
Universität Ulm
Abteilung Künstliche Intelligenz

Leiter: Prof. Dr. Friedrich W. von Henke

Construction and Deduction
in Type Theories

!()
+,!()+

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Informatik der Universität Ulm

Martin Strecker
aus Darmstadt

1999

Amtierender Dekan: Prof. Dr. Uwe Schöning

1. Gutachter: Prof. Dr. Friedrich W. von Henke

2. Gutachter: Prof. Dr. Susanne Biundo-Stephan

Externer Gutachter: Prof. Tobias Nipkow, PhD

Tag der Promotion: 28. April 1999

Abstract

This dissertation is concerned with interactive proof construction and auto-
mated proof search in type theories, in particular the Calculus of Constructions
and its subsystems.

Type theories can be conceived as expressive logics which combine a func-
tional programming language, strong typing and a higher-order logic. They are
therefore a suitable formalism for specification and verification systems. How-
ever, due to their expressiveness, it is difficult to provide appropriate deductive
support for type theories. This dissertation first examines general methods for
proof construction in type theories and then explores how these methods can
be refined to yield proof search procedures for specialized fragments of the
language.

Proof development in type theories usually requires the construction of a
term having a given type in a given context. For the term to be constructed,
a metavariable is introduced which is successively instantiated in the course
of the proof. A naive use of metavariables leads to problems, such as non-
commutativity of reduction and instantiation and the generation of ill-typed
terms during reduction. For solving these problems, a calculus with explicit
substitutions is introduced, and it is shown that this calculus preserves proper-
ties such as strong normalization and decidability of typing.

In order to obtain a calculus appropriate for proof search, the usual natural
deduction presentation of type theories is replaced by a sequent style presen-
tation. It is shown that the calculus thus obtained is correct with respect to
the original calculus. Completeness (proved with a cut-elimination argument)
is shown for all predicative fragments of the lambda cube.

The dissertation concludes with a discussion of some techniques that make
proof search practically applicable, such as unification and pruning of the proof
search space by exploiting impermutabilities of the sequent calculus.

Acknowledgements

I want to express my gratitude to Prof. von Henke for supporting throughout
the years the work described in this thesis. I want to thank Prof. Biundo
for accepting to act as second corrector. I am particularly grateful to Prof.
Nipkow for agreeing spontaneously to join in as external referee.

Contents

1. Introduction 1
1.1. Background and Applications 1

1.1.1. The Essence of Type Theory 2
1.1.2. Intuitionistic Logic and Type Theory 3
1.1.3. Dependent types . 4
1.1.4. Specifications and mathematical theories 5
1.1.5. Proof Assistants . 8

1.2. Methods . 10
1.2.1. “Construction”: Metavariables 11
1.2.2. “Deduction”: Proof Search 13

1.3. Survey of this thesis . 16
1.3.1. Metavariables . 16
1.3.2. Theory of proof search 20
1.3.3. Pragmatics of proof search 23

2. A Calculus with Metavariables 27
2.1. The Extended Calculus of Constructions 27

2.1.1. Base calculus – Term language 27
2.1.2. Base calculus – Typing 30
2.1.3. Properties of the base calculus 33
2.1.4. Base calculus – Encodings 36

2.2. Introducing Metavariables . 37
2.3. Term calculus with Metavariables 39

2.3.1. Metavariables . 39
2.3.2. Reduction Relations . 42
2.3.3. Properties of the Term Calculus 48

2.4. Proof Problems . 51
2.5. Typing . 56

2.5.1. Typing: Rules and Definitions 57
2.5.2. Some properties of typing 58
2.5.3. Type inference algorithm 62

i

Contents

2.6. Solutions of Metavariables . 70
2.6.1. Instantiations . 70
2.6.2. Verifying instantiations 78

2.7. Functional Representation of Metavariables 81
2.7.1. Definition of the Functional Translation 83
2.7.2. Strong Normalization of the Calculus with Metavariables 88

3. A Sequent Calculus Characterization 91
3.1. Natural Deduction and Sequent Systems 91

3.1.1. Survey . 91
3.1.2. Definition of the systems 93

3.2. Properties of Sequent Systems 97
3.2.1. Correctness . 97
3.2.2. Completeness . 98

3.3. A Measure for Cut Elimination 101
3.3.1. The Lambda-Cube . 101
3.3.2. Facts about Pure Type Systems 105

4. Methods of Proof Search 111
4.1. Introduction . 111
4.2. The Structure of Proofs . 116
4.3. Unification . 119

4.3.1. Unification Problems . 119
4.3.2. First-order unification 121
4.3.3. Higher-order unification 128
4.3.4. Unification of Higher-Order “Patterns” 133
4.3.5. Discussion . 135

4.4. Tableau-Style Proof Search . 138
4.4.1. Sequent Calculus Rules 139
4.4.2. Eigenvariable Conditions 146
4.4.3. Optimizations of Proof Search 148

5. Conclusions 153
5.1. Summary of Results . 153
5.2. Evaluation and Perspectives . 154

A. Appendix 157
A.1. A formulation with de Bruijn Indices 157

A.1.1. Elementary concepts of de Bruijn Indices 157
A.1.2. Term calculus with de Bruijn Indices 158
A.1.3. Typing with de Bruijn Indices 163

ii

Contents

A.1.4. Definition of instantiations using de Bruijn Indices 163
A.2. Proof of Cut Elimination . 165

A.2.1. Proof . 165
A.2.2. Discussion . 174

A.3. Proofs of Miscellaneous Theorems 175

Bibliography 182

Index 191

iii

List of Figures

2.1. Grammar defining the language of ECC 28
2.2. Rules of the calculus ECC . 32
2.3. Coding of logical connectives in ECC 36
2.4. Grammar defining the language of ECC with metavariables . . 40
2.5. Typing rules for Metavariables 57

3.1. Rules of the calculus ECCG . 94
3.2. The Lambda Cube . 102
3.3. Typing rules for the systems of the Lambda Cube 103
3.4. Sort combinations for the systems of the Lambda Cube 104

4.1. First-order unification . 123
4.2. First-order cumulative unification 125
4.3. Lift rule . 131
4.4. Rules of the Tableau calculus 141
4.5. Solutions associated with the Tableau rules 142
4.6. Proof elements of logical connectives and quantifiers 143
4.7. Rules of Proof Transformation System 144

A.1. Grammar defining the language with de Bruijn Indices 158
A.2. Typing rules using de Bruijn Indices 162
A.3. Typing rules for Metavariables using de Bruijn Indices 163

iv

1. Introduction

1.1. Background and Applications

Specification and verification is becoming an increasingly important activity
accompanying the design and development of complex systems. Formal spec-
ification and verification, in particular, permit to attain a degree of precision
that cannot be achieved with informal methods. A more widespread use of
formal techniques is however often hampered by a lack of expressiveness of
specification languages or by insufficient deductive capabilities of verification
environments.

Some advanced type theories are promising candidates for specification for-
malisms, since they combine computational aspects, strong typing and a higher-
order logic within one homogeneous framework. Moreover, essential concepts
such as module, parameterization, refinement and realization of a specification
can be internalized in type theory and thus do not require an extra-logical
treatment.

This thesis contributes to the study of deductive support for type theo-
ries. In order to take advantage of the full expressiveness of the type theoretic
languages under consideration, the investigation starts from a rather broad
perspective. Since fully automated proof procedures can realistically only be
formulated for limited language fragments, appropriate restrictions have to be
imposed in the sequel. Thus, as suggested by the title, this thesis is concerned
with

• construction of entities of the full language in a way which is sound (in
that it respects typing) and consistent (in that it is in accordance with
evaluation of programs).

• deduction in a more traditional sense, which however is smoothly inte-
grated with the “constructive” aspect and which makes essential use of
techniques developed in the more general setting.

In the following, we will informally present some key concepts of type the-
ories (Sections 1.1.1 to 1.1.4) and proof assistants based on type theory (Sec-

1

1.1. BACKGROUND AND APPLICATIONS

tion 1.1.5), with the purpose of exposing some problems that have to be faced
when trying to develop an appropriate deductive machinery for a specification
and verification environment. In Section 1.2, we will exemplify some of the
solutions that are proposed in this thesis to achieve this aim. Since the imple-
mentation of the Typelab system [vHLS97] provided the initial stimulus for
the present investigation, it will serve as an illustration of the methodology. A
detailed outline of the contents of this thesis follows in Section 1.3.

In order to keep the presentation concrete, this thesis examines more closely
the type theory on which Typelab is based, an extension of the Calculus
of Constructions [CH88]. Some of the questions and problems raised in the
following reappear in a similar form in related theories, possibly even in much
less complex variants such as simply-typed higher order logic. The applicability
of the solutions proposed below thus extends well beyond a narrow range of
specialized logics.

1.1.1. The Essence of Type Theory

Type theory studies the assignment of types to terms. Terms are the expressions
of an (idealized) programming language, usually the λ-calculus, whereas types
denote collections of terms. There is a wide variety of type theories, see the
textbooks [Tho91, Mit96] for a general introduction and [NPS90, Luo94] for
more specialized material.

In some of the more elementary type theories, such as the simply-typed λ-
calculus [Hin97], there is a neat syntactic distinction between terms and types,
which is blurred in more complex calculi such as the one which is the object
of study of this thesis. In any case, type theories usually contain expressions
such as function application (f a) and λ-abstraction λ x : A. M on the term
level and function types A → B on the type level.

Typing judgements of the form Γ � M : A express that term M has type
A in context Γ, where Γ is a list x1 : T1, . . . xn : Tn of variable declarations.
Typing judgements are generated by typing derivations like the following which
express, respectively, that the application of a function f of type A → B to an
argument a of type A yields a term (f a) of type B and that λ x : A. M is a
function of type A → B if variable x is of type A and the function body M is
of type B :

Γ � f : A → B Γ � a : A

Γ � (f a) : B
(→-Elim)

Γ, x : A � M : B

Γ � λ x : A. M : A → B
(→-Intro)

The process of type inference (given Γ and M , determine A with Γ � M : A)
and type checking (given Γ, M and A, determine whether Γ � M : A holds

2

1.1. BACKGROUND AND APPLICATIONS

or not) is well understood. Type inference, for example, can be accomplished
efficiently by first decomposing the term M , applying the type inference rules
backwards in a syntax-directed fashion, and then building up the type of M .

However, the complementary question of inhabitation of a type (given Γ
and A, determine M with Γ � M : A) is still a topic of active research and
constitutes a central theme of this thesis. Given that types can convey an
informative description of a collection of objects (see Sections 1.1.2 and 1.1.4
below), it is not only of theoretical interest to be able to effectively produce
objects satisfying such a description. Obviously, a brute force method which
interleaves enumeration of terms M and type checking is of no practical use,
even though it demonstrates that the set of inhabited types is recursively enu-
merable, since type checking is decidable. Inhabitation of types in simply-typed
λ-calculus is decidable (see [Kle52b]), whereas any of the extensions discussed
in Section 1.1.3 makes it undecidable.

1.1.2. Intuitionistic Logic and Type Theory

The rule for typing function applications, shown above, resembles the rule of
modus ponens in predicate logic. In general, by interpreting the function space
constructor A → B as implication, a natural correspondence can be estab-
lished between propositions of intuitionistic logic and types. When adding
further type constructors, such as Cartesian product A × B and disjoint sum
A + B , other connectives such as conjunction and disjunction can be repre-
sented. (Alternatively, a higher-order encoding as in Section 2.1.4 is possible).
It should be emphasized that it is not reasonable to conceive every type, such
as the specification types discussed further below, as a proposition, but only
certain types belonging to a collection of “propositional” types.

Elements of these types can be understood as proofs of the corresponding
propositions. For example, a proof of A × B is a pair 〈pA, pB〉, where pA is a
proof of A and pB a proof of B . Similarly, a proof of C → D is a function
λ x : C .pD which transforms any proof x of C into a proof pD of D .

This Heyting interpretation of propositions as types, also known as Curry-
Howard-isomorphism, provides a semantics for intuitionistic logic, similar in
spirit to Kleene’s realizability interpretation [Kle52b]. Here, term models re-
place the usual set-theoretic models, so that “provability of A under hypotheses
Γ” is equated to “existence of a term M such that Γ � M : A holds”. An ad-
vantage of this semantics over a Kripke-style semantics of intuitionistic logic
is that it directly carries over to type theories for which no classical set theo-
retic semantics can be constructed [Rey84, Pit87]. Semantic issues will mostly
be disregarded in the following. It should however be kept in mind that the
completeness results of proof search presented in Section 3.2, although given

3

1.1. BACKGROUND AND APPLICATIONS

as “syntactic” equivalence between two calculi, can in this sense be interpreted
as completeness with respect to the above semantics.

The propositions-as-types-correspondence is often cited as one of the princi-
ples underlying program extraction techniques. The general idea is to carry out
a constructive proof of the proposition ∀ x : I . ∃ y : O .P(x , y), where P(x , y)
specifies the input-output behaviour of an algorithm. The resulting proof ob-
ject M : (∀ x : I . ∃ y : O .P(x , y)) can be decomposed into a function f : I → O
and a proof object of the proposition ∀ x : I .P(x , f (x)) which states the cor-
rectness of f with respect to the original specification. Here, we will not pursue
this issue further, see for example [PM89, PMW93, HN88], but also [BBS+98]
for an alternative approach.

The existence of proof objects increases the confidence in the “correctness”
of a proof. Indeed, a simple validation of a proof can be carried out by type
checking the proof object with respect to the proposition it is supposed to
prove. As an extension of this idea, it is possible to attach a certification in the
form of a proof that certain correctness requirements are met to documents or
to software – see for example the concept of “proof carrying code” in [NL96].

The most immediate consequence of the propositions-as-types interpreta-
tion is that proof methods developed for logics can be adapted and extended
to type theories, even for non-propositional types. This correspondence will be
elaborated in detail in this thesis.

1.1.3. Dependent types

Adding type dependencies is one of the principal ways of extending the simply-
typed λ-calculus. The most prominent forms are dependencies of types on types
and of types on terms, which can be combined in various ways. In the following,
some of these dependencies will be discussed. A systematization is provided
by the λ-cube, which is recapitulated in Section 3.3.1 with the purpose of
estimating the strength of the methods of proof search developed in Chapter 3.

The dependency of types on types can be used to model polymorphism. A
standard example of a polymorphic function is the (higher-order) map function
which takes a function f and a list lst and applies f to all elements of lst . As
long as the domain type of f agrees with the type of the elements of lst , it is
immaterial what the exact types of f and lst are. We can therefore abstract
over them, giving map the type ΠA,B : Type.(A → B) → (List A) → (List B).
In this type expression, Π may be read as a universal quantification over types.

Before applying map to values such as a length function on strings and a
list of strings strlst , the type parameters have to be instantiated appropriately.
The function (map String Nat) of type (String → Nat) → (List String) →
(List Nat) can then be applied to arguments length and strlst . Since it is

4

1.1. BACKGROUND AND APPLICATIONS

cumbersome to write down type parameters and type arguments, explicit type
information may be omitted in polymorphic programming languages like ML
[Pau91], Gofer and Haskell [Has97]. It can be recovered through a type inference
algorithm whose main ingredient is a unification procedure on type expressions.
A related idea is implemented in proof assistants such as Lego [LP92, Pol94]
and Typelab. For the types to be inferred, metavariables are introduced and
later solved by unification. More on this topic can be found in Section 4.1.

Girard’s System F [Gir72, GLT89], a subsystem of the polymorphic type
system considered in this thesis, is more complex than the ML type system
since abstraction over type variables can occur “on the left of an implication”,
as in (ΠA : Type.A → A) → B , thus essentially permitting existential quantifi-
cation over types. Indeed, it can be shown that type inference for System F is
not decidable [Wel94]. Furthermore, it is known that classical first-order pred-
icate logic can be embedded into higher-order intuitionistic propositional logic
[Löb76], the logical counterpart of System F. As a consequence, the problem
of whether an arbitrary type of System F is inhabited is not decidable.

The dependency of types on values is most prominent in the coding of intu-
itionistic predicate logic according to the propositions-as-types principle. For
example, in the proposition ∀ x : T .P(x), the type P(x) depends on the value
of x . (∀-abstraction is a notational variant of Π-abstraction that emphasizes
the logical aspect as opposed to the typing aspect).

In the realm of data types, dependency on values can be used to define
families of types like Vect : Nat → Type, where Vect n is, for example, the
type of bit-vectors of length n.

Various embeddings of classical first order into intuitionistic first order logic
are known, such as Gödel’s double-negation embedding [TS96]. Consequently,
intuitionistic predicate logic is undecidable and therefore also the problem of
inhabitation of types corresponding to propositions of intuitionistic predicate
logic.

1.1.4. Specifications and mathematical theories

The Extended Calculus of Constructions (ECC) [Luo90] enriches the Calcu-
lus of Constructions with Sigma types which permit to encode specifications
and mathematical theories. Specifications are not grafted onto the logic by
an external mechanism, but are types, that is, internal objects of the logic.
Elements of specification types can be understood as structures satisfying the
corresponding specification.

A Sigma type Σx : A.B is a generalized Cartesian product A×B in which B
may depend on x . Take, for example, the following description of a monoid: A
monoid is given by a carrier set T , a binary operation op and a constant unit .

5

1.1. BACKGROUND AND APPLICATIONS

The binary operation is associative and has unit as neutral element. These
requirements can be encoded by the following Sigma type

MONOID := Σ T : Type,
Σ op : T → T → T ,
Σ unit : T ,
Σ assoc ax : associative p op.

neutral p op unit

or, similarly, by the following Typelab specification

MONOID :=
SPEC

T : Type,
op : T -> T -> T,
unit : T,
AXIOM assoc_ax : associative_p op,
AXIOM unit_ax: neutral_p op unit

END-SPEC

Here, associative p op stands for all(x,y,z:T) (op (op x y) z)
= (op x (op y z)), and similarly neutral p op unit. Note that this
specification combines type dependencies (op and unit depend on T) and value
dependencies (the axioms depend on op and unit).

This description is satisfied by the natural numbers together with addition
and 0 as neutral element. Together with terms assoc pr and neutr pr which
encode proofs of the properties of associativity and neutrality, an element of
type MONOID can be constructed:

〈Nat , +, 0, assoc pr , neutr pr〉

Again, Typelab offers a more readable notation, which in particular permits
to avoid an explicit mention of proof objects:

STRUCT T:= Nat, op:= +, unit:= 0 END-STRUCT :: MONOID

The coercion of this structure to type MONOID leads to the generation of proof
obligations which can be discharged later on. Proof obligations are represented
by metavariables, introduced in Section 1.2.1 below.

Since specifications are internal objects of the logic, it is possible to pa-
rameterize over specifications by simple function abstraction. For example, a
specification of lists, LIST, can be parameterized over structures with a non-
empty carrier, ELEM, as follows:

6

1.1. BACKGROUND AND APPLICATIONS

ELEM :=
SPEC

T : Type,
t : T

END-SPEC;

LIST := fun(E:ELEM)
SPEC

List : Type,
nil : List,
cons: E.T -> List -> List,
...

END-SPEC;

When strengthening the parameter theory, for example by abstracting over
MONOID instead of ELEM, specialized theorems can be stated and subsequently
be proved. For example, the following theory states that for lists made up of
elements of monoids, the fold function over lists “distributes” over the append
function ++:

LIST_FOLD := fun(M:MONOID)
SPEC IMPORT LIST (MONOID_to_ELEM M) END-IMPORT
THEOREM fold_distr_append:
all(l1,l2:List)
(fold M.op M.unit (l1 ++ l2))

= (M.op (fold M.op M.unit l1) (fold M.op M.unit l2))
END-SPEC;

The use of a THEOREM statement leads to the generation of a proof obligation,
which in turn is represented by a metavariable. The mechanisms described
in Sections 1.2.1 and 1.2.2 below can then be used to discharge the proof
obligation.

Even though specification and refinement of programs is not the central
concern of this thesis, it was one of the driving forces behind the conception of
the Typelab system. In order to put the above example into perspective, let
us briefly compare Typelab with similar language and system developments.

• Like many specification formalisms [Wir86, KBS91, Spe92], Typelab
offers constructs for defining elementary specifications and operators for
manipulating specifications, such as renaming, combination of specifica-
tions and extension of specifications with additional components. The
latter is accomplished with an IMPORT .. END-IMPORT statement,
as shown above.

