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Introduction

Throughout history, philosophers and scientists have tried to comprehend the
concept of randomness. In his work “Physics” [2], Aristotle discusses “chance
and spontaneity” as a possible cause of an observation that has to be considered
when no other logical reasons can be found. But he also mentions other physi-
cists who “found no place for chance among the causes which they recognized”,
while others “believe that chance is a cause, but that it is inscrutable to human
intelligence, as being a divine thing and full of mystery.” Many centuries later, in
Newtonian mechanics, the world seemed to be (almost) completely explainable
by physical laws, with randomness only being used where systems became too
complex to be measured or calculated exactly. In other words, randomness was
only considered a mathematical tool that could be used to model human insuffi-
ciencies.With the advent of quantum mechanics however, randomness became
an important element of physics — Heisenberg’s theory stated that some physical
effects remained random ones, without the chance of exact measurements.

The notion of “quantitative randomness”, i.e. the idea that the amount of ran-
domness inherent to a random process should be expressed, has been thor-
oughly researched in the 20th century, e.g. by C.E. Shannon, A. N. Kolmogorov,
R. Solomomoff and G. J. Chaitin. In 1948, C.E. Shannon published his work “A
mathematical Theory of Communication” [3]. Initially addressing communi-
cation over noisy channels, his work was the foundation for a new branch of
science, which is today known as information theory. Shannon introduced the
notion of entropy for distributions on strings, making it possible to quantify the
randomness of a discrete source of randomness. While this theory was initially
intended to explain communication over an error-prone channel, it has also
found its way into other areas like cryptography or even biology. Kolmogorov,
Solomonoff and Chaitin followed a different approach: Instead of measuring

the amount of randomness of a given probability distribution, they defined the



Contents

amount of randomness of individual bit strings — the Kolmogorov complexity of
a string is defined as the shortest “program” that outputs that string. Chapter 2
of this thesis will give an introduction to these important notions.

In computer science, randomization is known as a valuable tool, with random-
ness being used in various ways, for example to avoid worst-case scenarios, or
to find solutions that are hard to find in a deterministic way [4]. For example,
when worst case and average case behavior differ, an input of an algorithm
may be randomly altered to avoid the worst case. The randomized version of
the sorting algorithm QuickSort [5], for example, determines randomly which
elements to compare next. This way, it shows an expected complexity (measured
in the number of comparisons) of order nlogn when sorting any sequence of
n numbers, while its deterministic version needs an order of n> comparisons
for some worst case input sequences (cf. also [6]). For some problems, the best
known deterministic versions are slower than the best known probabilistic
ones. For example, the Miller-Rabin test, the fastest known algorithm to test if a
given number is a prime is a randomized algorithm [7]. Until 2002 (published
2004), it wasn’t even known if there exists a deterministic algorithm for that
problem with polynomial complexity. That problem has been solved in [8], but
the probabilistic algorithm is still widely in use because it is much faster than

its deterministic counterpart.

If one doubts the random nature of an observed process, a statistical test can
serve to expose that process as non-random: a statistic, i.e. a real-valued function
of the observed variables, is calculated. Based on the assumption that the process
is random (the so-called null hypothesis), the range of the statistic is divided
into a set with large probability and one with very small probability. Common
values for the probability of the last set are 5% or 1% or even smaller values.
As long as the value of the statistic remains within the set of high probability,
no conclusion about the randomness of the process is drawn. However, if the
computed value lies in the set of very small probability, the process “does not
pass the test” and thus is not considered random. Note however that a statistical
test can only be used to strengthen the so-called “alternative hypothesis”, i.e. to
indicate that a process is not random. A single statistical test can never be used
to confirm a positive statement of the form “Sequence s is random”. (Actually,

such a test does exist in theory, but it is not computable.) So when examining a
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sequence with the help of statistical tests, we can never be sure if the sequence
is really of random origin, even if it passes all of our (finitely many) statistical
tests.

While randomness is used in many algorithms, it is still a rather unnatural
concept for a computer: The standard computer is a machine, a completely
deterministic device. Any random, non-predictable behavior of a computer is
usually considered a flaw — given a program and an input, the program should
always compute the same output. If a programmer wants to involve randomness
in a computation, that random information has to be collected from outside
the system and treated like an additional input. Getting them from an external
(physical) process is often expensive and relatively slow, so in most cases pseudo
random numbers are used [9]. These numbers are initialized with one or a few
random numbers, the so-called seed. Then from that seed a sequence of numbers

is calculated that can be used instead of random numbers.

Astonishingly, most people are rather bad at spontaneously creating random
sequences of bits or numbers [10]. Especially clusters of any type, like longer
sequences of zeros in a binary sequence, are often considered non-random, and
when people are requested to create a random sequence of bits, longer sequences
are often avoided. Even everyday actions for creating random events with fair
chances may be deceiving: When spinning a coin and watching if it falls heads
or tails up, there can be a significant difference between the occurences of heads
and tails [11].

When designing and analyzing randomized algorithms, one usually assumes
a perfect source of randomness. In particular, the random numbers that are
used are considered uniformly distributed and independent. Implementing
randomized algorithms, however, one usually has to use pseudorandom num-
bers. Using such numbers may severely influence the quality of an algorithm’s
output. In Chapter 2 we will give two examples where the use of pseudoran-
dom numbers has a strong influence on the success probability of randomized
algorithms. In Section 3.1, we show that the repeated execution of a probabilistic
algorithm may not reduce the total error probability to the desired degree if
pseudorandom numbers are used. In Section 3.3, we show that a small bias in

the distribution of the random source may have a strong influence on a ran-
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dom walk algorithm, in our case Schoning’s random-walk algorithm for the
3-satisfiability problem.

Karloff et al. [12] and Bach [13] showed that some algorithms, like QuickSort
or primality testing, have bad running times or even yield wrong results when
used with unsuitable pseudo-random number generators. Karloff et al. also
showed that a good average case behavior can be guaranteed by the right kind of
pseudorandom generator. In the case of QuickSort, they proved a good average
case behavior of order nlogn when using an explicit polynomial generator (see
Section 2.2), while the use of a linear congruential generator can lead to running
times of order n?. List gave an upper bound for the running time of QuickSort
that depends on the probability distribution of the pivot element (cf. [14]). In
Section 4.2, we complement this result with a lower bound and show how
the min-entropy of a random source determines the number of comparisons
needed by QuickSort. In Section 4.4, we show that the number of random bits
consumed by the QuickSort algorithm can increase from 7 to nlogn when non-
perfect random numbers are used, although the number of random choices does

not depend on the quality of the random numbers.

Search heuristics for combinatorial problems like the Traveling Salesman Prob-
lem or the Boolean Satisfiability Problem often involve random choices in their
search. Several properties of random search can lead to advantages over deter-
ministic approaches. For example, random choices may help to lead away from
local optima without the need for storing too much information, a property that
the Simulated Annealing heuristic benefits greatly from. Random choices also
help to avoid worst case inputs. Apart from that, random choices allow the user
to run a search algorithm several times, even in parallel, increasing the probabil-
ity of finding a good solution. In this thesis, we investigated how the choice of
the random generator influences the solution of a search heuristics. Meysenburg
for example showed experimentally that a simple genetic algorithm led to com-
parable results, independent from the choice of the random number generator
(see [15, 16]). Tompkins and Hoos showed experimentally that stochastic local
search methods for the satisfiability problem are not influenced by the quality
of the pseudorandom number generator [17]. However, both of these works
considered the use of standard random number generators. In contrast, we

were rather interested in the effects of generators with very low quality. To this
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end, we artificially reduced the quality of random sources and experimentally
measured the effect on Simulated Annealing and Genetic Algorithms. The main
characteristics of the random source we altered were its bias, dependence and
period length. We also used quasi-random sequences in order to see if random-
ness was needed at all. To this end, we conducted several experiments where
we gradually decreased the quality of our pseudorandom number generator
and tested if this decrease in quality directly affected the output of our search
heuristics. The results for Simulated Annealing are presented in Section 5.3.1

and the results for the genetic algorithm are presented in Section 5.3.2.
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1 Preliminaries

In this thesis, N will denote the set of natural numbers, R the set of real numbers,
R=0 the set of non-negative real numbers, Q the set of rational numbers and

Q20 the set of non-negative rational numbers.

For any finite set £, let £* be the set of all finite sequences of elements from X.
E.g. {0,1}* denotes the set of all finite bit sequences. By X we denote the set of

all infinite sequences over X. The empty sequence is denoted by L.

When convenient, sequences will be given in string notation, without paren-
theses and delimiters. E.g., the sequence (0,1,1,0,1,1,0) is then written as a bit
string 0110110.

For a finite sequence x = xox1 ...x,—1, [(x) denotes the length of x, for example
1(0110110) = 7.

Given a finite sequence x = xjx;...x, resp. an infinite sequence y = y1y2y3....
Then the sequence X = x1x2...x; is called a prefix of x and £ = xgx4p...x, is
called a suffix of x, for 1 <k <n. Analogously, y = y1y2y« ... is a prefix of y and
Y = YiVk+1Yk+2 - - - is a suffix of y. Formally, L is prefix and suffix of any sequence,
and any sequence is prefix and suffix of itself.

For any set A, 24 will describe the power set of A, i.e. the set of all subsets of A.

A multiset is a generalization of a set that can contain elements multiple times.
The multiplicity of an element x in a multiset S is the number of times x is
contained in S. For example, the multiset S = {a,b,b,b,c,c} contains 6 elements.
The multiplicity of a in S is 1, that of b is 3, and that of ¢ is 2. A multiset S is
a subset of a multiset S, if for all x € S, the multiplicity of x in §; is not larger
than the multiplicity of x in S,. We then write S| C S».



1 Preliminaries

1.1 Graphs

A graph G = (V, E) consists of a set of vertices V = {v1,...,v,} and a set of edges
E C 2V with |e| =2 for all e € E. A multigraph G = (V,E) is a graph where E is a

multiset of edges, i.e. two vertices can be connected by multiple edges.

A pathin a graph G = (V,E) from u € V to v € V is a finite sequence of vertices
U= Vi, Viy,- -+, Vie_y,Vip = v such that {v;;,v;,  } € Eforall 1 < j<k—1.The graph

is connected if there is a path from u to v for all vertices u,v € V.

1.2 Asymptotic behavior of functions

Considering the running time or error probability of algorithms, we are often
mainly interested in the dominating term of a function rather than the exact
function. Here Landau notation is useful to describe the asymptotic behavior of

a function.

Definition 1 Given a function f : N — R=Y, define the sets
O(f(n)) ={g:N—=R2%|3c,;ng>0:Yn>no:g(n) <cf(n)},
e Q(f(n) ={g:N—=R=%|3c,ng >0:Yn>ngy:g(n) >cf(n)},
O(f(n)

f(n)) =0(f(n)) NQ(f(n)),
n)={g:N-R=|Vec>0:3ny>0:Yn>ny:g(n) <cf(n)},

)
S
—~
-
—~

e o(f(n)={g:N—=R2Y|VYe>0:3n9>0:Vn>ng:g(n)>cf(n)}

Instead of f(n) € O(g(n)) we also use the common notation f(n) = O(g(n)); analo-
gously for the other notations. We also define

e O(f(n))={g:N—R=2|3ny >0, polynomial p:¥n>ny: g(n) < p(n)f(n)},

and write f(n) < g(n) if f(n) € O(g(n)) and g(n) € O(f(n)).

The Master Theorem presents a valuable tool in solving a common type of
recursions, for example for the analysis of divide-and-conquer algorithms:



1.2 Asymptotic behavior of functions

Theorem 1.1 (Master Theorem) Let T be recursion of the form
n k
T(n)=aT (5) +0(n")
with a,b > 1 and k > 1. then the recursion can be bounded as follows:

O(nk) if a < bk
T(n) =4 O(n*logn) ifa= bk
@(nlogb/loga) ifa > bk

For a proof of this theorem, see for example [18].

In Chapter 3 we will need the following lemma.

Lemma 1.1 For any fixed x € Q=°,
L 1
X n*

Proof. Forx € N,

—_— 1-2---(n—1) ) A
Z.IJH—x_(1+x)(2+x)---(n—l+x)(n+x)_(n+l)-~-(n—l—x)_ (n")

Now let x :=  for a,b € N. Then we have

b
L n ~ 1y b+] _ i
<El+_x) N (sz+a) quaﬂ_ H i+a
B b-(b+1)-(b+a—1) (1
 (n=1)b((n—1)b+1)-- ((n—l)b—1+a)_0<n“> ’

using the fact that § < )y% for 0 < x <yand a > 0. In the same way we can show

Db+ j UL

b b
L B i oib (i s L
<HH—_x> B (Hib+a> ZI_Il—l(z—l)bchH—] s1ita

1-2 1
- (nb+1)(nb+2)---(nb+a) =0 (ﬁ)




1 Preliminaries

Combining the two inequalities finishes our proof.

Note: For k not too small, we can also give the estimation

Y L[k *
tritx \n)

This can be derived as follows. For x € N, we have

ﬁ i k(k+1)---(k+x—1) N(k)"'

titx  (n+D)(n+2)-(ntx) \n

For x =a/b, we get

no\’ oy T bl ib+j

[l = I <G

g ltx ~pibta g ibtat
-

and similarly

b b

noo (Y b b (i—1)b+j

(gﬂ) B (Hib-{-a) Zjlilli:k(i—l)b-l—a-l-j
(k—1)b+1)-((k—1)b+2)---((k—1)b+a)

(nb+1)-(nb+2)---(nb+a)

(o) = ()
> ~ | — .
- nb+a n

These two inequalities can then be combined to

10



1.3 Probability theory

1.3 Probability theory

Definition 2 A probability space is a triple (Q, F ,P), where Q is a set (called the
sample space), F C 2* is a c-algebra (the set of events), and P is a measure (the
probability measure, or distribution) on (Q, F) with P(Q) = 1.

In this thesis, we only consider discrete probability spaces, i.e. Q will always be count-
able. In that case, we can define F = 2%, introduce a function p : Q — [0,1] with
Y ocop(®) =1 and define P(A) := Y yea p(®) for any event A € F.

For any event B with P(B) > 0, the conditional probability P(A | B) (“the probability of

A given B”) is defined as P(A | B) := Pg‘(gf).

A function X : Q — R is called a random variable. We will write P(X € B) as an
abbreviation for P({® | X(®) € B}) resp. P(X = x) for P({o | X(®) =x}). X is a
discrete random variable if X only takes a countable number of different values, i.e.
X(Q) :={X(0) | o € Q} is countable.

For two probability spaces (Q, F,Py) and (Q, F,P2), we can assign random variables
to these probability spaces: The notations X ~ Py resp. Y ~ P, define the abbreviation
PX=x):=P(X=x)resp. P(Y =y) =P (Y =y).

The expected value E(X) of a random variable X is E(X) := Y. ,cq P(0)X (). This is
equivalent to E(X) = Y ,cx(q)* - P(X = x). The variance V (X) of a random variable X
is defined as V (x) := E((X — E(X)?).

A sequence of random variables X;,X>, ... is k-wise independent if any subsequence

Xi\, ..., X, of length k is independent, i.e. for any x1,...,x, and iy, ... i €N

k
P(Xl :Xl,.-.,Xik :Xk> = HP(Xl] :xJ> :
j=1

For k =2 we call such a sequence pairwise independent. If a sequence is k-wise
independent for all k € N, we call it independent.

A discrete random variable X is uniformly distributed if P(X = i) = P(X = j) for all
i,j€X(Q).

11



1 Preliminaries

Definition 3 An infinite sequence of random variables Xo,X1,Xa, . . . is called Markov
chain if it has the property

Vk>0:P(Xiy1 =x| Xo=x0,..., Xk =x) = P(Xpp1 = x | Xpe = xi)

i.e. the value of Xy only depends on the value of Xy. The Markov chain is called

time-homogenous if it has the additional property

Vk>O:P<Xk+] :X|Xk:y):P(Xk:x|Xk_1 :y) A

The following lemma will be used in Chapter 4 to bound the binary entropy

function by a polynomial term:
Lemma 1.2 Let H be the binary entropy function, i.e.

H(x) = —xlog,(x) — (1 —x)log, (1 —x) .

Then for all integers n > 1 and i with 0 <i <n,

. 1\2 a2 .
(i—1) +(n i) cu( > 1.
n? n? n+1

Proof. We use the inequalities —In(1 —x) > x resp. —log,(1 —x) > 75, that hold
for 0 < x < 1. This leads to

e ()

2 —2i+14+n*—2in+i*
2

n

i i i i
- 1 —|1- 1 1-—
n+1 Og2n+1 ( n+1> 0g2< n—}—l)

2i2 —2i+1+n?*—2in
2

n

i o | n—i+1 n—i—l—llo | i
n+1 £2 n+1 n+1 &2 n+1

212 —2i+1+n*>—2in i n—i+1 n—i+1 i
> + : + : /In2
n? n+1 n+1 n+1 n+1
D A 2 . 52 : 2
> 21 —2i+1+n“—2in+2in—2i —1—21:n +1 > 1

n? n?

12



1.4 Computability and complexity

For the second to last inequality, we use the fact that (n+ 1)?In2 < n? for all
n>1. |

1.4 Computability and complexity

When talking about computability and complexity, a standard model of compu-
tation is needed — a model of a simple but powerful computing device. It should
be simple enough to allow elegant proofs about what it can or can’t do; and it
should be powerful enough so that it can compute the same functions that a
modern computer can compute. The Turing machine is the standard model of

computation that unites these properties.

Definition 4 A Turing machine M is a simplified model of a computer. It consists
of several (finitely many) states, where one of these states is the initial state and one
or more states are final states. The memory is represented by these states and a one-
dimensional tape that is infinitely large in both directions. Each position of the tape may
contain an element of the work alphabet I', which contains a special symbol O, called
“blank”. The internal state of the Turing machine can be described by the actual state,
the position on the tape, and the content of the tape. At the start of a computation, the
Turing machine is in the inital state, the tape contains only the input, expressed in the
input alphabet X C I' — {{J}, with all other positions on the tape equal to O, and the
position of the machine is at the leftmost symbol of the input. The behavior of a Turing
machine during a computation is determined by its transition rule. For each state and
symbol at the actual tape position, the transition rule specifies the new symbol at that
position, the new state and the new position at the next time step. The new position
may differ from the last one by —1, 0 or 1, i.e. the machine can move one position to the
left or right, or stay at its current position. The computation ends when the machine
reaches a final state. The result of the computation is defined as the content of the tape
after the computation, excluding O symbols. If the tape only consists of [ symbols, the
result is the empty string L. If the machine does not stop in a final state (i.e. runs in an
infinite loop of non-final states), the result is undefined.

We say that a Turing machine M computes a function f:{0,1}* — {0,1}*, if for
every input x € {0,1}*, M computes f(x). M computes a function f: N — N, if for

13



1 Preliminaries

every x € N, M computes the binary representation of f(x) if its input is a binary
representation of x. Computations of functions f : N — {0,1}* and f : {0,1}* — Nare
defined analogously.

We say that a Turing machine M accepts a language L C {0,1}*, if M computes L’s
characteristic function ¢y with

)0 ifx¢L
CL(X)'_{l ifxeL

Now that we have defined our model of computation, we can talk about com-

putability:

Definition 5 A function f: {0,1}* — {0, 1}* is computable (or recursive), if there
is a Turing machine M that computes f. We say a set S C {0,1}* is computable (or

recursive), if its characteristic function cg is computable.

A set S C {0,1}* is recursively enumerable if S is the range of a total computable

function f: {0,1}* — {0,1}*,i.e. S = {f(1),f(2),f(3),...}.

A function f : N — N is recursively enumerable, if its graph Gy is recursively enumer-
able, with Gy = {(x,y) |y < f(x)}.

Since any infinite bit sequence x € {0,1}* can be interpreted as a function f :
N — {0,1} or set § C N, the definition of recursive enumerability can be applied

to sequences.

Even if we know that a function or set is computable, we might want to be more
precise about the difficulty of computing this set or function. To this end, we

need the definitions of some standard complexity classes.

Definition 6 For any Turing machine M, define timey (x) as the number of steps of M
with input x until M reaches a terminal state.

A language L C {0, 1}* lies in the complexity class P if L is accepted by some Turing
machine M and there exists a polynomial p such that for every string x € {0,1}",

14



1.4 Computability and complexity

timey (x) < p(|x|). Le. M’s running time increases only polynomially in the length of
the input x.

A language L C {0,1}* is in BPP if a Turing machine M and two polynomials p and q
exist with the following properties:

1. For every x € {0,1}* and every y € {0,1}9%, timey(x,y) < p(|x|)

2. IfY € {0,1}9%) is a uniformly distributed random variable,

PM(x,Y) =cp(x)] > %for every x € {0,1}* |

i.e. M computes the characteristic function of L, and gives a correct answer with
probability at least 2/3.

A language L C {0,1}* lies in the complexity class NP if there is a Turing machine M
and a polynomial p with the following properties:

1. For every x,y € {0,1}*, timey (x,y) < p(|x|),

2. Foreveryx¢ Landy e {0,1}*, M(x,y) =0,

3. For every x € L there exists y € {0,1}* with M(x,y) = 1.
A language L C {0, 1}* lies in the complexity class P/poly if there is a Turing machine
M and two polynomials p and q with the following properties:

1. For every x,y € {0,1}*, timey (x,y) < p(|x|),

2. For every n € N there exists a y, € {0,1}9") such that for every x € {0,1}"
M(ann) = CL(X)'

Essentially, the languages in all complexity classes in Definition 6 are accepted
by some Turing machine M in polynomial time. However, M always (except for
the class P) may depend on a so called “advice string” y: For L to be in BPP, a
large part of all candidates for y must lead to the correct result; for P/poly, there
is only one advice string for every length of the input; for NP, the existence of

one advice string per input is sufficient.

15
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2 Different notions of (pseudo)
randomness

Random numbers play a vital role in many areas of computer science. In cryp-
tography, for example, pairs of public and private keys are chosen at random. In
simulation, only statistical facts about a physical phenomenon may be known.
In optimization, choices are frequently made at random when the optimal choice
cannot be calculated effectively. And often, probabilistic algorithms are faster
than any known deterministic algorithm for the same problem. But random
numbers are not an integral part of a computer system. Since computers are
purely deterministic systems, random behavior only occurs in the case of a
system error. The only way to obtain “real random numbers” in a computer
is by using random input from outside the system. Options include using the
system time, measuring times between a user’s keystrokes, or measuring other
physical effects that are supposed to be random. Since input is usually processed
much slower than internal data and, depending on the source of randomness,
random numbers may only be available at a slow rate, a common approach
uses these random numbers as a so-called seed for a longer sequence of pseu-
dorandom numbers: From this seed, a much longer sequence is calculated in
a deterministic way, assuming that this new sequence leads to a similar result
as a sequence of real random numbers of the same length would. One of the
first methods of this kind was the linear congruential generator, short lcg. This
generator starts with a random number x (the seed) and successively applies
a linear function f(x) = ax+ b mod m to the last value, generating a sequence
(x, f(x), f2(x), £3(x),...), assuming that this sequence can be used instead of a

sequence of random numbers.

Randomness is used with different goals in mind: In cryptography, the main

goal is to provide numbers that cannot be guessed by an attacker; in simulation,
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2 Different notions of (pseudo) randomness

using the random numbers provided by the computer should lead to the same
result as in a real world process; in optimization, expected running times or
results should be similar to those when using random numbers. Pseudorandom
numbers have another property that is valuable in some cases: By saving the
seed, we can efficiently save the whole pseudorandom sequence. This allows to
reproduce simulation results, or to synchronize cryptographic processes that

need to share sequences of random numbers.

In this chapter, we will sum up various methods to define randomness and
describe the advantages and disadvantages of these notions as well as equiva-
lences between them. We give some examples where pseudorandom numbers
are used, how such numbers can be produced and where their quality affects
the outcome of algorithms.

Statistical Tests

equal on Shannon Entropy |
n avey AV 4

approximate Kolmogorov
Incompressibility

// : '\\\ equivalent approximate
approximate

( Martin-L6f \

\ Randomness

\\ equivalent

equivalent Compression algorithms
(LZW, Burrows-Wheeler,
o Berlekamp-Massey, ...)

Martingale
Predictability

\\ // 

Quasirandomness approximate

Predictors,
Distinguishers

Figure 2.1: Various notions of pseudorandomness

In Section 2.1, we will sum up Kolmogorov’s notion of incompressibility and
Martin-Lo6f’s definition of algorithmic randomness, explain the basics of mar-
tingale theory and predictability, and give some insight into Shannon’s infor-
mation theoretic entropy. Additionally, the notion of quasi-randomness will be
explained. In Section 2.2, we will list the most commonly used pseudorandom
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2.1 Notions of pseudorandomness

number generators, those used in practice as well as those found in some theo-
retical results. In section 2.3, we will give an overview of connections between

the quality of pseudorandom generators and their influence on algorithms.

