
A Coprocessor for Fast Searching in Large

Databases: Associative Computing Engine

DISSERTATION

submitted in partial fulfillment of

the requirements for the degree of

Doktor-Ingenieur (Dr.-Ing.)

to the Faculty of Engineering Science

and Informatics of the University of Ulm

by

Christophe Layer

from Dijon

First Examiner: Prof. Dr.-Ing. H.-J. Pfleiderer

Second Examiner: Prof. Dr.-Ing. T. G. Noll

Acting Dean: Prof. Dr. rer. nat. H. Partsch

Examination Date: June 12, 2007

c© Copyright 2002-2007
by Christophe Layer

— All Rights Reserved —

mailto:clayer@ieee.org

Abstract

As a matter of fact, information retrieval has changed considerably in recent years with

the expansion of the Internet and the advent of always more modern and inexpensive

mass storage devices. Due to the enormous increase in stored digital contents, multi-

media devices must provide effective and intelligent search functionalities. However,

in order to retrieve a few relevant kilobytes from a large digital store, one moves up

to hundreds of gigabytes of data between memory and processor over a bandwidth-

restricted bus. The only long-term solution is to delegate this task to the storage medium

itself.

For that purpose, this thesis describes the development and prototyping of an as-

sociative search coprocessor called ACE: an Associative Computing Engine dedicated

to the retrieval of digital information by means of approximate matching procedures.

In this work, the two most important features are the overall scalability of the design

allowing the support of different bit widths and module depths along the data path,

as well as the obtainment of the minimum hardware area while ensuring the maximum

throughput of the global architecture.

After simulation, the correctness of the results delivered by the FPGA prototyping

board could be verified using a text encoding scheme based on hashing theory. The

performance of the hardware platform has been compared with the same application

running in software on a general purpose processor. Accordingly, a speed-up of three to

four orders of magnitude is achieved for the FPGA system versus many recent personal

computers with different internal hardware configurations.

Acknowledgments

First and foremost, I express my gratitude to Prof. H.-J. Pfleiderer for his constant

support, motivation and encouragements. Thank you for welcoming me in the Institute

of Microelectronics at the University of Ulm and giving me the opportunity to pursue

my research interests.

Furthermore, I am very grateful to Prof. T. G. Noll of the RWTH Aachen for his

interest in my work and his agreement to report about it. Thank you for the extremely

helpful feedback, for the suggestions about the completion of the manuscript and for

advising on this dissertation.

I would also like to thank Prof. P. Ruján for his continuous encouragements and

for pursuing my work over further international projects. Dr. G. Lapir is gratefully

acknowledged for the discussions at an earlier stage of this project and for providing

information and materials about the associative search method.

I would like to thank my colleagues from the Institute of Microelectronics, especially

M. Bschorr, C. Günter, O. Pfänder, J. Rauscher, W. Schlecker, K. Schmidt, R. Schreier

and E. Schubert for all the constructive discussions and comments, as well as for the

very comfortable atmosphere at work. Nonetheless, I am indebted to G. Kirilov for his

expertise and contribution to the synthesis of the memory controller.

Finally, special thanks go to Mrs. Höfer for her kindness, help and support.

Ulm, October 18, 2007 Christophe Layer

Table of Contents

Chapter I ⋄ Introduction . 1
1 Information Retrieval Systems . 1
2 The Problem with Storage Devices . 3

2.1 Running into the Memory Wall . 3
2.2 Need for Hardware Support . 5

3 Organization of the Thesis . 6

Chapter II ⋄ Background . 9
1 Designing Digital Systems . 9

1.1 Integrated Circuits Implementation Strategies . 10
1.2 Microprocessor Design Techniques . 14
1.3 Field Programmable Gate Arrays . 16
1.4 Semiconductor Memory Devices . 18

2 Pattern Matching in Strings . 20
2.1 Classical Algorithms . 20
2.2 Flexible Pattern Matching . 21
2.3 Dynamic Programming . 22
2.4 Hash Functions and Text Signatures . 23

3 Sorting Techniques and Algorithms . 25
3.1 Sequential Sorting . 25
3.2 Bit-Level Structures . 28
3.3 Sorting Networks . 30
3.4 Summarization . 31

Chapter III ⋄ Related Work . 33
1 State of the Art in Software . 33

1.1 Web Search Engines . 33
1.2 Software Functionalities for Computers . 34

2 Hardware Accelerators . 35
2.1 Associative and Parallel Processors Systems . 35
2.2 Merging Logic and Memory . 36
2.3 Special Purpose Coprocessors . 38
2.4 Summarization . 39

3 Associative Access Method . 40
3.1 Building the Signature File . 40
3.2 The Retrieval Process . 43

Chapter IV ⋄ System Level Analysis . 49
1 Motivation and Expectations . 49

1.1 Problem Statement . 49
1.2 Proposed Research . 50

2 Profiling and Analysis . 52
2.1 Exploration of the Software Model . 53

VIII Table of Contents

2.2 Sequential Algorithm Analysis . 54
3 Hardware Accelerator Design . 58

3.1 Parallelization of the Algorithm . 58
3.2 Modular System Architecture . 62

Chapter V ⋄ Architectural Hardware Design 65
1 System Management and Peripherals . 65

1.1 Operation Scheduling . 65
1.2 Designing the Memory Interface . 66

2 Building the Computational Data Path . 71
2.1 Penalty Calculating Unit . 71
2.2 Score Calculating Unit . 74

3 Hardware Sorting and Merging . 80
3.1 Parallel Sorting with Bitonic Networks . 80
3.2 Optimization Methodologies . 83
3.3 Hardware Merging Solutions . 85

Chapter VI ⋄ Results and Evaluation . 91
1 Hardware Implementation . 91

1.1 Adaptation to the Development Platform . 91
1.2 Synchronizing the Processing Units . 94
1.3 Synthesis Results . 98

2 Evaluation of the Hardware Model . 100
2.1 Benchmarking Environment . 100
2.2 Scaling the Design . 103
2.3 Performance Appraisal . 104

Chapter VII ⋄ Conclusion and Outlook . 109
1 On the Associative Computing Engine . 109
2 Future Work . 111

Appendix A ⋄ On the Realization of Logarithms 113
1 Error Analysis . 113
2 Error Correction . 116
3 Exponential Function . 118

Appendix B ⋄ High Throughput Memory Controller 119
1 Finite State Machine . 119
2 SDRAM Timings . 120

List of Abbreviations . 123

Bibliography and References . 125

List of Figures

1.1 The process of retrieving information . 2
1.2 Storage system trends . 4
1.3 Hardware performance trends and memory wall . 4
1.4 Hierarchical organization of the thesis . 6

2.1 Flexibility, performance and power consumption trade-off 10
2.2 Increasing the throughput using pipelining . 11
2.3 Accumulator design using the cut-set technique . 12
2.4 Retiming an architecture with feedback . 13
2.5 Representation of an island-style FPGA . 16
2.6 FPGA density and performance trends vs. CPU . 17
2.7 Semiconductor memory devices classification . 19
2.8 Example of pattern matching with the BM algorithm . 21
2.9 Deterministic automaton for pattern matching . 22
2.10 Edit distance examples using dynamic programming . 23
2.11 Progression of the data in the insertion-sort algorithm 26
2.12 Progression of the data in the selection-sort algorithm 27
2.13 Progression of the data in the bubble-sort algorithm . 28
2.14 Progression of the data in the radix-sort algorithm . 29
2.15 Elementary sorting networks in a Knuth diagram . 30
2.16 Progression of the data in the bitonic sorting algorithm 31
2.17 Bitonic merging network in a Knuth diagram . 31

3.1 Different associative processor designs . 36
3.2 Trigram based signature of a character string . 41
3.3 Textual filtering and compilation of the BAM . 42
3.4 A two phases search algorithm . 44
3.5 Possible distributions of the results after the filtering phase 44
3.6 Coding a long query string using trigrams . 46

4.1 Prospective hardware accelerator system . 52
4.2 Software profiling of the entire retrieval algorithm . 54
4.3 Flow chart of the AAF algorithm . 56
4.4 Profiling measurements against query length . 57
4.5 Profiling measurements against BAM size . 57
4.6 Temporal versus spatial locality . 59
4.7 Parallelization of the AAF algorithm . 61
4.8 Modular system architecture . 63

5.1 Vertical accesses to the BAM . 67
5.2 Transistor level representation of a DRAM and an SRAM cell 68
5.3 BAM mapping onto standard SDRAM memory devices 70
5.4 Two possibilities to handle the burst accesses . 72
5.5 Bit-level signal processing in the PCU . 73

X List of Figures

5.6 Calculation of the penalty using a state-machine. 73
5.7 RTL design of the Penalty Calculating Unit . 74
5.8 Linear approximation of the binary logarithm . 76
5.9 Realization of the NLF using a Barrel shifter . 78
5.10 Recurrent realization of the NLF module . 78
5.11 RTL design of the Score Calculating Unit . 79
5.12 Batcher’s bitonic sorting network in a Knuth diagram 80
5.13 Stone’s regular structure pattern of the bitonic sorting network 81
5.14 Comparator set for sorting networks . 82
5.15 Controlled switch comparators . 82
5.16 A 16 keys recurrent bitonic sorting network . 83
5.17 Retiming switch comparator modules . 84
5.18 Recombination of recurrent bitonic sorters . 85
5.19 Merging proposal based on bitonic sort algorithm . 86
5.20 Merging proposal based on insertion sort algorithm . 87
5.21 Recurrent sorting network based on the odd-even transposition 88
5.22 Sorting structure based on the parallel bubble sort algorithm 89
5.23 Extremities of the bubble sorting structure . 89

6.1 Hardware prototyping module with FPGA . 92
6.2 System on chip architecture of the ACE . 93
6.3 Dimensioning the data path of the ACE . 94
6.4 Timing diagrams for PCU to RSU1 . 96
6.5 Timing diagrams for SCU to RMU1 . 97
6.6 Two dimensional Fourier transform of the BAM . 102
6.7 Spatial frequency analysis: expectations and unwished results 102
6.8 Using a three level sorting unit in the RSU . 103
6.9 Performance measurements of the AAF with different architectures 106

A.1 NLF for different input widths . 114
A.2 Absolute and relative error in the NLF . 115
A.3 Correction of the NLF using xor gates . 116
A.4 Correction of the NLF using a LUT . 117
A.5 Comparison of the absolute error in the NLF . 117
A.6 Reverse NLF function with an 8-bit input . 118

B.1 State machine of the memory controller . 120
B.2 Timings diagram for the memory controller . 121

List of Tables

4.1 Function composition of the software model . 56
4.2 Interface description in the modular design . 64

5.1 Limited set of instructions of the ACE . 66

6.1 Dimensioning the Result Sorting Unit for N = 32 . 98
6.2 Bit widths used in the design . 99
6.3 Hardware resources listing on FPGA . 100
6.4 Dimensioning the Result Sorting Unit for N = 512 . 104
6.5 Parameter listing of the software environments . 105
6.6 Performance results of the test platforms . 106

B.1 Typical timing characteristics for standard SDRAM devices 121
B.2 Description of the most relevant signal pins in standard devices 122

Chapter I

Introduction

W ITHIN the scope of this work, we aim to demonstrate how a complex problem,

e.g., retrieving information rapidly, can be efficiently solved using various well-

established techniques as well as modern design methodologies. Our research has focused

on the improvement of different algorithms and new computing methods that yielded

highly significant results, as it will be presented in this document. But first of all, this

chapter is dedicated to a global introduction to the concept of information retrieval,

targeting the implementation of a generic text database system. Motivated by the

noticeably long searching time needed by software applications even on the most recent

computers, we foresee the necessity to move to hardware implementation and expose

the envisioned development. Hence the detailed description of the organization of this

thesis is depicted in the last section, where we give an overview of the completed research

work.

1 Information Retrieval Systems

Fundamentally, Information Retrieval (IR) deals with the storage, the organization of

and the access to some items, providing users an easy way to the information they are

interested in. As a part of an IR system, data retrieval consists mainly in determining

which documents of a collection contain the keywords of a query which is in this context

a quite complex process based on a trade-off between speed and accuracy. As the

algorithmic complexity is mastered by always more intelligent software programs, speed

is basically the problem we want to address at the electronic hardware level in this thesis:

How can we accelerate the process of retrieving information in a huge database system?

According to Baeza-Yates and Ribeiro-Neto [Bae99], three fundamental changes have

occurred due to the advances in modern computer technology and the boom of the In-

ternet. First it became a lot cheaper to have access to various sources of information,

2 Chapter I. Introduction

Manager

Ranking

Indexer

Interface

Text Operations

Database

User

Query
Operations

Searching

the thesis
Focus of

file

logical

text info

retrieved

view
logical

view

query

textuser
request

documents

inverted

feedback
user

documents
ranked Text

Database

Index

Fig. 1.1. A generic representation of the process of retrieving information from [Bae99] interpreted

in terms of functional components. Our work in the current thesis focuses on the highlighted zone

including the search within an index and the ranking of the retrieved documents.

reaching a wider audience than ever. Second, the advances in all kinds of digital commu-

nication provided greater access to various networks, implying that information sources

are available and rapidly accessed even if distantly located. Third, the freedom to post

and publish any kind of information to be shared has greatly contributed to the popu-

larity of the World Wide Web (WWW).

Fig. 1.1 shows a generic architecture of an information retrieval system in terms of

component subprocesses from [Bae99]. The system is divided into two parts sharing the

same text operations, i.e., the user interface for the queries and the system part that

provides text resources to be indexed for the search. The text operations transform the

original documents and generate a logical view of them by specifying the structure of

the elements that can be retrieved. Once the logical view of the documents has been

performed, an index is built in order to allow fast searching over the large volume of

data. In most of the cases, the index owns the structure of an inverted file for which

each entry gives a word and a list of texts, possibly with locations within the text where

the word occurs. Once the document database has been indexed, the user initiates the

retrieval process by specifying a query which is parsed and transformed by the same

operations applied to the text from the database. The retrieved documents obtained

after processing of the query during the searching phase have to be sorted according to

their order of relevance in the ranking phase before being sent to the user.

Hence, the explanatory model of an IR system must be considered as an introduction

to the real problem of using hardware resources efficiently in order to accelerate the

search process. There exist many algorithms which can be used for textual search.

2. The Problem with Storage Devices 3

However, we intend hereby to analyze promising computing strategies which can handle

long queries of misspelled words. Even the biggest search engines have a limited input

string length in their inquiry process, e.g., Google with a maximum of ten words per

query in 2005. Since query requests are inherently vague, retrieved documents might not

be the expected answer and must be ranked according to their relevance to the query.

As depicted in Fig. 1.1, sorting constitutes one of the three main areas related to IR

systems that we address in this work, as well as searching and the use of a huge index

file stored in dedicated memory devices. These domains are glued together through the

realization of a efficient hardware platform for the acceleration of the whole retrieval

process.

2 The Problem with Storage Devices

This section exposes briefly the problem of today’s computerized systems to face an

always more active user community greedy for information. Hence we aim to justify the

need of a hardware support through scientific historical observations reported in various

publications and through the evolution of the hereby concerned technologies.

2.1 Running into the Memory Wall

Undoubtedly, Moore’s law keeps stressing processor technologies [Moo03, Olu05]. As we

will see in Chapter II, the von Neumann paradigm which consists in improving fairly

straightforward single processor architecture by increasing the clock frequency, already

shifts towards Single Instruction Multiple Data (SIMD) or directly parallel processing

technologies. However, while microprocessors follow an explosive growth in performance,

DRAM-based memory systems fall behind creating the so-called memory wall [Bur96,

McK04, Wul95]. In the beginning of the 90s, it has been estimated that the Central

Processing Unit (CPU) speed of the fastest available microprocessors is increasing at

approximately eighty percent per year [Bas91], while the speed of memory devices is

growing at only about seven percent per year [Hen90]. Regarding our target application,

it becomes clear that the most important hardware components dedicated to the storage

of information within computer systems are the main memory and the Hard Disk Drive

(HDD).

As seen in Fig. 1.2, the physical areal densities for both semiconductor memories

and magnetic discs are exponentially growing while their price is continuously falling.

According to Grochowski et.al. [Gro03], a significant evolution in disk drive form factor

has occured over the past twenty years, as reported in Fig. 1.3-a, leading to an always

smaller size with nonetheless higher capacity. Lesk’s report [Les97] made estimates

of disk sales and predicted necessary media sizes for storing multimedia information.

4 Chapter I. Introduction

106

105

104

103

102

101

1

.1
20052000199519901985198019751970

a
–

A
re

al
D

en
si

ty
(M

b
/

in
2
)

Production Year

Hard Disk Drives

Semiconductor

Memory (RAM)

103

102

10

1

.1

10−2

10−3

10−4

200520001995199019851980
b

–
P

ri
ce

(U
S
$

/
M

B
)

Production Year

Hard Disk Drives

SDRAM

Fig. 1.2. Trends in a) areal density and b) price for storage systems including magnetic hard disk

drives and semiconductor memory devices from [Bur96, Gro03].

103

102

10

1

.1
200520032001199919971995199319911989

a
–

H
D

D
C

ap
ac

it
y
/A

ct
u
at

or
(G

B
)

Availability Year

3.5 inch

2.5 inch
1.0 inch

104

103

102

10

1
20102005200019951990198519801975

b
–

C
lo

ck
S
p
ee

d
(M

H
z)

Availability Year

Processor (CPU)

Semiconductor

Memory (SDRAM)

Fig. 1.3. Evolution of a) the capacity of hard disk drives according to [Gro03] and b) of the clock

frequency for semiconductor memory devices from [Ito01, Itr06, Rab03] and processors from [Bur96,

Rab03] creates the memory wall [McK04, Wul95].

According to Lyman et.al. [Lym03], the world was producing more than one exabyte

(1EB= 1018B) of unique information per year in 2000 and five in 2002. Furthermore in

2004, over fifty million web pages were new or changed everyday [Cas04].

Finally, Fig. 1.3-b plots the integration density of both processors and memory as

a function of time. The memory wall [Bur96, McK04, Wul95], i.e., the growing gap

between the curves on Fig. 1.3-b, is being an always more important problem in digital

systems, as RAMs are not able to feed CPUs with data as fast as those can process

2. The Problem with Storage Devices 5

them. Due to increases in storage capacities, soon it will be technologically possible

for an average person to access virtually all information ever recorded. However, even

though we are able to store millions of electronic documents on magnetic media, the

problem of retrieving information is more linked to active devices such as memory and

processors than to HDDs.

2.2 Need for Hardware Support

The development of larger and larger Random Access Memories (RAMs) during the last

fifty years has made the problem of searching a very interesting and well investigated

realm. On the one hand, large databases tend to make the retrieval process more

complex and more intricate, since having more data available means a bigger probability

of matching and thus a longer list of possible responses to a stated query. On the other

hand, large databases stimulate people to ask arbitrarily any complicated question about

anything. Composing a very precise enquiry may regroup words with an explicit order

of appearance and eventually exclude some other terms, as we know from our use of

Internet search engines. More importantly, people might also be incited to perform big

block searches, like entire paragraphs of text, with the ability to locate items when only

a part of the key information is specified, hoping that the matching will be significant

enough for the most relevant addresses to be returned. As we found out yet that there

is no really efficient generic solution to this problem, we dedicate this thesis to the

development of a hardware search engine for large databases.

Intelligent data manipulation, storage, retrieval, and interpretation are some of the

most ubiquitous functionalities any IT device must provide. Regarding the problem

of searching information, from a logical point of view, it is very inefficient to move

in and out several hundreds of gigabytes (GBs) between memory and processor over

a restricted size bus in order to retrieve the few relevant kilobytes (KBs). From a

financial point of view, hardware manufacturers have to constantly add features to their

devices in order to stay ahead of the competition. Besides data integrity and corruption

control, a very relevant example of in-device tools a disk drive could be a low-level search

functionality [Hug02]. However in today’s systems, storage intelligence still resides on

the computer side of the drive interface. In our opinion, the solution is to delegate this

task where it belongs, i.e., to the storage medium itself or as close to it as possible.

While this is practicable only by redesigning the memory chips or the HDD controllers

themselves, there are simple ways of short-cutting the path between storage and CPU

by using dedicated search coprocessors.

6 Chapter I. Introduction

3 Organization of the Thesis

The organization of this thesis is essentially oriented towards the development of a

hardware search engine based on an associative computing paradigm for textual queries.

Figure 1.4 shows the relationship between all the subjects treated in this document,

starting from the global concept of information retrieval down to the finalization of

our Associative Computing Engine (ACE) on a hardware platform that provides a high

speed-up potential for textual query applications.

Chapter 1

Introduction

Background

Chapter 2

Related Work

System Analysis

Implementation

Benchmarking

Conclusion

Chapter 3

Chapter 6

Chapter 4

Chapter 5

Chapter 7

Accelerating Information Retrieval Systems

Associative Processors

Searching and Sorting VLSI Systems

Parallelization Methods

Prototyping Platform FPGA Synthesis

Associative Computing Engine

Memory Interfaces Internal Architecture Sorting Networks

Suitable Algorithms Search Engines

System on Chip Design

Fig. 1.4. Hierarchical organization of the thesis: as the chapters follow the different steps in the

development of the ACE, a logical flow relates the main ideas treated in this dissertation.

For that matter, after an introduction to IR systems in general and the necessity

of making searches faster as given in chapter one, the second chapter sets the basis of

this work by presenting state-of-the-art techniques for searching and sorting, as well as

an overview on Very Large Scale Integration (VLSI) system design. These background

principles provide the fundamental ideas from which the mainstream of the thesis is

derived. Past and current research performed in related fields is reviewed in the third

chapter. Not only does it confirm the importance of our contribution, but it also raises

the expectations regarding the final result. A method relying on associative memory

accesses [Lap92] is also presented in more detail, since we think it is the one with the

biggest potential for being efficiently implemented as our database-searching accelerator.

With an emphasis on hardware design, chapter four is dedicated to the profiling of

the selected algorithm and to the application of different methods which make the im-

plementation extremely promising, using primarily parallelization techniques and large

3. Organization of the Thesis 7

bus widths. The profiling of the software model based on the method described in the

previous chapter permits an ideal partitioning of the operations between hardware and

software and guides us through the parallelization of the algorithm. Moreover, a study

on System on Chip (SoC) designs and associative processors must allow us to develop

the best suited architecture for the porting of the previously chosen algorithm onto

hardware. However, in the development of such a complex system, it is ineluctable to

consider every single interface and data transfer at the lowest level of abstraction par-

ticularly for the memory subsystem. The choice of the storage media for data retention

directly influences the overall performance of our database system. In chapter five, the

selection of a given memory device class and the high data throughput necessary for

obtaining the requested short searching durations brings hard area and time constraints

into the system, especially in the second half which deals with the arrangement of the

best matching candidates. We show how this problem can be solved in hardware using

different design techniques and a well-advised mix of sorting algorithms, as introduced

in chapter two.

Chapter six is porting the complete design of the ACE onto an FPGA-based pro-

totyping platform in order to benchmark the system. A proof-of-work as well as a

performance analysis is obtained through the comparison with software models running

on different computers and other simulated hardware platforms. Finally, an overview of

the achieved work is given in chapter seven, concluding on the performance of the ACE.

Future work and further potential improvement directions for the developed system are

proposed afterwards considering more up-to-date technological advancements.

Chapter II

Background

HAVING provided a rather large contextual description of the environment in which

this thesis has been realized, we dedicate this second chapter to an overview of

the state of the art in Very Large Scale Integration (VLSI) design as well as sorting

and searching methods. The presented algorithms constitute the background knowledge

which illustrates the theories related to information retrieval and allows a better appre-

ciation of the work in progress. For the concrete realization of an Information Retrieval

(IR) hardware accelerator, it is necessary to start with digital electronic system design.

Secondly, the best known searching algorithms shall be reviewed in order to depict clas-

sical techniques used in IR based on text data. Finally, as sorting and searching are

relatively close to each other, various algorithms shall be presented in order to provide

a large overview of the different techniques that could be used for the realization of the

final system.

1 Designing Digital Systems

Hardware accelerators are separate units close to Central Processing Units (CPUs) that

perform some functions faster than a software program running on general purpose

processors. They are usually made out of Integrated Circuits (ICs) communicating

together over dedicated interfaces. The design of an acceleration platform requires not

only a good knowledge about all the different kinds of chips that can be used to build a

complete system, but also about how they can and must be combined in order to achieve

top performance with a maximum efficiency.

10 Chapter II. Background

1.1 Integrated Circuits Implementation Strategies

According to the literature [DeM94, Kun88, Rab03, Smi97, Wes93, Wol02], digital ICs

are typically classified into three main categories. These include programmable stan-

dard architectures such as common microprocessors, programmable logic architectures

such as Complex Programmable Logic Devices (CPLDs) or Field Programmable Gate

Arrays (FPGAs) and application specific logic architectures highly optimized in terms

of functionality, performance, power and cost.

1.1.1 The Choice of an Architecture

Fig. 2.1 represents the computational efficiency of different classified groups of ICs versus

their flexibility, i.e., the inverse of the time required to implement a design, and power

dissipation, according to [Syd03]. On the one side of the IC spectrum, programmable

standard architectures emphasize General Purpose Processors (GPPs) as well as Digital

Signal Processors (DSPs) or super-scalar processors. These are highly flexible generic

devices, the functionality of which is determined by loaded software code. However,

since this code is executed sequentially, the processing time of a function can be quite

long. Such devices are therefore typically used in applications which allow a longer

response time. As we are building a specific acceleration unit, we might want to trade

flexibility for performance.

On the other side of the IC spectrum, application-specific logic architectures empha-

size many kinds of Application Specific Integrated Circuits (ASICs) which differ mostly

from the way they were designed. The highest degree of optimization is obtained with

full custom implementation, while semi-custom devices offer quicker design processes.

General
Purpose

Processors

Digital
Signal

Processors
Application

Specific
Processors Field

Devices
Programmable

Application

ICs
Specific

Physically
Optimized

ICs

P
ow

er
D

is
si

p
at

io
n

(l
og

.)

102 MOPS 106 MOPS

10
−

3
W

10
2

W

Performance (log.)

Targeted area of interest

D
es

ig
n

F
le

xi
b
il
it
y

(l
og

.)

Fig. 2.1. More flexibility has to be paid off by a larger power dissipation from [Syd03]. As we strive

for performance, our area of interest includes FPGA and ASIC devices allowing an averaged power

consumption for a respectable design flexibility.

1. Designing Digital Systems 11

Located in the middle of the spectrum, as a compromise between flexibility and per-

formance, field programmable devices are gate arrays which provide highly standardized

means to implement digital integrated circuit designs. They are manufactured as regu-

lar arrays of patterned blocks of transistors which can be interconnected to form logic

elements such as gates, flip-flops and multiplexers [Bet99].

1.1.2 Pipelining Techniques

Digital systems are usually controlled by one or a set of clock signals, which ease the

design as well as the development and the verification of complex architectures through

a synchronous operation mode. Dividing a system into many smaller sub-circuits, hence

separated by registers placed on their respective outputs, permits a global synchroniza-

tion of the data flow with respect to the system clock triggering these registers. However

in a synchronous work process, the highest possible system clock frequency and thus the

maximum data throughput is conditioned by the operating time of the slowest sub-

circuit of the system. Propagation delay compensation between slower and faster parts

of the system is not possible within one clock domain.

pnp1⇒

pipeline registers

pn

τn

p2

τ2

p1

τ1 τ1 τn

1/fT 1/fT

system clock

Fig. 2.2. Pipelining consists in inserting registers between the different parts of a computational path.

This method increases the system frequency fT and the data throughput as well.

There exist different methods to increase the throughput of digital synchronous sys-

tems. Pipelining consists in inserting levels of registers within a series of logic blocks

in order to break the critical path, i.e., the longest signal path of the design created by

the logic gates between two registers. As seen in the left part of Fig. 2.2, for n chained

asynchronous logic elements with a respective processing time τ1, τ2, . . . , τn where regis-

ters controlled by a system clock of frequency fT are located at the extremities of the

chain, fT should respect the condition

fT ≤
1

τ1 + τ2 + . . .+ τn
(2.1)

so that the correct propagation of the logic levels is assured. The intrinsic delay caused

by the typical setup and hold time of the registers is hereby neglected. The insertion of

additional registers, as seen in the right part of Fig. 2.2, permits a pipelined processing

of the data, that is to say the result of a part pi of the system can be safely processed

by the following part pi+1 while the next dataset from pi−1 is input to pi. Hence, the

resulting system clock frequency fT depends on the longest propagation delay of all the

parts of the system only, such that

fT ≤
1

max (τ1, τ2, . . . , τn)
. (2.2)

12 Chapter II. Background

Theoretically, if all the logic blocks between the pipeline registers have approximately

the same propagation delay, the pipelined circuit outperforms the original one by a

factor equal to the number of pipeline register levels. However, the overall latency of

the complete circuit grows with the depth of the pipelining. This latency, expressed

in terms of clock cycles, is defined through the processing time of a pipelined system

between the reading of the input dataset and the presence of the result at the output

register.

In this work, we make large use of the pipelining technique in order to be able

to handle the data fetched from the memory rapidly enough. Not only are we able

to process the data faster through an increased system clock frequency, but also work

on a huge amount of data concurrently and make a very efficient use of the hardware

resources.

1.1.3 Cut-Set Technique

Pipelining is very practical for signal processing algorithms since these are typically ap-

plied to a continuous data flow, in comparison to data-processing algorithms in which

conditional branches depend on the information currently treated. Widening the princi-

ple of pipelining, the cut-set technique [Kun88] is a method permitting the redistribution

of propagation delay within an electronic circuit without having to change the actual

implementation of the algorithm. Practically, it consists in grouping a set of different

processing elements of an architecture together in a virtual box where every incoming

signal will be delayed by one clock period (T) and every outgoing signal will be given the

opposite negative delay (−T). In Fig. 2.3 showing a synchronous accumulator subjected

to pipelining, these delays are respectively represented by an empty circle and a full

colored circle.

As negatively delaying register cannot exist physically, a supplementary block of

registers must be inserted for the synchronization of the output signals. Moreover, if

Cut-Set
Delays

Preskewing registers

0

+T

-T

Deskewing registers
for delay compensation

Delay cancel

Cut-set line

Fig. 2.3. Design of an accumulator using the cut-set technique in order to increase the clock frequency.

The critical path composed by the carry signal of the full-adders is intersected by each cut-set line, the

number of which equals the final latency in clock cycles.

1. Designing Digital Systems 13

the output of the accumulator has to be processed word-wise, these deskewing registers

are necessary for data consistency. They permit canceling the negative delay n× (−T)

earned through n cut-set lines and hence allow a physical realization of the architecture.

Applying the cut-set technique consequently ensures a functional equivalence of the thus

pipelined processing network. As an example, Fig. 2.3 assumes that the effect of the

registers with the negative delay (−T) has been compensated by the dotted deskewing

registers in the grey area. By showing how the method works at the bit level, we can

easily extend the idea to the system level, i.e., when a bit line becomes a bus. Moreover,

when cut-set lines interface directly inputs or outputs, negative delays can be ignored if

the timings are reconsidered, i.e., the input word must be presented earlier or the output

has to be read later accordingly to the number of delays neglected.

1.1.4 Retiming Recurrent Architectures

Pipelining increases the internal processing clock frequency fT of a system through the

insertion of intermediate registers on the data path. As a direct consequence, the latency

of the processing part strongly influences the pipelining of recurrent structures in which

data is fed from the output back to the input. The solution remains in the compensation

of the resulting latency of the data path through the functional delay of the feedback

loop. In this case, an architectural retiming based on the cut-set technique can provide

an increase of the throughput.

f1 f3 f4f2f

x(t)
y(t)

f2 f4f3

τ1 τ2 τ3

f1

τ4

x(t)
y′(t)

T T T T T T TT T

T T T

y(t) = f (x(t), y(t− 4T)) f = f4 ◦ f3 ◦ f2 ◦ f1

b) Cut-set technique
y′(t) = y(t− 3T)

c) Result after retiminga) Original recursion

f−1
T ≥ max(τ1, τ2, τ3, τ4)

τ0

f−1
T ≥ τ0

Fig. 2.4. Retiming a recurrent architecture is possible when the latency of the data path after pipelining

can be compensated by the functional delay of the feedback loop.

Fig 2.4 shows the example of a system f with a propagation delay τ0 which includes

a feedback loop for a computation y(t) based on an input value x(t) and a previous

result y(t− 4T) with T = f−1
T . When a recursive function f owns a loop delay of n×T ,

it becomes possible to part the system in maximally n sub-functions f1, . . . , fn with a

respective propagation delay τ1, . . . , τn and increase the system clock frequency fT in

relation to (2.2). With the condition that the loop delay stays larger than T , it can be

minimized while the throughput gets maximized.

14 Chapter II. Background

1.2 Microprocessor Design Techniques

The original goal of a processor is to perform mathematical calculations in a very fast,

flexible and reliable manner. With the advances of technology, they reach always higher

performance levels in terms of speed, while the power consumption has continuously

been reduced. If greater connectivity helps build larger and more parallel systems,

more architectural specialization is required for specific markets such as multimedia

processing or pattern matching. In this section, we aim to give an evolutionary overview

on processors in general, because we make wide use of these design concepts in our

work. For further reading, we would like to refer to Hennessy and Patterson text books

[Hen90, Pat97a] which provide a broad framework for computer architectures.

1.2.1 Instruction Set Architecture

Considered as a generic term, a microprocessor is a digital semiconductor IC which

typically serves as a Central Processing Unit (CPU) in a computer system and generally

includes different components with specific functions such as the data path, the control

path, some memory units, a clock distribution network and transceiver circuitry. The

history of GPPs began more than fifty years ago, where CPUs were simply programmed

using machine code. As industrial applications became more complex, the concept of

portability permits to move up to larger computers and stay compatible at program

and data level. In order to make an entire family of computers run the same software,

the adopted solution was to produce a quite complete and capable reference instruction

set. The Complex Instruction Set Computer (CISC) was able to fetch fewer instructions

from the main memory that could remain slow and less expensive. The evolution led

to the development of better and more efficient compilers to bridge the semantic gap

between the high-level language of the algorithm and the machine code.

However, most compilers use only a small subset of the available instructions. Re-

designing the processor for supporting a simpler instruction set, with less addressing

modes but with more internal registers, made it faster and less expensive at the same

time. Hence the resulting Reduced Instruction Set Computers (RISCs) yield in a very

simple core CPU running at very high speed, supporting the exact same sorts of opera-

tions the compilers were using on a register basis [Hen90].

1.2.2 Parallelization of the Operations

There exist mainly two different standard architectures in processor design, both with

advantages and drawbacks. For the Von Neumann machines, programs and data are

mixed in a single memory device, requiring sequential accessing which produces a bot-

tleneck. For the Harvard machine, they occupy separate memory devices and can be

accessed simultaneously. These design variations remain a trade-off between internal

complexity of the CPU and throughput to the program memory.

A very important break-through began with the use of instruction pipelining, in

which the processor works on multiple instructions in different stages of completion.

1. Designing Digital Systems 15

With this technique, processors can be clocked almost as many times faster as there are

pipelining stages. However, in the typical case of a conditional branch command, the

processor must know the result of the previous operation and hence has to wait for the

pipeline to be empty.

Another improvement of the structure of the processor came with the introduction

of additional Arithmetic Logic Units (ALUs) within the data path in order to execute

multiple instructions in parallel, implying that these are not dependent on each other.

The resulting architecture is qualified as super-scalar processor and provides a well-

suited and efficient platform to applications with a high level of instruction parallelism.

Following this idea, the parallelization of the core of the processor resulted in a new

conceptual idea which consists in combining different kinds of instructions into an inter-

nal single Very Long Instruction Word (VLIW). Provided with a diversity of specialized

execution units, the CPU is capable of executing all of the instructions contained in the

instruction word, in parallel.

1.2.3 Parallelization of the Data

A vector processor is a CPU designed with a Single Instruction Multiple Data (SIMD)

architecture that is able to operate on multiple data elements simultaneously, taken into

account the possibility to pipeline the instructions and the data as well [Pat97a]. Com-

puting architectures where many functional units perform different operations on differ-

ent data simultaneously are qualified of Multiple Instruction Multiple Data (MIMD). A

recent industrial example that shows an extensive use of this concept presented with the

Cell processor in [Dho05, Moo06] was designed to bridge the gap between conventional

desktop processors and more specialized high-performance processors such as graphics

chips. Its architecture includes a main multi-threaded processor core, eight fully func-

tional coprocessors and a specialized high-bandwidth circular connecting data bus. The

main processor is not intended to perform all primary processing for the system, but

rather to act as a controller for the other eight coprocessors which handle most of the

computational workload.

Nonetheless, from the commercial point of view, the cost of multi-processor devices

must be justified by the applications that run on it. When designed for high-performance

markets, these devices require customization of each internal element to achieve fre-

quency, power dissipation and chip area goals. As power consumption essentially has

made progress stop in conventional processor core development, manufacturers try to

find new ways to utilize the ever-increasing transistor budget more effectively. Olukotun

et.al. [Olu05] describe the advent of Chip Multi-Processors (CMPs) and depict the next

system development steps through the necessity to port latency-critical software into

multiple parallel threads of execution.

