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Zusammenfassung

In dieser Arbeit wird ein neuer hybrider Ansatz für die automatische Sprach-
erkennung vorgestellt. Dieser Ansatz basiert auf Hidden-Markov-Modellen
(HMM) auf dem Subword-Unit-Level und neuronalen Assoziativspeichern
auf der Wort- und Sprachebene. Der Schwerpunkt der Arbeit ist, ein flexibles
und robustes Spracherkennungssystem unter realen Bedingungen zu entwi-
ckeln und die Erkennungsleistung entsprechend zu verbessern. Der entwi-
ckelte Ansatz besteht aus zwei Teilen: der Subword-Unit-Erkennung, die auf
HMM basiert, und der Worterkennung, die mit neuronalen Assoziativspei-
chern realisiert ist. Die Worterkennung besteht aus Einzelworterkennungs-
und Sprachmodell-Netzwerken.

Das System ist Teil von einem Sprachverarbeitungssystem, das in einen auto-
nomen mobilen Roboter eingebettet ist. Für eine gegebene Sprachäußerung
erkennt das hybride System die Wörter und leitet sie an das Satzverständnis-
Modul weiter, wobei es zufällig generierte Wortrepräsentationen verwen-
det. Um Subword-Unit- und Word-Strings in den neuronalen Assoziativspei-
chern zu verarbeiten, werden binäre spärliche neuronale Repräsentationen
benutzt. Sie sind auch nützlich, um die Mehrdeutigkeiten auf dem Subword-
Unit-Level und Word-Level zu repräsentieren.

Im Rahmen dieser Dissertation werden verschiedene Aspekte des entwickel-
ten hybriden Systems untersucht. Diese Aspekte beinhalten die Repräsen-
tation und die Behandlung der Mehrdeutigkeiten auf verschiedenen Ebe-
nen und die inkrementelle Erweiterung des Wörterbuchs um neue Wörter.
Wegen ggf. falsch ausgesprochener Wörter, Homophone, der Wortgrenzen-
Mehrdeutigkeiten, des Hintergrundgeräusches oder ungenügend vieler Trai-
nings-Daten ergeben sich zwei Typen von Mehrdeutigkeiten während der
HMM Vorverarbeitung. Diese können als die Subword-Units, die falsch oder
nicht von HMM erkannt werden können, definiert werden. Die Fehlertole-
ranz der neuronalen Assoziativspeicher ermöglicht es dem System, die Mehr-
deutigkeit auf dem Subword-Unit-Level zu lösen. Wenn das System die Mehr-
deutigkeit nicht lösen kann, repräsentiert es sie auf der Wortebene, indem
es eine Superposition von allen alternativen Wörtern für die Subword-Unit-
Sequenz generiert. Um diese Mehrdeutigkeit auf der Wortebene zu lösen,
wurde das Einzelworterkennungsnetzwerk um ein anderes Netzwerk aus
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neuronalen Assoziativspeichern (das Sprachmodellnetzwerk) erweitert. Die-
ses verwendet die zusätzliche a-priori-Information über die Wortsequenzen,
die erkannt werden sollen. Für die kontinuierliche Spracherkennung mit gro-
ßem Wörterbuch, steigert das Sprachmodellnetzwerk die Erkennungsperfor-
manz des hybriden Systems erheblich.

Ein wichtiger Aspekt des Hybrid-Systems, das im Rahmen dieser Arbeit un-
tersucht wird, ist das inkrementelle Hinzufügen neuer Wörter im Wörterbuch.
Auf der HMM-Ebene des präsentierten Systems wurden zwei verschiedene
Ansätze für die Verbesserung der Lernperformanz eingesetzt.

Das hybride Spracherkennungssystem wird erfolgreich bei verschiedenen
Erkennungsaufgaben angewendet. Im Vergleich zu anderen auf HMM ba-
sierenden Spracherkennungssystemen sind die Erkennungsergebnisse kon-
kurrenzfähig.



Summary

In this thesis a novel hybrid approach to automatic speech recognition (ASR)
has been proposed. This hybrid system is based on hidden Markov models
(HMMs) on the subword-unit level and neural associative memories (NAMs)
on the word and language levels. The focus of the work is to develop a flex-
ible and robust speech recognition system against real-world environments
and to augment the recognition performance. The developed hybrid sys-
tem consists of two parts: HMM-based subword-unit recognition and NAM
based word recognition, which is also composed of single word recognition
network and language model network.

The developed hybrid system is also a part of a language processing system
embedded in a mobil robot. For a given speech utterance the developed hy-
brid system recognizes words and forwards them to the NAM based sentence
understanding module in the language processing system using randomly
generated binary neural word representations. In order to process subword-
unit and word strings in the NAM based recognition networks, binary sparse
neural representations were utilized, which were also useful to represent am-
biguities on the subword-unit and word levels.

Within the scope of this thesis different features of the developed hybrid sys-
tem were investigated. These features include representation and handling
of ambiguities on different levels, and incremental extension of task vocabu-
lary with novel words. Due to the pronunciation ambiguity, homophones,
word boundary ambiguity, background noise or insufficient training data
two types of ambiguities rose during the HMM preprocessing. These can
be defined as the subword-units that are wrongly recognized or can not be
recognized by HMMs. The fault tolerance ability of NAMs usually enables
the hybrid system to solve the ambiguity on the subword-unit and words
levels. If the hybrid system can not solve the ambiguity then it represents
the ambiguity on the word level generating a superposition of all alternative
words for the subword-unit sequence. In order to solve the ambiguity on the
word level, the single word recognition network was extended by adding a-
nother network of NAMs (language model network) utilizing the additional
priori information on the word sequences to be recognized. For large vo-
cabulary continuous speech recognition, the NAM based language model
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network considerably increases the recognition performance of the hybrid
system.

An important feature of the hybrid system examined in the context of this
work is the incremental adding of novel words to the task vocabulary during
runtime. On the HMM level of the presented hybrid system two slightly
different approaches for improving the learning performance of HMMs have
been proposed and deployed.

The proposed hybrid speech recognition system has been successfully app-
lied to various recognition tasks. Compared to other HMM-based speech
recognition systems in the literature, competitive recognition results were
achieved.
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Chapter 1

Overview

This chapter gives a motivation of the thesis at hand. Research goals are
formulated and the solution approach is outlined. At the end of this chapter
the structure of this work is summarized.

1.1 Motivation

Speech recognition is the process of automatically extracting and determining
linguistic information conveyed by a speech wave using computers. Lin-
guistic information is also called phonetic information such as phonemes
(the minimal unit of sound that has a semantic content) or words. In typi-
cal speech recognition systems, the input speech is compared to stored units
of phonemes or words, and the most likely sequence of units is selected as an
output sequence of phonemes or words of input speech.

With the progress in the development of new algorithms and improved mo-
deling techniques, speech recognition has started to facilitate human-machine
interfaces and has evolved from laboratory systems for isolated speech and
small vocabularies to commercial applications for continuous speech and
large vocabularies. Speech recognition is used in a variety of applications,
from computer control, and speaker verification to dictation systems.

Despite the advances achieved throughout the last decades, existing speech
recognition technologies are still behind the capabilities of the human brain
to understand speech. One popular method dealing with speech recognition
is a statistical approach called hidden Markov models (HMMs). In particular,
recognition systems based on HMMs [80] are effective and allow for good
recognition performance under many circumstances, but suffer from some
limitations such as robustness to variability from speakers and environmen-
tal conditions [96], and, increasing dictionary size.

For example, a word may be uttered differently by the same speaker because
of illnesses or emotions. Typically, females sound different from males. As

1



2 CHAPTER 1. OVERVIEW

do children from adults. Also, there is variability due to dialect and foreign
accent. The speech produced in noise is different from the speech produced
in a silent environment because of the change in speech production.

Starting from the late 1980s, HMMs and artificial neural networks (ANNs)
have been combined within a hybrid architecture and a variety of different
approaches have been proposed in the literature in order to overcome these
limitations [14, 71, 27, 32, 62, 95, 12, 68].

The thesis at hand focuses on the automatic speech recognition system uti-
lising a novel hybrid HMM/neural associative memory (NAM) approach,
which is a single layer ANN, different from the approaches in the literature.
The proposed speech recognition system is a part of a language processing
system for understanding simple command sentences. The hybrid system
processes the speech waveform hierarchically. The speech waveform is first
transformed into speech vectors (e.g. mel frequency cepstral coefficients) and
HMMs use these speech vectors to recognize subword-units. The outputs of
HMMs (subword-units) are then forwarded to NAMs to extract words from
the stream of subword-units. Afterwards, in the language processing system,
the stream of words is processed by an NAM-based language understanding
module responsible for extracting the semantics from the stream of words
with respect to a set of grammatical rules [66, 63].

The reason for extending HMM-based systems with NAMs is to improve
ASR performance by benefiting from the capabilities of NAMs, such as pat-
tern matching, fault-tolerance and learning. NAMs are very useful in real-
world applications that deal with noisy, often incomplete data. Because of
the difficulties mentioned above, for a given speech utterance, the outputs
of HMMs can contain ambiguities, e.g., missing or spurious subword-units.
NAMs might be suitable for solving such ambiguities that occur in the HMM
output. In the presented approach the binary Willshaw model [100] is used for
the NAMs because it is simple to implement. It is highly efficent and useful
in technical applications due to its rapid and fault-tolerant retrieval of stored
patterns.

Within the scope of this research we also address the expansion of the task
vocabulary with novel words. In real-world scenarios it is likely that the
hybrid speech recognition systems have to learn previously unknown-words.
Thus the capability of learning new words is very useful.

One well-established application for the proposed hybrid speech recognition
system is the language understanding system embedded in a robot. For
robots it is essential to be able to recognize the spoken commands and un-
derstand them to fulfill the tasks corresponding to the spoken commands.
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1.2 Research Goals

Speech recognition is difficult due to speaker variability, pronunciation vari-
ability, large set of acceptable words and environmental conditions. These
speech characteristics greatly reduce the performance. Acoustic data are
strongly speaker dependent and this dependence makes the ASR problem
more difficult. The pronunciation variability means that the same word can
be uttered in different ways, i.e. with different phonemes. For most ASR
applications the number of acceptable words is large. Therefore, the search
space of the recognition network is large and complex. The last of these char-
acteristics that reduces recognition accuracy is noise in the acoustic environ-
ment. All these characteristics are big challenges for designing a flexible and
robust ASR system.

The research presented in this thesis was basically motivated by the aim of
developing a speech recognition system that is flexible for speaker and pro-
nunciation variabilities and also robust against environmental noise. There-
fore, the HMM-based speech recognition system is combined with NAM-
based recognition networks in the proposed approach, where HMMs are
used for subword-unit (e.g. phonemes, demi-syllables or syllables) recogni-
tion and NAMs are utilized for word recognition. A word recognition archi-
tecture is developed, which is composed of various interconnected NAMs.

The proposed speech recognition system is also a part of a language pro-
cessing system for understanding simple command sentences. It provides
recognized words to the NAM-based sentence understanding module in the
language processing system using binary neural representations.

An important focus in the presented approach is the handling of ambigui-
ties and their representation for further processing in language recognition
and sentence understanding modules. During subword-unit recognition, for
a given speech utterance, it is possible that missing or (and) (additional) spu-
rious subword-units happen in the HMM output sequence. The task of the
NAM-based recognition networks is to retrieve the correct words from the
HMM output stream. If the address pattern generated from the HMM output
transcription does not strongly address one unique word pattern in NAMs,
then the ambiguity in the address pattern is handled by representing a su-
perposition of all words in question. The superposition of words can be later
handled on upper levels, such as language model or sentence levels to resolve
the ambiguity on the word level using additional inputs,such as a priori in-
formation on the word sequence to be recognized, contextual information or
syntactical information.

Another focus within the scope of this thesis is the application of the pre-
sented approach to large vocabulary speech recognition systems, where the
number of acceptable words is large. For this kind of systems language
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model is a very important in order to increase recognition performance. Be-
cause of this reason the proposed approach is then extended with an NAM-
based language model network.

The last focus in this work is on learning novel words during runtime. The
neural network architecture gives an additional benefit if new word repre-
sentations should be added. Namely the underlying HMMs on the subword-
unit level are reused with minimal or no retraining. If a new word representa-
tion is learned, the NAMs learn which HMM output transcription belongs to
which word, and they can learn this associative relationship even if the HMM
output transcription does not yield the subword-units that a linguist might
expect for a “correct” transcription of the novel word. This eliminates the
requirement of changing the HMMs, which saves a lot of processing power.

1.3 Overview of the Thesis

This thesis is divided into four parts. The first part (chapter 2) describes an in-
troduction of the relevant fields, like ASR, subword-unit-level sentence repre-
sentation, and the theory of associative memories. The second part (chapters
3 and 4) gives theoretical foundations for this work: fundamentals of statisti-
cal speech recognition and the classical theory of binary Willshaw associative
memory. In the third part (chapters 5, 6 and 7) the new hybrid speech recog-
nition approach developed within the scope of this thesis, its extended form
and the learning aspect of the proposed hybrid system are defined. Finally,
the last part (chapter 9) shows different applications of the hybrid system and
the results of the evaluation of the proposed approach.

A typical chapter is composed of an introduction part, which gives informa-
tion on the related work in the literature, a main part, which is concerned
with the relevant or newly developed methods, and a discussion part, which
summarizes the whole chapter.

Chapter 2 is an introduction to ASR, the different types of subword-units
used to represent sentences, and the theory of associative memory. It also
briefly addresses the relevant works in the literature.

Chapter 3 reviews the statistical speech recognition. The fundamentals of
speech recognition are given [81, 80].

Chapter 4 examines the binary Willshaw associative memory [100, 73, 76].
The storage and retrieval processes are explained and the aspect of fault tol-
erance is analyzed.

Chapter 5 presents the novel hybrid HMM/NAM speech recognition approach.
The hybrid approach is composed of two parts: the HMM-based subword-
unit recognition and the NAM-based single word recognition network. These
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parts are explained individually. The aspect of representing ambiguity in the
single word recognition network is analyzed.

Chapter 6 concerns the extension of the hybrid system with an NAM-based
language model network. The aspect of handling ambiguity in the language
model network is given.

Chapter 7 investigates the learning of novel words during runtime.

Chapter 8 introduces the speech corpora which are used during application
and evaluation of the hybrid system.

Chapter 9 first gives an overview of the methods that are used to measure
the performance of the proposed hybrid speech recognition system. Then it
shows different applications of the hybrid system and the results of the eval-
uation of the proposed approach. The proposed hybrid system is also com-
pared to the HMM-based research in the literature in terms of the recognition
performance (word error rate (WER)).

Chapter 10 gives the main contributions of this work.

Chapter 11 discusses the main results of this work.

Appendix A gives the sentences involved in the MirrorBot speech corpus.

Appendix B reviews the basic information theory.
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Chapter 2

Introduction

Automatic speech recognition (ASR) [80, 46, 21] is the process by which a
computer converts spoken words into written words. One major application
area of ASR is human-computer interaction. While many tasks are more effi-
ciently solved with visual or pointing interfaces, speech has the potential to
be a user-friendly interface than the keyboard, for tasks where natural lan-
guage communication is useful, or for which keyboards are not appropriate
(e.g. hands-busy applications).

Speech recognition tasks can be classified in terms of a set of directions. A
first direction of classification is the vocabulary size. Speech recognition is
easier if the number of distinct words to be recognized, such as the digit tasks,
are small. On the other hand, tasks with large vocabularies of roughly 20, 000
to 60, 000 words are much more difficult.

Another direction in speech recognition is how fluent, natural, or conver-
sional the speech is. Isolated word recognition, where there is a small pause be-
tween words, is much easier than continuous speech recognition, where words
run into each other. On the other hand, while reading out loud in read speech
(e.g. the dictation task) is relatively easy, recognizing the speech of two hu-
mans talking to each other, conversational speech, is much harder. When hu-
mans talk to machines, they talk more slowly and more clearly.

A third direction is speaker and accent. A speaker dependent system is a system
where the speech patterns are adapted to a single speaker. Speaker indepen-
dent systems are able to recognize speech from people whose speech it has
never been exposed to before and it is harder than speaker dependent recog-
nition systems.

A final direction is channel and noise. Commercial dictation systems, and
much of the laboratory research in speech recognition, is done with high
quality, head mounted microphones. Head mounted microphones eliminate
the distortion that occurs in a table microphone as the speaker’s head moves
around. Noise of any kind also makes recognition harder. Thus, recognizing

7
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a speaker dictating in a quiet office is much easier than recognizing a speaker
dictating in a noisy car on the highway with the window open.

In the last two decades, speech recognition and understanding technology
have undergone major changes. ASR has evolved from laboratory systems
for isolated speech with small vocabularies to systems for continuous speech
from different speakers with large vocabularies.

State-of-the-art speech recognition systems are usually based on the use of
hidden Markov models (HMMs) [80]. This means that observable events
in the real word (e.g. acoustic observations) are modeled with probability
distributions. However, HMMs suffer from several difficulties; concerning
increasing dictionary size, different speaking styles of speakers, and weak-
nesses to environmental conditions [96]. On the other hand, artificial neural
networks (ANNs) are well known for one of the most powerful methods of
pattern recognition and optimization. In order to overcome these difficul-
ties, ANNs are applied to various ASR applications (e.g. classification of
phonemes or words) [18, 19, 28, 84, 35, 98, 99, 60, 105].

An ANN operates by creating connections between many processing ele-
ments like neurons. These neurons can be simulated by a digital computer.
Each neuron takes many input signals and produces a single output signal
that is typically sent as input to other neurons. The neurons can be fully
or partially interconnected and are typically organized into different layers.
The input layer receives the input and the output layer produces the output.
Usually one or more hidden layers are used in between input and output
layers. An ANN realizes a mapping between an input space and an output
space, which can be specified by learning from a finite set of patterns. Due to
their pattern-matching and learning capabilities, ANNs have proved useful
in a variety of real-world applications that deal with complex, often incom-
plete data. The first of these applications were in pattern recognition and
speech recognition, in particular.

In spite of their ability to classify short-time acoustic-phonetic units (e.g.
phonemes), ANNs were not suitable for ASR, especially with long sequences
of acoustic observations which are required to represent words from a dictio-
nary or whole sentences. This is mainly due to the lack of ability to model
long-term dependencies in ANNs.

Starting from the late 1980s, a variety of hybrid approaches based on HMMs
and ANNs have been introduced to improve the flexibility and performance
of speech recognizers. The goal in these hybrid systems for ASR is to take ad-
vantage of the properties from both HMMs and ANNs. The hybrid systems,
proposed in the literature, were investigated by Trentin and Gori in 1991 [96],
and some of these hybrid systems are briefly given below:

Early approaches were based on ANN architectures that attempted to em-
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ulate HMMs [14, 71]. These approaches strengthened the idea that ANNs
could be effectively used for ASR, but the straight emulation of standard
HMMs did not allow for them to overcome these difficulties.

In the early 1990s, HMMs and ANNs were then combined to take advan-
tage of both approaches [27, 62, 67, 71, 8, 105]. Hybrid HMM/ANN systems
usually delegate to ANN the computation of emission probabilities. It also
inherits from HMM the modeling of words with left-to-right automa and the
Viterbi decoding. In some ANN/HMM hybrids, the output of an ANN is
sent to an HMM for speech recognition [27, 32, 62, 95]. Each output unit of
the ANN is trained to perform a non-parametric estimate of the posterior pro-
bability of a context-dependent HMM state given the acoustic observations
[12, 68]. This approach had a strong influence over a number of following
approaches.

In other approaches [5, 6, 8], the ANN is used as a feature extractor for an
HMM, with the goal to transform a raw input sequence into a low dimen-
sional observation sequence. The ANN can also be effectively used as vector
quantizers for discrete HMMs which assume that a finite alphabet of input
symbols has to be modeled [42, 52].

In this work we will present a new hybrid HMM/NAM approach which is
based on HMMs on the elementary phonetic level and NAMs on the higher
levels, such as word and language levels. An NAM is the realization of an
associative memory in a single layer artificial neural network. The proposed
approach possesses both the advantages of HMMs and NAMs, and enables
us to develop a flexible and robust hybrid speech recognition system. The
rest of this chapter introduces the basics of the relevant fields like automatic
speech recognition, subsymbolic (subword-unit) representation of sentences
and the theory of associative memory.

2.1 Automatic Speech Recognition

An ASR process may be divided into several steps. First, a speaker speaks
some words, generating an audio signal. This signal, which originates in the
analog domain, is received by an automatic speech recognition system. Then
the analog audio signal is converted to a digital representation for processing
by a computer.

In order to characterize the essential information present in the audio signal,
an acoustic processor converts the audio signal in a digital format into acou-
stic features needed to decode the signal into words. For the given acoustic
features X, a recognizer will choose the most probable word sequence Ŵ, by
searching over possible word sequences W:
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Ŵ = argmax
W

p(W)p(X|W). (2.1)

The recognizer depends on two components, the language model P(W) and
the acoustic model P(X|W).

The language model, P(W), assigns probabilities to sequences of words. To
estimate the probability of a sequence of words W = w1, w2, ..., wn Bayes’rule
is applied:

p(w1w2......wn) =
n

∏
i=1

p(wi|w1...wi−1). (2.2)

This allows to estimate the probability of a sequence by iteratively estimating
the probability of the sequences as each new word is introduced in turn. In
practice, this is simplified by recognizing only a few words prior to the word
in question which are needed to estimate the probability, usually two or three.

The acoustic model, P(X|W), characterizes the relationship between the ob-
served acoustic features and the associated words. The acoustic model is
parameterized by a certain number of parameters and acoustic data is used
to estimate these parameters. To train an acoustic model, a sufficient amount
of transcribed speech is required.

2.2 Subword-Units

For large vocabularies containing tens of thousands of words it is not feasible
to provide a separate acoustic model for each word in the vocabulary because
a large amount of training data is needed to build a better word-based sys-
tem. A word based recognizer requires a much larger memory due to storage
of every parameter for every state in every word. Instead, each word is de-
composed into several sub-word units like phonemes or syllables. Then, the
acoustic model of a word is given by the concatenation of the acoustic mod-
els which represent the sub-word units. The mapping between the words
and the corresponding sequences of sub-word units is given by the so-called
pronunciation lexicon (see section 3.2.1).

The pronunciation of a word can be given as a series of symbols that corre-
spond to the individual units of sound that make up a word. The individual
units can be phonemes, context-dependent phonemes, demi-syllables or syl-
lables.

A phoneme is the smallest contrastive unit in the sound system of a language.
Typically, there are about 50 phonemes for English. In this thesis, phonemes
are encoded using TIMIT phonetic symbols [79]. Although the International
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Phonetic Alphabet (IPA) is very popular, there is a problem with this alphabet:
the IPA symbols are difficult to type on computers. It can be done using IPA
symbols, but this is very inconvenient. Below are tables 2.1 and 2.2 with the
phonetic symbols of the TIMIT.

Table 2.1: The phonetic symbols of the TIMIT for Vowels.

TIMIT phonetic symbols Example
aa father
ae bat
ao bought
aw bout
ay bite
ey bait
iy beat

ow boat
oy boy
uw boot
ax about
ix attribute
eh bed
ih bit
uh book
ah but
axr butter
er bird
ux suit

Example: The word “bot” is composed of three phonemes “b aa t”.

On the other hand, context-independent subword-units are inadequate in
representing the spectral and temporal properties of the speech unit in all
contexts because the pronunciation of a sound is affected by the preced-
ing and following sounds. Therefore, the set of subword-units is extended
to include context-dependent units (diphones and triphones). A context-
dependent diphone can be defined as

pL-p left context diphone
or

p+pR right context diphone,

where pL is the phoneme immediately preceding p, pR is the phoneme im-
mediately following p. In English there are about 1, 500 to 2, 000 diphones.
Triphones differ from diphones in that they include a complete central phone
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Table 2.2: The phonetic symbols of the TIMIT for Consonants.

TIMIT phonetic symbols Example
hh hi
hv ahead
l lead
el bottle
r roof
w wall
y yacht
m mom
em bottom
n new
en button
ng sing
eng tossing

f frank
v very
th think
dh that
s silly
z zoom

sh shelf
zh azure
p pool
b bite
t tip
d dog
ch child
jh judge
k clip
g good

and represent a sequence of three phonemes. Similarly, a set of context-
dependent triphones can be defined as

pL-p+pR left-right context triphone.

