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Abstract

Classifying species by their sounds is a fundamental challenge in the study
of animal vocalisations. Most of existing studies are based on manual
inspection and labelling of acoustic features, e.g. amplitude signals and
sound spectra, which relies on the agreement between human experts. But
during the last ten years, systems for the automated classification of ani-
mal vocalisations have been developed.

In this thesis a system for the classification of Orthoptera species by their
sounds is described in great detail and the behaviour of this approach is
demonstrated on a large data set containing sounds of 53 different species.
The system consists of multiple classifiers, since in previous studies it has
been shown, that for many applications the classification performance of
a single classifier system can be improved by combining the decisions of
multiple classifiers.

To determine features for the individual classifiers these features have
been selected manually and automatically. For the manual feature selec-
tion, pattern recognition and bioacoustics are considered as two coher-
ent interdisciplinary research fields. Hereby the sound production mecha-
nisms of the Orthoptera reveals significant features for the classification to
family and to species level. Nevertheless, we applied a wrapper feature
selection method, the sequential forward selection, in order to determine
further discriminative feature sets for the individual classifiers.

In particular, this thesis deals with classifier ensemble methods for
time series classification applied to bioacoustic data. Hereby a set of lo-
cal features is extracted inside a sliding time window which moves over
the whole sound signal. The temporal combination of local features and
the combination over the feature space is studied.

Static combining paradigms where the classifier outputs are simply com-
bined through a fixed fusion mapping, and adaptive combining paradigms
where an additional fusion layer is trained through a second supervised
learning procedure are proposed and discussed. The decision template
(DT) fusion scheme is an intuitive approach for such a trainable fusion
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scheme, which is typically applied to recognise static objects. During the
second supervised learning step the DT algorithm uses confusion matrix
data to adapt the fusion layer. In several empirical studies it has been
shown that the classification performance of adaptive fusion schemes, par-
ticularly for the so called decision template, is superior.

Many linear trainable decision fusion mappings, e.g. the combination
with the linear associative memory, the pseudoinverse matrix and the naive
Bayes fusion scheme are based on the same idea. Links between these
methods are given. However, regarding the classification of temporal se-
quences these methods do not consider the temporal variation of the clas-
sifier outputs.

In order to deal with variations of classifier decisions within time se-
ries we propose to calculate multiple decision templates (MDTSs) per class.
Two new methods called temporal decision templates (TDTs) and clustered
decision templates (CDTs) are introduced and the behaviour of these new
methods is discussed on real data from the field of bioacoustics and arti-
ficially generated data. In contrast to the combination with decision tem-
plates the multiple decision template approaches lead to an increased ex-
pression power of the fusion layer. This enhances the classification perfor-
mance for classification problems where the outputs of the individual clas-
sifiers show different characteristic patterns, which is a typical behaviour
in time series classification applications. Hereby several characteristic pat-
terns may exist for the whole time series belonging to the same class or for
the individual local decisions of a single time series. Whereas the TDT
approach offers the advantage to learn several characteristic patterns for
whole time series, the CDT approach is also able to learn different charac-
teristic patterns over time. Such patterns have been found in the temporal
domain of the Orthoptera.
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Chapter 1

Introduction

The general issue of fusion of multiple experts has been of interest to the
pattern recognition, machine learning and neural network communities
who have been studying multiple classifier systems (MCS) for more than
a decade [ ]. The combination of multiple classifiers has been pro-
posed as an approach to the development of high performance classifi-
cation systems [ ] and to solve difficult pattern recognition problems
involving large class sets and noisy input [ I

A special case is the combination of multiple classifiers for the classifi-
cation of time series. Typical applications can be found in many domains:
the audio domain (speech recognition, sound identification, bioacoustics,
etc.), the vision domain (motion detection, target tracking, object recogni-
tion, gesture recognition, face recognition in video sequences etc.), the lo-
comotion domain (synchronised movement, robotics, mapping, navigation,
etc.) and the bioinformatic domain (DN A sequences for example to locate
or classify gens and biomedical signals). In these domains the classifica-
tion is only possible by taking the processing of the temporal patterns into
consideration because the variation of the features over time is usually
significant for the classification of the temporal sequence. Looking at the
amplitude or frequency at one point is of course not sufficient to recognise
words or species. The consideration of these time dependent temporal
variations makes time series classification distinct and more complex than
the classification of static objects.

Many well-established techniques which are typically based on a pri-
ori information about the classification problem [ ] are known and
have been evaluated [ , , , ]. Among the huge vari-
ety of algorithms partially recurrent neural networks [ 1, time delay neu-
ral networks | |, hidden Markov models | | and dynamic time
warping [ ] are most popular. Recently however, many neural network
architectures were adapted to integrate temporal information for the pro-
cessing of temporal sequences [ ]. Most of these architectures are com-
posed of a short-term memory that holds on to relevant past events and an
associator that uses the short-term memory to classify or predict [ I

Due to the success of multiple classifier systems for the classification
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of static objects, in the last few years they also have been applied for the
classification of temporal sequences. Promising classification results can
be found for many applications [ , , I

The goal of this thesis is to study the classification of temporal se-
quences consisting of features from multiple feature spaces utilising clas-
sifier ensemble methods with static and adaptive fusion mappings. Typ-
ically, for adaptive fusion mappings the use of the prior behaviour of the
classifier yield useful information for the combination of the individual
classifiers. Such prior behaviour is for example measured a confusion ma-
trix that is calculated in a second training phase. Many combining meth-

ods like decision templates (DTs) [ 1, Eseudoinverse matrices (PIs),
naive Bayes fusion (NB fusion), behaviour-knowledge space (BKS) and
generalised borda count (GBC) [ ] are based on this idea. But, these

methods are optimised to classify static objects.

In order to integrate temporal information for the combination of a
set of classifiers into the fusion layer we propose to calculate multiple
decision templates (MDTs) per class. Two new methods called temporal
decision templates (TDTs) and clustered decision templates (CDTs) are intro-
duced | ]. Both methods show many similarities to the DT fusion
scheme, but in contrast to the combination with decision templates the ex-
pression power of the fusion layer is increased. This enhances the clas-
sification performance for classification problems where the outputs of
the classifiers show different characteristic patterns, which is a usual be-
haviour in time series classification applications.

The behaviour of these methods is demonstrated on a real and on a
synthetic data set with temporal features. Whereas the real data set is
from the field of bioacoustics and contains Orthoptera songs of two fami-
lies: the Gryllidae (crickets) and the Tettigoniidae (katydids), the synthetic
data set contains time series consisting of highly overlapping Gaussian
distributions. Both data sets are utilised to evaluate the discussed combin-
ing schemes.

1.1 Motivation

The work described in this thesis is part of the DORSA project (in Ger-
man: Deutsche Orthopteren Sammlungen) which deals with the collec-
tion of important Orthoptera specimens in German research collections to
be appropriated via the internet (see www.dorsa.de ) [ ]. Itis linked
to the global species database Orthoptera Species File (OSF) and also in-
cludes multimedia information such as pictures, video-files and especially
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sound-files. In addition, locality information will be transformed into dis-
tribution maps with a Geographic Information System (GIS) [ I

The purpose of this thesis is to develop a prototype of a “rapid assess-
ment tool” for the automatic recognition of Orthoptera songs to species
level and to study classifier ensemble methods for the classification of
bioacoustic data. The tool will help to improve classical taxonomic work
such as the description of new taxa by allowing a more comparative anal-
ysis of cricket and katydid songs. In addition, the tool automatically ex-
tracts discriminative features to facilitate taxonomic work.

A further application is to detect, classify and monitor tropical biodiver-
sity of a particular region by analysing the spectrum of insect sounds in
this region. Currently these biodiversity assessments are very time con-
suming and require extensive and thus expensive input from taxonomical
specialists. With the “rapid assessment tool” the biodiversity assessment
in forests will be as simple as walking into them with a microphone and
recording the sounds of resident insects. This is possible because the di-
versity of sounds made by forest insects is related to its species diversity.
Furthermore, the “rapid assessment tool” may also be used to collect lo-
cality information such as used in the GIS system. The overall system will
be especially useful for biologists, ecologists, conservationists and applied
entomologists.

From the viewpoint of computer science the development of the “rapid
assessment tool” mainly contains an interesting classification problem due
to the structure of the animal its vocalisations. Generally the classification
of bioacoustic vocalisations is a typical time series classification problem
similar to speaker recognition and speaker identification. Although the
structure of animal vocalisations is relatively simple, in contrast to human
speech, the classification of species is often difficult due to adverse condi-
tions (e.g. field recordings with nonhomogeneous noise background and
other environmental influences) [ 1.

As in speech recognition where onset- and offset positions of words
are determined, in the classification of animals the positions of the animal
its signal has to be determined. For example, for Orthoptera species the
positions of the individual pulses allows to extract local features within
these pulses. These features are then locally classified and the classifica-
tion results are combined through temporal fusion [ ]. But fusion
of multiple classifiers is also used to combine local features from different
feature spaces and to combine the classifier decisions derivated in several
time scales. These time scales are particularly important for the katydid
species whose pulses consist of pulse groups called syllables. Thus, for
katydid species the classifier decisions of descriptive features extracted
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within pulses and the classifier decisions of features extracted from sylla-
bles are combined to get the final decision. Due to the fact that the local
decisions are rather uncertain one important requirement to the classifier
and the combining scheme is, that both are able to handle this uncertainty.
In addition the system has to be robust to distortions, natural variability,
noise and missing information [ 1.

1.2 Related Work

Related work can be found in the field of classifier fusion and automated
bioacoustics. Whereas in the field of classifier fusion methods of a narrow
range are discussed, in the field of automated bioacoustics typical classifi-
cation systems developed for the automated classification and character-
isation of animal vocalisations are referred. However, for both research
areas, throughout this thesis, relevant previous and related work is sur-
veyed and many pointers to the literature are provided.

Classifier Fusion

Fusion of multiple classifiers has been studied intensively for decades.
This fruitful and ongoing research is documented in a vast amount of sci-
entific articles and numerous books. It is therefore beyond the scope of
this thesis to give a complete account of work that has been done in this
field up to now. Rather, we mainly refer previous work regarding classifier
ensemble methods which use confusion matrix data to obtain some prior
knowledge of the behaviour of the classifiers' and related work concern-
ing ensemble methods for the classification of temporal sequences. In the
first case the prior knowledge is derivated from errors that the individual
classifiers have made during the overall training phase.

Early examinations of such methods can be found in [ ] which
have been cited by many authors in the field of MCS. XU introduces static
combining schemes, e.g. averaging, voting and the probabilistic product
and adaptive combining schemes, e.g. the naive Bayes (NB) combination (see
Section 3.6) which assumes that the classifiers are mutually independent.
The ideas are based on the Bayesian formalism for evidence gathering and
uncertainty reasoning which have been extensively by studied in [ I

Very similar to the naive Bayes combination is the PALISK-algorithm
(in German: Paralleler Linearer Statistischer Klassifikator) proposed by

! In many publications in the field of MCS these classifiers are denoted as base classi-
fiers or first level classifiers.
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HAUSMANN [ ]. During the training phase and the classification
phase, each component of the individual feature vectors is classified in-
dividually. The number of classifiers is then given by the dimensionality
of the feature vectors. HAUSMANN compares the PALISK fusion scheme
with the Bayes classifier and artificial neural networks and applied his
method in a speech recognition system for the classification of phonemes.

Another adaptive combining method is behaviour-knowledge space (BKS).
The method was proposed by HUANG and SUEN [ ] and considers the
support from all classifiers in the team to all possible class labels combi-
nations jointly. Hereby the individual classifier decisions of a team of N
classifiers are used to build a look-up table. Let L be the number of class
labels and (wy, ...,wyn) € 2V with 2 = {1,..., L} be the crisp classifier out-
puts of the classifiers in the team. Then every possible combination of
class labels is an index regarded as a cell in the look-up table (BKS table)
whose dimensionality is given by the number of classifiers N. In the train-
ing phase the elements of the cells are determined by assigning the most
representative class labels in the training data to the corresponding cell.
On that score, each cell can have either: no class label, one class label or a
set of class labels.

In the test phase the BKS table is used to combine the individual clas-
sifiers. Let (&1, ...,0n) € 2V be the crisp classifier outputs calculated by
assigning test data to the NV classifiers. Again the sequence of class labels
determines a cell in the look-up table. The ensemble output is then given
by a single element of the determined cell, which means, that for an empty
cell one class label is randomly selected from {2, as for a cell containing a
set of class labels a single class label is randomly selected from this set. For
a cell containing a single class label the ensemble output is then given by
exactly this class label. The method was improved by WERNECKE [ |
who considers the 95 % confidence intervals of the frequencies in the BKS-
cells. In several publications this method is denoted as BKS+.

The discussed methods (e.g. NB, PALISK, BKS and BKS+) have in
common, that they are based on crisp classifier decisions. This implies,
that for the training of the fusion layer a large number of feature vectors
must be classified. Otherwise, a large number of elements in the confusion
matrix are zero which is usually worsening the classification performance
of the classifier ensemble.

We now want to consider weather the combination of soft classifier
outputs may be preferable in contrast to crisp classifier decisions. Such
issues have been the key subject of interest in a series of workshops on
audio and video based personal identity authentication [ ] and many
other applications.
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KUNCHEVA was one of the first authors who proposed an adaptive
classifier fusion scheme by taking the soft decisions of multiple classi-
fiers into account. She has developed the decision template (DT) combining
scheme [ , ] which was originally denoted as fuzzy template.
The classification performance of the DT combining scheme in compari-
son to other well known methods for the combination of multiple classi-
tiers was studied in several publications. For example, in [ ] a nu-
merical study for 14 different fusion schemes® and the decision template
fusion scheme using 11 different similarity measures on the Satimage
and Phoneme data set from the database ELENAis given. The authors
found, that the classification performance of the DT algorithm is superior
in comparison to other methods.

Further preliminary work concerning the combination of multiple clas-
sifiers with decision templates may be found in [ l. In these stud-
ies genetic algorithms (GAs) have been applied to select feature sets for
the individual base classifiers. A theoretical essay regarding 4 different
similarity measures in the context of decision templates may be found
in [ , ]. Here it has been proven that all these measures are
equivalent in the sense that they produce the same ordering of class labels
if the individual classifier decisions sum up to the same value.

Some methods for the combination of multiple classifiers have also
been used for the classification of temporal sequences. Based on the ideas
of XU the combination of multiple experts in a text-dependent speaker
identification system is proposed in [ ]. The system consists of a set
of classifiers that are trained by using features extracted in sliding input-
windows catching the temporal features. Different classifiers are gener-
ated by using different input-window sizes. Therefore, each classifier rep-
resents a specified time scale. The individual classifiers are combined with
the naive Bayes combination.

A survey about neural fusion architectures for the classification of tem-
poral sequences by using a set of multilayer perceptrons (MLPs) have
been proposed in [ , ]. In these studies it is systematically in-
vestigated at which stage of processing acoustic and optic information in
speech recognition should be combined. Hereby for two layered MLPs
the combination of acoustic and optic information can be accomplished at
three levels: (1) combination of the input layers (early fusion), (2) com-

’The evaluated fusion schemes are: averaging, behaviour-knowledge space,
Dempster-Shafer combination, fuzzy integral, majority voting, maximum, minimum,
naive Bayes, probabilistic product, product and learning the classifier outputs with 4
different types of classifiers.
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bination of the hidden layers (intermediate fusion), (3) combination of the
output layers (late fusion). The temporal integration and the final decision
is the task of an associative memory (AM).

Automated Bioacoustics

Most of the systems for the automated classification of animal vocalisa-
tions have been developed during the last ten years and are based on
pattern recognition (PR) approaches including machine learning techni-
aues, statistical hidden Markov models (HMM) and artificial neural net-
works (ANNSs) [ , , ]. All these techniques handle
feature vectors extracted from the waveform. Unfortunately the time vari-
ability in the acoustic signals creates formidable difficulties for the conve-
nient and effective application of these algorithms. Consequently, there
exists a large variety of methods to lessen the natural time variability,
e.g. linear time scale normalisation and dynamic time warping (see Sec-
tion 2.2).

In the following some of the recent automated species recognition sys-
tems are mentioned, to give an overview of the current state of the art in
the field of automated bioacoustics:

A. TAYLOR developed a software system consisting of a feature extrac-
tor and a decision tree classifier [ ] in order to classify the flight calls
of 9 species of birds which are general indicators of diversity or ecologi-
cal change [ , ]. The classification system makes no attempt
to segment or isolate the individual calls. Hence, it works entirely by ex-
tracting a set of features from local peaks detected in short time spectra
of the incoming signal. Due to the narrow bandwidth of the calls, fre-
quency tracks are derivated by searching for sequences of local peeks in
the spectrograms. The system has been tested on a set of 138 flight calls.
78 % of calls were identified correctly, 4 % incorrectly and 18 % were left
unclassified.

A similar system is used by GRIGG et al. to classify the vocalisations of
22 species of frogs occurring in northern Australia [ ]. The classi-
tier system is used in unattended operation to monitor the sounds of frog
populations. To obtain significant features sequential forward selection
(SFS) was applied.

A software package for the automated identification of Orthoptera songs
has been developed by CHESMORE et al. | ]. The system automati-
cally extracts various signal parameters, e.g. resonant frequencies, sylla-
ble length, tooth impact rates, etc. by using a digital signal processing
card. Based on these signal parameters a blackboard system consisting
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of a number of independent knowledge sources called experts, 17 species
of British Orthoptera have been classified. The pre-recorded songs are from
the cassette tape which accompanies a comprehensive guide to British Or-
thoptera [ ].

Dynamic time warping (DTW) and hidden Markov Models| ] have
been used by KOGAN and MARGOLIASH | ] for the classification of
bird songs (four zebra finches (Taeniopygia guttata) and four indigo buntings
(Passerina cyanea)). In DTW they created templates for different sound in-
tervals, e.g. song units, silent units and background noise. For the clas-
sification with HMMs they applied the hidden Markov toolkit which is
primary designed for speech recognition. However, its 18 major tools and
programs can be adapted and used for analysis and recognition of any
acoustic time series, including the vocalisations of animals.

In MURRAY et al. | ] KOHONEN's self organising neural net-
works [ ] have been applied to analyse vocalisations of false killer
whales (Psendorca crassidens). They used short time measurements of duty
cycles and peak frequencies as input of the classifier. The weight vectors
of the competitive neural networks were used to interpret different types
of whistles, e.g. ascending whistles, high frequency pulse trains and low
frequency pulse trains.

The self organising feature map combined with a source-filter model
of the sound production of humpback whales is utilised by MERCADO et
al. to classify the vocalisations of these animals [ ]. Each individual
vocalisation was characterised in terms of their pitch, duration, noisiness,
and formant structure using a combination of linear prediction, cepstral
processing, and manual measurements. Further preliminary work study-
ing the structure of killer whale pulse trains can be found in [ I

In [ , ] PARSONS et al. utilised discriminant function analysis
and multilayer backpropagation perceptrons to classify the search-phase
echolocation calls of 12 species of British bats to species level. They ex-
tracted one temporal and four spectral features from each call. To reduce
the dimensionality of the feature vectors of the frequency-time course of
the individual calls, curve-fitting was applied. Discriminant function anal-
ysis achieved an classification accuracy of 79 %, while the multilayer back-
propagation perceptrons achieved 87 %.

1.3 Major Contribution of this Thesis

Many contributions of our work were accepted for presentation and pub-
lication at various conferences | , , , , ,
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, , , ] or were published in international jour-
nals [ , , , ]. The main contributions of this the-
sis can be summarised as follows:

1. A software package for the classification of Orthoptera sounds from
53 different species has been developed. The software package per-
forms feature extraction, feature selection, classification and classi-
tier fusion.

2. A signal segmentation algorithm for the detection of pulses of Or-
thoptera songs has been developed. This algorithm allows to extract
the pulse positions in several time scales.

3. Three fusion schemes for the classification of time series have been
proposed and discussed.

4. Decision templates have been applied to the classification of tem-
poral sequences and algorithms to calculate multiple decision tem-
plates per class have been proposed. Two new methods called tem-
poral decision templates and clustered decision templates have been
developed.

5. Decision templates have been discussed in the context of supervised
neural network training schemes by assuming the normalised cor-
relation as similarity measure. In particular, links to the well estab-
lished methods: Pseudoinverse matrix, linear associative memory,
and naive Bayes decision fusion are given.

All methods investigated in this thesis, beside the linear vector quan-
tisation (LVQ), the radial basis function (RBF) networks and parts of the
feature selection algorithms have been implemented by the author of this
thesis in C/C++ utilising the Matlab C and C++ libraries. Linear vector
quantisation was applied with the well known LVQ_PAK [ ] devel-
oped by KOHONEN which was also used for the initialisation of the pro-
totype vectors of the RBF networks provided by F. SCHWENKER [ I
Some of the feature selection algorithms have been developed in a practi-
cal course conducted by the author of the thesis [ ].

1.4 Outline of the Dissertation

Chapter 1: ”"Introduction” has provided a motivation, a description of the
DORSA project and reviews related work in the field of classifier fusion
and automated classification of animal vocalisations.
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The utilised classification methods, e.g. RBF neural networks, near-
est neighbour classifiers and LVQ classifiers are described in Chapter 2:
”Classification Methods”. This Chapter also deals with multi-phase learn-
ing schemes for RBF networks by initialising the prototype vectors with
classification trees. In addition, a introduction into time alignment and
pattern matching is given.

Chapter 3: "Multiple Classifier Systems” contains a brief introduction
into MCS and categorises algorithms for the combination of multiple clas-
sifiers. A general framework for the extraction of local features in time
series and three architectures for the classification of time series are pro-
posed. The main contribution of this thesis is described in Section 3.5
which deals with time series classification with multiple decision template
approaches. In Section 3.6 links to supervised neural network learning
schemes are investigated by assuming decision templates with the nor-
malised correlation as similarity measure.

Automated song analysis and the sound production of the Orthoptera
is the introduction of Chapter 4: ”Orthoptera Bioacoustics” which deals
with the classification of Orthoptera songs. This Chapter deals with the
segmentation of the acoustic signals and the extraction of local features in
great detail. The evaluation of single features and the automated selection
of feature components is applied to determine feature sets for the exper-
iments. Classification results for the proposed fusion schemes are given
and discussed.

A description of a synthetic data set consisting of Gaussian distribu-
tions is given in Chapter 5: “Synthetic Data”. The classification results for
the proposed fusion methods are discussed.

Finally, Chapter 6: “Summary, Conclusions and Future Research” con-
tains a survey of major results and discusses suggestions and ideas for
future work.



Chapter 2

Classification Methods

This Chapter deals with methods for the classification static objects and
temporal sequences. A presentation of the applied classifiers is given in
Section 2.1 which also includes a discussion. Furthermore, this Chapter
deals with time alignment and pattern matching (TAPM) methods (see
Section 2.2) that are used in many applications (see Chapter 1). For the
overall Chapter some basic knowledge of neural networks and speech
recognition is advantageous.

2.1 Neural Networks

Pattern recognition (PR) and machine learning (ML) techniques are of-
ten components of intelligent systems and are used for pre-processing of
data and decision making. Historically, the two major approaches to pat-
tern recognition are the statistical (or decision theoretic) and the syntactic
(or structural). During the last thirty years, the emerging technology of
artificial neural networks (ANNs) has provided a third approach, especially
for black box implementations of PR algorithms [ ]. ANNS are mas-
sively parallel computational schemes and the form of learning is closely
related to classical approximation techniques, such as generalised splines
and regularisation theory [ ]. Hereby minimising the expected classi-
fication error is obviously an important issue of all approaches.

All three approaches share common features and common goals and so
the boundaries between them are fading. Among the huge number of arti-
ficial neural network structures [ , , , ], and more
continue to appear as research continues, many of these structures have
common topological properties, unit characteristics and training approaches.
Basically, an ANN is characterised by three entities:

1. The network topology or interconnection of the neural units.
Recurrent neural networks and non-recurrent neural networks are
distinguished. An important sub-class of non-recurrent networks
are feedforward neural networks in which cells are organised into
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layers, and only unidirectional connections are permitted between
adjacent layers [ I

2. The characteristics of the artificial neurons.
Different linear and non-linear transfer functions are considered, e.g.
the heaviside function, the sigmoid function, the Fermi function and

the identity function [ ]. Among the earliest models of neurons
were the model of MCCULLOCH and PITTS [ ]and FUKUSHIMA's
cognitron [ ].

3. The strategy for pattern learning or training.
Supervised learning procedures , unsupervised learning procedures
and reinforcement learning procedures are distinguished [ I
All these strategies differ in context of the learning algorithm, the
training sample set and the problem to be solved.

All these entities have influence to the training convergence properties and
the classification performance of the ANN.

2.1.1 Radial Basis Function Networks

Radial basis function (RBF) networks were introduced into the neural net-
work literature by BROOMHEAD and LOWE in 1988 | ]. The theoretical
basis of the RBF approach lies in the field of interpolation of multivari-
ate functions f : R” — R”. The goal of interpolating a set of M tuples
(x*, y*)5ly is to find a function F with F(x*) = y# forall u = 1,..., M,
where F'is a linear combination of radial basis functions. Usually the RBF
is defined as a nonincreasing function which takes the maximal value for

IIx —c| =0 ]. The most popular and widely used RBF is the
Gaussian function

1x = cjll3
(2.1) (%) = exp(==—5"7)

J

utilising the L,-norm which is well known as Euclidean distance. More gen-

eral, the L,-norm between x and c; [ ] with p € [1,00) is given by
1

(2.2) —cjllp = Z |xa — de|p P

where || - ||; is called the Manhattan distance [ ]. Hereby the vector x of

IR” is called feature vector which is typically from a continuous data input
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space, c; € IR” a so-called center or prototype vector and o; € R a scal-
ing parameter which determines how steeply ¢,(x) decreases with growing
distance from the center c;. The Gaussian function ¢;(x) may be consid-
ered as a nonlinear transfer function p : R — (0, 1] of the j-th neuron in
the hidden layer that maps the neuron input activation ||x — ¢;||3 into
the output signal. In practice vector or matrix valued scaling parame-
ters o, (also called widths) may be used. For example, an RBF neuron
with Gaussian transfer function can be defined with scaling parameters
0; = (0j1,...,0;p) € R” in the following way

o~ xa — sl
d — Cjd

(2.3) pi(x) = exp(=) 2—2”)

_ Ojd

d=1 j
where each o;; describes the shape of the j-th Gaussian function in the
d-th feature dimension.

A RBF network which classifies an input feature vector x* into one

of L different classes consists of D input neurons, a layer of J non-linear

hidden RBF neurons and L output neurons (see Figure 2.1).

Figure 2.1: Feedforward structure of a radial basis function neural network
with D input neurons, J RBF neurons in the hidden layer and L output
neurons.

The output of the j-th RBF neuron is the value of the RBF ¢;(x). Based
on these outputs the activity of the /-th output neuron is then given by the
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linear combination of RBFs
J
(2.4) Y= Wip(x)
j=0

where w;; is the synaptic weight from the j-th hidden neuron to the /-th
output neuron, indicating the strength of its connections. Thus, a large
positive value of wj; indicates a strong excitatory connection, and a large
negative value would be considered highly inhibitory. An additional neu-
ron whose output is ¢;(x) = 1 is utilised to gain the bias term of the in-
dividual output neurons (see Figure 2.1). Typically, in pattern recognition
the individual network outputs (see Eq. 2.4) are interpreted as class mem-
bership estimates (see Eq. 3.3) and thus, the index of the output neuron
with the maximal class membership estimate

(2.5) w = argmax(y;)

specifies the class determined by the RBF network.

In the supervised learning procedure the RBF network is constructed
by utilising a training data set of M examples D := {(x*,w")|p =1,..., M }.
Hereby the desired classifier output w” € {2 is one element from a finite
set of L classes (2 = {1, ..., L} which is represented as binary coded unit
vectors 3" € {0,1}" of length L and exactly a single one. The index [ with
y/" = 1 indicates that the input feature vector x* should be categorised to
class w" =1[.

Many strategies have been developed to adapt the RBF parameters
and the synaptic weights in the second layer. The most popular train-
ing strategies which tune all parameters of the RBF network together in a

single training phase are backpropagation (BP) training | 1, expectation-
maximisation (EM) [ 1, Qrfhogonal least squares (OLS) [ 1, genetic
algorithms (GAs) [ ] and support vector machines (SVM) [ ]. But

recently, multi-phase training strategies have been applied for the adaption
of the network parameters. Most of them differ in the order of parameter
adaption and the way in which the prototypes are initialised [ ]. For
the training of RBF networks we consider a very common training scheme
called three-phase learning in which all parameters of the RBF network are
adapted in three separate learning phases. The algorithm allows to use
labelled and unlabelled training data for the initialisation of the prototype
vectors. It performs the following three steps [ I

1. Training of the RBF kernel parameters (centers and widths) through
a supervised or an unsupervised clustering procedure, e.g. vector
quantisation and classification tree algorithms.
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2. Supervised learning of the output layer of the network by gradient
descent (see Eq. 2.7) or pseudoinverse solution [ I

3. Training of all parameters of the RBF network simultaneously through
anon-linear backpropagation-like optimisation procedure (see Eq. 2.7
and Eq. 2.8).

Hereby the radial basis function centers, the radial basis function widths
and the synaptic weights of the output layer are adapted successively.
RBF networks with free prototype vectors are shown to be universal ap-
proximators which are able to approximate each continuous function with
arbitrary precision [ I

In the following we introduce the three-phase learning scheme in more
detail by considering the supervised initialisation of the RBF kernel pa-
rameters with classification tree algorithms [ ] (see step 1) and the
adaption of the RBF parameters (see step 2 and 3) by gradient descent.
In contrast to many other methods to initialise the prototype vectors the
classification tree algorithm also allows to adjust the RBF widths. A very
popular initialisation scheme for the RBF centers (see step 1) with learning
vector quantisation (LVQ) is discussed in Section 2.1.2 which deals with
LVQ networks.

The initialisation of the radial basis function centers and scaling param-
eters by classification trees (see step 1) is introduced by KUBAT [ I
Classification trees partition the feature space R” into pairwise disjoint
regions R/, j = 1,..., J. The binary classification tree is the most popular
type in practice. Here each node has either two or zero children nodes.
Each node in the classification tree is representing a region R of R”. If a
node R has exactly two children then the regions represented by the chil-
dren nodes Rjer; and Ryigne have the following properties: R = Rieg U Rright
and Riegt () Rrighe = 0. If a node is a terminal node, called leaf, all data
points within this region are classified to a certain class given at the ter-
minal node. Usually, these regions are hyperrectangles parallel to the
axes of the feature space. During the training phase the splitting points
are determined. Features carrying the most information about the output
tend to be splitted earliest and most often. This is some kind of auto-
matic relevance determination which is a natural feature of classification
trees [ ]. One of the most popular decision tree algorithm implemen-
tations is QUINLAN’s C4.5 | 1.

Figure 2.2 shows this feature space partitioning procedure by example.
Here a data set of M = 15 examples is shown (see Figure 2.2(b)). These
data points are used to create the classification tree (see Figure 2.2(a)). The
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(a) A binary decision tree of depth 4 with two (b) Data points and regions
dimensional features x = (x1,%7). The classes (with class labels) of the
are given at the leafs. Nodes within the tree are R,
labelled with a feature dimension and a split-
ting point.

