl der $K_{\rm D}$ -Wert sich im Bereich der Werte für CBS 3868 und ML 3736 bewegt, verhielt sich der Inhibitor bezüglich seiner Hemmeffizienz ähnlich wie SB203580. Auch Hill et al. beobachteten vergleichbare inhibitorische Aktivitäten von Pamapimod und SB203580 in einem Inhibitions-Assay mit Synovia-Explantaten [88]. Diese Befunde zeigen, dass eine unterschiedliche Affinität auf molekularer Ebene sich nicht zwingend in einer unterschiedlichen Hemmeffizienz auf zellulärer Ebene äußert.

Eine Differenzierung der ähnlich bewerteten Inhibitoren Birb 796, CBS 3868 und ML 3736 ermöglichte die Analyse der OPG-Genexpression. Birb 796 zeigte eine zehnfach niedrigere, ML 3736 eine ähnliche und CBS 3868 dagegen eine etwa zehnfach höhere Wirksamkeit als SB203580. Damit wirkte CBS 3868 insgesamt am besten dem Stimulationseffekt von IL-1 β entgegen. Allerdings wurde bereits diskutiert, dass die verstärkte OPG-Expression möglicherweise einen Schutzmechanismus des arthrotischen Knorpels darstellt, dem eine pharmakologische Therapie nicht entgegenwirken sollte. Damit erscheint nach den Ergebnissen des Analyse-Panels der Inhibitor Birb 796 am besten geeignet, die Pathogenese der Arthrose positiv zu beeinflussen. Er hemmt am effektivsten die negativen Effekte von IL-1 β , ohne positive Reaktionen zu unterbinden. Aber auch der neue Wirkstoff ML 3736 zeigte ähnlich vorteilhafte Eigenschaften.

Die Verwendung von Primärzellen erlaubte eine Abschätzung der spenderabhängigen Variabilität der Wirkstoffeffekte. Es war zu beobachten, dass vor allem bei kurzzeitiger, gering dosierter Behandlung mit Birb 796, ML 3736 und SB203580 die Genexpression von MMP13, PTGES und OPG spenderabhängig reagierte. Diese Ergebnisse könnten einen Hinweis auf die mögliche Notwendigkeit individueller Therapieansätze geben [113]. Zusammenfassend kann festgehalten werden, dass die Übereinstimmung mit verschiedenen publizierten *In-vivo*- und *In-vitro*-Studien bezüglich charakteristischer Zellreaktionen das etablierte *In-vitro*-Inflammationsmodell an Knorpelzellen bestätigt. Die untersuchten Substanzen lassen sich durch das Modell in Ihrer Wirksamkeit unterscheiden, wodurch eine Selektion ermöglicht wird. Allerdings sind weiterführende Untersuchungen zur Verträglichkeit der Wirkstoffe im Organismus zwingend notwendig. Viele der p38-Inhibitoren wie auch Birb 796 offenbaren dabei ein mangelhaftes Sicherheitsprofil, so dass ein therapeutischer Einsatz im Menschen nicht in Frage kommt [56]. Deshalb ist es wichtig, weitere, neue Inhibitoren zu entwickeln, die ein ähnlich gutes Wirkprofil auf Arthrose-assoziierte Prozesse aufweisen [224]. Das in dieser Arbeit etablierte Testsystem stellt eine wertvolle Ergänzung zu den bisher gebräuchlichen Testsystemen wie Enzym-Bindungsassays oder Blutzellassays dar [103, 132]. Durch die Verwendung humaner Zellen könnte es wichtige Informationen zur Wirksamkeit von therapeutischen Substanzen in entzündlichen Gelenkerkrankungen liefern und somit vor dem Wirksamkeitsnachweis im Tiermodell stehen. Die erzielten Daten wären spezifisch für die Anwendung

am Menschen ausgerichtet und könnten gleichzeitig das Problem der Übertragbarkeit

experimenteller Daten vom Tiermodell auf den Menschen reduzieren helfen.

5. Zusammenfassung

Die Arthrose als die Gelenkerkrankung mit der weltweit höchsten Prävalenz kann bisher nicht kurativ therapiert werden. Deshalb steht die Entwicklung von DMOAD ("Disease-Modifying Osteoarthritis Drug") im Fokus der pharmazeutischen Forschung. Die im Allgemeinen zur Selektion potenter Wirkstoffe eingesetzten *In-vitro*-Testsysteme bzw. Tiermodelle lassen häufig Arthrose- bzw. Spezies-spezifische Aspekte außer Acht. Das Ziel dieser Arbeit war daher die Etablierung eines humanen, zell-basierten *In-vitro*-Modells zur Testung anti-inflammatorisch wirkender Substanzen, das arthrotische Prozesse im entzündlichen Gelenk nachvollzieht. Anschließend sollten verschiedene Testsubstanzen, die von der Firma ratiopharm GmbH, Ulm, zur Verfügung gestellt wurden, im etablierten System vergleichend charakterisiert werden.

Zunächst wurde unter Verwendung IL-1 β -stimulierter, humaner artikulärer Chondrozyten ein *In-vitro*-Inflammationsmodell etabliert, in dem Testsubstanzen appliziert wurden. Zur Beschreibung des Modells bzw. zur Charakterisierung von Wirkstoffen wurden Genexpressionsanalysen durch relative Quantifizierung bzw. durch semi-quantitative RT-PCR durchgeführt. Einige Zytoskelett-Komponenten wurden zusätzlich histochemisch und im Western-Blot auf Proteinebene nachgewiesen. Die Konzentration von PGE₂ (Prostaglandin E₂) bzw. NO (Stickstoffmonoxid) im Zellkulturüberstand wurde mittels ELISA bzw. Griess-Assay bestimmt. Das Modell erlaubte die Abbildung relevanter Zytokin-stimulierter Inflammationsreaktionen wie z. B. die Induktion von COX2 (Zyklooxygenase 2), IL6 (Interleukin 6), MMP13 (Matrixmetalloproteinase 13) und NOS2A (induzierbare NO-Synthase) sowie deren Hemmung durch verschiedene Inhibitoren. Der Vergleich mit publizierten Daten bestätigte die Validität des etablierten Systems.

Die Applikation der p38MAPK-Inhibitoren Birb 796 und SB203580 sowie dem p38MAPK/PDE4-Hemmer ML 3595 im *In-vitro*-Inflammationsmodell zur anschließenden genomweiten Microarray-Analyse machte Wirkunterschiede der Substanzen bei gleichem pharmazeutischem Ziel deutlich. Birb 796 konnte den Effekt von IL-1 β auf die Genexpression am besten kompensieren während SB203580 eine ungerichtetere Wirkung aufwies und ML 3595 nur teilweise anti-inflammatorisch wirkte. Die genomweite Analyse deckte zusätzlich neue IL-1 β -Effekte auf Chondrozyten auf. Neben der Genexpression von Matrixkomponenten wurde auch die Expression Zytoskelett-assoziierter Gene wie Vimentin, Tubulin und Gene mit LIM-Domänen durch IL-1 β reduziert. Dieser Effekt konnte teilweise durch p38MAPK-Inhibition kompensiert werden. Die Expression und IL-1 β -Regulation von LIM-Proteinen wie FHL2 ("four and a half LIM domains 2") bzw. deren kodierenden Genen in Chondrozyten wurde im Rahmen dieser Arbeit erstmalig beschrieben. Aufgrund ihrer Funktion als Gerüst- und Signalproteine weisen die Ergebnisse auf eine wichtige Rolle in der Pathogenese der Arthrose hin.

Die Expressionsanalyse der Gene COX2, PTGES (Prostaglandin E-Synthase), NOS2A, MMP13 und OPG (Osteoprotegerin) sowie die Bestimmung der PGE₂- und NO-Synthese wurde zur differenziellen quantitativen Charakterisierung von Testsubstanzen eingesetzt. IL-1 β verursachte im vorgestellten Modell eine Aufregulation dieser Gene und Metabolite. Die als Goldstandard dienenden p38MAPK-Inhibitoren Birb 796, Pamapimod und SB203580 zeichneten sich übereinstimmend mit publizierten Daten durch eine starke Inhibition der IL-1 β -induzierten COX2- und MMP13-Genexpression sowie der PGE₂-Synthese aus. Dagegen war der Einfluss der drei p38-Hemmer auf die Expression von NOS2A, OPG und PTGES sowie die NO-Synthese deutlich schwächer. Entsprechend seiner höheren Affinität zur p 38α -MAPK übertraf Birb 796 in seiner Wirkeffizienz SB203580 und Pamapimod. In Übereinstimmung mit Literaturdaten wies Pamapimod trotz höherer Affinität eine ähnliche Wirksamkeit wie SB203580 auf. Die beiden p38-inhibitorischen Testsubstanzen CBS 3868 und ML 3736 zeigten eine dem Birb 796 vergleichbare Wirksamkeit. Nur die OPG-Genexpression wurde durch CBS 3868 etwa 100-fach und durch ML 3736 5-fach stärker gehemmt und erlaubte eine Differenzierung der Substanzen. Die p38MAPK/PDE4-hemmende Testsubstanz ML 3595 reduzierte die IL-1 β -induzierte MMP13-Expression, ließ aber keine weitere für eine p38-Inhibition typische Hemmung erkennen. Der hier aufgestellten Vermutung, dass ein PDE4- und nicht ein p38-vermittelter Effekt zugrunde liegt, könnte in weiterführenden p38-Aktivierungsstudien nachgegangen werden.

Der zum Vergleich eingesetzte Inhibitor der PGE_2/LTB_4 (Leukotrien B_4)-Synthese, Licofelone, konnte die COX2- und PTGES-Genexpression kaum hemmen, zeigte aber bezüglich der PGE₂- und NO-Freisetzung sowie der MMP13- und OPG-Genexpression ein den p38-Hemmern ähnliches Wirkprofil. Es wurde deshalb eine regulatorische Rolle von PGE₂ vorgeschlagen, die durch weitere PGE₂-Stimulationsexperimente bzw. Rezeptor-Hemmstudien bestätigt werden könnte.

Das etablierte *In-vitro*-Inflammationsmodell erlaubte die quantitative Charakterisierung verschiedener Inhibitoren und deren differenzielle Abgrenzung bezüglich ihrer Hemmwirkung auf inflammatorische Prozesse in humanen Knorpelzellen. Zu einer weiterführenden Charakterisierung von Hemmsubstanzen ist die Einbeziehung weiterer Genexpressionsanalysen, die z. B. auch anabole Prozesse berücksichtigen, möglich. Das Modell stellt ein wertvolles Werkzeug zur effizienten Selektion potenter Wirksubstanzen als Ergänzung bisheriger Testsyteme der pharmazeutischen Entwicklung dar.

Literaturverzeichnis

- Aida Y., Maeno M., Suzuki N., Shiratsuchi H., Motohashi M., and Matsumura H. The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. *Life Sciences*, 77(25):3210–3221, November 2005.
- [2] Aigner T., McKenna L., Zien A., Fan Z., Gebhard P. M., and Zimmer R. Gene expression profiling of serum- and interleukin-1beta-stimulated primary human adult articular chondrocytes A molecular analysis based on chondrocytes isolated from one donor. *Cytokine*, 31(3):227–240, Aug 2005.
- [3] Aigner T., Söder S., Gebhard P. M., McAlinden A., and Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis-structure, chaos and senescence. *Nat Clin Pract Rheumatol*, 3(7):391–399, Jul 2007.
- [4] Alexopoulos L. G., Youn I., Bonaldo P., and Guilak F. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum, 60(3):771–779, Mar 2009.
- [5] Alten R., Gram H., Joosten L. A., van den Berg W. B., Sieper J., Wassenberg S., Burmester G., van Riel P., Diaz-Lorente M., Bruin G. J. M., Woodworth T. G., Rordorf C., Batard Y., Wright A. M., and Jung T. The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. *Arthritis Res Ther*, 10(3):R67, 2008.
- [6] Alvarez-Soria M. A., Herrero-Beaumont G., Moreno-Rubio J., Calvo E., Santillana J., Egido J., and Largo R. Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis. Osteoarthritis Cartilage, 16(12):1484–1493, Dec 2008.
- [7] Amin A. R., Attur M., Patel R. N., Thakker G. D., Marshall, P Jand Rediske J., Stuchin S. A., Patel I. R., and Abramson S. B. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. *J Clin Invest*, 99(6):1231–1237, Mar 1997.
- [8] Andreas K., Häupl T., Lübke C., Ringe J., Morawietz L., Wachtel A., Sittinger M., and Kaps C. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. *Arthritis Res Ther*, 11(1):R15, Feb 2009.

- [9] Argentieri D. C., Ritchie D. M., Ferro M. P., Kirchner T., Wachter M. P., Anderson D. W., Rosenthale M. E., and Capetola R. J. Tepoxalin: a dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile. J Pharmacol Exp Ther, 271(3):1399–1408, Dec 1994.
- [10] Arrayexpress. http://www.ebi.ac.uk/arrayexpress.
- [11] Attur M. G., Dave M. N., Clancy R. M., Patel I. R., Abramson S. B., and Amin A. R. Functional genomic analysis in arthritis-affected cartilage: yin-yang regulation of inflammatory mediators by alpha 5 beta 1 and alpha V beta 3 integrins. *J Immunol*, 164(5):2684–2691, Mar 2000.
- [12] Attur M., Al-Mussawir H. E., Patel J., Kitay A., Dave M., Palmer G., Pillinger M. H., and Abramson S. B. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. *J Immunol*, 181(7):5082–5088, Oct 2008.
- [13] Bach I. The LIM domain: regulation by association. Mech Dev, 91(1-2):5–17, Mar 2000.
- [14] Badger A. M., Cook M. N., Lark M. W., Newman-Tarr T. M., Swift B. A., Nelson A. H., Barone F. C., and Kumar S. SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. J Immunol, 161(1):467–473, Jul 1998.
- [15] Bain J., Plater L., Elliott M., Shpiro N., Hastie C. J., McLauchlan H., Klevernic I., Arthur J. S. C., Alessi D. R., and Cohen P. The selectivity of protein kinase inhibitors: a further update. *Biochem J*, 408(3):297–315, Dec 2007.
- [16] Bau B., Gebhard P. M., Haag J., Knorr T., Bartnik E., and Aigner T. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. *Arthritis Rheum*, 46(10):2648–2657, Oct 2002.
- [17] Baud V. and Karin M. Signal transduction by tumor necrosis factor and its relatives. *Trends Cell Biol*, 11(9):372–377, Sep 2001.
- [18] Bauer K., Kratzer M., Otte M., de Quintana K. L., Hagmann J., Arnold G. J., Eckerskorn C., Lottspeich F., and Siess W. Human CLP36, a PDZ-domain and LIM-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. *Blood*, 96(13):4236–4245, Dec 2000.
- [19] Beekman B., Verzijl N., de Roos J. A., and TeKoppele J. M. Matrix degradation by chondrocytes cultured in alginate: IL-1 beta induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis Cartilage, 6(5):330– 340, Sep 1998.

- [20] Begley T. P. Wiley Encyclopedia of Chemical Biology, chapter High Throughput Screening (HTS) Techniques: Overview of Applications in Chemical Biology, pages 1–15. WileyBlackwell, 2009.
- [21] Benjamin M. and Ralphs J. R. Biology of fibrocartilage cells. Int Rev Cytol, 233:1–45, 2004.
- [22] Berenbaum F. Proinflammatory cytokines, prostaglandins, and the chondrocyte: mechanismsof intracellular activation. *Joint Bone Spine*, 67(6):561–4, 2000.
- [23] Berenbaum F., Jacques C., Thomas G., Corvol M. T., Bereziat G., and Masliah J. Synergistic effect of interleukin-1 beta and tumor necrosis factor alpha on PGE2 production by articular chondrocytes does not involve PLA2 stimulation. *Exp Cell Res*, 222(2):379–384, Feb 1996.
- [24] Berenbaum F. Signaling transduction: target in osteoarthritis. Curr Opin Rheumatol, 16(5):616–622, Sep 2004.
- [25] Blain E. J., Gilbert S. J., Hayes A. J., and Duance V. C. Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. *Matrix Biology*, 25(7):398–408, September 2006.
- [26] Boileau C., Pelletier J.-P., Tardif G., Fahmi H., Laufer S., Lavigne M., and Martel-Pelletier J. The regulation of human MMP-13 by licofelone, an inhibitor of cyclo-oxygenases and 5-lipoxygenase, in human osteoarthritic chondrocytes is mediated by the inhibition of the p38 MAP kinase signalling pathway. Ann Rheum Dis, 64(6):891–898, Jun 2005.
- [27] Boileau C., Martel-Pelletier J., Moldovan F., Jouzeau J.-Y., Netter P., Manning P. T., and Pelletier J.-P. The in situ up-regulation of chondrocyte interleukin-1-converting enzyme and interleukin-18 levels in experimental osteoarthritis is mediated by nitric oxide. Arthritis Rheum, 46(10):2637–2647, Oct 2002.
- [28] Bonaventure J., Kadhom N., Cohen-Solal L., Ng K. H., Bourguignon J., Lasselin C., and Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. *Exp Cell Res*, 212(1):97–104, May 1994.
- [29] Bordji K., Grillasca J. P., Gouze J. N., Magdalou J., Schohn H., Keller J. M., Bianchi A., Dauça M., Netter P., and Terlain B. Evidence for the presence of peroxisome proliferatoractivated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1beta on rat chondrocytes. J Biol Chem, 275(16):12243–12250, Apr 2000.

- [30] Boyault S., Simonin M. A., Bianchi A., Compe E., Liagre B., Mainard D., Bécuwe P., Dauça M., Netter P., Terlain B., and Bordji K. 15-Deoxy-delta12,14-PGJ2, but not troglitazone, modulates IL-1beta effects in human chondrocytes by inhibiting NF-kappaB and AP-1 activation pathways. *FEBS Lett*, 501(1):24–30, Jul 2001.
- [31] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72:148–154, 1976.
- [32] Brandt K. D. and Mazzuca S. A. Lessons learned from nine clinical trials of diseasemodifying osteoarthritis drugs. Arthritis Rheum, 52(11):3349–3359, Nov 2005.
- [33] Branger J., van den Blink B., Weijer S., Madwed J., Bos C. L., Gupta A., Yong C.-L., Polmar S. H., Olszyna D. P., Hack C. E., van Deventer S. J. H., Peppelenbosch M. P., and van der Poll T. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. *J Immunol*, 168(8):4070–4077, Apr 2002.
- [34] Brew C. J., Clegg P. D., Boot-Handford R. P., Andrews G., and Hardingham T. Gene expression in human chondrocytes in late OA is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. *Ann Rheum Dis*, Dec 2008.
- [35] Brooks P. M. The burden of musculoskeletal disease–a global perspective. Clin Rheumatol, 25(6):778–781, Nov 2006.
- [36] Buchholz M., Braun M., Heidenblut A., Kestler H. A., Kloeppel G., Schmiegel W., Hahn S. A., Luettges J., and Gress T. M. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. *Oncogene*, 24(44):6626–6636, Oct 2005.
- [37] Buckwalter J. A., Saltzman C., and Brown T. The impact of osteoarthritis: implications for research. *Clin Orthop Relat Res*, 427(Suppl):S6–15, Oct 2004.
- [38] Burrage P. S., Mix K. S., and Brinckerhoff C. E. Matrix metalloproteinases: role in arthritis. *Front Biosci*, 11:529–543, Jan 2006.
- [39] Campbell I. K., Piccoli D. S., Roberts M. J., Muirden K. D., and Hamilton J. A. Effects of tumor necrosis factor alpha and beta on resorption of human articular cartilage and production of plasminogen activator by human articular chondrocytes. *Arthritis Rheum*, 33(4):542–552, Apr 1990.
- [40] Capin-Gutierrez N., Talamas-Rohana P., Gonzalez-Robles A., Lavalle-Montalvo C., and Kouri J. B. Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA) -induced model: its potential role in OA pathogenesis. *Histol Histopathol*, 19(4):1125– 1132, Oct 2004.

- [41] Caramés B., López-Armada M. J., Cillero-Pastor B., Lires-Dean M., Vaamonde C., Galdo F., and Blanco F. J. Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. *Osteoarthritis Cartilage*, 16(6):715– 722, Jun 2008.
- [42] Carter G., Young P., Albert D., Bouska B., Dyer R., Bell R., Summers J., Brooks D., Gunn B., Rubin P., and Kesterson J. A64077, a new potent orally active 5-lipoxygenase inhibitor. In Zor U., Noar Z., and Danon A., editors, *New Trends in Lipid Mediator Research*, volume 3, pages 50–55. Karger, Basel, 1989.
- [43] Cecil D. L., Johnson K., Rediske J., Lotz M., Schmidt A. M., and Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. *J Immunol*, 175(12):8296–8302, Dec 2005.
- [44] Cho E. S., Yu J. H., Kim M. S., and Yim M. Rolipram, a phosphodiesterase 4 inhibitor, stimulates osteoclast formation by inducing TRANCE expression in mouse calvarial cells. *Arch Pharm Res*, 27(12):1258–1262, Dec 2004.
- [45] Chockalingam P. S., Varadarajan U., Sheldon R., Fortier E., LaVallie E. R., Morris E. A., Yaworsky P. J., and Majumdar M. K. Involvement of protein kinase C zeta in interleukin-1beta induction of ADAMTS-4 and type 2 nitric oxide synthase via NF-kappaB signaling in primary human osteoarthritic chondrocytes. *Arthritis Rheum*, 56(12):4074–4083, Dec 2007.
- [46] Chowdhury T. T., Salter D. M., Bader D. L., and Lee D. A. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. *Inflamm Res*, 57(7):306–313, Jul 2008.
- [47] Chowdhury T., Arghandawi S., Brand J., Akanji O., Bader D., Salter D., and Lee D. A. Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs. *Arthritis Res Ther*, 10(2):R35, Mar 2008.
- [48] Clancy R. M., Gomez P. F., and Abramson S. B. Nitric oxide sustains nuclear factor kappaB activation in cytokine-stimulated chondrocytes. Osteoarthritis Cartilage, 12(7):552– 558, Jul 2004.
- [49] Cohen S. B., Cheng T.-T., Chindalore V., Damjanov N., Burgos-Vargas R., Delora P., Zimany K., Travers H., and Caulfield J. P. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. *Arthritis Rheum*, 60(2):335–344, Feb 2009.