7

1.1. BACKGROUND AND APPLICATIONS

• In this example, the specification of lists has been parameterized over
structures of type ELEM. It should be noted that lists can as well be de-
fined as polymorphic datatypes, see for example the use in Section 1.1.3.
For a discussion of different kinds of parameterization, see [KBS91]. Pa-
rameterization over structures has the advantage that additional infor-
mation can be conveyed in the parameter type. It has the disadvantage
that coercion functions (such as MONOID to ELEM) have to be supplied,
which adapt parameters (such as M, a MONOID) to the appropriate type
(such as ELEM, the parameter type of LIST).

• Several other systems implement notions such as parameterized specifica-
tion, refinement and realization of specifications etc., for example IMPS
[FGT93], KIV [RSSB98], OBJ [GW88] and Specware [SJ94]. We are not
aware of an implementation other than Typelab where these concepts
have been internalized in the type system or logic.

1.1.5. Proof Assistants

In the following, we will briefly review the development of proof assistants for
type theory. In a broad sense, systems such as PVS [ORS92], IMPS [FGT93]
and logical frameworks in the LCF tradition (Isabelle [Pau94], HOL [GM93])
can be subsumed under this concept, since they are based on a typed lambda
calculus, usually the simply-typed lambda calculus, possibly with some exten-
sions such as predicate subtypes in PVS or type classes in Isabelle. Even though
these extensions can make the calculi quite complex in that proof obligations
have to be generated during type checking (as in the presence of semantic
subtypes) or specialized type checking algorithms are employed [NP95], the
user of such a system is not directly confronted with this complexity. Whereas
much emphasis is laid on theorem proving techniques, for which ample support
is provided, the construction of terms of a particular type is usually not ad-
dressed. Instantiation of existentially quantified variables has to be performed
manually or is handled by (possibly higher-order) unification procedures, but
not by explicit construction.

In a more restricted sense, type theoretic proof assistants aim at supporting
construction of terms of a given type. Usually, the calculi under considera-
tion here are quite complex, so that the activity of proof term construction
encompasses standard theorem proving by the propositions-as-types principle
mentioned above, but may go well beyond that, as for example the incremental
development of a realization of a given specification (see Section 1.2.1).

The first prominent proof assistant for typed lambda calculi was imple-
mented in the Automath project [dB70]. Even though this research made fun-

8

1.1. BACKGROUND AND APPLICATIONS

damental contributions such as a nameless representation of binding structures
(de Bruijn indices, employed in many proof assistants, see also Section A.1)
and a coding of logic in type theory (further developed in the logical frame-
work LF [HHP87]), there currently do not seem to be any direct successors of
Automath.

The Nuprl system [Con86] is an implementation of a predicative version
of Martin-Löf’s type theory. Apart from additions such as quotient types and
semantic subtypes which make the type system inherently undecidable, the
typing rules are presented in a form which is appropriate for proof development,
but not for type checking, since type checking cannot proceed by structural
decomposition of terms. Thus, type checking may lead to proof obligations
requiring the well-formedness of terms or types to be shown. In fact, using the
terminology of Chapter 3, the Nuprl type system is formulated as a sequent
calculus. To each such sequent rule, an extract term is associated which gives
a description of how to build up the witness term of the entire proof once the
proof is finished. We will come back to a discussion of this topic in Chapter 3
and thus will not go into details here. Nuprl provides decision procedures for
specialized theories such as integer arithmetic. General proof search is currently
not supported.

The proof assistants Constructor [Hel91], Coq [Bar98], Lego [LP92] are
based on variants of the Calculus of Constructions. They employ typing rules
in the form of “introduction” and “elimination” rules, as exemplified by the (→-
Intro) and (→-Elim) rules of Section 1.1.1, which directly yield an algorithm
that decides type correctness of a term. Proof development mostly proceeds
by successive application of “introduction” and “resolution” tactics. The in-
troduction tactic corresponds to a backwards application of the introduction
rule, it moves assumptions into the current context. Thus, a goal of the form
Γ � t0 : A → B is transformed into Γ, x : A � t1 : B , where t0 has the form
λ x : A.t1. The resolution tactic can best be compared to a single step in a
Prolog-style proof derivation: Given a goal of the form Γ � t0 : G , where Γ
contains a hypothesis of the form h : A → B , an attempt is made to resolve
A → B against G , by unifying B and G . If unification succeeds, a new goal
Γ � t1 : A is created.

Since the Π type constructor, the dependent analogue of the function space
constructor, permits to encode all logical connectives, the seemingly elementary
introduction-resolution proof style is in fact quite expressive, for a sufficiently
powerful unification procedure. However, this method of proof search is often
unsatisfactory from a practical viewpoint. Therefore, the proof search used in
Typelab (described in Section 4.4) is based on the standard connectives of
logic.

In addition to the introduction and resolution tactics, the Coq system con-

9

1.2. METHODS

tains several specialized tactics, for example for induction, integer arithmetic
etc.

Constructor, Lego and an earlier version of Coq support proof term con-
struction with the aid of metavariables, which are not secure, however, in that
they do not cope with the problems raised in Section 2.2. A mechanism for
securely integrating metavariables in Coq is under development, based on the
theory elaborated by Muñoz [Muñ97] and discussed more in detail further be-
low.

Whereas the degree of automation of proof search is rather low in the sys-
tems mentioned so far, the “introduction” and “resolution” proof style is taken
as the basis for automated proof search in the Elf system [Pfe91a], in extension
of concepts from higher-order logic programming [NM88]. Elf provides a spe-
cialized unification procedure [Ell89] for its underlying logic LF, a dependently-
typed calculus where values may depend on terms, but there is no abstraction
over types.

The Alf system [MN94] is based on a monomorphic type theory, where,
however, variables in abstractions do not carry type annotations, as in the
term λ x .x . This “Curry-style” type theory permits a limited form of polymor-
phism, but also raises particular problems, since types have to be reconstructed
during type checking. Apart from Typelab, Alf is so far the only type the-
oretic proof assistant which incorporates metavariables for proof construction
in a theoretically sound way. The primary method of proof construction is
successive instantiation of metavariables by terms which possibly contain fresh
metavariables; there is however hardly any automation available in the form of
proof search procedures.

1.2. Methods

The above sections have given a motivation for the interest in examining com-
plex type structures, and they have delineated some of the theoretical bound-
aries, such as undecidability of type inhabitation. In order to convey a feeling
for the applicability of the methods developed in the sequel, the following two
subsections will informally discuss some of the techniques that facilitate con-
struction of objects and that are used to carry out proof search in type theories.
These techniques will be analyzed in detail in the remainder of this thesis, with
a stronger emphasis on difficulties and problems from which we largely abstract
in this introduction.

10

1.2. METHODS

1.2.1. “Construction”: Metavariables

In order to construct an element of a given type, a metavariable is introduced
which stands for an as yet unknown object of that type. The metavariable can
be instantiated with an appropriate term which is either a complete solution
or, more interestingly, a term which itself contains metavariables. The process
continues until all metavariables of a partial solution have been instantiated.
Most frequently, an instantiation of a metavariable is not performed explicitly,
but rather occurs behind the scenes as the result of carrying out an operation
on the current proof goal.

We illustrate the principle by an “interactive” construction of an element of
type MONOID, as it would be carried out in Typelab (cf. Section 1.1.4). This
kind of activity is rather far removed from what can be done with a traditional
theorem prover, because the proof obligation is not a proposition, but a type
(in this case a specification). In the course of the development, however, some
propositional subgoals have to be solved.

The initial proof obligation is:

...
|---------------------------------------

?M:MONOID

As a syntactical convention, metavariables are named by identifiers that start
with a question mark. Assumptions are displayed above the stylized turnstile
(currently there are none), the goal itself is shown below it. The global context,
indicated by ... and not shown here, contains definitions such as MONOID.
After unfolding this definition and decomposing the specification, five new
goals are created, one for each component of the specification. The first goal,
for example, is

...
|---------------------------------------

?T:Type

An intermediate solution of the original metavariable is then given by

STRUCT
T:= ?T, op:= ?op, unit:= ?unit,
assoc_ax:= ?assoc_ax, unit_ax:= ?unit_ax

END-STRUCT

Instead of attempting to solve the goals in the given order, we turn to the
second goal:

11

1.2. METHODS

...
T := ?T

|---------------------------------------
?op: T -> T -> T

This second goal contains the definition T := ?T in its local context, so after
expansion of the definition, one obtains the goal ?op: ?T -> ?T -> ?T.
The dependency on the level of types leads to a dependency of metavariables:
Metavariable ?op depends on metavariable ?T. Conversely, a solution of ?op
(for example with addition + on natural numbers) determines the solution of
?T.

Thus, the following command, which directly instantiates metavariable ?op
with +, also leads to an instantiation of ?T with Nat. The next open goal
requires construction of the unit:

tlab? axiom + ;
...
T := Nat
op := +

|---------------------------------------
?unit: T

We can now instantiate ?unit with 0, which gives

STRUCT
T:= Nat, op:= +, unit:= 0,
assoc_ax:=?assoc_ax, unit_ax:=?unit_ax

END-STRUCT

as a partially instantiated solution of the original metavariable ?M. Thus, we
still have the obligation to prove associativity of addition and neutrality of 0.

Here, we will not carry out these proofs in detail. Instead, assume that we
delay the instantiation of ?unit and directly attack the problem of proving
neutrality of a still unknown unit with respect to the binary operation +. We
will see that after a few transformations, this proof leads to a state which
directly permits to read off an appropriate instantiation for ?unit. Thus, the
initial proof obligation is (in the following, we omit some local context entries):

...
|---------------------------------------
?unit_ax: neutral_p + ?unit

After simple manipulations like expansion of definitions of neutral p and +,
we reach the goal

12

1.2. METHODS

...
|---------------------------------------

?1: all(x:Nat) (iter_Nat ?unit succ x) = x

Here, iter Nat is an iterator over the natural numbers with a behaviour
analogous to primitive recursion:

• (iter Nat f0 fs 0) reduces to f0

• (iter Nat f0 fs (succ n)) reduces to (fs (iter Nat f0 fs
n))

Induction on the variable x gives the following base case:

...
|---------------------------------------

?2: (iter_Nat ?unit succ 0) = 0

Reduction of the iterator leaves the goal

...
|---------------------------------------

?3: ?unit = 0

which can immediately be solved by reflexivity of equality. It is equally simple
to deal with the remaining proof obligations.

1.2.2. “Deduction”: Proof Search

In the following, we will present an example which corresponds more closely to
what is traditionally understood by proof search. The example has been chosen
so that it highlights some peculiar aspects of the logic and their consequences
for proof search:

• Even though the logic which is embedded into the Calculus of Construc-
tions is intuitionistic, classical logic can be obtained by assuming that
a principle of excluded middle holds for all propositions. This principle,
which in weaker logics could only be described schematically, can here
be expressed by the formula ∀P : Prop.P ∨ ¬P . In order to take effect,
an appropriate instantiation of this formula has to be found during proof
search, which will again be achieved through the use of metavariables.

13

1.2. METHODS

• The provability of a proposition can depend on the existence of elements
of types. Even if proof search has been completed for the “propositional”
part of a proof goal, proof search may have to continue to construct
elements of certain types. This part of proof search obeys the same
principles as propositional proof search.

The (intuitionistically not valid) proposition we want to prove now is

(∀ x : T1. ∃ y : T2.(P1 x) ∨ (P2 y)) → (∃ y : T2. ∀ x : T1.(P1 x) ∨ (P2 y))

under the assumption that the principle of excluded middle holds and that
there is an element a of type T1 and a function f : T1 → T2.

Thus, omitting the declarations of T1, T2, P1 and P2, the initial goal is:

h_EM: all(P:Prop) P or not P
a: T1
f: T1 -> T2

|---------------------------------------
?TH: (all(x:T1) exists(y:T2) (P1 x) or (P2 y))

-> (exists(y:T2) all(x:T1) (P1 x) or (P2 y))

The local context of this goal contains not only propositions (e.g. excluded
middle), but also declarations of constants, whose purpose in the proof process
will become clear further below.

During proof search, the antecedent of the implication is first moved into
the context. As mentioned above, the hypothesis h EM has to be instanti-
ated appropriately, so in a next step, the universally quantified variable P of
hypothesis h EM is replaced by a metavariable ?P:

h_EM : all(P:Prop) P or not P
a: T1
f: T1 -> T2
h: all(x:T1) exists(y:T2) (P1 x) or (P2 y)
h_EM_1: ?P or not ?P

|---------------------------------------
?1: exists(y:T2) all(x:T1) (P1 x) or (P2 y)

A case distinction on hypothesis h EM 1 yields two new subgoals, one for
?P, the other for its negation. The first branch of the proof

...
h_P: ?P

|---------------------------------------
?2: exists(y:T2) all(x:T1) (P1 x) or (P2 y)

14

1.2. METHODS

can immediately be solved by unification, leading to an instantiation of metavari-
able ?P. Note that the instantiation term for ?P is a complex proposition and
not just an ordinary term. The proof then continues with the second branch,
which (under the instantiation for ?P) reads as follows:

h_EM : all(P:Prop) P or not P
a: T1
f: T1 -> T2
h: all(x:T1) exists(y:T2) (P1 x) or (P2 y)
h_n_P: not (exists(y:T2) all(x:T1) (P1 x) or (P2 y))

|---------------------------------------
?3: exists(y:T2) all(x:T1) (P1 x) or (P2 y)

Now, the existentially quantified variable y of the proof goal is replaced by
a metavariable ?y. The first of the resulting subgoals

h_EM : all(P:Prop) P or not P
a: T1
f: T1 -> T2
h: all(x:T1) exists(y:T2) (P1 x) or (P2 y)
h_n_P: not (exists(y:T2) all(x:T1) (P1 x) or (P2 y))

|---------------------------------------
?4: all(x:T1) (P1 x) or (P2 ?y)

can now be solved by standard reasoning, but does not lead to an instantiation
of ?y, so the proof is not finished yet. We are left with the goal

h_EM : all(P:Prop) P or not P
a: T1
f: T1 -> T2
h: all(x:T1) exists(y:T2) (P1 x) or (P2 y)
h_n_P: not (exists(y:T2) all(x:T1) (P1 x) or (P2 y))

|---------------------------------------
?y: T2

Implication (as in the original goal formula) and the function type constructor
(as in the type of f) are identified in the underlying logic and can therefore be
handled similarly: By applying rules reminiscent of propositional reasoning to
the hypotheses a and f, we succeed in proving the goal T2, at the same time
constructing the term (f a) as instantiation for ?y.

A precise definition of the rules and some more examples of proof search will
be given in Chapter 4, after some technical terminology has been introduced.

15

1.3. SURVEY OF THIS THESIS

1.3. Survey of this thesis

The main body of this thesis is divided into three chapters, a concluding chapter
summarizes the most important results and suggests topics of future research,
and an appendix collects some rather involved proofs. Let us now give an
outline of these chapters, with an emphasis on the main contributions and a
comparison with related work. A more detailed discussion will be given in
conjunction with the technical presentations in later sections.

1.3.1. Metavariables

Chapter 2 is devoted to the study of a calculus with metavariables. A metavari-
able ?n is a placeholder for a term t to be constructed during a derivation or a
proof. The expected solution term t is constrained by two factors: by a context
Γ in which t has to be well-typed, and by the type T of t . Other constraints on
solutions are conceivable, but are not an object of study in this thesis, because
they can to a large extent be expressed within the logic itself.

There are mainly two difficulties that have to be faced when introducing
metavariables in type theory:

• The computational behaviour of the λ-calculus has to be accounted for.
In particular, β-reduction of a term containing a metavariable should not
lead to an incorrect term. First solving a metavariable and then reducing
a term should yield essentially the same result as first reducing the term
and then solving the metavariable.

• The type dependencies are reflected by the fact that the type of one
metavariable may depend on the value of another metavariable. Dif-
ferently said, the solution of one metavariable may constrain the set of
solutions of other metavariables.

Needless to say, these problems do not occur in logics with a simple type struc-
ture and without a notion of reduction, as for example many-sorted first-order
predicate logic. The first of these problems is common to all type theories,
including the simply-typed λ-calculus, the second problem only arises in de-
pendently typed calculi.

In order to provide the terminology for a technical discussion, we begin
with a short summary of the Extended Calculus of Constructions on which the
further development is based (Section 2.1). The questions sketched above are
then further illustrated with some examples in Section 2.2.

The calculus with metavariables is introduced in two stages, which sepa-
rates the concerns for the computational behaviour (term calculus, Section 2.3)

16

1.3. SURVEY OF THIS THESIS

from issues related to typing. Computation, i.e. β-reduction, is essentially
performed by substituting the arguments of a function into the body of the
function. Substitutions into metavariables cannot be carried out immediately,
but have to be delayed until a solution for the metavariable is available. For
this purpose, the notion of substitution is internalized in the calculus as a sep-
arate term constructor, in a form which is tailored to our specific needs. In
particular, “delayed substitutions” can only be attached to metavariables, in
the form ?n�σ, where ?n is a metavariable and σ a substitution, and not to
arbitrary terms, as for example in (f a)σ. This distinguishes our calculus from
other calculi with explicit substitutions (see [Les94] for a survey) which have
been defined with the intention of providing an abstract machine model for
evaluation of functional programs. Due to the limitations we impose, proper-
ties such as confluence of reduction hold in our calculus, which are impossible
or difficult to achieve in a more general setting.

As remarked before, metavariables can depend on one another in that a
metavariable occurs in the type or context of another metavariable. Typing
rules can sensibly only be defined if circular dependencies between metavari-
ables are excluded, that is, if there is a well-founded partial order among the
metavariables. Sets of metavariables satisfying this property, so-called valid
proof problems, are examined in Section 2.4. For valid proof problems, typing
rules are introduced in Section 2.5. It is not immediately obvious that type
checking under these rules is decidable, because at any given moment, several
rule applications are possible, some of which lead into dead ends. By applying
rules in a predetermined order, however, this difficulty can be avoided, type
checking is shown to be decidable indeed.

A metavariable ?n cannot be solved by an arbitrary term, but only by a
term satisfying the typing constraints imposed by the context Γ and the type
T of ?n. This idea is made precise in Section 2.6, and it is shown that with this
notion of “solution”, the problems identified at the outset disappear. In par-
ticular, instantiation of metavariables and reduction commute and typecorrect
instantiations cannot lead to ill-typed terms.

The chapter concludes with a discussion of a different encoding of scopes,
which can be found in some proof assistants essentially based on the simply-
typed λ-calculus, for example Isabelle [Pau94] or HOL [GM93]. Instead of
having a metavariable ?n depend on a context Γ, the general idea of this
encoding is to represent ?n by a function taking the variables declared in Γ
as formal parameters. It is shown that both representations are equivalent
from a theoretical perspective, but it is argued that, in practice, the functional
encoding is less appropriate in our particular setting. The discussion yields, as
a side-effect, a rather short proof of strong normalization of the calculus with
metavariables and explicit substitutions.

17

1.3. SURVEY OF THIS THESIS

Comparison: There is a plethora of calculi with explicit substitutions, and
it would not be sensible to attempt an individual appreciation of all of them.
As briefly mentioned above, most of these calculi have been designed with the
intention of providing abstract machine models of functional programs, but not
with the intention of coping with problems arising in proof assistants based on
typed λ-calculi. Consequently, most of the calculi with explicit substitutions
are framed in the setting of an untyped or simply-typed language, which consid-
erably facilitates all questions related to typing. Conversely, the term calculus
becomes more complex if explicit substitutions can occur in arbitrary term po-
sitions, and are not only attached to metavariables. In this setting, terms have
the form tσ, where σ is a substitution and t is a variable, an application or
λ-abstraction or itself of the form t ′σ′.

The calculi differ in the precise definition of terms, substitutions and reduc-
tion. Questions of central concern are confluence (can different sequences of
reduction be joined to yield the same result?) and strong normalization (do all
sequences of reduction terminate?). One of the earliest calculi, λσ [ACCL91],
was shown to be confluent, but only for closed terms. Furthermore, a variant
corresponding to the simply-typed λ-calculus was shown not to be strongly
normalizing [Mel95]. The calculus λ ν [Les94], for example, avoids this defect
by introducing different operators to build up substitutions, but it is still not
confluent on open terms. The last step in a series of gradual improvements
is λ ζ [Muñ96], a calculus which is both confluent on open terms and which
preserves strong normalization. A disadvantage of the calculus is that before
propagating a substitution in a term, the term has to be traversed in order to
be “marked” in a certain fashion. This destroys most efficiency gains of explicit
substitutions.