Figure 2.2: Decision tree with classes at the leafs (Figure (a)) and the corre-
sponding partition into hyperrectangles parallel to the axes of the feature
space (Figure (b)). Boundary values, feature dimensions and class labels
are given for the individual nodes. Each partition is determined through
a single leaf of the decision tree.

corresponding regions are defined by the leafs of the classification tree (see
Figure 2.2(b)). Each terminal node of the classification tree determines one
rectangular region in the feature space IR>. In the binary classification tree
each branch is determined by a feature dimension d € {1,...,D} and a
boundary B € R. Typically, a class is represented in more than one leaf
of the tree; for example class 3 in Figure 2.2 is represented in two different
regions. A region R is defined by the path through the tree, starting at the
root and terminating in a leaf.

In order to construct RBF networks with decision trees, for each region
an RBF neuron is created. Hence, the number of leafs in the classification
tree determines the number of hidden RBF neurons in the network. Due
to the fact, that the size of the tree (model complexity) can be controlled
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by the amount of pruning, the number of RBF neurons can be varied.

(a) The prototype vector of each RBF (b) The prototype vector of each RBF
neuron is placed in the center of the neuron is placed in the center of
region. gravity of the feature vectors within

each region.

Figure 2.3: Decision tree regions and data points of a small data set. The
RBF centers (+) and the scaling parameters (shown through the shape of
the RBFs) are exemplarily depicted for two different initialisation tech-
niques.

In [ ] it is proposed to use the size and the position of each region
(see Figure 2.2(b)) to calculate the prototype vectors and scaling parame-
ters of the RBFs. Figure 2.3(a) for example shows prototype vectors placed
in the centers of the individual regions and scaling parameters which have
been defined in such a way that all basis functions ¢;, j = 1, ..., J have the
same value at the border of their region. But, also the data points within
a particular region can be used for the calculation of the prototype vectors
and the corresponding scaling parameters. For example in [ ], we pro-
posed to place the prototype of each region into the center of gravity of the
data points within this region (see Figure 2.3(b)). The scaling parameter of
each RBF is then set proportional to the Euclidean distance between the
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center of gravity and its nearest neighbour prototype. Whereas these and
further methods to initialise the RBF kernel parameters with decision trees
are discussed in more detail in [ 11 ] contains a detailed numer-
ical evaluation for multi-phase learning algorithms for RBF networks. In
these studies the prototype initialisation has been performed by randomly
chosen data points, k-means, LVQ and classification trees.

For the second and the third learning step we suppose a training data
set D of M examples where y* is the desired network output and y* (see
Eq. 2.4) is the network output for feature vector x*. Additionally, a differ-
entiable error function as the sum-of-squares error

M
(2.6) E:=) |3 -y"3
p=1

and a differentiable transfer function which is defined for D scaling pa-
rameters for each neuron, e.g. the Gaussian transfer function given in
Eq. 2.3 is assumed.

Provided that the centers and the scaling parameters of the radial basis
functions have been initialised, the weights of the output layer can be cal-
culated (second learning step). An iterative procedure to minimise Eq. 2.6
is the gradient descent optimisation algorithm which adjusts the free pa-
rameters in such a way that the error function £ is minimised. In the sec-
ond learning phase the synaptic weights w;; are the free parameters and
the corresponding batch learning rule is given by
27) Wit = Wi AT e Y~ ¥ )

Wi p

The third and final learning phase is applied to adapt the complete
architecture by incrementally minimising the sum-of-squares error E by
gradient descent. This leads to three types of batch learning rules for the
synaptic weights w;; (see Eq. 2.7), the prototype vectors c;; and the scaling
parameters ;4 (see Eq. 2.8)

23 X; — C?d ¢ T, 7
Cjd = Cjd — UzaTd =Cjd T Z U—Z%(X”) Z(Yz — Y)W
J jd I=1
(2.8) g .
oF (x} — cfy)? - .
Ojd = 0jd — M35~ = 0jd + 13 Z —3j90j(X”) Z(Yf — Y1 Wji

Hereby 11, 1, and 73 are real-valued learning rates or step sizes for the
adaption of the individual parameter types. More details about the deriva-
tion of these learning rules can be found in [ , I
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2.1.2 Learning Vector Quantisation

Clustering and vector quantisation techniques are usually unsupervised
learning algorithms applied to divide data points into natural groups when
no teacher signal is available [ ]. The result is a small number of rep-
resentative centers (also denoted as prototypes) to minimise the quantisa-
tion error. A very established supervised clustering procedure which has
been applied to initialise the RBF centers is learning vector quantisation

(LVQ) [ ] (see step 1 of the 3 phase learning algorithm). In LVQ
the prototype vectors are properly placed within each zone such that the
decision borders are approximated by the nearest neighbour rule in the
Euclidean distance sense [ ].

In order to capture the entire LVQ network with the RBF network
topology (see Figure 2.1), the prototype vectors are determined by LVQ
and the synaptic weights in the hidden layer are connected one-to-one
(see Figure 2.4). Again the network contains D input neurons, a layer of

Yi Y2 Yo

Figure 2.4: Feedforward structure of a LVQ neural network with D input
neurons, J prototype neurons in the hidden layer and L output neurons.
The class memberships of the prototype neurons are encoded in the weight
matrix.

J prototype neurons and a layer of L output neurons. The prototype vec-
tors cy, ..., ¢; divide the input space into .J disjoint regions called Voronoi
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cells [ ]. In contrast to RBF networks the LVQ network is a competitive
neural network trained by supervised learning in which each neuron has a
binary output and one active neuron (or firing neuron) ¢,.(x) = 1 is com-
petitively selected. By assigning a data point x € R” to the network jx is
determined by the nearest neighbour rule by calculating the Euclidean dis-
tance (see Eq. 2.2) between the data point x and the individual prototypes

(2.9) ©j«(x) = 1 <= j* = argmin||x — c;||3.
=1,

All other neurons remain silent ;(x) = 0, for j # j*.

To determine the class of the active neuron in supervised competitive
learning networks, each prototype vector c;, j =1, ..., J is labelled with its
class membership w(c;) € §2. The classifier output is a binary unit vector
which is given through

1 ,l=w(ci)
2.10 = ’ T le .
(2.10) yi(x) { 0 ,otherwise

Equivalent, the class memberships of the individual prototype neurons
may be encoded in the weight matrix by

1 )=1
(2.11) wﬂ:{ we) =t g =1L
0 ,otherwise

After removing the connections with w;; = 0, each hidden neuron is con-
nected with exactly one output neuron (see Figure 2.4). As in RBF net-
works the classifier output is then given by the linear combination (see
Eq. 2.4).

For ¢* = x*, p = 1,..., M this is equivalent to the nearest neighbour
classifier which is one of the most elegant and simplest classification tech-
niques [ ]. This classifier offers the advantage that it converges to the
Bayes model under fairly nonrestrictive assumptions [ ] and the dis-
advantage that the computational cost for this classifier in the recall phase
is rather high. Thus, in many prototype based classification paradigms
the number of prototypes J is reduced. For example, the calculation of the
prototypes for the minimum distance classifier is applied by averaging the
feature vectors of the individual classes [ ]. This leads to J = L pro-
totypes and a decreased classification performance if one or more classes
in the data set are represented by more than one cluster.
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To calculate a problem specific number of prototypes in LVQ the num-
ber of prototypes J is reduced by clustering, thus J € [L,...,M]. For
the adaption of these prototypes many LVQ variants, e.g. Decision surface
mapping (DSM) [ | and LVQ with training count (LVQTC) [ |
have been published. Most of these algorithms are derived from the basic
learning vector quantisation algorithm LVQ1 that also includes the clas-
sification by the nearest neighbour rule (see Eq. 2.9). But from the basic
LVQL1 version, the OLVQ]1, the LVQ2.1 and the LVQ3 clustering proce-
dures have been suggested by KOHONEN. These algorithms have escaped
much attention in the neural network and the pattern recognition society.
The training is based on Hebbian learning which is a plausible biological
learning model. According to the model, the connection between neurons
that fire simultaneously is strengthened whilst the connection between
neurons that act differently is loosened [ ]. In[ ] the author
describes a software package and recommends settings for learning rate
parameters. It is also suggested, that learning be always started with the
OLVQL1 algorithm, which has very fast convergence due to a optimised
learning rate for each prototype (see Eq. 2.13). The recognition accuracy
may be improved then by continuing the prototype adaption with LVQ2.1
or LVQ3.

For the supervised clustering with LVQ we again assume a finite train-
ing data set of M examples D := {(x*,w")|u = 1,..., M}. Hereby x* € R”
is a feature vector and w" the corresponding desired target class which is
represented as a binary coded unit vector §* € {0,1}* as used to train the
RBF network. The algorithm starts with some initialisation of the proto-
types c;, j = 1,...,J, most often by assigning random values or by ran-
domly taking J vectors from the training data set D [ ]. Then in
each point in time ¢t > 0, randomly a feature vector x** together with a
teacher signal y*¢ from the training data is chosen, y, € {1, ..., M }. By pre-
senting the ¢-th feature vector x** to the LVQ network the outputs of the
individual neurons are calculated (see Eq. 2.9) and the network output is
computed by the linear combination (see Eq. 2.4).

Let j = j* be the index of the active neuron. Then by utilising the
teacher signal y# in LVQ1 and OLV Q1 the prototype of the active neuron
is adapted by

(212) it =l (1= |ly! = 5 B — ).
7
where ' = 1 if the classification of x** was correct, and v = —1 if the

classification was wrong. Consequently, the direction of the gradient up-
date depends on the correctness of the classification. If the feature vector
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x* is correctly classified (network output equals teacher signal: y* = y**)
the prototype vector c; is attracted towards to x*¢. Otherwise, the feature
vector x/* has a repulsive effect to the prototype vector.

Whereas the learning rates 77;5. for the j-th neuron in LVQ1 are con-
stant or monotonically decreasing, in OLVQ1 these learning rates are de-
termined by the recursion

t—1
";
t—1"7

— B
1T+9'n; )

(2.13) 7, = min(

where 77? is considered as the initial learning rate [ ]. Due to the fact
that )} can also increase, for each 1} a upper bound B is determined. In the
LVQ package B is set to ) = 19 =, ..., = 1 which is assumed in the range
of (0,1).

In contrast to the LVQ1 and the OLVQ1 clustering procedure where
only a single active neuron is determined to adapt the prototypes (see
Eq. 2.9) in LVQ2.1 and the LVQ3 two prototypes with the minimal Eu-
clidean distance to x** have to be considered for the prototype adaption.
These prototypes are determined by the 2-nearest neighbour rule, that
takes the Euclidean distances between x** and the 2 nearest prototypes
into account. Additionally, the K-nearest neighbour (/X-NN) rule allows
to calculate fuzzy classifier outputs and the classification with the K-NN
rule is more robust against outliers in the prototypes. It works as follows:

For each feature vector x** there is a sequence of decreasing distances,
e.g. there is a sequence (7;)7; C {1, ..., J} with the property |[x* — ¢ || <
.. < ||x* —cL [|3. The indices of the K < J nearest neighbour prototype
neurons to x* are then given by

(214) NK(Xﬂt) = {7'1, ...,TK}.

Assuming the transfer function

1 7.j e-/\/’I((X‘ut) .
2.15 (xM) = Cog=1,.J
215) i) {0 , otherwise J

leads to exactly K active neurons. If the weight matrix is defined as pro-
posed in Eq. 2.11 the linear combination (see Eq. 2.4) counts for each class
the number of active neurons.

In LVQ3 the prototype adaption is applied if at least one of the two
nearest neighbours belongs to the correct class w** and x** falls into a zone
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called window. Let Np(x*t) := {7, 72} be the indices of the two nearest
neighbours (see Eq. 2.14), x** falls into the window if

[x" = el  1-W

2.16
(216 ZErASe e

where W is a relative window width recommended in the range of 0.2
to 0.3. For class w* = [ and network output y}, three cases have to be
distinguished for the adaption of the prototype vectors c,, and c,

ct +&nl (xi —cl ), yi =2
217) =gt +nt (1—|yi =gl D —ct), yi=1, ke{l,2}.
c! yi=0

Tk

Hereby ¢ € [0,1) lessons the prototype adaption if x*, c,, and c,, be-
long to the same class. For { = 0 the LVQ3 algorithm is equivalent to
LVQ2.1 because in LVQ2.1 there is no prototype adaption if both proto-
types belong to the same class. Further details about the individual LVQ
clustering algorithms can be found in [ , , I

2.1.3 Fuzzy-K-Nearest Neighbour Classifiers

To determine the membership of an input vector x to each class in (2,
a fuzzy-K-nearest-neighbour rule may be applied[ ]. One simple way
to calculate such membership values is by setting the remaining network
connections in Eq. 2.11 to + instead of 1 and using the K-NN rule to cal-
culate the LVQ network outputs. This is equivalent to a combining rule
for fuzzy K-nearest neighbour classifiers as suggested by JOZWIK in []83].
Nevertheless, many authors also include the distance between x and the K
nearest prototype vectors to calculate these membership estimates [ I
In the context of this thesis we consider two different fuzzy-K-nearest-
neighbour rules which perform such distance weighting.

Type 1:

In order to calculate fuzzy classifier outputs for each of the K nearest
neighbours Nk (x) to x (see Eq. 2.14), the distance between the feature vec-
tor x to the prototypes of the nearest neighbours is calculated by a mono-
tonically decreasing transfer function, as for example given by [ ]

(2.18) (%) = {(M + a)il ,J € Nk(x)

0 , otherwise



24 Classification Methods

The parameter a > 0is used to grade low distance values for ||x—c,||>. An-
other widely used monotonically decreasing transfer function is the Gaus-
sian function

(2.19) 0i(x) = {exp(—%) ,J € Nk(x)

. ?
0 , otherwise

which is also widely used in RBF networks (see Eq. 2.1). For both transfer
functions ¢ > 0 determines the slope of the transfer function and ¢;(x)
may be considered as membership value of x to the class of the j-th pro-
totype. By applying Eq. 2.4 the individual membership values of the K
active neurons are accumulated for each class individually. The support
for the hypothesis that [ is the true class label of x is then estimated by the
normalised network output which is given through

(2.20) Ci(x) := ZZ(—X)
1=1Y! (X)

Now we have C;(x) € [0, 1] and Zfz 1 Ci(x) = 1 and call the classifier proba-
bilistic (see Eq. 3.4) [ 1.

Type 2:

For each class w € (2 let J“ be the number of hidden neurons with class
label w, J =37, J¥. Then for input x and class w there is a sequence ()7,
with [[c;e —x[[2 < ... < [|ese, —x|[2. The indices of the K nearest prototype
neurons (K < J¥) of x to class w are then given by

(2.21) NEX) = {7, ..., T2}
Then the whole set of active neurons is determined through
(2.22) Nic(x) = {NE (), o NEGO}.

After applying one of the transfer functions (see Eq. 2.18 and Eq. 2.19),
and the linear combination (see Eq. 2.4) the class membership estimates
yi(x), ..., yr(x) are calculated. Normalisation by Eq. 2.20 again leads to
L probabilistic classifier outputs C(x) = (Ci(x), ..., Cr(x)) for the hypothe-
sis that the true label of x is I. For both fuzzy-K-nearest neighbour rules
the parameter K determines the degree of fuzziness of the classifier out-

puts [ I
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21.4 Summary and Discussion

The preceding Section gives an introduction into prototype based classi-
fiers, e.g. RBF networks, K-NN classifiers and LVQ networks. We have
discussed three-phase RBF network training in detail and introduced two
algorithms (initialisation with decision trees and learning vector quanti-
sation) for the initialisation of the first layer of the RBF network (see step
1). For the second and the third learning phase we introduced an iterative
parameter adaption method called gradient descent. In order to calculate
fuzzy membership values the fuzzy-/K-NN rule is proposed.

Similarities between these network structures are shown by embed-
ding the LVQ1, the OLVQ1 the LVQ2.1 and the LVQ3 network into the
RBF network topology and discussing the training of these ANNs by us-
ing a training set D which contains binary coded class labels. Compar-
isons between these two ANN architectures can be made by considering
the three entities which characterise an ANN (see Section 2.1). Although
the network topology is almost similar, differences can be found for ex-
ample in the weight matrix. Whereas in LVQ networks each prototype is
firmly associated with a single class (see Figure 2.4) in RBF networks each
prototype is associated to each class in (2 (see Figure 2.1). In addition,
the scaling parameters of the individual RBF functions are adapted in the
training phase.

The strategy for pattern learning for RBF networks may be applied
by several methods as referred in Section 2.1.1. But for LVQ networks,
the training algorithms are explicitly given. Both networks are not based
on the approximation of the density functions of the class samples. In
RBF networks a very common method for the adaption of the parameters
is based on the minimisation of the squared error function by gradient
descent (see Eq. 2.7 and Eq. 2.8). On the other hand in LVQ networks the
adaption of the prototypes is applied to define the class borders according
to the nearest-neighbour rule [ ].

A further link between LVQ and RBF networks is given if the initial-
isation of the RBF parameters in the first phase of the multi-phase learn-
ing algorithm is applied with learning vector quantisation, e.g. LVQ1, ...,
LVQ3 [ ]. Similarities concerning the learning rules of RBF networks
and LVQ networks are discussed in | I
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2.2 Time Alignment and Pattern Matching

Time alignment and pattern matching (TAPM) is an important problem
involved in many applications for the classification of temporal sequences.
Many algorithms have been developed and have been evaluated in the
most of the domains discussed in Chapter 1. However, for the audio do-
main, (e.g. speech recognition, sound identification, bioacoustics, etc.) the
temporal alignment of feature vectors seems to be important and thus, a
lot of methods have been developed. In speech recognition it comes from
the fact that acoustic feature streams (e.g. a sequence of spectra) of a speech
utterance (e.g. word, phrase or sentence) are seldom realised at the same
speed across the entire utterance [ ]. Among the large variety of
methods we group these into:

1. Methods which make use of knowledge or assumptions about the
temporal sequence (time scale normalisation, trace segmentation, fea-
ture set transformations and dynamic time warping [ D.

2. Methods which are able to learn temporal contexts (time delay neu-
ral networks, partially recurrent neural networks and hidden Markov

models [ D.

For methods in group 2 the classifier is modified in such a way that it is
able to learn temporal variations, most of the methods in group 1 apply a
pre-processing of the feature vectors and usually work in conjunction with
classifiers for static objects. Nevertheless, in each of the referred methods
the sequential order of features is taken into account.

2.2.1 Pre-Processing of Features

In the pre-processing stage a sequence of feature vectors is transformed to
serve as classifier input. Hereby the dimensionality of the feature vectors
is fixed or the number of feature vector is decreased. Obvious methods are
time scale normalisation and feature set transformations.

For the first class of algorithms linear and non-linear methods to trans-
form variable-length feature vectors into a fixed number of classifier in-
puts are distinguished. Several linear methods are applied to expand or
compress feature vectors of variable length into fixed length feature vec-
tors. Most of these methods are selecting the desired number of features at
equally spaced intervals. A simple and effective algorithm for linear time
scale normalisation used in conjunction with neural networks is presented
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in [ ]. However, time scale normalisation can be applied by extract-
ing a fixed number of features by varying the time resolution during the
feature extraction.! Hereby the basic assumption is, that the variation of
the features is proportional to the number of features which depends on
the duration of the utterance.

A non-linear sampling method used to reduce the length of a discrete
feature stream is trace segmentation (TS) [ ]. TS is based on the as-
sumption, that despite timing differences for a feature stream of the same
category, fluctuations in the features over time will occur in the same se-
quence, but over different length of time. To introduce this method we
consider an example from the field of speech recognition. Let (S(y) ]{ ; with

5(5) € R” be a stream of power spectra. Where there is no change in fre-
quency there will be a high density of points and where the frequency
changes are rapid the points will be widely spaced. The number of feature
vectors in such a sequence can be reduced by removing those which occur
during the stationary portions of the patterns. This may be done by com-
puting a trace of Euclidean distances (see Eq. 2.2) between two adjacent
spectra S() = 1S¢) — S+ D, y=1,...,J —1. In order to calculate
a feature stream of constant length (S’(]))JJ: ;! is splitinto G < J — 1 in-
tervals such that the intervals are representing approximately equivalent
amounts of change. By maintaining the temporal order of the intervals the
temporal order of the samples from the original feature stream (S(j)f= 1) is
obtained as well.

The second class of pre-processing algorithms are feature-set transforma-
tions [ ] which map variable-size feature vectors into a fixed number
of parameters. The most popular transformation is the discrete Fourier
transformation (DFT) which is often applied in conjunction with a filter-
bank (see Section 4.2.2) [ ]. Hereby, care must be taken to ensure
that the representations have a physically meaningful interpretation. For
example, in speech recognition the filter-banks are typically nonuniform.
The number of frequency channels defines the dimensionality of the fea-
ture vectors and the spacing between the filters including the bandwidth
of the individual filters defines the critical band. All these parameters have
been determined in perceptual studies. Accessorily, it is intended to deter-
mine the frequency channels in such a way that they give equal contribu-
tion to speech articulation. Most popular variants are the mel scale and the
bark scale | ].

Further well known feature-set transformations are the autocorrelation

! In Section 4.2.5 time scale normalisation is applied by calculating sonograms with a
fixed number of spectra.
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analysis [ ] which is used to measure the periodicity of a stationary
signal and the Wavelet transformation [ ].

2.2.2 Dynamic Time Warping

A very general time alignment and normalisation scheme is dynamic time
warping (DTW) which was introduced by SAKOE and CHIBA in 1978 | I
DTW allows to be problem specific adjusted by modifying several con-
straints. This allows to use DTW in various fields, e.g. bioinformatics,
robotics, chemical engineering and speech processing [ I

The classic DTW algorithm uses a local distance measure to measure
the distance between a candidate sequence and a set of template sequences
by calculating a warping path. Not surprisingly, multiple templates per
class are commonly used in DTW systems [ ]. Suppose we have a
candidate sequence (x(g))gG=1 and a template sequence (c(h)), with x(g) €

R” and c(h) € R”. To align these two sequences a local distance measure
#(g,h) = o(x(g), c(h)) between two points of these sequences is applied
to calculate a warping path on a G x H plane. Typically, the Manhattan
distance or the Euclidean distance (see Eq. 2.2) is used to measure these
local distances. The unknown warping path

(2.23) W= {w(g(q), Mo)lg=1,...,Q}

with ¢g(q) € {1,..,G} and h(q) € {1,.., H} is then given by a sequence of
corresponding monotonically non-decreasing pairs of indices. Figure 2.5
shows a warping path in the G x H plane and a linear path calculated by
linear time scale normalisation. The overall distance ¢ between the candi-
date sequence and the template sequence is then calculated by adding the
local distances over the warping function path 1. One natural and pop-
ular choice of finding the best alignment between the candidate sequence
and the template sequence is to search the path with the minimal distance
& as the minimum over all possible warping paths, such that

Q
(2.24) @ = argmin () _ ¢(g(q), h(9)).

q=1

This minimisation problem is solved to evaluate the dissimilarity between
the candidate and each of the template sequences. Hereby the specific
form of the accumulated distortion of Eq. 2.24 allows that dynamic pro-
gramming techniques [ | are readily applicable in the solution process.
In order to obtain suggestive solutions, warping constraints are included
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Figure 2.5: An example of dynamic time scale normalisation of two se-
quential patterns ((x(9))$; € R™ and ((c(h))iL; € R®. The linear path (L)
is determined by linear time scale normalisation and the non-linear path

(N) is determined by dynamic time warping.

for the solution of the minimisation problem in Eq. 2.24. Among the large
number of constraints the following are considered:

e Endpoint constraints.
These constraints may be used if the endpoints of the candidate se-
quence and the template sequence are given, g(1) = 1, h(1) = 1,

9(Q) =G and W(Q) = H.

e Monotonicity conditions.
These conditions are crucial in time alignment to maintain the tem-
poral order of the sequences, g(¢ + 1) > g(q) and h(q + 1) > h(q).

e Local continuity constraints.
They are used to constrict the number of allowable paths and to
determine the degree of non-linearity, e.g. g(¢ + 1) — ¢g(¢) < o and
Mg +1) — h(g) < a with o € IN*.
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A detailed introduction into DTW including further warping constraints,
e.g. global path constraints and slope weighting can be found in [ I

2.2.3 Time Delay Neural Networks

Time delay neural networks (TDNN) have been successfully used for
time series classification, e.g. phonem classification [ ] and the
recognition of hand gestures [ ]. A TDNN is a multilayer feedfor-
ward network that uses time delays between all layers to represent tem-
poral relationships between events in time. The network input is a tem-
poral sequence of feature vectors, where only the features within a small
window serve as network input at one point in time. During training and
classification the time window is shifted and the next portion of the input
sequence is given to the network until the whole sequence of features has
been scanned through.

Because of the time delays the TDNN integrate activity from adjacent
time-delayed vectors, which allows each vector to be weighted separately
at several snapshots in time. This results in a temporal integration which
is not linear; adjacent feature vectors are treated as additional inputs oc-
curring at the same time [ ].

The TDNN is trained with a unique implementation of the backpropa-
gation (BP) algorithm which uses copies of the network weights and the
activities. This means that during the training phase, for each shift in
time, copies of the TDNN parameters have to be accomplished. Network
copies allow the entire history of the network activity to be present at once,
thereby the BP algorithm computes the error for each network copy as
they represent separate instances in time. Changes of the weights are cal-
culated for each copy and the average of change in weights over all copies
is used to update the weights.

Training is completed, when each TDNN copy will have almost iden-
tical weight matrices. This allows to use a single TDNN copy for the
recognition. The trade-off is that multiple copies of the network make
the training computationally more expensive. Furthermore, the number
of iterations required to reach the minima increases [ 1.

2.24 Partially Recurrent Neural Networks

Partially recurrent neural networks are characterised by a feedforward
network architecture serving as an associator, but also including a set of
carefully chosen feedback connections to allow the representation of tem-
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poral context. The recurrent connections are interconnected with so called
context units which provide the network with a dynamic memory that
holds on to relevant past events [ ].

JORDAN [ ] described a two layer feedforward neural network ar-
chitecture which involves recurrent links from the output neurons to the
context cells in the hidden layer. Each context cell contains a self-recurrent
connection to control how fast information about internal state representa-
tions decay [ ]. This architecture was modified by ELMAN [ ]
by connecting the hidden units with the context cells and removing the
self-recurrent connections of the context cells (see Figure 2.6). For this
architecture the context units remember the previous internal state. The
hidden units have the task of mapping both, the external input and also
the previous internal state to some desired output.

Figure 2.6: Architecture of an Elman neural network. The backward con-
nections copy activations from the hidden layer to the context layer on a
one-for-one basis with fixed weights of 1.0.

As the feedback connections are fixed at 1.0, supervised backpropaga-
tion learning can be used for the training of the feedforward connections.
In the learning phase the network output is compared with a teacher input
and backpropagation of error is used to incrementally adjust connection
strengths [ 1.
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2.2.5 Hidden Markov Models

The basic theory of hidden Markov models was published in a series of
papers by BAUM et all. [ I. They are the most successful TAPM al-
gorithm for speech recognition based on words or to sub-word units (such
as phoneme, diphone or triphone) and they are nowadays used in most
speech recognition systems. Motivated by the success of HMMs, they
have been combined with ANNs and a number of "HMM-like” imple-
mentations of ANNs have been developed [ 1.

A hidden Markov model is a double embedded stochastic process with
an underlying stochastic process that is not directly observable (it is hid-
den) [ ]. It consists of a set of distinct states, a state-transition proba-
bility distribution, an observation symbol probability distribution and an
initial state distribution. Generally the states are interconnected in such a
way that any state can be reached from any other state (fully connected
HMM). But in speech recognition, the so called left-right model or Bakis
model of the HMM is mainly utilised because the underlying state se-
quence associated with the model has the property that, as time increases,
the state index increases or stays at the same state.

In the training phase a labelled observation sequence is used to adjust
the model parameters, e.g. the state-transition probabilities, the observa-
tion symbol probabilities and the initial state distribution. This sequence
is called training sequence and is obtained at regularly spaced, discrete
times. Usually, for each class a separate HMM is designed. There is no
known way to analytically solve for the model parameter set, but itera-
tive procedures such as the Baum-Welch method [ ] are used in many
applications.

In the classification phase the model is given and a unknown sequence
of regularly spaced, discrete observations is fed into each of the hidden
Markov models. For each HMM the probability that the observed se-
quence was produced by the underlying model is computed. Therefore
the best state sequence has to be calculated from the observation sequence,
which is typically done by using the Viterbi algorithm [ ]. The class of
the HMM whose probability is the largest is the classification result.

2.2.6 Summary

In the preceding Section the concept of time alignment algorithms and
classification of temporal sequences was introduced. Several standard
methods for the pre-processing of features, e.g. linear time scale normalisa-
tion, trace segmentation and feature-set transformations have been intro-
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duced. Furthermore, methods which are able to learn temporal contexts, e.g.
time delay neural networks, partially recurrent neural networks and hid-
den Markov models have been described. As well, dynamic time warping
was explained which allows to be problem specific adjusted by a large
number of warping constraints.

Although a large number of TAPM algorithms exists, in speech recog-
nition systems one of the key questions is still, how speech patterns have
to be compared to measure their similarity [ ]. Most of these algo-
rithms have not been used in this thesis. But many TAPM approaches
can be found in Section 4. For example, a linear time scale normalisation
technique based on sonograms with a fixed number of sampling points
have been introduced in Section 4.2.5. Additionally, a linear tempera-
ture normalisation technique is used to lessen the influence of the envi-
ronment temperature to several signal parameters of the Orthoptera (see
Section 4.1.6).

However, even temporal contexts have been trained by extracting a set
local feature vectors inside a sliding short time window (see Figure 4.2.5).
Learning structured classifier outputs is supported by the MDT and the
CDT approach proposed in Section 3.5.2.
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Chapter 3

Multiple Classifier Systems

This chapter deals with time series classification with multiple classifier
systems (MCS). It introduces with static and adaptive fusion schemes and
the graduation of MCS by four factors. A presentation of MCS approaches
for time series classification based on local classifier decisions is given.
This includes three static architectures (see Section 3.4) and three trainable
approaches derived from the decision template algorithm (see Section 3.5).
Furthermore, learning of decision templates is introduced and discussed
in the context of neural network training schemes. In particular, links to
the well established methods: The pseudoinverse matrix, the linear asso-
ciative memory, and naive Bayes decision fusion are given.

3.1 Introduction

The combination of multiple classifiers may generate more precise classi-
fication results than single classifiers [ ]. Combining classification
powers of a team of classifiers is therefore regarded as a general problem
in various pattern recognition applications. Several experimental and an-
alytical investigations have been made [ , , , I
The two main paradigms for combining classifiers are [ I

¢ Classifier fusion.
In the ensemble approach the classifiers are competitive experts. The
predictions of the single classifiers are combined to yield a single
class prediction [ 1.

e Classifier selection.
The classifiers are complementary experts (also called modular ap-
proach). Here a function is defined which dynamically selects for
each pattern a single classifier from the team to reveal a class pre-
diction [ , ]. Two dynamic classifier selection methods
based on the general framework of statistical decision theory can be
found in [ ].
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Actually in both paradigms it is not accounted what internal structure a
classifier has and on what theory and methodology it bases. Rather, in the
field of MCS a classifier is simply regarded as a function box that receives
an input sample and outputs a classification result [ I

LetC = {C',...,C"} be a set of N classifiers’ and 2 = {1, ..., L} be a set
of L class labels. Each classifier gets as input a feature vector x,, € R”"
from a continuous data input space (often D,, is constant) and assigns it to
a class label from (2. We distinguish 3 types of classifiers according to the
levels of information available at the classifier output:

e Crisp classifiers. These classifiers C", n € 1,..., N are given through
the mapping

(3.1) C":RP — 0.

e Ranked classifiers. A ranked classifier returns a list of R < L disjoint
class labels in descending order of a certain similarity score. This is
conform to a mapping [ ]

(3.2) C": RP" = (wi, ..., wr)
withw, € 2,r=1,..., R.

o Soft classifiers. A soft classifier is any classifier which uses fuzzy
sets either during its training or during its operation [ . We
divide soft classifiers into two groups: possibilistic classifiers and
probabilistic classifiers. The possibilistic classifier is given through the
mapping
(3.3) C":RP" —[0,1]*\ {0}, ne€l,.. N.

