# Identifizierung kleiner nicht-kodierender RNA-Moleküle und molekularbiologische Analysen über das RNA-Chaperon Hfq in *Acinetobacter baylyi* ADP1

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften an der Universität Ulm





Vorgelegt von Dominik Schilling aus Ulm 2009

Die vorliegende Arbeit wurde am Institut für Mikrobiologie und Biotechnologie der Universität Ulm angefertigt:

| Prof. Dr. Axel Groß             |
|---------------------------------|
| Prof. Dr. Peter Bäuerle         |
| apl. Prof. Dr. Ulrike Gerischer |
| Prof. Dr. Anita Marchfelder     |
|                                 |

"Wir haben nur zu entscheiden, was wir mit der Zeit anfangen, die uns gegeben ist." (Sir Ian M. McKellen)

### - Inhaltsverzeichnis -

| 1. EINLEITUNG                                                           | 1  |
|-------------------------------------------------------------------------|----|
| 2. MATERIAL UND METHODEN                                                | 10 |
| 2.1 Organismen, Plasmide und Oligodesoxyribonukleotide                  | 10 |
| 2.1.1 Bakterienstämme                                                   | 10 |
| 2.1.2 Plasmide                                                          | 11 |
| 2.1.3 Oligodesoxyribonukleotide                                         | 13 |
| 2.2 Zellanzucht und Stammhaltung                                        | 16 |
| 2.2.1 Nährstoffmedien                                                   | 16 |
| 2.2.1.1 Mineralmedium                                                   | 16 |
| 2.2.1.2 Komplexmedium nach Luria-Bertani                                | 17 |
| 2.2.1.3 SOB- und SOC-Medium                                             | 17 |
| 2.2.1.4 Antibiotika                                                     | 17 |
| 2.2.2 Bedingungen für die Anzucht und Stammhaltung von Bakterien        | 18 |
| 2.3 Nukleinsäure-Analytik                                               | 19 |
| 2.3.1 Vorbehandlung von Lösungen und Geräten                            | 19 |
| 2.3.2 Reinigen und Konzentrieren von Nukleinsäuren                      | 19 |
| 2.3.2.1 Phenol-Chloroform-Extraktion                                    | 19 |
| 2.3.2.2 Ethanol- und Isopropanolfällung                                 | 20 |
| 2.3.2.3 Konzentrationsbestimmung von Nukleinsäuren                      | 20 |
| 2.4 Gel-Elektrophorese                                                  | 21 |
| 2.4.1 Nicht-denaturierende Agarosegel-Elektrophorese                    | 22 |
| 2.4.2 Denaturierende Agarosegel-Elektrophorese                          | 22 |
| 2.4.3 Denaturierende Polyacrylamidgel-Elektrophorese                    | 23 |
| 2.4.4 Diskontinuierliche SDS-Polyacrylamidgel-Elektrophorese            | 25 |
| 2.4.5 Größenbestimmung von Nukleinsäuren und Proteinen                  | 26 |
| 2.5 Transfer von Zellen, Nukleinsäuren und Proteinen auf Membranen      | 27 |
| 2.5.1 RNA-Kapillarblot                                                  | 27 |
| 2.5.2 Elektroblot                                                       | 29 |
| 2.5.3 Vakuum-Dot-Blot                                                   | 29 |
| 2.5.4 Koloniehybridisierung (Abklatsch-Blot)                            | 30 |
| 2.6 Markierung von DNA-Sonden                                           | 30 |
| 2.6.1 Radioaktive Markierung und Detektion von Nukleinsäuren            | 31 |
| 2.6.2 Nicht-radioaktive Markierung und Detektion von Nukleinsäuren      | 32 |
| 2.7 Isolierung von Nukleinsäuren                                        | 33 |
| 2.7.1 Minipräparation von Plasmid-DNA aus E. coli durch alkalische Lyse | 33 |
| 2.7.2 Isolierung von Gesamt-RNA aus Gram-negativen Bakterien            | 34 |
| 2.7.3 Isolierung von DNA-Fragmenten mit "NucleoSpin Extract Kit"        | 35 |
| 2.7.4 Isolierung genomischer DNA durch Zelllyse                         | 36 |
| 2.8 Polymerase-Kettenreaktion (PCR - polymerase chain reaction)         | 36 |
| 2.8.1 Reverse Transkriptase PCR (RT-PCR)                                | 37 |
| 2.8.2 Circularized-RNA-RT-PCR (CR-RT-PCR)                               | 37 |

| 2.8.3 Overlap-Extension-PCR (OE-PCR)                                               | 39 |
|------------------------------------------------------------------------------------|----|
| 2.9 Enzymatische Modifizierung von Nukleinsäuren                                   | 40 |
| 2.9.1 Restriktionsverdau von DNA                                                   | 40 |
| 2.9.2 Ligation von DNA-Fragmenten mit Plasmid-DNA                                  | 40 |
| 2.9.3 Dephosphorylierung von DNA-Enden                                             | 41 |
| 2.9.4 Polyadenylierung von RNA-Molekülen                                           | 41 |
| 2.10 Klonierung einer cDNA-Bank                                                    | 42 |
| 2.11 Übertragung von Nukleinsäuren                                                 | 44 |
| 2.11.1 Transformation von DNA in E. coli                                           | 44 |
| 2.11.2 Natürliche Transformation von A. baylyi                                     | 45 |
| 2.11.3 Konjugation von Plasmid-DNA in A. baylyi                                    | 45 |
| 2.12 Proteinanalytik                                                               | 46 |
| 2.12.1 Herstellung rekombinanter Proteine in E. coli                               | 46 |
| 2.12.2 Proteinfällung und -konzentrationsbestimmung                                | 47 |
| 2.12.3 Nachweis von His-Tag-Fusionsproteinen                                       | 48 |
| 2.13 Datenbanken und Programme                                                     | 49 |
| 2.14 Geräte und Chemikalien                                                        | 49 |
| 3. EXPERIMENTE UND ERGEBNISSE                                                      | 51 |
| 3.1 Identifizierung kleiner RNA-Moleküle in Acinetobacter baylyi ADP1              | 51 |
| 3.1.1 Die neue sRNA Aar                                                            | 51 |
| 3.1.2 Klonierung einer cDNA-Bank ausgehend von dem A. baylyi Transkriptom          | 52 |
| 3.1.2.1 Koloniehybridisierung der cDNA-Bank                                        | 52 |
| 3.1.2.2 Dot-Blot-Hybridisierung der cDNA-Bank                                      | 53 |
| 3.1.3 In silico-Vorhersage von sRNAs                                               | 55 |
| 3.1.3.1 Nachweis der sRNA 394                                                      | 56 |
| 3.1.3.2 Expression der sRNA 394                                                    | 58 |
| 3.1.3.3 Deletion der sRNA 394                                                      | 60 |
| 3.2 Analyse des RNA-Chaperons Hfq                                                  | 62 |
| 3.2.1 Heterologe Expression von A. baylyi ADP1 Hfq mit pET-System                  | 64 |
| 3.2.2 Reinigung der Fusionsproteine His <sub>6</sub> -Hfq und Hfq-His <sub>6</sub> | 67 |
| 3.2.3 Epitop-Markierung chromosomaler Gene in A. baylyi ADP1                       | 70 |
| 3.2.3.1 Etablierung des Plasmids pKD46 in A. baylyi ADP1                           | 72 |
| 3.2.3.2 Integration von FLAG-Tag-Epitopen in ADP1 Hfq                              | 73 |
| 4. DISKUSSION UND BEWERTUNG DER ERGEBNISSE                                         | 78 |
| 4.1 Klonierung einer cDNA-Bank                                                     | 78 |
| 4.2 In silico-Analyse von sRNAs aus intergenen Regionen                            | 79 |

| 4.3 Heterologe Expression und Reinigung von A. baylyi Hfq                                              | 83  |
|--------------------------------------------------------------------------------------------------------|-----|
| 4.4 Markierung und Deletion von Bereichen des A. baylyi Proteins Hfq                                   | 85  |
| 5. ZUSAMMENFASSUNG DER ERGEBNISSE                                                                      | 87  |
| 5.1 Zusammenfassung                                                                                    | 87  |
| 5.2 Summary                                                                                            | 89  |
| 6. LITERATURVERZEICHNIS                                                                                | 91  |
| 7.ANHANG                                                                                               | 99  |
| 7.1 Weitere Daten zu den Ergebnissen aus Abschnitt 3                                                   | 99  |
| 7.2 Publikationen von Teilen der vorliegenden Arbeit                                                   | 107 |
| Terminus                                                                                               | 107 |
| 7.2.2 The small RNA Aar in <i>Acinetobacter baylyi</i> – a putative regulator of amino acid metabolism | 117 |
| 7.3 Publikationsliste                                                                                  | 137 |
| 7.4 Lebenslauf                                                                                         | 138 |
| 8. DANKSAGUNG                                                                                          | 139 |
| 9. ERKLÄRUNG                                                                                           | 140 |

## - Abkürzungsverzeichnis -

| A      |                                                              |           |                                  |
|--------|--------------------------------------------------------------|-----------|----------------------------------|
| А      | Adenin                                                       | CFU       | Kolonie-bildende Einheiten       |
| α      | Alpha                                                        |           | (colony forming units)           |
| Α.     | Acinetobacter                                                | CR-RT-PCR | Circularized RNA Reverse         |
| AA     | Aminosäuren                                                  |           | Transcriptase PCR                |
|        | ( <u>a</u> mino <u>a</u> cids)                               | Ci        | Curie (Einheit des radioak-      |
| Abb.   | Abbildung                                                    |           | tiven Zerfalls eines Stoffes,    |
| ad     | addieren, auffüllen                                          |           | $1Ci = 3,7 * 10^{10}$ Becquerel) |
| AG     | Aktiengesellschaft                                           | Co        | Betrieb (company)                |
| Amp    | Ampicillin                                                   | CSPD      | chloro-5-substitted adaman-      |
| ATP    | Adenosintriphosphat                                          |           | tyl-1,2-dioxetane phosphate      |
| В      |                                                              | D         |                                  |
| β      | Beta                                                         | Δ         | Deletion                         |
| Bar    | physikalische Einheit des                                    | D         | Asparaginsäure (Ein-             |
|        | Drucks                                                       |           | Buchstaben-Code)                 |
| bidest | zweifach destilliertes                                       | dATP      | Desoxyadenosintriphosphat        |
|        | Wasser                                                       | dCTP      | Desoxycytidintriphosphat         |
| BLAST  | <u>b</u> asic <u>l</u> ocal <u>a</u> lignment <u>s</u> earch | DNA       | Desoxyribonukleinsäure           |
|        | <u>t</u> ool                                                 | DNase I   | Desoxyribonuklease I             |
| BSA    | Rinderserumalbumin                                           | dNTP      | Desoxynucleosid-5'-triphos-      |
|        | ( <u>b</u> ovine <u>s</u> erum <u>a</u> lbumin)              |           | phat                             |
| Вр     | Basenpaare                                                   | ds        | doppelsträngig                   |
| bzw.   | beziehungsweise                                              | DTT       | Dithiothreitol                   |
|        |                                                              | dUTP      | Desoxyuridintriphosphat          |
| С      |                                                              |           |                                  |
| С      | Cytosin                                                      | Ε         |                                  |
| °C     | physikalische Einheit der                                    | E. coli   | Escherichia coli                 |
|        | Temperatur in Grad Celsius                                   | EDTA      | Ethylendiamintetraacetat         |
| ca.    | ungefähr                                                     | et al.    | und andere ( <u>et al</u> ii)    |
| cDNA   | complementary DNA                                            |           |                                  |

| F                |                                         | K         | Lysin (Ein-Buchstaben-                                      |
|------------------|-----------------------------------------|-----------|-------------------------------------------------------------|
| F                | Phenylalanin (Ein-Buch-                 |           | Code)                                                       |
|                  | staben-Code)                            | Kan       | Kanamycin                                                   |
| Fab              | <u>F</u> ragment <u>antigen binding</u> | Kb        | Kilobasen                                                   |
| FRT              | <u>Flip Recombinase Target</u>          | kDa       | Kilo-Dalton (Masseneinheit                                  |
|                  |                                         |           | für Proteine)                                               |
| G                |                                         |           |                                                             |
| G                | Glycin (Ein-Buchstaben-                 | L         |                                                             |
|                  | Code)                                   | λ         | Bakteriophage Lambda                                        |
| g                | Gramm (physikalische                    | 1         | Liter                                                       |
|                  | Einheit der Masse)                      | LB-Medium | lysogeny <u>b</u> roth medium                               |
| GmbH             | Gesellschaft mit beschränk-             |           |                                                             |
|                  | ter Haftung                             | Μ         |                                                             |
|                  |                                         | μ         | Mikro, 10 <sup>-6</sup>                                     |
| Н                |                                         | Μ         | Mol (6,022 * 10 <sup>23</sup> Teilchen)                     |
| h                | Stunden (physikalische                  | MALDI-TOF | Verfahren zur Massen-                                       |
|                  | Einheit der Zeit)                       |           | anlayse (Matrix Assisted                                    |
| His <sub>6</sub> | sechsfach Histidin                      |           | Laser Desorption/Ioni-                                      |
| $H_2O$           | Wasser                                  |           | sation- <u>T</u> ime Of <u>F</u> light)                     |
|                  |                                         | MBp       | Mega-Basenpaare                                             |
| Ι                |                                         |           | (1000 000 Bp.)                                              |
| IGR              | intergene Region                        | MCS       | Multiple Klonierungsstelle                                  |
| IPTG             | Isopropyl-β-D-thiogalacto-              |           | (multiple cloning site)                                     |
|                  | pyranosid                               | Min       | Minute (physikalische                                       |
| i.T.             | im Titer                                |           | Einheit der Zeit)                                           |
|                  |                                         | MFE       | <u>m</u> inimum <u>f</u> ree <u>e</u> nergy                 |
| J                |                                         | MM        | Mineralmedium                                               |
| J                | Joule (physikalische Einheit            | MOPS      | 3-(N- <u>Mo</u> rpholino)-                                  |
|                  | für Energie, Arbeit und                 |           | Propansulfonsäure                                           |
|                  | Wärme)                                  | mRNA      | <u>m</u> essenger <u>r</u> ibo <u>n</u> ucleic <u>a</u> cid |
|                  |                                         | MS        | Massenspektrometrie                                         |
| K                |                                         | MW        | Molekülmasse                                                |

### R

|      |                                 | ®     | eingetragenes Warenzeichen                                  |
|------|---------------------------------|-------|-------------------------------------------------------------|
| Ν    |                                 |       | ( <u>r</u> egistered)                                       |
| Ν    | Normal (chemische Stoff-        | r     | resistent                                                   |
|      | mengenkonzentration)            | RBS   | Ribosomenbindestelle                                        |
| NCBI | National Center for             | RNA   | Ribonukleinsäure                                            |
|      | Biotechnology Information       |       | ( <u>r</u> ibo <u>n</u> ucleic <u>a</u> cid)                |
| ng   | Nanogramm (10 <sup>-9</sup> g)  | RNase | Ribonuklease                                                |
| nm   | Nanometer $(10^{-9} \text{ m})$ | rRNA  | <u>r</u> ibosomal <u>r</u> ibo <u>n</u> ucleic <u>a</u> cid |
| Nt   | Nukleotide                      | RT    | Raumtemperatur                                              |
|      |                                 |       |                                                             |

### 0

| OD <sub>600</sub> | Optische Dichte bei 600 nm |  |
|-------------------|----------------------------|--|
|                   | Wellenlänge                |  |
| ORI               | Replikationsursprung       |  |
|                   | (origin of replication)    |  |
| ORF               | offener Leserahmen         |  |
|                   | (open reading frame)       |  |

### Р

| Poly(A)-RNA | polyadenylierte RNA         |
|-------------|-----------------------------|
| PAA-Gel     | Polyacrylamid-Gel           |
| PDB         | Proteindatenbank            |
| PCR         | Polymerase-Kettenreaktion   |
|             | (polymerase chain reaction) |
| pН          | negativer dekadischer Loga- |
|             | rithmus der Protonenkon-    |
|             | zentration                  |
|             |                             |
| Q           |                             |
| Q           | Glutamin (Ein-Buchstaben-   |
|             | Code)                       |

### S

| S          | Größe der RNA in Svedberg                         |
|------------|---------------------------------------------------|
| SD-Sequenz | Shine-Dalgarno-Sequenz                            |
|            | (5´-AGGAGGU-3´)                                   |
| SDS        | Natriumdodecylsulfat                              |
|            | ( <u>s</u> odium <u>d</u> odecyl <u>s</u> ulfate) |
| Sek        | Sekunden (physikalische                           |
|            | Einheit der Zeit)                                 |
| Spe        | Spectinomycin                                     |
| sRNA       | small <u>RNA</u>                                  |
| SS         | einzelsträngig                                    |
|            | (single stranded)                                 |

### Т

| Т     | Thymin                   |
|-------|--------------------------|
| TBE   | Tris-Borat-EDTA          |
| Tet   | Tetracyclin              |
| TE    | Tris-EDTA                |
| TEMED | Tetramethylethylendiamin |
| Tm    | Schmelztemperatur        |
| TM    | Handelsmarke             |

|       | ( <u>t</u> rade <u>m</u> ark)          | Z    |              |
|-------|----------------------------------------|------|--------------|
| tRNA  | transfer ribonucleic acid              | z.B. | zum Beispiel |
| Tris  | Tris(hydroxymethyl)amino-              |      |              |
|       | methan                                 |      |              |
|       |                                        |      |              |
| U     |                                        |      |              |
| u.a.  | und andere                             |      |              |
| Upm   | Umdrehungen pro Minute                 |      |              |
| UTR   | nicht-translatierte Region             |      |              |
|       | ( <u>unt</u> ranslated <u>r</u> egion) |      |              |
| UV    | Ultraviolett                           |      |              |
| Units | Einheit für Restriktions-              |      |              |
|       | enzyme (1 U verdaut 1 µg               |      |              |
|       | DNA in einer Stunde)                   |      |              |
|       |                                        |      |              |
| V     |                                        |      |              |
| V     | Volt (physikalische Einheit            |      |              |
|       | der elektrischen Spannung)             |      |              |
| Vol   | Volumen                                |      |              |
| v/v   | Volumen pro Volumen                    |      |              |
|       |                                        |      |              |
| W     |                                        |      |              |
| w/v   | Gewicht pro Volumen                    |      |              |
| V     |                                        |      |              |
|       | 5 Prom 4 Chlor 2 Indovul               |      |              |
| A-Gai | 9 Coloctonyronasid                     |      |              |
|       | p-Galactopyranosid                     |      |              |
| Y     |                                        |      |              |
| Y     | Tyrosin (Ein-Buchstaben                |      |              |
|       | Code)                                  |      |              |

#### 1. Einleitung

Durch Analysen mineralisierter Bakterien wird der Beginn des Lebens auf der Erde vor 3,5 Milliarden Jahre datiert. Zuvor entwickelten sich jedoch in einer chemischen Evolution die Voraussetzungen zur Speicherung, Übertragung und Weitergabe von Informationen. Der Nobelpreisträger Walter Gilbert postulierte 1986 erstmals die Hypothese einer RNA-Welt vor der Entstehung des Lebens (38). Darin begründet liegt die Vermutung, dass Ribonukleinsäuren (RNAs) sowohl Informationen speichern als auch replizieren können (17). Ähnliche katalytisch-aktive RNAs, so genannte Ribozyme, existieren heute noch und gelten als Indikator für Gilberts Hypothese. Das Ribozym RNase P besteht aus einem Protein- und einem RNA-Anteil, wobei letzterer wesentlich für das Spalten von Phosphodiesterbindungen und dadurch für die Reifung von transfer-RNAs (tRNAs) verantwortlich ist (43). Alle heutigen Lebewesen speichern ihr Erbgut ausschließlich als Desoxyribonukleinsäuren (DNA), während RNA-Moleküle lediglich für die Proteinbiosynthese der Zelle zuständig sind. Ursprünglich wurden RNAs als Informationsträger des Erbguts (mRNAs) betrachtet, deren kodierte Aminosäuresequenz von nicht-kodierenden Vermittlern der Proteinbiosynthese (tRNAs, rRNAs) in funktionelle Proteine umgesetzt wird.

Mit der Entdeckung der ersten nicht-kodierenden antisense-RNAs vor fast 30 Jahren wurde eine neue Art von RNAs beschrieben. Statt der Beteiligung an der Proteinbiosynthese regulieren diese Moleküle durch Hybridisierung an andere RNAs und inaktivieren diese. Zum Beispiel wird das Transkript MicF (<u>mRNA-interfering complementary RNA F</u>) bei erhöhter Osmolarität gebildet und hybridisiert innerhalb der Ribosomenbindestelle (RBS) der *omp*F mRNA. Dadurch wird die Translation des Porins F blockiert (77, 120). Ein weiteres früh beschriebenes Beispiel für einen antisense-Mechanismus war die Entdeckung der RNAI des Plasmids ColEI. Sie bindet den Vorläufer-Primer für die Plasmid-Replikation (RNAII). Fehlt RNAI, kann RNAII an einen Bereich innerhalb des Replikationsursprungs binden. Aufgrund der Spaltung durch RNase H in diesem Bereich entsteht der endgültige Primer. Die Hybridisierung von RNAI und II führt jedoch direkt zur Spaltung beider Moleküle durch RNase H, wodurch die "Primerreifung" verhindert wird. Dieser Mechanismus ermöglicht die Steuerung der Kopienzahl von ColEI-Plasmiden (112).

Andere nicht-kodierende RNA-Moleküle wie die 6S RNA oder CsrB ( $\underline{c}arbon \underline{s}torage \underline{r}egulator \underline{B}$ ) regulieren nicht durch einen antisense-Mechanismus mit anderen RNAs, sondern

durch die Interaktion mit Proteinen. Die 6S RNA formt spezifisch einen stabilen Komplex mit dem  $\sigma^{70}$ -RNA-Polymerase-Holoenzym (bestehend aus den Untereinheiten  $\sigma^{70}$ ,  $\beta$ ,  $\beta$ `,  $\omega$  und zweimal  $\alpha$ ), aber nicht mit dem RNA-Polymerase-Kernenzym (ohne  $\sigma^{70}$ ) oder einem anderen RNA-Polymerase-Holoenzym (124). Dadurch besitzt die 6S RNA die Fähigkeit, die Aktivität bestimmter Promotoren zu reprimieren (124). Ein entscheidendes Kriterium zur Interaktion mit der RNA-Polymerase ist die charakteristische Sekundärstruktur der 6S RNA, welche einem offenen Promotor ähnelt (Abb. 1).



Abb. 1: 6S RNA-Sekundärstruktur modifiziert nach Gildehaus *et al.* 2007. Die kompakte Sekundärstruktur und die große Blase in der Mitte ähneln der Struktur eines offenen Promotors. Die Pfeile und Zahlen markieren die Interaktionsstellen mit dem  $\sigma^{70}$ -RNA-Polymerase-Holoenzym (39).

Das Csr-System von Escherichia coli reguliert die Menge des Energiespeicherstoffs Glykogen. Während das RNA-bindende Protein CsrA durch Blockierung der Ribosomenbindestelle zum schnelleren Abbau von mRNAs des Glykogenstoffwechsels beiträgt, führt dagegen eine Überexpression der nicht-kodierenden RNA CsrB zu einer CsrA-Reprimierung und einer Anhäufung von Glykogen (69). Die Bindung von CsrA an mRNAs verläuft über vier bis sechs CsrA-Bindestellen an das RNA-Motiv GGA. CsrB besitzt dieses Motiv mehrfach (Abb. 2) und ist in der Lage neun CsrA-Dimere zu binden (69). Neuere Untersuchungen identifizierten die RNA CsrC als weiteren negativen Regulator von CsrA mit einer CsrB-ähnlichen Struktur (126). Das Csr-System ist in Bakterien weit verbreitet. Pflanzenkeime besitzen ein homologes regulatorisches Netzwerk namens Rsm (respressor of secondary metabolites). In Pseudomonas fluorescens, einem nicht-pathogenen Pflanzenkeim, kontrollieren die Proteine RsmA/E und drei nicht-kodierende RNAs (RsmX, RsmY, RsmZ) die Anzahl an Sekundärmetaboliten, die Pilzinfektionen von Pflanzen bekämpfen (48, 49). Wiederum kontrolliert in dem pathogenen Pflanzenkeim Erwinia carotovora das RsmAB-System die Produktion von extrazellulären Enzymen, welche die pflanzlichen Zellwände abbauen (18, 23). Die Inaktivierung der Proteine des Rsm-Systems erfolgt, wie im CsrSystem, ebenfalls durch mehrfache Bindung der Proteine an GGA-Motive in den nichtkodierenden RNAs (117).



Abb. 2: CsrB RNA-Sekundärstruktur modifiziert nach Babitzke *et al.* 2007. Nummeriert sind die Regionen mit dem GGA-Motiv der CsrA-Bindestelle. Manche dieser Bindestellen liegen zu nah beieinander, um gleichzeitig verschiedene CsrA-Proteine zu binden (8).

Die Identifizierung immer neuer RNAs in Prokaryoten mit Funktionen außerhalb der Proteinbiosynthese führte aufgrund der Größe dieser Moleküle (50-500 Nt) und ihrer Eigenschaft nicht in Proteine translatiert zu werden, zu der Gruppierung kleiner nichtkodierender RNAs (<u>small-RNAs</u>). Tatsächlich gibt es darin auch wenige Vertreter, wie z.B. RNAIII oder tmRNA, die als RNA regulieren, aber zusätzlich einen Leserahmen für ein kleines Peptid kodieren. Allerdings bilden diese bisher die Ausnahme.

Die tmRNA steuert die Entlassung blockierter Ribosomen und den Abbau defekter mRNAs sowie unvollständiger Proteine. Dafür betritt die tmRNA in einem Komplex aus dem Protein SmpB, der Alanyl-tmRNA und dem Elongationsfaktor TU die blockierten Ribosomen. Die Aminosäure Alanin der Alanyl-tmRNA wird mit der wachsenden Aminosäurekette des unvollständigen Proteins verknüpft und von der tmRNA aus wird zusätzlich ein Proteolysetag (8-35 Aminosäuren) translatiert. Dieser Tag wird ebenfalls mit dem Protein verknüpft und die Ribosomen werden am Ende dieser Translation entlassen. Die defekte mRNA und das markierte Protein werden anschließend abgebaut (42, 62). *Staphylococcus aureus* RNAIII kodiert stattdessen in dem offenen Leserahmen *hld* das Peptid  $\delta$ -Hämolysin (26 Aminosäuren) und stimuliert die Expression von Enzymen und Hämolysinen, die als bakterielle Toxine Erythrozyten zersetzen können (11).

Anfänglich wurden sRNAs eher zufällig entdeckt, da eine gezielte Suche u.a. an der Größe der RNAs, dem Fehlen von Translationssignalen und der schwierigen Deletion ihrer Gene durch Zufallsmutagenese scheiterte. Im Jahr 2001, als lediglich 11 sRNAs identifiziert waren, startete die systematische Suche mit bioinformatischen Verfahren (4, 19, 91, 125). Als Kriterien wurden intergene Regionen nach Sequenzhomologie zwischen verwandten Bakterien,  $\sigma^{70}$ -Promotoren und Rho-unabhängigen Terminatoren oder der Konservierung vorhersagbarer RNA-Sekundärstrukturen gefiltert. Damit war es möglich auf einen Schlag viele potentielle sRNAs vorherzusagen, von denen auch einige experimentell bestätigt werden konnten (Abb. 3). Die zusätzliche Entwicklung experimenteller Methoden wie RNomics führte zu der stetig steigenden Anzahl an neuen sRNAs. In einem RNomics-Verfahren wird das Transkriptom einer Zelle in cDNA umgeschrieben und diese durch Sequenzierung und Sequenzvergleiche nach unbekannten RNA-Molekülen aus intergenen Regionen durchsucht. Mit dieser Methode war es möglich, an Hand von cDNA-Banken aus Organismen der drei Domänen des Lebens Bacteria, Archaea und Eukarya, sowohl bakterielle sRNAs als auch andere nicht-kodierende RNAs zu identifizieren (6, 105, 109-111, 119, 133).



Abb. 3: Zeitachse identifizierter sRNAs seit der Entdeckung der ersten Vertreter dieser Gruppe, modifiziert nach Livny *et al.* 2007 (71). *E. coli* sRNAs, entdeckt aufgrund experimenteller (dunkelgelb) und bioinformatischer (hellgelb) Methoden und sRNAs anderer Organismen, ebenfalls durch experimentelle (dunkelblau) und bioinformatische (hellblau) Methoden identifiziert. Nicht mit einbezogen sind hoch-konservierte sRNAs (6S, tmRNA, 4.5S RNA, RnpB) oder identifizierte sRNAs mit Sequenzhomologie zu *E. coli* sRNAs.

Bis heute sind aus dem Modellorganismus *E. coli* über 70 sRNAs identifiziert und einigen davon bereits Funktionen zugeschrieben worden (34). Wenige sollen hier kurz vorgestellt werden. RyhB ist ein Regulator des Eisenstoffwechsels. Unter Eisen-Mangel kann RyhB durch Bindung an spezielle mRNAs, die Translation Eisen-enthaltener Proteine hemmen (75). Für mehrere sRNAs (Spot42, SgrS, GlmY, GlmZ) konnte eine Beteiligung am Zuckermetabolismus nachgewiesen werden (40). Die Translation periplasmatischer Bindungsproteine des ABC-Transport-Systems (Aufnahme von Aminosäuren) wird durch die sRNA GcvB blockiert (98). Neben MicF wurden noch andere für die Porin-Synthese entscheidende sRNAs (u.a. RybB) identifiziert. RybB ist an der negativen Regulation von acht Proteinen der äußeren Membran Gram-negativer Bakterien beteiligt (120).

Sequenzvergleiche der identifizierten *E. coli* sRNAs mit Nukleotiddatenbanken zeigten, dass abgesehen von hoch-konservierten Vertretern wie z.B. die 6S RNA oder tmRNA, wenige sRNAs außerhalb nah-verwandter Bakterien auf Sequenzebene konserviert sind (34, 51). Durch die Funktionsanalyse einiger sRNAs ist außerdem bekannt, dass Moleküle mit derselben Funktion oft einen Mangel an Sequenzkonservierung besitzen, was bei RyhBhomologen sRNAs wie PrrF1 und PrrF2 aus *Pseudomonas aeruginosa* zu sehen ist (127).

Die meisten bekannten sRNAs sind an der Regulation von mRNAs, oft durch Translationsrepression nach Hybridisierung innerhalb der Shine-Dalgarno-Sequenz (SD) der RBS beteiligt. In seltenen Fällen wird aber auch eine blockierte RBS durch die Hybridisierung einer sRNA befreit, z.B. durch GlmZ oder DsrA. Die Translationsaktivierung mit Hilfe von DsrA wird durch Bindung an die mRNA *rpoS* reguliert, indem die RBS von *rpoS* aus einer Sekundärstruktur befreit wird (73, 106) Weiterhin ist möglich, dass mehrere sRNAs eine mRNA regulieren. Dies ist bei GlmY und GlmZ der Fall. Beide aktivieren die Expression der mRNA *glmS*, die für den Peptidoglycan- und Lipopolysaccharidmetabolismus von Bakterien benötigt wird (57, 88). Aus *Streptococcus pneumoniae* sind sogar fünf sRNAs bekannt, deren Promotoren durch den Regulator CiaR (competence induced altered cefotaxime susceptibility) des Zwei-Komponenten-Systems CiaRH gesteuert werden. Dieses System regelt die Kompetenz, Virulenz und  $\beta$ -Lactam-Resistenz des Bakteriums. Alle fünf *cia*-abhängigen sRNAs können wiederum die mRNA *comC* negativ regulieren, was auf eine exponierte Anti-SD-Sequenz in der Sekundärstruktur der fünf sRNAs zurückzuführen ist (45).

Grundlegend werden antisense sRNAs aufgrund ihrer Position im Genom in *cis-* und *trans*kodiert eingeteilt. *Cis*-kodierte sRNAs sind an derselben Position lokalisiert wie die mRNA, die sie regulieren, jedoch auf dem gegenläufigen DNA-Strang. Dabei können diese sRNAs so lokalisiert sein, dass sie teilweise oder vollständig mit der Gen-Sequenz ihrer Ziel-mRNA überlappen. So entsteht bei der Interaktion mit der Ziel-mRNA aufgrund der perfekten komplementären Sequenzen beider RNAs eine stabile Hybridisierung. Dagegen sind *trans*kodierte sRNAs an einer separaten Position im Genom lokalisiert. Bei deren Hybridisierung entsteht keine perfekte Basenpaarung. Diese kann jedoch von dem RNA-bindenden Protein Hfq stabilisiert werden. Hfq vermittelt dabei die Strukturänderung und die Erhöhung der lokalen Konzentrationen der interagierenden RNAs. Der Einfluss von Hfq auf die sRNAs RyhB bzw. SgrS und die mRNAs *sodB* und *ptsG* wurde ausgiebig untersucht (Abb. 4).



Abb. 4: Modell der Interaktion der sRNAs SgrS (RyhB) mit der mRNA *ptsG* (*sodB*) unter Beteiligung von Hfq, modifiziert nach Aiba *et al.* 2007 (2). SgrS wird unter Glukose-P-Stress durch den Transkriptionsfaktor SgrR spezifisch induziert (RyhB dagegen bei Eisen-Mangel durch Fur). SgrS (RyhB) bildet zusammen mit Hfq und RNase E einen Ribonukleoproteinkomplex und agiert durch unvollständige Basenpaarung an der RBS der Ziel-mRNA *ptsG* (*sodB*).

Mit den sRNAs RyhB bzw. SgrS geht Hfq in Verbindung mit RNase E einen Ribonukleoproteinkomplex ein. RNase E ist die Hauptendoribonuklease, die zusammen mit der Polynukleotid-Phosphorylase (PNPase) und der RhlB-Helikase das so genannte Degradosom bildet, welches den Abbau von mRNAs und stabilen RNAs vollzieht. Eine Haarnadelstruktur von *sodB* bzw. *ptsG*, welche die zugehörigen RBS enthält, wird durch Interaktion mit Hfq so verändert, dass die Bindung der sRNA RyhB bzw. SgrS möglich und die Translation der mRNAs verhindert wird (2, 35).

Hfq wurde ursprünglich als Wirtsfaktor für die Replikation des RNA-Bakteriophagen Q identifiziert (32). Dieses konservierte Protein ist bei 50 % aller Bakterien zu finden und besitzt speziell am N-Terminus eine große Ähnlichkeit zu eukaryotischen Sm-Proteinen, die als kleine nukleäre Ribonukleoproteinpartikel (snRNPs) assoziiert sind und mRNAs spleißen (58, 97, 108). In snRNPs agieren verschiedene Sm-Proteine als Heteroheptamere. Hfq dagegen befindet sich in Bakterien als Homohexamer (78). In Kristallstrukturen konnte nachgewiesen werden, dass ein Monomer dieses Hexamers eine Struktur mit einer α-Helix und fünf β-Faltblättern besitzt (93, 97). Diese Struktur wird als Sm-Falte bezeichnet, ist hoch-konserviert und in allen Hfq-Proteinen vorhanden. In Sm-Proteinen sorgt die Sm-Falte für die RNA-Bindung und die Protein-Protein-Interaktion (58, 115). Die Hauptfunktion von Hfq liegt in der Regulation von sRNAs. Mindestens 20 *E. coli* sRNAs werden durch Hfq reguliert (134). Um die sRNA DsrA zu binden, wurden lediglich die 65 N-terminalen Aminosäuren von Hfq benötigt (104). Dieses verkürzte Hfq-Protein war jedoch nicht mehr in der Lage *rpoS* zu binden, was darauf hindeutet, dass der C-Terminus für die Bindung von mRNAs essentiell ist (118).

Ein weiterer Mechanismus von Hfq die Stabilität von mRNAs zu beeinflussen, liegt in seiner Eigenschaft die Frequenz von Poly(A)-Anhängen an 3'-Enden von mRNAs zu manipulieren. Während in Eukaryoten Poly(A)-Anhänge eine Stabilisierung von RNAs bewirken, ist in Prokaryoten das Gegenteil der Fall (64). Polyadenylierung kann hier den Abbau von RNAs durch 3'-5'-Exoribonukleasen beschleunigen, wenn das 3'-Ende der RNA zuvor in einer stabilen Sekundärstruktur eingeschlossen war. Dabei stellen 3'-RNA-Enden nach Polyadenylierung einen idealen Ansatzpunkt für 3'-5'-Exoribonukleasen wie die PNPase dar (44, 129). Für Hfq konnte *in vitro* nachgewiesen werden, dass das Protein die Länge, Verteilung und Häufigkeit von Poly(A)-Anhängen an 3'-Enden des Transkripts *rpsO* verändert (67).

In der vorliegenden Arbeit wurde *Acinetobacter baylyi* als Studienobjekt für die Identifizierung von sRNAs und der Analyse des RNA-Chaperons Hfq ausgewählt. Die Gattung *Acinetobacter* wird sehr nahe zu den Pseudomonaden geordnet und bilden mit ihnen eine gemeinsame Untergruppe innerhalb der  $\gamma$ -Proteobakterien (113). Vertreter der Gattung *Acinetobacter* gehören zu ubiquitären Bakterien, die in Böden, Gewässern und auf der

menschlichen Haut leben (10). Verschiedene Eigenschaften dieser Bakterien wurden zusammengefasst und zeigen große Gemeinsamkeiten untereinander, aber auch einige Unterschiede zu den nächsten Verwandten, den Pseudomonaden auf (36, 131). Alle Vertreter der Gattung *Acinetobacter* sind Gram-negative, nicht bewegliche (griechisch akinetos = unbeweglich, baktron = Stab) und strikt aerobe Bakterien. Die Zellform kann als kokkoid bzw. stäbchenförmig beschrieben werden, wobei die einzelnen Zellen in Paaren oder auch langen Ketten angeordnet sein können (Abb. 5).



Abb. 5: Elektronenmikroskopische Aufnahme von Ketten des Bakteriums *Acinetobacter baylyi* Stamm ADP1 (Lüdecke; 2005)

Der nicht-pathogene Keim Acinetobacter baylyi ADP1 wurde durch Mutagenese als kapsellose Mutante aus einem Bodenbakterium isoliert und besitzt eine sehr effiziente Transformierbarkeit (56, 83). Dadurch eignet sich A. baylyi ADP1 besonders für genetische Manipulationen (76). Das Genom von A. baylyi ADP1 ist vollständig sequenziert und mit einer Größe von ungefähr 3,6 MBp und einem GC-Gehalt von 40 % annotiert (9). Annähernd 80 % der 3307 A. baylyi offenen Leserahmen wurden einzeln deletiert. Diese Mutanten sind frei zugänglich (26). Außerdem konnten im Genom von ADP1 131 Regionen zu bereits bekannten nicht-kodierenden RNAs geordnet werden, von denen der Hauptanteil auf tRNAs, rRNAs und direkte regulatorische Sequenzwiederholungen fällt (34). Lediglich fünf sRNAs und zudem fünf Riboswitches sind aufgrund ihrer Sequenzhomologie im A. baylyi Genom bisher identifiziert. Riboswitches sind 5'-nicht translatierte mRNA-Bereiche, die als Sensor eines Liganden (Amino-, Nukleinsäure oder Zucker) wirken. Durch Ligandenbindung kommt es zur Strukturänderung in der mRNA, die sich aktivierend oder reprimierend auf deren Genexpression auswirkt (21). Über sRNAs und Hfq aus A. baylyi ist noch sehr wenig bekannt. Bisher wurde das Hauptaugenmerk auf die Identifizierung von sRNAs aus E. coli

und nah verwandter Enterobakterien, sowie aus verschiedenen Pseudomonaden gelegt (1, 49, 70, 105). Lediglich drei konservierte sRNAs aus *A. baylyi* konnten experimentell verifiziert werden (94). Aufgrund mehrerer Differenzen zwischen *A. baylyi* und den Pseudomonaden, aus denen bereits verschiedene sRNAs identifiziert wurden, besteht trotz ihrer Verwandtschaft ein enormes Potential, in *A. baylyi* neue sRNAs zu entdecken. Sowohl die Größe als auch die Zusammensetzung der Genome der Pseudomonaden (z.B. *Pseudomonas aeruginosa* 6,2 MBp, GC-Gehalt: 62 %) unterschieden sich stark von dem Genom von *A. baylyi* ADP1.

In der vorliegenden Arbeit wurde nach neuen sRNAs aus *A. baylyi* gesucht. Der Fokus lag dabei in der Vorhersage und dem Nachweis *Acinetobacter*-spezifischer sRNAs. Für die identifizierte sRNA Aar konnte ein Expressionsprofil erstellt werden. Auswirkungen auf das Wachstumsverhalten von *A. baylyi* sowie auf die Menge verschiedener potentieller AarmRNA-Interaktionspartner wurden bei Überexpression von Aar untersucht. Die dabei erzielten Ergebnisse wurden zusammengefasst und für die Veröffentlichung in einer wissenschaftlichen Zeitschrift eingereicht (95). Weitere Schwerpunkte dieser Arbeit behandeln die molekularbiologische Bedeutung des *A. baylyi* RNA-Chaperons Hfq und die Rolle seines C-Terminus, welcher sich stark in der Länge und der Sequenz zu anderen Hfq-Proteinen unterscheidet. Die Identifizierung der Größe des *A. baylyi* Hfq-Proteins und Untersuchungen über dessen Fähigkeit eine Deletionsmutante eines homologen kleineren Hfq-Proteins zu komplementieren, sind weitere zentrale Punkte dieser Arbeit. Es wurde außerdem überprüft, wie sich eine vollständige Deletion des *A. baylyi* Hfq-Proteins bzw. eine partielle Deletion des Hfq C-Terminus auf das Wachstumsverhalten und die Zellmorphologie von *A. baylyi* auswirkt. Diese Ergebnisse sind erfolgreich publiziert worden (96).

### 2. Material und Methoden

### 2.1 Organismen, Plasmide und Oligodesoxyribonukleotide

#### 2.1.1 Bakterienstämme

Alle in dieser Arbeit verwendeten Bakterienstämme sind in Tabelle 1 und Tabelle 2 beschrieben.

| Stamm                                        | Genotyp/Antibiotikaresistenz                                                                                                                                                 | Herkunft/Referenz      |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| ADP1                                         | Wildtyp (NCBI Ref Seq Id NC_005966)                                                                                                                                          | (9)                    |
| $\Delta h f q$                               | trägt Ω-Interposon anstelle des <i>hfq</i> offenen<br>Leserahmens (ACIAD2373) / Spe <sup>R</sup>                                                                             | diese Arbeit/(87, 96)  |
| $\Delta miaA$                                | trägt Ω-Interposon in <i>miaA</i> (ACIAD2374)<br>54 Nt nach Startcodon von <i>miaA</i> / Spe <sup>R</sup>                                                                    | diese Arbeit/(87, 96)  |
| $\Delta mutL$                                | trägt Kanamycin-Kassette anstelle des <i>mutL</i> offenen Leserahmens (ACIAD2375) / Kan <sup>R</sup>                                                                         | (26)/(96)              |
| $\Delta h f q \ p R K 415 \ h f q \ P l a c$ | trägt <i>hfq</i> - Genregion + 595 Nt stromaufwärts<br>bzw. 854 Nt stromabwärts in pRK415 vor<br><i>Plac</i> und $\Delta hfq$ im Genom / Spe <sup>R</sup> + Tet <sup>R</sup> | diese Arbeit/(61, 96)  |
| $\Delta h f q_{73 \mathrm{AA}}$              | <i>hfq</i> -Genregion (Nt. 237-473) deletiert, Expression von Hfq (101AA) ohne Glycin-Motiv                                                                                  | diese Arbeit/(96)      |
| pRK415 hfq Plac                              | siehe Stamm $\Delta hfq$ pRK415 $hfq$ Plac / Tet <sup>R</sup>                                                                                                                | diese Arbeit/(96)      |
| pRK415                                       | trägt Vektor pRK415 / Tet <sup>R</sup>                                                                                                                                       | diese Arbeit/(61, 96)  |
| pKD46                                        | trägt Vektor pKD46 mit $\lambda$ -Red-Gene / Amp <sup>R</sup>                                                                                                                | diese Arbeit/(25)      |
| hfq3xFLAG-Sm                                 | trägt 3xFLAG-Tag + 2 Stoppcodons in <i>hfq</i><br>ab Nt. 150 / Kan <sup>R</sup>                                                                                              | diese Arbeit/(116)     |
| hfq3xFLAG-Glycin                             | trägt 3xFLAG-Tag + 2 Stoppcodons in <i>hfq</i><br>ab Nt 240 / Kan <sup>R</sup>                                                                                               | diese Arbeit/(116)     |
| hfq3xFLAG-Stopp                              | trägt 3xFLAG-Tag + 2 Stoppcodons in <i>hfq</i><br>ab Nt. 522 / Kan <sup>R</sup>                                                                                              | diese Arbeit/(116)     |
| pRK415 hfq <sub>3xFLAG-Stopp</sub>           | trägt 3xFLAG-Tag + 2 Stoppcodons in <i>hfq</i><br>ab Nt 522 in pRK415 <i>hfq PLac</i> / Tet <sup>R</sup> + Kan <sup>R</sup>                                                  | diese Arbeit/(61, 116) |

| Tab.  | 1 | Stämme vo | n Acinetobact    | er bavlvi |
|-------|---|-----------|------------------|-----------|
| I uo. |   | Stumme ve | in richichoodich | ci oayiyi |

| pRK415 hfq <sub>3xFLAG-Glycin</sub>              | trägt 3xFLAG-Tag + 2 Stoppcodons in <i>hfq</i><br>ab Nt 240 in pRK415 <i>hfq PLac</i> / Tet <sup>R</sup> + Kan <sup>R</sup>                                                                          | diese Arbeit/(61, 116) |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| pRK415 Plac aar                                  | trägt Gen der sRNA Aar stromabwärts von <i>Plac</i> (Kloniertes DNA-Fragment: 22 Nt stromabwärts des <i>trpS</i> Stoppcodons bis 63 Nt stromaufwärts des <i>sucD</i> Stoppcodons) / Tet <sup>R</sup> | diese Arbeit/(61, 95)  |
| pRK415 aar Plac                                  | siehe pRK415 <i>Plac aar</i> ; hier <i>aar</i> stromaufwärts von <i>Plac</i> kloniert                                                                                                                | diese Arbeit/(61, 95)  |
| $\Delta tmRNA$                                   | trägt Kanamycin-Kassette anstelle des Gens der<br>tmRNA / Kan <sup>R</sup>                                                                                                                           | (26)                   |
| ∆sRNA 394<br>vor Terminator                      | trägt Kanamycin-Kassette anstelle der Genom-<br>region 402072-402174 / Kan <sup>R</sup>                                                                                                              | (26)                   |
| ΔsRNA 394<br>nach Terminator                     | trägt Kanamycin-Kassette anstelle der Genom-<br>region 402175-402292 / Kan <sup>R</sup>                                                                                                              | (26)                   |
| <i>hfq</i> 3xFLAG-Sm +<br>pRK415 <i>hfq Plac</i> | siehe Stamm <i>hfq</i> 3xFLAG-Sm und Stamm<br>pRK415 <i>hfq Plac</i> / Kan <sup>R</sup> + Tet <sup>R</sup>                                                                                           | diese Arbeit/(61, 116) |

#### Tab. 2 Stämme von Escherichia coli

| Stamm                             | Genotyp / Antibiotikaresistenz                                                                                                                                                                           | Herkunft/Referenz             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| DH5a                              | F <sup>-</sup> , mcrA $\Delta$ , $\Phi$ 80dlacZ $\Delta$ M15, endAI<br>recAI, araD139, $\Delta$ (ara, leu)7697, galU<br>galK, nupG, $\lambda$ <sup>-</sup> , deoR, $\Delta$ lacX74, rpsL                 | (46)                          |
| BL21-AI <sup>TM</sup>             | F, $\Delta ompT$ , $hsdS_B$ $(r_B m_B)$ , gal, dcm,<br>araB::T-RNAP                                                                                                                                      | Invitrogen GmbH,<br>Karlsruhe |
| СС118 λрі                         | Δ( <i>ara-leu</i> ), <i>araD</i> , Δ <i>lacX</i> 74, <i>galE</i> , <i>galK</i><br><i>pho</i> A20, <i>thi</i> -1, <i>rpsE</i> , <i>rpoB</i> , <i>argE</i> , <i>rec</i> A1<br>lysogenisiert mit λpir Phage | (50)                          |
| DH5α pRK415<br><i>hfq</i> + pKD46 | trägt <i>hfq</i> aus <i>A. baylyi</i> auf Plasmid pRK415<br>und Plasmid pKD46 / Tet <sup>R</sup> , Amp <sup>R</sup> , 30 °C                                                                              | (25, 61)                      |
| MC4100 <i>hfq</i> 1::Ω            | F, araD139 (argF-lac)U169, rpsL150, relA<br>flb-5301, ptsF25, deoC1, trägt $\Omega$ -Interposon in<br>hfq-Gen an BclI-Schnittstelle / Kan <sup>R</sup>                                                   | (16, 114)                     |
| MC4100 hfq2::Ω                    | trägt $\Omega$ -Interposon an <i>Kpn</i> I-Schnittstelle / Kan <sup>R</sup>                                                                                                                              | (16, 114)                     |

#### 2.1.2 Plasmide

Die im Rahmen dieser Arbeit verwendeten Plasmide sind in Tabelle 3 aufgeführt.