Two investigations are more closely related to ours, since they develop a
calculus with explicit substitutions in a type theory: The calculus of Magnusson
[Mag95] is the basis of the Alf system, the calculus of Muñoz [Muñ97] will
apparently be integrated into Coq. These two approaches will be discussed in
the following.

As mentioned in Section 1.1.5, the Alf system is based on Martin-Löf’s
monomorphic type theory, presented in a Curry-style calculus. In addition to
β-reduction, there is a notion of reduction of functions defined by primitive re-
cursion over inductive datatypes. The primary method of proof construction is
successive instantiation of metavariables by terms which possibly contain other
metavariables. In [Mag95], a calculus with explicit substitutions is presented.
In this calculus, variable identities are not expressed by a nameless representa-
tion in the style of de Bruijn indices, but by variables with names. In order to
avoid name clashes, explicit substitutions are not moved below abstractions,
thus terms of the form (λ x .b)σ, with σ a substitution, are irreducible.

18

1.3. SURVEY OF THIS THESIS

The main contribution of Magnusson’s thesis [Mag95] is to operationalize
the abstract presentation of the calculus, by deriving algorithms such as type
checking, unification and instantiation of metavariables, and proving them cor-
rect. However, metatheoretic properties of the calculus itself are not investi-
gated. Indeed, it seems that the calculus is not confluent – for example, the
term (λ f .f {x := a}) (λ z .z) can be reduced to λ z .z by first reducing the sub-
stitution, or to (λ z .z){x := a} by β-reduction, which, as remarked above, is a
normal form.

Magnusson’s work provides interesting results for the style of proof con-
struction supported by Alf. For example, a “local undo” operation – as opposed
to a chronological undo – permits to retract instantiations of metavariables by
taking into account their logical interdependence. It is however not clear how
one of the main objectives of this thesis, namely a greater degree of automation
of proof construction, could be achieved in Magnusson’s framework.

The calculus of Muñoz [Muñ97], developed in parallel with and indepen-
dently from this work, is based on the same logic as this thesis (up to some
differences which are negligible in this context), namely the Calculus of Con-
structions. The main differences between Muñoz’s calculus (not to be confused
with [Muñ96], an untyped calculus) and the one presented in the following are:

• Explicit substitutions can be attached to arbitrary term constructors,
not only to metavariables as in our case. For type checking to be decid-
able, typing information has to be attached to substitutions, which is not
necessary in our case (see the discussion in Section 2.5).

• The term calculus is confluent, but the construction of a reduction se-
quence which does not terminate, even for well-typed terms, can be
adapted from [Mel95]. However, it can be shown that reduction ter-
minates when following a certain strategy, which gives the resulting cal-
culus a weak normalization property. Even though our calculus is not
constrained to one particular reduction strategy, the accumulation of sub-
stitutions within substitutions, one of the main reason for nontermination
in the construction by Melliès [Mel95], is excluded.

• As mentioned above and further elaborated in Section 2.4, circular depen-
dencies between metavariables have to be excluded when defining typing
rules for terms containing metavariables. In our calculus, this require-
ment is imposed by postulating a partial order between metavariables.
In the calculus of Muñoz, metavariables are even ordered linearly in a
so-called “signature”, which gives a very elegant formulation of typing
rules and a comparatively easy criterion for verifying the correctness of
instantiations (cf. our approach in Section 2.6). In particular, a solution

19

1.3. SURVEY OF THIS THESIS

term t for a metavariable ?n is only acceptable if all metavariables ?m
occurring in t have been declared before ?n in the signature.

One of the drawbacks of this method is that completeness of proof search
is unnecessarily restricted by the somewhat arbitrary order of metavari-
able declarations in the signature. For example, when trying to prove
∃ n : T . ∃m : T .n = (f m), the first step is to replace existentially quan-
tified variables by metavariables, leading to the goal ?n = (f ?m), with
metavariable ?m occurring behind ?n in the signature. According to the
correctness criterion stated above, an instantiation ?n := (f ?m) is then
impossible. Of course, by an “appropriate” permutation of the metavari-
ables in the signature, the instantiation can still be carried out. Since
proof search as envisaged in this thesis is not the primary objective of
[Muñ97], these implications are not discussed, but it may be conjectured
that the notion of appropriateness would resemble the criteria developed
in Section 2.6.

1.3.2. Theory of proof search

Chapter 3 takes a first step towards automation of proof search, by convert-
ing the natural deduction-style definition of ECC into the form of a sequent
calculus. For several reasons, the resulting calculus is not immediately prac-
tically applicable. Further modifications, described in Chapter 4, yield search
procedures such as the ones implemented in the Typelab system.

The kind of proof problems to be dealt with in Chapters 3 and 4 are “type
inhabitation problems”. The question is to produce, for given context Γ and
type A, a term M such that Γ � M : A holds. Here, A can be a “genuine”
type or, by the propositions-as-types principle, a type encoding a proposition.
As mentioned further above (Section 1.1.3), this question is in general not
decidable.

Usually, proof search proceeds by applying rules backwards, starting from
the goal, until some form of axiom is reached. This method is not practicable
for the standard definition of ECC in the form of a natural deduction calculus,
because the rules corresponding to elimination rules, such as (→-Elim), do not
have a subformula property:

Γ � f : A → B Γ � a : A

Γ � (f a) : B
(→-Elim)

When applying the rule backwards, the type A would have to be guessed, which
would lead to an infinite branching factor at this node of the search tree.

The idea of a sequent-style calculus is to replace the scheme of introduction
and elimination rules by a scheme of left- and right-rules, which permit to

20

1.3. SURVEY OF THIS THESIS

decompose formulae both in the antecedent and the succedent of a judgement.
For example, the left-rule corresponding to (→-Elim) is

Γ, h : A → B ,Γ′ � a : A Γ, h : A → B ,Γ′, h ′ : B � M : G

Γ, h : A → B ,Γ′ � M {h ′ := (h a)} : G
(→ L)

A sequent-style calculus corresponding to ECC is formally defined in Sec-
tion 3.1.

The general idea of transforming a natural deduction into a sequent calculus
goes back to Gentzen [Gen34], and so does the general technique of demon-
strating the equivalence of both calculi, by first introducing an intermediate
calculus with the “cut” rule and then showing how this rule can be eliminated
from derivations (see the more detailed introduction in Section 3.1.1). In the
given situation, matters are complicated by at least the following factors:

• The logic is higher-order, with, among others, functions that produce
types. Computation steps have to be interleaved appropriately with the
rules that decompose type constructors, since type constructors may be
hidden below β-redexes, as for example in (λX : Prop.X → B) A.

• The logic is dependently typed. This makes the cut-elimination proof
more complex, as some of the structural rules of predicate logic are not
available. In particular, hypotheses x : T1, y : T2 in a sequent cannot be
exchanged, since T2 may depend on x .

Section 3.2 examines more closely the relation between the natural deduction
version ECCN of ECC and the sequent-style version (called ECCG for historical
reasons). It should be emphasized (cf. the remarks in Section 1.1.2) that the
calculus ECCN can be understood as providing a particular form of realizability
semantics for ECCG , and the aim of Section 3.2 is to investigate correctness
and completeness of ECCG with respect to this semantics.

Correctness of ECCG is rather easy to show for the whole calculus, by a
simulation of ECCG-proofs in ECCN . In order to establish the completeness
of ECCG , a cut elimination proof is carried out (see Section 3.2.2 and details
of the proof in Appendix A.2). Cut elimination is a procedure which pushes
applications of the cut formula towards the leaves of a proof tree. To show that
this procedure terminates, terms have to become “smaller” (in a well-defined
sense) with each cut elimination step. The proof is first carried out for an
abstract measure function m on terms which has the desired properties.

Unfortunately, it turns out to be impossible to effectively define such an m
for the whole calculus ECC . Section 3.3 is devoted to identifying appropriate
fragments of ECC for which a measure m can be defined. A classification of

21

1.3. SURVEY OF THIS THESIS

subsystems of the Calculus of Constructions (essentially ECC without Σ-types)
is provided by the “λ-cube”, and a closer analysis of these systems shows that
for all predicative systems of the λ-cube, a measure function on terms having
the required properties is definable. Thus, to summarize, the sequent calculus
ECCG is correct for all of ECC , but complete only for predicative subsystems.

All of Chapter 3 examines a calculus without metavariables, as this permits
a better comparison of calculi. Metavariables are introduced again in Chapter 4
as a device to delay the choice of how to instantiate existentially quantified
variables.

Comparison: Proof search in type theory has been a research topic for
quite a while [Hue73, Hue75, And86, Koh98]. The object of study is usually the
simply-typed λ-calculus, and since most of the difficulties of the present investi-
gation arise from dependent typing, a direct comparison with these approaches
is not appropriate.

For the type theory of Nuprl, Harper [Har85] develops several calculi, start-
ing from a natural deduction calculus close to a formulation originally given by
Martin-Löf and ending with a sequent calculus which has subsequently been
adopted as the “standard” Nuprl logic [Con86]. In [Har85], only one part of the
equivalence proof (corresponding to “correctness”) is given. The motivation for
defining this calculus is, similar as in our case, to obtain a calculus which is
appropriate for proof development. However, since Nuprl does not support
metavariables, the calculus is not used for automated proof search, where the
instantiation of existentially quantified variables can be delayed, but only for
interactive proof refinement, where instantiations are provided explicitly.

In [Pym90, PW91], Pym examines proof search in the type theory LF
[HHP87], one of the subsystems of the Calculus of Constructions (see Sec-
tion 3.3.1) in which types can depend on terms but which does not allow
quantification over types. Apart from the natural-deduction style definition of
LF, Pym presents a sequent calculus subject to the restriction that (ΠL)-rules
operate on types, but not on kinds (type universes in the terminology of Sec-
tion 2.1). Thus, the (ΠL)-rule can decompose Πx : A.B , with A : Type and
B : Type, but not Πx : A.Type. Completeness of the sequent calculus is proved
by a “direct” method without an intermediate system containing the cut rule,
by examining the structure of terms derived in the sequent calculus.

(An aside concerning the proof search techniques as further developed in
[Pym90]: For carrying out proof search, metavariables are introduced, which
can be solved by a higher-order unification procedure extended to LF. Instead
of the notion of correctness of instantiations presented in Section 2.6, a crite-
rion is developed which is based on permutability of inferences in the sequent
calculus. This approach has the advantage of not making premature decisions
on the order in which rules are applied, thus leading to less backtracking in

22

1.3. SURVEY OF THIS THESIS

proof search and a smaller search space. It would be interesting to empiri-
cally evaluate this procedure; however, we are not aware of an implementation.
Furthermore, we are not sure how substitutions into terms containing metavari-
ables are handled, since there is no notion of explicit substitutions.)

Dowek [Dow93] gives a complete proof search procedure for the type systems
of the λ-cube and thus in particular for the Calculus of Constructions. It owes
much to the methods developed by Huet [Hue73, Hue75] for the simply-typed
λ-calculus, and it has found its way into some proof assistants by means of
the “introduction” and “resolution” proof tactics mentioned in Section 1.1.5.
Completeness of proof search is shown by induction on the size, a complex
measure not coinciding with the number of symbols, of the proof term. (Again
a comment on a technicality: In [Dow93], a functional encoding of scopes of
existential variables, as described in Section 2.7, is used.)

Returning to the sequent system presented in this thesis: The fact that
completeness is only shown for a fragment of the calculus in the proof of Sec-
tion 3.2.2 is no evidence that the sequent system is indeed incomplete for the
whole calculus. It is interesting to observe that the completeness proofs of the
two approaches mentioned above are based on the term constructed during
proof search and not on the types occurring in the antecedent and succedent of
the proof goal, as in the cut elimination argument, and it might be worthwhile
to attempt a completeness proof along these lines. The motivation for carrying
out a cut elimination proof was its easy scalability to other type constructors.
In particular, a sequent system of practical relevance that includes an encoding
of the usual logical connectives, such as the one in Chapter 4, could be dealt
with by a cut elimination proof, whereas it is hard to see how an argument
involving proof terms could be set up.

1.3.3. Pragmatics of proof search

Chapter 4 is a synthesis of the preceding chapters, i.e. a combination of the
calculus with metavariables of Chapter 2 and the proof search methods de-
veloped in Chapter 3. Altogether, the style of this chapter is less formal, its
purpose is to show how proof search in type theory can be put to work.

Given a goal G , to be proved in a context Γ, the most immediate first step
is to introduce a metavariable ?n0 for the proof term to be constructed and
then apply rules of the sequent calculus in a backward-chaining fashion to the
judgement Γ �?n0 : G . Each rule application leads to an instantiation of the
metavariable with a proof term which possibly contains new metavariables.
This process continues until all open metavariables have been instantiated,
either directly or through unification.

The examples presented in Section 4.1 demonstrate the general procedure,

23

1.3. SURVEY OF THIS THESIS

but also illustrate that the proof rules of Chapter 3 generate a search space
which is difficult to control. The remainder of Chapter 4 will be concerned
with refining the general procedure by analyzing the behaviour of individual
rules, until practically useful search algorithms are obtained.

Proof search has two complementary aspects: Application of sequent rules
and unification. These aspects are intertwined in the calculus of Chapter 3. In
Section 4.2, the original calculus is transformed in such a way that the role of
unification becomes apparent and requirements for a unification procedure can
be stated.

Section 4.3 examines unification more closely, beginning with a unification
procedure which is “first-order” in that it structurally compares terms with-
out taking into account β-equality. However, it respects binding structure
(α-equality) and permits to solve equations not only between terms, but also
between types, and thus differs considerably from standard first-order unifica-
tion. Successful unification of two terms produces an instantiation, which is
shown to have the properties postulated in Chapter 2, so unification (and simi-
larly the other proof methods, for which analogous results are shown) is indeed
a correct implementation of the proof construction methods of Chapter 2.

In Sections 4.3.3 and 4.3.4, higher-order extensions are outlined: Whereas

the first-order unification procedure can only handle “simple” equations ?n
?
 t

between a metavariable and a term, it cannot deal with equations of the form

?n�σ
?
 t , where a delayed substitution σ is attached to metavariable ?n. By

a translation of metavariables into a representation with functional encoding
of scopes, as in Section 2.7, it will be shown that this latter kind of unification
problem is equivalent to a standard higher-order unification problem. By a
similar translation, a correspondence with a special case, so-called “patterns”,
is established in Section 4.3.4. With the mappings defined in these sections,
it is in principle possible to reduce unification problems in our representation
of metavariables to a form where standard higher-order unification algorithms
can be applied. The discussion in Section 4.3.5 identifies problems specific to
dependent typing which cannot be solved by moderate adaptations of existing
algorithms. The algorithms presented in Section 4.3 are therefore not complete
in a global sense, but only when restricted to certain fragments (which, apart
from the case of patterns, are not formally made precise, however).

Section 4.4 focuses on proof search in a more traditional sense. Proof rules
that have been recognized as leading to an uncontrollable growth of the search
space in Section 4.1 are discarded, rules are introduced that permit a direct de-
composition of the standard logical connectives (conjunction, disjunction) and
quantifiers (existential) rather than requiring manipulation of their encodings
as Π-types. The resulting system (see Section 4.4.1) bears strong resemblance

24

1.3. SURVEY OF THIS THESIS

to Tableau calculi, even though the type-theoretic background imposes some
adaptations. For example, the proof of an existential statement ∃ x : T .P(x)
explicitly involves the construction of an element ?x of type T (although a
solution for ?x is usually found by unification), and not only hypotheses, but
also variables are recorded in the context. Tableau calculi are usually stated
with an eigenvariable condition. In Section 4.4.2, it is shown that the notion of
typecorrect instantiation, developed in Section 2.6, is an adequate alternative
to Skolemization, which is the standard technique to enforce this condition.
Some optimizations of the proof rules are presented in Section 4.4.3. Even
though these optimizations are well-known in presentations of intuitionistic se-
quent systems, they are interesting because they are applicable at all in our
context and because it can be shown by a rather simple reasoning involving
proof terms that they preserve completeness.

Comparison: The combination of an explicit substitution calculus with
sequent style proof search in a type theory seems to be novel. We are not aware
of a similar approach, neither presented in a theoretical study nor realized in
an implementation. There is, however, a larger body of work on unification in
typed λ-calculi and on proof search in intuitionistic logic, which we will review
now.

Pym [Pym90] and Elliot [Ell89] describe higher-order unification in LF, and
Pfenning [Pfe91b] outlines unification for “patterns” in the Calculus of Con-
structions. All these algorithms use a functional encoding of scopes and are
similar in spirit to Huet’s algorithm [Hue75] for the simply-typed λ-calculus.
The algorithms are claimed to be complete, but these results apparently only
encompass equations between terms, but not between types. A detailed dis-
cussion of this question follows in Section 4.3 and need not be repeated here.

A higher-order unification algorithm for the simply-typed calculus with ex-
plicit substitutions, λ σ, is described in [DHK95], a unification procedure for
the analogue of “patterns”, again for λσ, in [DHKP96]. The unification algo-
rithm obtained in [DHK95] is put into correspondence with Huet’s algorithm
for the simply typed λ-calculus by a mapping which resembles the inverse of
our functional translation of metavariables in Section 2.7.

Recently, there is a surge of interest in theorem proving in (untyped) intu-
itionistic logic [Sha92, OK95, Tam96], however often with a restriction to the
propositional fragment. Optimization of proof search is not the primary focus
of this thesis, but constitutes an interesting topic for future research (see also
Chapter 5).

We are only aware of two publicly accessible implementations [SFH92,
Ott97], which are admittedly much more performant on standard benchmark
problems than the current implementation in Typelab. Apart from the con-
stant overhead incurred by an interactive system (e.g. for proof presentation),

25

1.3. SURVEY OF THIS THESIS

this can be attributed to the rather weak strategies that are currently built
into Typelab’s proof search procedure. The discussion of Section 4.4.3 gives
reason to believe that at least some of the optimizations developed for untyped
intuitionistic logic can be incorporated in a type theoretic setting.

26

2. A Calculus with Metavariables

2.1. The Extended Calculus of Constructions

This section summarizes the most important facts about the Extended Calculus
of Constructions, ECC , which is the formal basis for the following investiga-
tions. ECC [Luo90, Luo94] is an extension of the Calculus of Constructions,
CC [CH88], with dependent Σ-types which are useful for representing speci-
fications and mathematical theories (see Section 1.1.4 for a motivation). The
results derived in the following sections for ECC could also be obtained for
the subsystem CC . Conversely, passing from CC to ECC does not lead to
a significant increase in complexity. We will restrict attention to CC alone
whenever more appropriate for the purpose of comparison with other logical
theories, as for example in Chapter 3.

For readability, we have chosen in this text a term representation which
establishes identity of variables via names. There are well-known shortcomings
of this representation, such as free variable capture (for example, the term
(λ x . λ y .x) y should not β-reduce to λ y .y). In order to avoid naming problems,
we will always rename variables appropriately. A conceptually cleaner nameless
representation of the calculus with de Bruijn-indices is given in Appendix A.1.

The material in this Section 2.1 is not new, apart from some minor defi-
nitions and propositions needed for later reference. It has mostly been taken
from [Luo90], as well as from other sources cited throughout the text, which
should also be consulted for proofs of propositions.

2.1.1. Base calculus – Term language

The terms of ECC are generated by the grammar of Figure 2.1. In this def-
inition, V is a set of variables, Prop and Typei , for 0 ≤ i , are type universes,
which can be understood as collections of types. Dependent function spaces
are formed by Π-abstraction, dependent record types by Σ-abstraction. The
variables bound by Π or Σ are subject to the same scoping rules and naming
conventions as variables bound by λ-abstraction. In particular, in Πx : M .N ,

27

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

T ::= V
| Prop | Typei

| ΠV : T .T | λV : T .T | (T T)
| ΣV : T .T | pairT (T , T) | π1(T) | π2(T)

Figure 2.1.: Grammar defining the language of ECC

Σx : M .N and λ x : M .N , the variable x is bound in N , but not in M , and x
can be renamed to y , so as to yield the terms Πy : M .N {x := y} etc., in case
y does not occur in N . Application of function f to argument a is written as
(f a). A pair of elements e1 and e2 is written as pairT (e1, e2), the type T of
the resulting pair has to be added for reasons of type inference. The first and
second component of a pair p can be obtained by projection π1(p) and π2(p),
respectively.

Notational Conventions:

• Small letters from the end of the alphabet, such as x , y , z , usually stand
for term variables, whereas capital letters S ,T ,X ,Y ,Z stand for type
variables or types. Capital letters L,M ,N from the middle of the alpha-
bet denote arbitrary terms, whereas capital letters A,B ,C often denote
propositions or type terms.