2.1 Notions of pseudorandomness

4

In this section, we introduce various methods to measure the “randomness”
in a sequence of bits or numbers. After some mathematical preliminaries, we
will begin with the notion of Kolmogorov complexity. We will then move on
to statistical tests and Per Martin-Lof’s definition of algorithmic randomness,
describe the theory of martingales and their connection to predictability and
distinguishability and explain C.E. Shannon’s notion of information-theoretic
entropy.

2.1.1 Kolmogorov complexity and compressibility

Kolmogorov complexity was independently introduced by Solomonoff, Kol-
mogorov and Chaitin. It measures with how many bits an object, usually a
binary string, can be described, where every object has to be described in a
given “language”. A core principle of Kolmogorov complexity is the notion of
non-compressibility: If we want to find a short description for a bit string of
length n, saving at least [ bits, we only have a very limited choice: There are
only 2"1! strings of length up to n — [, so we can compress at most a fraction
of 27/+1 of our strings. The rest can’t be compressed by those / bits. Kolmogorov
complexity uses this fact to disqualify strings as non-random: The probability
that a random string can be compressed by [ bits is about 2. So, if a string can

be compressed much, it is probably not random.

Definition 7 Let My,M>,M3, ... be a recursive enumeration of all Turing machines.
By M;(x) we denote the output of M; when it’s run with input x. A universal Turing

machine is a Turing machine M, with

Mu(i,x) = M,‘()C) .
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2 Different notions of (pseudo) randomness
The Kolmogorov complexity C(x) of a string x is defined as
C(x) := min{l(i) | M;(g) = x} .

An infinite sequence s € {0, 1}* is Kolmogorov-random, if for every prefix s1_, of s the
condition C(sy.,) > n— c holds for a constant c.

According to this definition, the Turing machine M, acts as an interpreter of
other Turing machines: It is able to simulate any other Turing machine with any
input. That way, every binary string x can be described by describing a Turing
machine that outputs x.

In the definition of Kolmogorov complexity, no concrete universal Turing ma-
chine is given, so that we could use different universal Turing machines in the
definition. Actually, using a different Turing machine wouldn’t be a big change.
The Invariance Theorem states that using different universal Turing machines
only results in a constant difference between the Kolmogorov complexities of
any string x, where this constants only depends on the two universal Turing

machines, but not on x.

A major disadvantage of Kolmogorov complexity is its non-computability. So it
is not possible to exactly compute C(x) for all strings x. It is, however, possible
to give an approximation of C(x). Looking for the shortest description d of a
string x is equivalent to compressing x, where d can then be decompressed by
the universal machine M,. We can approximate this compression with standard
compression algorithms, like zip or bzip2. For a fixed compression algorithm Z
we can then define a string to be (Z,k)-random if Z cannot compress the string

by more than & bits.

An interesting approach to describe a sequence of numbers is to assume that
the sequence was generated by a linear recursion of some degree £, i.e. for all
i>k,
k
X;=ap+ Z ani—j
j=1

for some coefficients ay, . . ., ax. In the case of a binary sequence, all these numbers
are 0 or 1 and the recursion corresponds to a linear feedback shift register.

A sequence can then be described by X;,...,X; and ay,...,a. For any given
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2.1 Notions of pseudorandomness

sequence, the linear degree k of that sequence can be efficiently found by the
Berlekamp-Massey algorithm [19].

M«

-

X H xi_lH X2 H xi_aH Xa H x5 H x5 H X7 ’7_,

Figure 2.2: A linear feedback shift register with the recursion X; = X; 3+ X;_7

Definition 8 For a finite sequence x = (x1,...,x,) the linear complexity of x, short
lc(x), is the smallest k such that for all i > k,

k
Xi=ag+ Z ajXi—j
Jj=1

for some parameters ag,ay, ..., a.
For an infinite sequence x, its linear complexity is a function lc, with

le<i) = lc(xl,. .. ,x,-) .

For example, the linear complexity of a linear congruential generator is 1. It
is easy to see that the linear complexity of every sequence x € {0,...,m — 1}
is at most k: For every i > k, suppose x; is determined by the equation x; =
aop + Z];ZI a;x;—j. Then we can find ag, a1, ..., a; by solving the system of all these

equations for xgy,...,x.

2.1.2 Statistical tests and Martin-Lof randomness

In statistics, when sampling from a distribution D, a common method to test if a
sample X was really drawn from distribution D is to divide the sample space
S into two sets: the set S; of “typical” outcomes and the set Sy of “non-typical”
outcomes such that P(X € §p) = € for some small &. If X € Sy, that variable could

still be sampled according to D, but there is at least a reason to be suspicious.

21



2 Different notions of (pseudo) randomness

Definition 9 Let S be a sample space, D be a probability distribution on S and X a
random variable with X ~ D.

A function f: S — {0,1} with P[f(X) = 1] = 1 — ¢ is called a statistical test for D
with confidence level €. We say a sample x passes the test f (or f accepts x) if f(x) = 1.
Otherwise x doesn’t pass f (or f rejects x).

For example, consider a uniform distribution on the set S = {0, 1} of all 32-bit
strings. We could just look at the first 10 bits of a random string X and reject X if
each of these 10 bits is a zero. Only a fraction of 27!° of all strings in S start with
10 zeros, so we would reject a true random sample with a probability lower
than 0.1%. This confidence level could be easily changed by choosing one or
more different prefixes.

Note that in the definition above, f computes the characteristic function of S;. It
is not clear which elements of S should belong to So: from a statistical point of
view, all sets Sy with P[X € Sy| = € are equally well suited. In practice, S| often
consists of those sequences that have desirable properties, like equidistribution
or pairwise independence, or simply properties that are easy and fast to com-
pute. Ideally, a good pseudorandom sequence would pass all statistical tests, at
least with probability of about 1 —&. However, pseudorandom generators are
usually designed to output exponentially many numbers from a small seed, say
2" numbers from a seed of length n. So when outputting a sequence of length [,
only one out of 2" sequences can be output, while a true random process would
output one out of all possible 2! sequences. By putting all those 2" sequences
into Sp, we can construct a statistical test where € decreases exponentially when
the sequence length / is increased. So technically, for every pseudorandom
generator g and every confidence level ¢, there is a statistical test with that
confidence level that rejects the output of g. It is not clear, however, if this can
be done by an efficient test. To be practically usable, a statistical test’s running
time should be a polynomial in 1/e.

The following properties are commonly tested by statistical tests:

Frequencies of patterns The simplest of these tests just count the number of
zeros or ones in a sequence. These should not differ too much. More

sophisticated tests count frequencies of certain patterns, either overlapping

22



2.1 Notions of pseudorandomness

ones or non-overlapping ones. Instead of counting the frequencies of all
patterns up to a certain length, one can also restrict oneself to patterns of
special forms. Examples for this kind of test are the run test, which counts
the length of runs of zeros or ones (either in the whole sequence or in
each k-bit block) or the poker test, which divides the set of all patterns
into classes known from the poker card game (like one pair, two pairs, full

house, etc.).

Compressibility This kind of test tries to compress a given sequence. A truly

random sequence usually isn’t compressible (see Section 2.1.1). Compres-
sion can be measured by methods like the Lempel-Ziv algorithm, the
Burrows-Wheeler transform or the Berlekamp-Massey algorithm. A fur-
ther approach can be made via non-lossless compression: A cosinus or
fourier transform can show if a sequence can be approximated by few

base vectors of a given transform.

Random walks Tests from this class use the bits of a sequence to run a simple

More

randomized algorithm. The random excursion test, for example, simulates
a random walk on a line, walking in one direction each time a “0” comes
up, and walking in the other direction for every “1”. This random walk
shouldn’t wander too far away from the starting point, but it shouldn’t
stay too close to it for the whole run, either. This test is generalized in the
cumulative sum test, that interprets bit blocks as integers and examines

their cumulative sums.

There exist many more tests. Actually any property of a sequence can be
used to design a statistical test, as long as that property can be measured
and something about its stochastic behavior when observed on a random
sequence is known. Depending on the distribution of such a property,
there are various tests that may be appropriate, like the % test for testing
the variance of a value under a normal distribution.

For further insight into statistical tests, see [9]. Statistical tests cannot only be

used

to qualify random processes as random or non-random, they can also

be used to compare if two random processes incorporate different probability

distributions. We will briefly describe two statistical tests of this class that can

be used to find out if the outputs of two algorithms are statistically different.
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2 Different notions of (pseudo) randomness

e Welch’s t test: Given a group of observations xi,...,x, € R and another
group yi,...,ym € R, Welch’s t statistics is defined as
X-Y
=

9

et

2
244
where X and Y are the sample means of the two groups and s% and s
are unbiased estimators of the sample variations of the two groups. This
statistic approximately follows a Student’s ¢ distribution. It can be used to
test if the mean of one distribution is greater than the mean of the other
distribution (and thus also if their means are different).

e Mann-Whitney U test: Given two groups of observations of equal size
X1,...,xp € Rand yy,...,ym € R, let r; be the rank of x; in the union of the two
sets {x1,...,Xu,¥1,...,yn} for 1 <i <n. Then the Mann-Whitney U statistics
is defined as

< 1
Z”i—n(’H_ ) ‘
i=1 2

This test statistic is approximately Gaussian distributed. It can be used to
test if one distribution is “statistically greater” than another distribution
in the sense that P(X >Y) > 0.5 where X is drawn from one distribution
and Y from the other.

A more formal approach concerning statistical tests and randomness has been
made by P. Martin-Lof in 1966 [20]. He formally defined algorithmically random
sequences of infinite length.

Definition 10 A recursively enumerable set T C N x {0, 1}* is a Martin-Lof test if,
with T, :={t € {0,1}" | (n,t) € T},

Y o<,

teTy

A sequence s in {0, 1}* passes the test T if
s ¢ Ny User, {u € {0,1}7 |t is a prefix of u} .

A sequence s is Martin-Lof random, if it passes all Martin-Lof tests.
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2.1 Notions of pseudorandomness

For any n € N, the set 7, specifies a set of prefixes such that a random string in
{0,1}* begins with a prefix from 7, with probability at most 27". For example,
consider the test T = {(n,0"*1), (n,1"*1) | n > 1}. Then T, = {0"T!,1"1}, i.e. at
“confidence level” n, the test would reject any string where the first n+ 1 bits are
all zero or all one. According to the definition, this test would only reject the
infinite string that entirely consists of ones and the one that entirely consists of

Zeros.

If 5 is a sequence drawn randomly under the uniform distribution from {0, 1}*
then for any fixed € {0,1}*, t is a prefix of s with probability 2~I*/. Therefore, for
any n, the set Uyer, {u € {0,1}* |t is a prefix of u} is a set of measure at most 27".
Thus, the set N, User, {u € {0,1}> |t is a prefix of u} is a set of measure 0. Since
there are only countably many Martin-Lof tests, and the union of countably
many sets of measure 0 has itself measure 0, the set of sequences that are
not Martin-Lof random has measure 0. This means that the set of Martin-Lof
random sequences has measure 1, i.e. any randomly drawn sequence is Martin-

Lof random with probability 1.

It has been shown (see [20]) that a universal Martin-Lof test U exists such that
for any Martin-Lof test T, T is included in U, i.e. there is some constant ¢ such
that for all n

Thie C U,

where ¢ may depend on T. In other words, this universal test on its own is able
to detect the non-randomness of any sequence, and a bit sequence x € {0,1}* is
Martin-Lof random if and only if it passes the universal test U.

Every computable sequence x can be transformed into a Martin-Lof test
T, = {(n,u) | u is a prefix of x with /(u) =n} .

Now the sequence x will not pass the test 7. This shows that no computable
sequence is Martin-Lof random, analogously to the fact that such a sequence
is not Kolmogorov random, since it can be described by a Turing machine of
some fixed length. Actually, it was shown by Martin-Lo6f that the notions of
Kolmogorov randomness and Martin-Léf randomness are equivalent if one

considers the prefix-free version of Kolmogorov randomness (In the prefix-free
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version of Kolmogorov complexity, no description of any object can be the prefix
of a description of another object).

Note that there is no efficiency requirement for these statistical tests. Thus only a
very restricted version can be used in practice: Efficiently testing for randomness
would be limited to a certain number of tests, and only to efficiently computable
tests. With these restrictions sequences that are not Martin-L6f random might
still look random to a set of efficiently computable statistical tests.

2.1.3 Martingales and predictability

Another method to look at randomness is the point of view of a gambler:
Suppose a betting game where coins are thrown one after the other. A player
starts with a capital of ¢ and before each coin is thrown will bet some amount
¢’ on the outcome of “heads” and ¢ — ¢’ on the outcome of “tails”. The player’s
bet on the correct outcome will be doubled, the other is lost. With a perfectly
random coin, the game is fair and the expected gain is equal to 0. However, if
there exists a strategy that will consistently win, then we might suspect that the
sequence is not random.

Definition 11 A martingale is a function m : {0,1}* — R=0 with

m(w) = = (m(w0) +m(wl)) .

| =

A martingale m succeeds on an infinite sequence s if

limsupm(s). ) =oo .

n—oo

Here, the function m(w) describes a player’s capital after the bits of w have been
thrown, m(w0) is the player’s capital after an additional 0, and m(wl) after an
additional 1. This corresponds to a betting strategy where m(w0)/2 is bet on a
“0”, and m(wl)/2 is bet on a “1”.

It was shown by Schnorr [21] that a sequence s is Martin-Lof random iff s is not

succeeded by any recursively enumerable martingale.
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A martingale always has access to all bits of w. When restricting ourselves to
martingales with a limited memory of the last k bits, then a pseudorandom
generator that outputs k 4 1-wise independent numbers could not be succeeded
by such a limited martingale.

Additionally, we could restrict martingales to efficiently computable functions.
This leads to a slightly different view on randomness, mainly found in cryptog-
raphy:

Definition 12 Let D), be a probability distribution on {0, 1}" and X a random variable
with X = (Xi,...,Xy) ~ Dy. An algorithm A is an e-predictor for D, if for some i < n,
it predicts X; from Xi,...,X;—1 with probability at least % +¢€, ie.
PIAXy,.... Xi_1) =X > %+e .

Now if we know that a sequence of random bits is distributed according to
a distribution D,, we can use predictors to guess some bits in advance — if
those predictors exist. But suppose the sequence is distributed according to
the uniform distribution U, on n-bit strings. Then no matter how we guess the
outcome of an arbitrary bit of that sequence, we can only guess the correct bit
with probability 3. That is, if A is an e-predictor for D, it behaves differently
for input distributions D,, or U,. This leads us to the next definition, that of a
distinguisher.

Definition 13 Let D, and D,, be two probability distributions on {0,1}", and X,Y two
random variables with X ~ D, and Y ~ D,,. Then an algorithm A is an e-distinguisher
for D, and D,,, if

[PIAX) =1]-PA(Y)=1]| >¢ .

It can be shown that an e-distinguisher for a distribution and the uniform
distribution exists if and only if an e-predictor for that sequence exists. For a
proof, see for example [22].

In cryptography, the notions of distinguishers and predictors can be used to
define cryptographic security of a sequence. In this setting, a sequence (or
the pseudorandom generator that produces it) is defined as cryptographically
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secure if there is no efficient distinguisher for that sequence. Here it is assumed
that the seed is chosen uniformly among all possible seeds. A distinguisher
is “efficient” if it runs in polynomial time, i.e. if it's contained in an efficient
complexity class like BPP.

Definition 14 A sequence of distributions D = (D1,D;,Ds,...) is called a distribu-
tion ensemble, if for any i € N, D; is a probability distribution on {0,1}'. Let X; be
random variables with X; ~ D; for all i € N, and let U; denote the uniform distribution
on {0,1} for all i € N. Then the probability ensemble D is cryptographically pseu-
dorandom if no polynomials p(n) and q(n) exists such that for each n there exists a
ﬁ—distinguisher for Dy, and U, with running time p(n).

Until today, it is not known if pseudorandom distribution ensembles can be
efficiently generated. In cryptography, being able to generate pseudorandom se-
quences from smaller seeds would prove very useful: Sharing the secret seed of
such a sequence would allow two parties to efficiently share the whole sequence
and thus have access to a common source of bits that can’t be distinguished

from a source of truly random bits by any efficient algorithm.

2.1.4 Shannon Entropy

In 1948, C.E. Shannon defined a measure of randomness which was the founda-
tion of information theory, a new scientific discipline [3]. Unlike other measures
that define the randomness of single sequences, entropy measures the random-
ness of a stochastic process, resp. that of a random distribution.

Definition 15 Let S be a sample space, D a probability distribution on S and X a
random variable with X ~ D. Then

H(X):=— Z:%P(X =s)log, P(X =)

is the Shannon entropy of X. The minimum entropy of X, Hyin(x), is defined as

Hyin(X) = min{—logy P(X =)}
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Information theory also defines a measure to describe the difference or distance

between two probability distributions: The relative entropy or Kullback-Leibler

distance D between two random variables X and Y (see [24]) is defined as

D(X,¥) = ¥ P(X = x)log, L5 =)
7 x€R ’ P(Y - x) ‘

For a given sample space S, we always have 0 < H(X) < log, |S|, where H(X)

reaches its maximum when X is uniformly distributed in § and its minimum

when P[X = s] = 1 for an element s € S.

It can be shown that Shannon entropy of a random variable X € S is a lower
bound for the average code word length for any code over S. On the other hand,
there always exists a code that maps every element s € § to a code word of
length [—log, P[X = s]], the so-called Shannon-Fano code. Therefore, for the
average codeword length L of any optimal code for S the following inequality
holds:

HX)<L<HX)+1 .

Note that for any random variable X, the entropy of X cannot be increased
by deterministic methods. In other words, for any function f, H(X) > H(f(X)).
Therefore, the entropy of a pseudorandom sequence will never surpass the
entropy of that sequence’s seed. Applying a function can, however, decrease the
entropy of a random variable, for example by mapping different values to the

same value.

While Kolmogorov complexity and its equivalent notions measure the ran-
domness of single strings, Shannon entropy measures the randomness of a
probability distribution on a set of elements. But since both notions are related
to the lengths of descriptions or codes of elements, there is an elegant connec-
tion between these two notions: If the probability function p(x) := P[X = x| is
computable, then

H(X) < Z;P[X =s|K(s) <H(X)+cp ,

where ¢, is a non-negative constant that only depends on the function p. This

means that Kolmogorov complexity gives us codeword lengths of a universal
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code that has almost optimal average length (up to a constant added term)
for any distribution on the set of all strings, as long as this distribution is
computable.

Note that while the Shannon entropy of a random variable X can’t be increased
by applying any function f to X, Kolmogorov complexity of a string x may well
be increased by applying a function f to it. As long as f is computable, fo p is
still computable and the inequality above still holds, but the constant cf., may

be greater than c),.

2.1.5 Quasi-random sequences

Algorithms following the Monte Carlo method draw many random samples
from a given sample space, perform determinstic computations on these samples
and then recombine the results. For example, an integral fol f(x)dx can be ap-
proximated by the sum %Z?:l f(xi), where x1,x2,...,xy is a sequence of random
numbers in the interval [0, 1] (see [25]). Since the result is largely based on the
set of samples, these methods depend on a good quality of the random number
generator that is used. On the other hand, due to the large number of samples
needed, the random number generator should be very fast. Quasi-Monte Carlo
algorithms avoid the usage of random numbers, and instead attempt to generate
numbers that are spread over their domain evenly. In the case of the integral
above, it can be shown that the difference between the integral and the approx-
imating sum can be bounded from above by V(f)D*(xi,...,x,), where V(f) is
the variation of f and D* is the star discrepancy [25]. Discrepany measures how

evenly a set of points in a k-dimensional cube is distributed.

Definition 16 Let P:= {x|,x,...,xy} C [0,1)%. Then the star discrepancy D* of P is
defined as

. i) < 5 0) d
DP)i= sup <|{xlemw]-vx, <x }‘—Hx“)) |

x€[0,1)4

where x\) denotes the j-th component of the vector x.
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[{ePVj ) <xy]
Note that =

when using the Monte Carlo method: For each sample, we check if the sample

corresponds to an approximation of the volume of x

lies within x. At the end, we compute the fraction of these samples among the
set of all samples. The expected value of our computation is then equal to the
volume of x. L.e. star discrepancy measures the maximum difference between

the result of this Monte Carlo computation and the correct result.

An example of a sequence with low star discrepancy is the van der Corput

sequence.

Definition 17 Let ny, ... ,ng be the b-ary representation of a number n € N, such that
n=Yk omb', with 0 < n; < b for all i. We then define

Op(n) = i nib™"
j=0

The van der Corput sequence in base b is defined as

Xn - q)b(n) :

Intuitively, ¢, takes the digits of a number n in b-ary representation, reverses
their order and places them behind a decimal point. For example, ¢2(11001;) =
0.10011,. A van der Corput sequence X in base b has a star discrepancy of

Di(X)=0 (1"1%,"’).

When tupels of higher dimension are needed, the van der Corput sequences can

be generalized to sequences of k-tuples:

Definition 18 A Halton sequence in the bases by, . .., by is defined as

Xn = <¢b1 (n>7"'7¢bk(n)) .

A Halton sequence is a composition of multiple van der Corput sequences with
different bases. Some plots of two-dimensional Halton sequences of bases 2
and 3 can be seen in Figure 2.3. Compare with Figure 2.5, where uniformly

distributed numbers were used.
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Figure 2.3: Plots of two-dimensional Halton sequences of lengths 100, 500, 1000
and 2000.

2.2 Pseudorandom Generators

A pseudorandom number generator (short PRNG) is an algorithm that outputs
a new number each time it is called. Its output depends on an internal state
that is changed in a deterministic way each time a number is output. A PRNG
is initialized with the help of a number or sequence called the seed, which is
usually chosen at random (when reproducing a result however, we might as
well reuse an experiment’s seed). We will call the output Xo,X1,Xa, ... of a PRNG
a pseudorandom sequence. A pseudorandom sequence, although deterministically
created, should look like a random sequence of numbers. The most common
way to formalize the notion of “looking random” is via the use of statistical tests
(see Section 2.1.2).

Two of the most desirable properties for pseudorandom numbers are uniformity
(i.e. every single pseudorandom number should be distributed evenly among
all possible values) and k-wise independence (see definition below). For these
measures, we assume that the seed of the pseudorandom generator was chosen

under the uniform distribution from the set of all possible seeds.
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Definition 19 A sequence of random numbers X;,Xa, ... is k-wise independent if
any subsequence X, , ..., X;, of length k is independent, i.e. for any xi, ..., xi

k
P[Xl :xlv"'aXik :Xk] = HP[XII :x]] :
j=1

For k =2 we call such a sequence pairwise independent.

Linear congruential generators

A linear congruential generator with parameters a and b, modulus m and seed
Xo €{0,...,m— 1} is defined by the recursion

Xy+1 =aX,+bmod m .

For further reference, see [9]. It can be shown that the parameters a and b can be
shown in a way that the linear congruential generator has a period length of m.
This property alone, however, does not guarantee that the resulting sequence
looks random. For example, the parameters a = b = 1 lead to a period length of
m, but not to a sequence that looks random.

Generalisations include the polynomial congruential generator, which uses a re-
cursion of the form X,, = Zf?:() a;x* mod m, or the inversive congruential generator,

: . A
using a recursion of the form X, = (X5 jaix’) " mod m.

Linear feedback shift registers

A linear feedback shift register is another kind congruential generator. Its binary
output sequence is created by the recursion
k
Xi = @ajxi_j mod 2 .

Jj=1

Such a generator can be implemented in hardware, essentially using a shift

register where an internal state (x;_¢,...,x;—1) is stored and updated.
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2 Different notions of (pseudo) randomness

Many stream ciphers used in cryptography (e.g. Trivium) are based on linear
teedback shift registers. They add non-linear operations like AND and OR to
make their cryptanalysis very difficult.

Explicit polynomial generators

An explicit polynomial generator of degree k with parameters ag,ay,...,a; and
prime m is defined by
X, = iaini mod m .
i=0

An important property of explicit polynomial generators is k-wise independence.
Within one period, any k output numbers of this generator are independent
if the parameters ay, ..., a; are chosen at random. The period length of such a
generator is at most m, since p(x) =,, p(x+m) for any polynomial p. The use of
this kind of generator with the QuickSort algorithm is analyzed in [12], where it
is shown that 5-wise independent numbers lead to a worst case running time of
O(nlogn).

If only pairwise independence is needed, any class of universal hash functions

can be used to create a sequence of pairwise independent numbers.

Lagged fibonacci generators

A lagged fibonacci generator produces a sequence similar to the fibonacci se-
quence, but it usually adds less recent numbers of the output sequence to
generate a new number. A lagged fibonacci generator with parameters i; and i

and operation @ produces the sequence defined by
X, :Xn—il @Xn—iz mod m .

Typically @ is implemented as addition, subtraction, multiplication or bitwise
XOR. The seed consists of the first max (i, i2) numbers of the sequence. Choosing
a seed for this kind of generator is non-trivial and choosing it at random may
lead to output of rather low quality. Generators of this type were used in vari-

ous programs (like the mathematical software Matlab [26]), but are nowadays

34



2.2 Pseudorandom Generators

replaced by the Mersenne Twister. Bauke and Mertens showed in [27] that such

a generator can deviate from producing the same amount of 0 and 1 bits.