Tab. 3: Plasmide

| Bezeichnung          | relevanten Eigenschaften                                                                                                         | Herkunft / Referenz |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------|
| pET28a               | lacI, MCS mit His6-Tag und T7-Pro-                                                                                               | Merck, Darmstadt    |
|                      | motor, Kan <sup>R</sup> , ORI (pBR322), 5369 Bp                                                                                  |                     |
| pET29a               | siehe pET28a, 5371 Bp                                                                                                            | Merck, Darmstadt    |
| pET29a <i>hfq</i> -1 | hfq aus A. baylyi ohne Stoppcodon                                                                                                | diese Arbeit        |
|                      | in pET29a über <i>NdeI/Xho</i> I mit Pri-                                                                                        |                     |
|                      | mer 232/233 kloniert, 5760 Bp                                                                                                    |                     |
| pET28a <i>hfq-</i> 1 | <i>hfq</i> aus <i>A. baylyi</i> mit Stoppcodon<br>in pET28a über <i>NdeI/Xho</i> I mit Primer<br>232/234 kloniert, 5815 Bp       | diese Arbeit        |
| pHB45Ω               | <i>aadA</i> (Spe <sup>R</sup> ,Sm <sup>R</sup> ), <i>bla</i> (Amp <sup>R</sup> ), ORI (pBR322), 4398 Bp                          | (87)                |
| pRK415               | <i>tetA, tetR</i> (Tet <sup>R</sup> ), MCS in <i>lacZa, traJ</i> , ORI (pBR322), ORIT, 12583 Bp                                  | (27, 61)            |
| pRK2013              | Kan <sup>R</sup> , ORI (ColE1), RK2-Transfer-<br>Gene, 4800 Bp                                                                   | (30)                |
| pSUB11               | Kan-Kassette + 3xFLAG-Tag stromauf-<br>wärts, <i>bla</i> (Amp <sup>R</sup> ), Kan <sup>R</sup> , 3488 Bp                         | (116)               |
| pRK415 hfq Plac      | A. <i>baylyi hfq</i> + DNA stromauf- (595 Nt)<br>und stromabwärts (854 Nt) über Primer<br>266/267 und <i>PstI/Nde</i> I kloniert | diese Arbeit        |
| pRK415 Plac hfq      | siehe pRK415 hfq Plac hier PstI/HindIII                                                                                          | diese Arbeit        |
| pKD46                | gam, exo, bet unter Kontrolle von PBAD                                                                                           | (25)                |

|        |                                                                                     | <i>bla</i> (Amp <sup>R</sup> ), ORI (repA101ts), 6329 Bp                                                                                               |                                          |
|--------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| pBSKII | +                                                                                   | <i>bla</i> (Amp <sup>R</sup> ), MCS in <i>lacZα</i> , ORI (pBR322), 2958 Bp                                                                            | Stratagene, Agilent-<br>Tech., Waldbronn |
| pDNR-I | LIB                                                                                 | CAP <sup>R</sup> , ORI (pUC), 4161 Bp.                                                                                                                 | Clontech, en-Laye                        |
| pRK415 | 5 aar Plac                                                                          | aar mit 368/369 + EcoRI/PstI kloniert                                                                                                                  | diese Arbeit                             |
| pRK415 | 5 Plac aar                                                                          | <i>aar</i> mit 368/369 + <i>HindIII/Pst</i> I kloniert                                                                                                 | diese Arbeit                             |
| pRK415 | 5 - <i>hfq</i> 3xFLAG-Stopp<br>- <i>hfq</i> 3xFLAG-Glycin<br>- <i>hfq</i> 3xFLAG-Sm | <i>A. baylyi hfq</i> auf pRK415 an verschie-<br>denen Positionen mit 3xFLAG-Tag aus<br>pSUB11 versehen, Tet <sup>R</sup> , Kan <sup>R</sup> , 14126 Bp | diese Arbeit                             |

#### 2.1.3 Oligodesoxyribonukleotide

Alle für diese Arbeit verwendeten Oligodesoxyribonukleotide (Primer) wurden von der Firma Biomers GmbH, Ulm synthetisiert. In Tabelle 4 sind nur die verwendeten Oligodesoxyribonukleotide für die Ergebnisse aus Abschnitt 3 dieser Arbeit aufgelistet. Oligodesoxyribonukleotide der publizierten Experimente dieser Arbeit sind separat in den Publikationen zu finden (95, 96). Besondere Merkmale in der Sequenz der Oligodesoxyribonukleotide wurden hervorgehoben. Die Funktion bezieht sich auf das Experiment, in dem der jeweilige Primer eingesetzt wurde. Mit Hilfe der Nummerierung können Primerpaare leicht zugeordnet werden. Die Berechnung der Schmelztemperatur Tm für die PCR (siehe 2.8) fand an Hand des GC-Gehalts des Oligodesoxyribonukleotids statt (122). Daraus ergab sich folgende Beziehung:

Tm [° C] = 81,5 + 0,41 (%GC) + 16,6 log c(M+) - 500/n -0,61 (%F) -1,2 D

%GC = Prozentualer Anteil an G/C-Paaren c(M+) = Konzentration an monovalenten Kationen n = Anzahl der Nukleotide %F = Prozentualer Anteil von Formamid im Puffer D = Prozentualer Anteil an Fehlpaarungen

### Tab. 4 Verwendete Oligodesoxyribonukleotide

| Name                 | Sequenz (5'-3')                                                                | Merkmal           | Nr  | Bindestelle                                                                                  | Funktion                                                      |
|----------------------|--------------------------------------------------------------------------------|-------------------|-----|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| SMART IV             | aagcagtggtatcaacgcagagtggccattacggccggg                                        |                   | 184 | 3'-Ende der cDNA                                                                             | Herstellung einer cDNA-Bank                                   |
| 5'-PCR Primer        | aagcagtggtatcaacgcagagt                                                        |                   | 185 | 3'-Ende der cDNA                                                                             | Herstellung einer cDNA-Bank                                   |
| CDSIII / 3'-Primer   | attctagaggccgaggcggccgacatgtttttttttttt                                        | Poly-T-<br>Anhang | 186 | 3'-PolyA-RNA-Ende                                                                            | Herstellung einer cDNA-Bank                                   |
| M13 forward          | tgtaaaacgacggccagt                                                             |                   | 188 | M13 Sequenz von Vektoren                                                                     | Sequenzierung                                                 |
| Aci 16S rDNA         | gaaagcaggggatctttatgacct                                                       |                   | 189 | Nt 181-204 von A. baylyi 16S rRNA                                                            | Sonde Koloniehybridisierung                                   |
| Aci 23S rDNA         | aacgagggaagtgaaacatctca                                                        |                   | 190 | Nt 180-203 von A. baylyi 23S rRNA                                                            | Sonde Koloniehybridisierung                                   |
| M13 reverse          | aaacagctatgaccatgttca                                                          |                   | 191 | M13 Sequenz von Vektoren                                                                     | Sequenzierung                                                 |
| 16S rRNA 3           | ttgatcatggctcagattgaac                                                         | PCR mit 197       | 196 | Nt 18421-18442 in A. baylyi Genom                                                            | PCR-Sonde (2101 Nt)                                           |
| 16S rRNA 4           | tegetaatgeetacaagtagea                                                         | PCR mit 196       | 197 | Nt 20522-20501 im A. baylyi Genom                                                            | PCR-Sonde (2101 Nt)                                           |
| 23S + 5S rRNA 6      | aagetggegatgaettaetete                                                         | PCR mit 199       | 198 | Nt 115-94 von A. baylyi 5S rRNA                                                              | PCR Sonde (3194 Nt)                                           |
| 23S rRNA 5           | agtaattaagtgcatgtgggg                                                          | PCR mit 198       | 199 | Nt 5-26 von A. baylyi 23S rRNA                                                               | PCR-Sonde (3194 Nt)                                           |
| Klon 316-forward     | attacggccgggggtgga                                                             | PCR mit 208       | 207 | am 5'-Ende der cDNA von Klon 316                                                             | PCR-Sonde (Nt 191)                                            |
| Klon316-reverse      | gggtactgagatgtttcacttcccct                                                     | PCR mit 207       | 208 | am 3'-Ende der cDNA von Klon 316                                                             | PCR-Sonde (Nt 191)                                            |
| Hfq-XhoI-3'-Primer 1 | cgaagtctcgagacgattgttagaatcgtcttc                                              | XhoI              | 232 | am 3' - Ende von A. baylyi hfq (-Stopp)                                                      | Hfq-Proteinexpression                                         |
| Hfq-XhoI-3'-Primer 2 | cgaagtctcgagttaacgattgttagaatcgtc                                              | XhoI              | 233 | am 3'- Ende von A. baylyi hfq (+Stopp)                                                       | Hfq-Proteinexpression                                         |
| Hfq-NdeI-5'          | ggtagtcatatgtctaaaggtcaaacattacaagat                                           | NdeI              | 234 | am 5' - Ende von A. baylyi hfq                                                               | Hfq-Proteinexpression                                         |
| 707131 Primer 2      | gcggggtaaaaatcatgtta                                                           | PCR mit 250       | 248 | in der IGR 707408-707389 von A. baylyi                                                       | Sonde für in silico sRNA                                      |
| 1000717 Primer 1     | ttgctccttgcaagatgtga                                                           | PCR mit 251       | 249 | in der IGR 1000930-1000911 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| 707131 Primer 1      | ctctcttcgttgttaatatcgt                                                         | PCR mit 248       | 250 | in der IGR 707134-707155 von A. baylyi                                                       | Sonde für in silico sRNA                                      |
| 1000717 Primer 2     | gtatttagcattcatgacacatg                                                        | PCR mit 249       | 251 | in der IGR 1000718-1000740 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| RNA 2690503 for      | cgtacattgttttaaggattttgc                                                       | PCR mit 255       | 253 | in der IGR 2690507-2690530 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| RNA 2690503 rev      | aaagcccaacatcctgttgg                                                           | PCR mit 253       | 255 | in der IGR 2690694-2690675 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| RNA 2308846 for      | gatgacctctttaattattgctacttcg                                                   | PCR mit 259       | 258 | in der IGR 2308846-2308873 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| RNA 2308846 rev      | tgtatttttagtgtaactaattggtactt                                                  | PCR mit 258       | 259 | in der IGR 2308987-2308960 von A. baylyi                                                     | Sonde für in silico sRNA                                      |
| 6S RNA Primer 1 for  | acactctaaatatgcagaacgctat                                                      | PCR mit 274       | 273 | in der IGR 1111804-1111620 von A.baylyi                                                      | Kartierung der 6S RNA                                         |
| 6S RNA Primer 2 rev  | gcaagtatgcgtcgcttccaccttg                                                      | PCR mit 273       | 274 | in der IGR 1111804-1111620 von A.baylyi                                                      | Kartierung der 6S RNA                                         |
| Hfq-3xFLAG fw        | taaatttgaagatggtcaggaa<br>gacgattctaacaatcgt <mark>gactacaaagaccatgacgg</mark> | PCR mit 295       | 294 | 36 Nt stromaufwärts von <i>hfq</i> Stopp +<br>5'-Ende der Km <sup>R</sup> -Kassette (pSUB11) | Anbringen von 3xFLAG-Tags<br>an <i>A. baylyi hfq</i> (-Stopp) |

### Fortsetzung Tabelle 4

| Hfq-3xFLAG rw2      | ccccaatatgaaattggggtctttatcaaacggttttagga <b>atatgaatatcttccttag</b> | PCR mit 294 | 295 | 40 Nt stromabwärts von <i>hfq</i> Stopp +<br>3´-Ende der Km <sup>R</sup> -Kassette (pSUB11)       | Anbringen von 3xFLAG-Tags<br>an <i>A. baylyi hfq</i> (-Stopp)    |
|---------------------|----------------------------------------------------------------------|-------------|-----|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Hfq-3xFLAG klein fw | taatccacgtccagctggcgcgcctactggtgctccacaagactacaaagaccatgacgg         | PCR mit 297 | 296 | 197 Nt stromabwärts von <i>hfq</i> Start +<br>5'-Ende der Km <sup>R</sup> -Kassette (pSUB11)      | Anbringen von 3xFLAG-Tags an<br>A. baylyi hfq (vor Glycin-Motiv) |
| Hfq 3xFLAG klein rw | gacegecaaageegecacettgaceacegaagecaceacatatgaatateeteettag           | PCR mit 296 | 297 | 276 Nt stromabwärts von <i>hfq</i> Start<br>+ <b>3′-Ende der Km<sup>R</sup>-Kassette (pSUB11)</b> | Anbringen von 3xFLAG-Tags an<br>A. baylyi hfq (vor Glycin-Motiv) |
| 2199732 forward     | ggaggetteggeeteett                                                   | PCR mit 314 | 313 | in der IGR 2199744-2199851 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 2199732 reverse     | gaatatttcatatctgcatgctaatcag                                         | PCR mit 313 | 314 | in der IGR 2199744-2199851 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 402072 forward      | ctagtggagacccctaaggtttg                                              | PCR mit 316 | 315 | in der IGR 402093-402287 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 402072 reverse      | ggtattacgccttatggtgtgttt                                             | PCR mit 315 | 316 | in der IGR 402093-402287 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 2859367 forward     | ggatcagtcatgtctgttaaggatc                                            | PCR mit 318 | 317 | in der IGR 2859367-2859578 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 2859367 reverse     | ctacaggcctgagttctcaat<br>gaa                                         | PCR mit 317 | 318 | in der IGR 2859367-2859578 von A. baylyi                                                          | Sonde für <i>in silico</i> sRNA                                  |
| 1249605 forward     | cagagccactatagtgtt<br>ttttatagtgg                                    | PCR mit 320 | 319 | in der IGR 1249611-1249793 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 1249605 reverse     | ctccttgcaaaatgctaaacctg                                              | PCR mit 319 | 320 | in der IGR 1249611-1249793 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 685911 forward      | ggcacgttgtcagctcacg                                                  | PCR mit 322 | 321 | in der IGR 685920-686052 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 685911 reverse      | ctcataagtggtgtcgtattggtaa                                            | PCR mit 321 | 322 | in der IGR 685920-686052 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 399985 forward      | gcccaagtcagacttgggct                                                 | PCR mit 324 | 323 | in der IGR 399993-400214 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 399985 reverse      | cagacctgtacgtttttgcttaca                                             | PCR mit 323 | 324 | in der IGR 399993-400214 von A. baylyi                                                            | Sonde für in silico sRNA                                         |
| 2975473 forward     | gcttagagattcaaa<br>aaaagaccg                                         | PCR mit 326 | 325 | in der IGR 2975473-2975690 von A. baylyi                                                          | Sonde für <i>in silico</i> sRNA                                  |
| 2975473 reverse     | ggettaagaagetattetecaca                                              | PCR mit 325 | 326 | in der IGR 2975473-2975690 von A. baylyi                                                          | Sonde für <i>in silico</i> sRNA                                  |
| 2867114 forward     | gcccacgttgtgggcttt                                                   | PCR mit 328 | 327 | in der IGR 2867254-2867123 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 2867114 reverse     | ccgacaaattatatgctaagaactg                                            | PCR mit 327 | 328 | in der IGR 2867254-2867123 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 1494310 forward     | aagatcagcattagctgatcttttt                                            | PCR mit 330 | 329 | in der IGR 1494315-1494427 von A. baylyi                                                          | Sonde für in silico sRNA                                         |
| 1494310 reverse     | caacaacttattctaagc<br>tcgttattt                                      | PCR mit 329 | 330 | in der IGR 1494315-1494427 von A. baylyi                                                          | Sonde für <i>in silico</i> sRNA                                  |
| 402072 reverse 2    | tattctctagtgaggtcggc                                                 | PCR mit 315 | 336 | in der IGR 402072 von A. baylyi                                                                   | PCR-Sonde nach Terminator                                        |
| 402072 forward 2    | agaaggagcgaacattcgcc                                                 | PCR mit 316 | 337 | in der IGR 402072 von A. baylyi                                                                   | PCR-Sonde vor dem Terminator                                     |
| 402072a XhoI        | agtetegagtaaacacaccataaggegtaatace                                   | PCR mit 348 | 347 | in der IGR 402072 von A. baylyi                                                                   | Kartierung der potentiellen sRNA                                 |
| 402072b PstI        | agtctgcaggcaatgtctggtgtgtggcactagg                                   | PCR mit 347 | 348 | in der IGR 402072 von A. baylyi                                                                   | Kartierung der potentiellen sRNA                                 |
| 3xFLAG Hfq Sm rw    | gcactacggtggaaatcgcgtgcttataaaccatttgcct<br>atatgaatatcctcctt        | PCR mit 367 | 364 | 197 Nt stromabwärts von <i>hfq</i> Start +<br>3'-Ende der Km <sup>R</sup> -Kassette (pSUB11)      | Anbringen von 3xFLAG-Tags<br>an <i>A. baylyi hfq</i> (in Sm)     |
| 3xFLAG Hfq Sm fw2   | atcttttgaccaatacgtagtgttattaaaaaatactgta<br>gactacaaagaccatga        | PCR mit 364 | 367 | 150 Nt stromabwärts von <i>hfq</i> Start +<br>5'-Ende der Km <sup>R</sup> -Kassette (pSUB11)      | Anbringen von 3xFLAG-Tags<br>an <i>A. baylyi hfq</i> (in Sm)     |

#### 2.2 Zellanzucht und Stammhaltung

#### 2.2.1 Nährstoffmedien

Die Sterilisation von Nährstoffmedien fand in einem Autoklav bei 121 °C für 20 Min und 1,2 Bar statt. Feste Medien wurden durch Zugabe von 1,5 % (w/v) Agar hergestellt. Hitzelabile Zusätze (u.a. Antibiotika, Kohlenstoffquellen) wurden nach dem Autoklavieren und Abkühlen auf ca. 50 °C durch Sterilfiltration hinzugefügt. Einige hitzestabile Substanzen wurden separat autoklaviert, um chemische Reaktionen untereinander zu verhindern.

*Acinetobacter sp.* wurde hauptsächlich mit Mineralmedium kultiviert. Dagegen fand die Anzucht von *Escherichia coli* in Komplexmedium statt. Kompetente *E. coli*-Zellen wurden nach der Transformation mit SOB/SOC-Medium inkubiert. Im Folgenden ist die Zusammensetzung der einzelnen Medien für ein Volumen von 1 1 aufgelistet. Alle Bestandteile wurden in bidestilliertem Wasser gelöst.

#### 2.2.1.1 Mineralmedium

| Na <sub>2</sub> HPO <sub>4</sub> * 12 H <sub>2</sub> O | 3,6 g | 10 mM  |
|--------------------------------------------------------|-------|--------|
| KH <sub>2</sub> PO <sub>4</sub>                        | 1,2 g | 8,8 mM |
| NH <sub>4</sub> Cl                                     | 0,5 g | 9,3 mM |
| MgSO <sub>4</sub> * 7 H <sub>2</sub> O                 | 0,2 g | 0,8 mM |

Nach dem Autoklavieren steril zugegeben:

| FeSO <sub>4</sub> (5 mg/ml) | 1 ml | 0,033 mM |
|-----------------------------|------|----------|
| $CaCl_2 * 2 H_2O (5 mg/ml)$ | 1 ml | 0,033 mM |

#### Verwendete Kohlenstoffquellen:

| Succinat (1 M)         | 10 ml | 10 mM |
|------------------------|-------|-------|
| Quinat (0,5 M)         | 10 ml | 5 mM  |
| Pyruvat (1 M)          | 20 ml | 20 mM |
| Protocatechuat (0,5 M) | 10 ml | 5 mM  |

Die Kohlenstoffquellen wurden durch Sterilfiltration nach dem Autoklavieren hinzugefügt.

2.2.1.2 Komplexmedium nach Luria-Bertani (92)

| Trypton     | 10 g |
|-------------|------|
| Hefeextrakt | 5 g  |
| NaCl        | 10 g |

2.2.1.3 SOB- und SOC-Medium (92)

| SOB-Medium        |     |     |
|-------------------|-----|-----|
| Trypton           | 20  | g   |
| Hefeextrakt       | 5   | g   |
| NaCl              | 0,5 | 5 g |
| KCl (250 mM, w/v) | 10  | ml  |

Der pH-Wert wurde vor dem Autoklavieren auf 7 mit 5 N NaOH eingestellt. Nach dem Autoklavieren wurde folgende Lösung steril zugegeben:

| $MgCl_2 * 6 H_2O (2 M,$ | w/v) | 5 ml |
|-------------------------|------|------|
|                         |      |      |

| <u>SOC-Medium</u>                      |         |
|----------------------------------------|---------|
| SOB-Medium                             | 1000 ml |
| Glukose (1 M in H <sub>2</sub> O, w/v) | 20 ml   |

Die Glukose wurde vor Gebrauch des SOC-Mediums durch Sterilfiltration zugegeben.

#### 2.2.1.4 Antibiotika

Die in Tabelle 5 aufgeführten Antibiotika wurden durch Sterilfiltration als Stammlösungen hergestellt, bei -20 °C gelagert und je nach Gebrauch in unterschiedlichen Mengen bei der Herstellung von festen oder flüssigen Medien hinzugefügt. Für das Blau-Weiß-Selektionsverfahren wurden die Substanzen Isopropyl- $\beta$ -D-Thiogalactopyranosid (IPTG, 120 mg/ml w/v in H<sub>2</sub>O, Endkonzentration: 120 µg/ml) und 5-Brom-4-Chlor-3-Indoxyl- $\beta$ -D-Galactopyranosid (X-Gal, 20 mg/ml w/v in Dimethylformamid, Endkonzentration: 40 µg/ml) den Medien nach dem Abkühlen zugegeben. Besonderes Augenmerk musste auf das Antibiotikum Tetracyclin sowie X-Gal gelegt werden, da beide Substanzen lichtempfindlich sind.

| Antibiotika     | Stammlösung [mg/ml] Arbeitskonzentration [µg/ml]<br>(gelöst in) |         |                       |
|-----------------|-----------------------------------------------------------------|---------|-----------------------|
|                 |                                                                 | E. coli | A. baylyi             |
| Ampicillin      | 100 (H <sub>2</sub> O)                                          | 100     | 200                   |
| Kanamycin       | 50 (H <sub>2</sub> O)                                           | 50      | 6 - 25 <sup>1</sup>   |
| Spectinomycin   | 100 (H <sub>2</sub> O)                                          | 100     | 100                   |
| Tetracyclin     | 12,5 (70 % Ethanol v/v)                                         | 12,5    | 6 - 12,5 <sup>1</sup> |
| Chloramphenicol | 30 (70 % Ethanol, v/v)                                          | 30      | n.v.                  |

Tab. 5: Verwendete Antibiotika für die Selektion von Bakterien

<sup>1</sup>in Abhängigkeit des Experimentes und Stammes wurden verschiedene Konzentrationen eingesetzt; n.v. nicht verwendet

#### 2.2.2 Bedingungen für die Anzucht und Stammhaltung von Bakterien

Die Stammhaltung von Bakterienkulturen erfolgte mit 10 % Dimethylsulfoxid (DMSO) bei -70 °C. Bei der Anzucht einer Bakterienkultur wurden konservierte Zellen aus der Stammsammlung durch einen Dreistrich-Ausstrich auf einer festen Nährmedienplatte vereinzelt und die Kolonien bei 30 °C (Acinetobacter sp.) bzw. 37 °C (Escherichia coli), bis Einzelkolonien erkennbar waren, inkubiert. Ausnahmen stellten E. coli-Stämme mit temperatursensitiven Plasmiden dar, die ebenfalls bei 30 °C inkubiert wurden. Für die Anzucht in Flüssigmedium wurde eine Einzelkolonie von der Platte in 5 ml Nährmedium über Nacht bei denselben Temperaturen angereichert. Die Sauerstoffversorgung wurde durch Schütteln der Kultur bei 180 Upm gewährleistet. Wachstumsversuche mit Stämmen von A. baylyi bzw. E. coli fanden unter aeroben Bedingungen in Erlenmeyerkolben mit Schikanen statt. Dabei wurde darauf geachtet, dass das Verhältnis von Nährmedium und Gefäßvolumen 1:5 betrug. Eine Ausnahme stellte die Kultivierung von A. baylyi in LB-Medium dar. Hier wurden Erlenmeyerkolben ohne Schikanen verwendet, da ansonsten während des Wachstums eine sehr starke Schaumbildung stattfand, die zusammen mit dem Absterben der Kultur auftrat. Der Wachstumsverlauf von Bakterienkulturen wurde nach Animpfen eines Nährmediums aus einer Vorkultur (1-5 %) durch stündliche Messung der optischen Dichte bei einer Wellenlänge von 600 nm (OD<sub>600</sub>) durch ein Spektralphotometer bestimmt. Die Trübung der Bakteriensuspension und die Anzahl an Bakterienzellen darin sind bis zu einer OD<sub>600</sub> von 0,3 proportional zueinander. Jedoch ab höheren Zellzahlen beschatten sich die Bakterienzellen gegenseitig, was zu einer erhöhten Lichtstreuung führt. Daher wurden für exakte Messungen die Kulturen bei einer  $OD_{600}$  von 0,3 vor der Messung mit dem verwendeten Nährmedium verdünnt.

#### 2.3 Nukleinsäure-Analytik

#### 2.3.1 Vorbehandlung von Lösungen und Geräten

Alle benötigten Glasgefäße und Lösungen wurden vor Experimenten mit Nukleinsäuren autoklaviert, um eine Kontamination mit Keimen und Nukleasen zu vermeiden. Hitzeempfindliche Gegenstände wurden mit 70 % Ethanol (v/v) desinfiziert und hitzelabile Lösungen sterilfiltriert. Für das Arbeiten mit Ribonukleinsäuren (RNA) wurden hitzestabile Gefäße und Lösungen zweimal autoklaviert, um stabile RNasen zu inaktivieren. Hitzeempfindliche Gefäße bzw. Geräte wurden dagegen mit 0.1 N NaOH / 1 mM EDTA gespült und anschließend mit zweifach-autoklaviertem bidestilliertem Wasser gesäubert. Des Weiteren wurden bei Experimenten mit RNA gestopfte Pipettenspitzen und autoklavierbare Pipetten verwendet.

#### 2.3.2 Reinigen und Konzentrieren von Nukleinsäuren

#### 2.3.2.1 Phenol-Chloroform-Extraktion

Eine Trennung von Nukleinsäuren und Proteinen erfolgte durch Phenol-Chloroform-Extraktion. Dabei werden reine Nukleinsäuren gewonnen, indem Proteine durch Phenol denaturiert werden und anschließend in einer von den Nukleinsäuren getrennten Phase gelöst vorliegen. Hierfür wurde zu 1 Vol zu reinigender DNA-Lösung 1 Vol Phenol/Chloroform/Isoamylalkohol (Verhältnis: 25:24:1, v/v/v) gegeben und kräftig gemischt. Dabei kam es zur Denaturierung der Proteine. Eine Phasentrennung fand anschließend durch Zentrifugation für 10 Min bei 13000 Upm und RT statt. Danach lagen drei Phasen vor. In der oberen wässrigen Phase waren Nukleinsäuren enthalten, in der weißen Interphase denaturierte Proteine und in der unteren organischen Phase das Phenol/Chloroform/Isoamylalkohol-Gemisch. Die obere Phase wurde entnommen und vorsichtig in ein neues Eppendorfreaktionsgefäß überführt. Hierbei war darauf zu achten nicht die weiße Interphase zu berühren. Um Phenolreste zu beseitigen, wurde die

Nukleinsäurelösung mit 1 Vol Chloroform/Isoamylalkohol (24:1, v/v) gemischt, erneut für 10 Min bei 13000 Upm und RT zentrifugiert und dabei die oberste wässrige Phase von der organischen Phase getrennt. Die Konzentrierung der Nukleinsäuren fand anschließend durch Ethanol- bzw. Isopropanolfällung statt.

#### 2.3.2.2 Ethanol- und Isopropanolfällung

Bei einer Alkoholfällung werden Nukleinsäuren in Gegenwart von monovalenten Kationen präzipitiert. Dafür musste zu der DNA- bzw. RNA-haltigen Lösung 1/10 Vol 3 M Natriumacetat (pH 5,2) und 2 Vol Ethanol 96 % (v/v) oder 0,8 Vol Isopropanol 100 % (v/v) gegeben werden. Die Fällung fand bei -20 °C für 20 Min oder bei sehr kleinen Nukleinsäurefragmenten über Nacht statt. Durch Zentrifugation (15000 Upm, 4 °C, 20 Min) wurden die Nukleinsäuren sedimentiert. Danach musste das Alkohol-Natriumacetat-Gemisch vorsichtig entnommen und die sedimentierten Nukleinsäuren mit 200 µl 70 % Ethanol (v/v) gewaschen werden, um Salzreste zu entfernen. Beim anschließenden Trocknen der Nukleinsäuren bei 30-37 °C für 1 Stunde verdampften Alkoholreste. Zum Schluss wurden die Nukleinsäuren in 25-50 µl autoklaviertem (zweifach für RNA) bidestilliertem Wasser aufgenommen. Für eine gezielte Isolierung der RNA bzw. DNA musste eine RNase- bzw. DNase-Behandlung (+ DNase-freie RNase A, 20 µg/ml für 20 Min bei 37 °C bzw. + RNase-freie DNase I, 50 U für 1 Stunde bei 37 °C) zusätzlich vorgenommen werden. Daran schloss sich erneut eine Phenolisierung und Fällung an.

#### 2.3.2.3 Konzentrationsbestimmung von Nukleinsäuren

Der quantitative Nachweis von Nukleinsäuren nach ihrer Aufreinigung fand in wässriger Lösung durch Messung der Absorption bei einer Wellenlänge von 260 nm in einer Quarzküvette mit Hilfe eines Spektralphotometers statt. Durch Berechnung des Quotienten aus der Absorption bei 260 und 280 nm konnten zudem Rückschlüsse auf die Reinheit der Nukleinsäurelösung gezogen werden. Dabei zeigten Absorptionswerte von 1,9-2,1 eine reine Nukleinsäurelösung an, während Abweichungen von diesen Werten auf Verunreinigungen mit Proteinen zurückzuführen waren. Für die Konzentrationsbestimmung wurden mit bidestilliertem Wasser Verdünnungen (1:50 bzw. 1:100) erstellt und das Photometer vor der Messung gegen Wasser als Leerwert eingestellt. Bei diesem Verfahren lassen sich zu der OD<sub>260</sub> von 1 folgende Korrelationen erstellen (92):  $OD_{260} 1 = 50 \ \mu g/ml$  (Doppelsträngige DNA) = 40 \ \mu g/ml (Gesamt-RNA)

Der Qualitative Nachweis von Nukleinsäuren insbesondere der RNA resultierte durch Auftrennung der Nukleinsäuren mit Agarose und Detektion mit Ethidiumbromid (siehe dazu 2.4). Nach einer guten RNA-Reinigung konnten die ribosomalen RNA-Banden der 5S, 16S und 23S rRNA nicht-degradiert mit Ethidiumbromid angefärbt werden (Abb.6).



Abb. 6: Qualitative Analyse einer Reinigung von Gesamt-RNA aus *Acinetobacter baylyi* durch Auftrennung in 2 % Agarose mit anschließender Ethidiumbromidfärbung.

#### 2.4 Gel-Elektrophorese

Die Gel-Elektrophorese trennt Makromoleküle wie Nukleinsäuren oder Proteine entsprechend ihrer Größe und Ladung in einem elektrischen Feld in einer Matrix auf. In dieser Arbeit wurden sowohl die nicht-denaturierende als auch die denaturierende Agarosegel-Elektrophorese sowie die Polyacrylamidgel-Elektrophorese für die Auftrennung von Nukleinsäuren angewendet. Nukleinsäuren sind aufgrund ihres Phosphatrückgrates negativ geladen. Dagegen besitzen Proteine aufgrund ihrer Aminosäuren verschiedene Ladungen. Die Auftrennung von Proteinen fand in der vorliegenden Arbeit durch die denaturierende SDS-Acrylamidgel-Elektrophorese statt. SDS ist ein anionisches Detergenz und überdeckt die Eigenladung der Proteine, indem es ihnen eine einheitliche negative Ladung verleiht (72).

#### 2.4.1 Nicht-denaturierende Agarosegel-Elektrophorese

Aus analytischen, präparativen und qualitativen Zwecken wurden DNA- und RNA-Moleküle mit Hilfe nicht-denaturierender Agarosegele aufgetrennt. Die Konzentration der Agarose als Gelmatrix richtete sich je nach der Größe der analysierten Nukleinsäuren. Die Gelmatrix wurde durch Auflösen der entsprechenden Menge Agarose (0,8-2%, w/v) in 0,5x TBE-Puffer, nach Aufkochen und Abkühlen, hergestellt. Nach dem Abkühlen auf ca. 60 °C konnte die Agaroselösung in horizontale Gelkammern zum Polymerisieren gegossen werden. Dabei variierte die Schichtdicke der Gele je nach Größe der Gelkammern. Um die Proben später in die Agarosematrix einzuschleusen wurde ein Kamm vor dem Polymerisieren in die Gelkammer eingesetzt. Nach dem Polymerisieren mussten die Gele mit 0,5x TBE-Puffer überschichtet werden. DNA-Proben wurden mit 0,2 Vol 5x DNA-Probenauftragspuffer vermischt, der zum einen ein Beschweren der Proben erlaubt, sowie ein Auslaufen verhindert, und zum anderen die Lauffront der DNA markiert. Für RNA-Proben wurden dieselben Lösungen verwendet, diese jedoch zweifach autoklaviert. Die Elektrophorese fand bei einer konstanten Spannung von 40-140 V und je nach Dicke der Gele zwischen 1-6 Stunden statt. Für die Detektion der Nukleinsäuren wurden die Gele nach der Auftrennung in einem Ethidiumbromidbad (1 µg/ml) zwischen 10 und 20 Min gefärbt. Mit Hilfe der Fluoreszenz des interkalierenden Ethidiumbromids konnte die DNA durch einen UV-Transilluminator visualisiert und in einer Videodokumentationsanlage digitalisiert werden.

Benötigte Lösungen (gelöst in bidestilliertem Wasser):

| 5x TBE-Puffer (1 1) |        | 5x Probenauftragspuffer |              |  |
|---------------------|--------|-------------------------|--------------|--|
| Tris-Base           | 54 g   | Ficoll 400              | 15 % (w/v)   |  |
| Borsäure            | 27,5 g | Bromphenolblau          | 0,25 % (w/v) |  |
| EDTA (0,5 M, w/v)   | 20 ml  | Xylencyanol             | 0,25 % (w/v) |  |

#### 2.4.2 Denaturierende Agarosegel-Elektrophorese

Bei Experimenten, in denen die RNA nach der Größenauftrennung auf eine Membran übertragen werden sollte, kam die denaturierende Agarosegel-Elektrophorese zum Einsatz. Als Denaturierungsmittel wurde Formaldehyd verwendet, welches mit den Nukleobasen zu Schiff´sche Basen reagiert und so die Ausbildung von Sekundärstrukturen verhindert. Da die Reaktion ebenfalls mit den Basen des Tris-Puffers stattfinden kann, wurde ein anderes Puffersystem für diese Art der Elektrophorese verwendet. Für denaturierende Agarosegele wurden 1,2-2 g Agarose in 90 ml Wasser einmal autoklaviert und nach Abkühlen der Lösung auf ca. 50 °C mit 1,8 ml Formaldehyd (37 %, v/v), 10 ml 10x Laufpuffer und 1 µl Ethidiumbromid (0,5 mg/ml) vermischt und in eine horizontale Gelkammer gegossen. Dadurch konnte das Gel ohne Färbung im Ethidiumbromidbad analysiert, und so Kontaminationen mit RNasen vermieden werden. RNA-Proben mussten vor dem Auftragen mit 0,2 Vol 5x RNA-Probenauftragspuffer gemischt und für 3 Min bei 65 °C inkubiert werden, so dass vorliegende Sekundärstrukturen gelöst wurden. Das Gel äquilibrierte für 30 Min in 1x Laufpuffer bei einer konstanten Spannung von 100 V. Die Elektrophorese selber fand anschließend bei 100-120 V für 4-6 Stunden statt. Folgende Lösungen wurden verwendet und die entsprechenden Zutaten mit bidestilliertem Wasser gemischt und dadurch auf ihr Endvolumen verdünnt.

| 200 mM |
|--------|
| 50 mM  |
| 5 mM   |
|        |

Der pH wurde auf 7 eingestellt. Der Puffer zeigte nach dem Autoklavieren eine gelbe Farbe.

| 5x RNA-Probenauftragspuffer (1 | <u>0 ml)</u> | <u>1x Laufpuffer (11)</u> |        |
|--------------------------------|--------------|---------------------------|--------|
| Bromphenolblau (gesättigt)     | 16 µl        | 10x Laufpuffer            | 100 ml |
| EDTA (500 mM, pH 8, w/v)       | 80 µl        | Formaldehyd (37 %)        | 20 ml  |
| Glyzerin (100 %)               | 2000 µl      |                           |        |
| Formaldehyd (37 %, v/v)        | 720 µl       |                           |        |
| Formamid                       | 3084 µl      |                           |        |
| 10x Laufpuffer                 | 4000 µl      |                           |        |

#### 2.4.3 Denaturierende Polyacrylamidgel-Elektrophorese

Eine bessere Auftrennung von Nukleinsäuren ist mit der Gelmatrix Acrylamid möglich. In der vorliegenden Arbeit wurde RNA unter denaturierenden Bedingungen (Harnstoff) mit Acrylamid/Bisacrylamid in einer vertikalen Gelkammer (Protean II xi, BioRAD, München) getrennt. Die Konzentration von Acrylamid/Bisacrylamid betrug 6-8 %, und definiert dadurch eine geeignete Porengröße für eine gute Auftrennung kleiner RNAs (28). Denaturierende Bedingungen fanden durch das Wasserstoffbrücken brechende Molekül Harnstoff statt. Ein 6

%iges denaturierendes Polyacrylamidgel beinhaltete folgende Komponenten:

| 6 % PAA-Gel (denaturierend) |        |               |
|-----------------------------|--------|---------------|
| 5x TBE                      | 10 ml  | (siehe 2.4.1) |
| Acrylamid/Bisacrylamid 40%  | 7,5 ml |               |
| Harnstoff                   | 21 g   | (7 M)         |

Die Komponenten wurden erwärmt (60 °C), um eine bessere Auflösung des Harnstoffs zu erreichen und auf 50 ml mit  $H_2O_{bidest}$  aufgefüllt. Der Sauerstoff wurde durch Entgasen für 15 Min mit Hilfe einer Wasserstrahlpumpe und einer Saugflasche entfernt. Dadurch sollten während des Befüllens der vertikalen Kammer keine Luftblasen gebildet werden. Die Polymerisierung des Acrylamids/Bisacrylamids wurde durch Zugabe folgender Substanzen und Mischen aller Bestandteile gestartet.

| Ammoniumpersulfat APS (10 %, w/v) | 300 µl |
|-----------------------------------|--------|
| TEMED                             | 30 µl  |

Die Polymerisierung des Gels fand in einer 16 x 20 x 0,2 cm vertikalen Gelkammer für 1 Stunde statt. Ein 8 %iges Acrylamidgel wurde mit 10 ml Acrylamid/Bisacrylamid und dementsprechend weniger Wasser hergestellt. Das polymerisierte Gel wurde bei einer konstanten Spannung von 250 V in 1x TBE-Puffer für 1 Stunde äquilibriert. Die RNA-Proben (10-20  $\mu$ g) mussten mit 1/5 Vol 5x RNA-Ladepuffer versetzt und vor dem Beladen in die Taschen für 5 Min bei 65 °C inkubiert werden. Der Gellauf dauerte 3-4 Stunden bei 250 V.

5x RNA-Ladepuffer (10 ml)Formamid9,8 mlBromphenolblau5 μlXylencyanol5 μlEDTA (0,5 M, w/v)200 μl

Nach der Auftrennung wurde die RNA ohne Detektion auf eine Nylonmembran übertragen.

#### 2.4.4 Diskontinuierliche SDS-Polyacrylamidgel-Elektrophorese

Durch die diskontinuierliche SDS-Polyacrylamidgel-Elektrophorese (SDS-PAGE) können Proteine unter denaturierenden Bedingungen in einem elektrischen Feld aufgetrennt werden. Dabei überdeckt das anionische Detergenz SDS (sodium-dodecyl-sulfate) die Eigenladung der Proteine. Die Wanderung der Proteine im elektrischen Feld zur Anode erfolgt in Abhängigkeit von der Molekülgröße der Proteine und der Porengröße der Acrylamid/Bisacrylamid-Gelmatrix. Ermöglicht wurde die Auftrennung der Proteine durch das Tris-HCl/Tris-Glycin-Puffersystem nach Laemmli (66). Im Gegensatz zur denaturierenden Polyacrylamidgel-Elektrophorese setzten sich bei der diskontinuierlichen PAGE die Gele aus einem unteren Trenngel und einem oberen Sammelgel zusammen. Bei der Herstellung der Gele wurde das Trenngel bis kurz Unterhalb der Kammzähne in eine vertikale Biometra-Minigelapparatur (Biometra<sup>®</sup> biomedizinische Analytik, Göttingen) für Gele der Größe 11 x 7 x 0,1 cm gegossen und mit Wasser überschichtet. Durch das Wasser bildete sich eine gerade Oberkante aus. Nach der Polymerisierung von ca. 1 Stunde wurde das Wasser entfernt und das Sammelgel auf das Trenngel gegossen und ebenfalls für 1 Stunde polymerisiert. Zu Protein-Proben wurde 1/4 Vol 4x SDS-Probenauftragspuffer gegeben und diese Lösung bei 95 °C für 5 Min inkubiert und anschließend auf Eis abgekühlt. Die Taschen des Geles wurden mit SDS-Elektrodenpuffer gespült. Danach erfolgte die Beladung der Taschen mit den Proben mit Hilfe einer Hamiltonmikroliterspritze (Hamilton GmbH, Darmstadt). Der Gellauf dauert ca. 1 Stunde bei einer konstanten Stromstärke von 25 mA. Folgende Lösungen wurden für die diskontinuierliche SDS-PAGE benötigt.

| 4x SDS-Probenauftragspuffe | er (50 m | <u>1)</u> |     | 10x-SDS-Elektroden | puffer ( | <u>1 1)</u> |       |
|----------------------------|----------|-----------|-----|--------------------|----------|-------------|-------|
| 1,25 M Tris-HCl (pH 6,8)   |          | 10        | ml  | Glycin             |          | 2           | М     |
| β-Mercaptoethanol          |          | 10        | ml  | Tris-Base          |          | 0,25        | М     |
| Glyzerin                   |          | 20        | ml  | SDS                |          | 1%          | (w/v) |
| SDS                        |          | 2         | g   | H <sub>2</sub> O   | ad       | 1000        | ) ml  |
| Bromphenolblau             |          | 0,02      | 2 g |                    |          |             |       |
| H <sub>2</sub> O           | ad       | 50        | ml  |                    |          |             |       |

In dieser Arbeit kamen 12 %ige Trenngele und 4 %ige Sammelgele bezogen auf ihre Acrylamid/Bisacrylamidkonzentration zum Einsatz (Tab. 6).

| Bestandteile               |         | Trenngel [~30 ml]<br>12 % | Sammelgel [~20 ml]<br>4 % |
|----------------------------|---------|---------------------------|---------------------------|
| Acrylamid/Bisacrylamid (40 | )%)[ml] | 9                         | 2                         |
| 1,5 M Tris-HCl (pH 8,8)    | [ml]    | 7,5                       | -                         |
| 0,5 M Tris-HCl (pH 6,8)    | [ml]    | -                         | 5                         |
| SDS (10 %, w/v)            | [ml]    | 0,3                       | 0,2                       |
| Glyzerin (50 %, v/v)       | [ml]    | 13                        | -                         |
| H <sub>2</sub> O           | [ml]    | -                         | 12,7                      |
| TEMED                      | [µl]    | 15                        | 20                        |
| APS (10%, w/v)             | [ml]    | 0,15                      | 0,1                       |

Tab. 6: Zusammensetzung der verwendeten Gellösung für die SDS-PAGE

Die Detektion nach der Auftrennung geschah durch Färbung des Geles über Nacht mit kolloidalem Coomassie (Lösung D) und Entfärbung für 1 bis 2 Stunden mit Wasser. Die Färbelösung D bestand aus folgender Zusammensetzung:

| <u>Lösung A</u>     |         | <u>Lösung B</u>                            |
|---------------------|---------|--------------------------------------------|
| Ortho-Phosphorsäure | 18,8 ml | Sigma Coomassie Brilliant Blue G250 5 $\%$ |
| Ammoniumsulfat      | 80 g    |                                            |
| H <sub>2</sub> O    | 765 ml  |                                            |
|                     |         |                                            |
| Lösung C            |         | Lösung D                                   |

| Losung C                          | Losung D                                     |
|-----------------------------------|----------------------------------------------|
| 16 ml Lösung B zu 800 ml Lösung A | 800 ml Lösung C + 300 ml Ethanol (98 %, v/v) |

#### 2.4.5 Größenbestimmung von Nukleinsäuren und Proteinen

Ein Größenvergleich von analysierten Nukleinsäuren bzw. die Bestimmung der molekularen Masse von Proteinen konnte an Hand von verschiedenen Größenstandards gezogen werden. Die erwarteten Nukleinsäurefragmente bzw. Proteine der einzelnen Größenstandards nach Auftrennung mit Agarose bzw. SDS-Acrylamid sind in Abbildung 7 zu sehen.


Abb. 7: Visuelle DNA-, RNA- bzw. Protein-Banden verwendeter Größenstandards. A: pGem Marker (Promega, Mannheim) nach Auftrennung in 2 % Agarose; B:  $\lambda$ DNA verdaut mit *Pst*I nach Auftrennung in 1,5 % Agarose. (Zu sehen sind 20 der 29 entstehenden  $\lambda$ DNA-Fragmente). C: ssRNA-ladder nach Auftrennung in 2 % denaturierender Agarose (New England Biolabs, Frankfurt a. Main). D: PAGE-Ruler Prestained Protein-ladder nach Auftrennung in 12 % igem SDS-Acrylamid (Fermentas, St.-Leon Roth)

## 2.5 Transfer von Zellen, Nukleinsäuren und Proteinen auf Membranen

Die Übertragung von Zellen und Nukleinsäuren fand auf eine Nylonmembran (Hybond-N+, GE Healthcare Europe GmbH, Freiburg) statt. Der Transfer von Proteinen dagegen erfolgte nach deren Größenauftrennung auf eine Nitrocellulosemembran (Serva Electrophoresis, Heidelberg). Anschließend konnten die immobilisierten Zellen, Nukleinsäuren oder Proteine mit Hilfe radioaktiv- oder Digoxigenin-markierter Sonden detektiert werden. Verschiedene Transfermethoden kamen in dieser Arbeit zum Einsatz. RNA aus Agarose wurde mittels Kapillarblot-, aus Acrylamid mittels Elektroblotverfahren, Plasmid-DNA durch Vakuumblot, Zellen durch Abklatsch- und Proteine aus SDS-Polyacrylamid ebenfalls durch Elektroblot, auf die geeignete Membran transferiert.

### 2.5.1 RNA-Kapillarblot

Der Transfer von RNA und deren Detektion auf einer Membran wird als Northern-Blot bezeichnet. Nach der Größenauftrennung von RNA durch die denaturierende Agarosegel-Elektrophorese (siehe 2.4.2) wurde die RNA mittels Kapillarblotting auf eine Nylonmembran übertragen. Das Prinzip hierbei beruht auf der Strömung der RNA mittels Kapillarkräften aus der Agarose auf die Membran oberhalb des Agarosegels. Aufgrund der negativen Ladung wird die RNA an die positiv-geladene Nylonmembran gebunden. Die Kapillarkräfte wurden durch Saugwirkung ausgehend von einem auf der Membran liegenden Papierstapel erzeugt. Der Aufbau der einzelnen Komponenten für das Kapillarbotting ist in Abbildung 8 zu sehen.



Abb. 8: Schematischer Aufbau der Kapillarblot-Apparatur

Der Aufbau der Kapillarblot-Apparatur (von unten nach oben):

- 1. Pufferreservoir mit 500 ml 10x SSC
- 2. 1 Lage Whatmanpapier dessen Enden in ein Pufferreservoir getaucht sind
- 3. 3 Lagen getränktes (10x SSC) Whatmanpapier (GB004)
- 4. Agarosegel mit der Unterseite nach oben
- 5. Getränkte Nylonmembran (10x SSC)
- 6. 3 Lagen getränktes (10x SSC) Whatmanpapier (GB004)
- 7. Papierstapel (8-10 cm hoch)
- 8. Gewicht (ca. 500 g)

Der Transfer verlief mit 10x SSC-Puffer für 16-20 Stunden bei Raumtemperatur. Das Pufferreservoir wurde mit 400-500 ml 10x SSC-Puffer befüllt. Nach dem Transfer wurde die Membran für 1 Stunde bei 30 °C getrocknet und die RNA mit einem UV-Crosslinker (Ge-Healthcare Europe GmbH, Freiburg) bei 254 nm für 90 Sek bei 120000 µJ/cm<sup>2</sup> kovalent mit der Membran fixiert. Die Vollständigkeit des RNA-Transfers konnte mit Hilfe eines UV-Transilluminators und dem Agarosegel überprüft werden. Nach einer vollständigen Übertragung sollten die rRNA-Banden (siehe Abb. 7, 2.3.2.3) im Gel nicht mehr zu sehen sein.

| 10x SSC-Puffer | (11) |  |
|----------------|------|--|
|                |      |  |

| Natriumchlorid (NaCl)                               |                      | 87,7 | g 3 M                   |
|-----------------------------------------------------|----------------------|------|-------------------------|
| Tri-Natriumcitrat-dihydrat (Na <sub>3</sub> -Citrat | * 2H <sub>2</sub> O) | 44,1 | g 0,3 M                 |
| H <sub>2</sub> O                                    | ad                   | 11   | einstellen von pH auf 7 |

### 2.5.2 Elektroblot

Nach der Auftrennung von RNA durch Polyacrylamid (siehe 2.4.3), fand der Transfer der RNA auf die Nylonmembran durch Elektroblotting nach dem Semi-Dry-Verfahren statt. Hierbei kam der Blue Flash Semi-Dry-Blotter zum Einsatz (Serva Electrophoresis, Heidelberg). Die Bedingungen für den Transfer waren eine konstante Stromstärke von 200 mA und 1 Stunde Transferzeit. Das Prinzip des Transfers ist in Abbildung 9 dargestellt. Zu beachten ist, dass im Gegensatz zum Kapillarblot der Transfer von oben nach unten verlief und als Puffer 1x TBE anstelle von 10x SSC verwendet wurde. Die Membran und die Whatmanpapiere wurden vor dem Transfer mit 1x TBE-Puffer (siehe 2.4.1) befeuchtet, um während des Transfers einen konstanten Stromfluss zu gewährleisten. Die Fixierung der RNA fand erneut durch UV-Crosslinking (siehe 2.5.1) statt.



Abb. 9: Aufbau eines Elektroblots

### 2.5.3 Vakuum-Dot-Blot

Der Transfer von Plasmid-DNA auf Nylonmembranen wurde durch Vakuum nach dem Dot-Blot-Verfahren gewährleistet. In diesem Verfahren wurde die Nylonmembran in eine Absaugvorrichtung einer Vakuumpumpe gelegt. Zusätzlich wurde auf die Membran eine Platte mit mehreren Öffnungen (Dots) gespannt (Minifold I Dot-Blotter, Schleicher und Schuell, Dassel). Die Membran wurde in 10x SSC (siehe 2.5.1) äquilibriert und die Proben in 5x SSC als DNA-Aliquots (50-200 ng DNA in 100-200 µl 5x SSC) gelöst, bei 95 °C denaturiert und in die Dots aufgetragen. Das Absaugen, je nach Volumen der Aliquots, dauerte zwischen 15 und 30 Min. In weiteren 30 Min wurde die Membran getrocknet und die DNA endgültig durch UV-Crosslinking (siehe 2.5.1) fixiert.

### 2.5.4 Koloniehybridisierung (Abklatsch-Blot)

Die Analyse von Bakterienzellen durch Koloniehybridisierung war mit einem Abklatsch-Blot-Verfahren möglich. Vor dem Abklatsch kühlten über Nacht bei 30 bzw. 37 °C bebrütete Platten, auf denen Einzelkolonien erkennbar waren, für 4 Stunden bei 4 °C ab. Eine in der Größe der Platten geschnittene Nylonmembran wurde dreimal asymmetrisch eingestochen (Markierung) und sanft auf die Kolonien gedrückt. Wichtig war, dass sobald die Membran die Platte berührte, diese nicht mehr zu verschieben war, um ein Verwischen der Kolonien zu verhindern. Nach einer Minute konnte die Membran abgezogen werden und die Platten zur Regeneration der Kolonien erneut bei 30 oder 37 °C bebrütet werden. Die Denaturierung der DNA fand auf der Membran statt. Dafür wurde diese für 15 Min in Denaturierungslösung befeuchtet. Hierbei musste darauf geachtet werden, die Kolonien nicht herunterzuspülen. Daran schloss sich eine 15-Minütige Neutralisierung in geeigneter Lösung an. Um die Lösungen zu entfernen wurde die Membran für 15 Min in 2x SSC (siehe 2.5.1) befeuchtet und die Nukleinsäuren durch UV-Crosslinking (siehe 2.5.1) fixiert.

| Denaturierung | <u>slösung</u> | <u>Neutralisierur</u> | ngslösung |
|---------------|----------------|-----------------------|-----------|
| NaOH          | 0,5 M          | NaCl                  | 1,5 M     |
| NaCl          | 1,5 M          | Tris                  | 1 M       |
| SDS           | 0,1 %          | pH = 7                |           |

## 2.6 Markierung von DNA-Sonden

Nachdem Nukleinsäuren auf Membranen übertragen wurden, schloss sich eine Detektion mit spezifischen Sonden an. Die Markierung der Sonden fand durch radioaktives  $[\gamma^{32}-P]$ -ATP bzw.  $[\alpha^{32}-P]$ -dCTP (jeweils 10 µCi/µl) oder Digoxygenin (DIG-dUTPs) statt. Der Einbau der entsprechenden Markierung erfolgte entweder spezifisch am 5'-Ende von Oligodesoxyribonukleotiden durch die T4-Polynukleotidkinase (Fermentas, St.-Leon Roth), zufällig innerhalb von PCR-Produkten durch Random-Priming mit Hilfe des Klenow-

Fragments der DNA-Polymerase I (Invitrogen, Karlsruhe) oder durch den Einbau von Digoxygenin-markierten dUTPs (Roche Diagnostics GmbH, Mannheim) während der PCR-Synthese von DNA-Sonden. Bei einer radioaktiven Markierung konnte nach der Hybridisierung der Sonde und einzelner Waschschritte sofort mit Röntgenfilme detektiert werden. Bei DIG-markierten Sonden fand die Detektion erst nach einer Inkubation mit einem Anti-DIG-Antikörper statt.