• Consecutive λ- and Π-abstractions are abbreviated as usual. For exam-
ple, λ x1 : T1. λ x2 : T2. B becomes λ x1 : T1, x2 : T2.M . This term is
sometimes still further abbreviated as λΓ.M , if Γ is the list of variable
declarations x1 : T1, x2 : T2.

• We omit redundant parentheses. The function type constructor → as-
sociates to the right, application to the left. In particular, repeated ap-
plications (· · · ((M N1) N2) · · ·Nn) are simplified to (M N1 N2 · · ·Nn),
sometimes the notation f (a1, . . . , an) is used instead of (f a1 . . . an).

• Whenever x does not occur in B , the function space Πx : A. B is written
as A → B . Similarly, Σx : A. B is then written as the Cartesian product
A×B . Conversely, to emphasize that a variable x occurs in B , we write
B [x], for example in Σx : A. B [x]. Substituting all occurrences of x by a
term N is then written as B [N].

• Whenever the exact level j of a type universe Typej is of no interest,
we simply write Type. Indeed, implementations of type checkers can deal

28

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

with this kind of ambiguity by building up a set of inequalities among type
universe variables, as dictated by the typing rules, and raising a typing
error if a consistent assignment of levels to these universe variables is not
possible [HP91].

Definition 2.1 (Free Variables)
The set of free variables of a term M , FV (M), is defined as follows:

FV (x) = {x} for x a variable
FV (Prop) = ?

FV (Typei) = ?

FV (Qx : A. M) = FV (A) ∪ (FV (M)\{x}) for Q ∈ Π, λ,Σ
FV ((M N)) = FV (M) ∪ FV (N)
FV (pairT (M , N)) = FV (T) ∪ FV (M) ∪ FV (N)
FV (πi(M)) = FV (M) for i = 1, 2

The definition of subterm is standard; in particular, T and M are subterms
of λ x : T .M , similarly for Π- and Σ-abstractions. The term constructors Prop,
Typei and Π- and Σ-abstractions can be understood as types. For a structural
analysis of proof systems (see in particular Chapter 3), it is interesting to
determine, for a given type, the set of subterms that again are types. The
adequacy of this definition is justified by the typing rules.

Definition 2.2 (Type Subterm)
The set of type subterms TSubt(T) of a type term T is defined as follows:

TSubt(Prop) = {Prop}
TSubt(Typei) = {Typei}
TSubt(Πx : A. B) = {Πx : A. B} ∪ TSubt(A) ∪ TSubt(B)
TSubt(Σx : A. B) = {Σx : A. B} ∪ TSubt(A) ∪ TSubt(B)
TSubt(T) = {T} for all other term constructors

The set of proper type subterms of T is defined as TSubt(T)\{T}.

For example, in the term Σx : A. (f (λ y : C . D)), the types A and f (λ y : C . D)
are type subterms, but not the type C .

Computational behaviour is achieved by β- and π-reduction, defined by
(λ x : T . M) N →β M {x := N } and πi(pairT (M1, M2)) →π Mi (i = 1, 2),
respectively. The definition of β-reduction is based on the concept of substi-
tution M {x := N } of a term N for variable x in term M . Since this topic
is covered in depth in Section 2.3, we will refrain from further formalizations
here.

29

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

Two terms M and N are called convertible, written as M
 N , if they can
be transformed into one another by repeated applications of β- and π-reduction
(see Definition 2.29). Given a notion of convertibility
 , we can define the
notion of cumulativity, which will be used further below in the typing rules:

Definition 2.3 (Cumulativity)
The cumulativity relation � is defined as the smallest relation over terms such
that:

1. If M
 N , then M � N

2. If M � N and N � M , then M
 N

3. If L � M and M � N , then L � N

4. Prop � Type0 and Typei � Typei+1 for i ≥ 0

5. If A1
 B1 and A2 � B2, then Πx : A1. B1 � Πx : A2. B2

6. If A1 � B1 and A2 � B2, then Σx : A1. B1 � Σx : A2. B2

Loosely speaking, cumulativity formalizes a subset relation between type uni-
verses and function spaces and Cartesian products built on top of universes.
Clauses 1, 2 and 3 state that � is a partial order based on
 . Clause 4
formalizes the containment relation between universes: When viewed as sets,
Prop ⊆ Type0 ⊆ Type1 Clauses 5 and 6 extend this notion to Π- and
Σ-types.

2.1.2. Base calculus – Typing

Definition 2.4 (Context)
A context is a finite list of declarations of the form xi : Ai , where each xi is a
variable, each Ai a term and the xi are mutually distinct. The empty context
is denoted by 〈〉. The concatenation of two contexts Γ and ∆ is written as
Γ,∆, adding a declaration x : A to a context Γ as Γ, x : A.

The set FV (Γ) of free variables of a context Γ ≡ x1 : A1, . . . , xn : An is
defined to be

⋃
1≤i≤n({xi} ∪ FV (Ai))

The domain of a context x1 : A1, . . . , xn : An is, depending on the situation
under consideration, the list [x1, . . . , xn] or the set {x1, . . . , xn}.

We sometimes used standard set notation in connection with contexts. For
example, context ∆ is a subcontext of context Γ, written ∆ ⊆ Γ, if every xi : Ai

occurring in ∆ occurs in Γ. If x : T is a declaration in Γ, we write (x : T) ∈ Γ.

30

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

Definition 2.5 (Judgement)
A judgement is an expression of the form Γ � M : A, where Γ is a context and
M and A are terms, or it is an expression of the form Γ validc.

The judgement form Γ � M : A expresses that term M has type A in
context Γ. Since the well-formedness of contexts cannot be assured by purely
syntactic means, as for example in the simply-typed λ-calculus, a separate
judgement form Γ validc is required. Its main purpose is to ensure that for all
the declarations x : A in Γ, A is indeed a type. An alternative formulation of
typing rules codes the judgement Γ validc as Γ � Prop : Type0. This version is,
in the author’s opinion, less intuitive, but sometimes more suitable for proof
theoretic studies and will be used in Section 3.3.

The typing rules of ECC are shown in Figure 2.2. The rules can be cate-
gorized as follows:

• Rules (Cempty) and (Cvalid) formalize the construction of contexts.

• Rules (UProp) and (UType) define how type universes can be typed.

• Rule (var) defines typing of variables.

• Rule (�) formalizes the intuition of relation � as a generalization of set
containment already mentioned above (following Definition 2.3).

• Rules (Π-Form1), (Π-Form2) and (Σ-Form) are type formation rules,
defining how Π- and Σ-types can be constructed. Alternatively, they
can be understood as defining how elements of the type universes Prop
and Typei are built.

• Rules (λ) and (pair) are introduction rules, describing how canonical el-
ements of Π- and Σ-types are formed.

• Rules (app), (π1) and (π2) are elimination rules, defining how elements
of Π- and Σ-types can be applied.

Considering, in addition, the β- and π-reduction relations given above, there
is an obvious parallel between these rules and standard expositions of abstract
data types. In particular, λ-abstraction and pairing can be conceived as the
“constructors” of the “data types” Π and Σ, whereas application and projection
are the “selectors”. The reduction rules describe the equalities arising from
applying selectors to constructors. The implications of defining the typing
relation in the style of introduction / elimination rules are further explored in
Chapter 3.

31

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

〈〉 validc
(Cempty)

Γ � A : Typej x �∈ FV (Γ)

Γ, x : A validc
(Cvalid)

Γ validc

Γ � Prop : Type0
(UProp)

Γ validc

Γ � Typej : Typej+1
(UType)

Γ, x : A,Γ′ validc

Γ, x : A,Γ′ � x : A
(var)

Γ, x : A � P : Prop

Γ � Πx : A.P : Prop
(Π-Form1)

Γ � A : Typej Γ, x : A � B : Typej

Γ � Πx : A.B : Typej
(Π-Form2)

Γ, x : A � M : B

Γ � λ x : A.M : Πx : A.B
(λ)

Γ � M : Πx : A.B Γ � N : A

Γ � M N : B {x := N } (app)

Γ � A : Typej Γ, x : A � B : Typej

Γ � Σx : A.B : Typej
(Σ-Form)

Γ � M : A Γ � N : B {x := M } Γ, x : A � B : Typej

Γ � pairΣx : A. B (M , N) : Σx : A. B
(pair)

Γ � M : Σx : A.B

Γ � π1(M) : A
(π1)

Γ � M : Σx : A.B

Γ � π2(M) : B {x := π1(M)} (π2)

Γ � M : A Γ � A′ : Typej A � A′

Γ � M : A′ (�)

Figure 2.2.: Rules of the calculus ECC

32

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

According to rule (�), a term M may have several types A and A′. However,
it can be shown that whenever M is typeable, it has a uniquely determined
“principal type”:

Definition 2.6
A is called a principal type of M in Γ if and only if

• Γ � M : A and

• for any A′, Γ � M : A′ if and only if A � A′ and A′ is a type in Γ

Proposition 2.7
Every term M typeable in a context Γ has a principal type, which is the
minimum type of M with respect to �.

For use in later sections, we now prove a statement analogous to rule (�),
showing that a type can be replaced in the context by a type which is smaller
(contravariance !) with respect to the order �.

Lemma 2.8
Let A � A′ and Γ � A : Typej .

• If Γ, x : A′,Γ′ validc, then Γ, x : A,Γ′ validc.

• If Γ, x : A′,Γ′ � M : B , then Γ, x : A,Γ′ � M : B .

Proof: By induction on the derivation of Γ, x : A′,Γ′ validc and Γ, x : A′,Γ′ �
M : B , respectively. The only interesting case is a derivation ending with the
(var) rule, which can be dealt with by applying the rule (var) to the induction
hypothesis and then reasoning with the rule (�). 2

2.1.3. Properties of the base calculus

We will now state some of the main questions of interest in the study of the
calculus ECC and summarize its most important properties. The concepts used
here should be intuitively clear, even if some of them have not been formally
introduced yet. A detailed exposition will follow when presenting the calculus
with metavariables.

The Church-Rosser theorem ensures that evaluating a program by using
different reduction strategies has no effect on the result. This theorem is also
of relevance for type checking, to be described below.

33

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

Proposition 2.9 (Church-Rosser property of ECC)
Reduction has the Church-Rosser property: Whenever two terms M1,M2 are
convertible, there is a term M such that both M1 and M2 reduce to M .

Another essential property of the calculus is termination of reduction for
well-typed terms.

Definition 2.10 (Weak and Strong Normalization)
• A term is weakly normalizing for a reduction relation if for every term

t , there exists a finite sequence of reduction steps starting from t and
leading to a normal form of t .

• A term is strongly normalizing for a reduction relation if for every term
t , every sequence of reduction steps starting from t is finite.

Proposition 2.11 (Strong Normalization)
The calculus ECC is strongly normalizing.

Definition 2.12 (Type inference, -checking and -inhabitation)
• Given a context Γ and a term t , type inference is the problem of either

determining a term T such that Γ � t : T or showing that no such term
exists.

• Given a context Γ and terms t and T , type checking is the problem of
determining whether Γ � t : T holds.

• Given a context Γ and a type T such that Γ � T : Typei , type inhabitation
is the problem of either determining a term t such that Γ � t : T or
showing that no such term exists.

Type inference and type checking are decidable (see [Luo90], Section 6.2).
The question of type inhabitation will be dealt with at length in Chapter 3.

Proposition 2.13
• There exists a type inference algorithm T I(Γ, t) which determines the

principal type of t under Γ.

• There exists a type checking algorithm T C(Γ, t ,T).

For determining a ?T with Γ � t :?T , the type inference algorithm T I essen-
tially applies the typing rules backwards, selecting an appropriate rule depend-
ing on the outermost term constructor of t . For determining whether Γ � t : T
holds, the type checking algorithm T C first computes the principal type Tp by

34

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

means of the type inference algorithm and then compares Tp (if existent) and
T with respect to �.

When literally following the type inference algorithm, the validity of con-
texts has to be checked repeatedly, as the result of applying the rules (UProp),
(UType) and (var). It is easy to construct examples in which type inference
then has exponential complexity. Therefore, it has to be asked whether recom-
putation of essentially the same type information cannot be avoided.

An incremental typing algorithm assumes that it works with valid contexts,
i.e. contexts which are known to be correct by construction. An incremental
algorithm essentially prunes the derivation tree at subderivations of the form
Γ validc.

Definition 2.14 (Incremental type inference / type checking)
• An incremental type inference algorithm for context Γ and term t is an

algorithm that does not check the validity of contexts.

• An incremental type checking algorithm for Γ, t and T is a type checking
algorithm based on an incremental type inference algorithm for Γ and t .

The cost of incremental type inference T I(Γ, t), measured as the number of
backwards applications of typing rules, is linear in the size of the term t .

Usually, type inference for a term t is only invoked in a context Γ which is a
priori known to be type correct. With a slight modification, a non-incremental
type inference algorithm can be transformed into an equivalent incremental
one:

Proposition 2.15
Given a non-incremental type checking algorithm T I, define T I i as follows:

• Add the judgement Γ � A : Typej as precondition of rules (Π-Form1) and
(λ).

• Discard the preconditions of rules (UProp), (UType) and (var).

• Include all other rules without modification.

T I i is an incremental type inference algorithm which, for every context Γ with
Γ validc and for every term t , is equivalent to T I.

Proof: Verify by an induction on the structure of the term t that only valid
contexts occur in the derivation of the type of t . Addition of the side conditions
Γ � A : Typej in the rules (Π-Form1) and (λ) does not diminish the number of
derivable judgements, as these conditions would have to be verified in any case
in a subderivation (cf. Lemma 3.2.3 of [Luo90]). 2

35

2.1. THE EXTENDED CALCULUS OF CONSTRUCTIONS

In the following, we will take a phrase such as “ ... can be checked with an
incremental algorithm” to mean that there exists an incremental type checking
algorithm, which is equivalent to the non-incremental version under discussion
and which can be obtained from it by an analogous transformation as above.

For the base calculus presented in this section, the above remarks concerning
incremental type checking are rather evident. They are thought to provide
the terminology for a discussion of similar questions that arise when trying
to ascertain that a solution for a proof obligation is indeed typecorrect (see
Section 2.6). The validity of a context can be compromised by a possibly
incorrect solution, and an efficient verification of the correctness of a solution
relies on the validity of contexts. Thus, it is far from obvious that this vicious
circle can be avoided and incremental type checking is always applicable.

2.1.4. Base calculus – Encodings

In ECC , the standard logical connectives and equality can be encoded by use
of Π-abstraction only.

The encoding of the logical connectives from universal quantification and
implication in second-order logic dates back to Prawitz [Pra65]. The formula-
tion using the type constructors of ECC is shown in Figure 2.3. In particular,
logical implication coincides with non-dependent function type, and universal
quantification with Π-abstraction. Accordingly, we will use the symbols Π and
∀ interchangeably, the latter mostly in conjunction with propositions.

True := ΠX : Prop.X → X

False := ΠX : Prop.X

A → B := A → B

A ∧ B := ΠR : Prop.(A → B → R) → R

A ∨ B := ΠR : Prop.(A → R) → (B → R) → R

¬A := A → False

∀ x : A.P(x) := Πx : A.P(x)

∃ x : A.P(x) := ΠR : Prop.(Πx : A.(P(x) → R)) → R

Figure 2.3.: Coding of logical connectives in ECC

It can be shown that these encodings are adequate with respect to the
usual definition of logical connectives via introduction and elimination rules

36

2.2. INTRODUCING METAVARIABLES

(see [Pra65], p. 67 or [Luo90], p. 118). For example, in standard predicate
logic, the introduction and elimination rules for conjunction are:

Γ � A ∧ B

Γ � A
(∧El)

Γ � A ∧ B

Γ � B
(∧Er)

Γ � A Γ � B

Γ � A ∧ B
(∧I)

When expanding the definitions of the connectives, these rules are derivable
using rules involving only the rules for universal quantification and implication.

2.2. Introducing Metavariables

In Chapter 1, some applications of metavariables have been informally pre-
sented. Now that the most important concepts of the base calculus ECC have
been introduced, it is possible to describe more precisely the requirements that
metavariables are supposed to fulfill. In this section, we will identify some dif-
ficulties that arise in a naive approach of handling metavariables, and suggest
possible solutions. The rigorous treatment following in the remaining sections
of this chapter shows that a calculus incorporating metavariables can indeed
be defined without sacrificing essential properties of the base calculus.

As mentioned before, a metavariable ?n is a placeholder for a term. Since
the formal framework considered here is strongly typed, any solution term is
expected to have a certain type T in a context Γ, so it makes sense to constrain
?n itself accordingly. We write Γ �?n : T to indicate that any solution of ?n
has to be of type T in context Γ. Conversely, any term having this property
is acceptable as solution for ?n; we do not impose additional requirements. –
As long as no solution for ?n has been determined, we want to manipulate ?n
just like any other term, so Γ �?n : T can alternatively be interpreted as a
type assignment for metavariable ?n. The resulting type system is examined
in Section 2.5.

The process of assigning a solution term s to a metavariable ?n within a
term t containing ?n is called instantiation. In order to make the formal defi-
nition of Section 2.6.1 more comprehensible, we will point out one peculiarity
of treating bound variables, which is motivated by the following example.

Example 2.16
Assume we want to prove ∃ f : T → T .(f t) = t , where T is a type and t a
term of type T . Introducing a metavariable for the existential quantifier, we
are left with the goal (?f t) = t , where Γ �?f : T → T (Γ being the context
under consideration). When instantiating the goal with ?f := λ x : T . x , we
obtain ((λ x : T . x) t) = t , which is easy to prove. By the above criterion, this
instantiation is acceptable, because Γ � (λ x : T . x) : T → T .

37

2.2. INTRODUCING METAVARIABLES

The solution provided for ?f is a function such that given a parameter
x : T , x is returned. Instead of producing this function in one step, it should
be possible to synthesize it: When applying the rule (λ) backwards to Γ �?f :
T → T , we still have to construct ?b with Γ, x : T �?b : T , where the partial
solution for ?f is λ x : T . ?b. Following the intuition that the function body ?b
should just return the parameter x , we instantiate ?b := x . In order to obtain
the solution λ x : T . x from the partial solution λ x : T . ?b, we have to map
the instantiation ?b := x over λ x : T . ?b without renaming bound variables.

This definition of instantiation has been chosen because it models best the
fact that the notion of “local” and “global” variable is relative: Given the
defining context Γ, x : T of metavariable ?b, x is global, whereas it is locally
bound in the expression λ x : T . ?b. Nevertheless, x should in both cases be
regarded as the same object.

There are mainly two problems when dealing with context-dependent meta-
variables, illustrated by the following examples:

Example 2.17
Commutativity of instantiation and reduction: Assume that metavariable ?n1 is
defined to be of type T in a context containing x : T , that is, T : Type, x : T �
?n1 : T . In a naive approach, first reducing the term trm1 := (λ x : T . ?n1) t
to ?n1 and then instantiating the result with term x yields the result x . First
instantiating ?n1 to x and then reducing yields t (as remarked above, the
variable x bound by λ-abstraction is the same object as the variable x bound
in the context of the metavariable).

(λ x : T . ?n1) t
{?n1 := x}

��

β

��

(λ x : T . x) t

β

��
?n1

{?n1 := x}
�� x t

Note that this problem is not caused by a particular type system, but arises in
any calculus in which there is a notion of β-reduction and in which metavari-
ables depend on a context.

This problem will be solved by explicitly recording the substitutions that
have been performed on a metavariable. This leads to a concept of explicit
substitutions. In the above example, the term (λ x : T . ?n1) t is then not
simply reduced to ?n1, but to ?n�

1 [x := t], where the delayed assignment x := t
is carried out as soon as ?n1 is instantiated. After having formally defined a

38

2.3. TERM CALCULUS WITH METAVARIABLES

calculus with explicit substitution, we will again look at this particular problem
(see Example 2.68).

Example 2.18
Keeping track of type information: Consider a metavariable ?n2 defined with
the following context and type:

A : Type,T : Type, x : T �?n2 : T

Consider the term trm2 := (λ T : Type. λ x : T . ?n2) A in context A : Type.
When first instantiating ?n2 with x and then reducing, the resulting λ x : A. x
is easily seen to have type A → A. When first reducing trm2, however, the
question arises what the type of the resulting term λ x : A. ?n2 should be.
A → T is certainly not correct, as T does not even occur in context A : Type.
Claiming that ?n2 has type A is also problematic, since then, the term ?n2

would have different types (A resp. T) in different contexts. As opposed to
the first problem, this difficulty is directly related to the type system and arises
in a similar form in any calculus with dependent types.