In the term of probabilistic classifier fusion the soft classifier outputs
are usually normalised to be interpreted as probabilities [

]. This type of classifier is then called probabilistic classzﬁer
which is conform to a mapping

(3.4) C":RP» - A, nel,..,N

where the set A € IR” is defined through

L

(3.5) A= {(y1,..y) € [0,11"]> yi =1},

=1

! These classifiers are usually denoted as base classifies as well as first level classifiers.
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For soft classifiers the classifier output determines the degree of support
for the hypothesis that x,, belongs to the respective class [ ]. Then
@f(xn), [ € (2is the estimated membership of feature vector x,, to class [ ob-
tained from the n-th classifier in the team. In probabilistic approaches this
evidence may be additionally decomposed into the true posterior proba-
bility P(w = l|x,) and the error term ¢;(x,,) [ , ]

(3.6) Cl(xa) = P(w = Ux,) + er(x,).

By assuming ¢;(x,) = 0, in probabilistic approaches the outputs of the in-
dividual base classifiers are combined (see Section 3.4.2). Hereby the crisp
classifier C is considered as a special case of the soft classifier, because
the crisp decision can be determined by the maximum membership rule
(see Eq. 2.5) [ ]. But in the context of this thesis, crisp classifier deci-
sions are often considered as binary unit vectors. This allows to use the
same aggregation operator for both types of classifiers (see Section 3.4). Let
w € {2 be the class estimate of a crisp classifier, then the binary unit vector
(¥1,--,yr) € AN{0,1}* with exactly a single one is given by

1, w=l
3.7 =47 Cl=1,.. L.
(3.7) Y { 0, otherwise

The ranked classifier C may also be considered as a special case of the
soft classifier. Let C"(x,) = (C{(x,), ..., C}(x,)) be the soft classifier outputs
of C" given the feature vector x,,. Then we assume these outputs sorted in
decreasing order, e.g. there is a sequence (1), 7, € {2 of indices such that
Cr(xn) > ... > CF (xn). Forx, € R”" the output of the ranked classifier is
then given by C*(x,) = (11, ..., 7r) with R < L. By setting R = 1 the ranked
classifier is equivalent to the crisp classifier.

Due to the fact that each classifier type may be represented through the
soft classifier (see Eq. 3.3) the combination of the individual base classifiers
can be applied by a combination of soft decisions. For such a combination
in many publications the decision profile is considered [ ]. For an
input xy, ..., xy with x,, € RP", the individual rows of the decision profile
contain the outputs of the base classifiers C', ..., C". It is given by the (V x
L)-matrix

Cll(X1) ce Cll(X1) ce Ci(X1)
B8) Pl ..xn) = |CHx) ... CM(x) ... CI(x)

CN(xy) ... CN(xn) ... CN(xx)
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By assuming the decision profile, fusion schemes may be discriminated
in the way in which the soft decisions are combined. For class-conscious fu-
sion schemes the classifier outputs of a single class [ € (2, C}(x1), ..., C}¥ (xn)
are combined through a mapping

(3.9) 2 := F(C}(x1), .., € (xw))

in order to calculate the combined membership estimate z; € [0, 1] for class
[. This means that the individual columns of the decision profile are com-
bined independently. But, there is a class of more general fusion schemes
called class-indifferent where dependencies between class-wise classifier
outputs may be considered for the combination of the NV base classifiers.
The combination is applied through the mapping [ |

(3.10) z = F(C(x1), ...,CN (xn)),

where the vector z € [0,1]% \ {0} contains the combined membership esti-
mates for each class in (2. In literature these mappings are termed as fusion
mapping, combining rule or aggregation operator.

A simple class-indifferent combining rule, applied in many applica-
tions and investigated in several theoretical considerations is majority vot-
ing [ ], where the class which receives the largest number of votes is
selected as the consensus decision. In majority voting the classifier ensem-
ble returns a crisp decision as a binary coded unit vector which is given

by

1 1= N C(x,
BAD)  FC(x1), s CV(xn)): = argmax( Y21, C20x))

0 ,otherwise
Unless for class [ there is a ensemble output with " C/'(x,,) > L, theen-
semble outputs of the individual classes have to be compared (see Eq. 3.11)
to determine the final classification result.

In addition, classifier ensemble methods are distinguished in the con-
text of their combination strategy. Typical classifier fusion or combination
strategies are based on fixed fusion mappings like averaging, majority voting
or multiplying the classifier outputs [ , ]. These combina-
tion rules are also called simple fusion rules [ ] and they do not require
any time consuming training of the classifier ensemble. However, learn-
ing strategies with an adaptive fusion mapping are also quite popular and
widely used [ ]. These learning strategies are also called trainable
fusion strategies.
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For fixed fusion mappings the training of the base classifiers C, ...,C"
is applied in a single phase by training the individual base classifiers util-
ising a training data set D. The test of the classifier ensemble is done by
using a separate test set D' and combining the individual classifier out-
puts utilising a static mapping which is often denoted as aggregation rule.

In contrast to fixed fusion mappings for adaptive fusion mappings the
training of the overall classifier system is considered as a two phase learn-
ing problem:

1. Building the classifier layer consisting of a set of base classifiers where
each classifier is trained on a specific feature subset.

2. Training of the fusion layer performing a mapping of the classifier
outputs (soft or crisp decisions) into the set of desired class labels.

Classifier Layer Fusion Layer

C'(x,)

Feature 1 %

' C i(x ) z
Featurei | o&—F—>»C o> > F ——>

 Clx)
Eﬁ/}d’

Feature [

Classification

Figure 3.1: Two layer architecture of a MCS consisting of a classifier layer
and an additional fusion layer. The combination of the classifier decisions
of the individual base classifiers C!,...,C! is accomplished by the fusion
layer.

So, the overall classifier system (see Figure 3.1) is a two layer architec-
ture very similar to layered neural networks, with a two layer structure
such as multilayer perceptrons and radial basis function networks (see
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Section 2.1.1). Whereas all parameters of the multilayer perceptrons are
trained simultaneously by a backpropagation-like training algorithm in
a one phase learning procedure, this 2-layered classifier architecture is
trained by two completely different training phases. This type of classi-
fier training is similar to radial basis function learning procedures, where
the adaption of the whole network is performed in two or maybe three
learning phases (see Section 2.1.1). Usually, for such multi-phase learning
schemes a labelled training data set D is applied to the RBF network to
calculate the radial basis function centers, the radial basis function widths
and the weights of the output layer. However, other learning schemes may
be applied. For instance, if a large set of unlabelled data points is avail-
able, this data can be used to initialise the RBF kernel parameters of the
tirst layer through unsupervised clustering | , I

Similar to this idea, for the training of the two layer fusion architecture,
two labelled data sets (D and DV) are applied to train the whole architec-
ture, see Figure 3.2.

DV
D D!

Figure 3.2: The training data set D is used to train the base classifiers.
An additional data set (validation set DV) is utilised to adapt the classifier
ensemble, and D! is the disjoint test set to evaluate the performance of the
classifier ensemble.

This means, that first the base classifiers are trained by a labelled train-
ing set D, and then a labelled validation set DV (usually different form D)
is applied to the previously trained base classifiers to calculate the indi-
vidual classifier outputs. These classifier outputs together with the desired
class labels are used to train the decision fusion mapping performed by the
fusion layer.? The basic idea of this approach is to implement prior knowl-
edge of the base classifier based on its characteristic output behaviour into
the fusion layer. Hereby it is assumed, that the validation set DV reflects
the distribution of the pattern space.

2 In some publications a trainable fusion layer is denoted as second layer classifier.
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Such prior knowledge is for example given in the confusion matrix cal-
culated by classifying feature vectors from the validation set DV. Many
well known algorithms for the combination of multiple classifiers use con-
fusion matrix data for the combination of multiple classifiers [ ] (see
Section 3.6). Then D U DY may be considered as the training set of the
whole classifier ensemble. Different training and validation set composi-
tions may be determined through an overlap parameter

_|[DnDY

(3.12) o

€ [0,1]
which determines the fraction of data points of DV which are also in D.
Hereby p = 0 denotes DN DY = () and p = 1 denotes DV C D.

To give a summary of classifier fusion and selection algorithms with re-

spect to the mentioned factors several of such algorithms are systematised
in Table 3.1.

. fusion mapping
classifier

xed adaptive
crisp Majority voting | ]IF Behaviour knowledge space (BKS) | ]IF
Naive Bayes fusion [ ]IF
ranked Borda count [ ]CF Generalized borda count | ]IF
soft Percentiles | }CF Neural networks [ ]IF
Ordered weighted averaging | ]IF Pseudoinverse matrix | ]IF
Averaging [ ]CF Decision templates | ]IF
Fuzzy integral | }CF Wernecke’s method (BKS+) | ]IF
Probabilistic function | ]CF A priori selection | ]S
Product rule [ ]CF A posteriori selection [ }S

Random subspace [ ]CF Gating network | ]S

Table 3.1: Classifier combination algorithms grouped by the 4 mentioned
factors: (1) classifier type (crisp, ranked or soft), (2) combination strat-
egy (fixed or adaptive), (3) fusion mapping (class-conscious (C) or class-
indifferent (I)) and (4) combining type (fusion (F) or selection (S)).

However, it must be mentioned that for classifier selection methods,
e.g. the a priori selection, the a posteriori selection, and the gating network
a discrimination in class-conscious and class-indifferent fusion mappings
is senseless because the overall decision is given by the selected classifier.
Consequently, each of the listed adaptive classifier fusion methods is class-
indifferent.
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3.2 MCS Design Methodology and Terminology

A large number of classifier fusion and selection algorithms are known
and are used to combine classifiers.” Independent from the combining
algorithm the following combining paradigms are distinguished:

1. Combination of different classifiers.

The classifier ensemble contains several classifiers of different ar-
chitecture | , ] (decision trees, K-nearest neighbour clas-
sifiers, neural network approaches, etc.) or classifiers of different
model size (multi-layer neural networks with different number of
hidden layers, hidden neurons, etc.) or classifiers trained on dif-
ferent initial conditions (e.g. neural networks with random weight
initialisation [ D.

2. Combination of classifiers trained on different data sets.
Several classifiers, each usually trained on randomly generated sets
produced by re-sampling from a larger training set are combined to
perform the classification or regression task. Prominent examples
are stacking [ 1, bagging [ ] and boosting [ ].

3. Combination of classifiers trained on different feature subsets.
Here the input space is divided into several subspaces. The input of
each subspace is classified separately, and the combination is accom-
plished through a fusion scheme (see Table 3.1).

Broadly speaking, we have two large groups of combining paradigms,
namely (1) synthetic and structural paradigms where non-homogeneous clas-
sifiers are combined and (2, 3) feature based paradigms where homogenous
classifiers are trained on different features.

For each combining algorithm (see Table 3.1) and for each combining

paradigm the term classifier diversity [ , , ] and weak clas-
sifier (e.g. weak learner) [ , ] seems to be an important issue
to build the final classifier system, the so-called strong classifier | I

Both terms are not clearly defined, but it seems that the combination of
multiple classifiers is a trade-off between weak classifiers and the diver-
sity between these classifiers.

Actually, one would expect that the combination of accurate and in-
dependent classifiers would offer the best classification performance. Un-
fortunately, the reported experimental and theoretical results have shown
that the creation of accurate and diverse classifiers is a very difficult task

3 In Table 3.1 several well known classifier fusion and selection algorithms are given.
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because the error dependence between the individual base classifiers is
typically high. Therefore, it seems to be essential to find a team of error
independent weak classifiers. A classifier is called weak because it is not
expected to classify the training data very well [ ]. We call a classi-
tier weak if:

e Low capacity, simple form [ , ]

e Low classification accuracy [ )|

e Variance based (low bias, high variance) [ ]

e It can discriminate features only locally in the feature space [ ]
e It uses only a subset of the training data [ ]

In particular, it has been shown that the combination of weak classifiers
making independent errors can offer dramatic improvements in perfor-
mance [ l. Accordingly, error independence among the individual
classifiers is commonly regarded as a requirement for effective classifier
fusion. Theoretical considerations can be found in [ , ].

In bagging (combining paradigm 2), for example, several base clas-
sifiers are weakened by using only a subset of randomly chosen feature
vectors for the training of the individual base classifiers. Due to the fact
that the base classifiers are trained on different feature vectors the indi-
vidual classifiers become diverse. Many measures have been proposed to
measure the diversity between these classifiers [ ]*. Furthermore,
in [ ] the ensemble accuracy is studied in the context of the diversity
between the individual base classifiers.

Thus, the object in designing a multiple classifier system is to build
an ensemble of base classifiers with maximal accuracy, or at least higher
accuracy than the single best classifier. Building strong base classifiers is
certainly not the topic of this research field.

Approaches of the third combining paradigm, the temporal combina-
tion of classifier decisions from different feature spaces, are discussed in
the following two Sections. In these approaches a set of feature vectors
is derived from a local window covering a small range of the time series.

* The diversity measures proposed in [ ]: Q statistic, correlation coefficient,
disagreement measure, double fault measure, entropy measure, measure of difficulty,
Kohavi-Wolpert variance, measurement of interrater agreement, generalised diversity
and coincident failure diversity.
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Then these local feature vectors are classified and a local decision is cal-
culated. These local decisions are combined through a temporal aggrega-
tion rule to determine the final decision [ ]. In the case of temporal
decision fusion the diversity of the classifier outputs depends on the tem-
poral variation of the feature vectors. This temporal combination problem
is involved in many applications, e.g. speech recognition [ ], person
identification [ ], etc.

3.3 Feature Extraction in Time Series

In principle there are two different types of features which may be ex-
tracted from time series [ ]:

1. Global features.
These features are based on global characteristics or information of
the whole time series, e.g. the mean frequency, mean energy, etc. (see
[ ] and Section 4.2.6).

2. Local features.
These features are derived from subsets of the whole time series
(see Figure 3.3), which are usually defined through a local time win-
dow W/, In the context of bioacoustic time series the time windows
are located at detected pulses (see algorithm SEGMENTATION in Fig-
ure 4.15). Moving the window over the whole time series (see Fig-
ure 4.16) leads to a sequence of feature vectors called feature stream.

Local features may be grouped into two classes: (1) The features are ex-
tracted in regular time intervals and (2) the features are extracted in irreg-
ular time intervals. For both classes correlations among local observations
have been observed in many applications [ I

In the following, the extraction of local features from multiple feature
spaces is discussed. Hereby, it must not be concerned if the features are ex-
tracted from regular or irregular time intervals. The situation is illustrated
in Figure 3.3 where a window W7 covering a small part of the time series
s(t)L, is moved over the whole time series. Each time series is labelled
with its corresponding class label w € (2. For each window W7, 3=1,...,J
a set of I features x;(j) € R”",i =1, ..., and D; € N, is extracted from the
time series. Typically J, the number of time windows varies from time
series to time series.

For a time series (s(t))~, this leads to I feature streams (x;( j))j{ , of con-
stant length. Thus, for the temporal integration of the feature streams two
approaches may be considered:
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window W/ X )
t1rne series

. A,
L L

¢ extraction of / local features

X1(J) s X7 ()

Figure 3.3: A set of I features X(3) = (x1(9), ..., x7(7)) is extracted from the
J-th local time window W7,

e Temporal integration of local decisions from single features.
Local class decisions of each local feature are temporally integrated
to calculate the final decisions for each of the feature streams. The fi-
nal decisions based on the individual features are combined to calcu-
late the final classification result (see Architecture CTF in Section 3.4).

e Temporal integration of local decisions from locally combined fea-
tures.
The local decisions for a set of local features are calculated. These
local class decisions are temporally integrated over the whole time
series in order to calculate the final decision (see Architecture CFT
and FCT in Section 3.4).

Hereby for the second approach it must be bear in mind that the number
of feature vectors per feature stream must be equal [ I

3.4 Three Architectures for the Classification of
Time Series

Three static architectures for the combination of local classifier decisions
are the basis for further research on the temporal combination of features
from different feature spaces.

A. Architecture CFT (see Figure 3.4(a))
In this architecture the classification of the time series is performed
in the following three steps:



Multiple Classifier Systems

1.) Classification of single feature vectors (C-step)
For each feature x;(y), ¢ = 1,...,I derived from the local time
window W a classifier C’ is given through a mapping (see Sec-
tion 3.1)

(3.13) C:RP — A

where the set A is defined in Eq. 3.5. Thus, for each time win-
dow W7, 3 =1,..., 7, I classification results C'(x,(3)), ..., C'(x;(7))
based on the individual features x1(7), ..., x;(7) are calculated.

2.) Fusion of the local decisions (F-step)
For each time window W7 the I classification results are com-

bined into a local decision z/, € A through a fusion mapping
F:Al - A

(3.14) 7!y = F(CY(x1(9),....CL(x1(0), 71=1,...T

which calculates the fused classification result based on I deci-
sions.

3.) Temporal fusion of decisions over the whole time series (T-step)
The combination of the local decisions of the whole set of time
windows W7, 3 =1, ..., J is given through

(3.15) 2% = F(zly,....,z7)
hereby F : AV — Ais an aggregation rule.

B. Architecture FCT (see Figure 3.4(b))
Here the classification of the whole time series is determined through
the classification of the combined features and decision fusion over
the whole time series:

1.) Fusion of feature vectors (F-step)
Here the extracted features x1()), ..., X;(y) inside the time win-
dow W7 are simply concatenated into a single feature vector
X)) = x10), .. x1()) € R?, with & =37, D,

2.) Classification (C-step)
The concatenated feature vector X (y) is classified into zj, € A
using a classifier mapping C : R” — A.

(3.16) zp =C(X(©), 1=1,...0
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sions.

Figure 3.4: Three architectures for the classification of time series.
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3.) Temporal fusion of decisions over the whole time series (T-step)
Here the integration of the local decisions is defined through

(3.17) 29 = F(zg, ..., Z3)
again F : AV — A,

C. Architecture CTF (see Figure 3.4(c))
The final classification result is determined through temporal fusion
followed by decision fusion.

1.) Classification of each of the I feature vectors x1(3), ..., x;(7) within
W7 (C-step)

(3.18) x;(5) — C'(x:(7)) € A

2.) Temporal fusion of the classifier outputs based on the individ-
ual featuresi =1, ..., I (T-step)

(3.19) zt = F(C'(xi(1)), ..., Ci(x;(T))) € A

again F is a fusion mapping F : A7 — A,

3.) Fusion of decisions over all I feature spaces z.. (F-step)
(3.20) 28 = F(z, ..., 25)
here F is a fusion mapping F : A’ — A.

Different aggregation rules may be assumed for the integration of clas-
sifier decisions over time (see Eq. 3.15, 3.17 and 3.19) and the combination
of classifier decisions over the feature space (see Eq. 3.14 and 3.20). For
simplicity we do not discriminate between fusion over time and fusion
over the feature space. Let us assume NV, the number of classifiers which is
given by the number of classifier decisions to be combined. For the tempo-
ral integration N = 7 and F : A7 — A is proper fusion mapping whereas
for decision fusion over the feature space N = [ and F : AT — A is the

applied mapping.
In many applications, the combination of such probabilistic classifier
decisions is applied by using a static combining scheme [ ]. For this

type of combination we consider four types of combining rules: (1) averag-
ing (see Eq. 3.21), (2) probabilistic approaches, e.g. the probabilistic function
(see Eq. 3.28), (3) percentiles (see Eq. 3.29) and (4) voting (see Eq. 3.30). A
general theoretical framework of classifier combination strategies based
on the Bayesian decision rule can be found in [ I
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3.4.1 Average Fusion

The combination of the individual classifiers C!, ...,C" by averaging the
classifier decisions is known to be robust and is applied in many applica-

tions [ |. It is simply given by
1N
(3.21) FCY(x1),...,CN(xy)) := ~ 2 C(x,).

3.4.2 Probabilistic Fusion

A probabilistic approach to combine N classifiers is to apply the Bayes’
rule under the assumption that the classifiers are mutually independent.
For a two class problem this approach is proposed by THRUN et al. [ I

In order to combine classifier outputs with such a probabilistic ap-
proach the outputs of the classifiers are interpreted as estimates of the
posterior probabilities P(w = [|x,), see Eq. 3.6. For this, the combined
probability P(w = I|x,...,xy) of the hypothesis w = [, given the features
X1, ..., Xy has to be calculated. Then the ensemble output for class

(3.22) F(x1, .0y xn) i= Plw =1|x1, ..., xn) + €(X1, ..., Xv)

is additionally decomposed into the combined belief in the hypothesis w =
[, given the features x;, ..., xy and the error made by the classifier ensemble
EZ(Xl, ceey XN).

In the following, we derive a probabilistic fusion function for a multi
class problem. Let O(w = l|x1, ..., xx) be the posterior odds as defined by

P(w = l|X1, ...,XN)
P(w ?/ l|X17 "'7XN)7

where w # [ is the negation of the hypothesis w = [. The combined belief in
the hypothesis w = [ is then given through [ ]

(3.23) Ow =1|x1,...,xn) =

O(w = l|x1, ..., Xn)
P(w = ‘=
(w=1x1, ..., xn) 1+ 0w = I[x1, ..., Xn)
B 1
1+0w =1|x1, ..., xn)

(3.24)

Furthermore, let O(w = 1) be the prior odds and L(x,|w = 1) be the likelihood
ratio as defined by

P(x,|w =1)
Px,lw #1)

(3.25) Ow=1)=2w=D

= P Zl) Lxp|w=1):=
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Thereby P(w = [) denotes the a priori class probability for the class w =1
and P(x,|w = [) denotes the class-conditional probability density function.
By assuming, that the class-conditional probability density functions for

n # n' are independent of P(x,/|w =1) [ ], we can write
N

(3.26) Ow =I|x1,...,xy) = aO(w = 1) [ [ Lxnlw = 1)
n=1

where « is a normalising constant, requiring that Eq. 3.28 sum to unity

overl [ ]. In the case of L = 2, this normalising constant can be omit-
ted.
Integrating Eq. 3.26 into Eq. 3.24 leads to

1
C1+a0w =D, bxplw=1)

(3.27) Plw=1]x1,...,xy) =1

P(w=l]xn)P(xn)

o the

After applying the Bayes’ rule which says: P(x,|w =) =
probabilistic function [ ] is given by
N

(3.28) P(w = I[x1, ...,xx) =1 — (1 +a0w=0]]
n=1

P(w = I[x,) P(w # 1)\
P(w #l|x,) P(w = l)> '

In the case of equal a priori class probabilities P(w = [) = 1, this formula
reduces to the product rule [ 1.

Although, this probabilistic approach is based on the assumption of in-
dependent class-conditional probability density functions, this approach
seems to provide reasonable results [ ]. It remains to mention, that
this assumption is debatable. However, it is often made in statistics, be-
cause the joint probability density functions P(x;, ..., xy|w = ) are difficult
to refer [ ].

This assumption is for example commonly made in approaches build-
ing occupancy grids for robot navigation [ ]. A detailed discussion
concerning probabilistic classifier fusion can be found in [ I

3.4.3 Percentiles

In percentiles for an input x4, ..., xy the classifier outputs C;'(x,) for each
class I € (2 are sorted in decreasing order, e.g. for each class there is a

n=1

sequence (77")Y_; of indices, such that C’ i (X)) > .0 > CZT’N (x,~). Then for
B € [0,1] the fusion mapping is defined by

[BN]

(329) fg(Cl(xl), cery CN(XN))Z = C;'l (XTlmN])
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For 3 =0,3 =1,and 3 = 1 the fusion mapping Fj(-); is the minimum,
maximum and median of class [ [ , ].

3.4.4 Voting

Let C!, ...,C" be an ensemble of ranked classifiers and C"(x,,) = (W oy wh)
be the output of C" given the feature vector x, (see Eq. 3.2). With R}

1 o 1
0.9} | 1 o9t
0.8 “‘ “‘ 1 o8t
0.7} \‘ “ 107}
0.6/ I 1 osl
\ | ‘ d
0.5 \ \‘ 1 05f
0.4 “ | 1 o4 \
03 L 1 o3 A
02 . 1 02f
011 ‘\ ‘\ “ 1 olr ‘\ 5
% 2 1 8 8 0 % B 10
(a) B =500 (b) =100
1
0.9
0.8
0.7}
0.6
05/
0.4
03
0.2}
0.1}
0

(0) 6 =30 (d) 5=10

Figure 3.5: Pay of fusion mappings for the combination of multiple classi-
fiers with voting dependent on the parameters 3 and 6. In each Figure (a),
..., (d) 4 different parameter settings for 0 are shown, whilst 3 is fixed.

we denote the rank of class / in this sequence, e.g. R}, = wg» = [ and
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[ € {w},...,wi}. Otherwise we set R}’ = co. Typically, in voting a mono-
tonically decreasing pay off mapping is given which rates the ranks of
the individual classes RY, ..., R}. In [ ] for example a pay of fusion
mapping Fzo with 8 > 0 and 6 € [0,1) which is based on the sigmoid
function is applied for the temporal combination of classifier decisions. It
is given through

N
(330)  Fo(C(x), s C™ Ge)) _%Z 1 + exp( ﬂl(R?l 9)))'
—pEEt

In Figure 3.5 the applied pay of functions are shown. Here 3 determines
the slope and ¢ the location of the inflection point of the signum function.
More details about voting and classification results for bioacoustic time se-
ries by using the proposed pay off mappings (see Figure 3.5) can be found
in [ ]. In these studies radial basis function networks served as first
level classifiers.

3.5 Decision Templates for Time Series Classifi-
cation

In this Section we introduce the concept of multiple decision templates
per class for time series classification. Provided that the outputs of the
base classifiers show different characteristic patterns, which is a typical
behaviour in time series classification, this approach may enhance the clas-
sifier performance, because a fusion mapping based on several templates
per class leads to an increased expression power of the fusion layer. In our
application (see Chapter 4) and our artificial data set (see Chapter 5) this
appears for inputs of many classes, which strengthened our presumption
to derive algorithms with multiple decision templates per class.

3.5.1 Decision Templates

The concept of decision templates is a simple, intuitive, and robust aggre-
gation idea that evolved from the fuzzy template which is introduced by
KUNCHEVA, see [ ]. Let 2 = {1,..., L} be the set
of class labels, and C : IRD — A be a probabilistic c1a551f1er (see Eq. 3.4),
mapping feature vectors x € R” into the decision space (see Eq. 3.5). We
assume that the classifier mapping C is trained through a supervised train-
ing procedure on a finite training set D C IR” x 2 with patterns (x*, w") of
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feature vectors x* and corresponding class labels w*. In the classification
phase usually a feature vector x* is presented to the classifier, and the de-
cision is made through the maximum membership detection (see Eq. 2.5).

But decision templates are a trainable fusion scheme, which means,
that the previously trained classifier is applied to calculate a second fusion
layer (see Figure 3.1). For a trained classifier C, decision templates T+ for
each class w € {2 can be calculated by the mean of the classifier outputs
C(x*) for inputs x* of class w [ ]:

w 1 1
(3.31) T = Y > o)

x+eDY)

Here D) is a finite validation set of R” x {w} (see Figure 3.2). Then the
decision template 7 € A may be interpreted as characteristic classifier
output for the inputs x* of D). In the context of decision templates the
classifier output C(x) is also called a decision profile of classifier C and input
x [ , ].

In order to improve the overall performance of the classifier ensemble,
particularly for a multi-class pattern recognition problem (L > 2), instead
of classifying objects based on a single feature, a set of I different features
is used. A typical approach to deal with I features is to build I classifiers,
i.e. one classifier per feature space (see Figure 3.1), and to combine the
classifier outputs into a final decision| , ]. In the case of I
input features with classifier mappings C' : R” — A, i = 1,...,I, the
decision template T* of class w is given by a (I x L)-matrix

’]le
(3.32) T9=1|: | €Al
']'Iw

Hereby 7;“ € A is the decision template of the i-th feature space R”* and
target class w. The decision profile P for an input X = (x1,...,x;) is given
by the individual classifier outputs of the previously trained base classi-
fiers C!,...,C! (see Eq. 3.8).

Classification of static objects with decision templates works as fol-
lows: The base classifiers C!,...,C! are applied to calculate the decision
profile P, see step (a) in algorithm DT given in Figure 3.6. Then for each
class w € (2 a class membership value z, with respect to a similarity mea-
sure S between the decision profile P and the decision template 7% is cal-
culated (see step (b) in algorithm DT, Eq. 3.33 and Eq. 3.34). The class
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Algorithm w* = DT(X, (7%)5_)
(a) P = [Cl(xl)a ceey CI(XI)]T
foreach w € 2
(b) z,=S(P,T%)
end
(c) w*=argmax(z,)

w

Figure 3.6: Algorithm DT: Classification of static objects X = (xy,...,x1)
consisting of I feature vectors with decision templates.

with the maximum membership w* is the final decision, see step (c). A
numerical illustration of the DT fusion scheme can be found in [ ].
In| , ] KUNCHEVA discussed different similarity measures
in the context of decision template classifiers. The most popular similarity
measure is based on the normalised squared Euclidean distance (L,-norm)
or more general, it is based on the normalised L,-norm ||-||, and is defined

by

w 1 ! w
(3.33) S,(P,T%) :=1— o 21: 1P;. — T, €10,1].

Another similarity measure also used in applications and theoretical con-
siderations (see Section 3.6) is the normalised correlation

(3.34) S(P,T%) := %Z<7Di,.,7;§f> e [0,1],

1=1

where (-, -) denotes the dot product. A special case which allows to com-
pare the decision template combination with static combining paradigms
is the most desirable decision template [ , ]. Foreach classw € (2
it is given through the / x L matrix

- 1, I=
(3.35) Tw.={" "T¥ =11, 1=1,..L
’ 0, otherwise

By assuming the most desirable decision template and the normalised
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correlation as similarity measure, Eq. 3.34 can be written by

1Lk 1J
(3.36) S(P,T%) = 7 Z Z Pi IS = 7 Zpi,w-
i=1

=1 =1

Since the coefficients of P are given by the outputs of I classifiers (see
Eq. 3.8), the similarity S(P,7") is equivalent to averaging the classifier
decisions of class w and therefore the combination with the most desirable
decision template is equivalent to the static combination through average
fusion (see Eq. 3.21). In the numerical experiments this fact was considered
to appraise the performance gain of training the decision fusion mapping
with decision templates with the static combination with averaging.

3.5.2 Multiple Decision Templates

In this Section the concept of multiple decision templates per class is in-
troduced in the context of time series classification. For the training of
the overall classifier system it is assumed that a set of time series s*(:),
i =1,..., M is given, each time series is labelled with its corresponding
class label w* € {2.

The training procedure of the overall classifier architecture is splitted
into the following 4 steps [ I:

1. Feature extraction.
A local sliding window W7 covering a small part of the time series
(see Figure 3.3) is moved over each time series s*(-) in order to extract
I feature streams X*(j) = (x{(9),....x5(9), 7 = 1,..., " and x'(y) €
R”". The extracted feature streams are divided into a training set D,
and a validation set DV.

2. Base classifier training.
A set of I base classifier mappings C', ...,C’ is calculated, where each
classifier C? is trained with the labelled data of the i-th feature stream,
i.e. with the data set D.; := {((x}'()))[},w")|n = 1,..., MP}. Hereby
MP < M is the number of feature streams in D.