#### 2.6.1 Radioaktive Markierung und Detektion von Nukleinsäuren

Bei dem Einsatz von Oligodesoxyribonukleotid-Sonden wurden 50 µM der Sonde mit 10 µCi  $[\gamma^{32}-P]$ -ATP nach dem Protokoll der Forwardreaktion der T4-Polynukleotidkinase (Fermentas, St.-Leon-Rot) für 1 Stunde bei 37 °C markiert. Nicht eingebautes radioaktives Phosphat wurde über NAP5-Säulen (GE Healthcare GmbH Europe, Freiburg) entfernt. Bei einem Einsatz von PCR-Sonden wurden 50-100 ng DNA nach dem Protokoll des Random Primers DNA Labeling Systems (Invitrogen, Karlsruhe) mit 50 µCi [a<sup>32</sup>-P]-dCTP markiert. Die Reinigung der Sonden fand erneut durch NAP5-Säulen statt. Geblottete Nukleinsäuren mussten vor der Hybridisierung mit den markierten Sonden prähybridisiert werden, um unspezifische Reaktionen der Sonden mit der Membran zu verringern. Bei Oligodesoxynukleotid-Sonden fand die Prähybridisierung der Membran bei 37 °C und bei PCR-Sonden dagegen bei 50 °C für 1-3 Stunden in einem Rotationsofen statt. Die Hybridisierung erfolgte im Anschluss bei denselben Temperaturen über Nacht. Vor der Detektion wurden die Membranen einmal in 2x SSC (siehe 2.5.1) für 5 Min bei RT, einmal für 10 Min bei RT in Waschpuffer 1 und zweimal für 15 Min bei 50 °C in Waschpuffer 2 stringent gewaschen. Die Menge der eingesetzten Lösungen und Sonde richtete sich nach der Größe der Membran (1 ml Hybridisierungslösung/cm<sup>2</sup> Membran und 0,5-2 µCi DNA-Sonde/ml Hybridisierungspuffer). Die Detektion fand durch unterschiedliche lange Inkubation der Membran auf einem Röntgenfilm (Cronex 5 100 NIF, Agfa-Gevaert AG, Köln) statt. Bei einer erfolgreichen Hybridisierung der Sonde, wurden die Stellen des Films an denen die Sonde gebunden hatte geschwärzt.

| Prähybridisierungspuffer (=Hybridisier | ungspuffer) 50 ml |
|----------------------------------------|-------------------|
| 5x Hybridisierungspuffer               | 10 ml             |
| 50x Denhardts-Lösung                   | 10 ml             |
| SDS (10 %, w/v)                        | 5 ml              |

H2O25 mlMischen, 15 Min bei 65 °C inkubieren, und Zugabe von:NaCl2,9 gGekochte Lachsspermien-DNA (10 mg/ml, w/v)0,5 ml

| 50x Denhardts-Lösu | ng | 5x Hybridisierungspuffer                                              |        |
|--------------------|----|-----------------------------------------------------------------------|--------|
| BSA                | 1% | Tris-Base                                                             | 250 mM |
| Polyvinylpyrolidin | 1% | Natrium-Pyrophosphat (Na <sub>4</sub> P <sub>2</sub> O <sub>7</sub> ) | 0,5 %  |
| Ficoll 400         | 1% | pH einstellen auf 7,5                                                 |        |
| Waschpuffer 1      |    | Waschpuffer 2                                                         |        |
| 2x SSC             |    | 0,1x SSC                                                              |        |
| SDS 0,1 %          |    | SDS 0,1 %                                                             |        |
|                    |    |                                                                       |        |

2.6.2 Nicht-radioaktive Markierung und Detektion von Nukleinsäuren

Bei der Herstellung nicht radioaktiv-markierter DNA-Sonden wurde das "DIG Nucleic Acid Labeling and Detection System" (Roche Diagnostics GmbH, Mannheim) verwendet. Das Prinzip dieser Markierung beruht auf dem Einbau von Digoxigenin-11-dUTPs in DNA-Sonden durch die Taq-DNA-Polymerase während der PCR (siehe 2.8). Zu einem 50 µl Standard-PCR-Ansatz wurden hierfür 0,5 µl Digoxigenin-11-dUTPs zugefügt um das Amplifikat zu markieren. Der erfolgreiche Einbau des Digoxigenins (DIG) konnte durch ein nicht-denaturierendes Agarosegel (2.4.1) kontrolliert werden, da die DNA mit DIG langsamer im Gel wanderte als ohne. Vor der Zugabe der Sonde wurde die Membran nach dem Blot für 4-5 Stunden bei 50 °C in Prähybridisierungspuffer (0,2 ml Puffer/cm<sup>2</sup> Membran) inkubiert. Danach musste die Sonde für 5 Min bei 95 °C denaturiert, sowie auf Eis abgekühlt werden und konnte direkt in den Prähybridisierungspuffer zu der Membran gegeben werden. Die Hybridisierung fand bei 50 °C für 16-20 Stunden mit 2 µl Sonden-PCR-Ansatz pro ml Puffer statt. Nicht-gebundene Sonden wurden mit denselben stringenten Waschschritten wie bei 2.6.1 entfernt. Die Detektion der Nukleinsäuren bzw. der daran gebundenen Sonden wurde durch eine Reaktion einer Alkalischen Phosphatase mit dem Chemiluminiszenz-Substrat CSPD<sup>®</sup> vermittelt. Die Dephosphorylierung von CSPD<sup>®</sup> führt zu der Bildung einer instabilen Zwischenstufe, die unter Lichtemission bei 477 nm zerfällt. Bis zu diesem Schritt musste die Membran noch in verschiedenen Reaktionen bei RT behandelt werden. Als erstes wurden unspezifische Bindestellen auf der Membran, an denen die Alkalische Phosphatase binden könnte, für 30 Min mit 50 ml Blockierungslösung abgesättigt. Im Anschluss fand eine 30-Minütige Inkubation mit 2 μl Anti-DIG-Fab-Fragment (750 U/ml, Roche Diagnostics GmbH, Mannheim), welches an einer Alkalischen Phosphatase gekoppelt war und in 10 ml Blockierungslösung gelöst wurde, statt. Es folgten zwei Waschritte mit je 50 ml Waschpuffer 3 und die Äquilibrierung der Membran mit 10 ml Detektionspuffer. Für die Detektion wurden 1 ml Detektionspuffer mit 10 μl CSPD<sup>®</sup> gemischt und auf die Membran gegeben. Nach einer Inkubation von 10 Min bei 30 °C konnte die Membran auf einem Röntgenfilm (Cronex 5 100 NIF, Agfa-Gevaert AG, Köln) exponiert werden. Die Schwärzung des Films wurde nach einer Stunde kontrolliert. Nach Bedarf konnte ein weiterer Film für eine längere Exposition auf die Membran gelegt werden, da das Lichtsignal mindestens 24 Stunden stabil war.

| Waschpuffer 3    | 3 (500 ml)   |         | Blockierungslösung (50 ml) |       |
|------------------|--------------|---------|----------------------------|-------|
| Maleinsäure      | (0,1 M)      | 5,8 g   | 10x Blockierungsreagenz    | 5 ml  |
| NaCl             | (0,15 M)     | 4,38 g  | Maleinsäurepuffer          | 45 ml |
| Tween 20         | (0,3 %, v/v) | 1,5 ml  |                            |       |
| H <sub>2</sub> O | ad           | 100 ml  |                            |       |
| Einstellen des   | pH-Werts:    | auf 7,5 |                            |       |

| Maleinsäurep     | uffer (500 ml) | <u>)</u> | Detektionsp | <u>uffer (100 ml)</u> |         |
|------------------|----------------|----------|-------------|-----------------------|---------|
| Maleinsäure      | (0,1 M)        | 5,8 g    | Tris-Base   | (0,1 M)               | 1,21 g  |
| NaCl             | (0,15 M)       | 4,38 g   | NaCl        | (0,1 M)               | 0,58 g  |
| H <sub>2</sub> O | ad             | 500 ml   |             | ad                    | 100 m   |
| Einstellen des   | s pH-Werts:    | auf 7,5  |             |                       | auf 9,5 |

Blockierungsreagenz 5 g (10 %, w/v in Maleinsäurepuffer) Lösen durch ständiges Rühren bei 65 °C

## 2.7 Isolierung von Nukleinsäuren

2.7.1 Minipräparation von Plasmid-DNA aus E. coli durch alkalische Lyse

Die Isolierung von Plasmid-DNA erfolgte nach einem modifizierten Protokoll der alkalischen Lyse (12). Hierfür wurden 2 ml einer *E. coli*-Kultur, die zuvor über Nacht bei 37 °C

gewachsen war, abzentrifugiert (5000 Upm, 5 Min, RT). Der Überstand konnte verworfen werden und das Pellet musste mit 200  $\mu$ l eiskalter Lösung 1 resuspendiert werden. Es folgte die Zugabe von 400  $\mu$ l alkalischer Lösung 2 und eine vorsichtige Mischung von Hand. Das Gemisch wurde mit 300  $\mu$ l eiskalter Lösung 3 durch vorsichtiges Mischen neutralisiert. Feste Bestandteile wurden durch Zentrifugation (15000 Upm, 15 Min, 4 °C) sedimentiert. Der klare Überstand dagegen enthielt lösliche Komponenten (u.a. die Plasmid-DNA) und wurde in ein neues Reaktionsgefäß überführt und weiter bearbeitet. Es schloss sich eine Isopropanolfällung (siehe 2.3.2.2) an. Das getrocknete Pellet daraus wurde in 200  $\mu$ l TE-Puffer gelöst und mit RNase A (20  $\mu$ g/ml, DNase-frei) für 20 Min bei 37 °C inkubiert. Im Anschluss folgte eine Phenol-Chloroform-Extraktion (siehe 2.3.2.1), bei der die RNA von Proteinen gereinigt wurde.

| <u>Lösung 1</u>   |                 | <u>Lösung 2</u>      |             |
|-------------------|-----------------|----------------------|-------------|
| Glukose           | 50 mM           | SDS (10 %)           | 1 Vol       |
| Tris-Base         | 25 mM           | NaOH (1 M, v/v)      | 1 Vol       |
| EDTA              | 10 mM           | $H_2O$               | 8 Vol       |
| Einstellen des pH | H-Werts auf 8   | Lösung 2 stets frisc | h ansetzen  |
| <u>Lösung 3</u>   |                 | TE-Puffer            |             |
| Kalium-Acetat     | 2,55 M          | Tris-Base            | 10 mM       |
| Einstellen des pH | H-Werts auf 4,8 | EDTA                 | 1 mM        |
| (pH mit Eisessig  | einstellen )    | Einstellen des pH-V  | Verts auf 8 |

## 2.7.2 Isolierung von Gesamt-RNA aus Gram-negativen Bakterien

Die Isolierung der Gesamt-RNA aus *A. baylyi* wurde nach einem modifizierten Protokoll nach Oelmüller *et al.* 1990 (81) durchgeführt. Je nach Wachstumsphase startete die Isolierung mit 8-15 ml Zellsuspension. Die Zellen wurden schnell für 3 Min bei 4 °C und 13000 Upm in 15 ml Falcon-Reaktionsgefäßen sedimentiert. Im Falle der späteren Isolierung musste der Überstand verworfen und die Zellen sofort in flüssigem Stickstoff gefroren und bei -70 °C gelagert werden. Für die Isolierung konnten, nach Verwerfen des Überstands, die sedimentierten Zellen in 3 ml AE-Puffer gelöst und in ein Glasröhrchen (stabil gegenüber Phenol) überführt werden. Zu den gelösten Zellen wurden 5 ml AE-Phenol und 150 µl SDS (10 %, w/v) zugegeben und die Phasen kräftig vermischt. Anschließend erfolgte eine Phasentrennung bei 2000 Upm und 4 °C für 10 Min. Die obere Phase wurde in ein weiteres Glasröhrchen überführt und erneut 5 ml AE-Phenol zugefügt und gemischt. Zusätzlich erfolgte die Zugabe von 300  $\mu$ l Natrium-Acetat (3 M, pH 5,2) und eine Phasentrennung und Abnahme der oberen Phase. Nach einer weiteren Extraktion mit AE-Phenol (dieses Mal ohne Natrium-Acetat) begann die Fällung der isolierten Nukleinsäuren. Dafür wurde die Oberphase in ein neues Reaktionsgefäß (Maximalvolumen 10 ml) transferiert und nach Zugabe von 2,5 Vol 96 % Ethanol (v/v) für 30 Min bei -20 °C behandelt. Die nun gefällten Nukleinsäuren mussten im Anschluss für 20 Min bei 4 °C und 15000 Upm sedimentiert und getrocknet werden (30 Min, 37 °C). Die getrockneten Nukleinsäuren wurden in 300  $\mu$ l DNase-Puffer gelöst und mit 50 U RNase-freier DNase I (Roche Diagnostics GmbH, Mannheim) für 1 Stunde behandelt. Danach erfolgte die Inaktivierung der DNase I durch eine weitere AE-Phenol Extraktion (+ 400  $\mu$ l AE-Phenol, + 27  $\mu$ l Natrium-Acetat 3 M pH 5,2, Zentrifugation 10 Min, 4°C bei 13000 Upm). Eine finale Ethanolfällung der RNA aus der oberen Phase der AE-Phenol-Extraktion bildete den Abschluss der Isolierung. Die RNA wurde getrocknet, in 30-50  $\mu$ l H<sub>2</sub>O gelöst und 1-2  $\mu$ l in Qualitäts- und Quantitätsbestimmungen eingesetzt.

| AE-Puffer (500 ml)       |        |                | DNase-Puffer     | : (100 m       | <u>nl)</u> |        |            |
|--------------------------|--------|----------------|------------------|----------------|------------|--------|------------|
| Natrium-Acetat           |        | 820 mg (20 mM) | Tris-Base        |                | 485 mg (   | (40 mN | <b>A</b> ) |
| EDTA * 2 $H_2O$          |        | 186 mg (1 mM)  | $MgCl_2 * 6 H_2$ | 0              | 120 mg     | (6 mN  | <b>A</b> ) |
| H <sub>2</sub> O         | ad     | 500 ml         | $H_2O$           | ad             | 100 ml     |        |            |
| Einstellen des pH        |        | auf 5,5        |                  |                | auf 7,5    |        |            |
|                          |        |                |                  |                |            |        |            |
| 3M Natrium-Acetat-       | Lösung | (100 ml)       | AE-Phenol (5     | <u>500 ml)</u> |            |        |            |
| Natrium-Acetat           |        | 24,6 g (3 M)   | Aqua Roti Ph     | enol A         | 980.1      |        |            |
| H <sub>2</sub> O         | ad     | 100 ml         | (Roth, Karlsr    | uhe)           |            | 250    | ml         |
| Einstellen des pH        |        | auf 5,2        | auf pH 5,5 ei    | nstellen       | (AE-Puff   | er)    |            |
|                          |        |                | + Chloroform     | l              |            | 240    | ml         |
| <u>10 % SDS (100 ml)</u> |        |                | + Isoamylalk     | ohol           |            | 10     | ml         |
|                          |        |                |                  |                |            |        |            |

2.7.3 Isolierung von DNA-Fragmenten mit "NucleoSpin Extract Kit"

10 g

100 ml

ad

Natriumdodecylsulfat

 $H_2O$ 

Die Isolierung von DNA-Fragmenten nach deren Größenauftrennung in Agarosegelen (siehe 2.4.1) fand mit dem "NucleoSpin Extract Kit" nach den Angaben des Herstellers (Machery-

+ SDS

+ Hydroxychinolin

0,5 g

0,5 g

Nagel GmbH & Co. Kg, Düren) statt. Der hauptsächliche Einsatz hierfür war die Isolierung und Aufreinigung von PCR-Produkten und geschnittenen Plasmiden

### 2.7.4 Isolierung genomischer DNA durch Zelllyse

Bei der Herstellung von Zelllysaten, wurden 5 ml einer gewachsenen Übernachtkultur, abzentrifugiert (5 Min, 5000 Upm) und in 200 µl sterilem Wasser gelöst. Diese Suspension wurde für 10 Min bei 95 °C gekocht und erneut für 1 Min bei 13000 Upm zentrifugiert. Der Übersand konnte verdünnt (1:5) als PCR-Matrize eingesetzt werden.

# 2.8 Polymerase-Kettenreaktion (PCR - polymerase chain reaction)

Für die in vitro Amplifikation von DNA wird standardmäßig die PCR-Methode verwendet. In dieser Arbeit kamen hierfür die thermostabilen DNA-Polymerasen Pfu und Taq zum Einsatz. Die Pfu-DNA-Polymerase aus Pyrococcus furiosus katalysiert in der Gegenwart von Magnesium den Einbau von Desoxyribonukleotiden in 5'-3'-Richtung und besitzt zudem die 3'-5'-Exonukleaseaktivität, wodurch falsche eingebaute Nukleotide entfernt werden können. Der Verwendungszweck dieser Polymerase bestand in PCR-Experimenten mit anschließender Klonierung und Sequenzierung. Die Taq-DNA-Polymerase aus Thermus aquaticus besitzt ebenfalls in Gegenwart von Magnesium eine 5'-3'-Polymeraseaktivität jedoch keine 3'-5'-Exonukleaseaktivität und zeigt dadurch eine erhöhte Fehlerrate beim Einbau von Nukleotiden. Deswegen wurde dieses Enzym nur in Kontroll-PCR-Analysen verwendet. Sowohl die Pfu- als auch die Taq-DNA-Polymerase wurden als rekombinante Proteine in Reaktionen mit einem Gesamtvolumen von 50-100 µl eingesetzt. Die DNA-Matrize für die PCR bestand in genomischen Zelllysaten, Plasmid-DNA (10 ng), 1 µl cDNA (aus 1 µg RNA) oder in einzelnen Bakterienkolonien. Die verwendeten Primer für die PCR sind in Tabelle 4 (siehe 2.1.3) aufgelistet. Weitere Primer, die für die Experimente der beiden Publikationen benötigt wurden, sind separat darin zu finden. Ein Standard-PCR-Protokoll beinhaltete die Denaturierung der DNA bei 95 °C für 3 Min. Im Anschluss folgten 30-35 Zyklen mit einer Denaturierung bei 95 °C für 30 Sek, einem variablen Annealingschritt (Schmelztemperatur ist dabei abhängig von der Primersequenz) für 30 Sek und einer Elongation bei 72 °C (Dauer ist abhängig von der Länge des Amplifikats und der verwendeten DNA-Polymerase, bei Pfu 2-3 Min/Kb DNA, bei Taq 1 Min/Kb DNA). Abschließend fand ein Elongationsschritt bei 72 °C für 10 Min statt, worin unvollständige Fragmente vervollständigt wurden. Ein typischer PCR-Ansatz setzte sich aus folgenden Bestandteilen zusammen:

| DNA-Matrize (z.B. Plasmid-DNA)   | 10 ng         |
|----------------------------------|---------------|
| Oligodesoxyribonukleotid 1 und 2 | je 100 pM     |
| 10x PCR Puffer                   | 0,1 Vol       |
| dNTP-Gemisch                     | 200 µM        |
| MgCl <sub>2</sub>                | 1,5 - 2,5 mM  |
| DNA-Polymerase                   | 0,5 - 2 U     |
| H <sub>2</sub> O                 | ad 50 -100 µl |

#### 2.8.1 Reverse Transkriptase PCR (RT-PCR)

In dieser abgewandelten Form der PCR ist die Ausgangsmatrize keine DNA sondern RNA, die vor der PCR mit Hilfe des Enzyms Reverse Transkriptase in cDNA umgeschrieben wird. Ausgehend von 1 µg Gesamt-RNA konnte so mit 2 pmol genspezifischem Primer und der M-MLV Reverse Transcriptase RNase H Minus (Promega, Mannheim), cDNA synthetisiert werden. Dafür wurde 1 µg RNA mit 2 pmol Primer in 14 µl Reaktionsvolumen für 10 Min bei 65 °C inkubiert und auf Eis für 5 Min abgekühlt. Es folgte die Zugabe von 2 µl dNTP-Mix (10 mM), 5 µl 5x Reaktionspuffer (Tris-Base 250 mM, KCl 375 mM, MgCl<sub>2</sub> 15 mM, DTT 50 mM, pH 8,3) und 100 Units M-MLV RT. Das Reaktionsvolumen wurde mit Wasser auf 25 µl erhöht und die cDNA-Synthese für 2 Stunden bei 50-55 °C inkubiert. Im Anschluss fand eine Denaturierung des Enzyms für 15 Min bei 70 °C statt und 1-5 µl aus der cDNA-Synthese-Reaktion konnten als Matrize in eine PCR (siehe 2.8) eingesetzt werden.

#### 2.8.2 Circularized-RNA-RT-PCR (CR-RT-PCR)

Mit dieser Methode konnten sowohl das 5'- als auch das 3'-Ende von RNAs bestimmt werden. Dafür war vor der eigentlichen RT-PCR ein weiterer Reaktionsschritt nötig, in dem das Enzym T4-RNA-Ligase (Fermentas, St.-Leon Roth), RNA-Enden entweder intra- oder intermolekular durch Phosphodiesterbindungen und ATP-Verbrauch verknüpft. Ausgehend von einem genspezifischen (RT-)Primer konnte erneut die cDNA-Synthese mit dem Enzym M-MLV Reverse Transcriptase (siehe 2.8.1) gestartet werden. Die Auswahl zweier Nested-Primer, die in der Nähe des RT-Primers gegenläufig binden, ermöglichte die Amplifikation eines PCR-Produkts, ausgehend von der cDNA. Dadurch, dass die RNA durch Selbstligation zuvor zirkularisiert wurde, befanden sich beide RNA-Enden innerhalb des cDNA-Moleküls und wurden in der PCR ebenfalls amplifiziert. Durch Klonierung und Sequenzierung der PCR-Produkte konnte letztendlich auf das 5'- und 3'-Ende der RNA geschlossen werden. In dieser Arbeit wurde ein bereits beschriebenes Protokoll der CR-RT-PCR nach Forner *et al.* 2007 abgewandelt und angewendet (31). Die Selbstligation wurde ausgehend von 5  $\mu$ g Gesamt-RNA gestartet. Dafür wurde die RNA für 10 Min bei 65 °C denaturiert und die Selbstligation nach Abkühlen der RNA mit 20 U T4-RNA-Ligase, 10 U RNase-Inhibitor (Quiagen, Hilden), 1U RNase-freie DNase I (Roche Diagnostics GmbH, Mannheim), 2,5  $\mu$ l 10x RNA-Ligase-Puffer (HEPES 500 mM, MgCl<sub>2</sub> 100 mM , DTT 100 mM, pH 8,0) für 2 Stunden bei 37 °C in 25  $\mu$ l Reaktionsvolumen durchgeführt. Es folgte eine Phenolisierung und Fällung (siehe 2.3.2.1-2.3.2.2) und eine RT-PCR (2.8.1). In Abbildung 10 ist ein Schema der Reaktionen einer CR-RT-PCR dargestellt.



Abb. 10: Schematischer Ablauf der CR-RT-PCR-Kartierung von 5´ und 3´-RNA-Enden. 1. Die T4-RNA-Ligase verknüpft RNA-Moleküle durch intramolekulare Phosphodiesterbindungen zwischen dem 5´- und 3´-Ende. 2. Ausgehend von einem genspezifischen Primer 1 wird mit dem Enzym Reverse Transkriptase die cDNA synthetisiert. 3. Mit zwei Nested-Primern (A und B), die in der Nähe zu Primer 1, in gegenläufiger Richtung zueinander binden, wird in einer PCR der cDNA-Doppelstrang amplifiziert. Innerhalb dieses PCR Produktes befinden sich das 5´- und 3´-RNA-Ende. 4. Durch Erkennungsstellen zweier verschiedener Restriktionsenzyme auf den beiden Primern A und B wird die DNA kloniert, sequenziert und die RNA-Enden kartiert.

#### 2.8.3 Overlap-Extension-PCR (OE-PCR)

Diese Art der PCR-Methode beinhaltete einen zweistufigen Prozess und wurde in dieser Arbeit für die Deletion von Genen oder Genbereichen verwendet. In der ersten Stufe wurden in zwei voneinander getrennten PCR's mit vier verschiedenen Primern zwei benachbarte DNA-Bereiche so amplifiziert, dass eine innere, zu deletierende Region, ausgespart wurde. Dabei machte man sich die Eigenschaft zu Nutze, dass in jeder der getrennten PCRs ein so genannter Composite-Primer eingesetzt wurde, der einen komplementären Bereich zu dem entsprechenden Amplifikat und einen komplementären Bereich zu dem anderen Composite-Primer besaß. In der zweiten Stufe fand die Amplifikation des vollständigen DNA-Bereichs mit beiden Fragmenten der ersten Stufe als DNA-Matrize statt. Aufgrund der komplementären Sequenzen (der Composite-Primer) konnten beide Fragmente hybridisieren. Mit den Nicht-Composite-Primern der ersten Stufe fand letztendlich die Amplifikation in der zweiten Stufe statt (siehe Abb. 11).



Abb. 11: Reaktion einer Overlap-Extension-PCR zur *in vitro* Deletion von Genen bzw. Genbereichen. Durch einen zweistufigen Prozess werden mit vier Primern zwei DNA-Fragmente amplifiziert, die aufgrund komplementärer Bereiche der Composite-Primer hybridisieren und in einer weiteren PCR mit den Primern 3 und 4 amplifiziert werden können.

## 2.9 Enzymatische Modifizierung von Nukleinsäuren

#### 2.9.1 Restriktionsverdau von DNA

Bei der Klonierung von DNA-Fragmenten in Plasmide wurden in dieser Arbeit Restriktionsenzyme des Typs II verwendet. Diese Endonukleasen erkennen eine 4-8 Basenpaar-lange spezifische Sequenz auf der DNA und erzeugen Fragmente mit 5'-Überhängen, 3'-Überhängen oder glatten Enden. Besaß die Plasmid-DNA nach einem Restriktionsverdau dieselben Enden wie ein verdautes DNA-Fragment, konnten beide Moleküle durch Bildung einer Phosphodiesterbindung in einer Ligationsreaktion (siehe 2.9.2) miteinander verknüpft werden. In Abhängigkeit von der benötigten DNA-Menge wurden analytische oder präparative Verdaus durchgeführt. Dabei kamen ausschließlich Restriktionsenzyme der Firma Fermentas (St.-Leon Roth) und New England Biolabs (Frankfurt a. Main) zum Einsatz. Analytische Verdaus hatten ein geringeres Reaktionsvolumen (bis 20 µl), eine kleinere Enzymmenge (2-5 Units Enzym) und wurden für eine kürzere Dauer inkubiert (1-1,5 Stunden). Präparative Verdaus wurden in größeren Volumina (bis 100 µl) mit deutlich mehr Enzym (bis 20 Units) angesetzt und über Nacht inkubiert (außer bei Enzymen mit Star-Aktivität). In beiden Verdauansätzen musste darauf geachtet werden, den optimalen Puffer (laut Empfehlung des Herstellers), die geeignete Reaktionstemperatur (meistens 37 °C) und die entsprechende DNA- und Enzymmenge (1 Unit Enzym verdaut 1 µg DNA in einer Stunde) zu wählen. Es wurde grundsätzlich vermieden, die Enzymkonzentration höher als 1/10 des Volumens der Reaktion einzusetzen, da Enzyme in 50 % Glyzerin (v/v) gelagert wurden. Ein zu hoher Glyzerinanteil führt zu unspezifischen Schnitten oder hemmt die Reaktion (33). Bei der Verwendung von zwei Enzymen wurde je nach Möglichkeit ein gemeinsames Puffersystem verwendet. Falls dies zu einer starken Herabsetzung der Enzymaktivität führte, wurden die Enzyme nacheinander in einem zweistufigen Verdau mit ihrem optimalen Puffer eingesetzt. Nach jeder Stufe wurde das Enzym denaturiert und die DNA durch Fällung entsalzt (siehe 2.3.2.1-2.3.2.2). Sofern eine Größenabschätzung der geschnittenen DNA-Fragmente möglich war, wurde diese im Anschluss an den Verdau durch Agarosegel-Elektrophorese (siehe 2.4.1) durchgeführt.

#### 2.9.2 Ligation von DNA-Fragmenten mit Plasmid-DNA

Durch das Enzym T4-DNA-Ligase (Fermentas, St.-Leon Roth) wurden kompatible Enden eines geschnittenen DNA-Fragments und Plasmids durch eine Phosphodiesterbindung zwischen dem 5´-Phosphat der Plasmid-DNA mit dem 3´-Phosphat des DNA-Fragments und umgekehrt ligiert. Für die Ligationsansätze wurden Volumina zwischen 10-20 μl gewählt. Das Verhältnis der DNA-Menge des Plasmids zu der DNA-Menge des Insertionsfragments (Insert) betrug 1:2 bzw. 1:5. Bei einfachen Schnitten wurde die Plasmid-DNA am 5´-Ende zusätzlich dephosphoryliert (siehe 2.9.3), um eine Religation des Plasmids zu vermeiden. Bei einem doppelten Schnitt der Plasmid-DNA wurde der Einbau des Inserts durch das ungleichmäßige Verhältnis von Plasmid zu Insert (1:5) erzwungen. Die Ligation fand mit 1/10 Vol 10x T4-DNA-Ligase-Puffer (Tris 400 mM, MgCl<sub>2</sub> 100 mM, DTT 100 mM, ATP 5 mM, pH 7.8) und 1-2 Units T4-DNA-Ligase für eine Stunde bei Raumtemperatur und anschließend für mehrere Stunden bei einem fallenden Temperaturgradienten (20 °C-8 °C) statt. Nach der Inaktivierung der Ligase (10 Min, 65 °C), konnte die ligierte DNA transformiert (siehe 2.11) oder bei 4 °C gelagert werden. Zu beachten war, dass der aufgetaute T4-DNA-Ligase-Puffer nicht mehrfach verwendet wurde, da aufgrund des ATP-Zerfalls beim Auftauen, dieser mit der Zeit inaktiv wird.

#### 2.9.3 Dephosphorylierung von DNA-Enden

Bei einem Schnitt eines Restriktionsenzyms in einem DNA-Molekül bestand aufgrund der beiden kompatiblen Enden des Moleküls das Risiko zur Selbstligation. Der Einsatz der Antarktischen Phosphatase (New England Biolabs, Frankfurt a. Main) verringerte dieses Risiko. Die Antarktische Phosphatase (AP) katalysiert das Entfernen des 5'-Phosphats, wodurch die Wahrscheinlichkeit zur Selbstligation eines DNA-Moleküls verringert wird. Dadurch können nach dem Verdau ein nicht-dephosphoryliertes DNA-Fragment (mit Phosphat am 5'- und am 3'-Ende) und eine dephosphorylierte Plasmid-DNA effizient ligiert werden. Ein µg geschnittene Plasmid-DNA wurde vor der Ligation mit 5 Units AP in 1/10 Vol 10x AP-Puffer (Tris-Propan 50 mM, MgCl<sub>2</sub> 1 mM, ZnCl<sub>2</sub> 0,1 mM, pH 6,0) in einem Reaktionsvolumen von 10 µl für 15 Min (5'-Überhänge oder glatte Enden) oder eine Stunde (3'-Überhänge) bei 37 °C inkubiert. Anschließend konnte die AP für 5 Min bei 65 °C vollständig inaktiviert und das Plasmid ohne Aufreinigung in eine Ligation eingesetzt werden.

### 2.9.4 Polyadenylierung von RNA-Molekülen

Die Voraussetzung zur Herstellung einer cDNA-Bank (siehe 2.10) lag in der Polyadenylierung der RNA. Mit Hilfe des Enzyms Poly(A)-Polymerase (Epicentre Biotechnologies, Madison, USA) und ATP war es möglich an das 3'-Ende von RNA- Molekülen eine Polyadenylierung durchzuführen. Dafür wurden 5  $\mu$ g Gesamt-RNA mit 1,5 U Poly(A)-Polymerase und 1/10 Vol 10x Tailing-Puffer (Tris 0,5 M, NaCl 2,5 M, MgCl<sub>2</sub> 100 mM, pH 8) mit 2,5  $\mu$ l ATP (5 mM) in 50  $\mu$ l für 1,5 Stunden bei 37 °C inkubiert. Anschließend wurde die RNA durch Phenolisierung und Fällung gereinigt (siehe 2.3.2.1-2.3.2.2).

# 2.10 Klonierung einer cDNA-Bank

Für die Klonierung einer cDNA-Bank wurde das "System Creator<sup>TM</sup> SMART<sup>TM</sup> cDNA Library Construction Kit" (Clontech, Saint-Germain-en-Laye, Frankreich) angewandt. Hierbei wurde ausgehend von Poly(A)-RNA (2.9.4) eine ds cDNA synthetisiert, welche sowohl am 5'- (*Sfi*IA) als auch am 3'-Ende (*Sfi*IB) jeweils eine der beiden asymmetrischen Erkennungssequenzen des Restriktionsenzyms *Sfi*I (A: 5'-ATTAC-3' bzw. B: 5'-GAGGC-3') besaß. Dies erlaubte die direktionale Klonierung der ds cDNA in den Vektor pDNR-LIB über *Sfi*I-Verdau und Ligation. Der Vektor wiederum trägt zwei voneinander getrennte multiple Klonierungsstellen (MCS A und B) in denen jeweils die betreffende *Sfi*IA oder B Erkennungssequenz enthalten ist. Beide MCS werden durch ein 291 Bp-langes DNA-Fragment (Stuffer-DNA) getrennt. Der Vektor wurde in den Wirt *E coli* transformiert und durch die Resistenz gegenüber Chloramphenicol etabliert. Durchführung:

1 μg Poly(A)-RNA wurde ausgehend von einem Poly(dT)-Primer durch reverse Transkription in cDNA umgeschrieben. Das hierfür verwendete Enzym Power Script Reverse Transkriptase besitzt u.a. die Eigenschaft als Terminale Transferase am 3'-Ende der cDNA drei Cytosin-Nukleotide anzufügen. Daran kann ein weiterer Primer (mit Guanin-Sequenz am 3'-Ende) binden. Die Reverse Transkriptase synthetisiert die cDNA bis zum 5'-Ende des Guanin-Primers weiter. So entsteht eine cDNA mit komplementären Sequenzen zum Poly(dT)- und Guanin-Primer. Mit den entsprechenden Primern und der *Taq*-DNA-Polymerase konnte die cDNA (je nach Menge) in einer Primer-Extension- oder Polymerase-Ketten-Reaktion nach folgenden Parametern zu einem Doppelstrang aufgefüllt und amplifiziert werden.

| Primer-Extension:  | <u>PCR:</u>         |
|--------------------|---------------------|
| 1. 72 °C, 10 Min   | 1. 95 °C, 5 Min     |
| 2. 95°C, 20 Sek    | 2. 95 °C, 15 Sek    |
| 3. 95 °C, 5 Sek    | 3. 58 °C, 1 Min     |
| 4. 68 °C, 8 Min    | 4. 72 °C, 90 Sek    |
| Schritt 3-4: 3 mal | Schritt 2-4: 26 mal |
|                    | 5. 72 °C, 10 Min    |

Alle Reaktionen wurden nach Anleitung des Kits durchgeführt und die einzelnen Protokolle sind diesem zu entnehmen (<u>http://www.clontech.com/images/pt/PT3000-1.pdf</u>). In Abbildung 12 sind die Vektorkarte von pDNR-LIB sowie ein Schema der Klonierungsstrategie zu sehen.



Abb. 12: Klonierungsstrategie zur Herstellung einer cDNA-Bank mit dem "Creator<sup>TM</sup> SMART<sup>TM</sup> cDNA library kit" und Vektorkarte von pDNR-LIB.

1. Ausgehend von Poly(A)-RNA und einem Poly(dT)-Primer wird die cDNA synthetisiert. 2. Am 3'-Ende der cDNA fügt die Power Script Reverse Transkriptase drei Cytosine an. Daran bindet ein Guanin-Primer und die cDNA-Synthese verläuft weiter mit dem Guanin-Primer als Matrize.

3. Durch die integrierten Primersequenzen am 5'- und 3'-Ende der cDNA kann diese mit den entsprechenden Primern zum Doppelstrang aufgefüllt und amplifiziert werden.

4. Mittels eines *Sfi*I-Verdaus wird die ds cDNA für die direktionale Klonierung in den Vektor pDNR-LIB vorbereitet.

Legende der Vektorkarte: MCS: Multiple Klonierungsstelle, M13 for/rev: Bindestellen M13 Primer, *sacB*: Gen der Levansucrase aus *Bacillus subtilis*, *cap<sup>R</sup>*: Chloramphenicol-Resistenz-Gen; pUC ORI: Replikationsursprung

## 2.11 Übertragung von Nukleinsäuren

### 2.11.1 Transformation von DNA in E. coli

Plasmid-DNA, die in vitro verändert wurde, konnte durch die Modifizierung der natürlichen Transformation von *E. coli* mit einer hohen Effizienz (1\*  $10^9$  CFU pro µg DNA) in dieses Bakterium übertragen und dort vervielfältigt werden. Dafür wurden kalt-kompetente E. coli DH5 $\alpha$ -Zellen nach der SE-Methode (simple and efficient) hergestellt (53). Aus einem 5 ml E. coli DH5a-Inokulum wurden 250 ml SOB-Medium (siehe 2.2.1.3) in einem 2 1 Erlenmeyerkolben mit Schikanen auf eine OD<sub>600</sub> von 0,05 angeimpft und bei 18 °C und langsamen Schütteln (60 Upm) bis zu einer OD<sub>600</sub> von 0,6 inkubiert. Ab hier wurde das Wachstum gestoppt und die Zellen 10 Min auf Eis gestellt und anschließend geerntet (4000 Upm, 4 °C, 10 Min). Der Überstand konnte verworfen werden. Jedoch das Sediment mit den Zellen wurde in 80 ml eiskaltem TB-Puffer resuspendiert und gewaschen. Die Zellen wurden nach 10 Min Inkubation auf Eis sedimentiert (4000 Upm, 4 °C, 10 Min). Danach wurde erneut der Überstand verworfen und die Zellen mit 20 ml eiskaltem TB-Puffer, versetzt mit DMSO (7 %, v/v), resuspendiert und für 10 Min auf Eis inkubiert. Diese jetzt kompetenten Zellen konnten sofort für die Transformation verwendet oder in flüssigem Stickstoff eingefroren und bei -70 °C mehrere Wochen gelagert werden. Aus jeder Charge kompetenter Zellen wurden Aliquots auf Antibiotikaresistenzen überprüft die und Transformationseffizienz der Zellen bestimmt. Für die Transformation wurden die Aliquots langsam auf Eis aufgetaut und 5 µl eines Ligationsansatzes (siehe 2.9.2) bzw. 10-50 ng Plasmid-DNA zugegeben und für weitere 30 Min auf Eis gekühlt. Danach erfolgte ein kurzer Hitzeschock der Zellen bei 42 °C für 30 Sek und erneut eine Ruhephase auf Eis für 10 Min. Zu den Zellen wurden 400 µl SOC-Medium (siehe 2.2.1.3) gegeben und diese bei 37 °C für 1 Stunde und 220 Upm inkubiert. Aus der Zellsuspension einer Transformation wurden 100 µl auf Selektivnährböden ausplattiert und weiter bei 37 °C bis zum nächsten Tag inkubiert.

#### **TB-Puffer**

| Pipes             | 10 mM  |
|-------------------|--------|
| $CaCl_2 * 2H_2O$  | 15 mM  |
| KCl               | 250 mM |
| MnCl <sub>2</sub> | 55 mM  |

pH-Wert auf 6,7 mit KOH einstellen und sterilfiltrieren (Lagerung bei 4 °C)

### 2.11.2 Natürliche Transformation von A. baylyi

Lineare DNA-Fragmente konnten direkt in A. baylvi aufgrund der hohen natürlichen Kompetenz des Organismus übertragen und durch homologe Rekombination ins Chromosom integriert werden (56). Dafür standen zwei Protokolle zur Verfügung. Im Falle einer Flüssigkultur wurden 200 µl einer ausgewachsenen Übernachtkultur in frisches Mineralmedium (siehe 2.2.1.1) mit 10 mM Succinat überführt und für weitere 2 Stunden bei 30 °C und 160 Upm inkubiert. Von dieser Zellsuspension mussten 500 µl in ein Eppendorfreaktionsgefäß übertragen und darin mit 5-10 µl gereinigtem PCR-Produkt (siehe 2.7.3) vermischt werden. Anschließend wurde das Wachstum (jetzt bei 37 °C, 220 Upm) für 3 Stunden fortgesetzt. Zuletzt konnten 100 µl Zellsuspension auf Selektivnährböden gegeben und über Nacht bei 30 °C bebrütet und nach positiven Klonen selektiert werden. Alternativ fand die Transformation von A. baylyi mit linearer DNA auf festen Medien statt (37). Dazu wurde ebenfalls aus einer 5 ml Übernachtkultur ein Aliquot entnommen (250 µl) und in frischem Medium weiter bei 30 °C inkubiert (für 3 Stunden). Die 5 ml-Kultur wurde eingeengt (5000 Upm, 5 Min) und in 2 ml Mineralmedium gelöst und davon 50 µl auf einer Mineralmedium-Agarplatte mit 10 mM Succinat getropft. Sobald der Flüssigkeitsfilm der Bakterien getrocknet war, konnten 10 µl DNA auf die Bakterien gegeben werden. Die Bakterien wurden über Nacht bei 30 °C weiter bebrütet und der Bakterienrasen am nächsten Tag in 2 ml Mineralmedium resuspendiert. Daraus fand die Entnahme von 100 µl statt. Die entnommenen Zellen wurden auf Selektivmedien plattiert und weiter bei 30 °C inkubiert bis Einzelkolonien zu erkennen waren.

### 2.11.3 Konjugation von Plasmid-DNA in A. baylyi

Die Übertragung von Derivaten des Plasmids pRK415 von *E. coli* DH5 $\alpha$  auf *A. baylyi* fand durch die Fähigkeit beider Organismen zur Konjugation statt, wobei hierfür das Helferplasmid pRK2013 benötigt wurde (30, 55). Der *E. coli* Donorstamm (enthält pRK415-Derivat), der *E. coli* Helferstamm (enthält pRK2013) und der *A. baylyi* Rezeptorstamm wurden getrennt über Nacht in LB-Medium (siehe 2.2.1.2) unter Selektionsdruck angezogen. Nach der Zellernte, mussten die Zellen 2x mit je 2 ml LB-Medium gewaschen werden, um die Antibiotikareste zu entfernen. Danach wurde die OD<sub>600</sub> der Kulturen bestimmt und für die Konjugation die Bakterien im Verhältnis 1:1:7 (Donor:Helfer:Rezipient) gemischt und auf Membranfilter (Schleicher und Schuell, Dassel), die auf LB-Platten lagen, pipettiert. Für die Kontrolle von Spontanmutationen wurden der Donor und Rezipient einzeln auf getrennte Filter pipettiert. Nach einer Inkubation für 1 bis 2 Tage bei 30 °C wurde der Zellrasen auf den Filtern in Flüssigmedium (1,5 ml Mineralmedium) resuspendiert. Von dieser Suspension wurden 50 µl auf Selektivplatten (mit Quinat als C-Quelle, da *E. coli* darauf nicht wächst) verteilt und für weitere 1 bis 2 Tage bei 30 °C bebrütet.

### 2.12 Proteinanalytik

## 2.12.1 Herstellung rekombinanter Proteine in E. coli

Für die heterologe Expression von His-Tag-Fusionsproteinen wurde das "pET-Expression-System" (Merck, Darmstadt) angewendet. Als E. coli-Wirtsstamm kam BL21 AI<sup>TM</sup> zum Einsatz. Die Zellen wurden nach Animpfen auf eine OD<sub>600</sub> von 0,1 bei 37 °C in 200 ml LB-Medium in einem 1 1 Erlenmeyerkolben mit Schikanen inkubiert. Der Start der Proteinexpression des Fusionsproteins begann bei einer OD<sub>600</sub> von 0,8 mit der Zugabe von IPTG und L-(+)-Arabinose (i.T. 1 mM bzw. 13,3 mM). Nach 3-4 Stunden wurden die Zellen geerntet (20 Min, 5000 Upm, 4 °C) und pro g Zellmasse in 2-5 ml Lysispuffer resuspendiert. Die Kontrolle der Überexpression fand durch eine Probennahme vor der Induktion und 4 Stunden nach Induktion in Verbindung mit einer SDS-Gel-Elektrophorese statt (siehe 2.4.4). Rohextrakte wurden durch einen Zellaufschluss mit Lysozym (10 mg/ml in PBS, davon 1 ml zu 10 ml Zellen) für 1 Stunde bei 4 °C und Ultraschalbehandlung (4 Min, abwechselnd 5 Sek Impuls und 5 Sek Pause, Einstellungen: Cycle Duty: 70, Output: 35) hergestellt. Die Analyse der Zellen mit dem Mikroskop gab Hinweise auf die Effizienz des Zellaufschlusses. Gelöste Proteine wurden durch Zentrifugation (15000 Upm, 1 Stunde, 4°C) von unlöslichen Zellbestandteilen getrennt. Die Aufreinigung der rekombinanten His-Tag-Fusionsproteine fand durch Affinitätschromatographie mit Nickel-Nitriloessigsäure-Agarose (Ni<sup>2+</sup>-NTA, Quiagen, Hilden) statt, welche als 200 µl-Aliquot in eine Säule beladen wurden. Die rekombinanten Proteine mit ihren Histidinresten konnten an die Ni<sup>2+</sup>-NTA-Matrix binden und diese Affinitätsbindung wiederum durch die Zugabe des Histidin-Strukturanalogons Imidazol gelöst werden. Die Ni<sup>2+</sup>-NTA-Agarose musste vor Benutzung gewaschen werden, da sie in Alkohol gelagert wurde. Nach 2-3 Waschschritten mit Waschpuffer (je 5 ml) konnte der Überstand der Ultraschallbehandlung auf die Säule gegeben werden. Die Bindung der Fusionsproteine an die Ni<sup>2+</sup>-Säule sollte durch Inkubation für 1 Stunde bei 4 °C erreicht werden. Nicht gebundene Proteine wurden in mehreren Waschschritten mit Waschpuffer entfernt. Die Elution der Fusionsproteine wurde durch Inkubation der Säule mit verschiedenen Elutionspuffern mit jeweils steigender Imidazolkonzentration erreicht.

| Lysispuffer                      |         | Waschpuffer                      | Waschpuffer |  |
|----------------------------------|---------|----------------------------------|-------------|--|
| NaH <sub>2</sub> PO <sub>4</sub> | 50 mM   | NaH <sub>2</sub> PO <sub>4</sub> | 50 mM       |  |
| NaCl                             | 300 mM  | NaCl                             | 300 mM      |  |
| Imidazol                         | 10 mM   | Imidazol                         | 50 mM       |  |
| einstellen des pH-Werts          | auf 8.0 |                                  | auf 8.0     |  |
| Elutionspuffer 1                 |         | Elutionspuffer 2                 |             |  |
| NaH <sub>2</sub> PO <sub>4</sub> | 50 mM   | NaH <sub>2</sub> PO <sub>4</sub> | 50 mM       |  |
| NaCl                             | 300 mM  | NaCl                             | 300 mM      |  |
| Imidazol                         | 150 mM  | Imidazol                         | 200 mM      |  |
| Einstellen des pH-Werts          | auf 8.0 |                                  | auf 8.0     |  |

Weitere verwendete Puffer enthielten Imidazolkonzentrationen bis 500 mM

### 2.12.2 Proteinfällung und -konzentrationsbestimmung

Mit Proteinrohextrakten konnte die Überexpression von Fusionsproteinen im SDS-Acrylamidgel (siehe 2.4.4) oder durch Western-Blot (siehe 2.12.3) nachgewiesen werden. Dafür wurden 1 ml Proteinrohextrakt nach Lysozym- und Ultraschallbehandlung (siehe 2.12.1) für 15 Min auf Eis mit 25 µl Deoxycholinsäure (2 %, v/v) inkubiert. Anschließend konnten die Proteine mit 30 µl Trichloressigsäure (40 %, v/v) durch Zentrifugation (14000 Upm, 5 Min, 4°C) gefällt werden. Der Überstand wurde verworfen und das Pellet mit den Proteinen in Wasser gelöst. Es folgte die Bestimmung der Proteinkonzentration durch den Bradford-Assay (14). Mit dieser Methode werden im sauren Milieu Protein-Farbstoffkomplexe ausgebildet, wodurch das Absorptionsmaximum des Farbstoffs Coomassie-B Brilliantblau G250 von 465 nm auf 595 nm verschoben wird. Die Intensität des Farbumschlags ist abhängig von der Proteinkonzentration. Es wurde eine Kalibiergerade mit einer BSA-Stammlösung mit bekannter Konzentration (0-20 µg BSA) erstellt. Die Verdünnungen daraus wurden mit Wasser auf 100 µl aufgefüllt. Das Bradfordreagenz (Bio-RAD Laboratories GmbH, München) musste vor dem Benutzen filtriert werden. Anschließend konnte das Filtrat 1:5 mit Wasser verdünnt und daraus 900 µl mit 100 µl der BSA-Verdünnungen vermischt werden. Nach einer Inkubation von 20 Min bei RT, wurde in Doppelbestimmungen bei 595 nm mit dem Photometer die Absorption der Proben gemessen. Proteinrohextrakte wurden als 1/100-Verdünnung, wie zuvor für die Kalibriergerade beschrieben, im Bradford-Assay bei 595 nm gemessen und die Konzentration aus der Steigung der Kalibriergeraden errechnet.