Again, explicit substitutions provide a solution. When reducing the term
(λ T : Type. λ x : T . ?n2) A, we do not obtain λ x : A. ?n2, as suggested above,
but λ x : A. ?n�

2 [T := A]. According to the typing rules developed in Sec-
tion 2.5.1, the term ?n�

2 [T := A] does not have the same type as ?n2. More
generally, it will be shown that terms keep their type when being reduced
(“subject reduction”, Proposition 2.47) and types remain consistent under in-
stantiation (Proposition 2.72).

2.3. Term calculus with Metavariables

2.3.1. Metavariables

In this section, we formally introduce metavariables and describe properties
of the term calculus, without making assumptions about the well-typedness of
terms (cf. Section 2.5). In general, separating these issues makes the calculus
easier to analyze. However, in the specific case of a calculus with explicit
substitutions, we have to impose some requirements which anticipate some
properties of well-typed terms.

Definition 2.19 (Metavariables)
M is an infinite set of objects called metavariables disjoint from the set V of
variables. As a notational convention, we always write metavariables as an
identifier prefixed by a question mark.

39

2.3. TERM CALCULUS WITH METAVARIABLES

Now, the syntax can be extended to accommodate metavariables and ex-
plicit substitutions: Two productions are added to the grammar of core ECC
(Figure 2.1) to yield the grammar of LM, the language of ECC with metavari-
ables (Figure 2.4).

T ::= V
| Prop | Typei

| ΠV : T .T | λV : T .T | (T T)
| ΣV : T .T | pairT (T , T) | π1(T) | π2(T)
| M�S

S ::= [] | [V := T] :: S

Figure 2.4.: Grammar defining the language of ECC with metavariables

A new production for terms permits to build terms of the form ?n�σ that
apply substitutions σ to metavariables ?n. Substitutions are generated by pro-
duction S. By this construction, a substitution effectively becomes a part of
a term and can be reasoned about in the calculus. This notion of explicit
substitutions has to be distinguished from the traditional notion of substitu-
tions, which are defined as meta-operations on terms (such as in the following
Section 2.3.2).

In order to model the fact that a metavariable depends on a context and that
only variables declared in this context can be substituted in the metavariable,
all term operations are parameterized by a function svars : M→ List V which
associates to each ?n ∈ M a list of variables that may be substituted in ?n.
The function svars will later be defined to coincide with the function that yields
the domain of the context in which the metavariable is declared. Alternatively,
it would have been possible to define proof problems (Section 2.4) first and
parameterize term operations over proof problems. For reasons of clarity, we
have chosen the present order.

More formally, we define explicit (or internal) substitutions as follows:

Definition 2.20 (Explicit Substitution)
An explicit substitution is a list of the form [x1 := t1, . . . xk := tk] associating
terms to variables. A substitution σ = [x1 := t1, . . . xk := tk] is valid for a
metavariable ?n if:

1. All the variables xi are distinct.

2. All the variables xi are contained in svars(?n).

40

2.3. TERM CALCULUS WITH METAVARIABLES

3. If xi occurs before xj in σ, then xi occurs before xj in svars(?n).

The domain of a substitution is defined to be the set dom(σ) := {x1, . . . xk}.

Henceforth, we will assume that all the internal substitutions are valid for the
metavariables to which they are attached, and we will enforce this invariant for
all operations on terms.

It should be stressed that, in contrast to the view of substitutions as pos-
sibly infinite mappings from variables to terms, explicit substitutions are here
taken to be finite lists. This is necessary for obtaining a finite representation of
terms. The notion of subterm can then be extended naturally to metavari-
ables with substitutions: the terms ti and their subterms are subterms of
?n�[x1 := t1, . . . xk := tk].

Variables in a valid substitution applied to metavariable ?n are always kept
in a unique order determined by the variable order of svars(?n) (requirement 3.
in Definition 2.20). This requirement is necessary for syntactically comparing
terms which are essentially equal. This is further illustrated by Example 2.25
below, the property is used for the proof of the Church-Rosser theorem in
Section 2.3.3, in particular Lemma 2.34.

Only variables declared in svars(?n) may occur in the domain of valid
substitutions for ?n (requirement 2. in Definition 2.20). This postulate can
best be motivated when considering typing rules (Section 2.5) and solutions
for metavariables (Section 2.6). The general idea is that a term containing a
free variable, say x , cannot be the solution of a metavariable ?n whose context
does not contain a declaration of x . Therefore, any substitution having x as its
domain cannot become effective in a solution of ?n. Apart from being merely
plausible, this requirement also facilitates the proof of strong normalization,
see Section 2.7.2.

In a strict sense, “pure” metavariables without attached substitutions are
not valid terms. Actually, we do not want to distinguish between a metavariable
?n and the same metavariable with an empty substitution, ?n�[], and so we
establish this equality as a notational convention, rather than formalizing it in
the calculus. Also note that substitutions can only be attached to metavariables
and not to arbitrary terms – for example, (f a)σ is not a valid term. This
distinguishes our calculus from (to our best knowledge) all calculi of explicit
substitutions presented in the literature.

In a language with metavariables, one has to distinguish between an actual
occurrence of a variable in a term and a potential occurrence, that is, an oc-
currence after an appropriate instantiation has been carried out. For some of
our considerations, a straightforward extension of the standard notion of “free
variable” as given by Definition 2.1 is not always sufficient (see for example

41

2.3. TERM CALCULUS WITH METAVARIABLES

the remark following Lemma 2.23), as it would only take actual, but not po-
tential occurrences into account. We therefore extend the definition as follows,
however keeping the notation FV :

Definition 2.21 (Free Variables - Terms with Metavariables)
For terms M containing metavariables, the inductive Definition 2.1 of function
FV is extended by the clause:

FV (?n�[x1 := t1, . . . xk := tk]) = (svars(?n)\{x1, . . . xk}) ∪
⋃

i=1,...,k FV (ti)

To illustrate this definition, consider a metavariable ?n with svars(?n) =̂
[x , y , z] and a term t =̂ (f ?n�[x := y]). Even though x has a syntactic ap-
pearance in t , any correct instantiation for ?n (in the sense of Section 2.6) such
as ?n := x will make x disappear, leading to a term (f y). Even though z does
not occur syntactically in t , it may be introduced by a correct instantiation
such as ?n := z , leading to a term (f z).

2.3.2. Reduction Relations

This section is concerned with extending the usual notions of reduction to
the language with metavariables. Since substitutions in our calculus are only
internalized as attachment to metavariables to express that a substitution is
delayed, we cannot completely dispense with an external notion of substitution.

Definition 2.22 (External Substitutions)
Let s be a term, x a variable with x �∈ FV (s). A substitution σ := {x := s} is

a mapping from terms to terms, defined by the mapping
s→ as follows:

Variable

yσ
s→

{
s if x = y
y otherwise

Constant (Prop)σ
s→ Prop, (Typei)σ

s→ Typei

Quantifier For Q ∈ {λ,Π,Σ}: (Qz : T .M)σ
s→ Qz : Tσ.Mσ

provided that x �= z

Application (f a)σ
s→ (f σ aσ)

Pair (pairT (t1, t2))σ
s→ pairTσ(t1σ, t2σ)

Projection πi(t)σ
s→ πi(tσ) for i = 1, 2.

42

2.3. TERM CALCULUS WITH METAVARIABLES

Metavariable Provided that x �∈ {y1 . . . yk}:

• If x ∈ svars(?n) and x occurs between yi and yi+1 in svars(?n):

(?n�[y1 := t1, . . . yk := tk])σ
s→

?n�[y1 := t1σ, . . . yi := tiσ, x := s , yi+1 := ti+1σ, . . . yk := tkσ]

• If x �∈ svars(?n):

(?n�[y1 := t1, . . . yk := tk])σ
s→

?n�[y1 := t1σ, . . . yk := tkσ]

The definition can be extended to contexts as follows:

• 〈〉{x := s} s→ 〈〉

• (y : T ,Γ){x := s} s→ (y : T{x := s}, Γ{x := s}), provided x �= y .

In the sequel, we will sometimes use a parallel substitution of several vari-
ables in a term: For σ := {x1 := t1 . . . xk := tk}, tσ means that the substitution
is applied once, but is not to be re-applied to the term resulting from a substi-
tution. In particular, for variables y , yσ

s→ ti (and not tiσ) for y = xi . The
definition for the other term constructors is analogous to the definition above.

In order to distinguish external substitutions from the internalized explicit
substitutions, we write the former in braces like {. . .} and the latter in brackets
like [. . .]. However, the letters σ and τ will be used indiscriminately for both
kinds of substitutions.

The mapping
s→ pushes a substitution inside a term, until it can either

be applied directly to a variable or has to be recorded for later substitution in
a metavariable. Only expressions irreducible with respect to

s→ are correct
terms of LM. An expression like (λ x : M . N)σ, even though it is not a term,
will be taken to stand for the term obtained by moving substitutions inside the
term as far as possible, as defined by

s→ .

The rules are stated with some provisos concerning the occurrence of vari-
ables. When abstracting away from the particular presentation of variables as
named objects chosen here (also see Section A.1), the logical essence of these
provisos is the following:

43

2.3. TERM CALCULUS WITH METAVARIABLES

• The Quantifier rule postulates that the variables in the domain of a sub-
stitution must not occur as bound variables in a term to which the sub-
stitution is applied. This is reasonable to assume, since a variable should
not be accessible outside its scope.

• The Metavariable rule requires that the variable to be substituted does
not yet occur in the list of substitutions of a metavariable. Variables
in the substitution list have been used previously for substitution and
therefore cannot serve as substitution variables a second time.

Lemma 2.23
• For terms M ,N , if x �∈ FV (M), then M {x := N } ≡ M

• For context Γ and term N , if x �∈ FV (Γ), then Γ{x := N } ≡ Γ

This lemma provides a further motivation for the definition of FV given
in Definition 2.21, as this lemma would be invalidated by a simple notion of
“free variable occurrence”: Consider the term ?n with x ∈ svars(?n) and the
substitution ?n{x := N } ≡ ?n�[x := N] �≡?n.
Proof: By induction on the structure of M (the extension to contexts Γ is
straightforward).

• M is a variable. M ≡ x is impossible, so M ≡ y �= x , and y{x := N } ≡ y

• M is λ z : A. B . (By our variable convention, z �= x). We have x �∈
FV (A) and x �∈ FV (B) and, by induction hypothesis, A{x := N } ≡ A
and B{x := N } ≡ B , thus

(λ z : A. B){x := N } ≡ λ z : A{x := N }. B{x := N } ≡ λ z : A. B

• Similarly for Π- and Σ-abstraction.

• M is ?n�[x1 := t1, . . . xk := tk]. By convention, we assume that x �∈
{x1, . . . , xk}. By x �∈ FV (M) and definition of FV , we have x �∈ svars(?n)
and x �∈ FV (tj) for j = 1, . . . , k .

By definition of substitution, taking into account that x �∈ svars(?n) and
that tj{x := N } ≡ tj by induction hypothesis, we have M {x := N } ≡
?n�[x1 := t1{x := N }, . . . xk := tk{x := N }] ≡ ?n�[x1 := t1, . . . xk := tk]
≡ M .

• All other cases require a straightforward application of the induction
hypothesis.

44

2.3. TERM CALCULUS WITH METAVARIABLES

2

Lemma 2.24
Let Γ be a context and M and N terms.

• If x ∈ FV (M), then FV (M {x := N }) = FV (M)\{x} ∪ FV (N)

• If x ∈ FV (Γ), then FV (Γ{x := N }) = FV (Γ)\{x} ∪ FV (N)

Proof: Induction on the structure of M (resp. Γ). We only consider the
following cases, the other ones are similar:

• M is a variable. In this case, M ≡ x , so FV (M {x := N }) = FV (N).

• M is a λ-abstraction of the form λ z : A. B . Since x ∈ FV (λ z : A. B),
either x ∈ FV (A), x �∈ FV (B) or x ∈ FV (B), x �∈ FV (A) or x ∈
FV (A), x ∈ FV (B). Let us assume the first, the other cases are similar.
By induction hypothesis, FV (A{x := N }) = FV (A)\{x} ∪ FV (N) and
by Lemma 2.23, FV (B{x := N }) = FV (B), so by the definition of FV ,
FV ((λ z : A. B){x := N }) = FV (A{x := N }) ∪ FV (B{x := N }) =
FV (A)\{x} ∪ FV (N) ∪ FV (B) = FV (M)\{x} ∪ FV (N).

• M is a metavariable of the form ?n�[x1 := t1, . . . xk := tk].

Case x ∈ svars(?n):
FV ((?n�[x1 := t1, . . . xk := tk]){x := N }) =
(by definition of substitution, similarly for all other variable orders:)
FV (?n�[x1 := t1{x := N }, . . . xk := tk{x := N }, x := N]) =
(by definition of FV :)
(svars(?n)\{x1, . . . xk , x}) ∪

⋃
i=1,...,k FV (ti{x := N }) ∪ FV (N) =

(by induction hypothesis, Lemma 2.23 and set theory:)
((svars(?n)\{x1, . . . xk}) ∪

⋃
i=1,...,k FV (ti))\{x} ∪ FV (N) =

(by definition of FV :)
FV (?n�[x1 := t1, . . . xk := tk])\{x} ∪ FV (N)

Case x �∈ svars(?n): Similar. Note that x := N will not be added to
the substitution. Since x �∈ svars(?n), we have (svars(?n)\{x1, . . . xk}) =
(svars(?n)\{x1, . . . xk})\{x}.

2

The following example illustrates why the variables in a substitution have
to be ordered:

45

2.3. TERM CALCULUS WITH METAVARIABLES

Example 2.25
Consider a variant of the above Metavariable reduction rule in which the sub-
stitution list is not ordered, but the new substitution variable is simply added
at the front of the list:

(?n�[y1 := t1, . . . yk := tk])σ
s→ ?n�[x := s , y1 := t1σ, . . . yk := tkσ]

Then, the term

(λ x1 : T1. (λ x2 : T2. ?n) a2) a1

can be reduced by first contracting the innermost redex, yielding the term
?n�[x1 := a1, x2 := a2], or by first contracting the outermost redex, yielding
?n�[x2 := a2, x1 := a1]. Clearly, both terms are not equal. With the original
rule, the variables being ordered as x1 before x2, both reductions lead to the
term ?n�[x1 := a1, x2 := a2].

Example 2.26
It may be wondered whether the substitution in metavariables could not be
“optimized” in the following sense: Replace case x �∈ svars(?n) of the definition
by:

(?n�[y1 := t1, . . . yk := tk]){x := t} s→ ?n�[y1 := t1, . . . yk := tk]

that is, do not propagate {x := t} in the substitution, because at first glance,
it may seem that x cannot occur in any ti if it is not in the context of ?n.
Consider, however, the following example: a : T , y : T �?n : T and compare
the reductions of the term (λ x : T . ((λ y : T . ?n) x)) a. When first reducing
the inner, then the outer redex with the “optimized” rewriting relation, we
obtain the term ?n�[y := x], otherwise (i.e. first outer, then inner redex) we
obtain ?n�[y := a] and thus have lost confluence.

In the Section 2.3.3, the question of uniqueness of normal forms will be
treated on a more formal basis. First, however, some standard definitions will
be given, which have mainly been taken from [Bar84].

The base reductions we are interested in are β-reduction, which computes
the application of a λ-abstraction to an argument, and π-reduction, which
computes the projection from a pair:

Definition 2.27 (Base Reduction Relations)
• β-reduction: (λ x : T . M) N →β M {x := N }

• π-reduction: πi(pairT (M1, M2)) →π Mi for i = 1, 2

46

2.3. TERM CALCULUS WITH METAVARIABLES

• Redex and contractum: The term (λ x : T . M) N resp. πi(pairT (M1, M2))
is called a redex, the term M {x := N } resp. Mi the contractum.

For example, (λ x : T . x) N →β N and (λ x : T . ?n�[]) N →β ?n�[x := N],
if x ∈ svars(?n).

From these base relations, more complex relations can be constructed. If a
relation R holds between two terms M and N , then the compatible closure Rc

essentially extends R to terms in which M and N are embedded.

Definition 2.28 (Derived Reduction Relations)
• The compatible closure Rc of a relation R on terms is the smallest relation

such that (C [M] Rc C [N]) holds whenever (M R N), for all terms M ,N
and term contexts C [.].

• One-step reduction →1 is defined as the compatible closure of →β and
→π :

→1 := (→β ∪ →π)c

• Reduction � is defined as the reflexive-transitive closure of →1:

� := →1
∗

The reduct of a term M is any term N such that M�N .

We assume that the notion of “term context” (not to be confused with typing
contexts) is sufficiently clear. For details, consult [Bar84].

Definition 2.29 (Convertibility and Normal Form)
• Convertibility: Terms M and N are convertible (written M
 N) if

there exists a sequence of terms M ≡ M0 . . .Mn ≡ N such that Mi�Mi+1

or Mi+1�Mi .

• Normal form: A term is in normal form if it contains no redex.

Occasionally, we will use some of the above notions, which have been defined
for terms, in an obvious extension to contexts. For example, a context is in
normal form if in all of its declarations x : T , the term T is in normal form.

Definition 2.30 (Weak head normal form)
• A term M is in weak head normal form (whnf) if it is not of the form

(λ x : A.M1) M2 or πi(pairT (M1, M2)) (for i = 1, 2).

• A whnf of M is a (not necessarily unique) term M ′ such that M�M ′

and M ′ is in whnf.

47

2.3. TERM CALCULUS WITH METAVARIABLES

Thus, a term is in weak head normal form if its outermost term position is not
a redex. The outermost term constructor of the whnf of a term is uniquely
determined, even though different reduction strategies may produce different
whnf’s of a term. For proof search, it is often sufficient to compute weak head
normal forms, because once the whnf of a term is known, it is clear which
inference rule (if any) can be applied to it.

2.3.3. Properties of the Term Calculus

In this section, we will show that the reduction relation � has the Church-
Rosser property. This property ensures that two diverging computation paths
can always be joined again. If reductions of the strict part of � always termi-
nate (which indeed they do, see Section 2.7.2), then normal forms are unique.
By this means, convertibility of two terms can be decided, by reducing them
to normal form and comparing the normal forms syntactically.

Definition 2.31 (Diamond and Church-Rosser property)
• A relation R on terms satisfies the Diamond property, if for all terms

M ,M1,M2 such that (M R M1) and (M R M2) hold, there exists a term
M3 such that (M1 R M3) and (M2 R M3) hold.

• A relation R on terms has the Church-Rosser property, if the compatible,
reflexive-transitive closure of R satisfies the Diamond property.

Proposition 2.32 (Reduction is Church-Rosser)
The reduction relation � satisfies the Church-Rosser property.

Proof: The proof is an extension of the proof of the Church-Rosser property
of the untyped λ-calculus that can be found for example in [Bar84], Chapter 3.
The proof method has originally been developed by Martin-Löf and Tait and
proceeds along the following steps:

• Define a parallel one-step reduction relation ⇒1 and show that it is pre-
served under substitutions (see Lemma 2.35).

• Show that ⇒1 has the Diamond property (see Lemma 2.36).

• The inclusions →1 ⊆ ⇒1 and ⇒1 ⊆ � hold among the reduction rela-
tions. With� defined as the reflexive-transitive closure of →1, it is easy
to show that the reflexive-transitive closure of ⇒1 is equal to �.

• For an arbitrary relation R, it can be shown that if R has the Diamond
property, then also its reflexive-transitive closure R∗. In particular, the

48

2.3. TERM CALCULUS WITH METAVARIABLES

relation �, being equal to ⇒1
∗, has the Diamond property, and since it

is its own compatible, reflexive-transitive closure, it is Church-Rosser.

2

Definition 2.33 (Parallel one-step reduction)
Parallel one-step reduction ⇒1 is defined as the simultaneous application of
the reduction relation →1 at several subterms of a term:

• M⇒1M

• If T⇒1T
′ and M⇒1M

′, then (Qx : T .M)⇒1(Qx : T ′.M ′) for Q ∈
{λ,Π,Σ}

• If M1⇒1M
′
1 and M2⇒1M

′
2, then (M1 M2)⇒1(M

′
1 M ′

2). Similarly for pairs
and projections.

• If P⇒1P
′ and N⇒1N

′, then (λ x : T . P) N⇒1P
′{x := N ′}.