16 Chapter II. Background

1.3 Field Programmable Gate Arrays

Since their introduction in the mid 80s, Field Programmable Gate Arrays (FPGAs) have

become one of the most popular implementation media for digital circuits. Similarly

to Complex Programmable Logic Devices (CPLDs), FPGAs are digital devices based

on configurable logical cells and configurable interconnect structures. They have the

ability to implement any circuit by being appropriately programmed [Bet99, Wol04]. As

depicted in Fig. 2.5, FPGAs typically include Complex Logic Blocks (CLBs), routing

lines of different lengths for global and local communication interconnected through

switch matrices, line buffers and programmable interconnects that incorporate the logic

into the routing network and thus form larger circuits. Grouped in clusters, CLBs are

used to implement various logic functions of a larger number of inputs by means of Look-

Up Tables (LUTs) or multiplexers. They include registers which permits the design of

synchronous circuits and the implementation of local memory blocks. Programming bits

configure the output response of the CLBs as well as the pass transistor switches for the

routing.

As they are manufactured using the latest technologies, they provide a very high-

capacity in equivalent ASIC gates which makes them a good alternative for large designs.

Following Moore’s law, the number of gates and features inside FPGAs has increased so

dramatically that they have progressed to a point where System-on-Chip (SoC) [Wol02]

designs can be built on a single device. They compete with capabilities that have

traditionally been supplied through ASIC devices only and offer a lot of advantages

compared to DSPs or general-purpose processors. Not only do they give system designers

the possibility to parallelize their architectures, but they provide an excellent density of

hardware Intellectual Property (IP) and lower the price per Giga Operations Per Second

(GOPS) rapidly. Moreover, it has been shown that they achieve greater performance

per unit of silicon area than processors [DeH00b]. This gain however has to be paid

Matrix
Switch

Complex

Block
Logic

Matrix
Switch

Complex

Block
Logic

Matrix
Switch

Matrix
Switch

Matrix
Switch

Quad length routing lines

Double length lines

Local routing resources

Programmable
Interconnects

Configurable pass-
transistor switches

Global routing lines

Fig. 2.5. Representation of a generic island-style FPGA which includes CLBs, switch matrices, pro-

grammable interconnects and routing lines of different lengths.

1. Designing Digital Systems 17

109

108

107

106

105

200620042002200019981996

a
–

F
P

G
A

S
y
st

em
G

at
es

Availability Year

XC4000

Virtex

VirtexE

Virtex2

Virtex2Pro
Virtex4

Virtex5

Grow
th

rat
e com

par
iso

n:

CPU
tra

nsi
sto

r cou
nt

104

103

102

10
2006200420022000199819961994

b
–

C
lo

ck
S
p
ee

d
(M

H
z)

Availability Year

Proc
ess

ors
(In

tel
)

FPGAs (X
ilin

x)

Fig. 2.6. General-purpose processors can be compared with programmable logic devices. In a) as

for CPU [Int06], FPGA [Xil06] industry trend has an exponential growth in density and b) in clock

frequency.

off by a relatively larger power consumption. Given for comparison in Fig. 2.6-a, the

transistor count in processors grows with the same rate as the amount of system gates

in the FPGA devices. Fig. 2.6-b reports that the technology behind FPGAs allows the

realization of digital systems that can be clocked only four to five times slower than

general purpose processors.

Often seen as their rivals although they are not meant to supersede them, FPGAs

provide many advantages against ASICs. As a fast procedure for implementing hardware

while allowing a rapid functional verification, they yield an improved time-to-market and

a low NRE (Non-Recurring Engineering) costs [Bet99, Rab03] so that they are extremely

adapted for small to medium volume productions. However, due to a high signal delay

and power consumption, they cannot permit an optimal utilization of the silicon area

and come at the expense of lower performance and integration density. In addition,

routing problems can limit the flexibility and the implementability of rather complex or

highly interconnected systems, as we have experienced in this work, e.g., with the sorting

networks. Moreover, physical constraints such as potential clock-skew may appear in late

design phases, especially through the communication with peripheral units or in systems

with multiple local or global clock domains, e.g., with the use of external synchronous

memory chips.

In most of the applications, the ultimate goal is to reach the maximum performance

of a system in terms of speed and throughput. On the one hand, the flexibility offered

by microprocessor or DSP clusters through their high-level programmability is very

attractive, but multi-processor programming is extremely hard, especially for real-time

applications. Compared to FPGAs, they dispose of limited I/O capabilities, a high

power consumption for a low computational density. On the other hand, with a lack of

flexibility and long design cycles, ASICs are meant for large volume productions. As they

18 Chapter II. Background

are not error-tolerant during system conception, they would not allow any application

change or functional design improvement. Therefore, we estimated that FPGAs would

be the most suitable choice for the implementation and the verification of our present

research work.

1.4 Semiconductor Memory Devices

When it comes to memory devices, there are several different technologies available

for use in modern integrated systems. However, not all of them are suitable for the

implementation of a fast database search engine. The type of memory unit which is

preferable for a given application is a function of the required memory size, the time it

takes to access the stored data, the access pattern, the application itself and the system

requirements [Rab03]. Depending on the level of abstraction in a design, the size of

the memory needed in the system might be expressed in different manners. On the

one hand, from the side of the application developers, the ACE platform deals with

signature files of a given length, such that the total amount of memory needed would

be expressed in terms of signatures or words, e.g., the database must be able to store

up to one million signatures. On the other hand, hardware system architects are more

likely to refer to this quantity using bytes or megabytes, e.g., the size of the database

must be of at least ten gigabytes.

Basically related to the functionality implemented in a digital system with data

storage, there exist different classes of memories, as shown in Fig. 2.7. First, a distinc-

tion is made between ROM (Read Only Memories) and RWM (Read & Write Mem-

ories) [Rab03]. Secondly, whether it belongs to the nonvolatile or volatile class, i.e.,

whether the contents are kept or lost when power is turned off, is also an early selection

criterion. Then a distinction can be made for the volatile RWM devices between the

ones with a restricted access resulting in either faster access times, smaller area or a

special functionality such as FIFO, LIFO, shift registers and the ones with a random

access (RAMs). The latter split into the static and the dynamic RAM categories. The

primary difference between them is the lifetime of the data they store. SRAM retains its

contents as long as electrical power is applied to the chip. If the power is turned off or

lost temporarily, its contents will be lost for ever. By contrast DRAM has an extremely

short data lifetime, typically about a few milliseconds, and they require a dedicated

controller refreshing the data periodically before it expires. Flash memory combines the

best features of the nonvolatile RWM devices described above. They are high density,

low-cost, nonvolatile, fast in reading, and electrically reprogrammable. However, a high

throughput to a huge database for the ACE platform would be reached at a much higher

cost than with a RAM solution.

When deciding which type of RAM to use, a system designer must consider access

time and cost. Timing parameters play an important role in the choice of a memory.

In an electronic design, one has to consider the read access time, i.e., the delay between

the read request and the moment the data is available at the output, the write access

1. Designing Digital Systems 19

time i.e., the delay between the write request and the final writing of the input data into

the memory and the cycle time, i.e., the minimum time required between two successive

read or write operations. Depending on the technology of the memory devices, these

timings present huge variations [Rab03]. SRAM devices offer extremely fast access times

but are much more expensive to produce. Generally, SRAM is used only where access

speed is extremely important. A lower cost-per-byte makes DRAM attractive whenever

large amounts of RAM are required. Many embedded systems include both types: A

small block of SRAM, in the region of a few hundreds kilobytes, along a critical data

path and a much larger block of DRAM, perhaps tens of megabytes, for general-purpose

storage.

Static

Nonvolatile

Semiconductor Memory Devices

Read Only Read and Write

Volatile

Non Random Access Random Access

DRAM

Flash

PROM

EPROM

EEPROM

FIFO, LIFO

CAM

SRAM

Dynamic

Suitable Memory Devices

Fig. 2.7. Classification of semiconductor memories. Devices suitable for the realization of a search

engine within a digital system using an external database are static and dynamic Random Access

Memories (RAMs).

When massive amounts of storage are needed, semiconductor memories tend to be-

come too expensive so that more cost-effective technologies such as magnetic and optical

disks should be used instead. However, although they provide extensive storage capa-

bilities at a low cost per bit, they tend to be quite slow, and they can definitely not be

a part of a SoC design, which makes them unsuitable for the ACE platform. If both

SRAM and DRAM are suitable for the realization of the ACE, it should be clear that

the real challenge lies in the conception of a platform based on the much more complex

DRAM devices compared to the relatively simple SRAM type.

20 Chapter II. Background

2 Pattern Matching in Strings

Introduced in Chapter I, searching is a popular problem. In the last decades, many

algorithms have been developed, studied, published, e.g., in [Bae99, Hyy02, Hyy04,

Hyy05, Knu97, Nav02, Nav05, Sed88, Sun90], and still constitute an excellent reference

in the field. As a matter of fact, texts remain today the main form of information

exchange although data is stored in many advanced formats. Since our target is the

retrieval of information hidden in texts, we concentrate in this section on the most

relevant string matching algorithms.

2.1 Classical Algorithms

A text is basically any sequence of symbols or characters drawn from an alphabet Σ,

such that when a query string Q of length m is to be found in a text T of length n from

a collection, string matching requires to point out all the occurrences of Q in T [Bae99].

Classical string matching algorithms are based on character comparisons. First of all,

the Brute-Force (BF) algorithm suggests itself naturally with an Θ(mn) complexity1.

It consists in comparing every single character of Q with one of T sequentially from the

left to the right. If there is a match, then the next characters are respectively compared

until there is a mismatch or a complete match. In either case, the pattern Q is shifted

one position to the right and the sequence of comparisons starts from the beginning.

The algorithm ends when the remaining number of characters in T is lower than m and

returns the locations where Q was found in T if any. The odds are its simplicity and

the absence of preprocessing.

By taking advantage of the pattern alignment knowledge obtained during previous

comparisons, the Knuth-Morris-Pratt (KMP) algorithm [Knu77] reduces the time for

searching Q in T to Θ(n). However, a preprocessing time in Θ(m) is necessary to

analyze the searched pattern Q in order to know after each mismatch the next possible

beginning of Q in T . The algorithm makes its greatest gain over a naive string matching

when it can skip the most characters at a time.

Similarly to KMP, the Boyer-Moore (BM) algorithm [Boy77] uses a backward com-

parison scheme for the search pattern Q while scanning the text T from left to right. The

key of the method is that in case of a mismatch with a character that doesn’t appear in

the pattern at all, then it can be shifted of m positions to the right, as there is no chance

that the pattern starts within the next m characters. The advantage is that in the best

case, only one in m characters needs to be checked, so that it can run in O(n
m

) in average.

Moreover, small amounts of iterations are reached when the alphabet Σ gets bigger and

the length of the pattern m smaller [Sed88]. An example of pattern matching using the

BM algorithm is illustrated in Fig. 2.8. There exist many improved variations of the

method in the literature and we would like to point to the bibliographical references for

more details.

1According to Knuth’s notations from [Knu76].

2. Pattern Matching in Strings 21

Text: T H I S I S A R E P R E S E N T A T I V E S A M P L E T E X T
6=

⇑Query: S A M P L E 6= Mismatch at first

S A M P L E 6= 7−→ then realignment

S A M P L E 6=

⇓
on P present in Q

S A M P L E 6=

S A M P L E

S A M P L E 6=

S A M P L E

Fig. 2.8. Example of pattern matching using the Boyer-Moore algorithm. The query word “sample”

is compared backwards character per character to the text from the left to the right. 13 comparisons

marked were performed within 7 pattern positions, i.e., 6 shifts.

When large texts must be scanned for a search pattern, a sequential method is not

a good option since its time complexity depends in the best case linearly on the size

of the texts. An ordering relation such as a sorted table or a tree would reduce the

time needed for retrieval to a logarithmic complexity. For frequent queries, the cost

of the preprocessing, i.e., the sorting of the words of the text into a table, becomes

negligible as it must only be performed once. In binary search trees for instance, every

node’s left subtree has keys less than the node’s key, and every right subtree has keys

greater than the node’s key. Searching for a specific value consists in a recursive process

that is performed beginning by examining the root, finding the median, determining

whether the desired value comes before or after it, and then proceeding to the remaining

half in the same manner, e.g., in the way of the divide-and-conquer algorithm and the

dichotomic search [Knu97, Sed88]. Practically best suited for software solutions, trees

are usually implemented with pointers in order to be flexibly extended but may yield a

variety of constraints on how they are composed. However in this thesis, we are looking

for a much more flexible and faster method for retrieving textual information in huge

pools of texts, which shall turn out to be extremely well suited for a later hardware

implementation.

2.2 Flexible Pattern Matching

Owning more flexibility means being able to find approximate matches to a pattern in

a text string. Practically, an approximate matching algorithm must be given a variable

that specifies the biggest number of misspelled characters in the query words. Com-

pared to exact matching, it allows a certain number k of differences at the item level,

e.g., characters in the case of texts. This measure of dissimilarity is known as edit

distance and encompasses several popular measures such as Levenshtein or Hamming

distance [Nav01]. In information theory, the Hamming distance between two strings

is the number of positions for which the corresponding symbols are different with the

restriction that these are of the same length. As an extension to this measure, the edit

22 Chapter II. Background

distance is given by the minimum number of operations needed to transform one string

into the other, where an operation is an insertion, deletion, or substitution of a single

character.

Most approximate matchers used for text processing are based on regular expressions.

Per definition, these are strings that describe a set of patterns without listing them all,

according to certain syntax rules which provide a lot of flexibility in a search. They

are commonly used in computer programs that deal with texts in order to manipulate

strings efficiently. For instance, the expression “^(ex|s)amples?$” matches the words

“example” or “sample” in singular or plural, when these are not followed or preceded

by any other character. However, writing regular expressions is a quite difficult task for

unexperienced users and even though tools exists that simplify the work, the method

loses efficiency when queries becomes too large or too fuzzy.

For the implementation of regular expressions, finite state automata can be designed

to recognize patterns in strings. As seen in Fig. 2.9, a deterministic finite state au-

tomaton that matches the patterns “sample”, “samples”, “example”, and “examples”

includes eleven states with one input and one successful output state. Depending on

the character read, a match causes a transition to the next state and a mismatch exits

a global failure stopping the search process.

0 1 5 6 7 8 9 10

Σ

∅ selp ∅3 a 4 m2 xe

s ∅

Fig. 2.9. A deterministic finite state automaton for the recognition of the expression

“^(ex|s)amples?$”. Each arrow consumes one input and ∅ stands for any spacing character.

With this method, we can dispose of a system for flexible retrieval that permits an

approximate pattern matching in strings to the cost of a dynamically programmable

state machine. However, the complexity linked to a hardware realization is hardly mea-

surable as it depends on the way the reconfigurability is supported in the architecture.

In this case, the degrees of freedom owned by the user to define a query impact the

quantity of resources necessary for the implementation of the finite state automaton in

terms of memory and computational power.

2.3 Dynamic Programming

As a technique to facilitate the solution to sequential problems, dynamic programming

progressively builds a set of scores utilizing the decision made at a given stage of the

algorithm as the conditions governing the succeeding stages [Cor01, Sed88]. Based on

an algorithm presented by Wagner et.al. [Wag74], this principle can be used to calculate

the edit distance between two strings, as depicted in Fig. 2.10. For this, it is necessary to

define a cost function ci,j at the position (i, j) in the matrix of results, where ci,j depends

on the previously calculated costs and on the local distance d(xi, yj). An exemplary cost

2. Pattern Matching in Strings 23

M1 ∅ m a t c h i n g

∅ 0 1 2 3 4 5 6 7 8

m 1 0 1 2 3 4 5 6 7

e 2 1 1 2 3 4 5 6 7

a 3 2 1 2 3 4 5 6 7

n 4 3 2 2 3 4 5 5 6

i 5 4 3 3 3 4 4 5 6

n 6 5 4 4 4 4 5 4 5

g 7 6 5 5 5 5 5 5 4

M2 ∅ G A A T T C A G T

∅ 0 1 2 3 4 5 6 7 8 9

G 1 0 1 2 3 4 5 6 7 8

G 2 1 1 2 3 4 5 6 6 7

A 3 2 1 1 2 3 4 5 6 7

T 4 3 2 2 1 2 3 4 5 6

C 5 4 3 3 2 2 2 3 4 5

G 6 5 4 4 3 3 3 3 3 4

A 7 6 5 5 4 4 4 3 4 4

Fig. 2.10. Examples of the calculation of the edit distance using the method of dynamic programming

for textual string matching in the matrix M1 and DNA sequences in M2.

function that computes the edit distance between two character strings x1...i and y1...j

can be defined by

ci,j = min (ci−1,j−1 + d(xi, yj), ci−1,j + 1, ci,j−1 + 1) with c0,0 = 0 (2.3)

where d(xi, yj) = 0 if xi = yj else 1, according to [Nav02]. A parameterization of (2.3)

is possible using weighted costs for the penalty of a substitution, an insertion and a

deletion [Blü00a]. However, due to the symmetry of the problem, the insertion in one

string is equivalent to the deletion in the other.

The path highlighted in the two examples of Fig. 2.10 that apply (2.3) is not ex-

clusive since alternative solutions also result in a maximal global edit distance of four

for both M1 and M2. Depending on the implementation, the complexity of the method

varies from O(n) time using O(m) processors up to O(mn) with one single processor.

One advantage of the method resides in the absence of any preprocessing step. How-

ever, pattern matching based on dynamic programming has the major problem of being

inapplicable for searching small or non-aligned patterns in large texts. Even though a

string might be entirely included in another one, the length difference is directly esti-

mated as a mismatch. Therefore this method is more appropriate for searching keys or

items in a list of formatted words than for querying wildly in a pool of textual unsorted

information.

2.4 Hash Functions and Text Signatures

Hashing is used as a table search method in which the position of a key within the

data structure is computed directly from the value of the key using a hash function.

Once addressed, data linked to a key can be directly accessed providing a constant time

O(1) lookup on average, overcoming the O(logn) time complexity yield by a retrieval in

binary search trees. From the practical point of view, hashing techniques always imply

a compromise between time complexity and area consumption. Formally, the retrieval

method applies a function h to find an entry key x assumed in our case to be character

24 Chapter II. Background

string, defined as

h(x) =
(
x[0] · Bm−1 + x[1] ·Bm−2 + · · ·+ x[m− 1]

)
mod W (2.4)

where m is the length of the key, B a number that serves as a polynomial basis and

W the width of the hash table. Usually, W is an arbitrarily large prime number, the

goal of which is to obtain a fairly uniform distribution of h(x) over W for any x. The

computation of h(x) which gives the position of the entry key x in the table with

0 ≤ h(x) < W can be performed in O(1) time complexity [Nav02]. A well known

example is the Karp-Rabin (KR) algorithm [Kar87] which uses hashing to seek a pattern

within a text. Its average and best case running time is O(n), but the worst case

performance is O(nm), where m and n stand for the length of the query Q and the text

T respectively. In any hardware or software implementation however, as the table needs

to be stored in a physical memory with a fixed size, W is limited and h never remains

an injective application. For this reason, the use of this method leads to collisions or

false drops which need to be resolved further on. Many ways are found in the literature

to deal with collisions, as for example resolution using chained lists, double hashing,

open addressing, or in some cases even collision ignoring when applicable. For a more

detailed analysis of various searching algorithms suitable for string matching in general,

we refer to the published work of Baeza-Yates et.al. [Bae99], Cormen et.al. [Cor01],

Knuth [Knu97], Navarro et.al. [Nav01, Nav02], Sedgewick [Sed88], Witten et.al. [Wit99]

and many more [Col98, Die94, Lom83].

Based on such hashing techniques, signature files are index structures which use

a hash function mapping text features, e.g., n-grams, to a bit mask of W bits. The

encoding is applicable to a query string Q or a text T from a collection, and consists in

regrouping all the hash values h(x) that were extracted from Q or T within one single

signature. Hence the resulting file is formed by the sequence of bit masks of all texts Ti

plus an entry pointer ei to this text. The typical search operation can be carried out by

comparing signatures sQ and sT of Q and T bitwise. The Hamming distance d(Q, T)

between the masking (sQ&sT) and the query signature sQ corresponds to the degree of

matching of Q in T and can be estimated using simple logical operations through

d(Q, T) = bitcount
{

(sQ & sT)⊕ sQ

}
(2.5)

where & and ⊕ symbols correspond to the bitwise and and xor respectively. The

and operation masks the positions in sT which must match the ones in sQ. The xor

operation isolates the bits in sT after the previous bit-masking where zeroes were found

instead of ones. Using simple boolean arithmetics, we can simplify (2.5) to

d(Q, T) = bitcount
{
sQ & sT

}
=

W−1∑

i=0

sT [i] ∀ sQ[i] 6= 0 (2.6)

where sT represents the bitwise negated signature of the text T and sT [i] the bit at the

position i in this signature with 0 ≤ i < W . Even though a thus calculated zero-distance

3. Sorting Techniques and Algorithms 25

cannot ensure an exact matching due to the probability of collision, this method is very

fast. For inverted files, if the risk of false drop is accepted within a given application,

the necessary traversal verification [Bae99] can be avoided.

3 Sorting Techniques and Algorithms

As they both fundamentally imply comparing operations, it is safe to say that sorting

and searching are closely related to each other. In [Knu97], Knuth provides an excel-

lent reference of classical computer techniques for sorting as a very comprehensive and

detailed survey. We would like to refer to this resource explicitly as Knuth’s seminal

work has been widely used to build this section. Also thoroughly reviewed by Sedgewick

[Sed88], Martin [Mar71] and Cormen et.al. [Cor01], sorting algorithms represent an im-

portant part of our work, therefore the most significant ones are reviewed in this section.

3.1 Sequential Sorting

Here we consider that records consist in a body of data plus a key which is used to control

the sorting. Per definition, an algorithm for sorting is a procedure that rearranges a file

of records so that these are in ascending or in descending order. Before presenting fast

networks for sorting in the next section, we review the elementary procedures that will

help understand the basic concepts and optimize other algorithms later within our work.

3.1.1 Insertion Sort

Probably the most obvious method for ordering playing cards, insertion sort consists

in a repetitive operation of inserting a record from an unsorted list at its final relative

place in a new sorted list until no record is left in the old list. This algorithm constructs

the final result sequentially, one element at a time.

Algorithm I (Insertion Sort). Records R1 to RN are rearranged in place such that their

keys K1 to KN will be in order (K1 ≤ · · · ≤ KN) after sorting is complete. Considering

virtually that R0 = −∞ and RN+1 = ∞, let i be the index pointing to the record

currently processed.

I1. [Loop on i.] Perform steps I2 through I5 for i = 2, . . . , N .

I2. [Set up R.] Set temporary record R← Ri.

I3. [Find position j.] Select j such that Kj ≤ Ki < Kj+1.

I4. [Move records.] Shift one place {Rj+2 · · ·Ri} ← {Rj+1 · · ·Ri−1}.

I5. [Insert record.] Set Rj+1 ← R.

26 Chapter II. Background

It should be noticed that algorithm I includes one macro-step I3 which consists in

finding the position of the record to be inserted in the sorted list. Depending on how

it is implemented, this operation may require many comparisons to find the position in

the sorted list. Regarding step I4, it may be possible in hardware to move a part of the

records in O(1) time using a dedicated shift register, whereas in software all the records

which have to be displaced must be taken one by one.

Fig. 2.11. Insertion sort algorithm: Items are selected successively from the left to the right and

inserted at their relative final position in the sorted list situated left of the selection.

Fig. 2.11 shows the progression of the insertion sort algorithm at different intervals

of time. In the worst case, each step i requires a shift of i− 1 elements for the insertion

so that the runtime complexity remains O(N2). However, with a given area and a high

degree of parallelism, this algorithm could run in O(N) time, e.g., if we are able to find

the position of j, i.e., step I3, in O(1) using O(N) comparators.

3.1.2 Selection Sort

The selection method requires all of the input items to be present before sorting can

proceed and generates the final output one by one in a sequence. There exist many

versions of the selection sort algorithm [Knu97], however we propose one which is based

on the selection of the smallest element of a list first, then the second smallest, etc., as

illustrated in algorithm S.

Algorithm S (Selection Sort). Records R1 to RN are rearranged in place such that

their keys K1 to KN will be in order (K1 ≤ · · · ≤ KN) after sorting is complete. Let i

be the index pointing to the last record currently in place.

S1. [Loop on i.] Perform steps S2 and S3 for i = 1, . . . , N − 1.

S2. [Find minimum.] Select Rm so that Km = min(Ki, . . . , KN).

S3. [Exchange.] Interchange Ri ↔ Rm.

The selection sort algorithm is practically the opposite of Algorithm I whereas it

requires fewer data movements than the insertion sort but more comparisons. It has

the same runtime for any set of N elements independently of their values or order,

since finding the minimum or the maximum element of a list of N elements requires

N − 1 comparisons. Its final runtime complexity remains O(N2). Fig. 2.12 shows this

procedure in time, from the leftmost to the rightmost snapshot, where the items are

placed from the smallest to the largest.

3. Sorting Techniques and Algorithms 27

Fig. 2.12. Selection sort algorithm: Items are selected, from the smallest one to the biggest one, and

placed progressively at their final position until no item remains unselected.

3.1.3 Exchange Sort

Arranging a file of N records R1 to RN according to the bubble sort method consists in

repeating a sequence of exchange operations that interchange adjacent records Ri and

Ri+1 if their keys Ki and Ki+1 are out of order, with 1 ≤ i < N . In this sequence,

records with large keys move up and the record with the largest key will become RN .

Repetitions of the process will get appropriate records into positions RN−1, RN−2, . . .,

so that all records will ultimately be sorted [Knu97]. After each sequence, all records

above and including the last one to be exchanged are in their final position and do not

need to be examined on subsequent passes.

Algorithm B (Bubble Sort). Records R1 to RN are rearranged in place such that their

keys K1 to KN will be in order (K1 ≤ · · · ≤ KN) after sorting is complete. Let k be the

index of the highest record not in its final position, beginning with k = N .

B1. [Initialize.] Set k ← N .

B2. [Loop on i.] Set j ← 0. Perform step B3 for i = 1, . . . , k − 1.

B3. [Loop on j.] Set jmax ← 0. Perform step B4 for j = 1, . . . , k − 1.

B4. [Compare.] If Kj > Kj+1, interchange Rj ↔ Rj+1 and set jmax ← j.

B5. [Return.] If jmax = 0 terminate else set k ← jmax and return to step B2.

One of the most interesting properties of this algorithm is that the highest values

are sorted first, so that in i passes, at least the i records with the highest keys are in

place. In the worst case, each of the N elements requires to bubble up or down between

1 to N − 1 places, such that the runtime complexity yields O(N2). Fig. 2.13 depicts the

progression of the records during a sorting sequence at different time intervals. Even

though the algorithm can terminate in less than N2 steps, it remains inefficient and

is rarely used. However, the bubble sort can be easily turned into a parallel sorting

network, as we will see in Sec. 3.3.

Based on a divide-and-conquer strategy, quicksort [Hoa62] is probably the most used

sorting algorithm in computerized applications. After having chosen a pivot element,

a partitioning of the data set relatively to the pivot splits the file of records into two

subsets. The procedure is applied recursively until all the records are in nondecreasing

order. As the most complex issue in quicksort algorithm, the pivot has to be chosen as

the median value in order for the algorithm to work in O(N logN) against O(N2) for an

28 Chapter II. Background

Fig. 2.13. Bubble sort algorithm: Adjacent items are repeatedly compared and interchanged so that

the records with the largest key move to the right and vice versa.

infortunate choice. Beside its low average time complexity, one of the big advantages of

this method remains that only a small amount of memory is necessary to perform the

partitioning when implemented in software.

Based on the insertion sort, shell sort [She59] improves sorting time by comparing

and exchanging elements separated by a gap of several positions. Without any explicit

rule, the length k of the gap is reduced at every pass on the list of records such that it

reaches unity at the end. During this procedure, the data set gets k-sorted and consists

in k independent arranged sequences until k = 1. Even though the optimal sequence of

increments remains an unresolved mathematical problem [Knu97], the running time of

the algorithm has been proven to be O(N3/2).

3.2 Bit-Level Structures

As opposed to the so far described word-oriented sorting procedures, bit-level algorithms,

such as the radix-exchange sort, rank-order or median filter, make use of the binary

representation of the keys they have to arrange. The median filter belongs to the class of

nonlinear rank order filters and is frequently used in various signal and image processing

applications [Hen98, Yin96]. However, depending on its implementation, it may finally

not be considered as an actual sorting algorithm, since the processed data set is subject

to intrinsic modifications during the filtering, and since the output is by definition a

single value.

According to the literature, there exist different algorithmic forms of the radix sort

[And94, Cor01, Knu97, Sed88] which are generally classified into two categories, i.e.,

Least Significant Bit/Digit (LSB/D) and Most Significant Bit/Digit (MSB/D) radix

sorts. The sorting principle however remains the same. We describe in this section a

stable binary radix sort using LSB first. Based on bit-level manipulations, Algorithm R

includes two phases. The first one is the partition phase, in which records having the

same value for a given bit-position are consecutively placed into the same bucket. The

second one is the gathering phase, where the buckets are combined together, according

to the chosen priority rule, i.e., lowest first in this case. The run-time complexity of

Algorithm R is in O(NM), where N is the size of the data set and M the length of

a key, expressed in digits but usually in bits on binary computers. As opposed to the

standard key comparison and exchange operation, e.g., as seen later in Fig. 5.17, it owns

the particularity to work in backward mode, i.e., LSB first.

3. Sorting Techniques and Algorithms 29

Algorithm R (Binary Radix Sort). Records R1 to RN are rearranged in place such

that their keys K1 to KN of length M will be in order (K1 ≤ · · · ≤ KN) after sorting

is complete. Let B1 and B0 be two temporary buckets in which records can be stored

successively with a First-In First-Out (FIFO) behaviour. Let i be the currently processed

bit-position within a key and j the index of the currently processed record.

R1. [Initialize.] Set i← 0.

R2. [Loop on j.] Perform step R3 for j = 1, . . . , N .

R3. [Partition.] If Kj[i] = 0 put Rj in B0 else in B1.

R4. [Concatenate.] Combine B0 followed by B1 into a new list of records.

R5. [Repeat.] Set i← i+ 1. If i = M terminate else return to step R2.

By contrast, Fig. 2.14 depicts the evolution of the list of records during a sorting

sequence at different time intervals when the records are compared MSB first. Even

though the algorithm can terminate in less than N×M iterations, it remains a sequential

algorithm that compares well to Quicksort [Hoa62] which is also based on the idea of

partitioning.

Fig. 2.14. Radix-sort algorithm: Based on a partitioning scheme, the keys are sorted progressively

starting from their MSBs first. Here, the set of N = 32 keys is partitioned recursively, using up to 5

bits for the comparison.

Nonetheless, radix sort has many drawbacks when it comes to hardware implemen-

tation. First, the body of the algorithm consists in moving data back and forth, from

the list to one of the two buckets and vice versa. The size of the underlying data transfer

structure will badly scale up with the length and the amount N of records in the data

set, as opposed to a processor based software implementation where only the size of the

required memory would be affected. Second, even though the records are finally rear-

ranged in the initial list, the algorithm does not run “in place” since a double file, i.e.,

the buckets, is needed to store the records temporarily outside of their original memory

space during processing. Moreover, the size of each bucket is determined at run-time

and can reach N in the worst case. Third, since the order and the final output position

of each record is not known during the partition phase, algorithm R cannot be directly

implemented as a sorting network where parallelism would be efficiently exploited.

30 Chapter II. Background

3.3 Sorting Networks

Sorting networks are decision structures that take into account the possibility to process

many records at the same time, involving only simultaneous nonoverlapping comparisons

and exchanges. Due to the intrinsinc parallelism of a network, the sorting time can be

reduced according to the resources used in the implementation. The concurrent access

to the data set to be arranged is a prerequisite that makes sorting networks faster than

sequential procedures. However, in most of the cases, the size of the data set N cannot

be changed dynamically, as opposed to software solutions, and each network owns a

maximal sorting capacity.

3.3.1 Odd-Even Merging Algorithms

Per construction, a sorting network consists in comparator steps executing comparisons

and exchanges of exclusively distinct records in parallel. The number of steps within

the network determines its time complexity whereas the area complexity is linked to the

amount of comparisons. Accounted as the most trivial construction possible, the bubble

sort network can be considered as the parallelization of Algorithm B on page 27 where

comparisons and exchanges are performed pair-wise on adjacent records. For sorting

a set of N records, its time complexity is in O(N) and its size in O(N2). According

to text’s conventions for drawing sorting networks [Knu97], Fig. 2.15 represents two

networks that respectively implement the bubble sort and the odd-even transposition

sort algorithms.

x7

x6

x5

x4

x3

x2

x1

x0

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

x′8
x′9

x7

x6

x5

x4

x3

x2

x1

x0

x8

x9x9

x8 x′8
x′9

Fig. 2.15. Network implementation of the bubble sort (left) and odd-even transposition (right) algo-

rithms represented in a Knuth diagram for an input of N = 10 keys.

The odd-even transposition network can be seen as an improved version of the bubble

sort in that the processing time is half as long, since the comparison sequence starts with

all the records from the beginning on. Using the zero-one principle [Bat68, Knu97], one

can easily prove the correctness of these networks.

3.3.2 Bitonic Sorting Algorithms

One of the best known sorting algorithms is Batcher’s bitonic merger and sorter [Bat68]

which was discovered in 1968. This algorithm is based on a divide-and-conquer strategy

3. Sorting Techniques and Algorithms 31

transforming recursively two bitonic sequences into one monotonic sequence. Per defini-

tion, a bitonic sorter of order N is a comparator network that is capable of sorting any

bitonic sequence of length N into nondecreasing order, whereas a sequence 〈x1, . . . , xN〉

is bitonic if x1 ≥ · · · ≥ xk ≤ · · · ≤ xN for some k, 1 ≤ k ≤ N [Knu97]. The problem

of merging x1 ≤ · · · ≤ xN with y1 ≤ · · · ≤ yN is a special case of the sorting problem,

since merging can be done by applying a bitonic sorter of order 2N to the sequence

〈xN , . . . , x1, y1, . . . , yN〉.

Fig. 2.16. Batcher’s Bitonic sort algorithm: In this set of N = 32 records, adjacent items are progres-

sively 2i-sorted, with 0 ≤ i ≤ log2N .

Given as an illustration for the sorting of N = 32 records according to the bitonic

algorithm, Fig. 2.16 depicts the evolution of the set of data at different time intervals

after the merging of 2i adjacent records, with 0 < i ≤ log2N . One merging step of

the network, as represented in a Knuth diagram in Fig. 2.17, transforms one bitonic

sequence 〈x0 . . . x7〉 into one monotonic sequence 〈x′0 . . . x
′
7〉. For convenience reasons,

we have chosen N as a power of two, even though arbitrary sequences of any length can

be sorted using this iterative sorting-by-merging rule. The bitonic scheme for sorting

N = 2n elements requires n
2
(n + 1) levels of N

2
elements each with a corresponding

complexity in O(log2N) time and O(N log2N) for the area.

x7

x6

x5

x4

x3

x2

x1

x0

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

x7

x6

x5

x4

x3

x2

x1

x0

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

≡

Fig. 2.17. Network implementation of the bitonic merging algorithm represented in a Knuth diagram

for an input of N = 8 keys in two different but equivalent ways. This network transforms one bitonic

sequence 〈x0 . . . x7〉 into one monotonic sequence 〈x′0 . . . x
′

7〉.

3.4 Summarization

Sorting algorithms used in computer science are often classified by computational com-

plexity regarding the size of the list of records which have to be ordered. As we have seen

in this section, though many different sorting algorithms have been invented, studied

32 Chapter II. Background

and improved, only a few of them are suitable for a low-level hardware implementation.

Ajtai et.al. have presented in [Ajt83] an algorithm working in O(logN) delay time for

a sorting network processing N keys with a complexity in O(N logN) which however

remains impracticable due to its large hidden constant factor. Furthermore, Leighton’s

algorithm presented in [Lei85] for sorting N keys in O(logN) time with N processors is

not appropriate for hardware realizations and is much slower in practice than other paral-

lel sorting algorithms. Nonetheless, Batcher’s sorting techniques [Bat68], even renamed

otherwise sometimes [Sch89], seem to be the most suitable for actual implementations

in hardware or in multi-processor systems and mesh connected computers.

Chapter III

Related Work

SEARCH engines are normally always linked to one or many data containers in which

the requested information has to be found. The ensemble of containers constitutes a

database, the size of which may vary over many orders of magnitude. It might be either

a tiny directory located on one’s computer desktop, or the World Wide Web (WWW),

an unlimited ever-growing collection of online documents on Internet servers worldwide.

Hence, this chapter begins by presenting a typical Internet search engine as well as the

standard string matching utilities within computer systems. The second section of this

chapter deals with the description of Lapir’s Associative Access Method (AAM) which

relies on an index built on text signatures. Finally, the third section summarizes related

work in the area of hardware search engines and associative processors.

1 State of the Art in Software

The aim of this section is to give an overview on the complexity of some typical search

applications that run at the software level using standard processors as support platform.

These include Internet search engines as well as utility programs on standard Personal

Computers (PC).

1.1 Web Search Engines

The amount of information on the WWW is growing rapidly, as well as the interested

amount of users performing any kind of research. After a very long evolution time,

there subsist mainly two types of Internet search engines, i.e., the human and the auto-

matically maintained ones. On the one hand, IR systems based on human maintained

indices provide a high quality web link graph. They cover popular topics effectively but

34 Chapter III. Related Work

are subjective and expensive to build and to maintain. On the other hand, automated

search engines rely on keywords and usually return too many low quality matches. Their

index provides a view of the retrieval problem which is much more related to the system

itself than to the user need [Bae99, Kob00].