#### 2.12.3 Nachweis von His-Tag-Fusionsproteinen

In dieser Arbeit erfolgte der Nachweis von His-Tag-Fusionsproteinen nach der Methode des Semidry-Transfer-Western-Blots. Hierbei werden Proteine nach der Auftrennung im SDS-Acrylamidgel (siehe 2.4.4) auf eine Nitrocellulosemembran durch Elektroblot übertragen und auf der Membran mittels Antikörpern nachgewiesen. Für den Aufbau des Blots, siehe 2.5.2, wurden insgesamt nur 4 Whatmanpapiere verwendet. Das Acrylamidgel wurde für 30 Min in Semidry-Transferpuffer äquilibriert. Auch die Nitrocellulosemembran und Whatmanpapiere mussten in diesem Puffer getränkt werden. Die Transferbedingungen waren 3,5 mA pro cm<sup>2</sup> Gel für 1,5 h. Nach dem Transfer fand die Blockierung der unspezifischen Bindestellen der Membran über Nacht mit 1 % Blockingreagenz (w/v) statt. Nach drei Waschschritten mit Western-Blot-PBS-Puffer (je 5-10 Min) wurde der Anti-His-Tag Antikörper verdünnt (1:2500 in 1 % Blockingreagenz, v/v) auf die Membran gegeben und diese für 1 Stunde inkubiert. Danach musste die Membran dreimal mit Western-PBS gewaschen werden. Es folgte die Zugabe des Anti-Maus-Fab-Fragments (Verdünnung 1:1000 in 1 % Blockingreagenz, v/v) und die Inkubation der Membran für eine weitere Stunde. Danach wurde die Membran einmal mit Western-PBS, zweimal mit Western-PBST und einmal mit Western-PBS gewaschen. Die gebundenen Antikörper konnten durch Chemiluminiszenz detektiert werden, da der Zweit-Antikörper (Anti-Maus-Fab-Fragment) an das Enzym Meerettich-Peroxidase gekoppelt war. Die Detektion fand mit dem ECL-Kit (GE Healthcare GmbH, Freiburg) statt. Dabei wurde das enthaltene Luminol zu 3-Aminonaphthalat unter Lichtemission durch die Peroxidase katalysiert. Die Lichtemission wurde durch die Schwärzung eines Röntgenfilms (Cronex 5 100 NIF, Agfa-Gevaert AG, Köln) bestimmt.

|              | Western-Blot-PBST                                                                |                                                                                                                                                       |  |
|--------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1,8 g/l      | Tween 20                                                                         | 0,05 % (v/v in PBS)                                                                                                                                   |  |
| 12 g/l       |                                                                                  |                                                                                                                                                       |  |
| 5,8 g/l      |                                                                                  |                                                                                                                                                       |  |
|              | Blockinreagenz                                                                   |                                                                                                                                                       |  |
| 5,8 g/l      | Milchpulver                                                                      | 1 % (w/v in PBS)                                                                                                                                      |  |
| 2,9 g/l      |                                                                                  |                                                                                                                                                       |  |
| 20 % (v/v)   |                                                                                  |                                                                                                                                                       |  |
| 0,38 % (w/v) |                                                                                  |                                                                                                                                                       |  |
|              | 1,8 g/l<br>12 g/l<br>5,8 g/l<br>5,8 g/l<br>2,9 g/l<br>20 % (v/v)<br>0,38 % (w/v) | Western-Blot-PBST   1,8 g/l Tween 20   12 g/l 5,8 g/l   5,8 g/l Blockinreagenz   5,8 g/l Milchpulver   2,9 g/l 20 % (v/v)   0,38 % (w/v) 0.38 % (w/v) |  |

## 2.13 Datenbanken und Programme

In dieser Arbeit wurden verschiedene Datenbanken als Informationsquellen verwendet. Genbzw. Genomsequenzen stammen aus der NCBI-Datenbank (http://www.ncbi.nlm.nih.gov/) und **RNA-Sequenzen** der Rfam-Datenbank (http://rfam.sanger.ac.uk/). aus Trans-TermHP Terminatorstrukturen konnten durch die Software (http://transterm.cbcb.umd.edu/) und Proteinbindestellen Hilfe mit der Datenbank PRODORIG (http://prodoric.tu-bs.de/) vorhergesagt werden. Plasmidkarten bzw. Klonierungen wurden mit der Software Clone Manager Suite 7 und Enhance Map Draw angefertigt. Die Vorhersage von Proteinstrukturen erfolgte mit Hilfe der Datenbank Swiss Model (http://swissmodel.expasy.org//SWISS-MODEL.html).

## 2.14 Geräte und Chemikalien

#### Geräte:

**AEG Nürnberg** Micromat 15, Mikrowellengerät **Appligene**, Heidelberg Gelkammer **B.** Braun Biotech Inter., Melsungen Certomat®, Schüttler und Brüter **Bio Imager Fujix BAS100** Phosphoimager Perkin-Elmer GmbH, Überlingen Photometer  $\lambda 11$ **GE-Healthcare** GmbH, Freiburg Ultrospec<sup>®</sup> Spektralphotometer **Eletrophoresis Power Supply** Hamilton GmbH, Darmstadt Mikroliterspritze Heraeus Instruments GmbH, Osterode Laminar Flow, Biofuge pico, Labor-Brutschrank B6 **MWG Biotech AG, Ebersberg** PCR Primus Thermocycler, Videodokumentationsanlage Gelprint 2000i Schleicher und Schuell, Dassel Minifold I Dot-Blotter, Cellulosefilter Scientific Industries INC, Bohemia USA Vortex-Genie Serva Electrophoresis Blue Flash Semi-Dry Blotter, Nitrocellulosemembran Sigma Laborzentrifugen GmbH,

#### Osterode

Laborzentrifuge Sigma 2K15 Syngene, Cambridge, England Gene Flash Bioimaging Zirbus, Bad Grund Dampfsterilisator HAST 32/25

Chemikalien: Hauptsächlich Serva Feinbiochemica **GmbH** & Co.KG (Heidelberg), Fluka, **Sigma-Alderich** Chemie GmbH (Deisenhofen) Speziell: Biomers GmbH, Ulm Oligodesoxyribonukleotide **Biomol Feinchem. GmbH, Hamburg** IPTG, Lysozym, X-Gal Carl Roth GmbH, Karlsruhe SDS, DMSO **Difco Laboratories, Detroit USA** Bacto-Agar, Bacto-Trypton, Hefe-Extrakt **GE-Healthcare GmbH, Freiburg** ECL Advance Western-Blot Detection-Kit GIBCO/BRL life technologies GmbH, Eggenstein Agarose, TEMED, Nukleotide Machery-Nagel GmbH, St. Leon-Rot NucleoSpin® Extract II-Kit MBI Fermentas GmbH, St. Leon-Rot Lambda-DNA, Restriktionsendonukleasen, T4-RNA-Ligase, T4-DNA-Ligase, T4-Polynukleotidkinase, PAGE-Ruler ladder **New England Biolabs** 

Restriktionsendonukleasen, Antarktische Phosphatase, ssRNA-ladder **Promega GmbH, Mannheim** pGem-DNA-Marker **Roche Diagnostics GmbH, Mannheim** Ampicillin, Kanamycin, Spectinomycin, RNase A, DIG-dUTP, CSPD, Anti-DIG-Antikörper, **Sartorius AG, Göttingen** Sterilfilter (Porengröße 0,2 μm) **Quiagen GmbH, Hilden** Ni<sup>2+</sup>-NTA-Agarose

## 3. Experimente und Ergebnisse

# 3.1 Identifizierung kleiner RNA-Moleküle in Acinetobacter baylyi ADP1

## 3.1.1 Die neue sRNA Aar

In der vorliegenden Arbeit wurde die sRNA Aar (Acinetobacter amino acid regulator) identifiziert und bezüglich ihrer eigenen Expression und der Auswirkung auf die Transkriptmenge potentieller mRNA-Interaktionspartner bei Überexpression von Aar untersucht. Die Identifizierung von Aar durch Northern-Blot-Analysen bzw. die Charakterisierung der RNA-Enden mittels CR-RT-PCR und Terminatorvorhersage (Trans-TermHP) bestätigten Aar als unabhängige sRNA aus der intergenen Region zwischen den beiden Genen trpS (ACIAD2871, kodiert auf demselben DNA-Strang, stromaufwärts von aar) und sucD (ACIAD2872, kodiert auf dem gegenläufigen DNA-Strang, stromabwärts von aar). Sequenzvergleiche mit der NCBI-Nukleotiddatenbank spiegelten Aar als Acinetobacterspezifische RNA wieder, die nur in den bereits sequenzierten Gattungen A. baylyi und A. baumannii zu finden ist. Das Expressionsprofil von Aar ergab, dass diese sRNA verstärkt in der stationären Wachstumsphase detektierbar war. Außerdem deutete sich an, dass Aar entweder einem Prozessierungsprozess unterliegt oder durch mehrere Promotoren reguliert wird. Beide Vermutungen beruhen auf der Detektion zweier RNA-Signale. Hfg scheint direkt oder indirekt an an der Regulation von Aar beteiligt zu sein, da im Fall des Fehlens von Hfq nur eines der beiden Signale detektiert wurde. Bei der Überexpression des Hfq-Proteins kam es jedoch zu keiner Veränderung der Expression von Aar im Vergleich zum Wildtyp. Mit der Überexpression von Aar korrelierte eine Veränderung der Transkriptmenge verschiedener mRNAs. Während diese mRNAs (fadA, ilvI, ppC, glnA, serC, leuC, trpA und gcvH sind alle am Aminosäurestoffwechsel von A. baylyi beteiligt) im exponentiellen Wachstum von A. baylyi nicht beeinflusst wurden, zeigte sich in der stationären Phase ein positiver Effekt auf deren Transkriptmenge bei der Überexpression von Aar. Eine Interaktion von Aar mit den mRNAs konnte nur innerhalb der SD-Sequenz vorhergesagt werden. Somit war die erhöhte Transkriptmenge dieser mRNAs nur indirekt auf die gesteigerte Menge an Aar zurückführbar. Innerhalb von aar war eine potentielle Bindestelle des Regulators Lrp vorhersagbar, welcher in E. coli den Aminosäuremetabolismus beeinflusst (15). Augrund dieser Tatsachen lässt sich ein Einfluss indirekter Natur von Aar im Aminosäurestoffwechsel von A. baylyi postulieren. Die vollständigen Ergebnisse über Aar aus dieser Arbeit sind in dem Manuskript "Schilling et al., 2009: The small RNA Aar in Acinetobacter baylyi – a putative regulator of amino acid metabolism" im Anhang ausführlich beschrieben und zur Veröffentlichung eingereicht.

## 3.1.2 Klonierung einer cDNA-Bank ausgehend von dem A. baylyi Transkriptom

Eine Methode zur Identifizierung kleiner RNA-Moleküle (sRNAs), ist die Herstellung und Überprüfung einer cDNA-Bank ausgehend von dem Transkriptom einer Bakterienzelle. Diese Strategie wurde bereits mehrfach erfolgreich angewendet (60, 105, 128). Bereits bekannte bakterielle sRNAs zeigten Größen von 50 bis 500 Nt (3). In der vorliegenden Arbeit wurde eine cDNA-Bank, aus der A. baylyi Gesamt-RNA (aus dem stationären Wachstum auf Mineralmedium mit 20 mM Succinat) hergestellt. 150 µg Gesamt-RNA wurden durch Größenauftrennung in einem 8 %igen denaturierenden Polyacrylamidgel separiert und eine bestimmte RNA-Fraktion aus der Gelmatrix eluiert. Basierend auf Erfahrungswerten bakterieller cDNA-Banken, wurden RNA-Moleküle im Größenbereich 130 bis 500 Nt eluiert (105, 128). Somit sollte vermieden werden, prozessierte tRNAs (73-93 Nt) bzw. die 5S rRNA (120 Nt) als cDNA-Matrize zu verwenden. Bisher beschriebene große sRNAs z.B. CsrB mit 366 Nt oder RNAIII mit 514 Nt (13, 69) sollten noch kloniert werden können. Der Bereich der zu eluierenden RNA-Fraktion fand durch Vergleich mit dem  $\gamma$ -<sup>32</sup>P markierten Größenstandard pGem nach der Polyacrylamidgel-Elektrophorese statt. Nach der Elution wurde die RNA am 3'-Ende polyadenyliert und mit Hilfe des Creator<sup>TM</sup> SMART<sup>TM</sup> cDNA Library Construction Kit (Clontech, Saint-Germain-en-Laye, Frankreich) in cDNA umgeschrieben. Die Etablierung der cDNA fand in dem Wirtsstamm E. coli DH5a statt. Klone der cDNA-Bank wurden in den Testverfahren der Kolonie- und Dot-Blot-Hybridisierung analysiert und vor der Sequenzierung gefiltert, indem nur negative Klone aus beiden Testverfahren sequenziert wurden. Die cDNA-Sequenzen wurden durch einen Vergleich mit der Genomsequenz von A. baylyi (NCBI RefSeq Id NC\_005966) hinsichtlich ihrer Lage aus intergenen Regionen überprüft. Letztendlich wurde eine cDNA-Bank mit einer Ausbeute von 500 Klonen pro µg polyadenylierter RNA hergestellt.

### 3.1.2.1 Koloniehybridisierung der cDNA-Bank

In einem ersten Ausschlussverfahren sollten die Klone identifiziert werden, die anstelle von cDNA-Insertionen das Ausgangsfragment des Vektors pDNR-LIB (Stuffer-DNA, siehe 2.10 Klonierung einer cDNA-Bank, Vektorkarte Abb. 12) zwischen den MCS A und B enthielten. Zu diesem Zweck wurde eine Koloniehybridisierung mit der radioaktiv-markierten DNA-Sonde gegen die ursprüngliche Vektor-DNA (Stuffer-DNA) und mit allen Klonen der cDNA-Bank durchgeführt. Zuvor fand der Verdau des Plamids pDNR-LIB mit dem Restriktionsenzym *Sfi*I, eine Aufreinigung dieser DNA-Sonde (Stuffer-DNA) aus 2 %iger

Agarose und radioaktive Markierung mit 50  $\mu$ Ci [ $\alpha$ -<sup>32</sup>P]-dCTP statt. Die Detektion der Radioaktivität im Phosphoimager nach der Hybridisierung zeigte die Klone, die keine cDNA-Insertionen, sondern die Stuffer-DNA, enthielten (Abb. 13). Die dadurch bestimmte Effizienz der cDNA-Bank betrug 4 % positive Klone (20) mit Stuffer-DNA und 96 % negative Klone (480) mit cDNA-Insertionen. Die negativen Klone wurden durch Dot-Blot-Hybridisierungen weiter analysiert.



Abb. 13: Koloniehybridisierung der cDNA-Bank mit der radioaktiv-markierten Stuffer-DNA des Vektors pDNR-LIB. An Hand der Signale konnten *E. coli* Klone, die die Stuffer-DNA des Vektors pDNR-LIB enthielten, visualisiert werden. Einige Beispiele sind exemplarisch mit Pfeilen gekennzeichnet.

#### 3.1.2.2 Dot-Blot-Hybridisierung der cDNA-Bank

Der Hauptanteil der Gesamt-RNA einer Zelle gehört mit bis 80 % zu ribosomaler RNA (59). Während die 5S rRNA durch Größenausschluss vor der cDNA-Synthese ausgefiltert wurde, konnten Auf- bzw. Abbauprodukte der 16 bzw. 23S rRNA noch in der klonierten RNA-Fraktion enthalten sein. Klone mit ribosomalen cDNA-Insertionen konnten durch Koloniehybridisierung mit PCR-Sonden nicht detektiert werden. Aufgrund der Identität der 16S rRNA (84,5 %) bzw. 23S rRNA (83 %) zwischen A. baylyi und E. coli war eine negativen Unterscheidung von positiven und Klonen nicht möglich. Auch Oligodesoxyribonukleotid-Sonden, abgeleitet aus konservierten A. baylyi 16S bzw. 23S rRNA-Bereichen, würden nur Klone identifizieren, die Fragmente von diesen Bereichen enthielten. Aus ca. 20 % der negativen E. coli Klone, aus der Koloniehybridisierung mit der Stuffer-DNA, wurden die Plasmide isoliert und in einer Dot-Blot-Hybridisierung analysiert. Zwei PCR-Sonden, welche die vollständige Sequenz der rDNA-Gene von A. baylyi enthielten (Primer 16S rRNA4 und 3, 23-5S rRNA 5 und 6) wurden zur Detektion verwendet. Auffällig war hierbei, dass sehr wenige Plasmide ein Signal lieferten und demnach nur wenige Klone ribosomale cDNA-Insertionen enthielten (Abb. 15A). Die Sequenzierung von Plasmiden, für die diese Hybridisierung ein negatives Signal ergeben hatte (kein Signal, z.B. Abb.15A Zeile a6 oder b2) widerlegte diese Annahme. Dabei zeigte sich, dass diese Plasmide cDNA-Sequenzen vorwiegend aus dem 5'-Ende der 23S rRNA von *A. baylyi* enthielten. Außerdem wurde festgestellt, dass sehr kleine cDNA-Insertionen (meist unter 100 Basen) kloniert wurden (Abb. 14). Der Einsatz einer PCR-Sonde gegen das 5'-Ende der 23S rRNA (Position 20539-20789 des annotierten *A. baylyi* Genoms, NCBI Refseq ID NC\_005966) führte zu einem deutlich besseren Ergebnis der Dot-Blot-Hybridisierung (Abb. 15B). Weitere Sequenzierungen (insgesamt 6 % der cDNA-Bank, siehe 7.1 Daten zu den Ergebnissen aus Abschnitt 3, Tab.7 im Anhang) bestätigten die Vermutung, dass überwiegend kleine degradierte Fragmente der 23S rRNA kloniert wurden. Daraufhin wurde die Analyse der cDNA-Bank nicht weitergeführt.

|   | Klon 8             |              |             |
|---|--------------------|--------------|-------------|
| [ | Klon 72            |              |             |
| ) | Klon 25            |              |             |
|   | Klon 211           |              |             |
| [ | Klon 212           |              |             |
|   | Klon 101<br>Klon 2 |              |             |
| l | Klon 256           |              |             |
|   | Klon 183           |              |             |
|   | Klon 21            | 23S rDNA-Gen | H 100 Basen |
|   | Klon 316           |              |             |
|   | Klon 19            | ➡Klon 193    |             |
|   | Klon 134           | Klon 30      |             |
|   | Klon 394           |              |             |
| J | Klon 15            |              |             |
|   |                    |              |             |

Abb. 14: Lage einiger sequenzierter Klone der cDNA-Bank im 23S rRNA-Gen von *A. baylyi*. Die meisten cDNAs stammen aus dem 5'-Ende der 23S rRNA mit Längen unter 100 Basen.



Abb. 15: Nachweis von Plasmiden mit ribosomalen cDNA-Insertionen durch Dot-Blot-Analyse. A. Verwendung von radioaktiv-markierter PCR-Sonden der gesamten ribosomalen *A. baylyi* Gensequenz (Position 18421-23761, NCBI Refseq Id NC\_005966). B. Verwendung einer radioaktiv-markierten PCR-Sonde gegen das 5'-Ende der *A. baylyi* 23S rDNA-Gensequenz (Position 20539-20789, NCBI Refseq Id NC\_005966). A: Zeile f6 und B: Zeile h12: 400 ng pDNR-LIB-DNA (Negativkontrolle). A: Zeile d11 und B: Zeile h9: 400 ng Plasmid-DNA des Klons 316 (enthält 250 Bp-Fragment des 23S rDNA 5'-Endes, siehe Abb. 14; Positivkontrolle)

#### 3.1.3 In silico-Vorhersage von sRNAs

Eine alternative Strategie zur Identifizierung von sRNAs ist die *in silico*-Vorhersage von Genen aus intergenen Bereichen eines Genoms. Dadurch konnten sRNA-Gene in verschiedenen Bakterien vorhergesagt und deren Transkripte in Northern-Blot Analysen nachgewiesen werden (4, 7, 70). Die Vorhersage von neuen sRNA-Genen in *A. baylyi* ADP1

fand durch vergleichende Genomanalyse der intergenen Bereiche aus *A. baylyi* ADP1 (NCBI Refseq Id NC\_005966) und *A. baumannii* ATCC17978 (NCBI Refseq Id NC\_009085) durch Björn Voss (Institut für Genetik und Experimentelle Bioinformatik, Universität Freiburg) statt. Die intergenen Regionen beider Bakterien wurden aus deren Genomsequenzen extrahiert und in multiplen Sequenzvergleichen analysiert (121). Die ermittelten konservierten Regionen wurden mit der Software RNAz hinsichtlich thermodynamischer Stabilität überprüft (123). Diese Software verwendet die Strategie, die MFE (minimum free energy) einer potentiellen RNA-Sequenz (hier aus einer konservierten *Acinetobacter*-Sequenz) mit den MFE-Werten möglicher Zufallssequenzen (gleiche Länge und Basenzusammensetzung) zu vergleichen. Daraus wird der z-Wert berechnet. Negative z-Werte implizieren, dass die untersuchte RNA-Sequenz stabiler als eine mögliche Zufallssequenz ist, und weisen darauf hin, dass diese Region transkribiert werden könnte. Die gesamte Analyse aus Sequenzkonservierung und struktureller Stabilität ergab eine Liste mit 481 thermodynamisch-stabilen Genloci und daraus resultierende sRNA-Kandidaten. Abbildung 16 gibt einen Überblick über die Anzahl an vorhergesagten sRNAs.



Abb. 16: Anzahl und Größenverteilung vorhergesagter sRNA-Genloci in A. baylyi ADP1

#### 3.1.3.1 Nachweis der sRNA 394

Alle Kandidaten aus der Vorhersage von Björn Voss wurden nach ihrer strukturellen Stabilität (z-Werte) in einer Liste geordnet. Dabei wurde berücksichtigt, dass für jede potentielle RNA, je nach Orientierung des Gens, zwei unterschiedliche z-Werte ermittelt werden können. Dies

ist darauf zurückzuführen, dass trotz gleicher Sequenzlänge und Basenzusammensetzung der RNA, aufgrund der unterschiedlichen Basenabfolge, zwei verschiedene Sekundärstrukturen (mit unterschiedlichen MFEs) vorhersagbar sind. Kandidat 394 (Nummer 3 dieser Liste, RNAz -3.860 bzw. -3.460 kcal/mol) wurde aus der Region 402072 bis 402292 des A. baylyi ADP1 Genoms vorhergesagt und für Northern-Blot-Studien ausgewählt. Um die Wahrscheinlichkeit der Expression der sRNA 394 zu erhöhen, wurde Gesamt-RNA aus verschiedenen Wachstumsbedingungen von ADP1 eingesetzt. Hierfür wurde RNA aus ADP1-Kulturen unter verschiedenen Bedingungen isoliert: Mineralmedium mit Succinat und LB-Komplexmedium (jeweils exponentielle Phase:  $OD_{600} = 1,0$  und stationäre Phase:  $OD_{600} =$ 1.8). Weitere Bedingungen wurden in Mineralmedium mit Succinat getestet. Dabei variierte die Temperatur (von 30 °C auf 4 °C oder 38 °C für eine Stunde) und Salzkonzentration (Zugabe von 333 mM NaCl bei  $OD_{600} = 0.4$  bzw. Eisenmangel: Inokulum mit FeSO<sub>4</sub>, Hauptkultur in Mineralmedium ohne FeSO<sub>4</sub>). Parallel wurde die 6S RNA, die in der Rfam-Datenbank (34) mit 184 Nt annotiert ist und bereits in Northern-Blot-Analysen nachgewiesen wurde (94), in derselben RNA-Präparation detektiert. Die Größenabschätzung der Signale von 6S und 394 während eines Northern-Blot-Experiments sollte einen Hinweis darauf geben, ob sRNA-Kandidat 394 als eigenständiges Gen (220 Nt) oder in einem Operon mit rpsO (490 Nt) bzw. pnp (2314 Nt) exprimiert wird (Abb. 17B).



Abb. 17: Nachweis einer sRNA aus dem Genlocus 402072-402292 des ADP1Genoms (NCBI Refseq Id NC\_005966). A: Northern-Blot-Signale der RNAs 394 und 6S in 20 µg ADP1 Gesamt-RNA aus verschiedenen Wachstumsbedingungen. B: Lage der sRNA 394 im Genom von ADP1. Für die sRNA 394 und *rpsO* konnte eine putative Terminationsschleife auf dem (+)-Strang der DNA innerhalb der RNA 394 ermittelt werden. Die Lage der Primer 315/316 der PCR-DNA-Sonde ist mit Pfeilen symbolisiert. *rpsO*: Gen des 30S ribosomalen Proteins; *pnp*: Gen der Polynukleotid-Phosphorylase

Beide RNAs konnten nach der Auftrennung mit 2 %iger denaturierender Agarose (0,7 % Formaldehyd) und Transfer auf eine Nylonmembran in 20 µg ADP1 Gesamt-RNA detektiert werden. Obwohl beiden RNAs eine ähnliche Größe vorhergesagt wurde (6S mit 184 Nt und sRNA 394 mit 220 Nt), unterschieden sich die Signale deutlich voneinander (Abb.17A). Die Vorhersage möglicher Rho-unabhängiger Terminationsstrukturen mit der Software TransTermHp (63) lieferte, bei einer Einstellung zwischen 4 und 23 Basen für die Haarnadelschleife an der Position 402167-402190 auf dem (+)-Strang der *A. baylyi* DNA, einen putativen Terminator innerhalb des Gens der sRNA 394 (Energiegewinn der Haarnadelschleife:- 4,485 kcal/mol siehe Abb. 17B).

#### 3.1.3.2 Expression der sRNA 394

Die sRNA 394 wurde mit einer PCR-Sonde identifiziert, die aus der Genregion 402072-402292 von ADP1 amplifiziert wurde (Primer 315/316, Tab. 4). Wie bereits erwähnt, wurde zudem eine putative Terminationsschleife innerhalb der sRNA 394 an der Position 402167-402190 des ADP1 Genoms vorhergesagt. Weitere Sonden (Primer 315/336 und 316/337, Tab. 4), welche die Bereiche bis zum putativen Terminator (Position 402072 - 402193) und nach diesem (Position 402193-402292) beinhalteten, wurden in Northern-Blot-Analysen verwendet. Hier zeigte sich, dass die sRNA 394 nur mit der Sonde vor dem Terminator detektiert werden konnte (Daten nicht gezeigt). Ein gemeinsames Co-Transkript zwischen rpsO (270 Nt) und sRNA 394 (bis Terminator: 119 Nt) besitzt eine Länge von 389 Nt und entspräche eher der Größe der detektierten **RNA** aus Abbildung 17A. Expressionsprofilstudien mit den Stämmen ADP1, ADP1 pRK415 hfq Plac und ADP1 Δhfq sollten Aufschluss darüber geben, ob die sRNA 394 zum einen unter verschiedenen Wachstumsbedingungen und zum anderen von verschiedenen Hfq-Mengen beeinflusst wird. Hierbei wurde beobachtet, dass sRNA 394 nur wachstumsbedingt und nicht von Hfq oder anderen Faktoren wie Temperatur, Salze oder Nährstoffe reguliert wird (Abb. 18). Während der exponentiellen Phase in Mineralmedium (mit Succinat oder Quinat) und LB-Komplexmedium war das Transkript häufiger vorhanden als während der stationären Phase in diesen Medien. Der Überschuss bzw. das Fehlen von Hfq beeinflusste die Menge der sRNA 394 nicht (Abb. 18, Spur 16-20). Zellen von ADP1, die bei einer OD<sub>600</sub> von 0,4 eine Stunde den Temperaturen 4 °C bzw. 38 °C ausgesetzt wurden, oder denen ein Überschuss an NaCl (Endkonzentration 333 mM) zugegeben wurde, zeigten in ihrem Wachstum einen Einbruch (Daten nicht dargestellt), erholten sich aber wieder und erreichten dieselbe End- $OD_{600}$  wie unter Normalbedingungen. Auf die Transkriptmenge der sRNA 394 hatten diese Bedingungen keinen Einfluss (Abb. 18, Spur 4-6 im Vergleich mit 2). Zellen von ADP1 unter Eisenlimitierung (Vorkultur mit FeSO<sub>4</sub>, Hauptkultur ohne) hatten ein verlangsamtes Wachstum (Daten nicht gezeigt) jedoch gleichbleibende Mengen an sRNA 394 (Abb. 18, Spur 13-15).



Abb. 18: Expressionsprofil der sRNA 394 in den Stämmen ADP1 (Spur 1-15), ADP1 pRK415 *hfq Plac* (Spur 16-18), ADP1  $\Delta hfq$  (Spur 19-20) in verschiedenen Nährmedien, zu verschiedenen Wachstumsphasen und bei unterschiedlichen Schockbedingungen. Spur 1-6, 13-20: Mineralmedium + 10 mM Succinat; Spur 7-9: LB-Komplexmedium; Spur 10-12: Mineralmedium + 5 mM Quinat; Dargestellt sind als Ladekontrolle die Signale der 16S und 23S rRNA nach Auftrennung in 2 %iger denaturierender Agarose

Einen endgültigen Aufschluss über die Expression der sRNA 394 sollte die Kartierung der 5'und 3'-Enden dieser durch eine CR-RT-PCR (31) geben. Die cDNA-Synthese nach der Zirkularisierung der RNA (aus der exponentiellen Phase, OD<sub>600</sub> von 0,4 und Anzucht von ADP1 in LB-Komplexmedium) wurde ausgehend von Primer 347 (Tab. 4) mit dem Enzym Reverse Transkriptase durchgeführt. Eine PCR zur Herstellung der ds cDNA fand mit den Primern 347/348 (Tab. 4) statt. Die Kontrolle der PCR im 2 %igen Agarosegel zeigte, dass die cDNA-Synthese erfolgreich verlief (448 Bp-Bande, Abb. 19). Für die Klonierung und Sequenizerung wurde das PCR-Produkt mit einer Silica-Membran-Säule (NucleoSpin<sup>®</sup>-Extract II, Machery and Nagel, Düren) gereinigt und erneut mit denselben Primern amplifiziert, um eine höhere Ausbeute des PCR-Produkts für die Klonierung zu erzielen. Dieses Produkt wiederum wurde nach der Auftrennung in 2 %iger Agarose, nochmal mit einer Silica-Membran-Säule aus der Gelmatrix aufgereinigt, in den Vektor pBSKII+ (Tab. 3) über *Xho*I und *Pst*I kloniert und in *E. coli* DH5α transformiert. Eine Selektion positiver Klone fand durch Ampicillin-Resistenz und dem Blau-Weiß-Testverfahren auf LB-Amp<sub>100</sub>-X-Gal<sub>40</sub>-IPTG<sub>12</sub>-Platten statt. Die Plasmide wurden aus 22 positiven weißen Klonen isoliert und nach Überprüfung durch einen Kontrollverdau (*XhoI/Pst*I) sequenziert. Das Ergebnis von drei Klonen zeigte, dass eine Sequenz aus der Genomposition 401800 ( $\pm$  6 Nt) bis 402191 ( $\pm$  3 Nt.) kloniert wurde. Ein Vergleich mit der Annotation von *rpsO* (NCBI Locus\_tag ACIAD0401; Position 401802-402071) und der Position des putativen Terminators (402167-402190) zeigt, dass das 3'-Ende der *rpsO* mRNA innerhalb der sRNA 394 liegt und eine Co-Transkription stattfindet.



Abb. 19: Kartierung der sRNA 394 durch CR-RT-PCR. A: Auftrennung des CR-RT-PCR-Produktes nach Amplifikation mit den Primern 347/348 in 2 %iger Agarose. Der Größenvergleich des PCR-Produktes fand mit *Pst*I-verdauten Fragmenten der  $\lambda$ DNA statt. B: Genomregion der sRNA 394 und Lage der sequenzierten Klone aus der CR-RT-PCR-Kartierung.

### 3.1.3.3 Deletion der sRNA 394

Bei einer Co-Transkription der *rpsO* mRNA und der sRNA 394 konnte nicht eindeutig bestimmt werden, ob letztere nur einen 3'-UTR von *rpsO* darstellt oder eventuell doch nach einer Prozessierung als selbstständige sRNA in *A. baylyi* ADP1 existiert. Um weitere Erkenntnisse über die Funktion der sRNA 394 zu gewinnen, wurden ADP1 Deletionsmutanten erstellt. Die Bereiche 402072-402174 (ΔsRNA 394 vor Terminator) und 402175-402292 (ΔsRNA 394 nach Terminator) wurden durch Austausch gegen eine Kan<sup>R</sup>-

Kassette im Genom von ADP1 von Véronique de Berardinis (Genoscope, Evry Cedexs, Frankreich) deletiert (26). Eine Deletion des rpsO offenen Leserahmens in ADP1 (NCBI Locus\_tag ACIAD0401; Position 401802-402071 (+)-DNA-Strang) konnte nicht erhalten werden, was als Hinweis auf die lebenswichtige Natur des Gens gewertet wird. Die Stämme ADP1 AsRNA 394 (vor Terminator) und ADP1 AsRNA 394 (nach Terminator) wurden auf ihr Wachstumsverhalten bei Anzucht in Mineralmedium mit Succinat und LB-Komplexmedium getestet. Dabei zeigte sich, bei Anzucht in Mineralmedium, ein verlangsamtes Wachstum beider Stämme im Vergleich zum Wildtyp (Abb. 20A). Jedoch machte es keinen Unterschied, ob der RNA-kodierende Bereich vor oder der nicht-kodierende Bereich nach dem Terminator deletiert war. In Komplexmedium konnte ein Unterschied im Wachstumsverhalten zwischen den beiden ADP1 AsRNA 394 Stämmen beobachtet werden. Stamm AsRNA 394 (nach Terminator) zeigte das identische Wachstumsverhalten wie der Wildtyp, was die Ergebnisse bestärkt, dass dieser Bereich keine RNA kodiert. Dagegen wirkte sich die Deletion vor dem Terminator im Vergleich zum Wildtyp negativ auf das Wachstum aus (Abb. 20B). Zusätzlich wurde das Gen der transfer-messenger RNA (Position 914849-915207 (+)-DNA-Strang) gegen die Kan<sup>R</sup>-Kassette ausgetauscht. Hier zeigten sich, sowohl bei Wachstum in Mineralmedium als auch in Komplexmedium die deutlichsten Wachstumsdefekte (Abb. 20AB). Diese waren in Komplexmedium noch stärker ausgeprägt, was auf die Funktion der tmRNA zurückzuführen sein könnte. Verkürzte mRNAs, die aufgrund einer vorzeitigen Termination der Transkription kein Stoppcodon besitzen, können Ribosomen blockieren. Um die Menge an aktiven Ribosomen aufrechtzuerhalten, besitzen alle Bakterien die tmRNA mit der Funktion blockierte Ribosomen zu erkennen. Proteolysetags mit einem Stoppcodon werden an die unvollständigen Proteine angefügt und dadurch die blockierten Ribosomen befreit (42, 62). Unter Komplexbedingungen besitzen Zellen eine sehr aktive Proteinbiosynthese, da genügend Nährstoffe vorhanden sind. Dadurch besteht die erhöhte Gefahr, dass Ribosomen durch unvollständige mRNAs öfters blockieren. Durch eine Deletion der tmRNA können diese Ribosomen nicht befreit werden und würden in der Proteinbiosynthese fehlen, was ein verlangsamtes Wachstum erklären würde.



Abb. 20: Wachstumsverlauf von ADP1-sRNA-Mutanten und dem Wildtyp in Mineral- und Komplexmedium. A: Mineralmedium mit 10 mM Succinat; B: LB-Komplexmedium; Außer dem Wildtyp wurden alle Stämme zur Selektion mit Kan<sub>25</sub> im Medium angezogen. Die Standardabweichung wurde aus drei unabhängig voneinander durchgeführten Wachstumsexperimenten ermittelt.

## 3.2 Analyse des RNA-Chaperons Hfq

Im Genom von *A. baylyi* wurde ein *hfq*-Gen annotiert (ACIAD2373), das im Vergleich zu anderen Hfq-Proteinen für ein Protein mit einem extrem verlängerten C-Terminus kodiert. Die Genomlokalisierung von *hfq* in ADP1 ist zu der, anderer  $\gamma$ -Proteobakterien, konserviert (Abb. 21).


Abb. 21: Schematische Genomorganisation von hfq und dessen Nachbargenen aus verschiedenen  $\gamma$ -Proteobakterien. Homologe Gene besitzen dieselbe Farbe.

Der Größenunterschied von A. baylyi Hfq ist auf einen extrem verlängerten C-Terminus zurückführen, in welchem das Motiv GG(G)FGGQ insgesamt 11 Mal (7X GGGFGGQ, 4X GGFGGQ, beginnend bei AA 80) hintereinander angeordnet ist. In Proteindatenbanken konnten größere Hfq-Proteine fast ausschließlich in der Familie der Moraxellaceae gefunden werden, zu der auch A. baylyi ADP1 gehört. Ähnlich ist hierbei nur die Länge des C-Terminus und die Häufigkeit von Glycin, jedoch nicht das strikte Motiv von ADP1 Hfq, welches einzigartig zu sein scheint (96). Trotz des verlängerten C-Terminus besitzt ADP1 Hfq die konservierte N-Terminale Domäne (die Identität der Aminosäuren 1-65 von Hfq zwischen E. coli und A. baylyi liegt bei 85 %), die es dem Protein erlaubt, die Struktur der Sm-Falte einzunehmen, um RNAs binden zu können. Der C-Terminus lässt aufgrund der Glycin-Häufigkeit jedoch keine kompakte Faltung zu. In diesem Projekt wurde untersucht, ob A. baylyi Hfq (174 AA), trotz seiner Größenunterschiede zu den meisten anderen Hfq-Proteinen (ca. 100 AA), in der Lage ist, Deletionseffekte anderer Hfq-Proteine zu komplementieren. Tatsächlich konnten im Falle der Expression von A. baylyi Hfq in trans in E. coli aufgetretene Zellphänotyp- und Wachstumseffekte aufgehoben werden. Des Weiteren wurde Hfq in A. baylyi Proteinrohextrakten mit Anti-Hfq-Antikörpern in der erwarteten Größe von 17 kDa nachgewiesen, was auf die Translation des großen Hfq-Proteins mit seinem verlängerten C-Terminus in vivo hin deutet. Die Deletion von hfq in A. baylyi bewirkte, wie in E. coli, Wachstums- und Zellphänotypeffekte. Hier fielen diese Effekte jedoch noch deutlicher aus, da eine A. baylyi hfq Mutante nicht mehr in der Lage war exponentiell zu wachsen und in Zellketten zu aggregieren. Eine vollständige Komplemen-

64

tation der hfq-Mutation in trans war in A. baylyi nicht möglich. Der Austausch der hfq-Mutation gegen eine C-terminal verkürzte Version von hfq im Chromosom führte zur Wiederherstellung der Wildtypeigenschaften. Somit war der C-Terminus nicht verantwortlich für diese Effekte. Northern-Blot-Studien mit den beiden Nachbargenen ergaben, dass die Deletion von hfq keinen Einfluss auf das surA-Transkript (stromabwärts von hfq auf dem gegenläufigen DNA-Strang kodiert, Abb. 21) hatte. Bei der Detektion der miaA mRNA (stromaufwärts von hfq auf demselben DNA-Strang kodiert, Abb. 21), wurden im Falle der hfq-Deletion neben miaA noch zwei weitere kleine RNAs (ca. 500 Nt) nachgewiesen. Der Nachweis des hfq-Starts innerhalb oder sogar stromaufwärts von miaA mittels RT-PCR und die Entdeckung, dass Hfq in E. coli seine eigene Transkription blockiert, könnten in Zusammenhang mit der Akkumulation dieser beiden RNAs stehen: Aufgrund der Deletion des hfq-ORF wäre kein Hfq verfügbar, jedoch der Promotor von hfq weiterhin aktiv, was zur Anhäufung von nicht-translatierter hfq RNA führen könnte. Deletionen von miaA und mutL (stromaufwärts von miaA auf demselben DNA-Strang kodiert, Abb. 21) bestätigten die Wachstums- und Zellphänotypeffekte basierend auf der hfg-Deletion. Die hier zusammengefassten Ergebnisse wurden publiziert und sind ausführlich im Anhang dokumentiert (96).

## 3.2.1 Heterologe Expression von A. baylyi ADP1 Hfq mit pET-System

Ziel dieses Projekts war es, gereinigtes *A. baylyi* Hfq-Protein zu gewinnen, um Antikörper gegen Hfq herzustellen und zusätzlich Bindungsexperimente von Hfq mit identifizierten sRNAs durchzuführen. Als Ausgangspunkt wurde der offene Leserahmen des ADP1 *hfq* Gens (NCBI Locus\_tag ACIAD2373, Position 2332553-2333077, (-)-DNA Strang) als His-Tag-Fusion für die heterologe Überexpression in Vektoren des pET-Systems (Merck, Darmstadt) kloniert. Das Gen wurde mit den Primern 232/234 und 233/234 aus chromosomaler DNA von ADP1 amplifiziert und als C-terminale His-Tag-Fusion in den Expressionsvektor pET29a und N-terminale His-Tag-Fusion in pET28a, über *Nde*I- und *Xho*I-Verdau und Ligation eingebaut. Die Erkennungssequenzen der Restriktionsenzyme *NdeI/Xho*I für die Klonierung der PCR-Produkte waren in den Primersequenzen enthalten (siehe Tab. 4). Außerdem wurden die Primersequenzen so gewählt, dass in Primer 232 das *hfq*-Stoppcodon eliminiert wurde, um den Abbruch der Translation vor der His<sub>6</sub>-Tag-Sequenz zu verhindern. Dagegen war in Primer 233 das *hfq*-Stoppcodon enthalten, um eine doppelte Fusion des His<sub>6</sub>-Tags, sowohl an das N- als auch an das C-terminale Ende von Hfq in pET28a zu vermeiden (Abb. 22). Ein weiteres Kriterium der Primersequenzen war, dass nach Verdau und Ligation, die Leseraster

von hfq und der Histidin-kodierenden Sequenz identisch waren. Die hergestellten Plasmide pET28a hfq und pET29a hfq wurden in E. coli BL21 AI<sup>TM</sup> Zellen transformiert. Dieser Stamm trägt im araB-Gen des araBAD-Operons, als chromosomale Insertion, das Gen der RNA-Polymerase des Bakteriophagen T7. Das araBAD-Operon unterliegt der Kontrolle des BAD-Promotors und wird durch Zugabe von L-(+)-Arabinose induziert und durch Zugabe von Glukose reprimiert (68). Zusätzlich sind in diesem Stamm die Proteasen Lon und OmpT deletiert, um die Proteindegradation zu erniedrigen (41). Das hfq-Gen steht nach Klonierung in pET28a und 29a, unter der Kontrolle des T7-Promotors, welcher in Abwesenheit der T7-RNA-Polymerase in E. coli nicht erkannt wird. Der LacI-Repressor (ebenfalls auf den pET-Vektoren kodiert) bindet stromabwärts des T7-Promotors an den lac-Operator (Abb. 22) und blockiert dadurch den T7-Promotor. Die Zugabe von IPTG führt zur dauerhaften Inaktivierung des LacI-Repressor, da IPTG, als künstlicher Induktor des lac-Operons, nicht von E. coli abgebaut wird. Durch Zugabe von L-(+)-Arabinose (i.T. 13,3 mM) und IPTG (i.T. 1 mM) kann auf diese Weise während des Wachstums gezielt an zwei Stellen die Expression des Hfq-His-Tag-Fusionsproteins reguliert werden. In Abbildung 22 ist die Vektorkarte von pET28a dargestellt. Im Gegensatz zu pET29a besitzt pET28a zwei His-Tags, wobei dem His-Tag in der Nähe der XhoI-Schnittstelle ein Stoppcodon folgt, um die Translation des Fusionsproteins nach dem His-Tag zu stoppen. Außerdem unterscheiden sich die MCS beider Vektoren. Die restlichen Eigenschaften von pET29a sind analog zu pET28a.



Abb. 22: Vektorkarte von pET28a mit vergrößertem Ausschnitt der multiplen Klonierungsstelle. *lacO*: LacI-Bindestelle; RBS: Ribosomenbindestelle; His<sub>6</sub>: His-Tag mit sechs aufeinander folgenden Histidinaminosäuren; *lacI*: Gen des *lac*-Repressors; pBR322 Ori: Replikationsursprung;

Das *hfq*-Gen aus ADP1 wurde erfolgreich in pET28a und pET29a kloniert und mit Hilfe der Plasmid-kodierten Kanamycin-Resistenz in *E. coli* BL21AI<sup>TM</sup> etabliert. Aus mehreren positiven Klonen wurden die Plasmide isoliert und sequenziert. Ein Vergleich aller Sequenzen mit der ADP1 *hfq*-Gensequenz zeigte bei allen Klonen immer an derselben Stelle einen Basenaustausch (T  $\rightarrow$  C, siehe exemplarisch Abb. 38 im Anhang). Durch die Sequenzierung von PCR-Produkten des *hfq*-Gens aus den beiden Laborstämmen *A. baylyi* ADP1 und BD4 (siehe Abb. 39 im Anhang) wurde festgestellt, dass sich der Basenaustausch im Genom des Laborstammes ADP1, nicht jedoch in BD4 etabliert hatte. Da es sich um eine stille Mutation handelt, die zu keinem Aminosäureaustausch führte (sowohl GGT als auch GGC kodieren die Aminosäure Glycin) und *hfq* in den Stämmen *E. coli* BL21AI<sup>TM</sup> pET29a *hfq*-1 und BL21AI<sup>TM</sup> pET28a *hfq*-1 mutationsfrei war, wurde mit diesen Stämmen weitergearbeitet. Wachstumsvergleiche mit BL21AI<sup>TM</sup> pET28a, pET28a *hfq*-1, pET29a und pET29a *hfq*-1 zeigten, dass die Überexpression von Hfq keine toxischen Auswirkungen auf die *E. coli*-Zellen hatte (Abb. 23).



Abb. 23: Wachstumsverlauf von *E. coli* BL21AI<sup>TM</sup> pET28a/pET29a mit und ohne Insertion des *hfq*-Gens. Die Zellen wurden mit LB-Komplexmedium und Kan<sub>25</sub> kultiviert und die Expression von *hfq* durch 1 mM IPTG und 13,3 mM L-(+)-Arabinose nach 2 h gestartet (siehe Pfeil).

Die C-terminale His-Tag-Fusion an Hfq (Hfq-His<sub>6</sub>) in pET29a führte zu der Expression eines Hfq Proteins mit 18 kDa, während durch eine N-terminale His-Tag Fusion an Hfq (His<sub>6</sub>-Hfq) ein 19,1 kDa Protein exprimiert wurde. Dagegen besitzt das natürliche *A. baylyi* Hfq-Protein eine Größe von 17 kDa. Zusätzlich zu der Überexpression von Hfq wurde das PcaU-His<sub>6</sub>-

Fusionsprotein aus *A. baylyi* heterolog in *E. coli* BL21AI<sup>TM</sup> mit einer Größe von 32,5 kDa überexprimiert (54). Die erfolgreiche Überexpression der His-Tag-Fusionsproteine wurde durch Auftrennung des Gesamt-Proteins in einem 12 %igen SDS-Acrylamidgel überprüft (Abb. 24). Es ist deutlich zu erkennen, dass die Fusionsproteine PcaU-His<sub>6</sub>, His<sub>6</sub>-Hfq und Hfq-His<sub>6</sub> erst nach der Induktion mit IPTG und L-(+)-Arabinose in den erwarteten Größen (32,5, 19,1 und 18 kDa) vorhanden waren.



Abb. 24: Heterologe Expression von *A. baylyi* Hfq- und PcaU-His-Tag-Fusionsproteinen in *E. coli* BL21AI<sup>TM</sup>. Auftrennung von 20  $\mu$ l Gesamt-Protein aus 150  $\mu$ l Zellsuspension vor Induktion (VI, OD<sub>600</sub> = 0,8) und aus 300  $\mu$ l Zellsuspension nach Induktion (NI, OD<sub>600</sub> = 2,2) in einem 12 %igen SDS-Acrylamidgel. Der Größenvergleich fand mit 5  $\mu$ l PageRuler<sup>TM</sup> Prestained Protein Ladder (Fermentas, St.-Leon-Rot) statt.

#### 3.2.2 Reinigung der Fusionsproteine His6-Hfq und Hfq-His6

Durch Metall-Affinitätschromatographie der His-Tag-Fusionsproteine an eine Nickel-Nitrilotriessigsäure-Matrix (Ni<sup>2+</sup>-NTA-Matrix) und anschließender Elution der gebundenen Proteine mit Imidazol, sollte Hfq bzw. PcaU (als Kontrolle) gereinigt werden. Zuvor wurden die Proteine durch Zellaufschluss isoliert. Es wurden verschiedene Verfahren für den Zellaufschluss angewendet (French-Press, Ribolyser und Ultraschall). Das beste Ergebnis wurde durch Ultraschallbehandlung erzielt. Dabei waren sowohl im Zellüberstand als auch im –sediment die drei Fusionsproteine gelöst (Abb. 25), was weder nach French-Press- noch Ribolyser-Behandlung der Fall war. Jedoch eine erfolgreiche Reinigung war nur für das Fusionsprotein PcaU-His<sub>6</sub> möglich. Obwohl im Vergleich mit den beiden Hfq-Fusionsproteinen deutlich weniger Protein im Zellüberstand gelöst war (Abb. 25), reichte hier die Menge aus, um nach Elution mit 150 bzw. 200 mM Imidazol eine distinkte Bande von PcaU-His<sub>6</sub> zu erhalten (Abb. 26A, E1+E2). Dies war für die beiden Hfq-His-Tag-Fusionsproteine nicht möglich, da sie keine Bindung an die Ni<sup>2+</sup>-NTA-Matrix aufwiesen (Daten nicht gezeigt). Stattdessen wurde die Anreicherung eines kleinen löslichen Proteins (ca. 15 kDa.) nach Zellaufschluss und während der Aufreinigung beobachtet (Abb. 26B).



Abb. 25: Zellaufschluss der *E. coli* Hfq/PcaU-Überexpressionskulturen. Coomassiegefärbtes 12 %iges Polyacrylamidgel nach der Auftrennung von 20  $\mu$ l Gesamt-Protein aus 2 ml, mit Ultraschall, aufgeschlossener Zellsuspension. Z = Zellsediment nach Ultraschallbehandlung und 30 Min Zentrifugation bei 15000 Upm und 4°C, Ü = Überstand nach Ultraschallbehandlung und Zentrifugation unter denselben Bedingungen. Der Größenvergleich fand mit 5  $\mu$ l PageRuler<sup>TM</sup> Prestained Protein Ladder (Fermentas, St.-Leon-Rot) statt.



Abb. 26: Polyacrylamid-Gelaufreinigung von His<sub>6</sub>-Hfq, Hfq-His<sub>6</sub> und PcaU-His<sub>6</sub> nach Zellaufschluss durch Ultraschallbehandlung. A+B: Auftrennung von 10  $\mu$ l Proteinsuspension aus dem Überstand (Ü), dem Zellsediment (Z), der Waschfraktion (W) bzw. nach der Elution mit 150 mM (E1) und 200 mM Imidazol (E2). B: Detektion eines löslichen kleinen Proteins (15 kDa) im Überstand nach Ultraschallbehandlung. (S): 5  $\mu$ l PageRuler<sup>TM</sup> Prestained Protein Ladder Größenstandard.

Das 15 kDa-Protein konnte sehr schlecht an die Ni<sup>2+</sup>-NTA-Matrix binden (Abb. 26 B). Es wurde untersucht, ob dieses Protein ein Abbauprodukt des Hfq-His-Tag-Fusionsproteins ist, da ersteres an- und letzteres abgereichert wurde (Abb. 26 B). Eine Western-Blot-Analyse mit Anti-His-Tag-Antikörpern sollte diese Fragestellung klären. Die Spezifität der Antikörper wurde mittels Zellsuspension vor und nach der Induktion getestet. Beide Hfq-His-Tag-Fusionsproteine konnten erst nach Induktion mit den Anti-His-Tag-Antikörpern detektiert werden (Abb. 27). Dabei wurden dieselben Größen der Fusionsproteine, wie bereits zuvor bei der Coomassie-Färbung der Proteine in Zellextrakten (Abb. 24), ermittelt. Außerdem konnten beide Hfq-His-Tag-Fusionsproteine mit den Antikörpern nach Ultraschallbehandlung sowohl löslich im Überstand als auch unlöslich im Zellsediment nachgewiesen werden (Abb. 27). Das 15 kDa-Protein dagegen konnte nicht mit den Anti-His-Tag-Antikörpern detektiert werden.



