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Chapter1
Introduction

In recent years, multiple input multiple output (MIMO) systems have gained
considerable attention due to their potential of achieving very high data rates
and for providing a new diversity, spatial diversity, to the communication
system. Multicarrier (MC) transmission schemes on the other hand are con-
sidered to be promising candidates for the fourth generation (4G) of mobile
communications due to their efficient utilization of the available bandwidth,
thus also allowing for high data rates. Orthogonal frequency division multi-
plexing (OFDM) is one of several MC variants and is a well-known technique
used in broadcast media like, e. g. European terrestrial digital television
(DVB-T) and digital audio broadcasting (DAB), and in wireless local area net-
works (WLAN). Thus, MIMO-OFDM transmission schemes, which offer both
spatial and frequency diversity, have become an important area of research.

The goal of this work is to introduce and present new methods that exploit
both the frequency and spatial diversities, i. e. utilize all diversity branches
provided by MIMO-OFDM, in order to improve the system performance. Be-
fore we proceed to give an outline of this dissertation, we would like to give a
short analogy between the system considered here and the game of chance,
Roulette. Roulette is the french word for small wheel and is a gambling game
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1 Introduction

where a wheel is spun in one direction, and a ball in the opposite. The ball
finally falls on the wheel and into one of the 38 colored and numbered holes
on it. Players can place their bets, for example, on the number of the hole
the ball might land in or on a range of holes. Without any knowledge about
the ball’s speed or the Roulette wheel’s rotational speed, any hole on the
wheel is equally probable from the player’s point of view and he/she might
just as well bet on any of 38 holes or any range of holes. However, if – as
the physics student Farmer did in 1978 – the player had knowledge of the
initial ball’s speed and the wheel’s rotational speed, the range where the ball
might fall can be limited to a small range, a sector of the wheel. The player
then has a much better chance of winning. In the best case, when all the
parameters are known, the hole where the ball falls can be fully predicted
and the player then only needs to bet on this one hole. Our communication
system can be compared to the Roulette wheel and ball and our transmitted
symbols to the bets placed by the players. If nothing is known about the
communication channel at the transmitter, the best one can do is to trans-
mit all signals equally (bets) over all diversity branches (all Roulette holes). If
partial channel knowledge is available (a sector of the wheel), then transmit-
ting in that approximate direction can improve the system performance over
the no knowledge case. Finally, if full channel knowledge is available, then
the perfect direction of transmission is known and the performance can be
improved even further. Of course, this is just a simplified analogy that serves
as an example to aid the reader in understanding the idea and the structure
behind this work, which is outlined as follows:

In Chapter 2, we present the theoretical background required for under-
standing this work. The MIMO-OFDM transmission model is presented in
details which include, but not limited to, the modulation, demodulation,
channel model and equalization. Chapter 3, deals with the case for which
no channel knowledge is available at the transmitter. In this Chapter, we
present the transmission scheme known as spreading and provide criteria
for choosing spreading matrices that achieve the full diversity provided by
MIMO-OFDM channel and introduce a family of spreading matrices satis-
fying those criteria. In Chapter 4, transmission with full or partial channel
knowledge is presented. This transmission scheme is known as precoding.
In this chapter, we will concentrate on the latter case, partial channel knowl-
edge, and show the optimal direction for transmission. Finally, in Chapter 5,
we present a theoretical overview of MIMO channel capacities for all of the
afore described cases of channel knowledge at the transmitter. In addition,
the capacities of measured MIMO channels for an outdoor scenario are ex-
amined and compared to the theoretical ones. Last but not least, throughout
this work, we always assume the channel to be fully known at the receiver.

Parts of this work were published in [62, 65, 69, 90, 100, 106].
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Chapter2
Theoretical Background

The aim of this Chapter is to present a theoretical background for multiple-
input-multiple-output orthogonal frequency division multiplexing or for short
MIMO-OFDM and suboptimum equalization techniques suitable for detecting
symbols transmitted over such systems. We start by introducing the concept
of MIMO systems as well as an overview and a theoretical background for
OFDM. We then combine those two systems into one (MIMO-OFDM) and de-
rive the equivalent matrix vector transmission model in Sec. 2.2.2. We shall
also show how spreading can be incorporated into the MIMO-OFDM matrix
vector model. A distinctive feature of MIMO systems –antenna correlations–
and a mathematical model of it shall be presented in Sec. 2.3. Depending
on the magnitude of the antenna correlations, significant reduction in sys-
tem performance and capacity are to be expected. Finally, in Sec. 2.5, we
describe different block equalizers that have been used in this work to detect
symbols transmitted over MIMO-OFDM systems.

From now on, vectors and matrices will be denoted by underlined and
doubly-underlined letters, respectively. All vectors are column vectors. Low-

ercase letters will be used for the time domain whereas the uppercase LET-
TERS for the frequency domain. Scalars will be simply designated by letters.

3



2 Theoretical Background

...
...

nT nR

11

22

h11

h21

hiRiT

Figure 2.1: Illustration of an nR × nT MIMO Channel.

2.1 MIMO Channel Model

Multiple input multiple output (MIMO) systems have emerged in recent
years due to their capability of tremendously increasing the system capac-
ity [1, 2, 3, 4]. A MIMO system is comprised of nT transmit antennas and
nR receive antennas providing spatial diversity that can be exploited at the
transmitter and/or receiver to improve the system performance and/or to
achieve higher data rates. In addition, as will be shown in Chapters 3 and
4, through appropriate coding or spreading the MIMO systems can lead to a
more reliable transmission.
An nR × nT MIMO system is shown in Fig. 2.1. Usually Rayleigh fading be-

tween all transmit and receive antenna pairs is assumed. The MIMO channel
in the time domain can thus be represented by an nR×nT matrix, h, as follows

h =







h11 . . . . . . . . . h1nT

...
. . . hiRiT

. . .
...

hnR1 . . . . . . . . . hnRnT






, (2.1)

where the elements hiRiT represent the fading coefficients between transmit
antenna iT and receive antenna iR and are assumed to be complex Gaussian
with mean zero and variance σ2 (CN(0, σ2)). The variance σ2 is usually nor-
malized to 1.0. The received signal x̃, as will be shown in details in Sec. 2.2.1,
can be shown to be

x̃ = hx + n, (2.2)

where x is the nT × 1 transmit vector, x̃ is the nR × 1 receive vector and n is
the additive white Gaussian noise (AWGN).
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2.2 Orthogonal Frequency Division Multiplexing

2.2 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a special case of fre-
quency division multiplexing (FDM). The basic idea of OFDM is to divide
the available spectrum into several subchannels narrow enough that signals
transmitted over those subchannels experience flat fading. In addition, all
of the subcarriers are transmitted simultaneously. As will be shown in the
next section, the subchannels are chosen such that they are orthogonal to
each other and thus no guard bands are required. In fact, the subchannels
are overlapping and the resulting channel is a sum of the narrow orthogonal
subchannels. OFDM is thus capable of achieving a high spectral efficiency
while at the same time is able to combat multipath fading. The use of dis-
crete Fourier transform (DFT) for modulation and demodulation, proposed
by Weinstein and Ebert in 1971, eliminated the need for subcarrier oscilla-
tors [5]. However, since Weinstein and Ebert only used a guard space between
the OFDM symbols, they could not obtain perfect orthogonality between the
subcarriers over multipath channels. In 1980, Peled and Ruiz were able to
solve the orthogonality problem by introducing the cyclic prefix (CP) to re-
place the guard space. In the following section, we shall first describe SISO-
OFDM using a CP and show its equivalent matrix vector transmission model.
We then extend this model to the MIMO case. In all that follows, we shall
assume that the channel is constant during one OFDM symbol duration.

2.2.1 SISO-OFDM

OFDM is a combination of multiplexing and linear modulation. Multiplexing
is a technique of using a single channel for parallel transmission. A general
model of multiplex transmission is shown in Fig. 2.2 [6]. Every Ts seconds,

....
....

....

nT(t)

gT(t)sT(t)
hT(t)

sT1(t)

sT2(t)

sTN(t)

x1(i)

x2(i)

xN(i)

uT1(t)

uT2(t)

uTN(t)

vT1(t)

vT2(t)

vTN(t)

iTs

iTs

iTsiTs

iTs

iTs

x̃o1(i)

x̃o2(i)

x̃oN(i)

Figure 2.2: Multiplex transmission over a continuous time SISO channel.
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2 Theoretical Background

the k-th symbol xk(i) is transmitted over the k-th multiplex channel, where i
is the time instance. The transmission occurs at the same symbol rate in all
multiplexing channels. In case of digital transmission with linear modulation
schemes, each of the transmit signals in the low pass domain, sTk(t), k =
1, . . . , N , is given by [6]

sTk(t) =
∑

i

xk(i)uTk(t − iTs); k = 1, 2, . . . N, (2.3)

where uTk(t) are the basic waveforms at the transmitter. The transmit signal
sT(t) is then the sum of all sTk(t) signals, sT(t) =

∑

k sTk(t). The received signal
gT(t) is thus the convolution (∗) of the transmit signal sT(t) with the channel
impulse response, hT(t), plus the additive noise nT(t),

gT(t) = sT(t) ∗ hT(t) + nT(t). (2.4)

At the receiver, gT(t) is convolved with the receive filter impulse response,
vTk(t), and sampled at time instances iTs. The receive filter considered here
is the channel matched filter (CMF). The output, x̃ok(i), after the Dirac delta
sampler at time instance i is thus,

x̃ok(i) = gT(t) ∗ vTk(t)|t=iTs
. (2.5)

The choice of the basic waveforms uTk(t) for OFDM is based on a special
property of linear time invariant (LTI) systems, which is: complex exponential
functions are eigenfunctions of LTI systems. That is, for an input signal
sT(t) = ej2πfkt of infinite duration, the output signal, gT(t), after the channel,
hT(t), is

gT(t) = H(fk)e
j2πfkt, (2.6)

where H(fk) is the channel transfer function at frequency fk. In other words,
the resulting eigenvalue of the LTI system excited at frequency fk is equal to
the channel transfer function at that same frequency [6]. In case of OFDM,
the basic waveforms uTk(t) are also complex exponential functions, but they
are time limited. The basic waveforms are given by

uTk(t) = rect

(

t

T

)

ej2πfkt, k = 1, . . . , N. (2.7)

Since the OFDM basic waveforms are time limited, intersymbol interference
(ISI) can not be avoided if the channel is linearly distorting. Nonetheless, as
we shall show next, through the use of a cyclic prefix and with the proper
choice of its duration TG, ISI can be avoided at the receiver.
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 s(t), first path

s(t−τ
1
), second path

Output of Two Path Channel

s(t), first path

s(t−τ
2
), second path

Output of Two Path Channel

Figure 2.3: Output of a two path channel for different delay times.

Figure 2.3 shows the output signal, gT(t), for a time limited signal sT(t)
over a two path channel for different delay times, τi, i = 1, 2, and τ2 > τ1.
Transient conditions can be observed at the beginning and at the end of the
received signal. The middle part, gTm(t), is stationary and matches that of the
unlimited signal in Eqn. 2.6. That is,

gTm(t) = rect

(

t − τi/2

Tm

)

gT(t) (2.8)

= rect

(

t − τi/2

Tm

)

H(fk)e
j2πfkt.

where Tm is the duration of this stationary interval and is dependent on the
delay, τi, of the two path channel, Tm = T − τi. The larger the delay, the
shorter Tm. Thus, in order to achieve that Tm = T , the cyclic prefix comes
into play. The cyclic prefix is the copy of the last part of the OFDM symbol
that is ”prefixed” to the transmitted signal as shown in Fig. 2.4. The duration
of the cyclix prefix, TG, should be at least that of the maximum delay on the
channel, i. e. TG ≥ τmax, to insure no ISI occurs and Tm = T . Accordingly, the
OFDM transmit signal sT(t), is given by [5, 6, 7]

sT(t) =
N
∑

k=1

∑

i

xk(i) rect

(

t − iTS

TS

)

ej2πfkt =
N
∑

k=1

∑

i

xk(i)uTk(t − iTS), (2.9)

where TS = T + TG. Note that in contrast to Eqn. 2.7, uTk(t) is now of duration
TS. At the receiver, the CP is removed and the receive filters vTk(t) are thus

7



2 Theoretical Background

CP

TG T

Figure 2.4: Addition of cyclix prefix to the OFDM symbol in time domain.

only matched to the last part of the transmit filters [5, 6, 7]. The received
signal, gT(t), after CP removal is thus

gT(t) =
N
∑

k=1

H(fk)xk(i) rect

(

t

T

)

ej2πfkt + nT(t). (2.10)

That is, only the stationary part of the received signal is considered and the
CMFs vTk(t) are given by

vTk(t) = rect

(

t

T

)

e−j2πfkt, k = 1, . . . , N. (2.11)

Accordingly, x̃ok is

x̃ok(i) = gT(t) ∗ vTk(t)|t=iTs = H(fk)xk(i) + nTv(i), (2.12)

Note that the cyclic prefix also insures that no interblock interference (IBI)
occurs between two OFDM symbols, since as mentioned above the CP is just
removed at the receiver. To obtain an orthogonal system, the frequencies fk

must satisfy the following condition [6, 8]

fk = fc +
k

T
, (2.13)

where fc can be any chosen frequency.

OFDM Implementation

In practice, OFDM transmission systems usually employ digital signal pro-
cessing. In discrete-time OFDM systems, modulation and demodulation are
replaced by inverse discrete Fourier transform (IDFT) and discrete Fourier
transform (DFT), respectively [9, 6]. Figure 2.5 shows the discrete time imple-
mentation of an OFDM transmission system. Each transmit vector, x(i), is
modulated onto the N subcarriers using the IDFT,

s(i) = F−1

o
x(i), (2.14)

8
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IDFT prefix

remove
prefix

add

DFT

par.

ser.

par.
DET

ser.

nT(t)

gT(t)

sT(t)

hT(t)

yT(t)

s(i) scp(i)

y(i) y
cp

(i)

hTF(t)

hRF(t)

x̃o(i)x̂(i)

x(i)

l∆t

l∆t

Figure 2.5: OFDM system model with conventional OFDM receiver.

where F
o

is the Fourier matrix [10] and F−1

o
= FH

o
and FH

o
F

o
= I. s(i) is then

appended by the cyclic prefix of length Lcp resulting in

scp(i) = [sN−Lcp+1(i) · · · sN(i) s(i)T ]T (2.15)

which, after parallel to serial conversion and Dirac delta sampling, is filtered
by the transmit low pass filter, hTF(t), which is bandlimited to the cutoff
frequency fg. The transmit signal sT(t) is then passed over the channel with
impulse response hT(t) and WGN is added. The received signal gT(t) is then
passed through the receive low pass filter hRF(t) also bandlimited to the cutoff
frequency fg. To find the discrete time channel, h(l), the sampling rate must
satisfy the sampling theorem [11]. Thus, assuming ∆t = 1/2fg, the discrete
time channel is [9]

h(l) = hTF(t) ∗ hT (t) ∗ hRF(t)|t=l∆t. (2.16)

The cyclic prefix functions in the same way in this discrete system. It trans-
forms the convolution to a circular convolution. The discrete time received
signal after the CP removal, y(i), is thus be given by [12, 13]

y(i) = h
c
s(i) + n(i), (2.17)

where h
c

is an N × N matrix having cyclically shifted versions of the dis-
crete time channel impulse response in its rows and the first row of h

c
is

9
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...
...

n1

x1

H1

x̃o1

n2

x2

H2

x̃o2

nN

xN

HN

x̃oN

(a) Parallel SISO-OFDM
subcarriers

n

x x̃o
H

(b) Equivalent matrix vector trans-
mission model

Figure 2.6: Matrix vector SISO-OFDM transmission model.

(h1 0 0 · · ·hL hL−1 · · ·h3 h2) and L is the number of channel taps. Thus

x̃o(i) = F
o

h
c
FH

o
x(i) + n(i) = H x(i) + n(i). (2.18)

Since the eigenvectors of N × N cyclic matrices are given by the columns of
the Fourier matrices of the same size [14], the F

o
matrix diagonalize the cyclic

matrix h
c
, resulting in the channel transfer function on the main diagonal of

H. Note that the CP represents a loss in the SNR at the receiver (parallel

shift of the BER curves to the right). This loss is given as γ = 10 log10(
N+Lcp

N
).

Unless otherwise specified, we assume that Lcp = L − 1.
Since we assume that the channel remains constant during one OFDM

symbol, from now on, we shall drop the time index i. The SISO-OFDM chan-
nel matrix is then given by,

H = Diag(Hk) =













H1 0 0 0 0

0
... 0

...
...

... 0 Hk 0
...

...
... 0

... 0

0 0 0 0 HN













. (2.19)

We can thus represent the OFDM transmission, by an equivalent matrix
vector transmission model as shown in Figure 2.6. Figure 2.6(a) shows the
parallel OFDM subchannels, while Fig. 2.6(b) shows the equivalent matrix
vector transmission model, where H is as described by Eqn. 2.19. Note that
channel matched filtering can be applied at the receiver by multiplying vTk(t)

10
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1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) RSO for two path dis-
crete time channel, h1 = h2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) RSO for two path dis-
crete time channel, h2 =
0.25h1

Figure 2.7: SISO-OFDM correlation matrix for different frequency selective
channels.

in Eqn. 2.11 by the complex conjugate of the channel transfer functions,
H∗(fk) [6]. Channel matched filtering can equivalently be applied in the fre-
quency domain to obtain the channel correlation matrix for SISO-OFDM, R

SO
,

as follows [13, 15, 16],
R

SO
= HH H. (2.20)

In SISO-OFDM, it can happen that one or more subcarriers suffer from a
deep fade as can be seen in Fig. 2.7 for h1 = h2. Spreading and coding are two
possible solutions to overcome this problem.

Assuming ideal lowpass filters (interpolation and anti-aliasing filters) at
both the transmitter, hTF(t), and the receiver, hRF(t), with cutoff frequency,
fg, then,

N =
1

∆t∆f
, ∆f =

1

T
, ∆t =

1

2fg

(2.21)

where N is the DFT length, ∆f the minimum distance between the OFDM
subcarriers and ∆t the sampling interval. Note that the optimum choice of
the number of subcarriers, N , and the length of the guard interval, Lcp, is
dependent on the Doppler frequency, fD, the root mean square delay spread
(RMS), τRMS, as well as the transmission rate [17].

2.2.2 MIMO-OFDM

In case of multipath channels, we represent our MIMO channels by L matri-
ces of size nR × nT. The channel matrices, h(l), after sampling according to
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Figure 2.8: MIMO-OFDM system model with conventional OFDM receiver.

the sampling theorem are given as follows:

h(l) =







h11(l) . . . . . . . . . h1nT
(l)

...
. . . hiRiT(l)

. . .
...

hnR1(l) . . . . . . . . . hnRnT
(l)






, (2.22)

where hiRiT(l) is the l-th tap of channel impulse response (CIR) between trans-
mit antenna iT (iT = 1, . . . , nT) and receive antenna iR (iR = 1, . . . , nR), and
(l = 1, . . . , L).

In the frequency domain, each transmit antenna can transmit over N
OFDM subcarriers, with these being the same for all transmit antennas.
One OFDM symbol, x, is thus a vector of length N × nT. Figure 2.8 shows
the system model for MIMO-OFDM. As in SISO-OFDM, modulation and de-
modulation can be efficiently implemented through the use of the inverse
discrete Fourier transform (IDFT) and the discrete Fourier transform (DFT)
respectively. We also assume that the length of the cyclic prefix (Lcp) is large
enough to maintain orthogonality among the subcarriers. Accordingly, the
channel correlation matrix, R

MO
, for this MIMO-OFDM system can be de-

scribed by the following equation [18, 19]:

R
MO

=
1

nR

nR
∑

iR=1

R
MO,iR

=
1

nR

nR
∑

iR=1

HH

iR
H

iR
, (2.23)

where H
iR

is an N × (N nT) matrix containing the transfer functions of the

channel impulse responses between the iR-th receive antenna and all trans-

12



2.2 Orthogonal Frequency Division Multiplexing

mit antennas, H
iR

= [H
iR1

, . . . , H
iRnT

], where (·)H denotes the complex conju-

gate transpose operation also known as Hermitian. The submatrices H
iRiT

are N × N diagonal matrices and are given by:

H
iRiT

= Diag(DFT(hiRiT
)) =















HiRiT
(1) 0 0 0 0

0
... 0

...
...

... 0 HiRiT
(k) 0

...
...

... 0
... 0

0 0 0 0 HiRiT
(N)















, . (2.24)

where hiRiT
= [hiRiT(1), . . . , hiRiT(l), . . . , hiRiT(L)] and represents the channel im-

pulse response (CIR) between transmit antenna iT and receive antenna iR,
and L is the maximum number of taps. DFT stands for the discrete Fourier
transform and accordingly HiRiT(k) is the transfer function at frequency k,
k = 1, . . . , N for the channel between transmit antenna iT and receive an-
tenna iR .
The channel correlation matrix, R

MO
, can alternatively be described by the

following equation [19, 18]:

R
MO

=
1

nR

HH H, (2.25)

where H is an (N nR) × (N nT) matrix containing the transfer functions of the
channel impulse responses between all receive and transmit antennas. H is
given by

H =









H
11

. . . . . . . . . H
1nT

...
. . . H

iRiT

. . .
...

H
nR1

. . . . . . . . . H
nRnT









, (2.26)

where iT = 1 . . . nT and iR = 1 . . . nR. The submatrices H
iRiT

are N ×N diagonal

matrices and are also given by Eqn. 2.24. Note that the diagonal elements,
rii, of R

MO
are always positive and contain the receive diversity. The diagonal

elements are given by rii = 1/nR

∑nR

iR=1 H∗
iRiT

(k)HiRiT(k), where i represents the
diagonal element belonging to transmit antenna iT and frequency k. This
weighted sum over all receive antennas obtained through the use of the CMF
(Eqns. 2.25 and 2.23) is also known as maximum ration combining (MRC) [6].
The MRC operation maximizes the SNR if the channel is perfectly known at
the receiver [20].

Figure 2.9 shows the matrix vector transmission model for MIMO-OFDM.
The channel matrices, H, unlike for SISO-OFDM are not diagonal matrices.
Intersymbol interference occurs between symbols that are transmitted from

13
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different antennas at the same frequency. Figure 2.10 shows a typical cor-
relation matrix for R

MO
with nR = nT = 4 and N = 8. The darker the blocks

the higher the absolute value at that position (white corresponds to zero val-
ues). The off-diagonal elements represent the interference occurring in the
MIMO-OFDM system. There are four off diagonal elements representing the
interference from the four transmit antennas.

n

x x̃H HH

Figure 2.9: Matrix vector MIMO-OFDM transmission model with matched fil-
ter.

8 16 24 32

8 

16

24

32

Figure 2.10: MIMO-OFDM correlation matrix, nT = nR = 4, N = 8.

2.2.3 Spreading

Spreading at the transmitter can be represented through premultiplication
by a spreading matrix, U , and despreading at the receiver through postmul-

tiplication by the despreading matrix, UH (Fig. 2.11), as follows [13, 16, 6]

R
S

= UH R
MO

U, (2.27)

where R
S

is the resulting channel correlation matrix. Based on Eqns. 2.25
and 2.27, we can define an effective channel matrix, H

eff
, as follows

H
eff

= H U, (2.28)

14



2.2 Orthogonal Frequency Division Multiplexing

eplacements

n

x x̃H HHU UH

Figure 2.11: Matrix vector MIMO-OFDM transmission model with matched
filter, spreading and despreading.

which includes the spreading matrix. The received OFDM symbol x̃ can thus
be given by

x̃ = R x + ñc, (2.29)

where R is either the unspread, R
MO

, or spread channel matrix, R
S
, and ñc

the colored noise of variance 2NoR. The equivalent matrix vector transmission
model is shown in Fig. 2.12.

nc

x x̃R

Figure 2.12: MIMO-OFDM transmission using the channel correlation ma-
trix.

Channel Normalization

In all simulations results shown in this work, the MIMO channel has been
normalized such that

E{
L
∑

i=1

|hiRiT(l)|2} = 1.0, (2.30)

where E{·} stands for the expected value. Unless otherwise specified, we as-
sume block fading channels, where the channel remains constant during the
transmission of one OFDM symbol and changes randomly from one symbol
to the next. In the frequency domain, this normalization translates to

E{Tr(R
MO

)} = E{
nTN
∑

i=1

rii} = E{
nTN
∑

i=1

λi(RMO
)} = nTN, (2.31)

15
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where λi and rii are the i-th eigenvalue and diagonal element of R
MO

respec-
tively and Tr denotes its trace. Note that for any channel realization

nR Tr(R
MO

) = Tr(HHH) = N

L
∑

i=1

||h(l)||2F , (2.32)

where ||h(l)||2F is the Frobenious norm of h(l), l = 1, . . . , L. Since only
orthonormal spreading matrices are considered, the eigenvalues of R

MO
do not change after spreading. That is, Eqn. 2.31 still applies to R

S
. The

eigenvectors do however change.

Another normalization method, would be to normalize each channel such
that

Tr(R) = nTN. (2.33)

This type of normalization is suitable for time invariant channels or if power
control is assumed at the transmitter.

2.3 Correlated MIMO-OFDM Channel Model

As mentioned earlier in this chapter, antenna correlations lead to reduced
system performance and lower capacity. In this section, we present the
Kronecker correlation model widely used to model antenna correlations in
MIMO systems. The effect of correlations on the system BER performance
and channel capacity shall be discussed in more details in Chapters 3, 4
and 5.

Again, we consider the MIMO channel in the time domain (Eqn 2.22) with
nT transmit antennas, nR receive antennas and L taps. We define the channel
vector, hv, as follows,

hv = [vec{h(1)}T · · · vec{h(l)}T · · · vec{h(L)}T ]T , (2.34)

where the operator vec{·} stacks the columns of the nR×nT matrix h(l) to form

a vector of length nRnT, and T denotes the matrix transpose. The correlation
matrix that includes all spatial and path correlations is thus,

R
v

= E{hv hH
v }. (2.35)

Although Eqn. 2.35 does capture any correlation effect between the elements
of h(l) ∀ l a simpler model is often used. That model assumes the transmit
correlations are only affected by the immediate surroundings of the transmit
antennas, i. e. the transmit antenna correlations have no influence on the re-
ceive antenna correlations and vice versa, and that the path correlations can
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2.3 Correlated MIMO-OFDM Channel Model

be separated from spatial correlations, the correlation matrix in Eqn. 2.35
can be expressed by the Kronecker product of the transmit, receive and path
correlations as follows [21],

R
v

= k
P
⊗ kT

T
(1) ⊗ k

R
(1), (2.36)

where k
P

is the path correlation, k
T
(1), k

R
(1) transmit and receive correla-

tions at the non-delay tap l = 1 respectively. This correlation model is well
known as the Kronecker correlation model [21, 22]. If, in addition, we as-
sume an equal power delay profile (PDP) and no path correlations (i. e. the
different channel taps fade independently), k

P
= I, the correlation matrix R

v
in Eqn. 2.36 becomes

R
v

= I ⊗ kT

T
(1) ⊗ k

R
(1) (2.37)

If correlation matrices of the other channel taps are to be taken into consid-
eration, again assuming uncorrelated paths and equal PDP,

R
v

= BlkDiag([R
kv

(1) · · ·R
kv

(l) · · ·R
kv

(L)]), (2.38)

where R
kv

(l) = k
T
(l)T ⊗ k

R
(l), and BlkDiag forms a block diagonal matrix with

the matrices R
k
(l) on the main diagonal. Based on the Kronecker correlation

model described above, the correlated channel matrices, hc(l), can thus be
modeled as follows [21, 22],

hc(l) = k1/2

R
(l)h(l)k1/2

T
(l), (2.39)

where k
R
(l) = k1/2

R
(l)k1/2

R
(l) and k

T
(l) = k1/2

T
(l)k1/2

T
(l) are the nR × nR receive

and nT × nT transmit correlation matrices for the l-th tap respectively. The
transmit and receive correlation matrices can be calculated as follows,

k
T
(l) = 1

nR
E{h(l)Hh(l)}, (2.40)

k
R
(l) = 1

nT
E{h(l)h(l)H}. (2.41)

If we assume that the transmit and receive correlation matrices are the
same for all taps, i. e.,

k(l) = k1/2(l)k1/2(l) = k1/2k1/2 = k, (2.42)

where k is either the transmit or receive correlation matrix, then Rv in
Eqn. 2.38 simplifies to R

v
= I ⊗ k

T
⊗ k

R
.

Since the correlation matrices are positive definite, the eigenvalue decom-
position was used to calculate the square root of the correlation matrices as
follows,

k = v e vH ,

k1/2 = v e1/2 vH . (2.43)
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v is a matrix containing the eigenvectors of k and e is a diagonal matrix
containing its eigenvalues. The square root of a diagonal matrix is simply
the square root of its diagonal elements. Thus, Hc is then simply calculated
by replacing hiRiT

by hc
iRiT

in Eqn. 2.24, i. e. Hc

iRiT
= diag[DFT(hc

iRiT
)]. In other

words, the correlated channel matrices in Eqn. 2.39 are used instead of
Eqn. 2.22 to obtain H in Eqn. 2.26.

Antenna Correlation Models

We assume linear antenna arrays with uniformly spaced antennas at both
the transmitter and receiver. Antennas at the same distance m are also as-
sumed to experience the same correlations. Thus, k

R
and k

T
take the follow-

ing form,

















1 c12 c13 · · · c1n

c21 1 c23 · · · c2n

c31 c32 1 ..cij.. :
: : : : :
: ..cji.. : : :

cn1 . . . . . . . . . 1

















=

















1 ρ1 ρ2 · · · ρn−1

ρ∗
1 1 ρ1 · · · ρn−2

ρ∗
2 ρ∗

1 1 ..ρm.. :
: : : : :
: ..ρ∗

m.. : : :
ρ∗

n−1 . . . . . . . . . 1

















, (2.44)

where n is either nR or nT, cii = 1 and cij = ρj−i for j > i and cji = c∗ij for j < i
(i = 1, . . . , n, j = 1, . . . , n). Accordingly, ρm is the correlation coefficient between
antennas with spacing m = |j−i|. Throughout this work, we shall concentrate
on two correlation models: constant and exponential correlation model. For
the constant correlation model, the correlation coefficients are real and the
same for all antennas, i. e. ρm = ρ ∀m and |ρ| < 1. For the exponential
correlation model, the correlation coefficients are defined as follows [23],

cij = ρm = ρj−i ∀ i ≤ j (2.45)

cji = c∗ij,

for real coefficients ρ, |ρ| < 1 and

cij = ρm = (ρ +
√
−1 ρ)j−i ∀ i ≤ j (2.46)

cji = c∗ij,

for complex coefficients ρ +
√
−1 ρ. Note that |ρ +

√
−1 ρ| < 1 for the corre-

lation matrix to remain positive definite. Another example of a widely used
correlation matrix is the tridiagonal correlation matrix [24]. The correlation
matrix is given by Eqn. 2.44 where ρm = ρ ∀m ≤ M and ρm = 0 otherwise
and M < n.
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2.4 Effect of Antenna Correlations

In this section, we introduce three different measures that show how antenna
correlations can affect the performance of the MIMO system.