- [50] Crofford L. J. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl, 49:15–19, Jul 1997.
- [51] Darling E. M. and Athanasiou K. A. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res, 23(2):425–432, Mar 2005.
- [52] Dastidar S. G., Rajagopal D., and Ray A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. *Curr Opin Investig Drugs*, 8(5):364–372, May 2007.
- [53] Davies C. M., Guilak F., Weinberg J. B., and Fermor B. Reactive nitrogen and oxygen species in interleukin-1-mediated DNA damage associated with osteoarthritis. Osteoarthritis Cartilage, 16(5):624–630, May 2008.
- [54] Dayer J. M. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. *Rheumatology (Oxford)*, 42 Suppl 2:ii3–i10, May 2003.
- [55] Dinarello C. A. Interleukin-1. Cytokine Growth Factor Rev, 8(4):253–265, Dec 1997.
- [56] Dominguez C., Powers D. A., and Tamayo N. p38 MAP kinase inhibitors: many are made, but few are chosen. *Curr Opin Drug Discov Devel*, 8(4):421–430, Jul 2005.
- [57] Drazen J. M. COX-2 inhibitors a lesson in unexpected problems. New England Journal of Medicine, 352(11):1131–1132, March 2005.
- [58] Duerr S., Stremme S., Soeder S., Bau B., and Aigner T. MMP-2/gelatinase A is a gene product of human adult articular chondrocytesand is increased in osteoarthritic cartilage. *Clin Exp Rheumatol*, 22(5):603–8, Sep-Oct 2004.
- [59] Dunne A. and O'Neill L. A. J. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. *Sci STKE*, 2003(171):re3, Feb 2003.
- [60] Ea H.-K., Uzan B., Rey C., and Lioté F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. *Arthritis Res Ther*, 7(5):R915–R926, 2005.
- [61] Fabian M. A., Biggs W. H., Treiber D. K., Atteridge C. E., Azimioara M. D., Benedetti M. G., Carter T. A., Ciceri P., Edeen P. T., Floyd M., Ford J. M., Galvin M., Gerlach J. L., Grotzfeld R. M., Herrgard S., Insko D. E., Insko M. A., Lai A. G., Lelias J.-M., Mehta S. A., Milanov Z. V., Velasco A. M., Wodicka L. M., Patel H. K., Zarrinkar P. P., and Lockhart D. J. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol, 23(3):329–336, Mar 2005.

- [62] Fahmi H., Battista J. A. D., Pelletier J. P., Mineau F., Ranger P., and Martel-Pelletier J. Peroxisome proliferator–activated receptor gamma activators inhibit interleukin-1betainduced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. *Arthritis Rheum*, 44(3):595–607, Mar 2001.
- [63] Fan Z., Bau B., Yang H., Soeder S., and Aigner T. Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1ß. *Arthritis Rheum*, 52(1):136–143, January 2005.
- [64] Faour W. H., He Y., He Q. W., de Ladurantaye M., Quintero M., Mancini A., and Battista J. A. D. Prostaglandin E(2) regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen-activated protein kinase in interleukin-1 beta-treated human synovial fibroblasts. J Biol Chem, 276(34):31720–31731, Aug 2001.
- [65] Felson D. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther, 11(1):203, Jan 2009.
- [66] Forsyth C. B., Cole A., Murphy G., Bienias J. L., Im H.-J., and Loeser R. F. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J Gerontol A Biol Sci Med Sci, 60(9):1118–1124, Sep 2005.
- [67] Foster M. L., Halley F., and Souness J. E. Potential of p38 inhibitors in the treatment of rheumatoid arthritis. *Drug News Perspect*, 13(8):488–497, Oct 2000.
- [68] Gazel A., Nijhawan R. I., Walsh R., and Blumenberg M. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes. J Cell Physiol, 215(2):292– 308, May 2008.
- [69] Gebauer M., Saas J., Sohler F., Haag J., Soeder S., Pieper M., Bartnik E., Beninga J., Zimmer R., and Aigner T. Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthritis Cartilage, 13(8):697–708, Aug 2005.
- [70] Gebhard P. M., Gehrsitz A., Bau B., Söder S., Eger W., and Aigner T. Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res, 21(1):96–101, Jan 2003.
- [71] Genbank. http://www.ncbi.nlm.nih.gov/Genbank/.
- [72] Gene ontology. http://www.geneontology.org/.
- [73] Genesis. http://genome.tugraz.at/.

- [74] Geng Y., Valbracht J., and Lotz M. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J Clin Invest, 98(10):2425–2430, Nov 1996.
- [75] Goldring M. B., Birkhead J., Sandell L. J., Kimura T., and Krane S. M. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest, 82(6):2026–2037, Dec 1988.
- [76] Goldring M. B. and Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. *Clin Orthop Relat Res*, 427(Suppl):S37–S46, Oct 2004.
- [77] Goldring M. B. and Goldring S. R. Osteoarthritis. J Cell Physiol, 213(3):626–634, Dec 2007.
- [78] Gominer. http://discover.nci.nih.gov/gominer/index.jsp, 2008.
- [79] Grunewald T. G. P. and Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? *Mol Cancer*, 7:31, 2008.
- [80] Guay J., Lambert H., Gingras-Breton G., Lavoie J. N., Huot J., and Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci, 110 (Pt 3):357–368, Feb 1997.
- [81] Hamidouche Z., Haÿ E., Vaudin P., Charbord P., Schüle R., Marie P. J., and Fromigué O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. *FASEB* J, 22(11):3813–3822, Nov 2008.
- [82] Han J. and Molkentin J. D. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. *Trends Cardiovasc Med*, 10(1):19–22, Jan 2000.
- [83] Hardingham T. E., Fosang A. J., and Dudhia J. The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. *Eur J Clin Chem Clin Biochem*, 32(4):249–257, Apr 1994.
- [84] Hauselmann H. J., Fernandes R. J., Mok S. S., Schmid T. M., Block J. A., Aydelotte M. B., Kuettner K. E., and Thonar E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. *J Cell Sci*, 107 (Pt 1):17–27, Jan 1994.
- [85] Hausser H.-J., Decking R., and Brenner R. E. Testican-1, an inhibitor of pro-MMP-2 activation, is expressed in cartilage. Osteoarthritis Cartilage, 12(11):870–877, Nov 2004.

- [86] Henrotin Y. E., Bruckner P., and Pujol J.-P. L. The role of reactive oxygen species in homeostasis and degradation of cartilage. *Osteoarthritis Cartilage*, 11(10):747–755, Oct 2003.
- [87] Hermann-Kleiter N., Ghaffari-Tabrizi N., Blumer M., Schwarzer C., Mazur M., and Artner I. Lasp1 misexpression influences chondrocyte differentiation in the vertebral column. *Int J Dev Biol*, Mar 2009.
- [88] Hill R. J., Dabbagh K., Phippard D., Li C., Suttmann R. T., Welch M., Papp E., Song K. W., Chang K.-C., Leaffer D., Kim Y.-N., Roberts R. T., Zabka T. S., Aud D., Porto J. D., Manning A. M., Peng S. L., Goldstein D. M., and Wong B. R. Pamapimod, a novel p38 mitogen-activated protein kinase inhibitor: preclinical analysis of efficacy and selectivity. J Pharmacol Exp Ther, 327(3):610–619, Dec 2008.
- [89] Hopkins S. J., Humphreys M., and Jayson M. I. Cytokines in synovial fluid. I. The presence of biologically active and immunoreactive IL-1. *Clin Exp Immunol*, 72(3):422– 427, Jun 1988.
- [90] Hunter D. J., McDougall J. J., and Keefe F. J. The symptoms of osteoarthritis and the genesis of pain. *Med Clin North Am*, 93(1):83–100, xi, Jan 2009.
- [91] Häuselmann H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis S. H., and Thonar E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. *Matrix*, 12(2):116–129, Apr 1992.
- [92] Iacob S. and Knudson C. B. Hyaluronan fragments activate nitric oxide synthase and the production of nitric oxide by articular chondrocytes. Int J Biochem Cell Biol, 38(1):123– 133, Jan 2006.
- [93] Inglese J., Johnson R. L., Simeonov A., Xia M., Zheng W., Austin C. P., and Auld D. S. High-throughput screening assays for the identification of chemical probes. *Nat Chem Biol*, 3(8):466–479, Aug 2007.
- [94] Ji R.-R. and Suter M. R. p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain, 3:33, 2007.
- [95] Johannessen M., Moller S., Hansen T., Moens U., and Ghelue M. V. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. *Cell Mol Life Sci*, 63(3):268–284, Feb 2006.
- [96] Jones G. C. and Riley G. P. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. *Arthritis Res Ther*, 7(4):160–169, 2005. abstract only.

- [97] Joos H., Albrecht W., Laufer S., and Brenner R. E. Influence of p38MAPK inhibition on IL-1beta-stimulated human chondrocytes: A microarray approach. Int J Mol Med, 23(5):685–693, May 2009.
- [98] Joos H., Albrecht W., Laufer S., Reichel H., and Brenner R. E. IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. *Mol Med*, 14(3-4):150–159, 2008.
- [99] Jordan K. M., Arden N. K., Doherty M., Bannwarth B., Bijlsma J. W. J., Dieppe P., Gunther K., Hauselmann H., Herrero-Beaumont G., Kaklamanis P., Lohmander S., Leeb B., Lequesne M., Mazieres B., Martin-Mola E., Pavelka K., Pendleton A., Punzi L., Serni U., Swoboda B., Verbruggen G., Zimmerman-Gorska I., Dougados M., and for International Clinical Studies Including Therapeutic Trials ESCISIT S. C. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis, 62(12):1145–1155, Dec 2003.
- [100] Jovanovic D. V., Fernandes J. C., Martel-Pelletier J., Jolicoeur F. C., Reboul P., Laufer S., Tries S., and Pelletier J. P. In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase1 and interleukin-1beta synthesis. *Arthritis Rheum*, 44(10):2320–2330, Oct 2001.
- [101] Kadri A., Ea H. K., Bazille C., Hannouche D., Lioté F., and Cohen-Solal M. E. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum, 58(8):2379–2386, Aug 2008.
- [102] Kamekura S., Kawasaki Y., Hoshi K., Shimoaka T., Chikuda H., Maruyama Z., Komori T., Sato S., Takeda S., Karsenty G., Nakamura K., il Chung U., and Kawaguchi H. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. *Arthritis Rheum*, 54(8):2462–2470, Aug 2006.
- [103] Karaman M. W., Herrgard S., Treiber D. K., Gallant P., Atteridge C. E., Campbell B. T., Chan K. W., Ciceri P., Davis M. I., Edeen P. T., Faraoni R., Floyd M., Hunt J. P., Lockhart D. J., Milanov Z. V., Morrison M. J., Pallares G., Patel H. K., Pritchard S., Wodicka L. M., and Zarrinkar P. P. A quantitative analysis of kinase inhibitor selectivity. *Nat Biotechnol*, 26(1):127–132, Jan 2008.
- [104] Karsdal M. A., Madsen S. H., Christiansen C., Henriksen K., Fosang A. J., and Sondergaard B. C. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. *Arthritis Res Ther*, 10(3):R63, 2008.

- [105] Kato Y., Nakashima K., Iwamoto M., Murakami H., Hiranuma H., Koike T., Suzuki F., Fuchihata H., Ikehara Y., and Noshiro M. Effects of interleukin-1 on syntheses of alkaline phosphatase, type X collagen, and 1,25-dihydroxyvitamin D3 receptor, and matrix calcification in rabbit chondrocyte cultures. J Clin Invest, 92(5):2323–2330, Nov 1993.
- [106] Kean W. F., Kean R., and Buchanan W. W. Osteoarthritis: symptoms, signs and source of pain. *Inflammopharmacology*, 12(1):3–31, 2004.
- [107] Kearns A. E., Khosla S., and Kostenuik P. J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. *Endocr Rev*, 29(2):155–192, Apr 2008.
- [108] Kendziorski C., Irizarry R. A., Chen K.-S., Haag J. D., and Gould M. N. On the utility of pooling biological samples in microarray experiments. *Proc Natl Acad Sci U S A*, 102(12):4252–4257, Mar 2005.
- [109] Khurana T., Khurana B., and Noegel A. A. LIM proteins: association with the actin cytoskeleton. *Protoplasma*, 219(1-2):1–12, Feb 2002.
- [110] Kim S.-J., Hwang S.-G., Kim I.-C., and Chun J.-S. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathways. J Biol Chem, 278(43):42448–42456, Oct 2003.
- [111] Klatt A. R., Paul-Klausch B., Klinger G., Kühn G., Renno J. H., Banerjee M., Malchau G., and Wielckens K. A critical role for collagen II in cartilage matrix degradation: collagen II induces pro-inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res, 27(1):65–70, Jan 2009.
- [112] Kobayashi M., Squires G. R., Mousa A., Tanzer M., Zukor D. J., Antoniou J., Feige U., and Poole A. R. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. *Arthritis Rheum*, 52(1):128–135, Jan 2005.
- [113] Koczan D., Drynda S., Hecker M., Drynda A., Guthke R., Kekow J., and Thiesen H.-J. Molecular discrimination of responders and nonresponders to anti-TNF alpha therapy in rheumatoid arthritis by etanercept. *Arthritis Res Ther*, 10(3):R50, 2008.
- [114] Koeberle A., Siemoneit U., Buehring U., Northoff H., Laufer S., Albrecht W., and Werz O. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther, Jun 2008.
- [115] Kojima F., Naraba H., Miyamoto S., Beppu, Moroeand Aoki H., and Kawai S. Membraneassociated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. *Arthritis Res Ther*, 6(4):355–365, 2004.

- [116] Komuro H., Olee T., Kühn K., Quach J., Brinson D. C., Shikhman A., Valbracht J., Creighton-Achermann L., and Lotz M. The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage. *Arthritis Rheum*, 44(12):2768–2776, Dec 2001.
- [117] Konturek P. C., Konturek S. J., Bielanski W., Kania J., Zuchowicz M., Hartwich A., Rehfeld J. F., and Hahn E. G. Influence of COX-2 inhibition by rofecoxib on serum and tumor progastrin and gastrin levels and expression of PPARgamma and apoptosis-related proteins in gastric cancer patients. *Dig Dis Sci*, 48(10):2005–2017, Oct 2003.
- [118] Korotkova M., Westman M., Gheorghe K. R., Klint E. A., Trollmo C., Ulfgren A. K., Klareskog L., and Jakobsson P.-J. Effects of antirheumatic treatments on the prostaglandin E(2) biosynthetic pathway. Arthritis Rheum, 52(11):3439–3447, Nov 2005.
- [119] Kouri J. B. and Lavalle C. Do chondrocytes undergo "activation" and "transdifferentiation" during the pathogenesis of osteoarthritis? A review of the ultrastructural and immunohistochemical evidence. *Histol Histopathol*, 21(7):793–802, Jul 2006.
- [120] Krasnokutsky S., Samuels J., and Abramson S. B. Osteoarthritis in 2007. Bull NYU Hosp Jt Dis, 65(3):222–228, 2007.
- [121] Kuettner K. E. Biochemistry of articular cartilage in health and disease. Clin Biochem, 25(3):155–163, Jun 1992.
- [122] Kuettner K. E., Schleyerbach R., Peyron J. G., and Hascall V. C., editors. Articular cartilage and osteoarthritis. Raven Press, New York, 1992.
- [123] Kulkarni S. K. and Singh V. P. Licofelone–a novel analgesic and anti-inflammatory agent. Curr Top Med Chem, 7(3):251–263, 2007.
- [124] Kuma Y., Sabio G., Bain J., Shpiro N., Márquez R., and Cuenda A. BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J Biol Chem, 280(20):19472–19479, May 2005.
- [125] Kumar V., Abbas A., Fauso N., and Mitchell R. Robbins Basic Pathology. Saunders Elsevier, Philadelphia, 8 Auflage, 2007.
- [126] La D. T., Collins C. E., Yang H.-T., Migone T.-S., and Stohl W. B lymphocyte stimulator expression in patients with rheumatoid arthritis treated with tumour necrosis factor alpha antagonists: differential effects between good and poor clinical responders. Ann Rheum Dis, 67(8):1132–1138, Aug 2008.
- [127] Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259):680–685, Aug 1970.

- [128] Lajeunesse D., Martel-Pelletier J., Fernandes J. C., Laufer S., and Pelletier J.-P. Treatment with licofelone prevents abnormal subchondral bone cell metabolism in experimental dog osteoarthritis. Ann Rheum Dis, 63(1):78–83, Jan 2004.
- [129] Lambert C., Oury C., Dejardin E., Chariot A., Piette J., Malaise M., Merville M.-P., and Franchimont N. Further insights in the mechanisms of interleukin-1beta stimulation of osteoprotegerin in osteoblast-like cells. J Bone Miner Res, 22(9):1350–1361, Sep 2007.
- [130] Laufer S., Greim C., and Bertsche T. An in-vitro screening assay for the detection of inhibitors of proinflammatory cytokine synthesis: a useful tool for the development of new antiarthritic and disease modifying drugs. Osteoarthritis Cartilage, 10(12):961–967, Dec 2002.
- [131] Laufer S., Zechmeister P., and Klein T. Development of an in-vitro test system for the evaluation of cyclooxygenase-2 inhibitors. *Inflamm Res*, 48(3):133–138, Mar 1999. abstract only.
- [132] Laufer S., Wagner G., and Kotschenreuther D. One, Thione und <I>N</I>-Oxide: ein allgemeiner Zugang zu Imidazolderivaten13. Angewandte Chemie, 114(13):2408–2411, 2002.
- [133] Lee J. C., Kumar S., Griswold D. E., Underwood D. C., Votta B. J., and Adams J. L. Inhibition of p38 MAP kinase as a therapeutic strategy. *Immunopharmacology*, 47(2-3):185–201, May 2000.
- [134] Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Keys J. R., Land vatter S. W., Strickler J. E., McLaughlin M. M., Siemens I. R., Fisher S. M., Livi G. P., White J. R., Adams J. L., and Young P. R. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. *Nature*, 372(6508):739–746, December 1994.
- [135] Liacini A., Sylvester J., Li W. Q., Huang W., Dehnade F., Ahmad M., and Zafarullah M. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. *Exp Cell Res*, 288(1):208–217, Aug 2003.
- [136] Lianxu C., Hongti J., and Changlong Y. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alphainduced chondrocytes. *Osteoarthritis Cartilage*, 14(4):367–376, Apr 2006.
- [137] Lin Y. H., Park Z.-Y., Lin D., Brahmbhatt A. A., Rio M.-C., Yates J. R., and Klemke R. L. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol, 165(3):421–432, May 2004.
- [138] Linsenmayer T. F., Chen Q. A., Gibney E., Gordon M. K., Marchant J. K., Mayne R., and Schmid T. M. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. *Development*, 111(1):191–196, Jan 1991.
- [139] Lüllmann H., Mohr K., and Hein L. Taschenatlas Pharmakologie. Thieme, Stuttgart, 6. Auflage, 2008. Seite 8.
- [140] Loeser R. F., Erickson E. A., and Long D. L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. *Curr Opin Rheumatol*, 20(5):581–586, Sep 2008.
- [141] Lorenzi P. L. and Weinstein J. N. Asparagine synthetase: a new potential biomarker in ovarian cancer. Drug News Perspect, 22(1):61–64, 2009.
- [142] Mankin H. J., Dorfman H., Lippiello L., and Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-Arthritic human hips, II. Correlation of morphology with biochemical and metabolic data. *Journal of Bone and Joint Surgery*, 53:523–537, April 1971.
- [143] Marcouiller P., Pelletier J.-P., Guevremont M., Martel-Pelletier J., Ranger P., Laufer S., and Reboul P. Leukotriene and prostaglandin synthesis pathways in osteoarthritic synovialmembranes: regulating factors for interleukin 1beta synthesis. *J Rheumatol*, 32(4):704–712, Apr 2005. abstract only.
- [144] Martel-Pelletier J., Mineau F., Fahmi H., Laufer S., Reboul P., Boileau C., Lavigne M., and Pelletier J. Regulation of the expression of 5-lipoxygenase-activating protein/5lipoxygenaseand the synthesis of leukotriene B(4) in osteoarthritic chondrocytes: role of transforming growth factor beta and eicosanoids. Arthritis Rheum, 50(12):3925–3, Dec 2004.
- [145] Martel-Pelletier J., Welsch D. J., and Pelletier J. P. Metalloproteases and inhibitors in arthritic diseases. *Best Pract Res Clin Rheumatol*, 15(5):805–829, Dec 2001. abstract only.
- [146] Masuko-Hongo K., Berenbaum F., Humbert L., Salvat C., Goldring M. B., and Thirion S. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritichuman cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. *Arthritis Rheum*, 50(9):2829– 2838, Sep 2004.
- [147] Mayburd A. L., Martlínez A., Sackett D., Liu H., Shih J., Tauler J., Avis I., and Mulshine J. L. Ingenuity network-assisted transcription profiling: Identification of a new pharmacologic mechanism for MK886. *Clin Cancer Res*, 12(6):1820–1827, Mar 2006.
- [148] McGrath M. J., Mitchell C. A., Coghill I. D., Robinson P. A., and Brown S. Skeletal muscle LIM protein 1 (SLIM1/FHL1) induces alpha 5 beta 1-integrin-dependent myocyte elongation. Am J Physiol Cell Physiol, 285(6):C1513-C1526, Dec 2003.