Mersenne Twister

The Mersenne Twister [28] is a relatively recent pseudorandom number genera-
tor with an extremely huge period length of 2!°°37 — 1 in the most commonly
used version. It is based on a combination of linear recurrences and is currently
used as the standard source of random numbers in many mathematical software
projects like R [29] or Maple [30]. Any 623 subsequent numbers of its output are
independent and uniformly distributed.

Isaac

Isaac (Indirection, Shift, Accumulate, Add, and Count) uses an internal state of
256 bytes and various operations to transform that internal state: Indirection
(using a part of the internal state as an address inside the internal state), Shift
(rotating parts of the internal state), Accumulate (accumulating a value over
various iterations of the algorithm), Add and Count. It has a minimum cycle

240 and an expected cycle length of 282, It was designed to be cryp-

length of
tographically secure, and as of today, there are no efficient distinguishers or

predictors known.

Cryptographic stream ciphers

Cryptographic stream ciphers are used for symmetric cryptographic protocols
where both partners need the same key. Instead of exchanging a long binary
sequence, only the seed of a stream cipher is exchanged, which is then used
to create a long bit sequence. Trivium, for example, is a stream cipher that
was constructed to be cryptographically secure and easy to implement both

in hardware as in software [31]. It is based on three feedback shift registers of
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lengths 93,84 and 111. In each step, its internal state changes as follows:

(ay,az,...,a93) — (ce6Dci11DciogAciioDasy,ai,...,a)
(b1,ba,...,b34) — (ase®ags®agr Nagy @ big,by,...,bs3)

(c1,62,...,¢111) « (beo @ bsga ®bgyr ANbg3 Bcgy,c,...,Cl110) -

The output of each step is age @ a9z ® beg B bga ® ces @ c111. As of July 2009, no
attack on Trivium is known that is faster than a brute-force attack.

Physical random sources

Instead of using a small seed to produce many numbers, one could also think of
ways to rapidly “capture” randomness from physical processes. A few physical

sources have already been used to obtain random numbers:

e Radio frequencies where no signal is broadcast contains only atmospheric
noise, which is mainly caused by lightnings all over the world. This noise
can be measured with the help of a radio antenna and transformed into a

sequence of random numbers.

e When a beam of photons is sent through a so-called beam splitter, every
photon has two possible paths to leave that beam splitter. By using fast
detectors that can detect single photons, this method can produce random
bits at a rate of about 1 Mbit/s [32, 33].

Photon emitter Beam splitter
Photon detector 1
na
Photon detector 0

Figure 2.4: Creating random bits with a beam splitter. Photons are emitted by
the photon emitter. With probability 0.5 they pass the beam splitter
and are reported by detector 0. With probability 0.5 they are reflected
by the beam splitter and are then reported by detector 1.
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Archived bits

Instead of using a given pseudorandom generator, one can instead use random
bits that are available on CD, DVD or the internet. This idea isn’t new, however:
Back in 1927, a book with the title “Random sampling numbers” was published,
containing mostly tables of random numbers [34].

o8

Figure 2.5: Some sets of random two-dimensional points. Set sizes are 100, 500,
1000 and 2000. The numbers are from Marsaglia’s Diehard sequence
[35].

Marsaglia’s Diehard suite [35] is one of these sources available on the internet.
It is a set of statistical tests that was published on CDROM in 1995, along
with several files of bit sequences that pass these tests. These sequences were
obtained by the bitwise XOR of several sequences, some of them obtained from
physical devices, some of them from other sources like pseudorandom number
generators or even an audio CD. This approach is based on the following fact:
Let X,Y € {0,1} be two independent random variables. Then X @Y is uniformly
distributed if at least one of the two variables is uniformly distributed. This way,
the bitwise XOR of several sequences is uniformly distributed among the set
of all bit sequences of the same length, if at least one of those sequences was
uniformly distributed. Thus, one could hope to obtain a good pseudorandom
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2 Different notions of (pseudo) randomness

sequence when forming the bitwise XOR of several sequences that are supposed
to behave like true random numbers. For some plots of numbers from this

source, see Figure 2.5.

Another source of random bits is the web page random.org [36]. It measures
atmospheric noise and converts it into random bits. Right now, everybody can

download a limited amount of random bits from that source for free.

The 6-random source

A general model of a random bit source is the 8-random-source, which is some-
times also referred to as slightly random source. It models a source of random bits
that are neither independent nor uniformly distributed. Since the bias of each bit
is a function of the previous output, it can be applied as an adversary argument

and is particularly suited for worst-case analysis. See also [37, 38, 39, 14, 40].

Definition 20 (See [39]) A d-random-source is a random bit generator. Its bias may
depend on the bits it has previously output, but the probability to output “1” must
be in the range [8,1 — 8|. Therefore, it has an internal state w € {0,1}*, denoting its
previously output bits.

To obtain a random number X in the range 1, ... n from the d-random-source, we output

[logn| bits and interpret them as a number Y. Then, we set X := (Y mod n) + 1.

Note that in contrast to a pseudorandom generator, the §-random source’s
output doesn’t have a limited amount of entropy: While the entropy of any
pseudorandom generator is bounded by the entropy of the seed (i.e. usually
the length of the seed), the entropy of the d-random source’s output is at least
H(3,1— 0) per bit, where H is the entropy function. This stems from the fact that
the conditional entropy of each new bit is at least H(3,1 — 8), no matter what

the previous output looks like.
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2.3 Influence on Algorithms

Pseudorandom numbers are used in various algorithms. For some algorithms,
theoretical and empirical results are known about the influence of different

pseudorandom generators on the results of these algorithms.

In [15, 16], a simple evolutionary algorithm was run with various pseudoran-
dom generators, but no direct connection between the “quality” of the random
generator and the quality of the solution was found. This indicates that the
given evolutionary algorithm does not depend on a very high quality of the
random numbers involved, resp. that it is hard to find a good measure of quality.
In Chapter 5, we will examine different aspects for describing the quality of the

randomness and its implications on the solution of the heuristics.

Simulated Annealing, another search heuristic, is severely influenced by the
period length of the pseudorandom generator. In Chapter 5, we will examine
the influence of random sources with limited randomness on the solution for
the Traveling Salesman problem, among others, solved with the Simulated

Annealing heuristic. Part of this work has been published in [41].

It is a well-known fact that Shannon’s entropy is a lower bound for any sorting
method that is based on pairwise comparisons. The entropy of a uniform distri-
bution on the set of all permutations of n elements is equal to log, (n!) = ®(nlogn).
For the randomized version of the QuickSort algorithm, some additional results
have been achieved. Karloff et al. [12] showed that QuickSort’s worst case com-
plexity can go up to Q(n?) when sorting n numbers with the help of a linear
congruential generator. They also showed that QuickSort shows an average
case running time of O(nlogn) when using an explicit polynomial generator
of degree 4. Their main argument uses the fact that this generator produces
5-wise independent numbers. B. List et al. [14, 40] showed how QuickSort’s
running time is gradually increased to Q(n?) when the probability of “bad”

pivot elements (i.e. very small or large elements) increases.

Chor and Golreich have shown that k-wise independent random numbers are
a useful tool for sampling [42]. With this method, only the random bits for a
seed are needed and the chance of hitting any subset of the sample space is still
good. This can be used to reduce the error probability of RP algorithms with
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relatively few bits. Usually, such an algorithm’s error probability can be reduced
by running it multiple times, each time using new random numbers. The use
of k-wise independent bits allows the same technique to some lesser degree:
If the algorithm needs r random bits, these r bits can be used as a seed for a
pseudorandom number generator that creates k-wise independent bits for some
k. The algorithm can then be run multiple times, using bits from the pseudo
random generator. Repeating the algorithm [/ times, the error probability can
be reduced to O(1/I), while still only r bits were used. This approach can also
be used for BPP algorithms. Note that using true random bits would reduce
the error probability exponentially in /, at the cost of a total of /r random bits.

Further uses of pairwise independent numbers can be found in an overview of
M. Luby and A. Wigderson [43].

Bach [13] showed that linear congruential generators with a prime modulus
are a sufficient source of randomness for computing square roots modulo a
prime p (with two probabilistic algorithms from Lehmer [44] and Shanks [45]),
for computing g-th roots modulo a prime p (with a probabilistic algorithm by
Adleman, Manders and Miller [46]), and for testing primality (with the Miller
test [47]). For each of these algorithms, the error probability was shown to not
increase when a linear congruential generator was used instead of independent,
uniformly distributed random numbers.

Hoos et. al. [17] empirically examined the influence of some pseudorandom
generators on the result of probabilistic algorithms for the satisfiability problem.
They observed that the quality of the random numbers didn’t influence the
output quality of these algorithms. However, completely derandomizing the
algorithms caused them to fail for a few input instances and made parallelization
difficult.

Azar et. al. [48] show that random walks can be influenced by a biased source
of randomness. They consider random walks on d-regular graphs (i.e. graphs
where every node has degree d) and a random source that outputs values
1,2,...,d. At each step, with probability 1 — ¢, that number is drawn randomly
under a uniform distribution. With probability €, a deterministic process may
decide which number is output. They show that the limit probability of any
subset S C V of the graph’s vertices can be raised from |S|/|V| to (|S|/|[V|)! <.
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This result also shows that a biased random source could decrease a Markov

chain’s probability to converge to a good solution.

The rho algorithm for factoring numbers is based on the birthday paradox, a sta-
tistical fact about independent random numbers. In and of itself, this approach
would not be able to beat the running time of the naive approach. The rho
algortihm however exploits the fact that it uses a pseudorandom generator. It
uses the regularity of that pseudorandom generator to save many computations

and thus achieves a much better running time.
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3 Algorithms and non-perfect
randomness

In this chapter, we will investigate probabilistic algorithms and prove some
implications that arise from the usage of non-perfect randomness. In Section 3.1
we will start with an equality test for polynomials (or multi-sets) and show that
the most common type of pseudorandom generator is not suited to decrease
the algorithm’s running time via repetitions. Section 3.2 will consider Karger’s
probabilistic algorithm for calculating the minimum cut of a graph. Here we
will show how the algorithm can be adapted to a source that is biased towards
leading to malevolent random choices, with a slight increase in running time.
In Section 3.3, we will show how a biased random source increases the error
probability of Schéning’s random walk algorithm for the Boolean Satisfiability
Problem. This algorithm is influenced by the choice of the initial assignment to
the input formula as well as by the random choices that are made during the

random walk.

3.1 Testing the equality of polynomials

Testing the equality of polynomials is a nice example that shows the power
of randomness — the algorithm doesn’t do much more than draw a random
number and evaluate and compare two polynomials at that value, then repeat
that process several times. Still, it’s among the fastest known methods for that
problem. With pseudorandom numbers, however, the algorithm might work
much worse. We will give a short introduction to the basic algorithms for testing
the equality of polynomials and show how the use of pseudorandom numbers

can lead to significantly worse results than the use of truly random numbers.
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3 Algorithms and non-perfect randomness

Consider the task of testing if two polynomials

n n

a(x) = H(x—ai) and b(x)=|[|(x—b))
i=0 i=0
are identical. Note that this task is equivalent to testing the equality of the
two multisets A = {ap,...,a,} and B = {by,...,b,}. A standard deterministic
approach could be the following: Sort both sets of coefficients (a;) and (b;); then
check if the sorted sequences are equal. This approach has an expected running
time of O(nlogn).

There exists a randomized approach that is faster (see [49, 18]), with a running
time in O(n): Evaluate the two polynomials at a random position x( (see Alg. 1)
and compare the two values.

Input: Two polynomials a(x) and b(x) of degree n
Output: “equal” if a = b; “not equal” if a # b.

// m should be a prime with m > n and Vi : m > a;,b;
Choose x¢ uniformly from {0,...,m—1};

if a(xp) # b(xo) (modm) then
return “not equal”;

else
return “equal”;

end

Algorithm 1: Probabilistic equality test

If a and b are identical, the algorithm never errs. If a and b are not equal, there
is a small probability that the algorithm gives the wrong result: If xg is a root of
the polynomial ¢(x) := a(x) — b(x) mod m, the algorithm errs. Since c is of degree
at most n, there are at most n different roots and thus the probability of error
is at most n/m. Note that this method even works if one of the polynomials is

given in the form a(x) = YL, aix'.

To avoid computing with a large modulus m, we could use a smaller m but

repeat the algorithm several times (see Alg. 2).
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Input: Two polynomials a(x) and b(x) of degree n
Output: “equal” if a = b; “not equal” if a # b.
// Now, m should be a prime with m >2n and Vi:m > a;,b;

fori=1totdo
Choose x; uniformly from {0,...,m—1};

if a(x;) # b(x;) (modm) then return “not equal”
end
return “equal”’;

Algorithm 2: Slightly improved version of Alg. 1

In Algorithm 2, each of the ¢ iterations has error probability at most n/m. Using
independently drawn x;, we achieve an error probability of at most (rn/m)’. Since
n/m < 3, this results in an error probability of at most 2. We will now show
that using a certain type of pseudorandom number generator, we might not be
able to decrease the error probability exponentially. We will even show that re-
peating the evaluation of the polynomials with the help of a linear congruential
generator only results in a negligible decrease of the error probability.

Theorem 3.1 Let G be a pseudorandom number generator that has the following

properties:
1. G uses a recurrence of the form
Xi—H = f(X,) mod m
to produce its output X1,Xa, . . ..
2. G has period length m for every possible seed.

Then if G is used as the source of randomness, Algorithm 2 has error probability

n—t+1
m

Perr =

for some worst case input a(x) and b(x).

Proof. Fix one seed X; given to G. Let X1,X;, ..., X, be the first n numbers output
by G. Let ¢ :=[]"_, (x — X;) and choose two polynomials a(x) and b(x) such that
c(x) = a(x) — b(x). Note that @ and b are different (w.l.o.g. we assume that at
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least one of the pseudorandom numbers is non-zero). Now, with seed X;, Alg. 2
only evaluates a(x) and b(x) at positions X;, ..., Xj,—1, which are all roots of c if
1 <i<n—t+1.Thus, the algorithm gives a wrong output for n —¢ + 1 out of m
seeds. When the seed is chosen uniformly from {0,...,m — 1}, this results in an
error probability of (n —t+1)/m. |

Note that our theorem is also applicable to generators that use a recurrence of
the form Y;; = f(Y;) for their internal state Y, mapping that internal state to the
output X with another function, i.e. X; = g(¥;).

Also note that our proof relies on the fact that different seeds for G lead to
similar output sequences: The suffix of one pseudorandom sequence can be
created by simply using a different seed. Linear congruential generators and
linear feedback shift registers show this property, for example. Different kinds of
pseudorandom generators where two sequences generated from different seeds
do not share long common subsequences might still be useful for decreasing
the error probability of Alg. 2.

At first glance, the explicit polynomial generator (see [50]; for a definition, see
Section 2.2) looks like a good candidate to circumvent this situation, due to the
independence of its output:

Lemma 3.1 When using a polynomial generator with degree k =t and modulus m = p
for a prime p, Alg. 2 has error probability at most (n/m)’.

Proof. The lemma follows directly from the properties of the polynomial gener-

ator:

1. For each i, X; is uniformly distributed in {0,...,m —1}.

2. The output is k — wise independent, i.e. any subset of {Xy,X,...} of size k
is independent. In other words, the conditional distribution of an output

position X;, is still uniform when X;,,...,X; , are known.

k-1

That way, the probability that X; is a root of the difference polynomial is at most
n/m. Since X1, ...,X; are independent, the probability that they are all roots of

the difference polynomial is not greater than (n/m)". [
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Note that this lemma still doesn’t give us an advantage in practice: The size
of the seed is so large that we could use it directly as our random sequence.
An explicit polynomial generator with degree k smaller than t might at least

improve the bound of Theorem 3.1.

Lemma 3.2 When using a polynomial generator with parameters k <t and m = p,
Algorithm 2 has error probability at least (n —t + 1) /m* and at most (n/m)~.

Proof. Our proof for the lower bound is similar to that of Theorem 3.1. Fix a
given seed ay, . ..,a;. The output of the polynomial generator is the sequence
£(0), £(1),£(2),... with f(x) = YX_,a;x'. Now construct an input a(x),b(x) where
a(x) — b(x) has roots f(0),f(1),...,f(n—1). That way, Alg. 2 errs because it
evaluates the polynomials at the first  roots of a — b. We note that Alg. 2 also errs
when it gets f(i), f(i+1),..., f(i+k— 1) as random numbers, with 0 <i <n—t.
This means that the algorithm also errs when the seed consists of the coefficients
of the polynomial f(x+i) . It follows that there are at least n — 7 + 1 seeds that

lead to a wrong answer for the input a(x),b(x).

For the upper bound we use the same properties as in Lemma 3.1: The first k
pseudorandom numbers are uniformly distributed and independent, so each
number has only a chance of at most n/m to be a root of a — b. Since ¢t > m, this
leads to a total error probability of at most (n/m)k. |

So while the error probability of Algorithm 2 decreases exponentially for the first
k repetitions (where & is the degree of the polynomial generator), any further
repetitions might still decrease the error probability only linearly in the number
of additional repetitions. One solution for this problem might be pseudorandom
generators where different seeds lead to different output sequences that are not
shifted versions of each other. To this end, a special form of hashing might lead
to a solution. Note however, that even universal hash classes, a common family
of hash functions that is considered useful in the standard context of hashing,

only leads to pairwise independent numbers.

47



3 Algorithms and non-perfect randomness

3.2 Karger’s algorithm for the minimum cut

Karger’s algorithm (see [51]) for computing the minimum cut of a graph is
another good example where randomness is used in a simple yet elegant way

to solve a combinatoric problem.

Definition 21 A cut of a connected (multi)-graph G = (V,E) is a set E' C E such that
the graph G = (V,E\ E') is unconnected. A minimum cut of G is a cut of minimal

size.

In order to find a minimum cut, Karger’s algorithm uses the fact that, with
rather high probability, choosing an edge at random will select an edge that is
not part of the minimum cut. The two vertices that are connected by the chosen
edge are then collapsed into one vertex. If the edge was not part of the minimum
cut, collapsing the two vertices preserves the minimum cut, so the algorithm
can repeat this process until only two vertices are left. Pseudocode is shown in
Algorithm 3.

Input: (Multi-)Graph G = (V,E).
Output: Set of all edges belonging to the minimum cut of G.

while G has more than 2 nodes do
Choose an edge ¢ = {u,v} € E at random;
Delete all edges between u and v from E;
Combine u and v into one vertex;

end

Output E;

Algorithm 3: RandomizedMinCut

Let n:= |V|. The algorithm needs to run the while loop n — 2 times. During the

_2
n—i+1”’

under the condition that the minimum cut was still present at the beginning

i-th run, a subset of the minimum cut is removed with probability at most

of that run. The minimum cut is output at the end if it hasn’t been eliminated
during the run of the algorithm. This leads to a success probability of Q(1/n?).
To make the error probability sufficiently small, the algorithm is run O(n?) times.
Since each run has a complexity of O(n?) steps, the overall running time is
o(n*).
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Input: (Multi-)Graph G = (V,E).
Output: Set of all edges belonging to the minimum cut of G.

while G has more than n/~/2 nodes do
Choose an edge ¢ = {u,v} € E at random;
Delete all edges between u and v from E;
Combine u and v into one vertex;

end

E; +— RecursiveMinCut(G);

E> «— RecursiveMinCut(G);

if |E|| < |E2| then
Output Ey;

else
Output Ey;

end

Algorithm 4: RecursiveMinCut, the improved version of Algorithm 3.

An improved version of the algorithm uses the fact that the probability of
eliminating the minimum cut is very low at the beginning, but rises with each
step of the algorithm: While the number of edges belonging to the minimum cut
remains constant, the total number of edges in the graph continually decreases.
Thus, the improved version runs until only a fraction of 1//2 of the original
number of nodes is left. Then, the algorithm is run recursively twice on the
remaining graph. The best of the two solutions is returned. The fraction 1/v/2
is chosen because when that many vertices are left, the probability that the
minimum cut survived so far is still about 1/2. Thus for a graph with n vertices,

the success probability can be formulated recursively as

=1 (1= (1= (1v3))")

1

which leads to a success probability of & (1 oan

). A single run of the algorithm
has a running time of O(n?logn), so the total running time, with O(logn) repeti-

tions, is O(n”log? n). For more details, we refer the reader to [18].

The run-time analysis of this algorithm assumes the availability of uniformly
distributed, independent random numbers that can be utilized to choose the
edges. We now consider a source of randomness that is biased towards choosing

an edge belonging to the minimum cut. Let E. be the set of the edges in the
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minimum cut. (Note that for simplicity’s sake, we will assume that there is only
one unique minimum cut in the graph, calling it the minimum cut.) Then we
will assume that the probability that our random source chooses any edge in E,
is d times as high as the probability that it chooses any edge in E \ E, for some

constant d > 1. In other words,

ifecE,
ifecEy .

d
P(e) = { |E|+(d]—1)\Ec|

|E[+(d—1)|Ec]

Since the set of edges of the graph shrinks during the run of the algorithm,
we will formally have to deal with several different probability distributions.
Therefore, we define the notion of a probability set with bias:

Definition 22 Let G = (V,E) be a multigraph and E. C E a multiset of edges. A
probability set for G with bias d towards E. is a set of probability distributions
{Ps | S C E} such that Ps is a probability distribution on S with

s ife € Ee
Ps(e):{ S s e

1 .
sr@-nEns fe€S\Ee -

Note that the probability distributions in such a set have relatively high entropy,
even for rather large values of d. For |S| = n and |E. N S| =k, the entropy of Ps

amounts to

H(Ps)

- _kn-l—(j—l)klogn-l-(;—l)k_(n_k)n-l—(dl—l)klogn-l—(dl—l)k
— kB O gt (@ 1R
= log(n+(d—1)k)—%

v

log(n+ (d — 1)k) —logd
> logn—1logd .

For example, with a bias of 2, the probability that any individual edge in E. is
chosen is twice as high as the probability that any individual edge not in E. is
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chosen. This results in a distribution with entropy at least (logn) — 1, where n is
the total number of edges.

We will first analyze the success probability of the simpler version, Alg. 3. Let
n = |V| be the number of vertices in G. Assume that |E.| =k, i.e. the size of
the minimum cut is k. At the beginning of the i-th iteration of the while loop,

each node has degree at least k and there are n+ 1 —i nodes left, so the graph
(n+1-i)k

has at least ~——— edges. Drawing an edge from E with our biased random
source, we draw an edge of the minimum cut with probability Wj((ll)]{.
! ,

The probability that the minimum cut survives all n — 2 steps is then

- kd
H( %Hd—wk)

- r.l_z<1— (n+1_,-)2i2(d—1))

S 0~
N =

n—1—i
~en—1—i+4+2d

1
- ,:lz+2d <an)

where we use Lemma 1.1. For d ~ 1, this error probability is not far from the

I
S~
=}, L

®(n~?) that we get when using uniformly distributed random numbers. But
note that if the algorithm is repeated only cn® times, the error probability is then
approximately

2/n2d

1 C}’l2 1 }’l C}’l 224
~ . _ - o O
perr~<1 Zd) —(1 n2d> ~e ,

a term that converges to 1 for n — oo, as soon as d > 1.

We now analyze the improved version of the algorithm. Running the algorithm
for n— \% steps usually leads to an error probability of 1. In the case of our

biased random source, however, we get a success probability of

”‘I’L/[ﬁ n—i—1 "1:12 i |
1 n—i—142d /A i+2d 2d
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3 Algorithms and non-perfect randomness

(see the notes after Lemma 1.1). In order to raise this success probability up to 1,
we have to decrease the number of steps: With a bias of d, we should run the
algorithm only until n/ ¥/n vertices remain. That way, the error probability is

2d
i C O ’ﬁ i ( 1 )2”’ 1
?: - ~ 77 = - .
Hon—iiv2d - b iv2d TR 2

Now the running time 7' (n) can be described by the recursion
T(n)=2T(n/ ¥/2)+0(n?) .
By means of the Master Theorem (Theorem 1.1), we can compute the solution
T(n)=0n*) .
With our modification, a single run has a success probability of at least 371:o.,

which we will show by induction. For the success probability p(n) on a graph
with n vertices, the following recursion holds:

po) = 5 (1= (1-p0/ ¥2))°)
= 2 (20(n/ ¥2)~ pln) ¥27)

2
. 1 B 1/2 :
_n_ n
g (o) - (2dton (45))
_ 2dlogn—1.5
(2dlogn—1)*
1
> .
— 2dlogn

The results of our calculations are summed up in the following theorem:

Theorem 3.2 Given a graph G = (V,E) with a minimum cut E,.. Assume that the
edges of E are randomly selected via a probability set for G with bias d towards E, (see
Definition 22). Then there is a modification of Algorithm 3 that finds the minimum cut
of any graph G in running time O(n**2?) if that probability set is used to randomly
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3.3 Schoning’s random walk algorithm for the Boolean Satisfiability Problem

select the edges. There is a modification of Algorithm 4 that finds the minimum cut in
O(n*¥logn) steps when using that probability set.