3. Decision template training.
The validation set DV is used to calculate the base classifier outputs,
i.e. for each X*(j) = (x{(y),...,x}(5)) € DV the base classifier outputs
[CY(xE(9), ..., CT(xE(N]T € Al are computed. From these classifier
outputs the decision templates are calculated by the DT, the TDT or
the CDT procedure.
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4. Retraining of the base classifiers.
The base classifiers C!, ...,C! are retrained with D U DV. For artificial
neural networks the retraining of C* may be a further weight adap-
tion with D.; U DY,

This training procedure leads to I trained classifiers and a set of decision
templates. In the following we describe three types of decision template
training procedures:

TDT: Temporal decision templates
For each time series in D) one decision template is computed through
the mean of the decision profiles averaged over all J* time windows.
For the p-th time series (X*, w) the decision template is:

o [Ceo)

(3.37) Tk = 7 > :
=T (9)

This gives for each time series in D) a decision template for the as-
sociated class w € 2. Thus |DY| defines the number of decision tem-
plates for class w.

DT: One decision template per class
Here the average over all decision templates 7“* of class w is calcu-

lated [ ]
1 DY
w . W,
(3.38) T Y] Ezl T+,

For constant length of time series J* = J this is equivalent to the
decision templates as defined in Eq. 3.31.

CDT: Clustered decision templates
Here & decision templates 7%, k = 1, ...,k are calculated for each
class w in 2 by clustering the classifier outputs (C'(x}'(9)), ..., C'(x}(9)))
for each X*(j) € DY through a clustering procedure (e.g. k-means,
fuzzy-k-means, Kohonen'’s self organised feature map [ D.

The decision templates of class w certainly depend on the validation
set DY. So multiple decision templates may be computed by re-sampling
methods [ ]. Additionally, it should be emphasised that the templates
are also depending on the training set D of the individual classifiers. This



3.5 Decision Templates for Time Series Classification 57

implies, that for R training sets and R corresponding validation sets there
is a set of K decision templates for each class w € {2 (for TDTs, K = R|D) |
and for DTs, K = R).

In the CDT approach we have to consider two different ways of clus-
tering:

1. The classifier outputs of all R validation sets are clustered by a single
clustering procedure, which leads to K = & decision templates per
class.

2. The clustering procedure is applied to the classifier outputs for each
of the R validation sets separately, which leads to K = Rk decision
templates per class.

In our numerical evaluation the first approach is applied, utilising the &-
means clustering algorithm. Hereby R training- and validation sets are
determined by re-sampling.

The classification of time series by the multiple decision template ap-
proach is accomplished by the CFTBYMDT algorithm that is a special case
of the CFT fusion architecture. It is given in Figure 3.7. The overall clas-
sifier architecture consisting of I base classifiers, K decision templates per
class, and temporal decision fusion is depicted in Figure 3.8. Provided
the I base classifiers C', ...,C! are trained, and a set of w = 1, ..., L decision
templates 7% = {71, ..., T“X} is given, a time series s(-) can be classified.

As in the feature extraction procedure in the first step I feature streams
X)) = (x109), -..,x1(9), 7=1, ..., J are extracted from the time series. Then,
for feature vector X (7)) = (x1(9), ..., x;(y)) the classifiers C', ..., C! are applied
to calculate the decision profile P’ at time j, see step (a). In step (b) the
similarity values S(P?, 7“*) between the decision profile P’ and all de-
cision templates 7%, w = 1,....,L and k = 1,..., K are calculated. For
each class w the S < K best matches (7™, ..., 7%75) of the K decision
templates are computed, e.g. the sequence ()% ; is determined such that
S(PI.Twm) > ... > S(P,Tw"s) > ... > S(P?,7¥7x). This sequence is
given through the set valued mapping Ns(P’, 7%), which defines the S
decision templates of class w with descending similarity to 7.

Then in step (c) the centroid of the best matches

S
W 1 W, Tk
(3.39) T9=< T

is determined for each class w € 2, see step (c). We call T virtual decision
template. Subsequently, for each class w the local class membership z/, is set
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Algorithm w* = CFTBYMDT(X ()7, (T%)%_)

=1
for;=1,...7 ’
(a) P’ =[C'(x1(9), -, T (xr()]"
foreach w ¢ 2
(b) Ns(P?,T) = (11, ..., Ts)
(©) To=1 Z;f:g Twm
(d) z, = S(P’,T*)
end
2 =2/, 7,
end

(e) z°=F(z',..,27)
w* = argmax(z?)
wef?

Figure 3.7: Algorithm CFTBYMDT: Classification of time series with mul-
tiple decision templates and temporal decision fusion.

to z), = S(P?,T), see step (d) and finally the normalised local class mem-
berships z’ € A are determined. For the J decision vectors z!, ..., z7 € A
the temporal combination (see step (e)) is then made through the average
of the normalised local class memberships F(z!, ...,z7) := % Z]‘Zl z’. The
final decision is then calculated through the maximum membership rule
which returns the class w* [ ].

Another way to calculate the class membership z/, for each class w € 2
is to determine the set of S decision templates in such a way, that the sim-
ilarity S(P?,7%) is maximised. In the CFTBYMDT algorithm these deci-
sion templates are denoted through Ns(P?, 7%), see step (b). In order to
find Ns(P?, T%) for each of the ([S() possible subsets of S decision tem-
plates the virtual decision templates (see Eq.3.39) and the corresponding
similarities S(P?, 7*) have to be calculated. For linear similarity measures

(see Eq. 3.34) both methods are equivalent.

It remains the consideration of the fact, that under particular circum-
stances the decision template fusion scheme is equivalent to average fu-
sion in the temporal domain. Due to the fact that according to Eq. 3.36
fusion with decision templates is equivalent to average fusion if the deci-
sion templates are most desirable and the normalised correlation is used
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Figure 3.8: Classifying I feature streams X () = (x1(9), ...,x7(9),7=1,....J
with decision templates over time, z', ..., z7 with z? € A is the sequence of
local decisions.

as similarity measure, the local decisions of the CFTbyMDT algorithm and
the CDT fusion schem are equivalent if additionally averaging is used for
the combination over the feature space (see CDT architecture and Eq. 3.14).
By using for both fusion schemes the same aggregation rules for the tem-
poral integration the overall decision is equivalent as well (see Eq. 3.15 and
algorithm CFTBYMDT step (e)). Hence, in the numerical experiments the
CDT architecture may be considered as static reference architecture for the
DT, the TDT and the CDT fusion scheme.

The proposed DT fusion schemes show similarities to prototype based
classifiers. In particular, the calculation of the decision templates in the
DT approach is equivalent to the calculation of the prototypes for the min-
imum distance classifier [ ]. But, also the multiple decision template
approaches show similarities to a version of the fuzzy-K-nearest neigh-
bour classifier, which picks the K nearest neighbours from each class (see
Section 2.1.3 - Type 2).
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3.6 Links to Neural Network Training Schemes

In this Section we consider supervised neural network learning schemes
to train the classifier fusion mapping of the two layer architecture (see Fig-
ure 3.1). It is assumed, that the base classifiers C!, ..., C! have been trained
through a supervised learning procedure by a labelled training set D. This
corresponds to phase one of the two phase learning scheme discussed in
Section 3.1.

Let C'(x!) € A be the classifier output of the i-th classifier C* given the
input feature vector x!' € DV of the i-th feature space. Then for each clas-
sifier the outputs of the validation set DV are given by a (L x M)-matrix
C;,i=1,...,]I where M = |DV| and the u-th column of C; contains the clas-
sifier output C¥(x!)T. Hereby the superscript T denotes the transposition.
The desired classifier outputs w” € 2 of inputs x;' € DV are given by the
(L x M)-matrix Y defined by the 1 of L encoding scheme for class labels

1, [=w
3.40 Y =< )
(3.40) b { 0, otherwise

Corresponding to C; the p-th column Y., € A contains the binary coded
target output of feature vector x!' € DV.

In the following we discuss different approaches to combine the classi-
fier outputs C'(x;), i = 1, ..., I into an overall classifier decision

(3.41) z .= F(CY(x1), ...,CL(x))).

Four different learning schemes namely linear associative memory, decision
template, pseudoinverse matrix and naive Bayes are introduced to calculate
the decision fusion mapping F : A’ — A (see Eq. 3.41 and Figure 3.1).
In all these methods the fusion mapping F is realised through (L x L)-
matrices V1, ..., V7, calculated through a certain training algorithm. Hereby
the training of the matrices V' is based on the outputs of the first level
classifiers C; and the desired target output Y (see Eq 3.40). The overall
classifier system is depicted in Figure 3.9 in more detail.

3.6.1 Linear Associative Memory

A linear decision fusion mapping F may be realised through an associa-
tive matrix memory whose information storage capacity and error-correct-
ing properties have been investigated in several numerical experiments
and theoretical investigations [ , , ]. In order to calculate
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Figure 3.9: Two layer architecture of a MCS consisting of a classifier
layer and an additional fusion layer. The combination of the classifier
outputs C'(x;), i = 1,...,I is accomplished through a fusion mapping
F(CH(x1), ...,C(x1)). In this Section we restrict separable linear fusion map-
pings, where the classifier outputs C'(x;) are multiplied by matrices V",
i =1,...,1. The multiplied decisions z, ..., z’ are combined with decision
fusion.

the memory matrix V* for each classifier C' the stored classifier outputs C;
are calculated through a Hebbian learning rule [ ]. The associative
memory matrix is given as the product of the transposed classifier outputs
C; and the desired classifier outputs Y:
(3.42) Vi=yCr.

—~

W

In the case of crisp classifiers (see Eq. 3.1), the matrix V* equals the confu-
sion matrix of classifier C’, where V! . is equal to the number of samples
of the validation set of target class label w and were assigned by C’ to class
w* [ ]. For soft classifiers the w-th row of V? contains the cumulated
soft classifier decisions of Ci(x}) for the feature vectors x/' € DY.> After

® Independent from the classifier type we denote W' as confusion matrix. It is defined
to compare the individual fusion schemes (see Eq. 3.42,3.47, 3.48, 3.49 and 3.50).
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this second training phase the two layer classifier system consisting of a
classifier layer and a fusion layer is trained. Whereas the classifier layer is
defined by the classifiers C!, ...,C’, the fusion layer is defined by the set of
linear matrix operators V1, ..., V.

In the classification phase these matrices are then used to combine the
individual classifier decisions to calculate the overall classifier decision
(see Eq 3.41). For a feature vector X = (xy,...,x;), the classifier outputs
C'(x;) are applied to the linear associative memories V?, i = 1, ..., I and the
outputs z' € R” are given by

(3.43) z' = C(x;)V".

The combined class membership estimate is then given by the average of
the outputs of the associative memories

I
(3.44) Z = Z z' =

i=1 %

I
=1

The final decision just depends on the combined class membership esti-
mate z and is determined by the maximum membership rule

I
(3.45) W= argmax(z z}).

3.6.2 Decision Templates

Section 3.5.1 introduces the concept of decision templates which has been
proposed by KUNCHEVA | ]. Hereby the decision templates are cal-
culated by the mean of the classifier outputs of a specific class w € (2 (see
Eq. 3.31). In the case of I input features for each class a decision template
7% is given by a (I x L)-matrix (see Eq. 3.32). In order to align the decision
template combining scheme in such a way that the combination is applied
as proposed in Figure 3.9, for each feature space a linear matrix operator
V" has to be calculated by the decision template algorithm. Let 7* € A
be the decision template of the i-th feature space and target class w as de-
fined in Eq. 3.31. Then for each feature spacei =1,..., I, a (L x L)-decision
template operator V' is simply given by the decision templates of the i-th
feature space

(3.46) Vi=| : | €Al
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It can be computed similar to the associative memory matrix (see Eq. 3.42)
by using the stored classifier outputs and the desired classifier outputs

(3.47) Vi=(YhH) ' (ycy)).
N——

Wi

Multiplying (YYT)™! with the confusion matrix W* equals the row wise
normalisation of W' by the number of training patterns per class |D)|.

By assuming the normalised correlation (see Eq. 3.34) as similarity mea-
sure [ , ] the combination of the classifier outputs with deci-
sion templates (see algorithm DT in Figure 3.6) is equivalent to the combi-
nation of classifier outputs with the linear associative memory. Thus, for
a set of input vectors X = (x1, ..., x;) and a set of classifier outputs C'(x;),
i =1,..., I the combined class membership estimate is given by Eq. 3.44.

3.6.3 Pseudo-Inverse Solution

Another linear decision fusion mapping F can be calculated for each fea-
ture space by the optimal least squares solution between the stored clas-
sifier outputs C; and the desired classifier outputs Y. Such a mapping
is given by the pseudoinverse solution which is another type of the linear
associative memory [ ]. The linear matrix operator V* given by the
pseudoinverse solution (also called generalised inverse matrix) is given by

(3.48) Vii=1lm (YCHC,CT + al)™.
A0 N e/

Wi

Provided, the inverse matrix of C;C! exists, which is always the case for
full rank matrices C;, the pseudoinverse solution is given for oo = 0

(3.49) Vi=(che,ch=

Due to the fact, that for crisp classifiers the matrix product C;C} is always
a diagonal matrix, Eq 3.48 can be solved with a = 0 if V}}, > 0 for each
[ € (2. As for the linear associative memory and the decision template, the
matrix operators V!, ..., V! determined by the pseudo-inverse solution are
applied for a linear combination of the classifier outputs. Therefore, for a
set of classifier outputs C'(x;), i = 1,..., I the combined class membership
is given by Eq. 3.44 as well.
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3.6.4 Naive Bayes Decision Fusion

In the naive Bayes fusion scheme the classifiers C!, ..., C! are assumed to be
crisp and mutually independent [ ], therefore in [ ] itis called
Bayes combination. In the case of I feature spaces for each feature space a
(L x L)-matrix operator is calculated based on the stored classifier outputs
C; and the desired classifier outputs Y. These matrix operators are then
given through

(3.50) Vi=(yohe,eh
N——

Wt

In contrast to decision templates (see Eq. 3.47) the confusion matrices W*,
i =1,...,I are normalised column wise and V" is called label matrix. Due to
the fact that the classifier C'(x;) is typically error-bearing, the confusions
within the classifier decisions can be used to calculate the uncertainty of
C’ to misclassify x;. Therefore, the matrix coefficient V}’,.. is an estimate of
the conditional probability

(3.51) Plw =1|C'(x;) = 1),

that the true class label is [ given that C* assigns the feature vector x; to the
crisp class label [* € (2.

After learning, the label matrices V?,..., V' are applied to calculate the
final decision of the classifier ensemble. The classification works as fol-
lows: Let C'(x1) = wi,...,C1(x;) = w; be the class decisions of the indi-
vidual classifiers by assigning a set of feature vectors X = (xi,...,x) to

them. Then by the independence assumption [ ], the estimate of the
probability that the true class label is /, is calculated by [ ]

I
(3.52) Z, = aH Plw=1C(x)=wy), leN

i=1
where « is a normalising constant that ensures 3/, z = 1. This type
of Bayesian combination and various methods for uncertainty reasoning
have been studied extensively in [ ].

3.6.5 Discussion

All four combining schemes are realised by a set of (L x L)-matrices V1,..., V',
where the coefficients are modified by a certain training algorithm. All
these matrices are calculated by using the classifier outputs Cj, ..., C; of
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the individual first level classifiers C!, ...,C! and the desired classifier en-
semble output Y.

By considering the equations for the calculation of these matrices it is
conspicuous that the confusion matrix is the main ingredient in all com-
bining schemes, as the confusion matrix Wi = YCT (see Eq. 3.42, 347,
3.48 and 3.50) is normalised for each combining scheme in a different way.
Hereby the confusion matrix describes the uncertainty of the error-bearing
classifier which is considered for the training of the fusion layer. From an-
other point of view, the confusion matrix W* could be regarded as prior
knowledge of the regarding classifier [ I

In three of the four combining schemes the combination of the classifier
decisions is a matrix-vector product (see Eq. 3.44). The only exception is
the combination with the naive Bayes fusion scheme which is based on
probability theory.

By assuming the normalised correlation as similarity measure, fusion
with decision templates is very similar to the combination with linear asso-
ciative memories. Both methods lead to equal class decisions (see Eq. 3.45)
if the validation set DV contains for each class the same number of feature
vectors, e.g. |DY| = ... = |DY|. Let k € IN be the number of feature vectors
for each class in D". Then the normalisation term of the decision template
(YY)~ (see Eq. 3.46) can be written by

1 1
(3.53) YYT)™ = diag(k,...,k) ' = diag(;, E)'

As a consequence, the decision vector z of the decision template is multi-
plied by 1 and therefore, the class decisions of both fusion schemes are
equal, as they are calculated with the maximum membership rule (see
Eq. 3.45).

Fusion with the naive Bayes combination is very similar to the pseu-
doinverse matrix solution regarding the coefficients of the matrix opera-
tors V1, ..., V;, particularly if crisp classifiers are applied to classify the fea-
ture vectors in DV. In this case the term C;C[ (see Eq. 3.48 and Eq. 3.50)
is a diagonal matrix containing the number of feature vectors in DY which
have been assigned to the individual classes. Let x“ be the number of fea-
ture vectors in DY which have been assigned by C' to class w. Then the
normalisation term is given by

(3.54) C;CT = diag(x', ..., k").
If k¥ > 0 for each w € (2, the inverse of C;C[ is given through

1
)

K

1
(3.55) (C;CH™ = diag(k',...,k") 7! = diag(;,
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and therefore Eq. 3.48 can be solved for a = 0. But, for the naive Bayes
combination and the pseudoinverse solution the class decisions of both
fusion schemes usually differ, since two different combining schemes are
used to combine the outputs of the base classifiers.

3.7 Statistical Evaluation

Because we have to deal with limited data sets the cross-validation method
[ ] is used to evaluate the proposed classification algorithms. In the
k-fold cross-validation testing procedure the data set is divided into & dis-
joint subsets. Then the classifier ensemble (the base classifiers and the
fusion layer) is trained & times, each time using a version of the data set
omitting exactly one of the k subsets. Such a data set is the training set
for the whole classifier ensemble, which is the union of the training set D
which is used to train the base classifiers C!, ...,C! and the validation sets
DY which is used to calculate the fusion layer (see Figure 3.1).

The omitted subset D' is then used to test the overall classifier system.
Finally, the achieved classification results are averaged over all k classifier
tests. In the numerical evaluation the cross-validation procedure has been
performed using k — 1 time series per class to train the classifier ensemble,
while one time series was used for testing.

3.8 Summary

The preceding Section introduces with static and adaptive fusion schemes
for the combination of multiple classifiers. Learning strategies for the
overall multiple classifier system training are discussed and a graduation
of MCS by four factors is presented.

In particular, this Section deals with MCS approaches for time series
classification by using local classifier decisions and temporal decision fu-
sion. Three fusion architectures: the CDT, the FCT and the CTF archi-
tecture have been presented and a new fusion approach called multiple
decision template (MDT) has been derived from the decision template
(DT) algorithm. In order to calculate multiple decision templates per class,
two new adaptive approaches called temporal decision templates (TDTs)
and clustered decision templates (CDTs) have been suggested. These new
methods lead to an increased expression power of the fusion layer, as they
are able to deal with different characteristic patterns within the classifier
decisions. Similarities between the proposed DT fusion schemes and the
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CDT architecture are discussed in Section 3.5.2. The motivation of the CDT
approach is derived from the structure of the bioacoustic data set and is
presented in Section 4.7. Furthermore, the motivation of the TDT fusion
scheme can be found in Section 5.3.

By using the normalised correlation as similarity measure, learning of
decision templates is introduced and discussed in the context of neural
network training schemes. In particular, links to well established methods:
The pseudoinverse matrix, the linear associative memory and naive Bayes
decision fusion are given (see Section 3.6).
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Chapter 4

Orthoptera Bioacoustics

This Chapter gives an overview about bioacoustics and automated song
analysis. The sound production mechanisms of the Orthoptera are reviewed
and the corresponding sound structures are inspected. Section 4.2 deals
with filtering and segmentation of the acoustic signals and hierarchical
extraction of discriminative features in four different time scales. A data
set description refers to the equipment (mainly microphones and analog
and digital tape recorders) which have been used for the sound record-
ings. The evaluation of the individual features and the automated se-
lection of features is applied to determine discriminative feature sets for
the experiments. Additionally, the automatically selected feature sets are
discussed in the context of sound production and morphology of the Or-
thoptera and traditional bioacoustics. Experimental results for the pro-
posed fusion schemes are given in Section 4.6.

4.1 Introduction

Animal bioacoustics is an interdisciplinary field of research that focuses
on how different species produce, receive and process sound. Although
studies of animal sounds have been conducted throughout history, these
studies have only recently been viewed as a coherent field [ ]. Many
strategies are used by biologists to study the sounds of animals:

1. Anatomy. Anatomical data serve to construct theoretical models of
the production and reception of animal sounds. It also can provide
important clues to find out how systems might work [ I

2. Signal analysis. Recent advances in signal processing allows a de-
tailed analysis of sounds of animals [ , ]. Furthermore,
signal analysis gives important clues about how the sounds are pro-
duced (see Section 4.1.3).

3. Behavioural analysis. A variety of experimental and observational
approaches are applied to study the acoustic capabilities of animals
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[ , ]. For example, playback studies have been used ex-
tensively to investigate how the animals respond to sounds. In some
of the more recent playback studies artificial sounds are generated
and sound parameters are varied to study the reaction of the animal
to different features of the sound | 1.

. Neuroscience. Neurobiological methods (e.g. single electrode record-

ings) were used to investigate the neural mechanisms and coding
schemes of the auditory system of animals [ , ]. For ex-
ample, a detailed exploration of the auditory frequency tuning by
comparing tympanal vibrations with the response of auditory recep-
tor neurons is given in [ 1.

. Computational modelling. The computational models will likely

play an increasingly important role in future studies [ ]. Addi-
tionally, they reveal hidden assumptions of the underlying theoreti-
cal models and can potentially help to understand the neural infor-
mation processing [ I

This Section investigates the acoustic abilities of the insect order Or-

thoptera whose species are a sensitive indicator for habitat quality in trop-
ical ecosystems [ ]. Figure 4.1 shows the systematics of the insect order
of the Orthoptera, including the suborders, superfamilies, families and sub-
families.

Order Suborder  Superfamily  Family Subfamily

Tettigoniidae —

Gryllacrididae—

Orthoptera —

Proscopioidea—

— Caelifera — Tetrigoidea %

LAcrididae -

Figure 4.1: The insect order Orthoptera including the suborders Ensifera
and Califera.
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The name Orthoptera (in German: Geradfliigler) goes back to OLIVIER
(1789) [ ]. This insect order contains the two suborders Ensifera (long-
horned grasshoppers: Gryllidae, Tettigoniidae and the Gryllacrididae) and
the Califera (short-horned grasshoppers, containing a large number of su-
perfamilies). In this Section we mainly focus on the Gryllidae (crickets)
producing calls with a simple melodic pattern, and the Tettigoniidae (katy-
dids) generating calls with a temporal structure that is much more com-

plex [ ].

4.1.1 Automated Song Analysis

Bioacoustic song analysis already forms an integral part within species
descriptions of "new”Orthoptera [ ]. The graphic representation of
recordings is a prerequisite for the analysis of the temporal structure and
frequency composition of animal songs. Historically, it began with the use
of the spectrograph and temporal analysis was applied by examination
of oscilloscope tracks [ ]. The advance of computer technologies al-
lowed digital analysis, mainly using the fast Fourier transform (FFT) for
the spectral analysis. Most of these early analyses were based on record-
ings that did not cover the full bandwidth of the production range of the
animal [ ]. During the last decade, expensive hardware and software
has been replaced by personal computers (PCs) with moderately priced
soundcards and cheap, but fully functional software, making this technol-
ogy financially accessible even for low research budgets. However, these
studies relied heavily on aural perception of sound signals and visual in-
spections of sound spectra, which relies on agreement between human
experts [ , ].

In this thesis we study automated bioacoustics, where even feature ex-
traction and classification of the individuals is applied automatically by a
PC. For this pattern recognition task the knowledge from traditional bioa-
coustics plays a significant role to find discriminative features and applica-
tive classification methods. The knowledge from traditional bioacoustics
is particularly valuable in the context of this thesis, because the data set
used in the numerical experiments has been already analysed by the biol-
ogists who have recorded the individual sounds.

By catching voucher specimens, NISCHK [ ] has been shown that
cricket songs recorded from one tropical location in Ecuador could be sep-
arated qualitatively within a parameter space of carrier frequency and im-
pulse intervals [ ]. This is shown by clusters of manually extracted
feature vectors that are produced by distinct species [ I. A deeper
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insight into the analysis of Orthoptera songs is given by HELLER, who ex-
amined the acoustic properties, the stridulatory apparatus and the wing
movements of a large number of species of the Tettigoniidae and the Gryl-
lidae [IHel88]. Furthermore, preliminary work was applied by INGRISCH
who analysed the anatomy, the behaviour, the life cycle and the song struc-
ture of the Orthoptera [IK98]. The data sets of INGRISCH, HELLER and
NISCHK (see Section 4.3) have been used for the numerical experiments
presented in Section 4.6.

Besides the mentioned features used by traditional, descriptive bioa-
coustics, other signal parameters may be analysed in order to classify an-
imal vocalisations. Such parameters may be derived from parameters
used in speech recognition [R]86] and speaker identification, e.g. linear
predictive coding (LPC) (LPC coefficients [ST95] and LPC-smoothed spec-
tra [VE98]) and time encoded signals (TES) parameters [[<(78] (see Sec-
tion 4.2.5). In addition, energy contours and frequency contours (see Sec-
tion 4.2) exposed to discriminate the Orthoptera at species level.

4.1.2 Sound Production and Morphology of the Orthoptera

Many insects produce sounds, either for defence or sexual communica-
tion. Males of crickets, katydids and grasshoppers (Acrididae) sing by
using specialised structures on different parts of the legs, hind-body (ab-
domen) and fore-wings (tegmina) as stridulatory apparatus [Rie98].

Figure 4.2: Stridulatory file (pars stridens) of the species Zvenella yunnana.
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The most common sound production mechanism of the Gryllidae and
Tettigoniidae is the elytro-elytral stridulation. During evolution they have
developed two specialised regions: (1) the stridulatory file and (2) the scraper
on their fore-wings which are frictionally used for sound production. The
stridulatory file (pars stridens) is a Cu2 vein that differs from typical wing
veins in that their lower surfaces are supplied with knobs or teeth. Com-
plementary, the scraper (plectrum) consists of sclerotised areas which may
be a single ridge or hard projection such as a raised wing vein on the an-
terior medial margin of each tegmen.

In the Tettigoniidae, the wings are unequal; the stridulatory file (see Fig-
ure 4.2) is located at the ventral side of the left elytron and the scraper is
located at the fronto-median edge of the right elytron [ ]. During
calling (stridulation), the pars stridens of the left upper elytron is rhyth-
mically rubbed against the plectrum situated at the right lower elytron.
With each capture occurring at opening and closing strokes a sequence of
of acoustic transients called impulses is generated.

In contrast the wings of the Gryllidae are usually symmetrical; the stridu
latory file is located at the ventral side of both fore-wings as well the
scraper is located at the fronto-median edge of both fore-wings (see Fig-
ure 4.3). During calling (stridulation), the pars stridens of the right upper
elytron is rhythmically rubbed against the plectrum situated at the inner
edge of the left lower elytron. With each capture occurring at the closing
stroke the Cu2 vein is set into vibration, whereas the opening phase re-
mains silent [ ]. Since the Cu2 vein of each wing forms one border
of a triangular wing cell, known as the harp, vibrations of the Cu2 excite
the harp to vibrate and radiate sound [ ]. A distinct membrane area,
which includes a mirror cell ! acts as a resonator, amplifying the fundamen-
tal carrier frequency produced by the interactions between the stridulatory
file and the plectrum [ ]. Thus, each pulse approximates a pure tone
whose frequency is determined by the tooth-strike rate, in interaction with
the carrier frequency of the sound radiator [ I

The vibratory energy transmitted by the calling insect can be divided
into two components as perceived by the receptor system (see Section 4.1.4):
airbone sound and substrate vibration [ ]. Both components are an es-
sential feature of the communication and localisation process which in-
cludes the transition of a temporal image. Whereas airbone sound is trans-
mitted through the air by frequencies often extending into the high sonic

1The mirror cell of crickets is extremely thin, which is a physical requirement for main-
taining carrier frequencies in the cricket-specific range (Cycloptiloides canariensis: thick-
ness 0.2 ym).
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Figure 4.3: Cricket male tegmina, seen from below, showing important
structures for the sound production. (A) Gryllus campestris, (B) Gryllotalpa
vineae (adapted from [ D.

(10-20 kHz) or even ultrasonic range, substrate vibration (1 Hz to 5000
Hz) contains additional information conveyed over a shorter range by
the substrate on which the animal sits. Usually even the temporal pat-
tern between these signals differs and is produced by different mecha-
nisms [ ]. The factors that attenuate and distort airbone-sound
signals fall into six groups (1) atmospheric absorption, (2) spherical at-
tenuation (3) accumulation of reverberation from reflections from objects
near the path of transmission (4) attenuation by scattering, (5) accumu-
lation of irregular amplitude fluctuations as a result of diffraction from
non-stationary turbulence in the atmosphere and (6) diffraction of sound
by temperature and other velocity gradients in the environment [ I
These factors produce changes in the sound which are often greater in high
and ultrasonic frequency ranges because the ground and low vegetation
tends to act as a low-pass filter [ ].

Most species, particularly crickets use 3 different types of songs [ I:

e Calling songs. Species-specific songs used to call females from far
away.

e Courtship songs. Mostly used if male and female are close or prefer-
ably if they have antennal contact.
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e Aggressive songs.” This type of song is used by one male telling all
other males to keep their distance.

As the number of teeth on the pars stridens used for stridulation dif-
fers only slightly between species (60-90 teeth) and the total length of the
pars stridens ranges from 1500 ym to 3500 pm, important differences are
observed in the course and structure of the pars stridens [ ]. This pro-
vides species-specific characters particularly in the impulse structure of
the Tettigoniidae | ]. The relation between wing movement and sound
structure is different for crickets and katydids, and thus, these differences
are discussed in more detail in Section 4.1.3.

4.1.3 Acoustic Structure of the Orthoptera Sound

The nomenclature for the elements of the stridulatory signals differs in
publications [ ]. Thus, we define the notations of the sound structure
of the Orthoptera by the following terms (see Figure 4.4 and 4.6):

e Impulse. Damped acoustic transient which may have several oscil-
lations before decaying. An impulse is produced by a single tooth-
impact of the pars stridens on the plectrum [ I

e Pulse. In contrast to an impulse, a pulse is a damped acoustic tran-
sient that is produced by one or more tooth-impacts.

e Syllable. Acoustic signal produced by one upward and downward
movement of the pars stridens over the plectrum. In the Ensifera, one
upward and downward stroke of the wings is producing an opening
and a closing syllable. In the Acrididae an opening and closing syl-
lable is produced by one upward and downward movement of the
hind-legs [ 1.

e Chirp. Syllables occurring in repeated short sequences. The chirps
are separated by pauses.

e Trill. Multiple consecutive syllables (no inter-syllable pause) which
can be produced for some considerable time [ I

e Verse. Multiple syllables which are isolated through inter-syllable
pauses.

2 Aggressive songs are also termed battle calls.
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In the following, we focus on the sound production of the Gryllidae and
the Tettigoniidae and distinguish between these families because the pro-
duction of the individual impulses differs with respect to the wing move-
ment.
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Figure 4.4: Time amplitude pattern of the acoustic signals of the cricket
species Homoeoxipha lycoides.