- [149] Medicherla S., Ma J. Y., Mangadu R., Jiang Y., Zhao J. J., Almirez R., Kerr I., Stebbins E. G., O'Young G., Kapoun A. M., Luedtke G., Chakravarty S., Dugar S., Genant H. K., and Protter A. A. A selective p38 alpha mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis. *J Pharmacol Exp Ther*, 318(1):132–141, Jul 2006.
- [150] Mendes A. F., Caramona M. M., Carvalho A. P., and Lopes M. C. Role of mitogenactivated protein kinases and tyrosine kinases on IL-1-Induced NF-kappaB activation and iNOS expression in bovine articular chondrocytes. *Nitric Oxide*, 6(1):35–44, Feb 2002.
- [151] Mengshol J. A., Vincenti M. P., and Brinckerhoff C. E. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. *Nucleic Acids Res*, 29(21):4361–4372, Nov 2001.
- [152] Mueller J. M., Metzger E., Greschik H., Bosserhoff A.-K., Mercep L., Buettner R., and Schuele R. The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. *EMBO J*, 21(4):736–748, Feb 2002.
- [153] Murakami M. and Kudo I. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res, 43(1):3–35, Jan 2004.
- [154] Nagase H. and Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther, 5(2):94–103, 2003.
- [155] Nakamura I., Kadono Y., Takayanagi H., Jimi E., Miyazaki T., Oda H., Nakamura K., Tanaka S., Rodan G. A., and Duong L. T. IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol, 168(10):5103–5109, May 2002.
- [156] Nieminen R., Leinonen S., Lahti A., Vuolteenaho K., Jalonen U., Kankaanranta H., Goldring M. B., and Moilanen E. Inhibitors of Mitogen-Activated Protein Kinases Downregulate COX-2 Expression in Human Chondrocytes. *Mediators Inflamm*, 2005(5):249–255, Oct 2005.
- [157] Otero M., Lago R., Lago F., Reino J. J. G., and Gualillo O. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res Ther, 7(3):R581–R591, 2005.
- [158] Pargellis C., Tong L., Churchill L., Cirillo P. F., Gilmore T., Graham A. G., Grob P. M., Hickey E. R., Moss N., Pav S., and Regan J. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. *Nat Struct Biol*, 9(4):268–272, Apr 2002.

- [159] Park J., Will C., Martin B., Gullotti L., Friedrichs N., Buettner R., Schneider H., Ludwig S., and Wixler V. Deficiency in the LIM-only protein FHL2 impairs assembly of extracellular matrix proteins. *FASEB J*, 22(7):2508–2520, Jul 2008.
- [160] Pei Y., Harvey A., Yu X.-P., Chandrasekhar S., and Thirunavukkarasu K. Differential regulation of cytokine-induced MMP-1 and MMP-13 expression by p38 kinase inhibitors in human chondrosarcoma cells: potential role of Runx2 in mediating p38 effects. Osteoarthritis Cartilage, 14(8):749–758, Aug 2006.
- [161] Pelletier J.-P., Boileau C., Boily M., JulieBrunet, Mineau F., Geng C., Reboul P., Laufer S., Lajeunesse D., and Martel-Pelletier J. The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: Mmp-13, cathepsin k and aggrecanases. Arthritis Research & Therapy, 7(5):1091–1102, July 2005.
- [162] Pelletier J.-P. and Martel-Pelletier J. DMOAD developments: present and future. Bull NYU Hosp Jt Dis, 65(3):242–248, 2007.
- [163] Pilichou A., Papassotiriou I., Michalakakou K., Fessatou S., Fandridis E., Papachristou G., and Terpos E. High levels of synovial fluid osteoprotegerin (OPG) and increased serum ratio of receptor activator of nuclear factor-kappaB ligand (RANKL) to OPG correlate with disease severity in patients with primary knee osteoarthritis. *Clin Biochem*, Mar 2008.
- [164] Porter S., Clark I. M., Kevorkian L., and Edwards D. R. The ADAMTS metalloproteinases. *Biochem J*, 386(Pt 1):15–27, Feb 2005.
- [165] Pounds S. and Morris S. W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. *Bioinformatics*, 19(10):1236–1242, Jul 2003.
- [166] Pramanik R., Qi X., Borowicz S., Choubey D., Schultz R. M., Han J., and Chen G. p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. J Biol Chem, 278(7):4831–4839, Feb 2003.
- [167] Pulai J. I., Chen H., Im H.-J., Kumar S., Hanning C., Hegde P. S., and Loeser R. F. NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. *J Immunol*, 174(9):5781– 5788, May 2005. abstract only, erst mai 06 frei zugänglich.
- [168] Radons J., Bosserhoff A. K., Graessel S., Falk W., and Schubert T. E. O. p38MAPK mediates IL-1-induced down-regulation of aggrecan gene expression in human chondrocytes. *Int J Mol Med*, 17(4):661–668, Apr 2006.

- [169] ratiopharm GmbH, Ulm, Deutschland. persönliche Mitteilung.
- [170] Reboul P., Pelletier J. P., Tardif G., Cloutier J. M., and Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest, 97(9):2011–2019, May 1996.
- [171] Robinson P. A., Brown S., McGrath M. J., Coghill I. D., Gurung R., and Mitchell C. A. Skeletal muscle LIM protein 1 regulates integrin-mediated myoblast adhesion, spreading, and migration. Am J Physiol Cell Physiol, 284(3):C681–C695, Mar 2003.
- [172] Rosa S. C., Judas F., Lopes M. C., and Mendes A. F. Nitric oxide synthase isoforms and NF-kappaB activity in normal and osteoarthritic human chondrocytes: regulation by inducible nitric oxide. *Nitric Oxide*, 19(3):276–283, Nov 2008.
- [173] Ross S., Chen T., Yu V., Tudor Y., Zhang D., Liu L., Tamayo N., Dominguez C., and Powers D. High-content screening analysis of the p38 pathway: profiling of structurally related p38alpha kinase inhibitors using cell-based assays. Assay Drug Dev Technol, 4(4):397–409, Aug 2006.
- [174] Rozen S. and Skaletsky H. J. Primer3. http://frodo.wi.mit.edu/cgi-bin/primer3/ primer3_www.cgi, 2000.
- [175] Sampey A. V., Monrad S., and Crofford L. J. Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2. Arthritis Res Ther, 7(3):114–117, 2005.
- [176] Samuelsson B., Morgenstern R., and Jakobsson P.-J. Membrane prostaglandin E synthase-1: a novel therapeutic target. *Pharmacol Rev*, 59(3):207–224, Sep 2007.
- [177] Sanchez C., Mateus M. M., Defresne M.-P., Crielaard J.-M. R., Reginster J.-Y. L., and Henrotin Y. E. Metabolism of human articular chondrocytes cultured in alginate beads. Longterm effects of interleukin 1beta and nonsteroidal antiinflammatory drugs. J Rheumatol, 29(4):772–782, Apr 2002.
- [178] Sandell L. J. and Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res, 3(2):107–113, 2001.
- [179] Sanger F., Nicklen S., and Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12):5463–5467, Dec 1977.
- [180] Saxena M. and Mustelin T. Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. *Semin Immunol*, 12(4):387–396, Aug 2000.
- [181] Schett G., Zwerina J., and Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis, 67(7):909–916, Jul 2008.
- [182] Schieven G. L. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem, 5(10):921–928, 2005.

- [183] Schmöckel E. (Dissertation in Vorbereitung).
- [184] Schmidt R. E. and Burkhardt H. Klinische Pathophysiologie, Biomechanische Eigenschaften von Bindegewebe, Seiten 978–990. Thieme, 8. Auflage, 2001.
- [185] Shakibaei M., Schulze-Tanzil G., John T., and Mobasheri A. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat, 187(5-6):487–497, Nov 2005.
- [186] Shimizu S., Asou Y., Itoh S., il Chung U., Kawaguchi H., Shinomiya K., and Muneta T. Prevention of cartilage destruction with intraarticular osteoclastogenesis inhibitory factor/osteoprotegerin in a murine model of osteoarthritis. *Arthritis Rheum*, 56(10):3358– 3365, Oct 2007.
- [187] Shum L. and Nuckolls G. The life cycle of chondrocytes in the developing skeleton. Arthritis Res, 4(2):94–106, 2002.
- [188] Silva J. C., Rocha M. F., Lima A. A., Brito G. A., de Menezes D. B., and Rao V. S. Effects of pentoxifylline and nabumetone on the serum levels of IL-1beta and TNFalpha in rats with adjuvant arthritis. *Inflamm Res*, 49(1):14–19, Jan 2000.
- [189] Simmons D. L., Botting R. M., and Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. *Pharmacol Rev*, 56(3):387–437, Sep 2004.
- [190] Süleyman H., Demircan B., and Karagöz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. *Pharmacol Rep*, 59(3):247–258, 2007.
- [191] Smyth G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol*, 3(1):Article3, 2004.
- [192] Statistisches Bundesamt. http://www.gbe-bund.de.
- [193] Sternlicht M. D. and Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 17:463–516, 2001.
- [194] Stryer. Biochemie. Spektrum Akad. Verlag, Heidelberg, Berlin, New York, 1991. Seiten 792 ff.
- [195] Studer R. and Chu C. p38 MAPK and COX2 inhibition modulate human chondrocyte response to TGF-beta. J Orthop Res, 23(2):454–61, Mar 2005.
- [196] Tak P. P. and Firestein G. S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 107(1):7–11, Jan 2001.

- [197] Tamura N., Ohno K., Katayama T., Kanayama N., and Sato K. The PDZ-LIM protein CLP36 is required for actin stress fiber formation and focal adhesion assembly in BeWo cells. *Biochem Biophys Res Commun*, 364(3):589–594, Dec 2007.
- [198] Thalhamer T., McGrath M. A., and Harnett M. M. Mapks and their relevance to arthritis and inflammation. *Rheumatology*, 47(4):409–414, 2008.
- [199] Thomas B., Thirion S., Humbert L., Tan, Lujianand Goldring M. B., Bereziat G., and Berenbaum F. Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 inhuman articular chondrocytes: role of p38 mitogen-activated protein kinase. *Biochem J*, 362(Pt 2):367–373, Mar 2002.
- [200] Towbin H., Staehelin T., and Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci U S A*, 76(9):4350–4354, Sep 1979.
- [201] Trickey W. R., Vail T. P., and Guilak F. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res, 22(1):131–139, Jan 2004.
- [202] Tries S., Neupert W., and Laufer S. The mechanism of action of the new antiinflammatory compound ML3000: inhibition of 5-LOX and COX-1/2. *Inflamm Res*, 51(3):135–143, Mar 2002.
- [203] Trifilieff A., Keller T. H., Press N. J., Howe T., Gedeck P., Beer D., and Walker C. CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Br J Pharmacol, 144(7):1002–1010, Apr 2005.
- [204] Tsutsumi R., Ito H., Hiramitsu T., Nishitani K., Akiyoshi M., Kitaori T., Yasuda T., and Nakamura T. Celecoxib inhibits production of MMP and NO via down-regulation of NF-kappaB and JNK in a PGE2 independent manner in human articular chondrocytes. *Rheumatol Int*, 28(8):727–736, Jun 2008.
- [205] van den Berg W. B. Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res, 3(1):18–26, 2001.
- [206] van Zalen S., Nijenhuis M., Jonkman M. F., and Pas H. H. Two major 5'-untranslated regions for type XVII collagen mRNA. J Dermatol Sci, 43(1):11–19, Jul 2006.
- [207] Vera M. E. D., Taylor B. S., Wang Q., Shapiro R. A., Billiar T. R., and Geller D. A. Dexamethasone suppresses iNOS gene expression by upregulating I-kappa B alpha and inhibiting NF-kappa B. Am J Physiol, 273(6 Pt 1):G1290–G1296, Dec 1997.
- [208] Vincenti M. P. and Brinckerhoff C. E. Early response genes induced in chondrocytes stimulated with the inflammatory cytokine interleukin-1beta. Arthritis Res, 3(6):381– 388, 2001.

- [209] Vincenti M. P. and Brinckerhoff C. E. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. *Arthritis Res*, 4(3):157–164, 2002.
- [210] Vuolteenaho K., Moilanen T., Jalonen U., Lahti A., Nieminen R., van Beuningen H. M., van der Kraan P. M., and Moilanen E. TGFbeta inhibits IL-1 -induced iNOS expression and NO production in immortalized chondrocytes. *Inflamm Res*, 54(10):420–427, Oct 2005.
- [211] Wagner G. Pyridinyl-pyrimidine- und -imidazole Neue Hemmstoffe der Zytokinfreisetzung. Dissertation, Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen, 2002.
- [212] Wang J. F., Jiao H., Stewart T. L., Shankowsky H. A., Scott P. G., and Tredget E. E. Fibrocytes from burn patients regulate the activities of fibroblasts. *Wound Repair Regen*, 15(1):113–121, 2007.
- [213] Wang X., Manner P., Horner A., Shum L., Tuan R., and Nuckolls G. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage, 12(12):963–73, Dec 2004.
- [214] Weigand K., Stremmel W., and Encke J. Treatment of hepatitis C virus infection. World J Gastroenterol, 13(13):1897–1905, Apr 2007.
- [215] Wieland H. A., Michaelis M., Kirschbaum B. J., and Rudolphi K. A. Osteoarthritis an untreatable disease? Nat Rev Drug Discov, 4(4):331–344, Apr 2005.
- [216] Wilder R. L. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. *Ann Rheum Dis*, 61 Suppl 2:ii96–ii99, Nov 2002.
- [217] Woods V. L., Schreck P. J., Gesink D. S., Pacheco H. O., Amiel D., Akeson W. H., and Lotz M. Integrin expression by human articular chondrocytes. *Arthritis & Rheumatism*, 37(4):537–544, 1994.
- [218] Woolf A. D. and Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ, 81(9):646–656, 2003.
- [219] Yamamoto S., Sugahara S., Ikeda K., and Shimizu Y. Amelioration of collagen-induced arthritis in mice by a novel phosphodiesterase 7 and 4 dual inhibitor, YM-393059. Eur J Pharmacol, 559(2-3):219–226, Mar 2007.
- [220] Yasui H., Hideshima T., Ikeda H., Jin J., Ocio E. M., Kiziltepe T., Okawa Y., Vallet S., Podar K., Ishitsuka K., Richardson P. G., Pargellis C., Moss N., Raje N., and Anderson K. C. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein

kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol, 136(3):414–423, Feb 2007.

- [221] Zaucke F., Dinser R., Maurer P., and Paulsson M. Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitivemarkers for the differentiation state of articular primary chondrocytes. *Biochem J*, 358(Pt 1):17–24, Aug 2001.
- [222] Zeeberg B. R., Feng W., Wang G., Wang M. D., Fojo A. T., Sunshine M., Narasimhan S., Kane D. W., Reinhold W. C., Lababidi S., Bussey K. J., Riss J., Barrett J. C., and Weinstein J. N. GoMiner: a resource for biological interpretation of genomic and proteomic data. *Genome Biol*, 4(4):R28, 2003.
- [223] Zer C., Sachs G., and Shin J. M. Identification of genomic targets downstream of p38 mitogen-activated protein kinase pathway mediating tumor necrosis factor-alpha signaling. *Physiol Genomics*, 31(2):343–351, Oct 2007.
- [224] Zhang J., Shen B., and Lin A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci, 28(6):286–295, Jun 2007.
- [225] Zhang Y., Li Y., and Yang D.-Q. Phosphorylation of eIF-4E positively regulates formation of the eIF-4F translation initiation complex following DNA damage. *Biochem Biophys Res Commun*, 367(1):54–59, Feb 2008.

A. Anhang

A.1. Angabe der Spenderzahlen

Inhibitor	Anzahl Spender	Alginat-Bead-Kultur	Monolayer-Kultur
Birb 796	2	×	v
Licofelone	4	×	
Lu 151	3	×	
ML3408	3	×	
ML3435	3	×	
ML3595	2	×	
ML3602	2		×
ML3624	2		×
ML3736	2		×
Rofecoxib	4	×	
SB203580	5	×	
Tepoxalin	2	×	
Zileuton	3	×	

Tabelle 19.: Spenderanzahl und Kultivierungsform der semiquantitativen Inhibitorstudien (Abschnitt 3.2)

Tabelle 20.: Anzahl der Spendergruppen der Inhibitorstudien auf quantitativer Genexpressionsebene (Abschnitt 3.5). Für jede Spendergruppe wurden die Chondrozyten zweier Spender vereinigt.

		Ko	nzentra	ation	in μN	[
	4 h Inkubation			24 h Inkubation		
	0.1	1	10	0.1	1	10
Birb 796	6	10	2	6	11	3
CBS 3825	-	3	3	-	3	3
CBS 3868	4	7	3	4	7	3
Licofelone	3	6	6	3	6	6
ML3595	-	2	3	-	3	4
ML3736	6	9	3	5	9	3
Pamapimod	6	6	-	6	6	-
SB203580	6	12	9	6	12	9
Kontroll- und						
Stimulationsansätze	e 15					

Tabelle 21.: Anzahl der Spendergruppen der Inhibitorstudien bei Überstandsanalysen (Abschnitt 3.5). Für jede Spendergruppe wurden die Chondrozyten zweier Spender vereinigt. *: nur Nitritbestimmung

	Konzentration in μM						
	4 h Inkubation			24 h Inkubatio			
	0.1	1	10	0.1	1	10	
Birb 796	6	6	2*	6	6	3*	
CBS 3868	4	4	3^{*}	4	4	3^{*}	
Licofelone	3	6	6	3	6	6	
ML3736	6	6	3^{*}	5	6	3^{*}	
Pamapimod	6	6	-	6	6	-	
SB203580	6	6	5	6	6	5	
Kontroll- und							
Stimulationsansätze				12			

A.2. Listen

A.2.1. Listen regulierter Gene

A.2.1.1. Stark regulierte Gene

Tabelle 22.: Bekannte Gene, die in der Microarray-Analse die stärkste Regulation zeigten. Es sind für beide Regulationsrichtungen die 10 bzw. 5 am stärksten durch IL-1 β bzw. Inhibitor regulierten Gene angegeben. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierten Zellen ohne Inhibitorzugabe verglichen.

Regulation durch	Gen-Symbol	GenBank Zugangs-Nr.	Gen-Beschreibung	$\log_2 R$	p-Wert
IL-1 β	Expressionsve	erstärkung			
1-	GRO2	NM 002089	GRO2 oncogene	9.56	0.0002
	SLC34A1	NM_003052	Solute carrier family 34 (sodium phosphate), member 1	8.55	0.0003
	SCYA20	NM_004591	Small inducible cytokine subfamily A (Cys-Cys), member 20	8.06	0.0000
	MLLT3	NM_004529	Myeloid/lymphoid or mixed-lineage leukemia (tritho- rax homolog, Drosophila); translocated to, 3	8.00	0.0002
	PTGS2	NM_000963	Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	7.77	0.0002
	IL6	NM 000600	Interleukin 6 (interferon, beta 2)	7.54	0.0005
	SCYA3	$NM^{-}002983$	Small inducible cytokine A3	6.71	0.0000
	AKR1C1	NM_001353	Aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxyster	6.64	0.0009
	MATP	NM 016180	AIM-1 protein	6.38	0.0002
	SOD2	$NM^{-}000636$	Superoxide dismutase 2, mitochondrial	6.23	0.0000
	Expressionsri	ickgang			
	CTGF	NM_{001901}	Connective tissue growth factor	-5.29	0.0000
	FHL1	NM_{001449}	Four and a half LIM domains 1	-4.62	0.0015
	HOMER-3	NM_{004838}	Homer, neuronal immediate early gene, 3	-3.81	0.0043
	CRIP1	NM_{001311}	Cysteine-rich protein 1 (intestinal)	-3.62	0.0155
	ITGA11	AF109681	Integrin, alpha 11	-3.47	0.0000
	SGCB	NM_000232	Sarcoglycan, beta (43kD dystrophin-associated glyco- protein)	-3.46	0.0016
			- /	näch	ste Seite