In English there are approximately 10, 000 triphones.

Demi-syllables consist of either the initial consonant cluster and some part of
the vowel nucleus, or the remaining part of the vowel nucleus and the final
(optional) consonant cluster [85]. For English there are about 2, 000 demi-
syllables.
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Example: The demi-syllabic representation of the word “bot” consists of two
demi-syllables “b aa aa t”.

The linguistic definition of a syllable is given as a vowel nucleus plus the
optional initial and final consonants or consonant clusters. In English there
are approximately 10, 000 syllables.

Example: The syllabic representation of the word “bot” is “b aa t”.

Figure 2.1 shows the segmentation of the speech signal containing the sen-
tence “bot show pepper” into various subword-units.

Figure 2.1: The segmentation of the speech signal into various subword-
units. “sp” denotes small pause between words.

2.3 Associative Memory

An associative memory is a system which stores patterns or associations be-
tween patterns (figure 2.2), which are usually represented as vectors of a fixed
length. After patterns u1, u2, ...., uM are stored during learning, the stored
patterns can be retrieved by addressing the associative memory using the
previously stored patterns. In the case that the input pattern is a noisy or
incomplete version of the previously stored patterns, the output pattern may
be the superposition of the stored patterns related to the noise in the input
pattern.

There are two types of associative memory, namely hetero-associative and auto-
associative memory. In hetero-association the memory stores associations xµ 7→yµ

between two sets, address patterns X and content patterns Y. This is called
pattern mapping. In this case the stored content patterns can be retrieved
by addressing the associative memory by the previously stored address pat-
terns.
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Figure 2.2: An associative memory. During learning M patterns u1, u2, ...., uM

are stored. For a retrieval, an address pattern ũ, which may be a noisy ver-
sion of the previously stored address pattern, is applied to the associative
memory. As a retrieval result the associative memory generates an output
pattern û which should be equal to the previously stored content pattern.

In the case of autoassociation the content pattern yµ is assumed to be equal
to the corresponding address pattern xµ. These memories can be used for
pattern completion. After learning a noisy or incomplete version of a stored
pattern x̂ can be completed to a previously stored pattern, which is close to
x.

Autoassociation can also be created from heteroassociation. For the heteroassoci-
ation of pattern pairs xµ 7→yµ where the patterns xµ and yµ are binary vectors
of lengths m and n, one can concatenate the binary vectors (xµ, yµ) of length
m + n and the binary patterns can be autoassociatively stored in the resulting
(m + n)×(m + n) matrix (figure 2.3). In the same way, heteroassociation is a
special case of autoassociation. For example, an autoassociative memory ma-
trix can be divided into two quadratic autoassociative sub-matrices A1 and
A2 and two heteroassociative sub-matrices H and HT (figure 2.3).

Associative memories can be implemented in various ways [54, 55, 56, 100].
One of these implementations is neural implementation of associative me-
mories [100, 73, 94], which has fault tolerance and the possibility of parallel
implementation.
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Figure 2.3: Heteroassociation is a special case of autoassociation, and vice
versa.

2.3.1 Neural Associative Memory

A neural associative memory (NAM) is the realization of an associative me-
mory in a single layer artifical neural network [75, 56]. Typical representation
of an NAM is a matrix W where wij is the synaptic weight, connecting neuron
i of the address population to neuron j of the content population. The pat-
terns are subsets of a neuron population and stored in synaptic connections
between two neuron populations namely address and content populations.
These correspond to the input patterns xµ and the output patterns yµ, respec-
tively.

As shown in figure 2.4, the rows correspond to axons, the columns to den-
drites, and the cross-points to modifiable synapses. The information that
neurons belong to one pattern is stored in the synapses by the Hebbian learn-
ing rule [36]. The output is computed by summing up the products of presy-
naptic activities and weights of the synapses in each column and comparing
the sum against a threshold.

Figure 2.4: The architecture of an NAM.

When one compares neural associative memories with other pattern retrieval
algorithms like look-up tables, where each pattern is explicitly represented
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in a list or table, the advantage of neural associative memories is that the
memory access can be fast if many patterns are stored. In look-up tables,
when an address (input) pattern is given it has to be compared to each stored
pattern to find the most matching pattern. If n2 patterns have been stored,
the number of steps needed for comparing two patterns is n2. In contrast, a
binary NAM can store a large set of pattern vectors (almost n2 pattern vectors
for a vector length n) in a fault tolerant way and the retrieval process contains
only nlogn steps [53]. Even the number of necessary steps would decrease to
logn by a parallel implementation using n processors.

Another advantage of neural associative memories is fault tolerance with re-
spect to variation of the input pattern. This means that an output (content)
pattern can be retrieved for a set of input patterns that are closest to the input
pattern presented during learning.

2.3.2 The Willshaw Model

The binary Willshaw model of neural associative memory uses binary neu-
rons and synapses [100, 73, 94, 76, 17, 89, 93]. The working principle of the
binary Willshaw model is given in figure 2.5 for hetero-association. The
patterns are hetero-associatively stored in the binary memory matrix W ∈
{0, 1}m×n corresponding to synaptic connections between the address popu-
lation (for the patterns xµ) and content population (for the patterns yµ). The
pattern pairs are binary vectors (xµ, yµ) where xµ is the address (input) vec-
tor of length m corresponding to a population of m neurons and yµ is the
content (output) vector of length n corresponding to a population of n neu-
rons. The neurons can be active (1) or silent (0). Similarly, each of the binary
synaptic connections can be either active or inactive. Usually all the input (or
output) pattern vectors contain the same number k of active neurons, called
the pattern activity:

k =
M

∑
j=1

xj. (2.3)

If the pattern activity k is small compared to the vector length m the pattern
is called “sparse”. A pattern is stored by activating the pattern neurons and
Hebbian learning activates all synapses connecting two pattern neurons.

A pattern is stored by activating the pattern neurons and Hebbian learning
activates all synapses connecting two pattern neurons. After storing M pat-
terns the memory matrix W of synaptic weights can be expressed as the su-
perposition of outer products of the pattern vectors (see section 4.1). The
memory load p1, a significant parameter of the memory matrix, is defined
as the relative number of active synapses. In general p1 increases with the
number of stored patterns M.
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Figure 2.5: Working principle of the binary Willshaw model for
hetero-association. During learning phase (left) M binary vector pairs
(x1, y1),(x2, y2),....,(xM, yM) are stored sequentially in the binary memory
matrix W representing synaptic connections between neurons. Initially all
synaptic connections are inactive. After learning of all patterns, each stored
vector pair activates the connections corresponding to its outer product. For a
retrieval (right) an address pattern x̃ is used for vector matrix multiplication.
To obtain the retrieval result ŷ a threshold Θ is applied.

Retrieval is performed by activating a number of output neurons correspond-
ing to an address pattern x̃ which can be a noisy version of the stored pattern.
The dendritic potentials y = x̃W of the output neurons are computed by a
vector matrix multiplication of the input vector x̃ and the memory matrix W.
Then an appropriate threshold Θ is chosen and the output neurons equal to
or larger than the threshold are activated. The Willshaw threshold strategy
simply chooses the threshold equal to the number of one-entities in the ad-
dress pattern. Note that if the address pattern is an incomplete or noisy ver-
sion of the stored pattern, the Willshaw strategy will also activate additional
neurons.

The theoretical analysis of the binary Willshaw model was initially carried
out in 1969 by David Willshaw [100]. In 1980 it was refined by Günther Palm
[73]. It was found that high memory capacities can be obtained if the patterns
are sparse.



18 CHAPTER 2. INTRODUCTION



Chapter 3

Statistical Speech Recognition

Speech recognition technology has been developed significantly since the
middle of the last century [20]. Availability of substantial computational
rescources and the application of statistical modeling techniques lead to the
impressive performance of today’s recognizers.

Hidden Markov Models (HMMs), which were introduced in 1975 [3, 45], had
significant contributions to the success of the probabilistic approach and are
now very popular in speech recognition systems.

The speech recognition problem can be defined as the task of converting a
speech signal into a sequence of written words. This problem is solved in
three steps: First, the relation between the sound of spoken words and their
associated text representation is determined, which is called modeling. Then,
given a speech signal, the model is used to hypothesize the words, which is
called decoding. And finally, the decided word hypothesis is evaluated to
determine how good it is.

Modern speech recognition system works by searching through a large set
of text representations to determine the hypothesis which has the highest
probability of generating the speech utterance. To do this, acoustic signals
first need to be pre-processed to generate a sequence of acoustic feature vec-
tors. Then, given a sequence of acoustic observation vectors O = o1, ...., oT, a
speech recognition system decides on the word sequence W = w1, ...., wN that
maximizes the a-posteriori probability p(W|O). The word sequence which
maximizes this posterior probability also minimizes the probability of a sen-
tence error, i.e., at least one word in the recognized sentence is wrong. In
mathematical terms, Bayes’ Decision Rule is given as:

Ŵ = argmax
W∈Ω

p(W|O) (3.1)

= argmax
W∈Ω

{p(O|W) · p(W)}
p(O)

(3.2)

= argmax
W∈Ω

{p(O|W) · p(W)}. (3.3)

19
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Here, Ω denotes the set of all possible word sequences. The first term p(O|W)
in equation 3.3 is generally called the acoustic model as it estimates the pro-
bability of a sequence of acoustic observations. The second term p(W) is
generally referred to as the language model since it describes the probability
associated with a postulated sequence of words. Note that the denominator
p(O) = ∑

W ′
p(O|W ′)p(W ′), the probability of acoustic observation, can be ne-

glected because it is the same for all hypotheses Ω and will not have an effect
on the decision. Given the acoustic model and language model probabilities,
the probabilistic model can be operationalized in a search algorithm so as to
compute the maximum word probability for a given acoustic waveform.

Figure 3.1: Architecture of an automatic speech recognition system.

As shown in figure 3.1, the architecture of an automatic speech recognition
system consists of the following four main components:

• The feature extraction module which generates the acoustic feature vec-
tors. The extraction of the acoustic features is usually based on a short-
time spectral analysis of the acoustic signal.

• The acoustic model which gives the probability p(O|W) to observe a se-
quence of acoustic feature vectors O for a given word sequence W. For
medium and large vocabulary systems, the acoustic models are usually
not defined on a word level but on a subword-unit level (e.g. phoneme
level). In the case of a phoneme model, a pronunciation lexicon which
contains the phonetic transcription of each word is used to concatenate
the phonemes to word models.

• The language model which is trained on large collections of written
text, e.g., transcriptions of acoustic data or newspaper articles.
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• The search procedure which combines all stochastic models and deter-
mines the word sequence with the highest sentence posterior probabi-
lity for a given speech signal.

These components will be explained in more detail in the following sections:

3.1 Feature Extraction

Acoustic feature extraction aims at generating a parametric representation
of the speech waveform (e.g. figure 3.2), usually as a sequence of feature
vectors. These acoustic features have to be robust enough to discriminate
between the different basic speech units.

Figure 3.2: An example of speech waveform.

In the first step of the feature extraction process, the analog microphone sig-
nal is converted into a digital signal. Although possessing relevant informa-
tion, high frequencies have smaller amplitude with respect to low frequen-
cies. Therefore, a preemphasis of high frequencies is required to obtain si-
milar amplitude for all frequencies [4]. The digital signal is then processed
using a first order pre-emphasis filter to obtain similar amplitude for low and
high frequencies:

x′(n) = x(n)− a·x(n− 1), (3.4)

where a is the preemphasis parameter and a typical value for a is 0.95.

Speech is a non-stationary signal, i.e. its statistical charateristics are invariant
with respect to time. Therefore, a short time analysis can be performed to
hold articulatory stability. The spectral features are extracted from a small
window of speech that characterizes a particular subphone and for which it
can be assumed that the signal is stationary. Typically, every 10 milliseconds
(ms) a frame of 25 ms duration, xt(n), t = 1, ..., T, is extracted from the speech
signal and multiplied by a Hamming window:

xt(n) ≡ w(n)·x′t(n), 1≤t≤T (3.5)

w(n) = 0, 54− 0, 46·cos
(

2πn
N − 1

)
, n = 0, ..., N − 1. (3.6)
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The multiplication of the speech wave by the window function gradually
attenuates the amplitude at both ends of the extraction interval to prevent an
abrupt change at the end points.

Then, for each frame, a low-dimensional feature vector is generated by using
several methods. The most frequently used methods for signal analysis are
the mel frequency cepstral coefficients (MFCC) analysis [4] and the perceptual
linear prediction (PLP) analysis [80]. In this work we will use the mel frequency
cepstral coefficients (MFCC) analysis.

During the generation of MFCC features, the Discrete Fourier Transform (DFT)
is used to know how much energy the signal contains at different frequency
bands. The input to the DFT is a windowed signal, and the output, for each
of N discrete frequency bands, is a complex number xt(k) representing the
magnitude and phase of that frequency in the signal:

xt(k) = xt

(
e−j2πk/N

)
, k = 0, ...., N − 1. (3.7)

A commonly used algorithm for computing the DFT is the Fast Fourier Trans-
form (FFT). FFT is very efficient, but only works for values of N that are pow-
ers of two.

The results of the FFT is information about the amount of energy at each
frequency band. However, human hearing is not sensitive at all frequency
bands. Spectral features of speech are generally obtained as the result of filter
banks, which properly integrate a spectrum at defined frequency ranges. A
set of M = 24 band-pass filters is generally used since it simulates human
ear processing. Filters are usually non-uniformly spaced along the frequency
axis (see figure 3.3):

Figure 3.3: Bank of filters scaled according to Mel scale [4].

U∆m(k) =
{ |k| < ∆m → 1− |k|/∆m
|k| ≥ ∆m → 0 , (3.8)
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where k is the DFT domain index, and 2∆m is the size of the m-th filter bank
triangular window.

The m-th filter bank output is given by:

Yt(m) =
bm+∆m

∑
k=bm−∆m

xt(k)U∆m(k + bm), (3.9)

where 1≤m≤M, and the central frequency may be computed according to
bm = bm−1 + ∆m. For the frequency f < 1 kHz, ∆m is chosen so that 10
uniformly spaced filters are obtained, and, for f > 1 kHz, the following ap-
proximation can be used: ∆m = 1.2×∆m−1.

This leads to a significant reduction of the information content into a smaller
number of 24 coefficients. After that, the logarithm of the filter bank coeffi-
cients is computed to make feature extraction less sensitive to variations in
dynamics.

The final procedure for the Mel frequency cepstrum computation (MFCC)
consists of performing the Discrete Cosine Transform on the logarithm of the
magnitude of the filter bank coefficients:

yt(k) =
M

∑
m=1

log{|Yt(m)|}·cos
(

k
(

m− 1
2

)
π

M

)
, k = 0, ..., L, (3.10)

where L is the number of MFCC coefficients.

Cepstral coefficients are usually joined to an energy coefficient et taking into
account the logarithm of the energy of the frame. This parameter is useful
since differences in energy are seen among different phonemes. The energy
is computed as the log of the signal energy:

et = log
N−1

∑
n=0

x′t(n). (3.11)

A further improvement in performance is obtained by taking into account the
dynamic evaluation of the speech signal, since such evaluation carries rele-
vant information for automatic speech recognitions. For this reason, features
related to the change in cepstral features over time are also added. To do this,
the first and second order derivatives of the cepstrum coefficients are added.
A simple way to compute derivatives is just to compute the difference of cep-
stral values between frames. Given an acoustic feature vector yt(k) indexed
in time t, the ith order time difference can be computed as:

∆i{yt(k)} = ∆i−1{yt+1(k)} − ∆i−1{yt−1(k)}, ∆0{yt(k)} = yt(k). (3.12)



24 CHAPTER 3. STATISTICAL SPEECH RECOGNITION

The feature vectors computed at time t may be composed of a set of L + 1
acoustic features {et, yt(1), yt(2), ....., yt(L)}, and their first and second-order
differences:

yt = {et, yt(k), ∆{et}, ∆{yt(k)}, ∆2{et}, ∆2{yt(k)}}. (3.13)

3.2 Acoustic Modeling (Hidden Markov Model)

The goal of acoustic modeling is to provide an estimation of the probabi-
lity of the observed spectral feature vectors O = o1, ...., oT given a sequence
of linguistic units (phones, subparts of words, words) W = w1, ...., wN, i.e.,
P(O|W).

The core acoustic modeling technique in ASR is HMM, which is a stochastic
finite automaton that consists of a network of states, each of which models
the acoustic characteristics of speech. There is a wide range of applications
of HMM in literature [24, 7, 23, 44, 82, 80].

Figure 3.4: An HMM consisting of three emitting states in the left-right topo-
logy (aij: transition probability, bj(): emission probability ).

Figure 3.4 illustrates an HMM consisting of three emitting states in the left-
right topology or the so-called Bakis topology. An HMM can readily model
signals whose properties change over time in a successive manner, e.g. speech.
The network of states in an HMM generates a discrete time signal by chang-
ing state in each time step according to some transition probabilities and ge-
nerating in each time step a single observation according to the state depen-
dent emission probability. The fundamental property of a left-right HMM is
that no transitions are allowed to states whose indices are lower than that of
the current state, as shown in figure 3.4.

An HMM is characterized by the following components:

• a set of states Q = q1, q2, ...., qN

• a set of observations O = o1, o2, ...., oN

• the transition probabilities A = aij = p[qt+1 = j|qt = i], 1 ≤ i, j ≤ N,
representing the probability of moving from state i to state j
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• the emission probability B = {bj(ot)}, expressing the probability of an
observation ot being generated from state j

• initial state distribution π = {πi}, 1 ≤ i ≤ N.

Given a state sequence X = x(1), x(2), ...., x(T), the probability of the obser-
vation sequence O can be computed as

p(O, X|W) = πx(1)

T

∏
t=1

bx(t)(ot)ax(t)x(t+1). (3.14)

If the observations were characterized as discrete symbols chosen from a fi-
nite alphabet, a discrete probability density within each state could be used.
However, the observations are usually continuous signals or vectors. Hence,
it would be advantageous to be able to use HMMs with continuous observa-
tion densities to model continuous signal representation directly.

The most general representation of the state output distribution is a finite
mixture of the form

bj(ot) =
M

∑
k=1

cjkN(ot, µjk, Σjk), (3.15)

where M is the number of mixture components, cjk is the weight of the k’th
component and N(·, µ, Σ) in this thesis represents a multivariate Gaussian
with mean vector µ and covariance matrix Σ, i.e.,

N(ot, µjk, Σjk) =
1√

(2π)n|Σj|
e−

1
2 (ot−µj)′Σj

−1(ot−µj), (3.16)

where n is the dimensionality of the speech vector ot.

3.2.1 Lexicon

When using an acoustic subword-unit modeling, a knowledge source is re-
quired, which describes the composition of words from the subword-units.
This knowledge source is usually called lexicon. The lexicon assigns a single
or multiple alternative sequences of subword-units to each word in vocabu-
lary. Some examples, taken from a lexicon with phoneme transcriptions, are
presented in table 3.1.
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Table 3.1: Examples of pronunciation lexicon entries.

Word Pronunciation
CAT k ae t

IS ih z
TABLE t ey b el
THIS th ih s

3.2.2 Subword-Unit Modeling

For medium and large vocabulary speech recognition systems, whole word
models as acoustic elementary units are usually not possible due to the in-
sufficient number of training samples. Thus, this possibility is typically only
used for small vocabularies, like a digit recognition task.

To increase the number of available training samples for the elementary acou-
stic units, smaller pieces of speech may be addressed instead of whole words.
The phoneme is the most popular smallest sound unit that can be used to dif-
ferentiate between words. Of course, the usage of phonemes requires the in-
corporation of additional knowledge on how to concatenate the basic units in
order to build models for whole words. This additional knowledge is given
using a lexicon describing the composition of words (see section 3.2.1).

Figure 3.5 illustrates a sentence in which an acoustic model for a word is
formed by concatenating the HMMs for the acoustic subword-units (e.g. pho-
nemes) comprising the word. Each word in the sentence can be looked up
in the lexicon to find its transcription in terms of acoustic subword-units.
Hence, the sentence can be written in terms of acoustic subword-units (e.g.
phonemes).

Since the physical articulators are not capable of performing sudden, dra-
stic movement, the phonemes are influenced by the preceding and following
phonemes. In order to capture the effects of co-articulation between adja-
cent phonemes, context-dependent phonemes have been introduced [87, 72].
The most important context-dependent units are biphones (left or right phone
context) and triphones (left and right context).

The construction of context dependent models for the phonemes within the
words (word-internal triphones) is relatively simple to implement because
the context of a phoneme within a word is directly given by the correspond-
ing entry in the pronunciation lexicon for that word. In the so-called word-
internal modeling the dependency of the word boundary triphones on the
neighboring words is neglected. For the word boundaries biphones are used.
For example, the sentence “this is cat” can be represented using monophones:

th ih s / ih z / k ae t.



3.2. ACOUSTIC MODELING (HIDDEN MARKOV MODEL) 27

Figure 3.5: Representation of a sentence, word and acoustic subword-unit in
terms of HMMs.

The same sentence can be represented using biphone and triphone models:

th+ih th-ih+s ih-s / ih+z ih-z / k+ae k-ae+t ae-t.

Across word modeling explicitly treats co-articulation effects, independent of
the position of word boundaries [38]. In contrast to word-internal modeling,
the ending phoneme of the preceding word and the starting phoneme of the
succeeding word are used as a context for the word under consideration.
This modeling technique significantly reduced the word error rates, but, at
the expence of higher computational costs. When cross-word triphones are
used, the example sentence is represented as

*-th+ih th-ih+s ih-s+ih / s-ih+z ih-z+k / k+ae k-ae+t ae-t+*,

where * denotes the beginning and the end of the sentence.

The number of triphones may become larger than the number of vocabulary
words. This gives rise to the trainability problem, i.e., not enough data per
model. This problem is handled by merging similar context models together
(see section 3.2.5).

3.2.3 Assumptions of Acoustic Modeling

In this thesis, the acoustic modeling of automatic speech recognition is based
on the following assumptions [22].

• Speech is assumed to be stationary during a short period of time (e.g. 25
ms). A feature vector is usually computed from this stationary period
of speech signals.
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• A Gaussian distribution is usually used to represent the distribution in
a state. This means that the speech is assumed to be Gaussian. That
is, the random deviation of a speech sound in a state follows Gaussian
distribution.

• For the simplification of the probability computation, each speech fea-
ture vector is assumed to be independent. This assumption leads to
diagonal covariance matrices, and a speeding-up in the computation.

3.2.4 Estimation of Model Parameters

In order to determine the model parameters that maximize the probability of
the observation sequence, the so-called Baum-Welch re-estimation formulae
is applied. We define first ξt(i, j), the probability of being in state i at time t
and state j at time t+1, given the model and the observation sequence, i.e.,

ξt(i, j) =
p(qt = i, qt+1 = j|O, W)

P(O|W)
(3.17)

=
αt(i)aijbj(ot+1)βt+1(j)

N
∑

i=1

N
∑

j=1
αt(i)aijbj(ot+1)βt+1(j)

. (3.18)

This probability is calculated using the so-called Forward-Backward algorithm.
The forward probability can be defined as

αt(i) = p(o1, o2, ....., ot, qt = i). (3.19)

That is the joint probability of observing the first t speech vectors and being
in state i at time t. This forward probability can be efficiently calculated by
the following recursion

• Initialization
α1(i) = πibi(o1), 1 ≤ i ≤ N (3.20)

• Induction

αt+1(i) = [
N

∑
j=1

αt(j)aji]bi(ot+1), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (3.21)

• Termination

p(O|W) =
N

∑
i=1

αT(i). (3.22)
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Step 1 initializes the forward probabilities as the joint probability of state i
and initial observation o1. The induction step (step 2) calculates the probabi-
lity that state i can be reached at time t+1 from N possible states. Finally, step
3 gives the total likelihood P(O|W).