Proof. See the calculations above. [

3.3 Schoning’s random walk algorithm for the Boolean

Satisfiability Problem

The Boolean Satisfiability Problem (short: SAT) is a well-known NP-complete
decision problem that is sometimes referred to as the “drosophila of complex-
ity theory” because of its universal character — many problems can be easily
expressed as a Boolean formula. It is one of the first problems that have been
shown to be NP-complete (cf. [52]).

The input, a Boolean formula, is based on a number of variables xi,...,x,. A
literal is a variable x; or the negation of a variable —x;. In the most common
formulation of SAT, the formula has to be given in conjunctive normal form.
In this case, the formula consists of several clauses C;,C;,...,C,, where each
clause is a set of literals. An assignment a = (a1,a2,...,a,) € {0,1}" provides
a value for each literal. g; is the value assigned to x;, while 1 —g; is assigned
to a negative literal —x;. A clause C evaluates to true under the assignment
a if a assigns 1 to at least one of the literals in C. F' evaluates to 1 under a if
all clauses of F are evaluated to 1. In that case, we also say that a satisfies F.
If such an a exists, F is satisfiable. Otherwise, F is unsatisfiable. The Boolean
Satisfiability Problem consists of all satisfiable formulas. We can also formulate
it as a decision problem: Given a Boolean formula F, is F satisfiable? If the size
of the clauses of F is limited to k, the problem is called k-SAT. For k > 3, k-SAT
is NP-complete.

Example. Define two formulas based on the variables x;,x2,x3 and x4:

Fl = {{xl,x2,—|x3},{—\xl,—\x3,X4},{xl,—\x2,—\x4},{—\xl,XQ,X3}},

B o= {{x,xf {xab, {—x,xs ), {x, a2, s b
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Both Fj and F are 3-SAT formulas. Fj is satisfiable, with a = (1,1,0,1) being a
satisfying assignment. F; is not satisfiable.

A SAT algorithm with one of the best known theoretically proven running times,
Schoning’s random walk algorithm [53], is shown in Alg. 5. Starting with a
random assignment g, as long as that assignment does not satisfy the input
formula F, a is modified, one bit at a time, until a satisfying assignment is
found or a certain number of modifications has been performed. If no satisfying
assignment is found, the formula is assumed to be unsatisfiable. For each of the
modifications, only those variables are considered that are found in a so-called
null clause, a clause that is not satisfied by a. This way, each modification has
the chance to flip one value of the current assignment a to the correct position.

Input: A Boolean Formula F with n variables.
Output: “yes” if F is satisfiable; “no” if it’s not.
a « random assignment in {0, 1}";

for i=1 to 3n do

if a satisfies F then
return “satisfiable”;

end

Choose a clause C that is not satisfied by a;

Randomly choose a variable in C and invert its value in g;
end
return “not satisfiable”;

Algorithm 5: Schoning’s random walk algorithm for the Boolean Satisfiability
Problem.

If the input formula F is not satisfiable, the algorithm always gives the correct
output. However, if F is satisfiable, the algorithm may fail to find a satisfy-
ing assignment and give an incorrect answer. This error probability can be
reduced by running the algorithm several times. If at least one of these runs
tinds a satisfying assignment, the formula can be considered satisfiable. When
using independent, uniformly distributed random numbers for the choice of
the variable to be flipped, this algorithm has an error probability of at most
((1+ £5)/2)", where k is the maximal size of the clauses in F. For 3-SAT, this
results in an error probability of (2)”. Repeating the algorithm 20- ()" times
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3.3 Schoning’s random walk algorithm for the Boolean Satisfiability Problem

reduces the probability to not find a satisfying assignment to a negligibly small

number.

We will now show how a bias in the random generator can increase the error
probability for the 3-SAT case. Assume that the formula F has only one satisfying
assignment and that F is a worst case formula in the sense that the satisfying
assignment assigns the value 1 to exactly one literal in each clause of F. We
further assume that our random source has a bias towards pointing to the wrong
variable, i.e. it only gives the correct variable with probability  — & instead of 1.
That way, each “flip” of a bit in the assignment reduces the Hamming distance
to the solution by 1 with probability § — §, and increases it by 1 with probability
2/3 —98. Note that this is a slight generalization of the d-random source described
in Section 2.2. Now assume that o/ is the probability that the algorithm finds
the satisfying assignment if the initial assighment a has j incorrect bits. This

leads to the recursion

and thus 5 |
_ [ = 2 -
0_-<3—+6)(x a%—(3 8)

One solution to this equation is a0 = 1 (which is not the solution we are looking
for), and dividing by 1 — a leads to 0 = (2+38)a — (1 —398) or

1-38

“=213

Since there are (’;) possible start assignments with j incorrect bits, the total error

probability then averages to
n n 1-38\ " n
27" "ol = Ita = 2755 — 3
N\ 2 2 4+68)

In addition to the biased source for selecting a variable to flip, the random source

used to find an initial assignment may also be biased. Assume that for each

variable x;, its initial assignment g; is set to the incorrect value with probability
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3 Algorithms and non-perfect randomness

1 +&. Then the average error probability sums up to

B () - (e (t9)

Substituting o, we get an error probability of

3—2e(14+63)\"
4460 ’

n . .
compared to (3)" when using non-biased random numbers.

Note that we used a few simplifications in order to make the calculation easier:
The random process we considered did not stop after 3n steps, and we did
not consider the “reflecting end” of the random process, i.e. the fact that the
assignment a can never have more than n incorrect bits. We will take these into
account in the formal proof below, which will also cover the more general case
of a k-SAT formula.

Theorem 3.3 Assume that the random walk algorithm for SAT (Algorithm 5) always
chooses the first null-clause found in the formula. Let §' = (S},55,5%,...) be a sequence
of biased random variables in {0, 1} with probability P(S;=0) = 1 +¢ for all i > 1.
Let S = (81,52,83,...) be a sequence of biased random variables in {1,...,k} with
probabilities P(S; = 1) = 1 — 8 and P(S; € {2,3}) = 52 + 8 for all i > 1. Then, the
algorithm has a worst case error probability of

) k—2e(k—2+28k)\"
pin 2k — 2428k

for a polynomial p if it uses S’ for selecting the initial assignment and S for the choice of
the variable that is flipped.

Proof. The proof for the lower bound of the error probability with a non-biased
random source can be found in [53]. We will follow that proof, adapting it to

our case where necessary.
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3.3 Schoning’s random walk algorithm for the Boolean Satisfiability Problem

Assume that the input consists of a formula F' that has only one satisfying
assignment ag, and that ag satisfies exactly one literal of each of the clauses of F.

We will show below how such a formula can be approximated.

During each iteration of the algorithm, the Hamming distance between the
current assignment a and ag either decreases by one (if the correct literal is
guessed) or increases by one (if a wrong literal is guessed), with the exception
that if a is the complement of ao, the distance can only decrease by 1 and not
increase. This can be modeled by a Markov chain M, with states 0, 1,...,n, where
the number of each state corresponds to the number of bits in a that do not match
the solution ag. Let X; describe the Hamming distance after the 7-th iteration of

the algorithm. Then we have transition probabilities

: : 1
P(X[+1:]—1|Xt:]) = z—s and
k—1
P(Xl+1:]+1|Xt:]) == T+8for1§]<n,

with the special cases P(X;+1 =0|X; =0) =l and P(X;+1 =n—1|X; =n) = 1. We
will be interested in the probabilites P(3r <3n:X; = 0|Xp = j) for all j <n.

To make our analysis simpler, we will remove the reflecting end of the Markov
chain and consider a new chain M, with infinitely many states 0,1,.... Let ¥; be
the state of this new Markov chain after step ¢, with transition probabilities

1

P(Y1=j—1=j) = z=8 and

P =j+lh=)) = “Ladforj>1,
with only one special case P(Y;+; = 0|X; = 0) = 1. For ¥y = j, the Markov chain
reaches the state 0 if it moves j times into the direction of decreasing state
number, plus one additional time for each step into the other direction. IL.e.,
state 0 can be reached if i state-increasing and i + j state-decreasing steps are
performed. Let ¢(i, j) be the probability that ¥>;; =0 and Y > 0 for k < 2i+

(i.e. the Markov chain hits the state O for the first time in step 2i + j).

Note that for M; the probability of reaching state 0 is actually higher than for
M,. However, both probabilities differ by at most a factor polynomial in . This
can be seen as follows:

57



3 Algorithms and non-perfect randomness

Figure 3.1: Two Markov chains describing the random process

Let r»(j,m) be the probability that Markov chain M, reaches the state 0 within
m steps, starting in state j. Analogously, let r|(j,m) be the probability that M,
reaches the state 0 within m steps, also starting in state j. Note that Z?:o ri(j,3n)
describes the success probability of Algorithm 5, while we are going to analyse
—or2(j,3n). Let #1(j,m) be the probability that the Markov chain M reaches

state 0 after m steps, starting at state j, without visiting state n, and let 7 (j, m, )
be the probability that M visits state n exacly / times, returning to state j in step
m, without visiting state j between the last visit of state n and step m. This way,
r1(j,m) can be expressed as

3n

ri(jom) =#(,m)+ Y Y Al kD) -Fi(jm—k) .
I=1k>1

Since 71(j,m—k) < #(j,m)and Y, 71(j,k,1) < 1forall [, it holds that

Zfl(j7kal)fl(jam_k) <f‘1(j,l’l’l)
k>1

and thus
ri(j,m) < @Bn+ 1)1 (j,m) .

In the same way, we can define 7»(j,m) as the probability that M, reaches

state 0 after m steps, starting at state j without visiting state n. Both Markov
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3.3 Schoning’s random walk algorithm for the Boolean Satisfiability Problem

chains show the same behavior as long as they do not touch state n, so clearly

?1(j,m) = i2(j,m), and we can derive

ri(j,m) < Bn+ 1) (j,m) < Bn+1)r2(j,m) .

This shows that the probabilities of the two Markov chains for reaching state 0
within 37 steps are equal up to a polynomial factor.

Now we analyze the probability P(3r < 3n:Y; =0). Let ¢(i, j) be the probability,
that the Markov chain reaches state 0 in step 2i + j without reaching it before
that step and under the condition that the chain starts in state j. This leads to

I R A k—1 1\
q(w)—( ; )'2i+j (—k +8) (k 5) .

Further define the probability that M, starts in state j as p; := P(Yy = j). Then
we have

P(3t<3n:Y,=0) = Zp, Y q(i,))

j=0  2i+j<3n
n (3n—j)/2

- Z Y alij)
j=0 i=0

n (3n—j)/2 .. . . i i+j
— Z Z (2’TL]). J ..(u+5) .(1_5>
= = i 204 k k
n (Bn—j)/2 2i+j k—1 i 1 i+J
roox () () Go)

i=0

X

We now set i = aj and use the inequality

()= G

(which follows from Stirling’s inequality, cf. [53]) to estimate
no GneDi2 i N\ (k-1 e i+
g (7)) )
];O ! ;0 i k k
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n (Bn—j)/2 o 140 . o 1+a\ /
_ Z Z (1+20c> .(1+20c) .(k 1+5) -(1—6>

= = o I+o k k
Z 1—8k J

Pi\k—1vok) -

For the last asymptotic equality, we use the fact that the inner sum consists

X

of only polynomially many summands and thus can be approximated (up to
a polynomial factor) by its greatest summand. Setting the first derivative of

that summand to zero results in o = %. Substituting that value into the
summand leads to kl li’gk Assuming a uniform disitribution among all initial

assignments, this leads to an asymptotic success probability of at most

o (n -8 \ 1—8k \"
2 jzb(])(k—1+8k) =2 <1+k—1+8k)

- (svmn)

Using a random source with bias € to construct the initial assignment a, we

obtain a success probability of at most

L0 G G (%)
- () (Erw)

(k—2£(k—2+26k))”

2k —2+20k

We will now show how a worst case formula F' can be approximated. We will
demonstrate it for a 3-SAT formula, but this approach can be easily adapted
to the case of larger k. First, fix a satisfying assignment ap = (1,1,...,1). Now
define clauses

Ci,j,k = {xi,—ucj,—'xk} for 1 < i,j7k <n.

Additionally, define the four clauses

Coy = {x1,x2,x3},C] := {—wx1,x0,x3},C) := {x1,~x2,x3} and C5 := {x1,x2, ~x3} .
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3.3 Schoning’s random walk algorithm for the Boolean Satisfiability Problem
At last, define the formula

F= J GxV{G.C1.C,.C5} .

1<i,jk<n

This formula has only one satisfying assignment: ¢, C}, C;, and C}, along with
Ci123, (213 and C3 1 5, ascertain that the variables x1, x, and x3 have to be set to
1. Then, for any i € {4,5,...,n}, C; 2 forces x; to be set to 1, too. Additionally,
as long as ag has not been found and at least two variables are set to 1, the
algorithm will choose a null-clause of the form C; ; x (Remember that we assume
that the first null-clause in the formula is chosen). Only in the case where only
one variable is set to 1, the algorithm will choose one of the clauses C), C}, C}
or C} and have a higher probability to guess correctly. However, the success
probability will not exceed that of an idealized formula as assumed in the proof,
if we consider a formula with only n — 1 variables. Thus, our formula will reach

the proven success probability up to a polynomial factor. [

Note that for both random sources, it suffices that the random source has a
constant bias towards one number. The worst-case formula can then be chosen
corresponding to that bias. A “malign source” that can react to the algorithms

random choices, like e.g. the 6-random source, is not necessary.

How a slight bias can mislead a probabilistic algorithm

Many probabilistic algorithms (e.g. the Miller-Rabin primality test) are based
on a probabilistic algorithm with one sided error. It is a common approach
to construct a new algorithm that repeats the original probabilistic algorithm
O(1/p) times where p is the one-sided error probability of that algorithm. If
all of these runs give the same result, the new algorithm gives that result, too.
Otherwise, the new algorithm uses the result that can only be output when
the original algorithm doesn’t err. The new algorithm then runs successfully
if at least one of the runs does not err. Repeating the algorithm 20/p times, for
example, leads to an error probability p of

2

p=-p)7 =(1-p)r) e

(=]
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3 Algorithms and non-perfect randomness

In the case of the random walk SAT algorithm that has a (proven) success
probability of (3/4)" for inputs with n variables, the algorithm has to be run
O((4/3)") times in order to guarantee an error probability that is negligibly

small.

Note however that a slight bias in the base error probability might strongly
influence the algorithm’s result. Assume that a single run of an algorithm with
one-sided error has a small success probability of p". Repeating that algorithm
% times will decrease the error probability to

20

(1—p)r" ~e 0

However, if the usage of a biased random source leads to a success probability

of (p —€)", repeating the algorithm 127—9 times leads to an error probability of

20 20(p—e)"

(I—(p—g))r" = (1—(p—g)")rr-or

()

Q

For any € > 0, this new error probability limits to 1 for n — co. In the case of
the random walk SAT algorithm, this will lead to wrong results if n is large

enough.
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Figure 3.2: Overall error of a randomized algorithm after repeating. Assumed
success probability of a single run is (%)n, thus the algorithm is

repeated 20- (#)" times. Actual error probability of (3 —¢)". Plot
shown for three values of €.
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4 Randomized QuickSort

Sorting is one of the most common and basic tasks in computer science. Sorting is
used by database systems, greedy strategies, population based search heuristics,
geometric algorithms (e.g. sweep line algorithms) and many more.

Every sorting algorithm which is based on pairwise comparisons of elements
has to identify, from an information theoretic point of view, which of the n!
many input permutations is actually present (and using this information, the
algorithm has to rearrange the elements physically to form a sorted sequence).
Each comparison of two elements gives the algorithm one bit of information.
Therefore, for the entire sorting process the algorithm needs, in the worst case, at
least log,(n!) = nlog, n— ®(n) many bits of information, or comparisons. Here we
assume that each permutation of the input has the same probability. However,
if there is no uniform distribution on the input set, then that lower bound
decreases to H(P), the entropy of the distribution 2 on the n! possible input

permutations.

This consideration can also be generalized to sorting methods that are not based
on pairwise comparisons, like BucketSort: These methods can aquire more than
1 bit of information per “comparison”, but still have to gain a total of H(P) bits.
BucketSort with k buckets can collect at most logk bits per step (where we only
count the calculation of the correct bucket as a “step”). That way, we can derive

a lower bound for the running time of Q <”1(1)(;gk” > . Note that when using only v/n
buckets, this bound is not tight, because the BucketSort algorithm can only map
each element once to the corresponding bucket and thus collect only nlog+/n
bits of information. Then still 8(nlogn) bits of information are missing that have

to be collected via pairwise comparisons.

In this chapter, we will take a deeper look at the QuickSort algorithm. This
algorithm has been invented by C.A.R. Hoare in the sixties [5]. Knuth [54, page
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4 Randomized QuickSort

115] coins this paper as one of the most comprehensive accounts of a sorting
method that has ever been published. Later, Hoare received the ACM Turing
Award 1980, and he was knighted for his achievements in Computer Science by
Queen Elizabeth II in 2000.

QuickSort is a classical divide and conquer method: the input sequence is
divided into two subsequences which are both sorted by applying the QuickSort
algorithm recursively. Then these sorted sequences are concatenated together to
form the desired sorted sequence. Unlike other divide and conquer algorithms,
the input sequence is not necessarily split into two parts of equal sizes. Actually
the sizes depend on the input itself. In each recursive step, a splitting element
(the “pivot”) is selected, which, in many implementations, is the first element of
the sequence to be sorted. The sizes of the subsequences depend on the rank
of the pivot element within the sequence to be sorted (which is not known
beforehand).

) W)

Figure 4.1: Two different recursion trees for RandomizedQuickSort. The num-
bers at the vertices denote the chosen pivot element. The sum of the
vertex depths (distances to the root) corresponds to the number of
comparisons. Left tree: 25 comparisons. Right tree: 51 comparisons.
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It is known that QuickSort’s average number of pairwise element comparisons
(averaging over all potential input permutations) is (2In2) -nlog, n — ®(n), so it
is quite close to the ideal case, the lower bound. On the other hand, there are
worst case inputs where QuickSort does up to n(n—1)/2 comparisons (ironically,
the already sorted sequence has this property.) Realizing this bad worst-case
behavior, Hoare already suggested the variant called Random QuickSort. In
Random QuickSort (see Figure 4) the pivot element is selected uniformly at
random among the elements of the sequence to be sorted. A very similar analysis
as the one mentioned above shows that the expected number of comparisons,
for each input sequence, is (2In2) - nlog,n — O(n). Here the expectation is taken
over all random choices done in the course of the algorithm.

input: finite sequence A = (a[1],a[2],...a[n]) of distinct elements
output: finite sequence B that contains all elements from A in
increasing order
method: if A contains at most 1 element
return A
else
Choose a random element x from A
Split A into two subsequences A and A, such that
a) A contains all elements from A smaller than x
b) A, contains all elements from A greater than x
B; «+ QuickSort(A))
By < QuickSort(A,)
return Bj o (x)oB; (o denotes concatenation)

Figure 4.2: Pseudo code of the randomized QuickSort algorithm

This analysis uses, as already mentioned, ideal random numbers, i.e. those
being independent and uniformly distributed. Technically, such random num-
bers are difficult to produce, and in practice, one uses pseudorandom number
generators instead, which start with some given “seed” xp, and iteratively (and
deterministically) compute successive values x;;| = f(x;) according to some
function f such that the obtained sequence of values xi,x, ... “looks random”
(i.e. it passes some statistical tests). If the seed is fixed in advance, then the entire
algorithm becomes a deterministic algorithm, and actually the above assertion
about the existence of worst-case inputs with n(n — 1)/2 many comparisons is

still valid.

67
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From a theoretical point of view, one might consider the seed of the pseudoran-
dom generator as truly random. But still, under this theoretical model, when
using a linear congruential generator, like x;;1 = (ax;+b) mod c as suggested by
D.H. Lehmer [44], Karloff and Raghavan [50] (see also [55]) have shown (under
mild assumptions about the choice of the parameters a,b,c) that the expected
number of comparisons can be, in the worst case, up to dnz, for some constant
d. Here the expectation is taken over the random choice of the seed, and the

worst-case refers to the choice of the input.

In this chapter we follow this line of research and consider a random number
generator for Random QuickSort which is not ideal. We measure the deficiency
of the random number generator in terms of C.E. Shannon’s entropy function
H(p1,...,pn) = — YL pilogp; (see [3]). Depending on the Shannon entropy of
the random number generator we show a continous transition between the
“ideal” case of a (nlogn)-behavior and the “bad” case of (n?)-behavior.

Recursion for the expected number of comparisons

Let Tx(n) be the expected number of comparisons done by randomized Quick-
Sort when operating on an input array (a[l],...,a[n]) whose elements are distinct

and permuted according to & € S, that is,
a[n(1)] <a[n(2)] < ... < aln(n)]
where S, is the set of all permutations on {1,...,n}.

Let X be a random variable taking values between 1 and n (not necessarily
under uniform distribution) which models the random number generator that
is used to pick out a pivot element a[X]. We say an element has rank i within
the ordering of the array if there are exactly i — 1 smaller elements in the array.
Let p; be the probability that the pivot element has rank i within the ordering of
the array, that is, p; = Pr(n(X) =i).

We obtain the following recursion for the expected worst case complexity (i.e.

number of comparisons) T (n) = maxges, Ix(n). We have T'(n) =0 for n < 1; and
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forn > 1 we get

T(n) = maxTx(n)
TES,

= (n—1) +max2pl Tn(i—1)+Tx(n—1i))

neSnl 1

IN

(n—1) —1—2 pi (q)msax To(i—1) +WI23;¢X1TW(H_1))

= (n—1) —|—Zp, T(i—1)+T(n—1i)) .

That is, there are n — 1 comparisons with the selected pivot element, and de-
pending on the rank i of the pivot element within the array, there are at most
Tx(i—1) and Ty (n — i) additional comparisons. If the rank of the pivot element
is not uniformly distributed among the numbers 1 to n, a worst case input
permutation can be constructed such that the middle ranks receive relatively
low probability and the extreme ranks (close to 1 or close to 1) get relatively
high probability, resulting in a large expected number of comparisons.

We give upper and lower bounds on the expected number 7 (n) of comparisons.
Lower bounds are given with respect to a fixed worst case input sequence (e.g.
the already sorted list of elements). These bounds are tight up to a logarithmic
factor.

We can show (see Theorem 4.1) that T'(n) < g(n)nlog,n for any function g(n)
greater than 1/ (ming Y! | p;H (i/n)), where H is Shannon’s binary entropy func-
tion. Note that mingY! | p;H (i/n) is independent of the permutation of the
elements, i.e. is identical for all distributions p and ¢ such that p; = gy for all i

and some permutation 7.

The lower bound (see Theorem 4.2) is derived for distributions on the ranks
of the input elements. Therefore the lower bound 7' (n) > cng(n) (Theorem 4.2)
is with respect to any function g(n) less than 1/Y" |, p;H (i/(n+ 1)), where p; is
the probability of selecting the element of rank i within the input a as a pivot
element.
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4 Randomized QuickSort

4.1 An upper bound

Let (Py,P,,...) denote a sequence of probability distributions with the property
that P, = (pu1,-- -, Pan) is a distribution on {1,...,n}.

Theorem 4.1 (cf. [14]) Let (P, P»,...) be a sequence of probability distributions on
the indexes of the pivot elements used by Randomized QuickSort. Then the expected
number of comparisons T (n) < g(n)nlog,n for any monotone increasing function g

g(n) > (;gsnzpnn H(i»l

where H(x) = —xlog, x — (1 —x)log, (1 —x) is Shannon’s binary entropy function.

with the property

Proof. By induction on n. Using the above recursion for 7'(n) we obtain

T(n)=(n—1) —|—maXZ Prn1(i)(Tn(i— 1) + Tx(n —1i))

neS,,

< n+maxzp,m (8= 1)(i — 1) logy i — 1) + g(n — i) (n— i) logy(n — 1))

TCGn

i i
< n+g(n)nmaxz Prn1(i) (Zlogzi—k (1 - ;) log,(n— 1))
i i ]
= n+g(n nmaXZ Pzt (;logzﬁ + (1 - —> log, (1 - —) +log2n>

neSy I

= n+g(n)nlogyn—g(n)nmin ) P H (i>

neS, =1

To finish the induction proof, this last expression should be at most g(n)nlog, n.

-1
. : . - i :
This holds if and only if g(n) > (7?&%1’11 ,221 P H (Z)) as claimed. [

Example 1: In the standard case of a uniform distribution p,; = % we obtain

gn) > (iyr H (%))_1 . Asymptotically, this is (f&H(x)dx)l =2In2 , which

is the known constant factor of QuickSort’s average running time.
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4.2 A lower bound

Example 2: In the median-of-three version of QuickSort (cf. [54, 56]), three dif-
ferent elements are picked uniformly at random and the median of the three is
used as the pivot element. In this case p,; = % Here the constant factor

of the nlogn-term can be asymptotically estimated by

! 122
(6/ x(l—x)H(x)dx) = 7n ~ 1.18 .
0

This matches the average running time given in [56].