• If T⇒1T
′ and Mi⇒1M

′
i (i = 1, 2), then πi(pairT (M1, M2))⇒1M

′
i .

• If Mi⇒1M
′
i (i = 1 . . .n), then

?n�[x1 := M1 . . . xk := Mk]⇒1?n
�[x1 := M ′

1 . . . xk := M ′
k]

Parallel one-step reduction allows to reduce several redexes in different sub-
terms at once, as in:

(f ((λ x : T . x) a) ((λ y : T . y) b))⇒1(f a b)

which is not possible in simple one-step reduction. Thus,

(f ((λ x : T . x) a) ((λ y : T . y) b))→1(f a b)

does not hold.
The Substitution Lemma shows that the application of substitutions can

be permuted in a certain sense:

Lemma 2.34 (Substitution Lemma)
Consider the substitutions {x := N } and {y := L}, assume that x �= y and
x �∈ FV (L). Then M {x := N }{y := L} = M {y := L}{x := N {y := L}}

Proof: The proof is by induction on the structure of M and runs essentially
along the same lines as in the untyped λ-calculus. Only the variable and
metavariable cases are non-trivial. For all other term constructors, draw sub-
stitutions inside the term and apply induction hypothesis.

Variable case: Either M = x or M = y or M = z with z �= x , y :

49

2.3. TERM CALCULUS WITH METAVARIABLES

• M = x : Then x{x := N }{y := L} = N {y := L} = x{y := L}{x :=
N {y := L}}

• M = y : Then y{x := N }{y := L} = L = L{x := N {y := L}} (by
Lemma 2.23, since x �∈ FV (L)).

• M = z : Then z{x := N }{y := L} = z = z{y := L}{x := N {y := L}}.

Metavariable case: Assume that M is of the form ?n�[z1 := t1, . . . zk := tk].
Then
?n�[z1 := t1, . . . zk := tk]{x := N }{y := L} ≡
(by definition of substitution)
?n�[x := N {y := L}, y := L, z1 := t1{x := N }{y := L}, . . .] ≡
(induction hypothesis applied to the ti)
?n�[x := N {y := L}, y := L, z1 := t1{y := L}{x := N {y := L}}, . . .] ≡
(by definition of substitution)
?n�[z1 := t1, . . . zk := tk]{y := L}{x := N {y := L}}

This line of reasoning supposes that x , y ∈ svars(?n). If x , y or both do
not occur in svars(?n), a similar proof is possible, with x resp. y resp. both
missing in the substitution for ?n.

Note that the correctness of this argument critically depends on an appro-
priate ordering of the variables in the substitution. Here, we have assumed,
without loss of generality, that x < y < z1 < . . . < zk if < is the order of the
variables in svars(?n). 2

Lemma 2.35
If M⇒1M

′ and N⇒1N
′, then M {x := N }⇒1M

′{x := N ′}

Proof: By induction on the definition of relation ⇒1. For convenience, the
substitution {x := N } will be called σ, the substitution {x := N ′} will be
called σ′. We will only consider selected cases, other cases being similar:

• Assume M⇒1M
′ is M⇒1M . Then one has to show that Mσ⇒1Mσ′.

This is done by induction on the structure of M :

– M ≡ x . Then Mσ ≡ N⇒1N
′ ≡ Mσ′

– M ≡ y for an y �= x . Then Mσ ≡ y⇒1y ≡ Mσ′

– Prop, Typei : Trivial

– Abstraction, application, pairing, projections: apply induction hy-
pothesis

50

2.4. PROOF PROBLEMS

– Metavariables: also apply induction hypothesis, as in the following
(assuming x ∈ svars(?n)):
Mσ ≡ (?v�[y1 := t1 . . . yk := tk])σ ≡
?v�[x := N , y1 := t1σ . . . yk := tkσ]⇒1

(by induction hypothesis and the fact that N⇒1N
′):

?v�[x := N ′, y1 := t1σ
′ . . . yk := tkσ

′] ≡
(?v�[y1 := t1 . . . yk := tk])σ

′ ≡ Mσ′

If x �∈ svars(?n), reason analogously with x := N omitted from the
substitution.

• Assume M⇒1M
′ is (λ y : T . B) A⇒1B

′{y := A′}, with A⇒1A
′ and

B⇒1B
′. Then

Mσ ≡ ((λ y : T . B) A)σ ≡ ((λ y : Tσ. Bσ) Aσ)⇒1

(by induction hypothesis)
(B ′σ′){y := A′σ′}
(since y does not occur in N ′, by the substitution lemma 2.34)
≡ (B ′{y := A′}){x := N ′} ≡ M ′σ′

• Reduction of applications other than the above case, of pairs, projections,
quantification, metavariables: Simply apply induction hypothesis.

2

Lemma 2.36
⇒1 satisfies the diamond property.

Proof: It has to be shown for all M ,M1,M2, that whenever M⇒1M1 and
M⇒1M2, there exists a term M3 such that M1⇒1M3 and M2⇒1M3. This is done
by induction on the derivation M⇒1M1. The only interesting cases arise from
reductions that can be applied at overlapping redexes; these situations already
occur in the untyped λ-calculus and can be handled by standard methods. For
all other reductions, a straightforward application of the induction hypothesis
is possible. 2

This concludes the proof of the Church-Rosser property of the term calculus.

2.4. Proof Problems

As opposed to the situation encountered in less complex calculi (such as the
simply-typed λ-calculus), there can be intricate dependencies among metavari-
ables in calculi with dependent types. In particular, the type of one metavari-
able can depend on the value assigned to another one, and the well-typedness
of a context can depend on the value assigned to a metavariable.

51

2.4. PROOF PROBLEMS

Before stating typing rules and examining their properties, some restrictions
on dependencies among metavariables have to be imposed which are strong
enough to make verification of the correctness of solutions for metavariables
possible. The restrictions should be sufficiently liberal so that dependencies
among metavariables can be exploited for proof search, as in the following
example.

Example 2.37
Consider the (∃R) rule (cf. Section 4.4.1):

Γ� ?n1 :T Γ� ?n2 :P(?n1)

Γ � ?n0 : ∃ x : T .P(x)
(∃R)

Application of this rule introduces two metavariables ?n1 and ?n2, where ?n2

depends on ?n1 since ?n1 occurs in P(?n1). If there is a declaration of the
form h : P(t) in Γ, then ?n2 can be solved with h, leading to an assignment
{?n1 := t} as a side-effect.

The next example illustrates that a seemingly innocent formula can give
rise to proof situations that are awkward, if not impossible to handle:

Example 2.38
Starting from the (academic) formula ∃T : Type,Q : T → Prop, x : T .(T →
Q(x)), eliminating existential quantifiers (as in the example above) and intro-
ducing assumptions, one obtains the following set of metavariables:
�?T : Type
�?Q :?T → Prop
�?x :?T
h :?T �?n :?Q(?x).

One step that suggests itself now is to equate ?n with h and consequently
?T with ?Q(?x), leading to a new proof problem with �?Q :?Q(?x) → Prop
and �?x :?Q(?x), in which the dependency of metavariables is cyclic. There
is no intuitive interpretation of such a proof problem, nor is it clear how to
type-check terms containing ?Q and ?x and how to effectively verify tentative
solutions of such a proof problem.

In the sequel, we will permit proof problems with metavariable dependen-
cies of the first kind, but will exclude circularities of the second kind. As
demonstrated by the above examples, a context or a type can again contain
metavariables. The set MVars of metavariables of a term (a context, a substi-
tution) is given by the following definition:

52

2.4. PROOF PROBLEMS

Definition 2.39
For a term t , context ∆ respectively substitution σ, let MVars(t), MVars(∆)
and MVars(σ) be the set of metavariables occurring in t , ∆ respectively σ.

A metavariable depends on a context Γ and has a type T , as expressed
by the more suggestive notation Γ �?n : T . Since, in the course of a proof,
metavariables occurring in Γ or T can be instantiated, a context and a type
are not invariantly assigned to a metavariable ?n by functions depending only
on ?n, but they are also determined by other metavariables occurring in Γ
and T . Likewise, the set of metavariables on which ?n depends changes as
metavariables are instantiated by terms possibly containing new metavariables.

These considerations lead to the notion of proof problem which will capture
more formally the idea of a set of metavariables and the defining contexts and
types of the metavariables contained in this set.

Definition 2.40 ((Valid) Proof Problem)
A proof problem P is a triple (MP , ctxtP , typeP) consisting of:

• A finite set of metavariables MP

• A function ctxtP assigning a context to each ?n ∈ MP , such that
dom(ctxtP(?n)) = svars(?n).

• A function typeP assigning a term to each ?n ∈ MP

For a proof problem P and ?n1, ?n2 ∈ MP , the relation <P is defined as:
?n1 <P?n2 iff ?n1 ∈ MVars(ctxtP(?n2)) or ?n1 ∈ MVars(typeP(?n2)).
Let $P be defined as the transitive closure of <P .
A proof problem P is called valid if $P is an irreflexive partial order.

Remarks:

1. The condition dom(ctxtP(?n)) = svars(?n) establishes a link between
aspects of the syntax of metavariables (the list of variables that may
appear in substitutions, svars(?n)) and aspects of the semantics (the
typing constraints of metavariables, given by the functions ctxtP and
typeP , see Section 2.5).

2. The above definition has to be made more precise in the following sense:
The relation <P as defined above may change when terms are reduced.
Assume, for example, that typeP(?n2) = (λ x :?n1. x) A. Here, ?n1 <P
?n2, even though there is no genuine dependency between ?n1 and ?n2

– it disappears when reducing (λ x :?n1. x) A. Altogether, we require
the relation <P to be invariant under reduction of terms. Otherwise,

53

2.4. PROOF PROBLEMS

<P is subject to the contingencies of a particular presentation of terms,
which is confusing in situations where terms are routinely reduced, for
example in type checking. Thus, we should like to say that we compute
the relation <P as defined above, however with ctxtP(?n2) and typeP(?n2)
in normal form. The fact that normal forms exist will not be proved until
Section 2.7.2, and so we have to express this requirement more clumsily
as: <P is the least relation such that ?n1 <P?n2 iff ?n1 ∈ MVars(C) or
?n1 ∈ MVars(T), for all reducts C , T of ctxtP(?n2) resp. typeP(?n2).

Notation:

• The subscripts in MP , ctxtP , typeP will be omitted whenever P is clear
from the context.

• Instead of ?n ∈ MP , we often write ?n ∈ P

• Analogously, we define P\{?n1, . . .?nk} as the proof problem

(MP\{?n1, . . .?nk}, ctxt ′, type ′)

where the functions ctxt ′ and type ′ are the restrictions of ctxtP and typeP
to the set MP\{?n1, . . .?nk}. Similarly, we write P ∪ {?n1, . . .?nk} if the
contexts and types of ?n1, . . .?nk are understood.

Intuitively speaking, a proof problem is just a set of metavariables, whereas
a valid proof problem is one where the dependency relation$P among metavari-
ables is acyclic. For example, the proof problem P1 with the set of metavari-
ables {?n1, ?n2} as given in Example 2.37 is valid, with ?n1 $P1?n2 since
?n1 ∈ MVars(P(?n1)). Regarding Example 2.38, the proof problem P2 =
(MP2 , ctxtP2 , typeP2) has MP2 = {?x , ?Q}, the contexts ctxtP2(?x) and ctxtP2(?Q)
are empty and typeP2(?x) =?Q(?x) and typeP2(?Q) =?Q(?x) → Prop. Proof
problem P2 is not valid, since ?x $P2?x .

Since, for every valid proof problem P, the set MP is finite and the order
$P is transitive and irreflexive, it is also well-founded on MP . The order $P
can therefore be used in inductive proofs.

As an application, consider the following proposition, which is motivated
by the fact that in subsequent chapters (see for example Section 2.7), we will
have to define functions f that are essentially homomorphisms over the term
structure and over the structure of contexts, with the exception of metavari-
ables, where some additional computations are performed by functions g . It
is not immediately evident that these functions f are well-defined, even if the
functions g are strict, i.e. yield defined results for defined arguments.

54

2.4. PROOF PROBLEMS

Proposition 2.41
Let P be a valid proof problem, and assume that all terms and contexts under
consideration only contain metavariables from P.

Let f be a function defined on terms as follows:

• f (x) = x for variables x

• f (Prop) = Prop, f (Typei) = Typei

• f (Qx : T .M) = Qx : f (T).f (M) for Q ∈ {λ,Π,Σ}

• f (M N) = (f (M) f (N))

• f (pairT (t1, t2)) = pairf (T)(f (t1), f (t2))

• f (πi(t)) = πi(f (t)) for i = 1, 2

• f (?n�[x1 := t1, . . . , xk := tk]) =
g(f̂ (ctxt(?n)), f (type(?n)), [f (t1) · · · f (tk)]),
where the function g(Γ,T , trmlist) is defined whenever context Γ, term
T and the list of terms trmlist are defined.

The extension f̂ of f to contexts is defined by:

• f̂ (〈〉) = 〈〉

• f̂ (x : A,Γ) = x : f (A), f̂ (Γ)

Then f (t) is well-defined for every term t and f̂ (Γ) for every context Γ.

Proof: Termination of the functions f resp. f̂ is shown by giving measure
functions ord resp. ôrd which decrease for recursive calls of f resp. f̂ .

Define functions ord on terms and ôrd on contexts as follows:
For terms t , let ord(t) be the pair (m, s) where:

• m is the multiset of metavariables occurring in t

• s is the size of term t

For contexts Γ =̂ x1 : A1, . . . xn : An , let ôrd(Γ) = (m, s) where:

• m is the multiset of metavariables occurring in Γ

• s is the sum of the term sizes of the Ai

55

2.5. TYPING

The multisets m are ordered by the multiset order induced by$P (cf. [Der85]).
A term t1 is smaller than t2 if ord(t1) is lexicographically smaller than ord(t2)
– similarly for contexts.

It is easy to check that for recursive applications of f resp. f̂ , the parameters
get strictly smaller with respect to ord resp. ôrd . In particular, ôrd(ctxt(?n))
is smaller than ord(?n�σ) because only metavariables smaller than ?n (with
respect to$P) occur in ctxt(?n). For the same reason, ord(type(?n)) is smaller
than ord(?n�σ). 2

2.5. Typing

In this section, typing rules for the language with metavariables are presented,
and some properties of the resulting calculus ECCM are proved. Just as the
language LM is an extension of the language L of ECC , so new typing rules are
added in a “modular” fashion to the calculus with metavariables, i.e. without
modifying existing rules. As a consequence, exactly the same derivations are
possible in the fragment of ECCM not involving metavariables as in pure ECC .
This is a useful property in view of the fact that a calculus with metavariables
is introduced as a convenience for carrying out proofs, but is supposed not
to display a behaviour differing from the original calculus after the proofs are
finished.

In the following, typing rules will be presented (Section 2.5.1), some prop-
erties of typing will be proved (Section 2.5.2), and it will be shown how these
rules give rise to a type checking algorithm for the extended language, which
is not immediately evident (Section 2.5.3).

Before embarking on a detailed analysis of typing, it should be remarked
that typing of terms involving metavariables always has to be understood rela-
tive to a proof problem, even a valid proof problem in order to ensure termina-
tion of type inference and type checking (see for example the proof of Propo-
sition 2.56, which depends on the validity of the underlying proof problem).
When a proof problem is modified by instantiating some of its metavariables,
the typing relation changes as well. Assume, for example, that a metavariable-
free term t has type P(?n). After instantiating ?n to a, term t will have type
P(a), which is not convertible to P(?n) (see however Proposition 2.72). It is
noteworthy that this situation only arises in dependently-typed calculi. In the
simply-typed λ-calculus, instantiation does not affect the type of terms.

56

2.5. TYPING

2.5.1. Typing: Rules and Definitions

As mentioned above, typing is relative to a particular proof problem P. To
emphasize this dependence on P, we will in the following define a derivability
relation �P indexed by valid proof problems P. For proof problems P which
are not valid, �P is undefined. For most of the investigations, we will fix a
valid proof problem P and consider derivability with respect to this P. We
will then drop the index from �P .

Three typing rules for metavariables, displayed in Figure 2.5, are added to
the base calculus.

ctxtP(?n) �P typeP(?n) : Typej

ctxtP(?n) �P ?n�[] : typeP(?n)
(MV-base)

z �∈ FV (Γ) ∪ FV (∆) ∪ dom(σ)
Γ �P T : Typej Γ,∆ �P ?n�σ : N

Γ, z : T ,∆ �P ?n�σ : N
(MV-weak)

Γ �P t : T Γ, x : T ,∆ �P ?n�σ : N

Γ,∆{x := t} �P (?n�σ){x := t} : N {x := t} (MV-β-Red)

Figure 2.5.: Typing rules for Metavariables

These rules can be motivated as follows:

MV-base A metavariable ?n with empty substitution is typecorrect (with re-
spect to proof problem P) in case its defining type typeP(?n) and, con-
sequently, its defining context ctxtP(?n) are well-typed.

MV-weak The weakening rule, which is admissible for the base logic, is explic-
itly added for metavariables. Note that in the presentation chosen here,
an application of this rule does not leave any trace in ?n�σ and its type
N . This should be compared to the presentation with de Bruijn indices
in Section A.1.3, where application of this rule leads to a shift of indices.

MV-β-Red This rule simulates the behaviour of β-reduction. To illustrate
its effect, we resume Example 2.18 which leads to a type-incorrect term
when treated naively.

Assume, then, that the term ((λT : Type. λ x : T . ?n) A) has to be re-
duced to normal form, where A : Type,T : Type, x : T �?n : T . Note

57

2.5. TYPING

that the type of this term is A → A, since λ T : Type. λ x : T . ?n is of
type ΠT : Type. T → T . Reduction yields the term λ x : A. ?n�[T := A].
The derivation of its type reflects the procedure of β-reduction – with
the sole difference that T : Type and x : T are not bound locally by
λ-abstraction, but globally in the context:

A : Type � A : Type A : Type,T : Type, x : T � ?n�[] : T

A : Type, x : A � ?n�[T := A] : A
(MV-β-Red)

A : Type � λ x : A. ?n�[T := A] : A → A
(λ)

The observation suggested by this example – the type of terms is invariant
under reduction – is confirmed by Proposition 2.47 below.

Terminology: We say that rule (MV-weak) introduces variable z and that
rule (MV-β-Red) is applied at (or eliminates) variable x .

In the sequel, we are mainly interested in proof problems P that are well-
typed in the sense that the typing constraints imposed by ctxtP and typeP are
“internally consistent”. This notion is best illustrated by the following coun-
terexample: Assume that the valid proof problem P contains metavariables
?n0, ?n1 with A : Type �?n0 : A and B : Type,P : B → Prop �?n1 : P(?n0).
Obviously, the expression P(?n0) is ill-typed, as P expects an argument of type
B and not of type A. In particular, such a proof problem does not admit a well-
typed ground instantiation which satisfies the above typing constraint. Note,
however, that even a well-typed proof problem may possibly be unsolvable.

Definition 2.42 (Well-Typed Proof Problem)
A valid proof problem P is called well-typed if for every ?n ∈ P, ctxtP(?n) �P
typeP(?n) : Typej holds for j ≥ 0.

Remember that validity (Definition 2.40) is a purely structural property of
a proof problem, namely the property of being equipped with an irreflexive
dependency order $P on metavariables. Well-typedness is a stronger criterion
which is only satisfied if the type constraints on metavariables are internally
consistent.

2.5.2. Some properties of typing

In the following, some propositions will be proved that hold in an analogous
form for the calculus ECC . These propositions are proved by an induction on
derivations. Since the typing relation for the calculus with metavariables has
been defined by simply adding rules to the existing calculus, we will present
the proofs of the propositions below in a simplified form: After checking that

58

2.5. TYPING

the validity of the proofs for the rules of the original ECC is not influenced by
the new rules, it is sufficient to verify the new rules only.

In the proofs of the following propositions, we sometimes make reference
to propositions of Section 2.5.3, in which it is shown (among others) that
inferences in derivations can be ordered in a certain form. The proofs are
not mutually dependent and so the arrangement of the propositions could be
linearized accordingly. In order to maintain a coherent presentation, we have
chosen not to do so.

Proposition 2.43 (Weakening)
If Γ�M :A and Γ′ is a valid context containing every element of Γ, then
Γ′ �M :A holds.

Proof: By induction on the structure of the derivation of Γ�M :A:

• For derivations ending in rule applications with a conclusion of the form
Γ� ?n�σ :A, add an appropriate number of applications of the rule (MV-
weak).