Regulation	Gen-Symbol	GenBank	Gen-Beschreibung	$\log_2 R$	p-Wert
durch		Zugangs-Nr.			
	EMAPL	NM_004434	Echinoderm microtubule-associated protein-like	-3.38	0.0353
	MXRA5	$AF2\overline{4}5505$	Adlican	-3.34	0.0000
	SPTA1	NM 003126	Spectrin, alpha, erythrocytic 1 (elliptocytosis 2)	-3.31	0.0002
	CLCN1	$M^{-}000083$	Chloride channel 1, skeletal muscle (Thomsen disease,	-3.22	0.0346
		—	autosomal dominant)		
Birb 796	Expressionsve	erstärkung	,		
	IFNB1	NM 002176	Interferon, beta 1, fibroblast	4.35	0.0021
	FLRT1	$M^{-}013280$	Fibronectin leucine rich transmembrane protein 1	3.94	0.0291
	SIX1	$NM^{-}005982$	Sine oculis homeobox homolog 1 (Drosophila)	3.64	0.0070
	FASTK	$NM^{-}025096$	FAST kinase	3.45	0.0031
	HOMER-3	$NM^{-}004838$	Homer, neuronal immediate early gene, 3	2.76	0.0256
	Expressionsri	ickgang			
	HLA-DRA	NM 019111	Major histocompatibility complex, class II, DR alpha	-5.37	0.0000
	GCNT2	$NM^{-}001491$	Glucosaminyl (N-acetyl) transferase 2, I-branching en-	-4.98	0.0100
		_	zyme		
	SOX3	NM 005634	\dot{SRY} (sex determining region Y)-box 3	-4.79	0.0009
	RAB5C	$NM^{-}004583$	RAB5C, member RAS oncogene family	-4.65	0.0000
	MMP13	NM_{002427}	Matrix metalloproteinase 13 (collagenase 3)	-4.53	0.0039
ML 3595	Expressionsve	erstärkung			
	EMAPL	NM 004434	Echinoderm microtubule-associated protein-like	4.27	0.0029
	SIX1	$NM^{-}005982$	Sine oculis homeobox homolog 1 (Drosophila)	2.86	0.0119
	RGS13	$NM^{-}002927$	Regulator of G-protein signalling 13	2.84	0.0051
	SHARP	$NM^{-}015001$	SMART/HDAC1 associated repressor protein	2.80	0.0106
	HOMER-3	NM_004838	Homer, neuronal immediate early gene, 3	2.62	0.0180
	Expressionsri	ickgang			0.0200
	KRTHA7	NM 003770	Keratin, hair, acidic, 7	-4.03	0.0152
	SLC9A3R1	$\mathrm{NM}^{-004252}$	Solute carrier family 9 (sodium/hydrogen exchanger).	-3.83	0.0055
			isoform 3 regulatory factor 1		
	NUP160	D83781	Nucleoporin 160kD	-2.69	0.0029
	DGS-A	L77571	DiGeorge syndrome gene A	-2.63	0.0245
	PLK	NM 005030	Polo-like kinase (Drosophila)	-2.41	0.0114
SB203580	Expressionsve	erstärkung			
	HTMP10	NM 033207	Transmembrane protein HTMP10	6.61	0.0006
	HES6	$NM^{-}018645$	Likely ortholog of mouse Hes6 neuronal differentiation	6.10	0.0003
		_	gene		
	PREP	NM 002726	Prolvl endopeptidase	5.95	0.0006
	ABCF1	$NM^{-}001090$	ATP-binding cassette, sub-family F (GCN20), mem-	5.67	0.0001
	-		ber 1		
	BIC	AF402776	Homo sapiens BIC noncoding mRNA, complete se-	4.09	0.0029
			quence		
	Expressionsri	ickgang	•		
	RNF23	$\widetilde{\mathrm{NM}}$ 021253	Ring finger protein 23	-8.17	0.0013
	TBX6	NM 004608	T-box 6	-7.57	0.0023
	RAB5C	NM_{004583}	RAB5C, member RAS oncogene family	-4.59	0.0014
	MMP13	$NM^{-}002427$	Matrix metalloproteinase 13 (collagenase 3)	-3.77	0.0003
	SEEK1	$NM^{-}014068$	SEEK1 protein	-3.74	0.0121

Tabelle 22.: Bekannte Gene, die in der Microarray-Analse die stärkste Regulation zeigten.

log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

A.2.1.2. Koregulierte Gene

Tabelle 23.: Bekannte Gene, die sowohl durch IL-1 β als auch durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierte Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	Gen-Beschreibung				Regulati	on durch	
	Zugangs-Nr.				SB20	03580	IL	-1β
					$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
ACAS2L	AK024396	Acetyl-Coenzyme A (AMP forming)-like	synthetase	2	-1.41	0.0030	1.92	0.0001
							näch	ste Seite

Gen-Symbol	GenBank	Gen-Beschreibung	Regulation durch			
	Zugangs-Nr.		SB2	03580	IL	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
ACATN	NM 004733	Acetyl-Coenzyme A transporter	1.05	0.0495	1.05	0.0084
ANXA2P3	M62895	Annexin A2 pseudogene 3	1.45	0.0222	-1.22	0.0063
BARX1	NM 021570	BarH-like homeobox 1	1.52	0.0263	-1.70	0.0003
BDKRB1	NM_{000710}	Bradykinin receptor B1	2.06	0.0365	1.92	0.0027
CIS	M_{001734}	Complement component 1 s subcom-	-2.06	0.0078	1 10	0.0260
010		ponent	2.00	0.0010	1.10	0.0200
Corfo	NM 032300	Chromosome 2 open reading frame 0	3 00	0.0015	1.91	0.0116
CCT6A	MM_{001762}	Chaparonin containing TCP1 subunit	1.62	0.0010	-1.21	0.0110
CUTOA	NM_001702	Chaperonini containing 1 CF 1, subunit	1.05	0.0299	-1.19	0.0177
CHIDNAS		OA (zeta 1)	1.00	0.0000	1 1 5	0.0040
CHRNA5	NM_{000745}	Cholinergic receptor, nicotinic, alpha	-1.39	0.0292	1.15	0.0048
0.07.11.		polypeptide 5				
COL4A6	NM_{033641}	Collagen, type IV, alpha 6	-1.52	0.0227	1.43	0.0081
CPSF1	NM_{013291}	Cleavage and polyadenylation specific	2.69	0.0137	-2.06	0.0029
		factor 1, 160kD subunit				
EEF1A1	AJ420488	Eukaryotic translation elongation fac-	-1.07	0.0413	-2.45	0.0009
		tor 1 alpha 1				
EVC	NM 014556	Ellis van Creveld syndrome	1.11	0.0107	-1.25	0.0018
FACVL1	M_{003645}	Fatty-acid-Coenzyme A ligase, very	-1.72	0.0401	1.51	0.0087
		long-chain 1				
FKBP9	BC011872	FK506 binding protein 9 (63 kD)	1.05	0.0245	-2.22	0.0040
C1D2	NM 022873	Interferon alpha inducible protein	1.05	0.0240	-2.22 9.71	0.0040
611.5	NM_022015	(along IEI 6 16)	-1.17	0.0598	2.71	0.0109
CDD1	NIM 0000F0	(clone IF I-0-10)	9.00	0.0070	9.04	0.0000
GBP1	NM_002053	Guanylate binding protein 1,	-3.00	0.0279	3.84	0.0000
0000-00		interferon-inducible, 67kD				
GPR58	NM_{014626}	G protein-coupled receptor 58	1.24	0.0365	-1.02	0.0333
GPRC5B	NM_{016235}	G protein-coupled receptor, family C,	1.83	0.0241	1.64	0.0214
		group 1, member B				
GRIK5	AJ249209	Glutamate receptor, ionotropic, kaina-	-1.11	0.0360	2.00	0.0010
		te 5				
GRO1	NM 001511	GRO1 oncogene (melanoma growth	-1.16	0.0419	1.17	0.0012
	—	stimulating activity, alpha)				
GSTA4	NM 001512	Glutathione S-transferase A4	2.86	0.0043	-1.79	0.0246
HAL	NM_{002108}	Histidine ammonia-lyase	-1.80	0.0468	1.20	0.0009
HCK	M_{002110}	Hemopoietic cell kinase	-1.68	0.0207	1.67	0.0003
HDAC8	NM_018486	Histope descetulase 8	1.00	0.0183	1.34	0.0000
	MM_{002116}	Major bistocompatibility complex	1.01	0.0133	-1.04 9.10	0.0012
IILA-A	NM_002110	alaga I A	-1.75	0.0030	5.10	0.0002
	NIM OFFIC	Class I, A	1.05	0.0207	1.04	0.0004
HLA-E	NM_005516	Major histocompatibility complex,	-1.85	0.0387	1.64	0.0084
		class I, E				
HOMER-3	NM_{004838}	Homer, neuronal immediate early ge-	1.89	0.0147	-3.81	0.0043
		ne, 3				
HOXD12	NM_{021193}	Homeo box D12	1.72	0.0459	-3.03	0.0003
HUMMHCW1A	M12679	Cw1 antigen	-1.76	0.0259	3.03	0.0150
HYA22	NM 005808	HYA22 protein	1.73	0.0343	-1.15	0.0018
ITGA2B	$NM^{-}000419$	Integrin, alpha 2b (platelet glycopro-	-1.65	0.0265	2.01	0.0009
	—	tein IIb of IIb/IIIa complex, antigen				
		CD41B)				
ITGB3BP	NM 014288	Integrin beta 3 binding protein (beta3-	1 18	0.0195	2 62	0.0369
11 OD0D1		endonevin)	1.10	0.0155	2.02	0.0000
KRTH A 7	NM 003770	Koratin hair acidic 7	9 37	0.0151	4.07	0.0036
LACD1	NM_006149	LIM and CH2 motoin 1	-2.07	0.0101	1.01	0.0000
LASE I LETEMI	NM_010210	Lini and Silo protein 1	1.22	0.0180	-1.29	0.0007
	10101 - 012318	the new service and the new service in the new service and the new service in the new ser	1.10	0.0138	-2.00	0.0004
LOOFIOR	NIM OTCOTO	GOL 148 metric	0.00	0.09.40	1 10	0.0014
LOC51030	NM_016078	UGI-148 protein	2.08	0.0348	1.16	0.0014
LOC51031	NM_{016080}	CGI-150 protein	1.50	0.0097	-1.08	0.0042
LOC51133	NM_{016121}	NY-REN-45 antigen	1.72	0.0054	1.63	0.0029
MKKS	NM_{018848}	McKusick-Kaufman syndrome	2.12	0.0055	-1.37	0.0051
MMP13	NM_{002427}	Matrix metalloproteinase 13 (collagen-	-3.77	0.0003	6.07	0.0008
		ase 3)				
MPL	NM 005373	Myeloproliferative leukemia virus on-	-2.26	0.0082	3.25	0.0006
	-	cogene				
		~			näcl	ste Seite
					11001	

Tabelle 23.: Bekannte Gene, die sowohl durch IL-1 β als auch durch SB203580 reguliert werden.
$\log_2 {\rm R}$ gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulati	on durch	
5	Zugangs-Nr.	0	SB20	03580	IL	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
MT-ACT48	NM_012332	Mitochondrial Acyl-CoA Thioesterase	2.22	0.0045	-1.57	0.0328
NARS	NM_{004539}	Asparaginyl-tRNA synthetase	1.10	0.0184	-1.24	0.0023
NOS2A	NM_{000625}	Nitric oxide synthase 2A (inducible,	-2.46	0.0027	4.56	0.0022
		hepatocytes)				
NUP160	NM_{015231}	Nucleoporin 160kD	-2.27	0.0049	2.87	0.0031
NXF2	NM_{017809}	Nuclear RNA export factor 2	-2.55	0.0106	1.89	0.0088
NYD-SP27	NM_{033123}	Testis-development related NYD-SP27	1.33	0.0252	-1.03	0.0285
PDCD2	AK055180	Programmed cell death 2	3.34	0.0297	-2.05	0.0321
PDLIM1	NM_{020992}	PDZ and LIM domain 1 (elfin)	1.16	0.0280	-1.50	0.0253
PHT2	NM_{016582}	Peptide transporter 3	-2.11	0.0104	3.71	0.0000
PLIN	NM_{002666}	Perilipin	1.29	0.0191	2.25	0.0032
PLK	NM_{005030}	Polo-like kinase (Drosophila)	-1.39	0.0254	1.67	0.0273
PRDX2	NM_{005809}	Peroxiredoxin 2	1.12	0.0407	-1.04	0.0029
PRKAG3	NM_{017431}	Protein kinase, AMP-activated, gam-	-1.94	0.0023	1.44	0.0040
		ma 3 non-catalytic subunit				
PSMB8	NM_{004159}	Proteasome (prosome, macropain)	-1.49	0.0333	1.88	0.0058
		subunit, beta type, 8 (large multifunc-				
		tional protease 7)				
RAB27A	U38654	RAB27A, member RAS oncogene fa-	1.82	0.0101	-1.69	0.0173
		mily				
RAB5C	NM_{004583}	RAB5C, member RAS oncogene fami-	-4.59	0.0014	4.73	0.0000
		ly				
RANBP3	NM_{003624}	RAN binding protein 3	-1.46	0.0120	1.11	0.0242
RANGAP1	AB058738	Ran GTPase activating protein 1	-1.15	0.0178	1.11	0.0017
RHEB2	NM_{005614}	Ras homolog enriched in brain 2	-1.13	0.0495	1.44	0.0114
RPL18	NM_{000979}	Ribosomal protein L18	1.03	0.0439	-1.76	0.0304
SCTR	NM_{002980}	Secretin receptor	-1.85	0.0017	1.14	0.0011
SF3B3	NM_{012426}	Splicing factor 3b, subunit 3, 130kD	1.30	0.0233	2.16	0.0465
SHARP	NM_{015001}	SMART/HDAC1 associated repressor	1.76	0.0349	-2.58	0.0051
		protein				
SLC9A3R1	NM_{004252}	Solute carrier family 9 (sodi-	-2.89	0.0127	4.07	0.0042
		um/hydrogen exchanger), isoform				
		3 regulatory factor 1				
SOD2	NM_{000636}	Superoxide dismutase 2, mitochondrial	-1.60	0.0276	6.23	0.0000
TNRC4	NM_{007185}	Trinucleotide repeat containing 4	-1.29	0.0145	1.03	0.0046
TPST1	$\rm NM_003596$	Tyrosylprotein sulfotransferase 1	1.20	0.0332	-1.13	0.0332
TRIM36	NM_{018700}	Tripartite motif-containing 36	1.92	0.0188	-1.72	0.0452
TST	NM_{003312}	Thiosulfate sulfurtransferase (rhoda-	-1.16	0.0227	1.04	0.0287
		nese)				
TUBB	NM_{001069}	Tubulin, beta polypeptide	1.68	0.0136	-2.42	0.0000
UGT8	NM_{003360}	UDP glycosyltransferase 8 (UDP-	-1.08	0.0068	1.27	0.0034
		galactose ceramide galactosyltrans-				
		ferase)				
WARS	NM_004184	Tryptophanyl-tRNA synthetase	-1.45	0.0342	2.13	0.0097

Tabelle 23.: Bekannte Gene, die sowohl durch IL-1 β als auch durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Tabelle 24.: Bekannte Gene, die sowohl durch IL-1 β als auch durch Birb 796 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierte Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	GenBank Gen-Beschreibung		Regulation durch				
	Zugangs-Nr.	-	Birk	o 796	IL	-1β		
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert		
ABCA8	$\rm NM_007168$	ATP-binding cassette, sub-family A (ABC1), member 8	-1.53	0.0058	2.54	0.0001		
ADH7	NM_000673	Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide	-2.06	0.0137	1.91	0.0012		
AMELY	NM 001143	Amelogenin (Y chromosome)	-1.01	0.0122	1.77	0.0004		
ATP1B1	NM_001677	ATPase, $Na+/K+$ transporting, beta 1 polypeptide	-2.83	0.0146	5.55	0.0001		
					näch	ste Seite		

Gen-Symbol	GenBank	Gen-Beschreibung	Regulation durch			
	Zugangs-Nr.		Birb	796	IL-	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
BARX1	NM 021570	BarH-like homeobox 1	1.29	0.0118	-1.70	0.0003
BCKDHB	NM_{000056}	Branched chain keto acid dehydrogen-	-1.05	0.0018	1.63	0.0010
	_	ase E1, beta polypeptide (maple syrup				
		urine disease)				
BF	NM 001710	B-factor, properdin	-1.60	0.0323	2.52	0.0069
BIRC3	AF070674	Baculoviral IAP repeat-containing 3	-1.57	0.0212	6.19	0.0000
BMPB2	NM 001204	Bone morphogenetic protein receptor	-1.56	0.0131	2 53	0.0014
2111 102		type II (serine/threenine kinase)	1.00	0.0101	2.00	0.0011
BOC	NM 033254	Brother of CDO	1 13	0.0088	-1 41	0.0024
BTN3A3	NM_006004	Buturophilin subfamily 3 member A3	1.15	0.0000	-1.41 1 74	0.0024
CIG	NM_{001724}	Complement component 1 a subcom	-1.70	0.0143 0.0126	1.74	0.0147
015	INIM_001734	Complement component 1, s subcom-	-1.20	0.0120	1.10	0.0200
CALDI	NM 022120	Caldermon 1	1 79	0.0499	1 70	0.0406
CALDI	NM_055156		1.75	0.0462	-1.78	0.0400
CARDI5	NM_022162	Caspase recruitment domain family,	-1.15	0.0206	1.69	0.0020
CIVI D1	ND4 010051	member 15	1 10	0.0470	1 00	0.0000
CKLFI	NM_016951	Chemokine-like factor 1	1.16	0.0472	-1.88	0.0096
CLIC3	NM_004669	Chloride intracellular channel 3	-3.58	0.0241	-1.18	0.0181
COL4A6	NM_{033641}	Collagen, type IV, alpha 6	-1.34	0.0128	1.43	0.0081
COL5A2	NM_{000393}	Collagen, type V, alpha 2	-1.04	0.0066	-1.68	0.0435
CPSF1	NM_{013291}	Cleavage and polyadenylation specific	1.95	0.0037	-2.06	0.0029
		factor 1, 160kD subunit				
DAF	NM_{000574}	Decay accelerating factor for comple-	-2.10	0.0003	1.99	0.0004
		ment (CD55, Cromer blood group sy-				
		stem)				
DAPK3	NM 001348	Death-associated protein kinase 3	1.38	0.0162	-2.28	0.0008
DNAJA1	$M^{-}001539$	DnaJ (Hsp40) homolog, subfamily A,	-1.17	0.0014	1.53	0.0007
	_	member 1				
DNAJB9	NM 012328	DnaJ (Hsp40) homolog, subfamily B.	-1.54	0.0219	2.10	0.0138
		member 9				
DSCR2	NM 003720	Down syndrome critical region gene 2	-1.00	0.0136	1.30	0.0329
DSTN	NM_{006870}	Destrin (actin depolymerizing factor)	1 19	0.0267	-2.10	0.0002
EDG7	MM_{012152}	Endothelial differentiation lysophos-	2.00	0.0207	_1 49	0.0345
EDGI	1011 _ 012102	phatidic acid C-protein-coupled recep-	2.00	0.0007	-1.43	0.0545
		tor 7				
FIF9C1	NM 002759	Fulcementic translation initiation factor	9.67	0.0991	0.20	0.0191
EIF 351	NM_005758	2 subunit 1 (alpha 25hD)	-2.07	0.0251	2.50	0.0181
EDEC	NM 001422	5, subunit 1 (alpita, 55kD)	1.09	0.0297	9.10	0.0001
EREG	NM_{01452}	Epireguin	-1.03	0.0327	2.10	0.0001
EVC	NM_014556	Ellis van Creveld syndrome	1.18	0.0027	-1.25	0.0018
FACL4	NM_022977	Fatty-acid-Coenzyme A ligase, long-	-1.71	0.0231	1.40	0.0289
		chain 4				
FACVLI	NM_{003645}	Fatty-acid-Coenzyme A ligase, very	-1.01	0.0265	1.51	0.0087
		long-chain 1				
FHOS	NM_{013241}	FH1/FH2 domain-containing protein	1.16	0.0132	-1.12	0.0145
FKBP9	BC011872	FK506 binding protein 9 (63 kD)	1.50	0.0214	-2.22	0.0040
FLJ20499	NM_{016552}	Testis specific ankyrin-like protein 1	-1.32	0.0047	1.49	0.0008
G7C	NM_{025258}	NG37 protein	-1.42	0.0026	2.58	0.0001
GBP1	NM_{002053}	Guanylate binding protein 1,	-3.41	0.0002	3.84	0.0000
		interferon-inducible, 67kD				
GBP2	NM 004120	Guanylate binding protein 2,	-1.89	0.0004	1.76	0.0021
	—	interferon-inducible				
GCP6	NM 020461	Gamma-tubulin complex component	1.25	0.0481	-1.01	0.0288
GG2-1	NM_{014350}	TNF-induced protein	-1.12	0.0157	2.38	0.0006
GGCX	NM_{000821}	Gamma-glutamyl carboxylase	-1.32	0.0006	1.29	0.0009
GLBX	NM_{002064}	Glutaredoxin (thioltransferase)	-1.09	0.0014	1.14	0.0024
GPX4	NM_002085	Glutathione peroxidase 4 (phospholi-	2.47	0.0018	-2.49	0.0006
01 /11		nid hydroperovidase)	2.41	0.0010	-2.40	0.0000
CBIK5	A 19/0900	Clutamate recontor ionetropia laire	1 49	0.0064	2.00	0.0010
GIUIN	113243203	to 5	-1.42	0.0004	2.00	0.0010
CTTDA	NM 0001FF	Le J De a Chanatain	1.01	0.0004	1.05	0.0110
GIRZ	$1000 \pm 00000000000000000000000000000000$	Rag () protein	1.01	0.0064	-1.05	0.0112
HUK HDACO DENDINC	1002110	nemopoletic cell kinase	-1.37	0.0008	1.67	0.0003
HDAC9-PENDING	NM_014707	Histone deacetylase 9	1.18	0.0493	-1.50	0.0218
					näch	ste Seite