The backward probability βt(i) is defined as

βt(i) = p(ot+1, ot+2...., oT|qt = i). (3.23)

As in the forward case, this backward probability can be computed efficiently
using the following recursion

• Initialization
βT(i) = 1, 1 ≤ i ≤ N (3.24)

• Induction

βt(i) =
N

∑
j=1

aijbj(ot+1)βt+1(j), t = T− 1, T− 2, ...., 1, 1 ≤ i ≤ N. (3.25)

The initialization step 1 arbitrarily defines βT(i) to be 1 for all i. Step 2 calcu-
lates the probability of having been in state i at time t under the condition of
considering all possible states j at time t+1.

Let the probability of being in state i at time t be defined as

γt(i) =
N

∑
j=1

ξt(i, j). (3.26)

Using the above formulas 3.18 and 3.26, the model parameters aij, the mean
µj and the variance Σj for the state output distribution bj(ot) can be estimated
as follows:

âij =

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1
γt(i)

, (3.27)

µ̂j =

T
∑

t=1
γt(j)ot

T
∑

t=1
γt(j)

, (3.28)

Σ̂j =

T
∑

t=1
γt(j)(ot − µj)(ot − µj)′

T
∑

t=1
γt(j)

. (3.29)
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3.2.5 Training of Hidden Markov Models

In the first step of training procedure, the phoneme model parameters are ini-
tialized using either so-called flat start procedure (i.e, each training utterance
is uniformly segmented and all states of all models are made equal), or a boot-
strapping method (i.e., each training utterance is divided into phonemes and
the phoneme states are initialized with the corresponding data). The Baum-
Welch algorithm based embedded training is then used to train the model
parameters.

Embedded training works as follows. Every training file must have an as-
sociated label file which gives a trancription for that file, and it is processed
in turn. The training method uses the associated transcription to construct
a composite HMM which spans the whole utterance. This composite HMM
is made by concatenating instances of the phoneme HMMs corresponding to
each label in the transcription. The Forward-Backward algorithm is then app-
lied and the sums needed to form the weighted averages are accumulated in
the normal way. When all of the training files have been processed, the new
parameter estimates are formed from the weighted sums and the HMM set
is updated.

In order to increase the performance in speech recognition tasks the set of
subword-units (phonemes) is extended to include context-dependent units
(e.g. triphones). Before building a set of context-dependent models, it is nec-
essary to decide on whether or not cross-word triphones are to be used. If
they are, then word boundaries in the training data can be ignored and all
phoneme labels can be converted to triphones. If, however, word internal
triphones are to be used, then word boundaries in the training transcriptions
must be marked in some way (either by an explicit marker which is subse-
quently deleted or by using a short pause).

In order to create triphone models, the set of initialized and trained context-
independent phoneme models is converted to a set of context dependent
models by simply cloning phonemes and then re-estimating using triphone
transcriptions, e.g., a triphone model l-p+r denotes the context-dependent
version of the phoneme p which is to be used when the left neighbour is the
phoneme l and the right neighbour is the phoneme r.

This will lead to a very large set of models, and relatively insufficient train-
ing data for each model. Hence, the states within triphone sets are tied to
share data and to be able to make robust parameter estimates. This tying can
be done by two mechanisms, data-driven clustering and tree-based cluster-
ing. The first uses a similarity measure between states based on Euclidean
distance. Figure 3.6 shows the clustering and the tying of the correspond-
ing states of the triphone group for the phoneme “ih” using the data-driven
clustering mechanisms.
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Figure 3.6: Data-driven state tying [103].

Figure 3.7: Decision-tree based state tying [103].

The second uses phonetic decision trees and is based on asking questions
about the left and right contexts of each triphone. A phonetic decision tree is
a binary tree in which a yes/no phonetic question is attached to each node.
Figure 3.7 illustrates the case of tying the centre states of all triphones of the
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phoneme “aw” (as in “out”). All of the states trickle down the tree and de-
pending on the answer to the questions, they end up at one of the shaded
terminal nodes. For example, in the illustrated case, the centre state of “s-
aw+n” would join the second leaf node from the right since its right context
is a central consonant, and its right context is a nasal but its left context is not
a central stop. The details of these algorithms can be found in the HTK Book
[103].

Figure 3.8: Representing a Mixture.

The final step in the building of HMMs is usually the conversion from sin-
gle Gaussian HMMs to multiple mixture component HMMs (see figure 3.8).
The number of mixture components is repeatedly increased by splitting the
”heaviest” mixture component until the required number of components is
obtained. The split is performed by copying the mixture component, divid-
ing the weights of both copies by 2, and finally perturbing the means by plus
or minus σ standard deviations.

3.3 Language Modeling

The goals of the (statistical) language model are to specify legal sequences
of words and to provide probabilities of sequence of words W for a given
recognition task. The speech recognizers produce a string of words, guided
by their language models. When the recognition search comes to the end of
a word, it uses a language model to determine which words to search for
following the current word. If it is assumed that W is a specified sequence of
words, i.e.,

W = w1w2......wm (3.30)

then p(W) can be computed as

p(W) = p(w1w2......wm) =
m

∏
i=1

p(wi|w1...wi−1). (3.31)
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Unfortunately, it is essentially impossible to reliably estimate the conditional
probabilities for all words and all sequence lengths in a given language.
Hence, in practice, it is convenient to use an N-gram word model, where the
term p(wj|w1....wj−1) is based on the preceding N-1 words and approximated
as

p(wj|w1....wj−1) ≈ p(wj|wj−N+1....wj−1) (3.32)

=
C(wj, wj−1, ..., wj−N+1)

C(wj−1, ..., wj−N+1)
, (3.33)

where C is the count of a given word sequence in the training corpus. Even
N-gram probabilities are difficult to estimate reliably, for all values of N, but
for when N = 2 (bigram) or possibly 3 (trigram). A bigram language model
assumes that the probability of a word wn depends only on the immediate
predecessor word wn−1

p(W) ≈
m

∏
i=1

p(wn|wn−1), (3.34)

while in a trigram language model the probability is assumed to depend on
the two immediate predecessor words wn−1 and wn−2

p(W) ≈
m

∏
i=1

p(wn|wn−1, wn−2). (3.35)

Hence, in practice, it is often convenient to use a bigram or trigram word
model.

3.4 Viterbi Search

The Viterbi search is used to find the most likely sequence of states in a Markov
chain to produce an observation sequence of feature vectors. Figure 3.9 shows
the structure of a Markov chain for the generic speech model [59]. It is built
by connecting word HMMs in parallel in order to recognize words. Each
word HMM can be constructed of subword HMMs. In this figure, each word
can jump to any word in the vocabulary. Between words, there may be a
short silence depending on the isolated word or continuous speech recogni-
tion. In the case of subword-unit (e.g. phonemes or syllables) recognition
the word HMMs are replaced with subword-unit HMMs. When the bigram
is used as a language model, the path from Wi to Wj has the bigram proba-
bility P(Wj|Wi). This bigram probability can be viewed as a state transition
probability from the exit state of Wi to the entry state of Wj.
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Figure 3.9: Generic HMM model.

In order to find the best state sequence, q = (q1q2....qT), for the given obser-
vation sequence O = (o1o2....oT), the following quantity is defined

δt(i) = max
q1,q2,...,qt−1

p(q1q2....qt−1, qt = i, o1o2...ot), (3.36)

that is, δt(i) is the highest score along a state sequence at time t, which takes
into consideration the first t observations and ends with state i. The Viterbi
algorithm for finding the best state sequence is given as follows:

• Initialization

δ1(i) = πibi(o1), 1 ≤ i ≤ N (3.37)
ψ1(i) = 0 (3.38)

• Recursion

δt(j) = max
1≤i≤N

[δt−1aij]bj(ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (3.39)

ψt(j) = arg max
1≤i≤N

[δt−1aij], 2 ≤ t ≤ T, 1 ≤ j ≤ N (3.40)

• Termination

P∗ = max
1≤i≤N

[δT(i)] (3.41)

qT
∗ = arg max

1≤i≤N
[δT(i)] (3.42)

• State sequence backtracking

qt
∗ = ψt+1(qt+1

∗), t = T − 1, T − 2, ..., 1, (3.43)
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where ψt(j) is the previous state in the best path to state j at time t.

This algorithm is applicable when it is based on the bigram language model.
If the trigram model is used, the bigram transition probabilities in figure 3.9
can no longer be used, because the trigram is second order dependent. The
generic speech model becomes too complex to incorporate trigrams. In this
case, it becomes a tree with height 3, where each node in the tree represents a
word model and has all words in the vocabulary as its children. The Viterbi
algorithm is exponential with respect to the order of the language model. In
large vocabulary continuous speech recognition, higher order N-grams play
an important role. However, using a more complex model is computationally
expensive, especially when the size of vocabulary is large.

The Viterbi algorithm is similar to the forward-backward procedure. The big
advantage of the Viterbi algorithm is that no sums of probabilities need to
be computed. Therefore, it is possible to simply work with the logarithm
of all probabilities, computing sums of logarithmic probabilities rather than
products of probabilities.

To efficiently restrict the search space of Viterbi search, a number of concepts
have been introduced. One of the most important is Beam search: at each time
frame only search hypotheses whose probability is above a certain threshold,
are expanded. A careful tuning of this pruning threshold may prevent search
errors.

3.5 Discussion

Modern general-purpose speech recognition systems are generally based on
HMMs. These are statistical models which output a sequence of symbols.
One possible reason why HMMs are used in speech recognition is that a
speech signal could be viewed a short-time stationary signal. That is, in a
short-time in the range of 10 milliseconds, speech could be approximated as
a stationary process. Another reason why HMMs are popular is because they
can be trained automatically and are simple and computationally feasible to
use. Speech is processed in HMMs using a sequence of n-dimensional vectors
(with n being a small integer), each of which is computed every 10 millise-
conds. The vectors consist of cepstral coefficients. The HMM has in each
state a statistical distribution that is a mixture of diagonal covariance Gaus-
sians which will give a likelihood for each observed vector. Each acoustic
model will have a different output distribution. The most widely used train-
ing technique is the forward-backward algorithm, which creates an HMM
that maximizes the probability that the HMM produces the observation se-
quence in the training data.

For medium and large vocabulary speech recognition system, a word based



36 CHAPTER 3. STATISTICAL SPEECH RECOGNITION

recognizer requires an HMM built for each distinct word and more train-
ing data. In addition, a word-based recognizer needs a much larger me-
mory because it must store every parameter for every state in every word.
Therefore, a phoneme-based recognizer requires a relatively small number of
phonemes. An HMM for a sequence of words or subword-units is made by
concatenating the individual trained HMMs for the separate acoustic models,
e.g., phonemes.

Recognition accuracy of HMMs can be greatly improved by taking advantage
of the possible a priori information on the sequences to be recognized. This
information can be embedded in a language model. The role of a language
model is to reduce the set of acceptable words of the search space. During
recognition, the Viterbi algorithm finds the sequence of states of HMMs in
the search space that can yield the given sequence of observations with the
highest probability.

Adding novel words to the task vocabulary is usually not easy for HMMs,
especially during runtime. In case of subword-unit modeling, for the novel
words, involved acoustic models must be retrained. If there are unseen acou-
stic units in the novel word, new acoustic models must be created and trained.
The lexicon must be extended with the novel transcription. In addition, the
language model must be modified with respect to the new transcription.

HMMs suffer from some limitations in real-world environments. Although
HMMs allow for excellent recognition performance in laboratory conditions,
there is a decrease in their performance for real-world conditions.

In the scope of this work, HMMs are used for subword-unit recognition. For
acoustic modeling, context-dependent phonemes are used. Depending on
the size of the task vocabulary, output subword units are context-dependent
phonemes or longer subword units like syllables.



Chapter 4

Willshaw Associative Memory

Associative memories are content-addressable structures that store a set of
M associations between pattern pairs that are represented as binary input
xµ ∈ {0, 1}m and output yµ ∈ {0, 1}n vectors with µ = 1, 2, ..., M.

In neural associative memories, the associations between patterns are stored
in the synaptic connections between two neuron populations. In 1969 David
Willshaw and others introduced a binary model of neural associative me-
mory [100]. The neurons in Willshaw’s model are simple binary threshold
neurons, i.e. they become active if their membrane potential (input) exceeds
a given threshold, otherwise, they are inactive.

Neural implementations of associative memories can have an advantage over
simple look-up tables if the number of patterns is large and parallel imple-
mentation is possible. Its other advantage is fault tolerance, when the address
patterns x̃µ differ from the previously stored original patterns xµ.

The memory capacity of an associative memory is the amount of information
that can be retrieved from the memory matrix and it can be measured the-
oretically by maximizing the transinformation between the stored patterns
and the retrieved patterns. The memory capacity per synapse is measured
by normalizing the memory capacity to the physical memory.

In 1969 Willshaw et al. [100] discovered that a high memory capacity per
synapse of ln 2 ≈ 0.7 is possible for Steinbuch’s neural associative memory
using binary patterns and synapses [94]. In 1980 Palm elaborated these re-
sults [73]. This analysis revealed that the upper bounds ln 2 for heteroasso-
ciation and ln 2/2 for autoassociation are only approached asymtotically for
very large numbers of neurons [89, 70]. High memory capacities are only
possible for sparse patterns, i.e., the number k of one-entities is much smaller
than the pattern size n. For k values smaller or larger than the optimal value,
the capacity usually decreases rapidly to smaller values. It is also important
that high capacities can only be achieved for random patterns, i.e., the stored
patterns are independent.
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In the mid eighties alternative neural implementations were proposed [39,
40, 41], with results proving that the capacity of the Willshaw model exceeds
the capacities of other models.

In the late eighties and nineties methods were developed to improve the re-
trieval results under noisy conditions by bidirectional and iterative retrieval
[58, 89, 93], and an early attempt to use sparse matrices was neither efficient
nor very promising [9]. In 1996 Schwenker et al. [89] showed that for pat-
tern mapping in the autoassociative memory, iterative retrieval can be used
for a better retrieval of the stored information. For heteroassociation, the up-
per theoretical bound of the memory capacity per synapse was extended to
1/(2 ln 2) ≈ 0.72 for Hebb-like synapses which rewards coincident pre- and
postsynaptic activity [97, 76, 77]. In spite of this, the bound of ln 2 for the
memory capacity per synapse was never exceeded for non-trivial models.

In 1997 Graham and Willshaw analyzed the capacity and efficiency of the
heteroassociative memory for varying pattern coding rates, connectivity and
cue noise levels and they showed that altering the connectivity is not an ef-
fective way of changing the capacity of an associative net, and generally the
capacity is more sensitive to net size than to connectivity [31]. For the more
realistic case of neural associative memories, i.e. a partially connected neural
network using normalized winner-takes-all recall [16, 30], maximum capacity
of 0.53 obtained at 1% connectivity approaches the theoretically approximate
maximum of ln 2 for a fully connected network [29], where a simple winner-
takes-all approach chooses the required number of output units with the high-
est dendritic sums to activate. In 1998 Bosch and Kurfess showed that the
maximum capacities for incompletely connected associative memories range
from 0.53 to 0.69, depending on the connectivity of the network [10]. These
capacities can be obtained for sparse input and output patterns.

In this chapter we will study the binary Willshaw model of neural associa-
tive memory [100, 73, 74, 94, 76, 17, 89, 93] in terms of memory capacity, re-
trieval efficiency, and fault tolerance. First, we review the storage and re-
trieval algorithms used in the Willshaw model. Then, we analyse its storage
and memory capacity. Finally, we investigate the fault tolerance of the Will-
shaw model.

4.1 Storing and Retrieving Patterns

For the set of associations between M pattern pairs {(xµ, yµ) : µ = 1, ..., M}
we assume that all patterns are binary vectors of length n containing k ones.

The patterns are stored heteroassociatively in the binary memory matrix W ∈
{0, 1}n×n corresponding to synaptic connections between two neuron popu-
lations. The address population corresponds to the patterns xµ, and the con-
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tent population corresponds to the patterns yµ. Matrix entry wij corresponds
to the synaptic weight of the connection from neuron i in the address popu-
lation to neuron j in the content population. A pattern is stored by activating
the pattern neurons and Hebbian learning activates all synaptic connections
between two pattern neurons. After storing M patterns the matrix entry wij
is obtained from the superposition of outer products of the pattern vectors.

wij = min

(
1,

M

∑
µ=1

xi
µ · yj

µ

)
∈ {0, 1}. (4.1)

The storage is considered distributed because many matrix entries carry in-
formation about more than one pattern pair. In this sense, storage of several
pattern pairs will affect the same synapses, so that each entry in the memory
matrix W may contain the superposition of several memory traces, i.e., the

sum
M
∑

µ=1
xi

µ · yj
µ should have more than one nonzero contribution for the ma-

trix entry wij [78].

For pattern retrieval an address pattern x̃ is applied to the associative me-
mory W. The applied address pattern x̃ may be a noisy version of one of
the original address patterns xµ. First dendritic potentials are obtained by a
vector matrix multiplication of the input vector x̃ and the memory matrix W.
The retrieval result is then obtained by applying a threshold Θ,

ŷj =





1,
m
∑

i=1
x̃iwij ≥ Θ

0, otherwise
. (4.2)

The output unit is set to 1, i.e. the output neuron is activated, if its dendritic
potential is equal to or larger than the threshold Θ. Otherwise, it is set to
0. The choice of the threshold Θ is important to obtain good retrieval re-
sults. One possibility is the Willshaw retrieval strategy where the threshold is
set equal to the number of one-entries in the address pattern x̃,

Θ =
m

∑
i=1

x̃i. (4.3)

Indeed, this strategy is only possible if the applied address pattern contains
no false ones. In the case that the address pattern contains false ones, an al-
ternative strategy can be used, where the threshold Θ is set to a global value.
For example, this value could be equal to the maximum value of the dendritic
potentials of output units.

Pattern retrieval is designed to be fault tolerant, i.e. there might be additional
or missing ones in the address pattern. This means that the address pattern
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does not have to be equal to one of the previously stored patterns xµ but
might contain errors in the form of additional or missing ones. In the case
of an erroneous input pattern x̃, associative memories will try to retrieve the
output pattern yµ that belongs to a previously stored input pattern xµ with
the closest matching address pattern x̃.

If the address pattern x̃ is part of a stored pattern, the Willshaw strategy will
activate all the neurons of the content pattern, but possibly also additional
neurons. Indeed, this strategy is a possible choice if the address pattern con-
tains no false input neurons. Another strategy can be that the threshold is set
to a global value.

For the auto-association where the address and content patterns are the same
(xµ = yµ), the Willshaw model can be applied in the same way.

4.2 Storage and Memory Capacity

In the case of storing hetero-associatively M random pattern pairs (xµ, yµ),
the key parameters are the total number of input units m, the total number
of output units n, the number of active units (ones) in the input pattern l,
the number of active units (ones) in the output pattern k and the number of
pattern pairs to be stored M. In the case that all M patterns have size n and
contain exactly k ones, the probability that a given synapse is not set by the
storage of one pattern pair is

p(wij = 0) =
(

1− k2

n2

)M

, (4.4)

because there are
(

M
k

)
possibilities to distribute k ones on M places.

p(wij = k) =
(

M
k

) (
k2

n2

)k (
1− k2

n2

)M−k

(4.5)

p(wij = 0) =
(

M
0

) (
k2

n2

)0 (
1− k2

n2

)M

=
(

1− k2

n2

)M

(4.6)

Therefore, the probability p1 = p(wij = 1) that a particular synaptic weight
wij has been modified after the storage of all M pattern pairs is

p1 = 1−
(

1− k2

n2

)M

(4.7)

≈ 1− e−
M·k2

n2 . (4.8)
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From equation 4.7 the number of pattern pairs (storage capacity) can be re-
solved,

M ≈ ln(1− p1)
ln(1− k2

n2 )
(4.9)

≈ −n2

k2 ln(1− p1). (4.10)

Note that the ones in the binary patterns are chosen independently with pro-
bability k

n . After storing the patterns an address pattern x̃ containing k ones of
the pattern xµ is applied to the memory matrix x̃M to retrieve the associated
content pattern yµ. Applying the Willshaw strategy Θ = k can cause false
one-entities due to overlap between patterns. The probability p01 of a false
one can be approximated with

p01 ≈ p1
k. (4.11)

Associative memories are used to store and retrieve a finite number M of
patterns. This can be interpreted as transmission and storage of informa-
tion. In order to obtain the channel capacity of B.9 for a given M, we have to
maximize the transinformation between the source and target patterns with
respect to the statistics of the source patterns. Thus we can define the memory
capacity,

C := sup
P

T(y1, y2, ...., yM; ŷ1, ŷ2, ...., ŷM), (4.12)

where P is the transition probability (equation B.8).

If patterns are independently generated random patterns and the retrieval
result ŷµ depends only on the corresponding original pattern yµ, then the
memory capacity is simply

C ≈ M·sup
P

T(yµ, ŷµ). (4.13)

For the binary Willshaw model, storing binary patterns (xµ, yµ) ∈ {0, 1}n the
storage capacity can be obtained by applying the theory of binary channels
(section B.4)

C(k, n, M)≈MnT(yµ; ŷµ). (4.14)

In the case of heteroassociation, the individual information stored per output
pattern Iµ is defined as the difference between the information contained in

the output pattern yµ (i.e. log2

(
n
k

)
) and the information needed to deter-

mine the false “ones” in the output pattern:
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Iµ = log2

(
n
k

)
− log2

(
Sµ + k

k

)
, (4.15)

where Sµ is the number of false ones in the output pattern yµ. The total
information stored in the memory I (memory capacity) is

C(k, n, M) = I =
M

∑
µ=1

Iµ =
M

∑
µ=1

log2

(
n
k

)
− log2

(
Sµ + k

k

)
(4.16)

=
M

∑
µ=1

k−1

∑
i=0

log2
n− i

k + Sµ − i
. (4.17)

The expectation value of Sµ is determined as

E(Sµ) = (n− k)p01 ≈ (n− k)p1
k. (4.18)

Inserting equation 4.18 into equation 4.17 gives

C(k, n, M) ≈ −
M

∑
µ=1

k−1

∑
i=0

log2
k + E(Sµ)− i

n− i
(4.19)

≈ −M
k−1

∑
i=0

log2
(n− k)p01 + k− i

n− i
(4.20)

≈ −Mk log2
(n− k)p1

k + k
n

. (4.21)

To obtain good retrieval results a high-fidelity (hifi)-requirement p01/(k/n) → 0
and p01 → 0 as n → ∞ is necessary [76], i.e. the number of false ones is almost
zero. This can be obtained by requiring p01 ≤ εk/n for a small positive ε and
extremely sparse output patterns q = k/n → 0.

Then the memory capacity is approximated:

C(k, n, M) ≈ −Mk log2(k/n)≈Mk log2(n/k). (4.22)

In other words, for a small q = k/n the information per pattern is I(q) ≈
−(k/n) log2(k/n) and the totally stored information is approximated:

C(k, n, M) ≈ MnI(k/n) ≈ Mk log2(n/k). (4.23)

To maximize the memory capacity C(k, n, M) for given k and n, we store as
many patterns as possible so that we can still fulfill the hifi-requirement. The
maximal matrix load is calculated from the hifi-requirement and equation 4.11:
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p1,max = (εk/n)1/k. (4.24)

Substituting p1,max in equation 4.9 we get the maximal number of stored pat-
terns,

Mmax =
ln(1− p1,max)
ln(1− k2/n2)

≈ −n2

k2 ln(1− p1,max). (4.25)

Using the approximation k ≈ − log2(n/k)/ log2 p1,max from equation 4.24 the
maximal number of stored patterns is approximated as

Mmax ≈ (log2 p1,max)· ln(1− p1,max)· n2

k log2(n/k)
. (4.26)

The maximal stored information per synapse is obtained by normalizing the
memory capacity to the physical memory:

C(k, n) :=
C(k, n, Mmax)

n2 (4.27)

≈ − ln(1− p1,max)
log2(n/k)

k
(4.28)

≈ log2 p1,max ln(1− p1,max), (4.29)

where k ≈ − log2(n/k)/ log2 p1,max is used from the equations 4.11 and 4.24
for the second approximation. It is seen from the equation 4.28 that the op-
timal choice of the parameter p1 is p1 = 0.5 which maximizes the memory
capacity C. Therefore C→ ln 2 for n → ∞, which Willshaw et al. discovered
in 1969 [100]. These results were refined by Palm in 1980 [73].