• For derivations ending in rule applications with a conclusion of the form
Γ�M :A, with M being no metavariable, take into account the induction
hypothesis and re-apply the rule. 2

The strengthening rule states that unused assumptions can be removed
without affecting typeability. Recall that the concept of “free variable” (Defi-
nition 2.1) comprises not only variables which actually occur in a term, but also
those variables which potentially occur in it. Without this extended notion, a
strengthening rule is not admissible. Indeed, assume we were allowed to use a
metavariable ?n with ctxt(?n) =̂ Γ, y : A and type(?n) =̂ A in context Γ alone,
such that Γ �?n : A would be derivable. Even though the solution ?n := y is
correct since the solution term has the right type in the defining context of ?n,
we would obtain an incorrect term in context Γ where y is not typeable. This
runs counter to our intention that well-typed instantiations should preserve
typing (see Proposition 2.72).

Proposition 2.44 (Strengthening)
If Γ, y : Y ,Γ′ � M : A and y �∈ FV (M)∪FV (A)∪FV (Γ′), then Γ,Γ′ � M : A.

Proof: As noted in [Luo90], a slightly stronger version of the proposition has
to be proved, because the rules (app) and (�) lose information about variable
occurrences and so the induction hypothesis cannot be applied directly. The
following proposition entails the desired statement:

(*) If Γ, y : Y ,Γ′ � M : A and y �∈ FV (M) ∪ FV (Γ′), then there
exists a A′ � A such that Γ,Γ′ � M : A′.

59

2.5. TYPING

The proof of (*) is by induction on the length of the derivation of Γ, y : Y ,Γ′ �
M : A and, except for the metavariable rules, can be adapted from [Luo90].
We assume, furthermore, that derivations are in standard form (Definition 2.54
and Proposition 2.55). Thus, we only consider the cases in which the derivation
ends in an application of:

• (MV-base): The judgement that is derived is of the form ctxt(?n) �?n :
type(?n). If (y : Y) ∈ ctxt(?n), then y ∈ FV (?n), so the claim vacuously
holds.

• (MV-weak): The derivation is of the form:

Γ1 � T : Typej Γ1,∆1 � ?n�σ : N

Γ1, z : T ,∆1 � ?n�σ : N
(MV-weak)

If y of (*) is the variable z introduced by this application, then this ap-
plication can simply be dropped. Otherwise, apply induction hypothesis
(after case distinction (y : Y) ∈ Γ1 or (y : Y) ∈ ∆1).

• (MV-β-Red): The derivation is of the form:

Γ1 � t : T Γ1, x : T ,∆1 � ?n�σ : N

Γ1,∆1{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

Since the derivation under consideration is in standard form, we can
conclude that x ∈ dom(ctxt(?n)) and, in particular, that x ∈ FV (?n).
Assume (y : Y) ∈ Γ1: Thus, the derivation is of the form

Γ′
1, y : Y ,Γ′′

1 � t : T Γ′
1, y : Y ,Γ′′

1, x : T ,∆1 � ?n�σ : N

Γ′
1, y : Y ,Γ′′

1,∆1{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

Since y �∈ FV (Γ′′
1,∆1{x := t})∪FV ((?n�σ){x := t})∪FV (N {x := t}),

we conclude by Lemma 2.24 that y �∈ FV (Γ′′
1) and y �∈ FV (t), thus by

induction hypothesis

(1) Γ′
1,Γ

′′
1 � t : T ′

for a T ′ � T . In particular, y �∈ FV (T ′) by Lemma 2.57. By Lemma 2.8,
Γ′

1, y : Y ,Γ′′
1, x : T ′,∆1 � ?n�σ : N . Now, we can apply the induction

hypothesis to obtain:

(2) Γ′
1,Γ

′′
1, x : T ′,∆1 � ?n�σ : N

Application of (MV-β-Red) to (1) and (2) gives the desired result.

60

2.5. TYPING

Assume (y : Y) ∈ ∆1{x := t}: Thus, the derivation is of the form

Γ1 � t : T Γ1, x : T ,∆′
1, y : Y ′,∆′′

1 � ?n�σ : N

Γ1,∆
′
1{x := t}, y : Y ,∆′′

1{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

for a Y ′ such that Y ′{x := t} ≡ Y . By Lemma 2.24, y �∈ FV (∆′′
1) ∪

FV (?n�σ) ∪ FV (N), thus we can apply the induction hypothesis to
obtain: Γ1, x : T ,∆′

1,∆
′′
1 � ?n�σ : N . Together with Γ1 � t : T ,

application of (MV-β-Red) gives the desired result.

2

Proposition 2.45 (Cut)
If Γ, x : T ,∆�M :A and Γ� t :T are derivable, then so is
Γ,∆{x := t} �M {x := t} :A{x := t}

Proof: By induction on the structure of the derivation of Γ, x : T ,∆�M :A.

• For derivations ending in rule applications with a conclusion of the form
Γ, x : T ,∆� ?n�σ :A, apply rule (MV-β-Red).

• For derivations not ending with a metavariable, compare with Lemma
3.2.6 in [Luo90].

2

Proposition 2.46 (Principal Type)
For any context Γ and term M well-typed in Γ, there exists a principal type,
i.e. a type A such that Γ � M : A and for all A′, Γ � M : A′ if and only if
A � A′ and A′ is a type in Γ.

Proof: The proof can to a large extent be adapted from [Luo90]. The proof
makes use of a diamond property of �, which states that if Γ � M : A and
Γ � M : B , then there exists a C such that Γ � M : C . This can be shown by
a straightforward induction over the sum of the lengths of the two derivations;
no essential adaptations are necessary for the metavariable rules. 2

Proposition 2.47 (Subject Reduction)
If Γ � M : A and M�N , then Γ � N : A.

61

2.5. TYPING

Proof: The property is shown for parallel one-step reduction ⇒1by induction
on the derivation of Γ � M : A (the claim for � then follows by an induction
on the length of a reduction by ⇒1). Again, only the derivations ending with
a metavariable rule are considered, since the other cases can be dealt with as
in the metavariable-free calculus.

The case (MV-base) is trivial, the case (MV-weak) requires a straightfor-
ward application of the induction hypothesis.

Assume, then, that the last rule is an application of (MV-β-Red). By
Lemma 2.48, applications of the rule (MV-β-Red) can be ordered in such a
way that a variable occurring before other variables in the context is reduced
first. In a derivation rearranged in this manner, an application of (MV-β-Red)
has the following form, where the substitution {x := t} does not affect the
terms t1, . . . tk because x does not occur in t1, . . . tk :

Γ � t : T Γ, x : T ,∆ � ?n�[x1 := t1, . . . , xk := tk] : N

Γ,∆{x := t} � ?n�[x1 := t1, . . . , xk := tk , x := t] : N {x := t} (MV-β-Red)

By induction hypothesis, if t⇒1t
′ and ti⇒1t

′
i (for i = 1, . . . k), then Γ � t ′ : T

and Γ, x : T ,∆ � ?n�[x1 := t ′1, . . . , xk := t ′k] : N . By application of rule (MV-
β-Red), we obtain Γ,∆{x := t ′} � ?n�[x1 := t ′1, . . . , xk := t ′k , x := t ′] : N {x :=
t ′}, which by typing rule (�) and by Lemma 2.8 can be converted into a
derivation of Γ,∆{x := t} � ?n�[x1 := t ′1, . . . , xk := t ′k , x := t ′] : N {x := t}.
2

2.5.3. Type inference algorithm

It is not immediately obvious from the typing rules for metavariables that type
inference for metavariable terms is decidable. In particular, the rule (MV-
β-Red) is problematic because it does not have a genuine subterm property
for the term to be type-checked: There is no deterministic algorithm which
computes ?n�σ and t from the term ?n�σ{x := t}.

In the following, it will be shown that type inference is nevertheless de-
cidable. In order to type-check a metavariable term ?n�σ, the typing rules of
Figure 2.5 have to be applied in the forward direction, starting from ?n�[] and
incrementally building up the substitution σ. Even in the forward direction,
there is a considerable degree of nondeterminism as to which rule has to be
applied, and at which position. We will show that applications of the rules
(MV-β-Red) and (MV-weak) can be permuted in a certain fashion, so that all
judgements Γ � ?n�σ : N that are derivable at all can be derived by following
a “standard derivation” (Definition 2.54 and Proposition 2.55).

62

2.5. TYPING

Lemma 2.48 (Permutation (MV-β-Red) / (MV-β-Red))
There is a derivation of the form:

Γ1 � t1 : T1

Γ1, x1 : T1,Γ2 � t2 : T2

Γ1, x1 : T1,Γ2, x2 : T2,Γ3 � ?n�σ : N
· · · (MV-β-Red)

Γ � ?n�σ′ : N ′ (MV-β-Red)

iff there is a derivation of the same judgement from the same premisses in
which the order of application of (MV-β-Red) is reversed:

Γ1, x1 : T1,Γ2 � t2 : T2

Γ1 � t1 : T1

Γ1, x1 : T1,Γ2, x2 : T2,Γ3 � ?n�σ : N
· · · (MV-β-Red)

Γ � ?n�σ′ : N ′ (MV-β-Red)

This lemma is not surprising in view of the confluence results proved in Sec-
tion 2.3.3. It states, in a modified form, that two different sequences of β-
reductions can be joined. As opposed to the results proved for terms, β-
reductions are here not entirely carried out within terms, but with some λ-
abstractions shifted into the context.
Proof: When starting to reduce x2 first, the following steps are carried out
(where σ2 is {x2 := t2}):

Γ1, x1 : T1,Γ2 � t2 : T2

Γ1, x1 : T1,Γ2, x2 : T2,Γ3 � ?n�σ : N

Γ1, x1 : T1,Γ2,Γ3σ2 � (?n�σ)σ2 : Nσ2

Another application of (MV-β-Red) yields (with σ1 ≡ {x1 := t1}):
Γ1 � t1 : T1

Γ1, x1 : T1,Γ2,Γ3σ2 � (?n�σ)σ2 : Nσ2

Γ1,Γ2σ1,Γ3σ2σ1 � (?n�σ)σ2σ1 : Nσ2σ1

Conversely, when reducing x1 first, one obtains:

Γ1 � t1 : T1

Γ1, x1 : T1,Γ2, x2 : T2,Γ3 � ?n�σ : N

Γ1,Γ2σ1, x2 : T2σ1,Γ3σ1 � (?n�σ)σ1 : Nσ1

From Γ1, x1 : T1,Γ2 � t2 : T2 and Γ1 � t1 : T1, it can be concluded that Γ1,Γ2σ1 �
t2σ1 : T2σ1. By renewed application of (MV-β-Red), one obtains

Γ1,Γ2σ1 � t2σ1 : T2σ1

Γ1,Γ2σ1, x2 : T2σ1,Γ3σ1 � (?n�σ)σ1 : Nσ1

Γ1,Γ2σ1,Γ3σ1σ
′
2 � (?n�σ)σ1σ

′
2 : Nσ1σ

′
2

63

2.5. TYPING

where σ′
2 ≡ {x2 := t2σ1}. With Lemma 2.34, it can be concluded that the

judgement thus obtained is the same as the judgement resulting from applying
the rules in inverse order. 2

An application a1 of rule (MV-weak) can be permuted above another appli-
cation a2 of (MV-weak) whenever a1 introduces a variable z1 occurring before
the variable z2 introduced by a2. Of course, the converse does not hold, since
z2 may depend on z1.

Lemma 2.49 (Permutation (MV-weak) / (MV-weak))
Assume Γ1, z1 : Z1,Γ2, z2 : Z2,Γ3 � ?n�σ : N is derivable by a derivation

Γ1 � Z1 : Type

Γ1,Γ2 � Z2 : Type Γ1,Γ2,Γ3 � ?n�σ : N

Γ1,Γ2, z2 : Z2,Γ3 � ?n�σ : N
(MV-weak)

Γ1, z1 : Z1,Γ2, z2 : Z2,Γ3 � ?n�σ : N
(MV-weak)

then the same judgement is derivable by a derivation in which z1 is introduced
first.

Proof: The side condition Γ1, z1 : Z1,Γ2 � Z2 : Type which is required when in-
troducing z2 in the second step follows from Γ1,Γ2 � Z2 : Type by Lemma 2.43.

2

Applications of the rules (MV-weak) and (MV-β-Red) cannot be permuted
uniformly. Indeed, there are examples when (MV-weak) has to be applied
before (MV-β-Red) and vice versa in order to derive that a certain term is
well-typed.

Example 2.50
In the following derivation, (MV-weak) has to be applied before (MV-β-Red) in
order to obtain A : Type, z : A � ?n�[x := z] : A from A : Type, x : A �?n : A.

A : Type, z : A � z : A

A : Type � A : Type A : Type, x : A �?n : A

A : Type, z : A, x : A �?n : A
(MV-weak)

A : Type, z : A � ?n�[x := z] : A
(MV-β-Red)

Example 2.51
In the following derivation, (MV-β-Red) has to be applied before (MV-weak) in
order to obtain Z : Type0, z : Z � ?n�[X := Type0] : Type0 from a metavariable
defined by X : Type1,Z : X �?n : X :

Z : Type0 � Z : Type0

� Type0 : Type1 X : Type1,Z : X �?n : X

Z : Type0 � ?n�[X := Type0] : Type0
(MV-β-Red)

Z : Type0, z : Z � ?n�[X := Type0] : Type0
(MV-weak)

64

2.5. TYPING

Note that a permutation of rules is not possible here, since in the original
sequent, Z is not a type.

In spite of these examples, the rules (MV-weak) and (MV-β-Red) can be
permuted in case the variables introduced (by weakening) resp. eliminated (by
(MV-β-Red)) occur in certain positions, as shown by the following Lemma 2.52
and Lemma 2.53.

Lemma 2.52 (Permutation of (MV-β-Red) above (MV-weak))
An application of (MV-β-Red) can be permuted above an application of (MV-
weak) if the variable introduced by (MV-weak) occurs behind the variable
eliminated by (MV-β-Red).

Contrast this with Example 2.50.
Proof: If there is a derivation of the form (where τ =̂ {x := t}):

Γ � t : T

Γ, x : T ,∆′ � Z : Type Γ, x : T ,∆′,∆′′ � ?n�σ : N

Γ, x : T ,∆′, z : Z ,∆′′ � ?n�σ : N
(MV-weak)

Γ,∆′τ, z : Z τ,∆′′τ � (?n�σ)τ : N τ
(MV-β-Red)

then there is a derivation of the form:

Π

Γ � t : T Γ, x : T ,∆′,∆′′ � ?n�σ : N

Γ,∆′τ,∆′′τ � (?n�σ)τ : N τ
(MV-β-Red)

Γ,∆′τ, z : Z τ,∆′′τ � (?n�σ)τ : N τ
(MV-weak)

where Π is the following subproof (see Proposition 2.45)

Γ � t : T Γ, x : T ,∆′ � Z : Type

Γ,∆′τ � Z τ : Type

2

Lemma 2.53 (Permutation of (MV-weak) above (MV-β-Red))
An application of (MV-weak) can be permuted above an application of (MV-
β-Red) if the variable introduced by (MV-weak) occurs before the variable
eliminated by (MV-β-Red).

Contrast this with Example 2.51.
Proof: If there is a derivation of the form (where τ =̂ {x := t}):

65

2.5. TYPING

Γ′ � Z : Type

Γ′,Γ′′ � t : T Γ′,Γ′′, x : T ,∆ � ?n�σ : N

Γ′,Γ′′,∆τ � (?n�σ)τ : N τ
(MV-β-Red)

Γ′, z : Z ,Γ′′,∆τ � (?n�σ)τ : N τ
(MV-weak)

then there is a derivation of the form:

Γ′, z : Z ,Γ′′ � t : T

Γ′ � Z : Type Γ′,Γ′′, x : T ,∆ � ?n�σ : N

Γ′, z : Z ,Γ′′, x : T ,∆ � ?n�σ : N
(MV-weak)

Γ′, z : Z ,Γ′′,∆τ � (?n�σ)τ : N τ
(MV-β-Red)

where Γ′, z : Z ,Γ′′ � t : T can be derived from Γ′,Γ′′ � t : T by Proposition 2.43.
2

We will now examine how judgements of the form Γ � ?n�σ can be derived.
Obviously, apart from applications of the rule (�), this can only be achieved
by a series of applications of the three metavariable rules. In the following,
let us call the main branch of a derivation of the judgement Γ � ?n�σ : N
the branch obtained by following the main premiss of the rules (MV-weak)
and (MV-β-Red) up to and including rule (MV-base). The main premiss of
(MV-weak) and (MV-β-Red) is the premiss in which a judgement of the form
Γ′ � ?n�σ′ : N ′ is derived.

Definition 2.54 (Standard derivation)
Assume that, for a metavariable ?n, ctxt(?n) � type(?n) : Typej is derivable by
a derivation D. A standard derivation of Γ � ?n�σ : N is a derivation in which
D is followed by an application of (MV-base) and in which all subsequent rule
applications fulfill the following conditions:

• The rule (MV-β-Red) is only applied to variables x ∈ dom(ctxt(?n)).

• If rule (MV-β-Red) is applied to a variable xi , then there is no previous
application of (MV-β-Red) to a variable xj with i < j (that is, variables
are eliminated from the front to the end).

• If rule (MV-weak) introduces a variable z , then no previous application
of (MV-weak) has introduced a variable in the context segment behind z
(that is, variables are introduced from the front to the end).

For example, the following derivation (shown without side conditions) is
not standard, because (MV-β-Red) is applied to b at β1 with substitution
{b := z} before it is applied to z , and because (MV-β-Red) is applied to
z �∈ dom(ctxt(?n)) at β2 with substitution {z := a}.

66

2.5. TYPING

T : Type, a, b : T � T : Type

T : Type, a, b : T �?n : T
(MV-base) − b

T : Type, a : T , z : T , b : T �?n : T
(MV-weak) − w

T : Type, a : T , z : T � ?n�[b := z] : T
(MV-β-Red)− β1

T : Type, a : T � ?n�[b := a] : T
(MV-β-Red)− β2

When looking at the sequence of non-standard applications b−w−β1−β2,
we see that we can eliminate the wrong order of applications of (MV-β-Red)
by permuting β1 and β2 according to Lemma 2.48, which gives us:

T : Type, a, b : T � T : Type

T : Type, a, b : T �?n : T
(MV-base) − b

T : Type, a : T , z : T , b : T �?n : T
(MV-weak) − w

T : Type, a : T , b : T �?n : T
(MV-β-Red)− β2

T : Type, a : T � ?n�[b := a] : T
(MV-β-Red)− β1

Now, the sequence of applications b−w−β2 is not in standard form because,
in β2, (MV-β-Red) is applied to z �∈ dom(ctxt(?n)). Obviously, the applications
w and β2 are an unnecessary detour and can be dropped, which gives the
standard application:

T : Type, a, b : T � T : Type

T : Type, a, b : T �?n : T
(MV-base) − b

T : Type, a : T � ?n�[b := a] : T
(MV-β-Red)− β1

The following proposition can be proved by a generalization of this pro-
cedure. The proof is quite involved; details can be found in Appendix A.3,
page 175.

Proposition 2.55 (Existence of standard derivation)
Whenever Γ � ?n�σ : N is derivable, then it is derivable by a standard deriva-
tion.

Proposition 2.56 (Decidability of Type Inference/ Type Checking)
Let P be a valid proof problem, Γ a context and M a term.

• In the calculus with metavariables, it is effectively decidable whether
there exists a term A such that Γ �P M : A is derivable (type inference).

• Given a term A, it is effectively decidable whether Γ �P M : A holds or
not (type checking).

67

2.5. TYPING

Proof: Decidability of type checking follows from decidability of type inference
by Proposition 2.46: Given Γ, M and A, use the type inference algorithm to
compute a type A′ such that Γ � M : A′ holds, and then check that A and A′

are related by �, which is decidable.
For decidability of type inference, assume that the following statement

holds:

(*) For all Γ′, M ′, whenever ctxt(?n) � type(?n) : Type is decidable
for all ?n in Γ′ and M ′, then it is decidable whether there is an A
such that Γ′ � M ′ : A.

Note that P is a valid proof problem and thus$P is well-founded. Then, by
well-founded induction and the fact that ctxt(?n) and type(?n) only contain
metavariables ?m $P?n, we can show that (*) entails decidability of type
inference for arbitrary Γ and M .