Tabelle 24.: Bekannte Gene, die sowohl durch IL-1 β als auch durch Birb 796 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulati	on durch	
	Zugangs-Nr.		Birb	o 796	IL-	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
HES7	NM_{032580}	Hairy and enhancer of split 7 (Droso-	1.68	0.0021	-2.23	0.0008
		phila)				
HLA-DRA	NM_{019111}	Major histocompatibility complex,	-5.37	0.0000	4.58	0.0005
		class II, DR alpha				
HLA-E	NM_{005516}	Major histocompatibility complex,	-1.26	0.0046	1.64	0.0084
		class I, E				
HLA-F	NM_{018950}	Major histocompatibility complex,	-1.41	0.0005	2.34	0.0001
		class I, F				
HLA-G	NM_{002127}	HLA-G histocompatibility antigen,	-1.25	0.0425	1.79	0.0041
		class I, G				
HOMER-3	NM_{004838}	Homer, neuronal immediate early ge-	2.76	0.0256	-3.81	0.0043
HODIADA		ne, 3	1 00		0.00	
HSDIIBI	NM_{005525}	Hydroxysteroid (11-beta) dehydrogen-	-1.08	0.0029	3.60	0.0000
TODOLU		ase 1	1 00			
HSPC144	NM_{014174}	HSPC144 protein	1.08	0.0247	-1.31	0.0362
HUMMLC2B	NM_{013292}	(clone PWHLC2-24) myosin light	1.13	0.0301	-1.35	0.0366
		chain 2				
IAN4L1	NM_{018384}	Immune associated nucleotide 4 like 1	-1.11	0.0131	1.04	0.0098
		(mouse)				
ICAM1	NM_{000201}	Intercellular adhesion molecule 1	-1.68	0.0029	4.16	0.0000
		(CD54), human rhinovirus receptor				
IFI27	NM_{005532}	Interferon, alpha-inducible protein 27	-1.26	0.0083	2.47	0.0004
IFI35	BC001356	Interferon-induced protein 35	-1.02	0.0314	2.38	0.0012
IFIT4	NM_{001549}	Interferon-induced protein with tetra-	-1.24	0.0315	2.52	0.0003
		tricopeptide repeats 4				
IL11	NM 000641	Interleukin 11	-1.32	0.0066	1.23	0.0066
IL2	$NM^{-}000586$	Interleukin 2	-1.96	0.0006	3.42	0.0001
IL23A	NM_{016584}	Interleukin 23. alpha subunit p19	-1.37	0.0049	1.80	0.0001
IRF1	NM_{002198}	Interferon regulatory factor 1	-2.62	0.0003	5.62	0.0000
ITGA2B	NM_000419	Integrin alpha 2h (platelet glycopro-	-2.02	0.0003	2.01	0.0009
II GII2D		tein IIb of IIb/IIIa complex antigen	2.02	0.0000	2.01	0.0000
		CD41B)				
IIIND	NM 005354	Jun D proto-oncogene	-1 32	0 0200	1 83	0.0003
IWA	NM_{006407}	Vitamin A responsive: cutoskeleton re	-1.02 1.37	0.0233	1.85	0.00034
JWA	NM_000407	lated	1.57	0.0230	-1.00	0.0034
	NM 006082	Tubulin alpha ubiquitous	1 70	0.0450	2.26	0.0267
K-ALF HA-I	NM_000082	Determine incomplex set if in a shore of	-1.70	0.0450	2.20	0.0307
KUNJI	NM_000220	Potassium inwardiy-rectifying channel,	-1.01	0.0203	2.00	0.0007
	NM OCCOFF	Subfamily J, member 1	1 10	0.0041	1 1 4	0.0001
KDELR3	NM_006855	KDEL (Lys-Asp-Glu-Leu) endoplas-	1.12	0.0041	-1.14	0.0091
		mic reticulum protein retention recep-				
	NN 004000	tor 3	1 1 1	0.0000	1.04	0.000
KIAA0105	NM_004906	Wilms' tumour 1-associating protein	-1.11	0.0090	1.64	0.0007
KLF5	NM_001730	Kruppel-like factor 5 (intestinal)	-1.52	0.0003	3.20	0.0000
KRTHA7	NM_{003770}	Keratin, hair, acidic, 7	-3.53	0.0180	4.07	0.0036
LDOC1	NM_{012317}	Leucine zipper, down-regulated in can-	1.37	0.0395	-1.43	0.0205
		cer 1				
LOC51026	AL136571	CGI-141 protein	-1.91	0.0009	2.25	0.0001
LOC51056	NM_{015907}	Leucine aminopeptidase	-1.94	0.0000	2.86	0.0000
LOC51191	NM_{016323}	Cyclin-E binding protein 1	-1.25	0.0013	1.25	0.0007
LOC64116	NM_{022154}	Up-regulated by BCG-CWS	-1.60	0.0005	2.77	0.0000
MAN1A1	NM_{005907}	Mannosidase, alpha, class 1A, member	-1.02	0.0038	2.88	0.0021
	_	1				
MATP	$\rm NM_016180$	AIM-1 protein	-1.89	0.0012	6.38	0.0002
MEG3	$AK0\overline{5}5725$	Maternally expressed 3	-1.83	0.0121	2.04	0.0096
MFAP1	NM 005926	Microfibrillar-associated protein 1	1.65	0.0158	-1.32	0.0231
MGST2	NM_{002413}	Microsomal glutathione S-transferase 2	1.14	0.0128	-1.24	0.0037
MGST3	M_{004528}	Microsomal glutathione S-transferase 3	1.49	0.0040	-1.47	0.0118
MKKS	NM_018848	McKusick-Kaufman syndrome	1.59	0.0055	-1.37	0.0051
MMP10	MM_{002425}	Matrix metalloproteinase 10 (strome-	-1 41	0.0139	1.93	0.0215
		lysin 2)	1.11	0.0100	1.20	0.0210
		-j = j			näch	ste Seite

Tabelle 24.: Bekannte Gene, die sowohl durch IL-1 β als auch durch Birb 796 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

... nachste Seite

Gen-Symbol	GenBank	Gen-Beschreibung		Regulati	on durch	
	Zugangs-Nr.		Birb	o 796	IL-	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
MMP13	NM_002427	Matrix metalloproteinase 13 (collagen-	-4.53	0.0039	6.07	0.0008
MPL	$\rm NM_005373$	ase 5) Myeloproliferative leukemia virus on- cogene	-3.20	0.0010	3.25	0.0006
MRPS12	NM 021107	Mitochondrial ribosomal protein S12	-1.96	0.0010	1.96	0.0003
MTA1	$M^{-}004689$	Metastasis associated 1	1.10	0.0032	-1.40	0.0014
MYBPC2	M_{004533}	Myosin binding protein C, fast type	1.25	0.0188	-1.19	0.0212
NDUFV2	NM_021074	NADH dehydrogenase (ubiquinone)	-1.13	0.0052	1.29	0.0009
	_	flavoprotein 2 $(24kD)$				
NME5	NM_{003551}	Non-metastatic cells 5, protein expres- sed in (nucleoside-diphosphate kinase)	1.31	0.0436	-1.04	0.0341
NTN4	AF278532	Netrin 4	1.18	0.0439	-2.59	0.0025
NUP160	NM_{015231}	Nucleoporin 160kD	-2.51	0.0060	2.87	0.0031
OASL	NM_003733	2'-5'-oligoadenylate synthetase-like	-1.04	0.0067	1.85	0.0023
OTOR	$M^{-}020157$	Otoraplin	-1.28	0.0008	2.37	0.0000
PBEF	NM_{005746}	Pre-B-cell colony-enhancing factor	-3.74	0.0155	4.52	0.0004
PDCD2	AK055180	Programmed cell death 2	2.14	0.0254	-2.05	0.0321
PDGFRA	NM 006206	Platelet-derived growth factor recep-	1.07	0.0012	-1.96	0.0013
DUTO		tor, alpha polypeptide	1 69	0.0001	9.71	0.0000
	NM_010382	Deptoin in hibitary of action to a CTAT2	-1.00	0.0001	0.71 1.90	0.0000
PIA53	NM_000099	Protein inhibitor of activated SIA13	-1.28	0.0106	1.32	0.0000
PLA2G4A	M08874	Phospholipase A2, group IVA (cytoso- lic, calcium-dependent)	-1.40	0.0174	1.13	0.0334
PMAIP1	NM_021127	Phorbol-12-myristate-13-acetate- induced protein 1	-1.44	0.0040	4.17	0.0007
POLE	NM_006231	Polymerase (DNA directed), epsilon	-1.14	0.0484	1.07	0.0094
PRDX2	NM_{005809}	Peroxiredoxin 2	1.15	0.0065	-1.04	0.0029
PSMB8	NM_004159	Proteasome (prosome, macropain)	-1.79	0.0003	1.88	0.0058
		subunit, beta type, 8 (large multifunc- tional protease 7)				
RAB5C	NM_{004583}	RAB5C, member RAS oncogene fami- ly	-4.65	0.0000	4.73	0.0000
RAI3	NM_{003979}	Retinoic acid induced 3	-2.24	0.0143	2.54	0.0038
RANGAP1	$AB0\overline{5}8738$	Ran GTPase activating protein 1	-1.63	0.0263	1.11	0.0017
RHEB2	NM 005614	Ras homolog enriched in brain 2	-1.74	0.0100	1.44	0.0114
RIPK2	NM_{003821}	Receptor-interacting serine-threonine kinase 2	-1.72	0.0110	3.16	0.0005
RNF36	AL360161	Ring finger protein 36	-1.57	0.0010	2.82	0.0000
RPL36A	NM 021029	Ribosomal protein L36a	1.37	0.0324	-1.48	0.0045
RPS6	NM_{001010}	Ribosomal protein S6	1.01	0.0305	-1.29	0.0284
SCYA3	NM_{002983}	Small inducible cytokine A3	-2.56	0.0022	6.71	0.0000
SCYA3L1	$D90\bar{1}45$	Small inducible cytokine A3-like 1	-2.20	0.0107	2.68	0.0022
SCYA8	Y16645	Small inducible cytokine subfamily A (Cys-Cys), member 8 (monocyte che-	-3.69	0.0019	4.04	0.0002
		motactic protein 2)				
SCYB10	$\rm NM_001565$	Small inducible cytokine subfamily B (Cys-X-Cys), member 10	-2.53	0.0046	3.07	0.0003
SDS	NM 006843	Serine dehydratase	-1.02	0.0031	2.89	0.0001
SEMA4D	NM_{006378}	Sema domain, immunoglobulin do-	-1.20	0.0168	1.60	0.0003
5		main (Ig), transmembrane domain (TM) and short cytoplasmic domain, (se	1.20	010100	1.00	0.0000
SLC9A3R2	$\rm NM_004785$	Solute carrier family 9 (sodi- um/hydrogen exchanger), isoform 3 regulatory factor 2	1.20	0.0257	-1.45	0.0085
SLUG	BC014890	Slug homolog, zinc finger protein (chicken)	1.58	0.0236	-2.74	0.0015
SOD2	NM 000636	Superoxide dismutase 2. mitochondrial	-2.02	0.0034	6.23	0.0000
ST14	M_{021978}	Suppression of tumorigenicity 14 (co-	1.29	0.0111	-1.48	0.0005
		lon carcinoma, matriptase, epithin)				
					näch	ste Seite

Tabelle 24.: Bekannte Gene, die sowohl durch IL-1 β als auch durch Birb 796 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

	Gen-Symbol	GenBank	Gen-Beschreibung	Regulation durch			
		Zugangs-Nr.		Birb	796	IL-	-1β
				$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
ľ	STAT1	NM_007315	Signal transducer and activator of	-1.00	0.0194	1.42	0.0047
			transcription 1, 91kD				
	STEAP	NM_{012449}	Six transmembrane epithelial antigen	-2.05	0.0045	2.74	0.0446
			of the prostate				
	TED	NM_{015686}	TED protein	-2.75	0.0036	5.89	0.0001
	TEX12	NM_{031275}	Testis expressed sequence 12	1.33	0.0040	-2.25	0.0001
	THEG	NM_{016585}	Testicular haploid expressed gene	-1.11	0.0008	1.32	0.0009
	TIMP3	NM_{000362}	Tissue inhibitor of metalloproteinase	-1.62	0.0256	1.21	0.0462
			3 (Sorsby fundus dystrophy, pseudoin-				
			flammatory)				
	TNFAIP3	NM_{006290}	Tumor necrosis factor, alpha-induced	-1.05	0.0262	1.95	0.0001
			protein 3				
	TNFRSF11B	NM_{002546}	Tumor necrosis factor receptor super-	-2.06	0.0020	3.35	0.0001
			family, member 11b (osteoprotegerin)				
	TRA1	NM_{003299}	Tumor rejection antigen (gp96) 1	-1.56	0.0171	1.05	0.0066
	TRIM22	NM_{006074}	Tripartite motif-containing 22	-1.05	0.0417	1.67	0.0036
	TUBB	NM_{001069}	Tubulin, beta polypeptide	1.77	0.0035	-2.42	0.0000
	TXNDC	AL080080	Thioredoxin domain-containing	-1.03	0.0027	1.06	0.0066
	UBE2L6	NM_{004223}	Ubiquitin-conjugating enzyme E2L 6	-1.85	0.0067	2.90	0.0004
	WARS	NM_{004184}	Tryptophanyl-tRNA synthetase	-2.10	0.0087	2.13	0.0097

Tabelle 24.: Bekannte Gene, die sowohl durch IL-1 β als auch durch Birb 796 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Tabelle 25.: Bekannte Gene, die sowohl durch IL-1 β als auch durch ML 3595 reguliert werden.

 $\log_2 R$ gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierten Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulation durch		
	Zugangs-Nr.		ML	3595	IL	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
ALDH8A1	NM 022568	Aldehyde dehydrogenase 8 family,	-1.01	0.0193	1.47	0.0035
	—	member A1				
Clorf19	AF288394	Chromosome 1 open reading frame 19	1.09	0.0059	-1.44	0.0009
CCNA1	NM_{003914}	Cyclin A1	1.92	0.0003	1.64	0.0007
CLCA3	NM_004921	Chloride channel, calcium activated, family member 3	-1.31	0.0017	1.99	0.0017
CLTB	NM 007097	Clathrin, light polypeptide (Lcb)	-1.93	0.0147	1.08	0.0060
CORO1A	$NM^{-}007074$	Coronin, actin binding protein, 1A	1.27	0.0315	-1.16	0.0027
CPSF1	NM_013291	Cleavage and polyadenylation specific factor 1, 160kD subunit	1.76	0.0033	-2.06	0.0029
CRABP1	NM 004378	Cellular retinoic acid binding protein 1	-1.45	0.0038	4.23	0.0009
FACVL1	NM_003645	Fatty-acid-Coenzyme A ligase, very long-chain 1	-1.10	0.0146	1.51	0.0087
FKBP9	BC011872	FK506 binding protein 9 (63 kD)	1.27	0.0305	-2.22	0.0040
GATA1	NM_002049	GATA binding protein 1 (globin tran- scription factor 1)	-1.38	0.0178	2.76	0.0014
GPX4	$\rm NM_002085$	Glutathione peroxidase 4 (phospholi- pid hydroperoxidase)	1.02	0.0297	-2.49	0.0006
HES7	NM_032580	Hairy and enhancer of split 7 (Droso- phila)	2.00	0.0004	-2.23	0.0008
HOMER-3	NM_004838	Homer, neuronal immediate early ge- ne. 3	2.62	0.0180	-3.81	0.0043
ID2B	M96843	Striated muscle contraction regulatory	-1.08	0.0190	3.51	0.0000
IL-1H1	NM 019618	Interleukin-1 homolog 1	-1.81	0.0006	4.54	0.0000
KRTHA7	M_{003770}	Keratin, hair, acidic, 7	-4.03	0.0152	4.07	0.0036
MPL	NM 005373	Myeloproliferative leukemia virus on-	-1.63	0.0141	3.25	0.0006
		cogene	-		-	
NFKBIA	NM 020529	Nuclear factor of kappa light polypep-	-1.10	0.0467	5.09	0.0000
	—	tide gene enhancer in B-cells inhibitor,				
		arhua			näch	ste Seite

Gen-Symbol	GenBank	Gen-Beschreibung	Regulation durch			
	Zugangs-Nr.		ML	3595	IL	-1β
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
NUP160	NM_015231	Nucleoporin 160kD	-2.69	0.0029	2.87	0.0031
RAB5C	NM_004583	RAB5C, member RAS oncogene fami- ly	-1.25	0.0415	4.73	0.0000
RGS13	NM 002927	Regulator of G-protein signalling 13	2.84	0.0051	-2.94	0.0097
SHARP	NM_015001	SMART/HDAC1 associated repressor protein	2.80	0.0106	-2.58	0.0051
SLC9A3R1	NM_004252	Solute carrier family 9 (sodi- um/hydrogen exchanger), isoform 3 regulatory factor 1	-3.83	0.0055	4.07	0.0042
SLC9A3R2	$\rm NM_004785$	Solute carrier family 9 (sodi- um/hydrogen exchanger), isoform 3 regulatory factor 2	1.07	0.0297	-1.45	0.0085
SOD2	NM 000636	Superoxide dismutase 2, mitochondrial	-1.49	0.0094	6.23	0.0000
SST	NM_{001048}	Somatostatin	1.65	0.0356	-2.18	0.0088
ST14	NM_021978	Suppression of tumorigenicity 14 (co- lon carcinoma, matriptase, epithin)	1.32	0.0015	-1.48	0.0005
TNFRSF6B	NM_016434	Tumor necrosis factor receptor super- family, member 6b, decoy	2.34	0.0003	-2.37	0.0006

Tabelle 25.: Bekannte Gene, die sowohl durch IL-1 β als auch durch ML 3595 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Tabelle 26.: Bekannte Gene, die von IL-1 β , SB203580, Birb 796 und ML 3595 gemeinsam reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierte Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	Gen-Beschreibung	$\log_2 R$			
	Zugangs-Nr.		IL-1 β	SB203580	Birb 796	ML 3595
RAB5C	$\rm NM_004583$	RAB5C, member RAS oncogene family	4.73	-4.59	-4.65	-1.25
KRTHA7	NM 003770	Keratin, hair, acidic, 7	4.07	-2.37	-3.53	-4.03
NUP160	NM_{015231}	Nucleoporin 160kD	2.87	-2.27	-2.51	-2.69
MPL	NM_005373	Myeloproliferative leukemia virus oncogene	3.25	-2.26	-3.20	-1.63
FACVL1	NM_003645	Fatty-acid-Coenzyme A ligase, very long	1.51	-1.72	-1.01	-1.10
SOD2	NM_000636	Superoxide dismutase 2, mitochon- drial	6.23	-1.60	-2.02	-1.49
RHEB2	NM 005614	Ras homolog enriched in brain 2	1.44	-1.13	-1.74	-1.55
FKBP9	NR 003949	FK506 binding protein 9 (63 kD)	-2.22	1.05	1.50	1.27
HOMER-3	NM_004838	Homer, neuronal immediate early gene, 3	-3.81	1.89	2.76	2.62
CPSF1	NM_013291	Cleavage and polyadenyl. specific factor 1	-2.06	2.69	1.95	1.76

A.2.1.3. Listen ausgewählter Gene

Tabelle 27.: **EZM-assoziierte Gene, die durch IL-1** β und/oder durch **SB203580 reguliert werden.** log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierten Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulation durch		
	Zugangs-Nr.		IL	IL-1 β		03580
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
IL-1 β - und S	B203580-koregul	ierte Gene				
COL4A6	$\rm NM_033641$	Collagen, type IV, alpha 6	1.43	0.0081	-1.52	0.0227
nächste Seite						

Gen-Symbol	GenBank	Gen-Beschreibung		 Regulati	on durch	
Gen Symbol	Zugangs-Nr.	den Besenreibung	IL	-1β	SB2	03580
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
ITGA2B	NM_000419	Integrin, alpha 2b (platelet glycopro-	2.01	0.0009	-1.65	0.0265
	—	tein IIb of IIb/IIIa complex, antigen				
		CD41B)				
MMP13	NM_{002427}	Matrix metalloproteinase 13 (collagen-	6.07	0.0008	-3.77	0.0003
		ase 3)				
NOS2A	NM_{000625}	Nitric oxide synthase 2A (inducible,	4.56	0.0022	-2.46	0.0027
		hepatocytes)				
IL-1 β -regulier	te Gene					
ADAMTS10	AF163762	A disintegrin-like and metalloprotease	2.56	0.0026	-0.63	0.2995
		(reprolysin type) with thrombospon-				0.2000
		din type 1 motif, 10				
ADAMTS3	AB002364	A disintegrin-like and metalloprotease	1.25	0.0036	0.59	0.4865
		(reprolysin type) with thrombospon-				
		din type 1 motif, 3				
AMELY	NM_{001143}	Amelogenin (Y chromosome)	1.77	0.0004	-0.62	0.1752
APP	NM_{000484}	Amyloid beta (A4) precursor protein	-3.03	0.0019	-0.11	0.8866
		(protease nexin-II, Alzheimer disease)				
BMP2	NM_{001200}	Bone morphogenetic protein 2	1.84	0.0006	-0.42	0.2025
BMP3	NM_{001201}	Bone morphogenetic protein 3 (osteo-	1.47	0.0225	-0.35	0.4542
		genic)				
BMPR2	NM_{001204}	Bone morphogenetic protein receptor,	2.53	0.0014	-1.29	0.3890
CD 11	1 1051505	type II (serine/threenine kinase)	0.05	0.0000	1 00	0.000
CD44	AJ251595	CD44 antigen (homing function and	2.25	0.0000	1.09	0.2007
ODU11	NIM 099CC4	Indian blood group system)	0.97	0.0001	0.07	0 4114
CDHII	NM_055004	(actachlast)	-2.37	0.0001	0.97	0.4114
CDUS	NM 001706	(osteoblast) Cadharin & turna 2	1 15	0.0075	0.44	0.2662
CEBPB	NM_{005104}	CCAAT/onbancor binding protoin	2.15	0.0075	-0.44	0.3003 0.1765
CEDI D	1000134	(C/EBP) beta	2.41	0.0105	-0.59	0.1705
CILP	NM 003613	Cartilage intermediate laver protein.	-1.09	0.0147	0.92	0.2774
0.111		nucleotide pyrophosphohydrolase	1.00	010111	0.02	0.2.1.1
COL10A1	NM 000493	Collagen, type X, alpha 1(Schmid me-	-1.35	0.0022	0.53	0.2566
	-	taphyseal chondrodysplasia)				
COL11A1	NM 001854	Collagen, type XI, alpha 1	-1.74	0.0009	-1.02	0.0713
COL2A1	NM_{001844}	Collagen, type II, alpha 1 (prima-	-2.34	0.0013	0.10	0.7861
	—	ry osteoarthritis, spondyloepiphyseal				
		dysplasia, congenital)				
COL4A2	AK025912	Collagen, type IV, alpha 2	-1.16	0.0039	0.98	0.0714
COL5A1	NM_{000093}	Collagen, type V, alpha 1	-2.17	0.0003	0.67	0.1303
COL5A2	NM_{000393}	Collagen, type V, alpha 2	-1.68	0.0435	1.35	0.3399
COL6A1	NM_{001848}	Collagen, type VI, alpha 1	-1.21	0.0010	0.20	0.4371
CRABP1	NM_{004378}	Cellular retinoic acid binding protein 1	4.23	0.0009	0.78	0.5620
CTGF	NM_001901	Connective tissue growth factor	-5.29	0.0000	0.63	0.0727
CTSG	NM_001911	Cathepsin G	1.69	0.0088	0.49	0.5025
CTSS	AK024855	Cathepsin S	1.87	0.0003	-0.59	0.4006
CYR61 DVDZ	NM_001554	Cysteine-rich, angiogenic inducer, 61	-1.03	0.0249	-0.20	0.5372
DKFZ	AF245505	Adlican	-3.34	0.0000	-0.08	0.7655
D00411922	NM 002665	Figelin (collegen/fibringgon domain	1.45	0 0002	0.50	0.2664
LON9	11111 003009	containing) 3 (Hakata antigon)	1.40	0.0003	0.59	0.3004
FCFR9	NM 022028	Fibroblast growth factor receptor 2	2.36	0 0000	0.74	0 1576
1.01.112	101M_025028	(bacteria-expressed kinase keratinocy-	-2.30	0.0009	0.74	0.1570
		te growth factor recentor				
FLJ14440	AF251057	Thrombospondin	2.05	0.0011	-0.38	0.7204
FLRT1	NM 013280	Fibronectin leucine rich transmembra-	-1.96	0.0029	2.03	0.0028
		ne protein 1				
HIP	AY009951	Hedgehog-interacting protein	1.25	0.0003	-0.19	0.6021
HRH2	NM_{022304}	Histamine receptor H2	-1.00	0.0045	0.35	0.2018
ICAM1	$\rm NM_000201$	Intercellular adhesion molecule 1	4.16	0.0000	0.58	0.5515
		(CD54), human rhinovirus receptor				
					näcł	nste Seite