Figures 4.1, 4.2, and 4.3 show some results of the classical analysis of the
Willshaw model of an autoassociative memory (l = k and hifi-parameter
ε = 0.01). As can be seen in figure 4.1 the optimal capacity C≈0.49 is reached
for k = 21. For larger or smaller k values the capacity decreases rapidly. For
optimal k value the memory matrix is not sparse with p1,max ≈ 0.5. The me-
mory load p1,max increases with k monotonically from 0 to 1. For the optimal
k the memory matrix is not sparse p1,max = 0.5. Figure 4.2 illustrates that
the memory capacity C(k, n) is maximal for p1,max = 0.5 but maximal M
is obtained for moderately sparse memory matrix (p1,max≈0.16). Figure 4.3
shows the convergence of C(n) towards ln 2 for n → ∞ is quite slow.

4.3 Fault Tolerance

In this section we will investigate the decrease of memory capacity when the
address patterns used for retrieval deviate from the stored ones.
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Figure 4.1: Dependence of the memory capacity C(k, n)≈ log2(p1,max) ln(1−
p1,max) and the memory load p1,max = (εk/n)1/k on the pattern activity k
(number of one-entries in a pattern) for pattern size n = 106.
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Figure 4.2: Dependence of the memory capacity C(k, n)≈ log2(p1,max) ln(1−
p1,max) and M∼(log2 p1,max)2 ln(1 − p1,max) on the memory load p1,max for
given pattern size n = 106.

4.3.1 Missing Ones in the Address Patterns

Let us assume that an address pattern used for retrieval contains a part λ ∈
(0, 1] of the l ones of the original address pattern, and there are no false ones
in the address pattern. To still achieve good retrieval results according to
the hifi-requirements (see section 4.2), we have to store fewer patterns than
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Figure 4.3: The convergence of C(n)→ ln 2 for n → ∞.

before. Analogously to equation 4.24 a maximal memory load p1,max(λ) can
be computed in terms of hifi-requirements,

p1,max(λ) = (εk/n)1/(λl) = p1,max
1/λ. (4.30)

From equation 4.25 it is seen that we can store only

Mλ ≈ −mn
lk

ln(1− p1,max(λ)) (4.31)

patterns. The fraction of the number of patterns to be stored for perfect ad-
dress patterns is

fλ :=
Mλ

M
≈ ln(1− p1,max(λ))

ln(1− p1,max)
. (4.32)

From equations 4.23 and 4.28 the classical memory capacity C(k, n) is reduced
to

Cλ(k, n) := fλ·C(k, n). (4.33)

Asymptotically for large n the maximal possible memory capacity is obtained
from equations 4.29, 4.32 and 4.33:

Cλ(k, n) := fλ·C(k, n) ≈ log2(p1,max)· ln(1− p1,max(λ)). (4.34)

Substituting p1,max = p1,max(λ)λ from equation 4.30, we can write Cλ(k, n)
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Cλ(k, n) ≈ λ log2(p1,max(λ))· ln(1− p1,max(λ)). (4.35)

We get the maximal capacity for p1,max(λ) = 0.5 corresponding to p1 = 0.5λ,
and we can write

Cλ(k, n) → λ· ln 2. (4.36)

Considering fault tolerance according to parameter λ we can generally write
the asymptotic memory capacity

Cλ(k, n) = λC(k, n). (4.37)

Therefore, addressing the memory with a fraction λ of the l ones in the ori-
ginal pattern decreases the classical asymptotic memory capacity by factor
λ.

4.3.2 False Ones in the Address Patterns

Comparing the analysis of missing ones in the address pattern to the analysis
of false ones shows that the latter is more complicated. Moreover, the Will-
shaw retrieval strategy, where threshold is equal to the number of active units
in the address patterns, can not be applied for the address pattern containing
false ones.

For the classical Willshaw model Sommer and Palm [93] have introduced
exact formulas for the error probabilities in the retrieved pattern given the
error probabilities for numbers of false and missing ones in the address pat-
tern and the threshold. Thus, the threshold can be chosen between l and the
number of ones in the address pattern to minimize the error probabilities in
the retrieved pattern.

However, if the error probabilities in the address pattern are not known, it is
impossible to find an appropriate threshold. Instead, it is necessary to adjust
a posteriori threshold repeatedly until the number of ones in the retrieved
pattern matches the desired pattern activity.

Even if the error probabilities in the address pattern are known, it is difficult
to obtain general results about the impact on number of storable patterns and
memory capacity as has been done in section 4.3.1 for missing ones. This is
due to the lack of appropriate approximations necessary for general results.
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4.4 Discussion

The Willshaw model is a simple implementation of binary neural associative
memory. It provides an efficient and useful algorithm in technical applica-
tions for rapid and fault-tolerant access to stored pattern information. Its
performance can be superior to classical algorithms of computer science, e.g.
look-up tables.

The Willshaw model is efficient in terms of memory capacity. For sparse pat-
terns with k = log2 n (where n is the length of the binary pattern vectors, and
k is number of ones) a high memory capacity of ln 2≈0.7 is possible asymp-
totically for n → ∞. This means that the Willshaw model can store asymp-
totically about 0.7 bit of information per synapse. A slightly better memory
capacity of 1/2 ln 2≈0.72 is obtained for different learning rules and retrieval
strategies such as Hebb rule [76]. In 2003 Knoblauch showed that asympto-
tically memory capacity of 1 is possible for the Willshaw model if the binary
memory matrix is optimally compressed [53].

The model is sensitive to false ones in the input patterns. In the case that the
input pattern is composed of a superposition of two or more patterns, which
are binary vectors of length n containing k ones, at a threshold level Θ = k,
the output of the memory is a superposition of patterns corresponding to the
patterns the input pattern contains, if the patterns do not overlap. When the
patterns overlap, using a maximum threshold strategy may activate some
neurons in the output population more strongly than the other output neu-
rons representing the corresponding output patterns.

An important parameter in the model is the pattern activity k =
n
∑

i=1
yi, i.e.

the number of one entities in the binary pattern vector of length n. In case
the memory stores patterns with different pattern activities, these generally
decrease the memory capacity if there are overlaps between patterns, e.g. a
pattern with a high pattern activity contains the same neurons that belong
to the two patterns with low pattern activities. When a maximum thresh-
old strategy is chosen, a superposition of patterns with both high and low
activities is retrieved.

For the memories with fixed memory size, the number M of patterns to be
stored in the memory is limited. If we store too many patterns, the memory
capacity first increases, but after a limit, it starts to decrease. This leads to
an overloading of the memory. A solution to the overloading problem can
be to keep the memory size large enough, as to not cause an out-of-memory
failure.



48 CHAPTER 4. WILLSHAW ASSOCIATIVE MEMORY



Chapter 5

Hybrid HMM/NAM System

A variety of different hybrid hidden Markov model/artificial neural network
(HMM/ANN) architectures have been proposed in the literature. The hybrid
HMM/ANN approach combines the advantages of both HMMs and ANNs,
and often allows for significant improvements in performance in difficult au-
tomatic speech recognition (ASR) tasks compared to standard HMMs.

Between the late eighties and the beginning of the nineties ANN architec-
tures attempted to emulate HMMs [71, 14]. The idea underlying the approach
was to compute the forward and backward probabilities in HMMs [14]. The
model was called Alpha Net, because its architecture and dynamics were cali-
brated to resemble the forward computation of the alphas in the Baum-Welch
algorithm. The Alpha net is a recurrent neural network. A recurrent architec-
ture was built for each word to be included in the model. The neurons were
organized in order to represent the states of the HMM. Each neuron is con-
nected with a recurrent connection to itself, and with a forward connection to
the unit representing the following adjacent state in the HMM. The weights
of these connections are equal to the state transition probabilities between the
corresponding pairs of states.

In some ANN/HMM hybrids [62, 27, 32, 95], ANNs were used to estimate
the HMM state-posterior probabilities. Bourlard et al. [13, 67, 11, 12] pro-
posed HMM/ANN hybrids for continuous ASR. A multi-layer perceptron
(MLP) was trained to estimate the posterior probabilities of HMM states,
with the objective of maximizing the posterior probability of a given (left-
to-right) Markov model given an acoustic observation sequence. Singer and
Lippman [91] used radial basis function (RBF) [15] networks instead of MLPs
as Bayesian probability estimators and the resulting hybrid was used in an
isolated word recognition task.

Robinson et al. [83, 37] extended Bourlard’s approach with the introduction
of a recurrent network instead of an MLP to estimate state-posteriors. Their
system, called ABBOT, is a continuous speech, speaker independent system

49
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for large vocabularies. Hochberg et al. improved a system by a combination
of recurrent neural networks, which were trained on different acoustic fea-
tures, namely MEL and Perceptual Linear Prediction (PLP) coefficients [37].
Backward and forward recurrent networks were also introduced, resulting in
four parallel probability estimators.

ANNs were also used to estimate state posteriors [102], but instead of con-
sidering only strict values “0” and “1” as output unit values, according to
the Viterbi segmentation of training sequences, the output probabilities were
generated in the continuous range (0, 1) within the forward-backward mecha-
nism. The training technique was evaluated on a recognition task of con-
tinuous digits collected over the telephone channel and the hybrid system
achieved less word-error-rate (WER) than standard context-dependent HMMs.

In another hybrid model, the ANN was trained as a feature extractor for a
context-dependent HMM in order to transform input acoustic representa-
tions into compact low-dimensional representations [8, 5, 6]. These represen-
tations are more suitable to be modeled by the emission probabilities of the
HMM than standard acoustic parameters. Experimental results showed that
training the ANN jointly with the HMM in the proposed hybrid system im-
proved recognition performance over the standard context-dependent HMM
[8, 6].

Starting from the late eighties, neural networks were also used as vector
quantizers for discrete HMMs. Most of those works (for instance [42, 52])
relied on Kohonen’s learning vector quantization (LVQ) [57] as an effective
neural alternative to standard clustering algorithms. A new neural architec-
ture was proposed to perform vector quantization on the acoustic features
for a discrete HMM [86]. The novelty of the approach involved the training
of the ANN, where a feedforward net, basically a 1-layer MLP, was trained
with an unsupervised algorithm based on the maximal mutual information
criterion.

In 1996 Jang and Un [43] presented a hybrid system for speaker independent
isolated word recognition. The system was constituted by a connectionist
fuzzy vector quantizer (FVQ), the output of which was fed into a discrete
HMM. The proposed FVQ consisted of time-delayed neural networks which
were used as phoneme classifiers.

Zavaliagkos et al. [105] developed a hybrid system that combines the advan-
tages of neural networks and HMMs using a multiple hypothesis paradigm
and rescores the hypothesis generated by an HMM which uses an N-best
strategy. The network computes scores on whole segments of frames, corre-
sponding to phonemes. The connectionist model used for this purpose was
called segmental neural network (SNN). Training of the system was accom-
plished using a segmentation performed by the HMM, possibly considering
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the first N-best hypotheses of segmentations, which from the second best
down to the Nth best are used as negative examples. Another similar a-
pproach for rescoring of a standard HMM with N-best strategy was founded
by Moudene et al. [69].

Thomas et al. [25] described the application of associative memory to an
isolated speech recognition system. In the associative memory approach pat-
terns are represented with quantized speech vectors (LPC) per frames. The
number of processing units in the network is equal to the number of entries
in the patterns to be stored. The weights are set with

Tji = ∑(2api − 1)(2apj − 1), (5.1)

where api is the ith entry in speech pattern p and the sum is taken over all
speech patterns to be stored. The words are stored using the equation 5.1.
Each speech vector is a state of the network corresponding to a minimum
value of the network energy. That minimum is expected to correspond to
one of the speech patterns of the network.

This chapter is concerned with a new hybrid HMM/NAM approach to speech
recognition, which is the basis of this thesis. In the presented approach HMMs
are used on the elementary subword-unit level and NAMs are used on the
word level. First, the system architecture based on the presented approach is
described. Afterwards the conversion of non-binary data strings into sparse
binary code vectors, which are used in neural associative memories to re-
present data strings, is explained. After the first part of the hybrid system
“HMM-based subword-unit recognition” is explained, the second part “sin-
gle word recognition network” is delineated, which is a network of binary
neural associative memories. Finally, the presented hybrid system is dis-
cussed in terms of computational complexity and fault tolerance.

5.1 System Architecture

An overview of the architecture of the hybrid HMM/NAM system is given
in figure 5.1. The information flow in the system is as follows: A spoken sen-
tence is first captured via a microphone and preprocessed to obtain speech
vectors. The speech vectors are feature vectors of a raw audio signal, namely
Mel Frequency Cepstral Coefficients (13 coefficients are used with 26 delta co-
efficients) (see section 3.1). The speech vectors enter the HMM module and
are transformed into elementary speech components (e.g. phonemes or syl-
lables) by HMMs. As these different types of speech components (subword-
units) have different temporal resolutions, it depends on the size of the vo-
cabulary or the amount of the available training data, as to which type of
subword-unit is best to use. For example, phonemes could be appropriate for
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small vocabulary, whereas large vocabulary may require the usage of demi-
syllables or syllables. The HMM output sequence of speech components is
then forwarded to the NAM-based single word recognition network. NAMs
are used for postprocessing the output of the HMMs and generate matching
word hypotheses (output words). The output words can then be further pro-
cessed, e.g. to extract the semantics of the sentence (i.e., the meaning of the
sentence).

Figure 5.1: Overview of the architecture of the hybrid HMM/NAM system.

The goal of the hybrid system is to take advantage of both HMMs and NAMs
in order to improve recognition performance and to generate more flexible
and robust recognition systems. When HMMs incorrectly recognize subword-
units or can not recognize all correct subword-units, the single word recogni-
tion network is able to extract correct words from the HMM output subword-
unit stream due to the pattern completion and fault tolerance properties of
NAMs.

5.2 Neural Representations

In this section we will focus on binary distributed neural representations of
data strings, which is necessary when we deal with neural associative me-
mories. Neural representations are distributed in a trivial sense because the
elements, i.e., the neurons, are distributed in the brain. The sparsely dis-
tributed neural representation of a pattern means that the ratio p between
the number of activated and non-activated neurons in the neuron population
satisfies p ¿ 0.5.

5.2.1 Subword-Unit Representations

The size of the neuron population for subword-unit representations is deter-
mined in terms of the number of subword-units which are required for the
recognition task. Each neuron in the population is assigned to one subword-
unit, i.e., when a subword-unit is present in the memory, only one neuron
will be activated and the other neurons remain in an inactive state. In other
words, each subword-unit is represented as 1 out of N binary sparse code
vectors, where N is the number of distinct subword-units in the recognition



5.2. NEURAL REPRESENTATIONS 53

task. Figure 5.2 shows examples of binary sparse neural representations of
subword-units.

Figure 5.2: Binary sparse neural representations of subword-units. For each
subword-unit only the entry in the code vector corresponding to the assigned
neuron index is set to 1.

5.2.2 Word Representations

If the representation of a “word” string is defined as the set of neurons that
are activated when the “word” string is present in the memory, then more
than one neuron will be activated. The words are represented in associative
memories using two different sparsely distributed representations.

In the first representation, binary sparse word representations reflect the pho-
nological similarities of words. A natural similarity between different word
patterns is given by the number of shared neurons in the underlying neural
representations. This means that the word patterns containing the same sub-
word-units share the same neurons which are assigned to these subword-
units. The subword-units can be phonemes, demi-syllables or syllables. In
figure 5.3 examples are given for phonetic transcriptions of two words “blue”
and “black” and their corresponding binary sparse neural representations.
In the binary sparse neural representations, the entries are set to 1 and their
positions are the same as the neuron indices assigned to the subword-units
in the word. The pattern activity is different for each word. This means that
each binary neural word representation has a different number of active units
because each word is composed of a different number of subword-units.

In the second representation, the words are represented using randomly ge-
nerated code vectors. For each word a code vector is independently gener-
ated (see figure 5.4). In order to get these kinds of sparse binary code vectors
we must choose the number of neurons and determine the number of active
neurons in terms of the size of the vocabulary so that p ¿ 0.5 is satisfied.
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Figure 5.3: Binary sparse neural representations of words.

The advantage of this representation is that each neural word representation
has the same number of active neurons (neural activation). When the hy-
brid system is integrated with an NAM-based module for further processes,
such as language understanding, these neural word representations can also
be used for the communication between the word recognition module in
the proposed hybrid approach and the NAM-based language understanding
module in a language processing system. However, this neural representa-
tion does not reflect any kind of similarity between words.

Figure 5.4: Randomly generated binary sparse neural representations of
words.

5.3 Subword Unit Recognition

The first part of the presented hybrid system is HMM-based subword-unit
recognition, where a set of speech vectors is transformed into a sequence of
elementary speech components. The output subword-units are speech com-
ponents such as phonemes, context-dependent phonemes, demi-syllables or
syllables. As we said in section 5.1, the type of the speech component used
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as output subword-units is determined in terms of the vocabulary size and
its recognition accuracy. For small vocabularies a satisfactory subword-unit
accuracy can be obtained using phonemes, while for large vocabularies a sa-
tisfactory subword-unit accuracy can be achieved using subword-units longer
than phonemes, such as demi-syllables or syllables.

For acoustic modeling, context-dependent phonemes (triphones) are usually
used because they achieve good recognition performance. The context-de-
pendent phoneme based recognition systems follow a general strategy for
acoustic model training. All phoneme models are three-state left-to-right
HMMs without skip states (as shown in figure 3.4 in section 3.2). The training
procedure essentially involves four steps, as follows:

• Single Gaussian monophone models are created and initialized with
the global mean and variance of the training data and trained using
reference transcriptions derived from the pronunciation dictionary.

• Context-dependent models that occur in the training corpus are con-
structed from monophone models. Before building a set of context-
dependent models, it is necessary to decide whether or not cross-word
triphones are to be used. If they are, then word boundaries in the train-
ing data can be ignored and all monophone labels can be converted
to triphones. If, however, word internal triphones are to be used, then
word boundaries in the training transcriptions must be marked in some
way (either by an explicit marker which is subsequently deleted, or by
using a short pause). All cross-word or word-internal triphones are
created by copying the monophone models for each required triphone
context and the transition matrices across all the triphones of each base
phone are tied. Then, the models are retrained.

• The states are clustered using two mechanisms. The first is data-driven
and uses a similarity measure between states. The second uses deci-
sion trees and is based on asking questions about the left and right con-
texts of each triphone. The decision tree attempts to find those contexts
which make the largest difference to the acoustics and which should
therefore distinguish clusters (more details for the binary decision tree
are given in [103]). The distributions of all the states in each cluster are
tied to share data and to be able to make robust parameter estimates.
The state-clustered triphones are then retrained.

• Single Gaussian HMMs are converted to multiple mixture component
HMMs. The number of mixture components in each state is success-
ively incremented by splitting single Gaussian distributions into mix-
ture distributions until the required number of components is obtained.
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Figure 5.5 shows an overview of the recognition process. During the recog-
nition process, a recognition network is compiled using the language model,
the pronounciation dictionary and a list of the HMMs to be used. Then it is
used to recognize the input utterance.

Figure 5.5: Overview of the recognition process.

For a phoneme recognizer, the dictionary contains an entry for each phoneme
and the lexicon for the pronunciation might contain

ih ih
eh eh
iy iy
...etc.

A phoneme-level language model is used to provide estimates of the pro-
babilities of phoneme transitions within the sentences of the phoneme recog-
nition task. The recognition network will expand the simple phoneme loop
into a context-dependent phoneme loop to create a cross-word context de-
pendent network. In this case the phoneme network can not be expanded to
a word-internal context dependent network.

In the case of a longer subword-unit recognizer such as syllables, the diction-
ary contains an entry for each subword-unit and the lexicon for the pronun-
ciation contains

b ay b ay
k ao r k ao r
d ih ng d ih ng
...etc.

A subword-unit-level language model is used to provide estimates of the
probabilities of subword-unit transitions within the sentences of the recogni-
tion task. As in the case of phoneme recognizer, the simple phoneme loop is
expanded to a context-dependent phoneme loop to create a cross-word con-
text dependent network.
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5.4 Single Word Recognition Network

The second part in the presented hybrid system is a single word recognition
network. An overview of the single word recognition network is given be-
low in figure 5.6. Each box in the single word recognition network in figure
5.6 corresponds to an associative memory. The single word recognition net-
work is based on the Willshaw model of binary neural associative memories
and consists of 5 associative memories and a representation area SWU. The
memories are interconnected with each other via hetero- and autoassociative
connections. The memories M1 and M3 are autoassociative memories, while
M2, WRD and M4 are heteroassociative memories.

Figure 5.6: Overview of the single word recognition network.

The basic idea is that the single word recognition network generates a list of
word hypotheses in terms of the subword-units processed each time a new
subword-unit is read from the HMM output sequence. After processing all
subword-units that belong to a possible word, a word hypothesis is activated.

For isolated word recognition tasks it is usually easy to determine word
boundaries because there is a small pause between words which is used to
detect the word boundaries. Figure 5.7 shows an example command sentence
and its subword-unit (phoneme-level) transcription. In figure 5.7 the small
pause “sp” denotes the word boundaries.

Figure 5.7: An example command sentence and its subword-unit (phoneme-
level) transcription where the small pause “sp” denotes the word boundaries.
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For continuous speech recognition tasks, it is usually difficult to determine
word boundaries, because there is no boundary such as a small pause be-
tween words. Therefore, we assume that the word boundary is detected
when there is no transition between the current and the previously recog-
nized subword-units. Figure 5.8 gives an example sentence from the Wall
Street Journal (WSJ1) for continuous speech recognition.

Figure 5.8: An example command sentence and its subword-unit (syllable-
level) transcription.

In the single word recognition network, subword-unit and word patterns are
stored in each memory as shown in the following section.

5.4.1 Pattern Storage

Memories M1 and M3

The memories M1 and M3 are autoassociative memory matrices of dimension
n×n where n is the number of distinct subword-units in the task vocabulary.
They store subword-unit patterns in columns using 1 out of n sparse binary
code vectors (see section 5.2). Figure 5.9 shows the storage of two subword-
unit patterns in the memory matrix M1. In figure 5.9 the subword-unit “X”
is stored in the matrix entry (1, 1) because the first neurons in the input and
output neuron populations are assigned to the subword-unit “X”, and the
subword-unit “Y” is stored in the matrix entry (5, 5) in the same way.

The memory load p1 of M1 is computed using equation 4.8. Given pattern
size n, the memory load p1 is obtained as 1− e−1/n. Figure 5.10 shows the
dependence of the memory load p1 on the pattern size n.
Totally stored information is computed using equation 4.23 as

C(k, n, M) = C(1, n, n) = nlog2n (5.2)

and the stored information per synapse is obtained as

C(1, n, n)/n2 =
log2n

n
. (5.3)

Figure 5.10 shows also the stored information per synapse as the pattern size
n increases.
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Figure 5.9: Storage in the memory matrices M1 and M3.

0 5000 10000 15000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

pattern size n

m
em

or
y 

lo
ad

 /
st

or
ed

 in
fo

rm
at

io
n 

pe
r 

sy
na

ps
e

p
1

C(1,n,n)/n2

Figure 5.10: The dependence of the memory load p1 and the stored informa-
tion per synapse on the pattern size n in the memories M1 and M3. As the
pattern size n, which is also the number of patterns to be stored, increases,
the memory load p1 and the stored information per synapse decreases mono-
tonically. But the stored information per synapse decreases faster than the
memory load p1.

Memory M2

The memory M2 is a heteroassociative memory matrix of dimension n×n.
M2 stores subword-unit transitions within the words in the vocabulary using
1 out of n sparse binary code vectors. To store subword-unit transitions in the
memory, subword-unit level transcriptions of the words are necessary. For
example, given the subword-unit (e.g. phoneme) level transcription “b l uw”
of the word “blue”, the subword-unit transitions within the word “blue”,
“b→l” and “l→uw”, are stored as shown in figure 5.11. For the transition
“b→l” the input pattern is the 1 out of n binary code vector of the subword-
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unit “b” and the output pattern is the 1 out of n binary code vector of the
subword-unit “l”. In the same way, for the transition “l→uw” the input pat-
tern is the 1 out of n binary code vector of the subword-unit “l” and the
output pattern is the 1 out of n binary code vector of the subword-unit “uw”.

Figure 5.11: Storage of the subword-unit transitions “b→l” and “l→uw” in
the memory matrix M2.