2.4.1 Channel Condition Number

The condition number, χ, is defined as the ratio between the maximum, λmax,
and the minimum, λmin, eigenvalue of a matrix [25].

χ =
λmax

λmin

(2.47)

If λi = 1 ∀i, then the matrix is an identity matrix. A singular matrix has a
CN = ∞, since λmin = 0. That is, the higher the condition number, the more
singular the channel correlation matrix gets and worse BER performance is
to be expected. As will be shown in Chapter 3, increasing the antenna cor-
relations leads to higher condition numbers and accordingly to deteriorating
performance.

2.4.2 Diversity and Correlation Measures

Definition 1 For a flat fading channel, the diversity measure of R
v
, Ψ(R

v
),

was first introduced in [26, 27] and is given by

Ψ(R
v
) =

(

Tr(R
v
)

||R
v
||F

)2

=

( ∑M
i=1 λi

√

∑M
i=1 λ2

i

)2

(2.48)

where R
v

= E{hvh
H
v } is an M × M (M = nTnR) matrix, hv = vec{h} and λi is the

ith eigenvalue of R
v
. Ψ(R

v
) is bound by [26]

1 ≤ Ψ(R
v
) ≤ M (2.49)

An important property of the diversity measure is, if the first n eigenvalues
of R

v
are identical (i. e. λ1 = λ2, · · · , = λn) and the remaining eigenvalues are

zeros, then Ψ = n. That is, the correlation measure becomes equal to the
rank of R

v
. If the nonzero eigenvalues of R

v
are not equal, Ψ < n which can

be interpreted as the number of dominant eigenvalues [27, 28]. That is, the
diversity measure gives the number of dominant eigenvalues of R

v
and not its

rank. The rank of R
v

is always equal to M as long as the correlation matrices
have full rank. rank(R

v
) = 1 if and only if the channel is fully correlated. For

R
v

= 1 (1 is an all one matrix), the diversity measure is 1, while for R
v

= I,
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the diversity measure is M. Accordingly, the larger the spread the lower the
diversity measure.

According to the correlation model given in Sec. 2.3, R
v

for a flat fading
channel (L = 1) is given by

R
v

= k
T
⊗ k

R
. (2.50)

Consequently, from Appendix A.2.1, the rank R
v

= rank k
T
· rank k

R
, and R

v
remains full rank as long as both k

T
and k

R
are full rank. The diversity

measure can accordingly also be expressed by [26]

Ψ(R
v
) = Ψ(k

T
)Ψ(k

R
), (2.51)

where Ψ(k
T
) and Ψ(k

R
) are the transmit and receive diversity measures re-

spectively.

Definition 2 In [26, 27], the correlation measure was also defined, Φ(k) for

an n × n correlation matrix k

Φ(k) =

√

n/Ψ(k) − 1

n − 1
(2.52)

which can be used as a measure for the amount of correlation present.

The correlation measure is especially useful if different correlation models
are compared. Φ(k) ranges between 0.0 (all equal eigenvalues: uncorrelated)
and 1.0 (rank one correlation matrix: full correlation). It is also worth noting
here, that the correlation measure for the constant correlation model is
Φ(k) = ρ.

In case of frequency selective channels, we look at the channel in the fre-
quency domain. The diversity measure is the sum of the diversity measures
of the uncorrelated subcarriers when using OFDM. Then the diversity mea-
sure can be calculated as follows,

Ψ(R
v
) =

Nc
∑

k=1

Ψ(R
vk

)

where Nc is the number of coherence bandwidth, and Ψ(R
vk

) is the diversity

measure calculated at each coherence bandwidth. If we assume the same
antenna correlations at each frequency, and independent and uncorrelated
fading of the channel taps of equal power delay profile then

Ψ(R
v
) = L Ψ(R

vk
), (2.53)
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where Ψ(R
vk

) is the diversity measure at any frequency k, R
vk

=

E{vec{H
k
} vec{H

k
}H}, H

k
is the nR × nT channel frequency response at fre-

quency k and L is the number of channel taps. Thus, in case of a frequency
selective channel, the diversity measure is bound by

L ≤ Ψ(R
v
) ≤ LM, (2.54)

where M = nTnR.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

ρ

Ψ
(k

)

 

 

const
exp
complex exp

(a) Diversity Measure Ψ(k)

0 0.2 0.4 0.6 0.8 1
1

4

7

10

13

16

ρ

Ψ
(k

R
)Ψ

(k
T
)

 

 

const
exp
complex exp

(b) Diversity Measure Ψ(k
T
)Ψ(k

R
)

Figure 2.13: Diversity measure versus ρ for 4 × 4 constant, exponential and
complex exponential correlation matrices.

Figures 2.13 and 2.14 show the diversity and correlation measures for the
three previously described correlation matrices of size 4 × 4. Figure 2.13(a)
shows the diversity measure in presence of transmit correlations only and
Fig.2.13(b) in presence of both transmit and receive correlations. It is shown
in Appendix 3.A.2, that the higher the antenna correlations, the wider the
eigenvalue spread and accordingly, the lower the diversity measure. The di-
versity measure is lower if both transmit and receive correlations exist than
if only one or the other is present since a larger eigenvalue spread is expected
for the former case. The real exponential correlation matrix has the highest
diversity measure and lowest correlation measure for a given ρ. The constant
and complex exponential correlation matrices have comparable diversity and
correlation measure values for ρ ≤ 0.4. The complex exponential reaches
its highest correlation measure (1.0) for ρ ≈ 0.7 (i. e. |c| = 1). The diversity
and correlation measures therefore give an indication of the expected system
performance. The higher the correlation measure and the lower the diversity
measure the worse the expected performance. Thus, for a given ρ, we expect
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Figure 2.14: Correlation measure versus ρ for 4×4 constant, exponential and
complex exponential correlation matrices.

a better performance in presence of the real exponential model than for the
other two models. In addition, to allow for a fair comparison of the chan-
nel performance in presence of the different correlation models, ρ should be
chosen such that the correlation measures for all models are equal.

2.5 Block Equalizers

Since we are dealing with block transmission schemes, in this section we
present suitable equalization methods: block equalization. We start with
hard decision non-iterative equalizers: the block linear equalizer (BLE) and
the block decision feedback equalizer (BDFE) which were adapted for block
transmission from the LE and DFE by Kaleh in [29]. We then look at soft
decision iterative equalizers: the recurrent neural network equalizer (RNN)
proposed by Teich et al. in [30] and the soft Cholesky equalizer (SCE) pro-
posed by Egle et al. in [31]. Finally, we present iterative equalization and
decoding for coded transmission using the RNN and SCE as proposed in
[32, 33, 34, 35]. In all what follows, we assume that the channel to be fully
known at the receiver.
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x̃ x̂ x̂o

Θ̂(·)G

Figure 2.15: BLE estimating the transmit vector x based on matched filter
output x̃.

2.5.1 Hard Decision Equalizers

Block Linear Equalizer

Figure 2.15 shows the block diagram of a linear equalizer. In this section,
we look at the most important linear equalizers: the zero forcing block linear
equalizer (ZF-BLE) and the minimum mean square error BLE (MMSE-BLE).
The ZF-BLE, also known as inverse filter, is given by [29]

G = R−1, (2.55)

provided that the channel correlation matrix R is non-singular. The symbol
estimates after the linear filter are thus given by

x̂ = R−1x̃ = x + ñ, (2.56)

where ñ is the colored noise of covariance Φ
ññ

= G. Hard decisions (denoted

by Θ̂(·) in Fig. 2.15) are made on each symbol x̂i in the symbol estimate vector
x̂ independent of the other symbols. In case of noise-free transmission, the
ZF-BLE leads to error-free performance. However, noise enhancement is a
major problem of the ZF-BLE since the variance of the colored noise, gll, –
given by the diagonal elements of G – may become very large compared to
the energy of the transmit symbols if R is ill-conditioned. To overcome this
noise enhancement problem, the minimum mean square error BLE (MMSE-
BLE) is employed. The MMSE-BLE aims at minimizing the MSE between the
estimated symbols x̂ = G x̃ and the transmit symbols x. The solution is given
by [29]

G = (R +
σ2

n

σ2
x

I)−1, (2.57)

where σ2
n is the noise power and σ2

x is symbol variance. The MMSE-BLE
outperforms the ZF-BLE at low Eb/No, but their performances converge at
high Eb/No, since σ2

n/σ2
x → 0. In all what follows, we will therefore always

employ the MMSE-BLE.
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.x̃ x̂ x̂oxf

xb

Θ̂(·)

G
b

G
f

Figure 2.16: BDFE estimating the transmit vector x based on matched filter
output x̃.

Block Decision Feedback Equalizer

The BDFE is composed of two filters: a feedforward filter, G
f
, and a feedback

filter, G
b
, as shown in Fig. 2.16. The feedback filter reconstructs the influence

of already detected symbols – x̂o after the hard decision device, Θ̂(·) – which
are then be subtracted from the output of the feedforward filter. The BDFE
is designed assuming error free decision and thus error free feedback. The
Cholesky decomposition provides an efficient method for calculating G

f
[33].

Assuming R to be positive semidefinite, then it can be decomposed into a

product of a lower diagonal matrix F and its Hermitian, i. e. R = FHF [36, 37].
and the feedforward filter is accordingly given by [33],

G
f

= (diag(F ))−1(FH)−1, (2.58)

where diag(F ) is a diagonal matrix containing the diagonal elements of F . The
feedback filter, G

b
, is given by

G
b
= (diag(F ))−1F − I, (2.59)

where I is the identity matrix of the same dimension as R. Similar to the ZF-
BLE, the ZF-BDFE suffers from noise enhancement especially if R becomes
ill-conditioned. Thus, the MMSE-BDFE is designed based under the con-
strained of minimizing the MSE between x̂l and the corresponding transmit
symbol xl [29, 33]. Under this constraint, G

f
and G

b
are given by Eqns. 2.58

and 2.59. However, R is replaced by R̃ = R + σ2
n/σ2

xI and F by F̃ obtained by

the Cholesky decomposition of R̃, R̃ = F̃
H

F̃ [29, 33]. As with the BLE, since
the ZF-BDFE and the MMSE-BDFE performances converge at high Eb/No

values, from now on we will only employ the MMSE-BDFE.

24



2.5 Block Equalizers

2.5.2 Soft Decision Equalizers

The above described equalizers apply hard decisions on the symbol esti-
mates. In case of the BLE, the hard decisions are made on each symbol
independent of the others, while for the BDFE the already hard decided sym-
bols are fed back through the feedback filter. In this section, we consider two
iterative equalizers that use soft estimates of the detected symbols for the
feedback: the recurrent neural network and the soft Cholesky equalizer.

Recurrent Neural Network Equalizer

.
x̃

x̃[η] x̂o

x̆[η]x̆[η−1]

R−diag(R) (diag(R))−1 Hard decision

D Θ̃(x̃[η])

Figure 2.17: Block diagram of the RNN equalizer.

The recurrent neural network (RNN) equalizer is based on Hopfield neural
networks used for pattern classification. The Hopfield network is a special
type of recurrent neural network that has only one layer of neurons, and
where the output of one neuron is fed back to all others after being multi-
plied by certain weights [30, 38, 9]. The received vector is thus treated as
a classification problem, where the classes are all possible transmit vectors
and the weights are given by the off diagonal elements of R [30, 38, 9].

Based on the transmission model in Fig. 2.12, any receive symbol x̃i can be
written as

x̃i = riixi +

NnT
∑

j=1,i6=j

rijxj + nci, (2.60)

where the second term of the above equation represents the interference
and rij the off diagonal elements of R. Figure 2.17 shows the block diagram
for the RNN equalizer. The RNN equalizer as aforementioned has an iterative
structure and employs a nonlinear decision function and operates as follows:
after each iteration the interference, (R−diag(R))x̆[η−1], is subtracted from the

received vector x̃, where l denotes the iteration number and x̆[η−1] the soft
output after the nonlinear soft decision function Θ(·). After the last iteration,
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Figure 2.18: Nonlinear decision function for BPSK.

a hard decision is made to obtain the estimates x̂o for the transmit vector x.
The described cancellation scheme updates all symbols in parallel and thus
is called parallel update. However, the scheme can also be done in serial and

in this case x̃
[η]
i for current iteration η is given by [30, 38, 9, 39]

x̃
[η]
i = xi +

i−1
∑

j=1

rij

rii

x̆
[η]
j +

NnT
∑

j=i+1

rij

rii

x̆
[η−1]
j +

nci

rii

. (2.61)

Since it was shown in [9, 38, 39, 40] that the parallel update leads to worse
performance and a slower convergence than the serial update, from now on
we shall only consider the latter. Now we focus our attention on the estima-
tion device Θ(·), whose task is to find an estimate x̆i of xi such that the mean

square error J = E{|xi − x̆
[η]
i |2 |x̃[η]

i } is minimized [9], where the expectation

E{|xi − x̆
[η]
i |2 |x̃[η]

i } denotes the residual interference after deciding for x̆i. The
absolute minimum of J can only be reached if x̆i is a soft value not restricted
to the transmit alphabet [41, 9]. The minimization problem can be treated as
a parameter estimation problem [42], whose solution is [43]

x̆
[η]
i = Θ̃opt(x̃

[η]
i ) = E{xi|x̃[η]

i } =
M−1
∑

m=0

amP (xi = am|x̃[η]
i ). (2.62)

Assuming that the symbol x is disturbed by a complex AWGN with vari-
ance σ2 for each noise component, then, for any complex QAM signal with
M equiprobable signals ai = aRi + jaIi, i = 1, . . . ,M , Θ̃opt in Eqn.2.62 can be
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2.5 Block Equalizers

written as follows [9, 38, 40]

x̆ = Θ̃opt(x̃) =

∑M
i=1 ai exp

(

−|ai|
2

2σ2 + ℜ{ai}ℜ{x̃}
σ2 + ℑ{ai}ℑ{x̃}

σ2

)

∑M
i=1 exp

(

−|ai|2

2σ2 + ℜ{ai}ℜ{x̃}
σ2 + ℑ{ai}ℑ{x̃}

σ2

) . (2.63)

For the special case of BPSK, Eqn. 2.63 simplifies to ℜ{Θ̃opt(x̃)} = tanh(x̃R/σ2)
and ℑ{Θ̃opt(x̃)} = 0. The nonlinear decision function for increasing values of
σ2 and BPSK is shown in Fig. 2.18. As can be seen, the decision function
becomes harder as σ2 decreases.

In order to calculate x̆, the noise variance, σ2, should be known. The noise
is assumed to be a sum of two statistically independent random variables:
the colored noise of the channel, σ2

n,i = σ2
n/|rii|2, and the residual interference

power which is assumed to be a kind of additive noise with variance σ2
I,i

[η]

given as follows [9, 38]

σ2
I,i

[η]
=

i−1
∑

j=1

|rij|2
|rii|2

σ
[η]
res,j +

NnT
∑

j=i+1

|rij|2
|rii|2

σ
[η−1]
res,j . (2.64)

It is clear from the previous equation that σ2
I,i

[η]
is dependent on the iteration

number since the residual interference after each iteration is dependent on

the quality of the estimate of x̆. The individual interference powers σ
[η]
res,j are

given by [9, 38]

σ
[η]
res,j = E{|xj|2 |x̃[η]

j } − |x̆[η]
j |2 =

∑M
i=1 |ai|2 exp

(

−|ai|
2

2σ2 + ℜ{ai}ℜ{x̃}
σ2 + ℑ{ai}ℑ{x̃}

σ2

)

∑M
i=1 exp

(

−|ai|2

2σ2 + ℜ{ai}ℜ{x̃}
σ2 + ℑ{ai}ℑ{x̃}

σ2

) − |x̆[η]
j |2,

(2.65)

where σ2 = σ2
n,i+σ2

I,i
[η]

, since the two random variables are assumed to be inde-

pendent. In case of MPSK modulation, Eqn. 2.65 reduces to σ
[η]
res,j = 1 − |x̆[η]

j |2.
Clearly, the noise variance decreases with increasing number of iterations
(i. e. harder decisions).

Soft Cholesky Equalizer

The SCE is derived from the ZF-BDFE and employs the same filters, how-
ever, like the RNN equalizer, it is iterative and employs a soft decision device
instead of the hard one for feedback. Like the ZF-BDFE, the feedforward fil-
ter G

f
= (FH)−1 (note that the normalization by (diag(F ))−1 has been dropped

here). Thus the output of the feedforward filter is given by

ζ = F x + n, (2.66)
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(b) Symbol update for iteration η

Figure 2.19: SCE equivalent vector valued transmission and symbol update.

where the noise n is now white due to the whitening filter (FH)−1. Fig-
ure 2.19(a) gives the equivalent matrix vector transmission scheme after the
feedforward filter. Figure 2.19(b) shows the updating model used by the SCE

to obtain the estimate x̆
(η)
l of the xl at the η-th iteration. The estimate can

also be expressed as follows [31, 33]

x̆
(η)
l = decsoft

(

ζ(η,l), σ2
R, σ2

I

)

where (2.67)

ζ(η,l) = ζ − F
\l
x̆(η,l) and (2.68)

x̆(η,l) =
[

x̆
(η−1)
1 , · · · , x̆

(η−1)
l , x̆

(η)
1+1, · · · , x̆

(η)
NnT

]

. (2.69)

The matrix F
\l

denotes the matrix F with the l-th column set to all-zero vector

and accordingly ζ(η,l) can be written as follows,

ζ(η,l) = f
l
xl + i(η,l) + n (2.70)

where f
l
is the l-th column of F and i(η,l) = F

\l
(x − x̆(η,l)) is the residual inter-

ference of the other symbols. The desired final state is when all interference
has been subtracted, i. e. x̆(η,l) = x and consequently ζ(η,l) = f

l
xl + n [31].

Similar to the RNN equalizer, the SCE tries to find the soft decision function,

decsoft, that minimizes the MSE, J = {|x̆[η]
l − xl|2|ζ(η,l)}. The minimization leads
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2.6 Iterative Equalization and Decoding

to the following soft decision function [31, 33]

x̆
[η]
l = E{xl|ζ(η,l)} =

M−1
∑

m=0

amP (xl = am|ζ(η,l)), (2.71)

and by applying Bayes’ rule, assuming equiprobable transmit symbols and
white disturbance we get [31, 33]

x̆
[η]
l = decsoft

(

ζ(η,l), σ2
R, σ2

I

)

=
M−1
∑

m=0

am

[

∏NnT−1
j=0 p(ζ

(η,l)
j |xl = am)

∑M−1
k=0

∏NnT−1
j=0 p(ζ

(η,l)
j |xk = am)

]

. (2.72)

Moreover, by assuming Gaussian interference the probability p(ζ
(η,l)
j |xl = am)

is given by [31, 33]

p(ζ
(η,l)
j |xl = am) =

1

2πσ
(η,l)
Rj σ

(η,l)
Ij

exp

(

−(ℜ{ζ(η,l)
j − fjlam})2

2σ2
Rj

(η,l)

)

exp

(

−(ℑ{ζ(η,l)
j − fjlam})2

2σ2
Ij

(η,l)

)

(2.73)

and σ2
Rj

(η,l)
and σ2

Ij
(η,l)

are given by

σRj
(η,l) =

√

σ2
n + i2Rj

(η,l)
(2.74)

σIj
(η,l) =

√

σ2
n + i2Ij

(η,l)
. (2.75)

The decision function of the SCE thus collects all of the energy of the trans-

mit symbol xl spread over ζ
(η,l)
j by making the decision function dependent on

the whole column f
l
. Accordingly, it does not suffer from the SNR-loss that

is unavoidable for the BDFE, which can only make use of the energy on the
main diagonal of F [31]. We also would like to mention at this point, that
the difference between the RNN detector and the SCE lies in the soft deci-
sion function and an additional preprocessing step of the SCE (feedforward
whitening filter). The soft decision function of the RNN detector processes a
single symbol, whereas the SCE as aforementioned makes a decision based
on the whole symbol vector. Furthermore, since the SCE applies a whiten-
ing filter, it usually offers better performance. However, the computational
complexity of the SCE is higher compared to that of the RNN detector.

2.6 Iterative Equalization and Decoding

In the coded case, we apply iterative equalization and decoding (also known
as turbo detection or iterative detection). Figure 2.20 depicts the discrete-time
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2 Theoretical Background

vector-matrix model, when additional coding is included. The source sym-
bol vectors, q, are encoded with a terminated convolutional code, optionally
punctured, and permuted by a random interleaver, Π. The code vectors are
mapped on to symbols from an M-ary symbol alphabet. We assume that the
resulting symbol vector is subdivided into blocks of length NnT, which are
transmitted over the MIMO channel matrix R.

ENC MAPPINGΠ
q c

nc

x x̃
R

Figure 2.20: Matrix vector model of coded transmission.

The basic principle of turbo detection or iterative detection is depicted in
Fig. 2.21. It was first introduced for intersymbol interference (ISI) channels
in [44]. The detector (DET) and the decoder (DEC) benefit from each other
during an iterative process by exchanging soft values of the code bits. In
iterative schemes, the bit soft values are often given by their log-likelihood
ratios (LLR) or for short L-values. The LLR of a bit q, L(q), is given by [45, 46]

L(q) = ln
P (q = 0)

P (q = 1)
, (2.76)

where P (q = 0) is the probability that q = 0 and P (q = 1) is the probability
that q = 1. Log-likelihood algebra, which gives convenient methods for cal-
culating bit reliabilities, was introduced in [45]. The LLR can be extended
to non-binary random values, for example symbols x chosen from an M-ary
modulation. In this case, M L-values need to be calculated as well as M
probabilities P (x = am). These general LLR are defined as follows

L(x) = ln
P (x = am)

P (x = aM)
, (2.77)

where, without loss of generality, P (x = aM) is chosen for the denominator.
Thus instead of a scalar L-value, we have a vector of L-values. The symbol
probabilities can also be obtained by reverse mapping Eqn. 2.77,

P (x = am) =
exp (L(x = am))

1 +
∑M−1

m=1 exp (L(x = am))
. (2.78)

Now we turn our attention back to Fig. 2.21 and based on it we explain the
concept of iterative equalization and decoding. We restrict our attention here
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Figure 2.21: Matrix vector model of iterative equalization and decoding.

on equalizers with feedback, e. g. RNN equalizer and SCE. During each iter-
ation η the equalizer (DET) calculates a vector of L-values, LE, based on the
received vector x̃ and the additional information LeD from the decoder. The
information from the decoder, usually called extrinsic information, is based
on the decoding results from the previous iteration η − 1 and provides in-
formation about the code restrictions and code bit reliabilities in order to
improve the equalization [32, 33, 47]. The decoder is a symbol by symbol
maximum a posteriori decoder (s/s MAP) implemented using the BCJR al-
gorithm. Although the decoder computes a vector of code bit reliabilities LD

only the extrinsic information L′
eD = LD − L′

E (after puncturing and inter-
leaving) is passed to the equalizer and thereby preventing positive feedback
[32, 33, 47].

We now consider the equalization in more details. In case of the feed-
back equalizers considered here, the only modification done is to the deci-
sion function of the equalizers [33]. As mentioned above, the detector now
receives information about code restrictions as well as code bit reliabilities
and consequently the decision function now takes decisions not only based
on the received vector x̃ but also on LeD. The decision function, Θ̃c(·), for the
coded case now includes an extra restriction, the code restriction C, and can
be approximated as follows [33]

x̆
[η]
l = E{xl|χ̃[η]

l , C} =
M
∑

m=1

amP (xl = am|χ̃[η]
l , C), (2.79)

where χ
[η]
l stands for x̃

[η]
l in case of RNN equalizer and ζ(η,l) in case of the SCE.

Assuming the statistical independence between χ
[η]
l and C, which through the

use of the random interleaver Π is ensured at least during the first iteration
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[32, 48], and applying Bayes’ rule we get

P (xl = am|χ̃[η]
l , C) =

p(χ
[η]
l |xl = am)P (xl = am|C)

p(χ
[η]
l |C)

=
p(χ

[η]
l |xl = am)P (xl = am|C)

p(χ
[η]
l )

.

(2.80)
The probabilities P (xl = am|C) can be represented as a function of the decoder
extrinsic values LeD(cl,ν |C) [32, 48, 49],

P (xl = am|C) =

log2 M
∏

ν=1

exp ((1 − bin[am, ν])LeD(cl,ν |C))

1 + exp ((LeD(cl,ν |C))
, (2.81)

where bin[am, ν] denotes the value of the ν-th bit of symbol am. The channel
reliability values of the code bits cl,ν, LE(cl,ν)

LE(χ̃
[η]
l |ci,ν) = ln

∑

am∈A
[0]
ν

p(χ
[η]
l |xi = am)

∑

am∈A
[1]
ν

p(χ
[η]
l |xi = am)

, (2.82)

where A[b]
ν denotes the set of modulation symbols defined by a bit sequence

b at the ν-th position, and b = 0, 1. The output of the detector, LE, is then
deinterleaved Π−1 and depunctured and fed to the decoder.

Extrinsic Information Transfer Chart

The extrinsic information transfer chart or for short the EXIT chart is one
of the most well known methods for visualizing the convergence behavior of
iterative detection schemes. It is done by observing the exchange of mutual
information between the partaking devices and was introduced by ten Brink
in [50, 51, 52]. The mutual information between two random variables X and
Ξ is given by [53, 54]

I(X, Ξ) =

∫

X

∫

Ξ

p(ξ, x) log2

(

p(ξ, x)

p(ξ)p(x)

)

dξdx =

∫

X

∫

Ξ

p(ξ|x)p(x) log2

(

p(ξ|x)

p(ξ)

)

dξdx,

(2.83)
where we made use of the relation p(ξ, x) = p(ξ|x)p(x) to obtain the right-
hand side of the above equation. We first consider the decoder and assume

perfect interleaving i. e. we assume the input L-values, LE(χ̃
[η]
l |ci,ν), to be

independent and identically distributed random variables AD. The probability
density function (pdf) of AD conditioned on the code bits p(ζ|c) is Gaussian
with mean σ2

A and mean σ2
A/2(1 − 2b), where b = 0, 1 [51, 52],

pAD
(ζ|c = b) =

1
√

2πσ2
A

exp

(

−ζ − σ2
A

2
b

2σ2
A

)

. (2.84)
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Thus, the mutual information, IA,dec, between the input L-values AD and the
unmapped code bits according to Eqn. 2.83, assuming equiprobable code
bits, is [51, 52]

IA,dec =
1

2

∑

b=−1,1

∫ ∞

−∞

pAD
(ζ|c = b) log2

(

2pAD
(ζ|c = b)

pAD
(ζ|c = −1) + pAD

(ζ|c = 1)

)

dξ. (2.85)

The pdf of the extrinsic output L-values of the decoder, LeD(ci,ν |C), condi-
tioned on the code bits, pED

(ζ|c = b), can not be calculated and are measured
using Monte Carlo simulations. The mutual information at the output of the
decoder, IE,dec, between the code bits c and the random output L-values ED

are then calculated as in Eqn. 2.85. Since IA,dec is monotonically increasing
in σ2

A and thus invertible, artificial L-values with mean σ2
A/2(1 − 2b), and

variance σ2
A can be generated for a given value of IA,dec. The generated

L-values are then fed to the decoder and pED
(ζ|c = b) of ED and in turn IE,dec

are calculated.

The extrinsic information for the SCE and the RNN equalizer can not be
obtained by the previously described straightforward method. The above
derivation of the EXIT-chart assumes memory-less components, a condition
that does not apply to feedback equalizers such as the SCE and RNN.
These equalizers use decisions from previous iterations for interference
cancellation and thus have memory. However, the condition of memory-less
components can be relaxed so as to be able to find EXIT charts for the SCE
and RNN [33]. This can be achieved by running those equalizers for several
iterations using the same extrinsic information for all iterations and thereby
reducing the memory effect [33, 35, 48]. In other words, extrinsic L-values
of the decoder are artificially generated and fed to the equalizer which is
then allowed to run for more than one iteration while keeping the L-values
unaltered. As the number of iterations tends to infinity, an upperbound
for the extrinsic transfer characteristics of the feedback equalizers can be
obtained. Yet, it was shown in [33, 35, 48] that the extrinsic transfer curves
for more than one iteration lie very close to each other. The curves for two or
three iterations are thus enough to approximate the extrinsic transfer curves
of the feedback equalizers.

Now, to analyze the convergence behavior of iterative equalization and de-
coding, the EXIT charts for both the equalizer and decoder are included in
the same graph, where the input to the decoder is equal to the output of
the equalizer (IA,dec = IE,eq on the ordinate) and the output of the decoder is
equal to the input of the equalizer (IE,dec = IA,eq on the abscissa). Note that
the decoder chart is now flipped. A schematic of the EXIT charts for the
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equalizer and decoder is shown Fig. 2.22. The iterative process starts with
the equalizer and ends with the decoder. The starting point is thus IE,eq for
IA,eq = 0 i. e. no extrinsic information available. After that, the equalizer out-
put becomes the decoder input i. e. IA,dec = IE,eq. This is represented by a line
parallel to the abscissa starting at the previous IE,eq point and ending at the
intersection with the decoder chart at some new IE,dec. This is the decoder
output which in turn becomes the equalizer input IE,dec = IA,eq. Similarly, this
is represented by a line parallel to the ordinate starting at the previous IE,dec

and ending at the intersection with the equalizer chart at a new point IE,eq.
This is continued until equalizer and decoder EXIT characteristics intersect.
This intersection point is important since the hard decision are made after
the decoder in the last iteration i. e. a higher IE,dec corresponds to lower BER.
Those above described lines are called the transient trajectory and, as can be
seen in Fig. 2.22, they are upper bounded by the equalizer EXIT characteris-
tics and lower bounded by the decoder EXIT characteristics. The convergence
speed of the iterative process is thus dependent on the size and shape of the
enclosed area. The larger the enclosed area the faster the convergence i. e.
less iterations are required to achieve the best performance. It was shown
through simulation results in [33, 18, 48, 19] that the starting point IE,eq of
the equalizer chart is highly dependent on the amount of interference in the
channel, where higher interference leads to lower IE,eq values. The final IE,eq

on the other hand was found to be dependent on the matched filter bound
(MFB), with better MFB leading to higher final IE,eq values. We shall look at
this behavior again in more details in Chapter 4. It is also important to men-
tion at this point, that those transient trajectories should only be seen as
an approximation and that the actual trajectory may be significantly differ-
ent from the above described theoretical trajectory. For example, the actual
trajectory does not have to hit either of the EXIT characteristic curves.

2.7 Test Channels

To assess the effect of the total interference and the distribution of the in-
dividual interference values as well as the MFB on the performance of the
equalizers described in Sec. 2.5, two standard channels are proposed in this
section. These channels are then used for judging the behavior of the equal-
izers under different interference and matched filter bound (MFB) conditions.

K-Symmetric Channel

The K-symmetric channel is an n×n correlation matrix and was first defined
in [55]. It was used to describe the cross-correlation matrix between K users,
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Figure 2.22: Example for EXIT chart.

where all users have the same cross-correlation with each other. It has equal
off diagonal elements, i. e. rij = r ∀i 6= j and r ≤ 1, r ∈ ℜ.

R
K,n

=
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(2.86)

From now on, we shall denote the K-symmetric channel by R
K,n

(r), where

r is the value of the off-diagonal elements and n is the size of the square
K-symmetric matrix.