Tabelle 27.: **EZM-assoziierte Gene, die durch IL-1** β und / oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gen-Symbol	GenBank	Gen-Beschreibung		Regulation	on durch	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zugangs-Nr.		IL	-1β	SB20	03580
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
$ I.11 NM_00041 Interleukin 11 1.23 0.0066 0.0664 0.052 0.3587 II.1B NM_000576 Interleukin 13 1.13 0.0025 0.25 0.3587 II.1B NM_001586 Interleukin 1 homolog 1 0.454 0.0000 0.21 0.8689 II.2 NM_001586 Interleukin 23, alpha subunit p19 1.80 0.0001 1.35 0.0575 II.6 NM_000586 Interleukin 23, alpha subunit p19 1.80 0.0001 1.35 0.0575 II.6 NM_000591 Intergrin, alpha 11 0.47 0.0000 1.0.135 0.0575 II.6 NM_000212 Integrin, beta 3 (platelet glycoprotein II.8 0.0310 0.03 0.3841 II.7GB5 NM_000212 Integrin, beta 3 (platelet glycoprotein II.8 0.0310 0.03 0.3841 II.7GB5 NM_00212 Integrin, beta 3 (platelet glycoprotein II.8 0.030 0.03 0.9340 II.7GB5 NM_00212 Integrin, beta 5 (platelet glycoprotein II.8 0.0310 0.03 0.3841 II.7GB5 NM_00212 Integrin, beta 5 (platelet glycoprotein II.8 0.0310 0.03 0.9340 II.7GB5 NM_002210 Kallmann syndrome 1 sequence 1.02 0.0109 0.70 0.1552 I.AMR1 AK05591 Laminin receptor 1 (67kD, ribosomal -1.60 0.0002 0.02 0.9549 protein SA) II.6 NM_002309 Leukemia inhibitory factor (cholinergic 4.47 0.0003 0.03 0.3603 II.7M NM_002383 Matrilin 2 -1.12 0.0138 0.5 0.8564 MATN4 NM_00338 Matrilin 2 -1.12 0.0138 0.5 0.8564 MATN4 NM_00338 Matrilin 2 -1.12 0.0138 0.72 0.0861 (membrane-inserted) (membrane-inserted) MMP1 NM_00242 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 (membrane-inserted) (membrane-inserted) NM_00242 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 (membrane-inserted) NM_00259 Nuclear factor of factor receptor 1.67 0.0001 0.46 0.02247 (membrane-inserted) NM_00269 Matrix metalloproteinase 17 1.22 0.0138 0.17 0.7415 phah 0.0529 Proteglycan 1, secretory granule 3.6 0.0003 0.01 0.079 protein 2 NM_00269 Plateit-derived growth factor receptor 1.67 0.0001 0.46 0.02247 (membrane-inserted) (membrane-inserted) NM_00259 Plateit-derived growth factor receptor 1.96 0.0031 0.079 0.0002 Protein inhibitor of activated STAT3 1.32 0.0066 0.0049 0.0799 Protein NM_00268 Plasmingen activator, yurkinase and cyclocysense) (cyrs-XcyN) ember 11 creceptin 2 0.0014 0.749 0.2990 (Cyrs-XcyN) ember 11 creceptine $	IFI27	NM_{005532}	Interferon, alpha-inducible protein 27	2.47	0.0004	-0.59	0.4012
	IL11	NM 000641	Interleukin 11	1.23	0.0066	-0.86	0.0545
	IL13	$M^{-}002188$	Interleukin 13	1.13	0.0025	-0.25	0.3587
$ II-IIII NM_001618 Interleukin-1 homolog 1 4.54 0.0000 0.21 0.8869 Interleukin 2 3.42 0.0001 -0.91 0.5188 III-23A NM_00058 Interleukin 23, alpha submit p19 1.80 0.0001 -0.91 0.5188 III-23A NM_00050 Interleukin 6 (interform, beta 2) 7.54 0.0005 1.00 0.1515 IRF1 NM_002198 Integrin, alpha 11 -347 0.0005 0.109 0.3789 ITGB3 NM_000212 Imtegrin, beta 3 (platelet glycoprotein 1.18 0.0310 0.03 0.9341 III-3 artigen CD61) III-18 0.0310 0.038 0.58 0.1650 (XAL1 NM_000216 Kalman syndrome 1 sequence -1.02 0.0109 0.70 0.1595 III-18 0.0002 0.02 0.020 0.0549 JIII-18 0.0002 0.020 0.020 0.020 0.024 0.0369 JIII-18 0.0002 0.020 0.0549 JIII-18 0.0002 0.020 0.0549 JIII-18 0.0002 0.020 0.020 0.0549 JIII-18 NM_00239 Laminin incegtor 1 (67kD, ribosomal -1.02 0.0113 0.30 0.3503 IIII-2 -1.02 0.0138 0.05 0.8564 JIII-2 NM_000428 Latent transforming growth factor be-t-1.19 0.0013 0.30 0.3503 Matrilln 2 -1.02 0.0138 0.05 0.8564 MATN4 NM_003833 Matrilln 4 -1.18 0.0073 -0.89 0.0649 MMP1 NM_002421 Matrix metalloproteinase 10 (strome-JIII 0.0013 0.30 0.066 0.0634 al collagenase) MMP1 NM_002421 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 (membrane-inserted) NMP2 NM_006600 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 (membrane-inserted) NM_02523 Natrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 (membrane-inserted) NM_02552 Nuclear factor of lappa light polypep-5.09 0.0000 0.41 0.7745 tap glava 0.0009 Protein inhibitor of activated STAT3 1.32 0.0066 -0.94 0.0009 Protein factor of sequencies 1.53 0.0013 -0.93 0.0399 JIII-2140 NM_002638 Prostingiona citicator, runkinase 1.67 0.0019 0.000 0.0000 JII 0.7745 tap glava 0.0009 Protein factor of sequencies 1.53 0.0013 -0.72 0.0861 (membrane-inserted) NM_002639 Protein factor of sequencies 1.55 0.0037 0.01 0.9797 mecan) State 1.50 0.0013 -0.46 0.2247 (membrane-inserted) State 1.55 0.0033 -0.10 0.9797 (mecan) Protein inhibitor of activated STAT3 JII 0.0014 -0.49 0.2890 (Cys-Cys), membra 1.50 0.0013 -0.46 0.22480 (Cys-Cys), membra 1.50 0.0033 -0.10 0.0799 JIII 0.2200 Protein jab polyp$	IL1B	$M^{-}000576$	Interleukin 1, beta	1.94	0.0000	0.02	0.9669
	IL-1H1	$M^{-}019618$	Interleukin-1 homolog 1	4.54	0.0000	0.21	0.8689
	IL2	NM_{000586}	Interleukin 2	3.42	0.0001	-0.91	0.5188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IL23A	NM_{016584}	Interleukin 23. alpha subunit p19	1.80	0.0001	-1.35	0.0575
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IL6	NM_000600	Interleukin 6 (interferon beta 2)	7 54	0.0005	1.00	0 1515
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IBF1	MM_{002198}	Interferon regulatory factor 1	5.62	0.0000	-1.00	0.0595
$\begin{split} & \text{ITGB3} & \text{NM}_000212 & \text{Integrin, phra11} & \text{itegrin, phra11} & \text{itegrin} & \text{itegrin, phra11} & \text{itegrin} $	ITC A11	AF100681	Interior regulatory factor 1	2.47	0.0000	-1.51	0.0000
$\begin{split} & \text{IrGBs} & \text{NM}_{0}^{-000212} & \text{imeginf, beta 5} (patchet gycoprotein 1.18 0.0010 0.03 0.03 0.034) \\ & \text{IrTGB5} & \text{NM}_{0}^{-002213} & \text{Integrin, beta 5} & -1.30 0.0038 0.58 0.1650 \\ & \text{KAL1} & \text{AK055991} & \text{Laminin receptor 1} (67\text{KD, ribosomal} -1.60 0.0002 0.02 0.9549 \\ & \text{protein SA}) & -1.60 0.0003 0.03 0.03 0.9460 \\ & \text{differentiation factor} & -1.19 0.0013 0.03 0.03503 \\ & \text{Latent transforming growth factor be-} & -1.19 0.0013 0.03 0.03503 \\ & \text{Latent transforming growth factor be-} & -1.19 0.0013 0.03 0.03503 \\ & \text{MATN2} & \text{NM}_{0}00242 & \text{Latent transforming growth factor be-} & -1.19 0.0013 0.03 0.03503 \\ & \text{MATN4} & \text{NM}_{0}03833 & \text{Matrilin 4} & -1.18 0.0073 -0.89 0.0649 \\ & \text{MMP1} & \text{NM}_{0}02421 & \text{Matrix metalloproteinase 1} (interstiti- 6.06 0.00001 0.66 0.0634 \\ & \text{al collagenase}) \\ & \text{MMP10} & \text{NM}_{0}02425 & \text{Matrix metalloproteinase 10} (strome- 1.23 0.0215 -0.78 0.2627 \\ & \text{lysin 2}) \\ & \text{MMP17} & \text{NM}_{0}06690 & \text{Matrix metalloproteinase 17} & 1.12 0.0138 -0.72 0.0861 \\ & (membrane-inserted) \\ & \text{MMP24} & \text{NM}_{0}06690 & \text{Matrix metalloproteinase 24} -1.07 0.0015 0.46 0.2247 \\ & (membrane-inserted) \\ & \text{NM}_{0}02529 & \text{Nuclear factor of kappa light polypep-tide gene enhancer in B-cells inhibitor, alpha olypeptide reception 0.0001 0.41 0.7745 \\ & \text{ide gene enhancer in B-cells inhibitor, 0.0011 0.459 0.6009 \\ & \text{PLAU} & \text{NM}_{0}02529 & \text{Protocalherin 20} & -1.96 0.0013 0.17 0.7415 \\ & \text{tor, alpha polypeptide} \\ & \text{PIAS3} & \text{NM}_{0}026259 & \text{Protocalherin 20} & \text{Protocyranule 3.36 0.0003} -0.02 0.9792 \\ & \text{PGFRA} & \text{NM}_{0}02658 & \text{Plastender in brither of activated STAT3} & 1.29 0.0014 -0.49 0.2980 \\ & (\text{cys-X-Cys), member 11 \\ & \text{Secreted protein , actic, cyckine subfamily B} 1.29 0.0014 & -0.49 0.2980 \\ & \text{Cyrostaglandin G} (H synthase and cy-clossyngenase) \\ & \text{STAT1} & \text{NM}_{0}02458 & \text{Sparc}(\text{stonectin}) \\ & \text{Sparc}(\text{stonectin}) \\ & \text{Sparc}(\text{stonectin}) \\ & \text{Sparc}(\text{stonectin}) \\ & \text{Spard}(\text{stonectin}) \\ & \text{Sparc}($	ITGAII ITCD2	AF 109001 NM 000212	Integrin, arpita 11	-3.47	0.0000	0.19	0.3789
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11609	NM_000212	IIIa, antigen CD61)	1.10	0.0310	0.05	0.9541
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ITGB5	NM_{002213}	Integrin, beta 5	-1.30	0.0038	0.58	0.1650
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KAL1	NM_{000216}	Kallmann syndrome 1 sequence	-1.02	0.0109	0.70	0.1592
LIF NM_002309 Leukemia inhibitory factor (cholinergic differentiation factor) 4.47 0.0003 0.03 0.9460 LTBP2 NM_000428 Latent transforming growth factor be- ta binding protein 2 -1.19 0.0013 0.30 0.3503 MATN2 NM_002380 Matrilin 2 -1.02 0.0138 0.05 0.8564 MATN4 NM_002321 Matrix metalloproteinase 10 (strome- lysin 2) -1.12 0.0215 -0.78 0.2627 MMP10 NM_002425 Matrix metalloproteinase 10 (strome- lysin 2) 1.12 0.013 0.46 0.2247 MMP17 NM_016155 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 (membrane-inserted) NFKBIA NM_020529 Nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor, alpha -1.85 0.0375 0.01 0.9797 PCDH20 NM_02843 Protocadherin 20 4.74 0.0013 0.17 0.7415 PLA1 MM_006099 Protein inhibitor of activated STAT3 1.32 0.0066 -0.94 0.0709 <tr< td=""><td>LAMR1</td><td>AK055991</td><td>Laminin receptor 1 (67kD, ribosomal protein SA)</td><td>-1.60</td><td>0.0002</td><td>0.02</td><td>0.9549</td></tr<>	LAMR1	AK055991	Laminin receptor 1 (67kD, ribosomal protein SA)	-1.60	0.0002	0.02	0.9549
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LIF	NM_002309	Leukemia inhibitory factor (cholinergic differentiation factor)	4.47	0.0003	0.03	0.9460
MATN2 NM_002380 Matrilin 2 -1.02 0.0138 0.05 0.8564 MATN4 NM_003833 Matrilin 4 -1.18 0.0073 -0.89 0.0649 MMP1 NM_002421 Matrix metalloproteinase 1 (interstitial al collagenase) 0.0215 -0.78 0.2627 MMP10 NM_002425 Matrix metalloproteinase 10 (strome-lysin 2) 0.0118 -0.72 0.0861 MMP17 NM_016155 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 MMP24 NM_006690 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 MrKBIA NM_020529 Nuclear factor of kappa light polypep-tide gene enhancer in B-cells inhibitor, alpha -1.07 0.0010 0.41 0.775 OGN NM_023014 Ostcoglycin (ostcoinductive factor, mimecan) -1.96 0.0013 0.17 0.7415 PDGFRA NM_002628 Platelet-derived growth factor receptrom clinibitor of activated STAT3 1.32 0.0066 -0.94 0.0709 PLAU NM_002727 Proteoglycan 1, secretory g	LTBP2	NM_000428	Latent transforming growth factor be-	-1.19	0.0013	0.30	0.3503
MATNA NM_002833 Matriin 4 -1.18 0.0073 -0.89 0.0649 MMP1 NM_002421 Matrix metalloproteinase 1 (interstiti- al collagenase) 6.06 0.0001 0.66 0.0634 MMP10 NM_002425 Matrix metalloproteinase 10 (strome- lysin 2) 1.23 0.0215 -0.78 0.2627 MMP17 NM_016155 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 MMP24 NM_006690 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 membrane-inserted)	MATN2	NM 002380	Matrilin 2	-1.02	0.0138	0.05	0.8564
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MATN4	NM_002822	Matrilin 4	-1.02	0.0138	0.00	0.8504
MMP1 NM_002425 Matrix metalloproteinase 1 (interstitue 6.06 0.0001 0.06 0.0001 0.063 MMP10 NM_002425 Matrix metalloproteinase 10 (strome- lysin 2) 1.23 0.0215 -0.78 0.2627 MMP17 NM_016155 Matrix metalloproteinase 17 1.12 0.0138 -0.72 0.0861 MMP24 NM_006690 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 MMP24 NM_006690 Matrix metalloproteinase 24 -1.07 0.0015 0.46 0.2247 MFKBIA NM_020529 Nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor, alpha -1.85 0.0375 0.01 0.9797 PCDH20 NM_032014 Osteoglycin (osteoinductive factor, mi- capha polypeptide -1.86 0.0013 0.17 0.7415 PIAS3 NM_006206 Platelet-derived growth factor recep- tor, alpha polypeptide -1.96 0.0013 0.01 0.999 0.0902 PRG1 NM_00272 Proteoglycan (is synthase (Cys-X-Cys), member 11 3.67 0.0003 -0.02	MAIN4 MMD1	NM_003633	Matrin matallametainaaa 1 (intenstiti	-1.10	0.0073	-0.69	0.0049
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MMP1	NM_002421	al collagenase)	0.00	0.0001	0.00	0.0634
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMP10	NM_{002425}	Matrix metalloproteinase 10 (strome- lysin 2)	1.23	0.0215	-0.78	0.2627
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMP17	$\rm NM_016155$	Matrix metalloproteinase 17 (membrane-inserted)	1.12	0.0138	-0.72	0.0861
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MMP24	NM_006690	Matrix metalloproteinase 24 (membrane-inserted)	-1.07	0.0015	0.46	0.2247
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NFKBIA	NM_020529	Nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor,	5.09	0.0000	0.41	0.7745
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGN	NM_033014	Osteoglycin (osteoinductive factor, mi- mecan)	-1.85	0.0375	0.01	0.9797
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCDH20	NM 022843	Protocadherin 20	4.74	0.0001	-0.89	0.6099
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PDGFRA	NM_{006206}	Platelet-derived growth factor recep-	-1.96	0.0013	0.17	0.7415
PIAS3 NM_006099 Protein inhibitor of activated STAT3 1.32 0.0066 -0.94 0.0709 PLAU NM_002658 Plasminogen activator, urokinase 1.67 0.0019 0.90 0.0902 PRG1 NM_002727 Proteoglycan 1, secretory granule 3.36 0.0003 -0.02 0.9792 PTGS2 NM_000963 Prostaglandin-endoperoxide synthase 7.77 0.0002 -1.56 0.3090 2 (prostaglandin G/H synthase and cy-clooxygenase)			tor, alpha polypeptide		0.00-0		
PLAU NM_002658 Plasminogen activator, urokinase 1.67 0.0019 0.90 0.0002 PRG1 NM_002727 Proteoglycan 1, secretory granule 3.36 0.0003 -0.02 0.9792 PTGS2 NM_000963 Prostaglandin-endoperoxide synthase 7.77 0.0002 -1.56 0.3090 2 (prostaglandin G/H synthase and cy-clooxygenase) 2 (prostaglandin G/H synthase and cy-clooxygenase) - - - - - 0.3947 SCYA2 NM_002982 Small inducible cytokine A2 (monocy-tecony clooxygenase) 4.55 0.0063 -0.19 0.3947 SCYB11 NM_005409 Small inducible cytokine subfamily B 1.29 0.0014 -0.49 0.2980 (Cys-X-Cys), member 11 (cys-X-Cys), member 11 - <t< td=""><td>PIAS3</td><td>NM 006099</td><td>Protein inhibitor of activated STAT3</td><td>1.32</td><td>0.0066</td><td>-0.94</td><td>0.0709</td></t<>	PIAS3	NM 006099	Protein inhibitor of activated STAT3	1.32	0.0066	-0.94	0.0709
PRG1 NM_002727 Proteoglycan 1, secretory granule 3.36 0.0003 -0.02 0.9792 PTGS2 NM_00963 Prostaglandin-endoperoxide synthase 7.77 0.0002 -1.56 0.3090 2 (prostaglandin G/H synthase and cy- clooxygenase) 2 (prostaglandin G/H synthase and cy- clooxygenase) 7.77 0.0002 -1.56 0.3990 SCYA2 NM_002982 Small inducible cytokine A2 (monocy- te chemotactic protein 1) 4.55 0.0063 -0.19 0.3947 SCYB11 NM_005409 Small inducible cytokine subfamily B (Cys-X-Cys), member 11 1.29 0.0014 -0.49 0.2980 SPARC NM_003118 Secreted protein, acidic, cysteine-rich (osteonectin) -1.74 0.0024 0.61 0.4917 SPOCK NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_00528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS4 NM_003248 Thrombospondin 2 -2.31	PLAU	MM_{002658}	Plasminogen activator urokinase	1.62	0.0019	0.90	0.0902
PTGS2 NM_000963 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cy- clooxygenase) 7.77 0.0002 -1.56 0.3090 SCYA2 NM_002982 Small inducible cytokine A2 (monocy- clooxygenase) 4.55 0.0063 -0.19 0.3947 SCYB11 NM_005409 Small inducible cytokine subfamily B (Cys-X-Cys), member 11 1.29 0.0014 -0.49 0.2980 SPARC NM_003118 Secreted protein, acidic, cysteine-rich (osteonectin) -1.74 0.0024 0.61 0.4917 SPOCK NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	PBG1	MM_{002727}	Proteoglycan 1 secretory granule	3 36	0.0013	-0.02	0.0302
SCYA2 NM_002982 Small inducible cytokine A2 (monocy- clooxygenase) 4.55 0.0063 -0.19 0.3947 SCYA2 NM_002982 Small inducible cytokine A2 (monocy- te chemotactic protein 1) 1.29 0.0014 -0.49 0.2980 SCYB11 NM_005409 Small inducible cytokine subfamily B (Cys-X-Cys), member 11 1.29 0.0014 -0.49 0.2980 SPARC NM_003118 Secreted protein, acidic, cysteine-rich (osteonectin) -1.74 0.0024 0.61 0.4917 SPOCK NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_007315 Signal transducer and activator of transcription 1, 91kD 1.42 0.0047 1.65 0.1795 TFPI2 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS1 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THBS4 NM_003248 Thrombospondin 4 -1.15 0.0036 -	PTCS2	NM_000963	Prostaglandin-endoperovide synthese	7 77	0.0003	-1.56	0.3090
SCYA2 NM_002982 Small inducible cytokine A2 (monocy-technological cytokine A2 (mo	11052	NM_000905	2 (prostaglandin G/H synthase and cy-	1.11	0.0002	-1.50	0.5090
SCYB11 NM_005409 Small inducible cytokine subfamily B 1.29 0.0014 -0.49 0.2980 SPARC NM_003118 Secreted protein, acidic, cysteine-rich (osteonectin) -1.74 0.0024 0.61 0.4917 SPARC NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_007315 Signal transducer and activator of transcription 1, 91kD 1.42 0.0047 1.65 0.1795 TFPI2 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8164	SCYA2	NM_002982	Small inducible cytokine A2 (monocy-	4.55	0.0063	-0.19	0.3947
SPARC NM_003118 Secreted protein, acidic, cysteine-rich (osteonectin) -1.74 0.0024 0.61 0.4917 SPOCK NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_007315 Signal transducer and activator of transcription 1, 91kD 1.42 0.0047 1.65 0.1795 TFPI2 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8164	SCYB11	NM_005409	te chemotactic protein 1) Small inducible cytokine subfamily B	1.29	0.0014	-0.49	0.2980
SPOCK NM_004598 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) -1.85 0.0043 1.49 0.0831 STAT1 NM_007315 Signal transducer and activator of transcription 1, 91kD 1.42 0.0047 1.65 0.1795 TFPI2 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS2 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	SPARC	NM_003118	(Cys-X-Cys), member 11 Secreted protein, acidic, cysteine-rich	-1.74	0.0024	0.61	0.4917
domains proteoglycan (testican) STAT1 NM_007315 Signal transducer and activator of transcription 1, 91kD 1.42 0.0047 1.65 0.1795 TFPI2 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS2 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	SPOCK	NM_004598	(osteonectin) Sparc/osteonectin, cwcv and kazal-like	-1.85	0.0043	1.49	0.0831
transcription 1, 91kD TFPI2 NM_006528 Tissue factor pathway inhibitor 2 4.58 0.0003 1.11 0.2220 THBS1 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS2 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	STAT1	NM_007315	domains proteoglycan (testican) Signal transducer and activator of	1.42	0.0047	1.65	0.1795
THBS1 NM_003246 Thrombospondin 1 -1.71 0.0007 -0.15 0.7141 THBS2 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	TFPI2	NM 006528	transcription 1, 91kD Tissue factor pathway inhibitor 2	4.58	0.0003	1.11	0.2220
THBS2 NM_003247 Thrombospondin 2 -2.31 0.0015 0.24 0.6145 THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	THBS1	NM 003246	Thrombospondin 1	-1.71	0.0007	-0.15	0.7141
THBS4 NM_003248 Thrombospondin 4 -1.11 0.0273 1.73 0.2374 THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	THBS2	NM_{003247}	Thrombospondin 2	-2.31	0.0015	0.24	0.6145
THY1 AK057865 Thy-1 cell surface antigen -1.15 0.0036 -0.22 0.8166	THBS4	M_{003248}	Thrombospondin 4	-1.11	0.0273	1.73	0.2374
	THY1	AK057865	Thy-1 cell surface antigen	-1.15	0.0036	-0.22	0.8166
nachste Seite			· · · · · · · · · · · · · · · · · · ·			näch	ste Seite