For the Gryllidae a single pulse is produced by a downward movement
of the wings. Due to the fact that the tooth-impact rate interacts with the
carrier frequency of the sound radiator, the frequency range inside pulses
is narrow [ ]. This type of sound production is called resonant sound
production. Therefore, the resulting spectrum is narrow (see Figure 4.5(a)).

Gryllidae, in particular, are well known for their production of pure
tone impulses between 2 and 11 kHz [ , , ], i.e. well within
the human auditory range. The temporal structure is species-specific and
highly organised on time scales of different orders of magnitude. Besides
sonograms, biologists use three features to label species-specific song pa-
rameters: frequency (2 - 11 kHz), pulse repetition rate (10 - 150 Hz) ° and
chirp repetition rate (0.01 - 2 Hz) %, often irregular [ ]. Female crick-
ets are attracted by songs of conspecific males. This so-called phonotaxis

$Impulse distance: 7 - 100 ms
Chirp distance: 0.5-10s
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Figure 4.5: Typical power spectra of the acoustic signals of the cricket
species Homoeoxipha lycoides and the katydid species Ephippiger ephippiger.

has been studied extensively for several species of Gryllus spp. [ I
SCHILDBERGER [ ] has shown for these species, that the pulse repe-
tition rate is one of the principal features for song recognition, and found
neural correlates of female phonotactic behaviour.
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In contrast to species of the Gryllidae, most of the Tettigoniidae species
produce their sounds by the non-resonant sound production mechanism. Here
the tooth-impact rate is much lower than the carrier frequency of the sound
radiator and the oscillation is faded away before the stimulation by the
next tooth-impact follows [ ]. This leads to complex broad frequency
calls, often with ultrasonic components over 100 kHz (see Figure 4.5(b)).
The wide spectra are due to the large number of impulses produced by
each movement of the fore-wings. The frequency range for large katydid
species (e.g. Tettigonia, Decticus, Ephippiger) often reveals a lower maxi-
mum (between 8 and 16 kHz) and a higher maximum (between 25 and 40
kHz). For small katydid species (e.g. Conocephalus, Metrioptera and Lepto-
phyes) the low frequency components are between 15 and 20 kHz [ I
The impulse repetition rate ranges from 500 Hz (slow singers) up to 8 kHz

(fast singers) ° | 1.
In the Tettigoniidae each tooth impact produces an short damped os-
cillation (impulse) [ ]. Each opening and closing movements of the

wings produces a series of sound impulses termed opening syllable and clos-
ing syllable. For most species the closing syllable contains more energy and
a higher amplitude than the opening syllable [ | (see Figure 4.6(b)).

A species-specific number of opening and closing syllables form a verse
[ ]. In the Tettigoniidae we distinguish between slow singing species
and fast singing species [ ]. For slow singing species the velocity of the
stridulatory movement of the fore-wings is low, the teeth are scrapping
slowly against the plectrum. Most of the impulses of the closing syllable
are clearly separated and can be identified individually (see Figure 4.6(c)).
On the other hand, for fast singing species the teeth are scrapping fast
against the scraper due to a high movement velocity, thus the impulses of
the closing syllable are conflating to impulse groups [ I

In the Acrididae, one movement of the stridulatory mechanism may
produce more than one impulse of sound. Acridid grasshoppers generate
chirping sound patterns by rasping both hind-legs across their fore-wings
at the same time. This leads to complex sounds with frequencies between
5and 40 kHz [ ].

414 The Acoustic Receptor System

Acoustic intraspecific communication requires a match between signals and
receivers, as undetected signals convey no information [ ]. Hence,
members of the insect order Orthoptera have an auditory system with ex-

*Impulse distance: slow singers ~ 2 ms; fast singers ~ 0.125 ms
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Figure 4.6: Typical time amplitude pattern of the stridulatory signals of
the katydid species Ephippiger ephippiger in 4 different time resolutions,
syllable structure (Figure (a) and (b)) and impulse structure (Figure (c) and

(d)).

cellent high-frequency hearing, broad range, and high temporal resolu-
tion [ ]. Usually, this high-frequency hearing is even sensitive to the
frequency of the acoustic signals.

In the Orthoptera the most important receptor organs for the percep-
tion of sound and vibration are the complex tibial organs of the fore-legs.
These tibial organs consist of the tympanal organ and the subgenual organ.
The tympanal organs are only located at the fore-legs and are the essential
structures to detect airborne sound. Generally, the structure of the tympa-
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nal organs of crickets and katydids differs in that way, that for crickets the
eardrums are connected by a tracheal tube through sound waves can prop-
agate. Consequently the vibration of the eardrum reflects the combination
of direct sound and delayed sound travelling from the other ear. The rela-
tive phase of the waves reflects the direction of the sound source [ ].
In contrast to the tympanal organs, smaller subgenual organs are also
found in the mid and the hind-legs and are used to recognise substrate
vibration [ ].

The morphology of the receptor organs, and the arrangement of the
corresponding receptor cells are well known and many studies have been
examined. In particular, the frequency response properties of the auditory
receptors have been studied [ , ].

Behavioural experiments show that female crickets and katydids are
able to locate the species-specific male song. This behaviour is for ex-
ample mimicked by a ”cricket robot” developed by WEBB | I. The
robot is able to move toward a sound source by detecting the direction
of the sound and correcting its course as it moved toward its destina-
tion. Therefore it uses two miniature microphones to measure the phase
delay in the sound. The control mechanism is based on the cricket neu-
rophysiology [ ] and follows the hypothesis that the onset times of
the spikes generated by auditory interneurons are compared and thus the
cricket turns to the side on which the sound is closer.

4.1.5 Acoustic Characteristics

The acoustic signals of the Orthoptera are influenced by parameters which
warp the sound production and the sound transmission of the airborne
species-specific song:

e Temperature. In [ ], WALKER has shown, that the wing-cycle
rate of cricket species is dependent on the temperature. He experi-
mentally determined a linear function for the wing-cycle rate of the
cricket species Atlanticus gibbosus through linear regression. For the
Atlanticus dorsalis he found that the wing-cycle rate during stridu-
lation is an exponential function of temperature. This function was
determined through exponential regression.

e Habitat. Especially the high frequency components of the airborne-
sound of the Tettigoniidae are affected by attenuation of vegetation
and ground [ ]. This attenuation is the result of a number of dif-
ferent phenomena (reflection, diffraction, multiple scattering and re-
verberation). These phenomena become particularly important when
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the wavelength of the sound corresponds to the size of the interven-

ing structures. In [ ] HELLER has found, that the high frequency
components of sounds of Tettigoniids recorded in plastic cages are
damped.

e Song-breeds. Several species show unusual variation in the song
structure throughout their song-breed [ ]. One famous example
is the katydid species Ephippiger ephippiger which produces sounds
with one to nine syllables.

e Age. Examinations in [ ] revealed that the wing-cycle rate de-
pends on the age of the individual. However, this dependence is
species-specific.

e Sex. The size, number and spacing density of pegs varies according
to the individual’s sex. Due to the fact that most cricket females re-
main silent especially species of the Tettigoniidae provide sex-specific
characters [ 1.

e Local time. Investigations of INGRISCH have shown time depen-
dent temporal variations of songs of the Podoscirtinae [ ]. He
found, that the stridulation patterns produced by the same male
of the species Truljala versicolor and the same male of the species
Zvenella geniculata vary depending on the time of the night.

e Distance. For songs of the Tettigoniidae it has been shown that the rel-
ative intensities of low and high frequency components change with
the distance between the animal and the microphone [ ]. Sound
spectra at different distances from the sound source are discussed in

[ .

In order to suppress the influence of the environmental temperature in
the numerical experiments, signal parameters, e.g. pulse distances, sylla-
ble distances, pulse length and syllable length (see Eq. 4.25 and Eq. 4.27)
are linearly normalised as if they were recorded at 20 °C. For this type of
temperature normalisation the environmental temperatures which have
been measured during the sound-recording of the individual sound files
are used.

4.1.6 Normalisation of the Temperature Influence

Because most insects are ectotherms (= animals in which the body temper-
ature is the same as the temperature of its surroundings), the temperature
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influences attributes of the acoustic signals that are controlled by the neu-
romuscular system |[ ]. For crickets and katydids the temperature
particularly influences the wing-stroke rate which influences the pulse
length and the pulse distance of cricket sounds and the syllable length
and the syllable distance of katydid sounds, as shown in many publica-
tions [ , , 1.

Several models have been developed to explain the temperature in-
fluence on these parameters [ ]. But, there are also models that ex-
plain, that the temperature has no influence on these parameters. The best
known model is the clockwork cricket (escapement) model [ , |
which explains this paradox by invoking parallels between escapement
in clocks and stridulating crickets. Escapements are devices that regulate
energy input and motion. In mechanical clocks, they alternately lock and
release the mechanism that moves the clock’s hands. The rhythm of lock
and release is, in turn, controlled by a regulating oscillator such as a pen-
dulum or balance spring [ ]. In the clockwork cricket analogy, the
escapement is composed of the stridulatory structures with the harps (see
Section 4.1.2) acting as the regulating oscillator.

A katydid species which is often examined in this context is the Tettigo-
nia cantans. For this species the syllable length and the syllable distances
are highly dependent on the temperature of the environment. Figure 4.7
shows the time amplitude patterns of two individuals of our data set which
have been recorded at two different environmental temperatures.

To show this temperature dependence in more detail, the syllable dis-
tances and the syllable length for six recordings of the Tettigonia cantans
recorded at temperatures between 14°C and 26°C including regression
lines are depicted in Figure 4.8. The regression lines in Figure 4.8 corre-
spond to the results of JATHO [ ] who has examined the temperature
influence to signal parameters such as the syllable length and the syllable
distance of the species Gampsocleis gratiosa, Tettigonia cantans and Tettigonia
viridissima.

To compensate the influence of the environment temperature, signal
parameters have to be normalised to a specific temperature. For the Or-
thoptera songs we therefore linearly normalise temperature dependent sig-
nal parameters, e.g. the syllable distance (D) (see Eq. 4.25) and the syllable
length (L) (see Eq. 4.27) to a temperature of 20 °C which is in the average
temperature range of the recordings of the DORSA data set. But first, we
empirically determined the percentage decrease of syllable distances p
and syllable length p5, from the regression lines of the individuals in our
data set.

As an example, Figure 4.8 shows the regression lines of the species
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Figure 4.7: Time amplitude patterns of two individuals of the Tettigonia
cantans recorded at two different temperatures.

Tettigonia cantans. For this species the percentage decrease of syllable dis-
tances p5) and syllable length pk, are determined by considering the regres-
sion lines of the Tettigonia cantans. Let d(0) be a syllable distance and [(0)
be the syllable length measured at the regression line at ¢ degree. Then the
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Figure 4.8: Syllable distance (0) and syllable length (*) and the correspond-
ing regression lines of the species Tettigonia cantans dependent on the en-
vironment temperature.

percentage decrease p5, and p%) is simply given by

d(21) — d(20 [(21) — (20
. P ::% = ;(20)( -

Unfortunately ph) and pY, are species dependent. For the Tettigonia cantans
pD = 0.11 and p, = 0.085. But for most species in our data set (see Sec-
tion 4.3) the syllable distances and the syllable length are not as dependent
from the environmental temperature and therefore the parameters p}) and
pY are much smaller.

However, this analysis allows to linearly normalise any signal parame-
ter if the environment temperature and the corresponding percentage de-
crease is given. Let 1 be the signal parameter measured at 20 °C and p},
be the species-specific percentage decrease of . By assuming that the sig-
nal parameter ¢ is linearly dependent of the environment temperature the
signal parameter ¢ at 9 degree 1 is simply given by

(4.2) ¥” =) — (0 — 20)pY.
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Conversely, the linearly normalised signal parameter at 20 °C is given
through

¢§
1— (0 —20)p%

Hereby Ogd, (-) is a normalising operator which linearly normalises the sig-
20

nal parameter ¢/”, recorded at ¥ degree with respect to py,. Exceptions for
this type of linear temperature normalisation are some katydid species,
in which singing itself can generate heat in the stridulatory muscles that
raises the animal’s body temperature above ambient temperature | I

4.2 Hierarchical Feature Extraction in Bioacous-
tic Time Series

For the classification of Orthoptera songs, the sounds must be transformed
into feature vectors suited for the pattern recognition system. A pattern
recognition system can be considered as a two stage system: (1) the ex-
traction of features from the time signal and (2) the classification of the
extracted feature vectors [ ]. In the feature extraction, different feature
detectors are defined in order to calculate a set of characteristic properties
of the signal which are used as input for the classifier. In the context of
the hierarchical classification of Orthoptera species we developed a more
complex system including signal pre-processing and filtering, feature ex-
traction at two levels, time series classification over a set of time scales and
fusion of the individual time scales (see algorithm HOC in Figure 4.9).

Algorithm HOC receives a waveform (s(t))/.; and additionally the cor-
responding environmental temperature ¥ and the family inside the En-
sifera w1 € ' (see Figure 4.1) as input. The result of algorithm HOC are
two class labels from two different levels: (1) the family level w; and (2)
the species level w, of the individual to be classified.

The hierarchical Orthoptera classification works as follows: After pre-
processing the signals (see step (a) and Section 4.2.1), onset and offset po-
sitions A = (Aq,...,Ay) and i = (w4, ..., pus) of the individual pulses are cal-
culated from the pre-processed signal (5(¢))., by a signal segmentation al-
gorithm (see step (b) and Section 4.2.4). First level feature extraction (step
(c) and Section 4.2.2) and first level time series classification (see step (d)
and Section 3.4) to family level is applied if the family w; is not given. In
the feature extraction a set of feature streams (X (‘7))37= , (see Figure 4.16) is
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Algorithm (w;, w,) = HOC((s(t))L,. ¥ = 20, w1 = )
(a) 5= PREPROCESSING(s)

|f w1 ==
forve{1,..7}
(b) (A, 1) = SEGMENTATION(S, v)
(c) (X(9)L, = FEATUREEXTRACTIONGS, ¥, v, A, 1)
(d) z” = CLASSIFICATION (X (1))
end
(e) z=F(z', .. 2z")
wy = argmax(z;)
le?
end

(@) 5 =FILTERING(S, wy)
forve{1,..,7,}

(b") (A, 1) = SEGMENTATION(S, v, wy)
(") (X(g))fz1 = FEATUREEXTRACTION (5, ¢, v, A, pr, wy)
(d") z" = CLASSIFICATION ((X(j))f:l)

end

() z=F(z,..,z")
wy = argmax(z;)
leﬂgl

Figure 4.9: Algorithm HOC (Hierarchical Orthoptera classification): The
feature extraction and classification to the family level (level 1) is accom-
plished in step (a) to step (e). Similar processing steps (step (a’) to step
(e’)) are given for the feature extraction and classification to the species
level (level 2).

extracted from 1" different time scales from the pre-processed waveform 3
to determine the family of the individual. After classifying feature vectors
of the individual time scales to family level the local classifier decisions for
the whole time series z, ..., z7, with z¥ € A are combined through a fixed
mapping in step (e). Then the family is calculated by the maximum mem-
bership rule. In our application 2! = {1,2}, whereas w; = 1 denotes that
the individual is a cricket species and w; = 2 denotes that the individual is
a katydid species.

From now on the processing steps are family-specific and depend on
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the family of the individual given in w;. At first, a family-specific filter
is applied to reduce environmental noise (see step (a’) and Section 4.2.3).
For each of the T, time scales (see Section 4.2.7) onset and offset positions
A= (M,...,Ay) and g = (pq, ..., o) are computed from the filtered signal
5 (see step (b’) and Section 4.2.4). Further local features are extracted (see
step (c’) and Section 4.2.5) and the individual feature streams are classified
(see step (d”) and Section 3.4 and Section 3.5). Hereby z" € A (see Eq. 3.5)
is the probabilistic classification result of a whole time series in the v-th
time scale. These probabilistic classification results are combined (see step
(e¢”)) and the class of the individual w, € Qil is determined through the
maximum membership rule. In our application for w; = 1, (212 contains
the class labels of the species in the cricket data set (see Table D.2). For
w1 = 2, {25 contains the class labels of the species in the katydid data set
(see Table D.1).

For both feature extraction levels different feature detectors are defined
in order to calculate the characteristic signal properties which are used as
input features for the classifiers of the current level. In Section 4.2.2 and
Section 4.2.5 the evaluated features are described and their calculation is
given:

—_

. Filter-bank energies (B) (see Section 4.2.2)

. Pulse distances (D and D) (see Section 4.2.5)

. Pulse lengths (L) (see Section 4.2.5)

. Pulse frequency contours (C) (see Section 4.2.5)

. Pulse frequencies (F) (see Section 4.2.5)

. Time encoded signals of pulses (T) (see Section 4.2.5)

2
3
4
5
6. Energy contours of pulses (E and E) (see Section 4.2.5)
7
8. Maximal amplitudes of pulses (A) (see Section 4.2.5)

9

. Parzen density functions of pulse distances (P) (see Section 4.2.6)

We use boldface upper-case letters for the acoustic features and distin-
guish between (1) spectral features (B, C, F and T) which are calculated in
the frequency domain and (2) temporal features (D, D,LE E, A and P) that
are extracted from the time course of the signal’s amplitude. Beside the
filter-bank energies (B) all other features depend on the pulse positions
determined by algorithm SEGMENTATION. Parameter settings for the first
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level feature extractors are given in Table C.1, whilst Table C.2 and Ta-
ble C.3 contains the settings for the second level feature extractors. The
evaluation of features for the first and the second hierarchy level is given
in Section 4.4.

4.2.1 Pre-processing

In the pre-processing stage the signal s(-) is resampled to a common sam-
ple rate and the signal’s amplitude is normalised to suppress the influence
of the sound volume.

Resampling is applied by a polyphase implementation of fractional
sampling rate conversion (FSRC) as proposed in [ ]. In the case of
rational resampling by a factor R = & with¢ € N, Q € Nand ¢ < @,
the input signal has to be expanded by ¢, bandlimited to compensate for
imaging and aliasing effects and then compressed by Q.

Let 5(t),t =1, ..., T, be the finite resampled signal containing the sound
pattern of a single individual. To prevent the influence of the sound vol-
ume for the following feature extraction procedure, the signal its ampli-
tude is normalised by

(t)

[loo

W>

(4.4) () =

where ||3]| = max{|5(t)| : t =1, ..., T} denotes the maximum norm.

>

4.2.2 First Level Feature Extraction

This Section deals with the extraction of features to classify to family level.
Hereby individuals of both families (crickets and katydids) are separated
(see algorithm HOC, level 1). Whereas the calculation of features to clas-
sify to family level is given in this Section, features applied in both feature
extraction levels (see algorithm HOC, level 1 and 2) are only mentioned
and their calculation is given in Section 4.2.5.

Filter-Bank Energies (B)

Due to the differences in the frequency composition of the stridulatory
signals of the two families (see Figure 4.5) a linear uniform filter-bank is
utilised to extract filter-bank energy contours (B). This type of filter-bank is
the most common type of filter-bank in speech recognition systems [ I
One reason for this is, that it is quite robust to noise and reverberation.
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In contrast to all other local features proposed in this thesis the filter-
bank energy contours are not based on the positions determined by algo-
rithm SEGMENTATION. For this feature the sound of the animal is located
by determining the positions of the signal-segments containing maximal
energy (see Eq. 4.10).

=0 t, t, ty, =T

LA

Figure 4.10: From the signal s(f).; a sequence of local spectra S*, ..., SM
is extracted from M equally spaced short time windows. From each local
spectra a filter-bank energy contour B™ € IR”, m =1, ..., M is calculated.

Let 5(t),t = 1,...,T be the resampled and normalised signal which
contains the sound of the animal. The m-th short time spectrum S™ is
then given by applying the Fourier transformation F [ ] to the win-
dowed signal 3. It is given by

M

)

(4.5) S™w) = FLEOW)Y, m=1,.

where t = (t1,...,ty) with M = LTﬂ_—VVJ + 1 is a sampling vector which
determines the positions of the individual windows (see Figure 4.10). In
order to determine window positions with equal distances between two

consecutive windows the sampling vector t is defined through

(4.6) t,, = % +(m — 1)BV.
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Hereby 3V determines the constant movement between two consecutive
windows and

2(1—k)|t—
1-2=dlerl s r et - Yo+ Y

(4.7) W) (r) = { v

0, otherwise

is a symmetrical window of size V' at time ¢ (see Figure 4.11).

T=t-V/2 T=t T=t+V/2

Figure 4.11: A symmetrical window W,”"(r) of size V at time t. Three
windows for three different settings for x are shown (v = 0, x = 1 and
Kk =2).

For this window the parameter x € [0, co) determines W) (1) = k at
t — 7| = ¥. Therefore, for x = 0 the window is triangular (solid line) and
for k = 1 the window is rectangular (dashed line).

The spectral energy inside the d-th frequency channel of the m-th short
time spectrum (see Eq. 4.5) is then given through

= 1 w—(f1=Y)
(4.8) By = ) |Sm(w)|§(1—cos(2wf2)).
w= d—% A ~~ d
d Hg(w)
Hereby Hy(w) is the Hann window [ ] which covers the d-th fre-

quency channel and b is the constant frequency range of the individual fre-
quency channels whose center frequencies are defined by f;, d = 1, ..., D.
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To calculate the individual center frequencies, let f; be the first center
frequency, fp be the last center frequency and D be the number of fre-
quency channels. Then all other center frequencies are given by

fo—h

(4.9) fa=hH+{ Dﬁ’

Usually, the individual frequency channels do overlap in frequency,

e.g. b > f4 — fa_1 (see Figure 4.12) and the frequency range of interest is
given through [f; — g, fp+ %].

de{2,...D—1}.

Magnitude

10 15 20 25
Frequency (kHz)

Figure 4.12: Window sequence of the linear filter-bank consisting of D =
10 frequency channels (f; = 3000 Hz, fp = 19000 Hz and b = 2000 Hz).

To extract J < M characteristic filter-bank energy contours from 5 we
consider the J filter-bank energy contours containing maximal energy, e.g.
there is a sequence 7y, ..., ) such that

(4.10) Bh> . >B7>.>B™

where B™ = S°7 B7. The sequence of feature vectors is then given by
B™, .., B with B7 € IR” (see Eq. 4.8 and algorithm HOC step (c)). But
the overall filter-bank spectrum analysis also performs segmentation of
the acoustic signals (see algorithm HOC step (b)) and returns a sequence
of onsets \,, := t,, — & and offsets i, ==t + 5,5 =1,....J.

Features for Both Feature Extraction Levels

The filter-bank energy contours are combined with features which are
used in the first and the second feature extraction level. In particular, the
pulse distances and the pulse length (see Section 4.2.5) are used in both fea-
ture extraction levels.

In the numerical experiments the features in the first hierarchy level
are derivated by using the parameter settings given in Table C.1.
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4.2.3 Signal Filtering

To suppress the influence of environmental noise the normalised and re-
sampled raw time signal 5 is filtered. In the signal filtering we distinguish
between the families crickets and katydids due to differences in the fre-
quency composition (see Figure 4.5 and Section 4.1.2):

Crickets produce signals restricted to a narrow band (see Figure 4.13(b))
because the sounds are strongly resonant [ ]. To get rid of the sounds
of the environment the signal is filtered with a highly selective bandpass-
filter, the passband can be determined automatically at the frequency range
of the cricket.

The automated filtering works as follows: First the frequency with the
highest intensity is determined through

(4.11) w* = argmax|S(w)W (w)|

where W(w) is a probability density function defined in the frequency
range of the cricket’s sounds and S(w) = F{5(¢)} is the frequency spec-
trum calculated through Fourier transform of the normalised signal 5 (see
Eq. 4.4). In the numerical experiments W (w) is given through the Gaussian
bell function [ ]

1 W — ma:pZ
fomeXp<‘( 2?3 )

For w* the transfer function (or frequency response) of the highly selective

(4.12) W(w) =

bandpass-filter [ ] is defined through

L | =t <~y
4.13 H =
( ) /(@) {0, otherwise

where 21 is the size of the passband. In order to calculate the filtered signal
(see Figure 4.13(c)), the bandpass-filter H,(w) is applied in the frequency
domain

(4.14) 5(t) = FH{S(w)H, (W)}

Hereby F~'{-} denotes the inverse Fourier transform [ ]. The fil-
tered signal 5(¢) is limited to the frequency range [w* — v,w* + 7], which is
assumed to contain the sounds of the cricket [ ]. After resampling,
normalisation and filtering the signal 5(¢) with H,(w), the filtered signal
5(t) is free from background sounds, such as the voices of birds.
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(c) The filtered signal 3(t)

Figure 4.13: A short song of a cricket from the species Noctitrella glabra
(time window 1500 ms).

Most of the Katydids produce wide band spectra, often up to the ul-
trasonic range (see Section 4.1.2). Here a bandpass-filter is applied to
suppress the low frequency components (often environmental noise) and
higher frequency components which are sensitive to the influences of the
surroundings (see Section 4.1.2) and the equipment used for the sound
recordings (see Section 4.3).
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In contrast to cricket sounds (see Eq. 4.14), the katydid sounds are fil-
tered with a bandpass-filter whose passband is wide and constant. It is
given by the Gaussian bell function which is used as symmetrical transfer
function

(|w| - fmaz)z)
22 '

Then the frequency spectrum S(w) = F{5(t)} of the normalised and resam-
pled signal 5(t) (see Eq. 4.4) is filtered in the frequency domain

(4.15) W' (w) := exp(—

(4.16) 5(t) = FHS(w)W'(w)}.

Again the inverse Fourier transform F~!{-} is applied to calculate the sig-
nal in the time domain. For both filters (see Eq. 4.14 and 4.16) the filtered
signal is mainly used for the signal segmentation through the short time
energy (see Section 4.2.4). The computational cost and the desired mem-
ory was reduced in the numerical experiments by applying the filters to
signal segments of two seconds.

4.2.4 Signal Segmentation Through the Signal’s Energy

The unaided human ear neither resolves the temporal structure nor the

full frequency range of insect songs [ ]. But in automated bioacoustics
the temporal structure of the pulses is an important feature for the classifi-
cation of the Orthoptera to species level [ ]. Furthermore, these pulse

positions are significant for the classification to the family level. Therefore
the detection of pulses is a significant issue in the following feature ex-
traction and classification task. However, the detection of pulses may be
considered as a general problem in signal processing, because the detec-
tion of the presence of a signal within a background of noise is important
in many applications. This problem is often referred as the end point lo-
cation problem [ ]. In speech recognition systems end point detection
is used to get the relevant parts of the speech signal where the speaker is
active. We use end point detection to locate the insect’s pulses.

RABINER and SAMBUR | ] published an end point detection algo-
rithm for speech segmentation using the short time signal energy and the
zero-crossing-rate of the signal to localise the onset and offset positions of
a speech utterance. This algorithm can be used in almost any background
environment with a signal-to-noise ratio of at least 30 dB.

However, there are differences between human speech and animal vo-
calisations, and the different conditions under which they are recorded.
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These differences are significant and must be taken into account [ ].
For pulse segmentation we therefore use an algorithm which determines
the onset and offset positions of the pulses of Orthoptera songs. The al-
gorithm is similar to that of RABINER and SAMBUR, but with significant
modifications, particularly for the calculation of the threshold function,
the silence energy and the peak energy.

The result of the end point detection algorithm are the onsets and the
offsets of the individual pulses. These pulse positions are then used to
derive local features within these pulses (see Section 4.2.5).

For the pulse detection algorithm the total energy E of the previously
filtered signal 5 (crickets: see Eq. 4.14 and katydids: see Eq 4.16) is defined

by [R575]
(4.17) E= Y |3

and the short time energy of the signal 3 inside a rectangular window W,
of size U at time ¢ (see Eq. 4.7) is given through

(4.18) Ey(t) = |5(r) W (7).

T=—

In addition, a threshold function F,(t) is used to determine the pulses of
the signal of the Orthoptera. In speech recognition this threshold F,(t) is
typically a constant function [ ]. But for insect vocalisations we ob-
served that for several species the short time energy function Ey(t) in-
creases inside chirps and syllables. In Figure 4.14 a typical energy function
Ey(t) is shown where the minimal energy between two consecutive pulses
gets higher within chirps. Therefore, a dynamic threshold function

(4.19) F(t) = 0(1) +§ 3" @) +¢

J/

Ev ()

with minimum threshold 6(t) (see Eq 4.22), parameter a > 0, scaling pa-
rameter { > 7, rectangle window size V > U and minimum energy ¢ > 0
is applied for the detection of the onsets. In many applications, such a
threshold function only depends on the short time energy function of the
filtered time signal  in a finite rectangular time window W,

But, this function also depends on the short time silence energy and
the short time peak energy. The silence enerqy E,,;,(t) and the peak energy
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Figure 4.14: Detection of 5 pulses inside a single chirp of the species
Zvenella transversa. The Figure shows two threshold functions F;, F,, and
the local energy function Ey;. Onsets and offset positions of the detected
pulses are indicated by the bars at the bottom.

FEmax(t) inside two rectangular windows WtW fmin and WJ/V X with Kpin =
Kmax = 1 and W > U are given through

(4.20) Emin(t) = min(Ep ()W, (1))
(4.21) Emax(t) = max(Ep (1)W,""™(1)).
In order to imply smoothing to the local peak energy and the local silence
energy a triangular window (kmax € [0, 1)) is applied to calculate Epa«(t)
and a mirrored triangular window (kmin € (1,2]) is applied to calculate

Enin(t). The minimal threshold 6(t) (see Eq. 4.19 and [ ]) is then de-
fined by

(4.22) 0(t) = Emin(t) + 7(Emax(t) — Emin(?))

with 0 < v < 1.
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Algorithm )\ = SEGMENTATION(Ey, F1, F.,)
7=0;,7=0;, A=TRUE

(@ fort=1%,.,T-%
(b) if (Ey(t) > Fi(t))
(c) if (7 > 0)

if (A =TRUE)
(d) if (Ey(t) > Fa(1))

j=7+1 X\ =t A=FALSE
else
(e) if(r>¢)7=0
elser=7+1end
end
end
else
(f) T=T7+1t" =t
end
else
(g) 7=0; A=TRUE ;
end
end

Figure 4.15: Algorithm SEGMENTATION: Searching the onsets ()\j)jzl of
the acoustic signal 5(-) by using a a short time energy function £y and two
threshold functions F; and F,.

The estimation of onsets A = (A, ..., A;) through the energy function
Ey(t) and F,(t) (see Eq. 4.19) is accomplished by algorithm SEGMENTA-
TION (see Figure 4.15). Two dynamic threshold functions (see Eq. 4.19):
The lower energy threshold Fi(t) and the upper energy threshold F,(t) with
a > 1 are used, obviously Fi(t) < F,(t). By passing in discrete time steps
(see step (a)) through the energy function Ey; and both threshold functions
Fj and F,,, in each time step it is decided if the current position is an onset
(see step (d)) or not (see step (e), (f) and (g)).

The detection of onsets works as follows: To detect an onset, the short
time energy Ey has to exceed the lower energy threshold F; (see step (b)).
Then the condition in step (c) determines if the current position at time ¢ is
really an inflection point between Ey;(t) and Fi(t). For 7 = 0 this condition
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is true and the position of the inflection point is preliminarily assigned
to t* (see step (f)), unless the energy falls below Fi(t) before it rises F,(t)
(see step (g)). If Ey(t) also exceeds the upper energy threshold F,(t) (see
step (d)) within a specified time interval 7 < ¢, the previously determined
inflection point ¢* is assigned to the position of the j-th onset ;.