Given as an example, Google began as an academic research project and was de-

veloped by Brin and Page [Bri98] at Stanford University becoming its official search

engine. Their system uses spider programs that traverse the hypertext structure of the

web by recursively retrieving all documents automatically, starting from a random ad-

dress. Supported by huge computational power, Google remains a large scale Internet

search engine which makes heavy use of the structures present in web documents to

produce and sort results according to a patented page ranking technique [Pag98]. The

citation and link graph helps determine how well-established a page is, mainly by calcu-

lating how many backward links point to it. Hence Internet search engines profit from

their multi-user accessibility to help classify the results according to their popularity.

1.2 Software Functionalities for Computers

Sorting and searching are the two most important operations related to the management

of an Operating System (OS). Not only is it a necessity to be able to search a file or a

directory, but also to find information inside a file. As a very representative example,

every Unix-based OS provides various utility programs to help users work efficiently with

text files, such as locate which comes with an index database, i.e., a file which is created

locally on the hard disk drive of a computer and which is automatically updated. The

database also stores file permissions and ownership so that users will not see files they do

not have access to. The search pattern is a plain string that can contain metacharacters

and the output is a list of file names that contain the pattern. Though locate can

only display the file names that match the pattern exactly, regular expressions, as seen

in Sec. 2.2 in Chapter II, can be used for approximate matching. Another example is

the command find that searches the directory tree rooted at the issued argument for a

given file name. Without using an index, find is much slower than locate, however no

index update is necessary. A related command is grep which searches files for lines that

match a given pattern or any extended expression. Though a little slower than exact

matching programs, its variant agrep has the ability to search for approximate patterns

with a large number of options. Depending on the querying context, it selects one of its

built-in Levenshtein distance based algorithms to maximize the speed. Moreover, many

Unix programs such as awk, diff, sed, sort, strings, vi. . . permit an efficient text

processing with find and replace functionalities including pattern scanning and editing

through the use of regular expressions and meta characters. For more details and an

exhaustive list of options, it is practically wise to refer to the Unix/Linux manual pages

(man) distributed with the respective programs.

2. Hardware Accelerators 35

2 Hardware Accelerators

As the era of the billion transistors architecture is well established [Bur97a, Bur04], the

major portion of the transistor budget of a processor is still used for cache memory.

This is mainly due to the fact that processor clocks are nearly twenty times faster

than memory device clocks. In order to overcome the problem of the memory wall

as introduced in Chapter I, different research groups have come to many architecture

proposals that we want to present briefly in this section. The relation to our work

is globally the concern with the need of a rapid access to a big memory space and

the necessity to create an efficient processing system according to earlier architectural

decisions.

2.1 Associative and Parallel Processors Systems

With reference to the literature, as an alternative to traditional SIMD and MIMD sys-

tems, associative processors [Bat76, Cut78, Kun88, Ruh85, Tav94] are particularly suit-

able for massive data searching and manipulation [Kri94, Par73a, Par73b, Sch92]. They

are typically composed of an array of Processing Elements (PE) having their own as-

sociated memory which respond to a single or multiple instruction streams. Developed

at Kent State University, the Multiple Associative Computing (MASC) model [Pot94,

Wal01] is an associative MIMD system which consists in an array of 8-bit RISC PEs with

local memory, and a smaller set of control units sharing a bus to every cell. Depending

on the executed program, PEs can be reallocated and execute associative operations

according to a small instruction set [Wan03]. The scalable architecture, as shown in

Fig. 3.1-a at a high level of abstraction, has been implemented on FPGAs for different

sizes, making it well-suited for expansions in terms of specifications and functionalities.

It provides a high flexibility through its programmability but lacks in data throughput

as no external mass memory is available.

Developed especially for string matching and sequence alignments in computational

biology, the Kestrel datapath from the University of California at Santa Cruz consists

in an SIMD parallel coprocessor system with a linear array of hundreds of 8-bit PEs

distributed over eight IC devices. Fig. 3.1-b gives a schematic representation of the

processing system where systolic shared registers are placed between adjacent PEs to

allow flexible data processing. Kestrel suffers since its inception of a low clock frequency

caused by the absence of pipeline registers in order to maintain a certain programming

intuitiveness [DiB05]. However, due to its highly parallel architecture, the ASIC real-

ization provides a consequent speed-up against general-purpose processors clocked more

than one order of magnitude faster.

Work performed in the Galileo project at the University of Wisconsin at Madison in-

cludes memory issues and multiprocessor system design [Bur97b]. Especially for parallel

computing, they examined the impact of embedded memory on processor as memory

bandwidth limits the performance of standard processors. In order to gain performance

36 Chapter III. Related Work

Memory

Memory

Memory

In
te

rc
o
n
n
ec

ti
o
n

N
et

w
o
rk

B
ro

a
d
ca

st
N

et
w
o
rk

Control
Unit n

Control
Unit 1

In
st

ru
ct

io
n

N
et

w
o
rk1

2

mPE

PE

PE

Data Stream

PE

R
eg

s.

Mem.

PE

R
eg

s.

Mem.

PE

Mem.

R
eg

s.

Instruction Stream

Array
Controller

Instruction MemoryInterface

1 2 m

Fig. 3.1. Architecture of different associative processors based on a) an MIMD computing model with

PEs controlled by multiple instruction streams as in [Wal01] and b) an SIMD computing model with

PEs organized in a linear array as in [DiB05].

in general-purpose processors, SRAM caches exploit the spatial and temporal locality

of the data and tend to compensate the devastating latency of standard DRAMs. With

a rising tendency, they occupy from 50% up to 80% of the processor die [Koz02]. How-

ever, for streaming applications such as multimedia signal processing or data mining, the

cache principle remains inappropriate. Associative and parallel processors present a pre-

sumably very suitable architecture for the implementation of string matching algorithms

with an inherent structural concurrency. However, even by reducing the programma-

bility to a minimum set of special instructions, e.g., [Fau91, Vui96], the matrix of PEs

within an associative processor will always suffer the trade-off between flexibility and

data throughput. Therefore one calls for more efficient architectures.

2.2 Merging Logic and Memory

Since more than a decade, the purpose of embedded memory design is to produce new

kinds of architectures which provide better performance than standard processors as

found in personal computers. The idea is to benefit from a higher bandwidth by elim-

inating the narrow external data bus, as well as a lower latency by customizing the

organization of memory banks. However, the pairing of storage and computing is not

trivial, since DRAM and logic processes are fundamentally different. As seen in Sec. 1.4

in Chapter II, DRAM is optimized for minimum cost and maximum capacity. Its process

produces thick-gated low-leakage transistors, whereas a logic process aims for thin-gated

fast switching ones.

Predicting in the Intelligent RAM (IRAM) project [Pat97b, Per99] at the Univer-

sity of California at Berkeley that logic and memory will be merged onto a single chip

to remove the performance gap in future computer architectures, they investigate the

placement of a processor along with DRAM on a single chip. Furthermore, the inte-

gration of an SIMD array of PE in the DRAM provides a high bandwidth for vector

processing with a low power consumption [Koz00]. Targeting the consumer market and

portable devices in particular, long term development aims to reduce the overall costs

by eliminating the expenses of external discrete components providing a System on Chip

2. Hardware Accelerators 37

(SoC) solution. However, due to the fabrication process, embedded DRAM cannot be as

dense as off-chip DRAM and still remains more expensive than on-chip SRAM [Koz02].

Similarly, the Reconfigurable Architecture Workstation (RAW) processor [Wai97] de-

veloped at the Massachusetts Institute of Technology consists of a square reconfigurable

interconnected matrix of pipelined RISC processors with distributed SRAM instruction

and data caches on a single chip. The emphasis was placed on a fine repartition of

the different logic and storage parts over the chip instead of having a large centralized

memory. In addition to the important amount of external interfaces available, the ef-

ficiency of the processor is mostly due to the quality of the software tools which must

be able to provide partial communication reconfiguration of the architecture statically

at compile time and dynamically at run time. While RAW has more memory per chip,

Asynchronous Simple Array of Processors (ASAP) [Yu06] developed at the University

of California at Davis has a larger number of pipelined RISC processors on a single

die which communicate asynchronously through FIFO buffers. Individually clocked, the

PEs can adapt their working frequency to fill the computational needs and reduce the

overall power consumption. However, this hardware overhead is neither negligible nor

justified for a single application processor.

The Smart Memories Project (SMP) from Stanford University aims to implement a

single chip multi-processor system with coarse grain reconfiguration capabilities support-

ing different application mappings [Mai00]. Its regular architecture is made up of many

processing tiles, each containing local memory, local interconnects and a processing core,

as well as on-die SDRAM tiles. According to the requirements of the application, the

tiles are connected through a dynamically routed network. Flexibility remains a key

element of the design to support regular data-parallel stream-based applications as well

as irregular memory access pattern. Concentrating on the memory accesses, the Im-

pulse project at the University of Utah in Salt Lake City aims to build a configurable

main memory controller including embedded DRAM that increases processor cache and

system bus utilization [Zha01]. The main benefit of the architecture is due to a physical

address remapping that makes memory accesses appear consecutive as in a burst mode

and hence reduces the penalizing latency.

Many other research groups have recognized the advantages of merging memory and

logic onto the processor die such as the Processing in Memory (PIM) project [Sun96]

from University of Notre Dame in Indiana. Combining processor and memory macros on

a single chip basically always implies an array of PEs, connected together over various

network topologies with DRAM, that perform SIMD or MIMD operations in parallel.

In the most frequent cases, these chips can be chained to form a multidimensional

processing system, depending on the computational needs.

The purpose of embedded logic onto memory devices is, as opposed to embedded

memories, to build commodity DRAM able to perform some processing locally. De-

veloped at the University of Illinois at Urbana-Champaign, FlexRAM [Yoo00] aims to

place a superscalar RISC processor onto a 64MB DRAM device. The chip targets its

insertion inside a workstation or a server, replacing the main memory in order to unload

the processor for the memory-intensive parts of the applications, such as data min-

38 Chapter III. Related Work

ing or multimedia processing [Kan99]. Beside the compatibility with general purpose

processors, FlexRAM achieves low programming costs, so that even though internal re-

configurability is not foreseen, the memory subsystem is able to default tasks to plain

DRAM when the application is not enabled for intelligent memory.

A similar approach was adopted by the Computational RAM (CRAM) architecture

[Ell92] from the University of Toronto which integrates SIMD processors into a stan-

dard DRAM at the sense amplifiers, and by the Data Intensive Architecture (DIVA)

chip [Hal99, Dra02] from the University of South California in Los Angeles that benefits

from a large datapath enabling data parallelism. Besides, the Reconfigurable Architec-

ture DRAM (RADRAM) project [Osk98] from the University of California at Davis was

based upon the integration of DRAM and FPGA technologies to provide programma-

bility at the logic level. Later however, they replaced the reconfigurable logic through

a Very Long Instruction Word (VLIW) processor to gain more performance using fine

grained parallelism.

2.3 Special Purpose Coprocessors

Special purpose coprocessors are hardware architectures basically designed to achieve

extremely high performance for a specific application. Beside mathematical Floating

Point Units (FPUs) and graphics accelerators which are the most popular acceleration

devices, there is also a need in domains such as cryptography, genome analysis, biose-

quence mining, network attacks detection, text database searching,. . . , indeed problems

that often reduce to a simple string matching paradigm. Therefore we aim to review a

few architectures that seem to address our querying problem at first glance.

The architecture of Blüthgen et.al. [Blü00a, Blü00b] is a parallel realization of a

coprocessor based on the standard dynamic programming algorithm, as seen in Sec. 2.3

in Chapter II, and can perform approximate string matching for variable edit costs. It

belongs to a retrieval system that performs content-based on-line searches in a large

database of multimedia documents [Kno98]. Build as an array of 64 PEs, the processor

primarily computes the edit distance between an eight characters query word and a

text, whereas this limitation can be overcome by chaining the appropriate number of

PEs accordingly to the search pattern. Due to the chosen algorithm, no pre-indexing is

necessary when documents are stored into the database or when a query is started. As an

improvement, text recoding and wildcard handling extend the classic algorithm to a more

flexible one. However, for a fault tolerant full-text search engine, the implementation is

constrained to a matching at the word level and not at the sentence level. The design

provides a high computational throughput rate but was not foreseen for handling huge

amounts of data, as only a single SDRAM chip serves as an on-board data and result

memory [Blu00]. The overall performance is adapted downwards to the PCI interface

which provides the data from the CPU of the system on which the coprocessor board is

plugged. Similarly, Sastry et.al. [Sas95] described the design and implementation of a

linear systolic array chip for computing the edit distance between two strings. However,

2. Hardware Accelerators 39

as this measure is related to the size length of the query, dynamic programming remains

only efficient for short pattern.

Accompanied by a prolific literature, Baker et.al. [Bak04, Bak05, Bak06] currently

propose the realization of a systolic architecture based on an FPGA design for the

implementation of the KMP algorithm as seen in Sec. 2.1 of Chapter II. Focusing on

network intrusion detection and aligned text mining, they try to minimize the hardware

resources in order to maximize the internal parallelization. The use of FPGAs allows

the parameterization of designs at the hardware level, an optimal dimensioning of the

internal memory blocks and an easier scalability of the architecture than for ASIC design.

However, they do not consider neither the use of approximate matching techniques nor

the eventuality of extremely large databases.

Focusing on multimedia and image processing, Stanford’s Imagine [Ahn04, Kha02]

coprocessor architecture supports ensembles of ALUs organized as tiled SIMD clusters.

The computational efficiency of the system is due to a high bandwidth SDRAM inter-

face that can simultaneously feed data to many PEs using stream transfer instead of

single load and store operations, and thus exploit the parallelism and locality of stream-

ing media applications. The flexibility of the system is provided by two programming

languages developed on this purpose that implement kernel programs for the embedded

microcontroller as well as stream level functions for manipulating data. In fact, even

though the system could be qualified of general purpose multimedia stream coprocessor,

the architectural overhead and the programming complexity for the execution of a single

specific task such as string matching would not legitimate the use of such a hardware

platform.

2.4 Summarization

String matching algorithms can normally be optimized for approximate text search on

general purpose processors [Bae99, Knu97, Nav05, Wu92]. Furthermore, using parallel

and associative processors permits the parallelization of the data and the operations

during the processing, and results in drastically reduced execution times [Dav86, Lee91,

Wu02]. However, despite a very high programming flexibility, these solutions suffer from

the rather low performance of the memory subsystem.

Integrating processors and main memory in a single chip is a promising approach to

increase system performance. For all the research performed in the last decade, the main

goal was to find a way how to overcome the memory wall. Such an integration provides a

very high memory bandwidth that can be exploited efficiently by vector operations. As

a consequence, proprietary extensions and special compilers have to be built in order to

guarantee the usability and the programmability of these systems. However, for custom

tasks with critical specifications, it is still possible to trade off flexibility for performance

in order to meet the time constraints.

Bringing processing on the storage chip that uses the same interface as conventional

memory devices offers an increased memory bandwidth of many orders of magnitude

40 Chapter III. Related Work

compared to standard systems. As a consequence, avoiding the delays associated with

communicating off chip due to internal memory accesses reduces the overall latency.

Multi-processor implementations are even capable of executing multiple threads in the

memory. From the practical point of view, functions can be in some cases simply in-

voked through memory-mapped writes and the results obtained through standard read

procedures. However, one of the main difficulties remains to maintain cache coherency

between the main processor and the smart memory devices.

Through all the different implementations reported in this section, we have seen

that the programmability was still a major concern in the design of the architecture of

parallel processors. Even if more bandwidth can be extracted from the memory, the

processor-based system may be difficult to program. For most of them, not only the

type of application but also the quality of the custom compilers determine the overall

performance. By using application specific architectures such as ASICs or dedicated

coprocessing FPGA implementations, the efficiency can be maximized in terms of speed,

hardware area, throughput and power consumption, at the cost of lower flexibility. In

this sense, building a system optimized for a specific application will always be faster

than configuring a general machine for that task.

3 Associative Access Method

The Associative Access Method (AAM) belongs to the class of the filtering algorithms.

Based on the use of text signatures and binary attributes, it permits a non-exact pattern

matching and thus an extremely flexible retrieval. Although it has been developed and

first published by Lapir et.al. [Ber98, Lap92, Lap02] more than a decade ago, there is

still ongoing research and applications [Lay05a, Urb02] relying on this method. In this

section, we recall the main functionalities of the AAM and provide the algorithmic basis

for the development of the Associative Computing Engine (ACE).

3.1 Building the Signature File

As a probabilistic method for indexing text, the most important element of the AAM is

the signature file. It is produced using a hash function h(x) which maps every feature x

of a given text T of a page p to bit masks of a constant size W . These features can be of

any kind as long as they have only two possible states in the coded object, i.e., present or

absent. Our research application focuses on text retrieval where the considered objects

are text pages and the features are trigrams.

Per definition, trigrams are ordered triplets of characters from an alphabetic writing

system Σ, e.g., “the”. As a special form of q-gram, they led to the development of

3. Associative Access Method 41

Trigram
Coding{τj} {h(τj)}

bp =
⋃

(h(τj))

original tex for ha hingt

h(τj) =
∑2

i=0 τj[i] · B
2−i mod W W bits

s

|T | = n

Fig. 3.2. The signature of a page p is created by hashing all the trigrams present in a character string T

and computing the union of all the thus obtained bit masks. Considering a non-injective hash function,

n bits or less out of W are set in the signature bp.

various fast methods for approximate string matching that share the principle of filter-

ing [Bur02]. According to (2.4), Fig. 3.2 shows how the signature of a page p is created

by hashing all the trigrams present in a character string T and computing the union of

all the thus obtained bit masks. Since h(τ) is not an injective function on purpose, it

causes a certain degree of hash collisions so that n = |T | bits or less out of W are set

in the signature bp. The most delicate part of the design of a signature file remains to

ensure that the probability of a false drop is low enough while keeping the signature file

as short as possible [Bae99].

The Bit Attribute Matrix (BAM) [Lap92, Lap02] is the regular W ×L bit file formed

by the superposition of L signatures that constitutes the entry point of our hardware

design. Fig. 3.3 represents the off-line procedure of the creation of the BAM which

includes two successive steps. First, documents of a textual database are segmented

in equally sized pages using ASCII filters which remove images and other meta data

[Bee03]. They perform a normalization of the characters, i.e., lowering the case and

removing accents for the mapping on a finite alphabet Σ. Then the contents of the texts

are stored as a set of binary features in the BAM using the trigram hashing mentioned

above. In this matrix, as a consequence of the lossy transformation, no information is

available on the position of the binary features in the original text. Once the BAM has

been created, the original text is compressed and stored for future use so that the final

database consists of the plaintext data and its corresponding binary image.

Corresponding to the retrieval granularity of the AAM, the size of a page and the

length W of the signature specify the hit ratio in the BAM, i.e., the density of ones in

the matrix. Considering that each of the n trigrams of a page set at most n random bits

in a signature, the probability of a hit ph and a miss pm are such that ph = 1−pm ≤
n
W

.

For a random query Q of length m, the global matching probability yields (ph)
m and can

be used as a comparison criterion to perform a fast page selection. The system architect

which uses the AAM has the possibility to parameterize n and W for the construction

of the index database. On the one hand, if n ≫ W , the probability of having retrieval

collisions gets very high since pm ≫
1
2
. On the other hand, if n ≪ W , the size of the

BAM becomes huge, since reducing n or enlarging W respectively increases the number

or the length of the necessary signatures. There is a good reason, however, why W

should correspond to twice the number of characters within a page. Shannon’s entropy

42 Chapter III. Related Work

Textual Database

Page 1

Page 2

Page 3

Page 1

Page 2

Document 2

Document 1

H
as

h
in

g
&

T
ri

gr
am

E
n
co

d
in

g

A
S
C

II
E

x
tr

ac
ti

on
F
il
te

rs

Page signature

Bit Attribute Matrix

0100101010101001000100...

Original Database

Document 1

Document 2

Fig. 3.3. The compilation of the BAM from the original database occurs through a filtered textual

database. The hash function encodes equally sized text pages into a fixed length signature vector.

is a common concept used in information theory defined by

S = −

N∑

i=1

pi · log2 pi with

N∑

i=1

pi = 1 (3.1)

where pi is the probability characterizing one of N possible states. It is the lowest bound

on the number of bits needed to describe the system and reflects its information content.

Entropy is also found in data compression, where one makes use of the non-uniform

occurrence of bit patterns in some quantized schemes [Jai89]. An optimal coding of the

BAM is achieved when approximately half of the bits are set, since this theoretically

conforms to the most efficient arrangement [Cri91]. Moreover, the amount of possible

W bits signatures
(

W
n

)
is maximum for n = W/2, therefore the density of ones set for

the availability of a given trigram is optimized and yields one half.

For example, we can set the retrieval granularity of the AAM to pages sizes of 1kB,

i.e., approximatively 1000 characters requiring a hashing in W = 2000 bits signatures.

Taking W = 2039, the highest prime number lower than 211, as modulo in (2.4) states

a very practical reason. Aligning the signatures on the top of each other leads to an

efficient occupancy of standard hardware memory devices so that when addressing the

position h(x) over 11 bits, only a minimal portion of the address range is left unused.

We can express the practical utilization u of a given memory, the width of which is set

to 211 = 2048 bits with

u =
2039

211
= 0.9956 (i.e., waste less than 0.5%). (3.2)

Nonetheless, for the insertion of supplementary administrative functionalities such as

user access restriction or signature validity, the nine (2048 − 2039 = 9) remaining bits

are very welcome to be used.

3. Associative Access Method 43

Obviously, the probability of false drops within a signature is very high. If we consider

the 26 alphabet symbols equiprobable in texts, the collision factor of each trigram set in

the 2039 bits signature is about 263/2039 ≈ 8.6. Taking 40 symbols into account for Σ,

as we might do later for the functional verification of our work, would even raise it to

over 30. However, linguistic properties hidden in documents make the method work fine.

On the one hand, depending on the considered language, e.g., English, an interesting

fact is that when presented with the letter “t” in the initial position of a word, there is a

very high probability that the letters “h” and “e” will follow. Without further measure,

this would cause the position of the trigram “the” to be always set and thus useless. On

the other hand, many trigrams don’t even exist in a given language, so that the actual

collision factor remains much lower than as calculated above.

In summary, the major advantage of the hashing procedure, when it comes to hard-

ware realizations, is that it drastically reduces the amount of memory needed for the

storage of the signature files. The choice of an optimal hash function h(x) implies a

trade-off between memory requirements and collision factor. Further discussion remains

beyond the scope of the thesis, since such a decision has to be made by the application

designer.

3.2 The Retrieval Process

Basically, filter algorithms such as the AAM consist of at least two phases so that a

fast but cursory inspection of the signature file is performed at first, selecting potential

candidates for the following slower verification [Bur02]. This results in a significant

speedup when compared to conventional approximate string matching algorithms.

3.2.1 A Two Phases Search Algorithm

Depicted in Fig. 3.4, the retrieval algorithm includes two matching phases. First the

filtering phase returns a list of relevant documents from the BAM using approximate

matching, then the evaluation phase computes the relevance factor of the documents

regarding the actual query through a more precise matching. These two phases are

performed after the preprocessing of the query text Q which includes ASCII filtering,

fragmentation of long queries, trigram encoding into query slots and weighting of the

words depending on their importance at the semantic level. A typical example of query

encoding is given in Sec. 3.2.2.

In the approximate matching phase, the query signature is compared with the at-

tributes of the BAM to identify the records having a high probability of containing the

desired query information [Ber98]. In this rough but very fast procedure used to ex-

clude a large number of non-relevant documents from the search, a similarity measure

is computed for each page signature to produce what we call page score, as explained

in Sec. 3.2.3. Fig. 3.5 depicts different responses from the filtering phase for which the

amount R of returned results depends on a threshold value θ set to around two thirds

44 Chapter III. Related Work

Query

Text Fragmentation

ASCII Filtering

Word weighting

Trigram coding

IndexerResult

List

Final

Matching

Verification

Page

eQQ

Q

Page

Matching

Approx.

Documents

Q
u
er

y
P

h
.

1
:

F
il
te

ri
n
g

P
h
.

2
:

E
va

lu
a
ti
o
n

E
n
co

d
in

g

sections signature

D
a
ta

b
a
se

E
n
se

m
b
le

Query

image

Result
List

Page
address

Page
score

text Ti bp[−]

Interface

User

Retrieved

recall {ei}
Area of Interest

Query
signature

BAMTextual

Database

Fig. 3.4. The filtering and evaluation phases of the AAM correspond to an approximate matching and

an exact matching. They take place after the signature encoding of the query string.

R

M
at

ch
in

g
(i

n
%

)

Page rank

b) Broad

R

M
at

ch
in

g
(i

n
%

)

d) Mismatch

Page rank

M
at

ch
in

g
(i

n
%

)

c) Inaccurate

Page rank

M
at

ch
in

g
(i

n
%

)

Page rank

a) Selective

R

θ

θ θR θ

Fig. 3.5. Different distributions of the results after a a) selective, b) broad, c) inaccurate and d) totally

mismatching filtering phase. A dynamic threshold value θ, of about two thirds of the highest score,

sets the amount of pages R to be reviewed in the second phase of the query.

of the maximum score. In the selective filtering of Fig. 3.5-a, a special query topic is

found inside a few pages only and the rest of the database entries match poorly and yield

low scores. In the broad and inaccurate filtering of Fig. 3.5-b and c, the query is only

partially found, so that the maximum possible score of 100% is not reached. A certain

degree of collision is also present in the filtering and raises the scores erroneously. The

records from the first phase, matching at the bit attribute level, must consequently be

evaluated during the verification phase using more rigid pairing procedures. Further-

more, in the case of Fig. 3.5-d, the scores are so low that the second phase should be

avoided. The reasons for this are twofold. First, performing exact matching on all the

returned records would take a very long time, and secondly, the correct answer to such

a query is “failed”.

Concentrating on the filtering phase, the remaining R candidates are sorted in de-

scending order of relevance and passed onto the second phase, the purpose of which is

to refine the results and remove the false positives, i.e., the pages with a good score due

3. Associative Access Method 45

to the collisions. This process can be very short if the approximate matching phase was

selective enough, as seen in the first case of Fig. 3.5. Though raising the threshold θ

reduces the amount of returned candidates R and vice-versa, it has been experienced

and advised that depending on the quality of the feature engineering, the second phase

might even be entirely skipped. Therefore we will mainly focus our work on the filtering

phase of the AAM.

3.2.2 Encoding Query Strings

In this section, we present the method used to overcome the computational limitations

due to the basic bitwise signature comparisons as known from the theory as in (2.5).

First we take into account the order of appearance of the trigrams in the query string

using sequential processing of the query slots. Secondly, partitioning long queries Q into

many fragments F allows better matching at the string level and permits documents

recovery in which only parts of the original query appear such that

Q = {F1, F2, . . . , Ff}. (3.3)

After marking the fragments, the decomposition of a query string Q of length m into a

list of trigrams can be performed using a sequential character selection. Each character

item qj of Q is mapped a trigram τj so that

qj ∈ Q 7−→ τj =
{
qj−1, qj , qj+1

}
∈

...
Q, ∀j ∈ [0;m− 1] (3.4)

with
...
Q the trigram encoding of the query string Q. As seen in Fig. 3.2, the items q−1 and

qm are both initialized to the spacing character usually marking the separation between

two words. As a result, the number of trigrams that can be formed based on a string of

m characters equals its length. Thus we obtain the list of query slots after the encoding

of the trigrams into a hash value through a hash function as in (2.4).

Q =
{
qj | j ∈ [0;m− 1]

}
=
{
q0, q1, . . . , qm−1

}
(3.5)yTrigram formation

...
Q =

{
τj | j ∈ [0;m− 1]

}
=
{
τ0, τ1, . . . , τm−1

}
(3.6)yHashing h(x)

Q̃ =
{
h(τj)| j ∈ [0;m− 1]

}
(3.7)

Given as an example, Fig. 3.6 represents the coding of a long query which requires

different filtering steps preceding the application of the hash function. The assignment

of the weights ωs to each single slot s is constrained by the filtering at the word level.

Dedicated filters are supposed to recognize important or unimportant words in a frag-

ment and respectively emphasize them with a higher weight or neglect them with a

zero-weight. Experimentally, it can be proven that the quality of the filtering impacts

the quality of the results and the overall duration of the search. Moreover in this sense,

46 Chapter III. Related Work

Exhibiting a diversity of playing styles, including fingerpicking, clawhammering and frailing, on

electric and acoustic guitars, Mark Knopfler writes and performs songs that showcase both his

the steady backing of his brother David on rhythm guitar, bassist John Illsley and drummer Pick

Withers, Mark Knopfler and Dire Straits have forged their own distinctive sound by combining

enthusiastic approach to the instrument and a solid knowledge of rock and blues idioms. With

some of the best aspects of traditional and contemporary musical styles.

⇓ Filtering after fragmentation ∀Ff ∈ Q and
length dependent word weighting with ωs.

exhibiting a diversity of playing styles including fingerpicking

1 0 2 0 1 2 1 3

clawhammering and frailing on electric and acoustic guitars

3 0 3 0 1 0 1 2

⇓ Creation of a list of slots accompanied with
weights ωs using windowing technique.

1
1
1

1
1
1
1
1
1
2
2
2

1

exh
xhi
hib
ibi
bit
iti
tin
ing
ng

ive
div
di

1853
254

1022
89

965
2021
1853
1775
647

1145
988
52

1424
... ...

ex 1548

g d

ωsτ slot

w
o
rd

1
w

o
rd

2

exh
xhi
hib
ibi
bit
iti
tin
ing

g d
ng

ive
...

div

ex

exhibiting

moving window

diversity...

di

h(τ) =
∑2

i=0 τ [i] ·B
2−i mod W

Trigram coding
with hash-function

Fig. 3.6. The coding of long query strings requires different filtering steps preceding the application

of the hash function h(τ) on each trigram τ . The obtained list keeps the order of appearance of the

trigrams in the query string.

removing too frequent words that carry no information such as “and” or “the” in English

does not only improve the coding of the query and the BAM signatures, it also reduces

the length of the list of slots and hence the searching time.

3.2.3 Associative Matching Computations

In this section, we provide an overview on the calculation method of the score of a page

as it has to be implemented later in our hardware accelerator. By converting a string

Q to a set of hash values Q̃, a vector space is created, thus allowing a sequence to be

compared to other sequences in a transformed manner, e.g., the dot product, similarly

to the correlation of two signals. The method described by (2.5) in Sec. 2.4 of Chapter II

relies on Hamming distance between two signatures. This very basic measure does not

take into account any temporal information such as the order of appearance of the

trigrams in the string. The AAM, however, provides an improvement of this method

3. Associative Access Method 47

as it considers the query as a sequence of items, i.e., the list of query slots and not an

orderless set.

Practically, by addressing the binary signature bp of a document or a page p from

the file with the function h(x), one can know whether the key x is included in the text

related to this signature up to a certain extent, depending on the probability of collision

in the hashing:

bp[h(x)] =

{
0 if all the features are absent,

1 if one of the features is present.
(3.8)

The coding in (3.8) does not take into account if a given trigram occurs several times

or if it is mapped into an already existing slot. Finding a 0 means that none of the

trigrams from the addressed set is present in the page, whereas a 1 reflects the fact that

at least one of the trigrams is included. Hence, in terms of communications theory, this

shows that a 0 carries much more information than a 1 within the signature of a page.

The direct impact on the search method is such that the logical matching statements

must be negated. In other words, the part of the algorithm dealing with the signature

file has to privilege the treatment of 0s over the 1s which might even be ignored, as they

do not bring much information in bit processing.

Based on the information present in the page signatures bp and in the query Q, instead

of awarding a page which maybe owns the searched trigram, non-matching pages are

punished more or less intensively, according to the weights given to the different words

composing a query fragment Ff . A mismatch penalty ψ(n) is assigned if a page does

not hold the binary feature xn, i.e., the trigram τn, which is present in the query. A

switch penalty σ(n) is given when features appear or disappear along the processing

at position n in the query, because when successive features (. . . xn−1, xn, xn+1 . . .) are

found in the page signature, they probably belong to the same sequence in the original

page. Hence, the bigger the similarity of one query fragment Ff to a BAM page p, the

smaller the corresponding penalty Pp(f) defined by

Pp(f) =
∑

n

(σ(n) + ψ(n))× ωn (3.9)

where ωn is the weight associated to the query-slot n. Over all the query fragments, the

penalties acquired for one page p must be combined in order to provide an overall rating

of the page. The final score Sp is adjusted after each query fragment f by summing

up the logarithm of the penalty Pp(f) complemented to a constant K that prevents an

overflow so that

Sp =
∑

f

(K − log2Pp(f)) . (3.10)

The purpose of the logarithm is to sum up big values only for very small fragment

penalties. Otherwise, in case of a linear function, large penalties of bad matching frag-

ments would impact the result and suppress the small penalties of good matching frag-

ments [Lap92].

48 Chapter III. Related Work

Moreover, to ease and accelerate the analysis of the results after processing the

first phase, we generate besides each score a Fragment Hit Table (FHT) for each page

where good fragments are marked. By comparing the current fragment penalty Pp(f)

with a previously dynamically loaded threshold value Tf , a bit (Hf) is set in the table

{H1, H2, ..., Hi} at the corresponding location in case the penalty is lower than the

threshold with

Hf = sign (Pp(f)− Tf) . (3.11)

As the fragments composing a query might not have the same length or the same im-

portance, it makes sense to be able to provide for each fragment Ff a new threshold Tf

during the encoding of the query. The reasons for the FHT are twofold. First, it allows

the removal of bad fragments from the verification phase, as described in the previous

section and secondly, it permits a better localization of the score in the uncompressed

textual page. Finally, the remaining processing in phase one is the sorting of all the

pages according to their score Sp and the selection of the R best ones only.

Chapter IV

System Level Analysis

NOW that we have given an overview of the thesis in the first chapter, recalled

basic implementation strategies related to digital system as well as standard tech-

niques for sorting and searching in the second chapter, and ultimately reviewed state of

the art software and alternative hardware solutions proposed by other research groups

worldwide in the third chapter, we dedicate this key chapter to the detailed analysis of

the AAM search algorithm and discuss our motivation and expectations in this work.

Consequently, we provide a parallel revision of the chosen algorithm which shall be best

suited for a hardware implementation.

1 Motivation and Expectations

Searching remains one of the most time consuming tasks of many computerized ap-

plications. Because of the exponentially growing quantity of digital information, the

duration of a search usually scales up more rapidly with the size of the database than it

scales down with the always increasing hardware performance of the newest computers.

Therefore it makes sense not only to develop and implement alternative algorithms with

a reduced complexity, but also to provide a suitable hardware acceleration platform

performing record-breaking retrieval times.

1.1 Problem Statement

The substitution of a very accurate and rather complex search algorithm for a simpler

but less precise one often leads to a substantial increase in speed. Introduced in Sec. 3

of Chapter III, the Associative Access Method (AAM) is hence an efficient method for

information retrieval benefiting from a trade-off between accuracy and speed. Due to

50 Chapter IV. System Level Analysis

the encoding scheme it bases on, not only is it adaptable to any kind of search, including

objects codable with a set of binary descriptors, but it is also extremely well suited for

very long queries in huge databases. Based on approximate string matching, it makes

use of an index file, the Bit Attribute Matrix (BAM), generated by means of a hash

function to compute a kind of edit-distance, as referred to in Sec. 2.3 of Chapter II.

Considering a huge textual database which can be intrinsically divided into small

pages, the searching task consists in locating the ones which are the most similar to

an issued query string. According to the AAM, once a query string has been encoded,

the search is performed in two successive phases that include a filtering of the best

matching pages at the trigram level and a more exact evaluation phase at the sentence

level. Unfortunately, the filtering phase takes too much time, most probably because

too many signatures must be scanned, implying a lot of random accesses to the memory

subsystem on which the BAM is stored. Moreover, the associative computing task

described in Sec. 3.2.3 of Chapter III costs precious processing time and an enormous

amount of data transfers between the main memory, the secondary storage media and the

central processor. The reality of the situation is such that soon, due to the exponentially

increasing amount of information available world wide stored for later retrieval, it will

be impossible to address the problem of long queries in large databases with standard

computers without dedicated hardware components.

On the one hand, regarding a single user application, it may not be worthwhile

to accelerate the process of searching a couple of items in a small database, as the

operations in this case already appear to be instantaneous. However, if the database is

stored remotely on a server over which many people are supposed to perform different

queries with a relatively high sustained frequency, the information retrieval system must

benefit from a very fast search functionality even for small queries, in order to satisfy

each user. On the other hand, when it comes to huge databases, the query time is,

beside the retrieval quality, the most important factor that makes a search engine a

good search engine. Therefore, as we have deeper studied Lapir’s AAM algorithm, we

intend to build a hardware solution based on this method in such a way that it might

even become a part of any standard computer in the future.

1.2 Proposed Research

The very first decision which had to be made at an earlier stage of the development in our

work was related to the choice of the most suitable search algorithm that could address

the problem of finding information in huge databases while handling very long query

strings. Based on a textual paradigm, the AAM presented in Sec. 3 of Chapter III is an

application of an approximate matching algorithm that relies on the theory described

earlier in Sec. 2.4 of Chapter II. As many single processes compose the retrieval procedure

of the AAM, we have to profile the whole algorithm in different situations, i.e., with

different query lengths and various database sizes, in order to determine which portion

is to be implemented in hardware, even though we know from the description of the

1. Motivation and Expectations 51

system as seen in Fig. 3.4 on page 44 that the filtering phase is the one processing the

most data.