Tabelle 27.: **EZM-assoziierte Gene, die durch IL-1** β und / oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulati	on durch	
Ū	Zugangs-Nr.	~	IL	-1β [¯]	SB203580	
	0		$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
TIMP3	NM_000362	Tissue inhibitor of metalloproteinase	1.21	0.0462	-0.20	0.6204
		3 (Sorsby fundus dystrophy, pseudoin- flammatory)				
TNFRSF11B	NM_002546	Tumor necrosis factor receptor super- family, member 11b (osteoprotegerin)	3.35	0.0001	-1.08	0.1935
TNFRSF1A	NM_001065	Tumor necrosis factor receptor super- family, member 1A	-1.11	0.0049	0.30	0.6672
VCAM1	NM 001078	Vascular cell adhesion molecule 1	2.28	0.0003	-0.91	0.2218
VEGF	$AF0\overline{2}2375$	Vascular endothelial growth factor	1.80	0.0013	-0.10	0.8752
WNT5A	NM_003392	Wingless-type MMTV integration site family, member 5A	1.05	0.0040	0.62	0.2720
SB203580-reg	ulierte Gene					
ADAM15	$\rm NM_003815$	A disintegrin and metalloproteinase domain 15 (metargidin)	0.28	0.2927	-1.09	0.0279
CRTL1	NM 001884	Cartilage linking protein 1	0.66	0.2882	-1.76	0.0068
FN1	$NM^{-}002026$	Fibronectin 1	0.98	0.4600	-1.15	0.0284
GPC3	NM_{004484}	Glypican 3	0.88	0.2506	-1.41	0.0350
IBSP	NM_004967	Integrin-binding sialoprotein (bone	0.44	0.5514	1.04	0.0134
ITGA9	NM 002207	Integrin, alpha 9	0.55	0.1721	-1.64	0.0265
JUN	NM_002228	V-iun sarcoma virus 17 oncogene ho-	0.78	0.0634	-1.11	0.0468
0011		molog (avian)	0.10	0.0001		010 100
MADH2	NM_005901	MAD, mothers against decapentaple- gic homolog 2 (Drosophila)	-0.75	0.0275	1.49	0.0152
NID	$\rm NM_002508$	Nidogen (enactin)	0.09	0.8643	1.16	0.0499
TGFBI	NM_000358	Transforming growth factor, beta- induced, 68kD	-1.03	0.1692	-2.19	0.0332

Tabelle 27.: **EZM-assoziierte Gene, die durch IL-1** β und / oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

Tabelle 28.: Zytoskelett-assoziierte Gene, die durch IL-1 β und/oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an. IL-1 β -stimulierte Zellen wurden mit unbehandelten Kontrollzellen verglichen, inhibierte und stimulierte Zellen wurden mit stimulierte Zellen ohne Inhibitorzugabe verglichen.

Gen-Symbol	GenBank	Gen-Beschreibung		Regulati	on durch	
	Zugangs-Nr.		IL	-1β	SB20	03580
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
IL-1 β - und SI	B203580-koregul	ierte Gene				
CDC42BPB	NM 006035	CDC42 binding protein kinase beta	-1.70	0.0140	2.64	0.0046
EMAPL	NM_004434	Echinoderm microtubule-assoc. protein-like	-3.38	0.0353	3.40	0.0199
ITGA2B	NM_000419	Integrin, alpha 2b (platelet glycoprote- in IIb)	2.01	0.0009	-1.65	0.0265
ITGB3BP	NM 014288	Integrin beta 3 binding protein	2.62	0.0369	1.18	0.0195
KRTHA7	$M^{-}003770$	Keratin, hair, acidic, 7	4.07	0.0036	-2.37	0.0151
LASP1	$NM^{-}006148$	LIM and SH3 protein 1	-1.29	0.0007	1.22	0.0180
PDLIM1	$M^{-}020992$	PDZ and LIM domain 1 (elfin)	-1.50	0.0253	1.16	0.0280
SGCB	$\mathrm{NM}^-000232$	Sarcoglycan, beta	-3.46	0.0016	2.66	0.0087
SGCG	$NM^{-}000231$	Sarcoglycan, gamma	-0.99	0.0176	2.64	0.0114
SLC9A3R1	NM_004252	Solute carrier family 9, isoform 3 regul. factor 1	4.07	0.0042	-2.89	0.0127
TUBB	$\rm NM_001069$	Tubulin, beta polypeptide	-2.42	0.0000	1.68	0.0136
IL-1 β -regulier	rte Gene					
ACTG1	NM 001614	Actin, gamma 1	-1.37	0.0169	0.19	0.6019
ARPC1B	$\mathrm{NM}^{-}005720$	Actin related protein $2/3$ complex	-1.95	0.0043	0.66	0.1861
CALD1	$M^{-}033138$	Caldesmon 1	-1.78	0.0406	2.60	0.0630
CORO1A	$\mathrm{NM}^{-}007074$	Coronin, actin binding protein, 1A	-1.16	0.0027	0.21	0.5415
CORO1C	$AL1\overline{6}2070$	Coronin, actin binding protein, 1C	-1.27	0.0042	0.92	0.0656
					näch	ste Seite

CPAP FHL1FHL2 FHOS $\operatorname{GCP6}$ ITGA11 ITGB3 ITGB5 KIAA0429KIF3A KIF4A KIF9 KRT1 KRT9 LMNA LRRFIP1 MYO10MYO1A MYO1D MYO6 PFN2PKP2PLS3 PTK2SNTG1 SNTG2 SPTA1SPTAN1 TEKT3 TPM2VIL1 VIL2

ACTL7A CYLC2DOCK1 EPB41 FN1HARP11 HINT IQGAP2

Gen-Symbol	GenBank Zugangs-Nr.	Gen-Beschreibung	IL·	Regulati -1β	on durch SB20)3580
	0.0		$\log_2 R$	p-Wert	$\log_2 R$	p-Wert
CPAP	AF139625	Centrosomal P4.1-associated protein	-1.47	0.0196	0.49	0.4782
FHL1	NM_{001449}	Four and a half LIM domains 1	-4.62	0.0015	-0.25	0.7558
FHL2	NM_{001450}	Four and a half LIM domains 2	-1.82	0.0006	0.30	0.7733
FHOS	NM_{013241}	$\rm FH1/FH2$ domain-containing protein	-1.12	0.0145	0.59	0.6090
GCP6	NM_{020461}	Gamma-tubulin complex component	-1.01	0.0288	0.85	0.1714
ITGA11	AF109681	Integrin, alpha 11	-3.47	0.0000	0.19	0.3789
ITGB3	NM_000212	Integrin, beta 3 (platelet glycoprotein IIIa)	1.18	0.0310	0.03	0.9341
ITGB5	NM_{002213}	Integrin, beta 5	-1.30	0.0038	0.58	0.1650
KIAA0429	NM_{014751}	KIAA0429 gene product	1.22	0.0060	0.00	0.9907
KIF3A	NM_{007054}	Kinesin family member 3A	1.33	0.0411	0.30	0.6365
KIF4A	NM_{012310}	Kinesin family member 4A	1.45	0.0057	0.77	0.4722
KIF9	NM_{022342}	Kinesin family member 9	1.10	0.0306	0.99	0.2190
KRT1	NM_{006121}	Keratin 1	-1.25	0.0365	1.30	0.1535
KRT9	NM_{000226}	Keratin 9	-1.14	0.0257	0.90	0.1822
LMNA	NM_{005572}	Lamin A/C	-1.22	0.0034	-0.04	0.8723
LRRFIP1	NM_004735	Leucine rich repeat interacting protein 1	1.02	0.0021	0.82	0.3608
MYO10	NM_012334	Myosin X	1.42	0.0034	-0.08	0.9164
MYO1A	NM_{005379}	Myosin IA	1.50	0.0010	-0.17	0.5354
MYO1D	AK026920	Myosin ID	-1.68	0.0020	0.23	0.5831
MYO6	NM_{004999}	Myosin VI	-1.75	0.0356	0.47	0.5685
PFN2	NM_{053024}	Profilin 2	-1.15	0.0029	0.05	0.8977
PKP2	NM_{004572}	Plakophilin 2	1.16	0.0007	-0.58	0.0683
PLS3	NM_{005032}	Plastin 3 (T isoform)	-1.17	0.0051	-0.15	0.8436
PTK2	NM_{005607}	PTK2 protein tyrosine kinase 2	1.00	0.0330	-0.01	0.9802
SNTG1	NM_{018967}	Syntrophin, gamma 1	-2.30	0.0095	0.01	0.9854
SNTG2	NM_{018968}	Syntrophin, gamma 2	3.05	0.0101	0.06	0.9029
SPTA1	NM_{003126}	Spectrin, alpha, erythrocytic 1	-3.31	0.0002	0.07	0.9021
SPTAN1	NM_{003127}	Spectrin, alpha, non-erythrocytic 1	1.92	0.0063	0.20	0.7146
TEKT3	NM_031898	Tektin 3	1.69	0.0057	-0.29	0.8006
TPM2	NM_003289	Tropomyosin 2 (beta)	-1.08	0.0132	0.08	0.8628
VILI	NM_007127	Villin 1	1.21	0.0074	-0.22	0.5805
V1L2 SB203580_rem	NM_003379	Villin 2 (ezrin)	1.65	0.0006	-0.06	0.9239
DD205000-regi		A 313				0.0000
ACTL7A	NM_006687	Actin-like 7A	-0.87	0.0896	1.50	0.0302
CYLC2	NM_001340	Cylicin 2	0.24	0.6874	-1.22	0.0197
DOCKI	NM_001380	Dedicator of cyto-kinesis 1	0.12	0.6211	-1.24	0.0102
EPB41	NM_004437	Erythrocyte membrane protein band 4.1	1.12	0.5030	-1.24	0.0437
FN1	$\rm NM_002026$	Fibronectin 1	0.98	0.4600	-1.15	0.0284
HARP11	NM 018477	Hypothalamus protein HARP11	0.01	0.9700	3.67	0.0211
HINT	AK054976	Histidine triad nucleotide binding pro-	-0.89	0.2425	2.09	0.0343

Tabelle 28.: Zytoskelett-assoziierte Gene, die durch IL-1 β und / oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

	10101 001010	1 Ibroncoulli 1	0.00	0.1000	1.10	0.0101
HARP11	NM 018477	Hypothalamus protein HARP11	0.01	0.9700	3.67	0.0211
HINT	AK054976	Histidine triad nucleotide binding pro-	-0.89	0.2425	2.09	0.0343
	NM OOCC99	tem IO motif containing CTD constitution	0.72	0.9400	1.09	0.0499
IQGAP2	NM_000033	rQ motif containing G i Pase activating protein 2	0.73	0.3400	-1.93	0.0428
KNSL5	NM_004856	Kinesin-like 5 (mitotic kinesin-like pro- tein 1)	-0.19	0.6919	1.83	0.0154
KRT7	NM 005556	Keratin 7	0.37	0.4057	-1.16	0.0105
KRTHB6	NM_{002284}	Keratin, hair, basic, 6 (monilethrix)	-0.26	0.4843	-1.27	0.0073
MAP1LC3A	NM_{032514}	Microtubule-associated protein 1 light	-0.34	0.0947	-2.55	0.0098
		chain 3a				
MAP7	NM_003980	Microtubule-associated protein 7	0.22	0.3392	-2.28	0.0060
MAPRE2	NM_014268	Microtubule-associated protein, RP/EB family	0.70	0.1652	-3.06	0.0047
MARKL1	AB058763	MAP/microtubule affinity-regulating kinase like 1	-0.52	0.4627	1.22	0.0218
MLF1	NM 022443	Myeloid leukemia factor 1	0.56	0.3194	-1.05	0.0272
NF2	AF369658	Neurofibromin 2 (bilateral acoustic	0.03	0.9526	2.38	0.0072
		neuroma)				
					näch	ste Seite

Gen-Symbol	GenBank	Gen-Beschreibung		Regulation durch			
	Zugangs-Nr.		IL	IL-1 β		03580	
			$\log_2 R$	p-Wert	$\log_2 R$	p-Wert	
PKP3	NM_007183	Plakophilin 3	0.57	0.0929	1.84	0.0104	
RNF28	AF361946	Ring finger protein 28	-0.63	0.2947	1.35	0.0066	
VIM	NM_{003380}	Vimentin	-1.54	0.0774	1.91	0.0009	

Tabelle 28.: Zytoskelett-assoziierte Gene, die durch IL-1 β und / oder durch SB203580 reguliert werden. log₂ R gibt den Zweier-Logarithmus des Expressionsverhältnisses zwischen Probe und jeweiliger Kontrolle an.

A.2.2. Beeinflusste biologische Prozesse und Zellkomponenten

Tabelle 29.: Biologische Prozesse, an denen signifikant viele IL-1 β -regulierte Gene beteiligt sind (p < 0.05)</th>und denen in der "Gene Ontology" mindestens zehn Gene zugeordnet sind.GOID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

		Anzahl invol	vierter Gene	
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
immune system process	< 0.0001	60	506	2376
immune response	< 0.0001	47	372	6955
positive regulation of phosphorylation	0.0001	9	31	42327
positive regulation of phosphate metabolic process	0.0002	9	33	45937
positive regulation of phosphorus metabolic process	0.0002	9	33	10562
gas transport	0.0004	5	11	15669
regulation of cytokine biosynthetic process	0.0005	11	52	42035
phosphate transport	0.0005	11	52	6817
organ development	0.0006	78	821	48513
response to wounding	0.0006	36	306	9611
positive regulation of MAPKKK cascade	0.0006	6	17	43410
skeletal development	0.0007	23	168	1501
cytokine biosynthetic process	0.0010	11	56	42089
cytokine metabolic process	0.0012	11	57	42107
positive regulation of protein amino acid phosphorylation	0.0012	7	26	1934
response to stimulus	0.0018	123	1453	50896
response to chemical stimulus	0.0021	40	377	42221
inorganic anion transport	0.0022	16	109	15698
positive regulation of cytokine biosynthetic process	0.0026	8	37	42108
response to external stimulus	0.0028	45	443	9605
antigen processing and presentation of peptide antigen	0.0030	4	10	48002
positive regulation of cellular metabolic process	0.0031	31	278	31325
peptidyl-serine modification	0.0031	5	16	18209
positive regulation of macromolecule biosynthetic process	0.0034	9	47	10557
positive regulation of peptidyl-tyrosine phosphorylation	0.0041	5	17	50731
peptidyl-amino acid modification	0.0042	12	76	18193
peptidyl-tyrosine modification	0.0043	8	40	18212
macromolecule biosynthetic process	0.0045	40	393	9059
inflammatory response	0.0046	24	204	6954
positive regulation of metabolic process	0.0053	31	288	9893
response to hydrogen peroxide	0.0054	5	18	42542
hydrogen peroxide catabolic process	0.0063	4	12	42744
cytokine production	0.0071	12	81	1816
positive regulation of protein modification process	0.0074	7	35	31401
localization of cell	0.0075	30	283	51674
cell motility	0.0075	30	283	6928
hydrogen peroxide metabolic process	0.0086	4	13	42743
peptidyl-serine phosphorylation	0.0086	4	13	18105
regulation of defense response	0.0087	7	36	31347
extracellular matrix organization and biogenesis	0.0087	7	36	30198
calcium-mediated signaling	0.0087	5	20	19722
integrin-mediated signaling pathway	0.0089	8	45	7229
regulation of MAPKKK cascade	0.0091	6	28	43408
anatomical structure development	0.0101	106	1291	48856
hemopoiesis	0.0101	16	1201	30097
· · · · · · · · · · · · · · · · · · ·			näch	ste Seite

		Anzahl involv	vierter Gene	
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
negative regulation of biological process	0.0103	68	776	48519
biological process	0.0106	484	7062	8150
biological adhesion	0.0107	47	503	22610
cell adhesion	0.0107	47	503	7155
protein homooligomerization	0.0108	5	21	51260
cartilage development	0.0109	6	29	51216
positive regulation of cellular protein metabolic process	0.0111	9	56	32270
regulation of macromolecule biosynthetic process	0.0113	14	107	10556
response to oxidative stress	0.0115	10	66	6979
germ cell development	0.0115	4	14	7281
placenta development	0.0115	4	14	1890
positive regulation of T cell activation	0.0117	7	38	50870
oxygen and reactive oxygen species metabolic process	0.0117	7	38	6800
negative regulation of cellular process	0.0122	64	729	48523
anion transport	0.0125	16	130	6820
multicellular organismal metabolic process	0.0132	5	22	44236
response to reactive oxygen species	0.0132	5	22	302
response to stress	0.0153	61	697	6950
positive regulation of biosynthetic process	0.0154	9	59	9891
regulation of protein amino acid phosphorylation	0.0154	7	40	1932
system development	0.0156	93	1131	48731
regulation of inflammatory response	0.0160	5	23	50727
negative regulation of cell proliferation	0.0162	19	168	8285
localization	0.0168	136	1736	51179
enzyme linked receptor protein signaling pathway	0.0170	22	204	7167
positive regulation of protein metabolic process	0.0171	9	60	51247
hemopoietic or lymphoid organ development	0.0174	16	135	48534
antigen processing and presentation	0.0175	7	41	19882
hormone secretion	0.0175	6	32	46879
regulation of actin polymerization and/or depolymerizati-	0.0175	6	32	8064
on				
tissue remodeling	0.0181	11	81	48771
leukocyte differentiation	0.0187	10	71	2521
anatomical structure morphogenesis	0.0197	52	587	9653
actin polymerization and/or depolymerization	0.0198	7	42	8154
regulation of localization	0.0204	14	115	32879
regulation of phosphorylation	0.0209	9	62	42325
myeloid cell differentiation	0.0209	9	62	30099
regulation of biosynthetic process	0.0215	15	127	9889
regulation of cell proliferation	0.0216	34	357	42127
regulation of biological quality	0.0228	56	645	65008
isoprenoid metabolic process	0.0232	4	17	6720
regulation of actin filament length	0.0233	6	34	30832
translation	0.0240	23	223	6412
taxis	0.0243	10	74	42330
I-kappaB kinase/NF-kappaB cascade	0.0243	10	74	7249
chemotaxis	0.0243	10	74	6935
negative regulation of hormone secretion	0.0249	3	10	46888
macrophage differentiation	0.0249	3	10	30225
neutrophil chemotaxis	0.0249	3	10	30593
cartilage condensation	0.0249	3	10	1502
regulation of phosphorus metabolic process	0.0252	9	64	51174
regulation of phosphate metabolic process	0.0252	9	64	19220
cell-matrix adhesion	0.0252	9	64	7160
cell proliferation	0.0253	49	556	8283
response to virus	0.0256	8	54	9615
T cell activation	0.0265	10	75	42110
T cell differentiation	0.0266	6	35	30217
transmembrane receptor protein tyrosine kinase signaling	0.0268	16	142	7169
pathway	0.0050	0	05	91500
cen-substrate adhesion	0.0276	9	65	31589
			nach	ste Seite