Abb. 27: Detektion der Fusionsproteine His<sub>6</sub>-Hfq und Hfq-His<sub>6</sub> mit Anti-His-Tag-Antikörpern. Auftrennung von 20 µl Zell- (VI/NI) bzw. Proteinsuspension (Ü/Z) in 12 %igem SDS-Acrylamid und Transfer auf eine Nitrocellulosemembran. VI = Vor Induktion und NI = nach Induktion mit IPTG (i.T. 1 mM) und L-(+)-Arabinose (i.T. 13,3 mM). Ü = Überstand und Z = Zellsediment nach Ultraschallbehandlung. S = Größenstandard PageRuler<sup>TM</sup> Prestained Protein Ladder.

Die Proteinbanden der Proteine His<sub>6</sub>-Hfq und Hfq-His<sub>6</sub> sowie die korrespondierenden Banden der 15 kDa-Proteine, die während der Überexpression der His-Tag-Fusionsproteine auftraten, wurden aus einem 12 %igen SDS-Polyacrylamidgel eluiert und mittels MALDI-TOF-Analyse in Kooperation mit Melanie Brocker (Institut für Biochemie, Forschungszentrum Jülich GmbH, Jülich) identifiziert. Die eluierten Proteine wurden in einem Trypsin-Verdau in Peptide fragmentiert, wobei Trypsin die Peptidbindungen von Arginin und Lysin C-terminal spaltet. Die entstandenen Fragmente des Trypsin-Verdaus und die tatsächlich detektierten Peptidfragmente der MALDI-TOF-Analyse von Hfq-His<sub>6</sub> und His<sub>6</sub>-Hfq sind aus dem Anhang zu entnehmen (Tab. 10 und Tab. 11). Beide Hfq-His-Tag-Fusionsproteine konnten zweifelsfrei als *A. baylyi* Hfq identifiziert werden. Dagegen war eine Identifizierung der Fragmente der 15 kDa-Proteine nicht möglich. Ein Vergleich der MALDI-TOF-Spektren aller vier Proteine (Abb. 40 im Anhang) ergab, dass sich die Spektren der beiden Hfq-His-Tag-Fusionsproteine wie erwartet aufgrund der entstehenden Fragmente voneinander unterschieden. Dasselbe war auch bei den Spektren des Hfq-His-Tag-Fusionsproteine (aus der Hfq-Überexpression) waren identisch, woraufhin angenommen werden kann, dass es sich um die gleichen Proteine handelte. Diese waren keine Abbauprodukte der *A. baylyi* Hfq-His-Tag-Fusionsproteine. Ein Abgleich der Fragmente der 15 kDa-Proteine mit Proteindatenbanken von *A. baylyi, E. coli* und des Menschen zeigte keine signifikanten Übereinstimmungen.

### 3.2.3 Epitop-Markierung chromosomaler Gene in A. baylyi ADP1

Aufgrund der steigenden Anzahl an sequenzierten und annotierten Genomdaten von immer mehr Organismen, werden klassische genetische Methoden zur Identifizierung von Genen und deren Funktionen, wie die Transposon-Mutagenese, durch gezielte moderne Verfahren wie z.B. das chromosomale Anfügen eines Epitops an Gene, ersetzt. Hierbei kann mit Hilfe einer PCR-Technik ein chromosomales Gen sowohl inaktiviert (25), als auch dessen Genprodukt durch ein Peptid-kodierendes Epitop markiert werden (116). Das Verfahren beruht auf der Integration eines PCR-Fragments, das aus einem Antibiotika-Resistenzgen mit FRT-Stellen, einer Gensequenz eines kleinen Peptids (z.B. FLAG-TAG: N-DYKDDDDK-C) und homologen kleinen DNA-Sequenzen (zu chromosomaler DNA-Zielsequenz) an beiden Enden, besteht. Die FRT-Stellen (<u>Flp Recombinase Target</u>) dienen zur Markierung verschiedener Gene, da diese Stellen von dem Protein Flp erkannt und das dazwischen liegende Gen ausgeschnitten werden kann (52). Dadurch können in einem Stamm verschiedene Gene nacheinander mit unterschiedlichen Epitopen markiert werden.

Bei der Integration linearer dsDNA, wird diese in Bakterien durch die Exonuklease des RecBCD-Komplexes an den Enden in ssDNA prozessiert und durch homologe Rekombination über RecA ins Chromosom integriert (107). Dabei ist die Länge der homologen Bereiche des DNA-Fragments entscheidend. Für *Acinetobacter baylyi* wurde eine effiziente Integration bei homologen Bereichen ab 200 bis 400 Nt beschrieben (83). Um

diesen Bereich zu verringern, verwendet das Verfahren des Epitop-Anfügens nach Uzzau *et al.* 2001 eine Rekombination durch das Bakteriophagen- $\lambda$ -System. Dadurch kann eine effiziente Rekombination bereits bei homologen Bereichen zwischen 35 und 50 Nt erreicht werden (22). Entscheidend hierfür sind die *red*-Gene *exo*, *bet* und *gam* von  $\lambda$ . Exo ist eine 5'-3'-Exonuklease, die 5'-Enden linearer DNA abbaut. Bet ist ein ssDNA-bindendes Protein das, an von Exo-geschnittene, 3'-Enden bindet und dadurch die Anlagerung an komplementäre DNA fördert. Gam bindet an den RecBCD-Komplex der Wirtszelle und inhibiert dessen Exonukleaseaktivität (65, 79, 86, 132). In diesem Projekt wurde dieses Verfahren für *A. baylyi* etabliert. Abbildung 28 zeigt die Strategie des Verfahrens. Ziel war es, ein 3x FLAG-Tag an verschiedene Positionen von *A. baylyi hfq* zu integrieren.



Abb. 28: Strategie für das Anfügen eines Epitops an Gene modifiziert nach Uzzau *et al.*, 2001. Eine Genkassette aus einem Antibiotikaresistenzgen (hier  $kan^R$ : Kanamycin), zwei FRT-Stellen, einer Peptidsequenz (hier FLAG-Tag) wird mit Primern die homologe Sequenzen zu Bereichen vor (Primer 1) und nach (Primer 2) der Insertionsstelle des Tags bzw. der Kassette besitzen, amplifiziert. Das PCR-Konstrukt wird in Bakterien transformiert und über das Rekombinationssystem des Bakteriophagen  $\lambda$  (*red*-System) in das entsprechende Zielgen im Chromosom integriert. Dadurch werden Gene deletiert oder wie hier abgebildet die kodierten Proteine markiert.

### 3.2.3.1 Etablierung des Plasmids pKD46 in A. baylyi ADP1

Das A. baylyi Hfq-Protein besitzt das Sm- und das Glycin-Motiv (hfq Nt 1-195 bzw. Nt 240-456, Abb. 29). Um die Funktionalität dieser Motive zu untersuchen, wurden verschiedene PCR-Konstrukte mit den Primerpaaren 294/295, 296/297, 364/367 (Tab. 4), und mit der Plasmid-DNA von pSUB11 als PCR-Matrize, amplifiziert. Das Plasmid pSUB11 trägt die Kanamycinkassette mit einem 3x-FLAG-Tag und wurde freundlicherweise von Lionello Bossi (Centré de Génétique Moléculaire, Gif-Sur-Yvette Cedex, Frankreich) zur Verfügung gestellt. Durch natürliche Transformation und homologer Rekombination sollten drei PCR-Konstrukte an die entsprechenden Positionen in *A. baylyi hfq* integriert werden (Abb. 29). Nach der erfolgreichen Integration würde aufgrund des zweifachen Stoppcodons am Ende des 3xFLAG-Tags die Translation an der Stelle beendet werden, an welcher der Tag inseriert wurde. Zur Kontrolle, ob der FLAG-Tag generell die Funktionalität von Hfq beeinflusst, wurde dieser auch vor das natürliche Stoppcodon von *A. baylyi hfq* integriert.



Abb. 29: Aufbau des *A. baylyi hfq*-Gens mit der Lage des Sm- und Glycin-Motivs, sowie der Insertionsstellen der 3xFLAG-Tag-Konstrukte. Angegeben sind die drei Positionen, an denen die 3xFLAG-Konstrukte in das *hfq*-Gen inseriert wurden und die für die Amplifikation der Konstrukte verwendeten Primerpaare.

Trotz der hohen Frequenz zur natürlichen Transformation von ADP1 (56) scheiterte der Versuch, die drei PCR-Konstrukte mit ihren jeweils 35 Nt-homologen Sequenzen zu hfg direkt zu transformieren und etablieren. Daher wurde die Rekombination über Gene des Bakteriophagen  $\lambda$  (*red*-System) vermittelt. Diese sind auf dem Plasmid pKD46 (25) kodiert, welches freundlicherweise von Jörg Vogel (Max-Planck-Institut für Infektionsbiologie, RNA Biologie, Berlin) zur Verfügung gestellt wurde. Kontrolliert wird das red-System durch den Arabinose-Promotor PBAD, der durch L-(+)-Arabinose induziert (siehe 3.2.1) und durch AraC inaktiviert wird. Das Plasmid trägt zudem einen temperatursensitiven Replikationsursprung und eine Ampicillin-Resistenz (Abb. 30). Zuerst wurde das Plasmid pKD46 mittels Elektroporation in A. baylyi übertragen und erfolgreich durch Wachstum auf Mineralmedium mit Succinat und Amp<sub>200</sub> etabliert.



Abb. 30: Vektorkarte von pKD46: *gam, bet, exo* =  $\lambda$ -*red*-Gene; *PBAD*: Promotor des Arabinose-Operons, *araC* = *PBAD*-Repressorgen; oriR101 repA101ts = temperatursensitiver ORI, *amp*<sup>*R*</sup>: Ampicillinresistenzgen

#### 3.2.3.2 Integration von FLAG-Tag-Epitopen in ADP1 Hfq

Der Stamm ADP1 pKD46 wurde in LB-Medium mit Amp200 und 20 mM L-(+)-Arabinose bis zu einer OD<sub>600</sub> von ca. 0,5 bei 30 °C kultiviert. Dabei ist das  $\lambda$ -red-Rekombinationssystem aktiv. Die Zellen wurden nach dem Zentrifugieren (5000 Upm für 10 Min, 4 °C) dreimal mit eiskaltem Glyzerin (10 % v/v) gewaschen bevor 40 µl dieser kompetenten Zellen mit 2 µl eines 3x-FLAG-Konstruktes (siehe 3.2.3.1 Abb. 29) aus einer 50 µl PCR-Reaktion für eine Elektroporation eingesetzt wurden. Anschließend erholten sich die Zellen für zwei Stunden bei 37 °C in LB-Medium. Vor der Selektion positiver Klone wurden die Zellen kurz 42 °C wobei das Plasmid pKD46 aufgrund des temperatursensitiven ausgesetzt, Replikationsursprungs verloren ging. Anschließend wurden sie über Nacht bei 30 °C auf Selektivplatten (MM + Succinat + Kan<sub>6</sub>) übertragen. Als Kontrollen wurden die kompetenten Zellen in einer separaten Elektroporation mit 1 µl einer Plasmidpräparation von pRK415 hfq Plac transformiert. Es fand hier eine Inkubation über Nacht auf MM-Platten mit Succinat und Tet<sub>12.5</sub> bei 30 °C statt. Nach der Transformation mit pRK415 hfq Plac entstanden über 1000 Klone. Dagegen wurden nach der Transformation mit den 3x-FLAG-Konstrukten nur wenige Klone erhalten. Letztere stellten sich nach einer Überprüfung durch eine Kolonie-PCR mit den Primern 266/267 leider als negativ heraus (Bindungsstellen der Primer: ca. 600 Nt stromauf- und 800 Nt stromabwärts von ADP1 hfq, siehe Tab. 4). Somit ist anzunehmen, dass trotz des  $\lambda$ -red-Rekombinationssystems die homologen Bereiche für eine Insertion ins Chromosom von ADP1 zu klein waren.

Daher wurde *E. coli* als Zwischenwirt für die Insertion eines 3x-FLAG-Tags in ADP1 *hfq* eingeführt. Zuerst musste das Plasmid pKD46 in dem Stamm *E. coli* DH5 $\alpha$  pRK415 *hfq Plac* etabliert werden. Dieser Stamm trägt in dem Plasmid pRK415 eine Insertion aus der Genregion um *hfq* aus ADP1 (96). Ziel war es, *hfq* nicht chromosomal (Abb. 29), sondern auf dem Plasmid pRK415 *hfq Plac* in *E. coli* mit dem 3x-FLAG-Tag zu versehen und diese Genregion über natürliche Transformation in ADP1 zu etablieren. In Abbildung 31 ist die Vektorkarte von pRK415 *hfq Plac* mit den wichtigsten Merkmalen vor und nach Insertion des 3x-FLAG-Konstruktes dargestellt. Positive *E. coli* Klone wurden durch einen *Hind*III-Verdau überprüft. Das 3x-FLAG-Konstrukt konnte durch XmnI und *ClaI* aus dem Plasmid geschnitten (Abb. 31) und anschließend aus einem Agarosegel extrahiert werden. Das gereinigte Fragment wurde durch natürliche Transformation in ADP1 eingebracht. Mit dieser Strategie war es möglich einen 3x-FLAG-Tag mit doppeltem Stoppcodon an das *hfq*-3'-Ende vor dessen eigenem Stoppcodon (ADP1 *hfq*-3x-FLAG-Stopp), zu Beginn des Glycin-Motivs (ADP1 *hfq*-3x-FLAG-Glycin) und innerhalb des Sm-Motivs von *hfq* (ADP1 *hfq*-3x-FLAG-Sm) zu integrieren.



Abb. 31: Vektorkarte von pRK415 *hfq Plac* vor und nach Insertion des 3xFLAG-Tags und der Kanamycin-Kassette. oriV: vegetativer Replikationsursprung zur Vermehrung des Plasmids mit niedriger Kopienzahl (84); oriT: Replikationsursprung für die Weitergabe des Plasmids durch Konjugation; *traJ*: oriT-bindendes Protein (135); *tetA/tetR*: Tetracyclin-Resistenzgen und Repressor (24); *lacZa*:  $\alpha$ -Fragment der  $\beta$ -Galaktosidase; *miaA*: Gen der tRNA-Isopentenyl-Pyrophosphat-Transferase aus ADP1; *hfq*: Gen des Host Factor Q aus ADP1; *surA*: Gen der Peptidyl-Prolyl-*Cis-Trans*-Isomerase aus ADP1; 3x-FLAG und Kan-Kassette aus pSUB11 (116)

Die drei ADP1 3x-FLAG-Mutanten wurden hinsichtlich ihres Wachstumsverhaltens und des Zellphänotyps untersucht. Es zeigte sich, dass eine Insertion eines 3x-FLAG-Tags in den offenen Leserahmen (ORF) von *hfq* zu einem veränderten Wachstumsverhalten des Stammes,

im Vergleich zum Ausgangsstamm ADP1, in Mineralmedium führte (Abb. 32). Es waren jedoch keine Unterschiede zwischen der Insertion des 3x-FLAG-Tags an das N-Terminale Ende von Hfq oder vor dessen Glycin-Motiv zu erkennen (Abb. 32). Jedoch resultierte aus dem Anfügen des 3x-FLAG-Tags in das Sm-Motiv vor der Aminosäure 50 ein ähnliches Wachstumsverhalten, wie bei einem ADP1 Stamm mit vollständig-deletiertem *hfq*-ORF (96). Diese Beobachtung lässt die Vermutung zu, dass die C-terminale Proteindomäne für ein normales Wachstum von ADP1 nicht entscheidend ist, was ebenfalls durch die Deletion des Glycin-Motivs mittels Overlap-Extension-PCR bestätigt wurde (96).



Abb. 32: Wachstumsverhalten von ADP1 3x-FLAG-Hfq-Mutanten in Mineralmedium mit 10 mM Succinat. Die 3x-FLAG-Hfq-Mutanten wurden mit und der ADP1-Ausgangsstamm ohne Kan<sub>25</sub> kultiviert. Die Standardabweichung wurde aus drei unabhängig voneinander durchgeführten Wachstumsversuchen ermittelt.

Eine Ursache für das veränderte Wachstumsverhalten der 3x-FLAG-Mutanten könnte die Tatsache sein, dass aufgrund der Insertion der 24 Aminosäuren des 3x-FLAG Peptids Probleme bei der Komplexierung der Hfq-Monomere auftreten könnten. Es ist noch nicht geklärt, ob *A. baylyi* Hfq trotz seines C-Terminus als Hexamer aggregiert und inwiefern der C-Terminus an der Aggregation beteiligt ist. Um Hinweise darauf zu erhalten, ob durch das Anfügen des Flag-Tags die Komplexierung von Hfq gestört wird, oder ob die Funktionalität des Proteins per se beeinflusst wird, wurden die Plasmide pRK415 *hfq*-3x-FLAG-Stopp und pRK415 *hfq*-3x-FLAG-Glycin über Konjugation in den Stamm ADP1 eingebracht. Dadurch

sollten Mutanten erzeugt werden, die sowohl ein normales, im Chromosom kodiertes als auch ein verändertes, *in trans* kodiertes Hfq-Protein (mit 3x-FLAG-Peptid) exprimieren. Die Mutanten wurden nach der Konjugation auf MM mit Succinat, Tet<sub>6</sub> und Kan<sub>6</sub> bei 30 °C inkubiert und durch eine Kolonie-PCR mit den Primern 2/3 und 4/5 (96) verifiziert. Diese Primer binden im *qui-pob*-Operon von ADP1, welches Stoffwechselgene für den Aromatenabbau kodiert, die in *E. coli* fehlen. Tatsächlich zeigte sich hier, dass diese Stämme dasselbe Wachstumsverhalten wie der Wildtyp aufwiesen (Abb. 33). Somit liegt die Vermutung nahe, dass durch Einfügen des 3x-FLAG-Tags die Funktionalität von Hfq erhalten bleibt.



Abb. 33: Wachstumsverlauf von ADP1-3x-FLAG-Hfq-Konjuganten und dem Ausgangstamm. Die Kulturen wurden mit Mineralmedium und Succinat kultiviert. Zusätzlich wurden die 3xFLAG-Hfq-Konjuganten zur Selektion mit Kan<sup>6</sup> + Tet<sup>6</sup> inkubiert. Die Standardabweichung wurde aus drei separaten Wachstumsversuchen mit den Stämmen ermittelt.

Die Deletion des vollständigen hfq ORF führte zu einem drastischen Wachstumsdefekt, der durch Komplementation *in trans* von dem Plasmid pRK415 hfq Plac nicht komplett aufgehoben werden konnte und bei Überexpression von hfq nicht auftrat (96). Da der Stamm ADP1 hfq-3x-FLAG-Sm den gleichen Wachstumsphänotyp wie ADP1  $\Delta hfq$  zeigte, wurde das Plasmid pRK415 hfq Plac in ADP1 hfq-3x-FLAG-Sm konjugiert. Wachstumsversuche mit den Stämmen ADP1, ADP1 hfq-3x-FLAG-Sm pRK415 hfq Plac und ADP1 hfq-3x-FLAG-Sm zeigten, dass nach der Konjugation des Plasmids das Wachstumsverhalten des Wildtyps wiederhergestellt wurde (Abb. 34). Zudem wurde beobachtet, dass der Zellphänotyp der Kettenbildung von ADP1, welcher in den Stämmen ADP1 *hfq*-3x-FLAG-Stopp, *hfq*-3x-FLAG-Glycin und *hfq*-3x-FLAG-Sm nicht auftrat, nach Konjugation von pRK415 *hfq Plac* wiederum beobachtet werden konnte (Abb. 35). Diese Ergebnisse stützen die Vermutung, dass die in dieser Arbeit untersuchten Effekte auf das Wachstumsverhalten und den Zellphänotyp von ADP1, ausschließlich durch die Veränderung des *hfq* ORF hervorgerufen werden. Somit sind keine sekundären Effekte auf andere Gene z.B. das stromaufwärts gelegene Nachbargen *miaA* dafür verantwortlich [siehe auch (96)].



Abb. 34: Wachstumsverhalten von *hfq*-3x-FLAG-Mutanten mit und ohne Überexpression von *hfq in trans*. Die Zellen wurden in Mineralmedium und Succinat kultiviert. ADP1 wurde ohne Antibiotika, ADP1 pRK415 *hfq* mit Tet<sub>6</sub>, ADP1 *hfq*-3x-FLAG mit Kan<sub>25</sub> und ADP1 *hfq*-3x-FLAG-Sm pRK415 *hfq Plac* mit Tet<sub>6</sub> und Kan<sub>25</sub> kultiviert. Die Standardabweichung wurde aus drei unabhängigen Wachstumsexperimenten ermittelt.



Abb. 35: Zell-Morphologie von A. baylyi ADP1 und Stämmen mit verändertem hfq bei 100x Vergrößerung im Mikroskop. A. ADP1-Zellen aggregieren in Ketten. B. Zellen, in denen ein 3xFLAG-Tag an verschiedene Positionen in hfq inseriert wurde, können nicht mehr in Ketten aggregieren. Representativ für diesen Phänotyp sind Zellen des Stammes ADP1 hfq-3x-FLAG-Sm dargestellt. C. Zellen, in denen sowohl ein 3xFLAG-Tag in hfq inseriert und gleichzeitig das natürliche hfq-Gen überexprimiert wurde (Stamm ADP1 hfq-3x-FLAG-Sm pRK415 hfq Plac), aggregieren erneut in Ketten.

## 4. Diskussion und Bewertung der Ergebnisse

#### 4.1 Klonierung einer cDNA-Bank

In der vorliegenden Arbeit wurde eine cDNA-Bank aus dem Transkriptom des Bodenbakteriums Acinetobacter baylyi ADP1 erstellt. Ausgangspunkt der cDNA-Synthese war ein Größenbereich des Transkriptoms von ADP1, der aufgrund folgender Kriterien zwischen ca. 130 und 500 Nt gewählt wurde. Kleine bekannte RNAs, wie prozessierte tRNAs (73-93 Nt, ca. 15 % der Gesamt-RNA einer Zelle) oder die 5S rRNA (120 Nt), wurden somit von der Klonierung ausgeschlossen, jedoch größere sRNAs wie z.B. Escherichia coli CsrB (369 Nt) oder Staphylococcus aureus RNAIII (512 Nt) nicht (8, 13). Um die hohen Kosten zu reduzieren, wurden Klone vor der Sequenzierung in verschiedenen Testverfahren hinsichtlich ihrer Abstammung von rRNA (immerhin 80 % der Gesamt-RNA einer Zelle) überprüft. Nach der Sequenzierung eines Teils der cDNA-Bank (ca. 6 %) stellte sich heraus, dass sehr kleine RNA-Moleküle meist unter 50 Nt hauptsächlich aus der 5'-Region der 23S rRNA kloniert wurden. Die Größe der cDNA-Insertionen könnte durch Degradation der RNA während der Herstellung der cDNA-Bank erklärt werden. Wegen der geringen Größe der cDNAs war das Screening der cDNA-Klone mit Hilfe radioaktiv-markierter Sonden deutlich erschwert. Ein weiteres Problem der cDNA-Bank lag jedoch nicht nur in der Größe der cDNAs, sondern auch an der Häufigkeit von rRNA-Fragmenten in der cDNA-Bank (82 % der sequenzierten Klone).

In einem ähnlichen Ansatz entfernten Sonnleitner *et al.* 2008 vor der Reinigung der RNA die Ribosomen aus dem Transkriptom von *Pseudomonas aeruginosa* durch Zentrifugation. Zusätzlich wurde das Transkriptom vor der Klonierung durch Immunopräzipitation mit gereinigtem Hfq aus *P. aeruginosa* behandelt. Mit Hilfe dieser beiden Strategien stammten lediglich 15 % von 400 sequenzierten Klonen von rRNA-Fragmenten ab (105). Dabei ist jedoch nicht eindeutig geklärt, ob die Abreicherung der rRNAs mit dem Entfernen der Ribosomen oder der Immunopräzipitation in Verbindung steht. Aufgrund der Tatsache, dass die Reinigung von *A. baylyi* Hfq mittels His-Tag-Affinitätschromatographie während dieser Arbeit leider nicht möglich war (siehe 4.3), konnte eine Immunopräzipitation von Hfq und dem Transkriptom aus *A. baylyi* vor der cDNA-Klonierung nicht durchgeführt werden.

Eine andere Alternative, die in den letzten Jahren verstärkt statt der cDNA-Klonierung ange-

wendet wird, ist das Pyro-Sequenzieren (29, 99, 101). Hierbei wird die cDNA des Transkriptoms ohne Klonierung direkt sequenziert (74). Dadurch wird gleichzeitig das Risiko einer RNA-Degradierung minimiert. Dieses Verfahren beruht auf der abwechselnden Zugabe von unterschiedlichen Nukleotiden zu einer DNA-Synthese-Reaktion. Bei dem Einbau eines passenden Nukleotids wird Pyrophosphat frei, das durch die ATP-Sulfurylase in ATP umgesetzt wird. Letzteres stellt die Energiequelle einer Luziferase dar, die den erfolgreichen Einbau des Nukleotids in ein detektierbares Lichtsignal umwandelt. Bei einem unpassenden Nukleotid wird kein Lichtsignal frei, und so kann die Sequenzierung an Hand der Nukleotide und der Lichtsignale während der DNA-Synthese direkt dokumentiert werden. Weitere Vorteile dieses Verfahrens sind die Zeitersparnis und die große Anzahl an erhaltenen Sequenzen. In dieser Arbeit, konnte aufgrund des finanziellen Aufwands, die Pyro-Sequenzierung des ADP1-Transkriptoms jedoch nicht verfolgt werden.

# 4.2 In silico-Analyse von sRNAs aus intergenen Regionen

Ein kostengünstiger Ansatz zur Identifizierung von sRNAs ist die *in silico*-Vorhersage von Genen aus intergenen Regionen. Auch dieses Verfahren wurde bereits mehrfach zur Identifizierung von neuen sRNAs angewendet (4, 7, 70, 121). Dabei werden Nukleotidsequenzen aus intergenen Regionen verwandter Spezies in BLAST-Analysen auf ihre Konserviertheit überprüft. Zusätzliche Kriterien, sowohl auf Sequenz- als auch auf Strukturebene, helfen dabei, die identifizierten konservierten Regionen nach sRNA-Kandidaten zu filtern. Auf Sequenzebene ist die Suche nach Promotor- und Terminatorbereichen mit einem Abstand von 50 bis 500 Nukleotiden (abgeleitet aus der Größe bisher beschriebener sRNAs) zueinander, ein geeignetes Kriterium für die Suche nach sRNAs. Promotorsequenzen in *A. baylyi* sind noch weitgehend unerforscht und konnten somit nicht in intergenen Regionen vorhergesagt werden. Jedoch war mit der Software TransTermHp (63) die Vorhersage von Rho-unabhängigen Terminatorstrukturen im Genom von *A. baylyi* möglich.

Auf Strukturebene ist das Kriterium der thermodynamischen Stabilität von Sekundärstrukturen innerhalb konservierter Regionen, welches in der Software RNAz (123) implementiert ist, hilfreich. Eddy und Kollegen berichteten im Jahr 2000, dass eine thermodynamische Sekundärstruktur einer sRNA sich im Energiegehalt nicht signifikant von möglichen Sekundärstrukturen einer Zufallssequenz unterscheidet (90). Sie programmierten daher die Software QRNA (89), mit der nach kompensatorischen Basenaustauschen gesucht werden kann. Hierbei bleiben trotz Mutationen die Strukturen zweier konservierter Sequenzen erhalten. Beide Ansätze, die Bewertung von thermodynamischen Stabilitäten und kompensatorischen Basenpaaren, wurden auf Strukturebene als Kriterien für die Vorhersage von ADP1 sRNAs verwendet.

In Zusammenarbeit mit Björn Voss (Institut für Genetik und Experimentelle Bioinformatik, Universität Freiburg) und Brian Tjaden (Department of Computer Science, Wellesley College, Wellesley, USA) wurden für ADP1 zwei unterschiedliche sRNA-Vorhersagen erstellt. In der Vorhersage von Björn Voss war es möglich, aus den Genomen von A. baylyi ADP1 (NCBI RefSeq Id NC\_005966) und A. baumannii ATCC17978 (NCBI\_RefSeq Id NC\_009085) durch BLASTN-Analysen und mit Hilfe von RNAz, 481 konservierte Genloci mit thermodynamisch-stabilen sRNAs vorherzusagen. In Zusammenarbeit mit Brian Tjaden wurden von einem ähnlichen Verfahren ausgehend durch BLASTN-Analysen der Genome der neun γ-Proteobakterien Acinetobacter baylyi ADP1, A. baummannii ATC17978 (NCBI RefSeq Ids NC\_005966 und NC\_009085), Psychrobacter arcticus (NCBI RefSeq Id NC\_007204), Pseudomonas aeruginosa, P. putida W619, P. fluorescens SBW5, P. syringae pv. tomato DC3000 (NCBI RefSeq Ids NC\_002516, NC\_010501, NC\_012660 und NC\_004578), Shewanella oneidensis MR-1 und S. denitrificans OS217 (NCBI RefSeq Ids NC\_004347, NC\_007954) konservierte Regionen identifiziert. In Verbindung mit einer Strukturanalyse möglicher kompensatorischer Basenpaare durch ORNA und Terminatorvorhersagen durch TransTermHp innerhalb dieser Regionen erhielten wir letztendlich 59 sRNA-Genloci. Davon waren 28 Kandidaten in beiden Vohersagen enthalten.

Der Nachweis von sRNAs fand unter verschiedenen Bedingungen statt, um die Wahrscheinlichkeit der Expression dieser Moleküle zu erhöhen. Dabei wurden Expressionsdaten bekannter sRNAs z.B. verstärkte Expression von DsrA bei Temperaturerniedrigung oder von RyhB bei Eisenmangel herangezogen (75, 102). Der Nachweis von 12 sRNAs aus der Analyse von Brian Tjaden war negativ (ca. 20 % der Vorhersage). Dagegen konnten aus der Vorhersage von Björn Voss zwei kleine RNAs aus 14 Kandidaten identifiziert werden. Ein Vergleich beider Vorhersagen ergab, dass konservierte bekannte sRNAs, u.a. die 6S RNA, die bereits in ADP1 nachgewiesen wurde (94), nur in der Vorhersage von Björn Voss enthalten waren. Die 6S RNA wurde aufgrund des Mangels an kompensatorischen Basenaustauschen von Brian Tjaden nicht vorhergesagt. Aber auch der Mangel an Sequenzkonservierung kann dazu führen, dass potentielle sRNA-Kandidaten nicht vorhergesagt werden. BLASTN-Analysen der intergenen Regionen der neun  $\gamma$ -Proteobakterien verdeutlichten, dass eine starke Sequenzkonservierung nur auf Gattungsebene zu sehen ist. Zum Beispiel zeigten Vetreter der Gattungen *Psychrobacter* und *Acinetobacter* kaum gemeinsame Sequenzen in intergenen Regionen trotz ihrer Zugehörigkeit zur Familie der *Moraxelaceae* (Abb. 36).



Abb. 36: Genom-BLAST-Analyse intergener Regionen aus neun nah-verwandten  $\gamma$ -Proteobakterien (modifiziert nach Björn Voss). Zu sehen sind, an Hand der Säulen, die Anzahl gemeinsamer intergener Bereiche zweier miteinander verglichener Bakterien.

Im weiteren Verlauf dieser Arbeit wurden die sRNAs Aar und 394 identifiziert und untersucht. Allerdings soll hier nicht weiter auf Aar eingegangen werden [siehe dazu (95)]. Untersuchungen zur sRNA 394 ergaben, dass die Größe aus der Vorhersage nicht mit der detektierten RNA korrelierte. Für das Gen *rpsO* und für die sRNA 394 konnte nur eine putative Terminatorstruktur innerhalb des Gens der sRNA 394 vorhergesagt werden. Aus diesem Grund musste von einer gemeinsamen Transkription beider Gene ausgegangen werden. Letztendlich bestätigten die Kartierungen des 5'- und 3'-Endes der sRNA 394 diese

Vermutung, da nur ein Transkript aus dem Genombereich 401800-402191 kartiert wurde. Somit scheint es, dass die sRNA 394 einen 120 Nt langen 3'-nicht translatierten Bereich (3'-UTR) der mRNA *rpsO* (Genomposition 401802-402071) darstellt. Das Gen *rpsO* kodiert das ribosomale Protein S15, einen Bestandteil der 30S Ribosomenuntereinheit der Zelle, welche an der Proteinbiosynthese beteiligt ist. In *E. coli* bilden *rpsO* und *pnp* ein gemeinsames Operon. Letzteres kodiert die Exonuklease PNPase. Das Co-Transkript beider Gene wird durch verschiedene initiale Schnitte der beiden Endonukleasen RNase E und RNase III in der Region zwischen der *rpsO*-kodierenden Sequenz und dessen Terminator gespalten. Anschließend wird die *rpsO* mRNA durch die Exonuklease PNPase vollständig degradiert. Die Funktion des langen 3'-UTR wird in diesem Zusammenhang mit dem Schutz der mRNA *rpsO* vor dem exonukleolytischen Angriff der PNPase in Verbindung gebracht (47). In *A. baylyi* ist *rpsO* ebenfalls stromaufwärts von *pnp* auf demselben DNA-Strang kodiert. Die lässt die Schlussfolgerung zu, dass der lange 3'-UTR von *rpsO* in *A. baylyi* ebenfalls vor dem Abbau der mRNA durch Exonukleasen schützt.

An Hand der Deletion dieses 3'-UTRs sollte untersucht werden, wie wichtig dieser Bereich ist. Verschiedene Deletionen in dieser Stelle führten zu keinem veränderten Wachstumsverhalten auf Mineralmedium im Vergleich zum Wildtyp. Bei Wachstum auf Komplexmedium, führte die Deletion stromaufwärts des Terminators von *rpsO* (innerhalb des 3'-UTRs) jedoch zu einer verminderten Wachstumsrate, die Deletion stromabwärts dagegen nicht. Hier zeigte sich, dass dieser Bereich eine wichtige Funktion besitzt. Ein Vergleich mit der Deletion der tmRNA, die wie das Protein S15 an der Proteinbiosynthese der Zelle, in diesem Fall an der Befreiung blockierter Ribosomen beteiligt ist (62), zeigte sowohl auf Mineral- als auch auf Komplexmedium stärkere Wachstumsreffekte mit deutlich niedrigeren Wachstumsraten.

Expressionstudien der sRNA 394 ergaben, dass während des exponentiellen Wachstums von *A. baylyi* diese RNA stark und während der stationären Phase deutlich schwächer nachweisbar ist. Daraus lassen sich Hinweise auf eine starke Expression von Bestandteilen der Translationsmaschinerie der Zelle, sprich auf das Protein S15, während der exponentiellen Phase ziehen. Außerdem konnte keine Prozessierung der RNA nachgewiesen werden, woraus auf eine eigenständige Funktion dieser RNA geschlossen werden kann. Alle diese Ergebnisse deuten darauf hin, dass es sich bei der sRNA 394 um einen langen 3'-UTR von *rpsO* handelt.

Die Größe der detektierten RNA 394 korrelierte nicht mit der Größe eines Co-Transkripts aus *rpsO* und *pnp* (2615 Nt). Außerdem wurde das 3´-Ende der sRNA 394 bzw. der mRNA *rpsO* (Genomposition 402191) deutlich stromaufwärts des *pnp*-ORF-Starts (Genomposition 402324) kartiert. Es ist daher anzunehmen, dass in *A. baylyi* und in *E. coli* dieser Genbereich unterschiedlich transkribiert wird.

# 4.3 Heterologe Expression und Reinigung von A. baylyi Hfq

Dieses Projekt sollte bei der Charakterisierung des *A. baylyi*-Proteins Hfq und der sRNA Aar helfen. Das gereinigte Hfq-Protein stellte die Vorstufe für die Herstellung von Anti-Hfq-Antikörper zum Nachweis des Proteins dar. Bindungsstudien von Aar mit gereinigtem Hfq sollten zusätzlich Erkenntnisse über eine direkte oder indirekte Beteiligung von Hfq an der Regulation der sRNA Aar liefern. Ein genereller Einfluss von Hfq auf verschiedene Aar-Transkripte wurde in dieser Arbeit in Northern-Blot-Studien mit *A. baylyi hfq*-Mutanten beobachtet (95). Die heterologe Expression des *A. baylyi hfq* ORF wurde als C- bzw. Nterminale His<sub>6</sub>-Tag-Fusion, kodiert auf Expressionsvektoren des pET-Systems (Merck, Darmstadt), in *E. coli* durchgeführt.

Hfq-Kristalle aus den Bakterien Escherichia coli, Pseudomonas aeruginosa und Staphylococcus aureus (80, 93, 97) weisen eine Ringstruktur aus sechs Homohexameren auf, deren Monomere eine  $\alpha$ -Helix und fünf  $\beta$ -Faltblätter besitzen (Abb. 37BC). A. baylyi Hfq, stellt aufgrund seines verlängerten C-terminalen Endes, eine Ausnahme zu diesen Hfq-Proteinen dar (96). C-terminal-deletierte Hfq-Mutanten anderer Bakterien zeigten keine Phänotypen in Bezug auf Wachstumsverhalten, Replikation des Phagen Q und Bindung der sRNA DsrA (103, 104, 114). Daraus entstand die Hypothese, dass nur die N-terminalen Aminosäuren 1-70 von Hfq für die Hexamerbildung und Funktionalität benötigt werden (93). In dieser Arbeit wird diese Annahme durch die Tatsache nachgewiesen, dass A. baylyi Hfq in vivo eine hfq-Deletion in E. coli komplementieren konnte und eine A. baylyi C-terminale Hfq-Mutante ein normales Wachstumsverhalten aufwies (96). Neueste Erkenntnisse zeigten jedoch, dass bei einer C-terminalen Deletion von Hfq, die Fähigkeit zur mRNA-Bindung verloren geht, während sRNAs weiterhin gebunden werden (118). Da noch nicht endgültig aufgeklärt ist, wie wichtig der Hfq-C-Terminus ist, wurde in zwei separaten Verfahren eine His<sub>6</sub>-Tag-Fusion an den C- und eine an den N-Terminus von A. baylyi Hfq kloniert. Durch die geringe Größe des Tags und dessen Positionierung an das C- bzw. N-terminale Ende sollte die Wahrscheinlichkeit erhöht werden, nach der Reinigung, ein funktionelles Protein zu erhalten.

Die starke Expression der *A. baylyi* Hfq-His-Tag-Fusionsproteine zeigte keinen negativen Einfluss auf das Wachstumsverhalten des *E. coli*-Expressionswirts. Weder der N-terminale noch der C-terminale His-Tag besaß eine Affinität zu der Ni<sup>2+</sup>-NTA-Matrix. Unter denaturierenden Bedingungen, nach Auftrennung im SDS-Gel, konnten beide Fusionsproteine mit Anti-His-Tag-Antikörpern zweifelsfrei identifiziert werden. Eine Erklärung für dieses Ergebnis könnte die Unzugänglichkeit des His-Tags nach Oligomerisierung der Hfq-Monomere sein. Jedoch wurde mit einer N-terminalen His<sub>6</sub>-Tag-Fusion und dem pET-System bereits *E. coli* Hfq erfolgreich überexprimiert und gereinigt (93).

Das Swiss-Model-Tool (5) lieferte ein Modell des *A. baylyi* Hfq-Proteins (Abb. 37A). Aufgrund der hohen Anzahl an Glycin-Aminosäuren im C-Terminus, konnten nur die Aminosäuren 3-69 von *A. baylyi* Hfq modelliert werden. Dieses Modell ist nahezu identisch zu dem beschriebenen *E. coli* Hfq-Monomer (Abb. 37B), was auf die Identität von 85 % (der Aminosäuren 1-65) beider Proteine zurückzuführen ist. Bei Recherchen mit der *A. baylyi* Hfq-Proteinsequenz in Proteindatenbanken, wurde Hfq aus *E. coli, P. aeruginosa* und *S. auerus*, wegen der Identität des N-Terminus, und zusätzlich Kollagen Typ I, wegen der Häufigkeit von Glycinen, als Treffer zu der *A. baylyi* Hfq-Proteinsequenz gefunden. In Abbildung 37 D ist zu erkennen, dass durch die zahlreichen Glycine in Kollagen Typ I, keine kompakte Struktur gebildet wird. Dies sollte auch für den C-Terminus von Hfq gelten. Daher sollte der C-terminale His-Tag bei der Reinigung des Hfq-Proteins grundsätzlich zugänglich sein, da es nicht vorstellbar ist, dass der starre C-Terminus an der Komplexierung von Hfq beteiligt ist.





Abb. 37: Proteinstrukturen von *A. baylyi* und *E. coli* Hfq. A: Modellierte Hfq-Monomerstruktur der Aminosäuren 3-69 von *A. baylyi* Hfq (Swiss-Model, Matrize: NCBI PDB: 1u1te) B: Modellierte Hfq-Monomerstruktur der Aminosäuren 4-70 von *E. coli* Hfq (Swiss-Model, Matrize: NCBI PDB: 1hk9) C: *E. coli* Hfq-Hexamerstruktur modifiziert nach Sauter *et al.* 2003 (93); D: Ausschnitt aus der Struktur von Kollagen Typ I modifiziert nach Orgel *et al.* 2006 (82).

Die Unzugänglichkeit des His-Tags lässt sich weiterhin durch die Oligomerisierung eines Heteromers aus *E. coli* und *A. baylyi* Hfq erklären. Darin könnte auch das Problem der schlechten Löslichkeit der Fusionsproteine während der Reinigung liegen. Als Alternative müsste entweder ein anderer Wirt (z.B. *E. coli*  $\Delta hfq$ ) für die Expression verwendet werden oder ein anderes Expressionssystem, wie z.B. das Impact-Inteinsystem (New England Biolabs, Frankfurt a. Main). Der Intein-Tag ist deutlich größer als der His-Tag, wodurch eine Oligomerisierung des Hfq-Hexamers verhindert werden könnte. Außerdem, bedingt durch die Größe des Tags, wäre eine bessere Bindung an die Matrix, in diesem Fall Chitin, vorstellbar. Die Funktionalität des Fusionsproteins nach der Reinigung würde durch Spaltung des Intein-Tags mit Hilfe von Thiolen (z.B. DTT) gewährleistet (20). Mit diesem System wurde Hfq bereits aus verschiedenen Bakterien gereinigt (78, 97, 100). Letztendlich fand, alternativ in dieser Arbeit, die Identifizierung der Größe von *A. baylyi* Hfq mit Anti-Hfq-Antikörpern (hergestellt gegen *P. putida* Hfq) statt (96).

# 4.4 Markierung und Deletion von Bereichen des A. baylyi Proteins Hfq

In der weiteren Charakterisierung des Hfq-Proteins wurde das System der Ein-Schritt-Inaktivierung bzw. Epitop-Markierung chromosomaler Gene für *A. baylyi* modifiziert und etabliert (25, 116). Mit diesem System können, durch Insertion einer Antibiotika-Kassette, in Gram-negativen Bakterien Gene inaktiviert oder durch Insertion einer Peptid- und Stoppkodierenden Sequenz, deren Genprodukte sukzessive verkleinert werden. An Hand entsprechender Phänotypen kann auf die Funktion des Proteins oder bestimmter Proteinbereiche geschlossen werden. Der Einbau der Kassette und gleichzeitige Austausch des Ziel-Gens, wird durch Primer mit kurzen homologen Bereichen zur Insertionsstelle (stromaufwärts und -abwärts des Zielgens) und zur Kassette durch das Rekombinationssystem des Bakteriophagen  $\lambda$  vermittelt (79, 116, 130). Da die Antibiotika-Kassette zu beiden Seiten von FRT-Stellen flankiert wird, ist es auch möglich diese wieder, nach der Deletion des Gens, zu entfernen und an einer anderen Stelle ins Genom zu Inserieren (52). Als Epitope stehen verschiedene Peptide zur Verfügung (116). Für die Etablierung des Systems in *A. baylyi* wurde ein 3x-FLAG-Tag (N-DYKDHGDYKDHDTDYKDDDDK-2xStopp-C) an *A. baylyi* Hfq bei AA 50 (Stopp im Sm-Motiv), AA 80 (Stopp zu Beginn des Glycin-Motivs) und vor das natürliche Stoppcodon von Hfq bei AA 174 angefügt.

Sowohl die homologe Rekombination über das RecABCD-System von *A. baylyi* als auch über das *red*-System des Phagen  $\lambda$ , war für die Insertion des 3xFLAG-Tags und der Antibiotika-Kassette ins *A. baylyi* Genom nicht effizient genug. In *E. coli* als Zwischenwirt erfolgte letztendlich die Integration des 3xFLAG-Tags über das  $\lambda$ -*red*-System an verschiedenen Positionen des Plasmid-kodierten *A. baylyi hfq.* Durch Verdau und natürlicher Transformation gefolgt von RecABCD-vermittelter homologer Rekombination, geschah der Einbau des markierten *hfq* im Genom von *A. baylyi*. Während ein C-terminaler FLAG-Tag am *Salmonella typhimurium* Hfq-Protein die Virulenz des Organismus nicht beeinträchtigt (85), konnte bei einem C-terminalen 3xFLAG an *A. baylyi* Hfq eine Beeinträchtigung des Wachstumsverhaltens und Phänotyps des Organismus beobachtet werden. Die sukzessive Verkürzung des Proteins bis vor das Glycin-Motiv, durch den 3xFLAG-Tag, verstärkte den Effekt nicht. Ein Abbruch der Translation innerhalb des Sm-Motivs führte zu einem drastisch verschlechterten Wachstumsverhalten, welches auch bei der Deletion des vollständigen *hfq* ORF zu erkennen war (96).

Zusammenfassend lässt sich sagen, dass *A. baylyi* Gene über den Zwischenwirt *E. coli* deletiert oder markiert werden können. Eine Markierung bzw. sukzessive Deletion des *A. baylyi* Hfq-Proteins führte zu einem veränderten Wachstumsverhalten und Zellphänotyp, der desto stärker ausgeprägt war, je mehr von dem Protein deletiert wurde. Die Aufhebung beider Effekte durch zusätzliche Expression des vollständigen Gens, ohne 3x-FLAG-Tag *in trans,* lassen endgültig auf Hfq als Ursache schließen und bestätigen die aus dieser Arbeit publizierten Ergebnisse (96)

# 5. Zusammenfassung der Ergebnisse

## 5.1 Zusammenfassung

Die Identifizierung neuer sRNAs sowie molekularbiologische Untersuchungen über das Protein Hfq aus *Acinetobacter baylyi* stellen die beiden Themen dieser Dissertation dar. Die erzielten Ergebnisse sollen im Folgenden kurz zusammengefasst werden:

Die in silico-Vorhersage von Acinetobacter-spezifischen sRNAs ergab 481 mögliche Kandidaten. Die Existenz zweier postulierter sRNAs (Aar und sRNA 394) konnte nachgewiesen werden.

Erzielte Ergebnisse zur sRNA Aar:

- Aar wird als kleine RNA (181 Nt) aus der intergenen Region zwischen *trpS* und *sucD* kodiert. Die Expression dieser RNA war bei Wachstum von *A. baylyi* in Mineralmedium, während der stationären Phase, und bei Wachstum in Komplexmedium, während der exponentiellen Phase, verstärkt nachweisbar.
- Aar zeigte dabei eine Abhängigkeit von Hfq. Ohne Hfq war eines der beiden zuvor nachgewiesenen Aar-Transkripte nicht mehr detektierbar.
- Die Überexpression von Aar zeigte keine Effekte auf das Wachstum von A. baylyi. Jedoch trat dabei eine Zunahme verschiedener mRNAs in der stationären Wachstumsphase auf. Diese mRNAs (glnA, serC, gcvH, leuC, ilvI, ppc, fadA und trpA) wurden in einer in silico-Analyse zwischen Aar und A. baylyi mRNAs als potentielle Interaktionspartner vorhergesagt. Alle acht mRNAs sind am Aminosäurestoffwechsel beteiligt. 59 Nt stromabwärts des aar Transkriptionsstarts wurde eine putative Bindestelle von Lrp, dem Regulator verzweigtkettiger Aminosäuren, vorhergesagt. Aufgrund dieser Beobachtungen wurde ein Bezug von Aar zum Aminosäurestoffwechsel postuliert.

Erzielte Ergebnisse zu der sRNA 394:

- Das Gen der sRNA 394 wurde mit einer Größe von 220 Nt aus der intergenen Region zwischen *rpsO* und *pnp* vorhergesagt. Die Kartierung des 5'- und 3'-Endes mittels CR-RT-PCR ergab, dass nur ein Teil der sRNA 394 zusammen mit *rpsO* als 391 Nt große RNA transkribiert wurde. Für beide (*rpsO* und RNA 394) wurde ein gemeinsamer Rho-unabhängiger Terminator vorhergesagt.
- An Hand von Expressionsprofilstudien wurde beobachtet, dass die sRNA 394 während der exponentiellen Wachstumsphase stark, dagegen in der stationären Wachstumsphase nur schwach exprimiert wird. Aufgrund dieser Beobachtung und der

Kartierungsergebnisse der sRNA 394, wurde postuliert, dass es sich hierbei um einen 3'- nicht-translatierten Bereich der mRNA *rpsO* handelt. Die Deletion dieses Bereichs wirkte sich negativ auf die Wachstumsrate von *A. baylyi* in Komplexmedium aus.

Bei der molekularbiologischen Analyse von Hfq lag der Fokus auf dessen ungewöhnlichem C-Terminus, welcher sich durch die Länge und das wiederholte Sequenzmotiv GGGFGGQ von anderen Hfq-Proteinen auffällig unterscheidet.

- Trotz der Unterschiede im C-Terminus konnte gezeigt werden, dass A. baylyi Hfq eine E. coli hfq-Mutante in Bezug auf deren Wachstums- und Phänotypdefizite komplementiert.
- Die Deletion des ORF von hfq in A. baylyi führte zu noch stärkeren Wachstums- und Zellphänotypen als die entsprechende Deletion in E. coli. Es waren ein stark verlangsamtes Wachstum sowie die fehlende Ausbildung von Zellketten zu beobachten. Eine vollständige Komplementierung mit dem hfq-Gen in trans, wie im Falle der chromosomalen Komplementierung mit der C-terminal verkürzten Version von A. baylyi Hfq, war nicht möglich. Dies deutete darauf hin, dass die Konzentration an Hfq in A. baylyi für die Funktionalität des Proteins gut abgestimmt sein muss und der C-Terminus für die beobachteten Effekte nicht verantwortlich ist.
- In Northern-Blot-Studien konnten Auswirkungen der hfq-Deletion auf eines der beiden Nachbargene (miaA) beobachtet werden. Zudem wurde der Transkriptionsstart von hfq innerhalb bzw. stromaufwärts von miaA bestimmt.
- Die heterologe Expression von A. baylyi Hfq als C- bzw. N-terminales His<sub>6</sub>-Tag-Fusionsprotein in E. coli war erfolgreich und konnte mittels SDS-Gel-, Western-Blotund MALDI-TOF-Analyse verifiziert werden. Die Fusionsproteine konnten nicht über Affinitätschromatographie gereinigt werden.
- Durch Verwendung von Anti-Hfq-Antikörpern, hergestellt gegen Pseudomonas putida Hfq, konnte A. baylyi Hfq mit einer Größe von 17 kDa im SDS-Gel bestimmt werden, was auf die Expression des langen Hfq-C-Terminus in vivo hindeutet.
- Die Methode der Markierung von Proteinen bzw. Inaktivierung von Genen durch FLAG-tagging wurde in dieser Arbeit für *hfq* modifiziert und generell für den Organismus A. baylyi etabliert. Ergebnisse mit diesen Mutanten bestätigten die Rolle von Hfq für ein normales Wachstum und Bildung von A. baylyi-Zellketten. Nicht nur die Deletion des *hfq*-Gens, sondern auch eine Veränderung des Hfq-Proteins wirkte sich negativ auf das Wachstumsverhalten und diesen Zellphänotyp von A. baylyi aus.