A similar search procedure is used to estimate the offset locations ;1 =
(11, ..., puy) of the pulses. Both algorithms are only based on short time
energy measurements (see Eq. 4.18 and 4.19). The results of the signal seg-
mentation algorithm is J, the number of pulses in the signal, the sequence
of onsets A = (A, ..., A\;) and the sequence of offsets y = (i1, ..., pus) of the
detected pulses. These positions are the bases to extract J < .J local fea-
ture vectors as described in the following section.

In the numerical experiments the pulse segmentation algorithm is used
with the parameters listed in Tables C.1, C.2 and C.3. It should be noticed
that these parameters are completely different to the parameters used in
speech recognition systems. For example, the window size U is much
smaller than the window size used in speech recognition systems (U ~
10 ms) [ ].

4.2.5 Local Features From Sequences of Pulses

The general framework for the extraction of local features from time series
(see Figure 3.3) describes the extraction of a set of local features inside
a sliding window which usually moves over the whole time series. In
the following we refine this framework for the derivation of local features
from sequences of pulses typical for the structure of Orthoptera songs (see
Figure 4.4 and 4.6).

For a sequence of onsets A = (\1,...,\;) and offsets = (p1, ..., pty),
J = J — A+ 1 multivariate local features (xi(j))f: i€ {1,...I} are ex-
tracted inside sliding windows W7, 3 = 1,...,J covering A consecutive
pulses (see Figure 4.16). Hereby each multivariate local feature x;(y) is
a composition of pulse features, extracted inside single pulses within the
window W7 which covers the j-th pulse to the (y+A—1)-th pulse. The com-
positions of these pulse features is applied by a D-tuple encoding scheme
(see Eq. 4.25, 4.26, 4.27, 4.36 and 4.42) producing D-dimensional feature
vectors or by averaging the individual pulse features (see Eq. 4.35, 4.37,
4.39 and 4.41). If the pulse features are combined with averaging, G < A
defines the number of pulses within W’ which are used for the calculation
of the feature vectors.

The parameter settings for the individual features can be found in the
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window W1 window W7

vy v

X , X2 .., X(7)

Figure 4.16: A set of I features X (j) = (x1(9), .., x1(9)) is extracted from the
J-th local time window W7 covering A adjacent pulses. The first, second
(dashed line) and the last window is depicted.

Tables C.1, C.2 and C.3.

Pulse Distances (D, D)

The pulse distances are derived by using the onsets of the individual pulses
A = (A1, ..., Ay). Then the distance between the j-th and the (5 + 1)-th pulse
is simply given by

(4.23) 0 =N — Ay, je{l..,J—1}

In Figure 4.17(b) a typical sequence of pulse distances of the species Noc-
titrella glabra is depicted. Additionally, the short time energy functions for
the pulse detection based on algorithm SEGMENTATION are shown in Fig-
ure 4.17(a). The corresponding amplitude signal is given in Figure 4.13.

To derive pulse distances from D + 1 < A consecutive pulses, these
features are extracted by using a D—tuple encoding scheme producing J
feature vectors D’ € R”

(4.24) D' :=(0,,051,.,004p1), J=1,.,T

which may be used for the automated classification. For syllable distances
of katydid species and pulse distances of crickets an additional tempera-
ture normalisation (see Section 4.1.6) by

(425)  D':= (0% (). 0% (0,). . O (Gup-) €RY, j=1..7
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(a) The energy functions for signal segmentation.
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(b) The corresponding pulse distances.

Figure 4.17: Pulse detection and corresponding distances between pulses
of the species Noctitrella glabra (signal length 1.5 sec). Whereas in (a) the
two energy thresholds Fi(t), F,(t), the energy function £y (t) and the pulse
positions are depicted, (b) shows the distance between two consecutive
pulses §;.

allows to calculate species-specific feature vectors if the environment tem-
perature ¢ and the percentage decrease ph) is given (see Eq. 4.3). In our
numerical experiments this type of temperature normalisation improved
the classification performance of this feature.

But, the influence of the temperature can be also decreased by normal-
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ising the individual pulse distances inside each window by

_ D’
(4.26) D)= ————— J=1,..J.

S o

Both features are describing the temporal image which depends on the
teeth structure of the stridulatory file (see Figure 4.2) and the wing move-
ment (see Section 4.1.3). In particular the teeth structure of katydids is
highly species-specific [ I

Pulse Lengths (L)

For the j-th onset \; and the j-th offset ;1; the pulse length of the j-th
pulse is simply given by j; — A;. The pulse length feature vector L’ € R”,
7=1,...,J is calculated by the D-tuple coding scheme. It is given by

(4.27) L7:= (Og%do(l’b] -\, Og%(/‘ﬁl = A1) s Oﬁ%(”j+D—1 — AjeD-1))-

Again OzL (-) linearly normalises the pulse length to a environment tem-
20
perature of 20 °C (see Section 4.1.6).

Sonograms

Sonograms may not provide the best input features for classifying with
artificial neural networks or other statistical classifier schemes [ 1,
because the number of features is too high. But they allow accurate mea-
surement of the length and frequencies of notes and illustrate the way
in which the frequency and amplitude of sound change in time [ I
Therefore, sonograms provide a good basis to extract features like frequen-
cies and energy contours of a sound pattern, e.g. a syllable or a pulse.

We distinguish two types of sonograms: (1) sonograms with a fixed
time-resolution and (2) sonograms with a fixed number of sampling points.
Let 5(¢) be the signal which contains the sound of the animal. Then the
amplitude signal of the j-th pulse is given by

g(t)a t e [)\ja ,u]]
4.28 (1) = )
(4.28) () {O, otherwise

For simplicity we set v := u;, p := p; and A := );. Then the sonogram
of a single pulse u is calculated by D short time Fourier transformations
defined as

(4.29) Eu= Y u(mWii(n)e V™, d=1,..D

T=—00



102 Orthoptera Bioacoustics

where v = 0, ..., % is the frequency band [ ] and W,f; 1isa rectangular
window of size V' (see Eq. 4.7). The sampling vector t = (t, ..., tp) is given

by

1.30) d{x—@—a)v, d=1

t1+(d —1)BV, otherwise

ford =1, ..., D. Here the overlap between two consecutive sampling win-
dows is (1 — 5)V and oV is the overlap between the first window WX and
the time signal u (see Figure 4.18).

oV

3 :.ﬁ.m;mIMM|J|A||||N|mum|ﬂ|MJW\Mmlﬂllﬁmmumumﬁ.hM?,
A=

BV t, t,

Figure 4.18: The first and the second sampling window to extract a se-
quence of frequency spectra from a single pulse.

If the parameters o, 3 and V are fixed, the length of the sampling vector
t which determines the number of spectra depends on the length of the
analysed signal part. It is given by

p—A+ (1 —-a)V—-aV
431 D = .
(4.31) { %
This is the common type of sonogram which is used in many applications,
e.g. speech recognition and bioacoustics [ I

However, sonograms with a constant number of spectra are of interest
in order to calculate feature vectors of constant length D. These sonograms
can be calculated by modifying the sampling vector t (see Eq. 4.30). For
window size V' and signal length ;1 — ), the window movement SV (see
Figure 4.18) is given by

p=A+(1 =22V

(4.32) 3 TV
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Both types of sonograms are utilised for the extraction of acoustic features
(e.g. frequency contours and energy contours) and are determined by the
parameters V, o and [ (fixed time resolution) or V, a and D (fixed num-
ber of sampling points). In the context of time alignment it has to be men-
tioned, that sonograms with a fixed number of sampling points have been
linearly normalised in time by calculating the window movement 3 for
each pulse separately (see Eq. 4.32 and Section 2.2.1).

Pulse Frequency Contours (C)

The frequency contour (frequency-time course) of vocalisations is a signal
parameter which is used in many systems for the classification of animal
sounds [ ]. For instance, MURRAY et al. | ] extracted the fre-
quency contour by fundamental frequency analysis in order to classify whis-
tles of killer whales. One method to extract the frequency contour f from
a discrete spectrum is to determine the frequency band with maximal en-
ergy [ ].

For a sonogram of a single pulse consisting of D spectra (see Eq 4.29),
let w, be the mean frequency of the v-th frequency band and F,,; be the
energy of the v-th frequency band within the d-th time window. Then
(4.33) vy = argmax(E,q)
is the frequency band with the maximal energy and w, is the correspond-
ing frequency. Including adjacent frequency bands and time windows is
sharpening the result. Therefore, we do not use w,:, the frequency band
with the maximal energy, but the weighted average

Vg gt d+o

(4.34) - Y Y
v=v}—¢ k=d— aZvdvd ¢Zk+d 0'

Here the parameters ¢ and o determine the size of the averaging window
in the frequency and the time domain.

The frequency contour of a single pulse C € R” is then given by
C = (f1,..., fp). Now we assume a sequence of J pulses, each represented
through a sonogram of fixed length D. Then we denote with C7 € IR” the
frequency contour of the j-th pulse. The sequence of averaged frequency
contours within G < A adjacent pulses is then used as feature for the clas-
sification. Is is given through

+G-1

(4.35) c=> c" y=1..7
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For the parameters used in the numerical evaluation see Table C.2 and
Table C.3.

Pulse Frequencies (F)

Let f/ € R”, j =1,...,J be the frequency contour of the j-th pulse and
=3 S, f) be the average frequency of this pulse. Then the feature

vector F7 € R”, 7 = 1,...,J which is used as input for the classifier is
given by the D’-tuple coding scheme

(4.36) F7 = (f7, L, L P,

In contrast to the frequency contour (see Eq. 4.35) which contains the aver-
aged frequency contour of G consecutive pulses, the pulse frequency (see
Eq. 4.36) contains the D'-tuple coded pulse frequencies of D’ consecutive
pulses (see Figure 4.16).

Energy Contours of Pulses (E, E)

For the extraction of the energy contour the spectral energies (see Eq. 4.29)
can be used.® In contrast to the frequency contour (see Eq. 4.35), the en-
ergy contour is extracted from sonograms with a fixed number of sam-
pling points (type 1) and sonograms with a fixed time resolution (type 2).
Then the total energy of the d-th spectrum £ (see Eq. 4.29) is simply given
by Es= 3,25 Eua.

Again we assume a sequence of J pulses, each represented through a
sonogram where the number of spectra depends on the pulse length. Then
we denote 7 as the energy of the d-th frequency band inside the j-th pulse
and F’ = (E{ s E{)j) as the energy course of this pulse, where D, defines
the number of spectra. For sonograms with a fixed number of sampling
points

HG-1
(4.37) B= ) B 5=1..7
k=g

may be used as a feature vector because D; = D. For energy contours with
a fixed time resolution of size D, we set

J J '
(4.38) i J B Ep), D < D,
(Ei,... Fp,0,..,0), D> Dj,

® Due to the theorem of the spectral representation of energy, the energy in the frequency
domain is equal to the energy in the temporal domain [ I
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Figure 4.19: Typical features extracted from a single pulse of the species
Noctitrella plurilingua: (a) time signal, (b) sonogram as contour plot, (c)
pulse frequency contour and (d) energy course. Whereas for Figure (b) the
x-axis corresponds to the respective of spectrum in Figure (c) and (d) the
x-axis corresponds to the feature dimension.

where D is the desired number of spectra. The discrete feature vector E’ €
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R” is again given by the average of G' < /A adjacent energy courses

+G—-1

(4.39) E= ) Ef j=1..J
k=)

A typical energy course of the species Noctitrella plurilingua is shown in
Figure 4.19(d).

Time Encoded Signals of Pulses (T)

Time encoded signals (TES) is a simplified signal description according to

general sampling theory first represented by KING and GOSLING | |
on coding speech for transmission. Later this method was applied highly
effective in speaker verification applications and bioacoustics [ I. The

TES signals are based on a precise mathematical description of wave-
forms, involving polynomial theory that shows how a bandlimited sig-
nal may be completely described in terms of the locations of its zeros and
further signal parameters [ I

This means, that in TES the signal is segmented into epochs and lo-
cal signal parameters are extracted within these epochs. For this stream
of signal parameters, fixed-size histograms which present specific signal
properties are calculated.

Figure 4.20 exemplifies the signal segmentation into a stream of epochs.
An epoch (positive epoch or negative epoch) is the region between two ad-
jacent zero-crossings, for each epoch a set of parameters is extracted. Ex-
amples for such parameters are: The duration (number of samples spanned),
the shape (number of significant positive minima or negative maxima) and
the magnitude (e.g. the minimal or maximal sample magnitude encoun-
tered).

Often these parameters are more economically mapped non-linearly
onto a smaller set of numerical descriptors called symbol alphabet” or these
parameters are converted into a sequence of histogram matrices. Hereby
the parameters extracted from the individual epochs are application de-
pendent and therefore, it follows that these parameters have a significant
influence to the discrimination power.

For the signal (5(¢))L;, a sequence of signal parameters v = (v™)}_,
with v = (v{", ..., v{)) is calculated from each of the individual epochs.
Hereby M is the number of epochs and () is the number of parameters ex-
tracted within each of the individual epochs. We define a ()-dimensional

7 A detailed description of the coding process is contained in [ I
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Figure 4.20: In the TES coding process the signal is segmented into a
sequence of negative and positive epochs. A set of local signal parameters
is extracted within each of these epochs.

histogram by considering a sequence of ranges R = (r1, ...,rg) wherer, €
R”* contains the ranges of the individual bins for the ¢-th signal param-
eter. For example, if in ¢-th feature dimension 5 linearly spaced bins in
the range of 0.0 and 1.0 should be determined &, is set to 6 and r, =
(0.0,0.2,0.4,0.6,0.8,1.0). The histogram matrix H € R""**?2 is then given

by

M
(440) Heonp =Y

1

1, k-1 < V;n < T, o TQrg—1 < Vg < T'Q kg
0, otherwise

foreach k1 =2,...,91,..., 60 =2, ..., Dg.

For the feature extraction the TES histogram matrices (see Eq. 4.40) are
derived within G adjacent pulses. Let H? be a histogram matrix extracted
from the j-th pulse, then the averaged histogram matrix covering G < A
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Figure 4.21: Feature extraction by using the TES-matrices of the katydid
species Eupholidoptera chabrieri: (a) A single histogram matrix H € R**'?
and (b) the TES feature stream from T? € R*, y =1, ..., 7 for J = 80 time
windows.

consecutive pulses f” is defined through

+G-1
(4.41) A = e Y HY, y=1,..7

k=y

To extract feature vectors the averaged TES matrices are linearised. This
leads to a sequence of 7 feature vectors T’ € R? with D = &4, ..., Dg.
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In our numerical experiments we calculated two-dimensional () = 2)
histogram matrices by using the epoch length and the energy within an epoch
as signal parameters. Figure 4.21 shows a typical TES matrix extracted
within a single window and the feature stream containing the linearised
TES matrices of a sequence of 80 time windows. Each feature vector T’
describes the energy and frequency composition of the acoustic signals.

Well evaluated and hardware-implemented on an derivative of the 8-
bit Intel 8051 microcontroller which performs robust speech recognition is
the combination of time encoded signal processing and artificial neural
networks (TESPAR). Recent practical experiences confirmed that TES-
PAR enables the implementation of very powerful classification proce-
dures [ 1.

Maximal Amplitude of Pulses (A)

Let u;(t) be the amplitude signal of the j-th pulse as defined in Eq. 4.28.
Then the maximal amplitude of this pulse is given by a; := mtax]uj(t)|. In

order to derive feature vectors of the R” the D-tuple coding rule is applied

(4.42) A’ =(a), ap1,...,a4p-1), 7=1,...,7.

Figure 4.22 shows a one-dimensional maximal amplitude contour for four

1F T T T T T T T T T T =

0.8 -

MaxAmpl
o]
9]
|

o.4r- -

20 40 60 80 100 120 140 160 180 200

Figure 4.22: The one-dimensional maximal amplitude contour for four
syllables of the katydid species Isophya modestior.

syllables of the species Isophya modestior. Hereby it was observed that the
course of the individual syllables shows a similar structure. The corre-
sponding amplitude signal is given in Figure 4.24(a).
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4.2.6 Global Features

In [ ] we studied the combination of global and local features for
the classification of crickets to species level. Here we found, that in partic-
ular the combination of local features is very promising. A combination of
global and local features through classifier fusion did not significantly im-
proved the classification performance. But in these studies the Parzen den-
sity of pulse distances (P) emerged as an important feature which has been
overlooked by traditional neurobiologists | ]. Furthermore, these den-
sity functions are crucial, particularly for the description of the acoustic
signals.

To determine a probability density function over the distances between
two consecutive pulses a histogram procedure can be used [ ]. The
basis to extract these classification vectors are the distances between the
j-th and the (j + 1)-th pulse 9,, j = 1,...,J — 1 (see Eq. 4.23). Based on
these distances a one-dimensional density function P; with the Gaussian
density as kernel function [ ] and variance 0% > 0 is estimated. It is
given by

(t —0;)°

1 J-1
(443) Pg(t) = m ; exp(— 20_2 )

Hereby the Gaussian probability density function is used as kernel func-
tion under the assumption that the estimated density function P; is con-
tinuous [ ]. To approximate a discrete feature vector P ¢ R”, the
function Ps(t) is sampled with linear increasing time steps t = (ti,...,tp)
where t, is defined through

0, d=1
yty_1 + ¢, otherwise

(4.44) ty = {

Hereby D is determined in such a way that t, is approximately 500 ms
depending on the parameters of v and ¢. A typical probability density
function of the species Noctitrella glabra is depicted in Figure 4.23. The
appendant amplitude signal is given in Figure 4.13.

Classification results, confusion matrices for the individual features

and more details about fusion of local and global features can be found
in [ ].
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Figure 4.23: The probability density function of the pulse distances of the
species Noctitrella glabra shows clusters of pulse distances with centers at
74 ms and 220 ms.

4.2.7 Feature Extraction in Time Scales

All'local features given in Section 4.2.5 depend on onset and the offset po-
sitions calculated by algorithm SEGMENTATION. Due to the fact that these
positions can be extracted in different time scales, each local feature can
be grouped into the time scale, in which it has been extracted. This is par-
ticularly important for slowly singing katydid species, producing easily
detectable impulses and syllables (see Section 4.1.2 and Figure 4.6). The
knowledge about typical impulse distances and impulse length and typi-
cal syllable distances and syllable length within the katydid family allows
to determine the positions of impulses and syllables with algorithm SEG-
MENTATION by using specified parameter settings for the pulse segmenta-
tion algorithm. In order to extract features in four time scales TSI, ..., TS4,
each time scale is defined by the window size U to calculate the short time
energy (see Eq. 4.18), two window sizes V and W, a set of parameters to
calculate the threshold function (see Eq. 4.19) and the number of pulses A
covered by the short time window W7 (see Figure 4.16).% Hereby the time
scales TS1 and TS2 differ mainly regarding the number of pulses covered
by the local time window W/.

An example for the pulse detection in two time scales is given in Fig-
ure 4.24. Whereas Figure 4.24(b) shows the detection of the individual
impulse positions (TS1), Figure 4.24(c) shows the detection of syllable po-
sitions (TS4).

8 Parameter settings for the pulse segmentation: crickets (one time scale TS1, see Ta-
ble C.2) and katydids (four time scales TS1, ..., TS4, see Table C.3).
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Figure 4.24: A short song of the katydid species Isophya modestior (signal
length 5000 ms), see Figure (a). In Figure (b) the impulse segmentation by
algorithm SEGMENTATION is shown. Figure (c) shows the segmentation of
the individual syllables. Onset and offset positions of the detected signal
segments are indicated by the bars at the bottom.
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4.3 Data Set Description

The data set used in the numerical experiments in this thesis consists of
386 sound patterns of 53 different Orthoptera species. For each species
it contains up to 12 recordings of different individuals. Whereas 185 of
these recordings are cricket songs from 31 different species (see Table D.2)
201 recordings are katydid songs from 22 different species (see Table D.1).
For each song the environmental temperature has been measured and the
songs have been labelled with a specimen code which allows to refer to the
voucher specimen. Additionally, the specimen codes have been used to
guarantee that the individual songs of a certain species are always record-
ings from different individuals.

The data set is part of the DORSA database containing 7432 Orthoptera
songs (1057 cricket songs from 96 different species and 6375 katydid songs
from 336 different species). All sounds were recorded with an analog or
digital tape recorder and were sampled via an analog-digital converter to
be analysed with a signal processing software. The files were converted to
the standard WAV-format with a sampling accuracy of 16 Bit and different
sampling frequencies in the range of 44.100 Hz to 500.000 Hz. The sound
files were provided by:

e Humboldt-University Berlin (110 recordings),
e K.-G. HELLER (5873 recordings),

e G. H. SCHMIDT (360 recordings),

e F. NISCHK (458 recordings) and

e 5. INGRISCH (631 recordings).

The recordings from K.-G. HELLER [ ] are mainly recorded in Eu-
rope (1978-1999), using the following tape recorders: Sony WM-D3, Uher
4200IC and Racal, and the microphones : Sony ECM-121, Uher M516, Uher
M645, B&K 1/2”, B&K 1/4”and the Bat-detector. Sound sampling was
performed with Amadeus on a Mac-computer and a custom-built DSP
card by using the program: DSP-Control (version 2.3.0.0) by T. JAUMANN,
Erlangen with sampling rates of 250 and 500 kHz. After digitising the sam-
pling rate has been reduced to five different sampling rates in the range of
44.100 Hz to 500.000 Hz.

SCHMIDT used the Uher 4000 IC tape recorder and the microphones:
Uher M 53 and the Bat-detector for his recordings.
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Cricket songs provided by F. NISCHK have been recorded in Ecuador
(1995-1999) for the experiments of his doctoral thesis [ ]. He used a
portable DAT-recorder (Sony TCD-D7) and two Sennheiser microphones:
ME 67 and MKE 2-60 with pre-amplifier K6 for the sound recordings.
Sound sampling was performed using Soundscope 8 (44.100 Hz sampling
frequency).

The cricket songs from Thailand were provided by INGRISCH [ |
(1986-1997) utilising one of the following tape recorders: KX-5010, Sony
TCD-D7, Sony WM-D3 and the Aiwa DAT recorder. He used the micro-
phones: Aiwa, Sennheiser and the Black Fire 541. The sounds have been
sampled with Soundscope with a sampling frequency of 50.000 Hz. By
resampling the sampling rate has been reduced to the standard sampling
rate of compact discs, 44.100 Hz.

4.4 Feature Evaluation

This Section deals with the evaluation of single features by utilising a his-
togram method which we call rank distribution. The method works for time
series as follows:

Let (x;(7) j{ , with x; € R be a feature stream from the i-th feature
space to be evaluated. The final classification of this time series is then cal-
culated through a temporal fusion mapping (see Section 3.4) which com-
bines the local class decisions over the whole time series

(4.45) 7 = F(C(x (1), ..., C(xi(T))).

The final decision z € IR” of this time series is then sorted in decreasing
order, e.g. there is a sequence (7)%,; of indices such that z,, > ... > z,,. We
now assume to know the true class label w € (2 of the final decision. With
R € AN {0,1}* we define a binary unit vector containing a single 1 at the
rank of the true class label w and L — 1 zeros , e.g.

T = W

1
(4.46) R, = { ’ 1=1,.. L.

. )
0, otherwise

Hereby R = (1,0, ...,0) indicates, that the whole time series was classified
correctly. The rank distribution R’ € A (see Eq. 3.5) for the whole data
set including the individual time series is calculated by the k-fold cross
validation procedure (see Section 3.7). Hereby for each of the k cross val-
idation cycles the rank distributions of the time series in the test set (see
Eq. 4.46) are averaged. In order to calculate R’, the center of gravity of the
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averaged rank distributions of the individual cross validation tests is com-
puted. The classification accuracy of the feature stream x; is then given by
the value of Ry.

In contrast to the classification accuracy for L > 2 this method offers
the advantage to estimate the degree of misclassification by considering
the ranks of the individual decisions. This is particularly important if
multiple classifiers are combined with decision fusion. In this case the mis-
classifications that appear at lower ranks often enhance the overall perfor-
mance of the classifier ensemble. But actually, misclassifications appear-
ing at the higher ranks usually decrease the performance of the classifier
system.

To evaluate the individual features in both hierarchy levels, the fea-
ture evaluation was applied in the first level and in the second level of
the hierarchy separately (see algorithm HOC). Hereby we calculated the
error rates in the first level of the hierarchy, because for L = 2 the rank
distribution offers no advantages toward simple error rates (see Table 4.1).
The best classification result based on a single feature is achieved with the

feature error in %
filter-bank energies (B) 4.66
pulse distances (D) 18.65
pulse length (L) 32.64

Table 4.1: Error rates of the first level of the hierarchy for each of the
individual features. The temporal integration (see Eq. 4.45) was performed
with averaging.

filter-bank energies (B), proposed in Section 4.2.2.

In the second level of the hierarchy we applied the rank distribution for
each family and each time scale separately (crickets: see Figure 4.25 and
katydids: see Figure A.1 - A.4). Here in each Figure it can be observed that
the pulse distances (D), usually lead to the best classification results. The
only exception are the normalised pulse distances D is TS2 (see Figure A.2)
where the pulse distances D and D are derivated inside a sliding window
covering 21 consecutive pulses to extract 20 pulse distances (see Eq. 4.25
and Eq. 4.26). For this time scale D seems to be more discriminative be-
cause the normalised pulse distances (D) describe the pattern of the tooth
spacings of the pars stridens (see Figure 4.2) which contains typically 60 to
90 teeth (see Section 4.1.2). Consequently, the classification performance of
the normalised pulse distances (D) in TS2 is better than the classification



116 Orthoptera Bioacoustics

10 1s 20 25 30 35 1s 20 25 30 35

(a) Pulse distances (D) (b) Pulse distances (D)

30

20 25 30 35 20 25 30 35

(c) Pulse length (L) (d) Pulse frequency (F)

60

10 1s 20 25 30 35 o 5 10 15 20 25 30 35

(e) Pulse energy contour (E) (f) Pulse energy contour (E)

(g) TES of pulses (T) (h) Maximal amplitude of pulses (A)

Figure 4.25: Evaluation of features extracted from 5 consecutive pulses
of cricket species. Whereas the first bin of the x-axis shows the classifica-
tion accuracy, the other bins show the classification rate for the individual
ranks. The number of ranks is given by the number of classes.
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performances of all evaluated features presented in Figure A.1 - A 4.

On that score, we infer, that a certain feature is not sufficient to separate
the vocalisations of individuals from both families (see Table 4.1). As well,
a certain feature is not sufficient for the classification to species level (see
Figure A.1-A4) [ ]. One good reason for that is, that the significance
of a certain feature is highly dependent of the species itself. For example,
the pulse distances (D) and the normalised pulse distances (D) are gener-
ally more discriminative for species producing quasi-deterministically oscil-
lating time series (see Figure 4.17) [ ]. In this case the distances between
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Figure 4.26: Pulse distances of a 2.5 sec. sound signal of the species
Zvenella geniculata.

two consecutive pulses J, (see Eq. 4.23) lead to clusters of feature vectors
by using the D—tuple coding scheme to produce features of the R”. On
the other hand, some species produce stochastically oscillating time series,
where the future evolution cannot be determined. One prominent species
is the Zvenella geniculata, generating sounds in which the pulse distances
create straggled prototypes all over the feature space if these distances are
coded with the D-tuple coding scheme (see Figure 4.26). Since the pulse
distances of this species is highly stochastic, this feature leads to misclas-
sifications.

In our numerical experiments we found that for most species of the
Orthoptera the oscillation of pulse distances (D) is quasi-deterministic, be-
cause the condition of strong periodicity d,.,, = d;, where m is the period of
the oscillation, is never completely fulfilled. Nevertheless, in behavioural
experiments it was observed, that species of the Orthoptera are using a set
of acoustic features to recognise songs of the own species (see Section 4.1).
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4.5 Feature Selection

In contrast to feature evaluation by the rank distribution (see Section 4.4)
in this Section combinations of feature components are evaluated by a fea-
ture selection algorithm. This allows to take the influence of the correla-
tions among the individual feature components to the classification perfor-
mance into account. Due to the fact that optimal methods, e.g. exhaustive
search are not suitable for high-dimensional problems [ ], many sub-
optimal methods have been developed. One of the most popular wrapper
selection method [ ] is the sequential forward selection (SFS) algorithm.

In SFS a single classifier is utilised to classify a labelled data set. Then
for each feature component a criterion function (e.g. the classification ac-
curacy) is calculated by applying the classifier to each feature component
of the data set, in order to select the best feature component (the feature
component which maximises the criterion function). This step is repeated
by consecutively adding a single feature component to the current feature
set in such a way, that the criterion function is maximised. Hence SFS is
step-optimal, since for each optimisation step the best feature component
is added to current feature set [ ].

Whereas in SFS one feature component is consecutively selected to in-
crease the criterion function of a single classifier system, we proposed a
modified version of the SFS algorithm to determine feature sets for mul-
tiple classifiers called SFSM [ ]. In SFSM we suppose a set of clas-
sifiers, each classifier is associated with its corresponding feature set, and
in each optimisation step a single feature component together with a clas-
sifier is selected. This means, that in each optimisation step the selected
feature component is added to the feature set of the selected classifier in
such a way, that the criterion function is maximised (a discussion and a
detailed description of the SFSM algorithm can be found in [ D.

To demonstrate the classification performance of the selected feature
components we depicted the selected feature components and the corre-
sponding classification accuracy dependent of the number of selected fea-
ture components for the first (see Figure 4.27) and the second hierarchy
level (crickets: Figure 4.28 and katydids: Figure B.1 to Figure B.4) sepa-
rately. Each Figure shows the classification error of the selected feature
components for each step of the feature selection procedure. Different
brightness values have been assigned to the individual feature compo-
nents to associate the feature components to a specific classifier.

In Figure 4.27 the selected feature components and the corresponding
classification error by using the SFSM algorithm with three features of the
first family level (see hierarchy level 1) is given. Hereby for the filter-
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Figure 4.27: Feature selection in the family level with SFSM. The Figure
shows the classification error and the selected feature components of the
features B, D and L, for each step of the feature selection procedure. Two
different brightness values have used, each of them is assigned to a spe-
cific classifier. The best classification result during the feature selection
procedure have been obtained for 13 automatically selected feature com-
ponents.

bank energies (B), see Section 4.2.2 the temporal resolution is different to
the temporal resolution of the local features (the pulse distances (D) and
the pulse lengths (L), see Section 4.2.5) and therefore, the number of fea-
ture vectors of the filter-bank energies and the local features is different.
Thus, the filter-bank energies (B) define a separate time scale. Another
time scale is defined by the two local features extracted within a sequence
of pulses; the pulse distances (D) and the pulse length (L). To determine
feature components of two time scales, the FCT architecture has been used
for each time scale for the selection of feature components and the classi-
fication of the temporal sequences of the first level. Hereby the feature
vector B is firmly associated with the classifier C! and the features D and
L are steadily associated with the classifier C*>. The combination of these
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two time scales is then accomplished by averaging the class membership
estimates of the individual time scales (see algorithm HOC, step (e)).

The most discriminative features are the filter-bank energies (see Sec-
tion 4.2.2) Be, B3 and B, with center frequencies of 11.888 Hz, 6555 Hz and
4.777 Hz. Whereas the largest center frequency (11.888 Hz) is mainly in the
frequency range of katydid species, the two lower center frequencies are
in the frequency range of crickets. Although the filter-bank energies By,
..., Bjg correspond to center frequencies in the range of 17.222 Hz to 19.000
Hz, these features seem not to be very important to separate species of the
two families. Two reasons for this are, that the airbone sound in higher
frequency ranges is sensitive against influences discussed in Section 4.1.2,
and that different microphone types have been used for the sound record-
ings (see Section 4.3).