Once we have decided which part of the search algorithm to port to hardware, we

have to concentrate on its internal functionalities and analyze them in such a way that we

can reach the highest degree of parallelism. This follows the idea developed in Sec. 1.2.2

of Chapter II about handling multiple data concurrently with multiple processing units,

which permits the design of a high-performance hardware accelerator. In order to carry

out the realization of the search engine efficiently, we have chosen a top-down approach

where each part of the system is refined by designing it in more detail. By contrast,

in a bottom-up design, individual parts of the system are specified in detail and linked

together to form larger components until a complete system is fully described. In our

case, the top-down approach emphasizes a complete understanding of the system as a

whole, i.e., the search method, while permitting to concentrate also on the particular

refinement of dedicated parts, e.g., the memory subsystem or the sorting method. No

coding can begin until a sufficient level of detail has been reached in the design, therefore

we carefully planned all the modules necessary for the architecture using a Hardware

Description Language (HDL). Through a top-down design methodology, we can provide

a detailed description of a complex system at a very low level of abstraction without

actually knowing the final target technology, e.g., ASIC or FPGA.

When designing a System on Chip (SoC), it is important to carefully choose each

element of the system, that is to say not only the ones found on the processing dataflow

but also the peripheral ones, i.e., the memory subsystem and the external I/O interfaces.

As seen in Sec. 1.4 of Chapter II, only a restricted choice is offered within a wide range

of memory devices. The quality of the connection in terms of throughput, data width

and transfer frequency extremely influences the overall performance of the final system.

Therefore designing the interfaces remains a very delicate part of the work, which has

to be handled at an early stage of the whole development.

Sorting plays a major role in the design of our information retrieval system. As we

have seen in Sec. 3 of Chapter II, there exist many algorithms which have been thor-

oughly studied and reviewed [Knu97, Sed88] since the advent of computer science. Var-

ious techniques seem to be well suited for our problem and able to settle the sorting and

merging tasks within the hardware constraints which appeared during the development

of the acceleration platform. Our research focuses on the design and the implementation

of an efficient hardware sorting unit with an enormous data throughput, as it is to be

expected in a highly parallel system architecture, while caring about the resulting circuit

area and its realizability.

Once a design has been elaborated at the system level, it needs to be refined consider-

ing suitable speed-up techniques in order to make it more efficient in terms of processing

speed and data throughput. At the Register Transfer Level (RTL), pipelining, as in-

troduced in Sec. 1.1.2 in Chapter II, has to be applied onto the system architecture in

order to speed-up the whole design. Basically, pipelining reduces the cycle time of a

processing unit and hence increases its throughput, that is to say the number of instruc-

tions and the amount of data that can be executed in a unit of time. However, despite

52 Chapter IV. System Level Analysis

I/F
PC

A
va

il
ab

le
co

n
n
ec

ti
on

Results

Query

Dedicated Semiconductor Memory Subsystem

ACE
Core

(P
C

I/
U

S
B

/I
E

E
E

13
94

)

Memory BusVery High Bandwidth

Hardware Acceleration Platform

“Associative Computing Engine”
Interface

User

Local Mass Storage

Fig. 4.1. An overview of a hardware accelerator platform supporting an information retrieval system

where the database index is deported to a dedicated semiconductor memory subsystem.

this benefit, the method requires a completely new scheduling of the tasks and implies

additional controls and synchronization.

Introduced in Chapter II, FPGA devices provide a highly parallel structure that

supports spatial computing models instead of a time-multiplexed ones. Not only do

FPGAs approximate sequential processors in size while providing orders of magnitude

greater performance, also a high flexibility and short design cycles compared to ASICs

can be reached through millions of customizable logic gates on a chip [DeH00b]. FPGAs

are well suited for the design and test of complex digital circuits, especially computa-

tionally intensive signal processing data paths. For these reasons, we choose this kind

of hardware platform to implement and benchmark our system, the final realization of

which is depicted in Fig. 4.1. It includes an FPGA referred to as “ACE Core” that

handles the algorithmic computations, a dedicated memory subsystem providing a very

high bandwidth interface where the BAM is stored, and a connection to a standard PC

over which query requests are received and results are sent. On the software side, the

PC supports the user interface and the driver programs that permit the communication

with the hardware platform through a given protocol, e.g., Peripheral Component Inter-

connect (PCI) or Universal Serial Bus (USB). As we know from Sec. 3 of Chapter III,

since the original text database can easily reach many gigabytes in size and does not

need to be frequently accessed, it can be stored on the local mass storage devices, e.g.,

HDD.

2 Profiling and Analysis

This section is based on a software model written in C++ of the complete AAM search

algorithm, the functionalities of which are described in Chapter III, Sec. 3.2.1. Orig-

inally implemented by G. Lapir, we extracted with his agreement the most relevant

2. Profiling and Analysis 53

functions of the program and reimplemented them for research purposes without graph-

ical user interface for an open-source Operating System (OS). As Chapter VI later gives

an overview of the encoding parts of the algorithm we have needed in order to simulate

and benchmark our work, this chapter explains partially the constructs of the matching

procedure while focusing on its hardware realization.

2.1 Exploration of the Software Model

Even though we have theoretical knowledge of the computations of an algorithm, it is

not enough to guess which parts of it are more likely to be accelerated for the benefit of

the whole system. Measurement is a crucial component for performance improvement.

As systems become more complex, the need for machine-assisted performance analysis

grows. Profiling is a widely used method for the analysis of algorithms in order to deter-

mine the cost of an implementation in terms of hardware resources and computational

power needed. Hence, in order to identify the bottlenecks in our program, we decided

to rely on the Linux OS which is well-served in terms of development tools including a

wide selection of profiling packages.

According to the description of the matching computations in Chapter III, more

precisely around Fig. 3.4 on page 44, the AAM algorithm is composed of many separate

phases which are preformed sequentially. Coarsely, we can group all the operations

into three main tasks. The first one includes the query operations, the second one the

filtering operations, i.e., the first phase of the search algorithm, and the third one the

evaluation operations of the selected pages, i.e., the second phase of the search algorithm.

Fig. 4.2 shows the time taken by each task according to different query and database

parameters. For later comparisons in our database model, as they scale linearly with

each other, a textual database that contains L entries yields a BAM including L lines

with a total size of L
4
kB, considering 2 kb signatures. Four cases are depicted for which

the size of the database is increased tenfold while the query becomes slightly longer.

It appears clearly that the relative duration of the different tasks within the complete

search process varies with both the length of the query and the size of the database.

Although every individual duration as well as the total time of the algorithm increase,

the filtering phase remains the most time-consuming task of the search algorithm. It

varies from about 650µs, for a thousand entries database and a five words query as seen

in the top of Fig. 4.2, though representing 40% of the total time, up to about 1.6s for a

million entries and twenty words query, which corresponds to over 99% of the total time

as seen in the last case of Fig. 4.2.

According to Amdahl’s law [Amd67], it is possible to find the maximum expected

improvement of an overall system when only part of it is accelerated. In this concern,

the final speed-up s achievable from the improvement of a computation that affects a

54 Chapter IV. System Level Analysis

Index: 103 entries

Index: 104 entries
Query: ∼10 words

Index: 105 entries

Index: 106 entries
Query: ∼20 words

Query: ∼15 words

Query: ∼5 words

50 ms 100 ms0

0

0 1 ms

10 ms5 ms

0 1 s500 ms

150 ms

15 ms

1.5 ms

1.5 s

100 µs

100 ms

10 ms

1 ms

500 µs

Legend: Query Encoding Filtering Phase Evaluation Phase

Fig. 4.2. Software profiling of the entire search algorithm helps measure the three phases performed

sequentially. As the execution time scales up with the size of the database and the length of the query,

it appears clearly that the filtering phase is the most time consuming one.

proportion Pi with an individual speed-up of Si is expressed by

s =

(
P0 +

N∑

i=1

Pi

Si

)−1

with

N∑

i=0

Pi = 1 (4.1)

where P0 is the fraction of a calculation that is sequential and cannot benefit from

parallelization, or in other words the part of the program that remains unimproved. If

we are able to speed-up the filtering phase consuming between Pf = 40% and almost

Pf = 100% of the total time with a hypothetical factor Sf = 100, then we can expect a

total speed-up sA for the AAM of

sA =

(
1− Pf +

Pf

Sf

)−1

such that 1.66 ≤ sA < 100 (4.2)

where 1 − Pf = P0 from (4.1). Even though 1.66 does not appear to be too much

at first, the greatest speed-up will be achieved in the situations we need it most, i.e.,

for combinations of huge BAM sizes and large queries. This confirms our speculations

about the AAM from Sec. 3 of Chapter III and guides us through the realization of our

hardware accelerator. We know that it does make sense, in order to accelerate the whole

search process, to port the filtering into hardware and neither the query encoding nor

the evaluation phase. For the reminder of the thesis, we will refer to the AAM filtering

phase as Associative Access Filter (AAF).

2.2 Sequential Algorithm Analysis

We consider here the AAF algorithm in its basic form, apart from administrative func-

tionalities such as page selections or query refinements. Given a Bit Attribute Matrix

(BAM) of width W and length L with respect to the conventions of the third chapter, we

are able to decompose the AAF algorithm into different operations related to the equa-

2. Profiling and Analysis 55

tions described in Sec. 3 of Chapter III. Fig. 4.3 depicts the AAF in terms of algorithmic

steps while these are described in more detail through the listing of Algorithm A. This

constitutes a comprehensive basis for the later hardware implementation of the AAF

and the choice of dedicated speed-up techniques.

Algorithm A (Associative Access Filter). This algorithm explains how to recall the

R pages that match the best a given query Q encoded in a set of slots using a trigram

based hash function. Let p, f and s index the currently processed page, fragment and

slot respectively. Let Nf (Q) and Ns(f) be the number of fragments in the query Q and

the number of slots in a given fragment f respectively.

A1. [Initialize.] Set p← 1 (first page signature of the BAM).

A2. [Page loop.] Reset f ← 0, s← 0. Process page loop ∀p | 1 ≤ p ≤ L.

A3. [Fragment loop.] Reset s← 0. Process fragment loop ∀f ∈ Q.

A4. [BAM access.] Get query-slot s and read bp[s] according to (3.8).

A5. [Last slot in fragment?] If s < Ns(f), then increase s and go back to A4.

A6. [Calculate penalty.] Calculate Pp(f) according to (3.9).

A7. [Calculate hit.] Complete the FHT according to (3.11).

A8. [Last fragment in query?] If f < Nf (Q), then increase f and go back to A3.

A9. [Calculate score.] Update the score Sp of the page p according to (3.10).

A10. [Last page in BAM?] If p < L, then increase p and go back to A2.

A11. [Sort pages.] Sort the L pages coded in the BAM according to Sp. Return the R

best ranked pages with respective score and FHT.

Regarding the organization of the nested loops as seen in Fig. 4.3, we know from

the functional point of view that certain steps within Algorithm A will either be run

through lots of times, e.g., the loop over step A4, or will take a considerable amount of

time, e.g., step A11. In order to verify our predictions, the first phase of the retrieval

algorithm has been modeled using the C++ programming language and optimized at

the instruction level [Lap92]. A listing of the most relevant functions implemented in

this model is given in Table 4.1. It shows for each function which part of Algorithm A

it refers to.

In order to verify the resource consumption of the different functions composing the

AAF model, we rely on the profiling tools of the Linux operating system and evaluate the

amount of time and the number of calls of each step. The measured values are reported

in Figures 4.4 and 4.5 for the most significant functions according to variations of the

length of the query and the size of the BAM. However, it should be noticed that, due

to the measurement of very short time periods and the physically impossible absolute

accuracy, the position of the points in the following graphs might be subject to a small

vertical visual correction.

56 Chapter IV. System Level Analysis

Return R best ones
A11. Sort all pages,

A3. Reset sA1. Initialize A4. Access BAM

A5. Last slot in f?

A7. Calculate Hp(f)

A6. Calculate Pp(f)

A10. Last page?

NoYes

s
+

+

f
+

+

No

p
+

+

No

Yes

Yes

A2. Reset f

A9. Calculate Sp A8. Last fragment?

Fig. 4.3. Flow chart of the filtering phase of the AAM according to Algorithm A highlighting three

nested loops for the processing of pages, fragments and slots.

Fig. 4.4 demonstrates the global linear dependency of the AAF duration against the

query length. Fig. 4.4-a reflects the ratio of computational power needed by the different

tasks when the number of searched items varies. As a result, the function calc pnlty()

clearly dominates all the others. This effect is amplified through the increasing of the

length of the query string, since the implied function corresponds to the most inner

loop of the AAF, as seen in Fig. 4.3. Surprisingly, the size of the BAM influences

all the functions equally such that we can draw proportionality lines regardless of this

parameter. On the other hand, Fig. 4.4-b shows as expected that the time needed by

the sorting algorithm implemented in the function sort res does not depend on the

length of the query. Moreover, it shows that doubling the size of the BAM also doubles

the search time of the functions calc pnlty() and sort res(). This is due to the fact

that the width W of the BAM is constant and that only the number of entries in the

database sets the length L and consequently the size of the BAM.

Function name Algorithm steps Description

load bam() A1 Open BAM file and get BAM parameters

read qry() A2, A3 Open query file and get query parameters

calc pnlty() A4, A5, A6 Read BAM data and calculate penalty

calc hit() A7, A8 Compare fragment penalty with threshold value

calc score() A9, A10 Transform fragment penalties into page score

sort res() A11 Perform internal sort in main memory

Table 4.1. Listing of the most relevant functions composing the software model of the filtering phase

of the AAM according to Algorithm A.

2. Profiling and Analysis 57

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
51238425619212896644832

C
P

U
u
sa

ge
ra

ti
o

p
er

fu
n
ct

io
n

Query Length (items)

cal
c pn

lty

sort res

calc score

calc hit
0.01

0.1

1

10

51238425619212896644832

E
x
ec

u
ti

on
ti

m
e

p
er

fu
n
ct

io
n

(s
)

Query Length (items)

calc
pnlty

sort res

256
MB

128
MB

64M
B

32M
B

16M
B

256MB

128MB

64MB

32MB

16MB

Fig. 4.4. Measurements against the query length of a) the CPU usage ratio for the four most time-

consuming functions of the algorithm and b) the absolute search time in seconds with the size of the

BAM as parameter varying from 16MB up to 256MB.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
25612864321684

C
P

U
u
sa

ge
ra

ti
o

p
er

fu
n
ct

io
n

BAM Size (MB)

calc hit
calc score

ca
lc

pn
lty

so
rt

res

Query length QL

from 512 items
down to 96 items

512

96

96

512
0.01

0.1

1

10

2561286432168421

E
x
ec

u
ti

on
ti

m
e

p
er

fu
n
ct

io
n

(s
)

BAM Size (MB)

ca
lc

pn
lty

so
rt

res

ca
lc

sco
re

ca
lc

hit

Query length QL

from 96 items
up to 512 items

Fig. 4.5. Measurements against the size of the BAM of a) the CPU usage ratio for the four most

time-consuming functions of the algorithm and b) the absolute search time in seconds with the length

of the query as parameter varying from 96 items up to 512 items.

Fig. 4.5 demonstrates the linear dependency of the global AAF time against the

size of the BAM. As expected, Fig. 4.5-b shows that the calc pnlty() function is

the only one to be really affected by the length of the query and confirms Fig. 4.5-

a. Even though function calc score() depends on the amount of fragments in the

query according to Algorithm A, the profiling graphs show that this effect is almost

negligible. It is to be noticed that the data reported in the curves of Figures 4.4 and 4.5

reflects measurements on the most powerful PC available at the beginning of the year

58 Chapter IV. System Level Analysis

2006. However, no further information on the hardware supporting the AAF algorithm

is revealed here on purpose, since the profiling of the algorithm focuses on the relative

duration of the successive tasks. A detailed performance analysis considering different

computer architectures will be given in Chapter VI.

In conclusion, it is safe to say that only four of the main functions composing the

algorithm, as listed in Tab. 4.1, require more than 99% of the total time of the AAF

algorithm. We have seen that the size of the BAM plays a secondary role since all

the profiled functions are equally influenced by this parameter, i.e., the runtime of the

software version of the AAF depends on it linearly. The forthcoming parallelization of

the AAF algorithm can hence be based on an arbitrary BAM length L. As one function

(calc pnlty()) dominates all the others already for small queries, it has become a

key element in the realization of the hardware accelerator to implement it extremely

efficiently. The impact of this theory on the rest of the algorithm is thoroughly studied

in this thesis.

3 Hardware Accelerator Design

3.1 Parallelization of the Algorithm

While building an acceleration platform, we have to increase the concurrency and reduce

overheads due to parallelization, in order to maximize the potential speedup. More than

a standard methodology, parallelizing a serial algorithm requires a real understanding

of the functionalities of the algorithm and a precise overview on how the data is handled

throughout the processing. It is important to consider not only the computational

complexity of a process, but also the memory overhead caused by any change in the

order of the operations.

3.1.1 From Temporal to Spatial Locality

The basic idea permitting the parallelization of the different tasks composing an al-

gorithm is based on a domain transformation on which time sequential operations are

mapped onto an orthogonal physical space. In the translation of a software program to

a hardware specific architecture, we hereby trade off area for execution delay. Unavoid-

ably, a redesign of the algorithm becomes necessary, in which a special care of the data

and operation dependencies is taken.

As mentioned in Chapter II Sec. 1.2.2, the concept of locality has also been devel-

oped for computer architectures that were able to treat different instructions and/or

different data in parallel, using multiple computational units. Correct processing be-

comes possible only if the dependency graph of each data member is respected. Depicted

in Fig. 4.6, a small number of hardware resources in the temporal implementation are

3. Hardware Accelerator Design 59

t1 ← x
t2 ← a× t1
t2 ← t2 + b
t2 ← t2 × t1
y ← t2 + c

x

b

y

a c

y

x

ALU

c
b
a
t2

t1

vs.

Spatial Model

Temporal Model

Fig. 4.6. Temporal (left) versus spatial (right) locality with the exemplary calculation of y = ax2+bx+c

from [DeH99b] reflects the trade-off between time and area.

reused in time whereas each operator unit exists at different points in the spatial im-

plementation [DeH99b, DeH00b]. As exploiting parallelism permits to achieve high

throughput with low computational latencies, our goal is to find a suitable architecture

for the implementation of the AAF.

3.1.2 Parallelizing the Tasks

An algorithm is basically composed of discrete tasks that involve both data and various

operators, as well as a plot that guide their execution. Parallelizing the tasks in order to

speed up the algorithm requires a certain independency among the components of the

processed dataset, not only in space but also in time. On the one hand, operations imply-

ing different members of a dataset can be inherently performed at the same time because

there is no risk of inconsistency within the data. If a hardware operator f is spatially

available n times, then the dataset {y0 . . . yn−1} = f({x0 . . . xn−1}) = {f(x0) . . . f(xn−1)}

can be calculated concurrently. The degree of parallelism is conditioned by n. On the

other hand, the elements of a dataset computed through a series of operations can bene-

fit from the propagation delay τ of each single operator if they can be fed in sequentially.

If a variable y(t) must be calculated using k operators such that y(t) = f(x(t)) with

f = f0 ◦ . . . ◦ fk−1, then a temporal processing of {y(t0) . . . y(tn−1)} can be performed in

O(nτ + k) time complexity considering that the k operators are available in hardware.

With a trade-off between latency (∝ k) and throughput (∝ nτ with τ ∝ k−1), the de-

gree of parallelism is conditioned by k. This idea corresponds to the pipelining principle

explained in Sec. 1.1.2 of Chapter II applied at the algorithmic level and implies that

no feedback is present in the processing of a single task.

Regarding the AAF described in Algorithm A, we first extract the possible algo-

rithmic transformations by studying the data dependencies along the tasks. The whole

process is linear and implies three nested loops that fetch the BAM data, evaluate the

fragment penalty plus hit, and calculate the score of the current page. In the presence

of deterministic conditions, loops are usually unrolled in hardware to permit a parallel

processing of the internal data. On the contrary, the most inner task, i.e., the BAM

access A4, can only be performed in a sequential manner due firstly to physical real-

ization constraints within memory arrays, and secondly to the unknown length of the

query string. It compels a long processing time for the following tasks and removes the

possibility for the loop to be unrolled.

60 Chapter IV. System Level Analysis

The sequential processing of the data as seen in Fig. 4.3 comes from the fact that

Algorithm A originally runs on a unidimensional computing machine, i.e., a single pro-

cessor computer. For instance in the function calc score() described by (3.10) for step

A9 that transforms the fragment penalties into a page score and the function calc hit()

described by (3.11) for step A7 that compares a fragment penalty with a threshold value,

the input data is the same penalty Pp(f) of the fragment f for a given page p. In other

words, A7 and A9 can be performed in parallel, considering that enough hardware re-

sources are available. Furthermore, a certain degree of freedom is assigned to the AAF

algorithm around these two functions, as they appear in two different loops although

they own the same input constraints. The reason is that the processing occurs progres-

sively in A7 where a single bit in the FHT is updated after the calculation of a fragment

penalty, whereas the score computation is performed when all the fragment penalties

have been calculated. It must be noticed that due to the associativity of the addition

in (3.10) and the vectorization in (3.11), the placement of A7 and A9 in either loop is

allowed.

In summary, with the availability of enough hardware resources, it is possible to

perform all the processing tasks in parallel, if we respect a few conditions. When tasks

imply the same input data, then there is no problem to make them truly parallel.

Otherwise we have to apply the pipelining principle at the task level with a special care

on the synchronization. Furthermore, the sorting task A11 can be split into two parallel

subtasks A11a and A11b, where the first one would sort a few values while the second

would merge the previously ordered values into a list of R final results. The advantage

is that the sorting function does not need to wait until the end of the processing to start

its duty, hence removing O(L) delay on the AAF execution time.

3.1.3 Parallelizing the Data

According to Sec. 3.1 of Chapter III, the BAM is defined as an W ×L matrix with W its

width and L its length. In this matrix, the rows correspond to textual page signatures

which are functionally independent and theoretically uncorrelated. The consequence is

that an arbitrary number of signatures N can be processed in parallel without changing

anything in Algorithm A as described in Fig. 4.3. As the required start information for

the evaluation of a page in step A4 corresponds to one bit according to (3.8), the input

of a parallelized version of the algorithm becomes a bit vector of length N .

A calculation technique related to superscalar CPUs and SIMD machines, as seen in

Sec. 1.2.2 of Chapter II, which handles one single bit of many data variables at the same

time is referred to as vertical computing. In [Ber98, Lap92, Lay05a], a vertical counting

method is used to solve the problem of accumulating single bits in parallel over the fixed

size data-bus of a standard processor. For the hardware design of our accelerator, we

can reuse this idea without being constrained by any processor-related typical internal

data-width. Therefore we take N as the input parameter that specifies the number of

bits that can be processed concurrently, or in other words the number of pages.

Basically, the time needed to treat L pages from the BAM becomes N times shorter

if we use N parallel PEs (Processing elements). However, this is true for the computing

3. Hardware Accelerator Design 61

A1. InitializeA2. Reset f

A3. Reset s

A4. Access BAM

A5. Last slot in f? A7. Calculate Hp(f) A11a. Sort N pages

A9. Calculate Sp

A8. Last fragment?

A12. Terminate

No

PAR.

Yes

PAR.

SYNC.

Yes

No

SYNC.

YesNo

s
+

+

f
+

+

p
+

+

computing path: N pages in parallel

A6. Calculate Pp(f) A11b. Merge N→R

Dataflow

A10. Last N pages?

Fig. 4.7. Parallelization of the flow chart of the AAF. The double lines are used for the synchronization

of groups of tasks. Data processing flows horizontally over the computing path through A4, A5, A7,

A8, A11a and A11b. Task A12 makes sure the merging is entirely finished.

operations, i.e., steps A1 to A10, but not for A11, as sorting is not an inherently par-

allelizable task. Referring to Sec. 3 of Chapter II, we have to use a method for sorting

which allows a concurrent access to the data.

3.1.4 Resulting Parallel Algorithm

Described in Sec. 2.2, the sorting task, i.e., step A11 of algorithm A consists in order-

ing the addresses of all L pages according to their respective score after the necessary

computations and returning the R best ones. As mentioned in Sec. 3.1.2, we transposed

A11 into a sorting task that processes N pages in parallel and a merging task that pro-

gressively keeps the R best records among all the paths of N pages. According to all the

previous considerations, Fig. 4.7 represents the resulting parallelized flow chart of the

AAF algorithm. This solution constitutes the starting point in our hardware design and

includes a computing path through which data is processed concurrently over N pages.

The parallel starting (PAR.) and synchronization (SYNC.) bars ensure the coherency of

the data towards this path. They start the tasks with available input data, e.g., they let

the sorting wait at the beginning, and resume the merging as often as necessary even if

no data is read from the BAM any more. As a supplementary but necessary feature, the

62 Chapter IV. System Level Analysis

parallel version of the AAF includes a final synchronizing step A12 which is essential in

pipelined multi-tasking systems in order to ensure a complete processing of all the data.

3.2 Modular System Architecture

In the realization of a hardware coprocessor for the acceleration of the AAF, we have to

decide on the amount of resources we can spend for the parallelization of the tasks related

to the data processing, as seen in Fig. 4.7. Our goal is to obtain a modular architecture

able to process N pages of the BAM in parallel with a very high throughput, from the

memory access to the sorted list of results.

3.2.1 Parallel Processing Elements

Introduced in [Lay03] and refined in [Lay05c], our model is an SIMD kind of associative

processor with many levels of specialized PEs arranged in an irregular systolic array.

These are assigned specialized tasks and different data widths in order to be mapped

optimally on the parallel AAF algorithm. The entire architecture is driven by a global

controller that schedules the different units by interpreting the hashed query string into

simple instructions. We hereby give up some flexibility for much more performance in

creating a specialized associative processor. Since we can group the main tasks into

five functional levels as depicted in Fig. 4.8, we designed a system composed of five

processing units:

• The BAM interface (BIF) is the first block of the processing, the purpose of which

is to perform a very fast access to the BAM information required by the next

module. It has to transform the hash values of the query string into physical

addresses to a memory we don’t know the type of yet, since it depends on the

targeted hardware platform.

• The Penalty Calculating Unit (PCU) is responsible for the calculation of the frag-

ment penalty according to (3.9). It must process the data coming at high speed

from the BAM with the query information, i.e., the weight of each query word,

given by the global controller.

• The Score Calculating Unit (SCU) owns two processing tasks. Using the fragment

penalty passed on by the PCU, it first sets a bit in the FHT according to (3.11)

and updates the score of the page in an incremental manner according to (3.10).

The threshold value needed to mark a fragment hit must be given by the global

controller, according to the importance of this fragment in the query.

• The Result Sorting Unit (RSU) has the duty to sort the pages in their order of

relevance to the query according to the page scores. It includes operations that

cannot be performed horizontally, e.g., comparisons and exchanges, therefore an

internal network is necessary in order to distribute the values vertically among the

PEs.

3. Hardware Accelerator Design 63

B
ro

a
d
ca

st
N

et
w

o
rk

PE
(b)
3 PE

(c)
3PE

(a)
3

M
em

.

M
em

.

M
em

.

PE
(b)
N PE

(c)
NPE

(a)
N

M
em

.

M
em

.

M
em

.

PE
(b)
1 PE

(c)
1PE

(a)
1

M
em

.

M
em

.

M
em

.

PE
(b)
2 PE

(c)
2PE

(a)
2

M
em

.

M
em

.

M
em

.

H
ig

h
B

an
d
w

id
th

B
A

M
I/

F

RSU Decoder

M
er

g
in

g
N

et
w

o
rk

S
o
rt

in
g

N
et

w
o
rk

SCU Decoder RMU Decoder

Penalty Calculating Unit Score Calculating Unit Result Sorting Unit Result Merging Unit

PCU Decoder

Global Controller and SchedulerRegister File Instruction Memory

Truely Parallel Computing Template Sorting Subsystem

Instruction Stream

tPCU tRSUtSCU tRMU

PE
(d)
1

M
em

.

PE
(d)
2

M
em

.

PE
(d)
R

M
em

.

A6
A7

A11a A11bA4
A9 A11

Fig. 4.8. Symbolic representation of our modular SIMD system architecture composed of four levels

of computation and a memory interface. This associative processor is controlled by a global scheduler

that transforms a query string into a list of instructions for the different PEs.

• The Result Merging Unit (RMU), as the last processing unit, is similar to the

RSU. Its purpose is to merge the newest sorted results into the final result list of

length R. It is made of a different number of PEs and a different kind of network

that helps the merging of the data. The broadcast network permits the access to

the result list in a serial manner by an external interface.

Clearly, Fig. 4.8 depicts only a basic structure for the ACE where the PEs conform

more to the operational parallelism than the hardware realization. Represented by

vertical arrows, it is foreseeable that the RSU and the RMU will require different kinds

of connections between the PEs since they basically implement sorting and merging

algorithms, as seen in Chapter II, that rely on comparison and exchange operations.

3.2.2 Theoretical Timing Constraints

The logical dataflow in our design goes globally from left to right, i.e., from the BAM to

the result list. As our main goal remains the highest performance possible, we have to

make sure that every unit is faster than its predecessor, so that no data congestion can

occur in the middle of the design. A direct consequence to this philosophy is that the

64 Chapter IV. System Level Analysis

processing bottleneck of the design moves out of the system to the data input port, i.e.,

the BAM access interface. In this sense, we have to respect the theoretical conditions

tu ≤ tPCU ∀ tu ∈ {tSCU, tRSU, tRMU} (4.3)

where tu corresponds to the complete data processing time t in the unit u, in order

to benefit from the maximum throughput available. Practically however, during the

hardware implementation of the sorting subsystem in the next chapter, a reevaluation

of tRSU and tRMU becomes necessary in order to ensure a high scheduling flexibility

regarding the task parallelism.

Interface: BIF→PCU PCU→SCU SCU→RSU RSU→RMU

Frequency: fmemory bus ffragment fquery fquery

Data width: N × 1 BAM bit N × |Pp(f)| N × {|Sp|+ |FHT|} N × {|Sp|+ |FHT|

+|addr(p)|+ |rank(p)|}

Table 4.2. The description of the interfaces in the modular design reports functionally the transfer

frequency and the type of data being exchanged between the different units.

At the algorithm level, Table 4.2 reports the frequency and the data types at the

interfaces in each block of the design as seen in Fig. 4.8. These vary oppositely, i.e.,

the frequency decreases over the units of the datapath as the data width increases, and

influences the architectural throughput in a hardly predictable way as some parameters

remain dynamic or unknown, e.g., the length of the query string. Hence the most

difficult part in the hardware realization of the ACE will be to make the different units

fast enough to keep the bottleneck at the BAM interface in order to ensure the maximum

physical throughput and performance possible.

Chapter V

Architectural Hardware

Design

FROM the BAM to the result list, a huge amount of data is processed over many

computing units under the supervision of a global controller according to the AAF

described by the parallel version of algorithm A. In this chapter, we present the details

of the datapath in three sections. First we discuss the choice of a memory and its

controlling for the most efficient data access possible. Secondly we review the parallel

calculating units that we intend to keep fast and small. Finally, we depict the evolution

of our sorting blocks and their optimization using different sorting methods.

1 System Management and Peripherals

Every complex processing system owes its final performance to both a powerful data

processing and an efficient scheduling of the operations. Therefore in this section, we

initially consider the data path as an external entity and concentrate on the control path

of the ACE. The hardware implementation of the processing units will be presented in

more detail in the next section according to the computational arithmetic described in

the previous chapter.

1.1 Operation Scheduling

SIMD processors usually rely on the instructions of general purpose processors for the

supervision of the execution of a program, e.g., loop control or subroutines, and provide

special instructions for handling data in parallel. In the ACE, we base the operation flow

on a listing of dedicated instructions which can be executed by one or more processing

66 Chapter V. Architectural Hardware Design

units. In each unit, as seen in Fig. 4.8 in the previous chapter, an instruction decoder

recognizes on the instruction bus the commands it has to process and distributes control

signals internally. On the top of the design, we use a state machine called Global

Controller and Scheduler (GCS) to perform the execution of the listing present in the

instruction memory. The register file used by the controller to set temporary values

and other local parameters such as the fragment threshold or the current page offset

can be read by the instruction decoders of the processing units. Even though the BIF

(BAM Interface) remains the only block which is not a computing unit but a peripheral

interface, it still needs to access some registers, e.g., to set the correct data path in the

BAM memory.

Instruction Description Effect on

ACC WGT ADR accumulate weighted penalties for BAM bit at bp[ADR] BIF PCU

CMP FRG THR set HFRG in FHT if Pp(FRG) < threshold THR SCU

VAL USR read administrative row USR and reset scores of unauthorized
pages or user when valid bit not set

BIF, RSU

BNZ REG ADR test value of register and branch to ADR iff REG 6= 0 GCS

INI BEG END initialize the path counters for a limited search GCS

SRT start sorting process and result list insertion RSU, RMU

NOP no operation (wait one instruction cycle) GCS

Table 5.1. The GCS is driven by a set of generic 16 bit instructions which affects different units of

our associative coprocessor. It must be noticed that a typical thus programmed query includes about

95% of the ACC WGT ADR instruction.

For an efficient scheduling of the operations during a query, we developed a reduced

instruction set. The resulting list is given in Table 5.1 with a short description and the

affected units in the ACE. Each instruction is basically coded with 16 bits, 4 of which

consist in the opcode and 12 are used for the operand. An exception is made with the ACC

command that codes the weight in the opcode and leaves 12 bits for the BAM column

address. The resulting instruction is then in the format [O1W3S12] with O the opcode set

to 0, W the weight and S the query slot, and permits a BAM width of W = 4096. Note

that the NOP instruction coded [O4X12] directly derives from the ACC with zero weight

and an ignored address X. Nonetheless, the instruction set depicted in Table 5.1 can be

easily extended. It is quite evident that the software driver, which allows the connection

between the ACE and the host computer, plays a role in the correct formatting of the

list of slots into an understandable program transferred to the instruction memory.

1.2 Designing the Memory Interface

As introduced in Chapter II, electronic memory devices are available in many different

forms and types. For a fast and random access to the data, as we wish to obtain for the

storage of the BAM, there are actually only two alternatives. The first one is the fast but

1. System Management and Peripherals 67

N-bit BAM
Data Bus

0 0 00 1 11... ...0

Page 1

Associative Access (11 bits column address)

Bit Attribute Matrix

...

1800
2000
1803
...

1802

List of query slots

Memory Address = 2000

Virtual query signature

One Page Signature

Query slot pointer

bP+3(2000)

bP+2(2000)

bP+1(2000)

P
a
g
e

E
n
tr

ie
s

bP+N (2000)

Page P + N

Page P + 1

1

0
1
1
0
1
0
1

1 bit

Page P

Fig. 5.1. Vertical accesses to the BAM permit a full usage of the N bit information read, as well

as the parallel processing of N pages. Note that the virtual query signature is only represented for

understanding purposes and never really exists in this vector form.

quite expensive Static Random Access Memory (SRAM) and the second one is the very

dense but rather complex Synchronous Dynamic Random Access Memory (SDRAM).

Both are volatile memories and can be read or written over an arbitrarily wide data

bus. However, trying to access them with the highest throughput possible continuously

has created a new challenge in this work. This constitutes in fact the bottleneck of the

whole system, as referred to in Sec. 3.2 of Chapter IV.

1.2.1 Accessing the Bit Attribute Matrix

As starting point of the data flow, the BAM interface must provide a flexible and fast

access to the data from the BAM. The key of our system is that the BAM is accessed

vertically bitwise, i.e., by attribute instead of horizontally by signature. This feature

enables the reading of a vector of N bits, as seen in Fig. 5.1, and hence the parallel

processing of N pages through the computational units.

The role of the BAM interface is to transform the list of query slots into a physical

address for the memory media in terms of abscissae, i.e., the actual slot position in the

virtually created query signature, and in terms of ordinates, i.e., the address of page

P+1. In this sense, the next N bits data word read from the BAM can be either at the

68 Chapter V. Architectural Hardware Design

next pointed column in the list of query slots for pages P+1 to P+N , i.e., an horizontal

move in Fig. 5.1, or at the following pages P+N+1 to P+2N for the same attribute, i.e.,

a vertical move within the same column. This choice is made by the global controller

and depends on the characteristics of the used memory device. We will see later that a

mix of both directions resulting in a zig-zag pattern is necessary to provide an optimal

use of the memory interface.

1.2.2 Choosing the most suitable devices

As explained in Sec. 1.1 and 1.2 of Chapter IV, the target devices for the storing of the

BAM are RAMs. If the access speed were the only matter, we would chose the SRAM

type for its speed and its interfacing simplicity. However, if we had only to consider the

size of the BAM that can reach many giga-bytes, then we would utilize DRAM devices

for their density and their price. To answer the question, it is necessary to know how

these devices are working internally so that they can be used in the most efficient way

possible.

The information storage in memory is based on a positive feedback for SRAM and on

a capacitive charge for DRAM. Fig. 5.2 represents the basic building of a CMOS SRAM

cell on the left-hand side and of a single transistor DRAM cell on the right-hand side,

both for the storage of one information bit. The SRAM cell requires six transistors per

Gnd

VDD

QQ CS

CBLB
it

L
in

e
(B
L

)

B
it

L
in

e
(B
L

)

B
it

L
in

e
(B
L

)

Word Line (WL)Word Line (WL)

Fig. 5.2. Representation of a six transistors CMOS SRAM cell (left) and of a one transistor DRAM

cell (right) for the storage of one data bit. The selection of the cell occurs through the activation of the

word line and the storage information is accessed through the bit line [Rab03].

bit, four of which constitute two cross-coupled CMOS inverter structures for the storage

of a bit in its two polarities Q and Q, and two pass transistors shared between the read

and write operations that access the cell through the bit line (BL) by enabling the word

line (WL). Providing both states of the bit on the two bit lines improves noise margins

during the operations to the cell, as analyzed in [Rab03].