K-Z-Symmetric Channel

We define another symmetric channel, the K-Z-symmetric channel. This
channel is similar to the K-symmetric channel, except that some of the off
diagonal elements are set to zero. The K-Z-symmetric channel of size n× n is
defined as follows,

R
KZ,n

(rz) = R
K,m

(rz) ⊗ I
z
, (2.87)

where I
z

is the identity matrix of size z × z and R
K,m

(rz) is a K-symmetric

channel (Eqn. 2.86) of size m × m and m = n/z. Note that m,n and z must be
integer values and z − 1 defines the number of zero elements between any
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Channel Ψ Φ χ
∑

i6=j |rij|
K-Sym, r = 0.2 14.28 0.2 9.0 6.2
K-Z-Sym, z = 2, rz = 0.2875 14.28 0.2 7.45 4.31
K-Z-Sym, z = 4, rz = 0.4209 14.28 0.2 6.81 2.94
K-Z-Sym, z = 8, rz = 0.6429 14.28 0.2 8.20 1.93

Table 2.1: K-symmetric (r = 0.3) and corresponding K-Z-symmetric channels
for z = 2, 4 and 8, n = 32,

∑

i6=j |rij|2 = 1.24.
.

two non-zero rz values. From now on, we shall denote the K-Z-symmetric
channel by R

KZ,n
(r, z).

BER for K- and K-Z-Symmetric Channels

In what follows, the performance of n × n K-symmetric and n × n K-Z-
symmetric channels for various z values are compared. The value of z
can be varied, but the following relation between the K-symmetric and K-
Z-symmetric channels

(m − 1)r2
z = (n − 1)r2 (2.88)

must be satisfied to guarantee that ||R
KZ,n

(rz)||2F = ||R
K,n

(r)||2F . Since the

diagonal elements of R
KZ,n

and R
K,n

are all ones, i. e. Tr{RK,n} = Tr{RKZ,n},
the sum of the square of the off-diagonal elements,

∑

i6=j |rij|2, remains the
same for both matrices. Using these test channels, the effect of the amount
of total interference (given by

∑

i6=j |rij|2 or
∑

i6=j |rij| ) and the distribution
of the individual interference values on the used equalizer performances is
tested. Note that although

∑

i6=j |rij|2 remains constant as long as Eqn. 2.88
is satisfied, the

∑

i6=j |rij| changes. In addition, the K- and K-Z-symmetric
channels remain positive semidefinite for all |rij| ≤ 1, rij ∈ ℜ.

Tables 2.1 and 2.2 give the diversity measure, Ψ, the correlation measure,
Φ, the condition number, χ, and the sum of absolute values of rij for any
row in R. Since the Frobenius norm of the K-symmetric and K-Z-symmetric
channels are equal, the diversity and correlation measures are the same for
all channels. However, the sum

∑

i6=j |rij| increases as r decreases. The con-
dition numbers for all K-Z-symmetric channels differ in value, yet they are
of the same order of magnitude as that of the K-Symmetric channel for most
rz values. However, as rij → 1, χ → ∞. Figure 2.23 shows the corresponding
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2.7 Test Channels

Channel Ψ Φ χ
∑

i6=j |rij|
K-Sym, r = 0.3 8.44 0.3 14.71 9.3
K-Z-Sym, z = 2, rz = 0.4313 8.44 0.3 13.13 6.47
K-Z-Sym, z = 4, rz = 0.6313 8.44 0.3 14.69 4.42
K-Z-Sym, z = 8, rz = 0.9644 8.44 0.3 109 2.89

Table 2.2: K-symmetric (r = 0.2) and corresponding K-Z-symmetric channels
for z = 2, 4 and 8, n = 32,

∑

i6=j |rij|2 = 2.79.

K-symmetric channel with r = 0.3 and K-Z-symmetric channels with z = 2, 4
and 8.

(a) r = 0.3 (b) rz = 0.43, z = 2 (c) rz = 0.63, z = 4 (d) rz = 0.96, z = 8

Figure 2.23: K-symmetric (r = 0.3) and corresponding K-Z-symmetric chan-
nels in Table 2.2.

Figure 2.24 shows the BER for the SCE, RNN, MMSE-BDFE and MMSE-
BLE using 4 PSK for the different K- and K-Z symmetric channels in Ta-
bles 2.1 and 2.2. Clearly, the BER for all equalizers deteriorates as r in-
creases. In addition, for a given r, the BER also is shown to worsen as rz

increases although the corresponding
∑

i6=j |rij| decreases. Thus, as the BER

curves show, for a given
∑

i6=j |rij|2 the equalizers are more sensitive to the
individual values of the off-diagonal elements than to the total

∑

i6=j |rij|. Note

that the value of rz should always be considered along with
∑

i6=j |rij|2. For
instance, the K-Z-symmetric channel with rz = 0.6313 in Fig. 2.24(b) has a
total interference

∑

i6=j |rij|2 = 2.79 and
∑

i6=j |rij| = 4.42 and the BER is worse
than that of the K-Z-symmetric channel with rz = 0.6429 (Fig. 2.24(a)), where
∑

i6=j |rij| = 2.79 and
∑

i6=j |rij|2 = 1.93. Thus, the performance for the different

rz values should be compared for a given
∑

i6=j |rij|2. Furthermore, the simu-
lation results show the performance of the RNN to be notably susceptible to
high values of the off diagonal elements and to exhibit a rapidly deteriorating
performance as either r or rz increase.

37



2 Theoretical Background
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(a) SCE: r = 0.2
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(b) SCE: r = 0.3
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(c) RNN: r = 0.2
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(d) RNN: r = 0.3
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(e) MMSE-BDFE: r = 0.2
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(f) MMSE-BDFE: r = 0.3
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(g) MMSE-BLE: r = 0.2
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(h) MMSE-BLE: r = 0.3

Figure 2.24: BER forRK,32 for r=0.2, 0.3 and correspondingRKZ,32 with z=2, 4, 8.
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2.7 Test Channels
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(c) MMSE-BDFE
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(d) MMSE-BLE

Figure 2.25: BER for RK,32(r = 0.2) and alternating unequal rii.
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(a) SCE

0 2 4 6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

E
b
/N

o

B
E

R

 

 

AWGN
MFB
K−Sym, r

off
=0.3, r

nn
<r

jj
<r

11
K−Sym, r

off
=0.3, r

nn
>r

jj
>r

11

(b) RNN
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(c) MMSE-BDFE
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(d) MMSE-BLE

Figure 2.26: BER for RK,16(r = 0.3) and unequal rii sorted in increasing or
decreasing order.
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2 Theoretical Background

Effect of the MFB

Here, we modify the K-symmetric and K-Z-symmetric channels, such that
the diagonal elements are not longer equal to one. The sum of the diagonal
elements remains however the same. In Fig. 2.25, the diagonal elements, rii,
alternatingly take on two different values, while in Fig. 2.26 the diagonal ele-

ments are sorted either in increasing or decreasing order with rii = 0.87(̇1.1−l),
and l = −(n/2 − 1), . . . , n/2. Note that the diagonal elements had to be care-
fully chosen so that the resulting channels remain positive definite. The
off-diagonal elements are all equal and remain the same irrespective of the
value of the diagonal elements. This way, we can test the effect of the MFB
on the BER performance of the employed equalizers. Figures 2.25 and 2.26
show that the performance of all equalizers deteriorates as the MFB worsens,
i. e. as the difference between the values of the diagonal elements increases.
In addition, the RNN and MMSE-BDFE equalizers are sensitive to the order
of sorting (increasing or decreasing) of the diagonal elements as can be seen
in Figs. 2.26(b) and 2.26(c). They both seem to be more sensitive to propaga-
tion errors than the SCE. The MMSE-BLE, as expected, is not affected by the
order since it does not employ any feedback filters.

The results of the test channels give a guideline as to how the different
equalizers perform and how this performance is affected by interference, its
distribution and MFB. They thus aid in predicting their operation for other
channels as will be shown in the next chapters.

2.8 Summary

In this chapter, we described the matrix vector transmission model for
SISO-OFDM and extended it to MIMO-OFDM systems and presented how
spreading can be incorporated into that model. In addition, we showed how
antenna correlations can be integrated in the MIMO-OFDM channel model.
We described four different suboptimum equalizers (SCE, RNN, MMSE-BLE
and MMSE-BDFE) that will be used throughout this work and presented
how the RNN equalizer and SCE can be incorporated in iterative equalization
and decoding schemes. We have also looked at the performance of those
suboptimal equalizers for a set of test channels and showed that the perfor-
mance is dependent on the MFB as well as on the amount of interference.
The performance of the equalizers for those test channels will be used as
a guideline to judge their performance in MIMO frequency selective channels.
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Chapter3
Spreading

Time, frequency and spatial diversity are available for signals transmitted
over frequency selective, time varying MIMO channels. In order to capture
those diversities, signals need to be coded. The codeword dimensions de-
pend in general on the number of transmit and receive antennas as well as
the codeword duration and bandwidth. In addition, the maximum diver-
sity that can be captured by a codeword depends on the coherence time,
coherence distance and coherence bandwidth. For instance, the maximum
available time diversity a codeword of duration T can capture is T/Tc, where
Tc is the coherence time. Similarly, for a bandwidth BW and coherence band-
width BWc, BW/BWc represents the number of frequency diversity branches.
In addition, the MIMO antennas must be at least separated by the coher-
ence distance. Intuitively speaking, diversity gain can be seen as the number
of independently fading paths that a symbol is transmitted through. In a
flat fading channel with nT transmit antennas and nR receive antennas, the
maximum achievable diversity is nTnR for a codeword of duration T ≤ Tc.
In a frequency selective channel with L taps, the maximum achievable di-
versity would be nTnRL. In this Chapter, we consider spreading techniques
for frequency selective MIMO channels assuming no channel knowledge at
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3 Spreading

the transmitter. In Sec. 3.5, we introduce a family of spreading matrices
for MIMO-OFDM that exploits the full diversity of frequency selective MIMO
channels. The criteria behind the choice of those matrices will be given in
Sec. 3.3. Spreading, although it increases diversity, also leads to increased
interference. In addition, antenna correlations that often exist in MIMO sys-
tems also lead to higher interference. The effect of spreading and antenna
correaltions on interference will be discussed in Sec. 3.6.

3.1 Diversity

Wireless communication links often suffer from deep fades, i. e. large chan-
nel attenuation, leading to large errors at the receiver. Diversity is a method
of providing the receiver with independently fading replicas of a transmit-
ted signal. By increasing the number of independent links, the probability
that all links are in fade at the same is reduced. From now on, we shall
call those independent links diversity branches. These could be multiple co-
herence bandwidths to exploit frequency diversity or multiple antennas to
exploit spatial diversity. Assuming flat fading across all diversity branches,
Div, the received signal for each branch is

yi = hix + ni. (3.1)

Assuming perfect channel knowledge at the receiver, maximum ratio com-
bining (MRC) can be applied to obtain

x̃i =
Div
∑

i=1

h∗
i yi =

Div
∑

i=1

|hi|2s + ñ, (3.2)

where ñ =
∑Div

i=1 h∗
i ni and hi is normalized such that E{∑Div

i=1 |hi|2} = 1. This
normalization is also equivalent to dividing the transmit signal power equally
over all diversity branches, assuming E{|hi|2} = 1. Figure 3.1 shows the BER
for bipolar (BP) transmission versus Eb/No for different number of parallel
uncorrelated diversity branches. It is clear from the figure that as the
diversity order increases (Div → ∞), the BER approaches that of the AWGN
channel (i. e. no fading). That is, in the presence of infinite diversity, fading
can be completely alleviated [22]. Figure 3.1 shows that with diversity 32,
the BER is only 0.5 dB from that of the AWGN channel at 10−4.

Now, if those diversity branches become correlated, a coding loss, which
manifests itself in a shift of BER curves to the right, is experienced by the
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3.1 Diversity
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Figure 3.1: Effect of diversity on the BER performance in uncorrelated par-
allel fading channels.

BER curves. Correlation between the diversity branches can be modeled by
the following equation,

hc = k1/2 h, (3.3)

where k is the correlation matrix and is given by Eqn. 2.44. As can be seen
in Fig. 3.2(a) where we have assumed ρi = ρ ∀ i., the effect of correlations
manifests itself at high Eb/No through a parallel shift of the BER curve to the
right. The slope of the BER curves remains unchanged as long as k has full
rank. Figure 3.2(b) shows the effect of correlations on a system with higher
diversity, diversity=64. Although the BER performance is better, the same
effects as for the system with diversity 4 can be observed. For both cases
described here, we have assumed that all diversity branches are correlated.
If this is not the case, the BER curves will change depending on the number
of correlated branches and/or the degree of correlations present between
the diversity branches. In addition, if the different diversity branches have
different energies, the BER curves will change accordingly.

We have shown the effect of diversity and correlations on the BER. In this
section, we have assumed parallel channels, i. e. no interference. The slope
and shift of the BER in the case of channel with interference would not only
be affected by correlations and diversity, but also by the equalizer employed
as shall be shown later in this Chapter.
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(a) Diversity=4
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(b) Diversity=64

Figure 3.2: Effect of correlations on the BER performance in parallel fading
channels.

3.2 Space Time and Space Frequency Codes

The most famous space time system is the Alamouti code introduced by
Alamouti [56] in 1998 for a MISO 2 × 1. In this technique, two symbols x1

and x2 are simultaneously transmitted from the first and second antennas
respectively during the first signal period. At the second signal period, −x∗

2

and x∗
1 are transmitted from the first and second antennas respectively. It is

assumed that the channel does not change during those two signal periods,
i. e. the coherence time is larger than twice the signal period. The channel
is also assumed to be flat fading and perfectly known at the receiver. The
received symbol vector, y, can accordingly be written as follows,

y =

[

h11 h12

h∗
12 −h∗

11

][

x1

x2

]

+

[

n1

n∗
2

]

= H
eff

x + n, (3.4)

where n is an AWGN vector and H
eff

is the effective channel matrix. Since

H
eff

is orthogonal, that is HH

eff
H

eff
= ||h||2F I, then

x̃ = HH

eff
y = ||h||2F I x + ñ, (3.5)

and the transmitted signals can be detected without interference. The Alam-
outi code achieves maximum diversity nTnR = 2 of the flat fading channel.
The code rate is 1.0, since it takes two signal periods to transmit two sig-
nals. It is actually the only orthogonal STBC that has code rate 1.0. The
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3.2 Space Time and Space Frequency Codes

above Alamouti scheme, although it requires only one receive antenna, can
be used with multiple receive antennas which leads to improved BER and
higher diversity. The design of STBC for larger number of transmit antennas
can be found in [57]. In this work, the authors introduced two design criteria
for ST code construction: the rank criterion and the determinant criterion.
These criteria are based on the pairwise error probability (PEP) between any
two codewords assuming maximum likelihood (ML) detection. For Rayleigh
fading, the upperbound on the PEP between any two codewords C and E
averaged over all channels for high SNR (Es/No >> 1) is

P (C → E) ≤ 1
(

Π
r(Y )

k=1 λk(Y )
)nR

(

Es

4No

)−r(Y )nR

, (3.6)

where Y = G GH, G = C −E, λk(Y ) are the non-zero eigenvalues of G and r(Y )
is the rank of Y (which is also equal to the rank of G). The rank criterion
optimizes the diversity gain while the determinant criterion optimizes the
coding gain. To achieve maximum diversity nTnR, the matrix G must be of
full rank for any two codeword pairs. To maximize the coding gain given
a diversity target of nTnR, the minimum of the determinant of Y must be
maximized for all pairs of codewords [57]. The coding gain is a measure of the
gain due to coding compared to an uncoded system with the same diversity.
At high SNR, the coding gain leads to a shift in the SER curve to the left while
the diversity gain to an increase in its slope [22].

In [58], the authors showed that space-time codes designed to achieve full
diversity in flat fading environment will in general not achieve the full space-
frequency diversity, since they do not exploit the extra frequency diversity
available. Similar to [57], they presented a design criteria for MIMO-OFDM
also based on the pairwise error probability and maximum likelihood detec-
tion. The authors took the frequency diversity into account when deriving the
design criteria. Assuming no spatial or tap correlations and a uniform power
delay profile of the Rayleigh fading channels, the pairwise error probability,
after averaging over all channel realizations, can be written as [58]

P (C → E) =

r(Y )
∏

i=0

(

1 +
Es

4No

λi(Y )

)−nR

. (3.7)

The matrix Y = G GH where

G = [(C − E)T D(C − E)T · · · Dl(C − E)T · · · DL−1(C − E)T ], (3.8)

D = diag{e−j 2π
N

k}N−1
k=0 and λi are the eigenvalues of Y and r(Y ) is its rank.

Again, similar to STBC, to achieve full diversity, the matrix G has to be full
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3 Spreading

rank. That is, C − E has to have full rank for all codeword pairs and each

block B
i

= Di(C − E) should be linearly independent of the other blocks B
l

for all i 6= l and l = 0, . . . , L − 1. Ensuring that the space frequency code
exploits the available frequency diversity, ensures the linear independence of
the blocks B

l
[22, 58]. In [59], the authors provided a class of space-frequency

codes which achieve full spatial and frequency diversity based on the criteria
in [58]. As with ST codes, the design criteria in [59] impose limits on the
proposed code rate. Another example of maximum diversity space time codes
can be found for example in [60].

Space-time and space-frequency codes, although achieve high diversity
and eliminate intersymbol interference at the receiver (i. e. no equalization
is required), they offer a transmission rate which is only a fraction of that of
a non-coded system. In the next Section, we look at spreading matrices for
MIMO-OFDM that can achieve full diversity and full data rates (i. e. no data
rate reduction compared to the non-coded system). In contrast to space time
frequency codes, spreading matrices do not eliminate intersymbol interfer-
ence at the receive and equalization is thus necessary.

3.3 Spreading Criteria for MIMO-OFDM

The aim of this Section is to introduce a family of spreading matrices that
maintains the same transmission rate, and yet achieves the maximum pos-
sible diversity in a frequency selective channel. That is, we want to transmit
every signal over all independently fading paths of the MIMO channel. We
shall show the conditions under which this family of matrices achieves max-
imum diversity.
Before giving the criteria a spreading matrix needs to fulfill in order to achieve
maximum diversity, we first take a closer look at the diagonal elements , riT,k,
of the channel matrix R

MO
before spreading. The indices of riT,k are separated

by a comma since they only refer to the diagonal elements of R
MO

according
to transmit antenna, iT, and frequency, k. riT,k can be expressed as follows:

riT,k =
1

nR

nR
∑

iR=1

|HiRiT(k)|2, (3.9)

which is the sum over all receive antennas, and represents the MRC tech-
nique at subcarrier k for symbols transmitted from antenna iT. The transfer
function between transmit antenna iT and receive antenna iR at frequency k
is as follows

HiRiT(k) =
L
∑

m=1

hiRiT(m)e−j2π(
(k−1)(m−1)

N
). (3.10)
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3.3 Spreading Criteria for MIMO-OFDM

Equation 3.10 represents the k-th diagonal element of Eqn. 2.24. The abso-
lute value squared of |HiRiT(k)|2 is thus given by

|HiRiT(k)|2 =
L
∑

m=1

hiRiT(m)e−j2π(
(k−1)m

N
)

L
∑

l=1

h∗
iRiT

(l)ej2π(
(k−1)l

N
)

=
L
∑

m=1

|hiRiT(m)|2 +
L
∑

m=1

hiRiT(m)e−j2π(
(k−1)m

N
)

L
∑

l 6=m

h∗
iRiT

(l)ej2π(
(k−1)l

N
)

=
L
∑

m=1

|hiRiT(m)|2 +
L
∑

m=1

L
∑

l>m

2Re{hiRiT(m)h∗
iRiT

(l)e−j2π(
(k−1)(l−m)

N
)}.

(3.11)

Equations 2.31, 3.9, and 3.11 give a guideline for selecting the appropriate
spreading.

Criterion 1 To achieve maximum diversity, spreading should be applied such

that the diagonal elements of R
S
, sriT,k, satisfy the following equation

sriT,k =
∑

k⊂S1,iT⊂S2

|wiT,k|2riT,k, (3.12)

where S1 and S2 are sets containing all frequencies and transmit antennas,

i. e. S1= {1, . . . , N} and S2= {1, . . . , nT}. Since we are trying to achieve both

spatial and frequency diversity, the subsets chosen from S1 and S2 can not

be empty. The |wiT,k|2 are weighting constants dependent on the subsets of S1

and S2 and should satisfy
∑

k⊂S1,iT⊂S2
|wiT,k|2 = 1. They ensure that Eqn. 2.31

is satisfied after spreading. Equation 3.12 imposes the requirement that no

signal should be transmitted from different antennas at the same frequency,

i. e. no signal should interfere with itself after spreading. For the spreading

matrices considered here, the absolute values for wiT,k are the same for all iT
and k, i. e. |wiT,k| = |w|. That is, the signal energy is equally spread over all

diversity branches.

Criterion 2 The subsets of S1 and S2 should be chosen such that

∑

k⊂S1,iT⊂S2

|wiT,k|2
nR
∑

iR=1

L
∑

m=1

L
∑

l>m

2A = |w|2
∑

k⊂S1,iT⊂S2

nR
∑

iR=1

L
∑

m=1

L
∑

l>m

2A = 0, (3.13)

where

A = Re{hiRiT(m)h∗
iRiT

(l)e−j2π(
(k−1)(l−m)

N
)}. (3.14)

Equation 3.13 is also satisfied, if only the following sum is zero,

∑

k⊂S1

L
∑

m=1

L
∑

l>m

2Re{hiRiT(m)h∗
iRiT

(l)e−j2π(
(k−1)(l−m)

N
)} = 0. (3.15)
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Thus, if, through spreading, the subsets for iT and k in Eqns. 3.12 and 3.13
(or 3.15) are adequately chosen, the diagonal elements of R

S
become

sriT,k =
1

nRnT

nR
∑

iR=1

nT
∑

iT=1

L
∑

l=1

|hiRiT(l)|2 =
1

nRnT

||h||2F , (3.16)

for all iT and k. The square norm ||h||2F is defined as

||h||2F =
L
∑

l=1

||h(l)||2F , (3.17)

where ||h(l)||2F is the squared Frobenius norm of h(l), and E{‖|h||2F} = nTnR.
That is, the diagonal elements of R

S
are equal, maximum diversity is achieved

and for the ideal case, when all interference has been removed (MFB), the
received OFDM symbol x̃ can be expressed by

x̃ =
1

nRnT

||h||2F I
nTN

x + ñ, (3.18)

where x is the transmitted OFDM symbol, I
nT N

the identity matrix of size nTN

and ñ is the noise vector.

3.4 MC-Code Division Multiplexing

Multi-carrier coded division multiplexing (MC-CDM) spreads the energy of
each symbol equally over the N subcarriers of its corresponding transmit
antenna. No spreading is performed in the antenna direction. The spreading
matrix for MC-CDM is given by [19, 61, 62, 18]:

U
MC−CDM

=















S 0 0 . . . 0
0 S 0 . . . 0
...

...
. . . . . .

...
0 0 . . . S 0
0 0 0 . . . S















, (3.19)

where S is an N × N orthogonal matrix, and 0 are zero matrices of the same
size. Alternatively, we can express the spreading matrix as follows

U
MC−CDM

= I
nT

⊗ S, (3.20)

where ⊗ is the Kronecker product and I
nT

is the idenity matrix of size nT×nT.

Note that although the MC-CDM spreading matrix satisfies Eqn. 3.15, the
subset iT⊂ S2 in Eqn.3.12 is empty (Criterion 2 is not satisfied) and thus full
diversity can not be achieved. The maximum achievable diversity for MC-
CDM spreading is thus nRL.
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3.5 MC-Cyclic Antenna Frequency Spreading

3.5 MC-Cyclic Antenna Frequency Spreading

In this section, we describe a family of spreading matrices that utilize the
frequency as well as the spatial dimensions offered by the MIMO system and
were first proposed in [62, 61]. These spreading matrices spread each signal
over all transmit antennas and over a set of frequencies at each transmit
antenna. These frequency sets are different for each antenna and thus the
name MC-CAFS: multi-carrier cyclic antenna frequency spreading. We shall
show that this family of spreading matrices can satisfy Eqns. 3.12 through
3.16 under certain conditions and thus achieves maximum diversity. These
conditions, as shall be shown later, are easily satisfied in practical OFDM
systems. As mentioned earlier, we shall only consider orthogonal spreading
matrices. The spreading matrix, U

MC−CAFS
, is defined by

U
MC−CAFS

=













































































s11I s12I . . . . . . . . . s1(BnT
)I

...
...

...
...

...
...

sB1I sB2I . . . . . . . . . sB(BnT
)I

s(B1+1)1Ip1
s(B11)2Ip1

. . . . . . . . . s(B1+1)(BnT
)Ip1

...
...

...
...

...
...

s(B2)1Ip1
s(B2)2Ip1

. . . . . . . . . s(B2)(BnT
)Ip1

s(B2+1)1Ip2
s(B2+1)2Ip2

. . . . . . . . . s(B2+1)(BnT
)Ip2

...
...

...
...

...
...

s(B3)1Ip2
s(B3)2Ip2

. . . . . . . . . s(B3)(BnT
)Ip2

...
...

...
...

...
...

s(BnT−1+1)1Ipn
. . . . . . . . . . . . s(BnT−1+1)(BnT

)Ipn

...
...

...
...

...
...

s(BnT
)1Ipn

. . . . . . . . . . . . s(BnT
)(BnT

)Ipn













































































(3.21)

where B is the number of frequency blocks per transmit antenna and repre-
sents the number of frequencies over which each signal is spread at each
transmit antenna (the horizontal lines show the separation between the
transmit antennas), Bm = mB, and sij are elements of the orthogonal matrix S
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3 Spreading

(i. e. SHS = I) of size (nTB)×(nTB). I is identity matrices of size (N/B)×(N/B)
and I

pi
is its i-th permutation. The permutations imply that each signal is

spread over different frequencies at each transmit antenna and ensure that
the first criterion (Eqn. 3.12) is satisfied [62]. Note that the number of allowed
permutations, n, must satisfy n ≤ (nT − 1) (i. e. no permutation should re-
peat), else U

MC−CAFS
will loose its orthogonality. This condition translates to

(N/B) ≥ nT and gives an upper bound for B:

B ≤ N/nT. (3.22)

In addition, to insure that Eqn. 3.15 is satisfied, B must be lower bounded
by:

B ≥ L (3.23)

This can be proven by closely looking at the exponential term of Eqn. 3.13.
At any transmit antenna, this equation is satisfied if we spread over a subset
of frequencies such that:

∑

k=Si1⊂S1

cos(k
2π

N
(l − m)) = 0,

∑

k=Si1⊂S1

sin(k
2π

N
(l − m)) = 0, (3.24)

where
∑

i Si1 = S1. Note that Eqns 3.24 are readily satisfied for k = S1. How-
ever, choosing k = S1 contradicts with Criterion 1. Without loss of generality,
we consider the case where N is an even integer. This is applicable to OFDM
systems where the fast Fourier transform (FFT) and the inverse fast Fourier
transform (IFFT) are employed. Accordingly, Si1 include the subset of fre-
quencies such that

∆k
2π

N
(l − m) = π, (3.25)

∆k =











⌈ N
2(l−m)

⌉ if (l − m) even

N
2

if (l − m) odd

, (3.26)

where ⌈x⌉ rounds x towards infinity. Thus, to insure that Eqn. 3.15 is satis-
fied, any one symbol must be spread over an integer number of B frequencies
satisfying

B = max{ N

∆k
} ≥ L. (3.27)
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3.5 MC-Cyclic Antenna Frequency Spreading

The MC-CAFS spreading would therefore achieve maximum diversity, if B
satisfies the following criteria

L ≤ B ≤ N

nT

. (3.28)

Note that for a given N , nT and L, there is a set of B values (i. e. set of
spreading matrices) that would satisfy eqns. 3.12 to 3.16. In addition, B
must also be chosen such that N/B is an integer.

To summarize, it is clear that for Eqn. 3.13 to be satisfied, it is enough to
insure that any symbol is spread over the adequate number of frequencies of
its corresponding transmit antenna (Eqn.3.15). The choice of the subset iT ⊂
S2= {1, . . . , nT} does not affect the equality in Eqn. 3.13, but affects validity of
Eqn. 3.16. By choosing iT =S2, Eqn. 3.16 is satisfied. That is, although the
symbols need not be spread over all frequencies, they must be spread over
all antennas. Through the use of the permutations, MC-CAFS satisfies this
requirement without violating the first criterion.

Example 1

For example, consider a nR × nT MIMO-OFDM system with N = 8 and for
the cases, L = 2, L = 3 and L = 4. For L = 2, the maximum possible value
for (l − m) = 1, for L = 3 and L = 4, they are (l − m) = 2 and 3 respectively.

Fig. 3.3 shows the values of E(k) = e−j2π(k−1)
(l−m)

N for (l − m) = 1, 2 and 3. For
every point on the circle, there is another point satisfying E(k + ∆k) = −E(k)
(separated by an angle of π). For L = 2, ∆k = 4, while for L = 3 and (l−m) = 2,
∆k = 2. Thus, for L = 2, it would be enough to spread over B = 2 frequencies
separated by ∆k = 4 and over B = 4 frequencies separated by ∆k = 2 for
L = 3. For L = 4 and (l − m) = 3, ∆k = 4 and accordingly B = 2 would be
sufficient. However, since the sum in Eqn. 3.15 also includes the sum for
(l − m) = 2, thus ∆k = 2 must be chosen. Also note that in the case of L = 3,
the condition for (l − m) = 1 is automatically satisfied if ∆k = 2, that is B = 4.

Example 2

Consider a MIMO-OFDM channel with nT = nR = 2, L = 2 and N = 4. The
diagonal elements of R before spreading for the first antenna at k = 1 and 3
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Figure 3.3: E(k) = e−j2π(k−1)
(l−m)

N , N = 8, k = 1, . . . , N .

are,

r1,1 =
L=2
∑

l=1

|h11(l)|2 +
L=2
∑

l=1

|h21(l)|2 + 2Re{h11(1)h∗
11(2)} + 2Re{h21(1)h∗

21(2)}

r1,3 =
L=2
∑

l=1

|h11(l)|2 +
L=2
∑

l=1

|h21(l)|2 − 2Re{h11(1)h∗
11(2)} − 2Re{h21(1)h∗

21(2)}

and for the second antenna at k = 1 and 4 are,

r2,2 =
L=2
∑

l=1

|h22(l)|2 +
L=2
∑

l=1

|h12(l)|2 + 2Re{jh22(1)h∗
22(2)} + 2Re{jh12(1)h∗

12(2)}

r2,4 =
L=2
∑

l=1

|h22(l)|2 +
L=2
∑

l=1

|h12(l)|2 − 2Re{jh22(1)h∗
22(2)} − 2Re{jh12(1)h∗

12(2)}.

If the signals are spread over the two transmit antennas at the above given
frequencies (MC-CAFS spreading with B = 2), then the diagonal elements of
R

s
are

sriT,k =
L=2
∑

l=1

|h11(l)|2 +
L=2
∑

l=1

|h21(l)|2 +
L=2
∑

l=1

|h12(l)|2 +
L=2
∑

l=1

|h22(l)|2 =
L=2
∑

l=1

||h(l)||2F

which is in accordance with Eqn. 3.18.