Given pattern size n and the number of subword-unit transitions to be stored
M, the memory load p1 is computed using equation 4.8 as

p1 = 1− e−M/n2
. (5.4)

From equation 4.23 totally stored information is computed as

C(k, n, M) = C(1, n, M) = Mlog2n, (5.5)

and the stored information per synapse is obtained as

C(1, n, M)/n2 =
Mlog2n

n2 . (5.6)

Figure 5.12 shows the dependence of the memory load p1 and the stored
information per synapse on the pattern size n for a given M = 10000. Figure
5.13 shows the memory load p1 and the stored information per synapse for a
given pattern size n as the number of patterns M increases.

Memory WRD

The memory WRD is a heteroassociative memory matrix of dimension n×r,
where r is the size of randomly generated word code vectors. WRD stores the
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Figure 5.12: The dependence of the memory load p1 and the stored informa-
tion per synapse on the pattern size n for a given M = 10000 in the memory
M2. As the pattern size n increases, the memory load p1 and the stored infor-
mation per synapse decreases monotonically. But the stored information per
synapse decreases faster than the memory load p1.
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Figure 5.13: The dependence of the memory load p1 and the stored infor-
mation per synapse on the number of patterns M for a given pattern size
n = 10000 in the memory M2. As the number of patterns M increases,
the memory load p1 and the stored information per synapse increases. But
the memory load p1 increases more slowly than the stored information per
synapse.

word patterns in the vocabulary in a distributed way using two representa-
tions, namely the binary sparse neural representations reflecting the phono-
logical similarities of words as input patterns and the randomly generated
representations as output patterns given in section 5.2. Figure 5.14 shows the
storage of the word pattern “blue” in the memory matrix WRD.
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Figure 5.14: The memory WRD after the word “blue” has been stored. For
the word “blue” the input pattern is the binary sparse word representation
based on the phonetic transcription and the output pattern is the randomly
generated representation where the pattern activity is equal to 3.

The output pattern activity k (number of one-entries in the pattern) is the
same for each pattern, while the input pattern activity l is different depending
on the length of the words. The memory load p1 is computed using equation
4.8 as

p1 = 1− e
−

M
∑

i=1

lik
nr

(5.7)

≈ 1− e−
Ml̄k
nr , (5.8)

where l̄ is the average input pattern activity.

The input pattern size n is determined in terms of the number of distinct
subword-units which are seen in the vocabulary. Totally stored information

is computed using equation 4.23 as

C(k, r, M) = Mklog2(r/k), (5.9)

and the stored information per synapse is obtained as

C(k, r, M)/(nr) =
Mklog2(r/k)

nr
. (5.10)

Figure 5.15 shows the dependence of the memory load p1 and the stored
information per synapse on the output pattern size r for a given M = 10000,
an average l̄ = 4, k = 2, and n = 8000. Figure 5.16 depicts the dependence
of the memory load p1 on the number of patterns M for a given n = 10000,
r = 2000, k = 2, and an average l̄ = 4. Figure 5.17 shows the memory load
p1 as the average l̄ increases for a given M = 5000, n = 10000, k = 2, and
r = 2000.



5.4. SINGLE WORD RECOGNITION NETWORK 63

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

output pattern size r

m
em

or
y 

lo
ad

 /
st

or
ed

 in
fo

rm
at

io
n 

pe
r 

sy
na

ps
e

p
1

C(k,r,M)/nr

Figure 5.15: The dependence of the memory load p1 and the stored informa-
tion per synapse on the output pattern size r in the memory WRD for a given
M = 10000, an average l̄ = 4, k = 2, and n = 8000. As the output pattern
size r increases, the memory load p1 and the stored information per synapse
decreases monotonically. But the stored information per synapse decreases
faster than the memory load p1.

Memory M4

The memory M4 is a heteroassociative memory matrix of dimension r×n,
which is the transposed form of the memory WRD. M4 also stores the word
patterns in the vocabulary in a distributed way using two representations.
The randomly generated representation is used as the input pattern and the
binary sparse word representation reflecting the phonological similarities of
words is used as the output pattern. Figure 5.18 shows the storage of the
word pattern “blue” in the memory matrix M4.

The output pattern size is determined in terms of the number of distinct
subword-units which are seen in the vocabulary. The memory load p1 is com-
puted in the same way as in WRD (equation 5.8). Totally stored information
is computed using equation 4.23 as

C(li, n, M) =
M

∑
i=1

lilog2(n/li) (5.11)

C(l̄, n, M) = Ml̄log2(n/l̄), (5.12)

and the stored information per synapse is obtained as

C(l̄, n, M)/(nr), (5.13)

where l̄ is the average input pattern activity.
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Figure 5.16: The dependence of the memory load p1 and the stored infor-
mation per synapse on the number of patterns M in the memory WRD for
a given n = 10000, r = 2000, k = 2, and an average l̄ = 4. As the number
of patterns M increases, the memory load p1 and the stored information per
synapse increases. But the memory load p1 increases more slowly than the
stored information per synapse.

Figure 5.19 shows the memory load p1 and the stored information per synapse
as the output pattern size n increases for a given number of patterns to be
stored M = 10000, pattern size r = 2000, and input pattern activity k = 2
and output pattern activity average l̄ = 4.

Figure 5.20 shows the memory load p1 and the stored information per synapse
as the number of patterns to be stored M increases for given pattern sizes
n = 10000, r = 2000, and input pattern activities k = 2 and output pattern
activity average l̄ = 4.

5.4.2 Retrieval

During the retrieval of words from the HMM output sequence, each subword-
unit in the sequence is transformed into its corresponding binary sparse neu-
ral representation (see section 5.2) before it is applied to the word recognition
network. During retrieval each memory has a special task.

Memory M1

The memory M1 serves as an input area and presents the HMM output sub-
word-unit to the network. After applying the binary sparse code vector that
corresponds to the HMM output subword-unit, the memory M1 retrieves the
same subword-unit pattern as the output pattern (the HMM output subword-
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Figure 5.17: The dependence of the memory load p1 on the average l̄ in the
memory WRD for a given M = 5000, n = 10000, k = 2, and r = 2000. The
memory load p1 increases as the average l̄ increases.

Figure 5.18: The memory M4 after the word “blue” has been stored. For
the word “blue” the input pattern is the randomly generated representation
where the pattern activity is equal to 3 and the output pattern is the binary
sparse word representation based on the phonetic transcription.

unit) at the threshold level Θ = 1. Figure 5.21 shows the representation of
the HMM output subword-unit to the network via the memory M1.

Memory M2

As mentioned in the previous section, the memory M2 stores the subword-
unit transitions within the words. During retrieval it uses this information



66 CHAPTER 5. HYBRID HMM/NAM SYSTEM

0 5000 10000 15000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

output pattern size n

m
em

or
y 

lo
ad

 /
st

or
ed

 in
fo

rm
at

io
n 

pe
r 

sy
na

ps
e

p
1

C(l,n,M)/(nr)
−

Figure 5.19: The dependence of the memory load p1 and the stored infor-
mation per synapse on the output pattern size n in the memory M4 for a
given M = 10000, an average l̄ = 4, k = 2, and r = 2000. As the pattern
size n increases, the memory load p1 and the stored information per synapse
decreases monotonically. But the stored information per synapse decreases
faster than the memory load p1.

to predict the possible subword-units which follow the input subword-unit.
Figure 5.22 shows an example of the retrieval of the subword-unit (phoneme)
“l” in M2 given the subword-unit (phoneme) “b” as input pattern.

Given the input subword-unit (phoneme) “b”, the memory M2 activates the
output subword-unit (phoneme) “l” which follows the input subword-unit
“b”. This means that only the subword-unit “l” follows the subword-unit
“b” in the vocabulary.

Memory M4

In the memory M4 each output unit (neuron) is assigned to a subword-unit.
The memory M4 takes two inputs: the word pattern as a randomly generated
neural representation and subword-units that activate the corresponding out-
put subword-units as a superposition of 1 out of n binary neural represen-
tations. During retrieval, the memory M4 predicts the possible subword-
units among the activated output subword-units with respect to the input
word pattern. Figure 5.23 shows an example of the prediction of the output
subword-unit given the word pattern “blue” and the two input subword-unit
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Figure 5.20: The dependence memory load p1 and the stored information
per synapse on the number of patterns to be stored M in the memory M4
for given n = 10000, r = 2000, k = 2 and, average l̄ = 4. As the number
of patterns M increases, the memory load p1 and the stored information per
synapse increases. But the memory load p1 increases more slowly than the
stored information per synapse.

Figure 5.21: Representation of the HMM output subword-unit to the network
via the memory M1.

patterns “k” and “l”.

Given the input word pattern “blue” and subword-unit (phoneme) patterns
“k” and “l”, the output subword-unit “l” is predicted. The threshold value
Θ is set to a value of 3 because the number of one-entities in the binary ran-
domly generated neural representations of the words is equal to 3. At the
threshold level Θ = 3 only the subword-unit “l” is activated.
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Figure 5.22: Retrieval in the memory M2.

Figure 5.23: Retrieval in the memory M4.

Representation Area SWU

The weighted outputs of the memories M1, M2 and M4 are summed as fol-
lows:

di = c · di
M1 +

c
2
· di

M2 +
c
2
· di

M4, 1 ≤ i ≤ n, (5.14)

where di
Mj is the output unit i of the memory Mj, j = 1, 2, 4 and c is the

weight coefficient. Then, a common threshold is applied:

SWU(i) =
{

di ≥ ΘSWU, 1
di < ΘSWU, 0 , (5.15)

where SWU(i) is the ith output unit in the memory SWU and ΘSWU = c is
the threshold value in SWU.
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The weight of the memory M1 is equal to the summed weight of the memo-
ries M2 and M4. In this way, the HMM output subword-unit has the same
weight as that of the predicted subword-units. The resulting subword-unit is
represented in the area SWU.

Memory M3

The memory M3 holds the processed subword-units in SWU. Figure 5.24 (a)
shows the activation of the subword-unit pattern “l”. In figure 5.24 (b), a-
nother subword-unit pattern “uw” is applied to the memory M3 which holds
the subword-unit pattern “l”. The subword-unit pattern held in M3 (e.g.
subword-unit pattern “l”) is back-propagated to the memory M3 as the new
subword-unit pattern is applied to M3. In this way, the subword-unit pattern
already held in M3 is not removed. Therefore, both subword-unit patterns
are held in M3.

Figure 5.24: Retrieval in the memory M3.

Memory WRD

The memory WRD generates word hypotheses with respect to the superposi-
tion of 1 out of n binary neural representations of subword-units. Figure 5.25
shows the retrieval process in WRD. A superposition of two subword-unit
patterns “b” and “l” are given as the input pattern, and the retrieval result
is the corresponding randomly generated neural representation of the word
“blue” as the global threshold Θ = 2.
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Figure 5.25: Retrieval in the memory WRD.

5.4.3 Functionality

In order to simplify the explanation of the retrieval, a “global time step” is in-
troduced. In one global time step, each memory performs a pattern retrieval
and the results are forwarded to subsequent memories. All memories work
in parallel. A retrieval process in one global time step is composed of 5 steps:

• The HMM output subword-unit is presented to the memory M1 (figure
5.26).

Figure 5.26: Representation of the HMM subword-unit to the memory M1.

• The memory M2 takes the input subword-unit from SWU via an auto-
associative connection and represents the possible subword-units which
follow the resulting subword-unit in SWU in the previous global re-
trieval step (figure 5.27).

• The memory M4 represents the expected subword-unit in the current
global time step with respect to the word pattern generated in WRD and
the resulting subword-unit from SWU in the previous global time step.
The memory M4 takes two inputs, namely the word pattern from WRD
via an autoassociative connection and the subword-unit patterns from
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Figure 5.27: Prediction of the subword-units which follow the subword-unit
in SWU in the previous global retrieval step.

SWU via a heteroassociative connection, which activates the subword-
unit patterns that follow the resulting subword-unit pattern in SWU
(figure 5.28).

Figure 5.28: Representation of the expected subword-unit in the current
global time step with respect to the word pattern generated in WRD and the
resulting subword-unit from SWU in the previous global time step.

However, at the beginning of each word, the memories M2 and M4 do
not represent any subword-units, due to the fact that no expectation can
be generated in the beginning of the word recognition process.

• The weighted outputs of the memories M1, M2 and M4 are summed
and a global threshold is then applied. Therefore, the spurious subword-
units (incorrectly recognized by HMMs), which can cause ambiguities
on the word level, may be corrected by the network. The resulting
subword-unit is represented in the area SWU (figure 5.29).

• The memory M3 holds the resulting subword-unit in SWU at the cur-
rent global time step without removing the subword-units processed
up until the current global time step (figure 5.30).

• The subword-units in the memory M3 are then forwarded to the me-
mory WRD. The memory WRD generates a word hypothesis or su-
perposition of word hypotheses with respect to the subword-units acti-
vated in M3 (figure 5.31).
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Figure 5.29: Representation of the resulting subword-unit in SWU.

Figure 5.30: Storage of the resulting subword-unit (in SWU) in M3.

When a word boundary is detected, the iterations for the current word end,
and the memories in the network are set to their initial states in order to
recognize the next word in the sentence.

Figure 5.31: Generation of a word hypothesis or superposition of word hy-
potheses with respect to the subword-units activated in M3.

5.5 An Example of the Network Functionality

Given a part of a subword unit sequence generated by HMMs, e.g. “jh ah
p ae n p l ey z ...”, which means “japan plays ...”, the single word recogni-
tion network processes it as follows:

Figure 5.32 shows the state of the single word recognition network after the
first syllable “jh ah” in the HMM output sequence has been processed. M1
represents the first syllable received from the HMM output at the first global
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time step, while M2 and M4 do not represent any syllables because they
do not receive any input at the beginning of the word recognition process.
Therefore, SWU represents the same syllable and it is forwarded to M3. The
syllable in M3 does not allow for a unique word interpretation because there
are many words in the vocabulary which contain the syllable “jh ah” and
thus a list (superposition) of all matching word patterns (with the highest
activation) is finally displayed in WRD. Note that the additional calculation
of the list of all word pattern names is only held for display and only in the
WRD memory. The number of pattern names displayed in the memories is
limited to 5 pattern names.

Figure 5.32: Processing of the first syllable “jh ah” in the network.

As shown in figure 5.33, in the next global time step, M1 represents the HMM
output “p ae n”, M2 represents the expected syllable with respect to the syl-
lable represented in SWU in figure 5.32 (in the previous global time step) and
M4 represents the predicted syllables at the current global time step with
respect to the word hypotheses represented in WRD and the syllable repre-
sented in SWU in figure 5.32 (in the previous global time step). After the sum-
ming of the outputs of the memories M1, M2 and M4 and applying a global
threshold strategy, the resulting syllable is shown in SWU (figure 5.33).

The resulting syllable in SWU is then forwarded to M3 and stored in this
memory. The final process at the current global time step is that M5 generates
a word hypothesis that matches the set of the syllables in M3 with the highest
probability.

In figure 5.35 the network processes the next syllable in the HMM output.
As shown in figure 5.35, M4 can not make an estimation about the current
syllable in the HMM output with respect to the outputs of WRD and SWU.
Therefore, there is not an activated pattern in M4. But M2 generates a sylla-
ble, which is expected at the current global time step, in terms of the syllable
in SWU. Because the sum of the outputs of M1, M2 and M4 can not exceed the
threshold ΘSWU (see section 5.4.2), the network decides on a word boundary
at the current global time step and the syllable in M1 is handled again as a
first syllable of a new word.
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Figure 5.33: Processing of the second syllable “p ae n” in the network.

Figure 5.34: Generating of a word hypothesis with respect to the syllables
held in M3.

5.6 Ambiguities

ASR has different kinds of ambiguities, pronunciation variability, word boun-
dary ambiguity and homophones. The pronunciation variability occurs when
the speaker’s pronunciation of a word is different from its canonical pronun-
ciation. The word boundary ambiguity occurs when there are multiple ways of
grouping phones into words, e.g., “It’s not easy to wreck a nice beach” and
“It’s not easy to recognize speech”. The concept homophones refers to unre-
lated words that sound the same, but have different orthography, e.g., sail
and sale. In addition to these ambiguities, background noise and insufficient
training data can also decrease the recognition performance of HMMs.

These ambiguities cause HMMs to recognize (additional) wrong subword-
units or to not recognize all correct subword-units. But the neural associa-
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Figure 5.35: Detecting word boundaries in the network.

tive networks are able to handle ambiguities of subword-unit level transcrip-
tions since they are fault tolerant. A superposition of words is activated if
the address pattern (the subword-units activated in the memory M3) does
not strongly address one unique word pattern, but addresses several weaker
word patterns. Ambiguities on the word level are represented by a superpo-
sition of many items (words) in question, e.g., if the HMM-based subword-
unit recognizer generates a subword-unit sequence like “ao l” for the word
“ball”, whose correct transcription is “b ao l”, the word recognition network
can not make a unique decision on the correct word. It generates a superpo-
sition of the words “ball” and “wall” because “wall” has the phonetic tran-
scription “w ao l” and the two words share the same subword-units “ao” and
“l”. Another example is given from the Wall Street Journal (WSJ1): the words
“writes” and “rights” are homophones, i.e., they have the same canonical
transcription, “r ay t s”. Therefore, during retrieval for a given subword-
unit sequence like “r ay t s”, the word recognition network does not decide
on a single word and produces a superposition of the words “writes” and
“rights”.

The ambiguity on the word level might be resolved in further processes (e.g.
on the language or sentence levels) if additional context information (seman-
tics) or a priori information on the word sequences to be recognized supports
one of the probabilities (see section 6), and weakens the others. In the neural
network, this means that additional input must precisely support one pattern
of the superposition in order to resolve the ambiguity. Contextual input can
help to resolve ambiguities, e.g., using a bidirectional connection between the
predicate of a sentence and the object. Syntactic input can also help to resolve
ambiguities using the information about the way words are put together to
form sentences.
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5.7 Discussion

The presented hybrid HMM/NAM approach takes advantage of both HMMs
and NAMs in order to develop a flexible and robust recognition system. In
real-world environments, where the performance of HMMs is negatively af-
fected, NAMs, combined with HMMs, can increase the recognition perfor-
mance due to the “fault-tolerance” property of NAMs. A subword-unit is
represented in NAMs using a binary sparse code vector. A word is repre-
sented as a superposition of binary sparse code vectors which belong to the
subword-units involved in the word. This representation enables the system
to preserve the similarity between words, e.g., homophones have the same
binary sparse code vector. The subword-unit and word patterns are stored in
NAMs using the Hebbian learning rule. For retrieval, two different retrieval
strategies are employed: One step retrieval strategy, where the threshold is
set to a global value, and Willshaw’s retrieval strategy, where the threshold
is set to the number of ones in the binary input vector.

In terms of the memory capacity analysis it is also seen that the stored in-
formation per synapse and the memory load in NAMs in the hybrid system
decreases monotonically as the output pattern size increases. The reason the
stored information per synapse is low is that the input and output patterns
are very sparse.

The memory usage of the memories in the single word recognition network
depends on the size of the subword-units and the words in the task vocabu-
lary. In other words, in order to add new subword-unit or word patterns to
the memories, their memory size should be increased because subword-unit
patterns are represented as 1 out of n code vectors and words are superposi-
tions of subword units. The size of the subword-units is determined by the
type of the subword-unit, and the type of the subword-units is determined
with respect to the size of the task vocabulary. For small vocabularies, it is
usually suitable to use phonemes as output subword-units. But, if the size of
the vocabulary is large, then subword-units longer than phonemes, such as
demi-syllables or syllables, enable HMMs to give better recognition perfor-
mance.

For the words that are mispronounced by a speaker, it is usually possible for
HMMs to generate wrong subword-units. The network of NAMs is able to
handle ambiguities that occur because of the recognized additional wrong
subword-units and the subword-units that can not be recognized by HMMs.
If the ambiguity on the subword-unit level can not be solved, the network of
NAMs then represents the ambiguity on the word level as a superposition of
all possible words (see section 5.6). In the case of homophones, which refers
to words that sound the same, but have different orthography, NAMs (the
memory WRD) can not decide on a single word. Therefore, a superposition
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of homophones is retrieved. In order to solve the ambiguity on the word
level, it is necessary to make use of additional information, such as a priori
information on the word sequences to be recognized, contextual information,
or syntactic information.

Because of the sparse representation of subword-units and words in NAMs,
the computational cost in NAMs is only limited to active input units. Due to
the high storage capacities of the sparse binary associative memories [73], the
presented approach scales well with large vocabularies. For large vocabulary
speech recognition tasks, the presented hybrid system utilizes a task voca-
bulary of subword-units which is usually smaller than that of the words. In
spite of this, it takes a bit more time on the HMM level to search for the most
appropriate subword-unit sequence for a given speech utterance because of
the complexity of the subword-unit search space in the HMM recognition
network.

The hybrid HMM/NAM approach also facilitates a link between symbolic in-
formation and sub-symbolic information processing. The HMM-based sub-
word-unit recognition is performed using speech vectors to represent sub-
symbolic information, whereas the NAM-based word recognition generates
symbolic information from sub-symbolic information. This property is very
useful for neuro-symbolic integration.
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Chapter 6

Extension of the Hybrid System

A language model plays an important role in speech recognition, especially
in large vocabulary continuous speech recognition, to improve the recogni-
tion performance. Thus the single word recognition network in the presented
hybrid system (see section 5.4) is extended with a neural associative memory
(NAM) based language model network, where the word hypotheses gener-
ated in the memory WRD are processed by a network of NAMs which holds
the language modeling information to recognize a sequence of the output
words within the spoken sentence. This section deals with the language
model network which is a network of NAMs. First the architecture of the
language model network is described. Then the conversion of words, word
bigrams, and trigrams into sparse binary code vectors is explained. After-
wards the “language model network” is introduced and an example of the
functionality of the extended hybrid system is given.

6.1 Architecture of the Language Model Network

An overview of the NAM-based language model network within the ex-
tended model is shown on the right of figure 6.1. In the hybrid hidden
Markov model (HMM)/NAM system, HMMs are sometimes unable to dis-
cern every subword-unit uttered by a speaker. Because of the wrongly recog-
nized or missing subword-units, the NAM-based word recognition network
can generate wrong words or superpositions of several words. But, the lan-
guage model network takes advantage of a priori information on the word
sequences to be recognized to correct wrongly recognized words.

The language model network is based on the Willshaw model of binary neu-
ral associative memories as well as the word recognition network and con-
sists of one autoassociative memory M5 and two heteroassociative memories
BGW and SEN. The word recognition and language model networks are in-
terconnected via a heteroassociative connection from the memory WRD in
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Figure 6.1: Overview of the language model network (on the right).

the word recognition network to the memory BGW in the language model
network.

6.2 Neural Representations

6.2.1 Word Representation

In the language model network the words are represented using binary sparse
neural representations as 1 out of V code vectors, where V is the total number
of words in the task vocabulary. The size of the neuron population for this
word representation is determined in terms of the number of words in the
task vocabulary, and each neuron in the population is assigned to one word.
Figure 6.2 shows examples of binary sparse neural representations of words.

6.2.2 Word Bigram and Trigram Representations

The word bigrams and trigrams are represented using binary sparse neural
representations as 1 out of B and 1 out of T code vectors, respectively, where
B is the number of word bigrams required for the recognition task and T is the
number of word trigrams required for the recognition task. The sizes of the
neuron populations for the word bigrams and trigrams are dependent on the
number of the word bigrams and trigrams that are required for the recogni-
tion task. Figure 6.3 shows examples of binary sparse neural representations
of the word bigrams and trigrams.

These binary sparse neural representations are used to represent the word
sequences within the sentences in associative memories. The binary sparse
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Figure 6.2: Binary sparse neural representations of words as 1 out of V code
vectors. For each word only the entry in the code vector corresponding to the
assigned neuron index is set to 1.

Figure 6.3: Binary sparse neural representations of word bigrams and tri-
grams. For each word bigram or trigram only the entry in the code vector
corresponding to the assigned neuron index is set to 1.

neural representations of sentences are defined as superpositions of the bi-
nary sparse neural representations of the word bigrams (or trigrams). Figure
6.4 shows an example of binary sparse neural representations of a sentence.