4.2 A lower bound

In a similar fashion, we can derive a lower bound for the number of compar-

isons.

The running time derived in the upper bound theorem was independent of the
actual input permutation and depended only on the distributions on the indices
that are used to pick a pivot element from the input. Our lower bound however
can not be that flexible: For every distribution on the indices of the input,
there exists an input that will be divided into two subarrays of approximately
equal sizes with high probability. Therefore, the theorem for the lower bound
is formulated with respect to distributions on the ranks of the input numbers.

Similar to Theorem 4.1 we get:

Theorem 4.2 Let (P, P»,...) be a sequence of probability distributions on the ranks of
the chosen pivot elements, where Py, = (pu1,- - -, Pnn) is used to choose a pivot element
from sequences of length n and the element of rank i is chosen with probability pp;.

(i) T (n) > cg(n)n — n for some constants ¢ > 0 and n, if for all n > ny, g satisfies the

(il’m‘ (1 - (i;zl)z - (n,;i)z))l and
i—1

! forall 0<i<n.
n

two conditions

IN

g(n)

g(i)

g(n)

Y
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4 Randomized QuickSort

(ii) Part (i) still holds if we replace the two conditions by

_ -1
g(n) < (ZkWH<n+1)> "
% > i forall 0<i<n.

Proof. We prove (i) first, by induction. For n < ny, just set the constant ¢ <1
small enough.

Now we look at the case n > ng. Let P, = (pa1,-- -, pnn) be a distribution where
Pni is the probability that we choose as a pivot element the element with rank i.

Using the induction hypothesis, it holds that

T(i—1)+T(n—i)
> e(i—D)gli—1)+cln—i)gn—i)—(n—1)

— ool (G D81 (n—i)g(n—i))
= ento) (E i )~
i—1)*  (n—i)?
> angtn) (o ) )
i—1)? (n—i)?
= cng(n) —cng(n) (l—( nzl) _{ nz) )—(n—l) .

Therefore,

T(n) = n—1 —I—i‘ipni(T(i— 1)+ T(n—1i))

l n i— 2 n_l'2
> anglo) —eng) Y pu (1= )

As ¢ < 1, we can finish the induction if

n P A
= (£ 52 0))

The proof of part (ii) is quite similar: For n > ny,

T(i—1)+T(n—i)
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4.3 Distributions with bounded entropy

> cng(n) ((i_ 1>2+ (n_i)z) —(n—1)

n? n?

— cng(n) ((’;;)2 + <”;2i)2 +H (ﬁ)) ~ng(n)H <nJ’r 1) —(n—1)

> cng(n)—cng(n)H( : )—(n—l).

The last inequality uses Lemma 1.2. Now

T(n) = n—1+cipm-(T(i— 1)+T(n—1))

,

> eng(n) — cng(n) leH(

I
n+1

Again using ¢ < 1, we can finish the induction if
)

Remark. In the second part of Theorem 4.2 the lower bound is given using the

g(”) < (i:leniH (n+1

entropy function, similar to the upper bound in Theorem 4.1. This shows that

up to a logarithmic factor we yield matching upper and lower bounds.

Note that the condition g(i)/g(n) > i/n actually is not a limitation: We already
know that QuickSort’s running time ranges from nlog, n to n?, so our function g

will meet the condition anyway.

4.3 Distributions with bounded entropy

The uniform distribution on [1,n] = {1,...,n} has maximal entropy. In this

section we consider distributions which have bounded entropy.
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4 Randomized QuickSort

Uniform distributions on subsets of {1,... ,n}

First we consider distributions with positive probability on subsets of [1,n]. Let
t(n) = o(n) be a monotone (increasing) function. Define a sequence of distribu-
tions (P, P,,...) with P, = (pu1,. .., pun) such that

o 1/t(n) ifrank a; <t(n)/2 orrank a; >n—t(n)/2
Pri = 0 otherwise

That is, we choose the pivot element randomly using a uniform distribution
among only the worst #(n) array elements.
Now Y | puiH (i/(n+1)) resp. Y., pniH (i/n) are bounded as follows:

! i t(n)
H < =71 1 d
i_lem (n-l—l) = Og(n+ )a an

This gives T'(n) < nlog(n)t‘(‘—,’:) as an upper bound and T (n) > -/ (”‘)"fogn

—nasalower

bound, for some constant c.

Proof. An upper bound 7 (n) < g(n)nlog, n can be estimated as follows.

Z": i
all) -
S \n

NN
5 S
I gt
[\®)

~
s 5=

N—
.7 N
SHIE
N———

I

-~
E\‘N

N—
T =
—_ ~
ml\.J
VR
S|~
N——

t(n)/2 . —; n—1i
- % Z —(ilog(% —I—nn log( - ))
i=1
9 ! n)/2 i n o) m t(n)/2
= i) & ue () = iy o (t(n)) Lt
2 o 2n \ (1(n)/2)(t(n)/2+1)
= () 8 <r<n>> 2
t(n) 2n
e (i)
. 4n ) 4n? log, n
With g(n) = () Tog2n 1 ()’ it follows that 7T'(n) < () Tog, (2n2 1) (see Theo-
rem 4.1).
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4.3 Distributions with bounded entropy

In the same way the lower bound can be calculated:

1 I
il | ——
;p (n+1)

B if(”zl‘/z_ Froe () nmit Ly (n—it]
~ t(n) ! el e\t il 2\ Tnt

1
7 ! n)/2 . 1
—_— 2 ! log n+
t(n) &= n+l i

<
4 W2 n+1
= ilog( )
(n+1)t(n) l_zi
4 t(n)/2 1(n)/2
= ilog(n+1)— ilogi
e \ & 1Rk
4 t(n)/2 1(n)/2
< - ' —
< (n+1)t(n)<z ilog(n+1) /izo xlogxa’x)

4log(n+1) ((t(n)/2)(t(n)/2+1) 1 1
e > - /2P 108lr(0)/2) + s 1)/2) )

_ t(n)log(n+1) (1+ 1 logt(n) 1 )

nt 1 )2 4l
2.4t(n)log(n+1)
- n+1
where we use that 7(n) > 1.
1
With the function g(n) = > (n;q l—ctg ntl) we receive a lower bound of
cn(n+1) n?
T(n)> ———F—-n=Q - .
(n) 2 t(n)log(n+1) " (t(n) logn n) i
Min-Entropy
Uniform distributions on subsets of [1,...,n] are a special case of distributions

with bounded min-entropy.

Definition 23 A distribution (pi,...,p,) has min-entropy k if max; p; = 2% (cf.
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4 Randomized QuickSort
[23]).
Let (P;, P, ...) be a sequence of probability distributions such that every distri-

bution Py, = (pui,-- -, Pnn) has min-entropy k(n). Then we get an upper bound

45> cn?
of T'(n) < 575 and a lower bound of T'(n) > Tl togn for ¢ > 0.

Proof. We have

i;PniH(i/n) > 2 Y SpH/n)

A4
N
=L
S
—_
o
[0)]
VR
)
S
~
[}
=}
Q.

& i 1 i
H < 2 ——H
i;p”’ (n+1) = ; 2K(n) <n+1)

2k 41 2(n+1)

2(n+1) 2k(n)
and thus )

4n log,n
T(n) <
(1) < 2000 fogy (20280
and 5 .
Tin) 2 k ot 3(n+1) "
(2K(n) 1)10g< 0 )

So, for min-entropy 0 (this includes the deterministic case) we get

T(n)<ﬁ logan__ yp 1082 _yp g

— 1 log,(2n) logon+1
cn(n+1) cn? n?
T)>— "7 _p>_ a9
M) 2 eemr 1) " lgmrn 1 " (logn
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4.3 Distributions with bounded entropy

and for min-entropy log, n (all pivot elements are equally distributed), this leads

to
4n? log, n

T(n) <

=4nl .
— n log,2 gt

Bounds for geometric distributions

We consider the case that pivot elements are selected using a geometric dis-
tribution. The probability of picking an element with rank i as pivot is given
by pi = ¢"~!(1 — q). More generally, we allow the geometric distribution to de-
pend on the size n of the array, i.e., we define (P;) using ¢ := 1 — ﬁ for some
(monotone) function f = o(n). An additional probability of ¢" is assigned to the
best resp. worst pivot element (depending on if we consider a lower or upper
bound), so that all p; sum up to 1.

To estimate a lower bound on the number of comparisons, we use Theorem 4.2

n—i)?

and estimate f‘, Dni (1 ~ = 1) _ v}

- ) < Cfr(l"), for a constant c.

1=

. i f(n) i
Proof. Using the fact that ¢’ = (1 - L) = <1 - %) <e /0, it fol-

lows that

<
3
1

IN
QU
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4 Randomized QuickSort

We split the sum and see that for k =0,1,2,...

eHMMO‘ﬁ%yf@

Eli
=
+
:

(k+1)f(n) i i f(n) kf(m)+j | kf(n)+j
< Z e T Fm — Y e i +n =50y
i=kf(n)+ j=1
f(n) f(n)
< ok (k1) _ o kHn(k+1) Z 0
j=1 j=1
< efk+ln(k+1)f(n) .

Then we get

(= 7t) R 5 (- 7) 7

(

B B 1 n (2n+2)f(n) [n/f(n)] (k+1)f(n) L i

- O ﬂm)+#uw—n YooY (M) v
1

cf(n)

n

IN

for a constant c.

For the last inequality, note that f(n) = o(n), so that e T =0 <%> .

Using Theorem 4.2, we get a lower bound of ¢/n?/ f(n) for the running time of
the QuickSort algorithm, for some constant ¢’. |}

To get an upper bound for geometric distributions we estimate similarly

. ANIOY T
Ep""H@ZT(“ f”f<n>) |

cn*logn

which gives T'(n) < ~fn) as upper bound, for some ¢ > 0.
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4.3 Distributions with bounded entropy

L i\ l-gg i
Yot (3) = 0 an (1)

We againsetg:=1—

"l I
aniH (‘)
i=1 n

So we have an upper bound for the worst-case running time of 7'(n) <

v

v

i=1

g /i .
= —qZQ’(ilog’—.len Hlog n>
q = no i n n—i
1—qg ~(i n)
> —— ) ¢'| —log—
q lzi no i
1_q n—1
> logn ) q'i
o E L
l1—¢q (4”(nq—n—q) q )
= logn +
gn (1-9)? (1-9)?
logn (q”_l(nq—n—q) 1 )
= +
n 1—¢q 1—gq
l .
mtoobtam
(=) (2(1=7ta) =1+ 1)
logn f(n) f(n) J(n) 1
n 1 _1_
f(n) f(n)
lognf(n)

n f(n) f(n)
lognf(n) (, (, 1 \" n—l

S () <+f<n>>>
lognf(n) ~ i 21

()
ClOng () for some constant ¢ > 0 if f(n) = o(n)

cn?
m fOI'
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4 Randomized QuickSort

some constant ¢ > 0.

4.4 Randomness as a resource for the QuickSort
algorithm

When examining the performance of sorting algorithms, we usually measure
their performance by counting the number of (pair-wise) comparisons that are
needed to sort an input sequence. For randomized algorithms, we can also
measure the number of random bits the algorithm requests to find a solution.
The expected amount of random bits H(n) needed by a run of QuickSort on n
numbers can be expressed by the recurrence

H(n) = logzn—l—%iH(i—l)—FH(n—i)

n—1

=
= log,n+— ZH(I)
mi=o

This way we get

nH(n)—(n—1)H(n—1) =nlogyn— (n—1)logy(n—1)+2H(n—1)

and
H(n) H(n—1) nlogyn—(n—1)log,(n—1)
= +
n+1 n n(n+1)
Substituting A(n) := ZIJ(F”I) results in
A(n) = A(n—1) nlogyn—(n—1)log,(n—1)
n(n+1)
and thus

n

Aln) = Z ilog,i—(i—1)log,(i—1)

) Gt and

I M
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4.4 Randomness as a resource for the QuickSort algorithm

— (1) i logzz .(ilogzi—(i—l)logz(i—l))

=i( log, i

Using de I’'Hopital’s rule twice, we see that

lim ilog,i—(i— 1).10g2(i —1)
i—o0 log, i
— lim logyi—loga(i—1)

[—oo ES

and since Y logzll) = 0(1), it follows that

This means that on the average a constant number of bits per input element is

enough to guarantee an average case running time of 6(nlogn).

Note: H(n) = ®(n) can also be proven by induction. To do this, use the induction
hypothesis H(n) < cn — dlog, n for some constants ¢ and d.

Note that the number of necessary random bits increases if the average running
time of the algorithm increases, for example if these random bits are not uni-
formly distributed. In the case of the worst possible running time of ®(n?), the
i-th pivot element has to be chosen out of a set of n+ 1 —i elements, so at least
log,(n+ 1 —1i) bits are needed. This leads to

H(n) = anlogzi

> Z 10g2 O(nlogn) .
i=n/2

So while the entropy of that sequence of “random” bits decreases (in the extreme
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4 Randomized QuickSort

case, these bits don’t have to be random any more), its length increases from
O(n) in the optimal case to @(nlogn) in the deterministic case.
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5 Local and population based search
heuristics

In Chapters 3 and 4, we gave examples where we could show that the use of
non-pefect random numbers can have an effect on the error probability resp.
the run-time of a probabilistic algorithm. Similar results have been found by
Karloff et al. [12] and Bach [13]. Generic probabilistic search heuristics like
Simulated Annealing and Genetic Algorithms represent another interesting
area of algorithms that use randomness in various ways. However, implica-
tions of using certain kinds of pseudorandom generators or other non-perfect
sources of randomness have not yet been thoroughly examined. In the case
of evolutionary algorithms, Meysenburg showed that a simple evolutionary
algorithm’s solution did not significally depend on the choice of the random
number generator [15]. Tompkins and Hoos showed that stochastic local search
methods for the satisfiability problem seem not to be influenced by the quality
of the pseudorandom number generator [17].

We were interested in the effects of generators with very low quality on local
search heuristics, especially Simulated Annealing, and population based heuris-
tics like evolutionary algorithms. To this end, we conducted several experiments
where we gradually decreased the quality of the pseudorandom number gener-
ators, and tested if this decrease in quality directly affected the output of the
search heuristics.
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5 Local and population based search heuristics

5.1 Search Heuristics

5.1.1 Simulated Annealing

The Simulated Annealing heuristic has been popularized by Kirkpatrick in
1983 [58] and is based on the Metropolis-Hastings algorithm [59] that dates
back to 1953. Since then, it has been widely used for various optimization
problems, e.g. the Traveling Salesman Problem. It simulates the cooling of
physical matter, where a state changes to a state with higher energy only with
a certain probability. This probability decreases during the proceeding of the
algorithm. When optimizing a function f, we interpret f(x) as the energy of state
x. Beginning in a randomly chosen state, this state slightly changes step by step,
i.e. transforms into a neighbor state. This transformation prefers new states with
lower energy. The chance that the algorithm moves to a state of higher energy
depends on a temperature parameter 7', which is gradually decreased. When
T decreases, the probability that a state transition with increasing energy is
accepted decreases, too. This way, the system gradually tends to move towards

lower energy states.

U e e
ol et TR eas:

A9 e Y 10l
o9 4 o \.’o—o—o 000

Figure 5.1: Sketch of the idea behind Simulated Annealing — Beginning in a state
of high energy, that energy steadily decreases.

Simulated Annealing is a typical local search heuristic: Beginning at one point
in the search space, the algorithm moves through the search space, in each step

moving from one element to a neighbor of that element.
Pseudo code for Simulated Annealing is seen in Algorithm 6. For fixed tempera-

ture T, the algorithm simulates a Markov process where the variable x holds

the random state. It was shown in [60] that this process limits to the Gibbs
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5.1 Search Heuristics

Input: Function f
Output: x with f(x) as small as possible
Initialize temperature T;
x « random;
m « X;
while 7 > Ty do
y « random neighbor of x;

if f(y) < f(x) then
X —y;
else
x <« y with probability e~ ;
end
if f(x) < f(m) then
m « X;
end
decrease T;
end

output m;

Algorithm 6: Pseudocode of the Simulated Annealing heuristic

distribution where an element x occurs with probability

For T — oo, this distribution limits to the uniform distribution. For 7" — 0, it
limits to the uniform distribution on Qy = {x| f(x) = min,f(x)}, the set of all

global minima.

While for very low temperature 7, the Markov chain converges to the set of
solutions, it remains at local optima for many steps and only converges to
the stationary distribution very slowly. To speed up convergence, Simulated
Annealing starts with a high value of T and gradually lowers T'. This random
process does not have a stationary transition matrix like a Markov chain, but still
converges to the uniform distribution on the global minima if 7'(t) — 0 slowly
enough. More precisely, let T(¢) be the temperature at iterationr =0, 1,2,... and
let Qg be the set of all global minima as defined above. Then the Simulated

Annealing process converges to the uniform distribution on Qg if lim; ... 7 () — 0
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5 Local and population based search heuristics

and T (1) € Q(7=) (see [60]).

1
logn

5.1.2 Population based heuristics

Population based search heuristics try to optimize a function by searching at
many objects of the search space simultaneously. They are usually inspired by
populations found in nature. Genetic algorithms, for example, are inspired by
evolution. They are usually expressed in the form of a maximization problem,
maximizing the “fitness”, which is usually a non-negative function. An initial
population changes during the course of time with the help of some basic

operations:
e Selection: Each object of the population is evaluated with the help of a
fitness function. Objects with a higher fitness are more likely to survive.

e Mutation: Some objects are slightly changed, for example by changing
some bits of their binary representation.

e Crossover: Pairs of parent objects are combined into new objects that
resemble both parent objects.

initializ ation

termination
. >
population
selection of selection of
Survivors parents
offspring parents

\—/

mutation and crossover

Figure 5.2: Sketch of a Genetic Algorithm.

Genetic algorithms use randomness at various places: The initial population is
often chosen at random. The crossover and mutation operators are often applied
to random objects, their probability usually depending on their individual

titness. When replacing unfit objects, we may choose these objects randomly,
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5.1 Search Heuristics

too, for example by replacing objects with low fitness with high probability,
but still allowing the replacement of individuals of higher fitness, with lower
probability. This way, the population is kept diverse and is prevented from
concentrating around a local optimum. For example, crossover with an unfit
object might lead away from such a local optimum and help find the global
optimum. The crossover itself might require random choices, too: This ranges
from the choice of individuals that are combined to the concrete choice of which

information is used from each of those individuals.

See Algorithm 7 for pseudocode of a basic genetic search heuristic.

Input: Function f
Output: x; the goal is to output an x with minimal f(x).

Initialize population P;
repeat

Replace unfit objects by mutations of fit objects;
Replace unfit objects by crossover of fit objects;

until termination condition ;
Output best object found so far;

Algorithm 7: Pseudocode for a simple evolutionary algorithm

If a random selection is desired, the roulette wheel algorithm is a good choice:
It partitions the interval [0, 1) into subintervals such that there is a bijective
mapping between the elements in the present generation and the subintervals.
One element is then chosen by drawing a random uniformly distributed number
in [0, 1) and identifying the unique subinterval and thus the corresponding ele-
ment of the population. The sizes of the subintervals can be varied, e.g making
their size proportional to the fitness value of their corresponding element or
basing their size on the rank of the element among the population. The roulette
wheel then selects every population element with probability equal to the size
of the corresponding interval.

Listing 5.1 shows our concrete implementation of the roulette wheel (in the
language R) used in the evolutionary algorithm. fitt is the vector of fitness
values of all elements of the population, number is the number of indexes we

want to select, and the argument getNext is a function that is used to create the
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pseudorandom numbers. roulette returns a vector of indexes, which we use to
select objects from our population.

roulette <— function(fitt , number, getNext){
fit <— cumsum( fitt / sum(fitt) )
selection <— double (number)

for (i in 1:number){
selection[i] <— which(fit >= getNext() )[1]

}

return (selection)

}

Listing 5.1: The roulette wheel

With the Schema Theorem, Holland formalized the evolution of a population’s
changes during the run of a genetic algorithm [61]. If each individual of a
population is described by a binary string of length n, then a schema is a string
of length n over the alphabet {0,1,*}. The * is used as a wildcard: A schema
represents all strings that are equal to the schema at all positions where the
schema does not have a wildcard. The schema 110 * 1, for example, represents
all strings of length 6 that begin with 110 and end with 1. The fitness value
f(s) of a schema s is the average fitness value of all strings represented by s.
The Schema Theorem considers the variant of a genetic algorithm shown as
Algorithm 8.

Let p(s,t) describe the proportion of strings represented by schema s in genera-
tion t, f(s,7) the average fitness of all strings in the population represented by s
at generation 7, and f() the average fitness of the whole population at genera-
tion ¢. Assuming an infinite population, the Schema Theorem then bounds the
proportion of s in generation ¢ 4 1 by
f(s,1)
plot+1) 2 p(5.0) (250 ) (1= pepa(9)1 = p500) (1=t

where p. is the probability that an individual is “crossed over” with another
individual, p,(s) is the probability that a crossover affects the positions specified
in s, and pyu(s) is the probability that mutation affects at least one position
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Input: Non-negative fitness function f
Output: x; the goal is to output an x with maximal fitness f(x).

Initialize population P of size M;
repeat

P —0;

repeat

Choose an individual x from P with probability proportional to f(x);
With probability pe,
choose y € P under uniform distribution,
x < crossover of x and y;
Change each bit of x with probability p,,;
Add xto P’;
until |P'| = |P|;
Replace P by P’
until termination condition ;
Output best individual found so far;

Algorithm 8: Pseudocode of the genetic algorithm considered in the Schema
Theorem

specified by s (see Algorithm 8). In the case of a finite population, replace
p(s,t+1) by its expected value E(p(s,t +1)).

Considering a finite population, the Schema Theorem describes how the pres-
ence of a schema representing good solutions grows, as soon as at least one
individual is represented by that schema. As long as none of the individuals is
represented by a given schema, one can only hope that the schema is introduced
with the help of mutation or crossover. Note that the proportion of a schema
in a finite population can even drop back to zero. Apart from that, a schema
that represents the optimal solution, but contains many wildcards, does not
necessarily have a good average fitness value; at the same time, a schema with
good average fitness value does not necessarily represent the optimal solution.
Therefore, the theorem only guarantees a fast convergence if good solutions share
many bits with the optimal solution. In that case, however, one might be able to

construct more specialized algorithms to solve the given problem.
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5.2 Implementation

Our experiments were implemented in R [29] and run on a system with R
version 2.8.1 installed. We used R because it allows the quick development
of code as well as an easy visualisation of the data. The R interface to the C
language allowed us to implement the crossover operation for the evolutionary
algorithm in C.

Listing 5.2 shows the basic implementation of a class rng, along with a subclass
reference. The global object rng.reference is then created and a function
reference.getNext defined, which gives us one random number each time we
call it. The last output is stored in the global object, just in case we want to reuse
it.

setClass("rng",
representation (seed="numeric", range="numeric", state="numeric" )
);

setClass("reference",representation (), contains="rng")
rng.reference <— new("reference");

reference . getNext <— function() {
rng.reference@state <<— runif(l,min=0,max=1);
return (rng.reference@state);

}

Listing 5.2: The reference RNG, which uses R’s builtin Mersenne Twister

One aspect of “quality” of a pseudorandom generator is its period length. In
order to achieve pseudorandom sequences with scalable period length, we
artificially shortened period lengths of PRNGs like the Mersenne Twister or
Marsaglia’s CD-ROM sequence by counting the output numbers and resetting
the seed after a fixed amount of output numbers. On the one hand, this method
enabled us to compare various pseudorandom sequences with equal period
lengths. On the other hand, it allowed us to scale the period length of pseudo-
random sequences that had otherwise a very long period length. Corresponding
R code can be found in Listing 5.3. We simply count the number of output

numbers and reset the seed when the output has reached a given length.
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setClass ("mrepeater" ,representation (len="numeric"),contains="rng");
rng . mrepeater <— new("mrepeater");

mrepeater. getNext <— function() {
rng . mrepeater@state <<— (rng.mrepeater@state%¥rng. mrepeater@len)+1;
if (rng. mrepeater@state == 1)
set.seed (rng. mrepeater@seed );
return (runif (1));

Listing 5.3: A Mersenne Repeater.

Our implementation of Simulated Annealing used a simplification to the origi-
nal version: Instead of decreasing the temperature T after each run of the main
loop, we only ran the algorithm for 100 different temperature values. For each of
these values, the main loop was executed several times. For the Traveling Sales-
man Problem, for example, the procedure of creating a neighbor state and accept-
ing resp. rejecting it was iterated 10,000 times for each temperature value. This
method was used to prevent numerical problems that can arise when using fac-
tors close to 1. It allowed us to decrease the temperature by a factor of 0.97 after
every 10,000 iterations instead of decreasing it by a factor of '*%/0.97 after each
iteration. To find a neighbor of a TSP tour, we switched two vertices of a tour,

chosen at random. For example, the tour (..., xi—1,x;,Xi41,. .., Xj—1,Xj,Xj+1,...)
is considered a neighbor of the tour (...,xi—1,xj,Xi+1,...,Xj—1,%i,Xj+1,...). For
DeJong’s test functions, neighbors of a vector (xi,...,x,) were found by adding

a random value to each component, drawn from a normal distribution with
mean 0 and standard deviation equal to 0.02 times the size of the function’s

domain.