For both families (crickets: see Figure 4.28 and katydids: see Figure B.1
to Figure B.4) the selected feature components and the corresponding clas-
sification error have been calculated separately. Three brightness levels are
used to assign the individual feature components to three classifiers C 1c?
and C3. These classifiers are used to calculate sequences of local decisions
that are combined with the CFT fusion architecture. Whereas for crickets
the SFSM algorithm was applied, for katydids we applied the SFSM algo-
rithm by alternating through four time scales TSI, ..., TS4. This means, that
for each time scale one feature component together with a single classifier
is alternately selected in such a way, that the overall classification error
that depends on feature components of all four time scales is minimised.
Therefore, the selected feature components (see Figure B.1 to Figure B.4)
are assigned to the individual time scales. The evaluation of feature com-
ponents based on each of the individual time scales is not considered here,
because the correlations of the individual features through each of the four
time scales are important and have to be taken into account.

Feature components of the pulse distances (D) and the normalised pulse
distances (D) have been selected for both families at the beginning. For
crickets the pulse distance features have been combined with feature com-
ponents of the pulse length (L) and the pulse frequencies (F) before com-
ponents of other features’. By selecting further feature components from
the energy contours (E and E) and the time encoded signals (T), the cri-
terion function was anymore increased (see the decreasing error rate in
Figure 4.28).

Similar features have been selected for katydid species. Obviously, the
pulse distances (D) seem to be most discriminative for time scale TS1. For

? See the six primary selected features in Figure 4.28.
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Figure 4.28: Feature selection for crickets to species level with SESM. The
Figure shows the classification error and the selected feature components
of the features D, D, L, E, E, T and A, for each step of the feature selection
procedure. Three different brightness values have used, each of them is
assigned to a specific classifier. The best classification results during the
feature selection procedure have been obtained for 18 to 37 automatically
selected feature components.
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TS2 and TS3 the normalised pulse distances (D) seem to be more discrimi-
native, since they have been selected before components of other features.
In contrast to crickets, for katydids the pulse frequency (F) is not as dis-
criminative due to the wide spectra (see Figure 4.5 and Figure B.1 to Fig-
ure B.4).

Finally it has to be concluded, that for both data sets the SFSM algo-
rithm has selected components of the features E, E, T and A rather late.
But then, in several cases, a single feature has been selected consecutively
by the same classifier.

4.6 Experiments and Results

Because of the limited data sets (see Section 4.3) we use the k-fold cross
validation test (see Section 3.7) with & = 12 to test the performance of the
classifier system described by algorithm HOC. Five cross validation tests
have been made and the classification results of all cross validation tests
have been averaged. Hereby the focus is to evaluate the performance of
the classifier fusion schemes presented in Chapter 3. Classification results
are given for fuzzy-K-nearest neighbour classifiers (see Section 2.1.3). This
classifier exhibits a large similarity to artificial neural networks, in partic-
ular to competitive neural networks and radial basis function networks
(see Section 2.1.1 and [ ). Furthermore, it does not need any time-
consuming adaption of the parameters.

Single Features / All Features

In order to get an overview of the discrimination power of single features
and combinations of all features in Table 4.2 classification results for sin-
gle features and all features are given for both Orthoptera families. For the
classification of the individual feature streams we applied the FCT fusion
scheme with averaging for the temporal integration (see Eq. 3.17). Addi-
tionally, for katydid species the error rates based on the individual features
are given for each of the four time scales. The combination of the individ-
ual time scales is accomplished by averaging (AVR) and the probabilistic
function (PF), see algorithm HOC step (e) and Section 3.4.2.

Not surprisingly, the classification performances of single features D,
D,L F E E, T and A are rather weak (crickets: 36.11 % to 81.08 % and
katydids: 37.69 % to 84.44 %). By combining the features with data fu-
sion (FCT architecture) the error rate decreased to 31.46 % for crickets and
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katydids

family crickets

TS1 TS2 TS3 TS4 AVR PF
pulse distances (D) 36.11 52.44 61.19 37.69 55.66 37.02 31.94
pulse distances ([—)) 51.24 68.86 63.88 45.42 65.56 34.33 33.73
pulse length (L) 60.87 81.99 81.69 55.87 T1.41 49.65 50.34
pulse frequencies (F) 73.62 83.79 82.79 84.32 84.44 80.60 81.29
energy contours (E) 60.11 78.41 77.91 61.61 63.74 52.44 52.33
energy contours (E) 66.70 73.53 73.43 63.02 56.87 50.35 48.06
time encoded signals (T) 77.73 67.76 67.46 73.27 72.02 61.69 60.50
maximal amplitude of pulses (A) 81.08 80.29 80.10 71.96 77.37 66.97 67.07
FCT 31.46 62.79 61.49 45.33 49.50 37.41 34.73
CFT 34.38 56.31 50.65 33.37 40.10 31.34 32.64

Table 4.2: Error rates for crickets and katydids for single features (upper
part) and combinations of all features (bottom part). The combination of
the individual features was applied by the FCT and the CFT architecture.
For katydids the error rates of the individual time scales TS1, ..., TS4 and
the error rates of the combination of all time scales are given. The combi-
nation of the individual time scales is applied with averaging (AVR) and
the probabilistic function (PF).

37.41 % for katydids. The combination of all features with the CFT archi-
tecture leads to similar results (crickets: 34.38 % and katydids: 31.34 %)
which is not satisfying, since the error rates for the pulse distances (D)
alone are not much higher (crickets: 36.11 % and katydids: 37.06 %). But
for katydid species the combination of the four time scales with averag-
ing improves the classification performance of the individual features and
combinations of all features (see column AVR in Table 4.2). Particularly
promising are the classification results if the class membership estimates
of all time scales are combined with the probabilistic function (see column
PF in Table 4.2).

Manually Selected Features

In the following Section we present classification results for manually se-
lected features. Hereby for species of both families the selected features
are biologically motivated [ , ]. For katydid species these fea-
tures have to be determined for each of the individual time scales. There-
fore, we also use the energy contours (E, E) and the time encoded signals
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(T) as classifier input, because these features alone lead to low error rates
(see Table 4.2). Three features for each time scale have been selected for
both families (see Table 4.3). An overview of the examined features can be
found in Section 4.2.

family time scale features

crickets TS1 D, L and F

katydids TS1 E, Eand T
TS2 D, D and L
TS3 D,L and A
TS4 D,Land B

Table 4.3: Manually selected features for the classification of crickets and
katydids. Whereas for crickets three features have been determined, for
katydids in each of the four time scales TSI, ..., TS4, three features have
been manually selected.

Classification results are given for three feature set compositions. For
example, for the cricket data set these feature set compositions are defined
as follows: In feature set composition A: (D), (L), (F), three classifiers cl,
C? and C® are combined, each of them gets a single feature as input (C' on
(D), C? on (L) and C® on (F)). For feature set composition B: (D, L), (D, F),
(L, F), pairs of features are used to build the individual classifiers C!, C?
and C3, whereas in feature set composition C: (D, L, F), a single classifier C
is based on all three features (D,L, F). In Table 4.4 the feature compositions

feature set number of
. ) input features
composition classifiers
A 3 (Xl)/ (XZ)I (XS)
B 3 (x1,%2), (X1,X3), (X2, X3)
C 1 (X1, X2, X3)

Table 4.4: The three feature set compositions A, B and C for the classifier
input feature vectors x;, x, and x3. Hereby (a, b) denotes the concatenation
of feature vector a and feature vector b.

A, B and C are given for the classifer input features x;, x, and x3.

Classification rates for the three static combining schemes the FCT, the
CFT and the CTF architecture (see Section 3.4) are depicted in Table 4.5
and 4.6. Table 4.5 contains the results for the FCT architecture.
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feature set

architecture o AVR PF voT
composition

FCT A/B/C 10.81 9.95 11.89

FCT A/B/C 25.97 33.53 30.25

Table 4.5: Classification results for the cricket data set (upper part) and
the katydid data set (bottom part) for the FCT fusion architecture and dif-
ferent aggregation rules for the temporal integration. Averaging (AVR),
probabilistic function (PF) and majority voting (VOT) are the applied ag-
gregation operators. A, B and C are the feature set compositions as defined
in Table 4.4.

For the FCT architecture (see Figure 3.4(b)) the results for the three fea-
ture set compositions A, B and C are equal, as data fusion is the first step.
Average fusion (AVR), probabilistic fusion (PF) and majority voting (VOT)
are the fusion mappings used for the temporal integration of local classi-
fier decisions (see Eq. 3.17).

In contrast to the FCT fusion scheme for the CFT and the CTF archi-
tecture (see Figure 3.4(a) and Figure 3.4(c)), two aggregation operators
are used, one for decision fusion over the feature space and another one
for the temporal integration of local decisions (see Table 4.6). Due to the
fact that in feature set composition C all feature vectors are concatenated
there is only one local feature vector to be locally classified which leads
to one decision per time window (see Figure 3.3) to be temporally inte-
grated. Therefore, for this feature composition the FCT fusion architecture
is equivalent to the CFT and the CTF architecture if averaging (AVR) is
used for fusion over the feature space and for both fusion schemes the
same aggregation operator is used for the temporal integration. The clas-
sification results in Table 4.5 can be also found in Table 4.6 (see the under-
lined numbers).

For the described application the classification results of feature set
composition A are not as good as the classification results of the two other
feature set compositions, because the classifiers trained on the individual
features seem to be too weak to build separate classifiers. The best classifi-
cation performances with static combining paradigms have been achieved
for both families with different feature set compositions (crickets: feature
set composition C: 9.84 %, katydids: feature set composition B: 23.18 %).
Hereby it is obvious, that the class membership estimates of the individual
classifiers are important for the combination of the classifiers, as the com-
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arch. feature  goyp  AVR AVR PF  PF PF VOT VOT VOT
comp. AVR PF  VOT AVR PF VOT AVR PF  VOT
A 35.35 3546 35.57 24.00 24.11 23.24 44.00 44.00 52.54
CFT B 12.32  13.08 13.41 1222 1222 1265 13.08 13.51 14.16
C 10.81 9.95 11.89 10.70  9.84 11.89 11.89 11.89 11.89
A 35.35 43.46 44.00 20.65 47.68 41.08 74.25 74.09 74.19
CTF B 12.32  13.95 13.08 1222 1589 12.00 58.66 58.44 59.19
C 1081  9.95 11.89 10.81  9.95 11.89 55.65 55.22  56.29
A 29.15 31.54 32.84 2577 29.65 2597 37.01 41.89 44.08
CFT B 23.18 27.56 27.06 23.38 28.16 26.17 28.26 37.61 31.64
¢ 25.97 33.53 30.25 25.77 34.03 30.25 30.25 3811 30.25
A 29.15 40.20 37.01 26.57 41.79 37.81 57.35 56.36  60.08
CTF B 23.18 31.44 2826 2428 31.74 2896 50.98 50.08 52.88
¢ 25.97 33.53 30.25 25.87 37.21 30.35 54.70 54.70 55.53

Table 4.6: Classification rates for the cricket data set (upper part) and the
katydid data set (bottom part) for the CFT and the CTF architecture and
different aggregation rules. Here § denotes that decision fusion is applied
with aggregation operator a, whereas the temporal combination is applied
with aggregation operator b. Averaging (AVR), majority voting (VOT) and
the probabilistic function (PF) are the applied fusion mappings. A, B and
C are the feature set compositions as defined in Table 4.4.

bination with majority voting (see Eq. 3.11) usually performs not as good
as the combination with averaging (see Eq. 3.21) and the combination with
the probabilistic function (see Eq. 3.28).

To examine the influence of the second training phase in which the
decision fusion mapping is trained with different decision template algo-
rithms, the CFT architecture may be considered as static reference archi-
tecture, since the classifiers in the decision template approach are trained
with the same feature combinations. Furthermore, the CFT architecture
with averaging (AVR) for the combination over the feature space is equiva-
lent to the combination with decision templates if for both fusion schemes
the same aggregation operator is used for the temporal integration and
other particular conditions (see discussion in Section 3.5.2). Therefore, for
both families and each feature set composition the bold error rates in Ta-
ble 4.6 are well comparable to the error rates of the proposed decision
template algorithms (see Table 4.7), because for both fusion schemes aver-
aging is used for the temporal integration.
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alg. feature p=0.0 p=0.2 p=0.4 p=0.6 p=0.8 p=1.0
comp
A 17.51 17.84 18.05 18.38 18.38 18.27
DT B 11.46 10.59 10.49 10.49 10.27 10.05
C 12.32 10.81 10.49 10.49 10.59 10.38
A 18.16 18.27 18.27 18.49 18.81 19.03
TDT1 B 11.89 11.24 10.81 9.95 9.84 9.95
C 13.62 11.57 10.92 10.49 10.49 10.70
A 18.59 17.84 18.16 18.49 18.16 17.95
CDT1 B 10.81 10.05 9.73 9.41 9.51 9.41
C 15.68 10.38 9.62 9.51 10.05 9.08
A 22.19 21.29 20.50 20.20 20.30 21.00
DT B 19.50 17.21 17.01 18.91 19.40 20.10
C 24.78 21.19 21.49 22.49 23.08 23.78
A 23.08 22.49 21.99 21.89 22.09 21.69
TDT1 B 21.19 19.40 18.21 18.71 19.40 20.10
C 24.48 21.69 21.79 21.49 21.99 22.59
A 22.59 21.69 22.59 22.09 22.39 22.99
CDT1 B 20.60 18.91 17.71 18.01 18.71 18.61
C 22.09 18.51 19.00 18.61 18.71 20.10

Table 4.7: Classification results for the cricket data set (upper part) and
the katydid data set (bottom part) for the proposed decision template al-
gorithms and different overlaps of training and validation sets given by
different values of p (see Eq. 3.12). The suffixed number defines S, the
number of decision templates per class to calculate the virtual decision
template. A, B and C are the feature set compositions as defined in Table
4.4.

For this data set we calculated a single DT, 3 TDTs per class and 5
CDTs per class on randomly chosen training and validation sets utilis-
ing the Manhattan distance (L;-norm) as similarity measure (see Eq. 3.33).
Additionally, six different training and validation set compositions are de-
termined by the overlap parameter p (see Eq. 3.12). In order to deal with
several characteristic decisions for whole time series we applied the TDT
and the CDT algorithm to deal with the temporal alteration of classifier
decisions within time series (see Figure 4.30). The classification results in
Table 4.7 show performance improvements by training the decision fusion
mapping with decision template algorithms in comparison to the error
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rates of the static fusion schemes (see Table 4.5 and Table 4.6). The only
exception are the classification results for the cricket data set based on fea-
ture set composition C.

In the numerical evaluation of the DT, the TDT and the CDT algorithm
we have found, that for this application the TDT fusion scheme did not
improve the classification performance of the DT fusion scheme. Further-
more, for feature set composition A, the CDT algorithm did not improved
the error rates of the DT algorithm. But for feature set composition B and
C, the CDT fusion scheme improved the performance of the classifier sys-
tem significantly. Here for p = 0.0 and p = 0.2 there is no performance
improvement in comparison to the DT fusion scheme. However, for p
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Figure 4.29: Mean classification results for the DT, the TDT and the CDT
fusion scheme dependent on different overlaps of training and validation
data given by six values of p.

in the range of 0.6 to 1.0 the CDT fusion scheme shows performance im-
provements in many cases. The best results for the cricket data set have
been achieved with the CDT algorithm by using feature set composition
B (error rate < 9.80 % for p in the range of 0.4 and 1.0). For the katydid
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data set the lowest error rate (17.01 %) has been achieved with the DT
algorithm, feature set composition B and p = 0.4.

In order to illustrate the classification performance of the proposed de-
cision template algorithms for all three feature set combinations together,
we averaged the error rates of the individual feature set combinations (see
Table 4.7). The results for the DT, the TDT and the CDT algorithm are
graphically represented in Figure 4.29 for both families of the Orthoptera.
Again six different values of the overlap parameter p are considered.

Automatically Selected Features

In this Section the automatically selected features of both hierarchy lev-
els (see Figure 4.27, 4.28 and B.1 to B.4) served as input of the classifiers
(crickets: 3 classifiers, katydids: for each time scale 3 classifiers). Whilst
for the first hierarchy level the ten best feature components are considered,
for the second hierarchy level the fifteen best feature components are used
as classifier input. Classification results for the three static fusion schemes
the FCT, the CFT and the CTF architecture are given in Table 4.8.

architecture %
FCT 13.51
CFT, CTF 7.24
FCT 14.43
CFT, CTF 16.22

Table 4.8: Classification results for the cricket data set (upper part) and
the katydid data set (bottom part) for the FCT, the CFT and the CTF fu-
sion architecture. Decision fusion is applied with averaging (AVR) and the
temporal combination as well.

Not surprisingly, the error rates of the CFT and the CTF fusion scheme
are very low, because the CFT architecture has been used to combine the
classifiers during the feature selection procedure (see Section 4.5). In con-
trast to the manually selected features (see Table 4.5 and Table 4.6) the
classification performance could be improved for both families by using
automatically selected features as classifier input. The performance im-
provement for katydid species is hereby relatively large (feature composi-
tion B: 22.64 %, automatically selected features: 14.43 %).
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As for manually selected features (see Table 4.7), for automatically se-
lected features the performance could be improved by learning the second
fusion layer with decision templates, see Table 4.9. Again we calculated a
single DT, 3 TDTs per class and 5 CDTs per class on randomly chosen
training and validation sets utilising the L;-norm as similarity measure.
Error rates are given for six different training and validation set composi-
tions determined by the overlap parameter p.

algorithm p=0.0 p=0.2 p=04 p=0.6 p=08 p=1.0

DT 9.08 7.24 6.70 7.03 7.46 7.35
TDT1 11.24 7.89 7.24 7.03 6.92 7.03
CDT1 9.19 7.14 7.14 6.92 6.27 6.27
DT 17.81 16.52 16.52 15.52 15.02 14.63
TDT1 18.81 17.71 16.82 16.52 16.32 16.32
CDT1 17.61 16.72 15.62 15.72 14.53 13.93

Table 4.9: Classification results for the cricket data set (upper part) and the
katydid data set (bottom part) for different decision template algorithms
and different overlaps of training and validation sets given by several val-
ues of p (see Eq. 3.12). The suffixed number defines S, the number of
decision templates per class to calculate the virtual decision template.

For this feature set composition the TDT fusion scheme did not im-
proved the DT algorithm. However, the CDT fusion scheme improved
the performance of the classifier system. The best classification results for
both families have been achieved with the CDT fusion scheme for p = 1.0.

In order to present classification results for the whole classifier hierar-
chy (see algorithm HOC) we give error rates for the first, the second and
both hierarchy levels together (see Table 4.10). Hereby the overall decision
is wrong if the decision of the first or the decision of the second hierarchy
level is wrong. On that score the overall error rate is always less or equal
than the sum of the error rates of the first and the second hierarchy level.

The results in Table 4.10 are given for the best parameter setting of the
second hierarchy level evaluated in Table 4.9 (see the underlined num-
bers). At this, the FCT fusion scheme is used in the first, and the CDT
approach in the second level of the hierarchy.
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hierarchy layer crickets katydids both families
L1 2.70 2.69 2.70
L2 6.27 13.93 10.25
L1+L2 8.65 16.32 12.64

Table 4.10: Error rates for the Orthoptera data set based on automatically
selected features. Classification results are given for crickets, katydids and
both families by considering the first layer of the hierarchy. Furthermore,
the results for hierarchy level 1 (L1), for hierarchy level 2 (L2) and for both
hierarchy levels together (L1+L2) are shown.

4.7 Summary and Conclusion

In Section 4.1 the sound production of the Orthoptera is described which
reveals significant features for the automated classification. Based on the
knowledge of the sound production in Section 4.2, a hierarchical system
for the classification of Orthoptera species by their sounds is presented.
The classifier system consists of two levels and the extraction of relevant
features in four time scales. Whereas in the first level the family of the Or-
thoptera is determined, in the second level the classification to the species
level is family-specific.

The discrimination power of the individual features is evaluated and
discussed in Section 4.4. To evaluate combinations of feature components,
in Section 4.5 feature components are automatically selected by the se-
quential forward selection algorithm for multiple classifiers. For cricket
species we have shown, that the feature compositions that are used in tra-
ditional bioacoustics (the pulse distances (D), the pulse length (L) and the
pulse frequencies (F)) are significant features for the automated classifi-
cation to species level as well (see Figure 4.28 and Section 4). The same
observation we have made for katydid species in which similar features
exposed to be discriminative to classify to species level (see Figure B.1 to
Figure B.4).

The experimental results of Section 4.6 show performance improve-
ments due to:

1. the extraction of features in several time scales (see Table 4.2),

2. learning the decision fusion mapping with decision templates (see
Table 4.7),
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3. using the sequential forward selection algorithm to derive feature
sets for multiple classifiers (see Table 4.8) and

4. using the CDT algorithm to increase the expression power of the fu-
sion layer (see Table 4.9).

All these modifications bring the MCS a step closer to the real problem of
classifying bioacoustic time series.
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Figure 4.30: The classifier outputs C(x(3)) = (C1(x())), ...,C51(x())), 7 =
1,...,86 of the species Aclodes chamocoru (w = 3) shows confusions to three
other species w = 8, w = 18 and w = 24 which alternate between these
species.

In the following we exemplify the performance gain of the CDT ap-
proach in the temporal domain by analysing the temporal structure of
local classifier decisions that are derivated from bioacoustic time series.
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Figure 4.30 for example shows the classifier outputs for one individual of
the cricket species Aclodes chamocoru (w = 3) over time. Hereby it can be
observed, that the classifier outputs show a variety of alternating misclas-
sifications over the whole time series. Confusions are oscillating quasi-
deterministically and appear to the classes w = 8, w = 18 and w = 24.
These confusions arise, because features, e.g. pulse distances (D), show
oscillations over time (see Figure 4.17). Provided that the outputs of the
base classifiers show different characteristic patterns, which is a typical
behaviour in time series classification, the CDT approach may enhance
performance of the classifier system, since a fusion mapping based on
several templates per class allows to learn several characteristic classifier
decisions over time.

The evaluated classifier system is able to discriminate between 53 dif-
terent Orthoptera species; 31 species of the insect family Gryllidae and 22
species of the insect family Tettigoniidae. Hereby the classification error in
the first level of the hierarchy is 2.70 %. In the second level of the hierarchy
we achieved a classification error of 10.25 % by using the CDT approach.
Due to the fact that the errors in the first and in the second hierarchy level
are highly uncorrelated, the error rate of the overall classifier system (see
algorithm HOC) is 12.64 %. In comparison to the species classification
systems presented in Section 1.2, the proposed system is able to identify
a very large number of species. The results are very promising by con-
sidering that the training and test recordings are always recordings from
different species and that a large number of recordings are made outdoors.
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Chapter 5

Synthetic Data

In order to evaluate the proposed fusion schemes for the classification of
temporal sequences in this Section classification results for a synthetic data
set consisting of Gaussian distributions are given. The results of the pro-
posed fusion schemes, particularly the decision template algorithms, are
discussed by considering the structure of this data set.

5.1 Data Set Description

The synthetic data set used in the numerical experiments consists of L = 36
classes, each class with y time series, where each time series (X “(j))jjz 1
is represented by a small cluster of J = 20 feature vectors. Each time
series X* consists of I = 3 feature streams, so X*(3) = (x}'(9),x5(2), x5(9))-
The feature vectors x*(j) € R?, i = 1,2,3 are generated in the following
way: The centers of gravity of the 36 classes are placed on a regular 6 x 6
2D-grid with a feature dependent distance d} in z- and y-direction (see
Figure 5.1).

Then the x centers of gravity of the time series are regularly placed
on the sphere with radius d; around the center of gravity of the corre-
sponding class. All J feature vectors x!'(j) € IR? of each feature stream are
randomly generated through a 2D Gaussian distribution function located
in the center of gravity of the y-th time series with 0% = 1.0. In Figure 5.1
such a data set is shown, class labels are coded through different grey val-
ues. Figure 5.1(a) shows a data set with L = 36 classes and x = 8 time
series per class. Here the distance parameters d; and d, (see Figure 5.1(b))
for the cluster generation are chosen in such a way that the time series of
all classes are well separated. The data set used in the numerical experi-
ments consists of xy = 20 time series, and has highly overlapping clusters
as depicted in Figure 5.1(c).
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(a) Data set with L = 6 x6 = 36 well
separated classes and with x =
8 time series per class, each with
J = 20 feature vectors (d; = 10,
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(b) Data generation based on the (c) Data set used in the experi-

distance parameters (d, d2) ments with L = 36 highly overlap-
ping classes, x = 20 time series per
class, (d1 = 2.0, d} = 0.65,d5 = 0.77,
d3 =0.89).

Figure 5.1: Synthetic data set consisting of time series of Gaussian dis-
tributed feature vectors. The individual time series of a single class are
regularly placed on the sphere.
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5.2 Experiments and Results

For the experiments with the synthetic data set we used the & fold cross-
validation procedure (see Section 3.7) with k = 20 cycles. 19 time series
of each class have been used to train the overall classifier ensemble and
one time series per class has been used for the classification test. In the
numerical evaluation one cross validation test has been made.

The evaluation of single features was achieved by considering the clas-
sification results of the individual feature streams x;, x, and x3. Local and
temporal fusion was accomplished by the FCT fusion architecture (see Fig-
ure 3.4(b)) with averaging for the temporal integration. Fuzzy-K-nearest
neighbour classifiers are used to calculate local decisions, each of them
gets single feature as input.

The classification performance of the individual feature streams x;, x;,
and x; of the synthetic data set is rather weak (= 96 % error rate). Com-
bining these features with data fusion (= concatenation of feature vectors)
leads to a significant improvement of the classification results, e.g. for
combinations of two features (x1,x3), (x1,x3) and (x;,X3) the error rates
decreased to the range of 65.14 % to 75.56 % and for the combination of all
three features (x1, X, X3) the error rate decreased to 25.56 %, see Table 5.1.

feature error in %
(x1) 96.94
(x2) 96.45
(x3) 96.25
(x1,X2) 75.56
(X17 X3) 68.47
(%2, %3) 65.14

(X1, Xy, X3) 25.56

Table 5.1: Error rates for the synthetic data set based on single features
(x1), (x2) and (x3), pairs of features (x1,x;), (x1,%3), and (xp,x3), and all
three features (xi, X2, x3). Local and temporal fusion is performed by the
FCT architecture.

This huge performance improvement is due to the fact that the indi-
vidual feature streams have been calculated on independent distributions
which leads to a high diversity between the individual base classifiers (see
discussion in Section 3.2 and [ D.

In the following, results for the two remaining static fusion architec-
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tures: the CFT and the CTF architecture proposed in Section 3.4 are pre-
sented. Three different feature set compositions (see Table 4.4) are con-
sidered to evaluate the classification performance of static and adaptive
combining paradigms. This means, that in feature set composition A:
(x1), (x2), (x3) three classifiers C', C?> and C® are combined, each of them
gets single features as input (C! on (x;), C? on (x;) and C° on (x3)). For fea-
ture set composition B pairs of features (x1, x2), (x1,X3), (X2, X3) are used to
build the individual classifiers C', C> and C3, whereas in feature set com-
position C: (x1,X,,x3) a single classifier C is based on all three features
(X1, X2, X3).

The lowest error rates with static combining paradigms have been achie
ved with feature set composition C (error rates in the range of 24.03 to
34.17 %) which are significantly better than the results with feature set
composition A and B (see Table 5.2). For the most combinations of aggre-
gation rules the CFT architecture outperformed the CTF fusion scheme.
However, for both fusion architectures and all feature set combinations

arch. feature  4yp  AVR AVR PF  PF PF_ VOT VOT VOT
comp. AVR ~PF VOT AVR PF VOT AVR PF  VOT
A 85.56 86.67 85.69 80.97 80.97 80.14 89.58 89.86 92.08
CFT B 41.53 40.28 47.92 3472 33.75 4222 51.81 51.81 64.72
C 25.56 24.03 34.03 25.69 24.03 34.03 34.03 34.03 34.03
A 85.56 94.72 89.31 82.22 93.19 86.25 96.94 96.67 94.44
CTF B 41.53  52.64 51.11 3833 44.31 5542 62.92 61.81 65.28
¢ 25.56  24.03 34.03 25.56 24.03 34.03 25.56 24.03 34.17

Table 5.2: Classification results for the synthetic data set by using the CFT
and the CTF architecture and different aggregation rules. Here ¢ denotes
that decision fusion is applied with aggregation operator a whereas the
temporal combination is applied by aggregation operator b. Averaging
(AVR), voting (VOT) and the probabilistic function (PF) have been applied
as aggregation operators. A, B and C are the feature set compositions as
defined in Table 4.4.

the classification performance of simple average fusion (4%4) could be in-

creased by using the probabilistic function (P F’) for decision fusion and for
the temporal integration as well. But, the combination with majority vot-
ing (VOT) has not performed as good as the combination with averaging
and the probabilistic function. The best classification results (24.03 % error
rate) have been achieved with the probabilistic function for the temporal
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combination (see the underlined numbers in Table 5.2).

To examine the influence of the second level training to the classifica-
tion power of the classifier ensemble in Table 5.3 the error rates for the
adaptive fusion paradigms discussed in Section 3.6 are given. We applied
the AM, the DT, the NB fusion schemes and the pseudoinverse solution
(PT) on 19 randomly chosen training and validation sets. For the DT fusion
scheme the Euclidean distance is used as similarity measure (see Eq. 3.33).
Additionally, in Table 5.3 the error rates are presented for different train-
ing and validation set compositions that are determined by the overlap
parameter p (see Eq. 3.12).

alg. feature p=0.0 p=02 p=04 p=06 pP=08 p=1.0
comp
A 87.22 85.83 85.28 84.72 84.44  83.61
AM B 3750 36.11 35.83 36.39 35.83  36.39
C 33.61 31.39 29.17 2750 2556  25.00
A 78.06 7889  79.17  79.17  79.72  80.56
DT B 17.22  20.83 2278 2556  30.28  32.78
C 13.33 1472 1889 21.11 22,50  26.11
A 89.17  89.17 87.78 88.33  86.67  89.72
NB B 56.39  55.83  53.89  50.00 47.78  49.31
C 33.33  31.39  31.39 3250 33.61  35.42
A 81.94 8389 8500 85.56 86.39  87.50
PI B 41.67 4222 4278  43.33  45.00  47.22
C 35.83 3278  33.06 3444 3500  37.22

Table 5.3: Error rates for adaptive fusion paradigms for different compo-
sitions of the training and validation sets and different feature set compo-
sitions for the base classifiers. Training and validation set compositions
have been determined by the parameter p. AM denotes the associative
memory, DT denotes the decision template, NB denotes the naive Bayes
combination and PI denotes the pseudoinverse solution. A, B and C are
the feature set compositions as defined in Table 4.4.