Figure 6.4: Binary sparse neural representation of a sentence as superposi-
tions of the binary sparse neural representations of the word bigrams.
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6.2.3 Pattern Storage

Memory BGW

The memory BGW is a heteroassociative memory matrix of dimension V×B,
where V is the total number of words in the task vocabulary and B is the
number of word bigrams required for the recognition task. It stores the pat-
tern pairs (xµ, yµ), µ = 1, 2, ...., B, where xµ is a superposition of the binary
sparse neural representations of the word patterns that construct the word
bigram and yµ is the binary sparse neural representation of the word bigram
pattern (1 out of B sparse binary code vectors). Figure 6.5 shows the storage
of a pattern pair in the memory matrix BGW.

Figure 6.5: Storage in the memory matrix BGW. The address (input) pattern
is a superposition of word patterns ”blue“ and ”plum“. The output (content)
pattern is the word bigram pattern ”blue + plum“.

Memory M5

The memory M5 is an autoassociative memory matrix of dimension B×B,
where B is the number of word bigrams required for the recognition task.
It stores word bigram patterns columnwise using 1 out of B sparse binary
code vectors. Figure 6.6 shows the storage of a word bigram pattern in the
memory matrix M5.

Memory SEN

The memory SEN is a heteroassociative memory matrix of dimension B×T,
where B is the number of word bigrams required for the recognition task and
T is the number of word trigrams required for the recognition task. It stores
the sentence patterns in a distributed way using two representations, the bi-
nary sparse neural representations reflecting the word bigram-level similar-
ities of sentences as input patterns and the binary sparse neural represen-
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Figure 6.6: Storage in the memory matrix M5. The address (input) word
bigram pattern is equal to the content (output) word bigram pattern.

tations reflecting the word trigram-level similarities of sentences as output
patterns given in section 5.2. Figure 6.7 shows the storage of a sentence pat-
tern in the memory matrix SEN.

Figure 6.7: Storage in the memory matrix SEN.

6.2.4 Retrieval

During the retrieval of sentences from the word hypotheses recognized in the
word recognition network, the word hypotheses are first transformed into
word bigrams (memory BGW). Then, the generated word bigrams are stored
(memory M5). After the storage of all word bigrams, they are then used to
retrieve the word trigrams (memory SEN) from which output words within
the spoken sentence are extracted.



84 CHAPTER 6. EXTENSION OF THE HYBRID SYSTEM

Memory BGW

Given two word patterns, the memory BGW generates a word bigram that
corresponds to the two input words. A superposition of the binary sparse
neural representations of the two word patterns is applied to the memory
matrix BGW, and a word bigram pattern is retrieved as a 1 out of B binary
sparse code vector (figure 6.8).

Figure 6.8: Retrieval in the memory matrix BGW.

In figure 6.8, the nonzero-entities in the retrieved pattern belong to the word
bigram patterns which have a connection either with the word pattern ”good“
or with the word pattern ”worker“. But, at the threshold level Θ = 2, only
the word bigram pattern ”good+worker“ is activated.

Memory M5

The memory M5 holds the word bigram patterns retrieved in BGW. Figure
6.9 (a) shows the activation of the word bigram pattern “a+good”. In figure
6.9 (b) another word bigram pattern “good+worker” is applied to the me-
mory M5 which holds the word bigram pattern “a+good”. The word bigram
pattern held in M5 (e.g. “a+good”) is back-propagated to the memory M5 as
the new word bigram pattern is applied to M5. In this way, the word bigram
pattern already held in M5 is not removed. Therefore, both word bigram
patterns are held in M5.

Memory SEN

When a superposition of word bigram patterns is applied to the memory
SEN, it retrieves a superposition of word trigram patterns (figure 6.10). For
the retrieval, the threshold is set to a global value which is determined by first
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Figure 6.9: Retrieval in the memory matrix M5.

computing the respective activation of each sentence in terms of the word
bigrams and then by choosing the maximum activation value.

Figure 6.10: Retrieval in the memory matrix SEN.

6.2.5 Functionality

Retrieval in the sentence recognition network is composed of 3 steps.

• A superposition of two input word patterns is provided to the memory
BGW via a heteroassociative connection from WRD in the word recog-
nition network. Therefore, the word recognition network waits one
global time step to forward a pair of word patterns to the language
model network. Then, a word bigram pattern is retrieved in terms of
the superposition of two input word patterns (figure 6.11).
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Figure 6.11: Retrieval of a word bigram pattern by applying a superposition
of two input word patterns to the memory BGW via a heteroassociative con-
nection from WRD.

• The resulting word bigram pattern is then forwarded to the memory
M5 and stored in M5, which holds the word bigram patterns generated
up to the current global time step (figure 6.12).

Figure 6.12: Storage of the resulting word bigrams (in BGW) in M5.

• The word bigram patterns in the memory M5 are forwarded to the
memory SEN. A global threshold value for the memory SEN is calcu-
lated (see section 6.2.4). The memory SEN generates a superposition
of word trigrams with respect to the word bigram patterns activated in
M5 (figure 6.13).

6.3 An Example of the Extended Hybrid System’s
Functionality

A speech utterance, e.g. “japan plays by different rules ones rigged for the
producer” from the Wall Street Journal (WSJ1) is first processed by HMMs
and a subword-unit (e.g. syllable) sequence is then generated, e.g. “START
jh ah p ae n p l ey z b ay d ih f er *** r uw l d w ah n z r ih g d f ao r dh ah
p r ah d uw s er END”, where the last syllable “***” of the word “different”
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Figure 6.13: Retrieval of word trigrams with respect to the word bigrams held
in M5.

can not be recognized (it should have been “ah n t”) and the single syllable
word “rules” is also incorrectly recognized as “r uw l d”, which should have
been “r uw l z”. “START” and “END” denote the beginning and end of the
sentence, respectively.

Figure 6.14 shows the word recognition network after the syllables belonging
to the word “japan” have been recognized, as explained in section 5.5. The
word recognition network generates a unique decision for “JAPAN” in WRD,
after processing both syllables belonging to the word.

Figure 6.14: The word recognition network after the syllables belonging to
the word “JAPAN” have been processed.

In figure 6.15 the sentence recognition network has processed the first word
hypothesis “JAPAN” which was generated by the single word recognition
network. After recognition, the generated word hypothesis was forwarded
to the memory BGW to generate the word bigram. Since the word “JAPAN”
is the first word in the sentence, the first word bigram is given as “START+JA-
PAN” and stored in M5.

In figure 6.16, a few steps later, the syllables “d ih” and “f er” belonging to
the word “DIFFERENT” have been processed and stored in M3. The single
word recognition network produces a superposition of word hypotheses in
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Figure 6.15: The sentence recognition network after the first word “JAPAN”
has been recognized.

WRD containing the syllables in M3. The superposition of word hypothe-
ses is then sent to BGW with the previous word hypothesis to generate the
corresponding word bigrams.

Figure 6.16: The word recognition and sentence recognition network after the
incomplete set of syllables for the word “DIFFERENT” have been processed.

Figure 6.17 shows the sentence recognition network after all word hypothe-
ses have been recognized. M5 stores all word bigrams generated by BGW.
These word bigrams will be used as input in SEN in order to recognize the
output words spoken within the sentence. The output of SEN is a sequence
of word trigrams of the spoken sentence and these word trigrams are used to
detect the correct sequence of words within the sentence. The word trigrams,
e.g. “start-japan+plays japan-plays+by plays-by+different by-different+rules
different-rules+ones rules-ones+rigged ones-rigged+for rigged-for+the for-
the+producer the-producer+end”, are then transformed into “japan plays by
different rules ones rigged for the producer”.
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Figure 6.17: The sentence recognition network after all words have been re-
cognized.

6.4 Discussion

In the case of a large vocabulary speech recognition where the search space
in the HMM recognition network is very large, the recognition system is not
able to recognize every subword-unit spoken by a speaker and can not recog-
nize the correct subword-units but can recognize additional wrong subword-
units. If the single word recognition network in the presented hybrid system
is not able to recognize the correct words, this can lead to an uncertainty on
the word level, i.e., a superposition of possible words. At this point, lan-
guage models play an important role in recognition because recognition ac-
curacy can be greatly improved by taking advantage of a priori information
on the sequences to be recognized. The role of a language model consists of
reducing the set of admissible words or sequences of words and therefore the
so-called search space, and a priori knowledge is available on the admissible
words and word sequences to be recognized. Thus, an NAM-based language
model network which works as a language model based on the sentences in
the recognition task, is integrated with the single word recognition network
to use a priori information on the word sequences to be recognized.

The language model network takes advantage of the correctly recognized
words in order to correct the wrongly recognized words. First, it generates
word bigrams from the sequence of recognized words and takes only the
admissible word bigrams. If two adjacent words in the sequence do not con-
struct a valid word bigram, the NAM does not generate a word bigram.

Willshaw’s retrieval strategy is not appropriate for the retrieval process in
the language model network (in the memory SEN) because the input pattern
can also be composed of wrong word bigrams. Therefore, one step retrieval
strategy with a global threshold is applied in the memory SEN.

The memory usage of the memories in the language model network depends
on the size of the word bigrams and trigrams within the sentences in the
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recognition task. But, for medium size vocabularies, it is also possible to
implement a language model network only with word bigrams instead of
word trigrams.

The evaluation of the presented hybrid HMM/NAM yields improved recog-
nition results compared to other research as described in the literature, which
are HMM-based recognition systems (see chapter 9).



Chapter 7

Learning of Novel Words

In 1993 Young and Ward [104] detected new words in speech by using hidden
Markov models (HMMs) for context-dependent phonemes. The idea was,
since unknown-words are composed of novel sequences of known, modelled
sounds, an unknown-word model could be developed. This model competed
with known words from the class N-gram language model and a new word
was detected if the “unknown-word” model scored higher than competing
known words in a standard recognition search. When a new word was de-
tected, the system asked the user to type the word. It then looked the word
up in a large phonetic dictionary to generate a word model from the phonetic
spelling. The class N-gram language model was rebuilt in terms of the new
word.

In 1996 Sloboda and Waibel [92] proposed a data-driven approach to improve
existing dictionaries and to automatically add new words and word variants
whenever needed. The approach was based on both the phoneme and the
speech recognizer. They also needed transcriptions on a word level for train-
ing, resulting in the word boundaries for all word occurrences. Their dictio-
nary learning algorithm briefly contained the following steps:

• collect all occurrences of each word in the database and run the phoneme
recognizer on them

• compute statistics of the resulting phonetic transcriptions of all words

• sort the resulting pronunciation candidates using a confidence measure
and define a threshold for rejecting statistically irrelevant variants

• add the resulting variants to the dictionary and test with the modified
dictionary on the cross-validation set

• retrain the speech recognizer and optionally perform corrective pho-
neme training

91
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• create a new smoothed language model for the phoneme recognizer,
incorporating all new variants.

They showed that using a simple algorithm to extract candidates for phonetic
variants will still yield a significant increase in recognition performance.

The hybrid HMM/neural associative memory (NAM) system, presented with-
in the context of this thesis, is capable of incrementally learning novel words
during runtime. This chapter first outlines the basic principles of the incre-
mental learning of novel words. Afterwards, the learning of new subword-
unit sequences for novel words by HMMs is presented. Another aspect of
the learning of novel words in HMMs is the retraining of HMMs for newly
generated subword-unit sequences. Then the learning of novel words in the
network of NAMs is explained. The chapter concludes with a discussion of
the learning of novel words in the presented hybrid system, compared to the
learning in HMM-based recognition systems.

7.1 Incremental Learning in the Hybrid System

An important aspect of speech recognition systems that are employed in non-
trivial real-world environments is the ability of the system to expand the task
vocabulary with novel words during runtime.

In our implementation for the MirrorBot project (see section 9.2), the special
command sentence “This is X” triggers the learning process, where X stands
for a novel object. The learning of novel words is performed in two steps.
In the first step, HMMs preprocess the auditory input “This is X” to gener-
ate a plausible subword-unit sequence for the novel word. Therefore, the
requirements for the learning is a well-trained set of acoustic models and a
large subword-unit-level language model. The learning process in HMMs
can be done in two ways. The first way, a few new subword-unit sequences
for a novel word are generated without training or adapting HMMs. Or in
the second way, HMMs are retrained with newly generated subword-unit se-
quences for a novel word. The first way requires less time to learn a novel
word than the second way because in the second, additional time is needed
to retrain HMMs with the new adaptation data for a novel word.

In the second step, the NAM-based word recognition network uses the com-
mand “This is” to start the learning process. The learning of a novel word in
NAMs is performed by storing the new subword-unit sequence(s) for a novel
word in the corresponding memories in the network. The learning of a novel
word does not negatively affect the previously learned word patterns.

Before the learning of novel words, it is necessary to identify whether the
novel word is already known. This is accomplished by presenting the new
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subword-unit representation(s) to the memory WRD in the word recognition
network and taking the strength of the memory WRD’s output into account.
Thereby a strong output indicates that the new subword-unit transcription
belongs to an already stored word and a weak output is considered as an
unknown-word. The threshold for this is derived from the memory output
when testing the new data.

7.2 Incremental Learning without Training HMMs

The auditory input for a novel word is first processed by HMMs to produce
a plausible subword-unit sequence for the novel word. As mentioned in the
previous section, this requires a well-trained set of acoustic models and a
large subword-unit-level language model. It is commonly known that even
the same speaker can not pronounce the same word in the same way (con-
sistently). This results in different subword-unit transcriptions for the same
word. These different subword-unit transcriptions are used to train NAMs
in the word recognition network for the novel word. Figure 7.1 shows the ge-
neration of subword-unit transcriptions during the learning of a novel word.
The more the subword-unit transcriptions are used to train, the better the
recognition performance will be achieved for novel words.

Figure 7.1: Generation of different subword-unit transcriptions for a novel
word.

7.3 Incremental Learning by Retraining HMMs

An alternative approach for adding novel words to the task vocabulary is not
to simply generate a few new transcriptions for a novel word, but to retrain
HMM acoustic models with newly generated transcriptions of a novel word
and to expand the language model with these newly generated transcrip-
tions. At first, newly generated subword-unit transcriptions are decomposed
into acoustic units using the pronunciation dictionary. Then, these HMM
acoustic models are retrained with newly generated transcriptions. The lan-
guage model is expanded with the probabilities of the new subword-unit
transitions within the newly generated transcription (figure 7.2). This alter-



94 CHAPTER 7. LEARNING OF NOVEL WORDS

Figure 7.2: Incremental learning with new subword-unit sequences for novel
words. Newly generated subword-unit transcriptions are used to retrain the
corresponding HMM acoustic models and to expand the language model
with new subword-unit transitions.

native approach is more time consuming than the previous approach, but
achieves better recognition performance.

7.4 Learning in Neural Associative Memories

After the generation of new subword-unit transcriptions for a novel word,
these new transcriptions are forwarded to the NAM-based word recognition
network. The word recognition network activates a learn signal at several as-
sociative memories involved in the learning of novel words whenever ”This
is“ has been recognized. Memories with an active learn signal do not acti-
vate superpositions of several patterns if the address pattern does not match
a stored pattern well, but rather generate novel representations and connec-
tions between memories by performing Hebbian learning if either the source
or the target memories have learned a novel pattern.

In the single word recognition network, the learning takes place in the he-
teroassociative memories M2, M4 and WRD. In the memory M2, new subword-
unit transitions within the new word transcriptions are stored. Given a new
subword-unit (diphone) transcription ”p+ih ih+z ae-r“ for the novel word
“pear”, figure 7.3 illustrates an example of the learning of new diphone tran-
sitions “p+ih→ih+z” and “ih+z→ae-r” in the memory M2.

In order to store the novel word in the memory WRD, two sparse binary
neural representations are necessary, a sub-symbolic (subword-unit) neural
representation and a randomly generated neural representation. The sub-
symbolic neural representation is obtained from the subword-unit transcrip-
tion of the novel word (see section 5.2) and used as the input pattern. The
second representation is obtained by randomly choosing a number of neu-
rons from the output population as the output pattern. An example of the
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Figure 7.3: The learning process of new subword-unit transitions
“p+ih→ih+z” and “ih+z→ae-r” for the novel word “pear” in the memory
M2.

learning of the novel word “pear” in the memory WRD is depicted in figure
7.4.

Figure 7.4: An example of the learning of the novel word “pear” in the me-
mory WRD using its sub-symbolic representation ”p+ih ih+z ae-r“ and its
randomly generated neural representation as a 3 out of r binary code vector.

As said in section 5.4.1, the memory M4 is the transposed form of the me-
mory WRD. Therefore, the same neural representations used in WRD are also
used to store the novel word in the memory M4, but its randomly generated
neural representation is used as the input pattern and its sub-symbolic neural
representation is used as the output pattern. Figure 7.5 displays the same
example for the learning of the novel word ”pear“ in the memory M4.
Finally, the corresponding auto- and heteroassociative connections in the net-
work are also updated. After learning, the novel word can be used and pro-
cessed as well as the previously stored words were. Thus, the system can
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Figure 7.5: An example of the learning of the novel word “pear” in the me-
mory M4 using its randomly generated neural representation, a 3 out of r
binary code vector, as the input pattern and its sub-symbolic representation
”p+ih ih+z ae-r“ as the output pattern.

correctly recognize the word “pear” in a sentence like “bot show pear” after
“pear” has been learned.

The language model network is updated with respect to the sentences con-
taining the novel word to store possible novel word bigrams and trigrams in
the novel sentences. But, in the case of the learning of novel words, the struc-
tures of the memories in the language model network should be changed,
i.e., neural representations randomly generated from a specific neuron po-
pulation can be used to store words, word bigrams and trigrams instead of
the binary 1 out of V, 1 out of B, and 1 out of T representations, respectively.
These kinds of neural representations enable us to keep the size of the as-
sociative memories in the language recognition network stable during the
learning of novel word bigrams and trigrams.

7.5 Discussion

In many speech recognition applications such as HMMs, it is usually diffi-
cult to increase the vocabulary size during runtime. To achieve this, many
parameter files required for the application have to be changed and the mo-
difications to the lexicon, the language model and training of new subword-
unit models are necessary. However, the presented HMM/NAM approach
enables us to easily enlarge the vocabulary with novel words during runtime
because it needs only a sequence of subword-units from HMMs for the novel
word [49].

In the context of this thesis two different strategies to generate new tran-
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scriptions for novel words in HMMs are introduced: the incremental learn-
ing without further training of HMMs and the learning with retraining of
HMMs. The first learning strategy needs less time to learn novel words than
the latter, but achieves less recognition performance. On the other hand, the
incremental learning method with retraining of HMMs requires more time to
learn novel words, but gives more satisfactory recognition results. In order
to get a reasonable sequence of subword-units from HMMs, both strategies
require a large, well-trained set of HMMs.

The learning process in NAMs works very fast using the HMM output sub-
word-unit sequence. As a consequence of the learning of novel words, only
novel patterns or pattern pairs need to be amended while the previously
stored patterns or pattern pairs remain unchanged. During learning, depend-
ing on the recognition task, the language model network needs also a priori
information on the sequence of words to be recognized, which includes the
novel word.

Comparing the presented hybrid system to standard HMMs, the adding pro-
cess of novel words in the hybrid system is faster and easier than HMMs and
makes it possible to learn during runtime, which meets the requirements of
real-world applications.



98 CHAPTER 7. LEARNING OF NOVEL WORDS



Chapter 8

Speech Corpora

Within the scope of this thesis, several speech corpora are used to test the
recognition performance of the presented hybrid system. In addition to well-
known speech corpora for continuous speech recognition, such as TIMIT and
Wall Street Journal (WSJ1), we also used speech corpora for special speech
recognition tasks, such as language understanding on a mobile robot [26, 47]
and distributed speech recognition. All the speech corpora used for evalua-
tion are given in the following sections.

8.1 MirrorBot Speech Data

The MirrorBot speech data is developed for a language understanding task
embedded into a robot. The speech data is based on a small vocabulary of 43
words and consists of 105 sentences (see appendix A) from 4 speakers who
are not native English speakers. The speech data consists of simple English
command sentences without prepositions. The language is relatively easy for
humans to understand and speak. 5-fold cross-validation is used to test the
performance of the presented hybrid system. Each fold contains 21 speech
utterances from each speaker. One of the 5 subsets is used each time, as
the test set and the remaining 4 subsets are used as the training set. Each
speaker is used both in the training and test sets. A set of 45 phonemes is
used, which are based on the TIMIT phonetic symbols. For each utterance
the MirrorBot speech data corpus includes a 16-bit, 44, 100Hz PCM encoded
speech waveform file.

8.2 German Bus-Stop Names Speech Corpus

The German bus-stop names speech corpus is a set of 279 German bus stop
names, which originated from the Institute of Information Technology, Uni-
versity of Ulm. The training set consists of 14 speakers, whereas the test set
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consists of 5 speakers. Note that the speakers are native German speakers.
The speakers, both in the training and the test set utter these 279 bus stop
names. The number of word tokens in the test set is 1, 395 while it is 3, 906 in
the training set. A set of 39 phonemes is used. For each utterance, the corpus
includes a 16-bit, 16, 000Hz PCM encoded speech waveform file.

8.3 TIMIT Continuous Speech Corpus

The TIMIT corpus [79] of read speech is designed to provide speech data
for acoustic-phonetic studies and for the development and evaluation of au-
tomatic speech recognition systems. Text corpus design was a joint effort
among the Massachusetts Institute of Technology (MIT), Standford Research
Institute (SRI), and Texas Instruments (TI). The TIMIT corpus contains a to-
tal of 6, 300 sentences, i.e., 10 sentences are spoken by each of 630 speak-
ers from eight major dialect regions of the United States. The text material
in the TIMIT corpus consists of 2 dialect sentences (the SA sentences), 450
phonetically-compact sentences (the SX sentences), and 1, 890 phonetically-
diverse sentences (the SI sentences). The dialect sentences are not included
in the experiment. Each speaker uttered 5 of the SX sentences and 3 of the SI
sentences. Each SX sentence was uttered by 7 different speakers while each
SI sentence was uttered only by a single speaker. Table 8.1 summarizes the
TIMIT speech material.

Table 8.1: TIMIT speech material.

Sentence Type #Sentences #Speakers Total #Sentences/Speaker
Dialect (SA) 2 630 1, 260 2

Compact (SX) 450 7 3, 150 5
Diverse (SI) 1, 890 1 1, 890 3

Total 2, 342 6, 300 10

The speech data is composed of three sets: a set for training the acoustic
models, a development set for optimizing language model scaling factor and
word insertion penalty, and a test set for evaluating the acoustic models. Ta-
ble 8.2 shows details of the speech data.

Table 8.2: TIMIT data sets.
Train Test Devel. Total

Word tokens 30, 132 9, 455 1, 570 41, 157
Speakers 462 144 24 630



8.4. WALL STREET JOURNAL (WSJ1) 101

The TIMIT corpus transcriptions have been manually labelled and include
time-aligned, manually verified phone and word segmentations. The orig-
inal set of 61 phonemes was reduced to a set of 45 phonemes. For each
utterance the TIMIT corpus includes a 16-bit, 16kHz PCM encoded speech
waveform file.

8.4 Wall Street Journal (WSJ1)

The Wall Street Journal corpus (WSJ) is a collection of speech about business
news topics, as typically found in the printed Wall Street Journal. This corpus
consists of two parts, WSJ0 (15.1 hours, 7, 184 training utterances) and WSJ1
(approximately 73 hours, 78, 000 training utterances). The corpus covers 284
different speakers. The training portion contains 24, 180 distinct words. In
total, there are 576, 859 words. The pronunciations and the phoneme set are
from the Carnegie Mellon University (CMU) Pronunciation Dictionary. The
phoneme set contains 39 phonemes.

The presented hybrid approach is tested with three test sets from WSJ1 using
the non-verbalized 5k (4, 986) word closed vocabulary and the non-verbalized
20k (19, 979) word open vocabulary. A set of 40 HMMs (39 monophones plus
1 silence model) is used. These test sets are as follows:

• si dt 05.odd: The WSJ1 5k development test has 2, 076 distinct words
and a total of 13, 866 words. In particular, the si dt 05.odd set is used
for the 5k word closed vocabulary task and it is a subset of the WSJ1 5k
development test data. It is formed by deleting sentences with out-of-
vocabulary (OOV) words and choosing every other remaining sentence
and is comprised of 248 sentences from 10 speakers.