In the Genetic Algorithm, the mutation of an individual was implemented
exactly the same way as finding a neighbor in Simulated Annealing. In the
mutation step, we replaced 50% of the population. The selection step chose
individuals for the next generation with the help of the roulette wheel algorithm
described above. Crossover for the Traveling Salesman Problem was imple-
mented as the edge-3 operator presented in [62]. Crossover for DeJong’s test

functions was implemented as follows: For two parents xi,...,x, and yi,...,yn,
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5 Local and population based search heuristics

a child zy,...,z, was constructed at random such that P(z; =x;) = P(zi =y;) = 0.5
(assuming a perfect source of randomness). In each loop, we checked that the
best object so far was not removed from the population. In the crossover step,
we replaced about 10% of the population by crossover offsprings. The algorithm

terminated after a fixed number of loops.

5.3 Experimental Setup and Results

In our experiments, we were interested in the dependency between the quality of
the pseudorandom generator and the quality of the solution given by two search
heuristics, namely Simulated Annealing and an evolutionary algorithm.

One problem we used for our analysis was the Traveling Salesman Problem
(short TSP).

Definition 24 The Traveling Salesman Problem is defined as follows:
Given a quadratic n x n matrix D of positive values (a distance matrix), what is the

permutation © € S, where
n—1

Dum+ Y, Drm.y

i=1

is minimized?

Intuitively, The Traveling Salesman Problem asks for a tour that visits each of n
nodes exactly once, then goes back to the initial node and minimizes the total
cost of the tour. Costs for moving from any node i to a node j are given by
the matrix entry D;;, and to obtain the total cost of a tour, we can just add up
the costs of the individual steps. The Traveling Salesman Problem is especially
suited for our experiments because on the one hand, it is known that Simulated
Annealing as well as Genetic Algorithms can be used to solve the Traveling
Salesman Problem (see [63]), and on the other hand it is NP-complete, which
ensures that our heuristics have to run for a rather long time in order to find a

good solution.
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5.3 Experimental Setup and Results

Another interesting set of test functions was published by DeJong [64] in 1975.
The set was specfically designed to measure the performance of search heuristics
and consists of the following 5 test functions:

o filxt,...,x) =Yk x2, with —5.12 < x; <5.12.

f1(xy, X2)

-4 -2
X2 6 g -4 %

Figure 5.3: Plot of DeJong’s function fi.

This function should not be a problem for an optimization algorithm. The
function is very smooth and has only one local minimum, which is also
the global minimum. In DeJong’s original publication [64], this function
used k = 2. But in order to compare the effects of different pseudorandom
sequences, we had to increase k and make the function more difficult to

solve.

o folxt,.. o) = XA (100(xi1 —x2)% + (x; — 1)2)2, with —5.12 < x; < 5.12.

i
f2 is more difficult to optimize: The minimum lies in a “valley” where

function values only vary lightly, while outside of the valley the function

values increase quickly.
o f3(x1,..., ) = 6k+ Y% | |x;], with —5.12 < x; < 5.12.

This function consists of many plateaus, where almost every point is a local
minimum. Search algorithms with small step sizes could have problems

optimizing this function, due to difficulties finding a good direction.

o fa(xt,...,x0) =YK ixt +AL0,1), with —5.12 < x; < 5.12.
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-

6000

Figure 5.4: Partial plot of DeJong’s function f>. Only the central region is shown,
without the steep slopes.

130, %)

Figure 5.5: Plot of DeJong’s function f3.

fa is a polynomial function with additional noise. Each time the function
is evaluated, a new term is added, drawn from a normal distribution with
mean 0 and variance 1. Some deterministic optimization methods, like the
gradient descent method, have problems optimizing noisy functions.

-1
o f5(x1,0) = (0.002 +32, m) , with —65.536 < x; < 65.536 and

matrix

(aij) =

=32 —-16 0 16 32 --- 0 16 32
—32 —32 —32 —32 —32 ... 32 32 32 )

This function has 25 local minima, with the global minimum near the
point (—32,—32). It was designed to “trap” optimization algorithms in
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f2(x1, X2)

-2 5 -1 0

Figure 5.6: Schematic plot of DeJong’s function f;. Note that each time the
function is evaluated, a new error term is added.

400—

300—

f5(x4, X2)

200—

100—

Figure 5.7: Plot of DeJong’s function fs.

one local optimum to research if they could still find a global optimum

after finding a local one.

Some of our experiments involve sequences of varying period lengths. To see
how these were constructed, see Listing 5.3. It shows how we artificially reduced

the period length of long pseudorandom sequences.

For the experiments on the Traveling Salesman Problem, we created eight
random distance matrices with 50 cities each. In each of these matrices, the
distances were chosen uniformly from the set {1,...,40}. The matrices were
created with the help of 4 different sources of randomness: Two were created
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5 Local and population based search heuristics

with a Mersenne Twister, two with the stream cipher Trivium, two with the
Diehard sequence, and two with a sequence of random bits obtained from a
quantum experiment. The latter sequence was provided by Prof. Zeilinger’s
group at the University of Vienna. We will call this sequence the quantum
generator.

The experiments were designed as complete block designs: For the experiments
on the Traveling Salesman Problem, each pseudorandom sequence we were
interested in was combined with each of the eight input matrices, usually
started with 50 different seeds. For the experiments on the test functions, each

pseudorandom sequence was combined with each sequence.

Representative parts of our results will be shown in boxplot diagrams: The three
horizontal lines of a box represent first quantile, median and third quantile.
The ends of the whiskers represent minimum and maximum values, where a
whisker’s maximum length is 1.5 times the interquartile range (distance between
first and third quartile). Any values outside of that range are considered outliers
and plotted as individual points.

5.3.1 Simulated Annealing

Experiment 1: Simulated Annealing and varying period length

In Experiment 1, we were interested in the effects of varying the period length of
a generator on the Simulated Annealing heuristic. As our source of randomness,
we used a Mersenne Twister where we artificially reduced the period length to
values ranging from 1003 to 512009.

The period lengths were chosen as prime numbers because we wanted to
prevent moving in cycles as much as possible. Each run started at temperature
20. For each temperature, we executed 10000 iterations, then slightly decreased
the actual temperature by multiplying it with the factor 0.97. The program ended
after 100 different temperature values had been used. For each pseudorandom

generator we used, the algorithm was run with 50 different seeds.
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r-1009 vs. r-2003
r-2003 vs. r-4001
r-4001 vs. r-8009
r-8009 vs. r-16001
r-16001 vs. r-32003
r-32003 vs. r-64007
r-64007 vs. r-128021
r-128021 vs. r-256019
r-256019 vs. r-512009
r-512009 vs. MT
r-8009 vs. Q

r-16001 vs. Q
r-32003 vs. Q
r-64007 vs. Q
r-128021 vs. Q
r-256019 vs. Q
r-512009 vs. Q

MT vs. Q

X X X M. Twister 1

X
0.107
0.352
0.203
0.841
0.274
0.792

X
0.004
0.095
0.159
0.415
0.124
0.225
0.083

X X M. Twister 2

X

0.007
0.025
0.19
0.233
0.288
0.378
0.649
X
X
0.113
0.384
0.681
0.846
0.908
0.86

5.3 Experimental Setup and Results

X X X Quantum 1

0.163
0.5
0.767
0.061
0.759
0.603
0.748
0.354
0.726
0.724
0.463
0.916
0.756
0.668
0.413

X X X Quantum 2

0.03
0.002
0.17
0.543
0.286
0.31
0.873
X
X
0.432
0.808
0.773
0.91
0.963
0.766

X X X X Diehard 1

0.212
0.264
0.333
0.112
0.737
0.743
X
0.008
0.058
0.146
0.271
0.718
0.496
0.269

X X X X Diehard 2

0.

N
0]
Qo

X
0.977
0.129

0.28
0.512

X
0.005
0.019
0.907
0.244

0.66
0.831
0.827

X X X X Trivium 1

X

0.039
0.53
0.947
0.39
0.127
X
X
0.291
0.903
0.896
0.334
0.442
0.847

X X X Trivium 2

X

0.031
0.45
0.632
0.091
0.32
0.35
X
0.005
0.324
0.378
0.238
0.784
0.908
0.969

Table 5.1: The p-values of the one-sided t test of Experiment 1. Values marked
with x were smaller than 0.001. Column headers denote which input
matrix was used. The alternative hypothesis for lines denoted with
“A vs. B” was “Using generator A results in a higher average solution
than using generator B”.
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220
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Length of shortest tour found

il
I
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1009 2003 4001 8009 16001 32003 64007 128021 256019 512009 MT Q

Period length of generator

Figure 5.8: Simulated Annealing and the Traveling Salesman Problem (Exper-
iment 1). Horizontal axis: Generator used. Vertical axis: Length of
the shortest tour found with the help of that generator. For further
parameters, see Table 5.2.

The pseudorandom numbers were used at two places: To compute a random
neighbor permutation, we randomly swapped two elements of the current
permutation, and to compute if a new permutation is accepted, we drew a

random number in the interval [0, 1) and tested if that number was smaller than
—AfJT
e .

The optimal tour lengths we achieved for one of the inputs can be seen in Figure
5.8. Increasing the period length had a remarkable effect on the quality of our
solutions. Note that the total number of random numbers that were used in
each run lies between 3,000,000 and 3,100,000.

Looking at the p-values of Table 5.1 reveals that period lengths up to 16000 led to
a significantly worse solution. This is not only shown by directly comparing the
corresponding generator with the quantum generator, but also by comparing
the generators with low period length with the generator with the next higher
period length. In other words: Doubling the period length already had a visible
effect.
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Parameter | Value
Heuristic Simulated Annealing
Input 8 symmetric 50 x 50 distance matrices
Run time 100 temperature values,
10000 iterations per temperature
Generators Mersenne Twister with reduced period length
(denoted by r-x with x=period length)
Seeds per generator | 50

Table 5.2: Parameters of Experiment 1.

Experiment 2: Simulated Annealing with a varying nhumber of bits per number

In Experiment 2, we ran the Simulated Annealing heuristic with three different
bit sources: The quantum generator, the Diehard sequence and the Trivium
stream cipher. Our original goal was to investigate if any of these generators
produces better resp. worse results than the others. Note that for the Diehard
and Trivium sequence, even a better-than average result would imply some
deficit in the sequence — they were both designed to “behave” like a random
sequence, and causing a better result than a random sequence would make

them distinguishable from a truly random source.

Parameter | Value
Heuristic Simulated Annealing
Input 8 symmetric 50 x 50 distance matrices
Run time 100 temperature values,
10000 iterations per temperature
Generators Numbers constructed from 8, 10, 12 or 16 bits of a

random bit source.

D-k denotes bits from the Diehard sequence,
Q-K denotes bits from a quantum generator and
T-k denotes bits from the Trivium stream cipher.
Seeds per generator | 50

Table 5.3: Parameters of Experiment 2.

For each of the three bit sources, we created sequences of numbers in [0, 1) with
four different block sizes: For k € {8,10,12,16}, we interpreted blocks of k bits
as numbers in {0,1,...,2¢ — 1}, and divided these numbers by 2% to map them
to the interval [0, 1).
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— (Q\] — ~
_§ § E E — N — [q\l
9 q 3 i g k= £ £
= & & § £ 5 £ i
= p= a a A A = =
Q-8vs.Q X X X X X X X X
Q-10vs. Q X X X X X X X X
Q-12vs. Q X X X X X X X X
D-8vs. Q X X X X X X X X
D-10vs. Q X X X X X X X X
D-12vs. Q X X X X X X X X
D-16 vs.Q 0566 0.333 0.79 0932 0.539 0.372 0.422 0.908
T-8 vs. Q X X X X X X X X
T-10 vs. Q X X X X X X X X
T-12 vs. Q X X 0.049 X X X X X

T-16 vs. Q 0996 0.841 0.637 0.584 0.396 0.872 0.622 0.252
Q-8vs.D-8 0277 0.644 0.662 0941 0.645 0.048 0.466 0.468
Q-8vs. T-8 0.077 0967 0.787 0.367 0.861 0.081 0.549 0.869
D-8vs. T-8 0.711 0.661 0.883 0.481 0519 0.82 0.916 0.338

Q-10vs. D-10 0.617 045 0469 0.103 0.739 0.624 0.35 0.567
Q-10vs. T-10 0.066 0.434 0.379 0.725 0.694 0.271 0.036 0.393
D-10vs. T-10 0.016 0.164 0.898 0.071 0.96 0.547 0.25 0.142
Q-12vs.D-12 0.832 0.674 0.635 0.429 0471 0.822 0.375 0.035
Q-12vs. T-12 0.798 0.109 0.017 0.72 0.728 0.301 0.431 0.087
D-12vs. T-12 0.601 0.231 0.015 0.638 0.634 0.101 0.899 0.624
Q-16vs. D-16 0.859 0.447 0.517 0.884 0.461 0.876 0.129 0.033
Q-16vs. T-16 0.012 0.562 0.307 0.288 0.267 0.139 0.234 0.741
D-16 vs. T-16 0.046 0.211 0.671 0.311 0.758 0.25 0.66 0.08

Table 5.4: The p-values of Experiment 2. Values marked with x were smaller
than 0.001. A row designated with “G-k vs. Q” contains the p-values
of a one-sided t test with the alternative hypothesis “Source G with
blocks of k bits leads to a larger average result than the quantum
generator with blocks of 16 bits”. Analogously, lines denoted “G1-k
vs. G2-k” corresponds to a one-sided t test with alternative hypothesis
“Source G with blocks of & bits leads to a larger average result than
source G, with blocks of k bits”.
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Length of shortest tour found
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Q-8 Q-10 Q-12 Q-16 D-8 D-10 D-12 D-16 T-8 T-10 T-12 T-16

Generator

Figure 5.9: Simulated Annealing and the Traveling Salesman Problem with three
different bit sources, limited to different numbers of bits per random
number (Experiment 2). Horizontal axis: Generator used. Vertical
axis: Length of the shortest tour found with the help of that generator.
For further parameters, see Table 5.3.

A difference between the three sources could not be observed. However, an-
other connection was discovered: The number of bits that were used to create a
random number significantly determined the quality of the solution. A repre-
sentative plot for one of the input matrices can be seen in Figure 5.9. With equal
block sizes, the actual bit source did not matter, and all three sources led to very
similar results. However, a lower number of bits caused Simulated Annealing

to produce worse results, independently from the bit source.

Experiment 3: Simulated Annealing and a biased random bit source

In Experiment 3, we wanted to find out if a biased source of random bits could
influence the output of Simulated Annealing. We again used the heuristic to
solve the Traveling Salesman Problem instances described above (see Exper-
iment 1). As our source of randomness, we used the Mersenne Twister and

produced biased numbers in the following way: During each run, we specified
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the probability p to obtain a 0 bit. We then drew 12 random numbers in the
interval [0, 1). Each number smaller than p resulted in a 0, each number greater
than or equal to p resulted in a 1. Those 12 bits were then interpreted as a binary
number in [0, 1) and passed to the algorithm.
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b-0.05 b-0.15 b-0.25 b-0.35 b-0.45 b-0.55 b-0.65 b-0.75 b-0.85 b-0.95

Source of randomness

Figure 5.10: Simulated Annealing and the Traveling Salesman Problem with a
biased bit source (Experiment 3). Horizontal axis: Generator used.
Vertical axis: Length of the shortest tour found with the help of that
generator. For further parameters, see Table 5.6.

The parameters for this experiment can be found in Table 5.6.

The optimal tour lengths we achieved can be seen in Figure 5.10. Table 5.5 shows
the p-values obtained with the one-sided t-test and the alternative hypothesis
“The biased source leads to a higher average result than the non-biased source”.
When the probability for a 0 was increased or decreased by 0.1, a total of 4 out
of 16 p-values were smaller than 0.05, a sign that a bias of 0.1 already leads to a
slight deterioration of the result. A stronger bias showed a definite increase in
the average solution — When increasing or decreasing the probability of a 0 by

0.15 or more, the p-values remained almost consistently below 0.05.
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b-0.05
b-0.1
b-0.15
b-0.2
b-0.25
b-0.3
b-0.35
b-0.4
b-0.45
b-0.5
b-0.55
b-0.6
b-0.65
b-0.7
b-0.75
b-0.8
b-0.85
b-0.9
b-0.95

X X X X X M. Twister 1

X
0.01
0.228
0.538
0.5
0.718
0.184
0.008
0.001
X

X X X X

X X X X X M. Twister 2

X
0.02
0.081
0.255
0.5
0.437
0.014
0.004
X

X X X X X

X X X X X Quantum 1

0.001
0.042
0.461
0.986
0.5
0.28
0.105
0.506

X X X X X

X X X X X X X Quantum 2

0.038
0.118
0.5
0.374
0.033
X
0.003
X

X
X
X
X

5.3 Experimental Setup and Results

X X X X X X Diehard 1

0.003
0.418
0.575
0.5
0.306
0.114
0.017

X X X X X

X X X X X X X Diehard 2

0.128
0.368
0.5
0.053
0.01
0.001

X X X X X

X X X X X Trivium 1

X

0.046
0.975
0.6
0.5
0.534
0.402
0.066
0.012

X X X X

X X X X X Trivium 2

X

0.014
0.713
0.235
0.5
0.587
0.408
0.059

X X X X X

Table 5.5: The p-values of Experiment 3. Values marked with x were smaller
than 0.001. b-x denotes a generator with a probability of x to output a

0 bit. For each random number, 12 of these bits were combined.
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Parameter | Value
Heuristic Simulated Annealing
Input 8 symmetric 50 x 50 distance matrices
Run time 100 temperature values,
10000 iterations per temperature
Generators Biased numbers constructed from 12 biased bits
(b-p denotes that each bit was equal to 0
with probability p)
Seeds per generator | 50

Table 5.6: Parameters of Experiment 3.

Experiment 4: Simulated Annealing and quasi-random sequences

In Experiment 4, the Simulated Annealing heuristic was again used to solve an
instance of the Traveling Salesman Problem. Initial temperature and cooling

schedule were the same as in Experiment 1.

700
|
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|

Length of shortest tour found
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|

.

100
|

T T T T T T T T T T T T
v-2 v-8(p;) v-8(p;) v-8(ps) v-8(ps) h-2,3 h-25 h-35 h-27 h-37 MT Q

Source of randomness

Figure 5.11: Traveling Salesman Problem with Simulated Annealing and quasir-
andom sequences (Experiment 4). Horizontal axis: Pseudorandom
number generator we used. Vertical axis: Length of the shortest tour
found with the help of that generator. For further parameters, see
Table 5.8.
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— (q\l
o o — [q\l
2 2 g & = N — o
§ § B B 'c% '(% = =
S £ £ §E £ £ £ £
1 M 5 :’ o= o= — o
= = o o A A i is
vde2 X X X X X X X X
vde8pl  x X X X X X X X
vde8p2  x X X X X X X X
vdce8p3 X X X X X X X X
vdc8p4 X X X X X X X X
hal2-23  x  0.076 0.034 0.029 0.005 x 0.01  0.005
hal2-25 0.003 0.675 0.072 0.02 X x 0.054 0.011
hal2-35 0.003 0.019 0.006 0.002 x  0.001 0.01 X

hal2-27 0.003 0.413 0.059 0.004 0.004 0.128 X X
hal2-37 0.018 0.16 X 0.01 0.002 x 0.008 0.016
MT 0.012 0.713 0.07 0363 0.613 0.424 0.909 0.653

Table 5.7: The p-values of the one-sided t tests of Experiment 4. Values marked
with x were smaller than 0.001

This time we used van der Corput sequences and Halton sequences of di-
mension 2 as sources of randomness. Each of the van der Corput and Halton
sequences was started at 50 different points, the Mersenne Twister was used
with 50 different seeds. Since the roulette wheel algorithm does not need tuples
from the random source, we used the Halton sequences in a simplified way
and flattened them: Let ((x11,x12), (x21,%22), (x31,X32),...) be a Halton sequence of
dimension 2. Then we used the 1-dimensional sequence (x11,x12,%21,X22,X31,. . .)
instead. For the van der Corput sequences in base 8, we additionally permuted

the digits of n, i.e. instead of ¢, in Definition 17, we used

o)

op(n) =Y p(n)b~"" |
j=0

where p was a permutation of {0,...,7}. We used the permutations
p1=(024601357),

p2=(03614725),

p3=(25641037)and

ps=(36451720)

(meaning that p; maps0to2,1to4,2t06,...), as described in [25].

105



5 Local and population based search heuristics

Parameter | Value
Heuristic Simulated Annealing
Input symmetric 50 x 50 distance matrix
Run time 100 temperature values,
10000 iterations per temperature
Generators van der Corput sequences of base 2 (vdc2)

van der Corput sequences of base 8 (vdc8-px)
2-dimensional Halton sequences (Hal-xy)
Mersenne Twister (MT)

Seeds per generator | 50

Table 5.8: Parameters of Experiment 4.

The results of Experiment 4 can be seen in Figure 5.11. Here, “v-2” denotes the
van der Corput sequence in base 2, “v-8(p1)” to “v-8(p4)” denote van der Corput
sequences in base 8, with permutations 1 to 4, and sources beginning with “h-"

denote different Halton sequences.

With the use of van der Corput sequences, the algorithm consistently found
worse solutions than with the Mersenne Twister, whereas the use of Mersenne
Twister and Halton sequences both led to good solutions. When we compare
the means with the help of a t test and take a closer look at the p-values (see
Table 5.7), only the Mersenne Twister shows non-suspicious p-values, while the
Halton sequences lead to many p-values around 0.01, a sign that they probably
lead to worse solutions.

Experiment 5: Simulated Annealing and k-wise independence

In Experiment 5, we tried to measure the influence of k-wise independence on
the quality of the Simulated Annealing heuristic. We fixed the range m of an
explicit polynomial generator at m = 1000 and varied its degree from k = 2 up
tok=8.

To find good coefficient sets for that generator, we used the following approach:
For each degree k, we created 200 coefficient sets at random, i.e. we chose the
coefficients ay, ... ,ax. For each of these coefficient sets, we then output 100000
numbers with a polynomial generator that used these coefficients. Each of these

output sequences was then compressed individually with the bzip2 algorithm.
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5.3 Experimental Setup and Results

Parameter | Value

Heuristic Simulated Annealing

Input symmetric 50 x 50 distance matrix

Run time 100 temperature values,
10000 iterations per temperature

Generators Polynomial generators with period length 10000

and degree k € {2,...,10} (denoted by p-k)

Mersenne Twister

Seeds per generator | 60 (20 for each parameter set)

Table 5.9: Parameters of Experiment 5.

poly-2 vs. Q
poly-4 vs. Q
poly-6 vs. Q
poly-8 vs. Q
poly-2b vs. Q X 0.002 X X
poly-4bvs.Q 059 0.245 0.393 0.225 0.096 0.084 0.678 0.232
poly-6bvs.Q 0.205 0.252 0.391 048 0.03 0.099 0.953 0.682
poly-8bvs.Q 0.667 0.598 0.391 0.07 0.003 0.275 0.638 0.491

X X X X M. Twister 2
X X X X Quantum 1
X X X X X Quantum 2
X X X X X Diehard 1
X X X X Trivium 1
X X X X Trivium 2

X X X X X M. Twister 1
X X X X X Diehard 2

Table 5.10: The p-values of the one-sided t tests of Experiment 5. Values marked
with x were smaller than 0.001.

For our experiment, we only chose the three coefficient sets that led to the three
longest files after compression. That way, we tried to avoid sequences with

obvious regularities.

Most other parameters were chosen as for Experiment 1. For an overview of the

parameters, see Table 5.9.

The results of the experiment are detailed in Table 5.10, a representative plot
is shown in Figure 5.12. Increasing the degree of the polynomial generator
did not significantly increase the quality of the solution. Comparing with the
results of Experiment 1, the solutions achieved with the polynomial generators

are comparable to those achived when using a pseudorandom generator with
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Figure 5.12: Traveling Salesman Problem with Simulated Annealing and poly-
nomial generators (Experiment 5). Horizontal axis: Pseudorandom
number generator we used. Vertical axis: Length of the shortest tour
found with the help of that generator. For further parameters, see
Table 5.9.

period length of 1000 — a two-sided t test that compared the results for the
polynomial generators with the results for the Mersenne Twister with reduced
period length of 1009 didn’t result in a suspicious p-value. Since our polynomial
generators had a modulus m = 1000, and thus a period length of 1000, period
length seems to have more influence on the result than k-wise independence of

the pseudorandom numbers.