Because of the fact that under several requirements discussed in Sec-
tion 3.5.2 the DT fusion scheme utilising the normalised correlation as
similarity measure is equivalent to the CFT architecture the bold error
rates in Table 5.2 are well comparable to the error rates of the trainable
fusion schemes, since in both approaches averaging is used for the tempo-
ral integration.
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For the discussion of the classification results in Table 5.3, Section 3.6
reveals important links between the individual fusion schemes. Due to
the fact that for this data set the number of time series per class w € (2
in the validation set DV is constant, the linear heteroassociative memory
(AM) and the decision template fusion scheme using the normalised cor-
relation as similarity measure (see Eq. 3.34) are equivalent (see Eq. 3.53).
Classification results for both fusion schemes are given in Table 5.3, line
AM.

feature

alg. p=0.0 p=02 p=04 p=0.6 pP=08 pP=1.0
comp
A 30.56  31.67 3444  34.72  35.83  36.94
TDT1 B 6.11 6.11 7.50 8.61 10.83 14.17
C 9.44 10.56 10.83 13.33 14.72 16.11
A 31.94 33.61 35.28 37.22 39.44 40.83
TDT2 B 6.94 6.11 9.17 10.28 12.22 14.72
C 10.28 9.44 10.83 12.50 13.89 16.11
A 36.39  38.06 38.06 37.78 41.39  43.61
TDT3 B 7.22 7.22 9.44 10.56 12.78 15.56
C 9.72 9.44 11.39 12.78 13.89 16.11
A 45.83 50.56 48.06 53.06 52.78 55.00
CDT1 B 18.61 20.00 19.44 22.22 23.89 26.11
C 21.94 18.61 14.44 16.67 18.89 18.33
A 56.39  57.50  59.72  60.56  60.00  63.06
CDT3 B 20.00 19.17 2028  20.56  22.78  26.39
C 16.11 14.72 13.61 16.39 18.33 18.33
A 65.00 6444 66.67 66.11 68.89  68.06
CDT2 B 19.17 18.33 20.28 21.94 23.61 26.11
C 16.67 13.61 14.72 16.67 17.22 18.89

Table 5.4: Error rates for the TDT and the CDT algorithm for different
compositions of training and validation sets and different feature set com-
positions for the base classifiers. Training and validation set compositions
have been determined by the parameter p. The suffixed number defines S,
the number of decision templates per class to calculate the virtual decision
template. A, B and C are the feature set compositions as defined in Table
4.4.

For this data set for each feature set combination A, B and C the linear
associative memory (AM) shows a quite robust classification performance.
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Nevertheless, the DT fusion scheme with the L,-norm as similarity mea-
sure significantly outperformed the AM, the NB and the PI fusion scheme,
even for each value of p and each feature set combination A, B and C. Un-
fortunately, the error rates of the naive Bayes combination for this data set
are even higher than the error rates of the static combining schemes given
in Table 5.3.

The classification results of adaptive fusion schemes with a single ma-
trix operator (see Table 5.3) can be further improved by the TDT and the
CDT algorithm (see Table 5.4). The best results (6.11 % error rate) have
been achieved with the TDT algorithm, by using feature set composition
B, one decision template per class to calculate the virtual decision tem-
plate, e.g. S = 1 and p = 0.0 where the training set D and the validation set
DV are disjoint. In comparison to all other fusion schemes, e.g. CFT, CTF,
AM, DT, PI and CDT which revealed the best classification performances
for feature set composition C, the TDT algorithm revealed the lowest error
rates for feature set composition B.

5.3 Discussion

The basic conclusion of our experiments is, that the multiple decision tem-
plate approach can improve the performance of the classifier system. In
our numerical experiments with the synthetic data set the TDT and the
CDT fusion scheme outperformed the standard DT approach significantly.
Each of the adaptive fusion schemes is sensitive to training and validation
set compositions, varied with the parameter p in our experiments. The
TDT and the CDT fusion scheme seem to be also sensitive to the param-
eter S which determines for each class the number of decision templates
to select (see algorithm CFTBYMDT). In our experiments with the syn-
thetic data set and the bioacoustic data set [ ], the classification per-
formance of TDTs and CDTs for S = 1,...,3 is robust. But, it has to be
considered that for S = 1 the reliability of the virtual decision template is
rather low, since it is based on a single decision template per class. Increas-
ing S leads to a higher reliability of the virtual decision template, whereas
for S = K the TDT and the DT fusion schemes are equivalent.

Most of the classification results in Table 5.1, 5.2, 5.3 and 5.4 are evident
by considering the structure of the data set. At first, we discuss the huge
performance improvement of TDTs in comparison to DTs. This is due to
the fact, that each time series in this data set has 2, 3 or 4 adjacent time
series in each of the three feature spaces (the number of the adjacent time
series depends on its location, see Figure 5.1(a)). During the training phase
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Figure 5.2: Four decision templates of class w = 5. Each decision template
was calculated by the outputs of three classifiers (one classifier per feature
stream). Each row represents the sub-template of a single feature.

of the fusion layer this leads to misclassifications to the classes of the adja-
cent time series. These misclassifications are also reflected in the decision
templates. In Figure 5.2 an example of four TDTs of class w = 5 are given.
Two groups of similar DTs (G1 = {1,2} and G2 = {3,4}) are depicted.
We found, that each group is calculated on validation data of the adjacent
time series of class w = 5 (see Figure 5.3) and that the TDTs contain just
confusions to the classes of the adjacent time series. Group G1 contains
confusions to w = 34 and w = 36 and group G2 contains confusions to
w =21 and w = 33 (see line 1 in the decision templates in Figure 5.2). It is
obvious that averaging all these DTs leads to a decision template which is
quite different to one of the characteristic DTs which may be represented
by each of the two groups.

The same effect (confusions typically appear to a small number of ad-
jacent time series) may be observed by considering the classifier outputs
over time (see Figure 4.30). Obviously, these confusions negatively influ-
ences the classification performance of the naive Bayes fusion scheme, as
the calculation of the label matrices (see Eq. 3.50) is based on crisp clas-
sifier decisions. Therefore, the validation set has to contain a large num-
ber of samples in order to estimate the probabilities of the label matrices.
Since, in the classification phase the estimated conditional probabilities
are multiplied a single zero in the label matrix can lead to the combined
probability estimate zero (see Eq. 3.52).
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Figure 5.3: Structure of the data set (feature stream x;).

Finally, we want to remember that the CDT algorithm primarily offers
the advantage to learn different characteristic patterns over time. Due to
the fact that for the synthetic data set the feature vectors over time are
generated by a Gaussian distribution and hence the temporal structure
is random, we first assumed no performance improvement of the CDT
fusion scheme according to the DT algorithm. Nevertheless, the CDT
approach outperformed the DT fusion scheme. This performance gain
can be explained by considering the CDT algorithm (see Section 3.5.2) in
which the concatenated classifier outputs of validation data D) for each
class w € 2 are clustered separately to determine multiple decision tem-
plates per class. As the temporal structure of the time series is random
and D) usually contains several time series of class w, the clustering algo-
rithm determines the centers of gravity of the individual time series. In
particular, if the desired number of clusters is set to |[DY|.
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Chapter 6

Summary, Conclusions
and Future Research

6.1 General Nature of this Work

This thesis deals with the classification of bioacoustic time series by utilis-
ing multiple classifier systems. In the course of solving this classification
problem knowledge from traditional bioacoustics reveals significant fea-
tures which have been derivated from the sound production mechanism
of the Orthoptera. New ensemble learning methods are justified by consid-
ering the temporal structure of the acoustic signals.

This reflects the major subjects of this interdisciplinary work, which
mainly includes bioacoustics, pattern recognition and fusion of multiple
classifiers. Whereas the knowledge from bioacoustics allows to make re-
alistic assumptions about the data to be classified, the knowledge from
pattern recognition allows to use applicative classification procedures. By
using feature selection algorithms we additionally evaluated feature set
compositions and found, that the most discriminative features are mo-
tivated by the sound production mechanism of the Orthoptera, and that
these feature also have been used in traditional bioacoustics for the classi-
fication of cricket species [ ].

6.2 A Survey of Major Results

In the following a survey of major results is graduated by the Chapters of
this thesis. Chapter 1 “Introduction” is excluded in this context, because it
gives a motivation and refers related work.

Chapter 2 “Classification Methods”: A review of the utilised classification
methods, e.g. radial basis function (RBF) neural networks, nearest neigh-
bour classifiers and learning vector quantisation is given. New methods to
initialise the kernel parameters (centers and widths) of RBF networks by
classification tree algorithms are proposed [ ]. In contrast to the meth-
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ods developed by KUBAT [ ] in which decision tree regions are used
to calculate the kernel parameters, our methods also take the data points
within a particular region into account in order to calculate the RBF cen-
ters and the RBF widths. The proposed algorithms have also been applied
to initialise the RBF kernel parameters in three phase learning schemes for
RBF networks [ ]. To introduce well-established methods for time
alignment and the classification of temporal sequences these algorithms
are described.

Chapter 3 "Multiple Classifier Systems”: This Chapter deals with static
and adaptive methods for the combination of multiple classifiers. In par-
ticular, these methods have been adapted for the classification of temporal
sequences. Three static fusion architectures, the FCT, the CFT and the CTF
architecture have been proposed [ , I

By considering an adaptive fusion mapping for the combination over
the feature space, we proposed to train the first fusion mapping of the CFT
architecture with the decision template algorithm (see algorithm CFT-
BYMDT). In contrast to the well known DT algorithm this allows to clas-
sify temporal sequences. Nevertheless, the expression power of the DT
algorithm is limited, since for each class there is only one decision tem-
plate. In order to increase the expression power of the fusion layer we
proposed two new adaptive fusion schemes, the TDT and the CDT algo-
rithm, to calculate multiple decision templates per class [ , I
Both methods increased the expression power of the fusion layer by inte-
grating time series specific and temporal information into the fusion layer.
Due to the fact that under particular conditions the decision template fu-
sion schemes are equivalent to the CFT architecture, the influence of the
adaption of the fusion layer to the performance of the classifier system can
be estimated (see discussion in Section 3.5.2).

By assuming the normalised correlation as similarity measure, the DT
approach is discussed in the context of well established supervised neu-
ral network training schemes, e.g. the pseudoinverse matrix, the linear
associative memory and the naive Bayes combination. The main ingredi-
ent of the discussed fusion schemes is the confusion matrix that describes
the uncertainty of the regarding classifier. We found, that for each fusion
scheme the confusion matrix is normalised in a different way. Hereby, fu-
sion with decision templates is equivalent to the combination with the lin-
ear heteroassociative memory if the validation set contains for each class
the same number of feature vectors. Furthermore, we showed, that for
crisp classifiers the naive Bayes combination is very similar to the com-
bination with the pseudoinverse matrix, regarding the coefficients of the
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matrix operators.

Chapter 4 ”Orthoptera Bioacoustics”: This Chapter is concerned with the
automated classification of Orthoptera species by their songs. Due to dif-
ferent sound structures for the two families (crickets and katydids) the
classifier system consists of a hierarchy which is derivated from the bio-
logical systematics. It consists of two levels (a family level and a species
level) and the extraction of relevant features in several time scales.

Major contributions of this Chapter are: (a) a detailed description of
the extraction of relevant features, (b) the motivation of these features by
taking the sound production mechanism of the Orthoptera into account, (c)
a signal segmentation algorithm for the detection of pulses in several time
scales (see also [ 1), (d) the evaluation of the individual features by
the rank distribution, (e) the evaluation of feature set compositions with
the sequential forward selection algorithm for multiple classifiers and (f)
a software package for the automated feature extraction and classification
of Orthoptera species.

In comparison to other species identification systems (see Section 1.2)
our system differs due to the large number of species which can be recog-
nised. The classification results are very promising by considering that the
recordings in the training set and the recordings in the test set are always
from different individuals and that a large number of recordings are made
outdoors. The results firmly support that the CDT algorithm improves the
classification performance if the classifier outputs over time are structured
and therefore can be represented through multiple decision templates (see
discussion in Section 4.7).

Chapter 5 "Synthetic Data”: This Chapter presents a description and re-
sults for a synthetic data set consisting of Gaussian distributions with con-
fusions to adjacent classes for the whole time series. The temporal struc-
ture of the time series is random. Due to the fact that the expression power
of the DT fusion layer is not sufficient to represent the classifier outputs of
all time series of a single class, the multiple decision template algorithms
outperformed the DT fusion scheme. The behaviour of the TDT and the
CDT algorithm is discussed by considering the structure of the synthetic
data set.

Chapter 4 and Chapter 5: The basic conclusion of our experiments is that
adaptive fusion methods can increase the expression power of the fusion
layer which may lead to a significant performance improvement of the
classifier system. By increasing the number of decision templates, the ex-
pression power of the fusion layer was anymore increased. The results in
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all our numerical evaluations showed, that the standard decision template
algorithm is a very robust fusion scheme which is conform with the results
published in [ ]. The TDT and the CDT fusion schemes can be pow-
erful techniques, in particular for time series classification. TDTs perform
well if confusions for the whole time series alternate between several ad-
jacent classes (see Chapter 5), whereas CDTs improve the performance of
the classifier system if confusions alternate between several classes over
time which is the case for quasi-deterministically oscillating time series
(see discussion in Section 4.4).

All adaptive fusion schemes proposed in this thesis are sensitive to
training and validation set compositions, varied with the parameter p in
our experiments. The multiple decision template fusion schemes seems to
be also sensitive to the parameter K which determines the number of deci-
sion templates for each class and the parameter S determining the number
of selected decision templates for each class (see Algorithm 3.7). For the

synthetic data set (see Table 5.4) and the bioacoustic data set (see [ D
the classification results firmly support, that both algorithms are robust to
the parameters S and K. A detailed discussion can be found in [ 1.

As the multiple decision template algorithms are intuitive, one can
observe the classifier outputs over time (see Figure 4.30) and the feature
space (see Figure 5.3) to find out, if these methods are applicable for a
specific application.

6.3 Open Problems and Future Work

Not surprisingly, many open problems arise from our research. Whereas
the open problems in the field of bioacoustics depend on requirements to
the classifier system, the open problems in the field of classifier fusion are
methodically.

One of the next goals in the DORSA project is to classify and monitor
the tropical biodiversity of a particular region by analysing the spectrum
of insect sounds in this region. In order to recognise the Orthoptera species
of a particular region, the classifier system has to be adapted to be used
in fully automatic environmental monitoring applications. For this task,
a pre-processing step, separating the audio sources should be integrated
to classify simultaneously singing individuals [ ], e.g. using inde-
pendent component analysis [ ]. These individuals may be from
the same species ! or from different species.

Crickets and katydids tend to call in choruses with hundreds of individuals of the
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Although the classifier system has been successfully tested for a data
set of 53 species, the number of species should be increased. In particular,
species which are reliable biodiversity indicators should be included to the
data set. This allows the utilisation of the classifier system to estimate trop-
ical biodiversity. To deal with a very large number of species, the classifier
system has to be expanded. In this context further biological investiga-
tions together with further research in the field of classifier fusion, neural
networks and automated feature selection is a promising interdisciplinary
approach. Solutions to deal with such a large number of species may be
to expand the hierarchy or to find further discriminative features. Here it
seems important to me to apply automated feature selection together with
further biological research.

Many of such feature selection algorithms have been studied in single
classifier approaches, however for multiple classifier systems only a few
methods are known to determine reliable feature sets for the individual
base classifiers [ , , ]. In particular, for adaptive fusion
schemes, where the fusion layer has to be calculated. Here, the overall
classifier architecture (base classifiers and fusion layer) has to be calculated
for each feature selection step which is very time consuming.

But, the task of feature selection and evaluation can be displaced to the
fusion layer. Simple combining schemes could be extended to take the sig-
nificance of the individual features into account. For example, the decision
template approach could be extended by weighting coefficients. If, for ex-
ample, one weighting coefficient for each row of the decision template is
used, each weighting coefficient determines the influence of the regarding
feature to the overall classifier system. These weighting coefficients may
be trained in the second training step together with the fusion layer, or
separately in a third training step.

same species.
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Kapitel 7

Zusammenfassung

Die Artbestimmung von Tieren anhand ihrer LautdufSerungen ist eine ele-
mentare Herausforderung, um die Bioakustik einzelner Arten zu erfor-
schen. Viele vorausgehende Untersuchungen basieren auf der manuellen
Auswertung von Signalparametern, die durch den Experten aus Spektren,
Sonogrammen und Amplitudenverldufen gewonnen worden sind. Darauf
basierend wurden in den letzten zehn Jahren Systeme entwickelt, um die
akustischen Signale der Tiere automatisch auszuwerten und zu klassifizie-
ren.

In der vorliegenden Arbeit wird ein Gesangserkennungssystem zur
Klassifikation bioakustischer Zeitreihen vorgestellt, welches exemplarisch
zur Klassifikation von Orthopteren (Grillen und Laubheuschrecken) einge-
setzt wird. Das Erkennungssystem ist in C/C++ implementiert und kann
daher auf einem tragbaren Computer angewendet werden, um auf der Ba-
sis eines einzelnen Gesanges die Familie und die Art des Individuums au-
tomatisch zu bestimmen. Das System baut auf einem Mehrklassifikatorsy-
stem auf, da sich in vielen Anwendungen gezeigt hat, dass die Performanz
von Einzelklassifikatoren durch die Verwendung mehrerer Klassifikatoren
und deren Fusion verbessert werden kann.

Diskriminative Merkmale fiir die Familien- und Artbestimmung lassen
sich fiir Orthopteren aus dem Aufbau der artspezifischen Stridulationsor-
gane und aus dem physikalischen Prozess, durch den die Signale erzeugt
werden, ableiten. Zusétzlich werden jedoch Merkmalsselektionsverfahren
wie Sequentielle Vorwiirts Selektion eingesetzt, um geeignete Merkmalskom-
binationen fiir die Einzelklassifikatoren zu bestimmen. Dieser interdiszi-
plindre Ansatz erlaubt es einerseits realistische Annahmen {iber die aku-
stischen Signale zu machen und andererseits geeignete Klassifikationsme-
thoden zu finden.

Der methodische Schwerpunkt der Arbeit besteht in der Integration
lokaler Klassifikatorausgaben aus verschiedenen Merkmalsrdumen und
deren temporaler Fusion. Statische Fusionsmethoden, bei denen die Klassi-
fikatorausgaben durch eine statische Abbildung kombiniert werden, und
adaptive Fusionsmethoden, bei denen die Fusionsabbildung in einer zusétz-
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lichen Trainingsphase adaptiert wird, werden vorgestellt und diskutiert.
Ublicherweise wird fiir die zusitzliche Trainingsphase eine Menge von
Merkmalsvektoren (Validierungsdatensatz) klassifiziert, um die Fusions-
abbildung anhand der Klassifikatorausgaben zu berechnen.

Der Decision Template Ansatz ist ein intuitives, adaptives Fusionsver-
fahren, welches zur Klassifikation von statischen Objekten anhand meh-
rerer Klassifikatorentausgaben herangezogen wird. Ein Decision Template
reprdsentiert hierbei die gemittelten Klassifikatorausgaben fiir alle Merk-
malsvektoren einer Klasse aus dem Validierungsdatensatz. Die Fusions-
abbildung wird unter Verwendung einer Verwechslungsmatrix, die in der
zusétzlichen Trainingsphase berechnet wird, adaptiert. Da einige iiber-
wachte neuronale Lernverfahren wie linearer Assoziativspeicher, Naive Bayes
Fusion und Pseudoinverse Matrix beziiglich der Klassifikatorfusion auf der
gleichen Idee basieren, werden in dieser Arbeit Ahnlichkeiten zu diesen
Methoden diskutiert.

In einigen empirischen Studien hat sich gezeigt, dass gerade adap-
tive Fusionsverfahren, insbesondere die sogenannten Decision Templa-
tes robuste und performante Methoden zur Kombination mehrerer Klas-
sifikatoren darstellen. Bei der Klassifikation von Zeitreihen weisen die-
se jedoch Schwichen auf, da im Verlauf der Erkennung einer einzelnen
Zeitreihe typischerweise Verwechslungen mit mehreren Klassen auftre-
ten, die durch Standard Decision Template Methoden nicht hinreichend
reprasentiert werden konnen.

Um die Variation der Klassifikatorausgaben besser zu représentieren,
werden mehrere Decision Templates pro Klasse benétigt. Ausgehend von
dieser Idee werden zwei neue Methoden vorgestellt, um mehrere Templa-
tes pro Klasse zu berechnen.

Beim Temporal Decision Template (TDT) Ansatz wird fiir jede Zeitreihe
im Validierungsdatensatz genau ein Decision Template pro Klasse berech-
net, um die Ausdruckskraft der Fusionsabbildung zu erhohen. Deshalb
fithrt der TDT Ansatz bei Klassifikationsproblemen, bei denen die Klas-
sifikatorausgaben der einzelnen Zeitreihen unterschiedliche Muster auf-
weisen, zu einer Verbesserung der Performanz.

Demgegeniiber werden beim Clustered Decision Template (CDT) Ansatz
die lokalen Klassifikatorausgaben geclustert, um reprasentative Decision
Templates fiir eine Zeitreihe zu bestimmen. Lernen von strukturierten tem-
poralen Verwechslungen innerhalb einer Zeitreihe wird durch diesen Al-
gorithmus unterstiitzt.

Die Performanz der vorgestellten Methoden wird in dieser Arbeit un-
ter der Verwendung realer und synthetischer Daten diskutiert.



Appendix A

Feature Evaluation

(a) Impulse distances (D) (b) Impulse distances (D)

(c) Impulse length (L) (d) Impulse frequency (F)
(e) Impulse energy contour (E) (f) Impulse energy contour (E)
(g) TES of impulses (T) (h) Maximal amplitude of impulses (A)

Figure A.1: Evaluation of features extracted from 5 consecutive impulses
of katydid species (TS1). Whereas the first bin of the x-axis shows the
classification accuracy, the other bins show the classification rate for the
individual ranks. The number of ranks is given by the number of classes.
For more details about the feature evaluation see Section 4.4.
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(e) Impulse energy contour (E) (f) Impulse energy contour (E)
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(g) TES of impulses (T) (h) Maximal amplitude of impulses (A)

Figure A.2: Evaluation of features extracted from 21 consecutive impulses
of katydid species (TS2). Whereas the first bin of the x-axis shows the
classification accuracy, the other bins show the classification rate for the
individual ranks. The number of ranks is given by the number of classes.
For more details about the feature evaluation see Section 4.4.
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o 5 10 15 20 25 o 5 10 15 20 25

(a) Syllable distances (D) (b) Syllable distances (D)
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(c) Syllable length (L) (d) Syllable frequency (F)
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o 5 10 15 20 25 o 5 10 15 20 25
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(e) Syllable energy contour (E) (f) Syllable energy contour (E)

o 5 10 15 20 25 o 5 10 15 20 25

(g) TES of syllables (T) (h) Maximal amplitude of syllables (A)

Figure A.3: Evaluation of features extracted from 5 consecutive syllables
of katydid species (TS3). Whereas the first bin of the x-axis shows the
classification accuracy, the other bins show the classification rate for the
individual ranks. The number of ranks is given by the number of classes.
For more details about the feature evaluation see Section 4.4.
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o 5 10 15 20 25 o 5 10 15 20 25
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(e) Syllable energy contour (E) (f) Syllable energy contour (E)
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(g) TES of syllables (T) (h) Maximal amplitude of syllables (A)

Figure A.4: Evaluation of features extracted from 3 consecutive syllables
of katydid species (TS4). Whereas the first bin of the x-axis shows the
classification accuracy, the other bins show the classification rate for the
individual ranks. The number of ranks is given by the number of classes.
For more details about the feature evaluation see Section 4.4.
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Feature Selection
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Figure B.1: Feature selection for katydids to species level with SESM. The
Figure shows automatically selected feature components of time scale 1
for each step of the feature selection procedure. Furthermore, the classifi-
cation error for the combination of four time scales is given for each step
of the feature selection procedure. Three different brightness values have
used, each of them is assigned to a specific classifier. For more details see
Section 4.5.
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Figure B.2: Feature selection for katydids to species level with SESM. The
Figure shows automatically selected feature components of time scale 2
for each step of the feature selection procedure. Furthermore, the classifi-
cation error for the combination of four time scales is given for each step
of the feature selection procedure. Three different brightness values have
used, each of them is assigned to a specific classifier. For more details see
Section 4.5.
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Figure B.3: Feature selection for katydids to species level with SESM. The
Figure shows automatically selected feature components of time scale 3
for each step of the feature selection procedure. Furthermore, the classifi-
cation error for the combination of four time scales is given for each step
of the feature selection procedure. Three different brightness values have
used, each of them is assigned to a specific classifier. For more details see
Section 4.5.
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Figure B.4: Feature selection for katydids to species level with SESM. The
Figure shows automatically selected feature components of time scale 4
for each step of the feature selection procedure. Furthermore, the classifi-
cation error for the combination of four time scales is given for each step
of the feature selection procedure. Three different brightness values have
used, each of them is assigned to a specific classifier. For more details see
Section 4.5.



Appendix C

Parameters
Algorithm crickets / katydids
Pulse segmentation U = 0.454 ms (20 samples)

V =7.256 ms (320 samples)
W =22.67 ms (1000 samples)
1 = 2.267 ms (100 samples)
a=2.00
~=0.15
£=42
¢(=0.15
Kmin = 2
Kmaz = 0

Filter-bank analysis V' =500 ms (22050 samples)
g=1
f1=3000 Hz
fp =19000 Hz
b =2000 Hz

J

Pulses A
Pulse distances D=

b

Pulse length D=5

Table C.1: The parameters for pulse segmentation (upper part, Sec-
tion 4.2.4) and feature extraction (lower part, Section 4.2.5) from Orthoptera
sounds. The parameter /A determines the number of pulses inside a single
sliding window (see Figure 4.16).



162 Parameters

Algorithm crickets
Filtering fmaz = 7300, f, = 2830
Pulse segmentation U = 2.7 ms (80 samples)

V' =29.02 ms (1280 samples)
W =22.67 ms (1000 samples)
1 = 2.267 ms (100 samples)

a =230
~v=0.15
£=062
¢=2.00
Rmin = 2
Kmaz = 0
Pulses A=5
Pulse distances D=4
P2 =0.00
Pulse length D=4
Py = 0.00
Frequency contour V =136 ms
a=05
D=5
G=1
$=5
o=0
Pulse frequency D' =4
Energy contour 1 V =136 ms
a=05
D =20
G =
Energy contour 2 V =1.36 ms
a=0.1
B=12
D =20
G=1
Time encoded signals ri=(0,1,...,4)
2 = (35, 250 -r 33)
G=4

Table C.2: The parameters for pulse segmentation (upper part, Sec-
tion 4.2.4) and feature extraction (lower part, Section 4.2.5) from cricket
sounds. The parameter /A determines the number of pulses inside a single
sliding window (see Figure 4.16).
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Algorithm katydids
Time scale  TS1 TS2 TS3 TS4
Filtering fmaz = 15000, f, = 5660
P. segm. U=0227ms U=0227ms U =317ms U=9.07ms
V=3628ms V =3628ms V =5079ms V =145.1ms
W=227ms W=227ms W =136.0ms W =136.0ms
P =2267ms Y =2267ms Y=2267ms 1 =2.267ms
a=2.00 a=2.00 a=215 a=1.90
v=0.15 v=0.15 v =0.05 v=0.03
£=42 §=42 £=62 £ =200
(=015 ¢(=0.15 ¢=0.12 (=017
Rmin = 2 Rmin = 2 Rmin = 2 Rmin = 2
Kmaz = 0 Kmaz = 0 Kmaz = 0 Kmaz = 0
Pulses A=5 A=21 A=5 A=4
P. distances D =4 D =20 D=4 D=3
ph =0.01 phy =0.01 p =0.03 p =0.03
P.length D=4 D=4 D=4 D=3
Py, =0.01 Py, =0.01 Py, =0.03 Py, =0.03
Frequency c. V =1.36 ms V =136 ms V =136 ms V =136 ms
a=05 a=05 a=05 a=05
D=5 D=5 D=5 D=5
G=1 G=1 G=1 G=1
=5 =5 =5 $»=5
oc=0 oc=0 oc=0 oc=0
P. frequency D' =4 D' =4 D' =4 D'=3
Energyc.1 V =0.45ms V =0.45ms V =3.17ms V =9.07 ms
a=0.5 a=0.5 a=0.5 a=0.5
D =10 D =10 D =10 D =15
G=1 G=1 G=1 G=1
Energyc.2 V =0.45ms V =0.45ms V =3.17ms V =9.07 ms
a=0.1 a=0.1 a=0.1 a=0.1
B=038 B=038 B=038 B=038
D =10 D =10 D =10 D =15
G=1 G=1 G=1 G=1
TES ry = (k’)izo ry = (k’)izo ry = (k’)izo ry = (k’)izo
r2 = (39)i2o r2 = (35)i%0 r2 = (35)i20 r2 = (35)i20
G=4 G=4 G=4 G=3
Table C.3: The parameters for pulse segmentation (upper part, Sec-

tion 4.2.4) and feature extraction (lower part, Section 4.2.5) from katydid
sounds. The parameter /A determines the number of pulses inside a single
sliding window (see Figure 4.16).
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Species of the Dataset

Appendix D

nr. species subfamily rec.
1. Conocephalus discolor Conocephalinae 12
2. Barbitistes ocskayi Phaneropterinae 7

3. Ephippiger ephippiger Bradyporinae 12
4. Ephippiger perforatus Bradyporinae 6

5. Eupholidoptera chabrieri Tettigoniinae 6

6. Isophya kraussii Phaneropterinae 8

7. Isophya modestior Phaneropterinae 8

8. Metrioptera bicolor Tettigoniinae 11
9. Metrioptera brachyptera Tettigoniinae 10
10. Pholidoptera fallax Tettigoniinae 10
11. Pholidoptera macedonica Tettigoniinae 10
12. Platycleis affinis Tettigoniinae 9

13. Platycleis albopunctata Tettigoniinae 12
14. Platycleis intermedia Tettigoniinae

15. Poecilimon artedentatus Phaneropterinae 6

16. Poecilimon chopardi Phaneropterinae 9

17. Poecilimon nobilis Phaneropterinae 10
18. Poecilimon thessalicus Phaneropterinae 12
19. Pterolepis germanica Tettigoniinae

20. Sepiana sepium Tettigoniinae

21. Tettigonia cantans Tettigoniinae

22. Tettigonia viridissima Tettigoniinae 12

Table D.1: The katydid species of the data set including the subfamily and
the number of recordings per species. All recordings have been made in
Europe.
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nr. species subfamily rec. locality
1. Anaxipha tachephona Trigonidiinae 12 EC
2.  Acheta domestica Gryllinae 4 EU
3. Aclodes chamocoru Phalangopsinae 12 EC
4. Cryptacla clandestina Phalangopsinae 7  EC
5. eneopspl Eneopterinae 3 EC
6. eneopsp2 Eneopterinae 5 EC
7. Gryllotalpa ... Gryllotalpidae 5  IN/TH
8.  Gryllus bimaculatus Gryllinae 4 EU
9. Gryllus campestris Gryllinae 8 EU
10. Gymnogryllus angustus Gymnogryllini 3 IN
11. Homoeoxipha lycoides Trigoniini 4 TH
12. Loxoblemmus parabolicus Modicogryllini 7  IN/MA
13. Mogoplistinae DS1 Mogoplistinae 4 TH
14. nemospl Gryllinae 6 EC
15. Oecanthus pellucens Oecanthinae 9 EU
16. Paraclodes cryptos Phalangopsinae 6 EC
17. Pteronemobius heydeni c. Nemobiinae 4 EU
18. Teleogryllus mitratus Gryllinae 6 TH
19. Teleogryllus oceanicus Gryllinae 4 EU/TH
20. triglpl Trigonidiinae 3 EC
21. trigsp03 (high pulse rate) Trigonidiinae 4 EC
22. trigsp03 (low pulse rate) Trigonidiinae 4  EC
23. Trigsp04 Trigonidiinae 8 EC
24. Trigsp06 Trigonidiinae 9 EC
25. Trigsp09 Trigonidiinae 4 EC
26. Trigspll Trigonidiinae 4 EC
27. Trigspld Trigonidiinae 9 EC
28. Trigspl6 Trigonidiinae 12 EC
29. Trigspl7 Trigonidiinae 4 EC
30. Velarifictorus aspersus Modicogryllinae 6  IN/TH
31. Xenogryllus transversus Eneopterinae 6 TH

Table D.2: The cricket species of the data set including the subfamily, the
number of recordings per species and the locality (EU Europe, EC Ecuador,
IN Indonesia, MA Malaysia and TH Thailand).
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