# 5.2 Summary

The identification of new sRNAs and molecularbiological research of the Hfq protein of *Acinetobacter baylyi* are the topics of this dissertation. The achieved results are summarized as followed:

An *in silico* prediction of *Acinetobacter*-specific sRNAs resulted in 481 predictions. In fact, two postulated sRNAs (Aar and sRNA 394) could be identified.

Achieved results of Aar:

- Aar is encoded as small RNA (181 nt) in the intergenic region between *trpS* and *sucD*. High expression of Aar was detectable during stationary growth phase in mineral medium and exponential growth phase in complex medium respectively.
- Aar showed an Hfq-dependency. Without Hfq, one of two before detected Aar transcripts was absent now.
- Overexpression of Aar showed no effects to A. baylyi growth behaviour. However, while Aar was overexpressed, different mRNAs were upregulated during stationary growth. These mRNAs (glnA, serC, gcvH, leuC, ilvI, ppc, fadA and trpA) were predicted in an *in silico* analysis of putative Aar interaction partners. All eight mRNAs are involved in amino acid metabolism. 59 nt downstream of the *aar* transcription start a putative binding-site of Lrp, the regulator of branch-chained amino acids, was predicted. Thus, a connection of Aar and amino acid metabolism was postulated

Achieved results of sRNA 394:

- The gene of sRNA 394 was predicted with a size of 220 nt within the intergenic region of *rpsO* and *pnp*. Mapping of the 5' and 3' ends with CR-RT-PCR showed a cotranscription of a part of sRNA 394 together with the complete *rpsO* ORF as 391 nt long RNA. For both (*rpsO* and sRNA 394) a putative Rho-independent terminator was predicted.
- According to expression profiles it was shown that sRNA 394 is highly abundant during exponential growth and hardly abundant during stationary growth. Because of the expression profiles and the mapping of sRNA 394, it could be postulated that sRNA 394 is a long 3'-non-translated region of *rpsO* mRNA. The deletion of this region resulted in a negative effect to the *A. baylyi* growth rate in complex medium.

The molecularbiological study of Hfq focused around its inconvenient C-term which differs from other Hfqs in case of the total length and the appearance of the repetitive motiv GGGFGGQ.

- In spite of the differences of the C-terms, according to growth- and cellphenotypes, an *E. coli hfq* mutant was complemented with *A. baylyi* Hfq.
- The deletion of the *hfq* ORF led to stronger growth- and cell-phenotypes in A. *baylyi* than in *E. coli*. An exponential growth as well as cell-chain-assembly could not be observed here any more. The complementation *in trans* with the complete *hfq* gene was not completely possible. Instead a chromosomal complementation with a C-terminal truncated Hfq resulted in wild type behaviour. This implies that a well-balanced Hfq concentration instead of a functional C-term is necessary for normal behaviour of *A. baylyi*.
- Northern blot studies showed effects of the *hfq* deletion towards *miaA* (upstream) expression. Furthermore, the transcription start of *hfq* was determined within or further upstream of *miaA*.
- The heterologous expression of A. baylyi Hfq as N- or C-terminal His<sub>6</sub>-Tag-fusion protein was successful and verified by SDS-gel, Western blot and MALDI-TOF analysis. But both fusion proteins could not be purified by affinity chromatography.
- According to SDS-gel electrophoresis, A. baylyi Hfq was detected as 17 kDaprotein with anti-Hfq antibodies, raised against *Pseudomonas putida* Hfq. Thus, an expression of the long Hfq C-term, *in vivo* is indicated.
- In this work, the method of protein-probing and gene-inactivation by FLAGtagging was modified for *A. baylyi hfq* and generally established for this organism. The results of the FLAG-mutants support the observation that Hfq is necessary for normal growth behaviour and cell-chain-phenotype. Not only *hfq* deletion but also Hfq modification resulted in negative effects on growth and cell-phenotype.

# 6. Literaturverzeichnis

- 1. **Aarons, S., A. Abbas, C. Adams, A. Fenton, and F. O'Gara.** 2000. A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in *Pseudomonas fluorescens* F113. J Bacteriol **182:**3913-9.
- 2. **Aiba, H.** 2007. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol **10**:134-9.
- 3. Altuvia, S. 2007. Identification of bacterial small non-coding RNAs: Experimental approaches. Curr Opin Microbiol 10:257-61.
- 4. Argaman, L., R. Hershberg, J. Vogel, G. Bejerano, E. G. Wagner, H. Margalit, and S. Altuvia. 2001. Novel small RNA-encoding genes in the intergenic regions of *Escherichia coli*. Curr Biol 11:941-50.
- 5. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22:195-201.
- 6. Aspegren, A., A. Hinas, P. Larsson, A. Larsson, and F. Soderbom. 2004. Novel non-coding RNAs in *Dictyostelium discoideum* and their expression during development. Nucleic Acids Res **32**:4646-56.
- 7. Axmann, I. M., P. Kensche, J. Vogel, S. Kohl, H. Herzel, and W. R. Hess. 2005. Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6:R73.
- 8. **Babitzke, P., and T. Romeo.** 2007. CsrB sRNA family: Sequestration of RNAbinding regulatory proteins. Curr Opin Microbiol **10**:156-63.
- 9. Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. Marliere, G. N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of *Acinetobacter sp.* ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766-79.
- 10. **Baumann, P.** 1968. Isolation of *Acinetobacter* from soil and water. J Bacteriol **96:**39-42.
- Benito, Y., F. A. Kolb, P. Romby, G. Lina, J. Etienne, and F. Vandenesch. 2000. Probing the structure of RNAIII, the *Staphylococcus aureus agr* regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6:668-79.
- 12. **Birnboim, H. C., and J. Doly.** 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res **7:**1513-23.
- Boisset, S., T. Geissmann, E. Huntzinger, P. Fechter, N. Bendridi, M. Possedko, C. Chevalier, A. C. Helfer, Y. Benito, A. Jacquier, C. Gaspin, F. Vandenesch, and P. Romby. 2007. *Staphylococcus aureus* RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:1353-66.
- 14. **Bradford, M. M.** 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem **72:**248-54.
- 15. **Calvo, J. M., and R. G. Matthews.** 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in *Escherichia coli*. Microbiol Rev **58**:466-90.
- 16. **Casadaban, M. J.** 1976. Transposition and fusion of the *lac* genes to selected promoters in *Escherichia coli* using bacteriophage lambda and Mu. J Mol Biol **104:5**41-55.

- 17. Cech, T. R. 1986. A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci U S A 83:4360-3.
- 18. Chatterjee, A., Y. Cui, Y. Liu, C. K. Dumenyo, and A. K. Chatterjee. 1995. Inactivation of *rsmA* leads to overproduction of extracellular pectinases, cellulases, and proteases in *Erwinia carotovora subsp. carotovora* in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol **61**:1959-67.
- Chen, S., E. A. Lesnik, T. A. Hall, R. Sampath, R. H. Griffey, D. J. Ecker, and L. B. Blyn. 2002. A bioinformatics based approach to discover small RNA genes in the *Escherichia coli* genome. Biosystems 65:157-77.
- Chong, S., F. B. Mersha, D. G. Comb, M. E. Scott, D. Landry, L. M. Vence, F. B. Perler, J. Benner, R. B. Kucera, C. A. Hirvonen, J. J. Pelletier, H. Paulus, and M. Q. Xu. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271-81.
- 21. Coppins, R. L., K. B. Hall, and E. A. Groisman. 2007. The intricate world of riboswitches. Curr Opin Microbiol 10:176-81.
- 22. Court, D. L., J. A. Sawitzke, and L. C. Thomason. 2002. Genetic engineering using homologous recombination. Annu Rev Genet **36**:361-88.
- 23. Cui, Y., A. Chatterjee, Y. Liu, C. K. Dumenyo, and A. K. Chatterjee. 1995. Identification of a global repressor gene, *rsmA*, of *Erwinia carotovora subsp. carotovora* that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting *Erwinia spp.* J Bacteriol **177:**5108-15.
- 24. **Daniels, D. W., and K. P. Bertrand.** 1985. Promoter mutations affecting divergent transcription in the Tn10 tetracycline resistance determinant. J Mol Biol **184:**599-610.
- 25. Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-5.
- 26. de Berardinis, V., D. Vallenet, V. Castelli, M. Besnard, A. Pinet, C. Cruaud, S. Samair, C. Lechaplais, G. Gyapay, C. Richez, M. Durot, A. Kreimeyer, F. Le Fevre, V. Schachter, V. Pezo, V. Doring, C. Scarpelli, C. Medigue, G. N. Cohen, P. Marliere, M. Salanoubat, and J. Weissenbach. 2008. A complete collection of single-gene deletion mutants of *Acinetobacter baylyi* ADP1. Mol Syst Biol 4:174.
- Ditta, G., T. Schmidhauser, E. Yakobson, P. Lu, X. W. Liang, D. R. Finlay, D. Guiney, and D. R. Helinski. 1985. Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149-53.
- 28. Ellington, A., and J. D. Pollard, Jr. 2001. Purification of oligonucleotides using denaturing polyacrylamide gel electrophoresis. Curr Protoc Mol Biol Chapter 2:Unit2 12.
- 29. Fahlgren, N., M. D. Howell, K. D. Kasschau, E. J. Chapman, C. M. Sullivan, J. S. Cumbie, S. A. Givan, T. F. Law, S. R. Grant, J. L. Dangl, and J. C. Carrington. 2007. High-throughput sequencing of *Arabidopsis* microRNAs: Evidence for frequent birth and death of miRNA genes. PLoS One 2:e219.
- 30. **Figurski, D. H., and D. R. Helinski.** 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans*. Proc Natl Acad Sci U S A **76**:1648-52.
- 31. Forner, J., B. Weber, S. Thuss, S. Wildum, and S. Binder. 2007. Mapping of mitochondrial mRNA termini in *Arabidopsis thaliana*: t-elements contribute to 5' and 3' end formation. Nucleic Acids Res **35**:3676-92.
- 32. Franze de Fernandez, M. T., L. Eoyang, and J. T. August. 1968. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature **219**:588-90.

- 33. Fuchs, R., and R. Blakesley. 1983. Guide to the use of type II restriction endonucleases. Methods Enzymol 100:3-38.
- Gardner, P. P., J. Daub, J. G. Tate, E. P. Nawrocki, D. L. Kolbe, S. Lindgreen, A. C. Wilkinson, R. D. Finn, S. Griffiths-Jones, S. R. Eddy, and A. Bateman. 2009.
  Rfam: Updates to the RNA families database. Nucleic Acids Res 37:D136-40.
- 35. **Geissmann, T. A., and D. Touati.** 2004. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J **23**:396-405.
- 36. Gerischer, U. 2008. Acinetobacter. Caister Academic Press.
- 37. **Gerischer, U., and L. N. Ornston.** 1995. Spontaneous mutations in *pcaH* and *-G*, structural genes for protocatechuate 3,4-dioxygenase in *Acinetobacter calcoaceticus*. J Bacteriol **177:**1336-47.
- 38. Gilbert, W. 1986. Origin of life: The RNA world. Nature **319:**618-618.
- 39. Gildehaus, N., T. Neusser, R. Wurm, and R. Wagner. 2007. Studies on the function of the riboregulator 6S RNA from *E. coli*: RNA polymerase binding, inhibition of *in vitro* transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res 35:1885-96.
- 40. **Gorke, B., and J. Vogel.** 2008. Non-coding RNA control of the making and breaking of sugars. Genes Dev **22**:2914-25.
- 41. **Grodberg, J., and J. J. Dunn.** 1988. *OmpT* encodes the *Escherichia coli* outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol **170:**1245-53.
- 42. Gueneau de Novoa, P., and K. P. Williams. 2004. The tmRNA website: Reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res 32:D104-8.
- 43. Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell **35**:849-57.
- 44. **Hajnsdorf, E., O. Steier, L. Coscoy, L. Teysset, and P. Regnier.** 1994. Roles of RNase E, RNase II and PNPase in the degradation of the *rpsO* transcripts of *Escherichia coli*: Stabilizing function of RNase II and evidence for efficient degradation in an *ams pnp rnb* mutant. EMBO J **13**:3368-77.
- 45. Halfmann, A., M. Kovacs, R. Hakenbeck, and R. Bruckner. 2007. Identification of the genes directly controlled by the response regulator CiaR in *Streptococcus pneumoniae*: Five out of 15 promoters drive expression of small non-coding RNAs. Mol Microbiol **66**:110-26.
- 46. **Hanahan, D.** 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol **166:**557-80.
- 47. **Haugel-Nielsen, J., E. Hajnsdorf, and P. Regnier.** 1996. The *rpsO* mRNA of *Escherichia coli* is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J **15**:3144-52.
- 48. **Heeb, S., C. Blumer, and D. Haas.** 2002. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in *Pseudomonas fluorescens* CHA0. J Bacteriol **184**:1046-56.
- 49. Heeb, S., C. Valverde, C. Gigot-Bonnefoy, and D. Haas. 2005. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in *Pseudomonas fluorescens* CHA0. FEMS Microbiol Lett **243**:251-8.
- 50. Herrero, M., V. de Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557-67.
- 51. Hershberg, R., S. Altuvia, and H. Margalit. 2003. A survey of small RNA-encoding genes in *Escherichia coli*. Nucleic Acids Res **31**:1813-20.

- 52. Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. Gene **212**:77-86.
- 53. Inoue, H., H. Nojima, and H. Okayama. 1990. High efficiency transformation of *Escherichia coli* with plasmids. Gene 96:23-8.
- 54. Jerg, B., and U. Gerischer. 2008. Relevance of nucleotides of the PcaU binding site from *Acinetobacter baylyi*. Microbiology **154**:756-66.
- 55. Juni, E. 1978. Genetics and physiology of *Acinetobacter*. Annu Rev Microbiol 32:349-71.
- 56. Juni, E., and A. Janik. 1969. Transformation of *Acinetobacter calcoaceticus* (*Bacterium anitratum*). J Bacteriol **98:**281-8.
- 57. Kalamorz, F., B. Reichenbach, W. Marz, B. Rak, and B. Gorke. 2007. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in *Escherichia coli*. Mol Microbiol **65**:1518-33.
- 58. Kambach, C., S. Walke, R. Young, J. M. Avis, E. de la Fortelle, V. A. Raker, R. Luhrmann, J. Li, and K. Nagai. 1999. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96:375-87.
- 59. Karp, G. C. 2005. Molekulare Zellbiologie. Springer Verlag.
- 60. Kawano, M., A. A. Reynolds, J. Miranda-Rios, and G. Storz. 2005. Detection of 5'and 3'-UTR-derived small RNAs and *cis*-encoded antisense RNAs in *Escherichia coli*. Nucleic Acids Res **33**:1040-50.
- 61. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broadhost-range plasmids for DNA cloning in Gram-negative bacteria. Gene **70**:191-7.
- 62. Keiler, K. C. 2007. Physiology of tmRNA: What gets tagged and why? Curr Opin Microbiol 10:169-75.
- 63. **Kingsford, C. L., K. Ayanbule, and S. L. Salzberg.** 2007. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol **8:**R22.
- 64. **Korner, C. G., and E. Wahle.** 1997. Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease. J Biol Chem **272**:10448-56.
- 65. **Kuzminov, A.** 1999. Recombinational repair of DNA damage in *Escherichia coli* and bacteriophage lambda. Microbiol Mol Biol Rev **63:**751-813, table of contents.
- 66. **Laemmli, U. K.** 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature **227:**680-5.
- 67. Le Derout, J., M. Folichon, F. Briani, G. Deho, P. Regnier, and E. Hajnsdorf. 2003. Hfq affects the length and the frequency of short oligo(A) tails at the 3' end of *Escherichia coli rpsO* mRNAs. Nucleic Acids Res **31:**4017-23.
- 68. Lee, N., C. Francklyn, and E. P. Hamilton. 1987. Arabinose-induced binding of AraC protein to *araI2* activates the *araBAD* operon promoter. Proc Natl Acad Sci U S A 84:8814-8.
- 69. Liu, M. Y., G. Gui, B. Wei, J. F. Preston, 3rd, L. Oakford, U. Yuksel, D. P. Giedroc, and T. Romeo. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in *Escherichia coli*. J Biol Chem 272:17502-10.
- Livny, J., A. Brencic, S. Lory, and M. K. Waldor. 2006. Identification of 17 *Pseudomonas aeruginosa* sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484-93.

- 71. Livny, J., and M. K. Waldor. 2007. Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol **10**:96-101.
- 72. Lottspeich, F., and H. Zorbas. 1998. Bioanalytik. Spektrum Akademischer Verlag.
- 73. **Majdalani, N., C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman.** 1998. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A **95:**12462-7.
- 74. Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-80.
- 75. **Masse, E., and S. Gottesman.** 2002. A small RNA regulates the expression of genes involved in iron metabolism in *Escherichia coli*. Proc Natl Acad Sci U S A **99:**4620-5.
- 76. Metzgar, D., J. M. Bacher, V. Pezo, J. Reader, V. Doring, P. Schimmel, P. Marliere, and V. de Crecy-Lagard. 2004. Acinetobacter sp. ADP1: An ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32:5780-90.
- 77. **Mizuno, T., M. Y. Chou, and M. Inouye.** 1984. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A **81**:1966-70.
- 78. Moller, T., T. Franch, P. Hojrup, D. R. Keene, H. P. Bachinger, R. G. Brennan, and P. Valentin-Hansen. 2002. Hfq: A bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell **9:**23-30.
- 79. **Murphy, K. C.** 1998. Use of bacteriophage lambda recombination functions to promote gene replacement in *Escherichia coli*. J Bacteriol **180**:2063-71.
- Nikulin, A., E. Stolboushkina, A. Perederina, I. Vassilieva, U. Blaesi, I. Moll, G. Kachalova, S. Yokoyama, D. Vassylyev, M. Garber, and S. Nikonov. 2005. Structure of *Pseudomonas aeruginosa* Hfq protein. Acta Crystallogr D Biol Crystallogr 61:141-6.
- 81. **Oelmüller, U., N. Krüger, A. Steinbüchel, and C. G. Freidrich.** 1990. Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. Journal of Microbiology Methods **11:**73-81.
- 82. **Orgel, J. P., T. C. Irving, A. Miller, and T. J. Wess.** 2006. Microfibrillar structure of type I collagen *in situ*. Proc Natl Acad Sci U S A **103**:9001-5.
- 83. **Palmen, R., and K. J. Hellingwerf.** 1997. Uptake and processing of DNA by *Acinetobacter calcoaceticus* a review. Gene **192:**179-90.
- 84. Pansegrau, W., E. Lanka, P. T. Barth, D. H. Figurski, D. G. Guiney, D. Haas, D. R. Helinski, H. Schwab, V. A. Stanisich, and C. M. Thomas. 1994. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623-63.
- 85. **Pfeiffer, V., A. Sittka, R. Tomer, K. Tedin, V. Brinkmann, and J. Vogel.** 2007. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the *Salmonella* core genome. Mol Microbiol **66**:1174-91.

- 86. **Poteete, A. R., and A. C. Fenton.** 2000. Genetic requirements of phage lambda *red*mediated gene replacement in *Escherichia coli* K-12. J Bacteriol **182**:2336-40.
- 87. **Prentki, P., A. Binda, and A. Epstein.** 1991. Plasmid vectors for selecting IS1promoted deletions in cloned DNA: Sequence analysis of the omega interposon. Gene **103:**17-23.
- 88. **Reichenbach, B., A. Maes, F. Kalamorz, E. Hajnsdorf, and B. Gorke.** 2008. The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of *glmS* expression and is subject to regulation by polyadenylation in *Escherichia coli*. Nucleic Acids Res **36**:2570-80.
- 89. **Rivas, E., and S. R. Eddy.** 2001. Non-coding RNA gene detection using comparative sequence analysis. BMC Bioinformatics **2:**8.
- 90. **Rivas, E., and S. R. Eddy.** 2000. Secondary structure alone is generally not statistically significant for the detection of non-coding RNAs. Bioinformatics **16:5**83-605.
- 91. Rivas, E., R. J. Klein, T. A. Jones, and S. R. Eddy. 2001. Computational identification of non-coding RNAs in *E. coli* by comparative genomics. Curr Biol 11:1369-73.
- 92. Sambrook, J., and D. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press 3.
- 93. Sauter, C., J. Basquin, and D. Suck. 2003. Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from *Escherichia coli*. Nucleic Acids Res 31:4091-8.
- 94. **Schilling, D.** 2006. Analyse kleiner nicht kodierender RNA-Moleküle aus dem Bakterium *Acinetobacter baylyi*. Diplomarbeit, Institut für Mikrobiologie und Biotechnolgie, Universität Ulm
- 95. Schilling, D., S. Findeiß, A. S. Richter, J. Taylor, and U. Gerischer. 2009. The small RNA Aar in *Acinetobacter baylyi* a putative regulator of amino acid metabolism. eingereicht.
- 96. Schilling, D., and U. Gerischer. 2009. *Acinetobacter baylyi hfq* gene encodes a large protein with an unusual C terminus. J Bacteriol.
- 97. Schumacher, M. A., R. F. Pearson, T. Moller, P. Valentin-Hansen, and R. G. Brennan. 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21:3546-56.
- 98. Sharma, C. M., F. Darfeuille, T. H. Plantinga, and J. Vogel. 2007. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21:2804-17.
- 99. Sittka, A., S. Lucchini, K. Papenfort, C. M. Sharma, K. Rolle, T. T. Binnewies, J. C. Hinton, and J. Vogel. 2008. Deep sequencing analysis of small non-coding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4:e1000163.
- 100. Sittka, A., V. Pfeiffer, K. Tedin, and J. Vogel. 2007. The RNA chaperone Hfq is essential for the virulence of *Salmonella typhimurium*. Mol Microbiol **63**:193-217.
- 101. Sittka, A., C. M. Sharma, K. Rolle, and J. Vogel. 2009. Deep sequencing of *Salmonella* RNA associated with heterologous Hfq proteins *in vivo* reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 6.
- 102. Sledjeski, D. D., A. Gupta, and S. Gottesman. 1996. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in *Escherichia coli*. EMBO J 15:3993-4000.
- 103. **Sonnleitner, E., I. Moll, and U. Blasi.** 2002. Functional replacement of the *Escherichia coli hfq* gene by the homologue of *Pseudomonas aeruginosa*. Microbiology **148**:883-91.

- 104. Sonnleitner, E., J. Napetschnig, T. Afonyushkin, K. Ecker, B. Vecerek, I. Moll, V. R. Kaberdin, and U. Blasi. 2004. Functional effects of variants of the RNA chaperone Hfq. Biochem Biophys Res Commun 323:1017-23.
- 105. Sonnleitner, E., T. Sorger-Domenigg, M. J. Madej, S. Findeiss, J. Hackermuller, A. Hüttenhofer, P. F. Stadler, U. Blasi, and I. Moll. 2008. Detection of small RNAs in *Pseudomonas aeruginosa* by RNomics and structure-based bioinformatic tools. Microbiology 154:3175-87.
- 106. **Soper, T. J., and S. A. Woodson.** 2008. The *rpoS* mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA **14**:1907-17.
- 107. **Spies, M., M. S. Dillingham, and S. C. Kowalczykowski.** 2005. Translocation by the RecB motor is an absolute requirement for  $\chi$ -recognition and RecA protein loading by RecBCD enzyme. J Biol Chem **280**:37078-87.
- 108. Sun, X., I. Zhulin, and R. M. Wartell. 2002. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res **30**:3662-71.
- 109. Tang, T. H., J. P. Bachellerie, T. Rozhdestvensky, M. L. Bortolin, H. Huber, M. Drungowski, T. Elge, J. Brosius, and A. Hüttenhofer. 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon *Archaeoglobus fulgidus*. Proc Natl Acad Sci U S A 99:7536-41.
- 110. Tang, T. H., N. Polacek, M. Zywicki, H. Huber, K. Brugger, R. Garrett, J. P. Bachellerie, and A. Hüttenhofer. 2005. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon *Sulfolobus solfataricus*. Mol Microbiol 55:469-81.
- 111. Tang, T. H., T. S. Rozhdestvensky, B. C. d'Orval, M. L. Bortolin, H. Huber, B. Charpentier, C. Branlant, J. P. Bachellerie, J. Brosius, and A. Hüttenhofer. 2002. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 30:921-30.
- 112. Tomizawa, J., T. Itoh, G. Selzer, and T. Som. 1981. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci U S A 78:1421-5.
- 113. **Towner, K. J., E. Bergogne-Bérézin, and C. A. Fewson.** 1991. *Acinetobacter*: Taxonomy, Clinical Importance, Molecular Biology, Phisiology, Industrial Relevance. Plenum Press, New York and London.
- 114. **Tsui, H. C., H. C. Leung, and M. E. Winkler.** 1994. Characterization of broadly pleiotropic phenotypes caused by an *hfq* insertion mutation in *Escherichia coli* K-12. Mol Microbiol **13:**35-49.
- 115. Urlaub, H., V. A. Raker, S. Kostka, and R. Luhrmann. 2001. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20:187-96.
- 116. Uzzau, S., N. Figueroa-Bossi, S. Rubino, and L. Bossi. 2001. Epitope tagging of chromosomal genes in *Salmonella*. Proc Natl Acad Sci U S A **98**:15264-9.
- 117. Valverde, C., M. Lindell, E. G. Wagner, and D. Haas. 2004. A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of *Pseudomonas fluorescens*. J Biol Chem 279:25066-74.
- 118. Vecerek, B., L. Rajkowitsch, E. Sonnleitner, R. Schroeder, and U. Blasi. 2008. The C-terminal domain of *Escherichia coli* Hfq is required for regulation. Nucleic Acids Res **36**:133-43.
- 119. Vogel, J., V. Bartels, T. H. Tang, G. Churakov, J. G. Slagter-Jager, A. Hüttenhofer, and E. G. Wagner. 2003. RNomics in *Escherichia coli* detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31:6435-43.

- 120. Vogel, J., and K. Papenfort. 2006. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9:605-11.
- 121. Voss, B., J. Georg, V. Schon, S. Ude, and W. R. Hess. 2009. Biocomputational prediction of non-coding RNAs in model cyanobacteria. BMC Genomics 10:123.
- 122. Wallace, R. B., J. Shaffer, R. F. Murphy, J. Bonner, T. Hirose, and K. Itakura. 1979. Hybridization of synthetic oligodeoxyribonucleotides to  $\phi \chi$  174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543-57.
- 123. Washietl, S., I. L. Hofacker, and P. F. Stadler. 2005. Fast and reliable prediction of non-coding RNAs. Proc Natl Acad Sci U S A 102:2454-9.
- 124. **Wassarman, K. M.** 2007. 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol **10**:164-8.
- 125. Wassarman, K. M., F. Repoila, C. Rosenow, G. Storz, and S. Gottesman. 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637-51.
- 126. Weilbacher, T., K. Suzuki, A. K. Dubey, X. Wang, S. Gudapaty, I. Morozov, C. S. Baker, D. Georgellis, P. Babitzke, and T. Romeo. 2003. A novel sRNA component of the carbon storage regulatory system of *Escherichia coli*. Mol Microbiol 48:657-70.
- 127. Wilderman, P. J., N. A. Sowa, D. J. FitzGerald, P. C. FitzGerald, S. Gottesman, U. A. Ochsner, and M. L. Vasil. 2004. Identification of tandem duplicate regulatory small RNAs in *Pseudomonas aeruginosa* involved in iron homeostasis. Proc Natl Acad Sci U S A 101:9792-7.
- 128. Willkomm, D. K., J. Minnerup, A. Huttenhofer, and R. K. Hartmann. 2005. Experimental RNomics in *Aquifex aeolicus*: Identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res **33**:1949-60.
- 129. Xu, F., and S. N. Cohen. 1995. RNA degradation in *Escherichia coli* regulated by 3' adenylation and 5' phosphorylation. Nature **374:**180-3.
- 130. Yosef, I., N. Bloushtain, M. Shapira, and U. Qimron. 2004. Restoration of gene function by homologous recombination: From PCR to gene expression in one step. Appl Environ Microbiol **70**:7156-60.
- 131. Young, D. M., D. Parke, and L. N. Ornston. 2005. Opportunities for genetic investigation afforded by *Acinetobacter baylyi*, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol **59:**519-51.
- 132. Yu, D., H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court. 2000. An efficient recombination system for chromosome engineering in *Escherichia coli*. Proc Natl Acad Sci U S A **97:**5978-83.
- 133. Yuan, G., C. Klambt, J. P. Bachellerie, J. Brosius, and A. Hüttenhofer. 2003. RNomics in *Drosophila melanogaster*: Identification of 66 candidates for novel nonmessenger RNAs. Nucleic Acids Res 31:2495-507.
- 134. Zhang, A., K. M. Wassarman, C. Rosenow, B. C. Tjaden, G. Storz, and S. Gottesman. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111-24.
- 135. Ziegelin, G., J. P. Furste, and E. Lanka. 1989. TraJ protein of plasmid RP4 binds to a 19-base pair invert sequence repetition within the transfer origin. J Biol Chem 264:11989-94.
# 7.Anhang

# 7.1 Weitere Daten zu den Ergebnissen aus Abschnitt 3

Tab. 7: Lage der Sequenzen aus der cDNA-Bank im Genom von A. baylyi ADP1

| Klon | Länge Insert [B] | Lage im Genom         | Gen       | Position |
|------|------------------|-----------------------|-----------|----------|
|      |                  | [RefSeq ID NC_005966] |           | im Gen   |
| 2    | 36               | 20718 - 20753         | 23S rRNA  | 5´-Ende  |
| 6    | 37               | 20717 - 20752         | 23S rRNA  | 5´-Ende  |
| 8    | 21               | 20737 - 20748         | 23S rRNA  | 5´-Ende  |
| 11   | 20               | 20737 - 20751         | 23S rRNA  | 5´-Ende  |
| 15   | 52               | 20718 - 20751         | 23S rRNA  | 5´-Ende  |
| 21   | 44               | 20722 - 20753         | 23S rRNA  | 5´-Ende  |
| 25   | 25               | 20725 - 20748         | 23S rRNA  | 5´-Ende  |
| 30   | 119              | 21993 - 22048         | 23S rRNA  | Mitte    |
| 43   | 18               | 20593 - 20607         | 23S rRNA  | 5'-Ende  |
| 50   | 18               | 20732 - 20745         | 23S rRNA  | 5´-Ende  |
| 72   | 15               | 20737 - 20748         | 23S rRNA  | 5´-Ende  |
| 85   | 83               | 3572700 - 3572774     | dnaK      | Mitte    |
| 89   | 18               | 20737 - 20749         | 23S rRNA  | 5´-Ende  |
| 101  | 20               | 20732 - 20751         | 23S rRNA  | 5´-Ende  |
| 90   | 18               | 1427 - 1416           | dnaA      | 5´-Ende  |
| 117  | 38               | 2327769 - 2327757     | ACIAD2370 | Mitte    |
| 134  | 171              | 20668 - 20748         | 23S rRNA  | 5´-Ende  |
| 183  | 83               | 20683 - 20743         | 23S rRNA  | 5´-Ende  |
| 204  | 39               | 20722 - 20750         | 23S rRNA  | 5´-Ende  |
| 193  | 120              | 22212 - 22277         | 23S rRNA  | Mitte    |
| 211  | 36               | 20722 - 20753         | 23S rRNA  | 5´-Ende  |
| 212  | 20               | 20737 - 20752         | 23S rRNA  | 5´-Ende  |
| 220  | 18               | Kein Treffer          |           |          |
| 256  | 44               | 20722 - 20752         | 23S rRNA  | 5´-Ende  |
| 316  | 209              | 20561 - 20751         | 23S rRNA  | Mitte    |
| 343  | 241              | 19713 - 19895         | 16S rRNA  | 3´-Ende  |
| 356  | 106              | 23629 - 23730         | 5S rRNA   | Komplett |
| 394  | 45               | 20718 - 20744         | 23S rRNA  | Mitte    |
| 469  | 97               | 23644 - 23737         | 5S rRNA   | Komplett |

| <sup>#</sup> Genvorhersage | Position<br>der IGR | <sup>*</sup> RNAz<br>[kcal/<br>mol] | <sup>‡</sup> Terminator | 5´-Strom-<br>aufwärts | *sRNA | 3´-Strom-<br>abwärts |
|----------------------------|---------------------|-------------------------------------|-------------------------|-----------------------|-------|----------------------|
| 402072 - 402292            | 402071 -            | -3.860/                             | 402167 -                | rpsO                  | 394   | pnp                  |
|                            | 402324              | -3.460                              | 402190                  |                       |       | <                    |
| 2859578-2859367            | 2859346 -           | -3.530/                             | -                       | ACIAD2929             | ?     | ACIAD2930            |
|                            | 2859578             | -3.890                              |                         |                       |       |                      |
| 685911 - 686054            | 685523 -            | -4.070/                             | 685977 -                | ACIAD0697             |       | lysP                 |
|                            | 686191              | -3.120                              | 685992                  |                       | ◀     | <                    |
| 399985 - 400223            | 399683 -            | -2.750/                             | 400196 -                | recD                  |       | ACIAD0400            |
|                            | 400223              | -2.990                              | 400214                  |                       |       | <                    |
| 2812240 - 2812430          | 2812136 -           | -2.640/                             | 2812382 -               | trpS                  | aar   | sucD                 |
|                            | 2812542             | -3.090                              | 2812408                 |                       |       | <                    |
| 1249605 1249824            | 1249605 -           | -3.960/                             | 1249760 -               | csrA                  |       | lysC                 |
|                            | 1249849             | -5.250                              | 1249793                 | <                     |       | <                    |
| 2690494 - 2690696          | 2690372 -           | -3.370/                             | 2690673 -               | ACIAD2750             |       | ACIAD2751            |
|                            | 2690805             | -2.420                              | 2690691                 | <                     |       | <                    |
| 2308849 - 2308996          | 2308845 -           | -3.320/                             | 2308909 -               | himD                  |       | rpsA                 |
|                            | 2309001             | -3.930                              | 2308940                 | <                     |       | •                    |
| 707132 - 707407            | 707127 -            | -1.310/                             | 707419 -                | nrdB                  |       | nrdA                 |
|                            | 707454              | -2.870                              | 707443                  | <                     |       | •                    |
| 1000713 - 1000808          | 1000688 -           | -3.450/                             | 1000760 -               | betI                  |       | ACIAD1011            |
|                            | 1000934             | -3.450                              | 1000793                 | <                     | •     |                      |
| 2199732 - 2199863          | 2199720 -           | -3.260/                             | 2199836 -               | ACIAD2226             |       | dctA                 |
|                            | 2199880             | -3.120                              | 2199851                 | <                     |       | •                    |
| 2975473 - 2975690          | 2975472 -           | -3.640/                             | 2975654 -               | ACIAD3045             |       | rplT                 |
|                            | 2975690             | -2.480                              | 2975671                 | •                     |       | •                    |
| 2867114 - 2867259          | 2867073 -           | -4.070/                             | 2867240-                | lolA                  |       | rpmA                 |
|                            | 2867274             | -3.430                              | 2867254                 | •                     |       | •                    |
| 1494310 - 1494429          | 1494307 -           | -4.040/                             | 1494408 -               | ACIAD1496             |       | fdxA                 |
|                            | 1494432             | -3.750                              | 1494425                 | •                     |       | <                    |

Tab. 8: Überprüfte sRNA-Kanidaten aus der Vorhersage von Björn Voss

# Die sRNA-Gene wurden in beide Orientierungen auf beiden DNA-Strängen vorhergesagt. Angegeben ist hier nur die Orientierung, die der des vorhersagbaren Terminators entspricht.

\* Die RNAz-Werte für beide Orientierungen der jeweiligen sRNA im Genom sind angegeben.

‡ Mögliche Terminatoren wurden als Haarnadelschleifen zwischen 4 und 23 Nt mit der Software

TransTermHp vorhergesagt und geben einen Hinweis auf die Orientierung des sRNA-Gens.

× Die Orientierung der sRNA wurde aufgrund der Terminatorvorhersage mit TransTermHp festgelegt.

| <sup>#</sup> Genvorhersage | Position<br>der IGR  | <sup>‡</sup> Terminator | 5´-Strom-<br>aufwärts | *sRNA | 3´-Strom-<br>abwärts |
|----------------------------|----------------------|-------------------------|-----------------------|-------|----------------------|
| 729324 - 729420            | 729324 -             | 729346 -                | nuoN                  |       | ирр                  |
| 2781400 - 2781517          | 2781400 -<br>2781522 | 2781420 -<br>2781437    | pckG                  | •     | ACIAD2843            |
| 3066182 - 3066278          | 3066116 -<br>3066281 | 3066238 -<br>3066253    | ACIAD3143             | ►     | ACIAD3144            |
| 3519436 - 3519560          | 3519407 -<br>3519575 | 3519447 -<br>3519466    | ACIAD3602<br>►        | •     | ACIAD3603<br>►       |
| +2690503 - 2690700         | 2690372 -<br>2690805 | 2690673 -<br>2690691    | ACIAD2750             | ►     | ACIAD2751            |
| +2308846 - 2308995         | 2308845 -<br>2309001 | 2308909 -<br>2308940    | himD                  | ►     | rpsA                 |
| +707131 - 707408           | 707127 -<br>707454   | 707419 - 707443         | nrdB                  | ►     | nrdA                 |
| +1000717 - 1000930         | 1000688 -<br>1000934 | 1000760 -<br>1000793    | betI                  | <     | ACIAD1011            |
| *2199727 - 2199866         | 2199720 -<br>2199880 | 2199836 -<br>2199851    | ACIAD2226             | ►     | dctA                 |
| +2975494 - 2975690         | 2975472 -<br>2975690 | 2975654 -<br>2975671    | ACIAD3045             | ►     | rplT<br>◀            |
| +2867113 - 2867262         | 2867073 -<br>2867274 | 2867240-<br>2867254     | lolA                  | ►     | rpmA<br>◀            |
| *1494309 - 1494428         | 1494307 -<br>1494432 | 1494408 -<br>1494425    | ACIAD1496<br>◀        | ►     | fdxA<br>◀            |

Tab. 9 Überprüfte sRNA-Kanidaten aus der Vorhersage von Brian Tjaden

# Die sRNA-Gene wurden in beide Orientierungen auf beiden DNA-Strängen vorhergesagt. Angegeben ist hier nur die Orientierung, die der des vorhersagbaren Terminators entspricht.

‡ Mögliche Terminatoren wurden als Haarnadelschleifen zwischen 4 und 23 Nt mit der Software TransTermHp vorhergesagt und geben einen Hinweis auf die Orientierung des sRNA-Gens.

× Die Orientierung der sRNA wurde aufgrund der Terminatorvorhersage mit TransTermHp festgelegt.

+ Gemeinsame sRNA-Kandidaten aus der Vorhersage von Björn Voss und Brian Tjaden

| hfq ADP1<br>Klon29-hfq 1 14-09-07 | A T G T C T A A G<br>A T G T C T A A A G     | G T C A A A C A T T<br>G T C A A A C A T T        | A   C   A   A   G   A   T   C   C   G     A   C   A   A   G   A   T   C   C   G     | T T C T T A A T T   T T C T T A A T T                 |
|-----------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | C T C T C C G T A A<br>C T C T C C G T A A   | 100<br>A G A A C G T A T T<br>A G A A C G T A T T |                                                                                     | 120<br>T T T T T T C T T G T<br>T T T T T T C T T G T |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | G A A C G G T A T T<br>G A A C G G T A T T   |                                                   | G C C A C A T T G A<br>G C C A C A T T G A                                          | A T C T T T G A C<br>A T C T T T G A C                |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 |                                              |                                                   |                                                                                     | A G C C A A A T G G<br>A G C C A A A T G G            |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | T T T A T A A G C A<br>T T T A T A A G C A   |                                                   |                                                                                     | 240<br>C T G C A C G T A A<br>C T G C A C G T A A     |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 |                                              |                                                   |                                                                                     |                                                       |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | G G T G G C T T C G G G T G G C T T C G      | G T G G T C A A G G<br>G T G G T C A A G G        |                                                                                     |                                                       |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | G T G G T G G C T T<br>G T G G T G G C T T   | T G G T G G T C A A<br>T G G T G G T C A A        | G   G   T   G   G   T   G   G   C   T     G   G   T   G   G   C   T   G   G   C   T | T T G G T G G T C A<br>T T G G T G G T C A            |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | A G G T G G C G G C<br>A G G T G G C G C G C | T T T G G T G G T C<br>T T T G G G T G G T C      | A A G G T A C T G G<br>A A G G T A C T G G                                          |                                                       |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | C A A G G T G G T G<br>C A A G G T G G T G   |                                                   | T C A A G G C G G C<br>T C A A G G C C G G C                                        |                                                       |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | A A G G C G G C T T<br>A A G G C G G C T T   |                                                   | 470<br>G G T G G C T T C G<br>G G T G G C T T C G                                   | 480<br>G T G G T C A A G G<br>G T G G T C A A G G     |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | C G G C T T C G G T<br>C G G C T T C G G T   | G G T C A A G G T G<br>G G T C A A G G T G        | 510<br>G T T C A G G C T T<br>G T T C A G G C T T                                   | T G A C A A C G A T<br>T G A C A A C G A T            |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 | A C T A A A T T T G<br>A C T A A A A T T T G | A A G A T G G T C A<br>A A G A T G G T C A        | G G A A G A C G A T<br>G G A A G A C G A T                                          | T C T A A C A A T C<br>T C T A A C A A T C            |
| hfq ADP1<br>Klon29-hfq 1 14-09-07 |                                              |                                                   |                                                                                     | 600                                                   |

Abb. 38: Sequenzvergleich von *A. baylyi* ADP1 *hfq* mit der *hfq* Insertion aus pET29a *hfq*-1. Stille Mutation bei Nt 346 (T  $\rightarrow$ C, jedoch GGT und GGC kodieren Glycin)

### Anhang

| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert | G T C T A T T T T T<br>G T C T A T T T T T T      | 60<br>C T T G T G A A C G<br>C T T G T G A A C G  | 70<br>G T A T T A A A T T<br>G T A T T A A A T T  | 80     A C A A G G C C A C     A C A A G G C C A C |
|---------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert | 90<br>A T T G A A T C T T<br>A T T G A A T C T T  | 100<br>T T G A C C A A T A<br>T T G A C C A A T A |                                                   |                                                    |
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert |                                                   |                                                   |                                                   |                                                    |
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert | 170<br>A G T G C C T G C A<br>A G T G C C T G C A |                                                   | 190<br>G T C C A G C T G G<br>G T C C A G C T G G | 200<br>C G C G C C T A C T<br>C G C G C C T A C T  |
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert | 210<br>G G T G C T C C A C<br>G G T G C T C C A C | A A G G T G G T G G<br>A A G G T G G G G G G      |                                                   |                                                    |
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert | 250<br>G C T T T G G C G G<br>G C T T T G G C G G |                                                   |                                                   | G T C A A G G T G G<br>G T C A A G G G T G G       |
| Hfq-ADP1-Sequenziert<br>Hfq-BD4-Sequenziert |                                                   |                                                   |                                                   |                                                    |

Abb. 39: Ausschnitt aus dem Sequenzvergleich der *hfq* PCR Amplifikate aus *A. baylyi* ADP1 und BD4. Die Fehlpaarung bei Base 281 (ADP1:C und BD4:T) führt zu keiner Änderung der Aminosäuresequenz in Hfq da sowohl GGC (ADP1) als auch GGT (BD4) für Glycin kodieren.

Tab. 10: Ergebnis der MALDI-TOF-Analyse von *A.baylyi* Hfq-His<sub>6</sub> (MW = 18 kDa). Angegeben sind die erwarteten Peptidsequenzen nach dem Trypsin-Verdau (maximal ein fehlender Trypsin-Schnitt) und deren Position innerhalb des Proteins. Die Eingrenzung der detektierten Peptidfragmente (MS bzw. MS-MS) lag zwischen 0,8 und 4 kDa. Modifikationen: Methyloxidation; m = Masse des Ions, z = Ladungszahl; mi = monoisotopische Masse (exakte Masse aus dem häufigsten Isotops eines Elements), av = Durchschnittsmasse (durchschnittliche Atomgewichte der einzelnen Elemente aller Isotope)

| m/z           | m/z       | Modifi- | <sup>#</sup> Start + |     | <sup>‡</sup> F | *Peptidsequenz                 | Detek- |
|---------------|-----------|---------|----------------------|-----|----------------|--------------------------------|--------|
| ( <b>mi</b> ) | (av)      | kation  | Ende                 |     |                |                                | tion   |
| [Da]          | [Da]      |         |                      |     |                |                                |        |
| 1050.6055     | 1051.2412 |         | 56                   | 65  | 0              | (K) <u>HAISTVVPAR(</u> N)      |        |
| 1069.5347     | 1070.2602 |         | 47                   | 55  | 0              | (K) <u>NTVSQMVYK(</u> H)       | MS     |
| 1083.4980     | 1084.1516 |         | 174                  | 181 | 0              | (R) <u>LEHHHHHH</u> (-)        | MS     |
| 1085.5296     | 1086.2596 | 1Met-ox | 47                   | 55  | 0              | (K)NTVSQMVYK(H)                |        |
| 1299.8035     | 1300.6374 |         | 19                   | 30  | 0              | (R) <u>IPVSIFLVNGIK</u> (L)    |        |
| 1425.5513     | 1426.3605 |         | 162                  | 173 | 0              | (K) FEDGQEDDSNNR(L)            |        |
| 1488.7805     | 1489.6815 |         | 3                    | 15  | 0              | (K) <u>GQTLQDPFLNSLR(K)</u>    | MS +   |
|               |           |         |                      |     |                |                                | MS/MS  |
| 1584.9472     | 1585.9422 |         | 17                   | 30  | 1              | (K) <u>ERIPVSIFLVNGIK(</u> L)  | MS     |
| 1616.8755     | 1617.8566 |         | 3                    | 16  | 1              | (K) <u>GQTLQDPFLNSLRK(E)</u>   | MS     |
| 1703.9075     | 1704.9353 |         | 1                    | 15  | 1              | (-) <u>SKGQTLQDPFLNSLR</u> (K) | MS     |
| 1889.0167     | 1890.2031 |         | 31                   | 46  | 0              | (K)                            | MS     |
|               |           |         |                      |     |                | LQGHIESFDQYVVLLK(N)            |        |
| 2101.1223     | 2102.4786 |         | 47                   | 65  | 1              | (K)                            |        |
|               |           |         |                      |     |                | <u>NTVSQMVYKHAISTVVPA</u>      |        |
|               |           |         |                      |     |                | <u>R</u> (N)                   |        |
| 2117.1172     | 2118.4780 | 1Met-ox | 47                   | 65  | 1              | (K)NTVSQMVYKHAISTVV            |        |
|               |           |         |                      |     |                | PAR(N)                         |        |
| 2490.0314     | 2491.4893 |         | 162                  | 181 | 1              | (K)                            |        |
|               |           |         |                      |     |                | FEDGQEDDSNNRLEHHHH             |        |
|               |           |         |                      |     |                | <u>HH</u> (-)                  |        |
| 2939.5335     | 2941.4405 |         | 31                   | 55  | 1              | (K)                            |        |
|               |           |         |                      |     |                | <u>LQGHIESFDQYVVLLKNT</u>      |        |
|               |           |         |                      |     |                | <u>VSQMVYK</u> (H)             |        |
| 2955.5285     | 2957.4399 | 1Met-ox | 31                   | 55  | 1              | (K)LQGHIESFDQYVVLLK            |        |
|               |           |         |                      |     |                | NTVSQMVYK(H)                   |        |
| 3169.8024     | 3171.8177 |         | 19                   | 46  | 1              | (R)                            |        |
|               |           |         |                      |     |                | <u>IPVSIFLVNGIKLQGHIESF</u>    |        |
|               |           |         |                      |     |                | <u>DQYVVLLK</u> (N)            |        |

\* Erwartete Peptidsequenz aus dem Trypsin-Verdau

‡ Anzahl an fehlenden Schnitten bei dem Trypsin-Verdau

# Position des Peptidfragments in der Hfq-Proteinsequenz

Tab. 11: Ergebnis der MALDI-TOF-Analyse von *A. baylyi* His<sub>6</sub>-Hfq (MW = 19,1 kDa). Angegeben sind die erwarteten Peptidsequenzen nach dem Trypsin-Verdau (maximal ein fehlender Trypsin-Schnitt) und deren Position innerhalb des Proteins. Die Eingrenzung der detektierten Peptidfragmente (MS bzw. MS-MS) lag zwischen 0,8 und 4 kDa. Modifikationen (Methyloxidation); m = Masse des Ions, z = Ladungszahl; mi = monoisotopische Masse (exakte Masse aus dem häufigsten Isotops eines Elements), av = Durchschnittsmasse (durchschnittliche Atomgewichte der einzelnen Elemente aller Isotope)

| m/z       | m/z       | Modifi- | <sup>#</sup> Sta | rt+ | <sup>‡</sup> F | *Peptidsequenz                         | Detek- |
|-----------|-----------|---------|------------------|-----|----------------|----------------------------------------|--------|
| (mi)      | (av)      | kation  | En               | de  |                |                                        | tion   |
| [Da]      | [Da]      |         |                  |     |                |                                        |        |
| 1050.6055 | 1051.2412 |         | 76               | 85  | 0              | (K) <u>HAISTVVPAR(</u> N)              | MS     |
| 1069.5347 | 1070.2602 |         | 67               | 75  | 0              | (K) <u>NTVSQMVYK(</u> H)               |        |
| 1085.5296 | 1086.2596 | 1Met-ox | 67               | 75  | 0              | (K)NTVSQMVYK(H)                        |        |
| 1299.8035 | 1300.6374 |         | 39               | 50  | 0              | (R) <u>IPVSIFLVNGIK(L)</u>             |        |
| 1425.5513 | 1426.3605 |         | 182              | 193 | 0              | (K) <u>FEDGQEDDSNNR(-)</u>             |        |
| 1488.7805 | 1489.6815 |         | 23               | 35  | 0              | (K) <u>GQTLQDPFLNSLR</u> (K)           | MS     |
| 1584.9472 | 1585.9422 |         | 37               | 50  | 1              | (K) <u>ERIPVSIFLVNGIK</u> (L)          | MS     |
| 1616.8755 | 1617.8566 |         | 23               | 36  | 1              | (K) <u>GQTLQDPFLNSLRK(E)</u>           | MS     |
| 1768.8487 | 1769.8940 |         | 1                | 16  | 0              | (-) <u>GSSHHHHHHHSSGLVPR</u> (G)       | MS     |
| 1889.0167 | 1890.2031 |         | 51               | 66  | 0              | (K) <u>LQGHIESFDQYVVLLK(N)</u>         |        |
| 2101.1223 | 2102.4786 |         | 67               | 85  | 1              | (K) <u>NTVSQMVYKHAISTVVPAR(</u> N)     |        |
| 2116.0604 | 2117.4060 |         | 17               | 35  | 1              | (R) <u>GSHMSKGQTLQDPFLNSLR(K)</u>      |        |
| 2117.1172 | 2118.4780 | 1Met-ox | 67               | 85  | 1              | (K)NTVSQMVYKHAISTVVPAR(N)              |        |
| 2132.0553 | 2133.4054 | 1Met-ox | 17               | 35  | 1              | (R)GSHMSKGQTLQDPFLNSLR(K)              |        |
| 2396.1286 | 2397.6186 |         | 1                | 22  | 1              | (-) <u>GSSHHHHHHHSSGLVPRGSHMSK(</u> G) |        |
| 2412.1235 | 2413.6180 | 1Met-ox | 1                | 22  | 1              | (-)GSSHHHHHHHSSGLVPRGSHMSK(G)          |        |
| 2939.5335 | 2941.4405 |         | 51               | 75  | 1              | (K)                                    |        |
|           |           |         |                  |     |                | LQGHIESFDQYVVLLKNTVSQMVYK(H)           |        |
| 2955.5285 | 2957.4399 | 1Met-ox | 51               | 75  | 1              | (K)LQGHIESFDQYVVLLKNTVSQMVYK(          |        |
|           |           |         |                  |     |                | H)                                     |        |
| 3169.8024 | 3171.8177 |         | 39               | 66  | 1              | (R)                                    |        |
|           |           |         |                  |     |                | <u>IPVSIFLVNGIKLQGHIESFDQYVVLLK(N)</u> |        |

\* Erwartete Peptidsequenz aus demTrypsin-Verdau

‡ Anzahl an fehlenden Schnitten bei dem Trypsin-Verdau

# Position des Peptidfragments in der Hfq-Proteinsequenz



Abb. 40: Vergleich von MALDI-TOF-Spektren von His<sub>6</sub>-Hfq, Hfq-His<sub>6</sub> und den angereicherten 15 kDa-Proteinen aus der Überexpression von beiden Hfq-His-Tag-Fusionsproteinen.