BER Comparison for MIMO-OFDM, MC-CDM and MC-CAFS

Figures 3.4 and 3.5 compare the BER for MIMO-OFDM, MC-CDM and MC-
CAFS, B = 8 for a 4 × 4 block fading MIMO channel with L = 2 and L = 4
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Figure 3.4: BER versus Eb/No for MIMO-OFDM, MC-CDM and MC-CAFS,
nT = nR = 4.
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Figure 3.5: BER versus Eb/No for MIMO-OFDM, MC-CDM and MC-CAFS,
nT = nR = 4.

and N = 32 using MMSE-BLE, MMSE-BDFE, RNN and SCE. The transmitted
symbols are chosen from a 4 PSK alphabet. The BER using MC-CAFS is
lowest for all equalizers, outperforming MIMO-OFDM by at least 8 dB at a
BER of 10−3. At 10−4 MC-CAFS also outperforms MC-CDM with a minimum
gain of 1 dB using MMSE-BLE for L = 4 and with a maximum of more than
5 dB using the SCE for L = 2. The BER for MIMO-OFDM is not affected by
L, since the transmitted signals only experience receive diversity (nR). The
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3 Spreading

small shift between the BER curve for L = 2 and L = 4 is only due to the
cyclic prefix. The diversity gain (steeper BER curve), for all L, using MC-
CAFS compared to MC-CDM is most obvious when the SCE or RNN equalizers
are employed (see Fig. 3.5). In addition, the BER curve for MC-CAFS for
L = 4 is steeper than that for L = 2 due to increased diversity. This result
is not as obvious for MMSE-BLE and MMSE-BDFE for L = 4. However, at
higher Eb/No, the difference in the BER curve slopes might become more
noticeable. The RNN equalizer is sensitive to interference and can suffer
from an error floor (cf. Chap. 2). Here, the error floor is observed to occur
at around 14 dB. Increasing the Eb/No beyond 14 dB does not lead to lower
BER. The BER performance for the RNN equalizer benefits the most from
MC-CAFS spreading. The error floor drops by at least one decade for L = 2
compared to OFDM. For L = 4 the error floor drops even further. Due to
the high interference present, the performance of the MMSE-BLE and the
MMSE-BDFE is in general worse than that of the RNN and SCE. Even with
MC-CAFS spreading, the BER curves are at least 8 dB from the AWGN-OFDM
curve at a BER of 10−4.
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Figure 3.6: BER versus ρTx,exp = ρRx,exp = ρ at Eb/No = 14 dB for MIMO-OFDM,
MC-CDM and MC-CAFS, nT = nR = 4, L = 4.

Figure 3.6 shows the BER versus ρ (ρTx,exp = ρRx,exp = ρ) assuming an expo-
nential correlation model at Eb/No = 14 dB for RNN and SCE using 4 PSK. The
BER for MC-CAFS is the lowest for low to moderate correlation values (ρ ≤ 0.6
for SCE and ρ ≤ 0.3 for RNN). In case of the RNN equalizer, both MC-CDM
and MC-CAFS have comparable performance for ρ ≥ 0.3. For ρ > 0.5, the
system performance for MC-CAFS, MC-CDM and OFDM is poor and the BER
curves lie close together with OFDM leading to slightly lower BERs. Similarly
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Figure 3.7: Effect of the number of taps, L, of a channel in the time domain
on the auto-correlation between the channel transfer function at
any two frequencies (N = 32).

for the SCE, MC-CAFS outperforms both the MC-CDM and OFDM for low to
moderate correlation values (ρ < 0.6). As the correlations increase, MC-CDM
or OFDM lead to slightly lower BERs. It is important to mention here, that
the intersection point between the different BER curves shifts to the right as
the Eb/No increases. As we shall see in the coming sections, increased corre-
lations are associated with increased interference, which explains the above
BER behavior.

Coherence Bandwidth

The choice of B or ∆k for MC-CAFS can also be understood by considering
the auto-correlation function between any two subcarriers, k1 and k2, k1 6= k2.
The channel transfer function between any pair of transmit antennas at any
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subcarrier k1 can be written as follows

Hij(k1) =
L
∑

l=1

hij(l)e
−j 2π

N
k1(l−1). (3.29)

The auto-correlation function between between any two subcarriers, assum-
ing independent fading paths, can thus be given by

E{Hij(k1)H
∗
ij(k2)} =

L
∑

l=1

E{|hij(l)
2|}e−j 2π

N
∆k(l−1), (3.30)

where ∆k = k2−k1. Assuming a uniform power profile, i. e. E{|hij(l)
2|} = σ2, ∀ l,

then

E{Hij(k1)H
∗
ij(k2)} = σ2

L
∑

l=1

e−j 2π
N

∆k(l−1). (3.31)

Now we find ∆k for which Eqn. 3.31 is equal to zero. In other words, the
correlations are zero, if

L
∑

l=1

cos
2π

N
∆k(l − 1) = 0,

L
∑

l=1

sin
2π

N
∆k(l − 1) = 0,

(3.32)

which is satisfied if

∆k =
N

L
. (3.33)

The value of ∆k in Eqn. 3.33 can also be interpreted as the coherence band-
width if we assume uncorrelated scattering (US) of the channel taps with
equal PDP. That is, the delay spread in the channel have independent fading
[22]. The subcarriers with spacing larger than the coherence bandwidth ex-
perience independent fading. To achieve maximum diversity it is thus enough
to spread over N/Bc = N/∆k frequencies separated by the coherence band-
width, i. e. to spread over all coherence bandwidths. Figure 3.7 shows the
auto-correlation between any two subcarriers for different number of channel
taps, L. As the number of channel taps increases, the coherence Bandwidth
decreases. For N = L, the coherence Bandwidth is zero.

Even for non-equal PDP, Eqns. 3.32 are still satisfied for ∆k = N/L. How-
ever, in this case ∆k is not necessarily equal to the coherence bandwidth. In
case of non-equal PDP, where some of the taps have more power than others,
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Figure 3.8: Effect of the power delay profile on the coherence bandwidth.

the coherence bandwidth can be smaller than L [63]. For instance consider
the L = 6 channel, where the first 2 taps have most of the channel energy.
The PDP is, σ2

l = [0.48, 0.42, 0.053, 0.027, 0.015, 0.005], for l = 1 · · · 6, where the
first 2 taps have 90% of the channel power. As can be seen in Fig. 3.8, the
coherence bandwidth of the above described L = 6 channel with non-equal
PDP is almost the same as that of a two path channel with equal PDP. The
correlation matrix for a six tap channel with equal PDP is also shown for
comparison. Thus, the coherence bandwidth is dependent not only on the
number of channel taps, but also on the average power in each of these taps.
The coherence bandwidth is minimum if the powers of all taps are equal [63].

Thus, B in MC-CAFS should be chosen such that, B is at least

B = max(L,BW /Bc),

where BW is the total bandwidth.

BER Performance Comparison for different PDP

We now investigate the effect of the PDP and spreading factor B on the BER
performance. Again, we consider a 4 × 4 MIMO system with N = 32 and
transmission using 4 PSK. Figures 3.9 and 3.10 show the BER curves using
MC-CAFS spreading with B = 2 or 8 for three channels. The channels have
different power delay profiles and/or number of taps. EPDP stand for equal
PDP and NPDP stands for non-equal PDP. In case of the NPDP channel, a
six path MIMO channel is assumed with the following power delay profile:
σ2

l = [0.48, 0.42, 0.053, 0.027, 0.015, 0.005]. The other two channels are a two
path and a six path channel both with EPDP. The length of the cyclic prefix
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was chosen to be Lcp = 5 for all channels. The figures show that the BER per-
formance of the NPDP channel lies between that of the two path and six path
channel. The BER curve of the six path EPDP channel using the SCE even
reaches the MFB performance, i. e. AWGN-OFDM BER curve (Fig. 3.10(b)).
The NPDP channel, although it has 6 taps, can not achieve the same perfor-
mance as the six path EPDP channel. Clearly, the amount of power present
in each tap dictates how much power is allocated to the corresponding di-
versity branch. Thus the diversity effect is more evident if all taps have the
same PDP. At high Eb/No, the BER curves for the six path EPDP and NPDP
channels are expected run parallel to each other with the BER curve of the
NPDP shifted to the right. The shift is dependent on the power delay profile.
It is important to mention at this point, that the improvement in the BER
for EPDP and L = 2 as B increases is not due to increased diversity, since
that is already achieved with B = 2. This improvement is solely due to the
distribution of the interference after spreading as shall be shown in the next
section. As mentioned in Chapter 2, the performance of the equalizers is not
only dependent on the total interference, but also on its distribution.
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Figure 3.9: MMSE-BDFE and MMSE-BLE: Comparison of BER using MC-
CAFS spreading for equal and non-equal PDP, nT =nR = 4, N = 32.
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Figure 3.10: SCE and RNN: Comparison of BER using MC-CAFS spreading
for equal and non-equal PDP, nT =nR = 4, N = 32.

3.6 Spreading, Matched Filter Bound and

Interference

In this Section, we investigate the effect of the transmit and receive antenna
correlations on the matched filter bound (MFB) and interference. The MFB
describes the BER performance of the system if all interference is perfectly
removed. In all what follows, we assume that all channel taps experience
the same transmit and receive correlations (Eqn. 2.42) and based on the Kro-
necker correlation model given by Eqn. 2.39, the channel matrix Hc in the
frequency domain can be modeled in the same fashion as that in the time
domain as shown below,

Hc = K1/2

R
H K1/2

T
, (3.34)

where H is given by Eqn. 2.26. The matrices K
T

and K
R

are given by

K
T

= k
T
⊗ I

N
(3.35)

K
R

= k
R
⊗ I

N
, (3.36)

where ⊗ is the Kronecker product and I
N

is the identity matrix of size N ×N .
The off-diagonal elements, rij, of R

MO
represent the effect of the interference

occurring between signals transmitted at the same frequency from different
antennas. One measure for the total interference, β, experienced by each
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transmit symbol is defined as follows [64, 65],

β =
1

nTN

∑

i6=j

|rij|2 ≥ 0, (3.37)

where rij are the off-diagonal elements of R, and R being either R
MO

or R
S
.

Another measure for the total interference would be

β1/2 =
1

nTN

∑

i6=j

|rij| ≥ 0, (3.38)

which is simply the sum of the absolute values of the off-diagonal elements.
In what follows, we will concentrate on β, but we shall also consider β1/2 later
on. The variance of the subchannel power, α, from the mean r̄, is given by
[64, 65]

α =
1

nTN

∑

i

(rii − r̄)2 ≥ 0, (3.39)

where rii are the diagonal elements of R and

r̄ =
1

NnT

NnT
∑

i=1

rii. (3.40)

α gives a measure for the MFB bound, with a larger value of α corresponding
to a worse MFB and vice versa. If α = 0, then all signals undergo the same
amount of fading. In this case, the MFB is governed by the amount of diver-
sity and correlations present in the channel as was discussed in Sec. 3.1.

From the above definitions of α and β, we can write

α + β =
||R||2F
nTN

− r̄2, (3.41)

where ||R||2F is the Frobenius norm of R. Since, we only consider orthogonal
spreading matrices, neither ||R||2F nor r̄ change after spreading. Thus, the
individual values of α and β can change, but their sum remains constant. As
mentioned above, a large α value corresponds to a poor MFB and a large β
value to high interference. Yet, since α and β are both positive, it is obvious
from Eqn. 3.41 that if α increases, then β decreases and vice versa. The
sum α + β = 0, if and only if R is a scaled identity matrix, which is the ideal
case. MC-CAFS spreading leads to α = 0 and β thus reaches its maximum

value
(

β =
||R||2F
nTN

− r̄2
)

. However, as we have seen in the previous Sections,
the BER performance of MC-CAFS is still better than for other spreading
matrices due to increased diversity (improved MFB). On the other hand, if
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perfect channel knowledge is present at the transmitter, we can use the
eigenvectors of the channel correlation matrix, R

MO
, as precoding matrices

and thus diagonalizing the channel matrix. In this case, β = 0, and α reaches
its maximum value. Precoding will be discussed in more detail in the next
Chapter.

Equation 3.41 gives the values of α + β for one channel realization. The
expected value of the sum in Eqn. 3.41 is thus,

E{α + β} = E{α} + E{β} =
E{||R||2F}

nTN
− (1 + var(r̄)), (3.42)

where E{r̄2} = (E{r̄})2 + var(r̄) = 1 + var(r̄). We have shown in Appendix 3.A.2,
that var (r̄) = 1/Ψ(R

v
), where Ψ(R

v
) is given by Eqn. 2.51 and R

v
by Eqn. 2.53.

Accordingly, based on derivations in Appendix 3.A.2, we obtain

E{α} + E{β} =
nT

nR

+
2nT

n2
R

nR−1
∑

i=1

(nR − i)|ρRxi|2 +
2

nT

nT−1
∑

j=1

(nT − j)|ρTxj|2 − var(r̄),

(3.43)

where ρRxi and ρTxj are the elements of k
R

and k
T

respectively. For the un-
spread MIMO-OFDM, by expanding Eqn. 3.39, we get

α =
1

nTN

nTN
∑

i=1

(rii − r̄)2 =
1

nTN

nTN
∑

i=1

(r2
ii + r̄2 − 2r̄rii) =

1

nTN

nTN
∑

i=1

r2
ii − r̄2 (3.44)

Thus,

E{α} =
1

nR

+
2

n2
R

nR−1
∑

i=1

(nR − i)|ρRxi|2 − var(r̄). (3.45)

Note that the var(r̄) represents the effect of the different fading occurring in
the different MIMO channels, for example, frequency selectivity.

The expected value of β is

E{β} = (nT − 1)

(

1

nR

+
2

n2
R

nR−1
∑

i=1

(nR − i)|ρRxi|2
)

+
2

nT

nT−1
∑

j=1

(nT − j)|ρTxj|2. (3.46)

For equal correlation coefficients (ρm = ρ, ∀m ), Eqn. 3.43 reduces to

E{α + β} =
nT

nR

+
nT

nR

(nR − 1)|ρRx|2 + (nT − 1)|ρTx|2 − var(r̄), (3.47)
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where
∑n−1

j=1 j = n(n − 1)/2 was applied.

As mention earlier, in case of MC-CAFS spreading, α = 0 (all symbols ex-
perience the same fading), and thus according to Eqn. 3.41, β reaches its
maximum value. In this case, the expected value of β is directly obtained
from Eqn. 3.43, by setting E{α + β} = E{β}.

3.6.1 Effect of Antenna Correlations on Interference and MFB

Equation 3.45 predicts that α and thus the MFB worsens with increasing
receive antenna correlations. Figures 3.11(a) and 3.11(b) show α and β as
a function of the antenna correlations, ρRx = ρTx = ρ, assuming constant
correlation model, for various nR and L, respectively. Figure 3.11(a) shows α
for various L and thus make apparent the effect of var(r̄) on α. Unlike the
receive correlations, a larger var(r̄) reduces α, i. e. improves the MFB even
without any kind of spreading. Yet, it is important to mention here that this
reduction is not a positive effect. As shown in Appendix 3.A.2, var(r̄) increases
with increase of antenna correlations or with decreasing number of transmit
or receive antennas or channel taps (i. e. reduced diversity). In other words,
the reduction in α is due to reduced diversity. For e.g consider a 2 × 2 MIMO
system with L = 1 and full transmit correlations (H is rank one with identical
columns) and the resulting channel correlation matrix is an all ones matrix
(R = 1). In this case, all diagonal elements are equal, yet the channel is
rank deficient and the MIMO channel acts as a SIMO one. β, on the other
hand, is not affect by L, and as expected it increases with increased antenna
correlations.

Figure 3.12 shows the effect of either the transmit or receive antenna cor-
relations on α and β for an unspread MIMO-OFDM system for nT = 4 and
various nR. The receive correlations lead to lower total interference than
the transmit correlations (Fig. 3.12(b)). This is especially obvious as the
amount of antenna correlations increases. On the other hand, the presence
of receive correlations worsen the MFB in contrast to transmit correlations
(Fig. 3.12(a)). Thus, for the unspread MIMO-OFDM system, the receive corre-
lations worsen the MFB, yet they lead to less interference compared to trans-
mit antenna correlations. In case of MC-CAFS (α = 0), assuming nT = nR,
the presence of either transmit or receive correlations leads to same total
interference β.

Now we look at how the above predictions affect the BER performance of
the employed equalizers. Figure 3.13 shows the BER versus ρ for nT = nR = 4,
L = 4, N = 32 and 4 PSK at Eb/No = 20 dB and Eb/No = 14 dB respectively
for different equalizers. We have chosen a higher Eb/No for MMSE-BLE and
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Figure 3.11: E{α} and E{β} versus ρTx = ρRx = ρ, cij = ρ for various nR and L
and nT = 4.
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Figure 3.12: E{α} and E{β} versus ρTx (assuming ρRx = 0) or ρRx (assuming
ρTx = 0) for various nR, L = 4, nT = 4.

MMSE-BDFE in order to better distinguish between the different BER curves.
We assume the exponential correlation model, where ρ represents either the
transmit or receive correlations or both. The BER in presence of both trans-
mit and receive correlations, ρTx,exp = ρRx,exp = ρ, is as expected highest. The
BER in presence of receive correlations only (ρRx,exp = ρ) is lowest for both
the RNN and SCE. For the MMSE-BDFE, the lowest BER is for ρTx,exp = ρ.
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Figure 3.13: MIMO-OFDM: Comparison of BER in presence of either transmit
or receive correlations or both for nT = nR = 4, L = 4 and N = 32.

In presence of either transmit or receive correlations, the MMSE-BLE BER
curves are almost identical for both cases. As afore mentioned, receive corre-
lations, although worsen the MFB, leads to lower interference, which seems
to play a more important factor in the system performance at high antenna
correlations for the RNN and SCE. For the MMSE-BDFE, the MFB appears to
play the more important role. This may be due to the fact the MMSE-BDFE
is prone to propagation errors.

Figure 3.14 shows E{α + β} for different correlation models: constant,
exponential and complex exponential correlation model. We assume the
presence of antenna correlations at both the transmitter and receiver with
ρRx = ρTx = ρ. Based on the definition of the correlation measure in Sec. 2.4.2,
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Figure 3.14: E{α + β} versus ρTx = ρRx = ρ for various correlations models.

and for any given ρ, the complex exponential correlation model possesses the
highest correlation measure, while the exponential model the lowest. This
effect can be observed in Figure 3.14 where the different correlation models
lead to different E{α + β}. The complex exponential correlation model, which
has the highest correlation measure, leads to the highest E{α + β}. The ex-
ponential model, on the other hand to the lowest E{α + β}. By choosing ρ
for each model, to obtain the same correlation measure, the corresponding
E{α + β} obtained are also equal. For example, by choosing ρ = 0.5, 0.6, 0.7
for the complex exponential, constant and exponential models respectively,
we obtain the same correlation measure Φ = 0.6 for all models, and from
Fig. 3.14 we can see that E{α + β} = 3 at those ρ values. The results therefore
seem to agree with the correlation measures of the corresponding correla-
tion model. We show later on that the BER performance for the different
correlation models is also in accordance with the results presented here.

Finally, we look at the MFB in presence of antenna correlations. Fig-
ure 3.15 shows the MFB for MIMO-OFDM and MC-CAFS in presence of an-
tenna correlations. We assume a 4 × 4 MIMO channel with L = 4, constant
correlation model and transmission using 4 PSK. The MFB for OFDM in pres-
ence of transmit correlations coincides with the MFB for zero antenna cor-
relations. The reason is that the signals transmitted over a MIMO-OFDM
channel experience receive diversity only (diversity=nR) and thus only receive
correlations affect the MFB. Following from that, the MFB in presence of re-
ceive correlation coincides with the MFB for a channel with transmit and
receive correlations. In case of the MC-CAFS, both the transmit and receive
antenna correlations affect the MFB, since all transmitted signals have full
diversity (diversity=nTnRL). The MFB is worst when both transmit and receive
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Figure 3.15: MFB for 4 × 4 MIMO channel with L = 4, constant correlation
model.

correlations are present. The MFB in presence of either transmit or receive
correlations coincide with each other. Thus, the MFB is not only affected by
the amount of correlations, but also by the number of correlated diversity
branches. In all cases, the MFB of MC-CAFS clearly outperforms that for
MIMO-OFDM.

3.6.2 Asymptotic Behavior of α and β

For the uncorrelated case, the expected values of α and β are

E{α} =
1

nR

− 1

var(r̄)
=

1

nR

− 1

nTnRL
, (3.48)

and

E{β} =
nT − 1

nR

. (3.49)

Thus α → 0 and β → 0 as nR → ∞. In other words, R → I. However, in the
correlated case, α → |ρRX|2 and β → (nT−1)(|ρRX|2 + |ρTX|2) for nonzero ρRX and
ρTX. That is, increasing the number of receive antennas indefinitely would
not lead to a better MFB nor to considerably lower interference if high an-
tenna correlations are present. Figure 3.16 shows the E{α} and E{β} versus
nR for various ρ values for a MIMO channel with nT = 4 and L = 4. The largest
drop in E{α} and E{β} is observed for nR ≤ 8. The drop is more significant
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for low or zero correlations. As the correlations increase, the rate of drop
decreases.
Figure 3.17 shows the expected value of the condition number of R, E{χ},
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Figure 3.16: α and β versus nR for ρTx = ρRx = ρ, cij = ρ, nT = 4 and L = 4.
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Figure 3.17: Expected valued of the condition number of the channel correla-
tion matrix with nT = 4 and L = 4, versus the number of receive
antennas and for different antenna correlation values, cij = ρ.

versus the number of receive antennas for nT = 4. As expected, the con-
dition number increases with the increase in antenna correlations, being
highest when both transmit and receive correlations are present. Increasing
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the number of receive antennas lowers the condition number for all values
of antenna correlations. The largest drop however occurs by increasing nR

from 4 to 12. As the antenna correlations increase, the condition number,
although is reduced by increasing nR, does not tend to 1.0 as in the case of
zero correlations.
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Figure 3.18: MMSE-BLE: BER performance for various nR and antenna cor-
relations, nT = 4, L = 4.
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(a) Zero correlations
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Figure 3.19: MMSE-BDFE: BER performance for various nR and antenna
correlations, nT = 4, L = 4.
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Figure 3.20: RNN: BER performance for various nR and antenna correlations,
nT = 4, L = 4, N = 32.
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Figure 3.21: SCE: BER performance for various nR and antenna correlations,
nT = 4, L = 4, N = 32.

Figures 3.18 to 3.21 show the effect of increasing nR on the BER for the
MMSE-BLE, MMSE-BDFE, RNN and SCE for the uncorrelated case and for
ρTx = ρRx = 0.8, assuming the constant correlation model at both the trans-
mitter and receiver for nT = 4, N = 32 using 4 PSK modulation. Increasing
the number of receive antennas, has the followings effects on the system: it
increases the diversity, reduces the interference and improves the MFB. How-
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ever, as mentioned above, the reduction of interference and improvement of
the MFB is limited by the amount of antenna correlations. This effect is can
be clearly seen in Figs. 3.18 to 3.21. For zero correlations, the BER tends
to that of AWGN as nR increases for all equalizers. At high Eb/No, both the
RNN and SCE equalizers achieve the AWGN performance for nR = 8 using
MC-CAFS spreading. As predicted from the above analysis of the asymptotic
behavior of α and β at high antenna correlations, the BER does not approach
the AWGN curve, not even for nR = 48. This applies to all four equalizers
employed here. The RNN equalizer does not even converge and the SCE
performs worse than the MMSE-BDFE in case of MC-CAFS spreading. The
SCE assumes that the residual interference has a Gaussian distribution.
This assumption may not be fulfilled in case of high antenna correlations
and accordingly the decision function becomes suboptimum [33], leading to
a slightly worse BER than the MMSE-BDFE.

For all correlation values, the largest drop in the BER is observed when
nR is increased from 4 to 8. Take for example the MMSE-BDFE, in the un-
correlated case, Fig. 3.19(a), a gain of 6 dB at 10−4 is attained on increasing
nR from 4 to 8 using MC-CAFS. Increasing the number of receive antennas
to 48 leads to a further gain of less than 2 dB for the same BER. This is in
accordance with the drop in α, β and χ in Figs. 3.16 and 3.17.

3.6.3 Effect of Interference Distribution on the BER
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Figure 3.22: CDF of maximum interference (max(|rij|)) for MIMO 4 × 4.

As mentioned above, in case of MC-CAFS spreading, several B values are
possible depending on the system parameters: L,N , and nT. Although, for
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Figure 3.23: BER for MIMO 4×4 using MC-CAFS spreading for various B and
L for ρ = 0 and N = 32.
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Figure 3.24: BER for MIMO 4×4 using MC-CAFS spreading for various B and
L for ρ = 0 and N = 32.

all possible B values, the same β is obtain, the sum of the absolute values
of rij (β1/2), changes as well as the distribution of the individual values of
|rij|. In this section we look at the effect of B on the distribution of the
absolute value of the interference. As discussed in Chap. 2, the equalizers
used are sensitive not only to the sum of the total interference, but also to
its distribution. The BERs for standard channels using different equalizers
show that the lower the value of rij for a given β, the lower the BER. That is,
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3 Spreading

for a given β, the distribution seems to be more important than the absolute
sum of the interference, β1/2.

Figure 3.22 compares the cdf for the maximum value of |rij| (max(|rij|))
for zero correlations for different number of channel taps, L, and different
spreading matrices. Both the OFDM and MC-CDM systems, lead to higher
max(|rij|) than MC-CAFS, even though βCAFS > βCDM > βOFDM. Figures 3.22
also shows that different B values of MC-CAFS lead to different interference
distributions, and thus most likely to different BERs. For example, for L = 2,
B = 4 leads to lowest max(|rij|) while for L = 4, B = 8 leads to the lowest
max(|rij|). Figures 3.23 to 3.24, show the BER for the above mentioned equal-
izers using different B values for MC-CAFS. The BER results correspond to
the cdf of max(|rij|), where the lower max(|rij|) the lower the BER for all equal-
izers.

The results obtained in this Section are thus clearly in accordance with the
predictions of the test channels in Chapter 2. Therefore, although all possi-
ble B values achieve full diversity, they lead to different interference distri-
butions, an important factor that needs to be considered when designing a
communications system.

3.7 Rotated MC-CAFS

In addition to the previously mentioned types of diversity (frequency, space
and time), signal space diversity (also known as modulation diversity) –
achieved through symbol rotation – is another method for improving the sys-
tem performance. The aim of symbol rotation is to maximize the number of
distinct components between any two constellation points [66, 67, 68]. For
example, in SISO-OFDM, the aim of rotations is to guarantee that the sig-
nal constellations after spreading at the input of the each OFDM subchannel
have MN distinct points [7], where M is the alphabet size and N the number
of subchannels. Thus if all but one subchannel fade completely, detection
of the transmitted block is still possible [7] assuming ML detection. However,
simulation results with non-optimum receivers, still showed BER improve-
ment when rotations are employed [7].

Following are two possible rotations types for MC-CAFS that were pro-
posed in [69]. These rotated spreading matrices are obtained by rotating the
columns of the original spreading matrix by a certain angle. For the first
type of rotated spreading matrix, every consecutive set of N/B columns are
rotated by the same angle, while for the second type, each and every column
is rotated by a different angle.
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3.7 Rotated MC-CAFS

3.7.1 Rotations Type I

To obtain U
MC−CAFSRotI

, the orthogonal matrix, S, in Sec. 3.5 used for calcu-

lating the spreading matrix U
MC−CAFS

is replaced by S
Rot

which is given as

follows:
S

Rot
= S D

n
, (3.50)

where D
n

is diagonal matrix of size n×n. The diagonal elements, dii, of D
n

for
M-PSK are given by [7, 70]

dii = exp
(

j
2π

M

(i − 1)

n

)

, (3.51)

where i = 1, . . . , n and for rotations of Type I, n = nTB, the size of S. Thus,
each column of S is rotated by a different angle or equivalently every N/B
consecutive columns of U

MC−CAFS
are rotated by the same angle. The rotated

spreading matrix, U
MC−CAFSRotI

, can alternatively be obtained as follows,

U
MC−CAFSRotI

= U
MC−CAFS

D
kronI

(3.52)

where
D

kronI
= D

nTB
⊗ I

N/B
, (3.53)

and ⊗ is the Kronecker product, I
N/B

is the identity matrix of size N/B ×N/B

and D
nTB

is again given by Eqn. 3.51 with n = nTB.

3.7.2 Rotations Type II

To obtain U
MC−CAFSRotII

, the spreading matrix U
MC−CAFS

is postmultiplied by

the diagonal rotation matrix D
n

as follows:

U
MC−CAFSRotII

= U
MC−CAFS

D
n

(3.54)

Again, D
n

is a diagonal matrix whose diagonal elements are given by
Eqn. 3.51. However, n = nTN in this case. Thus, for rotations type II, all
antennas and frequencies are rotated by different angles.

Assessment of Rotated MC-CAFS

To assess how rotations can affect the system performance, we shall look at
the following three aspects:

- the minimum Euclidean distance after the channel,
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3 Spreading

- the rank of G (which affects the PEP given in Eqn. 3.8),

- the number of distinct constellation points after spreading.

For a given channel realization, H, the probability that the receiver erro-
neously decides for E assuming codeword C was transmitted, is given by
[58]

P (C → E|H) = Q
(

√

Es

2No

∆2
)

P (C → E|H) ≤ e−
Es
4No

∆2

(3.55)

where ∆2 = ||H(C − E)||2 is the Euclidean distance between any two code-
words, C and E, and Es is the average symbol energy. ∆2 can also be given
by

∆2 = Tr

(

H(C − E)(C − E)HHH

)

. (3.56)

The minimum Euclidean distance after the channel is important for the
asymptotic behavior (high Eb/No) of the system. The larger the minimum
distance, the better is the system performance asymptotically. Spreading
can be considered as a type of coding, where the codewords are given by

C = U x. (3.57)

The spreading matrix U can be chosen to be any of the spreading matrices
discussed in this work. In case of no spreading, U = I.

In order to use Eqn. 3.8 to calculate the rank of G, the codeword vectors
C of size NnT × 1 are simply reshaped to C of size nT × N , which can be
directly substituted into Eqn. 3.8. Let ci(k, iT) be the ith element of the C or
C at frequency k and transmit antenna iT. If all elements of the codewords
C and E are zeros except for ci(1, iT) and ei(1, iT), or are all equal except for
the first row, then G would have rank one. This leads to both diversity and
gain losses and accordingly to degraded system performance. Thus, it is
important to find codewords that differ at all positions if possible.

The constellation points after spreading represent the set of all possible
values ci(k, iT) can take after spreading for all iT and k. For MIMO-OFDM,
ideally, this set should contain MNnT distinct points. That is, for any transmit
vectors C and E, ci(k1, iT1) 6= ei(k2, iT2) for k1 = k2 and iT1 = iT2. This is,
however, not possible using MC-CAFS, since we do not spread over all NnT

subchannels, but only over nTB. However, the larger the number of distinct
points, the better is the expected BER performance. Following, we look at a
MIMO 2 × 2 channel, with N = 4 and L = 2. Through that example, we show
how the rotations can affect the BER performance based on the above given
assessment aspects.
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Figure 3.25: Mean Minimum Distance versus Correlation Coefficient, 2 PSK,
MIMO 2 × 2, N = 4, L = 2.