The more area-efficient single transistor DRAM cell represented in Fig. 5.2 is com-

posed of one transistor and one capacitance as it is found in today’s very large semicon-

ductor memories [Rab03]. During a write cycle, the data value is placed on the bit line

(BL) and the word line (WL) is raised enabling the charge or discharge of the capaci-

tance CS. During a read cycle, the bit line is precharged, typically to VDD/2, and the

word line is asserted. As the charge are redistributed between CS and CBL, the direc-

tion of the change determines the value of the data stored. As for the SRAM cell, the

1. System Management and Peripherals 69

sense-amplifiers required for each bit line speed up the readout of the cell. However, the

readout of the 1T DRAM cell is destructive, so that the original value must be restored

after each read operation. In addition to that, the dynamic memory has the necessity for

each cell to be refreshed periodically, due to the unavoidable leakage effects affecting the

charge of CS. Even though these functionalities are supported in commercial devices to

ease the building of the memory controllers, e.g., the refresh counter that automatically

increments the internal addresses, the timings must be carefully studied and respected

in order to obtain high performance data exchanges with the memory, leading to more

efficient applications. Apparently, both DRAM and SRAM devices are suitable for the

storage of the BAM on our ACE system. The main differences are in the interfacing

complexity, the speed in terms of clock frequency and the internal density. Even though

SRAMs are more simple and faster to access, DRAMs present a higher density for a

lower price. Regarding our application that must deal with gigabytes of text signatures,

it might be almost impossible to find or build an affordable hardware platform that pro-

vide such a huge amount of SRAM. Therefore we finally chose to target DRAM devices,

despite all their constraints.

1.2.3 High Throughput Memory Controller

Designing the control and timing circuitry is a demanding task that requires extensive

simulation and design optimizations. According to Rabaey et.al. [Rab03], it is an integral

but often overlooked part of the memory design process and has a major impact on both

memory reliability and performance. As the bottleneck of the system has been identified

in Sec. 3.2 of Chapter IV, the challenge here is to map the data of the BAM into the

SDRAM devices in order to obtain the highest read throughput possible. In a clocked

system, this means a new data word per clock cycle for Single Data Rate (SDR) devices

and twice this frequency for Double Data Rate (DDR) devices.

In comparison to SRAM devices that can provide any random data word at every

clock cycle, SDRAM devices suffer from a high access latency and from intermediate

clock cycle penalties due to a highly constrained addressing procedure which is due to

the internal structure of the devices themselves. As seen in Fig. 5.3, an SDRAM is

typically divided into four banks of bidimensional matrices of N bit cells. Each bank

must be addressed sequentially by selecting first a row which is loaded into the sense

amplifiers, and then by reading from or writing into this row at the wished column.

Each cell address must be passed to the internal decoding logic in two cycles, i.e., first

the activation step where the row address buffer gets the bank and the row address,

and then the read or write operation where the column address buffer gets the offset of

the cell in the row. At the end of a transaction, the data loaded into the I/O registers

connected to the data bus must be written back to the cell in a supplementary precharge

cycle. For these reasons, SDRAM devices are usually equipped with a column address

counter that can be programmed to perform burst accesses. This avoids the continuous

loading of new column addresses for the reading or writing of consecutively stored data

words. Notice that paradoxically for more clarity in the BAM mapping representation

70 Chapter V. Architectural Hardware Design

512 slots
le

n
gt

h
4

B
u
rs

t

Row DecoderRow Decoder Row Decoder Row Decoder

Col. Addr. Bus

Row Addr. Bus

Address Bus

C
ol

u
m

n
D

ec
o
d
er

S
en

se
A

m
p
li
fi
er

C
ol

u
m

n
D

ec
o
d
er

S
en

se
A

m
p
li
fi
er

Bank 2 Bank 3

C
ol

u
m

n
D

ec
o
d
er

S
en

se
A

m
p
li
fi
er

Bank 0

BufferCounter
Col. Addr.Col. Addr. Refresh

Buffer Counter
Row Addr.

Data Bus

C
ol

u
m

n
D

ec
o
d
er

S
en

se
A

m
p
li
fi
er

Bank 1

N

One Page Signature with 2048 bits

Bank 1, Row 1

Bank 1, Row 0Bank 0, Row 0

Bank 0, Row 1

Bank 0, Row 2

Bank 0, Row r − 1 Bank 1, Row r − 1 Bank 2, Row r − 1

Bank 3, Row 1

Bank 3, Row 0Bank 2, Row 0

Bank 2, Row 1

Bank 1, Row 2

B
A

M
L
en

gt
h

2kb BAM Width

k 3, Row 2

Bank 3, Row r − 1

Burst Access
4× 1 slot ×N pages

Bank 2, Row 2

P
a
th

w
id

th

Fig. 5.3. Mapping of the BAM onto standard four-banked SDRAM memory devices. The memory

subsystem is accessed through an N bits wide databus on the basis of a burst-4 addressing mode. The

device is considered to have 2048 columns per row. The width N can be distributed over an arbitrarily

number of chips.

in Fig. 5.3, the rows and the columns of the SDRAM are respectively vertical and

horizontal.

Apart from the necessary frequent refresh of the capacitive charges in each cell,

this rather complex double addressing mode forces transactions to be delayed on the

bus between bank activation, read or write column accesses and row precharges. As

2. Building the Computational Data Path 71

standard SDRAM controllers are designed to provide more addressing flexibility than

data throughput, we have to analyze the feasibility and the performance of a custom

controller. Our motivation is to map the BAM the most efficiently onto the available

memory cells in such a way that no latency delay penalizes the processing of the data

by the ACE. To this end, considering the abilities of the SDRAM devices and a BAM

width of 2 kbits, we found out that the most suitable and beneficial arrangement of the

data into the SDRAM banks is as shown in Fig. 5.3. The main features of the mapping,

which permit to keep the maximum throughput as average sustained throughput, can be

summarized in using a burst access of length four and an interleaved bank addressing.

Hence, the ACE can perform the processing of 4 ×N pages, i.e., the width of the

working path, within 4 clock cycles per addressed slot. The reason is that four clock

cycles are necessary to read data from an arbitrary cell, while the previously loaded

row can be precharged. It is not more than four in order to reduce the amount of

internal accumulators within the ACE, as penalties and scores must be remembered

during the processing of the 4×N pages in the data path. We refer to Appendix B for

a detailed description of the SDRAM controller and its state machine, as well as the

timing diagrams.

2 Building the Computational Data Path

This section presents in detail the Penalty Calculating Unit (PCU) and the Score Cal-

culating Unit (SCU) according to [Lay05b, Lay05d]. With the arithmetical operations

described in the previous chapters, these units are able to process data coming from

the memory subsystem in such a way that no congestion is produced on the data path.

Because data is processed with a high degree of parallelism, the challenge remains to

keep the architecture as small as possible.

2.1 Penalty Calculating Unit

In the whole design of the ACE, we intend to use a single clock domain, i.e., either a single

clock or clocks that have constant phase relationships. In order to avoid metastability of

clock domain crossing through asynchronous signals, we base the whole computational

architecture of the different modules on the BAM clock frequency. The consequences

on the sorting units will be studied in the following section.

2.1.1 Description

Being the first processing unit in the data path, the PCU calculates the fragment penalty

of N pages in parallel according to (3.9). Its input is a bit vector of length N that

72 Chapter V. Architectural Hardware Design

arrives at the memory frequency in burst mode of length four and its output a 4N -

vector of unsigned integers of arbitrary length that represent the penalties of 4N pages.

However, the burst accesses, caused by the way data is read from the BAM by our

custom SDRAM controller, have an impact on the whole computing architecture. The

4N pages are uncorrelated and must be treated independently. In order to handle the

data efficiently, we can either demultiplex the burst data and send it to four equivalent

ALUs or process it serially given that the ALU is fast enough.

d1 d2 d3 d4 d1 d2 d3 d4

Burst data:

FIFO
buffer

Burst data:

Burst counter

M
u
x

D
em

u
x

ALU

Burst length Burst length

ALU

Fig. 5.4. There are two possibilities to handle the burst accesses. Left, a parallel architecture with

replication of the hardware allows a longer processing of the data in each ALU. Right a time-shared

solution requires much less hardware.

As seen in Fig. 5.4, the first solution (left) allows a longer processing of each data in

the duplicated hardware structures, whereas the second solution (right) provides a more

area-efficient hardware design based on the use of synchronous First In First Out (FIFO)

buffers that let the data circulate in the same architecture. At this point, we would like

to remind the architectural retiming ideas developed in Sec. 1.1.4 in Chapter II for the

design of fast digital VLSI structures. Although more difficult to achieve, we go in our

work with the second idea and settle for the smaller hardware solution.

2.1.2 Functional Computations

As the trigrams τn are processed sequentially, the bit bp[h(τn)] read from the page p is

the information which is needed to compute the similarity value between the query and

the text from the database at time t = tn. Neglecting the influence of the weight ωn, we

calculate first the mismatch penalty ψ(n) ∈ {0; 1} as in (5.1) where only one bit of the

vector is considered so that

ψ(t) = 1− bp(t)
logic.
−−−→ ψ(n) = ¬ bp(n) (5.1)

and then the switch penalty σ(n) ∈ {0; 1} which reflects the variations of the signal ψ(t)

in terms of edges as in (5.2) through

σ(t) =

∣∣∣∣
dψ(t)

dt

∣∣∣∣
logic.
−−−→ σ(n) = ψ(n)⊕

(
ψ(n) · z−1

)
(5.2)

where the ⊕ symbol corresponds to the modulo 2 addition, and z−1 to a delay element.

2. Building the Computational Data Path 73

A
R

R
E

R
E
P

E
P
R

P
R
E

R
E
S

E
S
E

S
E
N

E
N
T

N
T
A

T
A
T

A
T
I

E
S

S
A

S
A
M

A
M
P

M
P
L

P
L
E

L
E

E
T

T
E

T
E
X

E
X
T

X
TT
H

T
H
I

H
I
S

I
S

S
I

I
S

I
S

S
A A

2 4 5 6 8 9 13 140 3 10 12

τ(n)

∑
(ψ, σ)

bp(n)

ψ(n)

dψ(n)
dn

σ(n)

5 100

T
I
V

I
V
E

V
E

25 30 352015 n

16 17 18 20 21

Fig. 5.5. Overview of the signal processing after the BAM access for one bit data bp(n) with the query

string “this is a representative sample text”, considering that ωn = 1 for all the slots in the

query.

ψ, σ

0bp[h(τ)] bp[h(τ)] bp[h(τ)]

σ

ψbp[h(τ)]

bp[h(τ)] bp[h(τ)]

bp[h(τ)]bp[h(τ)] • bp[h(τ)] : BAM bit of the page
p for query trigram τ .

• ψ : Mismatch penalty.

• σ : Switch penalty.

Fig. 5.6. DFSA for the calculation of the penalty of one fragment according to the binary value read

from the BAM. The attributed penalties are written in the current state. The final result is obtained

through summation of all the penalties.

The evolution of the processing of a query string at the bit level is depicted in Fig. 5.5.

A sample text is transformed into a list of trigrams τ(t) using a time moving window of

three characters. Synchronized on the processing clock of the system, the information

bits bp(t) read from the BAM are converted into penalties considering an individual

weighting ωn of each slot n, here arbitrarily set to ωn = 1 for all n.

2.1.3 RTL Design

This section presents the RTL design of the PCU for the calculation of one fragment

penalty Pp(f) based on a BAM bit bp(n) and the corresponding query weight ω(n).

According to (3.9) and the previous section, this value can be obtained by determining

sequentially the current penalties σ and ψ, and summing them up along the processing

of each fragment. The Vertical Fragment Accumulator (VFA) contains the fragment

penalty and can saturate automatically at 2np−1. As seen in Fig. 5.6, we use a Discrete

Finite State Automaton (DFSA) to calculate the penalties for the current query slot.

It includes four states that correspond to the combinations of the two mismatch and

switch penalties described in Sec.3.2.3 of Chapter III.

As seen in Fig. 5.7, the DFSA implementation is very small in terms of hardware

resources and one register is sufficient for the four possible states, considering the current

value of ω(n) and bp(n). Moreover, we remind that when a word in a query must not

74 Chapter V. Architectural Hardware Design

bp(n)

ω(n)
23

σ(n)

ψ(n)

SAT

VFA Pp(f)
Scaling np

Custom

LUTsign(ω(n))

Fig. 5.7. Functional RTL design of the PCU corresponding to one single PE. This architecture is

duplicated N times for the whole processing unit. The architecture must be extended according to

Fig. 5.4 for a burst support.

be found, it obtains a negative weight. Therefore, the sign bit of ω(n) is taken to invert

the BAM bit bp(n) using an xor gate and penalizes the fragment when such items are

found.

The custom parameterizability of the impact of the weights over the value of the

penalty is set by a user-defined Look-Up Table (LUT) implementation of the adder and

the multiplier. Although np is set to eight bits for a prototyping model, we keep on

describing the design with scalable parameters, as changing the bit widths within the

system is not a problem for hardware designers. The optimal values must be estimated

by the algorithm designers and other information retrieval specialists.

An important point in the design is that the registers depth for the state machine

and for the VFA must be set to four, according to the burst access mode in the BIF. In

this case, data is processed at the BAM memory access clock frequency and 4N pages

can be treated in four clock cycles using N PEs in the PCU in parallel.

2.2 Score Calculating Unit

Besides the functionalities of the SCU, this section presents the realization of a scal-

able architecture, the Negative Logarithmic Function (NLF), for the integer calcula-

tion of nonlinear functions based on a method for estimating the logarithm developed

in [Lay04a]. A deeper analysis of the function is given in Appendix A and shows how to

implement the desired analog logarithm and its reciprocal function with very little logic

and a maximizable accuracy.

2.2.1 Description

The SCU is the second processing unit in the datapath of the ACE, the purpose of which

is twofold. On the one hand, it builds the hit-table that records the fragments having

a penalty lower than a given threshold. On the other hand, it transforms the fragment

penalties of a query compared to a BAM page into a page score using a logarithmic

function. However, calculating a logarithm in hardware is not a trivial task.

2. Building the Computational Data Path 75

Investigations have been made in the Logarithmic Number System (LNS) [Kor93,

Kos91, Tay88], particularly in the fields of massively parallel systems, Digital Signal

Processing (DSP) [Lew95] and data processing for the easy computation of roots, powers,

trigonometric functions, products and quotients [Hal70, Hoe91, Lew94, Mit62]. The use

of logarithms accelerates multiplications and divisions by turning them into additions

and subtractions. However, as we cannot achieve an infinite precision, a compromise has

to be found between accuracy and complexity, so that a more tolerant application may

benefit from trading off precision against speed and area for the evaluation of logarithms.

2.2.2 Functional Computations

The purpose of the NLF is to take the logarithm of an input value, using a flexible

method in terms of scalability and relative accuracy. We design an architecture which

fits best to the calculation of the page scores, as described in (3.10), therefore the output

response of the NLF shall be described by

fNLF(x) = Ai − Bi · log2 (x+ 1), (5.3)

where Ai and Bi are positive coefficients which only depend on the width i of the in-

put x in order to scale the function correctly. They translate and resize the desired

part of the curve into the upper right quadrant so that both x and y = fNLF(x) val-

ues remain positive. For the hardware realization of the function, we use a piecewise

linear approximation of the corresponding analog curve. This method is based on the

Taylor/Mac Laurin series of the natural logarithm truncated after the first order through

− log2 (1 + x) =
1

ln 2
·

∞∑

n=1

(−1)n ·
xn

n
≈ −

x

ln 2
(5.4)

which apply for x ≈ 0. However, the method is easily extendable, as demonstrated

through the graphical explanations in Appendix A. The factor ln 2 appears in the slope

of each tangent to the curve, at the abscissae which are powers of two, i.e., x = 2n, n ∈ IN,

as depicted in Fig. 5.8-b. By majorating the function y = − log2 (x+ 1), we eliminate

the ln 2 factor and obtain straight lines, the slopes of which are powers of two.

An example is given in Fig. 5.8-a for the NLF where the width i of the input x is

8 bit. In order to build the function, we split the x-axis into logarithmically increasing

parts and divide the y-axis into constant equally sized parts. Afterwards we join the

opposite corners of each thereby obtained rectangle through a straight line to form a

continuous curve, as seen in Fig. 5.8-a. In this case, the abscissae and the ordinates are

divided in i = 8 domains which characterize the eight segments composing the function.

As a matter of fact, a similar interpolation method has been suggested by Mitchell

[Mit62] and expanded by Hall et.al. [Hal70] to a multiple piecewise linear approximation

in order to improve the accuracy, but with more complexity and difficulty regarding its

implementation. As Abed et.al. [Abe03a, Abe03b] presented the realization of a log-

arithm and antilogarithm converter using combinational logic only, the NLF proposes

76 Chapter V. Architectural Hardware Design

3 7 15 6301 31 127 255

640

0

128

256

384

512

768

1024

896

1

-1

0

.5

1.5

-.5

2

0-.5 1.5-.75 -.25 .25 .75-1

slope=−2

slope=−1
ln 2

slope=−1

slope=−2
ln 2

slope=−4

− log2(x + 1)

Fig. 5.8. Linear approximation of a) the NLF with an 8 bit input, which is based upon b) a first

order approximation of the function y = − log2(x+ 1) in the interval [−.75; 1].

some interesting advances beyond Mitchell’s approach, with the hardware implemen-

tation of a sequential architecture minimized in terms of gates and thus optimized for

power and area sensitive applications.

Following the example given in Figure 5.8, the digitally approximated logarithm

function is created by repeatedly cutting the remaining part of the x-axis into halves

starting from the right to the left and stopping when the length of the last interval is

one unit. The range of x is covered in i iteration steps, so that the maximum value of

x reached yields

xmax =
i−1∑

n=0

2n = 2i − 1. (5.5)

On the y-axis, we divide the range into i equal intervals, the length ∆y of which only

depends on the width i of x. We set this length to a constant equal to ∆y = 2i−1. Since

the NLF progresses from one step in both ~x and ~y directions per iteration, the maximum

value of y is also reached in i steps and gives the upper bound

ymax = i ·∆y = i · 2i−1. (5.6)

This relation shows that the method does not only combine input and output widths

but also has an effect on the precision of the approximation, which is discussed in

Appendix A. Thus we can estimate the amount j of bits needed in y to output the

result considering the value ymax. Using the rounding ceil function ⌈x⌉ which computes

the smallest integral value not less than x, we obtain the width j of y with

j = ⌈log2 (ymax + 1)⌉ = ⌈log2

(
i · 2i−1 + 1

)
⌉. (5.7)

For the next equations describing the NLF, we introduce a parameter n, the role of

which is to simplify the writings and allow a better understanding. We attribute the

index n to each interval, beginning with 0 for the start interval, i.e., the biggest one the

2. Building the Computational Data Path 77

length of which equals the sum of all the others. The value of x only determines this

index with

n = ⌊i− log2 (x+ 1)⌋ = i− ⌈log2 (x+ 1)⌉ (5.8)

where the floor function ⌊x⌋ computes the largest integral value not greater than x.

Inside each interval, we generate a straight line which can be calculated through the

parametric equation

yn,i(x) = −2n · (x+ 1) + ∆y · (n+ 2) (5.9)

were i is included in ∆y as well. This equation constitutes the basis for the hardware

realization of a logarithmic function as it will be used for the hardware implementation

of (3.10). As reported in Appendix A, the comparison of (5.3) with (5.9) gives us more

information about the error due to the linear approximation.

2.2.3 NLF Architecture

We begin the RTL description of the SCU with the hardware implementation of the NLF

based on the creation of an algorithm that computes a logarithm according to (5.9). The

important point here is the use of simple operations that can reduce to additions and

shifts, not even requiring any multiplication.

Algorithm N (Negative Logarithmic Function). This algorithm calculates the ap-

proximation of the binary logarithm according to (5.3) and (5.9). Let i and j be the

respective lengths in bits of x and y according to (5.7).

N1. [Counting.] Count in n the number of leading zeroes in x.

N2. [Inversion.] Invert all the bits of the input vector x→ x̄.

N3. [Shifting.] Shift x̄ of n bits to the left and keep i− 1 LSBs.

N4. [Grouping.] Concatenate n and the result to obtain y.

We propose two manners to realize the NLF. Though both are based on the logarithm

through shifting principle, the first one is made of combinational logic and has been

introduced in [Hoe91] whereas the second one uses a sequential method to calculate

the logarithm. Following the development of the equations from the previous part, we

discuss our architectures with the example of an i = 8 bit input vector x, as already

seen in Fig. 5.8.

Fig. 5.9 shows the realization of the NLF using a decoder and a Barrel shifter. The

decoder is a logical block which counts the number of insignificant zeros in x. The

result is a four bit index n which gives an approximated logarithm of x as seen in

(5.8) that builds the logarithmic offset for the upper bits of the output y. Because of

the big amount of “don’t care” values marked x in the truth table of the decoder, the

remaining logical equations related to n are quite simple and require few logic gates.

After the Barrel shifter, the shift of x of n bit to the left yields a multiplication of x

78 Chapter V. Architectural Hardware Design

Decoder

Barrel Shifter

x[7 : 0]

y[10 : 0]

n[3 : 0]

Decoder truth table
input x (8 bits) n (4 bits) y range (11 bits)

00000000 8: 1000 1024
00000001 7: 0111 896 – 1023
0000001x 6: 0110 768 – 895
000001xx 5: 0101 640 – 767
00001xxx 4: 0100 512 – 639
0001xxxx 3: 0011 384 – 511
001xxxxx 2: 0010 256 – 383
01xxxxxx 1: 0001 128 – 255
1xxxxxxx 0: 0000 0 – 127

Fig. 5.9. Realization of the NLF with a Barrel shifter for an 8 bit input x which leads to an output

y of width 11 bits, according to the truth table of the decoder. The intermediate value n is used to

control the amount of bits from which the input x is shifted to the left.

x[7] x[6] x[5] x[4] x[3] x[2] x[1] x[0]

0
HA

00
HAHA

clk

load
0

0

y[5] y[4] y[3] y[2]y[6] y[0]y[1]y[8]y[10] y[9] y[7]
valid

Fig. 5.10. Realization of the NLF for an 8 bit input with a recursive process where the output is

recalculated as long as a shift is required. The processing stops automatically and sets the valid flag

when finished.

with 2n according to the linear approximation described in (5.9). The final result is the

concatenation of the two values obtained above.

The second method is a recursive process where a clock is needed. The amount of

logic needed is much smaller than for the first method. Figure 5.10 shows the realization

of the NLF for an i = 8 bit input which yields an j = 11 bit output according to (5.7) and

(5.9). To calculate a logarithm, the architecture needs at most as many clock periods

as there are bits i in the input x. The multiplexers build a sequential shifter and can

shift only one bit at a time, from the right to the left. Whether a shift is performed is

decided by the upper bit (MSB) of x. On the one side, as long as this bit remains true,

x is multiplied by 2, or 2n after n iterations. On the other side, the counter formed by

the half-adders (HA) and the or-gate on the left of the design over the upper bits i to

j−1 of y is incremented and yields n ·2i−1 after n iterations, conform to (5.9). The final

result is the concatenation of the two values obtained above. Depending on the value of

x, the result can be calculated in less than i clock cycles. The “valid” bit indicates that

the shift operations are not over when high or that the result is valid when low. The

purpose of such a signal is to report to the system that the calculation is terminated,

because it takes a shorter time, i.e., only one clock period, to calculate the logarithm of

big numbers (x > 2i−1) than for small number (x < 2i−1) where up to i clock periods

may be needed. This process can be generalized for any width i of x.

2. Building the Computational Data Path 79

2.2.4 RTL Design

The SCU calculates the score of a page and its FHT. Described in Fig. 5.11, the RTL

design of a PE shows the 2 independent datapaths which include an accumulator, a

comparator and a few registers besides the NLF module. On the top part of the design,

the score Sp of a page p is calculated in the VQA (Vertical Query Accumulator) after

processing of the penalty Pp(f) of a fragment f through the NLF module. The saturation

of the VQA is necessary because the number of fragments is unknown and varies from

one query to the other. For instance, we can set the width ns of Sp so that four fragments

with zero penalty produce the maximal score of 2ns − 1. On the bottom part of the

design, a digital comparator, i.e., a subtracter, outputs one bit which is stored in the

registers of the FHT in a serial manner. Note that the reading of the register bank is

performed in parallel for the processing in the following sorting units. Although we have

to set the maximum number of allowed fragments in the query at design time in order

to dimension the FHT, this decision again must be taken by the application designers.

In any case, the values of nh and ns do not influence the architecture of the ACE at this

level of development since the design principles stay the same.

{H1, H2, . . .Hnh
}

nh

carry

Tf

FHT

Sp

ns
SAT

VQA

np

Pp(f)

1

fNLF

Fig. 5.11. The computational path of the Score Calculating Unit (SCU) is divided into two paths

that independently actualize the score and the Fragment Hit Table (FHT) of a page regarding a query,

based on the fragment penalty output by the PCU.

The accumulators present in both the PCU and the SCU are implemented with a

carry-ripple structure as seen in Fig. 2.3 on page 12. Using pipelining, their speed can

be increased to the system clock frequency, so that the throughput reaches the neces-

sary value, allowing the direct processing of the data read from the memory subsystem.

Aware of the power consumption reduction trend, Wilton et.al. have investigated ex-

perimentally the quantitative impact of pipelining on energy per operation and shown

in [Wil04] that pipelining an FPGA design could reduce the energy consumption drasti-

cally. To this aim, Sec. 1.1.4 in Chapter II presents the necessary transformations which

were applied to the architecture of the PCU and SCU modules. With these consider-

ations, one of the main task of the scheduler is to ensure that 4N logarithms can be

calculated with N PEs in the SCU within the time needed by the PCU to calculate 4N

fragment penalties with its N PEs.

80 Chapter V. Architectural Hardware Design

3 Hardware Sorting and Merging

This section is dedicated to the realization of a sorting engine in hardware, considering

the embedded constraints in size, speed and throughput highlighted in the previous

section for the implementation of the computational path of the ACE. We define a

record as a data structure which includes a key and a body. In the ACE computations,

the key of a record is the score of a page, and the body of the record includes the

page number and the query-related FHT. However for clarity reasons in the pictures,

we discuss the processing of keys instead of records in the RSU and the RMU.

3.1 Parallel Sorting with Bitonic Networks

Parallel sorting has been a well studied paradigm for both computerized applications

in multiprocessor systems and VLSI realizations. For related surveys, we would like

to refer to the bibliography, especially [Ajt83, Bat69, Knu97, Lay04b, Lei85, Ola99,

Ola00, Par99, Tho83]. As a particularly interesting case seen in Sec. 3.3.2 of Chapter II,

Batcher’s bitonic merger and sorter [Bat68] has the capability of sorting N keys in

O(log2N) time with O(N log2N) comparators. Although it owns a very regular archi-

tecture, it reveals itself not optimal in terms of area and depth, or in other words delay

time. However despite a few dimensioning constraints, it remains the most suitable one

regarding its structural properties.

3.1.1 Fast Sorting Networks

The bitonic sorter is based on a comparison network scheme in which many compare and

exchange operations are performed in parallel. A particularity of this network is that the

Stage 2 Stage 3 Stage 4Stage 1

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

x′15

x′14

x′13

x′12

x′11

x′10

x′9

x′8

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

Fig. 5.12. Batcher’s bitonic sorting network represented in a Knuth diagram for an input of N = 16

keys has an O(log2N) time complexity.

3. Hardware Sorting and Merging 81

sequence of comparisons is absolutely deterministic and depends neither upon the initial

state of the file of keys to be sorted, nor upon the result of the previous comparison step.

Fig. 5.12 represents Batcher’s bitonic sorting network in a Knuth diagram for an input

of N = 16 keys, using both ascending and descending comparators. We call comparator

[i : j] a module comparing and interchanging its two inputs xi and xj if the minimum or

maximum is not at the desired position on its two outputs x′i and x′j . According to text

conventions for drawing networks [Knu97], an arrow from xi to xj is used to indicate

that the larger number goes to the point of the arrow and the smaller to the base.

In such a sorting network, the N = 2n horizontal lines correspond to the inputs

and the arrows to the switch comparators. The sorting consists of n successive merging

phases i with 1 ≤ i ≤ n, in which pairs of sorted sequences of length 2i−1 are presented

in oppositely sorted order and then merged together, according to the bitonic princi-

ple [Bat68]. As many research groups have enhanced the bitonic architecture [Eve98,

Mut99, Sto71, Tho83], we chose one which allows further modifications of both hardware

size and internal scheduling.

3.1.2 Network Implementation Using Recirculation

Stone [Sto71] showed that a sorting network for N = 2n elements could be constructed

by following a regular pattern, as illustrated in Fig. 5.13 for n = 4. Each of the n steps

in this scheme consists of a perfect shuffle of the first 2n−1 = N
2

elements with the last
N
2
, followed by simultaneous operations performed on N

2
pairs of adjacent elements. As

seen in Fig. 5.13, each of the latter operations is either a “∅” for no operation, a “↑”

for an ascending comparison, or a “↓” for a descending comparison.

During a stage s, for s < n, n − s steps are operated with “∅”. They are followed

by s steps in which the operations within step t consist alternately of 2t−1 “↑” followed

by 2t−1 “↓”. During the last stage, all operations are “↑” and constitute in fact an N

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅
x′15

x′14

x′13

x′12

x′11

x′10

x′9

x′8

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

x15

x14

x13

x12

x11

x10

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 5.13. Representation in a regular structure of the bitonic sorting network in a Knuth diagram

using Stone’s perfect shuffle on log2N stages of log2N steps.

82 Chapter V. Architectural Hardware Design

y′ = min(x, y)

x′ = max(x, y)x

y

ascending

y′ = y

x′ = xx

y

run-through

∅
y′ = max(x, y)

x′ = min(x, y)x

y

descending

y′ = x

x′ = yx

y

crossing

Fig. 5.14. Set of comparator elements including the computational ascending ↑ and descending ↓

comparators, as well as the direct run-through and crossing elements which are used for a symbolic

representation of the networks.

keys bitonic merger for two monotonic series of length N
2
. The different operations are

summarized in Fig. 5.14. From the hardware point of view, it appears clearly that this

network structure can be simplified to a single column of N
2

special switch comparators

executing a predefined sequence of operations, at the cost of log2
N
2

basically neutral but

necessary steps, i.e., the ones performed by the comparators switched in run-through

mode in the middle of the network.

input x

input y

output x′

enable, up dn

enable up dn

1 1
1 0
0 1
0 0

y′

y
x

max(x, y)min(x, y)
max(x, y)

y
x
x′

min(x, y)

output y′

Fig. 5.15. Controlled switch comparators are processing elements that permit the realization of the

four operations necessary in sorting networks as seen in Fig. 5.14. Two control signals are sufficient to

program the comparator.

For this reason, we created a new type of switch comparator to permit the realization

of a recurrent bitonic sorting network, as shown in Fig. 5.15. In order to perform the

perfect shuffle, a butterfly network is built symmetrically by connecting regularly the half

of the inputs to each second output, from i = 1 to N
2

and mirrored from i = N to N
2

+1.

This sorter processes N keys in O(log2N) time with only N
2

elements. An additional

external counter generating the control signals “enable” and “up dn”, supervises the

sorting procedure. Moreover, considering that the first run-through comparisons can be

disregarded, the controller can skip the insignificant steps of the first stage to accelerate

the whole sorting. The final remaining time for this model is then expressed in the

following equation in terms of clock cycles with

tsort(N) = (log2N)2 − log2N + 1. (5.10)

In this sorting scheme, the keys are input at once and processed in parallel. Their

length L does not influence tsort. While the time complexity O(log2N) of the sorter in

Fig. 5.16 is the same as the original bitonic sorting network in Fig. 5.12, its complexity in

terms of logic gates and comparators has been drastically reduced from O(N log2N) to

O(N). However, for large N and L, as it is the case in most applications, the practical

realization of such a network yields a moderate performance due to the high routing

density. Therefore, we have to consider further optimization methods for an efficient

implementation of the bitonic merger into physical devices, e.g., FPGAs.

3. Hardware Sorting and Merging 83

3.2 Optimization Methodologies

Introduced in Sec. 1.1.2 and 1.1.3 of Chapter II, some methods for optimizing the per-

formance of digital circuits allow system architectures to run faster and increase the

data throughput. Applying these methods to our sorting schemes which own a feedback

loop, require special attention in the retiming procedure as explained in Sec. 1.1.4 of

Chapter II.

3.2.1 Network Retiming

When it comes to the hardware implementation of such a sorting network that includes

a perfect-shuffle mapping, a price has to be paid in terms of routing resources, especially

in FPGAs. Previous studies [DeH00a, Eve98, Mut99, Szy97, Yeh00, Yeh03] have shown

the influence of the butterfly pattern over the complete architecture of the system in

VLSI designs. The recurrent bitonic sorting network presented in the previous section is

scalable in the sense that it is adaptable to any kind of bus width, as long as the number

of key to sort is a power of two (N = 2n). Slightly diverging realizations of redistributing

networks for sorting were found in the literature where the main idea was either to use

special design environments to verify the lengths of intermediate wires [Cla01] or to

resort to a parity strategy to reduce the communication within the sorter [Lee00].

The introduction of a new parameter p representing the degree of parallelism inside

the network means a trade-off between area and throughput for the sorter. It corre-

sponds to the granularity at which the keys are internally processed in the comparators

x8

x10

x9

x11

x12

x13

x15

x14

x0

x2

x1

x3

x4

x5

x7

x6

x′8

x′10

x′9

x′11
x′12
x′13

x′15

x′14

x′2

x′1

x′3
x′4
x′5

x′7

x′6

x′0

clock en, up dn

Fig. 5.16. An N = 16 keys recurrent bitonic sorting network uses controlled switch comparators

according to a predetermined shuffle and operate scheme in O(log2N) time complexity. The feedback

permits the recirculation of N keys of L bits in parallel.

84 Chapter V. Architectural Hardware Design

[x < y]

min=x
max=y

[x > y]
max=x
min=y

p p

p p

x′

y′y

x

enable, up dn, reset

min=max
[x = y]

reset reset

(xi, . . . , xi+p−1) = (yi, . . . , yi+p−1)

(xi, . . . , xi+p−1) < (yi, . . . , yi+p−1) (xi, . . . , xi+p−1) > (yi, . . . , yi+p−1)

Fig. 5.17. Retiming of the comparator modules with an internal degree of parallelism p for the

pseudo-serial processing. An internal finite state automaton is used to remember the result of previous

comparisons on partial words.

and within the network. Fig. 5.17 shows the state diagram for a pseudo serial com-

parison element in which the keys are inserted Most Significant Bit (MSB) first. As a

consequence, with L the length of one key, if p = 1 corresponds to the completely serial

solution and p = L the fully parallel solution, then (5.10) becomes

tsort(N, p) =
(
(log2N)2 − log2N + 1

)
·

⌈
L

p

⌉
(5.11)

whereas this duration can only be obviously an entire amount of clock periods. The

main benefit is for the area of the sorter, as it varies in O(p2N2). Though the through-

put is accordingly reduced, it is foreseeable that the global routing delay might at our

advantage be shortened as well.

3.2.2 Network Recombination

Although a partitioning of the standard bitonic sorter works with arbitrary or mixed

sizes [Nak89], we chose to implement an N keys sorting engine based on two N
2

keys

bitonic sorters and one N keys bitonic merger, all with recirculation. Not only do they

have different widths and hence different sizes and areas, they also require unequal

sorting and merging time.

As seen in Fig. 5.18, we built a sorter based on these two kinds of networks that

handle N keys in parallel. The condition for achieving the maximum throughput is that

the time tsort(
N
2
, p1) in O

(
log2N

)
needed to sort N

2
keys with a granularity p1 is at

most equal to the time tmerge(N, p2) in O (logN) needed to merge the N resulting keys.

As we try to minimize the overall area of the architecture, i.e., with only one level of

comparators, we obtain a relationship between p1 and p2 with

((
log2

N

2

)2

− log2

N

2
+ 1

)
·

⌈
L

p1

⌉

︸ ︷︷ ︸
N
2

keys sorting time

≥ (log2N) ·

⌈
L

p2

⌉

︸ ︷︷ ︸
Nkeys merging time

(5.12)

3. Hardware Sorting and Merging 85

x8

x10

x9

x11

x12

x13

x15

x14

x0

x2

x1

x3

x4

x5

x7

x6

x′8

x′10

x′9

x′11
x′12
x′13

x′15

x′14

x′2

x′1

x′3
x′4
x′5

x′7

x′6

x′0
N

n
ew

k
ey

s
p
re

se
n
te

d
ev

er
y
t s

o
rt

N 2
k
ey

s
so

rt
ed

N 2
k
ey

s
so

rt
ed

re
m

a
p
p
in

g
p
1
7→
p
2

re
m

a
p
p
in

g
p
1
7→
p
2

tmerge (N, p2)

N
k
ey

s
m

er
g
ed

in
ti
m

e
t m

e
rg

e

tsort
(
N
2 , p1

)

Fig. 5.18. Recombination of two recurrent 8 keys bitonic sorters followed by a recurrent 16 keys bitonic

merger. The degree of bit parallelism in the processing of the keys is expressed by the variables p1 and

p2 respectively.

whereas since both are integers, p2 might be set to the next suitable value. Hence we

can resolve (5.12) for expressing p2 as a function of p1 with

p2 ≥
log2N · p1(

(log2N)2 − 3 log2N + 3
) . (5.13)

As a rule of thumb, we can choose p2 ≥ ⌈p1/ (log2N − 2)⌉. Between sorters and merger,

the remapping p1 7→ p2 is simply done using registers. If necessary, the serial insertion of

zero-bits can be used to resynchronize a bitonic network without influencing the sorting

functionality.