Experiment 6: Simulated Annealing and DeJong’s test functions

In Experiment 6, we tested the performance of Simulated Annealing on DeJong’s
suite of test functions. In order to get more distinctive results, we used versions
of these functions with relatively high dimensions: For functions fi, f3, f4 and
f5, we used dimension 20. For f;, dimension 2 was sufficient.

The Simulated Annealing heuristic started at temperature 20. For some common
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5.3 Experimental Setup and Results

Parameter | Value
Heuristic Simulated Annealing
Run time 100 temperature values,
500 iterations per temperature
Generators Mersenne Twister with reduced period length
(denoted by r-x),

van der Corput sequences (denoted by vdc...)
Halton sequences of dimensions 2
(denoted by hal2-x) and 20 (denoted by hal20)

Seeds per generator | 50

Table 5.11: Parameters of Experiment 6.

S ) 3 Ja fs
vdc2 vs. r-512009 X X X 0.454 0.58
vdc8pl vs. r-512009  x X x 0937 X
vdce8p2 vs. r-512009 0.003 X X X X
vdce8p3 vs. r-512009 0.042 X x 0989  x
vdc8p4 vs. r-512009 1 0.955 X 0.984 X
hal2-23 vs. r-512009 X X X 0.176 X
hal2-25 vs. r-512009 1 0.832 X 0.859 X
hal2-35 vs. r-512009 X X X 0.747 X
hal20 vs. r-512009 0.215 0.117 0.003 X 0.335
r-1009 vs. r-512009 0.052 0.115 X X 0.16
r-2003 vs. r-512009 0.112 0.025 X X 0.734
r-4001 vs. r-512009 0.17 0.039 X X 0.645
r-8009 vs. r-512009 0.19 0.13 X X 0.933
r-16001 vs. r-512009 0.182 0.27 X X 0.578
r-32003 vs. r-512009 0.433 0.25 0.003 X 0.501
r-64007 vs. r-512009 0.095 0.133 X X 0.606

r-128021 vs. r-512009 0.177 0.582 0.028 X 0.177
r-256019 vs. r-512009 0.02 0.799 0.108 0.001 0.263

Table 5.12: The p-values of the one-sided t test of Experiment 6. Values marked
with x were smaller than 0.001.

parameters of this experiment, see Table 5.11. To obtain a neighbor of the actual
state, we changed every component of the current vector by a pseudorandom
number that was Gaussian distributed with mean 0 and standard deviation
0.02 times the range of the function’s domain. Such a number was created by
drawing a uniformly distributed number in the interval [0,1) and applying

the inverse probability function of the normal distribution on that number. As
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Figure 5.13: Solving DeJong’s test function f3 with Simulated Annealing (Exper-
iment 6). Horizontal axis: Generator used. Vertical axis: Minimum
value of f3 found with the help of that generator. For further pa-
rameters, see Table 5.11.

the source of randomness we used the modified Mersenne Twister, where the
period length was artificially reduced to values ranging from 1003 to 512009,
as well as van der Corput and Halton sequences with several different bases.
Three of the Halton sequences had dimension 2, whereas one had dimension
20, using the first 20 primes as bases. As in Experiment 1, we used primes as
period lengths for the reduced Mersenne Twister to avoid moving in cycles. For
each run we measured the minimum function value the Simulated Annealing

heuristic found in the specified domain.

A representative plot of this experiment can be seen in Figure 5.13, where f3
is solved with the help of a Mersenne Twister with artificially reduced period
length. The p-values of this experiment can be seen in Table 5.12. Most of
the quasi-random sequences are not suited for this kind of problem, and the
generators with reduced period length caused difficulties to solve functions f3
and f; and, to some extent, f,. Even the Halton sequence of dimension 20 had

problems with functions f3 and fj.
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5.3 Experimental Setup and Results

These results indicate that the results of our previous experiments are not lim-
ited to the Traveling Salesman Problem, or the class of discrete optimization
problems, but also applicable to the optimization of some continuous func-

tions.

5.3.2 Population based heuristics

Experiment 7: A genetic algorithm with linear congruential generators

In Experiment 7 we ran a simple evolutionary algorithm on the same instance
of the TSP problem as in Experiment 1. In each step, the fitness values of the
population were calculated and the next population then chosen by a roulette
wheel algorithm (see Listing 5.1 in Section 5.2). Then 50% of the population was
mutated, switching two permutation elements. From this new population, we
then created 10 new elements by combining two random elements with the
edge-3 crossover operator [62]. These new elements replaced one of their parents
each. The algorithm was run for 10000 generations. For each new generation,
we made sure that the best element from the previous generation survived the

selection procedure.

Parameter \ Value
Heuristic Evolutionary Algorithm
Input 8 symmetric 50 x 50 distance matrices
Population size 100
Run time 10000 iterations
Generators linear congruential generators
Mersenne Twister (MT)
Quantum generator (Q)
Seeds per generator | 60 (20 for each of three parameter sets for lcg)

Table 5.13: Parameters of Experiment 7.

As source of randomness, we used linear congruential generators that had max-
imum period lengths from 1000 up to 512000. Their parameters were chosen
such that their output could not be well compressed by the bzip2 program.

To this end, we randomly chose parameters that could guarantee maximum
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Figure 5.14: Solving the Traveling Salesman Problem with a population based
approach (Experiment 7). Horizontal axis: Pseudorandom num-
ber generator we used (numbers denote the length of the linear
congruential generator). Vertical axis: Length of the shortest tour
found with the help of that generator. For further parameters, see
Table 5.13.

period lengths, then saved sequences obtained from a linear congruential gener-
ator with these parameters and compressed the resulting file. For each period
length, we used the three parameter sets that resulted in the 3 biggest files after
compression. For each of these parameter sets, we used 20 different seeds. For

comparison, we also used the Mersenne Twister and the quantum generator.

Figure 5.14 shows the results of this experiment, p-values obtained from a one-
sided t test can be found in Table 5.14. Only generators with very short period
lengths led to visibly worse results than the quantum generator. Note that the
generator with period length 8192 was proposed by Kruskal in [65]. While it
can be computed very fast on a 16 bit architecture, it doesn’t seem to be well
suited for a genetic algorithm, with p-values less than 0.05 for 5 of our 8 input

matrices.
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1-1000 X X X 0.012 X X X 0.073
1-2000 0.065 0.025 0.002 0.176 0.005 X 0.002 0.163
1-4000 X X 0.001 0.005 X X X 0.004
1-8000 0.284 0.084 0.111 0.341 0.11 0.119 0.094 0.769
1-8192 0.194 0.002 0.147 0.375 0.033 X 0.008 0.045

1-16000 0.354 0.21 0.573 0.871 0.447 0.082 0.029 0.267
1-32000 0.614 0.392 0.071 0.737 0.56 0.049 0.221 0.828
1-64000 0.17 0.207 0.439 0.322 0.613 0.018 0.108 0.556
1-128000 0.21  0.12 0.953 0.459 0.295 0.291 0.076 0.792
1-256000 0.217 0.357 0.64 0.685 0.893 0.047 0.079 0.462
1-512000 0.071 0.887 0.527 0.673 0.335 0.361 0.284 0.425
MT 0.709 0428 0.29 0.598 0.264 0.398 0.129 0.442

Table 5.14: p-values of Experiment 7. Values marked with x were smaller than
0.001. Alternative hypothesis: “Using this generator leads to a higher
average solution than using the quantum generator.”

Experiment 8: A genetic algorithm with a varying number of bits per random
number

In Experiment 8 we used different numbers of bits to create our random num-
bers, analogously to Experiment 2. Remember that the number of bits used
to compose the random numbers had a very large effect on the Simulated

Annealing heuristic.

In contrast, the number of bits we used did not have a visible effect on the length
of the best tour the Genetic Algorithm found. Figure 5.15 shows a representative
plot, with the second input matrix we created with the Mersenne Twister, the
same input matrix that is shown for the other experiments. See also the table of p-
values (Table 5.16) for that experiment — for the other input matrices, comparing
two sequences generated from the same number of bits never led to a p-value
below 0.03. So the results for the quantum generator combining 16 bits should

probably be considered an outlier.
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5 Local and population based search heuristics

M. Twister 1
M. Twister 2
Quantum 1
Quantum 2
Diehard 1
Diehard 2
Trivium 1
Trivium 2

Q-8vs.Q 0.047 0338 0.244 0.854 0.831 0.172 0.914 0.794
Q-10vs.Q 0.742 0.015 0.578 0.847 0.463 0.379 0.955 0.739
Q-12vs.Q 0.186 0.824 0.245 0.644 0.361 0.065 0.261 0.989
Q-16 vs.Q 0.037 0.003 0.518 0.171 0.944 0.088 0.691 0.448

D-8vs.Q 0214 06 022 0933 0922 0.153 0.39 0.668
D-10vs.Q 0.599 0.069 0.358 0.866 0.915 0.62 0.427 0.901
D-12vs.Q 0464 0518 0.797 0.837 0438 0.141 0.6 0.544
D-16 vs.Q 0.488 0.548 0.364 0.731 0.039 0.174 0.491 0.976

T-8vs.Q 0341 0.098 0.634 0.636 036 0.297 0.849 0.543
T-10vs.Q 0.358 0.221 0.344 0.168 0.177 0.095 0.494 0.683
T-12vs.Q 0.582 0.693 0.067 0.295 0.538 0.168 0.211 0.459
T-16 vs.Q 0352 0.872 0.392 0.859 0.803 0.253 0.714 0.325

Q-8vs.D-8 041 057 0.889 0.659 0.771 0.992 0.158 0.76

Q-8vs. T-8 0.251 0.498 0.367 0.629 0.28 0.676 0.693 0.537

D-8vs. T-8 0.734 0.188 0.337 0.396 0.154 0.663 0.265 0.772
Q-10vs.D-10 0.72 0.559 0.634 0913 0.224 0.602 0.106 0.494
Q-10vs. T-10 0.384 0.221 0.611 0.076 0.483 0.359 0.119 0.877
D-10vs. T-10 0.593 0.529 0.966 0.069 0.051 0.172 0.875 0.411
Q-12vs. D-12 0.437 0.458 0.194 0.611 0.864 0.721 0.414 0.056
Q-12vs. T-12 0326 0.756 0.429 0.443 0.704 0.624 0.824 0.03
D-12vs. T-12 0.784 0.692 0.05 0.193 0.829 0.901 0.339 0.852
Q-16 vs. D-16 0.095 0.016 0.744 0.194 0.005 0.621 0.668 0.058
Q-16 vs. T-16  0.189 X 0.792 0.087 0.58 0.535 0.983 0.762
D-16 vs. T-16 0.74 0395 0.939 0.753 0.026 0.863 0.638 0.038

Table 5.15: p-values of Experiment 8. Values marked with x were smaller than
0.001. Alternative hypothesis: “Using this generator leads to a higher
average solution than when using the quantum generator.”
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5.3 Experimental Setup and Results

Parameter | Value

Heuristic Evolutionary Algorithm

Input 8 symmetric 50 x 50 distance matrices

Population size 100

Run time 10000 iterations

Generators Random bit sources Trivium, Diehard and the
quantum generator, with 8,10,12 and 16 bits
combined to create random numbers.

Seeds per generator | 50

Table 5.16: Parameters of Experiment 8.
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Figure 5.15: Solving the Traveling Salesman Problem with a population based
approach (Experiment 8). Horizontal axis: Pseudorandom num-
ber generator we used. Vertical axis: Length of the shortest tour
found with the help of that generator. For further parameters, see
Table 5.16.

Experiment 9: A genetic algorithm and a biased source of random bits

Compared to Simulated Annealing, the genetic algorithm found quite good
solutions when using generators with short period length. So one might also
expect some kind of robustness when using a biased source of random bits.

So we ran the genetic algorithm on our 8 distance matrices of the Traveling
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5 Local and population based search heuristics

Salesman Problem.

Parameter | Value

Heuristic Evolutionary Algorithm

Input 8 symmetric 50 x 50 distance matrices

Population size 100

Run time 10000 iterations

Generators Biased numbers constructed from 12 biased bits
(b-p denotes that each bit was equal to 0
with probability p)

Seeds per generator | 50

Table 5.17: Parameters of Experiment 9.
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Figure 5.16: Solving the Traveling Salesman Problem with a population based
approach (Experiment 9). Horizontal axis: Pseudorandom num-
ber generator we used. Vertical axis: Length of the shortest tour
found with the help of that generator. For further parameters, see
Table 5.17.

For parameters, see Table 5.17. A plot for one of the matrices is shown as Figure
5.16. A slight bias of only 0.05 increased the output noticeably only for 3 out of
16 cases, indicated by a p-value less than 0.05 when comparing the result with

the quantum generator via a one-sided t test. Increasing the bias beyond 0.05
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b-0.05
b-0.1
b-0.15
b-0.2
b-0.25
b-0.3
b-0.35
b-0.4
b-0.45
b-0.5
b-0.55
b-0.6
b-0.65
b-0.7
b-0.75
b-0.8
b-0.85
b-0.9
b-0.95

X X X X X X M. Twister 1

X

0.023
0.039
0.113
0.027
0.903
0.609
0.008

X X X X

X X X X X X M. Twister 2

0.018
0.072
0.735
0.482
0.869
0.532
0.565
0.043

X X X X

X X X X X X Quantum 1

0.047
0.37
0.587
0.824
0.996
0.979
0.946
0.058

X X X X

5.3 Experimental Setup and Results

X X X X X X X Quantum 2

0.343
0.512
0.314
0.759
0.933
0.986
0.104

X X X X

X X X X X X Diehard 1

0.262
0.634
0.954
0.976
0.828
0.895
0.911
0.4

X X X X X

X X X X X X Diehard 2

0.001
0.116
0.016
0.073
0.211
0.431
0.512
0.009

X X X X

X X X X X Trivium 1

X

0.013
0.085
0.34
0.468
0.954
0.841
0.961
0.028

X X X X

X X X X X X Trivium 2

X

0.003
0.301
0.776
0.492
0.602
0.885
0.002

X X X X

Table 5.18: The p-values of the one-sided t test of Experiment 9. Values marked

with x were smaller than 0.001.
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5 Local and population based search heuristics

showed an effect similar to Experiment 3, where Simulated Annealing was used
with a biased bit source.

Note that both Experiments 3 and 9 actually show a positive result: A bias of
0.05 is already quite high and combining 12 of these biased bits results in a dis-
tribution far from a uniform distribution. In practice, any good pseudorandom
generator should show a distribution much closer to the uniform distribution.
The bias of a lagged fibonacci generator shown in [27], for example, is much
smaller. On the other hand, the bias of a simple pseudorandom generator, like
the linear congruential generator, can easily surpass 0.05 when considering the
conditional probability to obtain a given number: In [50], a worst case for the
QuickSort algorithm was constructed where 25% of all seeds led to almost the
same situation, with the same current state of the random generator. It might
also be possible to create such a worst case scenario for a search heuristic like a

Genetic Algorithm, or Simulated Annealing.

Experiment 10: A genetic algorithm and quasi-random sequences

In Experiment 10, we tried to solve the Traveling Salesman problem with the
help of van der Corput sequences and Halton sequences of dimension 2 as
sources of randomness. Since the mutation step needs two random numbers,
quasi-random sequences of dimension 2 might look like an interesting tool,
while we expected sequences of dimension 1 (in our case van der Corput

sequences) to rather pose a problem to the genetic algorithm.

Parameter | Value

Heuristic Evolutionary Algorithm

Input symmetric 50 x 50 distance matrix
Population size 100

Run time 10,000 iterations

Generators van der Corput sequences of base 2 (vdc2)

van der Corput sequences of base 8 (vdc8-px)
2-dimensional Halton sequences (hal-xy)
Mersenne Twister (MT)

Quantum generator

Seeds per generator | 50

Table 5.19: Parameters of Experiment 10.
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Figure 5.17: Solving the TSP with a population based approach, using quasi-
random sequences (Experiment 10). Horizontal axis: Pseudoran-
dom number generator we used. Vertical axis: Length of the shortest
tour found with the help of that generator. For further parameters,
see Table 5.19.

Since the roulette wheel algorithm needs single numbers instead of tuples
from the random source, we flattened the Halton sequences as described in
Experiment 4. The van der Corput sequences in base 8 used permutations, see
Experiment 4 for further details.

The results of Experiment 10 for one of the inputs can be seen in Figure 5.17,
the p-values obtained with the one-sided t test, comparing each generator
with the quantum generator, can be seen in Table 5.20. Additionally, we also
tested if the Halton sequences led to a better result than the quantum generator.
First of all: The genetic algorithm seems to be much less effected by the usage
of van der Corput sequences. For comparison, see Figure 5.11 and Table 5.7,
which show a Simulated Annealing heuristic with the same task of solving
the TSP with quasi-random sequences. Simulated Annealing had much larger
problems with pseudorandom numbers that do not spread well in 2 dimensions.

In addition, note that running the genetic algorithm with 2-dimensional Halton
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vdc2 vs. Q X X X X X X X X
vdc8plvs.Q X X X X X X X X
vde8p2vs. Q  x X X X X X X X
vdce8p3vs. Q X X X X X X X X
vdc8p4 vs. Q X X X X X X X X

hal2-23vs.Q 0.883 0957 0.938 0907 0984 099 0.998 0.972
hal2-25vs.Q 0.781 0975 0981 0.991 0.947 0.987 0.998 0.954
hal2-35vs.Q 0.613 0989 0994 0.84 0.881 0.89 096 0.995
hal2-27vs.Q 0.839 0.772 0.94 0988 0.996 0.991 0.999 0.974
hal2-37 vs.Q 0.855 0.797 0985 0916 094 0.998 0.996 0.989

MTvs.Q 051 047 0.834 0.658 0.128 0.745 0.656 0.739
Qwvs. hal2-23 0.117 0.043 0.062 0.093 0.016 0.01 0.002 0.028
Qwvs. hal2-25 0.219 0.025 0.019 0.009 0.053 0.013 0.002 0.046
Qwvs. hal2-35 0.387 0.011 0.006 0.16 0.119 0.11 0.04 0.005
Qwvs.hal2-27 0.161 0.228 0.06 0.012 0.004 0.009 0.001 0.026
Qwvs. hal2-37 0.145 0.203 0.015 0.084 0.06 0.002 0.004 0.011

Table 5.20: The p-values of Experiment 10. Values marked with x were smaller
than 0.001. “vdc” denotes a van der Corput sequence, “hal” a Hal-
ton sequence, “MT” the Mersenne Twister and “Q” the quantum
generator.

sequences led to results that were even slightly better than those obtained with

the quantum generator, leading to many p-values at or below 0.01.

Experiment 11: Using quasi-random sequences for different steps

In Experiment 11, we wanted to find an explanation why the use of van der
Corput sequences in Experiment 10 led to worse solutions. Particularly, we
wanted to know which of the steps in the Genetic Algorithm suffered from
using quasirandom sequences — crossover, mutation or selection via the roulette
wheel. To this end, we separately provided the roulette wheel algorithm and the
mutation resp. crossover steps with van der Corput sequences while providing

the other parts with numbers from the Mersenne Twister.
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5.3 Experimental Setup and Results

M-vdc2
M-vdc8pl
M-vdc8p2
M-vdc8p3
M-vdc8p4 X X X

C-vdc2 0.539 0305 0.868 0.289 0.033 0.492 0.514 0.304
C-vdc8pl 0.474 0.548 0.655 0.224 0.019 0.676 022 0.727
C-vde8p2 0957 0.787 0.809 0.326 0.182 0.657 0.458 0.667
C-vde8p3 0.689 0.715 0.433 0.088 0.206 0.854 0.423 0.8
C-vdc8p4 0.828 0.691 0.487 0.682 0.372 0.789 0.221 0.152

R-vdc2 091 0906 0923 0.869 0.78 0433 0.718 0.681
R-vde8pl 0.9 0992 0.872 0491 0961 0.542 0.798 0.423
R-vdc8p2 093 093 0.995 0967 0.885 0.918 0.969 0.874
R-vdc8p3 0.982 0999 0.859 0981 098 0482 0.76 0.809
R-vdc8p4 0.939 0.992 0917 0.606 0.926 0.971 0.746 0.491

X X X X X M. Twister 1
X X X X M. Twister 2
X X X X X Quantum 1
X X X X X Quantum 2
X X X X X Diehard 1
X X X X X Diehard 2
X X X X Trivium 1
X X X X Trivium 2

Table 5.21: p-values of Experiment 11. Values marked with x were smaller than
0.001. M-X denotes cases where the mutation step was provided with
sequence X. Analogously, C-X denotes cases where the crossover step
used sequence X and R-X denotes cases where the roulette wheel
algorithm used sequence X. The other parts used the Mersenne
Twister.
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Figure 5.18: A population based approach, using different pseudorandom gen-
erators (quasirandom sequences and a Mersenne Twister) for muta-
tion and selection (Experiment 11). Horizontal axis: Pseudorandom
number generator we used — “M-..” used quasiradnom sequences
for mutation and crossover, “R-..” used quasirandom sequences for
roulette wheel selection. Vertical axis: Length of the shortest tour
found with the help of that combination of generators. For further
parameters, see Table 5.22.

Note that in the Schema Theorem, only the selection procedure actively con-
tributes to a constant shift towards a population with higher average fitness.
Both crossover and mutation worsen the bound given in that theorem. However,
they are necessary components that help move away from local optima. Addi-
tionally, the fact that these two components worsen the lower bound doesn’t

necessarily imply that they actually worsen the population’s fitness.

A plot of the results of this experiment for one of the inputs can be seen in Figure
5.18, the p-values from the comparison with the quantum generator can be seen
in Table 5.21. Only using van der Corput sequences in the mutation step led
to worse results. Using them for the crossover or selection step did not result
in any significant increase in the length of the shortest tour found. Note that
for the crossover step, this is probably not too surprising, since the crossover
operation itself was implemented in a deterministic way, and only the choice of

parents for the crossover was performed randomly.
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5.3 Experimental Setup and Results

Parameter | Value

Heuristic Evolutionary Algorithm

Input symmetric 50 x 50 distance matrix
Population size 100

Run time 10,000 iterations

Generators Mersenne Twister (MT)

Combination of van der Corput sequences
and Mersenne Twister:
M-vdc... : van der Corput sequence
for mutation/crossover
R-vdc... : van der Corput seq. for roulette wheel
Seeds per generator | 50

Table 5.22: Parameters of Experiment 11.
Experiment 12: Optimizing DeJong’s test functions

We also tried to find some connections between the quality of the source of
randomness and the result of Genetic Algorithms when optimizing continuous
functions. Therefore we applied genetic algorithms on DeJong’s test functions.
Like in Experiment 6, we chose dimension k = 20 for functions fi, f3, f4 and fs,
and dimension k = 2 for f5.

For each of these functions, the population consisted of 50 individuals rep-
resented as k-dimensional vectors. Selection was done via the roulette wheel
algorithm. For crossover, each component of the offspring vector was chosen ran-
domly from one of the parents. For mutation, we added a Gaussian distributed
term to each component. The variance was controlled by a “mutation of muta-
tion rates” approach, i.e. for each individual an additional vector memorized
the variance for the mutation step. This additional vector was also mutated, and

the corresponding components were copied during the crossover step.

The results of this experiment are shown in Table 5.23, with a representative
plot shown in Figure 5.19. Van der Corput sequences again show clearly worse
results. But this was expected since all five function had to be optimized in more
than one dimension. Function f>, the only two-dimensional function, could be
solved quite well with the Halton sequences. Of the 20-dimensional functions,
only f4 and f5 could be solved relatively well with the two-dimensional Halton

sequence, but with 2 out of 5 cases showing a p-value of 0.05 or below, for

123
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N ) 3 Ja fs
vdc2 vs. r-512009 X X X X
vdce8pl vs. r-512009 X X X X X
vdc8p2 vs. r-512009 X X x 0033 X
vdce8p3 vs. r-512009 X X X X X
vdc8p4 vs. r-512009 X X X X X
hal2-23 vs. r-512009 X 0.992 X 0.161 0.037
hal2-25 vs. r-512009 X 1 X 0.04 0.367
hal2-35vs. r-512009 x 0951 x  0.833 0.023
hal2-37 vs. r-512009 0.216 0969  x  0.839 0.332
hal2-27 vs. r-512009  x 0956 X 0.05 0.179
hal20 vs. r-512009 X 0.008 X 0.839 X

r-1009 vs. r-512009 0.677 0.743 0.747 0.839 0.295
r-2003 vs. r-512009 0.166 0583 0.5 0.839 0.53
r-4001 vs. r-512009 0.812 0.431 0.855 0.839 0.5
r-8009 vs. r-512009 0.529 0.5 0909 0.839 0.5
r-16001 vs. r-512009 054 05 0916 0.5 0.5
r-32003 vs. r-512009 0.395 0.5 0408 0.5 0.5
r-64007 vs. r-512009 0.5 0.5 0.5 0.5 0.5
r-128021 vs. r-512009 0.5 0.5 0.5 0.5 0.5
r-256019 vs. r-512009 0.5 0.5 0.5 0.5 0.5

Table 5.23: The p-values of the one-sided t test of Experiment 12. Values marked
with x were smaller than 0.001. Each generator was compared with
the Mersenne Twister via a one-sided t test.
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Figure 5.19: Solving DeJong’s function f3 with a genetic algorithm and quasi-
random sequences.

each of the two functions. Even the 20-dimensional Halton sequence found
significantly worse solutions. The Mersenne Twister with artificially reduced
period length had no problem solving any of the five functions. This indicates
that using the same random numbers over and over again usually doesn’t
decrease the quality of the solution obtained from a Genetic Algorithm, as long

as the initial sequence is not too regular.