Example: MIMO 2 × 2, N = 4, L = 2

We consider a transmit vector x consisting of symbols chosen from an alpha-
bet A = [1 − 1]. The hij were assumed to be 2 path with each path being
CN(0, σ2). Fig. 3.25 shows the mean minimum distance between all possible
receive vectors for a time varying block fading 2 × 2 MIMO-OFDM channel
with L = 2, N = 4 using BPSK (M = 2) alphabet versus the correlation coef-
ficient ρ. We have assumed a constant correlation model, ρij = ρ for i 6= j.
We also assume that the transmit and receive correlations are the same,
ρTx = ρRx = ρ. It is clear that spreading in general increases the minimum
distance after the channel irrespective of the channel correlation. Rotated
MC-CAFS, B = 2, leads to the largest minimum distance. Rotations of type
II outperforms the rotations type I. However, it should be noted here that the
minimum distance is not the only factor affecting the system performance.
Other factors such as the distribution of the distance after the channel, and
as mentioned in previous Sections, the MFB, the interference distribution,
and the channel condition number [71] play an important role as well. In
addition, the curves for the mean minimum distance of the spread systems
are expected to move together for a larger L, nT or nR (i. e. higher diversity)
and/or for higher modulation alphabet [7]. However, Fig. 3.25 still shows how
spreading and rotations can affect the system performance.
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Figure 3.26: Histogram for the rank of G for MC-CAFS with and without ro-
tations for 2 PSK, nT = 2, L = 2 and N = 4.

As shown in Fig. 3.26, G is always full rank with MC-CAFS, Rot II. Fig. 3.27
also shows that type II rotations leads to the ”largest” number of distinct con-
stellation points possible with MC-CAFS spreading. The constellation points
for a rotated Hadamard matrix (WH+Rot) of size nTN (i. e. spreading over
all subchannels) and MC-CAFS without rotations are shown for comparison.
Figures 3.26 and 3.27 show that, although MC-CAFS, Rot II, does not lead
to the maximum possible number of distinct point, the G still has full rank.
The results for the rank of G were obtained through simulations. An ana-
lytical proof could be a topic for future work. In what follows, we investigate
the BER performance using the MMSE-BLE, MMSE-BDFE, RNN and SCE.
We consider a 4 PSK modulation, and examine the effect of B, antenna cor-
relations, and diversity (nT, nR and L) values on the BER performance using
rotated MC-CAFS.

Effect of B

As shown in the previous section, the larger the chosen B value, the more
distinct points there are after rotations. The rank of G was also shown to be
full rank for rotations type II. However, the above discussion concentrated
on 2 PSK and short block length. Since similar results for 4 PSK and/or
larger block sizes are computationally impractical to obtain, we only look
at the BER for rotated MC-CAFS types I and II with different B values for
different equalizers. We assume a 4 × 4 MIMO channel with N = 32 and
L = 4 using 4 PSK. Figures 3.28 show the BER for MMSE-BLE, MMSE-BDFE
for zero antenna correlations. Only the MMSE-BDFE seems to benefit from
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Figure 3.27: Number of distinct constellation points for different spreading
matrices with nT = 2 and N = 4.
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Figure 3.28: BER for Rot-I and Rot-II and ρTx = ρRx = ρ = 0, L = 4, N = 32 and
nT = nR = 4.
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Figure 3.29: BER for Rot-I and Rot-II and ρTx = ρRx = ρ = 0, L = 4, N = 32 and
nT = nR = 4.

rotations. However, the gains are very small and occur at very high Eb/No.
The MMSE-BLE BER is not affected by rotations, only by B. Using MC-CAFS,
Rot I or Rot II, the BER for RNN, Fig.3.29(a), improves by almost 1 dB at 10−4

for B = 8 and for B = 4 the error floor shifts to lower BER compared to MC-
CAFS without rotations. The SCE also benefits from rotations, but only for
B = 4. A gain of almost 0.5 dB can be obtain at 10−4. For all equalizers,
both rotation types lead to almost the same BER. Thus, from now on, only
rotations of type II will be considered, since as shown above, it leads to more
distinct constellation points.

Effect of Antenna Correlations

Figures 3.30 and 3.31 show the BER for different antenna correlation values
and L = 4. The exponential correlation model is assumed. Again, the MMSE-
BLE and MMSE-BDFE do not seem to benefit from the rotations. The RNN,
due to higher correlations and accordingly higher interference, reaches an
error floor even for low correlation values. The RNN seems to benefit slightly
from rotations, but only for very low antenna correlations. The SCE on the
other hand, benefits from the rotations at higher correlation values, e. g. MC-
CAFS, Rot-II outperforms MC-CAFS by about 1.5 dB at 3.10−4 for ρ = 0.5. It
is possible that for higher Eb/No, that rotated MC-CAFS would lead to lower
BERs at lower correlation values.

If only transmit correlations are present, i. e. ρRx = 0, the gains through
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Figure 3.30: BER comparison for MC-CAFS and MC-CAFS Rot-II and various
ρTx,exp = ρRx,exp = ρ, L = 4, N = 32 and nT = nR = 4.
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Figure 3.31: BER comparison for MC-CAFS and MC-CAFS Rot-II and various
ρTx,exp = ρRx,exp = ρ, L = 4, N = 32 and nT = nR = 4.

rotations become even more significant for the SCE. Figure 3.32(b) shows the
BER for SCE for different transmit correlation values. An improvement of
almost 2 dB for ρTx = 0.5 at 10−4 can be achieved only through rotations. The
RNN again shows slight benefits from rotations for low correlation values.
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Figure 3.32: BER comparison for MC-CAFS and MC-CAFS Rot-II and various
ρTx,exp = ρ, L = 4, N = 32 and nT = nR = 4.
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Figure 3.33: BER for MC-CAFS Rot-II and various ρTx,exp = ρRx,exp = ρ, L = 2,
N = 32 and nT = nR = 4.

Figures 3.33 and 3.34 show the BER for different antenna correlation val-
ues, nT = nR = 4 and L = 2, also assuming the exponential correlation model.
A smaller number of taps is equivalent to lower frequency diversity and the
MIMO channel has thus diversity 32 compared to 64 in the previous exam-
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Figure 3.34: BER for MC-CAFS Rot-II and various ρTx,exp = ρRx,exp = ρ, L = 2,
N = 32 and nT = nR = 4.

ples. Similar to the above, the MMSE-BLE and MMSE-BDFE do not benefit
from rotations. The SCE on the other hand seems to benefit the most from
rotations as L decreases. Reducing the number of antennas also leads to
reduced diversity. Figures 3.35 shows the BER for a 2×2 MIMO channel with
L = 4. This MIMO channel has thus diversity 16. Figure 3.35 clearly shows
that the BER improvment through rotation is quite significant for both the
RNN and SCE. The gains are even observable at low Eb/No. A gain of 1 dB at
10−3 for B = 8 for SCE and a fair drop in the error floor for the RNN is attained
only through rotations i. e. at no extra cost.

3.8 Coded Transmission

In all the previous simulations results, we have only considered uncoded
transmission. In this section, we look at iterative equalization and decoding
using the RNN and SCE equalizers. We consider time varying block fading
4 × 4 MIMO channels with L = 4, where the channel is assumed constant
during the transmission of one codeword and changes randomly from one
codeword to the next. As explained in Chap. 2, the RNN or the SCE equaliz-
ers exchange L-values with the decoder for several iteration steps. We shall
consider convolutional codes with rate 1/2 and 3/4. For the rate 1/2 code,
we consider the convolutional code with memory 2, and generator polynomial
[7, 5]8. Rate 3/4 code is obtained by puncturing above mother code, since by
doing so, very good distance properties can be obtained [72]. The rows of the
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Figure 3.35: MIMO 2 × 2: BER for Rot-I and Rot-II, ρTx,exp = ρRx,exp = ρ = 0,
L = 4 and N = 32.

puncturing array are P1 = [1 0 1] and P2 = [1 1 0] [73]. An interleaver
with length equal to one codeword is applied. The length of one codeword is
adapted such that it is an integer multiple of NnT. The codeword length is in
the order of 104 bits. In case of the RNN, 10 iterations are used (10 equaliza-
tion and 10 decoding steps, one iteration is one equalization followed by one
decoding step), while for the SCE only 5 iterations are employed.
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Figure 3.36: Coded transmission, convolutional code, memory 2, zero an-
tenna correlations, nT = nR = 4, N = 32 and L = 4.
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3.8 Coded Transmission

Figure 3.36 shows the BER for the RNN and SCE for zero antenna correla-
tions and two code rates, 1/2 and 3/4. The transmitted symbols are chosen
from a 4 PSK alphabet. The MC-CAFS spreading outperforms the MC-CDM
and OFDM using either of the two equalizers. The gain through spreading
increases as the code rate increases. For example, using the RNN equalizer,
MC-CAFS outperforms OFDM by about 1.5 dB at 10−3 for code rate 1/2. At
the same BER, MC-CAFS outperforms OFDM by 3 dB for code rate 3/4. The
BER reduction of MC-CAFS compared to MC-CDM also increases with in-
crease in the code rate. Both the RNN and SCE exhibit almost the same BER
performance although the SCE only undergoes 5 iterations compared to 10
for RNN. Figure 3.37(a) shows the BER for RNN for ρTx = ρRx = 0.3 assuming
exponential correlation model and again for two code rates, 1/2 and 3/4.
For the rate 1/2 code, similar to the uncorrelated case, MC-CAFS leads to
the lowest BER followed by MC-CDM and OFDM. In case of the punctured
rate 3/4 code, the BER significantly deteriorates with OFDM leading to the
lowest BER at high Eb/No.

As for the SCE (Fig. 3.37(b)), MC-CAFS leads to the lowest BER for all Eb/No

ranges and for both code rates. Again, as with the uncorrelated case, we see
here that the improvement in the BER through spreading is more evident
as the code rate increases. The SCE clearly outperforms the RNN for high
code rates. We shall look at coded transmission in more details in the next
Chapter.
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Figure 3.37: Coded transmission, convolutional code, memory 2, exponential
correlation model, ρTx = ρRx = 0.3, nT = nR = 4, N = 32 and L = 4.
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3 Spreading

3.9 Summary

We have looked at spreading for MIMO-OFDM and proposed a family of
spreading matrices in Sec. 3.5 that lead to maximum space-frequency diver-
sity, nTnRL. The criteria for designing those matrices were given in Sec. 3.3.
We have shown that MC-CAFS spreading leads to the lowest BER using all
employed equalizers for low to moderate antenna correlations for moderate
Eb/No values.

We have shown that both spreading and correlations increase the interfer-
ence experienced on the channel which affects the performance of employed
equalizers. The RNN, being the most sensitive to high interference, exhibits
a fast degradation in the BER performance as the antenna correlations in-
crease. We have also shown that, in presence of antenna correlations, in-
creasing the number of receive antennas indefinitely does not improve the
MFB or reduce the interference as with the uncorrelated case. Even with
nR = 48, the RNN does not converge and the other equalizers are at least
10 dB from the AWGN at 10−3 for ρTx = ρRx = 0.8.

In Sec. 3.7, we proposed two rotation possibilities for MC-CAFS in order to
increase the signal space diversity, i. e. increase the number of distinct points
after spreading. We have shown that only powerful equalizers (RNN and SCE)
benefit from the rotations. The gains through rotations where shown to be
most significant if the total diversity in the channel is low.

Finally, we looked at coded transmission, and showed that MC-CAFS
spreading leads to the lowest BER using the SCE for all code rates and given
antenna correlations. The performance of the RNN equalizer, which is sen-
sitive to interference, however deteriorates fast as both the code rate and
antenna correlations increase.
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3.A Appendix to Chapter 3

3.A.1 Expected Values of Functions of Correlated Complex

Random Variable for Kronecker Correlation Model

For the sake of clarity, we show the derivation for a 2 × 2 correlated channel
matrix. However, all of the following results can be readily extended to any
m × n matrix. First, the square root a 2 × 2 correlation matrix, with |ρ| ≤ 1 is
given as,

k =

[

1 ρ
ρ∗ 1

]

= k1/2k1/2 =

[

e ̺
̺∗ e

] [

e ̺
̺∗ e

]

(3.58)

where e ∈ R, ρ ∈ C, ̺ ∈ C, e2 + |̺|2 = 1 and 2e̺ = ρ. The correlated channel
matrix (transmit, ρ2, and receive correlations, ρ1, are considered)

hc =

[

e1 ̺1

̺∗
1 e1

] [

h11 h12

h21 h22

] [

e2 ̺2

̺∗
2 e2

]

, (3.59)

To calculate the correlation between any two elements of the matrix hc, we
can make use of the above correlation model and the fact that E{hijh

∗
lm} = 0

for the uncorrelated elements of h ∀ i 6= l and j 6= m

E{hc
11h

c∗
12} = e2

1e2̺
∗
2|h11|2 + ̺1̺

∗
1e2̺2|h21|2 + e2

1e2̺
∗
2|h12|2 + ̺1̺

∗
1e2̺

∗
2|h22|2 (3.60)

and E{hijh
∗
ij} = σ2 = 1

E{hc
11h

c∗
12} = e2

1

ρ∗
2

2
σ2 + |̺1|2

ρ∗
2

2
σ2 + e2

1

ρ∗
2

2
σ2 + |̺1|2

ρ∗
2

2
σ2 = ρ∗

2 (3.61)

Similarly

E{hc
11h

c∗
12} = E{hc

21h
c∗
22} = ρ∗

2 (3.62)

E{hc∗
11h

c
12} = E{hc∗

21h
c
22} = ρ2 (3.63)

E{hc
12h

c∗
22} = E{hc

11h
c∗
21} = ρ1 (3.64)

E{hc∗
12h

c
22} = E{hc∗

11h
c
21} = ρ∗

1 (3.65)

Note that the above correlations can also be obtained by making use of the
Kronecker correlation model, R

v
= kT

T
⊗ k

R
, to find the correlation coefficient

between any two elements of hc. However, in the derivations that follow, the
above form is more advantageous.
For the uncorrelated case,

E{hijhlm} = E{(hijR + j hijI)(hlmR + j hlmI)} = 0, (3.66)
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since the real and imaginary parts are assumed independent. From
Eqn. 3.66, It can be shown that for σ2

real = σ2
imag = σ2/2

E{hijhij} = σ2
real − σ2

imag = 0, (3.67)

Using the correlation model of Eqn. 3.59, the results of Eqns. 3.66, 3.67, and
proceeding with the derivation as in Eqn. 3.60, it can be shown that

E{hc
ijh

c
lm} = 0, (3.68)

∀ i, j, l and m. Using Eqns. 3.66 to 3.68, we now can derive the expected
values of functions of the correlated complex random variables.
If xi are real jointly normal random variables with mean zero, variance one,
and E{xixj} = ρij, then [43]

E{x1x2x3x4} = ρ12ρ34 + ρ13ρ24 + ρ14ρ23 (3.69)

For complex random variables xi (CN(0, 1)), Eqn. 3.70 can be derived by ex-
panding xi into their real and imaginary parts and using Eqns. 3.67, 3.68
and 3.69.

E{x∗
1x2x3x

∗
4} = ρ∗

12ρ34 + ρ∗
13ρ24 (3.70)

For any two real random variables, x and y, that are jointly normal with zero
mean [43]

E{x2y2} = E{x2}E{y2} + 2E2{xy} (3.71)

Accordingly, for two CN(0, 1) random variables, x and y, the following Eqn.
can be derived

E{|x|2|y|2}=E{(x2
real + x2

imag)(y
2
real + y2

imag)}=1 + |ρxy|2 (3.72)

From Eqn. 3.72,
E{|x|4} = E{|x|2|x|2} = 2, (3.73)

since |ρxx|2 = 1.
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3.A.2 Expected values of α, β and the var(r̄)

The aim of the following derivations is to find a closed form expression for
the E{α} and E{β} as a function the antenna correlations and the number
of transmit and receive antennas for the unspread MIMO-OFDM system. In
all that follows, we assume that HiRiT(k) to be complex Gaussian with zero
mean and variance σ2 = 1, i. e. (CN(0, 1)). This is easily satisfied, even for non
Gaussian channel taps, since, based on the central limit theory, the sum L
of independent random variables tends to be Gaussian as L → ∞. Thus, [43]

E{HiRiT(k)H∗
jRjT

(k)} = E{HiRiT(k)}E{H∗
jRjT

(k)} + ρijσiσj = ρij = ρ∗
ji (3.74)

Based on the Kronecker correlation model and the correlated channel matrix
in the frequency domain (Eqn. 3.34),

E{HiRiT(k)H∗
iRjT

(k)} = ρTxm, m = jT − iT

E{HiRiT(k)H∗
jRiT

(k)} = ρRxm, m = jR − iR, (3.75)

where ρTxm and ρRxm are the transmit and receive correlations between trans-
mit/receive antennas with spacing m (see Sec. 2.3).

Expected Values of the Diagonal Elements of R

The diagonal elements of R
MO

are real and are given by

rii =
1

nR

nR
∑

iR=1

|HiRiT(k)|2 (3.76)

where i in this case is i = k+(iT−1)N , k = 1, . . . , N . The square of the diagonal
elements, r2

ii , is thus

E{r2
ii} =

1

n2
R

E{(|H1iT(k)|2 + · · · + |HnRiT(k)|2)2}

=
1

n2
R

(

nR
∑

iR=1

E{|HiRiT(k)|4} + 2

nR
∑

l=1

nR
∑

m>l

E{|HliT(k)|2|HmiT(k)|2}
)

=
2

nR

+
2

n2
R

(

nR−1
∑

m=1

(1 + |ρRxm|2)(nR − m)
)

= 1 +
1

nR

+
2

n2
R

(

nR−1
∑

m=1

|ρRxm|2(nR − m)
)

(3.77)

where we have made use of Appendix 3.A.1 to obtain E{|HliT(k)|2|HmiT(k)|2}.
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Expected Values of Off-Diagonal Elements of R

We shall denote the ith column of H by H i(k) where again i = k + (iT − 1)N
and k = 1 . . . N . Thus, the off diagonal elements of R

MO
, rij for i 6= j, can be

written as

rij =
1

nR

HH
i (k1)Hj(k2) (3.78)

Note that rij = 0 for k1 6= k2. The expected value of |rij|2 can thus be given by

E{|rij|2} =
1

n2
R

E{|HH
i (k)Hj(k)|2}

=
1

n2
R

nR
∑

m=1

E{|Hmi|2|Hmj|2} +
1

n2
R

nR
∑

m=1

nR
∑

l 6=m

E{H∗
miHmjHliH

∗
lj}

(3.79)

From Eqn.3.74, 3.75 and Appendix 3.A.1,

E{|rij|2} =
1

nR

+ |ρTx(j−i)|2 +

nR−1
∑

m=1

(nR − 1)

n2
R

|ρRxm|2 (3.80)

Let l = j − i, the expected value of the Frobenius norm of R
MO

for any i can
then be written as follows,

E{||R
MO

||2F} = NnTE{r2
ii} + 2N

nT−1
∑

l=1

(nT − l)E{|ri(l+i)|2}. (3.81)

Variance of r̄

r̄ is defined as the mean of the diagonal elements of R. Based on the channel
normalization, the expected value of r̄, E{r̄} = 1. Since the variance of r̄
affects the value of α, in this section we derive the expression for variance of r̄
as a function of the antenna correlations. We shall show that var(r̄) = 1/Ψ(R

v
),

where Ψ(R
v
) is the diversity measure in Eqn. 2.53.

To calculate the variance of r̄, var{r̄}, we shall make use of the following
equation (see Chapter 2 for more details on normalization)

nR

Tr(R)

N
= nTnR r̄ =

L
∑

l=1

||h(l)||2F ,

where the elements of h(l) are assumed to be complex Gaussian, CN(0, 1/L),
random variables. Accordingly, E{|hij|2} = 1/L, var (|hij|2) = 1/L2, and
E{||h(l)||2F} = nTnR/L. Since the individual channel taps are assumed to be
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uncorrelated, with equal PDP, and to fade independently, we can make use
of the central limit theory as follows,

var

( L
∑

l=1

||h(l)||2F
)

=
L
∑

l=1

var(||h(l)||2F ), (3.82)

and

E{
L
∑

l=1

||h(l)||2F} =
L
∑

l=1

E{||h(l)||2F} = nTnR. (3.83)

Thus, the variance of r̄ can be obtained as follows

var (r̄) =

var

(

∑L
l=1 ||h(l)||2F

)

n2
Tn2

R

=

∑L
l=1 var(||h(l)||2F )

n2
Tn2

R

. (3.84)

Now, we look at the individual channel taps to calculate var(||h(l)||2F )

var(||h(l)||2F ) = E{
(

||h(l)||2F
)2} −

(

E{||h(l)||2F}
)2

,

= E{
(

||h(l)||2F
)2} − n2

Tn2
R

L2
, (3.85)

where

E{
(

||h(l)||2F
)2} =

(

nR
∑

i=1

nT
∑

j=1

|hij|2
)2

. (3.86)

Since for complex Gaussian random variables (CN(0, 1/L)) with zero mean
and variance 1/L (see Appendix 3.A.1)

E{|hij|2|hlk|2} =
1

L2
(1 + |ρTxm

|2|ρRxn
|2), (3.87)

where m = |k − j|, n = |l − i|, and

E{|hij|4} =
2

L2
, (3.88)

the var
(

||h(l)||2F
)2

can be obtained by expanding Eqn. 3.86 and using
Eqns. 3.87 and 3.88 and subsituting into Eqn. 3.85. After some manipu-
lations we obtain,

var
(

||h(l)||2F
)

=
nTnR

L2
+

2

L2

(

nR

nT−1
∑

m=1

(nT − m)|ρTxm
|2 + nT

nR−1
∑

n=1

(nR − m)|ρRxn
|2
)

+
4

L2

(

nT−1
∑

m=1

(nT − m)|ρTxm
|2

nR−1
∑

n=1

(nR − m)|ρRxn
|2
)

. (3.89)
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Thus, from Eqn, 3.84,

var (r̄) =
1

nTnRL
+

2

n2
Tn2

RL

(

nR

nT−1
∑

m=1

(nT − m)|ρTxm
|2 + nT

nR−1
∑

n=1

(nR − m)|ρRxn
|2
)

+
4

n2
Tn2

RL

(

nT−1
∑

m=1

(nT − m)|ρTxm
|2

nR−1
∑

n=1

(nR − m)|ρRxn
|2
)

. (3.90)

In the uncorrelated case

var (r̄) =
1

nTnRL
. (3.91)

In case of full transmit correlations and zero receive correlations

var (r̄) =
1

nRL
, (3.92)

and for full receive correlaions and zero transmit correlations

var (r̄) =
1

nTL
. (3.93)

In the fully correlated case, ρTxm
= ρRxn

= 1 for all n and m,

var (r̄) =
1

L
, (3.94)

i. e. the variance of var (r̄) is maximum. Thus 1
L
≤ var (r̄) ≤ 1

nTnRL
and for high

diversity, the var (r̄) ≈ 0.

Now, we take a closer look at the diversity measure in Eqns. 2.48, 2.51 and
2.53, where, for the frequency selective MIMO channel and k

T
(l) = k

T
and

k
R
(l) = k

R
for all l = 1 · · ·L, we can write

1

Ψ(R
v
)

=
1

L

1

Ψ(k
T
)

1

Ψ(k
R
)

=
1

L

||k
T
||2F

n2
T

||k
R
||2F

n2
R

, (3.95)

and

||k
T
||2F = nT + 2

nT−1
∑

i=1

(nT − i)|ρTxi
|2,

||k
R
||2F = nR + 2

nR−1
∑

i=1

(nR − i)|ρRxi
|2 (3.96)

By subsituting Eqns.3.96 in Eqn 3.95 we get,

var (r̄) =
1

Ψ(R
v
)
. (3.97)
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Chapter4

Precoding

So far, we have assumed that only the receiver has full channel knowledge.
In this Chapter, we consider the case where either full or partial channel
knowledge is available at the transmitter. While full channel knowledge
at the receiver is usually available, at the transmitter such knowledge is
typically limited. In wireless communications, channel feedback from the
receiver to the transmitter is common. However, the channel may be varying
too fast that the feedback does not give an accurate estimate of the current
channel. However, partial channel knowledge at the transmitter, e.g only
transmit correlations, can be available. Correlations can be statistically
calculated for a short time duration and do not change as fast as the actual
channel [74, 75]. In this chapter, we show the precoder for the above two
cases. However, we focus on the case, when only partial CSIT is available at
the transmitter.
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Figure 4.1: Matrix Vector transmission model with precoding.

4.1 Linear Precoding

Figure 4.1 shows the matrix vector transmission model with precoding. The
extra block W , represents the linear precoding matrix which connects the en-
coder with the channel. The encoder shown stands for any type of encoding
done (e. g. space-frequency coding or spreading matrix) and Rx for the re-
ceiver which can include an equalizer and/or a decoder. In this Chapter, we
shall only consider orthogonal spreading matrices. In addition, we assume
that the covariance of the transmitted symbols to be E{x xH} = E{xs xH

s } = I.
The aim of the precoder is thus to generate an optimal signal covariance,
Q = E{s sH}, based on the available channel state information at the trans-

mitter (CSIT) and the given performance criterion. Several precoding design
criteria exist, for example: mutual information or receive signal to noise ra-
tion (SNR) maximization. Minimization of the average pair-wise error prob-
ability (PEP), the BER, the symbol error rate (SER) or the detection mean
square error (MSE) are other examples. Accordingly, the symbols are first
spread, precoded and then transmitted over the channel. The received sym-
bol vector is thus,

y = H
eff

x + n, (4.1)

where the channel matrix in the frequency domain is represented by an effec-
tive channel matrix that includes both the encoder and precoder as follows,

H
eff

= Hc W U (4.2)

At the receiver side (Rx), channel matched filtering and equalization are ap-
plied. The channel correlation matrix, R, for this MIMO-OFDM system can
thus be described by the following equation

R =
1

nR

UH WH R
MO

W U = HH

eff
H

eff
, (4.3)

where R
MO

= HcH Hc.
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4.2 Full Channel Knowledge at the Transmitter

In this Section, the channel is assumed to be fully known at both the trans-
mitter and the receiver. That is, full CSI is available at both the transmit-
ter and the receiver. If the goal is to maximize the mutual information [53],
or to minimize the average pairwise error probability (PEP) [76], the sum or
weighted sum of the mean square errors (MSE) of all subchannels [77, 78],
the precoder is given by,

W = V Λ1/2, (4.4)

where V is obtained by the singular value decomposition (SVD) of the channel

matrix, H = U Σ V H and Λ is the power allocation matrix. At the receiver, also
assuming full channel knowledge, the signal is left-multiplied by U to obtain

x̃ = Σ s̃ + n, (4.5)

where Σ is a diagonal matrix containing the singular values of the channel

matrix H and s̃ = Λ1/2xs. The covariance matrix of s̃ is Λ and is subjected
to the power constraint: Tr(Λ) = po, where po is available transmit power. In
other words, the channel diagonalizing structure is optimal and V represents
the optimal beam direction for perfect CSIT at the transmitter. The choice of
Λ on the other hand, as we shall show next, depends on the optimization
criterion. In case of frequency selective channels, the optimum precoder
and decoder as shown above can be applied to the individual OFDM sub-
channels [78, 79] since this multicarrier approach is known to be capacity-
lossless [79].

For other criteria, such as the minimization of the average BER or the
maximum MSE, the precoding matrix is given by [77]

W = V Λ1/2UH

Rot
, (4.6)

where UH

Rot
is a unitary matrix which can be chosen to be any rotation ma-

trix, e. g. Hadamard or DFT matrix [77]. Note that the covariance matrix of
the transmit signal does not change by UH

Rot
. The authors showed that the

MMSE-BLE is the optimal receiver in this case. Again, for frequency selec-
tive channels, the results can be directly extended to the individual OFDM
subcarriers [77].

The difference between the above design criteria is whether the objective
functions used for optimization are Schur-concave or Schur-convex. For
Schur-convex objective functions, the channel diagonalizing structure
(Eqn.4.5) is optimum while for Schur-concave objective functions the diag-
onal structure is optimal only in combination with a specific rotation of the
transmitted symbols (Eqn. 4.6) [77].
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Power Allocation Strategies

If the goal is to maximize the channel ergodic capacity, then the optimum
Λ

opt
is obtained through the well known water-filling solution on the square

of the channel singular values λi = σ2
i [4, 3, 53],

pi =

(

µ − No

λi

)

+

, (4.7)

where No is the noise power, and µ is chosen such that
∑

i pi = po and ()+ de-
notes max(0, pi). Thus, depending on the amount of available transmit power,
some of the weak modes might receive zero power and the signals transmitted
in direction of eigenvectors with good eigenvalues are assigned more power
than those transmitted over eigenvectors corresponding to small eigenvalues.
MIMO channel capacity will be discussed in more details in Chapter 5.

Sampath et al. in [78] obtained the optimum linear precoder and decoder
using the weight minimum mean-squared error (weight MMSE) criterion sub-
jected to transmit power constraint. As mentioned previously, the optimum
linear precoder and decoder were found to diagonalize the channel into eigen
subchannels for any chosen set of error weights. Only the power allocation
strategy is dependent on the error weights. The weight matrix is chosen
based on several design criteria, eg. quality of service (QoS), or equal error
(i. e. equal SNR on all subchannels), or information rate maximization (in this
case, the power allocation is as given in Eqn. 4.7). For example, assuming
the design criterion is the equal error, then the power allocation matrix is
given by [78],

Λ1/2 =

√

po

Tr(Σ−1)
Σ−1/2, (4.8)

If the aim is to minimize the PEP per distance (i. e. minimizing the PEP
based on a given codeword distance, for example the minimum distance
codeword), the optimal solution would be to allocate all of the power to the
strongest eigenmode [76]. In this case, precoding is reduced to single beam-
forming and represents an extreme case of selective power allocation. Yet, it
maximizes the receive SNR and extracts the full spatial diversity [22].

4.3 Partial Channel Knowledge at the Transmitter

In this subsection, only partial channel knowledge is assumed at the trans-
mitter. In this case, the transmission model in Fig. 4.1 still remains valid.
However, the precoding matrix W is not based on the full channel knowl-
edge, but only on partial knowledge. We assume that only the transmit
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correlation matrix is known at the transmitter. As aforementioned, this is
a well-founded assumption, since, while the channel might be fast changing,
the channel correlations remain constant for longer periods of time [74, 75] .

4.3.1 Flat Fading Channels

Several authors have looked at precoding in presence of partial channel
knowledge, e. g. [80, 81, 82, 76, 83]. All have found that transmitting in
the direction of the eigenvectors of the transmit correlations is the optimum
direction for both capacity maximization ([80, 82]) and pairwise error proba-
bility minimization ([81, 76]). It was shown in [80], that the optimal transmit
strategy for capacity maximization is to transmit along the eigenvectors of the
transmit correlation matrix. The power allocation is done through numerical
optimization and resembles that of waterfilling, where stronger modes are
allocated more power than weaker ones. The authors in [82] considered both
transmit and receive correlations and have shown that, although one still
needs to transmit in direction of the transmit correlations eigenvectors, the
energy distribution at the transmitter is dependent on both the transmit and
receive correlations. In [84], it was shown that taking the receive correlations
into account has little to no effect on the BER.