3.3 Hardware Merging Solutions

In order to realize the RSU plus RMU ensemble, we have studied different sorting and

merging possibilities at the algorithmic level. Regarding our application, the hardware

constraints lie in the throughput of the system, i.e., in the size of the incoming data,

in the frequency and in the the length of the result list, that is to say the amount of

records which have to be returned from the ACE to the main application running on

the host PC.

86 Chapter V. Architectural Hardware Design

3.3.1 Proposal based on the Bitonic Sort Algorithm

The first proposal refers to an extension of the architecture presented in Fig. 5.18 where

instead of merging two groups of N
2

keys, we could use a feedback channel around the

bitonic merger to sort N new keys together with R old keys already present in the sorted

list [Lay03]. As seen in Fig. 5.19, the method works fine, but its realization is quite costly

in terms of hardware resources, as the butterfly network of size N+R present in the

RMU must be fast. The use of retiming parameters for a more serial processing of the

keys as explained in Sec. 3.2.1 might badly slow down the processing, i.e., minimize the

throughput, and make this approach rather unsuitable within the ACE for non small

values of R or N .

x0

x1

xN−1

so
rt

ed
N

ke
y
s

N
+
R

ke
y
s

m
er

ge
d

to
ge

th
er

N
ke

y
s

el
im

in
at

ed

R
ke

y
s

re
su

lt
li
st

p
ar

al
le

l
co

m
p
.

u
n
it

s
N

n
ew

ke
y
s

fr
om

Bitonic

Feedback R keys

N +R keys

Merger

so
rt

ed
R

ke
y
s

y0
y1

yR−1

(RMU)

N keys
Bitonic
Sorter
(RSU)

Fig. 5.19. The output of the RSU composed of N sorted keys enters the RMU which uses a large

bitonic sorter with a feedback of R keys to regenerate the result list.

3.3.2 Proposal based on the Insertion Sorting Algorithm

Based on the insertion sort algorithm of Chapter II Sec. 3.1.1, we propose a new archi-

tecture for merging data in a freely scalable result list. The idea rests upon a time for

area tradeoff and the stipulation that after a short amount of iterations, since the pages

are randomly distributed in the BAM, the probability is extremely low that one of the

N sorted pages from the RSU needs to be inserted in the result list by the RMU. This

justifies the choice of an algorithm based on insertion instead of a full N+R merging

network. In this case, we rely on a sequential sorting procedure which compares the

highest key of the N sorted list and insert it in the R result list if necessary. Only R

comparisons are necessary to find the position of the new record in the list. Moreover,

the complete N -set of records from the RSU can be ignored if the highest key of this

set is lower than the lowest key of the result list.

A further hardware improvement is allowed considering the time available to perform

the merging in the RMU. Instead of executing one comparison, chucking out the whole

N bunch of low RSU records and waiting for the next arrival as it is very likely to

happen after a few iterations, we can use the time to perform more comparisons, and

3. Hardware Sorting and Merging 87

hence reduce the hardware complexity of the sorting in the RSU. As a result, the data

from the RSU is not N -sorted anymore, but becomes N
M

-sorted. Firstly this decreases

the size of the butterfly networks present in the bitonic sorters of the RSU and secondly

reduces the duration of the sort itself.

0

1

0

1

0

1

+

-

+

-

+

-

p
b
it

M
u
lt

ip
le

x
er
M
→

1

N M
ke

y
s

so
rt

ed Serializer

(max. first)

N M
ke

y
s

so
rt

ed Serializer

(max. first)

N M
ke

y
s

so
rt

ed Serializer

(max. first)

yi−2

N
ex

t
re

co
rd

to
in

se
rt

yi+1 clk

yi−1

yi

yi+1

ci+1

ci−1

ci

Bitonic

Sorter #1

Sorter #2

Bitonic

Sorter #M

Bitonic

di

di−1

di+2

di+1

x0

x1

x N

M

xN−1N
n
ew

ke
y
s

fr
om

p
ar

al
le

l
co

m
p
u
ti

n
g

u
n
it

s

R
ke

y
s

re
su

lt
li
st

Insertion
Control

Result Merging UnitResult Sorting Unit

Fig. 5.20. The RSU is composed of M bitonic sorters that present their highest score serially to the

RMU over a multiplexer. If the selected key is greater that the lowest one from the result list, then a

direct insertion and shift is performed.

Fig. 5.20 shows the details of the architecture of the RSU and of the RMU. A small

state machine is necessary for correctly advancing the records in both the serializers and

the multiplexer. For a better comprehension of the architecture, the control logic within

the RMU which enables the shifting appears in grey and the data lines are black. In

the RMU, the R bit vector c in the form {c0 . . . cR−1} = {0 . . . 01 . . . 1} is the result of

R parallel comparisons and enables the corresponding registers for shifting, whereas d

in the form {d0 . . . dR−1} = {0 . . . 010 . . . 0} indicates the position of the insertion of the

new record in the list. At each clock, the new value can be placed into the result list

which shifts out its lowest record yR−1 if necessary.

Considering a hardware realization, the main drawback of this proposal is the huge

fan-out at the output of the register storing the next record to be inserted. Its key is

presented to every single comparator in order to decide directly of the position where to

insert the record. As the problem in this design does not come from a propagation delay

over a critical path, the cut-set technique cannot be usefully applied here. The remaining

solution would be to oversize the drivers of the large fan-out bus, hence increasing the

power consumption and the signal propagation time. Although the model has a func-

tional sorting time complexity in O(N), hardware synthesis results have demonstrated

that such an alternative is unsuitable for large R as the whole design suffers from a low

clock frequency.

88 Chapter V. Architectural Hardware Design

3.3.3 Proposal based on the Bubble Sort Algorithm

To replace the insertion sorter in the RMU, our final solution is based on Algorithm B

presented page 27 in Sec. 3.1.3 of Chapter II. Though not the fastest, the bubble sort

is the most simple algorithm realizable in hardware in both parallel or serial forms. A

sorter based on the odd-even transposition algorithm has been presented in [Hen98] and

integrated in a reconfigurable system [Blu00]. They use a bit serial processing and a time

sharing architecture which drastically reduce the area of the hardware implementation.

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

. . .
x′R

x7

x6

x5

x4

x3

x2

x1

x0

.
xR x′R

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

x7

x6

x5

x4

x3

x2

x1

x0

xR

. . .
x7

x6

x5

x4

x3

x2

x1

x0

xR

.
x′R

(Reusing
registers)

Odd step

⇒

Odd + even step

x′7

x′6

x′5

x′4

x′3

x′2

x′1

x′0

Even step

Basic cell with comparator active: or inactive:

Fig. 5.21. Recurrent sorting network based on the odd-even transposition network (left) can be

simplified if every second comparison can be alternatively disabled (right). A basic cell includes one

comparator element and one register.

Fig. 5.21 (left) represents a recurrent sorting network based on the odd-even trans-

position, as seen in Fig. 2.15-b on page 30. A very regular structure can be obtained by

implementing two levels of comparators plus two levels of registers. Depending on the

parity of R, although the last even step might be unnecessary, it remains effectless, as

opposed to a bitonic step. With the ability of reusing the same registers for both odd

and even steps, as well as disabling every second comparator accordingly, the size of the

structure can be reduced, as seen in Fig. 5.21 (right). As a result, it becomes possible

to build an arbitrarily long result list composed of one single type of basic cell including

a register with an input selector and a controlled comparator element.

The RTL structure of Fig. 5.22 represents the sorting unit based on the parallel bub-

ble sort principle which is implemented in the RMU. The difference is in the continuous

sequential insertion of the records at one extremity of the chain, as seen in Fig. 5.23,

instead of a parallel insertion and a following O(N) processing. The upper part of the

design including the multiplexers and the registers constitutes the storing structure,

for which the data-busses have the width of the records which have to be sorted. The

bottom part of the design controls the data-flow of the storage structure on a biphased

comparison process, i.e., first compare and then exchange. In this case, the time com-

plexity is linear in O(N +R) for the insertion of N records in a result list of length R.

According to Fig. 5.21, this procedure corresponds to an input at the position xR and

a consequent feedback x0 to xR−1 The result list corresponds to the register outputs x′0
to x′R−1, whereas the minimum x′R of the list is rejected.

3. Hardware Sorting and Merging 89

clk

en

cmp

EN ENEN

clk

IN

FB

clk

en

cmp

EN EN EN

OUT

clk

FB

D
at

a
P
at

h
C

on
tr

ol
P
at

h

Fig. 5.22. Bidirectional structure for the result list based on the bubble sort algorithm which allows

the registered values on the upper part of the design to move up and down in the list, i.e., right or left

in the picture.

clk

start

busy

cmp

en

EN EN

INPUT OUT

clk

FB

clk

EN EN

EXITIN

cmp

en

EN

FB

D
at

a
P
at

h
C

on
tr

ol
P
at

h

Fig. 5.23. Starting and ending extremities of the bidirectional structure (direct bubbling and feedback)

for the result list based on the bubble sort algorithm.

In our architecture, we have foreseen the next step in the search procedure which

consists in returning the best records stored in the result list to the host PC. In order

to simplify the pictures, a special signal has been omitted in the representation of the

result list on Fig. 5.22 and Fig. 5.23. It is the control signal used to read and empty

the list, which has the effect of switching all the multiplexers onto the “0” position such

that the registers form a straight forward chained list. On the activation of this signal,

all the registers are enabled, and the control part of the design with the comparators is

disabled. Hence with each clock period, data goes from the input register to the final

output register, pushing out the contents of the list through the exit port.

In summary, we have seen that the bitonic sorting network permits a relatively fast

sorting in O(log2N) time by using a very regular structure which eases its hardware

implementation. From the algorithmic point of view, it is almost impossible to say which

solution is best suited for our sorting paradigm, as the whole computing path influences

both the speed and the amount of data that must be processed in the RSU and RMU.

However, the bubble sort based RMU is the most promising realization in terms of

flexibility, speed and area, when it is placed after a subdivided parallel implementation

of recurrent bitonic sorting networks.

Chapter VI

Results and Evaluation

W ITHIN Chapter V, we have presented innovative methods for performing the

necessary associative computations, as well as the subsequent sorting and merg-

ing operations that require extremely short durations while using a minimal amount of

hardware, according to the functionalities of the Associative Access Method (AAM)

algorithm introduced in Chapter III and analyzed in Chapter IV. However, the so far

described abstract architecture must be scaled according to the targeted hardware plat-

form. Hence, in this chapter, we provide the ground rules for dimensioning the internal

core of the ACE following a synchronization strategy which allows the maximum data

throughput at the BAM interface while keeping the circuit design area as small as pos-

sible.

1 Hardware Implementation

This section is dedicated to the implementation of the ACE on a typical FPGA plat-

form for the realization of a prototyped system which permits to verify practically the

efficiency of our system. In designing a scalable and flexible architecture, we provided a

solution suitable for most of the hardware platforms currently available on the market,

while keeping the possibility to build one ourselves based on either FPGA or ASIC tech-

nology. Moreover, in the development of the high-throughput memory controller, we

focused for various reasons on standard SDRAMs which are currently the most popular

kind of memory devices for applications requiring a large storage space.

1.1 Adaptation to the Development Platform

According to Fig. 4.1 on page 52, the necessary hardware platform must provide a large

memory subsystem connected through a very high bandwidth bus to a customized logic

92 Chapter VI. Results and Evaluation

chip, e.g., an ASIC or an FPGA, further on connected to a host PC over a generic

interface such as Peripheral Component Interconnect (PCI) or Universal Serial Bus

(USB).

1.1.1 Prototyping Board

Developed at the University of Paderborn for the implementation of microelectronics

circuit prototypes, the modular rapid prototyping system Raptor 2000 [Kal02] integrates

all the important components to realize circuits and system designs with a complexity of

up to 60 million transistors. The main properties of the board are the ability of coupling

the system with a PC through the PCI interface, the possibility to mount many extension

modules on the same motherboard and the presence of an additional bus, i.e., a broadcast

bus, which releases the multi-master Local Bus providing the PCI connection. As seen

in Fig. 6.1, a hardware module includes an FPGA of the Xilinx VirtexE family [Xil06]

which can emulate circuits with up to 2.5 million system gates as well as 128 MB of

SDRAM connected to the FPGA over a 32 bit wide data bus. Additionally, the FPGA

requires a regulated power supply, a few clock signals for its internal architecture and

the synchronous peripherals at typically 50 MHz, some LEDs for status indication and

a Joint Test Action Group (JTAG) interface for its programming.

Xilinx

FPGA

VirtexE

Status LEDsExt. Clocks

Power Suppl. JTAG I/F

data bus

C
o
m

m
u
n
ic

a
ti
o
n

In
te

r-
m

o
d
u
le

C
o
m

m
u
n
ic

a
ti
o
n

In
te

r-
m

o
d
u
le

Left Plug Right Plug

Broadcast Bus

Local Bus (to PCI)

32 bits

128 MB SDR SDRAM @100 MHz

Fig. 6.1. The hardware prototyping module includes a Xilinx FPGA of the VirtexE series and four

memory chips for a total of 128 MB SDRAM accessible over a 32 bit data bus at 100 MHz.

As of 2007, this platform can be safely qualified as outdated, since technology has

progressed greatly, not only in terms of transistor sizes but also in terms of standards.

According to Sec.1.3 in Chapter II, today’s FPGA devices have become much faster

and an order of magnitude larger than five years ago. With the use of very elabo-

rated Electronic Design Automation (EDA) tools, they are able to implement designs

efficiently, benefiting from additional internal hardware resources such as multipliers,

Digital Signal Processors (DSPs) and microprocessor cores. Moreover, following the

needs of computerized applications, memory devices have seen their capacity increase,

as well as the format and speed of their interfaces evolving from SDR (Single Data Rate)

to DDR (Double Data Rate) and QDR (Quad Data Rate). On the peripheral side, the

PCI interface is becoming obsolete in that technical evolution leads to changes in data

1. Hardware Implementation 93

width from 32 to 64 bits, clock frequency from 33 to 166 MHz and transfer mode from

a parallel to a multi-channel serial protocol, thus gaining in crosstalk noise and skew

immunity. However, in choosing one of the most basic platforms available with down-

scaled hardware resources, we set the lowest bound in terms of performance which can

be expected from any later dated FPGA implementation.

1.1.2 System on Chip Design

Though fully functional, the core of the ACE is not ready for a bigger system integration,

as depicted in Fig. 4.8 in Chapter IV. It needs to be connected to the peripheral devices

that provide the communication with the other hardware elements present on board and

with the software programs driving the execution of user commands.

File
Register

Dual-Port
GCS

Memory
Instruction
Dual-Port

addr

datadata

addr

Unit
Sorting

Score
Calculating

UnitUnit

Host
Interface

Calculating
BAM
I/F

Penalty Result

B
A

M
u
p
lo

a
d
/

d
ow

n
lo

a
d

li
n
k

FIFO
50MHz

100MHz

S
D

R
A

M

Internal Address Bus

Internal Data Bus

N

L
o
ca

l
B

u
s

a
d
d
r

Instruction Stream

d
a
ta

d
a
ta

a
d
d
r

d
a
ta

16

a
d
d
r

FIFO

re
a
d

a
cc

es
s

a
d
d
r

32

24

RL data
enable read

50MHz

100MHz

Result
Merging

Unit

d
a
ta

b
u
s

Fig. 6.2. The 100MHz processing core delimited by the grey area is included in a system on chip

environment that provides peripheral connections to the hardware resources available on board, i.e.,

PCI through the Local Bus interface and SDRAM.

As seen in Fig. 6.2, our SoC (System on Chip) design includes the computational

path of the ACE core which is clocked with the SDRAM frequency of 100 MHz, allowing

a synchronous data exchange between all the modules from the BAM interface to the

RMU. The host interface is clocked at 50 MHz using a different source synchronized on

the 100 MHz clock through DLLs (Delay Locked Loops). The implementation of dual-

ported RAM for the register file and for the instruction memory permits the concurrent

access on two different sides of the registers at two different clock frequencies. However,

the transfer of the data to the SDRAM for uploading the BAM, or from the RMU for

reading the result list, must occur through synchronizing FIFO buffers. Although the

controlling of which costs a few supplementary logic gates, it prevents reading the FIFOs

when empty and writing them when full.

94 Chapter VI. Results and Evaluation

1.2 Synchronizing the Processing Units

As we have specified in Chapter IV, the ultimate goal remains the fastest processing

of the data at the lowest possible hardware costs. Therefore it is essential to plan an

efficient synchronization strategy. Since we cannot achieve a lower power consumption

in an FPGA design by tweaking the size of the transistors, we can impact the overall

switching activity in reducing the amount of gates involved in the computational path.

Paradoxically, we transition on the one hand from a temporal to a spatial design, i.e.,

raising the number of transistors in the design, in order to increase the degree of paral-

lelism and hence the data throughput. On the other hand, we have to reuse the available

resources within the concurrently operating units when timing constraints allow it, e.g.,

using feedback or recirculation, in order to lower the size of the hardware structures.

1.2.1 Dimensioning the Data Path

The four units of the ACE are coordinated within a functional pipelined model that

must allow the highest possible throughput at the BIF (BAM Interface). Compared to

Fig. 4.8 on page 63, there subsists a certain difficulty to directly identify the PEs in the

RSU and in the RMU according to Fig. 5.18 and 5.22. This is due to the fact that the

represented layout only aims to highlight the functionally separated blocks and propose

a high-level representation of the entire system at the transaction level. The RTL design

of the different units composing the ACE is reported in Fig. 6.3 in Chapter V. With a

vertically repeated structure, PCU and SCU work on N data in parallel. As the BAM

vectors are read in a burst of length four, the PCU accumulates 4N penalties to be

transfered to the SCU over four buffers that form a synchronous FIFO register in order

to cancel the burst effect. Hence the SCU treats the penalties independently without

noticing the way data is read at the memory interface. Composed of respectively 2M and

M times the same structure, the RSU is split into two functional subunits, according

×N

Fig. 5.7

tSCUtPCU

Fig. 5.23
Fig. 5.22

×M

B
A

M
V

ec
to

r

B
es

t
R

es
u
lt

Fig. 5.16

Fig. 5.20

Fig. 5.11

×N

tRMU1 tRMU2tRSU1 tRSU2

ack. ack. ack. ack. ack.
req.req.req.req. req.

Global Controller and Scheduler
instruction bus

wait
done

ca
n
ce

ll
a
ti
o
n

bu
rs

t
eff

ec
t

Fig. 5.16
×2M

(left part)

Dec.
PCU

Dec.
SCU

Dec.
RSU1

Dec.
RSU2

Dec.
RMU1

Dec.
RMU2

Fig. 6.3. The self-timed data path includes data transfers registers (grey lines) around each processing

unit, as well as a burst effect canceling FIFO between PCU and SCU. The decoders synchronize the

instructions from the GCS using a simple request/acknowledge protocol.

1. Hardware Implementation 95

to the RTL design implementation we have described in Sec. 3.1 of Chapter V. As

well, the RMU includes two main processing steps that perform first the select and

compare operations and then the eventual bubble sorting. The synchronization of each

unit occurs according to a self-timed control path where the instructions from the GCS

(Global Controller and Scheduler) can be delayed by each unit decoder upon availability

of the processing resources in the following unit by using a simple request-acknowledge

protocol.

Synchronizing a parallel computing system including different processing units is not

a trivial task. Fortunately, the ACE benefits by construction from precise and determin-

istic timings in almost all its computing modules. The two unknown parameters during

the processing are first the length of the query string, which influences the duration of

computing in the PCU, and second the amount of candidates at the output of the RSU

to be inserted in the result list, which impacts the duration of the merging in the RMU.

With the frequency fclk at which the N -bits vectors are read by the BAM interface,

we can express the processing time of each unit. Hence, we define the functional time

tPCU as the time needed by the PCU to provide a single fragment penalty Pp(f) through

tPCU = s · Tclk (6.1)

with s the amount of slots in a fragment f and Tclk = f−1
clk the period of the global clock

of the data path. The functional time tSCU corresponds to the time needed by the SCU

to transform a fragment penalty into a page score Sp in the worst case through

tSCU = np · Tclk (6.2)

where np is the number of bits in Pp(f). Further on, tRSU1 and tRSU2 correspond to the

time needed by the RSU in a pipelined manner to respectively sort N
2M

and merge N
M

page scores according to (5.11) and (5.12) so that

tRSU1 =

((
log2

N

2M

)2

− log2

N

2M
+ 1

)
·

⌈
L

p1

⌉
· Tclk (6.3)

tRSU2 =

(
log2

N

M

)
·

⌈
L

p2

⌉
· Tclk (6.4)

with p1 and p2 two temporary internal processing widths according to (5.13). The

functional time tRMU1 is the time needed by the RMU to check at least M and at most

N page scores for insertion into the result list bounded by

2M · Tclk ≤ tRMU1 ≤ 2N · Tclk. (6.5)

The time tRMU2 of the RMU2 includes the bubbling procedure of the inserted records in

the result list in O(R) time complexity, with R the length of the result list. Functionally

however, this supplementary delay can be considered as a final latency since the list sorts

itself automatically and does not make the ACE wait, even when the currently processed

96 Chapter VI. Results and Evaluation

data needs to bubble up to the top of the list. Hence, neglecting tRMU2, tRMU1 is upper-

bounded through N when all of the N records are validated candidates and must be

inserted in the list, and lower-bounded through M such that

t∗RMU = lim
t→∞

tRMU1 = 2M · Tclk (6.6)

when all the values at the output of the M sorters of the RSU2 gets rejected due to a too

low score. We remember here that the coefficient 2 comes from the select-and-compare

way of working of the RMU.

1.2.2 Exploitation of the Timing Diagrams

At first for a full task parallelism within the ACE, we have to consider that none of

the four units makes its predecessor wait, that is to say that the processing shall never

be interrupted, especially at the BAM interface. To this aim, we rely on an “as soon

as possible” synchronization strategy that allows data to be handled immediately as

the processing resource becomes available. Compared to a brute-force synchronization

where each task is started concurrently at the frequency of the slowest one, our strategy

permits an automatic adaptation of the duration of the tasks and a flexible manipulation

of the possible overhead in case of the RMU1.

clock

End of fragment End of fragment

N3N1 N2 N4PCU N7 N5 N7N6 N8N8 N7N5 N6 N8· · · N6· · ·

SCU N5N4

N4N3RSU1

tRSU1

tSCU

N1 N2 N3

N2N1

· · · · · ·N5 · · ·

4× tPCU (N5 sto N8)

burst cancellation

buffering

using 4 registers

Fig. 6.4. During the processing of one query fragment, N bits data vectors are read from the BAM.

The four registers between PCU and SCU as seen in Fig. 6.3 allow the processing of the data in a

demultiplexed way at the end of each fragment.

Based on a single clock frequency at which N -bits vectors are read from the BAM

using a burst access of length four, Fig. 6.4 represents the synchronization process be-

tween the PCU, the SCU and the RSU. Between the end of two fragments, 4N pages

are processed by the PCU, i.e., N5 to N8, in an N pages multiplexed way as explained in

Sec. 2.1.1 of Chapter V. While the penalties of four fragments are calculated in 4×tPCU,

the scores of the 4N preceding pages, i.e., N1 to N4, can be calculated in 4×tSCU or less.

Therefore, every fragment penalty at the output of the PCU passes through four buffers

in order to cancel the burst effect due to the read access mode of the BAM interface. In

the same time duration, although delayed of tSCU, four sets of N values must be ordered

in the RSU.

1. Hardware Implementation 97

Based on the timings of the SCU, Fig. 6.5 shows the evolution of the data sets N1

to N4 along the sorting subsystem over the two levels of the RSU before entering the

RMU. As seen in Chapter V, the execution time of the bitonic sorters composing the

RSU1 and RSU2 modules is deterministic by construction and set on purpose shorter

than tSCU. However, tRMU1, which corresponds to the time the RMU needs to scan the

potential candidates from the output of the RSU, is functionally non-deterministic, i.e.,

short if the scores of the pages are low and quite long if these are rather high. The

two cases are depicted in Fig. 6.5, whereas the latter eventually causes the preceding

units to hold the execution for a few clock periods until resources are available again for

processing the next set of data. In the worst case, the PCU might theoretically happen

to be waiting, e.g., at the very beginning of the processing of a query, when the result

list is empty and when the RMU is accepting any result from the RSU.

RMU1

RSU2 N1 N2

RSU1 N1 N3

SCU N2 N3 N4

N1

very long tRMU1

N2

N4

N3 N4

N2

tSCU

tRSU1

(non-deterministic time)

N5

tRSU2

N3

short tRMU1

wait

wait wait

End of fragment

Fig. 6.5. A very long processing time tRMU1, e.g., for N1, can force the preceding units to wait, whereas

a short tRMU1, e.g., for N3, makes the RMU wait for data.

Different approaches are foreseeable for reducing the probability of blocking the

processing in the PCU while the RMU is inserting eventual candidates in the result

list. One possibility would be to insert a large FIFO buffer between RSU2 and RMU1,

i.e., a temporary storage between parallel processing and sequential sorting, to give the

RMU more time to process. The size of the FIFO is application-dependent and must

be estimated using functional simulations of the system in the considered boundary

conditions. However, a register chain at this location in the data path would yield a large

data width and its implementation might not be justified in terms of hardware costs,

as we try to keep the size of the architecture as small as possible. Another possibility

would be to reconsider the minimum bounding time tSCU to be longer, allowing not only

a redimensioning of the RSU into slower and hence smaller partial bitonic sorters, but

also making the insertion of more eventual candidates in the result list by the RMU

feasible.

98 Chapter VI. Results and Evaluation

1.3 Synthesis Results

The scalable architecture of the ACE must be dimensioned in order to fit into the target

FPGA, not only in size as the hardware resources are not infinite, but also in terms of

frequency as we want to require only one single clock domain in the design of the data

path. On the one hand, enlarging the size of the design tends to maximize the data

parallelism and hence the throughput. On the other hand, it increases the switching

activity as well as the routing complexity and hence badly impacts the maximum clock

frequency, especially in the sorting part of the design.

1.3.1 Numerical Analysis

The condition that rules the most efficient implementation in terms of computational

performance was described by (4.3) without taking the consequences of the burst accesses

to the memory subsystem into consideration. Satisfying these constraints with (6.1) and

(6.2) implies that the PCU must be waiting if np > s. The average length1 of the words

included in the standard dictionary of a Linux spell checker yields 9.7 characters per

existing word. For this reason, we set the lower bound of the processing time through

the SCU to tSCU ≤ 10 · Tclk so that np ≤ smin = 10.

With N = 32 bits for the data bus on our FPGA platform as seen in Fig. 6.1, we can

estimate the parameters used within the scalable data path necessary for the correct

processing of the BAM pages, especially for the sorting subsystem. Arbitrarily, the

length L of each record processed within the RSU includes the ns = 14 bits score of a

page, the nF = 5 bits FHT and the relative log2N bits page number so that L = 24

bits. According to (4.3), the problem is now to dimension the RSU in order to ensure

that tRSU2 ≤ tSCU and tRSU1 ≤ tSCU, whereas the unknown variables are the amount

M of partial bitonic sorters in the blocks RSU1 and RSU2, as well as their respective

internal processing width p1 and p2. Hence using (6.3), (6.4) and (6.5), we can solve

numerically the values of p1, p2 and M .

M N
M

N
2M tRSU1 · fclk tRSU2 · fclk p1min → p1 p2min → p2 t∗RMU · fclk

1 32 16 312/p1 120/p2 32 12→ ? 2

2 16 8 168/p1 96/p2 17→ 24 10→ 12 4

4 8 4 72/p1 72/p2 8→ 8 8→ 8 8

8 4 2 24/p1 48/p2 3→ 3 5→ 6 16

Table 6.1. Dimensioning the Result Sorting Unit for the FPGA platform with N = 32 records of

L = 24 bits to be sorted in parallel using two sorting levels. These numbers are functional and must

be verified after the hardware synthesis.

In the RSU, the remapping of the p1 bits of the first sorting level to the p2 bits of the

second merging level is possible for any width using arbitrarily complex state machines.

However, this becomes very simple when p1 = k · p2 with k or k−1 ∈ IN, and absolutely

1obtained with the shell command “wc /usr/share/dict/words | awk ’{print $3/$2}’” by di-
viding the total number of characters by the number of words

1. Hardware Implementation 99

trivial if k = 1. Reported in Table 6.1, the lower bounding values of p1 and p2 vary

along different parameters such as the expected duration t∗RMU for the merging in the

result list according to (6.6). Using M = 1 is not an option since p1 cannot be larger

than L, as well as for M = 8 where t∗RMU > tSCU. In the best case, L = k1 · p1 = k2 · p2,

which implies for M = 2 to take p1 = 2 · p2 = L for practical reasons. However, when

p1 = 24, the area of the sorter in the RSU1 is considerably large and the 100 MHz

frequency requirement cannot be achieved. Therefore, as the last but not least solution,

with M = 4, all the constraints are respected, and plus, the hardware realization of the

mapping between RSU1 and RSU2 remains simple with p1 = p2 = L
3
. Hence, Table 6.2

recapitulates the different bit widths used in the design.

Param. Bits Description

N 32 Width of the data bus on board, i.e., length of the BAM vector.

smin 10 Amount of slots in the query for minimal time processing.

np 8 Width of Pp(f) in PCU and SCU, i.e., fragment penalty.

ns 14 Width of Sp in the SCU, i.e., page score.

L 24 Length of a record in the RSU, i.e., page number, score, and FHT.

p1 8 Width of the N
2M bitonic sorter in the RSU1.

p2 8 Width of the N
M bitonic merger in the RSU2.

Lr 32 Length of a record in the RMU, i.e., page address, score, and FHT.

Table 6.2. Width of the various signals composing the data path of the ACE within its FPGA based

hardware implementation on the Raptor 2000 prototyping platform.

The final length Lr of the records at the output of the ACE was set to 32 bits not

only for commodity reasons, but also because it fits the address of a 128 MB BAM

composed of 512 thousand pages, a scaled version of the page score on eight bits, as well

as a complete five bits FHT. The position of the pages in the result list does not need

to be transferred as a value, since the list is read, i.e., emptied, best score first until no

item is left inside.

1.3.2 FPGA Implementation

Table 6.3 gives a detailed list of the hardware resources needed in the FPGA implemen-

tation of the ACE in terms of slices, LUTs and maximum frequency, for the processing

blocks only. The communication blocks and the internal system bus are quite small,

hence fast, and were not considered in the listing as relevant parts of the ACE. The

implementation results do not only show that the architecture has a very small area but

also that the system is suitable for high speed memory devices such as the 100 MHz

SDRAM chips. The amount of on-chip SRAM memory is not reported in the table and

accounts for 2 KB, due to the instruction memory where the translated query string

is stored. Remembering that it is freely extendable, the length of the result list was

arbitrarily set to R = 100 places in our implementation. Moreover, the global area

is in addition minimally influenced by the rest of the logic in the system such as the

local bus interface to the PCI bridge and the communication FIFO for the frequency

100 Chapter VI. Results and Evaluation

XCV2000E BIF PCU SCU RSU RMU GCS

Flip-Flop Slices 225 465 698 1850 2339 71

4 input LUT 365 680 1284 3164 4171 63

Clock load 359 978 1172 2458 3307 93

FPGA Usage 1% 2% 3% 9% 12% 0%

Frequency (MHz) 116.3 129.3 175.2 125.3 128.4 140.3

Table 6.3. Listing of the hardware resources needed for the FPGA implementation of the ACE after

individual synthesis of the different modules on a Xilinx Virtex 2000E.

adaptation, as well as the placement and routing overhead. Regarding the prototyping

board presented in the previous section, it is safe to say that our goal has been reached

in that the final synthesis of the ACE which includes all the functional blocks of Fig. 6.2

yields a frequency of 108 MHz.

2 Evaluation of the Hardware Model

2.1 Benchmarking Environment

In the context of hardware and software, formal verification is the act of proving or

disproving the correctness of a system with respect to given specifications or properties.

Although the nature of our model is known by construction, we intend in this section

to demonstrate the correct functionality of the system we have built.

2.1.1 Validation of the hardware model

It seems easy to provide a system like the ACE that apparently performs the correct

operations, but we have to make sure that it fulfills its purpose regarding real text queries

in huge text databases. Therefore we tried the implementation of a coding method for

a personal verification of the results, permitting a validation of the hardware platform.

For this we use a method basically issued from the hash theory described in Sec. 2.4 of

Chapter II. In order to practically limit the computational complexity, we have chosen

an alphabet of valid characters, ciphers and signs composed of 40 items. With these

considerations, (2.4) on page 24 becomes

h(x) =
(
x[0] · 402 + x[1] · 40 + x[2]

)
mod 2039. (6.7)

Relying on the AAM as explained in Chapter III, we use this function to generate the

text signatures and also encode the query string. Furthermore, the ASCII filtering

process during the creation of the BAM relies on regular expressions, as explained in

Sec. 1.2 in Chapter III. After removing special signs, it maps any character of a text

onto the corresponding item in our selected alphabet.

2. Evaluation of the Hardware Model 101

The encoding phase of the query described in Sec. 3.2.2 of Chapter III includes the

assignment of weights and the fragmentation of long text strings. The value of a weight

which is given for a word in the query string depends on the length of the words, since

long words are supposed to be more important, and on the language used, e.g., the word

“the” which appears too often in English might be automatically removed from a query.

Hence, the resulting weighting ωs of a slot s is described through

ωs =






0 if word length < 3 or word too frequent

1 if 3 ≤ word length < 5

2 if 5 ≤ word length < 9

3 otherwise

(6.8)

so that only two bits are needed for the coding, plus one bit to specify the sign of the

weight, assigning it negative for words that shall not appear in the retrieved pages, as

seen in Fig. 5.7 on page 74.

In the case of long queries which need to be split into fragments in order to increase

the precision of the retrieval, a condition is necessary to decide when to set the fragment

separation slot. A trivial approach would be to count the number of slots and to ter-

minate the fragment at word boundaries. However, this method is too simple and does

not take into account the eventual relevance of important words in a searched fragment.

Therefore, we implemented a different method that counts the absolute weights instead.

The condition for the slots si to sj to belong to the same fragment F is that

j∑

s=i

ωs ≤ Gmax ∀s ∈ F. (6.9)

In other words, we make sure that the sum of the weights ωs in a given fragment F

doesn’t exceed the rough maximum granularity Gmax, which we happen to set to 100 in

our test implementation. However, as it only serves for testing purposes, it must be clear

that this distribution of the weights has been arbitrarily chosen and cannot compete in

any way with professional implementations which account idiomatic properties.

2.1.2 Functional Verification

With reference to (3.1) in Chapter III, it has been reported that a signature file is

optimized when its entropy is maximized [Wit99]. As we know that our hash function

in (6.7) is experimentally created without any working guarantee, we can measure the

distribution of the bit attributes in the BAM and appreciate the quality of the coding

using a frequency analysis. The magnitude of the two dimension Fast Fourier Transform

(FFT) of the BAM in spatial frequency domain is shown in Fig. 6.6 where

B(fx, fy) =
1

MN

M−1∑

x=0

N−1∑

y=0

B(x, y) · e
−j2π

“
x·fx
M

+
y·fy

N

”

(6.10)

102 Chapter VI. Results and Evaluation

y
=

B
A

M
S
ig

n
a
tu

re
In

d
ex

0

1k

2k

N
o
rm

a
li
ze

d
F
re

q
u
en

cy
f y

1

0

-1
0 1k 2k -1 -.5 0 .5 1

x = BAM Attribute Index Normalized Frequency fx

Fig. 6.6. The Bit Attribute Matrix represented as a bitmap (left) yields the spatial frequency spectrum

(right) after a two dimensional Fourier transform.

with B(x, y) and B(fx, fy) standing for the BAM and its image respectively. In order

to perform the FFT instead of the much slower Discrete Fourier Transform (DFT), the

image has been transformed so that the width and height are an integer power of two.

The axis carry normalized frequencies, for which the value 1 represents the maximum

frequency inside the BAM, i.e., the alternation of zeroes and ones, or respectively black

and white dots on the left of Fig. 6.6. On the one hand, we can say that the distribution

of the bits is apparently quite uniform. On the other hand however, the horizontal

white line in the spectrum reveals a vertical dependency in the real BAM. This can be

explained by the fact that the chosen texts, for creating the BAM, came from an English

repository where the same finite amount of most frequent trigrams appear repetitively.

Another reason could also be that our hash function is too rudimentary compared to a

specialized one which would take into account linguistic properties of the texts from the

database.

y fy

B(x, y) |B(fx, fy)|

fyy

B(x, y) |B(fx, fy)|

x fx0

0

0
0

0

0

fxx0
0

Fig. 6.7. In a two dimensional Fourier analysis, a 2D plane (left) transforms to a delta function and,

neglecting the phase information, a horizontal (y = 0) or vertical (x = 0) line of delta functions (right)

to a line of delta functions fx = 0 ∀fy or fy = 0 ∀fx respectively.