• si dt 20: The WSJ1 20k development test has 503 sentences and 2, 464
unique words with the total count of 8, 227 words. It also contains 187
out-of-vocabulary words. 2.27% of the word occurrences in the de-
velopment set are not included in the standard 20k-word vocabulary.
The WSJ1 20k development test data consists of 503 sentences from 10
speakers.

• si dt s6: The WSJ1 spoke 6 development test data (the 5k-word read
WSJ data) consists of 395 sentences from 10 speakers. The Sennheiser
test data contains 4, 101 distinct words with the total count of 20, 324
words. It also has 1, 570 out-of-vocabulary words. 5.35% of the word
occurrences in the test set are not included in the 5k-word vocabulary.
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8.5 Discussion

Within the scope of this work, different speech corpora are used to evaluate
the presented approach. These corpora range from small vocabularies like
MirrorBot and German Bus-Stop Names Speech Data to large vocabularies like
TIMIT and WSJ1. Whereas the MirrorBot Speech Data is a speaker-dependent
corpus, the others are speaker-independent corpora (see Table 8.3).

Table 8.3: Speech corpora.

Speech Corpus Type Number of Speakers in
the Training Set the Test Set

MirrorBot Speaker-Dep. 4 4
German Bus-Stop Speaker-Indep. 14 5

Names
TIMIT Speaker-Indep. 462 144
WSJ1 Speaker-Indep. 284 (WSJ0+WSJ1) 10

The MirrorBot Speech Data is composed of simple English command sen-
tences and is considered for isolated speech recognition. The German Bus-
Stop Names Speech Corpus consists of German bus-stop names. The TIMIT
and WSJ1 speech corpora are well-known speech data for continuous speech
recognition. Among the corpora used within the scope of this thesis, only
TIMIT is labelled on the phoneme level. The other corpora contain only
word-level transcriptions.



Chapter 9

Application and Evaluation

In this chapter the application of the hybrid approach presented within the
scope of this thesis will be shown in several different experiments with small
and large data sets. The recognition performance of the hybrid system will
be compared with recognition results of other research as described in the
literature for TIMIT and the Wall Street Journal (WSJ1) continuous speech
corpora. For other speech corpora (MirrorBot and German Bus-Stop Names
project) the developed hybrid approach will be compared to pure hidden
Markov model (HMM)-based triphone recognizers. In order to compare dif-
ferent approaches to automatic speech recognition (ASR), we will first give
some performance-measures in ASR, recognition accuracy, word error rate
(WER) and recognition speed. It will be seen that the WERs obtained with the
presented hybrid recognition system are competitive to the results reported
in other research. Furthermore, the recognition speed of the presented hybrid
recognition system is also compared to pure HMMs.

For the MirrorBot and the German Bus-Stop Names projects, the HMM-based
subword-unit recognition in the presented hybrid approach was developed
using HTK speech recognition toolkit [103]. For the TIMIT and WSJ1 speech
corpora, the HMM-based subword-unit recognition in the presented hybrid
approach was developed using Sphinx-4 speech recognition system [1]. The
syllable based transcriptions of words are obtained using a syllabification
software [2].

9.1 Measuring Performance

In order to compare different approaches to ASR, it is necessary to estimate
their performance. The experiments used to validate different approaches
are mostly based on recognition accuracy, word error rate, and recognition
speed measured on actual speech data as evaluation criteria. The recognition
accuracy and the word error rate measure whether the suggested approach
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improves the recognition of speech data or not. The recognition speed gives
information on whether the recognizer is slow or not.

Moreover, it is insufficient to evaluate the approach only on the training data.
Thus, the usage of a test data set different from the training set is necessary
to get a more realistic assessment of an ASR approach. A method for this is
the cross-validation approach.

9.1.1 Recognition Accuracy

The Word Correct Rate is given as:

WordCorrectRate = 100× Number of Correctly Recognized Words
Number of Spoken Words

. (9.1)

Words that are inserted by mistake are not included in computing the Word
Correct Rate. However, the usability of the recognition output is low because
of insertion errors which are made in one sentence. Therefore, the perfor-
mance of a speech recognition system is usually measured in terms of misre-
cognized words. The hypothesized text, produced by the speech recognizer,
is compared to the reference text by using a dynamic programming string
alignment, which globally minimizes the Levenshtein distance [61]. The re-
sult of the comparison between the reference and the hypothesized text will
be the minimum number of

• word substitutions

• word insertions

• word deletions,

which is defined as Word Error Rate (WER):

WER = 100× Insertions + Substitutions + Deletions
Number of Spoken Words

. (9.2)

The recognition accuracy is defined as 100−WER.

9.1.2 Recognition Speed

To evaluate speech recognition systems, the word error rate or recognition ac-
curacy is used. However, it is often interesting to know how fast a recognition
system performs. The recognition speed is defined as the required recogni-
tion time, in seconds, of speech input. Quite obviously, the recognition time
depends on the computer and compiler used for the experiments.
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9.1.3 Cross-Validation

Cross-validation is one of the several techniques used to estimate how well
a learning approach is going to perform on unseen data when only a limited
amount of data is available for evaluation. The idea is not to use the complete
data set for training, but to only use a part of the data set for training and the
remaining part of the data set for testing.

The holdout method is the simplest kind of cross validation. The data set is
seperated into two sets, called the training set and the test set. The advantage
of this method is that it takes no longer to compute. However, its evaluation
can have a high variance. The evaluation may be significantly different de-
pending on how the division is made.

k-fold cross-validation is one way to improve the holdout method. The data
set is divided into k subsets, which are called folds. The number of folds is
naturally limited to 2 ≤ k ≤ M where M is the total number of samples in
the data set. Each time, one of the k subsets is used as the test set and the
remaining k− 1 subsets are used as the training set. Then the average error
across all k trials is computed. The advantage of this method is that how the
data actually gets divided matters less. The disadvantage of this method is
that the training algorithm has to be rerun from scratch k times, which means
it takes k times as much computation to make an evaluation.

Leave-one-out cross-validation is k-fold cross-validation taken to its logical
extreme, with k equal to M, the number of data points in the set. This means
that at M separate times, the training set contains all the data except for one
point and a prediction is made for that point. As before, the average er-
ror is computed and used to evaluate the model. The evaluation given by
leave-one-out cross-validation error is good, but at first pass it seems very
expensive to compute.

9.2 MirrorBot Project

The presented hybrid HMM/neural associative memory (NAM) system is
integrated with a biologically inspired language understanding system [64],
which is embedded into a robot to demonstrate its correct understanding
of spoken command sentences by performing the corresponding actions. A
white table with objects lying on it stands in front of the robot and then the
robot receives short command sentences like “bot show plum” (see section A)
via a microphone. The robot has to respond to spoken commands concern-
ing these objects. In order to fulfill the requested tasks, the robot needs to
perform word recognition, sentence recognition as well as action planning,
simple vision tasks (object recognition) and motor commands (finding ob-
jects, lifting them, dropping them and moving the robot to certain places).
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An overview of the architecture of the whole robot software is given in figure
9.1. The system consists of several functional modules that are separated in
the figure between low-level (Sensory preprocessing, left column) and high-
level (Cortical processing, right column). Figure 9.1 gives a broad overview
of the functioning of the model.

Figure 9.1: Overview of the software modules in the robot.

Information between the functional models flows unidirectionally. The main
flow of information in speech recognition modules is as follows: a spoken
command sentence enters the system via the microphone into the HMM-
based subword-unit recognition module and is transformed into some ele-
mentary speech components (e.g., into phonemes or syllables). The output
is then forwarded to the word recognition module, which generates match-
ing words and forwards them to the sentence recognition module. The sen-
tence recognition module is responsible for capturing the semantics, i.e., the
meaning of the command. It does so by comparing the input words with
grammatical rules that are built into the system and tries to determine the
sentence type of the command. Once the meaning of the sentence becomes
clear, it is then forwarded to the action planning module which is also a net-
work of associative memories and can decompose requested actions (e.g., to
put something somewhere) into a sequence of predefined elementary motor
commands (e.g., lifting the object, moving it to the right place and dropping
it). Communication between NAM based modules takes place using the neu-
ral representations.

Feature extraction was carried out at a frame rate of 10 ms, with a pre-empha-
sis of 0.97. 12 Mel Frequency Cepstral Coefficients (MFCC) and log-energy
with first and second order time derivatives were calculated, for a total of 39
features.

The HMMs are constructed of the three-state continuous 8-Gaussian word-
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internal triphone models (see section 3.2.2) with a left-to-right topology with
self-loops. The training procedure is given in section 5.3. HMMs are trained
with the training data produced using 5-fold cross-validation (see section 8.1)
and the TIMIT training set (see section 8.3). Therefore, well-trained HMMs
can give better recognition performance on the subword-unit level for the
learning of novel words. Word-internal triphone-level bigram models are
built using all word-internal triphones in the training and test sets of the
MirrorBot and the TIMIT speech data.

In the neural associative memories, a total of 7, 412 word-internal triphones
are used as subword-units and words are represented using their subword-
unit level transcriptions and randomly generated 5 out of 200 code vectors.

The presented hybrid HMM/NAM system has been tested on the 5-fold cross
validation test set and compared to an HMM-based triphone recognizer (see
table 9.1).

Table 9.1: The average WERs over 5-fold cross validation on the MirrorBot Speech
Data.

Recognizer Type WER (%)
HMM-based triphone recognizer 2.144
The presented hybrid approach 0.21

The results show that the presented hybrid approach achieved an average
WER less than the HMM-based triphone recognizer. This is due to the fact
that the wrong word hypotheses generated by the word recognition network
can be corrected by the language model network using the correctly recog-
nized words (the priori information on the word sequences to be recognized).
The output of the HMM-based triphone recognizer contains more word inser-
tions than that of the presented hybrid approach.

The speed of the hybrid system is also compared to the HMM-based triphone
recognizer on a standard laptop machine (Intel Core 2 Duo 2.00 GHz). For a
sentence like “bot show ball”, the speed of the HMM-based triphone recog-
nizer is measured at 2 seconds, whereas that of the presented hybrid system is
measured at 4 seconds (3 seconds for HMM-based subword unit recognition
and 1 second for NAMs). This is due to the fact that the size of the vocabu-
lary of subword-units (word-internal triphones) is larger than the size of the
vocabulary of words. The vocabulary of subword-units contains a very large
set of word-internal triphones from MirrorBot and TIMIT Speech Corpora,
which is required to learn novel words.
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9.3 German Bus-Stop Names Project

The presented hybrid HMM/NAM approach can be applied to various speech
controlled systems. An example of these systems is the German Bus-Stop
Names Project [51]. The user utters a single command word or word phrase,
a bus stop name, to a mobile phone and the speech recognizer on the re-
mote server, correctly recognizes the command, implements the correspond-
ing task to send information about the spoken bus stop name from the remote
server to the user. Due to the single word commands, the language model
network is not used here.

In the system, word-internal triphones are determined as subword units.
Therefore, a word-internal triphone recognizer is designed by using HMMs,
in which an acoustic model for each word-internal triphone is generated.
The HMMs are constructed of the three-state continuous 8-Gaussian word-
internal triphone models with a left-to-right topology with self-loops. The
training procedure is given in section 5.3. The acoustic models are then
trained on the German Bus-Stop Names training set (see section 8.2) and
word-internal triphone based simple bigram models are used. The word
recognition network is then designed based on a total of 1, 284 word-internal
triphones. The words are stored using their word-internal triphone-level
transcriptions and randomly generated 5 out of 1, 000 code vectors.

The presented hybrid HMM/NAM system has been tested on the test set (see
section 8.2) and compared to an HMM-based triphone recognizer (see table
9.2).

Table 9.2: WERs on the test set of German Bus-Stop Names Speech Corpus.

Recognizer Type WER (%)
HMM-based triphone recognizer 1
The presented hybrid approach 2

There is a slight difference between the presented hybrid system and the
HMM-based triphone recognizer. This difference can decrease using larger
word parts such as syllables instead of triphones and a more efficient lan-
guage model.

The speed of the hybrid system is compared to the HMM-based triphone
recognizer on a standard laptop machine (Intel Core 2 Duo 2.00 GHz). For a
bus stop name like “Abzweigung roter berg”, the speed of the HMM-based
triphone recognizer is measured at 2 seconds, whereas that of the presented
hybrid system is measured at 4 seconds (3 seconds for HMM-based subword
unit recognition and 1 second for NAMs). The reason for the low speed of the
hybrid system is that the search space in the recognition network of HMMs
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in the hybrid system is larger and more complex than that of HMM-based
triphone recognizer.

9.4 Large Vocabulary Continuous Speech Recog-
nition

The presented hybrid HMM/NAM approach can also be applied to large vo-
cabulary continuous speech recognition systems. Therefore, the recognition
performance of the hybrid system is evaluated with the TIMIT and the WSJ1
speech corpora. The results are compared to other research results in the
literature.

9.4.1 TIMIT Continuous Speech Corpus

The acoustic waveforms from the TIMIT are first parameterized into a 39-
dimensional feature vector consisting of 12 cepstra plus the log energy, deltas
and delta deltas, normalized using cepstral mean subtraction. The HMMs
are constructed of the three-state continuous 8-Gaussian cross-word triphone
models. Each HMM has a left-to-right topology with self-loops. The training
procedure is given in section 5.3. HMMs are trained with the TIMIT training
data (see section 8.3). The subword unit recognition part is designed to gen-
erate “syllables” as output speech components. In total, there are 3, 583 syl-
lables in both the TIMIT training and test sets. Syllable-level trigram models
are built using all syllables in the TIMIT training and test sets. In the NAM
based word recognition network, the words are stored using their syllable-
level transcriptions and randomly generated 5 out of 2, 000 code vectors. A
total of 17, 983 word bigrams and 20, 075 word trigrams within the sentences
from the TIMIT training and test sets are used in the language model net-
work.

In table 9.3 the recognition performance of the presented hybrid HMM/NAM
system is compared to three examples of research in the literature on the
TIMIT test data [90, 33, 34]. Sethy and Narayanan [90] built three sepa-
rate recognizers corresponding to the different acoustic units of interest, i.e.
phoneme, syllable and word. The design of the phoneme based recognizer
follows the standard flat start Baum Welch reestimation strategy with deci-
sion tree based triphone creation and clustering (see section 3.2.5). Hämäläi-
nen et al. [33, 34] suggested that longer length acoustic units are better suited
for modelling pronunciation variation and long-term temporal dependencies
in speech than traditional phoneme-length units and they yielded substantial
improvements in recognition accuracy. They used a hierarchical method that
employs a mixture of word-, syllable- and phoneme-length units and a stan-
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dard procedure with decision tree-based state tying to train the triphone re-
cognizers. A language model for the TIMIT was built using all orthographic
words in the training and test sets [90, 33, 34]. The system based on the pro-
posed approach achieves a lower WER than the triphone results, for models
with 8 and 16 Gaussian mixtures, reported in other research in the litera-
ture [90, 33, 34]. This improvement is due to the “fault-tolerance” property of
NAMs. The NAM-based language model network that uses a priori informa-
tion on the words to be recognized has a significant effect on the recognition
performance.

Table 9.3: WERs on TIMIT.
Recognizer Type WER (%)

Triphone [90] 26
with 8 Gaussian mixtures

Triphone [33, 34] 8.1± 0.6
with 16 Gaussian mixtures
(best performing triphones)

The Presented Hybrid Approach 7.03
with 8 Gaussian mixtures

9.4.2 Wall Street Journal Corpus

The acoustic waveforms from the WSJ are parameterized using 12 MFCC
coefficients and normalised energy plus first and second order derivatives.
The HMM-based subword-unit recognition is designed using cross-word tri-
phone models to generate syllables as output speech components. Each HMM
has a left-to-right topology with self-loops and is constructed of the three-
state continuous 8-Gaussian cross-word triphone model. The training proce-
dure is given in section 5.3. HMMs are trained with the WSJ training data
(see section 8.4). Syllable-level trigram models are built using all syllables in
the test sets.

For the non-verbalized 5k (4, 986) word closed vocabulary, 2, 682 syllables are
used for the subword-unit recognition. In the NAM based word recognition
network, the words are stored using their syllable-level transcriptions and
randomly generated 2 out of 2, 000 code vectors.

For the WSJ1 5k development test set (si dt 05) a total of 6, 241 word bigrams
and 7, 514 word trigrams, based on 5k-vocabulary words, are used in the
language model network.

In table 9.4 the recognition performance of the presented hybrid HMM/NAM
system is compared to the research in the literature on a subset (248 sen-
tences) of si dt 05 test data [101], where several recognizer types, such as
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cross-word and word-internal triphones, and training data sets were com-
pared in terms of recognition performance. The WER result reported by
Woodland et al. [101] is obtained by building a cross-word triphones with 10
mixture components using the standard training procedure (see section 3.2.5)
and the WSJ speaker-independent-284 training set. They run experiments us-
ing the standard bigram and trigram grammars and took the pronunciations
and the phoneme set from the Dragon Wall Street Journal Pronunciation. The
system based on the presented hybrid approach achieved a lower WER than
the WER, based on the trigram language model, reported by Woodland et al.
[101].

Table 9.4: WER on the WSJ1 5k (si dt 05.odd).

Recognizer Type WER (%)
Cross-word Triphone [101] 6.09

The Presented Hybrid Approach 4.91

For the WSJ1 spoke 6 development test data, a total of 13, 029 word bigrams
and 16, 764 word trigrams, based on 5k-vocabulary words, are used in the
language model network.

The recognition performance of the presented hybrid HMM/NAM system
is tested on the Sennheiser data (395 sentences) of si dt s6 test data. Table
9.5 shows the recognition performance of the presented hybrid HMM/NAM
system tested on the test data.

Table 9.5: WER on the WSJ1 5k Sennheiser data of si dt s6.

Recognizer Type WER (%)
The Presented Hybrid Approach 2.12

For the non-verbalized 20k (19, 979) word open vocabulary, 5, 965 syllables
are used for the subword-unit recognition. In the NAM based word recog-
nition network, the words are stored using their syllable-level transcriptions
and randomly generated 2 out of 5, 000 code vectors. A total of 6, 543 word
bigrams and 7, 324 word trigrams, based on 20k-vocabulary words, are used
in the language model network.
In table 9.6 the recognition performance of the presented hybrid HMM/NAM
system is compared to the research in the literature on the si dt 20 test data
[88], where the standard recognition vocabulary was defined as the most
likely 20, 000 words in the corpus and the standard language model was de-
fined as a trigram language model estimated specifically for these 20k words.
In this research [88], Schwartz et al. modified the language model training
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Table 9.6: WER on the WSJ1 20k (si dt 20).

Recognizer Type WER (%)
Language Training [88] 16.4

(standard 20k word vocabulary)
The Present Hybrid Approach 13.21

text by applying rules to simulate the differences between the training text
and what people actually said. Their recognition results are based on the
enchanced language model. The system based on the presented hybrid ap-
proach accomplished a lower WER than the result reported by Schwartz et
al. [88].

9.5 Discussion

In order to evaluate the performance of the developed approach, it is applied
to different speech recognition systems and good improvements on the WERs
are observed. These systems range from simple command control systems
with small vocabularies to the large vocabulary continuous speech recogni-
tion systems.

In order to compare the presented approach with other speech recognition
research in the literature, it is necessary to estimate their performance us-
ing the same speech corpora, i.e. the training and the test sets are to be the
same. Otherwise, it is impossible to make a confident comparison among
different approaches. Although there are many hybrid HMM/ANN speech
recognition systems in the literature, the presented hybrid system can not
be compared to these systems because they were evaluated with different
speech data. Therefore, the presented hybrid system is compared to the re-
search [33, 34, 101, 88] in the literature because the same corpora was used,
including TIMIT and WSJ1, to evaluate their studies and they also reported
the lowest WERs on the TIMIT and WSJ1 (5k and 20k word trigrams) test
sets. These speech corpora are also well-known corpora in the ASR field.

For speech corpora with small vocabularies (MirrorBot and German Bus-
Stop Names speech corpora), the presented system is compared to our own
pure standard HMM-based speech recognition systems, developed by the In-
stitutes of Neural Information Processing and Information Technology at the
University of Ulm [51], in terms of the recognition speed and performance.
The results show that the HMM-based subword-unit recognition part of the
proposed system consumes more recognition time than pure HMM-based
speech recognition systems. This is due to the fact that the search space in the
HMM recognition network, used to recognize subword-units, is more com-
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plex than the search space in the HMM recognition network in recognizing
words. But, the NAM-based word recognition part of the proposed hybrid
system works quickly.

The feasibility of the proposed hybrid system was demonstrated by the WER
evaluation, which measures the performance of a speech recognition system
in terms of misrecognized words. In the MirrorBot project, the HMM-based
triphone recognizer has a higher WER of 2.144% than the presented hybrid
approach (0.21% WER) because the output of the HMM-based triphone re-
cognizer contains many word insertions. For the German Bus-Stop Names
project, where each speech utterance consists of a single word or a phrase,
the WER achieved by the HMM-based triphone recognizer is 1% higher than
the WER (98%) of the presented approach because there is not a priori in-
formation on the word sequences to be recognized. Therefore, the language
model network does not help increase the performance of the hybrid system.

From the recognition results of the large vocabulary sentence based speech
recognition tasks (TIMIT and WSJ1 Speech Corpora), it is seen that the deve-
loped approach achieved better performance than the HMM-based recogni-
tion systems. For the sentence based speech recognition tasks, the language
model network of the proposed approach especially increases the recogni-
tion performance using a priori information on the word sequences to be
recognized. For the large vocabulary continuous speech recognition sys-
tems (TIMIT and WSJ1), the performance of the presented approach is very
promising. When its recognition results are compared to other reported re-
sults in the literature (see tables 9.3, 9.4 and 9.6), the presented hybrid system
yields less WERs than other research in the literature [33, 34, 101, 88]. The
improvements achieved by the presented hybrid approach depends on the
NAM-based language recognition network using the language information.

In the proposed hybrid system the performance of NAMs is highly depen-
dent on the performance of HMMs. Therefore, it is important for HMMs to
choose a correct type for output subword-units.
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Chapter 10

Contributions

The presented new hybrid hidden Markov model/neural associative mem-
ory (HMM/NAM) approach makes the following contributions:

• Application of neural associative memories to automatic speech recog-
nition [47, 48]

This thesis introduces a new approach to automatic speech recognition
to augment the performance of speech recognizers. This approach is
based on HMMs on the elementary subword-unit level and networks
of NAMs on a higher level, such as word and language levels. First,
HMMs generate a sequence of subword-units and provide it to a net-
work of NAMs on a higher level. At the second stage of recognition,
possible word hypotheses are then recognized from the HMM output
stream and the output words are retrieved according to the priori infor-
mation on word sequences to be recognized.

• Evaluation of different subword-units for HMM output speech com-
ponents

During the evaluation of the developed hybrid approach, different sub-
word-units are employed. The type of subword-units used as HMM
output speech components plays an important role for the structure of
the NAMs in the single word recognition network in the developed
hybrid approach. Depending on the size of the vocabulary task, the
developed hybrid can utilise different types of subword-units, such as
context-dependent phonemes, demi-syllables or syllables. Subword-
units in smaller size (e.g. context dependent phonemes) could be suit-
able for small vocabulary, whereas the usage of subword-units in longer
size, such as demi-syllables or syllables, is appropriate for large voca-
bulary.
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• Representing and handling ambiguities [64]

The ambiguity mechanism allows for dealing with ambiguities on the
subword-unit and word levels. Ambiguities on the subword-unit level
can arise in the HMM output subword-unit sequence when a speaker
mispronounces words in the speech utterance, words are run into each
other, or there are homophones in the task vocabulary; in other words
the subword-units that are wrongly recognized or can not be recog-
nized by HMMs. When NAMs can not generate a unique word on the
single word level due to the ambiguities on the subword-unit level, a
superposition of all possible words is activated. The ambiguity on the
word level might be resolved in further processes using additional con-
text information (semantics) or a priori information on the word se-
quences to be recognized. This means that additional input must pre-
cisely support one pattern of the superposition in order to resolve the
ambiguity.