In [81], it was shown that the optimum precoder, w, that minimizes the
average pairwise error probability for a flat fading MIMO channel employing
STBC encoding is

w = v
T

φ vH

C
, (4.9)

where k
T

= v
T
e
T

vH
T

and c cH = v
C
e
C

vH
C

and c = x
1
− x

2
is the error matrix

between any two codewords. φ is a diagonal matrix describing the power

allocation strategy for the transmit symbols under the power constraint
Tr {w wH} = po, where po is the total available power. In this precoding strat-
egy, both the error matrix and the transmit correlations are taken into ac-
count. For orthogonal STBC, c cH = αI. That is, the code word error matrix is
a scaled identity matrix, where α can be chosen to be either the minimum or
average distance. In this case, v

C
can be omitted and the precoder reduces

to

w = v
T

φ (4.10)

The matrix, φ2, is obtained by waterfilling over the eigenvalues of the channel

correlation matrix [81]. In case of quasi-orthogonal space time block codes
(QSTBC), the c cH is not a scaled identity matrix. However, E{c cH} is a scaled
identity matrix and v

C
can also be omitted if the average distance is consid-

ered [76, 85].
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To summarize, we can think of the precoder as a link between the encoder
and the channel. The precoder has the task of decorrelating the coming
encoded symbols (if the covariance matrix is different from an identity matrix)
and adjusting the symbol covariance to that suitable to the channel, based
on the available channel knowledge.

4.3.2 Frequency Selective Channels

Now, we shall extend the above precoding to MIMO-OFDM. As aforemen-
tioned, flat fading techniques can be applied to frequency selective channels
by implementing the precoding at the individual subcarriers of the OFDM
system [21, 76, 77, 86, 87]. We again use the channel matrix in the fre-
quency domain from Chapter 3. However, in this Chapter, we shall permute
the channel matrix H such that the entries are grouped by frequency. In this
case, H is a block diagonal matrix and we denote it by H

B
,

Hc

B
= K1/2

R
H

B
K1/2

T
, (4.11)

The block matrix H
B

is as follows

H
B

=







H
1

. . . . . . . . . 0
...

. . . H
k

. . .
...

0 . . . . . . . . . H
N






(4.12)

where H
k

are nR × nT matrices containing the channel transfer function at
the kth frequency. The matrices K

T
and K

R
are given by

K
T

= I
N
⊗ k

T
(4.13)

K
R

= I
N
⊗ k

R
, (4.14)

where ⊗ is the Kronecker product and I
N

is the identity matrix of size N ×N .
Note that both K

T
and K

R
always have the same structure as H. That

is, if the elements of H are grouped by frequency, so are K
T

and K
R

(i. e.
K = k ⊗ I

N
) as was the case in Chapter 3. Both forms are completely equiv-

alent. However, when spreading is considered, the antenna grouping is a
more convenient representation while when precoding is treated grouping by
frequency is the more suitable one.

We make use of the PEP from [88], where the transmit antenna correlations
are included in the Eqn. 3.8.

C
Y

=
L
∑

l=0

[

Dl(C
p
− E

p
)T k∗

T
(l)(C

p
− E

p
)∗D−l

]

⊗ I
nR

= Y ⊗ I
nR

, (4.15)
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where C
p

and E
p

are the precoded transmit matrices and k
T

is assumed to

be full rank. As mentioned in Chapter 3, C
p

and E
p

are simply obtained by

reshaping the transmit vectors Cp and Ep,

Cp = W C = (I
N
⊗ w) C =











w C1

w C2
...

w CN











=











Cp1

Cp2
...

CpN











, (4.16)

where Cj are nT × 1 subvectors of the nTN × 1 transmit vector C. The nT × N

reshaped transmit matrix is thus C
p

=
[

Cp1 Cp2 Cpj · · · CpN

]

. We define the

error vector between any two transmit vectors as ∆E = C − E. Thus, after
precoding and reshaping, the error matrix ∆E

p
can be written as,

∆E
p

= C
p
− E

p
= w ∆E. (4.17)

Since the eigenvalues C
Y

are equal to those of Y occurring with nR multiplic-
ity (as was also the case in Chapter 3), in all what follows, we concentrate
on Y . By precoding at each OFDM subcarrier, assuming that k

T
(l) = k

T
, the

precoder can be described as follows,

W = I
N
⊗ w. (4.18)

Our goal is thus to find the precoding matrix W (or equivalently w), to mini-
mize the average PEP which is equivalent to maximizing

max
W

J =

rank(Y )
∏

i=1

(

1 +
Es

4No

λi(Y )

)

, (4.19)

subjected to the power constraint Tr{W WH} = po, and where λi(Y ) are the

eigenvalues of Y . We now proceed as in [81], assuming w = v
T

φ vH
∆E

, where

∆E ∆EH = v
∆E

e
∆E

vH
∆E

and subsituting Eqn. 4.17 into Y as given in Eqn. 4.15.
Accordingly,

Y =
L−1
∑

l=0

[

Dl∆ET wT k∗

T
w∗∆E∗D−l

]

(4.20)

=
L−1
∑

l=0

[

Dl∆ET v∗

∆E
φT vT

T
k∗

T
v∗

T
φ∗vT

∆E
∆E∗D−l

]

=
L−1
∑

l=0

[

Dl∆ET v∗

∆E
φT e

T
φ∗vT

∆E
∆E∗D−l

]

= F FH ,
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where vT
T
k∗

T
v∗

T
= e

T
and F is given by,

F =
[

D0∆ET v∗

∆E
φT e1/2

T
· · ·DL−1∆ET v∗

∆E
φT e1/2

T

]

(4.21)

since the eigenvalues of F FH are equal to those of FHF , we shall now con-
sider the latter expression,

FHF =











G GH G D GH · · · GDL−1GH

G D−1GH G GH · · · G DL−2GH

...
... G GH ...

G D−(L−1)GH · · · · · · G GH











(4.22)

where

G GH = e1/2

T
φ∗vT

∆E
∆E∗∆ET v∗

∆E
φT e1/2

T
(4.23)

and
G DlGH = e1/2

T
φ∗vT

∆E
∆E∗Dl ∆ET v∗

∆E
φT e1/2

T
. (4.24)

As in [76, 85], from now on we shall only look at the average PEP and thus
only consider the average distance (covariance of the error matrix) for the
optimization in Eqn. 4.19. That is, we consider E{∆E ∆EH} = v

∆E
e
∆E

vH
∆E

,

instead of ∆E ∆EH. Since we assume that all transmit symbols powers are

equal and E{C CH} = I, the E{∆E∗∆ET} = αI, is a scaled identity matrix and
thus v

∆E
can be any arbitrary orthonormal matrix. Accordingly, by taking

the average over all ∆E, we get

G GH = e1/2

T
φ∗vT

∆E
E{∆E∗∆ET}v∗

∆E
φT e1/2

T
= αe1/2

T
φ∗φT e1/2

T
, (4.25)

and
G DlGH = e1/2

T
φ∗vT

∆E
E{∆E∗Dl ∆ET}v∗

∆E
φT e1/2

T
= 0, (4.26)

since
∑

(Dl)ii = 0, and accordingly E{∆E∗Dl ∆ET} = 0. The matrix defined
by Eqn. 4.22 thus reduces to a block diagonal matrix. Now, we look again at
Eqn. 4.19, and using the Hadamard inequality, we can upperbound Eqn. 4.19
as follows

J ≤
nTL
∏

i=1

(

1 +
Es

4No

(FHF )ii

)

, (4.27)

where (FHF )ii are the diagonal elements of FHF . The upperbound is achieved

if and only if FHF is diagonal, that is if φ is diagonal. In this case, Eqn.4.27

becomes

J =

nTL
∏

i=1

(

1 +
αEs

4No

λTiiφ
2
ii

)

, (4.28)
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where λTii and φii are the diagonal elements of e
T

and φ respectively.

Now we look at the power distribution to find the optimum values of
φ2

ii that maximizes J subjected to the power constraint Tr{W WH} = po.
Maximizing J is equivalent to maximizing its log, i. e. maximizing

log2(J) =
∑nTL

i=1 log2

(

1 + αEs

4No
λTiiφ

2
ii

)

and the solution to which is the well

know water-filling method on the eigenvalues of k
T

[53, 89]. Thus the
optimum precoder that minimizes the average PEP transmits in the direction
of the transmit antenna correlations at each subcarrier and pours power on
the eigenmodes of k

T
. As was shown [21], transmitting in the direction of

the transmit antenna correlations at each subcarrier is also the optimum
direction for capacity maximization. In this case however, the optimum
power allocation is obtained through numerical optimization. Nonetheless,
it was shown in [21] that waterfilling on the eigenmodes of the transmit
correlations, although is suboptimal, leads to almost optimal performance.

As aforementioned, v
∆E

can be any arbitrary chosen unitary matrix, for
example, as in [81, 76], we can choose v

∆E
= I. However, we can consider

our spreading matrices, which are orthonormal, as part of our precoder. That
is we can write

W = (I
N
⊗ w) U, (4.29)

as in [77]. As was shown in Sec. 3.6, the spreading matrix, U , as well as the
correlations affect the amount of interference in the channel. In addition,
the BER was shown to also depend on the equalizer employed at the receiver.
Similarly, in the case of precoded transmission, the chosen spreading matrix,
which although does not affect the covariance of the transmitted symbols, is
expected to affect the BER.

4.4 Uncoded Transmission

In this Section, we look at the BER performance with precoding. As with
previous Chapters, we consider the MMSE-BLE, MMSE-BDFE, RNN, and
SCE equalizers. In addition, we also assume a 4 × 4 MIMO channel, with
L = 4, N = 32 and uncoded transmission using 4 PSK.

Figures 4.2 and 4.3 show the BER at Eb/No = 14 dB for different spreading
matrices and the unspread MIMO-OFDM versus the correlation coefficient
ρ, where the exponential correlation model is assumed, i. e. cij = ρj−i. The
transmit and receive correlations are assumed equal. For transmission with-
out precoding and at low to moderate correlation values, the lowest BER cor-
responds to the spreading matrix with highest diversity: MC-CAFS. As the

99



4 Precoding

correlations increase (higher interference), spreading with a lower diversity
matrix MC-CDM (lower interference) leads to lower BER. As the correlations
further increase, OFDM becomes the better choice. The crossing points of
the BER curves for the different spreading matrices depend on the equalizer,
the Eb/No and the correlation value, and shift to the right as Eb/No increases.
In case of precoded transmission, all equalizers but the MMSE-BLE seem to
benefit from precoding. In fact, the BER worsens for OFDM, CDM and since
the matched filter bound (MFB) worsens through precoding. Only for MC-
CAFS (MFB does not worsen) does the BER remain unchanged. In addition,
for low Eb/No, the precoding matrix is not an orthonormal matrix. As a matter
of fact, WH W is a diagonal matrix which tends to I as the Eb/No increases.
Thus, the channel condition number worsens through precoding, which in
turn affects the MMSE-BLE performance in a negative fashion. The MMSE-
BDFE on the other hand benefits tremendously from precoding due to error
propagation reduction, which is achieved by detecting symbols transmitted
in the direction of the strong eigenmodes (λmax) first. To show this precoding
effect on reducing the propagation error, the BER for MMSE-BDFE, where
the symbols transmitted in the direction of weak eigenmodes are detect first
(λmin), are shown in Fig. 4.4(a). In this case, the BER deteriorates and is even
higher than in the case of transmission without precoding. Note that MC-
CAFS is not affected by precoding, since spreading is done over all diversity
branches and thus the order of detection is irrelevant in this case.
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Figure 4.2: BER versus ρ for MIMO-OFDM, CDM, and MC-CAFS, exponential
correlation model, ρTx = ρRx = ρ, nT = nR = 4, L = 4, N = 32 and
Eb/No = 14 dB.

Figure 4.3 shows the BER versus ρ for the RNN and SCE. For MC-CDM and
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OFDM, both equalizers show a improved BER performance through precod-
ing. MC-CAFS also benefits from precoding, but only for the SCE. In case
of the RNN, no improvement is observed. As mentioned in earlier Chapters,
RNN is sensitive to high interference and does not always converge. This can
be clearly seen in Fig. 4.3(a), where the BER using MC-CAFS can be seen to
deteriorate fast as the antenna correlations increase. It is important to note
here, that the RNN and SCE are less sensitive to propagation errors due to
their iterative nature and BER reduction is always observed irrespective of
the order of detection. However, lower BERs are still observed when symbols
transmitted in the direction of the strong eigenmodes are detected first (see
Figs. 4.4(b)). The BER reduction is probably due to the reduced total inter-
ference that is achieved through precoding and can be utilized by those two
equalizers.
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Figure 4.3: BER versus ρ for MIMO-OFDM, CDM, and MC-CAFS, exponential
correlation model, ρTx = ρRx = ρ, nT = nR = 4, L = 4, N = 32 and
Eb/No = 14 dB.

Now, we compare the BER performance assuming the constant correla-
tion model to that of the complex exponential and exponential models. Fig-
ure 4.5 shows the BER for different spreading matrices versus ρ using the
MMSE-BDFE for the constant and complex exponential correlation models.
As expected, by comparing Figs. 4.5(a), 4.5(b) and 4.2(b), it is clear that the
complex correlation model leads to worst BER for a given ρ. However, on
considering the BER at different ρ values corresponding to the same correla-
tion measure (see Fig. 2.14), then the BER for all correlation models are quite
comparable. The correlation measure therefore seems to be a good indicator
of the expected BER.
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Figure 4.4: Effect of detection order: exponential correlation model, BER ver-
sus ρ for CDM, nT = nR = 4, L = 4, N = 32 and Eb/No = 14 dB.
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(a) Constant correlation model, cij = ρ
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model, cij = (ρ +

√
−1 ρ)j−i

Figure 4.5: MMSE-BDFE: BER for constant and complex exponential corre-
lation models, for nT = nR = 4, L = 4, N = 32 at Eb/No = 14 dB.

4.4.1 Imperfect Transmit Correlation Knowledge

So far we have assumed perfect knowledge of the transmit correlations at the
transmitter. Now, we look at the case of imperfect knowledge. To simulate
the imperfect knowledge of transmit antenna correlations, we perturb the
channel matrix H and use the resulting perturbed H

p
to calculate the channel
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correlations [90]. We have opted for this method, since directly perturbing k
T

does not guarantee that they remain positive semi-definite. Accordingly, we
model the perturbed channels as follows,

H
kp

= Hc

k
+ E

k
(4.30)

where H
kp

and E
k

are the perturbed channel and the perturbation matrix at

the k-th frequency respectively. The elements of E
k

are modeled as uncorre-

lated CN(0,σ2
e ). Note that the elements of E

k
need not be uncorrelated. E

k
can

be assumed to have covariance matrix different from a scaled identity ma-
trix. By assuming uncorrelated elements, we are investigating the case where
the transmitter assumes lower correlations than the true ones, especially as
σ2

e → 1.0. If we would assume E{EH

k
E

k
} = σ2

e1nT
(an nT × nT matrix of ones)

then we would be looking at the other extreme, where the transmitter as-
sumes higher correlations than the true ones. We assume the perturbations
to be independent of the channel coefficients. The channel coefficients are
normalized such that σ2

e + σ2
h = 1.0, where σ2

h is the variance of the elements
of Hc

k
. Accordingly, the transmit antenna correlations at each frequency are

obtained as follows,

k
Te

=
1

nR

E{HH

kp
H

kp
} (4.31)

Based on the above assumptions,

k
Te

= σ2
hkT

+ σ2
eInT

(4.32)

Thus, k
Te

= k
T

only if σ2
e = 0. However, it is not important for k

Te
be exactly

or almost equal to k
T
, but that the eigenvectors of k

Te
diagonalize k

T
(i. e.

v
Te

≈ v
T
, where v

Te
are the eigenvectors of k

Te
). As a measure for that, we

introduce the following norm, Fvv,

Fvv =
√

||vH
Te

k
T
v

Te
− e

T
||2F . (4.33)

If v
Te

= v
T
, then Fvv = 0. The worst case for this model would be to estimate

uncorrelated transmit antennas while the antennas at the transmitter are
fully correlated and thus transmitting in direction of eigenmodes with zero
eigenvalues. σ2

e = 1 corresponds to this worst case. For k
T

= 1
nT

, and k
Te

= I
nT

(v
Te

= I
nT

),

Fvv =
√

2nT(nT − 1) = Fmax.

Figure 4.6 show Fvv/Fmax for 100 and 1000 channel realizations used for the
estimation of k

T
. The exponential correlation model is assumed. The figures

clearly show that for low σ2
e values, Fvv remains low. As expected, the higher

103



4 Precoding

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
e

F
vv

/F
m

ax

 

 

ρ=0.1
ρ=0.4
ρ=0.7

(a) 1000 channel realizations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
e

||∆
 K

T
|| F

/K
m

ax
   

 o
r 

   
F

vv
/F

m
ax

||∆ K
T
||

F
/K

max

 

 

ρ=0.1
ρ=0.4
ρ=0.7

(b) 1000 channel realizations

Figure 4.6: Normalized Fvv and ||∆KT||F for 1000 channel realizations.

σ2
e , the worse Fvv gets, since k

Te
→ I

nT
as σ2

e → 1.0 even though the actual

antenna correlations may be high.

In order to see how much faster the difference between k
T

and k
Te

increases

with the increase of σ2
e compared to Fvv, we define the following norm,

||∆KT||F =
√

||k
T
− k

Te
||2F =

√

||σ2
e(kT

− I
nT

)||2F . (4.34)

The norm ||∆KT||F , also normalized by the worse case norm value Kmax =
√

nT(nT − 1), is shown in Fig. 4.6(b) (solid lines). As is clear from the figure,
||∆KT||F grows faster than Fvv, which indicates that the estimates k

Te
worsen

with σ2
e faster than its eigenvectors. That is, the change in the eigenvectors

is slower than the change in the eigenvalues. It is important to mention at
this point, that the power allocation is still done based on the eigenvalues
of k

Te
and the more even the eigenvalues are (σ2

e →1), the more uniform is

the power allocation. However, it was shown through simulation results for
uncoded transmission that Λ (power allocation matrix Λ = I

N
⊗ λ) does not

seem to affect the BER, especially at high Eb/No (Λ → I), where the effect of
precoding was shown to be most significant. Note that this is not true if k

T
is rank deficient. In this case, transmitting in direction of eigenmodes with
zero eigenvalues only worsens the BER performance. To isolate the effect of
imperfect knowledge of k

T
at the transmitter, perfect channel knowledge is

still assumed at the receiver. Power allocation in case of coded transmission
however, as we shall see Sec. 4.5, sometimes plays an important role in the
BER reduction.
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4.4 Uncoded Transmission

Figure 4.7 compares the BER versus Eb/No for MIMO-OFDM and CDM as-
suming both perfect and imperfect knowledge of k

T
and for different power

allocation strategies. Power allocation is done either through waterfilling
on the eigenvalues of k

T
or k

Te
, or is assumed uniform for all Eb/No (i. e.

Λ = I ∀Eb/No). Zero receive correlations and ρTx = 0.7 are assumed. Precod-
ing using either k

T
or k

Te
leads to almost identical BER performance. The

power allocation strategy also does not seem to affect the BER performance.
All BER curves for the precoded OFDM or CDM, irrespective of the power
allocation strategy, almost coincide.
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Figure 4.7: MMSE-BDFE: BER versus Eb/No, imperfect k
T
, σ2

e = 0.5 for nT =
nR = 4, L = 4 and N = 32.

4.4.2 Different Antenna Correlation at each Channel Tap

So far, we have assumed that all the transmit correlations at all taps are the
same. Now, we investigate the case when they are not. That is, if k

T
and k

R
do not satisfy Eqn. 2.42, the antenna correlation matrices in the frequency
domain are calculated at each frequency as follows,

k
k

=
1

nR

E{HcH

k
Hc

k
}, (4.35)

and are used for precoding at the corresponding frequency. In Appendix 4.A,
we show that, if the antenna correlations are not the same for all taps, the
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Figure 4.8: BER for Precoding using K
Tave

at Eb/No = 14 dB, k
T
(l) follow the

exponential correlation model, nT = nR = 4, L = 4, N = 32.

resulting correlations in the frequency domain, assuming uncorrelated taps,
is the weight average of those correlations at each tap. Thus, assuming equal
PDP (i. e. σ2

l = 1/L),

k
k

= k
Tave

=
1

L

L
∑

l=1

k
T
(l), (4.36)

for all frequencies, k = 1, · · · , N . Thus,

K
Tave

= I
N
⊗ k

Tave
. (4.37)

Since the sum of positive definite matrices is positive definite, k
Rave

is thus
positive definite. The above also applies to the receive correlations. That is,

K
Rave

= I
N
⊗ k

Rave
, (4.38)

where again k
Rave

= 1
L

∑L
l=1 k

R
(l). For nonequal PDP, the k

T
(l) should be scaled

by its corresponding σ2
l (see Appendix 4.A). It is important to not here, that

unlike the case where k(l) = k ∀ l, Hc

B
is not equal to K1/2

Rave
H

B
K1/2

Tave
. Hc

B
has

to be calculated by replacing hiRiT
by hc

iRiT
in Eqn. 2.24. The transmit corre-

lation matrix of Eqn. 4.37 is used only for precoding. In addition, even if the
individual k

T
(l) may for example follow the exponential model, the resulting

k
Tave

in general may have a different structure.

Figures 4.8 show the BER for MMSE-BLE and MMSE-BDFE versus ρave,
where ρave = 1/L

∑L
l=1 ρl, ρl ≤ 1.0 ∀l and the individual tap correlations were

assumed to follow the exponential correlation model. Comparing those fig-
ures, with Figs. 4.2, it is clear that the performance is quite comparable.
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4.5 Coded Transmission

4.5 Coded Transmission

In this Section, we first consider coded transmission over time varying chan-
nels. We assume a block fading model where the channel remains constant
during the transmission of one codeword. Again, we look at a 4 × 4 MIMO
channel, with L = 4 and transmission using 4 PSK. At the receiver, itera-
tive equalization and decoding is performed using either the RNN or SCE as
explained in Chapter 2. We consider the convolutional code with generator
polynomial [7, 5]8 with memory 2 and rate 1/2. Note that in all what follows,
the BER is always plotted versus the transmit Eb/No. That way, the effect of
transmit power distribution can be captured.

Figure 4.9 shows the BER versus the transmit Eb/No using the RNN and
SCE equalizers the assuming exponential correlation model. We consider
three cases: ρTx = ρRx = 0.3, ρTx = 0.7, ρRx = 0.0 and ρTx = 0.7, ρRx = 0.7. As ex-
pected, the BER deteriorates with increasing correlations. The RNN and SCE
have a very comparable performance for low correlation values (Figs. 4.9(a)
and 4.9(b)). Both benefit from precoding only when MC-CAFS spreading is
applied. Precoding with OFDM and MC-CDM leads to worse BERs than with-
out.

With increased correlations (ρTx = 0.7), the SCE continues to benefit from
precoding when MC-CAFS spreading is employed. In case of OFDM and MC-
CDM, precoding only improves the performance at low to moderate Eb/No

values. The range of Eb/No values where this improvement is observed in-
creases as the amount of correlation present in the channel increases (com-
pare Figs. 4.9(b) 4.9(d) and 4.9(f)). However, at high Eb/No, precoding with
OFDM and MC-CDM only worsens the BER. The RNN on the other hand, ex-
hibits a totally different behavior. Precoding with MC-CDM spreading seems
now to improve the BER. When correlations are high at both the transmitter
and receiver (ρTx = ρRx = 0.7), precoding with OFDM also leads to improved
BER performance.

To better understand the behavior of those equalizers as part of the itera-
tive equalization and decoding loop, we shall now consider the EXIT charts
as an analysis tool. However, in order for the EXIT charts to make sense,
we have to consider one channel at a time, and look at the EXIT chart for
each channel realization. Due to the computational complexity and volume
involved, we instead look at three MIMO 4 × 4 channel groups:

- Group 1 with four channels having low correlations at both the transmitter
and receiver ρTx = ρRx = 0.3.
- Group 2 with four channels having high correlations at the transmitter and
zero receive correlations ρTx = 0.7, ρRx = 0.0.

- Group 3 also with four channels having high correlations at both the trans-
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(a) RNN: ρTx = ρRx = 0.3
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(b) SCE: ρTx = ρRx = 0.3
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(c) RNN: ρTx = 0.7, ρRx = 0.0

5 6 7 8 9 10 11 12 13
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o

B
E

R

ρ
Tx,exp

=0.7, ρ
Rx

 =0.0

 

 

AWGN−OFDM
OFDM
OFDM, Precode
CDM
CDM, Precode
CAFS B=4
CAFS B=4, Precode

(d) SCE: ρTx = 0.7, ρRx = 0.0
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(e) RNN: ρTx = ρRx = 0.7
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(f) SCE: ρTx = ρRx = 0.7

Figure 4.9: Time varying channels: BER curves for RNN and SCE for differ-
ent correlation values, nT = nR = 4, L = 4, N = 32 and with a
convolutional code with rate = 1/2,m = 2, generator polynomial
[7, 5]8.108



4.5 Coded Transmission

mitter and receiver ρTx = 0.7, ρRx = 0.7.

Again, the exponential correlation model is assumed for all groups. The four
channels in each group were chosen from a sample containing 10000 ran-
domly generated channels, with the statistics given in Table 4.1, where µ
stands for the mean and σ for the standard deviation. Each of the chosen

LOW CORRELATION SAMPLE: ρTx = 0.3, ρRx = 0.3
Channel Characteristics min max µ σ Median

Condition number 63 148.5 × 106 27829 787893 3513
CN without outer 10% 836 25317 5536 5520 3513

β1/2 0.91 2.05 1.45 0.13 1.45

HIGH CORRELATION SAMPLE: ρTx = 0.7, ρRx = 0.0
Channel Characteristics min max µ σ Median

Condition number 187 1194 × 106 83141 5453708 8130
CN without outer 10% 1857 57900 12740 12013 8130

β1/2 1.2 2.55 1.96 0.18 1.96

HIGH CORRELATION SAMPLE: ρTx = 0.7, ρRx = 0.7
Channel Characteristics min max µ σ Median

Condition number 352 850 × 106 229815 6106479 24068
CN without outer 10% 5084 182155 38240 37149 24068

β1/2 1.23 2.74 2.14 0.21 2.15

Table 4.1: Channel characteristics for different correlation values.

channels is characterized by its condition number, max{|rij||} and β1/2 (see
Chapter 3). The chosen channels and their characteristic values are given in
Table 4.2.

The digits in the channel names correspond to the correlations values, with
the first two digits representing the transmit correlations and the last two the
receive correlations. The AXXXX channels are channels with condition num-
bers close to the minimum of the corresponding sample (excluding the outer
10% channels), while the BXXXX channels are those with condition num-
bers close to the maximum, again excluding the outer 10%. The CXXXX and
DXXXX are channels whose condition number are close to that of the me-
dian of the sample. The difference being only in the amount of interference,
with CXXXX having low interference (β1/2 = µ − 2σ) and the DXXXX channels
having high interference (β1/2 = µ + 2σ). In this Section, we only look at the C
and D 0700 and 0707 channels from the above table. The BER curves and
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4 Precoding

Name ρTx ρTx Condition Number β1/2 max{|rij||}
A0303 0.3 0.3 800 1.47 1.04
B0303 0.3 0.3 25016 1.43 1.12
C0303 0.3 0.3 4302 1.19 1.17
D0303 0.3 0.3 4302 1.71 1.72

A0700 0.7 0.0 2000 1.97 1.96
B0700 0.7 0.0 60495 1.95 1.22
C0700 0.7 0.0 10006 1.59 1.63
D0700 0.7 0.0 10007 2.32 1.98

A0707 0.7 0.7 5000 2.12 2.26
B0707 0.7 0.7 180191 2.18 2.64
C0707 0.7 0.7 29738 1.72 2.15
D0707 0.7 0.7 29740 2.57 3.50

Table 4.2: Chosen channels and their characteristic values.

EXIT-Charts for all other channels can be found in Appendix 4.A.2.

Figures 4.10 and 4.11 show the BER as well as the EXIT charts (after 2
iterations) for the C0700 and D0700 channels using the RNN and the SCE
respectively. Although both channels have the same condition number, the
D0700 has a higher amount of interference (a higher β and max{|rij|} com-
pared to the C0700 channel). As can be seen from the BER curves, the
performance of both channels are quite different, with D0700 BER curves
being noticeably worse. In case of the C0700 channel, irrespective of the
equalizer used, precoding always leads to worse BER than without precod-
ing, except for MC-CAFS. In this case, the BER performance even outper-
forms the AWGN BER curves due to the better power distribution done by
the precoder. This effect can be clearly captured here since, as aforemen-
tioned, the BER is plotted versus the the transmit Eb/No. For the D0700 and
RNN on the other hand, only the OFDM BER curve falls with increased Eb/No.
Precoding worsens the OFDM BER at high Eb/No. The BER performance of
MC-CAFS with and without precoding as well as MC-CDM remains very poor
even at high Eb/No. For SCE however, MC-CAFS with and without precoding
and MC-CDM lead to the lowest BER rates as can be seen in Fig.4.11(b). The
BER results therefore, although are worse than those of the C0700 channel,
still exhibit the same behavior.

By looking at the EXIT-charts, it is clear that the tunnels between all
spreading and precoding curves and that of the decoder are more widely open
in case of C0700 channel compared to those of the D0700, which means that
the waterfall region occurs at lower Eb/No values and convergence is faster.
These observations agree with the BER curves of the corresponding figures.
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(a) BER curves for Channel C0700
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(b) BER curves for Channel D0700
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(c) EXIT-Chart: Channel C0700 at 7 dB
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(d) EXIT-Chart: Channel D0700 at 7 dB
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(e) EXIT-Chart: Channel C0700 at 9 dB
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(f) EXIT-Chart: Channel D0700 at 9 dB

Figure 4.10: RNN: BER curves and corresponding EXIT charts for channels
C0700 and D0700, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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(a) BER curves for Channel C0700
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(b) BER curves for Channel D0700
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(c) EXIT-Chart: Channel C0700 at 7 dB
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(d) EXIT-Chart: Channel D0700 at 7 dB
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(e) EXIT-Chart: Channel C0700 at 9 dB
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(f) EXIT-Chart: Channel D0700 at 9 dB

Figure 4.11: SCE: BER curves and corresponding EXIT charts for channels
C0700 and D0700, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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4.5 Coded Transmission

We can also see that the starting point (IA,dec at IE,dec = 0) for OFDM and CDM
for the precoded case are higher than those without precoding. As mentioned
in Chapter 2, this initial point is dependent on the amount of interference in
the channel, being higher for less interference. This is especially important
when the tunnel opening is small i. e. at low Eb/No. Since precoding reduces
the amount of total interference, the starting point shifts upwards, which
explains why precoding with OFDM and MC-CDM improves the BER at low
Eb/No. On the other hand, the intersection points between those curves and
that of the decoder become more important as Eb/No increases (wider tun-
nel). This intersection point is dependent on the MFB, and shifts to the right
as the MFB improves. Since the hard decisions are made after the decoder,
a higher IE,dec at the intersection point means in general better BER. This
explains why the OFDM and MC-CDM do not converge to the AWGN perfor-
mance as the Eb/No increases. The starting points for all EXIT-chart curves
in case of SCE are higher than for those of the RNN at the same Eb/No. In
addition, the SCE EXIT-charts tunnel openings are wider than those of the
RNN. Both factors thus explain the better BER performance and the faster
convergence using the SCE.