As seen in Fig. 6.7, instead of the expected uniform distribution of the bits in both

x and y direction in the BAM (left), a normalized frequency analysis (right) reports

the rather constant presence of some bit-attributes, i.e., vertically in B(x, y), through

the amplitude of B(fx, fy) for fy = 0. Less obvious, the fact that some page signatures

2. Evaluation of the Hardware Model 103

in the BAM are empty or composed of less trigrams in case of a small page makes

horizontal lines visible in Fig. 6.6 (left), and hence causing the light grey vertical spectral

ray at fx = 0. To all intents and purposes, the main idea is here to prove that our

model of coding works properly with the ACE and that our implementation is not only

theoretically correct by construction, but also that a prototype permits real performance

measurements beyond the simulation level.

2.2 Scaling the Design

Within our work, we took special care in designing a flexible parameterizable system

that does not only provide a solution for different hardware platforms but also allows its

scalability for higher performance requirements as well as wider or narrower bus sizes.

Compared to Sec. 1.3, a synthesis of the VHDL RTL code followed by a place and route

implementation step for the next class of FPGA, i.e., the Xilinx Virtex2 family devices

[Xil06], yields the same area requirements for almost twice the clock speed, reaching the

symbolic 200 MHz internal frequency. In such a case, the memory subsystem must be

scaled up as well, therefore we would use (Double Data Rate) DDR SDRAM devices

that provide the double data throughput.

B
it

A
tt

ri
b
u
te

M
at

ri
x 256 bits wide data bus

200 MHz FPGA

Score Calculating Unit

width p1
width p2

×4M ×2M ×M

width p3

tRSU2tRSU1 tRSU3

ack.
req.

Dec.
RSU2

Dec.
RSU1 RSU3

Dec.ack.
req. req.

ack.
req.
ack.

Penalty Calculating Unit

Result Merging Unit

200 MHz DDR SDRAM

PC I/FACE core

Result Sorting Unit

Fig. 6.8. Detail of a three level implementation of the RSU in a simulated version of the ACE with

a 200 MHz Double Data Rate (DDR) connection to the BAM through a 256 bit data bus that yields

internally N = 512 bits.

Fig. 6.8 represents a possible integration of the data path of the ACE on a simulated

hardware platform composed of a Xilinx FPGA, e.g., Virtex4 or Virtex5 that can be

easily clocked at 200 MHz, and a large memory subsystem, the size of which does not

play any role in the performance measurement. The key element of the design is the large

data bus between the processing units and the BAM where 256 bits can be transferred

at each edge of the clock typically specified at 200 MHz, reaching a record breaking

throughput of 12.8 GB/s. As a direct consequence of the bus widening and of the DDR

access, increasing the internal degree of parallelism N = 2× 256 in the processing units

PCU and SCU requires the following RSU to be able to sort a larger amount of page

scores in a time still set by a theoretical minimum query length, e.g., s = 16. Then we

have to redimension the sorting subsystem and extend it with at least one supplementary

104 Chapter VI. Results and Evaluation

M tRSU1 · fclk tRSU2 ·fclk tRSU3 ·fclk p1min → p1 p2min → p2 p3min → p3 t∗RMU ·fclk

1 1032/p1 192/p2 216/p3 65 12→ ? 14→ ? 2

2 744/p1 168/p2 192/p3 47 11→ ? 12→ ? 4

4 504/p1 144/p2 168/p3 32 9→ ? 11→ ? 8

8 312/p1 120/p2 144/p3 20→ 24 8→ 12 9→ 12 16

16 168/p1 96/p2 120/p3 11→ 12 6→ 12 8→ 12 32

32 144/p1 72/p2 96/p3 5→ 6 5→ 6 6→ 6 64

64 120/p1 48/p2 72/p3 2→ 3 3→ 3 5→ 6 128

Table 6.4. Dimensioning the RSU for a simulated FPGA platform with N = 512 records of L = 24

bits to be sorted in parallel using three sorting levels ensuring t∗RMU ≤ 16 · Tclk. In the table, pmin → p

indicates the minimum size of p in order to respect the required throughput and then the chosen size

of p which makes sense to be implemented considering p ≤ L.

merging step, i.e., the RSU3, hence taking into account the increasing of the total area

of the architecture. In the RSU, the internal degree of parallelism is upper-bounded by

L and the subsequent merging time t∗RMU constrained by M . According to Tab. 6.4, the

best choice ensuring t∗RMU ≤ 16 · Tclk for a customized FPGA platform with N = 512

records of L = 24 bits to be sorted in parallel using three sorting levels remains the

combination M = 8 with p1 = 2·p2 = 2·p3 = 24.

Resorting to the same methodology while trading speed for area, it can be shown

that if we allow t∗RMU ·fclk ≤ 32, i.e., in the case of a search engine for queries of at

least 32 slots, then the whole architecture of the RSU can be drastically reduced using

M = 16 with p1 = p2 = p3 = L/4.

2.3 Performance Appraisal

Speedup is a measure of hardware performance which can be defined as the running

time of a sequential algorithm available on a given machine over the running time of

the parallel algorithm executed by a dedicated accelerator such as the ACE. In order to

evaluate this measure, we rely on the software implementation of the Associative Access

Filter (AAF) algorithm presented in Sec. 2 of Chapter IV which is brought to run on

different personal computers. Tab. 6.5 lists the most relevant properties of these PCs in

terms of Central Processing Unit (CPU) speed, main memory (RAM), and Hard Disk

Drives (HDD). Typically, this reflects the evolution of the most significant computer

hardware parts within the last five years and might help conclude on future trends.

On the hardware side of the benchmarking, the ACE has been synthesized for two

FPGA devices with different architecture sizes. One has a 32 bit data bus to a 100 MHz

SDR Single Data Rate (SDR) SDRAM memory subsystem and the other a 256 bit data

bus to a 200 MHz Double Data Rate (DDR) SDRAM memory subsystem. The first

implementation has been tested and evaluated on the prototyping board described in

Sec. 1.1, whereas the second model was only simulated and synthesized for a virtual

hardware model of the board components.

2. Evaluation of the Hardware Model 105

Configuration Software 1 (PC1) Software 2 (PC2) Software 3 (PC3)

Processor Type Intel PIII AMD Athlon Intel PIV

CPU Frequency 933 MHz 1875 MHz 2926 MHz

L2 Cache 512 KB 512 KB 1 MB

Release Year 2001 2003 2005

Memory Type SDR SDRAM DDR SDRAM DDR SDRAM

RAM Frequency 133 MHz 166 MHz 200 MHz

RAM Size 256 MB 512 MB 1024 MB

HDD Size / Cache 80 GB / 8 MB 80 GB / 2 MB 120 GB / 8 MB

HDD Bus Type ATA 100 ATA 100 SATA 150

HDD Access Time 12 ms 9 ms 8 ms

HDD Properties 5400 rpm - 2.5” 7200 rpm - 3.5” 7200 rpm - 3.5”

Table 6.5. Listing of the most relevant parameters of the different software environments, reporting

the processor data, main memory parameters and the features of the HDD.

Fig. 6.9 reports the execution time of the AAF algorithm on different platforms

including the three PCs described in Tab. 6.5 storing the BAM either on their Hard

Disk Drive (HDD) or into their RAM, as well as the two hardware implementations. As

expected, the query time responds linearly to the two varying parameters, i.e., the size

of the BAM (left) and the length of the query (right). Unfortunately, for small values

of the query length and the BAM size, the profiling tools have to measure extremely

short durations, even though the BAM was set constant to 128 MB and the query to

128 items, i.e., rather large in the appropriate measurement scenario. In such a case,

the influence of a multi-tasking Operating System (OS) becomes noticeable and tends

to falsify the results. Moreover, the HDD are mechanical devices which require a certain

amount of time to position their heads on the correct tracks and sectors. As data is

usually scattered randomly all over the disks, repositioning the heads at a new physical

address costs supplementary latency penalties. When a file is accessed on the hard disk,

a cache system permits to accelerate the data transfers to or from the main memory and

the processor of the computer. In this sense, when the BAM is read from the drive, it

is partially copied into the cache, hoping for a locality advantage. However, the vertical

accesses to the columns of the matrix, as described in Sec. 1.2 of Chapter V, forces the

BAM file to be read colum by column so that the main memory of the computer serves

as a cache for a few successive columns. When the query gets longer, as seen in Fig. 6.9

right, the probability becomes higher that a column indexed by the query is already

stored in the memory due to an earlier neighboring access. In such a case, the data is

fetched from the memory instead of the HDD. These reasons explain why the behavior

of the curves based on the HDD measurements is sublinear compared to the variations

of the length of the query.

When comparing Tab. 6.5 with Fig. 6.9, it becomes clear where the real speed-up of

the algorithm really comes from. Apparently, the speed of the processor of a PC only

plays a minor role in the duration of a query. It appears that using a CPU which is three

times faster, i.e., PC3 versus PC1, only reduces the searching time to half. Advances in

106 Chapter VI. Results and Evaluation

106

105

104

103

102

10

1

.1

10−2

10−3

256M64M16M4M1M256k

Q
u
er

y
T

im
e

(m
s

/
12

8
it

em
s)

BAM Size (Byte)

BAM in HDD

BAM in RAM

ACE100
MHz

ACE200
MHz

PC1+HDD
PC1+RAM
PC2+HDD
PC2+RAM
PC3+HDD
PC3+RAM

ACE1
ACE2

105

104

103

102

10

1

.1
51238425619212896644832

Q
u
er

y
T

im
e

(m
s

/
12

8M
B

B
A

M
)

Query Length (items)

BAM in RAM

BAM in HDD

ACE100M
Hz

ACE200M
Hz

Fig. 6.9. Representation of the complexity of the AAF algorithm executed by the two ACE models

and three different computer architectures against the size of the BAM for a query of 128 slots (left)

and against the length of the query for a BAM of 128 MB (right). When the BAM is read from the

HDD, during long queries (right), local information tends to be re-accessed from the main memory of

the computer that serves as a cache instead of being accessed from the disk.

the HDD technologies within the last five years permit a reduction of a query duration

with respect to the AAF algorithm down to one fifth of the original time. Moreover,

when the BAM is stored in the main memory of the system, i.e., in RAM instead of on

HDD, a query can be accelerated by a factor of about 20.

The technological evolution of memory devices in terms of access frequencies and

data rates, as known from Fig. 1.3 in Chapter I on page 4, makes the biggest difference

in our benchmarking environment. Not only can we explain the gain in time between

the different software solutions, but also between the two hardware models. This proves

that a fast memory with a fast processor is not enough to obtain a very high-performance

system. As presented in this thesis, it is their clever association which makes an old and

Appliance Processing Unit BAM Location Speed-up

Software 1 ATA 100 Hard Disk ∼ 25000

Software 1’

}
PIII 933 MHz

{
SDR SDRAM 133 MHz ∼ 1500

Software 2 ATA 100 Hard Disk ∼ 18000

Software 2’

}
Athlon 1875 MHz

{
DDR SDRAM 166 MHz ∼ 800

Software 3 SATA 150 Hard Disk ∼ 5000

Software 3’

}
PIV 2926 MHz

{
DDR SDRAM 200 MHz ∼ 700

Hardware 1 VirtexE 100 MHz SDR SDRAM 100 MHz 32

Hardware 2 Virtex4 200 MHz DDR SDRAM 200 MHz Reference

Table 6.6. Summarization of the average speed-up obtained by the simulated ACE architecture

(Hardware 2) against the different test platforms for queries composed of a variable number of items

using a BAM ranging from 256KB up to 256MB.

2. Evaluation of the Hardware Model 107

slow 100 MHz FPGA with a simple standard SDR SDRAM (Hardware 1) be more than

twenty times faster that one of the fastest currently available PCs.

In conclusion, Tab. 6.6 reports the average speed-up obtained by the simulated ACE

architecture (Hardware 2) against the measured test platforms ranging from the different

software solutions where the BAM is stored in RAM or on HDD, to the prototyping

platform using standard almost obsolete memory devices.

Chapter VII

Conclusion and Outlook

BASED on an associative computing paradigm, our research has shown how in-

tensive data processing algorithms can be efficiently mapped onto elementary

hardware structures under drastic speed and area constraints. The two most important

issues were first the overall scalability of the design allowing the support of different bit

widths and module depths along the data path, and second the obtainment of the mini-

mum hardware area while ensuring the maximum throughput of the global architecture.

Hence, in this chapter, we give a brief recapitulation of the ideas developed in this thesis

which follow the development of the Associative Computing Engine (ACE). Moreover,

we present in a further section the possible improvements to our work and some open

applications for additional research fields.

1 On the Associative Computing Engine

Beside the matching quality, one of the most important problems in information retrieval

systems remains their performance in terms of searching time. With the exponentially

increasing amount of data available on different multimedia networks, finding informa-

tion has become a real challenge for both software and hardware solutions. As today’s

General Purpose Processor (GPP) based implementations cannot achieve the required

performance, it is necessary to port the problem onto dedicated hardware systems. In

this thesis, we addressed particularly the memory wall issue through the realization of

a hardware search engine based on approximate matching computations.

First of all, in the development of the ACE, the basic task preceding any hardware

implementation was the choice of an algorithm suitable for many data types which also

allows the processing of long query strings in huge databases. A dedicated profiling

has shown that Lapir’s Associative Access Method (AAM) is very promising if we can

extract the hidden degrees of parallelism and start on a low-level analysis of the algo-

rithm. Not only was a functional task parallelization of the algorithm possible, but also

110 Chapter VII. Conclusion and Outlook

a parallelization of the data and local operations in order to increase the theoretical

throughput of the system. However, drastic constraints had to be observed during the

design of the architecture. On the one hand, the final goal is to obtain the smallest area

possible in order to reduce the switching activity and the power consumption. On the

other hand, we target the maximum clock frequency for the synchronous data path to

ensure the highest possible computational throughput.

In parallel, we performed the exploration of different hardware domains for the stor-

age of the text database index, i.e., the Bit Attribute Matrix (BAM), with the aim to

dispose of a fast and non-expensive memory compatible with the architectural concep-

tion of the system. The decision of supporting the dense but complex dynamic memory

devices versus the simple but more expensive static ones had heavy consequences on the

operations and the synchronization of the different tasks along the data-path. Not only

did we have to implement a special SDRAM controller for being able to access the data

fast enough, but also bring the corresponding modifications to the computational units

to handle the flow of data correctly, e.g., demultiplexing the burst accesses.

Hence, in our modular architecture, the data-path includes two major parts which

essentially differ in the way they handle data. As developed in Chapter IV and V, the

first part composed of the Penalty Calculating Unit (PCU) and the Score Calculating

Unit (SCU) is fully parallel. This basically deals with the implementation of fast op-

erations, e.g., penalty accumulation, as well as more complex mathematical operations.

In this sense, nonlinear functions such as the logarithm must be computed using logic

hardware structures. The second part of the data-path composed of the Result Sort-

ing Unit (RSU) and the Result Merging Unit (RMU) is dedicated to a special problem

for which not only the throughput but also the scalability play a major role. Sorting

algorithms can be classified into two categories, i.e., the parallel algorithms where the

complexity in terms of area depends very strongly on the amount of data to be handled,

and the sequential ones, the speed and the complexity of which make them unsuitable

for high-throughput systems. In studying sorting networks and different implementa-

tion methods that allow variations of the bit widths and of the number of records to

sort, we have refined an advanced architecture that permits the adaptability of a sorting

subsystem to any kind of hardware platform, following a trade-off between minimum

necessary area and required throughput.

In order to test the ACE functionally and measure the duration of the search com-

pared to a standard Personal Computer (PC), we used a prototyping board including

a rather old and slow Field Programmable Gate Array (FPGA) and a large amount of

external dedicated memory, which was available at our institute. Firstly, we were able to

verify practically the correctness of the results as predicted by the simulation. For this

we only had to recreate a text encoding model based on the hashing theory described in

Chapter II, suitable for the AAM as described in Chapter III. Secondly, we were able to

compare in real-time the performance of the board with the same application running

in software on a GPP. Hence we have measured up to three orders of magnitude for the

duration of a given search between our outdated prototyping board and many recent

PCs with different hardware configurations.

2. Future Work 111

Finally, the last part of our work has been to simulate the ACE on a more recent

FPGA platform with a newer technology, a more advanced memory type, i.e., Dou-

ble Data Rate (DDR) instead of Single Data Rate (SDR), and last but not least, a

much wider dedicated data bus used for the BAM accesses. Based on hardware syn-

thesis results and post place-and-route simulations, the resized ACE core was able to

run synchronously with the memory subsystem at the expected frequencies. Due to the

scalability of the system and to the modular implementation methodology, simulation

results have demonstrated a huge gain in speed up to more than four orders of magni-

tude for the acceleration platform based on the ACE against a PC, where a BAM of a

respectable size could be stored on the Hard Disk Drive (HDD) only.

2 Future Work

The AAM constitutes the original algorithm which was implemented with the objective

of reaching the maximum performance available on any arbitrary hardware platform.

Based on signature files, it theoretically permits the retrieval of any object type which

can be coded using a hash function, or in other words anything from which binary

attributes can be extracted. The main advantage is that the AAM performs an error-

tolerant matching allowing an approximate or fuzzy feature coding. Another possible

improvement for text searching might be to refine the hash function and the encoding

method by using a combination of bigrams and trigrams. Typical examples would be in

the domains of the optical character recognition (OCR), biometric minutiae matching

such as fingerprints, iris scans or faces, as well as multimedia applications requiring

text processing. According to related research work with reference to Chapter III,

there is nowadays a growing demand for accelerated computations in genome analysis,

biosequence mining and network attack detections among others.

From the hardware point of view, it is safe to say that the Very Large Scale Integra-

tion (VLSI) structure presented in this thesis is extremely suitable for an Application

Specific Integrated Circuit (ASIC) implementation, regarding both the parallel comput-

ing part composed of the PCU and the SCU, as well as the parallel sorting part composed

of the RSU and the RMU. Within this thesis, we have shown that the scalability of each

module can guarantee the implementation of the system for various bit widths and data

throughput. As a consequence, the ACE could become a part of any intelligent system

related to database searching applications, either in form of a separate accelerator for a

PC, or as an embedded hardware module into a System on Chip (SoC), or as a standard

extension for HDD controller chips and memory modules.

Appendix A

On the Hardware

Implementation of Logarithms

Presented in Chapter V, the NLF (Negative Logarithmic Function) is a function ap-

proximating the binary logarithm of a positive integer in IN+. The method applied here

permits the calculation of any form of logarithmic function that can be described by

f(x) = A+B · log2 (C · x+D) (A.1)

theoretically, whereas the choice of A,B,C and D impacts the complexity of the hard-

ware realization as well as the resizing of the function into a given range. However due

to the fact that we restricted the processing in the ACE to positive integers, the NLF is

a special case of (A.1) that deals with integer numbers in the positive range (IN+ → IN+)

including zero as described in (5.3). In our quest of simplicity in the hardware realiza-

tion, we will try to handle only coefficients that are powers of two, as multiplications and

divisions turn into binary left or right shifts respectively. Hence according to [Lay04a],

we discuss in this appendix the efficiency of the method and propose some improvements

to minimize the approximation error.

1 Error Analysis

Let x and y be some integers with the respective widths i and j, where x = [x0, x1, . . . xi−1]

and y = [y0, y1, . . . yj−1]. Assuming that x and y are positive, we can represent them

using the corresponding binary weighting

x =

i−1∑

n=0

xn · 2
n and y =

j−1∑

m=0

ym · 2
m (A.2)

114 Appendix A. On the Realization of Logarithms

63310 1 3 7 15

i =
5

i =
6

i =
7

n =
1

n =
0

n
=

1

n
=

2

n
=

3
n

=
2

x

−1

y

8

4

12

16

24

32

48

64

80

96

128

i =
4

i =
3

Fig. A.1. Details of the scalability of the NLF for different input widths i that show the y to x

dependency according to Algorithm N. In each linear approximation, the parameter i corresponds to

its number of fragments.

as in our model. However, in creating a bijective function suitable for the ACE with the

most compact range of values on x and y, we obtained the following equation derived

from (5.6) and (5.9)

yn,i(x) = −2n · (x+ 1) + 2i−1 · (n+ 2) (A.3)

where i and j are linked together. Hence when i increases, the amount of segments

composing the piece linear approximation of the function increases respectively. Fig. A.1

shows partially the characteristics of the NLF realized for different values of i varying

from 1 to 7, where each curve is dilated from the previous one with a factor two per

added bit in x and extended of one segment. The dilation center is located at (x = −1;

y = 0), and for each value of i, all the segments carrying the same index n, when they

exist, are parallel.

We carry now our interest onto the error made in the linear approximation of the

logarithm by comparing the NLF and its corresponding analog function. Following the

example of Fig. 5.8-a on page 76, the curve f(x) can be recovered by replacing n in

(A.3) through a continuous value, i.e., without the rounding ceil function. The only

remaining parameter is i, the width of the input x, so that (A.1) becomes

f(x) = 2i−1 · (i− log2 (x+ 1)) (A.4)

1. Error Analysis 115

Basis points

Error (×10)

2i−1(i−log2(x+1))

NLF

1000

900

800

700

600

500

400

300

250

200

200150

100

10050

30

0
0 3025201510

9

8

7

6

5

5

4

3

2

1

0
0 i (bits)

Relative err. in %

Fig. A.2. a) Comparison of the analog and digitally piece-wise linear approximated logarithm functions

and drawing of the absolute error function for an 8 bits input. b) Relative error made by the piece-wise

linear approximation depending on the width i of the input.

while resolving the coefficients A,B,C andD. Fig. A.2-a shows the analog function f(x)

compared to the digital one, using squares to represent the basis points of the NLF. They

correspond to the extremities of the segments described in Fig. A.1 and are common

to both curves. The absolute error made by this approximation method considering

an input width of i = 8 bits is magnified with a factor ten and plotted in Fig. A.2-a.

Well known by mathematicians [Knu97], this error remains always positive and can be

upper-bounded. Since the analog curve is located under the linear approximation, the

error can be estimated with the following equation

yn,i − f(x) = 2i−1 · (log2 (x+ 1) + n+ 2− i)− 2n · (x+ 1) (A.5)

where yn,i corresponds to the straight lines of the NLF. The local maximum between

two basis points can be found by differentiating the function in (A.5)

d

dx
[yn,i(x)− f1(x)] =

2i−1

ln 2 · (x+ 1)
− 2n (A.6)

maxima: xM =
2i−n−1

ln 2
− 1 (A.7)

In these equations, x, i and n are linked together as specified in (5.8). The number of

maxima equals i and they are almost located in the middle of each interval, whereas the

exact value yields [ln−1 2 − 1] ≈ 0.44 times the length of the interval. Thus replacing

the maxima xM in (A.5) yields a result independent from n so that

errmax = 2i−1 ·
ln 2− ln ln 2− 1

ln 2
≈ 2i−1 · 0.086 (A.8)

explaining the drawing of the absolute error function in figure A.2-a, conform to Mitchell’s

error analysis [Arn03, Mit62] of the logarithm obtained for i set to 1. Referring to the y

116 Appendix A. On the Realization of Logarithms

range, the relative error decreases inversely proportional to the width i of the input vec-

tor, improving the accuracy as shown in figure A.2-b. The relative error in percentage

terms can be estimated to errrel ≈ 0.086/i, which is much better than other already

presented techniques like in [Hoe91].

2 Error Correction

We propose here a method to reduce this error up to a factor 4.6, with only a few sup-

plementary logic gates and a subtracter. Approximating a logarithm function through

straight lines yields an arch shaped error as seen in Fig. A.2-a, which can be itself ap-

proximated using simple logic. This error is always positive, upper-boundable and takes

effect on the i − 1 least significant bits of the output. For this reason, the j − i most

significant bits pass through and remain unchanged after the correction.

y′[5] y′[4] y′[3] y′[2]y′[6] y′[0]y′[1]

y[5] y[4] y[3] y[2]y[6] y[0]y[1]

FAFAFA HAHAHA

c[0]c[1]c[2]c[3]

Linear Λ-shaped error approxima-
tion using 5 bits.

Subtraction of the approximated
error affecting up to i− 1 LSBs.

Fig. A.3. Correction of the NLF using a row of xor gates that creates a Λ-shaped linear approximation

of the error using 5 bits.

The idea is to subtract a Λ-shaped approximation of the error within the interval

between two basis points. The correction is calculated in such a way that it can not

affect the bit whose indices are bigger than i-1, otherwise an unsupported overflow would

occur in the subtracter. To generate the correcting value with the fewest logic possible,

the xor gates controlled by the upper bit y[6] create a symmetrical distribution of the

four lower bit (c[3] to c[0]) which are subtracted from the result after being divided by

four through the two bit shifting to the right. As a result, the error made is 2.5 times

smaller than without correction as seen in Fig. A.5. The look-up table (LUT) in Fig. A.4

is a complement to the xor based methodology described in Fig. A.3. It approximates

symmetrically the arch shaped error over a four bit word (d[3] to d[0]) which is then

subtracted to the final result. The logical equations related to the correction signal d

d[3] =c[3] ∨ c[2] ∧ c[1] (A.9)

d[2] =c[3] ∧ (c[2]⊕ c[1]) (A.10)

d[1] =c[3] ∧ c[1] ∨ c[2] ∧ c[1] (A.11)

d[0] =c[0] (A.12)

2. Error Correction 117

FAFAFA HAHAHA

y[5] y[4] y[3] y[2]y[6] y[0]y[1]

y′[5] y′[4] y′[3] y′[2]y′[6] y′[0]y′[1]

d[3] d[2] d[0]d[1]

c[0]
c[1]c[2]c[3]

Linear Λ-shaped error approxima-
tion using 5 bits.

LUT extension of the linear cor-
rection to approximate the arch
shaped error curve.

Subtraction of the approximated
error affecting up to i− 1 LSBs.

Fig. A.4. Correction of the NLF using a LUT to approximate the arch shaped error curve after a first

correction through the linear Λ-shaped error approximation.

are deliberately simple. Compared to the NLF without any correction, the remaining

error is here 4.6 times smaller. The cost is the i− 1 bit long carry path in the full/half-

adder chain, and a supplementary clock period to register the data if necessary.

12

10

8

6

4

2

0

-6

-4

-2

without corr.
LUT corr.
XOR corr.

Fig. A.5. Comparison of the absolute error between two basis points for the linear approximation

without error correction, for the approximation with a linear correction, and for the approximation

with correction using a small look-up table.

In Fig. A.5, the first curve with the squares shows the progression of the absolute error

of the NLF between two basis points. The second curve with the circles corresponds to

the error after the corrector based on the four xor gates. The error doesn’t stay positive

but crosses the zero line, so that there are two more theoretical common points to the

analog curve per interval. The third curve with the diamonds represents the error after

the second corrector based on the small LUT. The error oscillates around the zero line

and crosses it six times in between, so that the approximated curve is closer again to

the analog one.

In conclusion to the correction of the integer approximation of the logarithm function,

it is possible to use the LUT correction method to reduce the absolute error below one

118 Appendix A. On the Realization of Logarithms

unit. The result would be a large LUT with almost as many entries as there are bit i

in x. For instance, in order to calculate the logarithm of an eight bit number with an

absolute error less than unity, we would need a LUT with 6 entries and 4 outputs. It

might be easier to implement a ROM in this case, but this is actually what we try to

avoid by using the NLF. Finally, further details about the realization of the function are

available in [Lay04a].

3 Exponential Function

The architecture in Fig. A.6 realizes the reverse transformation of the NLF, following

the example of an 8-bit output value x. With the same properties as described in the

previous sections, the corresponding output response yields

x = f−1(y) = 2(i−y·21−i) − 1. (A.13)

Complementary to the architecture proposed in Fig. 5.10 on page 78, this structure is

composed of the same basis elements, namely a loadable register row preceded by simple

logic gates. On the right side of the valid signal, the first i − 1 bits of y are shifted

from the left to the right, and on the left side of the design, the registers preceded by

the half-adders build a decounter. More precisely, the value 1, which is input to the

left-most half-adder, increments the four registers preloaded with the negated values

y[7] to y[10], i.e., 24 −
∑3

k=0 2k · y[7 + k]− 1.

y[5] y[4] y[3] y[2]y[6] y[0]y[1]

x[7] x[6] x[5] x[4] x[3] x[2] x[1] x[0]

1

load

clk

y[10]y[9]y[7] y[8]

0

valid

HAHAHAHA
1

Fig. A.6. Realization of the reverse transformation of the NLF for an 8-bit input with a recursive

process based on the sequential implementation of Algorithm N described in Chapter V.

In this structure as well, the valid signal indicates that the computing has been

terminated and that the result x can be read from the output registers. In comparison

with Fig. 5.10 on page 78, the processing time depends on the value of the input y and

the valid signal is not inverted.

Appendix B

High Throughput

Memory Controller

STANDARD memory controllers, available in form of parameterizable Intellectual

Property (IP) cores, allow various access types and addressing modes. Although

they provide a high design flexibility, they often show a lack of performance for a specific

application such as the Associative Access Filter (AAF) algorithm. Therefore in this

work, we had to address the problem more in details and develop a custom controller

dedicated to a single application that would remain small and efficient though provid-

ing a unique access mode. Hence this chapter describes the basics for the realization

of a Synchronous Dynamic Random Access Memory (SDRAM) controller suitable for

the Associative Computing Engine (ACE), without any unnecessary features. With

reference to Chapter IV, the design has been implemented into a Xilinx VirtexE Field

Programmable Gate Array (FPGA) and tested in a system running at 100 MHz, thus

providing a peek and average bandwidth of 400 MB/s.

1 Finite State Machine

To compete with static RAMs, SDRAM devices offer features to enhance overall band-

width performance, such as multiple internal banks, burst mode access, and pipelining of

operation executions. Multiple internal banks enable accessing one bank while precharg-

ing or refreshing the other banks. Burst-mode access allows the controller to write or

read multiple words to the memory without paying the penalty of Column Access Strobe

(CAS) access for each word written or read. Of course, the bank must be active a few

clock periods before the column access command can be issued on a row previously

selected, a constraint known as Row Access Strobe (RAS) to CAS delay.

Typically, an SDRAM device includes four internal banks in the same chip and shares

parts of the internal circuitry to reduce the chip area. Restricting the activation of four

120 Appendix B. High Throughput Memory Controller

init

prech all

idle

activate

nop

precharge

auto refload mr

read write

c1

c4

c3

c2
c5

c10

c9

c6

c7
c8

wait

• c1: power-up timer terminated

• c2: need auto-refresh

• c3: all banks refreshed

• c4: mode register not configured

• c5: bank counter running

• c6: initiation of a burst access

• c7: current operation is read

• c8: current operation is write

• c9: a bank is still open or another
address is programmed

• c10: access is terminated

Fig. B.1. In this simplified state machine of the memory controller, the transactions are based on a

burst read or write cycle of length four which permit a full time utilization of the data bus.

banks simultaneously, the device allows a time-multiplexed processing of the operations

on any bank, as long as no timing violation occurs. Hence during a burst read or write,

the controller performs four types of operations repetitively:

• Activate: selection of a random row in an idle bank.

• NOP: a necessary clock period to respect the RAS-to-CAS delay.

• Read/write: access to the column in the selected row of the activated bank.

• Precharge: deactivation of the row which was activated in a previous cycle.

In case of a write, data words must be provided on the bus in the same clock cycle as

the CAS signal is asserted, i.e., during the write command. In case of a read, the first

output appears a CAS-latency number of clock cycles on the data bus after the read

command has been issued.

2 SDRAM Timings

Regarding SDRAM timings, some ground rules have to be respected. On the one hand,

they concern the physical temporal constraints such as the well known setup and hold

times [Rab03, Smi97, Wes93]. On the other hand, the internal controller of the memory

2. SDRAM Timings 121

device needs some time to perform logical operations and move data words to or from the

sense amplifiers, e.g., the CAS-latency of two or three clock cycles. Tab. B.1 summarizes

the typical delays of a standard 100MHz SDR SDRAM device.

Name Duration tclk Description

tclk 10 ns 1 Clock cycle time (reference) considering fclk = 100 MHz

tRCD 20 ns 2 Row to column delay time (RAS to CAS delay)

tRP 20 ns 2 Row precharge time, i.e., latency before data is written back

tCAS 20 ns 2 Column access time (CAS latency)

tCCD 10 ns 1 Column to column addressing delay within the same row

tRC 70 ns 7 Row cycle time during which a row must stay active

tWR 20 ns 2 Write recovery time (data input to precharge)

tREF 64 ms 6.4 · 106 Maximum refresh period for the capacitive loads

Table B.1. Typical functional timing characteristics for a standard 100MHz SDR SDRAM device.

The given time values are minima and only ought to provide an order of magnitude according to the

actual industry standards.

Fig. B.2 represents a typical read access of 16 words in burst mode. Thereby, one

data word of N bits is fetched to the memory data bus synchronously to the clock.

Ax1 Ax2 Ax3 Ax4 Bx1 Bx2 Bx3 Bx4 Cx1 Cx2 Cx3 Cx4 Dx1 Dx2 Dx3 Dx4

CAS

CS

CLK

RAS

WE

T1 T2 T3 T4T0 T6 T7 T8 T9T5 T11 T12 T13 T14T10 T16 T17 T18 T19T15 T20

AP

Addr

Data

A B C D

RBx

RBx RCx RDxRAx

RAx CAx RCx RDx CDxCCxCBx

A B C D

A
ctiva

te
B

a
n
k

A

R
ea

d
B

a
n
k

A

A
ctiva

te
B

a
n
k

B

R
ea

d
B

a
n
k

B

R
ea

d
B

a
n
k

C

R
ea

d
B

a
n
k

D

P
rech

a
rg

e
B

a
n
k

A

P
rech

a
rg

e
B

a
n
k

B

P
rech

a
rg

e
B

a
n
k

C

P
rech

a
rg

e
B

a
n
k

D

A
ctiva

te
B

a
n
k

C

A
ctiva

te
B

a
n
k

D

BS

Fig. B.2. SDRAM timings diagram for the BAM controller. The transactions are performed in a

random row read with precharge while interleaving the banks. The length of the burst access is set to

four for a CAS latency of two cycles.

122 Appendix B. High Throughput Memory Controller

Pin Name Description

CLK Clock Inputs are sampled on the rising edge of CLK

CS Chip Select Enables the operations on the device

RAS Row Acc. Str. Initiates a row access in combination with CS and WE

CAS Col. Acc. Str. Initiates a column access in combination with CS and WE

WE Write Enable Indicates a read or a write operation

BS Bank Select Addresses the operated bank

AP Autoprecharge Forces a precharge of the row at the end of the burst

Addr Address Bus Multiplexed bus for row and column address

Data Data Bus Bidirectional bus for data transfer

Table B.2. Description of the most relevant signal pins used for interfacing a standard SDR SDRAM

memory device.

List of Abbreviations

AAM Associative Access Method – Lapir’s information retrieval algorithm based
on approximate matching using the BAM and text signatures.

AAF Associative Access Filter – The filtering phase of the AAM which is being
implemented in hardware.

ACE Associative Computing Engine – Hardware accelerator supporting the AAF.
ALU Arithmetical and Logical Unit – A part of a CPU (beside registers and control

unit) executing the mathematical and logical operations.
ASCII American Standard Code for Information Interchange – 8 bit standard for

the code numbers of all the Latin letters, numbers and punctuation.
ASIC Application Specific Integrated Circuit – A chip designed for a particular

application as opposed to a general purpose circuit.
BAM Bit Attribute Matrix – Arrangement of vectors coding the availability of

binary features in textual documents.
BIF BAM Interface – Memory interface to the BAM which permits a vertical

access to the data, i.e., access by attributes.
CMOS Complementary Metal Oxide Semiconductor – A process that uses both N

and P channel devices in a complementary fashion.
CPU Central Processing Unit – Processor chip executing the arithmetic and con-

trol portions of a sequential computer.
DRAM Dynamic Random Access Memory – RAM that stores each bit of data in a

separate capacitor.
FHT Fragment Hit Table – A bit-vector that indicates if a query fragment has a

penalty bigger than a preset threshold value.
FIFO First In First Out – A type of data buffering that prevents data loss during

high-speed communications.
FPGA Field Programmable Gate Array – General purpose IC customized by inter-

connecting an array of programmable logic elements.
GCS Global Controller and Scheduler – State machine scheduling the operations

of the ACE using a fix set of micro-instructions.
HDD Hard Disk Drive – Mechanical device storing a high density information

magnetically on large capacity spinning discs.
IC Integrated Circuit – Tiny complex of electronic components and their con-

nections usually produced in silicon.
IP Intellectual Property – Refers here to a precompiled module, the code of

which is protected by copyrights and not available for modifications.
JTAG Joint Test Action Group – IEEE Standard 1149.1 specifying how to control

and monitor the pins of compliant devices on a printed circuit board.
LUT Look-Up Table – A fast way of implementing any precalculated mathematical

function based on a RAM paradigm.

124 List of Abbreviations

PCI Peripheral Component Interconnect – Local bus standard developed by Intel
Corporation supporting up to 64 bit transfers at 66 MHz.

PCU Penalty Calculating Unit – First module of the data-path, it computes frag-
ment penalties based on the information given by the BAM and the query.

RAM Random Access Memory – IC memory chip allowing information to be stored
or accessed directly in any addressing order.

RMU Result Merging Unit – Last module of the data-path, it saves the R best
matching pages of the BAM.