5.3.3 Discussion

For the Simulated Annealing heuristic, the quality of the solution for the Travel-
ing Salesman Problem depended mainly on the period length of the pseudo-
random generators we used. The results we received when using simple linear
congruential generators were comparable with those we received when using
“high end” generators like the Mersenne Twister or numbers from a quantum
generator, when we artificially reduced the period lengths of those high-end
generators to match those of the LCGs. Even the usage of an explicit polynomial
generator led to a result that seemed to only depend on the period length.
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5 Local and population based search heuristics

When using quasirandom numbers, Halton sequences of dimension 2 lead to
results almost comparable to the results when using a Mersenne Twister or
quantum generator, although the results from Halton sequences were slightly
worse. Van der Corput sequences however led to drastically inferior results,
which shows that sequences that show strong regularities in low dimensions
should be avoided in conjunction with Simulated Annealing. For the Traveling
Salesman Problem, for example, where the procedure to find a neighbor depends
on picking pairs of positions, the pseudorandom generator should at least be
able to provide a large number of pairs.

The Genetic Algorithm seemed to be very robust with respect to the quality
of the pseudorandom generator we used (see Figure 5.14), with only small
deteriorations for linear congruential generators of very small period lengths
up to 4000. When using Halton sequences of dimension 2, the solutions did
not get worse than when using the quantum generator, when solving the Trav-
eling Salesman Problem. Only the usage of one-dimensional van der Corput
sequences led to a decrease in the quality of the solution. Here, the mutation
step was identified as the crucial step that depends on good 2-dimensional
distribution.

The effects of a source of biased bits had comparable results on both Simulated
Annealing as well as the genetic algorithm: For a slight bias up to 0.05, the
difference was often not noticeable, while for larger biases, the length of the

shortest tour increased heavily.
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6 Discussion of theoretical and
experimental results

This thesis presents new theoretical results on the effects of using non-perfect
random numbers for probabilistic algorithms (Chapters 3 and 4) as well as
empirical studies (Chapter 5) that to some extent complement these theoretical
studies. We found connections to the error probability, the running time as well
as the quality of the solution of algorithms. We will now recapitulate these

results and discuss the various notions of randomness that they incorporate.

For the equality test for polynomials, we found that the error probability of its
repeated execution is essentially determined by the number of internal states of
the pseudorandom generator. This, in turn, is closely related to the Kolmogorov
complexity resp. the Shannon entropy of the resulting sequence — the seed
of a pseudorandom sequence is an efficient description of the sequence itself.
However, this result was only due to the similarity between sequences that
stem from different seeds. An alternative approach for creating pseudorandom
numbers might eliminate this connection and create numbers that are still
not perfectly random but can be used as if they were, at least for that special
application.

For Karger’s probabilistic algorithm for the minimum cut of a graph, and
especially for Schoning’s random walk algorithm for the Boolean Satisfiability
Problem, our analysis of the new error probability was based on the bias of the
random source. The analysis of the latter two algorithms used the fact that the
random choices can be divided into two distinct groups, “good choices” and
“bad choices”. So the quality of the random source seems to be measurable by
only distinguishing between these two alternatives. However, the implications

of the random numbers might be more subtle: Especially in the scenario of the
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6 Discussion of theoretical and experimental results

minimum cut, there might exist a finer notion that even distinguishes between
various levels of “good choice”. While our analysis is based on a minimum
number of edges present in the graph during each step, this number might well
depend on the random choices during the run of the algorithm. In other words:
some random choices might only eliminate few edges, thus leaving many edges
to choose from, while other random choices might eliminate many edges, thus
increasing the chance for eliminating the minimum cut. Since this process even
depends on the choices made before then, the exact relation is probably very
hard to identify.

In addition, note that the theoretical model of the biased sources we considered
for the minimum cut and SAT algorithm provide sequences of relatively high
Shannon entropy: Since the numbers from these sources are not considered
dependent (the probabilities only depend on the given input), the entropy of
each number is equal to its conditional entropy (conditioning on the previous
numbers), adding to the total entropy of the overall sequence. In the case of
the random walk algorithm, the entropy of the total random sequence is even
exponential in the size of the input formula. This is more than any reasonably
designed pseudorandom generator will generate. But still, no results are known
that would show a malevolent influence of a concrete pseudorandom generator
on the error probability of any of these two algorithms.

In the case of the randomized QuickSort algorithm, it is somehow obvious that
a separation of the random numbers into the categories “good” and “bad” will
not lead to a satisfying correlation between randomness and the algorithm’s

running time. We rather found out that the function

~1
g(n) = (;I%H(l‘/ﬂ)>

shows a connection to the lower bound of QuickSort’s running time, which
complements the connection to the upper bound shown in List’s thesis. Here
the probabilities p; of selecting a pivot element of rank i are weighted with the
binary entropy H(i/n) of i/n and summed up. While this term clearly shows a
connection to the Shannon entropy, the exact kind of this relation still remains
difficult to interpret.
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Probabilistic search heuristics, like Simulated Annealing and Genetic Algo-
rithms, are widely used and can be adapted to various situations. However, due
to their complexity, they are rather hard to analyze theoretically. In order to col-
lect some knowledge about these techniques, we artificially created sequences
of limited randomness. We could then compare the results gained with these
artificial sequences with the results gained from “true” random numbers. These
numbers were recorded during physical experiments and should, according
to quantum physicists, be considered as sequences of independent, uniformly
distributed bits. In these experiments, the two heuristics partially showed dif-
ferent behavior when using sequences of varying randomness. For example,
limiting the period length of the random source, which essentially simulates a
limited number of seeds and thus entropy, had a high influence on Simulated
Annealing but almost none on the Genetic Algorithm. Eliminating randomness
altogether and using low-discrepancy sets showed a similar result: Simulated
Annealing was clearly influenced towards worse solutions, while the Genetic
Algorithm showed no difference. On the other hand, introducing a bias to the
random sequences influenced both heuristics to about the same degree.

Summarizing, measuring the randomness of a sequence in the context of prob-
abilistic algorithms remains an interesting task. There does not seem to exist
a universal measure that can be used to describe the usefulness of a pseu-
dorandom sequence for probabilistic algorithms in general. In the context of
probabilistic algorithms, it can be appropriate to measure randomness rela-
tive to the problem respectively algorithm it is used for. For example, even
sequences of high entropy might cause a probabilistic algorithm to produce
sub-optimal results, while other sequences of low entropy might not. Especially
when considering concrete implementations of pseudorandom generators, Kol-
mogorov complexity and its equivalent notions seem inappropriate, since they
concentrate on asymptotic behavior rather than concrete, finite objects. Different
probabilistic algorithms can vary frequently in the properties of the random
numbers they need as well as in the actual amount of randomness. For ev-
ery probabilistic algorithm, there seems to be an individual notion of what a

“typical” random sequence should look like.
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7 Major results of this thesis

In modern computer science, many problems are solved with the help of prob-
abilistic algorithms. These are often faster than the best known deterministic
algorithm for the same problem. Although they often incorporate an error
probability, a repeated execution of the algorithm usually decreases that error
probability down to a negligible extent.

The analysis of the running time as well as the error probability of a probabilistic
algorithm usually presume that the random numbers used by the algorithm
are uniformly distributed and independent. However, since computers are
deterministic devices, such perfect randomness is difficult to obtain — in order to
incorporate “real” randomness, information from outside the computer system
must be acquired. Getting such input is slow and therefore used scarcely —
generally such numbers are used as a seed for a pseudorandom generator that

constructs long sequences from that seed.

This thesis concentrates on the analysis of algorithms with respect to the em-
ployment of random sources that do not provide perfect random numbers, like

pseudorandom generators or biased sources.

In Chapter 2 we give an overview over the different notions of pseudoran-
domness and means that are used to measure the amount of randomness of
a sequence of numbers. Here we also describe how these notions are used in
practice to measure the quality of a source of randomness.

In Chapter 3 we then give new theoretical results for three algorithms that de-
scribe implications of using non-perfect random numbers. As a first example, we
show that for a basic randomized algorithm for comparing polynomials, repeat-
ing the algorithm several times does not always decrease its error probability
to the same extent, depending on the pseudorandom generator. We show that
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7 Major results of this thesis

for most established types of pseudorandom generators, this decrease mainly
depends on the number of possible internal states of that pseudorandom gen-
erator, and therefore mainly on the size of the seed. For Karger’s probabilistic
algorithm for finding the minimum cut of a graph, we show how the algorithm
can be adapted to a non-uniform source of randomness. This is shown for the
basic version as well as the more sophisticated version with two recursive calls.
For the random walk algorithm for the Boolean Satisfiability Problem, we show
how a bias from the uniform distribution of the random numbers influences the
error probability of the algorithm. The algorithm uses randomness to choose an
initial distribution as well as to control the direction of the random walk. We

show how both of these steps are influenced by a biased source.

In Chapter 4, we give a lower bound for the number of comparisons in the
Randomized Quicksort algorithm, based on the distribution on the choice of
the pivot elements. This complements the upper bound given by List in [14].
For both lower and upper bound, we show a connection to the min-entropy
of the random source. We also show that the number of bits consumed by the
QuickSort algorithm can increase when non-perfect random numbers are used,

although the number of pivot elements remains constant.

In the experimental part of this work we examine the impact of various sources
of randomness on quality of the solution of probabilistic optimization heuris-
tics. Here we concentrate on Simulated Annealing as a representant for local
search heuristics and a genetic algorithm as a representant for population based
heuristics. As a reference source of randomness we use bits provided by Prof.
Zeilinger’s group, gained with the help of a quantum theoretic experiment.
These bits are considered uniformly distributed and independent, based on
quantum theory. The results of our experiments show that the solution quality
of Simulated Annealing can be influenced to a large extent by the period length
of the random source. Quasi-random numbers were not suitable, even if their
scatter might at first glance look like an advantage. Using k-wise independent
random variables did not lead to an improvement over numbers from a linear
congruential generator. In contrast, the genetic algorithm was more robust ver-
sus the use of sequences with short period length and quasi-random numbers.
A bias on the bit level proved to influence both heuristics.
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8 Deutsche Zusammenfassung

Viele Problemstellungen werden heutzutage mit probabilistischen Algorith-
men gelost. Diese sind hdufig schneller als die besten bekannten determin-
istischen Verfahren. Die Fehlerwahrscheinlichkeit wird dabei tiblicherweise
aufler Acht gelassen, da eine wiederholte Ausfithrung des Algorithmus die
Fehlerwahrscheinlichkeit rapide sinken lésst.

Sowohl die Analyse der Fehlerwahrscheinlichkeit als auch die Laufzeit-Analyse
solcher probabilistischer Algorithmen setzen tiblicherweise voraus, dass die be-
nutzten Zufallszahlen gleichverteilt und unabhingig gezogen werden. Da Com-
puter deterministisch sind, ist dies jedoch im Normalfall nur dufierst schwer
zu erreichen — um “echten” Zufall einzubinden, muf$ auf Daten von aufden
zugegriffen werden. Solche Eingaben sind langsam und werden daher nur
sparsam eingesetzt — hdufig werden solche Zufallszahlen als Keim fiir einen
Pseudozufallszahlengenerator benutzt, einen Algorithmus, der aus wenigen
Zufallszahlen lange Zahlenketten erstellt.

Die vorliegende Arbeit beschéftigt sich mit der Analyse von Algorithmen im
Hinblick auf die Verwendung von Zufallsquellen, die keine “perfekten” Zufall-
szahlen liefern, deren Zufallszahlen also beispielsweise aus einem Pseudozu-

tallszahlengenerator stammen.

Zunichst wird ein Uberblick iiber verschiedene Definitionen von Zufalligkeit
gegeben, die vor allem im Bereich der Algorithmik Verwendung finden.

In Kapitel 3 wird fiir drei Verfahren gezeigt, wie sich das Benutzen nicht-per-
fekter Zufallszahlen auswirkt. Zundchst wird gezeigt, dass bei einem einfachen
Verfahren zum Polynomvergleich durch mehrfaches Wiederholen nicht in je-
dem Fall die Fehlerwahrscheinlichkeit in gleichem Mafse gesenkt wird. Dieser

Zusammenhang hiangt hauptsédchlich von der Anzahl moglicher verschiedener
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interner Zustdnde des verwendeten Zufallszahlengenerators ab, und damit
vor allem von der Grofle des Keims. Um einen Effekt wie mit echten Zufall-
szahlen zu erreichen, diirfen sich die durch verschiedene Keime erzeugten
Folgen von Pseudozufallszahlen nicht dhneln. Fiir Kargers probabilistischen
Algorithmus zur Berechnung des minimalen Schnitts eines Graphen wird ge-
zeigt, wie der Algorithmus an eine nicht-gleichverteilte Zufallsquelle angepasst
werden kann, ohne dass die Laufzeit in groffem Mafie ansteigt. Fiir den Random
Walk-Algorithmus fiir das Erfiillbarkeitsproblem wird gezeigt, wie sich eine
Abweichung von der Gleichverteilung bei den im Algorithmus getroffenen
Entscheidungen auf die Fehlerwahrscheinlichkeit des Algorithmus auswirkt.
Hierbei wird sowohl die Auswirkung auf die initiale Belegung als auch auf die
Auswahl der zu dndernden Variablen berticksichtigt.

Fiir die randomisierte Variante des Sortier-Algorithmus QuickSort wird in
Kapitel 4 eine theoretische untere Schranke fiir die Anzahl der benétigten
Vergleiche hergeleitet. Diese untere Schranke wird in Abhdngigkeit von den
Wahrscheinlichkeiten der Range des Pivot-Elements formuliert und zeigt einen
Zusammenhang zur Entropie-Funktion. Weiterhin wird gezeigt, dass die Anzahl
der vom QuickSort-Algorihmus bendtigten Bits bei der Verwendung schlechter
Zufallszahlen ansteigt, obwohl sich die Anzahl auszuw&hlender Pivotelemente

nicht dndert.

Im experimentellen Teil dieser Arbeit werden Auswirkungen verschiedener
Quellen zufilliger Zahlen auf die Losungsqualitdt von probabilistischen Opti-
mierungsverfahren untersucht. Als Reprdsentanten von Optimierungsverfahren
dienen hier Simulated Annealing als lokale Suchheuristik und ein genetischer
Algorithmus als populationsbasierte Suchheuristik. Als Referenz dienen hier
Bits, die von Prof. Zeilinger zur Verfiigung gestellt wurden und mit Hilfe einer
Apparatur erzeugt wurden, die auf Quanteneffekten beruht. Die so gewonnenen
Bits werden allgemein als unabhédngig und gleichverteilt anerkannt, basierend
auf der Quantentheorie. Die Ergebnisse der Experimente zeigen, dass Simu-
lated Annealing dufierst empfindlich auf die Periodenldnge des verwendeten
Zufallszahlengenerators reagiert. Quasi-Zufallszahlen scheinen fiir dieses Ver-
tahren nicht geeignet zu sein, selbst wenn ihre gute Streuung dies zunéachst
vermuten ldsst. Die Verwendung beweisbar k-weiser unabhédngiger Zahlen

fiithrte zu keiner Verbesserung im Vergleich zu linearen Kongruenzgeneratoren.
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Im Gegensatz dazu zeigte sich der genetische Algorithmus robuster gegeniiber
einer kurzen Periodenldnge und auch gegeniiber einer Verwendung von Quasi-
Zufallszahlen. Ein Bias auf Bit-Ebene fiihrte bei beiden Verfahren in gleichem
Mafle zu einer Verschlechterung des Ergebnisses.

135



8 Deutsche Zusammenfassung

136



Bibliography

[1] bwGRiD (http:/ /www.bw-grid.de), member of the German D-Grid initia-
tive, funded by the Ministry for Education and Research (Bundesminis-
terium fiir Bildung und Forschung) and the Ministry for Science, Research
and Arts Baden-Wiirttemberg (Ministerium fiir Wissenschaft, Forschung
und Kunst Baden-Wiirttemberg).

[2] Aristotle. Physics, Translated by R. P. Hardie and R. K. Gaye. The University
of Adelaide Library, 2007.

[3] C. E. Shannon. A mathematical theory of communication. SIGMOBILE
Mob. Comput. Commun. Rev., 5(1):3-55, 2001.

[4] Holger H. Hoos and Thomas Stiitzle. Stochastic local search: foundations and
applications. Morgan Kaufmann, 2005.

[5] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10-15, 1962.

[6] Beatrice List, Markus Maucher, Uwe Schoning, and Rainer Schuler. Quick-
sort from an information theoretic view. In Wolfgang Arendt and Wolf-
gang P. Schleich, editors, Mathematical Analysis of Evolution, Information, and
Complexity, pages 455 — 464. Wiley-VCH, Berlin, 2009.

[7] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12(1):128-138, 1980.

[8] Manindra Agrawal, Neeral Kayal, and Nitin Saxena. Primes is in P. Annals
of Mathematics, 160(2):781-793, 2004.

[9] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, 1981.

[10] Maya Bar-Hillel and Willem A. Wagenaar. The perception of randomness.
Adv. Appl. Math., 12(4):428-454, 1991.

[11] Andreas Futschik. Ist der Euro fair? Austrian |. Statistics, 31(1):35—-40, 2002.

137



Bibliography

[12] Howard Karloff and Prabhakar Raghavan. Randomized algorithms and
pseudorandom numbers. In STOC "88: Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 310-321, New York, NY,
USA, 1988. ACM.

[13] Eric Bach. Realistic analysis of some randomized algorithms. |. Comput.
Syst. Sci., 42(1):30-53, 1991.

[14] Beatrice List. Probabilistische Algorithmen und schlechte Zufallszahlen. PhD
thesis, Universitat Ulm, 1999.

[15] Mark Matthew Meysenburg. The Effect of Pseudo-Random Number Gen-
erator Quality on the Performance of a Simple Genetic Algorithm. Master’s
thesis, University of Idaho, 1997.

[16] Mark M. Meysenburg and James A. Foster. Randomness and GA perfor-
mance, revisited. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben,
Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, ed-
itors, Proceedings of the Genetic and Evolutionary Computation Conference,
volume 1, pages 425-432, Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[17] Dave A. D. Tompkins and Holger H. Hoos. On the quality and quantity
of random decisions in stochastic local search for sat. In Luc Lamontagne
and Mario Marchand, editors, Canadian Conference on Al, volume 4013 of
Lecture Notes in Computer Science, pages 146-158. Springer, 2006.

[18] Uwe Schoning. Algorithmik. Spektrum Akademischer Verlag, 2001.

[19] James L. Massey. Shift-register synthesis and bch decoding. IEEE Transac-
tions on Information Theory, 15:122-127, 1969.

[20] Per Martin-Lof. The definition of random sequences. Information and
Control, 9(6):602-619, 1966.

[21] C.P. Schnorr. Zufilligkeit und Wahrscheinlichkeit. In Lecture Notes in
Mathematics, volume 218. Springer, 1971.

[22] Oded Goldreich. Foundations of Cryptography, volume Basic Tools. Cam-
bridge University Press, 2001.

[23] Michael Luby. Pseudoranomness and Cryptographic Applications. Princeton
University Press, 1996.

138



Bibliography

[24] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley,
1991.

[25] Harald Niederreiter. Random number generation and quasi-Monte Carlo meth-
ods. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1992.

[26] The MathWorks — MATLAB and Simulink for Technical Computing,

http:/ /www.mathworks.com/.

[27] Heiko Bauke and Stephan Mertens. Pseudo random coins show more
heads than tails. ].STAT.PHYS., 114:1149, 2004.

[28] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1):3-30, January 1998.

[29] The R Project for Statistical Computing, http://www.r-project.org/.
[30] Maple, www.maplesoft.com.

[31] C.De Canniere and B. Preneel. Trivium specifications. eSTREAM, ECRYPT
Stream Cipher Project, 2006.

[32] Personal correspondence with A. Zeilinger and T. Jennewein, University

of Vienna.

[33] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A
fast and compact quantum random number generator. Review of Scientific
Instruments, 71:1675-1680, April 2000.

[34] L. H. C. (Leonard Henry Caleb) Tippett. Random sampling numbers, vol-
ume 15 of Tracts for computers. Cambridge University Press, Cambridge,
UK, 1927. Reprinted in 1952. Reprinted in 1959 with a foreword by Karl

Pearson.

[35] The Marsaglia Random Number CDROM including the Diehard Battery
of Tests of Randomness, http://stat.fsu.edu/pub/diehard/.

[36] RANDOM.ORG - True Random Number Service, http:/ /random.org/.

[37] Christos H. Papadimitriou. Computational Complexity. Addison Wesley,
November 1993.

[38] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences
from semi-random sources. J. Comput. Syst. Sci., 33(1):75-87, August 1986.

139



Bibliography

[39] N. Alon and M. O. Rabin. Biased coins and randomized algorithms. In F.P.
Preparata and S. Micali, editors, Advances in Computing Research, volume 5,
pages 499-507. JAI Press, 1989.

[40] Beatrice List, Markus Maucher, Uwe Schoning, and Rainer Schuler. Ran-
domized quicksort and the entropy of the random source. In Lusheng
Wang, editor, 11th Annual International Computing and Combinatorics Confer-
ence (COCOON 2005), pages 450—460, 2005.

[41] Markus Maucher, Uwe Schoning, and Hans A. Kestler. An empirical
assessment of local and population based search methods with different

degrees of pseudorandomness. Technical report, Universitdt Ulm, June
2008.

[42] Benny Chor and Oded Goldreich. On the power of two-point based sam-
pling. Journal of Complexity, 5(1):96-106, 1989.

[43] Michael Luby and Avi Wigderson. Pairwise independence and derandom-
ization. Technical Report CSD-95-880, 1995.

[44] D. H. Lehmer. Computer technology applied to the theory of numbers. In
Studies in Number Theory, pages 117-151. Prentice-Hall, 1969.

[45] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second
Manitoba Conference on Numerical Mathematics, pages 51-70, 1972.

[46] L. Adleman, K. Manders, and G. Miller. On taking roots in finite fields.
In Proc.18th Annual IEEE Symp. Foundations of Computer Sciences, pages
175-178, 1977.

[47] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of
Computer and System Sciences, 13:300-317, December 1976. invited publica-

tion.

[48] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, Nathan Linial, and Steven
Phillips. Biased random walks. Combinatorica, 16(1):1-18, 1996.

[49] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New
York, NY, USA, 2005.

[50] Howard J. Karloff and Prabhakar Raghavan. Randomized algorithms and
pseudorandom numbers. Journal of the ACM (JACM), 40(3):454-476, 1993.

140



Bibliography

[51] David R. Karger. Global min-cuts in R A_C, and other ramifications of a
simple min-cut algorithm. Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 21-30, 1993.

[52] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC
"71: Proceedings of the third annual ACM symposium on Theory of computing,
pages 151-158, New York, NY, USA, 1971. ACM.

[53] U. Schoning. A probabilistic algorithm for k-sat based on limited local
search and restart. Algorithmica, 32:615-623, 2002.

[54] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

[55] Martin Tompa. Lecture notes on probabilistic algorithms and pseudoran-
dom generators. Technical report, University of Washington, July 1991.

[56] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 1996.

[57] Beatrice List, Markus Maucher, Uwe Schéning, and Rainer Schuler. Quick-
Sort from an information theoretic view. Wolfgang Arendt, Wolfgang

Schleich (eds.), Mathematical analysis of evolution, information, and com-
plexity. Wiley-VCH. 455-464, 2009.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.

[59] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6):1087-1092, 1953.

[60] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:721-741, 1984.

[61] John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[62] K. Mathias and D. Whitley. Genetic operators, the fitness landscape and
the traveling salesman problem. In Parallel Problem Solving from Nature,
pages 219-228. Elsevier Science Publishers, 1992.

[63] Gerhard Reinelt. The Traveling Salesman. Springer Berlin Heidelberg, 1994.

141



Bibliography

[64] K.A. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, Dept. of Electrical Eng. and Computer Science, Univ.
of Michigan, 1975.

[65] J. B. Kruskal. Extremely portable random number generator. Commun.
ACM, 12(2):93-94, 1969.

[66] K. Mulmuley. Computational Geometry: An Introduction through Randomized
Algorithms. Prentice-Hall, 1994.

[67] Uwe Schoning. Algorithmen - kurz gefasst. Spektrum Akademischer Verlag,
1997.

[68] Jozef Gruska. Foundations of Computing. International Thomson Computer
Press, 1997.

[69] Ming Li and Paul M. B. Vitanyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, Berlin, 1993.

142