Figures 4.12 and 4.13 show the BER curves and corresponding EXIT-
charts for the C0707 and D0707 channels again using the RNN and SCE
respectively. Due to the presence of the receive correlations, the amount
of interference increases compared to the C0700 and D0700 channels (see
Chapter 3). Due to increased interference values, both the RNN and SCE BER
curves converge slower and the waterfall region starts at later Eb/No values
compared to the 0700 channels. For the D0707, the BER remain very high
even at Eb/No = 11 dB for both equalizers. In case of the RNN, and as can be
seen in the EXIT-charts in Figs. 4.12(d) and 4.12(f), that even at 13 dB, the
curves of the MC-CDM, MC-CAFS with and without precoding lie below that
of the decoder. That is, the tunnel is closed and no exchange of information
is possible between the RNN and the decoder. As a result, the BER remains
very high (almost 0.4). A tunnel opening exists for OFDM with and without
precoding and MC-CDM with precoding. As can be seen in Fig. 4.12(f), al-
though the intersection point of OFDM without precoding with the decoder
curve occurs at higher IE,dec value than for OFDM with precoding, the BER is
worse. This can be explain by looking at the IA,dec value at IE,dec = 0, which
is lower in case of OFDM without precoding than for OFDM with precoding.
The starting point seems to be a more important factor even at this Eb/No

due to the high amount of interference. All of the above can be applied to the
SCE, except that the tunnels are already open at much lower Eb/No values
compared to the RNN equalizer.

In case of the C0707 channel, the tunnels for all spreading and precod-
ing curves are open and convergence can be seen to occur at much lower
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(a) BER curves for Channel C0707
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(b) BER curves for Channel D0707
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(c) EXIT-Chart: Channel C0707 at 7 dB
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(d) EXIT-Chart: Channel D0707 at 7 dB
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(e) EXIT-Chart: Channel C0700 at 9 dB
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(f) EXIT-Chart: Channel D0707 at 13dB

Figure 4.12: RNN: BER curves and corresponding EXIT charts for channels
C0707 and D0707, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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(a) BER curves for Channel C0707
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(b) BER curves for Channel D0707
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(c) EXIT-Chart: Channel C0707 at 7 dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,eq

, I
E,dec

I A
,d

ec
, I

E
,e

q

Channel D0707, E
b
/N

o
=7 dB

 

 

CC(7,5)
OFDM
CDM
CAFS
OFDM, Precode
CDM, Precode
CAFS, Precode

(d) EXIT-Chart: Channel D0707 at 7 dB
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(e) EXIT-Chart: Channel C0700 at 9 dB
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(f) EXIT-Chart: Channel D0707 at 13dB

Figure 4.13: SCE: BER curves and corresponding EXIT charts for channels
C0707 and D0707, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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4 Precoding

Eb/No values. The BER for MC-CDM, MC-CAFS with and without precod-
ing all converge to the AWGN performance at high Eb/No for both equalizers.
In case of the SCE the BER for MC-CAFS with precoding outperforms the
AWGN channel. Again, this is due the better power distribution obtained
through waterfilling. For all other cases (OFDM with and with precoding
and MC-CDM with precoding), the BER is lower the higher the IE,dec value
at the intersection point between the decoder curve and the corresponding
RNN/SCE curves in the EXIT-charts. From the above and by looking at
the BER curves and EXIT-charts in Appendix 4.A.2, we can deduce that the
amount of interference seems to be the most important factor affecting the
BER. The larger the interference, irrespective of the condition number, the
worse the BER and the slower the convergence (waterfall region occurs at
higher Eb/No values). Using the SCE, MC-CAFS spreading with precoding
was shown to outperform all others, even the AWGN in some cases. Same
results are observed with the RNN when the amount of interference was not
high (e. g. CXXXX and X0303 channels).
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(a) MC-CAFS: Channel C0700
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Figure 4.14: SCE: Effect of power allocation strategy on the BER, convolu-
tional code, rate = 1/2, m = 2, generator polynomial [7, 5]8.

Now we take a closer look at the effect of the power allocation strategy on
the BER. We again consider channels C0700 and D0700. Figure 4.14 shows
the BER with precoding using different power distribution techniques: water-
filling on eigenvalues of k

T
, uniform power distribution and waterfilling over

the eigenvalues of k
Te

with estimation errors σ2
e = 0.5. Figure 4.14(a) shows

that the BER for the C0700 channel is dependent on the power allocation.
The lowest BER is achieved for waterfilling on the eigenvalues of k

T
. Uniform

power distribution leads to the same BER as without precoding. The BER in
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Figure 4.15: Rate=1/2 convolutional codes with different memory.

case of k
T

with estimation errors lies in between the above two. In this latter
case, the power allocation is less selective since the difference in the values
between the eigenvalues of k

Te
is less than for the actual k

T
(see Sec. 4.4.1).

In case of the D0700, the power allocation strategy does not seem to affect
the BER as can be seen in Fig. 4.14(b). The D0700 channel has a higher
amount of interference that is partially reduced through precoding. In this
case, the improvement in the BER seems to come mainly from transmitting
in the direction of the eigenvectors of k

T
and less on the power allocation

strategy. Thus, in contrast to the uncoded transmission, the power alloca-
tion strategy does seem to play an important factor in the BER performance.

In all of the above, we have only considered a memory 2 convolutional code
([7, 5]8). However, other convolutional codes with lower or higher memory
can be used each with a different transfer function. For example, Fig. 4.15
shows the curves for some chosen convolutional codes with rate=1/2, but
with memory values ranging from 1 to 5. This figure clearly shows that the
code memory has a strong effect on the code transfer function. The higher
the memory, the larger the IA,dec value at IE,dec = 0. On the other hand,
the curves of the high memory codes, (example mem 4 and 5 codes), show
a slower increase of IA,dec with increasing IE,dec compared to lower memory
codes. However, at high IE,dec values (IE,dec ≈ 0.9) the IA,dec values suddenly
jump to values close to 1.0. It seems logical to expect the low memory codes
to lead to better BER either at low Eb/No or/and in presence of high inter-
ference since the tunnel opening between the equalizer and the code curves
in this case would be larger. However, at high Eb/No or for low interference,
worse BER is expected since the IE,dec value at the intersection point between
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(a) BER curves
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(b) EXIT Chart

Figure 4.16: RNN: Effect of code memory on the BER of D0707 channel, con-
volutional code, rate = 1/2, m = 1, generator polynomial [2, 3]8.

the equalizer and code curves is smaller, the lower the code memory. Fig-
ure 4.16 shows the BER for the D0707 channel using memory 1 code with
rate=1/2 and polynomial [2, 3]8. The BER and the EXIT chart results confirm
to our expectations. The BER, especially at low Eb/No, is lower for this mem-
ory 1 code than for the memory 2 [5, 7]8 code. The EXIT charts tunnels are
also open for all spreading matrices at Eb/No = 13 dB in contrast to Fig. 4.12(f).
However, at high Eb/No the performance is worse. Again, the IE,dec at the in-
tersection point between the equalizer and the decoder curves are lower than
those in Fig 4.12(f), explaining the worse performance at higher Eb/No val-
ues. Similar remarks can also be made about the C0707 channel shown
in Fig. 4.17. Nonetheless, the BER gains obtained by employing the [2, 3]8
memory 1.0 code at low Eb/No are more significant especially for precoded
MC-CAFS (note that the AWGN-OFDM curve shown here is worse than that
obtained when the [5, 7]8 code is employed).

4.6 Summary

We have looked at precoding for MIMO-OFDM, particularly for the case of
partial channel knowledge. We have shown that transmitting in the direction
of the transmit correlations at each subcarrier was the optimum direction for
average PEP minimization. We have analyzed the BER performance for both
the coded and uncoded transmission and for perfect and imperfect knowl-
edge of the transmit correlations. It was shown that the MMSE-BLE does
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(a) BER curves
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(b) EXIT Chart

Figure 4.17: RNN: Effect of code memory on the BER of C0707 channel, con-
volutional code, rate = 1/2, m = 1, [2, 3]8.

not benefit from precoding. As a matter of fact, the BER performance was
shown to deteriorate. The MMSE-BDFE, on the other hand, benefits sig-
nificantly from precoding due to propagation error reduction. The SCE and
RNN, for uncoded transmission, were also shown to benefit from precoding
for OFDM, MC-CDM and MC-CAFS. In the coded case however, where iter-
ative equalization and decoding was employed, precoding with OFDM and
MC-CDM resulted in a worse BER performance than without precoding in
most cases due to worsened MFB. Only MC-CAFS spreading was shown to
always lead to the lowest BER when the SCE was employed. Similar results
were observed with the RNN equalizer for moderate to low interference val-
ues. The BER performance was found to be highly dependent on the amount
of interference in the channel. Furthermore, we showed that using codes
with lower memory improves the BER performance only at low Eb/No values.
As the Eb/No increases the performance is however worse than that of higher
memory codes.
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4.A Appendix to Chapter 4

4.A.1 Antenna Correlations in Frequency Domain

For the sake of clarity, we derive the expression for k
Tave

for a 2 × 2 MIMO
system with L = 2. However, the following derivations can be easily extended
to any nT × nR MIMO system with any number of uncorrelated channel taps
L. Accordingly, the 2 × 2 correlation matrices at each channel tap, l, with
|ρl| ≤ 1

k(l) =

[

1 ρl

ρ∗
l 1

]

=

[

el ̺l

̺∗
l el

] [

el ̺l

̺l∗ el

]

(4.39)

where el ∈ R, ρl ∈ C, ̺l ∈ C, e2
l + |̺l|2 = 1 and 2el̺l = ρl.

We shall only consider transmit correlations, but the same derivations can
be applied to obtain the receive k

Rave
. The channel matrices at each tap, l

are,

hc(l) =

[

h11(l) h12(l)
h21(l) h22(l)

] [

el ̺l

̺∗
l el

]

, (4.40)

Without lost of generality, we shall only consider the first subcarrier fre-
quency, k = 1. Thus, we start by calculating the transmit correlation in the
frequency domain at frequency k = 1 as follows

k
k

=
1

nR

E{HcH

k
Hc

k
} =

1

nR

E{HcH

1
Hc

1
}, (4.41)

where, using the discrete Fourier transform, the channel transfer functions
at k = 1 are given by,

Hc

1
=

[

hc
11(1) + hc

11(2) hc
12(1) + hc

12(2)
hc

21(1) + hc
21(2) hc

22(1) + hc
22(2)

]

=

[

Hc
11 Hc

12

Hc
21 Hc

22

]

. (4.42)

Accordingly

HcH

1
Hc

1
=

[

|Hc
11|2 + |Hc

21|2 Hc∗
11H

c
12 + Hc∗

21H
c
22

Hc
11H

c∗
12 + Hc

21H
c∗
22 |Hc

12|2 + |Hc
22|2

]

, (4.43)

Similar to the derivation in Appendix 3.A.1, and assuming equal PDP for the
channel taps (E{|hij(l)|2} = 1/L), we can calculate the expected value of diag-
onal elements of the above matrix, as follows,

E{|Hc
11|2} = E{e2

1|h11(1)|2 + |̺1|2 |h12(1)|2 + e2
2|h11(2)|2 + |̺2|2 |h12(2)|2} = 1.0, (4.44)

and

E{|Hc
11|2} = E{|Hc

12|2} = E{|Hc
21|2} = E{|Hc

22|2} = 1.0, (4.45)
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and the off diagonal elements,

E{H∗c
11H

c
12} = E{e1̺1|h11(1)|2 + e1̺1|h12(1)|2 + e2̺2|h11(2)|2 + e2̺2|h12(2)|2}

=
1

2
(ρ1 + ρ2) =

1

L

L
∑

l=1

ρl, (4.46)

and
E{Hc∗

11H
c
12} = E{Hc∗

21H
c
22} (4.47)

Subsituting the above two equations in Eqn. 4.41, we get

k
1

=

[

1 1
L

∑L
l=1 ρl

1
L

∑L
l=1 ρ∗

l 1

]

=
1

L

L
∑

l=1

k(l). (4.48)

The above derivation can also be repeated for any frequency k, however the
result does not change, that is

k
k

= k
1

= k
Tave

(4.49)

Thus, we can still express K
T

as follows,

K
Tave

= k
Tave

⊗ I
N

. (4.50)

In case of non-equal PDP (E{|hij(l)|2} = σ2
l ),

k
Tave

=

[

1
∑L

l=1 σ2
l ρl

∑L
l=1 σ2

l ρ
∗
l 1

]

, (4.51)

where σ2
l is the power in the lth MIMO channel tap, and

∑L
l=1 σ2

l = 1.0.

4.A.2 BER curves and EXIT-Charts

BER curves and EXIT-charts for:
- A0303, B0303, C0303 and D0303
- A0700 and B0700
- A0707 and B0707
in Table 4.2 for RNN and SCE equalizers and convolutional code with
rate=1/2, memory 2 and generator polynomial [7, 5]8.
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(a) BER curves for Channel A0303
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(b) BER curves for Channel B0303
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(c) EXIT-Chart: Channel A0303 at 7 dB
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(d) EXIT-Chart: Channel B0303 at 7 dB
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(e) EXIT-Chart: Channel A0303 at 9 dB
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(f) EXIT-Chart: Channel B0303 at 9 dB

Figure 4.18: RNN: BER curves and corresponding EXIT charts for channels
A0303 and B0303, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8.
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(a) BER curves for Channel C0303
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(b) BER curves for Channel D0303
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(c) EXIT-Chart: Channel C0303 at 7 dB
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(d) EXIT-Chart: Channel D0303 at 7 dB
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(e) EXIT-Chart: Channel C0303 at 9 dB
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(f) EXIT-Chart: Channel D0303 at 9 dB

Figure 4.19: RNN: BER curves and corresponding EXIT charts for channels
C0303 and D0303, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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(a) BER curves for Channel A0700
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(b) BER curves for Channel B0700
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(c) EXIT-Chart: Channel A0700 at 7 dB
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(d) EXIT-Chart: Channel B0700 at 7 dB
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(e) EXIT-Chart: Channel A0700 at 9 dB
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(f) EXIT-Chart: Channel B0700 at 9 dB

Figure 4.20: RNN: BER curves and corresponding EXIT charts for channels
A0700 and B0700, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8.

124



4.A Appendix to Chapter 4

5 6 7 8 9 10 11
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o

B
E

R

Channel A0707

 

 

AWGN−OFDM
OFDM
CDM
CAFS
OFDM,Precode
CDM,  Precode
CAFS, Precode

(a) BER curves for Channel A0707
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(b) BER curves for Channel B0707
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(c) EXIT-Chart: Channel A0707 at 7 dB
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(d) EXIT-Chart: Channel B0707 at 7 dB
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(e) EXIT-Chart: Channel A0707 at 9 dB
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(f) EXIT-Chart: Channel B0707 at
11 dB

Figure 4.21: RNN: BER curves and corresponding EXIT charts for channels
A0707 and B0707, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8. 125



4 Precoding

5 6 7 8 9 10 11 12

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o

B
E

R

Channel A0303

 

 

AWGN−OFDM
OFDM
CDM
CAFS
OFDM,Precode
CDM,  Precode
CAFS, Precode

(a) BER curves for Channel A0303
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(b) BER curves for Channel B0303
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(c) EXIT-Chart: Channel A0303 at 7 dB
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(d) EXIT-Chart: Channel B0303 at 7 dB
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(e) EXIT-Chart: Channel A0303 at 9 dB
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(f) EXIT-Chart: Channel B0303 at 9 dB

Figure 4.22: SCE: BER curves and corresponding EXIT charts for channels
A0303 and B0303, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8.
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(a) BER curves for Channel C0303
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(b) BER curves for Channel D0303
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(c) EXIT-Chart: Channel C0303 at 7 dB
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(d) EXIT-Chart: Channel D0303 at 7 dB
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(e) EXIT-Chart: Channel C0303 at 9 dB
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(f) EXIT-Chart: Channel D0303 at 9 dB

Figure 4.23: SCE: BER curves and corresponding EXIT charts for channels
C0303 and D0303, convolutional code, rate = 1/2,m = 2, gener-
ator polynomial [7, 5]8.
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(a) BER curves for Channel A0700
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(b) BER curves for Channel B0700
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(c) EXIT-Chart: Channel A0700 at 7 dB
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(d) EXIT-Chart: Channel B0700 at 7 dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,eq

, I
E,dec

I A
,d

ec
, I

E
,e

q

Channel A0700, E
b
/N

o
=9 dB

 

 

CC(7,5)
OFDM
CDM
CAFS
OFDM, Precode
CDM, Precode
CAFS, Precode

(e) EXIT-Chart: Channel A0700 at 9 dB
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(f) EXIT-Chart: Channel B0700 at 9 dB

Figure 4.24: SCE: BER curves and corresponding EXIT charts for channels
A0700 and B0700, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8.
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(a) BER curves for Channel A0707
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(b) BER curves for Channel B0707
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(c) EXIT-Chart: Channel A0707 at 7 dB
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(d) EXIT-Chart: Channel B0707 at 7 dB
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(e) EXIT-Chart: Channel A0707 at 9 dB
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(f) EXIT-Chart: Channel B0707 at 13dB

Figure 4.25: SCE: BER curves and corresponding EXIT charts for channels
A0707 and B0707, convolutional code, rate = 1/2,m = 2, genera-
tor polynomial [7, 5]8.
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Chapter5
MIMO Channel Capacity: Theory
versus Measurement

In this chapter, we look at the capacity and correlations of measured MIMO
channels for a specific outdoor scenario. We first start by giving a theoret-
ical overview of MIMO channel capacity for both flat fading and frequency
selective channels in presence of no, partial or full channel knowledge at the
transmitter. We then describe the measurement setup and give the corre-
sponding channel capacities and antenna correlations. The calculated ca-
pacity of the measured MIMO channels is compared with that of theoretical
models.

5.1 MIMO Channel Capacity

In this section, we give the capacity for flat fading MIMO. The expression for
the MIMO channel capacity was first introduced in [1]. The author differenti-
ated between deterministic channels (channel state information is present at
the transmitter CSIT) and randomly changing channels (Channel unknown
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5 MIMO Channel Capacity: Theory versus Measurement

to the transmitter). As mentioned in the previous chapter, although full chan-
nel knowledge is not always available at the transmitter, partial knowledge
(e. g. fading correlations) is more readily available and can be utilized by the
transmitter. In what follows, we thus present the MIMO channel capacity
for three cases: no channel knowledge, full channel knowledge and partial
channel knowledge at the transmitter. We always assume that the channel
is known to the receiver.

5.1.1 No channel knowledge at the transmitter

The capacity of any channel can be calculated either in the frequency or the
time domain. We first look at the capacity of a flat fading random channel in
the time domain. In this case, the MIMO ergodic (mean) channel capacity is
given by [1, 4]

CR = E{log2 det(I
nR

+
P

NonT

hQhH)} = E{log2 det(I
nR

+
ρo

nT

hhH)}, (5.1)

where h is the channel matrix in the time domain and the expectation is taken
over all channel realizations, P is the total transmit power, No is the noise
power, and thus ρo = P/No is the signal to noise ratio (SNR). The covariance
matrix of the transmit signals, Q, is given by

Q = I
nT

. (5.2)

That is, the total transmit power is distributed equally over all transmit an-
tennas nT. It is important to mention here that this is not the Shannon
capacity in the true sense, since, as shown next, in presence of full channel
knowledge a signal covariance matrix can be chosen that outperforms that
in Eqn. 5.2 [22]. Nonetheless, as is customarily done in the literature, we
shall still refer to Eqn. 5.1 as the channel capacity. Equation 5.1 can also be
written in terms of the channel singular values, λi, (i. e. the eigenvalues of
hhH ) as follows [1, 4, 3]

CR = E{log2 det(I
nR

+
ρo

nT

hhH)} = E{
r
∑

i=1

log2(1 +
ρo

nT

λi)}, (5.3)

where r is the rank of h.

As mentioned above, the channel capacity can be equivalently calculated
in the frequency domain. For a frequency selective channel, it is easier to
calculate the capacity in the frequency domain. In this case, we can make
use of the discrete Fourier transform (DFT) [79, 91]. The capacity CR of a
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5.1 MIMO Channel Capacity

frequency selective channel can be calculated, for nR receive antennas and
nT transmit antennas, as follows [79, 91]:

CR =
1

N
E{

N
∑

k=1

log2 det(I
nR

+
ρo

nT

H
f
(k)HH

f
(k))}, (5.4)

where H
f
(k) is a matrix of size nR × nT and represents the channel trans-

fer function at frequency k for k = 1, . . . , N frequencies. Similar to the
time domain, the capacity can also be calculated from the eigenvalues λi

of H
f
(k)HH

f
(k) for k = 1, . . . , N as follows [91]

CR =
1

N
E{

min(NnR,NnT)
∑

i=1

log2(1 +
ρo

nT

λi)}. (5.5)

If we only consider one channel realization, we can write the instantaneous
channel capacity as [1, 22]

CR = log2 det(I
nR

+
ρo

nT

hhH) =
r
∑

i=1

log2(1 +
ρo

nT

λi). (5.6)

That is, h is deterministic.

When random channels are considered, the channel is normalized such
that E{∑l |hij(l)|2} = 1, where hij(l) are the channel impulse responses of the
MIMO channel in the time domain between transmit antenna j (j = 1, . . . , nT)
and receive antenna i (i = 1, . . . , nR) having l = 1, . . . , L taps.

Asymptotic capacity of uncorrelated MIMO channels At high SNR, the er-
godic capacity of uncorrelated MIMO channels grows linearly with n =
min(nT, nR) [1, 2, 92, 22]. Figure 5.1(a) shows the capacity of several n × n
MIMO (nT = nR = n) channels for various SNR. We can see the enormous
gains in capacity by increasing the number of both transmit and receive
antennas. In contrast, increasing the number of receive antennas (receive
diversity only) while keeping nT constant leads to a logarithmic increase in
the capacity [1, 92]. This can be seen in Fig. 5.1(b). At high SNR, the capac-
ity increases by n b/s/Hz for every 3 dB increases in SNR. In addition, the
capacity of a MIMO channel for nT = nR = n approaches

CR → n log2(1 + ρo)

as n → ∞ since 1
n
hhH → I

n
as n → ∞ [1, 22]. That is, the capacity increases

linearly with n.
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Figure 5.1: MIMO Channel Capacity.

5.1.2 Full channel knowledge at the transmitter

In the previous section, it was shown that if no CSIT is available, the best
one can do is to transmit using equal power at all transmit antennas. If full
channel knowledge is available at the transmitter, our goal would be to find
the optimum Q maximizing the following equation [1, 4]

C = max
Q

log2 det(I
nR

+
hQhH

No

) (5.7)

subjected to Tr(Q) = nT. In this case, the best solution would be to transmit in

the direction of the left singular vectors of the channel, V
h
, where h = U

h
Σ V H

h
and Σ is a diagonal matrix containing the channel singular values, σi. At the

receiver, the received signal is multiplied by UH

h
. That is, the channel is

decomposed into r parallel SISO channels [1, 3, 22]. The capacity can thus
be written as the sum of the capacities of those parallel SISO channels as
follows,

CR =
r
∑

i=1

log2(1 +
ρoγi

nT

λi), (5.8)

where γi is the portion of the transmit power allocated to the ith subchannel
under the constraint

∑r
i=1 γi = nT and λi = σ2

i . Thus, the problem now is
to find the optimum γi to maximize Eqn. 5.8 under the aforementioned con-
straint. The optimal power allocation is found iteratively through the wa-
terfilling algorithm [53] (see Eqn. 4.7). Thus Q = V

h
λ

opt
V H

h
, where λ

opt
is a
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diagonal matrix containing the optimum γi values. As mentioned in Sec.4.2
depending on the channel eigenvalues and the available transmit power some
of the weak modes might receive zero power. If only one eigenmode gets all
of the available transmit power (Q is rank 1), we denote this transmission

strategy beamforming [93].

5.1.3 Partial channel knowledge at the transmitter

In the previous sections, we considered the cases of either full or no channel
knowledge at the transmitter. Now, we consider the case of partial channel
knowledge being available. To be more specific, we also assume that only the
transmit correlation matrix, k

T
, is known to the transmitter. In this case, the

channel capacity is given by

C = max
Q

E{log2 det(I
nR

+
H Q HH

No

)}

subjected to Tr(Q) = nT. In this case, the optimum input covariance matrix

is given by [94, 80]
Q = v

T
λ

opt
vH

T
,

where k
T

= v
T
e
T

vH
T

and, as mentioned in Sec. 4.3, the diagonal matrix λ
opt

is obtained through numerical optimization resembling that of waterfilling,
where stronger modes are allocated more power than weaker ones [94, 80].
The authors in [82] considered both transmit and receive correlations and
have shown that, although one still needs to transmit in direction of the
transmit correlation eigenvectors, the energy distribution at the transmitter
is dependent on both the transmit and receive correlations.

Although numerical power allocation strategies are optimum, transmitting
using less optimum solutions can still lead to results very close to the op-
timum ones. In [75], a non optimum power allocation strategy, stochastic

water-filling, was proposed where waterfilling is done on the weighted eigen-
values of k

T
. This stochastic strategy performs very close to the optimum

power allocation when fading correlations are high.
Similarly, for frequency selective channels, it was shown in [21] that trans-

mitting in the direction of the transmit correlations eigenvectors at each
subcarrier maximizes the capacity. Likewise, the power allocation is done
through numerical optimization. The authors nonetheless showed that wa-
terfilling on the eigenvalues of the transmit correlations, although subopti-
mal, leads to almost optimum results.

Figure 5.2 compares the MIMO capacity for correlated fading with that of
uncorrelated fading assuming full, partial or no channel knowledge at the
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transmitter. For the correlated case, the exponential correlation model is
assumed with ρ = 0.9. In case of partial CSIT, the stochastic water-filling
algorithm was employed. As expected, the presence of antenna correlations
causes a loss in capacity, especially if absolutely no channel knowledge is
available at the transmitter. Nonetheless, in case of partial CSIT, the channel
capacity using this suboptimum stochastic waterfilling method is seen to lie
very close to that of full channel knowledge.

5.1.4 Impact of Antenna Correlations on MIMO Capacity

To closely examine the effect of antenna correlations on the MIMO capacity,
we consider the MIMO capacity at high SNR assuming nT = nR = n and k

T
and k

R
to be full rank. The capacity can thus be written as [22]

C ≈ log2 det(
ρo

nT

hhH) + log2 det(k
T
) + log2 det(k

R
), (5.9)

where h are the white uncorrelated zero mean complex channel coefficients.
Clearly, k

T
and k

R
have the same effect on the channel capacity. Since the

det(k) =
∏

i λi(k) and
∑

i λi(k) = n and making use of the inequality of the
arithmetic and geometric means, we have

∏

i λi(k) ≤ 1.0. That is, log2(det(k)) ≤
0 and is zero only if k = I. Thus, correlations are detrimental to the MIMO
capacity leading to loss in capacity as is also shown in Fig. 5.2.

5.1.5 Impact of Line of Sight on MIMO Capacity

The effect of the line of sight (LOS) component on the MIMO channel capacity
can be examined by considering Rician fading where the channel is modeled
as a sum of a LOS matrix and a Rayleigh fading matrix as follows

h =

√

K

1 + K
h̄ +

√

1

1 + K
h

w
(5.10)

where h̄ is the fixed component, h
w

the Rayleigh component and K the Rician
factor. K is equal to the ratio of the power in the LOS component to that in
the pure fading channel. K = 0 represents pure Rayleigh fading, and K → ∞
represents a non fading channel. The performance of the Rician channel is
thus dependent on K as well on the components of the matrix h̄. Thus, if
K = 0, the capacity reduces to that of a Rayleigh channel. On the other side,
if K → ∞, then the capacity is dependent on the structure of h̄ as we show
next.
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Figure 5.2: MIMO 4x4 Channel Capacity: uncorrelated fading versus corre-
lated fading, exponential correlation model, ρ = 0.9.

Maximum Capacity: A channel, that achieves the maximum possible ca-
pacity, satisfies the following equation [2, 22],

hHh = nR I
nR

, (5.11)

for nR ≥ nT. That is, orthogonal channels maximize the capacity. The eigen-
values are in this case all equal and the capacity can be given by

Cmax = nT log2(1 +
ρo

nT

nR). (5.12)

Thus for orthogonal MIMO channels, reducing the K factor (i. e. Rayleigh
component gaining more power) only worsens the capacity. On the other
extreme, a LOS matrix h̄ that is rank deficient – for example h̄ = 1 – would
benefit, if the K factor decreases.

In [95], it was shown that in a pure line of sight (LOS) environment (i. e.
no scattering, L = 1), there exists a range of distances between the transmit-
ter and receiver arrays where the channel matrix is orthogonal. This range
contains all distances below and at Dorth, which is given by:

Dorth =
dTxdRxnR

λ
, (5.13)
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where dTx is the spacing between the antenna elements in the transmitter,
dRx the spacing between the antenna elements in the receiver and λ is the
wavelength. Note that Eqn. 5.13 only considers the orthogonality of the sig-
natures for a pair of adjacent transmit antennas [95]. That is, it considers
the orthogonality of the vectors hk and hk+1, where hk is the kth column of the
nR × nT channel matrix h in the time domain. At distances around Dorth, the
channel is not necessarily orthogonal. However, the channel condition num-
ber (λmax/λmin) remains in general low [71]. Similar results were also found
in [96], where the channel capacity for a simulated 3 × 3 MIMO LOS channel
was found to increase as the transmitter approached the receiver reaching
its maximum value at the distance given by Eqn. 5.13. Note, that Eqn. 5.13
also assumes that the waves arriving at the receiver antennas are plane, i. e.
large separations between transmitter and receiver. For short distances, this
is not necessarily satisfied. The distances Dorth obtained from Eqn. 5.13 for
typical antenna spacings (e.g. dTx = dRx = 10λ, nR = 4, Dorth ≈ 23 m) are within
ranges where the incident waves are not necessarily plane anymore. Thus,
Eqn. 5.13, should only be seen as an approximation. Still, we will compare
the measurement results with the above model in what follows.

5.2 Measurement Setup

In this section, we briefly describe the measurement setup at both the trans-
mitter and the receiver as shown in Fig. 5.3. The street, where the mea-
surements were done, is a two way street with two lanes for each direction.
The lanes are separated with crash barriers and heavy foliage. In addition,
heavy foliage was present on either side of the street. The transmitter (Tx)
was mounted on a vehicle moving at a constant low speed (around 10 km/h,
Doppler shift thus neglected) towards a stationary receiver (Rx), which was
mounted on a bridge. The channel measurements were started when the
vehicle was about 217 m in front of the bridge and stopped after it passed
the bridge by around 62 m (Fig. 5.3). The channel measurements were car-
ried out at a center frequency, fo, of 5.2 GHz and for a bandwidth, BW, of
120 MHz. The different MIMO channels are not measured in parallel, but
successively using a multiplexer at both the transmitter and receiver. Each
transmit antenna remains active for multiple test signal periods, while the re-
ceiver measures one test signal for one pair of transmit and receive antennas.
The multiplexer at the receiver then switches to the next receive antenna and
the measurement is repeated [97]. After going through all receive antennas,
the multiplexer at the transmitter switches to the next transmit antenna and
the whole measurement is then repeated. One snapshot in this case does
not define one channel measurement, but all MIMO channel measurements.