ROM Read Only Memory – A memory with unmodifiable contents.
RSU Result Sorting Unit – Third module of the data-path, it sorts N pages from

the BAM in parallel according to their respective scores.
RTL Register Transfer Level – Modeling style corresponding to digital hardware

synchronized by clock signals.
SCU Score Calculating Unit – Second module of the data-path, it transforms the

fragment penalties into page scores.
SDRAM Synchronous Dynamic RAM – A cheap and compact form of RAM which

needs to be periodically refreshed in order to retain its contents.
SIMD Single Instruction Multiple Data – Parallel computer architecture consisting

of a single instruction stream and multiple data stream.
SOC System On Chip (also SoC) – Highly integrated device composed of multiple

functional blocks, including on-chip memory and a processor.
SRAM Static RAM – A fast access memory that retains data as long as power is

being supplied, without having to be periodically refreshed.
VFA Vertical Fragment Accumulator – Internal register structure for the accumu-

lation for penalties calculated within one query fragment.
VHDL VHSIC Hardware Description Language – IEEE 1076-standard high-level

language for designing and simulating electronic systems.
VHSIC Very High Speed Integrated Circuit – Abbreviation coined by the US De-

partment of Defense in the 1980s for the development of VHDL.
VLIW Very Long Instruction Word – Packing many simple RISC-like instructions

into a much longer internal instruction word format.
VLSI Very Large Scale Integration – Process of placing more than hundred thou-

sands transistors on a single chip.
VQA Vertical Query Accumulator – Internal SCU register structure for the calcu-

lation of page scores during one query.

Notations: According to Knuth [Knu76], big O, big Ω and big Θ notations are such
that when n→∞

• O(f(n)) denotes the set of all g(n) such that there exist positive constants k and
n0 with |g(n)| ≤ k · f(n) for all n ≥ n0;

• Ω(f(n)) denotes the set of all g(n) such that there exist positive constants k and
n0 with g(n) ≥ k · f(n) for all n ≥ n0;

• Θ(f(n)) denotes the set of all g(n) such that there exist positive constants k1, k2,
and n0 with k1 · f(n) ≤ g(n) ≤ k2 · f(n) for all n ≥ n0.

Bibliography

[Abe03a] K. H. Abed, R. E. Siferd, “VLSI Implementation of a Low-Power Antiloga-
rithmic Converter”, IEEE Trans. Computers, Vol. 52, No. 9, pp. 1221-1228,
2003.

[Abe03b] K. H. Abed, R. E. Siferd, “CMOS VLSI Implementation of a Low-Power
Logarithmic Converter”, IEEE Trans. Computers, Vol. 52, No. 11, pp. 1421-
1433, 2003.

[Ahn04] J. Ahn, W. Dally, B. Khailany, U. Kapasi, A. Das, “Evaluating the Imag-
ine Stream Architecture”, Proc. IEEE Int. Symp. Computer Architecture
(ISCA’04), pp. 14-25, 2004.

[Ajt83] M. Ajtai, J. Komlos, E. Szemeredi, “An O(N logN) Sorting Network”, Proc.
ACM Int. Symp. Theory of Computing (STOC’83), pp. 1-9, 1983.

[Amd67] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”, Proc. AFIPS Spring Joint Computer Conf.,
Vol. 30, pp. 483-485, 1967.

[And94] A. Andersson, S. Nilsson, “A New Efficient Radix Sort”, Proc. IEEE Symp.
Foundations of Computer Science (FOCS’94), pp. 714-721, 1994.

[Arn03] M. Arnold, T. Bailey, J. Cowles, “Error Analysis of the Kmetz/Maenner Al-
gorithm”, Journal of VLSI Signal Processing, Vol. 33, pp. 37-53, 2003.

[Bae99] R. Baeza-Yates, B. Ribeiro-Neto, “Modern Information Retrieval”, ACM
Press / Addison Wesley, ISBN 0-201-39829-X, 1999.

[Bak04] Z. Baker, V. Prasanna, “Time and Area Efficient Pattern Matching on FP-
GAs”, Proc. ACM Int. Symp. Field Programmable Gate Arrays (FPGA’04),
pp. 223-232, 2004.

[Bak05] Z. Baker, V. Prasanna, “Efficient Hardware Data Mining with the Apriori
Algorithm on FPGAs”, Proc. IEEE Symp. Field Programmable Custom Com-
puting Machines (FCCM’05), pp. 3-12, 2005.

[Bak06] Z. Baker, V. Prasanna, “An Architecture for Efficient Hardware Data Min-
ing using Reconfigurable Computing System”, Proc. IEEE Symp. Field Pro-
grammable Custom Computing Machines (FCCM’06), pp. 67-75, 2006.

[Bas91] F. Baskett, “Keynote Address”, Int. Symp. Shared Memory Multiprocessing,
1991.

[Bat68] K. E. Batcher, “Sorting Networks and Their Applications”, Proc. AFIPS
Spring Joint Computer Conf., Vol. 32, pp. 307-314, 1968.

[Bat69] K. E. Batcher, “Means for Merging Data”, US Patent, No. 3428946, 1969.

126 Bibliography

[Bat76] K. E. Batcher, “Solid State Associative Processor Organization”, US Patent,
No. 3936806, 1976.

[Bee03] P. van Beek, J. Smith, T. Ebrahimi, T. Suzuki, J. Askelof, “Metadata-Driven
Multimedia Access”, IEEE Signal Processing Magazine, Vol. 20, No. 2, pp. 40-
52, 2003.

[Ber98] S. Berkovich, E. El-Qawasmeh, G. Lapir, “Organization of Near Matching in
Bit Attribute Matrix Applied to Associative Access Methods in Information
Retrieval”, Proc. IASTED Int. Conf. Applied Informatics, pp. 62-65, Feb.
1998.

[Bet99] V. Betz, J. Rose, A. Marquardt, “Architecture and CAD for Deep Submicron
FPGA”, Kluwer Academic, ISBN: 0-7923-8460-1, 1999.

[Blü00a] H.-M Blüthgen, T. Noll, “A Programmable Processor for Approximate String
Matching With High Throughput Rate”, Proc. IEEE Int. Conf. Application
Specific Systems, Architectures, and Processors (ASAP’00), pp. 309-316, 2000.

[Blü00b] H.-M Blüthgen, P. Osterloh, H. Blume, T. Noll, “A Hardware Implementation
for Approximate Text Search in Multimedia Applications”, Proc. IEEE Int.
Conf. Multimedia and Expo (ICME’00), pp. 1425-1428, 2000.

[Blu00] H. Blume, H.-M. Blüthgen, C. Henning, P. Osterloh, “Integration of High-
Performance ASICs into Reconfigurable Systems Providing Additional Mul-
timedia Functionality”, Proc. IEEE Int. Conf. Application-Specific Systems,
Architectures and Processors (ASAP’00), pp. 66-75, 2000.

[Blu01] H. Blume, H. Feldkämper, H. Hübert, T. Noll, “Analyzing Heterogeneous
System Architectures by Means of Cost Functions: Acomparative Study for
Basic Operations”, Proc. European Solid-State Circuits Conf. (ESSCIRC’01),
pp. 424-427, 2001.

[Boy77] R. Boyer, J. Moore, “A fast String Searching Algorithm”, Comm. ACM,
Vol. 20, No. 10, pp. 762-772, 1977.

[Bri98] S. Brin, L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search
Engine”, Proc. Int. World Wide Web Conf., Vol. 30, pp. 107-117, 1998.

[Bur96] D. Burger, J. Goodman, and A. Kägi, “Memory Bandwidth Limitations
of Future Microprocessors”, Proc. ACM Int. Symp. Computer Architecture
(ISCA’96), pp. 78-89, 1996.

[Bur97a] D. Burger, J. Goodman, “Billion-Transistor Architectures”, IEEE Computer,
Vol. 30, No. 9, pp. 46-47, 1997.

[Bur97b] D. Burger, “System-Level Implications of Processor-Memory Integration”,
Mixing Logic and DRAM Workshop at Int. Symp. on Computer Architecture
(ISCA’97), 1997.

[Bur04] D. Burger, J. Goodman, “Billion-Transistor Architectures: There and Back
Again”, IEEE Computer, Vol. 37, No. 3, pp. 22-28, 2004.

Bibliography 127

[Bur02] S. Burkhardt, “Filter Algorithms for Approximate String Matching”, Ph.D.
Thesis, Universität des Saarlandes, Germany, 2002.

[Cas04] S. Cass, “A Fountain of Knowledge”, IEEE Spectrum, Vol. 41, No. 1, 2004.

[Cla01] K. Claessen, M. Sheeran, S. Singh, “The Design and Verification of a
Sorter Core”, Proc. Conf. Correct Hardware Design and Verification Meth-
ods (CHARME’01), LNCS Vol. 2144, pp. 355-369, 2001.

[Col98] R. Cole, R. Hariharan, “Approximate String Matching: A Simpler Faster Al-
gorithm”, Proc. ACM-SIAM Symp. Discrete Algorithms (SODA’98), pp. 463-
472, 1998.

[Cor01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to Algo-
rithms”, Sec. Edition, MIT Press & McGraw-Hill, ISBN: 0262032937, 2001.

[Cri91] J. K. Cringean, G. A. Manson, R. England, P. Willett, “Nearest Neighbor
Searching in Files of Text Signatures Using Transputer Networks”, Electronics
publishing, J. Wiley & Sons, Vol. 4, pp. 185-203, 1991.

[Cut78] R. M. Cutler, “Associative Processors”, US Patent, No. 4068305, 1978.

[Dav86] W. A. Davis, D. L. Lee, “Fast Search Algorithms for Associative Memories”,
IEEE Trans. Computers, Vol. C-35, No. 5, pp. 456-461, 1986.

[DeH99a] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable
Computing Array”, Proc. ACM/SIGDA Int. Symp. Field Programmable Gate
Arrays (FPGA’99), pp. 69-78, 1999.

[DeH99b] A. DeHon, J. Wawrzynek, “Reconfigurable Computing: What, Why, and
Implications for Design Automation”, Proc. ACM/IEEE Design Automation
Conf. (DAC’99), pp. 610-615, 1999.

[DeH00a] A. DeHon, “Compact, Multilayer Layout for Butterfly Fat-Tree”, Proc. ACM
Symp. Parallel Algorithms and Architectures (SPAA’00), pp. 206-215, 2000.

[DeH00b] A. DeHon, “The Density Advantage of Configurable Computing”, IEEE Com-
puter, Vol. 33, No. 4, pp. 41-49, 2000.

[DeM94] G. De Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-
Hill, ISBN: 0070163332, 1994.

[Dho05] S. H. Dhong, O. Takahashi, M. White, T. Asano, T. Nakazato, J. Silberman,
A. Kawasumi, H. Yoshihara, “A 4.8GHz Fully Pipelined Embedded SRAM in
the Streaming Processor of a CELL Processor”, Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC’05), Vol. 1, pp. 486-612, 2005.

[DiB05] A. Di Blas, D. Dahle, M. Diekhans, L. Grate, J. Hirschberg, K. Karplus, H.
Keller, M. Kendrick, F. Mesa, D. Pease, E. Rice, A. Schultz, D. Speck, R.
Hughey, “The UCSC Kestrel Parallel Processor”, IEEE Trans. Parallel and
Distributed Systems, Vol. 16, No. 1, pp. 80-92, 2005.

128 Bibliography

[Die94] M. Dietzfelbinger, A. Karlin, K. Melhorn, F. Meyer, H. Rohnert, R. Tarjan,
“Dynamic Perfect Hashing: Upper and Lower Bounds”, SIAM Journal of
Computing, Vol. 23, No. 4, pp. 738-761, 1994.

[Dra02] J. Draper, J. Sondeen, C. Kang, “Implementation of a 256-bit Wide Word
Processor for the Data-Intensive Architecture Processing-In-Memory Chip”,
Proc. IEEE European Solid-State Circuit Conf. (ESSCIRC’02), pp. 77-80,
2002.

[Ell92] D. Elliott, M. Snelgrove, M. Stumm, “Computational RAM: A Memory-SIMD
Hybrid and its Application to DSP”, Proc. IEEE Custom Integrated Circuit
Conf. (CICC’92), pp. 30.6.1 -30.6.4, 1992.

[Eve98] S. Even, S. Muthukrishnan, M. Paterson, S. Sahinalp, “Layout of the Batcher
Bitonic Sorter”, Proc. ACM Symp. Parallel Algorithms and Architectures
(SPAA’98), pp. 172-181, 1998.

[Fau91] P. Faudemay, M. Mhiri, “An Associative Accelerator for Large Databases”,
IEEE Micro, Vol. 11, No. 6, pp. 22-34, 1991.

[Fel02] H. Feldkämper, T. Gemmeke, H. Blume, T. Noll, “Analysis of Reconfig-
urable and Heterogeneous Architectures in the Communication Domain”,
Proc. IEEE Int. Conf. Circuits and Systems for Communications (CCSC’02),
pp. 190-193, 2002.

[Gro03] E. Grochowski, R. D. Halem, “Technological Impact of Magnetic Hard Disk
Drives on Storage Systems”, IBM Systems Journal, Vol. 42, No. 2, pp. 338-
346, 2003.

[Hal70] E. L. Hall, D. D. Lynch, S. J. Dwyer, “Generation of Products and Quotients
Using Approximate Binary Logarithms for Digital Filtering Applications”,
IEEE Trans. Computers, Vol. 19, No. 2, pp. 97-105, 1970.

[Hal99] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J.
Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, J. Park,
“Mapping Irregular Applications to DIVA, a PIM-based Data-Intensive Ar-
chitecture”, Proc. ACM/IEEE Conf. Supercomputing (SC’99), Art. No. 57,
1999.

[Hen90] J. L. Hennessy, D. A. Patterson, “Computer Architecture: a Quantitative
Approach”, Morgan-Kaufman, San Mateo, CA, 1990.

[Hen98] C. Henning, T. G. Noll, “Architecture and Implementation of a Bitserial
Sorter for Weighted Median Filtering”, Proc. IEEE Custom Integrated Cir-
cuits Conf. (CICC’98), pp. 189-192, 1998.

[Hoa62] C. A. R. Hoare, “Quicksort”, Computer Journal, Vol. 5, No. 1, pp. 10-15,
1962.

[Hoe91] B. Höfflinger, M. Selzer, F. Warkovski, “Digital Logarithmic CMOS Multi-
plier for Very-High-Speed Signal Processing”, Proc. IEEE Custom Integrated
Circuits Conf. (CICC’91), pp. 16.7.1-16.7.5, 1991.

Bibliography 129

[Hug02] G. F. Hughes, “Wise Drives”, IEEE Spectrum, Vol. 39, No. 8, 2002.

[Hyy02] H. Hyyrö, G. Navarro, “Faster Bit-Parallel Approximate String Match-
ing”, Proc. Annual Symp. Combinatorial Pattern Matching (CPM’02), LNCS
Vol. 2373, pp. 203-224, 2002.

[Hyy04] H. Hyyrö, K. Fredriksson, G. Navarro, “Increased Bit-Parallelism for Ap-
proximate and Multiple String Matching”, Proc. Workshop on Efficient and
Experimental Algorithms (WEA’04), LNCS Vol. 3059, pp. 285-298, 2004.

[Hyy05] H. Hyyrö, G. Navarro, “Bit-Parallel Witnesses and their Applications to Ap-
proximate String Matching”, Algorithmica, Vol. 41, No. 3, pp. 203-231, 2005.

[Int06] Intel Corporation, http://www.intel.com, 2006.

[Ito01] K. Itoh, “VLSI Memory Chip Design”, Springer Verlag, ISBN: 3-540-67820-4,
2001.

[Itr06] International Technology Roadmap for Semiconductors, http://public.itrs.net,
2006.

[Jai89] A. K. Jain, “Fundamentals of Digital Image Processing”, Prentice Hall, ISBN:
0-13-336165-9, 1989.

[Kal02] H. Kalte, M. Porrmann, U. Rückert, “A Prototyping Platform for Dynam-
ically Reconfigurable System on Chip Designs”, Proc. IEEE Workshop on
Heterogeneous Reconfigurable Systems on Chip, 2002.

[Kan99] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, J. Torrellas,
“FlexRAM: Toward an Advanced Intelligent Memory System”, Proc. IEEE
Int. Conf. on Computer Design (ICCD’99), pp. 192-201, 1999.

[Kar87] R. M. Karp, M. O. Rabin, “Efficient Randomized Pattern-Matching Algo-
rithms”, IBM Journal of Research and Development, Vol. 31, No. 2, pp. 249-
260, 1987.

[Kha02] B. Khailany, W. Dally, A. Chang, U. Kapasi, J. Namkoong, B. Towles, “VLSI
Design and Verification of the Imagine Processor”, Proc. IEEE Int. Conf.
Computer Design (ICCD’02), pp. 289-296, 2002.

[Kno98] A. Knoll, C. Altenschmidt, J. Biskup, H.-M. Blüthgen, I. Glöckner, S.
Hartrumpf, H. Helbig, C. Henning, R. Lüling, B. Monien, T. G. Noll, N.
Sensen, “An Integrated Approach to Semantic Evaluation and Content-Based
Retrieval of Multimedia Documents”, Proc. European Conf. Research and Ad-
vanced Technology for Digital Libraries, LNCS Vol. 1513, pp. 409-428, 1998.

[Knu76] D. E. Knuth, “Big Omicron and Big Omega and Big Theta”, ACM SIGACT
News, Vol. 8, Issue 2, pp. 18-24, 1976.

[Knu77] D. E. Knuth, J. H. Morris, V. R. Pratt, “Fast pattern matching in strings”,
SIAM Journal on Computing, Vol. 6, No. 1, pp. 323-350, 1977.

130 Bibliography

[Knu97] D. E. Knuth, “The Art of Computer Programming, Volume 3: Sorting and
Searching”, Sec. Edition, Addison Wesley, ISBN: 0-201-89685-0, 1997.

[Kob00] M. Kobayashi, K. Takeda, “Information Retrieval on the Web”, ACM Com-
puting Surveys, Vol. 32, No. 2, pp. 144-173, 2000.

[Kor93] I. Koren, “Computer Arithmetic Algorithms”, Sec. Edition, A. K. Peters,
Natick, MA, ISBN: 1-56881-160-8, 2002.

[Kos91] D. K. Kostopoulos, “An Algorithm for the Computation of Binary Loga-
rithms”, IEEE Trans. Computers, Vol. 40, No. 11, pp. 1267-1270, 1991.

[Koz00] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D.
Jones, D. Patterson, K. Yelick, “Vector IRAM: A Media-Oriented Vector Pro-
cessor with Embedded DRAM”, Proc. Hot Chips Conf., 2000.

[Koz02] C. Kozyrakis, “Scalable Vector Media Processors for Embedded Systems”,
Ph.D. Thesis, Technical Report UCB-CSD-02-1183, University of California
at Berkeley, 2002.

[Kri94] A. Krikelis, C. C. Weems, “Associative Processing and Processors”, IEEE
Computer, Vol. 27, No. 11, pp. 12-17, 1994.

[Kun88] S. Y. Kung, “VLSI Array Processors”, Prentice Hall, ISBN: 013942749X,
1988.

[Lap92] G. M. Lapir, “Use of Associative Access Method Information Retrieval Sys-
tems”, Proc. Pittsburgh Conf. Modeling and Simulation, Vol. 23, No. 2,
pp. 951-958, 1992.

[Lap02] G. M. Lapir, H. Urbschat, “Associative Memory”, WIPO Patent, IPN. WO
02/15045A2, 2002.

[Lay03] C. Layer, H.-J. Pfleiderer, P. Ruján, G. Lapir, “High Performance System
Architecture of an Associative Computing Engine Optimized for Search Al-
gorithms”, Proc. IFIP Int. Conf. Very Large Scale Integration of SoC (VLSI-
SOC’03), pp. 74-79, 2003.

[Lay04a] C. Layer, H.-J. Pfleiderer, C. Heer, “A Scalable Compact Architecture for the
Computation of Integer Binary Logarithms Through Linear Approximation”,
Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’04), Vol. 2, pp. 421-424,
2004.

[Lay04b] C. Layer, H.-J. Pfleiderer, “A Reconfigurable Recurrent Bitonic Sorting Net-
work for Concurrently Accessible Data”, Proc. Int. Field Programmable Logic
Conf. (FPL’04), LNCS 3203, Springer-Verlag, pp. 648-657, 2004.

[Lay05a] C. Layer, H.-J. Pfleiderer, “Vertical Sorting Techniques Accelerating Asso-
ciative Accesses Based Information Retrieval Systems”, Proc. IASTED Int.
Conf. Applied Informatics, pp. 411-416, 2005.

Bibliography 131

[Lay05b] C. Layer, H.-J. Pfleiderer, “Efficient Hardware Search Engine for Associative
Content Retrieval of Long Queries in Huge Multimedia Databases”, Proc.
IEEE Int. Conf. Multimedia and Expo (ICME’05), pp. 1034-1037, 2005.

[Lay05c] C. Layer, H.-J. Pfleiderer, “A Scalable Highly Parallel VLSI Architecture Ded-
icated to Associative Computing Algorithms”, Proc. IEEE Ph.D. Research in
Microelectronics and Elecronics (PRIME’05), Vol. 2, pp. 214-217, 2005.

[Lay05d] C. Layer, H.-J. Pfleiderer, “Hardware Implementation of an Approximate
String Matching Algorithm Using Bit Parallel Processing for Text Informa-
tion Retrieval Systems”, Proc. IEEE Int. Conf. Signal Processing Systems
(SIPS’05), pp. 193-198, 2005.

[Lee00] J. D. Lee, K. E. Batcher, “Minimizing Communication in the Bitonic Sort”,
IEEE Trans. Parallel and Distributed Systems, Vol. 11, No. 5, pp. 459-474,
2000.

[Lee91] K. C. Lee, T. M. Hickey, V. W. Mak, G. E. Herman, “VLSI Accelerators for
Large Database Systems”, IEEE Micro, Vol. 11 , No. 6, pp. 8-20, 1991.

[Lei85] F. Leighton, “Tight Bounds on the Complexity of Parallel Sorting”, IEEE
Trans. Computers, Vol. 34, No. 4, pp. 344-354, 1985.

[Les97] M. Lesk, “How Much Information Is There In The World?”, Technical Report,
1997.

[Lew94] D. M. Lewis, “Interleaved Memory Functions Interpolators with Application
to Accurate LNS Arithmetic Unit”, IEEE Trans. Computers, Vol. 43, No. 8,
pp. 974-982, 1994.

[Lew95] D. M. Lewis, “A 114 MFLOPS Logarithmic Number System Arithmetic Unit
for DSP Applications”, IEEE Journal Solid State Circuits, Vol. 30, pp. 1547-
1553, 1995.

[Lom83] D. B. Lomet, “A High Performance, Universal, Key Associative Access
Method”, ACM SIGMOD Record Archive, Vol. 13, No. 4, pp. 120-133, 1983.

[Lym03] P. Lyman, H. R. Varian, “How Much Information?”, Technical Re-
port, School of Information Management and Systems, U. C. Berkeley,
http://www.sims.berkeley.edu/research/projects/how-much-info, 2003.

[Mai00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M. Horowitz, “Smart Mem-
ories: A modular Reconfigurable Architecture”, Proc. Int. Symp. Computer
Architecture (ISCA’00), pp. 161-171, 2000.

[Mar71] W. A. Martin, “Sorting”, ACM Computing Surveys, Vol. 3, No. 4, pp. 147-174,
1971.

[McK04] S. A. McKee, “Reflections on the Memory Wall”, Proc. ACM Conf. Computing
Frontiers, pp. 162, 2004.

132 Bibliography

[Mit62] J. N. Mitchell, “Computer Multiplication and Division Using Binary Loga-
rithm”, IRE Trans. Electronic Computers, Vol. EC-11, pp. 512-517, 1962.

[Moo03] G. E. Moore, “No Exponential Is Forever: But Forever Can Be Delayed”,
IEEE Int. Solid State Circuits Conf. (ISSCC’03), Digest of Technical Papers,
Vol. 1, pp. 20-23, 2003.

[Moo06] S. K. Moore, “Multimedia Monster”, IEEE Spectrum, Jan. 2006.

[Mut99] S. Muthukrishnan, M. Paterson, S. Sahinalp, T. Suel, “Compact Grid Lay-
outs of Multi-Level Networks”, Proc. ACM Symp. Theory of Computing
(STOC’06), pp. 455-463, 1999.

[Nak89] T. Nakatani, S.-T. Huang, B. W. Arden, S. K. Tripathi, “K-Way Bitonic
Sort”, IEEE Trans. Computers, Vol. 38, No. 2, pp. 283-288, 1989.

[Nav01] G. Navarro, “A Guided Tour to Approximate String Matching”, ACM Com-
puting Surveys, Vol. 33, pp. 31-88, 2001.

[Nav02] G. Navarro, M. Raffinot, “Flexible Pattern Matching in Strings: Practical
On-Line Search Algorithms for Texts and Biological Sequences”, Cambridge
University Press, ISBN: 0521813077, 2002.

[Nav05] G. Navarro, “Text Databases”, Encyclopedia of Database Technologies and
Applications, pp. 688-694, ISBN: 1-59140-560-2, 2005.

[Ola99] S. Olariu, M. C. Pinotti, S. Q. Zheng, “How to Sort N Items Using a Sorting
Network of Fixed I/O Size”, IEEE Trans. Parallel and Distributed Systems,
Vol. 10, No. 5, pp. 487-499, 1999.

[Ola00] S. Olariu, M. C. Pinotti, S. Q. Zheng, “An Optimal Hardware-Algorithm for
Sorting Using a Fixed-Size Parallel Sorting Device”, IEEE Trans. Computers,
Vol. 49, No. 12, pp. 1310-1324, 2000.

[Olu05] K. Olukotun, L. Hammond, “The Future of Microprocessors”, ACM Queue,
No. 9, 2005.

[Osk98] M. Oskin, F. Chong, T. Sherwood, “Active Pages: A Computation Model
for Intelligent Memory”, Proc. Int. Symp. Computer Architecture (ISCA’98),
pp. 192-203, 1998.

[Pag98] L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank Citation Rank-
ing: Bringing Order to the Web”, Stanford Digital Library, Technologies
Project, 1998.

[Par73a] B. Parhami, “Associative Memories and Processors: An Overview and Se-
lected Bibliography”, Proc. IEEE, Vol. 61, Iss. 6, pp. 722-730, 1973.

[Par73b] B. Parhami, A. Avizienis, “Design of Fault-Tolerant Associative Processors”,
Proc IEEE Int. Symp. Computer Architecture (ISCA’73), pp. 141-145, 1973.

Bibliography 133

[Par99] B. Parhami, D. M. Kwai, “Data-Driven Control Scheme for Linear Arrays:
Application to a Stable Insertion Sorter”, IEEE Trans. Parallel and Dis-
tributed Systems, Vol. 10, No. 1, pp. 23-28, 1999.

[Pat97a] D. A. Patterson, J. L. Hennessy, “Computer Organization and Design: The
Hardware/Software Interface”, Sec. Edition, Morgan Kaufmann, ISBN: 1-
55860-491-X, 1997.

[Pat97b] D. A. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas, K. Yelick, “Intelligent RAM (IRAM): Chips that
Remember and Compute”, Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC’97), 1997.

[Per99] S. Perissakis, Y. Joo, J. Ahn, A. DeHon, J. Wawrzynek, “Embedded
DRAM for a Reconfigurable Array”, Proc. IEEE Int. Symp. VLSI Circuits
(ISVLSI’99), pp. 145-148, 1999.

[Pot94] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, C. Asthagiri, “ASC:
An Associative Computing Paradigm”, IEEE Comp.: Special Issue on Asso-
ciative Processing and Processors, pp. 19-25, 1994.

[Rab03] J. M. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A
Design Perspective”, Sec. Edition, Prentice Hall, NJ, ISBN 0-13-120764-4,
2003.

[Ruh85] S. Ruhman, I. Scherson, “Associative Processors Particularly Useful for To-
mographic Image Reconstructions”, US Patent, No. 4491932, 1985.

[Sas95] R. Sastry, N. Ranganathan, K. Remedios, “CASM: A VLSI Chip for Approx-
imate String Matching”, IEEE Trans. Pattern Analysis and Machine Intelli-
gence, Vol. 17, No. 8, pp. 824-830, 1995.

[Sch89] I. D. Scherson, S. Sen, “Parallel Sorting in Two-Dimensional VLSI Models of
Computation”, IEEE Trans. Computers, Vol. 38, pp. 238-249, 1989.

[Sch92] I. D. Scherson, D. Kramer, B. Alleyne, “Bit-Parallel Arithmetic in a
Massively-Parallel Associative Processor”, IEEE Trans. Computer, Vol. 41,
No. 10, pp. 1201-1210, 1992.

[Sed88] R. Sedgewick, “Algorithms”, Sec. Edition, Addison Wesley Longman, ISBN
0-201-06673-4, 1988.

[She59] D. L. Shell, “A High-Speed Sorting Procedure”, Communications ACM,
Vol. 2, No. 7, pp. 30-32, 1959.

[Smi97] M. Smith, “Application-Specific Integrated Circuits”, Addison Wesley, ISBN:
0-201-50022-1, 1997.

[Sto71] H. S. Stone, “Parallel Processing with the Perfect Shuffle”, IEEE Trans. Com-
puters, Vol. C-20, No. 2, pp. 153-161, 1971.

134 Bibliography

[Sun96] T. Sunaga, P. Kogge, “A Processor in Memory Chip for Massively Parallel
Embedded Applications”, IEEE Journal Solid-State Circuits, pp. 1556-1559,
1996.

[Sun90] D. M. Sunday, “A Very Fast Substring Search Algorithm”, Communications
ACM, Vol. 33(8), pp. 132-142, 1990.

[Syd03] T. von Sydow, H. Blume, T. G. Noll, “Performance Analysis of General
Purpose and Digital Signal Processor Kernels for Heterogeneous Systems-on-
Chip” URSI Advances in Radio Science, Vol. 1, pp. 171-175, 2003.

[Szy97] T. H. Szymanski, “Design Principles for Practical Self-Routing Nonblocking
Switching Networks with O(N · logN) Bit-Complexity”, IEEE Trans. Com-
puters, Vol. 46, No. 10, pp. 1057-1069, 1997.

[Tav94] D. Tavangarian, “Flag Oriented Parallel Associative Architectures and Appli-
cations”, IEEE Trans. Computers, Vol. 27, No. 11, pp. 41-52, 1994.

[Tay88] F. J. Taylor, R. Gill, J. Joseph, J. Radke, “A 20 Bit Logarithmic Number
System Processor”, IEEE Trans. Computers, Vol. 37, No. 2, pp. 190-200,
1988.

[Tho83] C. D. Thompson, “The VLSI Complexity of Sorting”, IEEE Trans. Comput-
ers, Vol. C-32, No. 12, pp. 1171-1184, 1983.

[Urb02] H. Urbschat, G. Lapir, “Associative Memory”, European Patent Application,
IPN. EP 1182577A1, 2002.

[Vui96] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard, “Pro-
grammable Active Memories: Reconfigurable Systems Come of Age”, IEEE
Trans. VLSI Systems, Vol. 4, No. 1, pp. 56-69, 1996.

[Wag74] R. A. Wagner, M. J. Fischer, “The String-to-String Correction Problem”,
Journal ACM, Vol. 21, No. 1, pp. 168-73, 1974.

[Wai97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua. J. Babb, S. Amarasinghe, A. Agarwal, “Baring It
All to Software: Raw Machine”, IEEE Computer, Vol. 30, No. 9, pp. 86-93,
1997.

[Wal01] R. Walker, J. Potter, Y. Wang, M. Wu, “Implementing Associative Processing:
Rethinking Earlier Architectural Decisions”, Proc. IEEE Int. Parallel and
Distributed Processing Symp. (IPDPS’01), 2001.

[Wan03] H. Wang, R. Walker, “Implementing a Scalable ASC Processor”, Proc. IEEE
Int. Parallel and Distributed Processing Symp. (IPDPS’03), pp. 267, 2003.

[Wes93] N. Weste, K. Eshraghian, “Principles of CMOS VLSI Design”, Addison Wes-
ley Longman, Sec. Edition, ISBN 0-201-53376-6, 1993.

Bibliography 135

[Wil04] S. Wilton, S.-S. Ang, W. Luk, “The Impact of Pipelining on Energy per
Operation in Field-Programmable Gate Arrays”, Proc. Int. Conf. Field Pro-
grammable Logic and its Applications (FPL’04), LNCS 3203, Springer-Verlag,
pp. 719-728, 2004.

[Wit99] I. Witten, A. Moffat, T. Bell, “Managing Gigabytes”, Sec. Edition, Morgan
Kaufmann Publishers, ISBN: 1-55860-570-3, 1999.

[Wol02] W. Wolf, “Modern VLSI Design: System-on-Chip Design”, Prentice Hall, Thi.
Edition, ISBN: 0-13-061970-1, 2002.

[Wol04] W. Wolf, “FPGA-Based System Design”, Prentice Hall, ISBN: 0-13-142461-0,
2004.

[Wul95] W. Wulf, S. McKee, “Hitting the Memory Wall: Implications of the Obvious”,
SIGARCH Computer Architecture News, Vol. 23, No. 1, pp. 20-24, 1995.

[Wu92] S. Wu, U. Manber, “Fast Text Searching Allowing Errors”, Communications
ACM, Vol. 35, No. 10, pp. 83-91, 1992.

[Wu02] M. Wu, R. Walker, J. Potter, “Implementing Associative Search and Re-
sponder Resolution”, Proc. Int. Parallel and Distributed Processing Symp.
(IPDPS’02), pp. 246-253, 2002.

[Xil06] Xilinx Corporation, “http://www.xilinx.com”, Xilinx FPGA Family Refer-
ence Guide, 2006.

[Yeh00] C. Yeh, B. Parhami, E. Varvarigos, H. Lee, “VLSI Layout and Packaging of
Butterfly Networks”, Proc. ACM Symp. Parallel Algorithms and Architectures
(SPAA’00), 2000.

[Yeh03] C. Yeh, “Optimal Layout for Butterfly Networks in Multilayer VLSI”, Proc.
IEEE Int. Conf. Parallel Processing (ICPP’03), pp. 379-388, 2003.

[Yin96] L. Yin, R. Yang, M. Gabbouj, Y. Neuvo, “Weighted Median Filters: A Tuto-
rial”, IEEE Trans. Circuits and Systems, Vol. 43, Nr. 3, pp. 157-192, 1996.

[Yoo00] S. Yoo, J. Renau, M. Huang, J. Torrellas, “FlexRAM Architecture Design
Parameters”, Technical Report CSRD-1584, University of Illinois at Urbana-
Champaign, 2000.

[Yu06] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work,
T. Mohsenin, M. Singh, B. Baas, “An Asynchronous Array of Simple Proces-
sors for DSP Applications”, IEEE Int. Solid-State Circuits Conf. (ISSCC’06),
pp. 428-430, 2006.

[Zha01] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter, W.
Hsieh, S. McKee, “The Impulse Memory Controller”, IEEE Trans. Comput-
ers, Vol. 50, No. 11, pp. 1117-1132, 2001.

	Chapter I Introduction
	1 Information Retrieval Systems
	2 The Problem with Storage Devices
	2.1 Running into the Memory Wall
	2.2 Need for Hardware Support

	3 Organization of the Thesis

	Chapter II Background
	1 Designing Digital Systems
	1.1 Integrated Circuits Implementation Strategies
	1.2 Microprocessor Design Techniques
	1.3 Field Programmable Gate Arrays
	1.4 Semiconductor Memory Devices

	2 Pattern Matching in Strings
	2.1 Classical Algorithms
	2.2 Flexible Pattern Matching
	2.3 Dynamic Programming
	2.4 Hash Functions and Text Signatures

	3 Sorting Techniques and Algorithms
	3.1 Sequential Sorting
	3.2 Bit-Level Structures
	3.3 Sorting Networks
	3.4 Summarization

	Chapter III Related Work
	1 State of the Art in Software
	1.1 Web Search Engines
	1.2 Software Functionalities for Computers

	2 Hardware Accelerators
	2.1 Associative and Parallel Processors Systems
	2.2 Merging Logic and Memory
	2.3 Special Purpose Coprocessors
	2.4 Summarization

	3 Associative Access Method
	3.1 Building the Signature File
	3.2 The Retrieval Process

	Chapter IV System Level Analysis
	1 Motivation and Expectations
	1.1 Problem Statement
	1.2 Proposed Research

	2 Profiling and Analysis
	2.1 Exploration of the Software Model
	2.2 Sequential Algorithm Analysis

	3 Hardware Accelerator Design
	3.1 Parallelization of the Algorithm
	3.2 Modular System Architecture

	Chapter V Architectural Hardware Design
	1 System Management and Peripherals
	1.1 Operation Scheduling
	1.2 Designing the Memory Interface

	2 Building the Computational Data Path
	2.1 Penalty Calculating Unit
	2.2 Score Calculating Unit

	3 Hardware Sorting and Merging
	3.1 Parallel Sorting with Bitonic Networks
	3.2 Optimization Methodologies
	3.3 Hardware Merging Solutions

	Chapter VI Results and Evaluation
	1 Hardware Implementation
	1.1 Adaptation to the Development Platform
	1.2 Synchronizing the Processing Units
	1.3 Synthesis Results

	2 Evaluation of the Hardware Model
	2.1 Benchmarking Environment
	2.2 Scaling the Design
	2.3 Performance Appraisal

	Chapter VII Conclusion and Outlook
	1 On the Associative Computing Engine
	2 Future Work

	Appendix A On the Realization of Logarithms
	1 Error Analysis
	2 Error Correction
	3 Exponential Function

	Appendix B High Throughput Memory Controller
	1 Finite State Machine
	2 SDRAM Timings

	Bibliography and References