## 7.2 Publikationen von Teilen der vorliegenden Arbeit

#### 7.2.1 The Acinetobacter baylyi hfq Gene Encodes a Large Protein with an Unusual C Terminus

JOURNAL OF BACTERIOLOGY, Sept. 2009, p. 5553–5562 0021-9193/09/\$08.00+0 doi:10.1128/JB.00490-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

# The Acinetobacter baylyi hfq Gene Encodes a Large Protein with an Unusual C Terminus<sup>∇</sup>

Dominik Schilling<sup>2</sup> and Ulrike Gerischer<sup>1\*</sup>

Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany,<sup>1</sup> and Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany<sup>2</sup>

Received 9 April 2009/Accepted 17 June 2009

In gammaproteobacteria the Hfq protein shows a great variation in size, especially in its C-terminal part. Extremely large Hfq proteins consisting of almost 200 amino acid residues and more are found within the gammaproteobacterial family *Moraxellaceae*. The difference in size compared to other Hfq proteins is due to a glycine-rich domain near the C-terminal end of the protein. *Acinetobacter baylyi*, a nonpathogenic soil bacterium and member of the *Moraxellaceae* encodes a large 174-amino-acid Hfq homologue containing the unique and repetitive amino acid pattern GGGFGGQ within the glycine-rich domain. Despite the presence of the C-terminal extension, *A. baylyi* Hfq complemented an *Escherichia coli hfq* mutant in vivo. By using polyclonal anti-Hfq antibodies, we detected the large *A. baylyi* Hfq that corresponds to its annotated size indicating the expression and stability of the full protein. Deletion of the complete *A. baylyi hfq* open reading frame resulted in severe reduction of growth. In addition, a deletion or overexpression of Hfq was accompanied by the loss of cell chain assembly. The glycine-rich domain was not responsible for growth and cell phenotypes. *hfq* gene localization in *A. baylyi* is strictly conserved within the *mutL-miaA-hfq* operon, and we show that *hfq* expression starts within the preceding *miaA* gene or further upstream.

The bacterial Hfq protein was originally discovered as a necessary host factor for replication of the QB phage RNA plus-strand in Escherichia coli by melting its 3' end and permitting accessibility of phage  $Q\beta$  replicase (10). Deletion of hfq by insertion of an omega interposon into the E. coli genome leads to pleiotropic phenotypes, depending on the insertion site of the interposon (35). Hfq is now regarded as global RNA chaperone involved in posttranscriptional regulation, e.g., by stimulation or protection of mRNA decay and translation or promotion of duplex formation between small regulatory RNAs and their target mRNAs by unfolding of both molecules (3, 12, 41). During the process of mRNA degradation a combination of endonucleolytic cleavages catalyzed by RNase E or III followed by exonucleolytic cleavage through polynucleotide phosphorylase and RNase II occur. Hfq-mediated protection against mRNA degradation appears if Hfq, for example, binds to the poly(A) tail of rpsO mRNA, encoding for the S15 protein of the 30S ribosomal subunit, which leads to decreased sensitivity for polynucleotide phosphorylase and RNase II, respectively (9). In addition, the process of translation protects mRNAs from degradation, e.g., 30S ribosome binding to the 5'-untranslated region of ompA mRNA protects against RNase E recognition. However, in the presence of Hfq, ompA mRNA translation is repressed, and mRNA decay is stimulated because Hfq interferes with ribosome binding (41). Hfq-mediated duplex formation between a small RNA (sRNA) and a target mRNA was observed, e.g., for the Hfq binding sRNAs SgrS and RyhB. Both of these sRNAs lead to translation inhibition and RNase E-dependent degradation of

\* Corresponding author. Mailing address: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. Phone: 495512012316. Fax: 495512012302. E-mail: ulrike.gerischer@mpibpc.mpg.de. their mRNA targets ptsG (SgrS) and sodB (RyhB), respectively (18, 20). Conducted BLAST searches of microbial genomes highlight Hfq as a conserved protein, Hfq homologues can be found in at least half of bacterial genomes (32). The N termini of Hfq proteins especially share a high similarity with the Sm1 motif of eukaryotic Sm proteins, which bind numerous RNAs as heteroheptamers (21, 27). Sm1 is connected to a second motif called Sm2 by a region of variable length and sequence in eukaryotic cells and forms a protein structure called Sm fold consisting of an  $\alpha$ -helix, followed by a strongly bent fivestranded  $\beta$ -sheet that is responsible for RNA binding and protein-protein interaction (17, 36). Crystals of the C-terminally truncated Hfq protein from E. coli or the full-length Hfq protein from Staphylococcus aureus revealed indeed a homohexameric ring-shaped structure. Despite Sm2 lacking sequence homology to eukaryotic Sm proteins, both proteins adopt the same Sm-fold structure (26, 27). Cocrystallization of S. aureus Hfq with a hepta-oligoribonucleotide (AU<sub>5</sub>G) revealed that RNA binding is located within the Sm motif especially in  $\beta$ -sheets 2 to 5 (27). Based on this result, the assumption was made that the Hfq C terminus is not necessary for sRNA-mRNA interaction. In fact, a C-terminal 37-amino-acid truncated E. coli Hfq protein is able to bind sRNAs but is defective in mRNA binding (40). Interestingly, the C termini of Hfq proteins from different bacteria vary considerably in length and sequence. The longest C-terminal extensions are found in beta- and gammaproteobacteria. However, it is not known what the function of the Hfq C terminus is and why it is extremely elongated in a few organisms.

In the present study, we describe the *Acinetobacter baylyi hfq* gene and its encoded protein, which is almost twice the size of other gammaproteobacterial Hfqs due to an elongated C terminus (Fig. 1 and 2). *A. baylyi* is a gram-negative, nonpathogenic, and strictly aerobic gammaproteobacterium whose ge-

Vol. 191, No. 17

<sup>&</sup>lt;sup>7</sup> Published ahead of print on 26 June 2009.

5554 SCHILLING AND GERISCHER

J. BACTERIOL.



FIG. 1. Multiple sequence alignment of the *A. baylyi* Hfq amino acid sequence with seven gammaproteobacterial Hfq homologues by CLUSTAL W and visualized with BoxShade 3.2. Capital letters in the consensus sequence indicate conserved amino acids appearing in all aligned sequences. Lowercase letters indicate conserved amino acids appearing in at least two sequences. Numbers indicate the amino acid positions. Amino acids shaded gray have the same polarity as the black-shaded ones, whereas amino acids with a white background differ in their polarity from the black- and gray-shaded amino acids. The Sm domain is marked by a dotted arrow and is encoded by the first 64 amino acids in all compared sequences. The repetitive glycine-rich amino acid pattern of the *A. baylyi* Hfq sequence starts at amino acid 80 (glycine), ends at amino acid 152 (glutamine), and is outlined by a black box.

nome is completely sequenced and annotated (2). The *A. baylyi* Hfq protein contains an unusual glycine-rich domain near its C-terminal end consisting of the repetitive amino acid patterns GGGFGGQ and GGFGGQ. hfq is located downstream the gene *miaA* (encoding a tRNA modification enzyme) on the same DNA strand and upstream of *surA* (encoding a protein folding enzyme) on the opposite DNA strand.

#### MATERIALS AND METHODS

**Bacterial strains and growth conditions.** The bacterial strains used in the present study are listed in Table 1. The *E. coli* strains MC4100 AM111  $hfq1::\Omega$  and MC4100 AM112  $hfq2::\Omega$  have been described elsewhere (22) and were grown in Luria-Bertani (LB) medium supplemented with 50 µg of kanamycin/ml with aeration at 37°C. *E. coli* strain MC4100 AM111/pRK415  $hfq_{A.\ baybi}$  was cultivated in LB medium supplemented with 12 µg of teracycline/ml and 50 µg of kanamycin/ml. Cultivation of all *Acinetobacter* strains was carried out in minimal medium (33) with aeration at 30°C. If needed, 100  $\mu$ g of spectinomycin/ml, 6  $\mu$ g of tetracycline/ml, or 6  $\mu$ g of kanamycin/ml was added to the medium.

**Plasmid and strain construction.** Inactivation of the *A. baylyi hfq* gene was done by deletion of the complete open reading frame (ORF) and replacement with the  $\Omega$ -interposon of plasmid pHP45 $\Omega$  designed to terminate both transcriptional and translational activities and encoding spectinomycin sensitivity (25). The DNA regions next to *A. baylyi hfq* were amplified via PCR using the primers 241, 242, 243, and 244 (Table 2) and *A. baylyi* chromosomal DNA as a template. PCR products were purified with the PCR clean-up gel extraction kit (Macherey-Nagel, Düren, Germany) and subsequently cloned by using their artificial BamHI, natural AfIII, and XhoI recognition sites into cloning vector pBSKII+ (Stratagene, Amsterdam, The Netherlands), creating plasmid pBSKII+  $\Delta hfq$ , and used for transformation of *E. coli* DH5 $\alpha$  cells (13). The  $\Omega$ -interposon was inserted into the created BamHI-site of pBSK+  $\Delta hfq$ ,  $\Omega$  with AfIIII/XhoI and transformed into the *A. baylyi* genome using natural competence (33). The specific integration of the construct was confirmed by



FIG. 2. Comparison of Hfq amino acid sequences from different *Moraxellaceae* by CLUSTAL W and visualized with BoxShade 3.2. Capital letters in the consensus sequence indicate conserved amino acids appearing in all aligned sequences. Lowercase letters indicate amino acids in at least two sequences. Amino acids shaded gray share the same polarity as the black-shaded ones, whereas amino acids with a white background differ in their polarity to black- and gray-shaded amino acids. Numbers indicate the amino acid position in the protein.

Vol. 191, 2009

#### ACINETOBACTER BAYLYI hfq ENCODES A LARGE PROTEIN 5555

#### TABLE 1. Bacterial strains

| Strain                                            | Relevant characteristics <sup>a</sup>                                                                                        | Source or reference |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------|
| A. baylvi                                         |                                                                                                                              |                     |
| ADP1                                              | Wild type (strain BD413, ATCC 33305)                                                                                         | 38                  |
| ADP1 $\Delta hfg$                                 | hfg ORF replaced by $\Omega$ -interposon; Sp <sup>r</sup>                                                                    | This study          |
| ADP1 $\Delta miaA$                                | $\Omega$ -interposon 55 bp downstream of miaA 5' end; Sp <sup>r</sup>                                                        | This study          |
| ADP1 $\Delta mutL$                                | mutL ORF replaced by Km-integration cassette; Km <sup>r</sup>                                                                | 6                   |
| ADP1 $\Delta$ Hfq <sub>73aa</sub>                 | Mutated $hfq$ gene (chromosomal deletion of amino acids 80 to 152)                                                           | This study          |
| ADP1/pRK415 hfq                                   | Overexpression of $hfq$ ; Tc <sup>r</sup>                                                                                    | This study          |
| ADP1 $\Delta hfq/pRK415 hfq$                      | Complementation of <i>hfq</i> deletion in <i>trans</i> ; Sp <sup>r</sup> Tc <sup>r</sup>                                     | This study          |
| E. coli                                           |                                                                                                                              |                     |
| MC4100 AM111 $hfq1::\Omega$                       | $\Omega$ -interposon inserted into hfq BcII site; Km <sup>r</sup>                                                            | 22, 35              |
| MC4100 AM112 hfq2::Ω                              | $\Omega$ -interposon inserted into hfq KpnI site; Km <sup>r</sup>                                                            | 22, 35              |
| MC4100 AM111/pRK415 <sub>A, baylyi hfa Plac</sub> | Expression of A. baylyi hfq controlled by its natural promoter; Km <sup>r</sup> Tc <sup>r</sup>                              | This study          |
| MC4100 AM111/pRK415 <sub>A. baylyi Plac hfg</sub> | Expression of A. baylyi hfq controlled by the lac promoter of pRK415; Km <sup>r</sup> Tc <sup>r</sup>                        | This study          |
| DH5a                                              | $F^-$ φ80dlacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 endA1 hsdR17( $r_K^- m_K^+$ )<br>phoA supE44 $\lambda^-$ thi-1 gyrA96 relA1 | 13                  |

<sup>a</sup> Tcr, tetracycline resistance; Ampr, ampicillin resistance; Spr, spectinomycin resistance; Kmr, kanamycin resistance.

whole-cell PCR with the primers 241 and 244, which anneal to the insert-flanking sequences (Fig. 3 and Table 2).

Complementation of the hfq deletion and overproduction of Hfq in A. baylyi were carried out in trans from plasmid pRK415 (19). The hfq expression construct was created via primer 266 containing an EcoRI recognition site and primer 267 containing a PstI recognition site (see Table 2). The purified PCR product was cut with EcoRI and PstI and cloned into pRK415. To ensure expression from the natural hfq promoter and avoid additional expression from the lac promoter of the vector, the integration was made such that the vector promoter was downstream of the cloned hfq gene. Plasmid pRK415 hfq Plac was conjugated (16) with the help of plasmid pRK2013 (8) and successfully established via tetracycline resistance in A. baylyi  $\Delta hfq$  and wild-type cells. Positive clones were confirmed and distinguished from E. coli donor cells containing plasmid pRK415 hfq by whole-cell PCR with the primers 4 and 5 (Table 2) annealing in the qui-pob operon of A. baylyi. The qui-pob operon encodes enzymes of the aromatic degradation pathway and is missing in E. coli. In addition, growth on A. baylyi minimal medium was applied because E. coli does not grow on this medium. The presence of the  $\Delta h f q$  mutation was confirmed by whole-cell PCR with the primers 241 and 244.

Deletion of the 73-amino-acid repetitive glycine-rich domain in the *A. baylyi* hfq gene was achieved by amplifying two PCR products with the primer pairs 289 and 247 (289/247) and 291/246. Both DNA fragments were used as templates for an overlap extension PCR with the primer pair 247/246. The resulting hfq construct was missing the internal hfq glycine-rich domain and was transformed into

TABLE 2. Oligonucleotides

| Primer | Sequence $(5'-3')^a$            | Restriction<br>site(s) |
|--------|---------------------------------|------------------------|
| 4      | ATCAACAACGCACCACT               |                        |
| 5      | ACCCAAGTCAAGCTGAT               |                        |
| 241    | AGGAAACATTGGCACAATTTCAAAC       |                        |
| 242    | CATGGATCCCTTTAGACATTTTATAACTCC  | BamHI                  |
| 243    | CATGGATCCCAATCGTTAATCCTAAAACC   | BamHI                  |
| 244    | ACGAATAAGTTCACAGTTGCTGCAA       |                        |
| 266    | GGAGAATTCAAGCTTTGTAGATCCTGTTGC  | EcoRI, HindIII         |
|        | GGGAG                           |                        |
| 267    | GGACTGCAGTTGCAGAGTTACCTTCTGAAC  | PstI                   |
| 289    | GGTGGTTCAGGCTTTGACAACGATACTAA   |                        |
|        | ATTTGA                          |                        |
| 247    | TAGTGAACCATTCCAGACTCAGTTTGG     |                        |
| 291    | AAAGCCTGAACCACCTTGTGGAGCACCAG   |                        |
|        | TAGGCG                          |                        |
| 246    | CAGGCTCAAGAAGACTTGCGAAACTC      |                        |
| 342    | CTACTGCAAGCGGGGAAGGATCCTTTGGCGT | BamHI                  |
| 344    | ACGCCAAAGGATCCTTCCCGCTTGCAGTAG  | BamHI                  |
| 343    | CGACGGCCGTTAACGATTGTTAGAATCGTC  |                        |
| 301    | TCAAAAGATTCAATGTGGCCTTG         |                        |

<sup>a</sup> Restriction sites are indicated in boldface.

A. baylyi  $\Delta h f q$  cells. Positive clones expressing an Hfq<sub> $\Delta 73aa$ </sub> protein were selected based on spectinomycin sensitivity. Confirmation of the clones was done by whole-cell PCR.

Deletion of *miaA* was performed by insertion of the  $\Omega$ -interposon near the 5' end of the ORF. To this end, a BamHI recognition site had to be established in the *A. baylyi miaA* gene. Two DNA fragments were created by using the primer pairs 342/343 and 344/241 by PCR. Both products were included as a template in an overlap extension PCR leading to the insertion of a BamHI site 52 bases downstream of the *miaA* 5' end without interruption of the reading frame. This construct was amplified with the primer pair 241/343, cut with Sall/Eagl, cloned in pBSK+II, and established in *E. coli* cells. Positive clones were selected via ampicillin resistance and blue-white screening. The  $\Omega$ -interposon was cut out of pHP45 $\Omega$  with BamHI and ligated with plasmid pBSK+ *miaA* cut with the same enzyme. Positive clones were selected by ampicillin and spectinomycin resistance, and the complete *miaA* deletion construct was cut by PvuI/Sall (both are natural enzyme recognition sites of the *A. baylyi hfq* genomic region), gel purified, and transformed into *A. baylyi* wild-type cells. Positive clones were selected based on spectinomycin resistance and confirmed by whole-cell PCR.

Complementation of an *hfq* deletion in *E. coli*  $\Delta hfq$  strains by *A. baylyi hfq* was fulfilled by transfer of plasmid pRK415 *hfq<sub>A. baylyi</sub>* into *E. coli* MC4100 strain AM111 *hfq*1:: $\Omega$  and screening for positive clones by tetracycline and kanamycin resistance. Cloning of *hfq* with the HindIII recognition site of primer 266 resulted in a plasmid expressing *hfq* from the pRK415 *lac* promoter. This plasmid was also established in *E. coli* MC4100 strain AM111 *hfq*1:: $\Omega$ .

**RNA isolation and Northern blot analysis.** Total RNA was isolated by a procedure described previously (24). The RNA quality and concentration were determined from the ratio of the optical density at 260 nm ( $OD_{280}$ ) to that at 280 nm. Then, 15 µg of purified RNA was heat denatured for 5 min at 65°C and separated on a 1.2% formaldehyde-agarose gel in 1× RNA loading dye (1 ml of 5× RNA loading dye was composed of 8 µl of 500 mM EDTA, 200 µl of 100% glycerol, 72 µl of 37% [vol/vol] formaldehyde, 308 µl of formamide, 400 µl of 10× running buffer [200 mM morpholinepropanesulfonic acid, 50 mM sodium acetate, 5 mM EDTA; pH 7], 2 µl of saturated bromophenol blue, and 10 µl of deionized water) and transferred to a Hybond-N+ nylon membrane (Amersham





#### 5556 SCHILLING AND GERISCHER

Biosciences, Freiburg, Germany) by capillary blotting in  $10 \times$  SSC (1.5 M sodium chloride, 0.15 mM sodium citrate) overnight. The membrane was dried at room temperature, and the RNA was covalently bound by a UV cross-linker (Amersham Biosciences) for 90 s at 1,200  $\mu$ J/cm<sup>2</sup>. Specific RNA detection was performed by the digoxigenin (DIG) labeling and detection system (Roche Applied Sciences, Mannheim, Germany).

Western blot analysis. To obtain A. baylyi total protein crude extract, 1 ml of cells was treated for 15 min on ice with 25 µl of 2% deoxycholic acid. Afterward, the total protein was precipitated with 30 µl of 40% trichloroacetic acid, centrifuged 5 min at 14,000  $\times$  g, and dissolved in deionized water. Separation of total protein was carried out with a 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel, and the protein concentration was measured by using a Bradford assay. Then, 20  $\mu g$  of the total protein was applied per lane, after dilution with 1 volume of SDS loading dye (12% SDS [wt/vol], 6% β-mercaptoethanol [vol/ vol], 30% glycerol [vol/vol], 0.05% Coomassie brilliant blue G-250 [wt/vol], 150 mM Tris-HCl; pH 7) and incubation at 65°C for 5 min before loading. After separation, the protein was transferred onto a nitrocellulose membrane by using an electroblotter (Serva Electrophoresis, Heidelberg, Germany) at 200 mA for 2 h. The membrane was blocked in 5% skim milk powder for 1 h at room temperature before incubation with anti-Hfq antibodies (raised against Pseudomonas putida Hfq and kindly provided by Gerhard Burchardt, University of Greifswald, Greifswald, Germany) diluted 1:1,000 for 1 h at room temperature. Detection of specific Hfq-anti-Hfq interaction was performed with a Vectastain ABC kit (Vector Laboratories, Peterborough, England).

**RT-PCR analysis.** RNA of *A. baylyi* grown until early stationary phase was isolated and treated with DNase I (Roche Applied Sciences) to remove any DNA contamination. Then, 1  $\mu$ g of DNA-free RNA was denatured at 70°C for 5 min together with 2 pmol of primer 301, which is complementary to *A. baylyi hfq* and anneals 119 bases downstream of the *hfq* 5' end. Reverse transcription (RT) was performed with 100 U of Moloney murine leukemia virus reverse transcriptase RNase Minus Point Mutant (Promega, Mannheim, Germany) in a total volume of 25  $\mu$ l at 45°C for 1 h. Finally, 1  $\mu$ l of the created cDNA was used as a template in a PCR with the primers 301 and 246 (see Fig. 3 and Table 2). As controls, the reaction was separately done without the addition of reverse transcriptase on the one hand (a negative control for the RT reaction) and *A. baylyi* chromosomal DNA as cDNA template on the other hand (a positive control for the PCR).

#### RESULTS

In silico identification of an unusually large Hfq protein encoded by A. baylyi. A. baylyi strain ADP1 encodes an unusually large Hfq protein (174 amino acids) with highly significant homology between amino acid residues 1 and 66 to those of other gammaproteobacterial Hfqs, including the Hfq Sm motifs (Fig. 1). In contrast, the C-terminal end of A. baylyi Hfq is more than three times larger and contains a hydrophobic glycine-rich domain. Detailed BLAST searches identified this domain as special Hfq feature within the Moraxellaceae family. Whereas Hfq proteins of the genus Acinetobacter show the strictly repetitive amino acid patterns GGGFGGQ and GG FGGQ (starting at positions 81 and 126 of A. baylyi Hfq [Fig. 1]), Hfq homologues of the genera Psychrobacter and Moraxella contain no obvious patterns compared to A. baylyi Hfq within their glycine-rich Hfq domains (Fig. 2, consensus line). A PHI-BLAST (pattern hit initiated) search revealed GGGFGGQ also within DNAJ/DNAJ-like chaperones of different bacteria, which contain a glycine-rich domain and are involved in protein folding, protein transport, and response to cell stress (42). We also observed this pattern in DNA-binding proteins, e.g., in DNA polymerase III from Frankia sp.

A. baylyi Hfq complements an E. coli hfq deletion. A. baylyi Hfq functionality was investigated by complementation of growth and cell phenotype effects of E. coli  $\Delta hfq$  strains. A. baylyi Hfq was expressed in *trans* and controlled by the natural hfq promoter (pRK415 hfq) or by the *lac* promoter (pRK415 Plac hfq), respectively. Since A. baylyi does not contain a *lac*  J. BACTERIOL.

operon, the use of IPTG (isopropyl-β-D-thiogalactopyranoside) was not necessary. We know from previous work that this promoter functions in A. baylyi. Both plasmids were transformed into the E. coli MC4100 strain AM111 hfq1::Ω, which possesses an  $\Omega$ -interposon in the hfg BclI recognition site (117 bases downstream of the hfq start codon) and shows effects on growth and cell size. Strain E. coli MC4100 AM112 hfq2:: Ω contained the  $\Omega$ -interposon at the hfq KpnI site (232 bases downstream of the hfq start codon) and showed no phenotype (35). The latter strain was used as a reference strain in the present study. Although restoring normal growth by complementation of strain AM111  $hfq1::\Omega$  with the E. coli hfq gene was not possible (35), strains expressing A. baylyi Hfq instead showed the same growth behavior and cell size like the reference strain in LB complex medium (Fig. 4). Hfq controlled by its own promoter and expressed from the low-copy-number plasmid pRK415 (a derivate of RK2) is sufficient to restore the original growth behavior, whereas additional expression from the lac promoter results in a slightly retarded growth and elongated cells compared to the reference strain. These observations indicate that the concentration of Hfq must be well balanced to perform its natural function. We never observed biphasic growth behavior of AM111  $hfq1::\Omega$  complemented with A. baylyi hfq. However, strain AM111 hfq1:: $\Omega$  showed a biphasic growth in LB medium supplemented with 171 mM sodium chloride, which has been described before (35). This biphasic growth behavior was characterized as salt-dependent and not observed in LB medium supplemented with 0, 0.085, or 0.5 M sodium chloride (35).

Growth effects of hfq manipulation in A. baylyi. The deletion of A. baylyi hfq was done by replacing the complete ORF with an  $\Omega$ -interposon and complemented by expression of hfq in trans from the low-copy plasmid pRK415 or by replacing the  $\Omega$ -interposon with a partially deleted ( $\Delta 73$  amino acid [ $\Delta 73aa$ ] = glycine-rich domain) A. baylyi hfq gene. Overexpression of Hfq was carried out by transfer of the plasmid pRK415 hfq into A. *baylyi* wild-type cells (Fig. 5). The deletion of *hfq* led to a strong decrease in the growth rate (A. baylyi wild type,  $\mu = 0.92 \text{ h}^{-1}$ ; A. baylyi  $\Delta hfq$ ,  $\mu = 0.12 h^{-1}$ ) and a lower final OD of the culture than in wild-type cells. Restoring the original growth behavior with hfq expression in trans from the low-copy replicating plasmid pRK415 and controlled by its own promoter was not completely possible and resulted in a strain starting exponential growth after a long lag phase and reaching a lower final OD. Establishing pRK415 without hfq in A. baylyi had no effect on the growth rate, but cultures reached a higher final OD compared to wild-type cells ( $OD_{600} = 1.7$  for wild-type cells and  $OD_{600} = 2.7$  for pRK415-containing cells [data not shown]). In contrast, chromosomal complementation of the deletion with a smaller A. baylyi hfq gene resulted in restoring the original growth behavior of A. baylyi, indicating that the C-terminal part, which is deleted in this strain ( $\Delta$ 73aa) is not required for normal growth. Transfer of an hfq expressing plasmid controlled by the lac promoter into A. baylyi hfq mutant cells was not successful, perhaps due to the constitutive hfq expression, which led to a toxic Hfq accumulation. Interestingly, overexpression of Hfq regulated by its own promoter in addition to the chromosomal wild-type hfq allele led to the same growth rate but to a higher final OD of the culture.

Furthermore, we included a Flag tag containing two stop

Vol. 191, 2009



AM111 pRK415 Plac htg 3.02 ± 0.44 0.94 ± 0.14

FIG. 4. Growth comparison of *E. coli hfq* mutants with or without a plasmid expressing *A. baylyi* Hfq. (A) Growth curves of cells grown in LB medium supplemented with 170 mM NaCl and antibiotics. Strains were grown overnight, diluted 1/100, and incubated at 37°C with aeration, and growth was monitored by measuring the absorbance at 600 nm every hour. (B) Cell size and growth rate comparison of *E. coli hfq* mutants with or without a plasmid expressing *A. baylyi* Hfq. Thirty cells collected from cultures were measured at an OD<sub>600</sub> of 1. For *E. coli* MC4100 AM111 *hfq*1:: $\Omega$  showing a biphasic growth, the growth rates were determined at OD<sub>600</sub> of 0.4 (growth rate 1) and an OD<sub>600</sub> of 0.8 (growth rate 2).

codons at different Hfq positions, respectively, by a modified method of a one-step gene inactivation epitope tagging of chromosomal genes (37) in the *A. baylyi hfq* gene. A mutant with the tags inside the Sm domain showed similar growth defects compared to the total hfq deletion, whereas an insertion of the tag before the hfq stop codon resulted in a very weak effect on growth compared to wild-type cells (data not shown). This indicates that hfq and especially the N-terminal protein part is necessary for normal growth in *A. baylyi*.

Verification of an unusually large Hfq in *A. baylyi*. Given the observation that the unusual C-terminal extension of *A. baylyi* Hfq was not necessary for normal growth, we investigated whether the whole ORF was expressed. Therefore, all *A. baylyi* hfq strains were analyzed with regard to Hfq mRNA and protein expression (Fig. 6). Northern blot analysis with hfq-specific PCR probes revealed that in fact hfq deletion and complemen-

tation were successful on the mRNA level. In the wild type, a 525-base Hfq mRNA was expected, whereas deletion of the hfq ORF or of the glycine-rich domain should result in the absence of Hfq mRNA or in a 306-base mRNA, respectively. Indeed, the *A. baylyi*  $\Delta hfq$  strain expressed no hfq mRNA any longer (Fig. 6C). Chromosomal hfq complementation resulted in a smaller hfq mRNA due to the insertion of the hfq gene without its glycine-rich domain ( $\Delta 219$  bp) compared to the wild-type mRNA. As expected, the hfq mRNA level of the wild type and the chromosomally complemented  $\Delta hfq$  strain appeared to be similar. In contrast, the in *trans* complementation by overexpression from the low-copy-number plasmid pRK415 led to a much higher amount of hfq mRNA (Fig. 6C). This observation strengthens the earlier assumption that Hfq is only effective at a certain concentration.

Correspondingly, the Hfq protein expression was investi-



FIG. 5. Growth of *A. baylyi* strains manipulated in the *mutL-miaA-hfq* operon in minimal medium supplemented with 10 mM succinic acid and antibiotics. Strains were grown overnight, diluted 1/25, and incubated at 30°C with aeration, and the growth was monitored by measuring absorbance at 600 nm every hour.

gated in all hfq mutant A. baylyi strains by Western blot analysis with specific anti-Hfq antibodies raised against P. putida Hfq (Fig. 6). Both proteins share an identity of 83% in the Nterminal part (amino acid residues 1 to 70). A. baylyi Hfq could be detected as a 17-kDa band, confirming the existence of an unusually long Hfq in A. baylyi (Fig. 6A, lane WT). A. baylyi Hfq could also be detected as 17-kDa protein in the hfq complemented and the overexpressing strain (Fig. 6A, lanes hfqC and hfqP). According to the signal strength (plasmid versus chromosomally encoded hfq), overexpression of Hfq was successful, since the plasmid-containing strains caused a much stronger signal. In addition to the specific Hfq signal, we noticed a nonspecific binding of the antibody to a 15-kDa protein in all *A. baylyi hfq* strains. Western blot analysis of total protein from an *E. coli* strain expressing *A. baylyi hfq* did not reveal this band; it showed only one band according to Hfq of the same size as in *A. baylyi* wild type (Fig. 6B, lane  $hfqP_{Eco}$ ). *P. putida* Hfq was detected at 10 kDa, a finding which agrees with the annotation of the protein (Fig. 6A, lane *Pfl*). The signal of the 15-kDa protein again was missing, indicating that it is derived from a nonspecific binding of the antibody with an *A. baylyi* protein.

A. baylyi hfq transcription starts within the miaA coding region or further upstream. In contrast to the deviation from



FIG. 6. Analysis of hfq expression in *A. baylyi hfq* strains used in the present study by Western and Northern blot experiments. (A and B) Hfq Western blot analysis of 20 µg of total protein derived from all *hfq* mutant *A. baylyi* strains using a polyclonal antibody raised against *P. putida* Hfq. (C) Northern blot analysis of *hfq* mRNA detected with a specific DIG-labeled PCR probe (primer pair 232/234) in total RNA derived from all *hfq* mutant *A. baylyi* strains. (D) Detection of *surA* transcript with a specific DIG-labeled PCR probe (primer pair 243/267). (E) Detection of *miaA* transcript using a specific DIG-labeled PCR probe (primer pair 243/267). (E) Detection of *miaA* transcript using a specific DIG-labeled PCR probe (primer pair 242/290). Abbreviations: WT, ADP1 wild type; *hfq*73, ADP1 Hfq<sub>Δ73aa</sub>; *hfq*P, ADP1/pRK415 *hfq*; *hfq*, ADP1  $\Delta hfq$ ; *Pfl*, *P. fluorescence* wild type; *hfq*P<sub>Eco</sub>, *E. coli*/pRK415 *hfq*, *hage*, M. PageRulerProtein ladder (Fermentas, St. Leon-Roth, Germany) or ssRNA ladder (New England Biolabs, Frankfurt am Main, Germany).

J. BACTERIOL.

Vol. 191, 2009



FIG. 7. RT-PCR analysis of the *A. baylyi miaA-hfq* region. Lanes: RNA (+), RT-PCR with *A. baylyi* total RNA as a template; RNA (-), RT-PCR with *A. baylyi* total RNA as a template but without reverse transcriptase; DNA (-), RT-PCR with *A. baylyi* chromosomal DNA as a template; H<sub>2</sub>O (-), PCR with H<sub>2</sub>O instead of DNA as a template;  $\lambda$ DNA/PstI,  $\lambda$ DNA cut with PstI.

other bacteria in terms of Hfq C-terminal size and sequence conservation, hfq genomic localization is strictly conserved among gammaproteobacterial genomes. A. baylyi hfq, being no exception to this, is encoded within the mutL-miaA-hfq operon, whose transcription has been extensively studied in E. coli (34). This conservation does not apply to the genes downstream of hfq among gammaproteobacteria. In many cases, hfl genes encoding enzymes for bacteriophage  $\lambda$  lysogeny (4) follow hfq. Species of the family Moraxellaceae encode different genes downstream of hfq. In Moraxella catarrhalis it is kpsF encoding for arabinose-5-phosphate isomerase (1), and in A. baylyi it is surA encoding for a peptidyl-prolyl cis-trans isomerase. RT-PCR analysis was performed with RNA from A. baylyi to determine whether hfq transcription starts within the miaA coding region or further upstream. An RT step was carried out with primer 301 (Fig. 3) annealing from bp 119 till bp 97 downstream of the hfq 5' end on the negative strand, whereas the second PCR primer 246 (Fig. 3) was located from bp 35 till bp 10 upstream of the miaA 3' end, respectively. The RT-PCR yielded a  $\sim$ 265-bp product that was missing in the control reaction without reverse transcriptase (Fig. 7), indicating that hfq transcription starts at least partly within the miaA ORF or further upstream.

Influence of hfq on the expression of neighboring genes. The A. baylyi hfq gene is located between the genes surA and miaA (Fig. 3). An hfq deletion could possibly affect surA or miaA expression, e.g., by destabilization of their transcripts, and subsequently the observed effect could be caused by miaA or surA rather than by hfq. Both neighbor genes are involved in important processes. miaA expression leads to tRNA modification by transfer of an isopentenyl moiety from dimethylallyl pyrophosphate to adenosine 37 of tRNAs (5, 28), and surA encodes a rotamase that is involved in protein folding (14). Therefore, possible effects toward transcript stability of both mRNAs were investigated. To address this issue, we studied

#### ACINETOBACTER BAYLYI hfq ENCODES A LARGE PROTEIN 5559

the influence of hfq loss and insertion of the  $\Omega$ -interposon in miaA and surA (Fig. 6D and E) via Northern blot analysis with specific DNA probes (miaA primer pair 290/242, surA primer pair 267/243). surA and miaA mRNA were detected in total RNA isolated from cells from the stationary growth phase. The deletion of *hfq* or the insertion of the  $\Omega$ -interposon had no influence on the mRNA level of the downstream gene surA (Fig. 6D). miaA is encoded on the same DNA strand as hfq, and hfq expression starts within or upstream of the miaA ORF. Northern blot experiments revealed that (except for the A. baylyi hfq mutant) the miaA mRNA was detected in the size range between 1,500 and 2,000 bases. Given the lengths of the miaA gene (945 bp) and the hfq gene (525 bp), it is likely that there is cotranscription. In addition to the miaA mRNA, we saw two strong abundant RNAs with sizes between 500 and 1,000 bases appearing in the A. baylyi hfq mutant (Fig. 6E, lane hfq). It is known that Hfq specifically destabilizes its own mRNA at the posttranscriptional level by binding at two positions in the 5'-untranslated region of its mRNA, which results in inhibition of the translation initiation complex (39). Together with the fact that E. coli hfq transcription is regulated within the miaA gene by two promoters whose expression results in long untranslated transcripts (891 and 488 bases), a lack of Hfq could result in the accumulation of these 5'-untranslated Hfq mRNAs (34). Our hypothesis is supported by the fact that complementation of the hfq mutation in trans leads to the loss of both small abundant hfq transcripts (Fig. 6E, lane hfqC). In addition, also in case of the hfq wild type, C-terminal truncated, and Hfq overexpression situations, wherever Hfq was present, both small RNAs were also not detected (Fig. 6E, lane WT, hfq73 and hfqP). We checked whether insertion of the  $\Omega$ -interposon is responsible for the miaA mRNA instability and would lead to the observed  $\Delta hfq$ growth defect. Therefore, we introduced the  $\Omega$ -interposon into the miaA gene. We were concerned that a complete replacement of *miaA* with the interposon would lead to secondary effects due to hfq transcription failure. Along these lines was the finding that a complete deletion of miaA during the creation of single deletion mutants in A. baylyi was not possible (6). For both reasons, we created an artificial BamHI site by replacing TTGGC into CCTAG 55 bases downstream of the miaA start codon to create an incorporation site for the  $\Omega$ -interposon. At this site the  $\Omega$ -interposon was inserted to inactivate the miaA gene. A. baylyi mutL (preceding the miaA gene and kindly supplied by Valerie de Berardinis, Genoscope, France), miaA and hfq mutants were compared in growth experiments (Fig. 8) showing that deletion of hfq revealed the mutant with the biggest effect on growth. The effect of the miaA mutation was intermediate, whereas mutL mutants showed no apparent effect compared to wild-type cells.

Given that *A. baylyi* Hfq is able to influence *E. coli* cell size (35), we checked the cells of all *A. baylyi* strains that are manipulated in the *mutL-miaA-hfq* operon (Fig. 9). Interestingly, *hfq* deletion (Fig. 9G), as well as overexpression (Fig. 9D), led to the inability of the cells to assemble in chains. Complementation of the deletion in *trans* (Fig. 9H) could not restore the original cell arrangement in contrast to chromosomal complementation (Fig. 9A), indicating that the amount of Hfq is critical for the cell phenotype. An effect of the cell phenotype due to the plasmid pRK415 (Fig. 9C) can be ex-



FIG. 8. Growth of *A. baylyi* strains manipulated in the *mutL-miaA-hfq* operon in minimal medium supplemented with 10 mM succinic acid and antibiotics. Strains were grown overnight, diluted 1/25, and incubated at 30°C with aeration, and the growth was monitored by measuring the absorbance at 600 nm every hour.

cluded. Neither *mutL* (Fig. 9F) nor *miaA* (Fig. 9E) mutants are affected in their cell phenotype compared to wild-type cells (Fig. 9B). Taken together, the described experiments provide evidence that the effects observed upon deletion of hfq are due to the absence of this gene and not to the disturbed expression of the neighboring genes.



FIG. 9. Microscope comparison of different A. baylyi strains. The cells were grown in minimal medium supplemented with 10 mM succinic acid as carbon source and incubated at  $30^{\circ}$ C in flasks with aeration until an OD of  $\sim$ 1 at 600 nm was reached.

#### DISCUSSION

Hfq is known to show a strong variation in its C terminus in gamma- and betaproteobacteria (40). Searching redundant protein databases showed that (except for a few betaproteobacteria especially Burkholderia species) the largest known Hfq proteins are annotated in members of the gammaproteobacterial family Moraxellaceae. The annotated Hfq lengths are between 168 and 174 amino acids for Acinetobacter species, 183 to 203 amino acids for Psychrobacter species, and up to 210 amino acids for M. catarrhalis (1, 38). Among the Moraxella spp., Hfq proteins differ in terms of the length of the Cterminal domain, its sequence, and the downstream genes (either surA in Acinetobacter species or kpsF encoded in other Moraxellaceae). In Burkholderia genomes such as in Burkholderia pseudomallei, small (79-amino-acid) and large (216-aminoacid) Hfq homologues have been annotated but not yet verified. Except for the abundance of glycine residues between the N and C termini, there is no obvious sequence conservation comparing both large Hfq homologues of Burkholderia and Acinetobacter spp. Surprisingly, the small and large Hfq Burkholderia proteins themselves share only low sequence conservation even in the conserved N terminus (53% between amino acids 9 and 79). In addition, the genomic locus is not conserved: neither the Burkholderia small Hfq protein nor the large Hfq protein is encoded within the mutL-miaA-hfq operon. Burkholderia small hfq precedes the hfl genes, which act as GTPases and are responsible for high frequency of bacteriophage lambda lysogenization in E. coli (23). This genetic localization also seems to be common for many small hfq genes in gammaproteobacteria. A. baylyi Hfq is twice as long as most gammaproteobacterial Hfq proteins (see references 7, 29, and 31). It is encoded upstream of surA, a peptidyl cis-trans

#### J. BACTERIOL.

Vol. 191, 2009

isomerase. This enzyme class is involved in the correct folding of many eukaryotic and prokaryotic proteins (11, 15). In the present study, we could show by Northern blot analysis and RT-PCR that hfq transcription may start within the preceding miaA gene, as is the case in E. coli (34). All large Hfq homologues contain a glycine-rich domain between their N- and C-terminal ends, but only Acinetobacter species show a strictly repeated pattern within this domain. Searching the nonredundant protein databases showed that this pattern can be found in DNAJ-like chaperones (42). Until now, there have been no data available for the functionality of this protein region. For P. putida it was shown that its Hfq of 86 amino acids can complement hfq deletion effects in E. coli (30). We report here that the large gammaproteobacterial Hfq from A. baylyi (174 amino acids) shows the same ability to complement the hfq deletion effects on growth behavior and cell phenotype in E. coli. Furthermore, a complete hfq deletion in A. baylyi resulted in a drastic disruption of growth and change in the cell phenotype which could not completely be restored with the same expression plasmid used for E. coli hfq complementation, whereas chromosomal complementation resulted in complete restoration. The experiments reported here indicate that the amount of Hfq in the cell needs to be controlled: overexpression led to the loss of chain assembly; in trans hfq complementation resulted in failure to restore wild-type growth behavior. In contrast, the glycine-rich domain of A. baylyi Hfq is not important for normal growth and cell phenotype, as shown by the chromosomal deletion of the 73-amino-acid glycine-rich domain in A. baylyi. A deletion of hfq in A. baylyi has a strong effect on growth by causing an elongated lag phase but also a loss of the ability of exponential cell splitting. To exclude secondary effects on miaA transcript stability by the  $\Omega$ -interposon, we investigated partial miaA deletion. Complete miaA disruption is not possible because it would interfere with hfq transcription, and we saw no effects on cell arrangement and only slight growth defects with exponentially growing cells in a strain where only 5% of the full-length of miaA is expressed (from the ATG to the start of the  $\Omega$ -interposon).

In summary, *A. baylyi* Hfq is the second described member of large Hfq proteins encoded within the family *Moraxellaceae*. *A. baylyi* Hfq differs from *M. catarrhalis* in the amino acid composition of the large C-terminal domain and the genetic localization regarding *hfq* downstream genes. *A. baylyi* and *M. catarrhalis* share the same upstream gene (*miaA*) and the feature that *hfq* transcription starts within *miaA* or further upstream. Remarkable and unique for *Acinetobacter* is the Hfq glycine-rich domain, consisting of a strictly repeated amino acid pattern.

#### ACKNOWLEDGMENTS

We thank Valerie de Berardinis, Genoscope, France, for providing the *A. baylyi mutL* mutant and Gerhardt Burchhardt, University of Greifswald, Greifswald, Germany, for the anti-Hfq antibodies. We also thank Thomas Böck, Hatice Öztürk, and Iris Steiner for technical support.

D.S. was supported by a grant from the state of Baden-Württemberg.

#### REFERENCES

 Attia, A. S., J. L. Sedillo, W. Wang, W. Liu, C. A. Brautigam, W. Winkler, and E. J. Hansen. 2008. *Moraxella catarrhalis* expresses an unusual Hfq protein. Infect. Immun. 76:2520–2530.

#### ACINETOBACTER BAYLYI hfq ENCODES A LARGE PROTEIN 5561

- Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. Marliere, G. N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of *Acinetobacter* sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32:5766– 5779.
- Brown, L., and T. Elliott. 1996. Efficient translation of the RpoS sigma factor in *Salmonella typhimurium* requires host factor I, an RNA-binding protein encoded by the *hfq* gene. J. Bacteriol. 178:3763–3770.
- Cheng, H. H., P. J. Muhlrad, M. A. Hoyt, and H. Echols. 1988. Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny. Proc. Natl. Acad. Sci. USA 85:7882–7886.
- Connolly, D. M., and M. E. Winkler. 1991. Structure of *Escherichia coli* K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacteriol. 173:1711–1721.
- 6. de Berardinis, V., D. Vallenet, V. Castelli, M. Besnard, A. Pinet, C. Cruaud, S. Samair, C. Lechaplais, G. Gyapay, C. Richez, M. Durot, A. Kreimeyer, F. Le Fevre, V. Schachter, V. Pezo, V. Doring, C. Scarpelli, C. Medigue, G. N. Cohen, P. Marliere, M. Salanoubat, and J. Weissenbach. 2008. A complete collection of single-gene deletion mutants of *Acinetobacter baylyi* ADP1. Mol. Syst. Biol. 4:174.
- Ding, Y., B. M. Davis, and M. K. Waldor. 2004. Hfq is essential for *Vibrio cholerae* virulence and downregulates sigma expression. Mol. Microbiol. 53: 345–354.
- Figurski, D. H., and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans.* Proc. Natl. Acad. Sci. USA 76:1648–1652.
- Folichon, M., V. Arluison, O. Pellegrini, E. Huntzinger, P. Regnier, and E. Hajnsdorf. 2003. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31:7302– 7310.
- Franze de Fernandez, M. T., L. Eoyang, and J. T. August. 1968. Factor fraction required for the synthesis of bacteriophage Qβ-RNA. Nature 219: 588–590.
- Gavini, N., S. Tungtur, and L. Pulakat. 2006. Peptidyl-prolyl cis/trans isomerase-independent functional NifH mutant of Azotobacter vinelandii. J. Bacteriol. 188:6020–6025.
- Geissmann, T. A., and D. Touati. 2004. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23:396–405.
- Hanahan, D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. 166:557–580.
- Hermans, P. W., P. V. Adrian, C. Albert, S. Estevao, T. Hoogenboezem, I. H. Luijendijk, T. Kamphausen, and S. Hammerschmidt. 2006. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J. Biol. Chem. 281:968–976.
- Herrler, M., H. Bang, K. Brune, G. Fischer, and M. A. Marahiel. 1992. Peptidyl-prolyl *cis-trans* isomerase from *Bacillus subtilis*. A prokaryotic enzyme that is highly sensitive to cyclosporin A. FEBS Lett. 309:231–234.
- Juni, E. 1978. Genetics and physiology of *Acinetobacter*. Annu. Rev. Microbiol. 32:349–371.
- Kambach, C., S. Walke, R. Young, J. M. Avis, E. de la Fortelle, V. A. Raker, R. Luhrmann, J. Li, and K. Nagai. 1999. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96:375–387.
- Kawamoto, H., Y. Koide, T. Morita, and H. Aiba. 2006. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 61:1013–1022.
- Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197.
- Masse, E., F. E. Escorcia, and S. Gottesman. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in *Escherichia coli*. Genes Dev. 17:2374–2383.
- Moller, T., T. Franch, P. Hojrup, D. R. Keene, H. P. Bachinger, R. G. Brennan, and P. Valentin-Hansen. 2002. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 9:23–30.
- Muffler, A., D. Fischer, and R. Hengge-Aronis. 1996. The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for *rpoS* translation in *Escherichia coli*. Genes Dev. 10:1143–1151.
- Noble, J. A., M. A. Innis, E. V. Koonin, K. E. Rudd, F. Banuett, and I. Herskowitz. 1993. The *Escherichia coli hflA* locus encodes a putative GTPbinding protein and two membrane proteins, one of which contains a protease-like domain. Proc. Natl. Acad. Sci. USA 90:10866–10870.
- Oelmüller, U., N. Krüger, A. Steinbüchel, and C. G. Freidrich. 1990. Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J. Microbiol. Methods 11:73–81.
- Prentki, P., A. Binda, and A. Epstein. 1991. Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene 103:17–23.
- 26. Sauter, C., J. Basquin, and D. Suck. 2003. Sm-like proteins in Eubacteria:

#### 5562 SCHILLING AND GERISCHER

the crystal structure of the Hfq protein from *Escherichia coli*. Nucleic Acids Res. **31**:4091–4098.

- Schumacher, M. A., R. F. Pearson, T. Moller, P. Valentin-Hansen, and R. G. Brennan. 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 21:3546–3556.
- Seif, E., and B. M. Hallberg. 2009. RNA-protein mutually induced fit: structure of *Escherichia coli* isopentenyl-tRNA transferase in complex with tRNA<sup>Phe</sup>. J. Biol. Chem. 284:6600–6604.
- Sittka, A., V. Pfeiffer, K. Tedin, and J. Vogel. 2007. The RNA chaperone Hfq is essential for the virulence of *Salmonella typhimurium*. Mol. Microbiol. 63:193–217.
- Sonnleitner, E., I. Moll, and U. Blasi. 2002. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology 148:883–891.
- Sonnleitner, E., J. Napetschnig, T. Afonyushkin, K. Ecker, B. Vecerek, I. Moll, V. R. Kaberdin, and U. Blasi. 2004. Functional effects of variants of the RNA chaperone Hfq. Biochem. Biophys. Res. Commun. 323:1017–1023.
- Sun, X., I. Zhulin, and R. M. Wartell. 2002. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 30:3662– 3671.
- Trautwein, G., and U. Gerischer. 2001. Effects exerted by transcriptional regulator PcaU from *Acinetobacter* sp. strain ADP1. J. Bacteriol. 183:873– 881.
- 34. Tsui, H. C., G. Feng, and M. E. Winkler. 1996. Transcription of the *mutL* repair, *miaA* tRNA modification, *hfq* pleiotropic regulator, and *hflA* region

protease genes of *Escherichia coli* K-12 from clustered  $E\sigma$ 32-specific promoters during heat shock. J. Bacteriol. **178**:5719–5731.

- Tsui, H. C., H. C. Leung, and M. E. Winkler. 1994. Characterization of broadly pleiotropic phenotypes caused by an *hfq* insertion mutation in *Escherichia coli* K-12. Mol. Microbiol. 13:35–49.
- Urlaub, H., V. A. Raker, S. Kostka, and R. Luhrmann. 2001. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20:187–196.
- Uzzau, S., N. Figueroa-Bossi, S. Rubino, and L. Bossi. 2001. Epitope tagging of chromosomal genes in *Salmonella*. Proc. Natl. Acad. Sci. USA 98:15264–15269.
- 38. Vaneechoutte, M., D. M. Young, L. N. Ornston, T. De Baere, A. Nemec, T. Van Der Reijden, E. Carr, I. Tjernberg, and L. Dijkshoorn. 2006. Naturally transformable *Acinetobacter* sp. strain ADP1 belongs to the newly described species *Acinetobacter baylyi*. Appl. Environ. Microbiol. 72:932–936.
- Vecerek, B., I. Moll, and U. Blasi. 2005. Translational autocontrol of the Escherichia coli hfq RNA chaperone gene. RNA. 11:976–984.
- Vecerek, B., L. Rajkowitsch, E. Sonnleitner, R. Schroeder, and U. Blasi. 2008. The C-terminal domain of *Escherichia coli* Hfq is required for regulation. Nucleic Acids Res. 36:133–143.
- Vytvytska, O., I. Moll, V. R. Kaberdin, A. von Gabain, and U. Blasi. 2000. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 14:1109–1118.
- Walsh, P., D. Bursac, Y. C. Law, D. Cyr, and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5:567–571.