• Extendability of the task vocabulary by the learning of novel words
[49, 50]

The hybrid HMM/NAM approach, presented within the context of this
thesis, is capable of incrementally learning novel words during run-
time. The thesis proposes two strategies for incrementally extending
the task vocabulary: incremental learning without training HMMs and
incremental learning by training HMMs. Both strategies require a well-
trained set of HMMs and a large word model. For the latter approach
it is necessary to retrain HMMs with the newly generated transcrip-
tions. During the learning of novel words in NAMs, only new pat-
terns or pattern pairs need to be added while the previously stored pat-
terns or pattern pairs remain unchanged. Compared to HMMs, where
many parameter files required for the application have to be changed
and modifications to the lexicon, the language model and training of
new subword-unit models are necessary, the hybrid approach makes it
possible to easily enlarge the vocabulary by using only a sequence of
subword-units from HMMs for the novel word. The ability of adding
novel words is an important capability for robots employed in real-
world environments.

• Usage of a priori information on word sequences to be recognized in
NAMs

A language model plays an important role in speech recognition, espe-
cially in large vocabulary continuous speech recognition, to augment
the recognition performance. In the hybrid HMM/NAM approach,
HMMs are sometimes unable to discern every subword-unit uttered
by a speaker. Because of the wrongly recognized subword-units, the
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NAM-based word recognition network can generate wrong words or
superpositions of several words. But, the presented hybrid approach
takes advantage of a priori information on the word sequences to be
recognized to recognize wrong words. This is done by taking into con-
sideration the correctly recognized word bigrams.

• Implementation and integration of the developed approach with a bi-
ologically inspired language understanding system on a mobile robot
[65]

In order to show practicality, the proposed approach has been inte-
grated into a language processing system that is embedded in a mo-
bile robot. The presented hybrid system provides words to a sentence
processing system using randomly generated binary neural represen-
tations. The sentence recognition system then extracts the semantics
of the sentence from the stream of words. It can also resolve the am-
biguities on the word level, which can not be solved using the priori
information on the word sequences to be recognized, using contextual
or syntactical information.
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Chapter 11

Conclusions

The presented hybrid speech recognition approach was examined in detail
and largely evaluated under various aspects. The approach proved practical
and useful and showed promising results. It also reveal various advantages,
such as learning novel words during run-time and handling ambiguities.

The application area of the developed hybrid speech recognition approach is
very large from simple command control systems with small vocabularies to
large vocabulary continuous speech recognition systems. During the appli-
cation of the hybrid approach to various speech recognition tasks, different
subword-unit types can be utilised. The type of subword unit best used is
determined according to the size of the vocabulary and its recognition per-
formance. Subword-units smaller in size (e.g. phonemes) could be appro-
priate for small vocabulary, whereas large vocabulary may require the usage
of subword-unit longer in size (e.g. demi-syllables or syllables). The me-
mory usage of neural associative memories (NAMs) in the word recognition
and the language model networks depends on the subword-unit type that is
used in hidden Markov models (HMMs). The structures of neural associa-
tive memories (NAMs) can easily be adjusted to a given speech recognition
system by varying the size of the associative memories in terms of the chosen
subword-unit type.

For continuous speech recognition systems where words run into each other,
it is possible for HMMs to generate noisy (incorrect additional subword units)
or incomplete subword unit transcriptions, which are called ambiguities on
the subword-unit level. In such cases, NAMs might be suitable for solving
the ambiguities that occur in the HMM output. If the address pattern contain-
ing the subword-units does not strongly address one unique word pattern in
the single word recognition network, a superposition of words is activated
using their binary neural representations and the ambiguity is kept on the
word level. Another example for ambiguties is homophones. If the hybrid
system encounters homophones, it is impossible for the single word recog-
nition network to retrieve one unique word pattern. Therefore, a superposi-
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tion of homophones is activated by NAMs. The ambiguity on the word level
might be resolved in further processes using additional context information
(semantics) or a priori information on the word sequences to be recognized.

The developed hybrid system compares favourably well to HMM-based au-
tomatic speech recognition research in the literature. With regards to recog-
nition results, it achieves almost the same or an even more improved per-
formance, especially for large vocabulary continuous speech recognition sys-
tems. This achievement is due to the “fault-tolerance” property of NAMs.
For these systems, the developed approach yielded the best results by utilis-
ing syllables as HMM output subword-units.

From the results, it is seen that the developed hybrid system is more suitable
for the speech recognition tasks which contain sentence utterances because
the ambiguities on the word level can be solved in the language model net-
work using the additional priori information about the word sequences to be
recognized, but less suitable for single word speech recognition tasks because
the language model network does not contain any priori information. Thus,
the ambiguities on the word level can not be solved using any additional
information.

The easy extendability of the task vocabulary during runtime makes the hy-
brid approach particularly suitable for the speech recognition application
where unknown words are likely to be uttered, as it is possible to incre-
mentally learn novel words during runtime. The performance of the hybrid
system for novel words highly depends on the performance of well-trained
HMMs.

When the presented hybrid system is compared to a pure HMM-based speech
recognition system in terms of the computation time, the hybrid system re-
quires more time for recognition than an HMM-based system. The HMM-
based subword-unit recognition part of the hybrid system especially takes
most of the recognition time although NAMs work quickly. This is due to the
complexity of the subword-unit-level search space in HMMs.

For continuous speech recognition tasks, it is sometimes difficult for the hy-
brid system to determine the word boundaries because there is no word
boundary between words, like small pauses. In this case, for a given subword-
unit sequence, NAMs usually look for the longest corresponding word. If
two small words are adjacent in a sentence and a longer word in the vocab-
ulary is composed of these adjacent words, NAMs retrieve the long word
instead of these two short words. This weakness of the hybrid system can
be corrected by taking the other recognized words in the sentence into consi-
deration.

These advantages and capabilities make the hybrid HMM/NAM speech recog-
nition approach a promising approach which can be applied for various speech
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recognition tasks and offers diverse possibilities for further improvements.
The performance of the single word recognition network against ambiguities
can be increased with backward connections from the NAM-based language
model network and from the language understanding module to the memory
WRD in the single word recognition network. A further research on the hy-
brid HMM/NAM approach could be the application of the presented hybrid
system to multi-lingual speech recognition tasks.
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[34] A. Hämäläinen, J. De Veth, and L. Boves. Longer-length acoustic units
for continuous speech recognition. In Proceedings EUSIPCO, 2005.

[35] J. B. Hampshire and A. H. Waibel. A novel objective function for im-
proved phoneme recognition using time-delay neural networks. IEEE
Trans. Neural Networks, 1(2):216–228, 1990.

[36] D. O. Hebb. The Organization of Behaviour. New York:Wiley, 1949.

[37] M. M. Hochberg, S. J. Renals, A. J. Robinson, and D. J. Ker-
shaw. Large vocabulary continuous speech recognition using a hybrid
connectionist-HMM system. In Processing of CSLP, pages 1499–1502,
1994.



126 BIBLIOGRAPHY

[38] H. W. Hon and K. F. Lee. Recent progress in robust vocabulary inde-
pendent speech recognition. In Proc. DARPA Speech and Natural Lan-
guage Processing Workshop, pages 258–263, 1991.

[39] J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. In Proceedings of the National Academy
of Science, pages 79:2554–2558, 1982.

[40] J. J. Hopfield. Neurons with graded pesponse have collective compu-
tational properties like those of two-state neurons. In Proceedings of the
National Academy of Science, pages 81(10):3088–3092, 1984.

[41] J. J. Hopfield and D. W. Tank. Computing with neural circuits. Science,
233:625–633, 1986.

[42] H. Iwamida, S. Katagiri, and E. McDermott. Speaker-independent
large vocabulary word recognition using an LVQ/HMM hybrid algo-
rithm. In International Conference on Acoustics, Speech anf Signal Process-
ing, pages 553–556, 1991.

[43] C. S. Jang and C. K. Un. A new parameter smoothing method in the
hybrid TDNN/HMM architecture for speech recognition. Speech Com-
munication, 19(4):317–324, 1996.

[44] F. Jelinek. Continuous speech recognition by statistical methods. Pro-
ceedings of IEEE, 64(4):532–556, 1976.

[45] F. Jelinek, F. Bahl, and R. L. Mercer. Design of a linguistic statistical de-
coder for the recognition of continuous speech. IEEE Trans. Information
Theory, 21(3):250–256, 1975.

[46] J. C. Junqua and J. P. Haton. Robustness in Automatic Speech Recognition:
Fundamentals and Applications. Kluwer Academic Publishers, Boston,
USA, 1996.

[47] Z. Kara Kayikci, H. Markert, and G. Palm. Neural associative memo-
ries and hidden markov models for speech recognition. In IJCNN 2007
Proceedings, 2007.

[48] Z. Kara Kayikci, H. Markert, and G. Palm. Speech recognition using
neural associative memories and hidden markov models. In Technical
Report, Promotionskolleg, University of Ulm, 2007.

[49] Z. Kara Kayikci and G. Palm. Word recognition and incremental learn-
ing based on neural associative memories and hidden markov models.
In Proceedings of 16th ESANN, pages 119–124, 2008.



BIBLIOGRAPHY 127

[50] Z. Kara Kayikci and G. Palm. Word recognition and learning based on
associative memories and hidden markov models. International Journal
of Intelligent Technology, 3(1):19–23, 2008.

[51] Z. Kara Kayikci, D. Zaykovskiy, H. Markert, W. Minker, and G. Palm.
Distributed architecture for speech controlled systems based on asso-
ciative memories. In Mathematical Analysis of Evolution, Information, and
Complexity. Wiley.

[52] D. Kimber, M. A. Bush, and G. N. Tajchman. Speaker-independent
vowel classification using hidden markov models and LVQ2. In In-
ternational Conference on Acoustics, Speech anf Signal Processing, pages
497–500, 1990.

[53] A. Knoblauch. Synchronization and Pattern Separation in Spiking Associa-
tive Memories and Visual Cortical Areas. PhD Thesis. PhD thesis, Univer-
sity of Ulm, 2003.

[54] T. Kohonen. Correlation matrix memories. IEEE Transactions on Com-
puters, pages 353–359, 1972.

[55] T. Kohonen. Associative Memory: a System Theoretic Approach.
Berlin:Springer-Verlag, 1977.

[56] T. Kohonen. Self-organization and Associative Memory. Berlin:Springer-
Verlag, 1983.

[57] T. Kohonen. Learning Vector Quantization for Pattern Recognition. Uni-
versity of Technology, Espoo, Finland, 1986.

[58] B. Kosko. Birectional associative memories. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 18:49–60, 1988.

[59] C. Lee and L. Rabiner. A frame-synchronous network search algorithm
for connected word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 37(11):1649–1658, 1989.

[60] H. C. Leung and V. W. Zue. Phonetic classification using multi-layer
perceptrons. Acoustics, Speech, and Signal Processing, 2(1):525–528, 1990.

[61] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Cybernetics and Control Theory, 10(8):707–710, 1966.

[62] E. Levin. Word recognition using hidden control neural architecture. In
International Conference on Acoustics, Speech and Signal Processing, pages
433–436, 1990.



128 BIBLIOGRAPHY

[63] H. Markert. Neural Associative Memories for Language Understanding and
Robot Control. PhD Thesis. PhD thesis, University of Ulm, 2008.

[64] H. Markert, Z. Kara Kayikci, and G. Palm. Sentence understanding
and learning of new words with large-scale neural networks. Artificial
Neural Networks in Pattern Recognition. Lecture Notes in Computer Science,
5064:217–227, 2008.

[65] H. Markert, U. Kaufmann, Z. Kara Kayikci, and G. Palm. Neural asso-
ciative memories for language understanding and action planning in a
robotics scenario. In Language and Robots. Proceedings of the Symposium,
pages 119–120, 2007.

[66] H. Markert, A. Knoblauch, and G. Palm. Modelling of syntactical pro-
cessing in the cortex. BioSystems, 89:300–315, 2007.

[67] N. Morgan and H. Bourland. Continuous speech recognition using
multilayer perceptrons with hidden markov models. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages 413–
416, 1990.

[68] N. Morgan, Y. Konig, S. L. Wu, and H. Bourlard. Transition-based sta-
tistical training for ASR. In Proceedings of IEEE Automatic Speech Recog-
nition Workshop (Snowbird), pages 133–134, 1995.

[69] T. Moudene, R. Sokol, and G. Mercier. Segmental phonetic features
recognition by means of neural fuzzy networks and integration in an
n-best solutions post-processing. In Processings of ICSLP, pages 338–
341, 1996.

[70] J. P. Nadal and G. Toulouse. Information storage in sparsely coded
memory nets. Network, 1:61–74, 1990.

[71] L. T. Niles and H. F. Silverman. Combining hidden markov models
and neural network classifiers. In International Conference on Acoustics,
Speech and Signal Processing, pages 417–420, 1990.

[72] J. J. Odell. The Use of Context in Large Vocabulary Speech Recognition.
University of Cambridge, UK, 1995.

[73] G. Palm. On associative memories. Biological Cybernetics, 36:19–31,
1980.

[74] G. Palm. On the storage capacity of an associative memory with ran-
domly distributed storage elements. Biological Cybernetics, 39:125–127,
1981.



BIBLIOGRAPHY 129

[75] G. Palm. Neural Assemblies. Berlin:Springer-Verlag, 1982.

[76] G. Palm. Memory capacities of local rules for synaptic modification. a
comparitive review. Concepts in Neuroscience, 2:97–128, 1991.

[77] G. Palm. On the information storage capacity of local learning rules.
Neural Computation, 4:703–711, 1992.

[78] G. Palm and F. T. Sommer. Associative data storage and retrieval in
neural networks. Models of Neural Networks III, Springer, pages 79–118,
1995.

[79] NTIS Order No. PB91-505065. TIMIT Acoustic-Phonetic Continuous
Speech Corpus. National Institute of Standards and Technology Speech
Disc 1-1.1, 1990.

[80] L. Rabiner and B. H. Juang. Fundementals of Speech Recognition. Prentice
Hall, 1993.

[81] L. R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[82] L. R. Rabiner, S. E. Levinson, and M. M. Sondhi. On the ap-
plication of vector quantization and hidden markov models to
speaker-independent, isolated word recognition. Bell Systems Tech. J.,
62(4):1075–1105, 1983.

[83] T. Robinson. An application of recurrent nets to phone probability es-
timation. IEEE Trans. Neural Networks, 5(2):298–305, 1994.

[84] T. Robinson and F. Fallside. A recurrent error propagation network
speech recognition system. Comput. Speech Language, 5(3):259–274,
1991.

[85] A. E. Rosenberg, L. R. Rabiner, J. G. Wilpon, and D. Kahn. Demisyllable
based isolated word recognition. IEEE Trans. on Acoustic, Speech, and
Signal Proc., 31:713–726, 1983.

[86] J. Rottland, Ch. Neukirchen, D. Willett, and G. Rigoll. Large vocabulary
speech recognition with context dependent MMI-connectionist/HMM
systems using the WSJ database. In Processing of 5th European Conference
on Speech Communication and Technology, 1997.

[87] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, and
J. Makhoul. Context-dependent modelling for acoustic-phonetic mo-
deling of continuous speech. In Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, pages 1205–1208, 1985.



130 BIBLIOGRAPHY

[88] R. Schwartz, L. Nguyen, F. Kubala, G. Chou, G. Zavaliagkos, and
J. Makhoul. On using written training data for spoken language model-
ing. In Proceedings of the workshop on Human Language Technology, pages
94–98, 1994.

[89] F. Schwenker, F. T. Sommer, and G. Palm. Iterative retrieval of sparsely
coded associative memory patterns. Neural Networks, 9:445–455, 1996.

[90] A. Sethy and S. Narayanan. Split-lexicon based hierarchical recognition
of speech using syllable and word level acoustic units. In Proceedings
ICASSP, pages 772–776, 2003.

[91] E. Singer and R. P. Lippman. A speech recognizer using radial basis
function neural networks in an HMM framework. In International Con-
ference on Acoustics, Speech anf Signal Processing, pages 629–632, 1992.

[92] T. Sloboda and A. Waibel. Dictionary learning for spontaneous speech
recogition. In In Proceedings of the International Conference on Spoken Lan-
guage Processing, pages 2328–2331, 1996.

[93] F. T. Sommer and G. Palm. Improved bidirectional retrieval of sparse
patterns stored by hebbian learning. Neural Networks, 12:281–297, 1999.

[94] K. Steinbuch. Die lernmatrix. Kybernetik, 1:36–45, 1961.

[95] J. Tebelskis, A. Waibel, B. Petek, and O. Schmidbauer. Continuous
speech recognition using linked predictive networks. Advances in Neu-
ral Information Processing Systems, 3:199–205, 1991.

[96] E. Trentin and M. Gori. A survey of hybrid ANN/HMM models for
automatic speech recognition. Neurocomputing, 37:91–126, 2001.

[97] M. V. Tsodyks and M. V. Feigelman. The enchanced storage capacity in
neural networks with low activity level. Europhysics Letters, 6:101–105,
1988.

[98] A. Waibel. Modular construction of time-delay neural networks for
speech recognition. Neural Computation, 1:39–46, 1989.

[99] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme
recognition using time-delay neural networks. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing, 37:328–339, 1989.

[100] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-
holographic associative memory. Nature, 222:960–962, 1969.



BIBLIOGRAPHY 131

[101] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young. Large voca-
bulary continuous speech recognition using HTK. In Proceedings Intl.
Conf. on Acoustics, Speech, and Signal Processing, pages 125–128, 1994.

[102] Y. Yan, M Fanty, and R. Cole. Speech recognition using neural networks
with forward-backward probability generated targets. In International
Conference on Acoustics, Speech, and Signal Processing, pages 3241–3244,
1997.

[103] S. Young and et al. The HTK Book (for HTK Version 3.4). University of
Cambridge, UK, 2006.

[104] S. R. Young and W. Ward. Learning new words from spontaneous
speech. In IEEE International Conference on Acoustic, Speech, and Signal
Processing, pages 2:590–591, 1993.

[105] G. Zavaliagkos, Y. Zhao, R. Schwartz, and J. Makhoul. A hybrid
segmental neural net/hidden markov model system for continuous
speech recognition. IEEE Transactions on Speech and Audio Processing,
2(1):151–160, 1994.



132 BIBLIOGRAPHY



Appendix A

Sentences in the MirrorBot Speech
Data

The sentences are spoken without prepositions. The missing prepositions
are most noticeable for the put command, where a command in the robot’s
language, e.g. “Bot put apple plum”, means “Bot put the apple to the plum”.
“Bot” is the name of the robot used in the MirrorBot project. The simple
command sentences used in the MirrorBot project are as follows:

Bot show pepper
Bot lift orange
Bot touch brown dog
Bot stop
Bot drop brown nut
Bot go wall
Bot turn body left
Bot go yellow tangerine
Bot turn body left
Bot lift black nut
Bot turn head right
Bot pick brown banana
Bot turn body right
Bot lift black ball
Bot touch table
Bot touch red lemon
Bot put black dog
Bot put orange tangerine
Bot touch cup
Bot stop
Bot put blue plum
Bot drop orange
Bot pick green apple
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Bot move body backward
Bot pick blue plum
Bot move body forward
Bot touch red lemon
Bot move body backward
Bot show orange pepper
Bot turn head down
Bot show white cat
Bot turn head up
Bot put blue wall
Bot turn head up
Bot drop white cup
Bot move body forward
Bot pick yellow banana
Bot lift white cat
Bot show ball
Bot go table
Bot turn head down
Bot move body forward
Bot drop green apple
Bot show orange pepper
Bot turn head down
Bot put red plum yellow lemon
Bot put red plum lemon
Bot lift wall
Bot show green apple
Bot put ball orange orange
Bot put orange orange orange plum
Bot turn body left
Bot drop orange
Bot pick brown banana
Bot pick green apple
This is plum
Bot pick yellow banana
Bot drop white cup
Bot drop brown nut
Bot put orange tangerine
Bot go table
Bot lift orange
This is pepper
Wall is red
Bot lift red plum
Bot put wall orange orange
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Bot drop green apple
Bot lift black nut
Bot turn head up
Bot lift black ball
Bot lift white cat
Bot drop orange
Bot pick blue plum
Bot move body backward
Bot move body backward
Bot show white cat
Bot touch red lemon
Bot turn head up
Bot move body forward
Bot touch cup
Bot show green wall
Bot pick orange
Bot show pepper
where is plum
Bot put blue plum
Bot show red plum
Bot go yellow tangerine
Bot touch brown dog
Bot put orange blue wall
Bot stop
This is green
Bot put black dog
Bot touch table
Bot go wall
Bot show ball
Bot turn head down
This is cup
Bot show plum
Bot put apple plum
Bot lift ball
Bot lift orange
Bot turn body left
Bot turn head right
Bot turn body right
Bot touch red lemon
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Appendix B

Information Theory

B.1 Basic Information Theory

B.1.1 Information of Random Variables

Let X be a random variable on Ω = {w1, w2, ...}, and pi := p[X = wi] the
probability that X has value wi ∈ Ω. Then the information of X is defined as

I(X) = ∑
i∈Ω

− pi log2 pi. (B.1)

− log2 pi indicates the amount of information content (in bit) associated with
the event {X = wi}. I(X) is the average amount of information content
of X over the entire value space. In other words, I(X) also measures the
uncertainty of the possible value of X.

Let Y be another random variable on Ω. We define the conditional informa-
tion of X given that Y = wj as

I(X|Y = wj) = −∑
i∈Ω

p[X = wi|Y = wj] log2 p[X = wi|Y = wj], (B.2)

where
p[X = wi|Y = wj] = p[X = wi∧Y = wj]/p[Y = wj]. (B.3)

Then, in the same way, the conditional information I(X|Y) of X given Y can be
defined as

I(X|Y) = ∑
j∈Ω

p[Y = wj]·I(X|Y = wj), (B.4)

which determines the average information (or uncertainty) that remains in X,
given that one knows Y. From this interpretation, it is reasonable to assume
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that I(X|Y) is generally less than I(X), because knowing Y can not increase
the uncertainty of X. Correspondingly, it can be shown that

I(X, Y) = I(Y) + I(X|Y) ≤ I(X) + I(Y), (B.5)

where equality holds if X and Y are independent.

B.2 Transinformation

The transinformation or mutual information between two random variables
X and Y is defined as

T(X, Y) = I(X) + I(Y)− I(X, Y) = I(X)− I(X|Y) ≥ 0. (B.6)

This quantity measures the information about X that is contained in Y, or the
amount by which knowing Y reduces the uncertainty of X. For example, if X
and Y are independent, then T(X, Y) = 0.

The transinformation rate between two processes (Xµ)µ=1,2,... and (Yµ)µ=1,2,...
is givens as

T((Xµ), (Yµ)) = lim
M→∞

1
M
·T(X1, ....., XM; Y1, ...., YM). (B.7)

B.3 Channel Capacity

The information transmission from a stationary source process (Xµ)µ=1,2,...
to a target (Yµ)µ=1,2,... can be described by a channel. It is identified with a
transition probability P : ΩN ↪→ ΩN. If Ω is finite and P is memory free, then
P can be defined with a matrix of transition probabilities

pij = prob[Y = j|X = i]. (B.8)

The channel capacity Cp is defined for a channel P : ΩN ↪→ ΩN as the maximal
achievable transinformation rate

Cp = sup
P

T(X; Y). (B.9)
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B.4 Binary Channels

In the binary case Ω = {0, 1}, a random variable X on Ω with p1 := prob[X =
1] the information I(X) equals

I(p1) := −p1·log2 p1 − (1− p1)·log2(1− p1) (B.10)

≈
{ −p1·log2 p1 , p1 ¿ 0.5
−(1− p1)·log2(1− p1) , 1− p1 ¿ 0.5 . (B.11)

Note the symmetry I(p1) = I(1− p1), and that I(p1) → 0 for p1 → 0 (and
p1 → 1).

A binary channel without memory is already determined by the two error
probabilities p01 (false one) and p10 (false zero). For two binary random vari-
ables X and Y, where X is transmitted over a binary channel with the result
Y, we can write

I(Y) = I(p1(1− p10) + (1− p1)p01) (B.12)
I(Y|X) = p1·I(p10) + (1− p1)·I(p01) (B.13)

T(X; Y) = I(Y)− I(Y|X). (B.14)