Tabelle 29.: Biologische Prozesse, an denen signifikant viele IL-1 β -regulierte Gene beteiligt sind (p < 0.05). GO ID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

		Anzahl invol	vierter Gene	
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
positive regulation of nucleobase, nucleoside, nucleotide	0.0279	21	202	45935
and nucleic acid metabolic process				
positive regulation of transcription	0.0280	20	190	45941
multicellular organismal macromolecule catabolic process	0.0283	4	18	44266
multicellular organismal macromolecule metabolic process	0.0283	4	18	44259
multicellular organismal protein catabolic process	0.0283	4	18	44254
multicellular organismal protein metabolic process	0.0283	4	18	44268
protein digestion	0.0283	4	18	44256
collagen catabolic process	0.0283	4	18	30574
Wnt receptor signaling pathway, calcium modulating pa-	0.0283	4	18	7223
thway				
immune system development	0.0284	16	143	2520
regulation of cellular protein metabolic process	0.0289	17	155	32268
homeostasis of number of cells	0.0301	6	36	48872
regulation of cellular component size	0.0301	6	36	32535
biomineral formation	0.0302	9	66	31214
ossification	0.0302	9	66	1503
regulation of peptidyl-tyrosine phosphorylation	0.0308	5	27	50730
growth	0.0324	18	169	40007
regulation of alpha-beta T cell activation	0.0326	3	11	46634
interleukin-6 biosynthetic process	0.0326	3	11	42226
sterol metabolic process	0.0329	9	67	16125
response to biotic stimulus	0.0336	16	146	9607
defense response	0.0339	32	344	6952
regulation of actin cytoskeleton organization and biogene-	0.0340	6	37	32956
sis		_		
regulation of response to external stimulus	0.0340	6	37	32101
developmental growth	0.0341	4	19	48589
generation of a signal involved in cell-cell signaling	0.0342	8	57	3001
maintenance of localization	0.0355	5	28	51235
1 cell proliferation	0.0355	5	28	42098
response to other organism	0.0359	12	101	51707
negative regulation of developmental process	0.0367	24	245	51093
regulation of actin filament-based process	0.0382	6	38	32970
peptidyl-tyrosine phosphorylation	0.0382	6	38	18108
positive regulation of lymphocyte activation	0.0385	7	48	51251
positive regulation of immune system process	0.0390	11	91	2684
multicellular organismal catabolic process	0.0404	4	20	44243
collagen metabolic process	0.0404	4	20	32963
regulation of actin filament depolymerization	0.0404	4	20	30834
actin filament depolymerization	0.0404	4	20	30042
pyrimidine nucleotide metabolic process	0.0404	4	20	0220
positive regulation of signal transduction	0.0409	12	103	9967
	0.0422	10	81	50817
DIOOD coagulation	0.0422	10	81	(090
regulation of 1 cell activation	0.0424	(49	50863
positive regulation of cell differentiation	0.0424	1	49	45597
protein oligomerization	0.0427	0	39	51259 51700
developmental maturation	0.0427	120		21700
centuar macromolecule metabolic process	0.0432	152	1754	44200
protein kinase cascade	0.0448	24	200	(243
and-apoptosis	0.0455 0.0476	14	128	1550
regulation of cell growth	0.0470	11	94 506	1000
regulation of developmental process	0.0479	40	020 540	12001 50709
hope remodeling	0.0487	40	540 79	00793 46940
direction	0.0469	9	12	40049
шясыны	0.0469	Э	12	1990

Tabelle 30.: Biologische Prozesse, an denen signifikant viele Birb 796-regulierte Gene beteiligt sind (p < 0.05) und denen in der "Gene Ontology" mehr als ein Gen zugeordnet ist. GO ID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

Anzahl involvierter Gene **Biologischer** Prozess p-Wert reguliert GO IDgesamt 0.0003282376immune system process 506immune response 0.000522372 6955 0.0006 9615 response to virus 7 54response to stimulus 0.0007 59145350896 antigen processing and presentation of peptide antigen via 0.0010 24743 8 MHC class I cell differentiation 0.001546109530154cellular developmental process 0.001546 1095 48869 0.00151948589 developmental growth 4 regulation of developmental process 0.001627540507930.0016 8632 apoptotic program 7 63 response to biotic stimulus 0.002111 1469607 antigen processing and presentation of peptide antigen 0.002148002 3 10developmental process 0.002273 1984 32502 tube development 0.00298 89 35295 oxygen and reactive oxygen species metabolic process 0.0035 $\mathbf{5}$ 38 6800 12 regulation of nitrogen compound metabolic process 0.003751171 3 cell development 0.00393478048468 tissue development 0.0040 132059888 response to wounding 0.004217306 9611 STAT protein nuclear translocation 0.00437262 2 4 0.0043 $\mathbf{2}$ 4 30947 regulation of vascular endothelial growth factor receptor signaling pathway 82 2361 regulation of biological process 0.005650789 0.0058 lung development 4 2730324 respiratory tube development 0.00584 2730323 response to other organism 0.00628 101 51707 0.0065growth 11 16940007 caspase activation 0.0066 4 286919 embryonic heart tube development 0.0070 2 $\mathbf{5}$ 35050 positive regulation of nitric oxide biosynthetic process 0.0070 $\mathbf{2}$ 54542929cellular component disassembly 0.00754 22411positive regulation of caspase activity 0.00752943280 4 apoptosis 0.0079245216915cell structure disassembly during apoptosis 0.0087 3 166921 250.00898219 cell death 5550.0089 2555516265 death programmed cell death 0.0089 2452612501 biological regulation 0.0102 90 269165007 positive regulation of nitrogen compound metabolic pro-0.01042 $\mathbf{6}$ 51173cess 2 positive regulation of oxidoreductase activity 0.0104 $\mathbf{6}$ 51353regulation of vasodilation 0.01042 6 42312 2 thyroid gland development 0.0104 6 30878 tissue regeneration 0.01042 6 42246 platelet activation 0.0121 3 18 30168 UTP biosynthetic process 0.01432 7 6228 2 746051 UTP metabolic process 0.0143regulation of muscle cell differentiation 2 0.0143 7 51147 regulation of nitric oxide biosynthetic process 0.01432 7 45428regulation of defense response 0.016143631347 0.0166 1324551093negative regulation of developmental process regulation of caspase activity 0.017737 43281 4 regulation of endopeptidase activity 0.0177 $\mathbf{4}$ 37 52548 regulation of peptidase activity 0.01774 37 52547regulation of apoptosis 0.017918 385 42981 20443 9605 response to external stimulus 0.0182sensory perception of mechanical stimulus 0.01847 99 50954sensory perception of sound 0.0184 99 76057 regulation of cellular process 0.018674219150794... nächste Seite

 $\label{eq:constraint} {\rm Tabelle~30.:~Biologische~Prozesse,~an~denen~signifikant~viele~Birb~796-regulierte~Gene~beteiligt~sind~(p<0.05).}$

GO ÍD gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

		Anzahl involv	ierter Gene	
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
CTP biosynthetic process	0.0187	2	8	6241
CTP metabolic process	0.0187	2	8	46036
pyrimidine ribonucleoside triphosphate biosynthetic pro-	0.0187	2	8	9209
cess				
pyrimidine ribonucleoside triphosphate metabolic process	0.0187	2	8	9208
regeneration	0.0187	2	8	31099
wound healing	0.0193	7	100	42060
regulation of programmed cell death	0.0197	18	389	43067
mitochondrion organization and biogenesis	0.0235	5	60	7005
GTP biosynthetic process	0.0236	2	9	6183
GTP metabolic process	0.0236	2	9	46039
branched chain family amino acid catabolic process	0.0236	2	9	9083
fat cell differentiation	0.0236	2	9	45444
release of cytochrome c from mitochondria	0.0236	2	9	1836
multi-organism process	0.0239	10	178	51704
organ development	0.0240	32	821	48513
response to stress	0.0241	28	697	6950
antigen processing and presentation	0.0249	4	41	19882
defense response	0.0260	16	344	6952
positive regulation of cellular process	0.0283	27	676	48522
pyrimidine nucleoside triphosphate metabolic process	0.0290	2	10	9147
vascular endothelial growth factor receptor signaling pa-	0.0290	2	10	48010
thway				
regulation of endocytosis	0.0297	3	25	30100
negative regulation of biological process	0.0314	30	776	48519
innate immune response	0.0319	5	65	45087
positive regulation of cellular component organization and	0.0337	4	45	51130
biogenesis				
positive regulation of innate immune response	0.0348	2	11	45089
pyrimidine ribonucleotide biosynthetic process	0.0348	2	11	9220
pyrimidine ribonucleotide metabolic process	0.0348	2	11	9218
regulation of innate immune response	0.0348	2	11	45088
sensory perception of pain	0.0348	2	11	19233
vesicle organization and biogenesis	0.0348	2	11	16050
regulation of cell proliferation	0.0350	16	357	42127
negative regulation of cellular process	0.0399	28	729	48523
skeletal development	0.0405	9	168	1501
DNA fragmentation during apoptosis	0.0410	2	12	6309
branched chain family amino acid metabolic process	0.0410	2	12	9081
natural killer cell activation	0.0410	2	12	30101
regulation of oxidoreductase activity	0.0410	2	12	51341
spermatid development	0.0410	2	12	7286
nitrogen compound metabolic process	0.0411	12	250	6807
regulation of blood pressure	0.0414	4	48	8217
epithelial cell differentiation	0.0437	3	29	30855
positive regulation of biological process	0.0449	28	737	48518
regulation of biological quality	0.0465	25	645	65008
regulation of protein catabolic process	0.0476	2	13	42176
spermatid differentiation	0.0476	2	13	48515
regulation of molecular function	0.0483	15	343	65009
cellular biosynthetic process	0.0497	21	525	44249
	0.0 -0 1	==	00	

 Tabelle 31.: Biologische Prozesse, an denen signifikant viele ML 3595-regulierte Gene beteiligt sind (p < 0.05) und denen in der "Gene Ontology" mehr als ein Gen zugeordnet ist.</td>

 GO ID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

		Anzahl involvierter Gene		
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
Notch signaling pathway	0.0013	4	33	7219
			näch	ste Seite

0.05). GO ID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

		Anzahl involv	ierter Gene	
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
striated muscle development	0.0028	5	66	14706
embryonic skeletal morphogenesis	0.0072	2	9	48704
skeletal muscle development	0.0075	4	53	7519
embryonic skeletal development	0.0089	2	10	48706
cell development	0.0093	20	780	48468
regulation of G-protein coupled receptor protein signaling	0.0094	3	30	8277
pathway				
cell communication	0.0112	44	2200	7154
cellular developmental process	0.0150	25	1095	48869
cell differentiation	0.0150	25	1095	30154
muscle fiber development	0.0156		36	48747
skeletal muscle fiber development	0.0156	3	36	48741
skeletal morphogenesis	0.0174	2	14	48705
somitogenesis	0.0199	2	15	1756
regulation of neuron differentiation	0.0225	2	16	45664
localization of cell	0.0228	9	284	51674
cell motility	0.0238	9	284	6928
developmental process	0.0200	30	108/	32502
small CTPase modiated signal transduction	0.0242	59	1984	7264
nogative regulation of signal transduction	0.0240	1	195	0068
regulation of signal transduction	0.0200	4	202	9908
regulation of signal transduction	0.0278	9	192	49549
response to hydrogen peroxide	0.0262	2	10	42042
regulation of cell differentiation	0.0266	5 1	117	40090
myoplast migration	0.0292	1	2	31431
regulation of timing of cell differentiation	0.0292	1	2	48505
actin nucleation	0.0292	1	2	45010
apocarotenoid metabolic process	0.0292	1	2	43288
retinal metabolic process	0.0292	1	2	42574
retinoic acid metabolic process	0.0292	1	2	42573
regulation of development, heterochronic	0.0292	1	2	40034
regulation of sodium:hydrogen antiporter activity	0.0292	1	2	32415
subpallium development	0.0292	1	2	21544
protein myristoylation	0.0292	1	2	18377
protein amino acid myristoylation	0.0292	1	2	18319
muscle cell migration	0.0292	1	2	14812
male meiosis I	0.0292	1	2	7141
N-terminal protein lipidation	0.0292	1	2	6498
N-terminal protein myristoylation	0.0292	1	2	6499
very-long-chain fatty acid metabolic process	0.0292	1	2	38
actin filament polymerization	0.0312	2	19	30041
glial cell differentiation	0.0343	2	20	10001
development of primary male sexual characteristics	0.0376	2	21	46546
multicellular organismal process	0.0377	41	2170	32501
actin cytoskeleton organization and biogenesis	0.0379	5	126	30036
transmission of nerve impulse	0.0382	8	261	19226
regulation of small GTPase mediated signal transduction	0.0390	4	87	51056
segmentation	0.0409	2	22	35282
response to reactive oxygen species	0.0409	2	22	302
muscle development	0.0413	5	129	7517
apoptosis	0.0418	13	521	6915
di-, tri-valent inorganic anion homeostasis	0.0435	1	3	55061
phosphate ion homeostasis	0.0435	1	3	55062
positive regulation of muscle cell differentiation	0.0435	1	3	51149
positive regulation of myoblast differentiation	0.0435	1	3	45663
positive regulation of macrophage differentiation	0.0435	1	3	45651
enucleate erythrocyte differentiation	0.0435	1	3	43353
response to exogenous dsRNA	0.0435	1	3	43330
negative regulation of NF-kappaB import into nucleus	0.0435	1	3	42347
induction of programmed cell death by hormones	0.0435	1	3	35081
cellular phosphate ion homeostasis	0.0435	1	3	30643
cellular di-, tri-valent inorganic anion homeostasis	0.0435	1	3	30319
			näch	ste Seite

Tabelle 31.: Biologische Prozesse, an denen signifikant viele ML 3595-regulierte Gene beteiligt sind (p < 0.05).

GO ÍD gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
pancreatic juice secretion	0.0435	1	3	30157
synaptic vesicle docking during exocytosis	0.0435	1	3	16081
protein lipoylation	0.0435	1	3	9249
induction of apoptosis by hormones	0.0435	1	3	8628
cytoplasmic sequestering of NF-kappaB	0.0435	1	3	7253
metabotropic glutamate receptor signaling pathway	0.0435	1	3	7216
response to oxygen radical	0.0435	1	3	305
response to superoxide	0.0435	1	3	303
programmed cell death	0.0446	13	526	12501
Wnt receptor signaling pathway	0.0463	4	92	16055
establishment and/or maintenance of cell polarity	0.0480	2	24	7163

0.05) und denen in der "Gene Ontology" mehr als ein Gen zugeordnet ist. (

GO II) gibt (die 1	Identifikationsnummer	des	Prozesses	in	der	"Gene	Ontology"	Datenbank an.	

	Anzahl involvierter Gene			
Biologischer Prozess	p-Wert	reguliert	gesamt	GO ID
translation	0.0004	18	225	6412
superoxide metabolic process	0.0011	4	15	6801
hemopoietic progenitor cell differentiation	0.0011	2	2	2244
translational elongation	0.0035	3	10	6414
cellular biosynthetic process	0.0036	29	525	44249
sulfate transport	0.0078	3	13	8272
defense response	0.0088	20	344	6952
macromolecule biosynthetic process	0.0099	22	395	9059
biopolymer biosynthetic process	0.0140	4	29	43284
biosynthetic process	0.0195	35	751	9058
regulation of DNA replication	0.0196	3	18	6275
photoreceptor cell maintenance	0.0201	2	7	45494
fear response	0.0201	2	7	42596
endosome organization and biogenesis	0.0201	2	7	7032
negative regulation of protein amino acid phosphorylation	0.0262	2	8	1933
sensory perception of chemical stimulus	0.0332	5	55	7606
sensory perception of smell	0.0346	4	38	7608
oxygen and reactive oxygen species metabolic process	0.0346	4	38	6800
inflammatory response	0.0353	12	204	6954
actin filament bundle formation	0.0404	2	10	51017
cortical cytoskeleton organization and biogenesis	0.0404	2	10	30865
somatic recombination of immunoglobulin gene segments	0.0404	2	10	16447
negative regulation of blood coagulation	0.0483	2	11	30195
negative regulation of DNA replication	0.0483	2	11	8156

Tabelle 33.: Zellkomponenten, an denen signifikant viele IL-1 β -regulierte Gene beteiligt sind (p < 0.05). GO ID gibt die Identifikationsnummer des Prozesses in der "Gene Ontology" Datenbank an.

Zellkomponente	p-Wert	Anzahl invol reguliert	vierter Gene gesamt	GO ID
extracellular region part	< 0.0001	72	542	44421
extracellular matrix part	< 0.0001	17	80	44420
extracellular matrix	< 0.0001	47	226	31012
proteinaceous extracellular matrix	< 0.0001	47	225	5578
extracellular region	< 0.0001	101	1010	5576
collagen	0,0002	9	33	5581
MHC protein complex	0,0007	7	24	42611
cellular component	0,0014	489	7094	5575
			näch	ste Seite

Zellkomponente	p-Wert	reguliert	gesamt	GO ID
cortical actin cytoskeleton	0,0016	5	14	30864
basement membrane	0,0017	10	51	5604
coated pit	0,0024	7	29	5905
cytoplasm	0,0043	242	3195	5737
syntrophin complex	0,0044	2	2	16013
fibrillar collagen	0,0044	4	11	5583
cytosolic part	0,0080	16	124	44445
MHC class I protein complex	0,0086	4	13	42612
collagen type V	0,0127	2	3	5588
eukaryotic translation elongation factor 1 complex	0,0127	2	3	5853
extracellular space	0,0128	35	356	5615
hemoglobin complex	0,0128	3	8	5833
cortical cytoskeleton	0,0132	5	22	30863
cell cortex	0,0198	7	42	5938
receptor complex	0,0204	10	72	43235
proteasome core complex	0,0283	4	18	5839
cytosol	0,0294	32	340	5829
MHC class II protein complex	0,0326	3	11	42613
filamentous actin	0,0388	2	5	31941
collagen type IV	0,0388	2	5	5587
cell cortex part	0,0407	5	29	44448
cytosolic small ribosomal subunit	0,0407	5	29	22627
small ribosomal subunit	0,0424	7	49	15935
actin cytoskeleton	0,0437	17	163	15629

Danksagung

Mein herzlichster Dank gilt allen Mitarbeitern der Sektion Biochemie der Gelenks- und Bindegewebserkrankungen. Sie haben nicht nur zum Gelingen dieser Arbeit sondern auch zu einer äußerst angenehmen Arbeitsatmosphäre beigetragen:

..Herrn Prof. Dr. med. Rolf Brenner für die Überlassung eines hochinteressanten und aktuellen Themas, sein stetes Interesse am Fortgang dieser Arbeit und seine fortwährende und mutmachende Unterstützung nicht nur in Sachen Forschung.

..Herrn Dr. rer. nat. Jörg Fiedler für seine kompetente fachliche Betreuung, seine jederzeit mögliche Ansprechbarkeit, die fruchtbaren und anregenden (nicht nur fachlichen) Diskussionen sowie die unerschütterliche Unterstützung bei der Erstellung von Postern, Vorträgen, Manuskripten und dieser Arbeit. Aber am dankbarsten bin ich für die freundschaftliche und herzliche Zusammenarbeit.

..Frau Dr. biol. hum. Leslie Heckmann, Frau Anja Wildner, Frau Christin Münzberg, Frau Cathrin Hogrefe, Frau Tamara Hein und Herrn Felix Heindl für die angenehme und gute Zusammenarbeit, interessante, produktive oder auch auflockernde Gespräche und die stete Hilfsbereitschaft. Frau Dr. med. Nadine Etzel danke ich darüber hinaus für das Pipettieren von unendlich vielen Taqman-Proben.

..Den technischen Assistenten/innen Frau Christiane Schulz, Herrn Giovanni Ravalli, Frau Gabriele Mettenleiter, Frau Renate Schubert-Schmitt und Frau Brunhilde Amann sowie unserer Sekretärin Claudia Neubrand für ihre Hilfsbereitschaft, die tatkräftige und fleißige Unterstützung bei der praktischen Arbeit und vor allem die freundschaftliche Zusammenarbeit.

Ein weiterer Dank gilt Herrn Prof. Dr. rer. nat. Stefan Laufer für die Bereitschaft, die Zweitbegutachtung dieser Arbeit zu übernehmen, für sein Interesse und die wohlwollende Unterstützung aller Publikationsvorhaben.

Mein Dank gilt auch Herrn Dr. rer. nat. Wolfgang Albrecht, Care Bioscience GmbH, Tübingen, für sein Interesse und seine Diskussionsbereitschaft sowie ihm und seinen Mitarbeitern für die hilfreiche Unterstützung.

Vielen Dank an die Firma Merckle GmbH, Ulm, für die finanzielle Unterstützung.

Zuletzt und am allermeisten möchte ich mich bei meiner Familie bedanken. Vielen Dank an Jürgen, Jana, David und Nathan, die durch ihre liebevolle, ermutigende Unterstützung und ihr Verständnis die Durchführung einer Promotion erst möglich gemacht haben. Dank auch an meine Eltern, die mich auf meinem akademischen Weg stets unterstützt haben.