138



5.2 Measurement Setup

For more details about the channel sounder and channel sounder measure-
ments, please refer to [97, 98, 99].

Tx
Rx

B
ri

d
g
e

v

217m62.5m

5.7m

Figure 5.3: Schematic of measurement setup.

The transmitter and receiver array setups are shown in Fig. 5.4. The receive
elements were tilted down by 45o. The MIMO channel was measured for
three different setups at the receiver and two setups at the transmitter. The
setups correspond to different antenna element spacings within either the
transmitter or receiver arrays. The total span, W , and separation between
the antennas, d (also given as a function of the wavelength, λ = 0.0577 m), for
the three setups at the receiver are given in the following table.

Receiver Setup W [m] d [m]

Large (L) 17.5 2.5 ≈ 43λ
Medium (M) 6.16 0.88 ≈ 15λ

Small (S) 1.022 0.146 ≈ 2.5λ

At the transmitter, the distances d1 and d2 for the two setups are as follows:

Transmitter Setup d1 [m] d2 [m]

Large (L) 0.862 ≈ 15λ 0.944 ≈ 16λ
Small (S) 0.185 ≈ 3λ 0.185 ≈ 3λ

All combinations of the transmitter and receiver setups (six in total) were
used for channel measurement as well as for the capacity calculations. In
all what follows, we shall denote the setups by the receiver setup (L, M or S)
followed by the transmitter setup (L or S). For example, LS denotes the results
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Figure 5.4: Transmitter and receiver array setups.

of the MIMO channel measured using large receive and small transmit array
element spacings.

Figure 5.5 shows the impulse response of a typical measured channel (ab-
solute time versus delay) between one pair of transmit and receive antennas.
It is clear that the channel has a strong LOS component with the delay spread
increasing as the car approaches the bridge. Thus, according to Sec. 5.1.5,
large capacities can be expected. In the next section, we compare the ac-
tual measured capacities with the maximum achievable capacity expected in
such strong LOS channels. Further analysis will be given in Sec. 5.4
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Figure 5.5: Channel impulse response of a typical measured channel.
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5.3 Measured Channel Capacity

5.3 Measured Channel Capacity

The MIMO channels at each snapshot were treated as deterministic and the
capacity was calculated using Eqn. 5.6. We shall term this capacity instan-
taneous capacity. The calculations were done in the frequency domain for a
bandwidth of 20 MHz and N = 256, where N is the number of subcarriers,
and were plotted versus the distance between the transmitter and receiver
arrays. The capacity was calculated for the above given bandwidth and sub-
carriers to insure the channel is flat within each subchannel. The receiver
(bridge) is located at distance 0. Positive distances represent distances dur-
ing which the transmitter (vehicle) is approaching the bridge, while negative
ones represent those during which the vehicle is moving away from bridge.
For the capacity calculations, the eigenvalues of H HH at each snapshot were
normalized such that [100, 101]

min(NnR,NnT)
∑

i=1

λi = nTnRN. (5.14)

We have opted for this normalization instead of normalizing each hij(l) such
that

∑

l |hij(l)|2 = 1, since the normalization in Eqn 5.14 maintains the condi-
tion number of the measured MIMO channels while at the same time factor-
ing out the pathloss effects (i. e. all channels experience the same SNR). This
approach was also employed in [102].

The channel measurements were done using all four transmit and eight
receive antennas. Yet, for the capacity calculations either all channels or a
subset of them were used. That way we could examine the effect of the num-
ber of transmit or receive antennas as well as the element spacing within
either the transmitter or the receiver on the capacity. The antennas (see
Fig.5.4) corresponding to the different channels used for the capacity calcu-
lations are given in the following table. For example, in case of MIMO 2×2, the
channels corresponding to transmit antennas 1 and 3 and receive antennas
1 and 8 were used to calculate the capacity.

MIMO 2 × 2 2 × 4 2 × 8 4 × 4 4 × 8
Tx 1,3 1,3 1,3 1-4 1-4

Rx 1,8 1,3,5,7 1-8 1,3,5,7 1-8

Table 5.1: Antennas groups used for capacity calculations.

Figures 5.6 to 5.9 show how the capacity changes with distance to bridge
for the Large-Large (LL), Medium-Large (ML), Medium-Small (MS) and Small-
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Figure 5.6: Instantaneous capacity versus distance for Large-Large (LL)
setup, ρo = 20 dB.
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Figure 5.7: Instantaneous capacity versus distance for Medium-Large (ML)
setup, ρo = 20 dB.
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Figure 5.8: Instantaneous capacity versus distance for Medium-Small (MS)
setup, ρo = 20 dB.
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setup, ρo = 20 dB.
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Small (SS) array setups and different number of transmit and receive an-
tennas for SNR=20 dB. The dashed horizontal lines represent the maximum
capacity that can be achieved for the given nR × nT MIMO system (Eqn. 5.12).
The numbers on the lines are the difference between the mean capacity over
distance and the maximum one. As expected, the capacity increases as the
number of either transmit or receive antennas is increased. Also, as the
number of receive antennas increases, the gap between the measured ca-
pacity and the maximum one decreases. In addition, the larger the antenna
spacing, either at the transmitter or receiver, the higher the calculated ca-
pacity.

Furthermore, the calculated capacities are seen to fluctuate as the trans-
mitter approaches the receiver. This is especially true for small antenna
spacing within either the transmitter or receiver arrays. Reflections from the
street surface that lead to either destructive or constructive interference as
the vehicle moves may explain this behavior. To test this theory, the LOS
model was extended to a two-path model. The results of the simulations will
be shown in Sec. 5.4. The figures also show that the fluctuations seem to
be more obvious the smaller the antenna element spacing within either the
transmitter or receiver arrays. Channel correlations, which are higher the
closer the antennas are to each other, are most probably the reason why
the fluctuations are more obvious in for example the SS setup than in the
LL setup. In other words, the MIMO channels experience almost the same
fading at all antennas the closer the antennas are to each other. This is es-
pecially clear in the 2 × nR capacities, as we have chosen antennas that are
furthest from each other (see above table). In the LL setup, the 2 × nR MIMO
channel capacities experience no obvious fluctuations in contrast to the SS
setup. Antenna correlations will be discussed in more details in Sec. 5.5.

As mentioned in the previous section, the observed channels exhibit a
strong LOS and we thus wish to compare the calculated capacities with the
maximum achievable according to Sec. 5.1.5. The following table gives ap-
proximate values for Dorth according to Eqn. 5.13. The same Dorth is obtained
for nR = 4 and 8, since the distance between two receive antennas for nR = 4
is twice that for nR = 8.

nR LL ML MS SS

2 600 m 213 m 40 m 7 m

4, 8 346 m 122 m 23 m 4 m

Table 5.2: Dorth for the different setups.

According to the above table, the LL setup as well as the ML with nR = 2 lie
within the orthogonal range through out the whole measurement distance.
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For the other setups, the orthogonal range begins either halfway between
the transmitter and the receiver, or at distances very close to the receiver.
By looking at Figs. 5.6 and 5.7, it is obvious that only the capacities for the
2 × 8 channels of the LL and ML setups remain very close to the maximum.
Despite the strong LOS component, a very slight change in the capacity, as
the transmitter approached the receiver, is observed. The capacity, on the
average, does not seem to change much with decreasing distance between
the transmitter and receiver arrays. In addition, around the distances Dorth

given in the previous table no significant change in the channel capacity
was observed. The results seem to be in contrast to what was expected
according to Sec. 5.1.5. However, as mentioned previously, the plane wave
assumption is not satisfied for short distances between the transmitter and
receiver arrays as is the case in this measurement campaign.

Figures 5.10(a) and 5.10(b) show the mean capacity over distance for all
array spacing combinations (i. e. mean of the instantaneous capacity over
all snapshots). The solid lines represent the change in the mean capac-
ity with increasing array spacing at the receiver and large array spacing at
the transmitter (SL, ML, LL). The dashed one represents the change in the
mean capacity for the small array spacing at the transmitter (SS, MS, LS).
As expected, the larger the spacing between the antennas within either the
transmit or receive arrays, the higher the capacity. The MIMO 2 × nR capac-
ity does not always confirm to this expectation. This, as mentioned earlier,
is probably due to the fact that we have chosen antenna elements that are
furthest away from each other, and thus the effect of the antenna spacing
is not as strong especially for the 2 × 2 system. Also note that the large an-
tenna separation at the transmitter is almost equal to the medium one at the
receiver. The mean capacities for SL and MS setups are thus, as expected,
almost equal (Figs. 5.10(a) and 5.10(b)).

The above results lead to the conclusion that the capacity of the measured
MIMO channels is more susceptible to antenna element spacing than to the
distance between the transmitter and the receiver. This is however no sur-
prise, since antenna correlations are one of the detrimental factors for MIMO
performance.

5.4 Two Path Channel Model

In this section, we model the measured channel between one pair of anten-
nas elements using a two-path geometrical channel model with delay differ-
ence, ∆τ = τ2 − τ1. The delays are given by: τi = di/c, for i = 1, 2, where di

is the distance traveled by the signal over the ith path and c is the speed of
light. We have assumed no doppler shift, i. e. fd = 0. The first path is a line
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(b) Mean capacity for MIMO 4 × nR.

Figure 5.10: Mean capacity for all measured MIMO channels, ρo = 20 dB.

of sight (LOS) path. The second path is assumed to occur due to reflections
from the street surface (see Fig. 5.11). In the low pass domain, this two-path
channel model can be described as follows [6],

hT(τ) = a1e
−j2πfoτ1δT(τ − τ1) + a2e

−j2πfoτ2δT(τ − τ2)

=
2
∑

i=1

aie
−j2πfoτiδT(τ − τi),

(5.15)

where fo is the center frequency of the transmitted signal and a1 and a2 are
the amplitude factors for the LOS and reflection paths respectively. They are
normalized such that a2

1 + a2
2 = 1. The Dirac function, δT, is defined by [6]

δT(τ) = δ(τ) ∗ hLP(τ), where hLP(τ) is the impulse response of an ideal lowpass
filter. Note that Eqn. 5.15 can be easily generalized to any number of paths.
As mentioned in Section 5.2, fo = 5.2 GHz and BW = 120 MHz. These values
were also used for the simulations to calculate the delay difference, ∆τ . The
distances di are calculated from a simple geometrical model of the actual
measurement scenario (see Fig. 5.11). The obtained delays were then used
to calculate the delay difference as well as the channel transfer functions as
follows [6],

HT(f, t) = a1 + a2e
j2π(fdt−f∆τ), (5.16)

where the doppler frequency fd = 0. At large separations, the delay difference
∆τ is small and increases with decreasing distance between the transmitter
and receiver. Figure 5.12 shows a spectrogram of a typical measured chan-
nel (left) and that of the simulated channel (right) using Eqn. 5.16 for a1 = a2.
As mentioned earlier, the amplitude square of the simulated two path chan-
nel was normalized to a2

1 + a2
2 = 1. The measured channel shown was not
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Figure 5.12: Spectrogram of measured and simulated two-path channel (a1 =
a2)

normalized which explains the difference in the gray intensity of the shown
spectrograms. Apart from that, both spectrograms are quite comparable,
which backs the assumed street reflections. Both exhibit flat fading at large
separations between the transmitter and the receiver. Only at very short
separations (distances < 40m) do they start to exhibit frequency selective
behavior.
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5 MIMO Channel Capacity: Theory versus Measurement

5.5 Antenna Correlations

To calculate the spatial correlation, ρij, between any pair of channel impulse
responses for antenna elements i and j, the following equation was applied
[103, 104]

ρij =
E{hih

∗
j} − E{hi}E{h∗

j}
√

(E{|hi|2} − |E{hi}|2)(E{|hj|2} − |E{hj}|2)
, (5.17)

where the denominator normalized the random variables. In Chapter 2,
MIMO channel correlations were defined by the following equations,

k
T

=
1

nR

E{hHh}, (5.18)

k
R

=
1

nT

E{h hH}. (5.19)

The above equations basically correspond to Eqn. 5.17, where however in
Eqn. 5.18 the correlations are averaged over all receive antennas and in
Eqn. 5.19 they are averaged over all transmit antennas. They also assume
the channel to be zero mean and the average channel energy to be one. Thus,
before the correlations can be calculated, the channel should be normalized
and the mean subtracted. In all what follows, the antenna correlations were
calculated using the second tap, the one with the highest amplitude. The
channel mean was first calculated for 50 snapshots and subtracted, and
then the channel matrices were normalized. Finally, the correlations were
calculated by consecutively averaging over 200 snapshots.

Transmit Correlations

Figures 5.13 and 5.14 show the absolute values of the transmit correlations
for the LL, SL, LS and SS setups respectively versus the snapshot num-
ber. Larger snapshot values correspond to shorter distances between the
transmitter and receiver. The average of the correlations for antenna ele-
ments lying behind each other for an observer on the bridge (Tx1 and Tx4
as well as Tx2 and Tx3 in Figure 5.4(a)) are compared to the average of the
correlations for all other antenna element combinations. In addition to the
fact that the smaller the distance between the transmit antenna elements
the higher the correlations, three important observations can be made from
those figures. First, the antenna correlations are dependent of the geomet-
rical setup of the antennas. Correlations for antennas lying behind each
other are in general higher than the correlations for all other antenna ele-
ment combinations. This can be perceived best for the LL setup. Second,
the transmit correlations are affected by the antenna configuration at the re-
ceiver. By comparing the correlations for the LL and SL setups in Fig. 5.13,
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5.5 Antenna Correlations

we can see that although the setup at the transmitter (L) has not changed,
the correlations did change when the receive antenna setup was altered (from
L to S). In this case, higher correlations were calculated for the latter setup.
Third, the correlations are observed to decrease as the vehicle approaches the
bridge. This was to be expected, since the difference between the path delays,
τij, i = 1 · · ·nR, j = 1 · · ·nT, between the different antenna pairs, increases as
the transmitter nears the receiver. Comparable path delays correspond to
similar channel impulse responses (see Sec. 5.4).
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Figure 5.13: Transmit correlations for setups LL and SL.
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Figure 5.14: Transmit correlations for setups LS and SS.
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Figure 5.15: Receive correlations for ML Setup.
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Figure 5.16: Receive correlations for MS Setup.

Receive Correlations

Figures 5.15 and 5.16 show the absolute value of the correlations between
antenna elements at the receiver for the ML and MS setups. Shown are the
means of the correlations for antenna elements with same spacing, e. g. ρ4d

is the mean of ρ15, ρ26, ρ37 and ρ48. Similar to transmit correlations, the re-
ceive correlations are affected by the transmit array configuration. Thus, the
assumption of independence between the transmit and receive correlations
used in the Kronecker correlation model is not valid in this scenario. Similar
observations were also made in [105]. The receive correlations are also ob-
served to decrease as the transmitter approaches the receiver. In addition,
it can be seen from Figs. 5.15 and 5.16 and Table 5.3 that the correlations,
in general, decrease as the element spacing increases. However, contrary
to what is expected, the correlations for elements with spacing 7d are high
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5.6 Summary

compared to other correlation values. This behavior was also observed in
other setups. As we have seen in transmit correlation results, not only does
the element spacing affect the correlation values, but also the geometrical
setup of the elements has an effect. By taking a closer look at the correla-
tion between elements that are symmetric to the center of the antenna array
(e. g. ρ18, ρ27, ρ36 and ρ45), it was found that these correlations on average
are higher than the corresponding mean correlations ( ρ5d, ρ3d, ρ1d). Table 5.4
gives an overview of the absolute values of the correlations averaged over all
snapshots. Clearly, correlations between elements that are symmetric to the
array center are higher than those between elements at the same distance,
but not symmetric to the mean. Again, we see here that the geometrical setup
may very well be affecting the correlations.

ρ1d ρ2d ρ3d ρ4d

Setup Re + j Im Re + j Im Re + j Im Re + j Im

LL 0,163 + j 0,151 0,117 + j 0,103 0,114 + j 0,110 0,113 + j 0,127
LS 0,254 + j 0,232 0,194 + j 0,214 0,161 + j 0,170 0,130 + j 0,163
ML 0,234 + j 0,258 0,166 + j 0,233 0,172 + j 0,142 0,133 + j 0,125
MS 0,327 + j 0,338 0,274 + j 0,347 0,286 + j 0,273 0,233 + j 0,233
SL 0,400 + j 0,376 0,347 + j 0,368 0,278 + j 0,312 0,229 + j 0,289
SS 0,410 + j 0,375 0,379 + j 0,387 0,324 + j 0,340 0,267 + j 0,296

ρ5d ρ6d ρ7d

Setup Re + j Im Re + j Im Re + j Im

LL 0,124 + j 0,109 0,072 + j 0,098 0,085 + j 0,088
LS 0,137 + j 0,130 0,112 + j 0,095 0,121 + j 0,094
ML 0,135 + j 0,119 0,115 + j 0,091 0,177 + j 0,158
MS 0,250 + j 0,258 0,173 + j 0,193 0,271 + j 0,318
SL 0,312 + j 0,280 0,238 + j 0,231 0,416 + j 0,307
SS 0,324 + j 0,309 0,199 + j 0,233 0,412 + j 0,403

Table 5.3: Receive correlation coefficients: Mean ρRx for antenna elements
with same separation (1d – 7d) averaged over all snapshots.

5.6 Summary

We looked at the capacity of MIMO channels and gave a theoretical overview
for MIMO capacity in presence of no, partial and full channel knowledge. We
showed that the optimum solution for capacity maximization for the two lat-
ter cases is to transmit independent Gaussian inputs along the eigenvectors
of k

T
or the left singular vectors of h respectively. The variances of the Gaus-

sian inputs are given by the power allocation strategy. We then presented
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5 MIMO Channel Capacity: Theory versus Measurement

Setup |ρ45| / |ρ1d| |ρ36| / |ρ3d| |ρ27| / |ρ5d| |ρ18|
LL 0,243 / 0,248 0,192 / 0,175 0,232 / 0,185 0,143
LS 0,448 / 0,382 0,329 / 0,260 0,248 / 0,211 0,174
LU 0,347 / 0,325 0,234 / 0,217 0,197 / 0,157 0,105
ML 0,513 / 0,382 0,335 / 0,249 0,256 / 0,202 0,257
MS 0,675 / 0,518 0,612 / 0,436 0,519 / 0,400 0,462
MU 0,750 / 0,541 0,694 / 0,452 0,546 / 0,407 0,425
SL 0,794 / 0,600 0,682 / 0,468 0,651 / 0,462 0,546
SS 0,861 / 0,607 0,796 / 0,520 0,701 / 0,507 0,642
SU 0,847 / 0,628 0,789 / 0,569 0,707 / 0,558 0,570

Table 5.4: Receive correlations: Correlation values for antenna elements
symmetric to the array mean in contrast to those of elements at
the same distance, but not symmetric to the mean.

our measurement scenario and gave the channel capacities and correlations
of the measured MIMO channels. We found that the measured MIMO chan-
nels, as expected, possessed a strong LOS. In addition, the channels exhib-
ited a flat fading behavior throughout most of the measurement distance.
The capacity was found to fluctuate as the transmitter approached the re-
ceiver. Reflections from the street surface, that periodically destructively and
constructively interfered with the LOS path, are suspected to be the reason
behind this behavior. A two path channel model was used to examine this
speculation. Finally, we presented the transmit and receive correlations for
this scenario. We found that the correlations, are not only affected by the
distance between the elements within the array, but also by the geometrical
setup.
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Chapter6
Summary and Conclusion

In recent years, there has been a continuous demand for reliable wireless
transmission at even higher data rates. This trend is very unlikely to
change and, as a matter of fact, the demands are expected to increase.
Thus, switching to MIMO communication systems is inevitable. In this work,
several transmission techniques for MIMO-OFDM were studied. The aim was
to improve the system reliability depending on the amount of information
present at the transmitter and type of equalizer at the receiver mitigating
the interference. We have focused our attention on two cases: no and
partial channel state information at the transmitter. Both are of practical
importance, since full channel state information is hardly available at the
transmitter.

In Chapter 2, a detailed theoretical background for MIMO-OFDM as well as
an overview of four block equalizers employed in this work for equalization
was presented. Chapter 3 focused on the case of no channel state informa-
tion at the transmitter. Two criteria, that need to be satisfied by spreading
matrices if full diversity is to be achieved, were defined. A family of spreading
matrices, MC-CAFS, which were devised based on those criteria was then
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6 Summary and Conclusion

presented. In addition, we demonstrated how spreading and antenna corre-
lations affect the interference and the matched filter bound and in turn the
BER performance. The main conclusions of this chapter are as follows:

- Spreading improves the matched filter bound, but increases the inter-
ference. The higher the diversity offered by the spreading matrix, the
higher the interference.

- Spreading with full diversity, although increases the interference to its
maximum, leads to the lowest BER for a range of antenna correlations,
0 to some ρ value. The width of this range depends on the equalizer used
as well as on the Eb/No. The range gets wider as the Eb/No increases.

- The matched filter bound is dependent not only on the diversity, but
also on the number of correlated diversity branches.

- Antenna correlations increase the interference, which makes it harder
for the equalizer to mitigate the interference as correlations increase. In
addition, receive correlations worsen the matched filter bound.

- Rotated MC-CAFS can lead to lower BER. This is achieved at no extra
cost.

Chapter 4 concentrated on partial channel state information at the trans-
mitter, yet an overview of precoding in presence of full channel state informa-
tion at the transmitter was also presented. We considered precoding under
covariance information (transmit correlations knowledge). We showed that
transmitting in the direction of the transmit correlation eigenvectors at each
subcarrier was the optimum direction for average pairwise error probability
minimization. For the uncoded transmission, precoding was shown to im-
prove the BER for all equalizers except for the MMSE-BLE. Coded transmis-
sion with iterative equalization and decoding was also investigated in details.
The results can be summarized as follows:

- At high Eb/No and for MIMO-OFDM and MC-CDM precoding leads to
higher BER since the matched filter bound worsens.

- Precoding along with MC-CAFS and SCE always achieved the lowest
BER at high Eb/No.

- The BER is highly dependent on the interference in the channel and less
on the condition number. The RNN was shown to be especially sensitive
to interference and sometimes does not even converge.

- The code memory affects the BER performance. A code with low mem-
ory improves the BER at low Eb/No compared to a high memory code.
However, the reverse is true at high Eb/No.
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- EXIT charts are a very useful convergence analysis tool that can aid in
designing the communication system, e. g. deciding on the code memory
and equalizer used.

Thus, with a powerful equalizer such as the SCE and a full diversity spread-
ing matrix as MC-CAFS, precoding can significantly reduce the BER.

Finally, in Chapter 5 a theoretical overview for MIMO channel capacity was
given to demonstrate the potential of MIMO transmission. The capacity and
the antenna correlations for a measured outdoor scenario with a strong line
of sight were calculated and shown in this chapter. The measured capaci-
ties were found to increase by increasing the number of transmit or receive
antennas, as well as by increasing the antenna element spacing within the
transmitter or receiver arrays which agrees with the theoretical predictions.
Nonetheless, in contrast to the theories, we found that high antenna cor-
relations are present even for large antenna element spacings. In addition,
contrary to the theoretical Kronecker correlation model, the transmit corre-
lations were found to depend on the receiver array configuration and vice
versa.
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AppendixA
Matrix Basics

A.1 Matrix Basics

A.1.1 Inverse, Transpose and Hermitian

• (A B)−1 = B−1A−1

• (A B C · · · )−1 = · · ·C−1B−1A−1

• (AT )−1 = (A−1)T

• (A + B)T = AT + BT

• (A B)T = BT AT

• (A B C · · · )T = · · ·CT BT AT

• (AH)−1 = (A−1)H

• (A + B)H = AH + BH
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A Matrix Basics

• (AB C · · · )H = · · ·CHBHAH

A.1.2 Trace, Determinant and Frobenious Norm

• Tr (A) =
∑

i aii, where aii is the ith diagonal element of A

• Tr (A) =
∑

i λi λi = eig(A)

• Tr (A) = Tr (AT )

• Tr (AB) = Tr (B A)

• Tr (A + B) = Tr (B + A)

• Tr (AB C) = Tr (B C A) = Tr (C AB)

• det (AB) = det (A) det (B)

• det (A−1) = 1/ det (A)

• det (A) = Πiλi λi = eig(A)

• ||A||2F =
∑n

i=1

∑n
j=1 |aij|2

• For an n × n positive definite matrix A

det (A) = Πiλi ≤ Πn
i=1aii.

Tr (A) =
∑n

i=1 λi.

||A)||2F = Tr (AHA) =
∑n

i=1 λ2
i λi = eig(A) and λ2

i = eig(AHA)
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A.2 Mathematical Definitions

A.2 Mathematical Definitions

A.2.1 Kronecker Product

Definition

A ⊗ B =







a11B · · · a1nB
...

. . .

am1B · · · amnB






(A.1)

Properties of Kronecker product

• (A ⊗ B)T = AT ⊗ BT

• (A ⊗ B)−1 = A−1 ⊗ B−1

• (A ⊗ B)H = AH ⊗ BH

• (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

• (A + B) ⊗ C = A ⊗ C + B ⊗ C

• A ⊗ (B + C) = A ⊗ B + A ⊗ C

• (A ⊗ B)(C ⊗ D) = (A ⊗ C)(B ⊗ D)

• rank(A ⊗ B) = rank(A) rank(B)

• For any m × m complex matrix A with eigenvalues λi, i = 1 · · ·m and an
n × n complex matrix B with eigenvalues µj, j = 1 · · ·n, then

– the eigenvalues of A ⊗ B are λiµj, i = 1 · · ·m, j = 1 · · ·n
– det(A ⊗ B) = det(A)rank(B) det(B)rank(A)

– Tr(A ⊗ B) = Tr(A) Tr(B)

A.2.2 Hadamard Product

Definition, for any two m × n matrices A and B

A ◦ B =







a11b11 · · · a1nb1n
...

. . .

am1bm1 · · · amnbmn






(A.2)
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Properties of Hadamard product

• A ◦ B = B ◦ A

• A ◦ (B + C) = A ◦ B + A ◦ C

• A ◦ (λB) = λ(A ◦ B)

• Theorem For any two m × n matrices A and B
rank(A ◦ B) ≤ rank(A) rank(B)

• Schur Product Theorem
If the square matrices A and B are positive semidefinite, then A ◦ B is
also positive semidefinite

• If the square matrices A and B are positive semidefinite, then

– det(A ◦ B) ≤ det(A) det(B)

– λmin(A ◦ B) ≥ λmin(A)λmin(B)

– λmax(A ◦ B) ≤ λmax(A)λmax(B)
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AppendixB
Mathematical Notations, Symbols
and List of Abbreviations

Mathematical Notation

(·)∗ Conjugate
(·)H Conjugate transpose of a matrix (·) (hermitian)
det(·) Determinate of a matrix (·)
BlkDiag([A · · ·Z]) Forms a block diagonal matrix from a set of matrices

diag(·) Diagonal of a matrix (·)
Diag(·) Forms a diagonal matrix from a vector
E{x} Expected value a random variable x
|| · ||2F Frobenious norm of a matrix (·)
ℑ{·} Imaginary part of a complex number
⊗ Kronecker product
log2 Log to the base of 2
max(·) maximum of a set of elements
min(·) minimum of a set of elements
rank(·) Rank of a matrix (·)
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ℜ{·} Real part of a complex number
Tr Trace of a matrix (·)
(·)T Transpose of a matrix (·)
var(x) Variance of a random variable x
vec(·) Stacks the columns of a matrix (·) to form a vector

Symbols

α Matched filter bound measure
B MC-CAFS: number of spreading frequencies per antenna
β Measure of interference
β1/2 Measure of interference
CR Channel Capacity
χ Condition number
e
T

Eigenvalues of transmit correlation matrix

fd Doppler frequency
fg Cut-off frequency of low pass filter
fo Center frequency
F

o
Fouier matrix

F Cholesky decompostion of channel correlation matrix

Φ(·) Correlation measure of a correlaion matrix (·)
g(t) Receive signal
h SISO channel vector in time domain
h(l) MIMO channel matrix in time domain at lth tap

H Channel matrix in frequency domain

H
eff

Effective Channel matrix in frequency domain

I(X,Y ) Mutual Information between random variables X and Y
I

N
Identiy matrix of size N × N

K Rician factor
k

T
Transmit correlation matrix

k
R

Receive correlation matrix

k Transmit or Receive correlation matrix

L Number of channel taps
Lcp Length of cyclix prefix
L(q) Log-likelihood Ratio of bit q
λ Wavelength
λi ith eigenvalue of a matrix
λmax Maximum eigenvalue of a matrix
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λmin Minimum eigenvalue of a matrix
N Number of OFDM subcarriers
n Additive white Gaussian noise vector
nc Additive colored Gaussian noise vector
nR Number of receive antennas
nT Number of transmit antennas
Ψ(·) Diversity measure of a correlaion matrix (·)
p(x) Probability density function of random variable x
P Total transmit power
P (x=a) Probability that x = a
Q Covariance matrix of a transmit vector

R Channel correlation matrix

R
K,n

(r) K-Symmetric channel

R
KZ,n

(r) K-Z-Symmetric channel

ρ Correlation coefficient
ρTx Transmit correlation coefficient
ρRx Receive correlation coefficient
ρl Correlation coefficient of lth tap
ρo Signal to noise ratio (SNR)
s(t) Transmit signal
σ2

l Variance of the lth channel tap
σ2

e Variance of the estimation error
Ts Symbol duration
U Spreading matrix

v
T

Eigenvectors of transmit correlation matrix

x Transmit symbol vector
x̃o Received symbol vector
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List of Abbreviations

AWGN: Additive white Gaussion noise
BW Bandwidth
BWc Coherence Bandwidth
BER: Bit error rate
CIR: Channel impulse response
CMF: Channel matched filter
CP: Cyclic prefix
CSI: Channel state information
CSIT: Channel state information at the transmitter
DFT: Discrete Fourier transform
EXIT: Extrinsic information transfer chart
IBI: Inter block interference
IDFT: Inverse discrete Fourier transform
ISCI: Inter subcarrier interference
ISI: Inter symbol interference
LLR: Log-likelihood Ratio
LOS: Line of sight
MC-CAFS: Multi-carrier cyclic antenna frequency spreading
MC-CDM: Multi-carrier code division multiplexing
MFB: Matched filter bound
MIMO: Multiple Input Multiple Output
MMSE-BDFE: Minimum mean square error block decision feedback equalizer
MMSE-BLE: Minimum mean square error block linear equalizer
MRC: Maximum Ratio Combining
OFDM: Orthogonal frequency division multiplexing
pdf: Probability density function
PDP: Power delay profile
PEP: Pairwise error probability
PSK: Phase shift keying
RNN: Recurrent neural networks
SCE: Soft Cholesky equalizer
SISO: Single Input Single Output
SNR: Signal to noise ratio
STBC: Space Time Block Code
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[10] K.-E. Krüger, Transformationen, 1st ed. Vieweg & Sohn, 2002.

165



Bibliography

[11] K.-D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung: Filterung

und Spektralanalyse mit Matlab-Übungnen, 5th ed. Teubner, 2002.
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