7.2.2 The small RNA Aar in *Acinetobacter baylyi* – a putative regulator of amino acid metabolism

Dominik Schilling<sup>1</sup>, Sven Findeiß<sup>2</sup>, Andreas S. Richter<sup>3</sup>, Jennifer A. Taylor<sup>4</sup> and Ulrike Gerischer<sup>1+</sup>

 <sup>1</sup> Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
<sup>2</sup> Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-01407 Leipzig, Germany
<sup>3</sup> Bioinformatics Group, Department of Computer Science, University of Freiburg, D-79110 Freiburg, Germany

<sup>4</sup> Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA

Running title: The small RNA Aar

Keywords: sRNAs, Hfq, A.baylyi, amino acid metabolism, RNAup, IntaRNA

<sup>+</sup> Present address, Corresponding author. Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Tel.:++49-551-2012316, Fax:++49-551-2012302, Email: <u>ulrike.gerischer@mpibpc.mpg.de</u>

## Abstract

Small non-coding RNAs (sRNAs) are key players in prokaryotic metabolic circuits, allowing the cell to adapt to changing environmental conditions. Regulatory interference by sRNAs in cellular metabolism is often facilitated by the Sm-like protein Hfq. A search for novel sRNAs in *A. baylyi* intergenic regions was performed by a biocomputational screening. One candidate, Aar, encoded between *trpS* and *sucD* showed Hfq-dependency in the case of *hfq* deletion in Northern blot analysis. Aar was first expressed strongly at stationary growth phase in minimal medium and at exponential growth phase in complex medium. Whereas over-expression of Aar *in trans* did not affect bacterial growth, eight mRNA targets predicted by two *in silico* approaches were upregulated in stationary growth phase. All eight mRNAs are

involved in *A. baylyi* amino acid metabolism. A putative binding site for Lrp, the global regulator of branch-chained amino acids in *E. coli*, was observed within the *aar* gene. Both facts imply an Aar participation in amino acid metabolism.

#### Introduction

Traditionally, RNA is thought of as ribosomal RNA (rRNA), transfer RNA (tRNA), and messenger RNA (mRNA) that function in the assembly of proteins. More than 20 years ago, the fortuitous identification of MicF RNA as a post-transcriptional regulator of mRNAs encoding outer membrane proteins changed this perception of RNA function. MicF causes translational inhibition by base-pairing to an imperfect duplex with the translation-initiation region of the *trans*-encoded *ompF* mRNA.<sup>1-3</sup> RNA-mediated regulation is also known to occur on the protein level. For example, 6S RNA is able to form a complex with the  $\sigma^{70}$  RNA polymerase holoenzyme, which leads to downregulation of  $\sigma^{70}$ -dependent promoter transcription.<sup>4</sup> Another regulatory RNA, CsrB, sequesters the carbon storage regulator protein CsrA, which is a negative regulator of glycogen biosynthesis, gluconeogenesis, and glycogen catabolism, and antagonizes the CsrA ability of translation repression.<sup>5</sup> Bacterial small noncoding RNAs (sRNAs) typically range from 50 to 250 nt in length,<sup>6, 7</sup> with some exceptions, e.g. CsrB and RNAIII, which are 366 nt and 514 nt in length.<sup>5, 8</sup> To detect novel bacterial sRNAs, systematic bioinformatic searches have been performed and have identified numerous sRNAs expressed within intergenic DNA regions.<sup>9-11</sup> Whereas these bioinformatic predictions focused strictly on intergenic regions, experimental approaches have been applied to clone all RNAs of 30-65 nt or 50-500 nt and screen for novel sRNAs.<sup>12-14</sup> Half of all validated sRNAs to date (over 150 sRNAs) have been identified in the model organism Escherichia coli and in closely related pathogenic Enterobacteriaceae including Salmonella, Klebsiella or Yersinia.<sup>6</sup>, <sup>15, 16</sup> Although the majority of known sRNAs have yet to be assigned to cellular functions, some prominent examples demonstrate that sRNAs are key players in various cellular processes. During iron starvation, RyhB from E. coli functions in iron metabolism by downregulating genes encoding iron-containing proteins.<sup>17</sup> The Vibrio harvey sRNAs Qrr 1-5 affect quorum sensing by duplex formation at the ribosome binding site of luxR mRNA, which encodes the master regulator of quorum sensing genes.<sup>18</sup> Several sRNAs like Spot42, SgrS, GlmY, and Z are regulators of sugar metabolism.<sup>19</sup> Furthermore, GcvB inhibits translation of seven periplasmic substrate-binding proteins of the ABC uptake system.<sup>20</sup> Altering accessibility of the ribosome binding site by sRNA-mRNA duplex formation is the predominant regulatory mechanism of sRNAs. Such interference by trans-encoded sRNAs is due to incomplete base pairing often stabilized by the conserved RNA chaperone Hfq, as is the case for *ompA*-MicA and *sodB*-RyhB.<sup>21-23</sup> Hfq mediates RNA-RNA interactions by accelerating duplex formation between sRNA and mRNA.<sup>24</sup> In contrast, *cis*-encoded antisense sRNAs are fully complementary to their mRNA targets; stabilization of sRNA-mRNA interaction by Hfq is not required.

In this report we describe Aar (<u>Acinetobacter amino acid regulator</u>), a *trans*-encoded sRNA involved in amino acid regulation in Acinetobacter baylyi, a Gram-negative, strictly aerobic soil bacterium.<sup>25, 26</sup> One of two detected Aar transcripts is affected by *hfq* deletion. We show that increased Aar level results in upregulation of *fadA*, *ilvI*, *ppC*, *glnA*, *serC*, *leuC*, *trpA* and *gcvH* mRNAs, which all function in amino acid metabolism.

#### Results

### Prediction of the small RNA aar locus

Comparative intergenic genome analysis of *A. baylyi* ADP1 and *A. baumannii* ATCC 17978 and secondary structural stability determination with the software RNAz<sup>27</sup> resulted in a list of 481 thermodynamically-conserved loci that were considered to be sRNA candidates. The 190 nt sRNA *aar* locus (showing a good RNAz value of -2.640 kcal/mol) was predicted within the 408 nt long intergenic region at position 2,812,240–2,812,430 of the ADP1 genome. Adjacent genes are *trpS* (105 bases upstream) encoding tryptophanyl-tRNA-synthetase II and *sucD* (113 bases downstream) encoding succinyl-coA-synthetase subunit  $\alpha$ . Using the software TransTermHp<sup>28</sup>, Rho-independent termination predictions were made by adjusting the length of the termination stem between 4 and 23. One stable stem loop structure (hairpin score: -12.2 kcal/mol) was found 47 nt downstream of the *trpS* stop codon. Additionally, 48 bases upstream of the predicted sRNA Aar 3'-end, another termination structure (hairpin score: -7.4 kcal/mol) was identified (Fig. 1B). According to these terminator predictions a separate expression of Aar and *trpS* mRNA from the same DNA strand is indicated. The *sucD* orientation is opposite to that of *trpS* and *aar* and thus is also expressed separately (Fig. 1B).

## Small RNA Aar is encoded as an independent gene

To determine if *aar* encodes an sRNA *in vivo*, Northern blot experiments were conducted. Thereby several sRNA candiates were tested simultaneously. Pooled ADP1 RNA was applied in different lanes of the Nothern blot experiment. The RNA was harvested from the stationary phase of cultures grown in both minimal medium and LB medium as well as from the log phase of cultures grown in minimal media with temperature (4 °C or 38 °C) and salt shocks (333 mM NaCl or FeSO<sub>4</sub> depletion). ADP1 6S RNA expression was detected using the same pooled RNA in this Northern blot analysis. Comparison of the probe signals of 6S RNA (184 nt) and Aar indicated that the Aar fragment was of the *in silico* predicted size. This suggests

that *aar* is expressed as an independent gene rather than a polycistronic transcript with *trpS* or *sucD* (*aar* alone = 190 nt vs. *trpS-aar* = 1204 nt or *sucD-aar* = 1081 nt, Fig. 1B). Mapping of the 5'- and 3'-ends of Aar RNA was performed with CR-RT-PCR.<sup>29</sup> 6S RNA ends were also mapped by CR-RT-PCR to test the validity of this method. The 5'- and 3'-ends of the ADP1 6S RNA (Fig. 1C and 2A) showed only small variations compared to the gene positions annotated in the Rfam database.<sup>16</sup> 6S RNA mapping localized the gene ends to positions 1,111,801 and 1,111,623 with a deviation in the sequenced clones of 0/+3 bases in the 5'/3'- ends, respectively (Fig. 2A). Aar 5'- and 3' ends were localized to genomic positions 2,812,231 and 2,812,412 (Fig. 2A). The 3'-end aligns with a predicted Rho-independent transcription termination stem (2,812,382-2,812,408). A perfect Pribnow box containing the consensus sequence TATAAT was found 2 bases upstream of the *aar* transcription start site. Upstream sequences of the *aar* and 6S RNA genes with putative promoter elements are shown in Fig. 2 along with an Aar secondary structure prediction based on a sequence structure alignment of Aar homologs. Despite some differences in the sequence conservation.

## Evolutionary distribution and expression profile of *aar*

BLASTN analysis was performed with the mapped *aar* sequence of *A. baylyi* and the NCBI database (nucleotide collection). *Aar* homologs were found only in *Acinetobacter baumannii* strains SDF, AB307-0294, AB0057, ACICU, AYE, and ATCC17978 with sequence identities between 69-71 % and a 92 % query coverage (missing the first 9 and last 5 bases of ADP1 *aar*). A multiple sequence structure alignment with all *Acinetobacter aar* homologs is shown in Fig. 2C. These findings indicated that Aar is unique to *Acinetobacter*. The genomic localization of *aar* was found to be conserved as well. At least either *trpS* or *sucD* is encoded at a position flanking the *A. baumannii aar* homologs.

An Aar expression profile was created by Northern blot analysis of expression levels in *A*. *baylyi* ADP1 grown in minimal medium supplemented with different carbon sources (succinate or quinate) or in LB medium; RNA was collected from different growth phases (early exponential, exponential, and stationary) of all these cultures. Additionally, the effects of salt shock (NaCl addition,  $c_{final} = 333$  mM), iron depletion, and temperature shocks (4°C or 38°C) on Aar expression of ADP1 grown in minimal medium supplemented with succinate were determined. Furthermore, Aar expression was detected at different growth phases of a  $\Delta hfq$  mutant and an over-expression mutant encoding hfq on plasmid pRK415 grown in minimal medium with succinate. Two bands were observed for the wild type and the hfq over-expression mutant, while only a single band was present in the  $\Delta hfq$  mutant. Two strong

signals were seen in stationary phase of ADP1 grown with succinate (Fig. 3 lane 3) and quinate (Fig. 3 lane 12). In cultivation of ADP1 in LB complex medium, expression was visible during exponential growth as two strong signals (Fig. 3 lane 8). Each temperature and salt shock was applied when the corresponding ADP1 culture grown in minimal medium with succinate reached an  $OD_{600}$  of about 0.4. After a 30-minute incubation, part of the cells were harvested for RNA isolation and the rest were incubated through stationary growth phase. Some negative impact was seen on the growth rates of these cultures following the shock, but all recovered and reached the same final  $OD_{600}$  (1.8) as APD1 grown under the same conditions but without shock (data not shown). Whereas the temperature changes showed no effects on Aar, an excess of sodium chloride led to early expression of Aar (Fig. 3 lanes 4-6 compared to lane 2). The effect of iron limitation was determined by incubating a culture of ADP1 in minimal medium with succinate under standard iron conditions and then using this culture to inoculate minimal media with succinate lacking iron sulfate (Fig. 3 lanes 13-14). In strain A. baylyi pRK415 hfq also grown in minimal medium with succinate, Aar expression was also strong at stationary phase (Fig. 3 lanes 15-17). Strong Aar expression in strain A. *baylyi*  $\Delta hfq$  was seen at both growth phases checked (Fig. 3 lanes 18-19). Of special interest is the fact that the second, smaller signal is absent in the  $\Delta hfq$  mutant. This observation indicates that Hfq might be involved in processing of Aar.

## Bacterial growth is not affected by Aar expression

The impacts of over-expressing Aar on bacterial growth were analyzed. Strains designed to express different amounts of Aar were created by directional cloning of the *aar* gene into pRK415. Depending on the cloning procedure, expression of *aar* was either controlled by its own promoter (*A. baylyi* pRK415 *aar*) or by the *lac* promoter (*A. baylyi* pRK415 *Plac aar*). These strains were tested in growth experiments in LB medium or in minimal medium with either succinate, pyruvate, or protocatechuate as the sole carbon source. No obvious difference was visible in the growth behaviour of these strains (data not shown). Aar Northern blot analysis confirmed that over-expression of Aar was successful in *A. baylyi* pRK415 *aar* as well as in *A. baylyi* pRK415 *Plac aar* under all tested conditions with no obvious difference in Aar signal intensity (Fig 4). Thus, the *A. baylyi* strain pRK415 *aar* was used for further analyses.

#### **Prediction of putative Aar targets**

In order to find putative mRNA interaction partners of sRNA Aar, two *in silico* predictions were performed with the programs IntaRNA<sup>30</sup> and RNAup <sup>31</sup>. From the total number of 866 putative targets of both predictions, 11 genes with good interaction energy values were

selected for further experimental analysis (see Table 2). All the selected putative targets are involved in regulation of amino acid biosynthesis and degradation except for *thiE* and *minE*, which encode a putative thiamine-phosphate-pyrophosphorylase and a cell division factor involved in vitamin metabolism and FtsZ ring formation during cell division.<sup>32</sup> Relative quantification of mRNAs of these genes was determined by comparative Northern blot experiments with total RNA from ADP1 and strain pRK414 *aar* grown in minimal medium with succinate (or protocatechuate in the case of *fadA* mRNA detection). Thereby, effects of Aar over-expression on the amount of the putative target mRNAs were studied. While neither *thiE* nor *minE* mRNA levels appeared to be affected by over-expression of Aar, *glnT* mRNA could not be detected. All other mRNA targets involved in amino acid metabolism were upregulated in *A. baylyi* pRK415 *aar* during stationary but not exponential growth (Fig. 4).

All interactions predicted by IntaRNA were located at the ribosome binding site (see Table 2). Since this type of base-pairing usually leads to translational repression and subsequent degradation of the sRNA-mRNA complex, the increased amount of transcripts cannot be explained by the predicted interactions. In analogy to the DsrA-*rpoS* base-pairing interaction in *E. coli*<sup>33</sup>, binding of Aar far upstream of the start codon could result in opening an inhibitory secondary structure at the ribosome binding site and thereby increasing the mRNA stability, but *in silico* analysis gave no evidence to support this hypothesis (data not shown). The *A. baylyi aar* gene sequence was checked with the Prokaryotic database of gene regulation PRODORIC.<sup>34</sup> Within the *aar* sequence, we found an 80% sequence match to a confirmed 15 base-long binding site for the leucine responsive protein (Lrp, Fig. 5). Lrp is a global regulator of operons involved in amino acid biosynthesis and degradation.<sup>35, 36</sup> The presence of the putative Lrp binding site within *aar* and the accumulation of a set of mRNAs related to amino acid metabolism by Aar over-expression might indicate that these metabolically-related genes are regulated by a common mechanism, which might include the known global regulator Lrp and the newly discovered sRNA Aar.

## Discussion

In this paper, we report the discovery of Aar (<u>Acinetobacter amino acid regulator</u>), the first sRNA of the genus Acinetobacter showing no homology to known conserved prokaryotic sRNAs. Aar was predicted by an *in silico* approach comparing intergenic regions of two Acinetobacter species by sequence conservation and structural stability. BLASTN analysis indicated that Aar is present only within the genus Acinetobacter. Within these Acinetobacter species, the aar genomic location is conserved. In ADP1 aar is located downstream of *trpS*, which encodes tryptophanyl-tRNA synthetase II, an enzyme catalyzing the aminoacylation of

tRNA<sup>Trp 37</sup> and upstream of *sucD*, which encodes the  $\alpha$ -subunit of succinyl-coA-synthetase, an enzyme involved in thioesterification of succinate during the citrate cycle.<sup>38</sup> In *A. baumannii* strains, *aar* is encoded either upstream of *sucD* on the negative strand (strain SDF), downstream of *trpS* on the same strand (strains AB307-0294, AB0057, AYE) or between both genes (strains ACICU, ATCC17978). A few examples of species-specific sRNAs like Aar are known, including Qrr 1-5 in *Vibrio harvey* and *V. cholerae*<sup>39</sup> and InvR in *Salmonella typhimurium* and *S. bongori.*<sup>2, 40</sup>

The size of ADP1 Aar was determined to be 181 bases, but the presence of two bands in Northern blot analysis indicates that this sRNA is processed after transcription or an alternative promoter is active. However, by CR-RT-PCR only one start and end was mapped for Aar. Its sequence, with an AT content of 64 %, complicated the choice for suitable CR-RT-PCR primers. Selected primers were situated at position 2,812,298-2,812,273 and 2,812,338-2,812,362 with a 40 base gap, thus perhaps preventing a successful PCR of both Aar transcripts. The absence of the second, smaller Northern blot signal in the  $\Delta hfq$  mutant suggests that Hfq, as known RNA chaperone, may play a role in Aar processing.

Under normal conditions Aar is present in high amounts during stationary growth, which coincides with the fact that many sRNAs are induced under stress or when nutrients become scarce. For example, sRNAs identified in *E. coli* that are induced after environmental changes are RyhB under iron depletion, OxyS after oxidative stress, DsrA at low temperatures, and SgrS after the accumulation of glucose-P.<sup>41</sup> Interestingly, Aar is influenced by different salt conditions but not by the temperature variations tested. Sodium chloride excess as well as iron depletion resulted in earlier expression of Aar during growth.

As seen by Northern blot analysis, Aar over-expression led to the accumulation of eight mRNAs that encode regulators of amino acid metabolism. Of these, *glnA* encodes glutamine synthetase, which assimilates nitrogen by converting glutamate and nitrogen into glutamine.<sup>36</sup> In the Aar over-expression mutant, *glnA* mRNA accumulated during stationary growth in minimal medium but the mRNA was barely detectable under normal Aar expression. No differences were seen during exponential growth. Aar also affected the mRNAs *leuC*, *serC*, *ilvI*, *ppc*, *trpA*, *gcvH*, and *fadA* similarly. These results suggest that Aar plays a role in amino acid metabolism by a yet unknown mechanism. An explanation of the increased mRNA levels could be Aar base pairs to its target mRNAs, which results in disruption of an inhibitory structure preventing translation initiation of the target. However, bioinformatic analysis gave no evidence that Aar regulates the eight mRNAs by this mechanism. Alternatively, Aar base pairing with its target mRNAs might also stabilize the mRNAs by protecting them from

ribonuclease cleavage. In contrast to a direct base pair interaction, it is also conceivable that another regulator of amino acid metabolism in *A. baylyi* is involved in the regulation.

To test this hypothesis, we screened the *aar* gene for conserved binding sites of regulatory proteins with the PRODORIC database. Interestingly, we detected a putative binding site with 80% identity to the 15-nucleotide *E. coli* Lrp consensus sequence (59 bases downstream of the mapped Aar transcription start).<sup>35</sup> The ADP1 and *E. coli* Lrp proteins show 44.5 % sequence identity. In *E. coli*, Lrp acts as global regulator of amino acid metabolism, transport, and pili formation.<sup>42</sup> The *lrp* gene is self-repressed, primarily during growth in complex medium.<sup>43</sup> In ADP1, the putative Lrp binding site in the *aar* gene might indicate regulation of the sRNA Aar by Lrp. We observed that Aar is highly abundant during exponential and stationary growth in complex medium, but only during stationary growth in minimal medium. During stationary growth in both minimal and complex media, amino acids become scarce and therefore Lrp synthesis might be reduced, which in turn could result in increased Aar levels. The fact that *lrp* might be repressed in exponential growth in complex medium could explain the occurrence of Aar therein. To further elucidate the involvement of Aar in *A. baylyi* amino acid metabolism and its addiction to Lrp, RNase mapping as well as band shift assays of Aar and Lrp must be performed in future.

#### **Materials and Methods**

#### **Bacterial strains and growth conditions**

Strains of *A. baylyi* (Table 1) were grown in minimal medium with aeration at 30 °C as described previously.<sup>44</sup> Carbon sources were used in the following final concentrations: succinate 10 mM, quinate 5 mM, protocatechuate 5 mM and pyruvate 20 mM. Tetracycline was used as an antibiotic for *A. baylyi* strains containing plasmid pRK415 or its derivates (concentration: 6  $\mu$ g/ $\mu$ l). *E. coli* strains were grown in LB medium with aeration at 37 °C and were supplied with antibiotics when appropriate (tetracycline 12  $\mu$ g/ $\mu$ l, ampicillin 100  $\mu$ g/ $\mu$ l, kanamycin 50  $\mu$ g/ $\mu$ l).

## Plasmid and strain construction

Standard methods were used for plasmid isolation, DNA purification, restriction endonuclease cleavage, ligation, and transformation.<sup>45</sup> Over-expression of Aar was achieved by cloning *aar* into the broad-host-range plasmid pRK415.<sup>46</sup> To obtain the DNA region of interest from the *A. baylyi* genome, a PCR using *Pfu*-DNA polymerase, primers 368/369 (Table 1) and 10 ng *A. baylyi* chromosomal DNA was carried out. The PCR product was gel purified and digested with either *PstI/Hind*III or *PstI/Eco*RI. These products were ligated with pRK415 that had been digested with the same enzyme pair, yielding plasmids pRK415 *aar* and pRK415 *Plac* 

*aar*, respectively. After transformation into *E. coli* DH5 $\alpha$  cells<sup>47</sup>, both plasmids were established via tetracycline resistance. These cloning steps resulted in plasmid pRK415 *aar* expressing Aar from its own promoter and pRK415 *Plac aar* expressing it from the *lac* promoter. *Plac* functions in *A. baylyi* and cannot be controlled using isopropyl  $\beta$ -D-1-thiogalactopyranoside, since the bacterium does not have a *lac* operon and the plasmid does not contain *lacI* either. Plasmids were recovered from positive *E. coli* clones and verified by digestion with *PstI/Hind*III, *PstI/Eco*RI and agarose gel electrophoresis. Furthermore, plasmids were sequenced; those without mutations were conjugated by means of plasmid pRK2013<sup>48</sup> from *E. coli* DH5 $\alpha$  into *A. baylyi* ADP1. Positive ADP1 clones were selected by growth in minimal medium with 6 µg/µl tetracycline and 5 mM quinate as sole carbon source.

### Northern blot analysis

Total RNA was isolated by a previously described procedure.<sup>49</sup> The RNA quality and concentration were determined by the OD<sub>260/280</sub> ratio. 15 µg purified RNA were combined with RNA loading dye [1ml 5x RNA loading dye = 8 µl 500 mM ethylenediaminetetraacetic acid, 200 µl 100 % glycerol, 72 µl 37 % formaldehyde, 308 µl formamide, 400 µl 10x running buffer (200 mM 3-(N-morpholino)propanesulfonic acid, 50 mM sodium acetate, 5 mM ethylenediaminetetraacetic acid, pH 7), 2 µl saturated bromphenol blue, 10 µl deionized water] and then heat-denatured for 5 min at 65 °C. Afterwards, RNA was separated on a 1.2 % formaldehyde-agarose gel and transferred to a Hybond-N+ nylon membrane by capillary blotting overnight with 10x SSC [1.5 M sodium chloride, 0.15 mM tri-sodium citrate]. The membrane was dried at 25 °C and the RNA was covalently bound to the membrane by UV cross-linking for 90 s at 120000 µJ/cm<sup>2</sup>. Specific RNA detection was performed by the DIG labelling and detection system (Roche Applied Science, Mannheim, Germany) with specific PCR probes and primers 331/332 (Aar), 168/304 (6S RNA), 396/397 (*IlvI*), 398/399 (*FadA*), 400/401 (*ThiE*), 402/403 (*Ppc*), 404/405 (*MinE*), 419/420 (*GlnA*), 421/422 (*GlnT*), 423/424 (*LeuC*), 425/426 (*SerC*), 431/432 (*GcvH*), and 433/434 (*TrpA*) [Table 1].

## **RNA end mapping**

RNA ends were mapped by a modified protocol of the circularized RT-PCR method described previously.<sup>29</sup> Here 5  $\mu$ g RNA was denatured at 65 °C for 10 min and quickly cooled on ice. RNA self-ligation was performed with 40 U T4 RNA ligase I, 10 U RNase inhibitor, 1 U RNase free DNase I, and 1x T4 RNA ligase buffer [50 mM Tris, 10 mM magnesium chloride, 1 mM adenosine triphosphate, 10 mM dithiothreitol, pH 7.8] in a total volume of 25  $\mu$ l at 37 °C for 2 hours. The volume was adjusted with water to 500  $\mu$ l and the enzymes were removed by phenol treatment. Self-ligated RNA was precipitated overnight at -20 °C with 250 mM sodium acetate pH 5.2 and 100 % ethanol. Finally, cDNA synthesis was performed with 0.5 mM dNTP's, 1 pmol gene-specific primer, 284 for 6S RNA, 355 for Aar (Table 1), 5  $\mu$ g self-ligated RNA, 200 U Reverse transcriptase (RNase H minus mutant) in 1x RT buffer [50 mM Tris, 75 mM potassium chloride, 3 mM magnesium chloride, 10 mM dithiothreitol, pH 8.3] for 2 hours at 45 °C. PCR was carried out with 2.5  $\mu$ l heat-treated cDNA reaction (70 °C, 10 min) and primers 284/285 (6S RNA), 355/346 (Aar) in a standard PCR reaction mixture.

## PCR

Primer sequences (Table 1) were selected to have a melting temperature of at least 60 °C. The PCR conditions including *Taq-* or *Pfu-*DNA polymerase were 95 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 45 sec, annealing at 54 °C for 1 min and extension at 72 °C for at least 30 sec (longer for products over 500 bases in length).

### sRNA gene and mRNA target predictions

Comparative intergenic genome analysis of *A. baylyi* ADP1 (NCBI Refseq Id NC\_005966) and *A. baumannii* ATCC17978 (NCBI Refseq Id NC\_009085) in combination with the detection of thermodynamically stable putative non-coding RNAs using RNAz<sup>27</sup> was kindly performed by B. Voss.<sup>50</sup> This initial computer aided search resulted in 481 non-coding RNA candidates. Inspection of these predicted loci revealed Aar, with a Z-score of -3.09 and a p-value of 0.99, to be a good candidate for further analysis.

Putative mRNA targets of Aar were predicted by two bioinformatic programs: IntaRNA<sup>30</sup> and RNAup<sup>31</sup>. Both programs utilize a model based on the hybridization energy of the two interacting RNAs as well as the energy required to make the interaction sites in both molecules accessible (based on all possible conformations). The main difference between the two programs is that IntaRNA enforces a region of continuous pairing (seed region) as a hybridization start. Here a minimum seed length of eight base pairs was required. The search for interactions was performed in a region of 250 nt up- and 150 nt downstream of each A. baylyi annotated mRNA. As part of the IntaRNA prediction algorithm, only interactions that involve the highly conserved regions of Aar (positions 10-53 and 136-149) RNA were considered. The most predominant mechanism of post-transcriptional gene regulation by trans-encoded sRNAs is interference with ribosome binding to the Shine-Dalgarno (SD) sequence followed by degradation of the mRNA-sRNA duplex Therefore, SD sequence locations for all mRNAs were predicted by simulating hybridization with the single-stranded 3'-tail of the 16S rRNA.<sup>51</sup> Targets for which Aar RNA was predicted to bind at or in the immediate vicinity of the SD sequence were selected for further analysis. Additional targets were predicted by RNAup and a pipeline based on sequence as well as interaction site conservation of both molecules. Using a reciprocal best BLAST approach (http://www.bioinf.uni-leipzig.de/Software/proteinOrtho/), all annotated protein coding genes of *A. baylyi* orthologs within the five completely sequenced and annotated *A. baumanni* strains (NCBI Refseq Ids NC\_010611, NC\_011586, NC\_009085 NC\_010410 and NC\_010400) were identified. Then, optimal interactions for each Aar homolog were predicted in the corresponding species. Only interactions conserved in at least five *Acinetobacter* strains were assumed to be functional.

## Acknowledgements

We would like to thank Björn Voss for his predictions of sRNA genes in *Acinetobacter*. Furthermore, we would like to thank Iris Steiner for her contribution. This work was supported by the German Federal Ministry of Education and Research (BMBF grant 0313921 FRISYS to A.S.R.); the German Research Foundation (DFG grant SPP1258 to S.F. STA850/7-1 and A.S.R. BA2168/2-1); and the state of Baden-Württemberg, Germany (personal LGFG grant to D.S.).

## References

- 1. **Mizuno T, Chou MY, Inouye M**. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A 1984; **81**:1966-70.
- 2. **Vogel J, Papenfort K**. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 2006; **9**:605-11.
- 3. **Delihas N, Forst S. MicF:** An antisense RNA gene involved in response of *Escherichia coli* to global stress factors. J Mol Biol 2001; **313**:1-12.
- 4. **Wassarman KM. 6S RNA:** A small RNA regulator of transcription. Curr Opin Microbiol 2007; **10**:164-8.
- 5. Liu MY, Gui G, Wei B, Preston JF, 3rd, Oakford L, Yuksel U, *et al.* The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in *Escherichia coli*. J Biol Chem 1997; **272**:17502-10.
- 6. Hershberg R, Altuvia S, Margalit H. A survey of small RNA-encoding genes in *Escherichia coli*. Nucleic Acids Res 2003; **31**:1813-20.
- 7. Altuvia S. Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 2007; 10:257-61.
- 8. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, *et al. Staphylococcus aureus* RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007; **21**:1353-66.
- 9. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, *et al.* Novel small RNA-encoding genes in the intergenic regions of *Escherichia coli*. Curr Biol 2001; **11**:941-50.
- 10. Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR. Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 2005; 6:R73.
- 11. **Livny J, Brencic A, Lory S, Waldor MK.** Identification of 17 *Pseudomonas aeruginosa* sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 2006; **34**:3484-93.

- 12. **Willkomm DK, Minnerup J, Hüttenhofer A, Hartmann RK.** Experimental RNomics in *Aquifex aeolicus*: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res 2005; **33**:1949-60.
- 13. Sonnleitner E, Sorger-Domenigg T, Madej MJ, Findeiss S, Hackermuller J, Hüttenhofer A, *et al.* Detection of small RNAs in *Pseudomonas aeruginosa* by RNomics and structure-based bioinformatic tools. Microbiology 2008; **154**:3175-87.
- 14. **Kawano M, Reynolds AA, Miranda-Rios J, Storz G.** Detection of 5'- and 3'-UTRderived small RNAs and *cis*-encoded antisense RNAs in *Escherichia coli*. Nucleic Acids Res 2005; 33:1040-50.
- 15. Livny J, Waldor MK. Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 2007; **10**:96-101.
- 16. **Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S,** *et al.* **Rfam: updates to the RNA families database. Nucleic Acids Res 2009; <b>37**:D136-40.
- 17. **Masse E, Gottesman S.** A small RNA regulates the expression of genes involved in iron metabolism in *Escherichia coli*. Proc Natl Acad Sci U S A 2002; **99**:4620-5.
- 18. **Tu KC, Bassler BL.** Multiple sRNAs act additively to integrate sensory information and control quorum sensing in *Vibrio harveyi*. Genes Dev 2007; **21**:221-33.
- 19. Gorke B, Vogel J. Non-coding RNA control of the making and breaking of sugars. Genes Dev 2008; 22:2914-25.
- 20. Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2007; 21:2804-17.
- 21. Udekwu KI, Darfeuille F, Vogel J, Reimegard J, Holmqvist E, Wagner EG. Hfqdependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev 2005; 19:2355-66.
- Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. Rna 2003; 9:1308-14.
- 23. **Geissmann TA, Touati D.** Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. Embo J 2004; **23**:396-405.
- 24. **Kawamoto H, Koide Y, Morita T, Aiba H.** Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 2006; **61**:1013-22.
- 25. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, *et al.* Unique features revealed by the genome sequence of *Acinetobacter sp.* ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 2004; 32:5766-79.
- 26. Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, *et al.* Naturally transformable *Acinetobacter sp.* strain ADP1 belongs to the newly described species *Acinetobacter baylyi*. Appl Environ Microbiol 2006; **72**:932-6.
- 27. **Washietl S, Hofacker IL, Stadler PF.** Fast and reliable prediction of non-coding RNAs. Proc Natl Acad Sci U S A 2005; **102**:2454-9.
- 28. **Kingsford CL, Ayanbule K, Salzberg SL.** Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 2007; **8**:R22.
- 29. Forner J, Weber B, Thuss S, Wildum S, Binder S. Mapping of mitochondrial mRNA termini in *Arabidopsis thaliana*: t-elements contribute to 5' and 3' end formation. Nucleic Acids Res 2007; **35**:3676-92.
- 30. **Busch A, Richter AS, Backofen R.** IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008;

**24**:2849-56.

- 31. **Mückstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL.** Thermodynamics of RNA-RNA binding. Bioinformatics 2006; **22**:1177-82.
- 32. **de Boer PA, Crossley RE, Rothfield LI.** A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in *E. coli*. Cell 1989; 56:641-9.
- 33. **Soper TJ, Woodson SA.** The *rpoS* mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 2008; **14**:1907-17.
- 34. **Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E**, *et al.* PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 2003; **31**:266-9.
- 35. Cui Y, Wang Q, Stormo GD, Calvo JM. A consensus sequence for binding of Lrp to DNA. J Bacteriol 1995; 177:4872-80.
- 36. Calvo JM, Matthews RG. The leucine-responsive regulatory protein, a global regulator of metabolism in *Escherichia coli*. Microbiol Rev 1994; **58**:466-90.
- 37. Schimmel PR, Soll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 1979; **48**:601-48.
- 38. **Buck D, Guest JR.** Over-expression and site-directed mutagenesis of the succinyl-CoA of *Escherichia coli* and nucleotide sequence of a gene (g30) that is adjacent to the *suc* operon. Biochem J 1989; **260**:737-47.
- 39. **Bejerano-Sagie M, Xavier KB.** The role of small RNAs in quorum sensing. Curr Opin Microbiol 2007; **10**:189-98.
- 40. **Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J.** A small noncoding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the core genome. Mol Microbiol 2007; **66**:1174-91.
- 41. **Gottesman S.** Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 2005; **21**:399-404.
- 42. Newman EB, Lin R. Leucine-responsive regulatory protein: a global regulator of gene expression in *E. coli*. Annu Rev Microbiol 1995; **49**:747-75.
- 43. Lin R, D'Ari R, Newman EB. Lambda *plac*Mu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 1992; 174:1948-55.
- 44. **Trautwein G, Gerischer U.** Effects exerted by transcriptional regulator PcaU from *Acinetobacter sp.* strain ADP1. J Bacteriol 2001; **183**:873-81.
- 45. **Sambrook J, Russell DW.** Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press 2001; **3**rd edn.
- 46. Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 1988; **70**:191-7.
- 47. **Hanahan D.** Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol 1983; **166**:557-80.
- 48. **Figurski DH, Helinski DR.** Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans*. Proc Natl Acad Sci U S A 1979; **76**:1648-52.
- 49. **Oelmüller U, Krüger N, Steinbüchel A, Freidrich CG.** Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. Journal of Microbiological Methods 1990; **11**:73-81.
- 50. Voss B, Georg J, Schon V, Ude S, Hess WR. Biocomputational prediction of noncoding RNAs in model cyanobacteria. BMC Genomics 2009; 10:123.
- 51. Starmer J, Stomp A, Vouk M, Bitzer D. Predicting Shine-Dalgarno sequence locations exposes genome annotation errors. PLoS Comput Biol 2006; 2:e57.
- 52. Schilling D, Gerischer U. *Acinetobacter baylyi hfq* gene encodes a large protein with an unusual C terminus. J Bacteriol 2009; **191**:5553-62.

Table 1: Strains, plasmids and oligonucleotides used in this study

| Strain or plasmid                                                                                    | Relevant character                                                                                                                                                                              | istics                               | Source or reference        |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|
| ADP1                                                                                                 | Acinetobacter wild type (strain BD413, ATC                                                                                                                                                      | 25, 26                               |                            |
| ADP1 pRK415 <i>aar</i><br>ADP1 pRK415 <i>Plac</i> aar<br>ADP1 $\Delta hfq$<br>ADP1 pRK415 <i>hfq</i> | Acinetobacter expressing sRNA Aar in trans<br>Acinetobacter expressing sRNA Aar in trans<br>Acinetobacter containing an $\Omega$ -interposon in<br>Acinetobacter expressing Hfq in trans via na | This study<br>This study<br>52<br>52 |                            |
| DH5a                                                                                                 | Escherichia coli general cloning strain                                                                                                                                                         |                                      | ÷)                         |
| pBSKII+                                                                                              | ColE1 replicon, amp <sup>r</sup> , <i>lacZa</i> , 2958 bp                                                                                                                                       |                                      | Stratagene                 |
| pRK415                                                                                               | RK2 replicon, tet <sup>r</sup> , 10500 bp                                                                                                                                                       |                                      | 46                         |
| pRK2013                                                                                              | ColE1 replicon, kan <sup>r</sup> , 4800 bp                                                                                                                                                      |                                      | 48                         |
| pRK415 aar                                                                                           | aar region (2,812,113-2,812,606) cloned wit                                                                                                                                                     | This study                           |                            |
| pRK415 aar Plac                                                                                      | aar region (2,812,113-2,812,606) cloned wit                                                                                                                                                     | This study                           |                            |
|                                                                                                      | Oligonuc                                                                                                                                                                                        | leotide / sequence 5´-3´             |                            |
| 168 / CCCTTAAGTTCAA                                                                                  | GGTGGAAGCGAC                                                                                                                                                                                    | 396 / AATGCTCGTTCGCGCACTCG           | 421 / TGTTGCAGCAAGCCGTGAAG |
| 284 / AGT <b>CTCGAG</b> ACA                                                                          | CTCTAAATATGCAGAACGCTAT                                                                                                                                                                          | 397 / TCGCTTGCATGGCGGACTTG           | 422 / CTTCGCTACGGCGAAACAGG |
| 285 / CGAAGTCTGCAG                                                                                   | GCAAGTATGCGTCGCTTCCACCTTG                                                                                                                                                                       | 398 / ATGCTGGGTCGTATGAATGC           | 423 / CTTGCAGGTCGTCAGCCTTG |
| 304 / TTGTCTCTGGGAT                                                                                  | GCTCGCC                                                                                                                                                                                         | 399 / TTTCTGCGTTGCTGGAACTG           | 424 / CCAATGATCGCCAATACCAC |
| 331 / GCGTAACGATTGO                                                                                  | GGGTGATC                                                                                                                                                                                        | 400 / GGTGCTATGTGAAGCCTATC           | 425 / GCGTGCGTACAATTTCTGTG |
| 332 / CACTTATTAACGT                                                                                  | GAATACCAATGAA                                                                                                                                                                                   | 401 / CGCGTAGGAATATCCTGAAC           | 426 / GAACATAAGCGGCATCTTGG |
| 345 / AGTCTCGAGTTG                                                                                   | GGGGAGTGCATAACCTATTCCG                                                                                                                                                                          | 402 / GCAAGGTCCACCACCCAATC           | 431 / AGATGCCTTAGGCGATCTTG |
| 346 / AGTCTGCAGAAC                                                                                   | ATTCTACTTTACCGAAGCTGTG                                                                                                                                                                          | 403 / CATCACGGTCACCACCCATC           | 432 / GATCTACGTCTGCGATGTTG |
| 355 / AGT <b>CTCGAG</b> TAG                                                                          | GGTAACACTCATTGTTCATTGG                                                                                                                                                                          | 404 / AAGCCTTCGAGCGCCCAAAG           | 433 / TATGTGATGGCAGGTGATCC |
| 356 / AGTCTGCAGGTG                                                                                   | AATACAGATTCGTTGTTATGCG                                                                                                                                                                          | 405 / CATCCACACCGCGTACATAC           | 434 / CTTCACTACGTGCTCGATTC |
| 368 / GGAGAATTCAAG                                                                                   | <b>CTT</b> CTGGACGAAGTAAAAGAAGG                                                                                                                                                                 | 419 / TGAGCATGGCGAACAAGGT            |                            |
| 369 / GGACTGCAGCGT                                                                                   | GCTGGCATGGCATATAC                                                                                                                                                                               | 420 / ACCGCCTTTAACACGTGGAC           |                            |

\* bold letters indicate recognition sites of restriction enzymes (*XhoI*, *PstI*, *EcoRI*, *Hind*III)

| Gene | Function                            | *Interaction site | Interaction | Interaction | Prediction | Experimental |
|------|-------------------------------------|-------------------|-------------|-------------|------------|--------------|
|      |                                     | mRNA              | site Aar    | energy      | method     | Result       |
|      |                                     | (relative to AUG) |             | (kcal/mol)  |            |              |
| ррс  | pyruvate metabolism                 | (-11,-4)          | (5,12)      | -3.79       | IntaRNA    | +            |
|      |                                     | (-88,-78)         | (170,180)   | -7.3        | RNAup      |              |
| ilvI | branch-chained amino acid synthesis | (-14,5)           | (10,30)     | -9.08       | IntaRNA    | +            |
| fadA | branch-chained amino acid           | (-18,-8)          | (5,15)      | -9.91       | IntaRNA    | +            |
|      | degradation                         |                   |             |             |            |              |
| serC | serine synthesis                    | (-12,-2)          | (2,12)      | -8.05       | IntaRNA    | +            |
| leuC | branch-chained amino acid synthesis | (-10,-1)          | (144,153)   | -2.88       | IntaRNA    | +            |
| glnA | nitrogen fixation into glutamine    | (-14,-7)          | (43,50)     | -5.46       | IntaRNA    | +            |
| glnT |                                     | (15,27)           | (4,16)      | -4.17       | IntaRNA    | -            |
| trpA | tryptophan synthesis                | (-213,-202)       | (55,66)     | -8.48       | RNAup      | +            |
| thiE | vitamine synthesis                  | (-185,-180)       | (175,180)   | -5.07       | RNAup      | -            |
| minE | cell division                       | (-28,34)          | (117,171)   | -5.92       | IntaRNA    | -            |
|      |                                     | (28,49)           | (161,181)   | -6.72       | RNAup      |              |
| gcvH | glycine degradation                 | (-16,-6)          | (7,17)      | -5.3        | IntaRNA    | +            |

Table 2: Predicted Aar mRNA targets that have been selected for further experimental analysis

\*IntaRNA predictions were filtered to cover the ribosomal binding site. Therefore, the interaction sites are close to the start codon AUG. RNAup predictions were filtered by conservation of the sRNA-mRNA interaction. Thus the resulting interaction sites are widely spread across the mRNA.



Fig. 1: Detection of the *A. baylyi* ADP1 sRNAs Aar and 6S (Northern blots) and schematic localization of their genes. A. Northern blot signals of Aar and 6S. DIG labelled DNA-probes created with primers 331/332 (Aar) and primers 168/304 (6S RNA) were applied for RNA detection. B. Schematic drawing of *aar* genomic localization. Rho-independent termination signals for *trpS* and *aar* are indicated with stem loop structures. C. Schematic drawing of 6S genomic localization. Numbers and arrows in both drawings show the annealing sites and orientation of Northern blot primers.



dicated by boxes and the dot-bracket notation. The helix annotation line corresponds to the predicted consensus secondary structure depicted below. Helices are numbered from 5' to 3' end. The stem loop corresponding to H9 was predicted to be a termination structure.

M 2



Fig. 3: Northern blot signals of Aar expressed under different conditions in three *A. baylyi* strains (ADP1 wild type, pRK415 *hfq* and  $\Delta hfq$ ). Detected 5S rRNA signals after RNA separation are illustrated under the corresponding Northern blot signals of Aar indicating equal RNA amounts applied in each fraction. The corresponding OD<sub>600</sub> value is indicated above the lanes. Numbers refer to growth phases and conditions for Aar detection.


Fig. 4: Detection of Aar and 9 mRNAs from *A. baylyi* wild type and Aar mutants in comparative Northern blot experiments in minimal medium with succinate (except for *fadA* mRNA: protocatechuate). Detected 16S rRNA signals after RNA separation are illustrated under the corresponding Northern blot signals indicating equal RNA amounts applied in each fraction. Numbers correspond to the used *A. baylyi* strain and growth phase for RNA detection.

Fig. 5: Comparison of the *E. coli* Lrp binding site to a putative Lrp binding site in *A. baylyi*. Mismatches to the *E. coli* Lrp consensus motif are indicated by bold characters. 1: *E. coli* Lrp consensus binding sequence. 2: Putative Lrp binding site within *A. baylyi aar*. Amino acid abbreviations: Y = C or T, H = not G, W = A or T, D = not C, R = A or G.

## 7.3 Publikationsliste

## Publikationen

| 09/09                  | Schilling D., Findeiß S., Richter A. S., Taylor J., Gerischer U.<br>The small RNA Aar in <i>Acinetobacter baylyi</i> - a putative regulator of<br>amino acid metabolism<br><b>eingereicht</b>                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09/09                  | Schilling D., Gerischer U.<br>Acinetobacter baylyi hfq gene encodes a large protein with an unusual<br>C-terminus<br>Journal of Bacteriology, <b>191</b> (17):5553-62                                                               |
| 08/06                  | Schilling D.<br>Analyse kleiner nicht kodierender RNA-Moleküle aus dem Bakterium<br><i>Acinetobacter baylyi</i><br>Diplomarbeit,<br>(Institut für Mikrobiologie und Biotechnologie, Universität Ulm)                                |
| <u>Tagungsbeiträge</u> |                                                                                                                                                                                                                                     |
| 09/08                  | Schilling D., Gerischer U.<br>Identification of small RNAs and analysis of the Hfq protein in <i>Acineto-bacter baylyi</i><br>DFG Schwerpunkt Sensorische und Regulatorische RNAs in<br>Prokaryoten<br>(Jährliches Treffen, Kassel) |
| 03/08                  | Schilling D., Gerischer U.<br>Analysis of the <i>Acinetobacter baylyi</i> Hfq<br>Biospektrum Tagungsband 2008: S. 83<br>(VAAM 2008, Frankfurt, Deutschland)                                                                         |
| 04/07                  | Schilling D., Gerischer U.<br>Investigation of small non-coding RNAs in <i>Acinetobacter baylyi</i><br>Biospektrum Tagungsband 2007: S. 79<br>(VAAM 2007, Osnabrück, Deutschland)                                                   |

## 7.4 Lebenslauf

# <u>Lebenslauf</u>

| 26.09.1980        | Geburt in Ulm                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1987-1991         | Besuch der Grundschule Neu-Ulm/Offenhausen                                                                                                                                                              |
| 09.1991 – 07.2000 | Besuch des Mathematisch-Naturwissenschaftlichen Lessing<br>Gymnasiums in Neu-Ulm                                                                                                                        |
| 09.2000 - 07.2001 | Zivildienst beim Bayrischen Roten Kreuz                                                                                                                                                                 |
| 10.2001 – 11.2003 | Biologiestudium an der Universität Ulm mit dem Vordiplom-<br>Abschluss                                                                                                                                  |
| 12.2003 – 11.2005 | Vertiefendes Hauptstudium der Biologie in den Fächern:<br>Mikrobiologie, Endokrinologie, Medizinische Mikrobiologie<br>und Chemie                                                                       |
| 12.2005 - 08.2006 | Durchführung der Diplomarbeit "Analyse kleiner nicht ko-<br>dierender RNA-Moleküle aus dem Bakterium Acinetobacter<br>baylyi" am Insitut für Mikrobiologie und Biotechnologie an der<br>Universität Ulm |
| 10.2006-11.2006   | Graduierte wissenschaftliche Hilfskraft am Institut für<br>Mikrobiologie und Biotechnologie an der Universität Ulm                                                                                      |
| 11.2006           | Beginn der vorliegenden Dissertation am Insititut für<br>Mikrobiologie und Biotechnologie an der Universität Ulm                                                                                        |

#### 8. Danksagung

Ganz herzlich möchte ich mich an erster Stelle bei Frau apl. Prof. Dr. Ulrike Gerischer bedanken. Sie gab mir die Möglichkeit in ihrer Arbeitsgruppe dieses innovative Thema selbständig zu bearbeiten und half mir währenddessen auch stets mit guten Ratschlägen, die zum Gelingen der Arbeit beitrugen. Außerdem möchte ich mich bei ihr für das hilfreiche Korrekturlesen des Manuskriptes der Arbeit und der beiden Publikationen bedanken.

Bei Prof. Dr. Anita Marchfelder möchte ich mich für ihre Bereitschaft, Gutachter dieser Arbeit zu sein, bedanken. Auch die vielen Möglichkeiten, in ihrer Arbeitsgruppe die Fortschritte dieser Arbeit zu präsentieren und darüber diskutieren zu dürfen, haben mir sehr geholfen.

Ich danke Prof. Dr. Peter Dürre dafür, die Arbeit am Insitut für Mikrobiologie und Biotechnologie anfertigen zu dürfen und für seine stetigen Mühen den Zusammenhalt der Institutsmitglieder zu stärken. Auch nahm er uns "Kellerkinder" gerne in seinem Seminar auf.

Ein weiteres Dankeschön gilt Prof. Dr. Bernhard Eikmanns, der mich in der Phase zwischen der Diplomarbeit und der Dissertation sehr unterstützte.

Für die Unterstützung und den guten Zusammenhalt möchte ich auch allen Mitgliedern des Instituts danken. Ein besonderer Dank gilt insbesonders den aktuellen "Kellerkindern" Frank, José, Fenja, Bettina und Iris, die mir, wie die bereits abgewanderten "Kellerkinder" Anke, Betina, Bettina, Rita und Tina, den Laboralltag mit vielen netten Gesprächen und guten Tipps verschönten. Ein weiteres Dankeschön nochmal an Fenja und Frank, für das hilfreiche Korrekturlesen der Arbeit. Hervorzuheben ist besonders Iris, die gute Seele des Labors, die stets für jeden ein offenes Ohr hatte (und sogar Bastelmuffel wie mich eines Besseren überzeugte).

Die Arbeit wurde im Rahmen eines Graduiertenstipendiums des Landes Baden-Württemberg gefördert. Zusätzlich fand eine weitere finanzielle Unterstützung für Tagungsbesuche statt. Besonders in Erinnerung ist mir dabei der Bioinformatik-Workshop auf Korsika geblieben, wofür ich mich sehr bedanken möchte.

Zu guter Letzt möchte ich meiner Familie sehr herzlich danken. Sie haben mich während meines Studiums nicht nur finanziell sondern auch moralisch stets in meinen Zielen unterstützt. Auch ganz besonders möchte ich dem wichtigsten Menschen in meinem Leben Gülten danken. Danke, dass Du immer an mich glaubst, mich jeglichen Laborfrust vergessen lässt und für Deine Liebe und Deine tägliche Unterstützung.

### 9. Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig angefertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht habe.

Ichilling

Ulm, im September 2009 .....

**Dominik Schilling**