Thus, it remains to show (*). If M ′ is not of the form ?n�σ, then decompose
M ′ until reaching a variable or a term of the form ?n�σ. This is essentially
the type inference algorithm for the metavariable-free calculus. If M ′ is of
the form ?n�σ, then try to find a derivation of Γ′ � M ′ : A (for an A to be
determined), starting from ctxt(?n) � type(?n) : Type which, by assumption
of (*), is derivable. By Proposition 2.55, it is sufficient to look for a standard
derivation. In particular, (MV-weak) only has to be applied to introduce a
variable z ∈ dom(Γ′)\dom(ctxt(?n)) and (MV-β-Red) only has to be applied
to eliminate a variable x ∈ dom(σ). Since there is only a finite number of such
choices, it is decidable whether there exists an A such that Γ′ � M ′ : A holds.

2

The above results are relevant in the context of software development envi-
ronments like Typelab, where it is desirable to be able to read in and check
all expressions that are generated and eventually printed by the system.

However, for the applications in theorem proving that we have in mind, full-
fledged type inference or type checking as presented above need not even be
performed. Usually, metavariables are not entered afresh, but are manipulated
internally by the theorem prover. The substitutions attached to a metavariable
are built up incrementally, starting with a metavariable which initially contains
not substitutions and whose type is known. The type of a term ?n�σ can be
stored and recomputed as new substitutions are performed. A problem that we
will have to deal with in the following is, in this sense, a very restricted form
of type inference, namely to determine whether a term M which is known to
have type A in a context Γ keeps this type in a context ∆ ⊂ Γ. The following
Lemmas 2.57 and 2.58 develop necessary and sufficient criteria for moving a
term into a “smaller” context. For an implementation, this procedure can be

68

2.5. TYPING

advantageous in that type checking can be reduced to manipulation of sets of
variables and no term structures need to be built up.

Lemma 2.57
If Γ � M : A, then FV (M) ⊆ dom(Γ) and FV (A) ⊆ dom(Γ).

Proof: Simple induction on the derivation of Γ � M : A. Consider, for
example, the rule (MV-β-Red):

Γ � t : T Γ, x : T ,∆ � ?n�σ : N

Γ,∆{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

By induction hypothesis, FV (t) ⊆ dom(Γ), FV (T) ⊆ dom(Γ), FV (?n�σ) ⊆
dom(Γ, x : T ,∆) and FV (N) ⊆ dom(Γ, x : T ,∆).

Depending on whether x ∈ FV (?n�σ), by Lemma 2.23 and 2.24,

FV (?n�σ{x := t}) ⊆ FV (?n�σ)\{x} ∪ FV (t)
⊆ dom(Γ,∆) = dom(Γ,∆{x := t})

Similarly, FV (N {x := t}) ⊆ dom(Γ,∆). 2

In particular, this lemma expresses that if Γ � M : A and ∆ is a valid
context with ∆ ⊂ Γ and there is a variable x such that (x ∈ FV (M) or
x ∈ FV (A)) and x �∈ dom(∆), then ∆ �� M : A.

Lemma 2.58
If Γ � M : A, ∆ is a valid context, ∆ ⊆ Γ and FV (M) ∪ FV (A) ⊆ dom(∆),
then ∆ � M : A.

Proof: We remove the variable declarations in Γ that are not in ∆ from
right to left, which permits to use strengthening to show that typeability is
preserved. More precisely, let n be length(Γ) − length(∆). Then we show the
statement by induction on n. For n = 0, the statement is obviously true. For
the inductive step, assume that Γ ≡ x1 : T1, . . . xk : Tk , . . . xm : Tm , and xk is
the greatest index such that xk �∈ dom(∆). Since ∆ is a valid context, xk �∈
FV (Tk+1, . . . ,Tm). Let Γ′ be x1 : T1, . . . , xk−1 : Tk−1, xk+1 : Tk+1, . . . xm : Tm .
By the fact that xk �∈ FV (M)∪FV (A), we can conclude with Proposition 2.44
that Γ′ � M : A, and by application of the induction hypothesis, we have
∆ � M : A. 2

The following Lemma 2.59 shows that when strictly following the typing
rules of Figure 2.5, type checking and type inference become inefficient. This
calls for an optimization by an incremental type checking algorithm in the sense
of Definition 2.14.

69

2.6. SOLUTIONS OF METAVARIABLES

Lemma 2.59
Let Γ be a context and t and T terms, P a well-typed proof problem. Define M
to be the set MVars(Γ)∪MVars(t)∪MVars(T). Every derivation of Γ � t : T
contains a subderivation of ctxt(?k) �?k : type(?k) if and only if (?k ∈ M or
there exists an ?m ∈ M such that ?k $P?m).

Proof: Simple induction on the derivation of Γ � t : T . Consider, in par-
ticular, a derivation of ctxt(?n) �?n : type(?n) by an application of the rule
(MV-base). If M =̂ MVars(ctxt(?n)) ∪ MVars(type(?n)), then by induction
hypothesis, any derivation of ctxt(?n) � type(?n) : Type contains a subderiva-
tion of ctxt(?k) �?k : type(?k) iff ?k is smaller than or equals a metavari-
able in M . By the definition of $P , the set of metavariables {?k |?k ∈
M or ∃?m ∈ M .?k $P?m} is just the set {?k |?k $P?n}. Thus, a derivation
of ctxt(?n) �?n : type(?n) contains a subderivation of ctxt(?k) �?k : type(?k)
iff (?k ∈ M ∪ {?n} or there exists an ?m ∈ M ∪ {?n} such that ?k $P?m).
2

For a well-typed proof problem P, it is redundant to verify that ctxt(?n) �
type(?n) : Type for ?n ∈ P, since, by definition of well-typedness, this judge-
ment is derivable.

Definition 2.60 (Incremental type inference with metavariables)
The incremental type inference algorithm for the calculus with metavariables
is based on the set of rules of the calculus with metavariables in which the rule
(MV-base) is replaced by the rule

ctxtP(?n) �P ?n�[] : typeP(?n)
(MV-base)

Corollary 2.61
For a well-typed proof problem P, a judgement is derivable with standard
type inference if and only if it is derivable with the incremental type inference
algorithm of Definition 2.60.

Again, as already noted at the end of Proposition 2.15, this result is not
particularly interesting. However, incremental type checking becomes relevant
when considering instantiations which possibly lead to ill-typed proof problems,
such that the above corollary is not applicable.

2.6. Solutions of Metavariables

2.6.1. Instantiations

70

2.6. SOLUTIONS OF METAVARIABLES

Definition 2.62 (Instantiation)
An instantiation1 ι is a function mapping a finite set of metavariables to terms,
subject to the requirement that for every metavariable ?n, the following occurs
check condition holds:

• if ι(?n) = t and ?m ∈ MVars(t), then ι(?m) =?m

If an instantiation ι maps metavariables ?n1, . . .?nk to terms t1, . . . tk , then
ι is also written as {?n1 := t1, . . .?nk := tk}.

Instantiations are inductively extended to terms as follows:

• ι(x) = x for variables x .

• ι(Prop) = Prop, ι(Typei) = Typei

• ι(Qx : T .M) = Qx : ι(T).ι(M) for Q ∈ {λ,Π,Σ}

• ι(f a) = (ι(f) ι(a))

• ι(pairT (t1, t2)) = pairι(T)(ι(t1), ι(t2))

• ι(πi(t)) = πi(ι(t)) for i = 1, 2

• ι(?n�[x1 := t1 . . . xk := tk]) = ι(?n){x1 := ι(t1) . . . xk := ι(tk)}

Instantiations can be extended to contexts by the following inductive defi-
nition:

• ι(〈〉) = 〈〉

• ι(x : T ,Γ) = x : ι(T), ι(Γ)

Note that, by Proposition 2.41, the definition of ι is well-founded.
Let us spell out some of the conditions of the definition in more detail:

• The requirement imposed on instantiations ι provides a strengthened
form of an “occurs check”. As a consequence of this requirement, an in-
stantiation ι is idempotent, i.e. for every metavariable ?n ∈ P, ι(ι(?n)) =
ι(?n). (The converse does not hold in a higher-order logic, i.e. idempo-
tency does not imply the occurs-check condition. With our definition,
we exclude an “instantiation” ι with ι(?f) = λ x : T . (?f a), which is
idempotent modulo β-equivalence.)

1The term instantiation has been chosen to distinguish instantiation of metavariables from
substitution of variables

71

2.6. SOLUTIONS OF METAVARIABLES

• Instantiations map over terms without renaming bound variables. (cf.
the concept of “grafting” in [DHK95]). Consider, for example, the fol-
lowing proof situation, in which a proof rule derived from the typing rule
(λ) is applied:

Γ, x : A �?n1 : A

Γ �?n0 : Πx : A.A

A solution of ?n0 is given by the instantiation ι0 with ι0(?n0) := λ x :
A.?n1. An appropriate instantiation of ?n1 is ι1 with ι1(?n1) := x . Then,
ι1(ι0(?n0)) = λ x : A.x provides a solution for the original proof problem.

• When an instantiation maps over a metavariable, the substitution saved
up so far is carried out on the solution of the metavariable (see Exam-
ple 2.68 below).

For an exposition in a names-free setting, see the definitions with de Bruijn
indices (Section A.1.4).

Definition 2.63 (Domain of an instantiation)
The domain of an instantiation ι is defined as the set

dom(ι) := {?n | ι(?n) �=?n}

Definition 2.64 (Ground instantiation)
A ground instantiation of a proof problem P is an instantiation ι such that for
all ?n ∈ P, ι(?n) is a ground term, i.e. a term not containing metavariables.

In the following, we will often have to combine two instantiations ι1 and ι2
to produce a new one. For this, we will use the notation ι1 (ι2. In general, a
simple union of the instantiations considered as sets does not produce an in-
stantiation satisfying the occurs check condition. Even computing a seemingly
obvious “closure” can be problematic, since some higher-order effects interfere.
Consider, for example, the combination {?n1 := (?n2 x)}({?n2 := λ y :?n1. T}.
First applying the solution of ?n2 to (?n2 x) yields an instantiation which re-
duces to {?n1 := T , ?n2 := λ y : T . T}. First applying the solution of ?n1 to
the solution of ?n2 leads to an instantiation containing ?n2 := λ y : (?n2 x). T ,
which is an invalid assignment. To avoid these difficulties, we impose some
restrictions on instantiations for the definition of (:

Definition 2.65 (Combination of instantiations)
Let ι1, ι2 be two instantiations with dom(ι1) ∩ dom(ι2) = ? and such that
whenever (?n := t) ∈ ι2 and ?m ∈ MVars(t), then ι1(?m) =?m. Then ι1 (ι2
is defined and equal to (ι2 ◦ ι1) ∪ ι2, otherwise it is undefined. The symbol (
associates to the left.

72

2.6. SOLUTIONS OF METAVARIABLES

Thus, computing ι1(ι2 consists in applying the solutions for metavariables
in ι2 to the solutions for metavariables in ι1 and then adding the metavariable
assignments of ι2. Thus, (is in general not commutative. Obviously, the
resulting instantiation fulfills the occurs check condition.

Definition 2.66 (Instantiation of proof problems)
Assume that P = (MP , ctxtP , typeP) is a valid proof problem and ι an instan-
tiation. The instantiation ι(P) = (M ′

P , ctxt ′P , type ′
P) is defined to be the proof

problem consisting of:

• M ′
P := MP\dom(ι)

• ctxt ′P is defined as the function which, for ?n ∈ M ′
P , yields ι(ctxtP(?n))

• type ′
P is defined as the function which, for ?n ∈ M ′

P , yields ι(typeP(?n))

Intuitively, if P is a proof problem, then ι(P) is the proof problem that
remains after providing a partial solution ι, the metavariables ?n ∈ dom(ι)
being removed from P.

Example 2.67
Assume the proof problem P1 is given by:

A : Type,P : A → Prop, a : A, h : (P a) �?n1 : A

A : Type,P : A → Prop, a : A, h : (P a) �?n2 : (P ?n1)

and the instantiation ι1 by {?n1 := a}. Then P2 := ι1(P1) is the proof problem
consisting of:

A : Type,P : A → Prop, a : A, h : (P a) �?n2 : (P a)

It can be solved by another instantiation ι2 := {?n2 := h}.

After these definitions, we will first examine some syntactic properties of in-
stantiations, i.e. properties of the term calculus that are not related to notions
of typecorrectness.

Example 2.68
We resume the introductory Example 2.17, which lead to problems when
treated naively, and show how the machinery developed so far permits to deal
with it satisfactorily. Remember that metavariable ?n1 was defined by the fol-
lowing context and type: T : Type, x : T �?n1 : T . First reducing the term
(λ x : T . ?n1) t yields ?n�

1 [x := t], instantiating ?n1 with x and then carrying
out the explicit substitution produces t , just the same as first providing the
instantiation and then reducing.

73

2.6. SOLUTIONS OF METAVARIABLES

(λ x : T . ?n1) t
{?n1 := x}

��

β

��

(λ x : T . x) t

β

��
?n�

1 [x := t]
{?n1 := x}

�� t

Before generalizing this observation to Proposition 2.70 below, we need the
following lemma:

Lemma 2.69
For terms P ,N and instantiation ι: ι(P{x := N }) ≡ ι(P){x := ι(N)}

Proof: By induction on the structure of P . Most cases require a straightfor-
ward application of the definitions of substitutions and instantiations and of
the induction hypothesis. Just consider the case where P is a metavariable:
ι((?n�[x1 := t1 . . . xn := tn]){x := N }) =
(by definition of substitution)
ι(?n�[x1 := t1{x := N } . . . x := N . . . xn := tn{x := N }]) =
(by definition of instantiation)
ι(?n){x1 := ι(t1{x := N }) . . . x := ι(N) . . . xn := ι(tn{x := N })} =
(by induction hypothesis)
ι(?n){x1 := ι(t1){x := ι(N)} . . . x := ι(N) . . . xn := ι(tn){x := ι(N)}} =
(properties of substitution)
(ι(?n){x1 := ι(t1) . . . xn := ι(tn)}){x := ι(N)} =
(by definition of instantiation)
ι(?n�[x1 := t1 . . . xn := tn]){x := ι(N)} 2

Proposition 2.70 (Commutativity of Instantiation and Reduction)
For terms M ,N and instantiation ι: If M⇒1N , then ι(M)⇒1ι(N).

Actually, this statement only expresses one direction of commutativity, see
the remark further below.
Proof: By induction on the generation of ⇒1. We only consider the cases
which require more than a simple application of the induction hypothesis:

• Case:
P⇒1P

′ and N⇒1N
′ implies (λ x : T . P) N⇒1P

′{x := N ′}
Assume P⇒1P

′ and N⇒1N
′, thus by induction hypothesis ι(P)⇒1ι(P

′)
and ι(N)⇒1ι(N

′). Then:
ι((λ x : T . P) N) = (λ x : ι(T). ι(P)) ι(N)

74

2.6. SOLUTIONS OF METAVARIABLES

(by induction hypothesis and definition of ⇒1)
⇒1ι(P

′){x := ι(N ′)}
(by Lemma 2.69)
= ι(P ′{x := N ′})

• Case:
Mi⇒1M

′
i implies ?n�[x1 := M1 . . . xn := Mn]⇒1?n

�[x1 := M ′
1 . . . xn := M ′

n]
Assume Mi⇒1M

′
i , thus by induction hypothesis ι(Mi)⇒1ι(M

′
i). Then:

ι(?n�[x1 := M1 . . . xn := Mn]) = ι(?n){x1 := ι(M1) . . . xn := ι(Mn)}
(by Lemma 2.35 and induction hypothesis)
⇒1ι(?n){x1 := ι(M ′

1) . . . xn := ι(M ′
n)}

(by definition of instantiation)
= ι(?n�[x1 := M ′

1 . . . xn := M ′
n]) 2

Remark: Proposition 2.70 only expresses that if term M is reduced to
term N , then ι(M) can be reduced to ι(N) (this corresponds to saying that
the “lower triangle” in the figure of Example 2.68 implies the “upper triangle”).

The other direction does not hold, i.e. if for terms M ,N and instantiation
ι, we have ι(M)⇒1ι(N), we do not necessarily have M⇒1N . Take for example
M =̂ (?n t), N =̂ t and ι =̂ {?n := λ x : T . x}. After all, this result is
not very surprising: Instantiations add information which allows for a more
complex computational behaviour.

The notion of instantiation is not related to type correctness. This is reme-
died by the following definition:

Definition 2.71 (Properties of Instantiations)
Let P = (MP , ctxtP , typeP) be a proof problem.

• Assume P is valid. An instantiation ι is valid if ι(P) is a valid proof
problem.

• Assume P is well-typed. An instantiation ι preserves well-typedness if
ι(P) is a well-typed proof problem.

• Assume P is well-typed. An instantiation ι is well-typed, if ι is valid and,
for every ?n ∈ MP ,

ι(ctxtP(?n)) �ι(P) ι(?n) : ι(typeP(?n))

holds.

In the following, it will be shown that well-typed instantiations preserve
well-typedness. This result is not particularly exciting for those term construc-
tors over which instantiations map homomorphically. As far as metavariables

75

2.6. SOLUTIONS OF METAVARIABLES

are concerned, however, the proof of the proposition provides an argument for
the adequacy of the typing rules for metavariables.

Proposition 2.72 (Instantiation preserves typing)
Let P be a well-typed proof problem, Γ, t and T be a context resp. terms in
which at most metavariables from P occur, and ι a well-typed instantiation for
P.

• If Γ validc holds, then also ι(Γ) validc.

• If Γ �P t : T holds, then also ι(Γ) �ι(P) ι(t) : ι(T)

Proof: The proof is by induction on the structure of the derivation of Γ �P t :
T . Since the proof is evident for most of the term constructors, we will only
consider the metavariable rules and, by means of example, the λ-rule.

• Suppose the last rule of the derivation is the λ-rule:

D
Γ, x : A �P M : B

Γ �P λ x : A.M : Πx : A.B
(λ)

Then, by induction hypothesis, there exists a derivation D′ ending with
ι(Γ), x : ι(A) �ι(P) ι(M) : ι(B). Application of the λ-rule yields the
desired result.

• Suppose the last rule of the derivation is (MV-base):

ctxt(?n) �P type(?n) : Typej

ctxt(?n) �P ?n�[] : type(?n)
(MV-base)

Since ι is a well-typed instantiation, ι(ctxt(?n)) �ι(P) ι(?n) : ι(type(?n))
holds.

• Suppose the last rule of the derivation is (MV-weak):

Γ �P T : Typej Γ,∆ �P ?n�σ : N

Γ, z : T ,∆ �P ?n�σ : N
(MV-weak)

By induction hypothesis, there are derivations ending in:

ι(Γ) �ι(P) ι(T) : Typej

and

ι(Γ,∆) �ι(P) ι(?n�σ) : ι(N)

76

2.6. SOLUTIONS OF METAVARIABLES

By the Weakening Lemma (Proposition 2.43) these derivations can be
combined to a derivation of:

ι(Γ), z : ι(T), ι(∆) �ι(P) ι(?n�σ) : ι(N)

• Suppose the last rule of the derivation is (MV-β-Red):

Γ �P t : T Γ, x : T ,∆ �P ?n�σ : N

Γ,∆{x := t} �P (?n�σ){x := t} : N {x := t} (MV-β-Red)

By induction hypothesis, there are derivations ending in:

ι(Γ) �ι(P) ι(t) : ι(T)

and

ι(Γ), x : ι(T), ι(∆) �ι(P) ι(?n�σ) : ι(N)

Then, by the Cut rule (Proposition 2.45), there is a derivation of:

ι(Γ), ι(∆){x := ι(t)} �ι(P) ι(?n�σ){x := ι(t)} : ι(N){x := ι(t)}
By definition of ι and Lemma 2.69, this is equal to:

ι(Γ,∆{x := t}) �ι(P) ι(?n�σ{x := t}) : ι(N {x := t})
2

Corollary 2.73
If P is a well-typed proof problem and ι is a well-typed instantiation of P, then
ι preserves well-typedness.

Proof: It has to be shown that ι(P) is a well-typed proof problem, which
means that ctxtι(P)(?n) �ι(P) typeι(P)(?n) : Type for every ?n ∈ ι(P). This
follows from the fact that ctxtP(?n) �P typeP(?n) : Type for every ?n ∈ P and
Proposition 2.72. 2

Let us comment on our terminology, which has been chosen in accordance
with the terminology for proof problems (cf. the remarks following Defini-
tion 2.42): The concept of “valid instantiation” refers to a structural property,
namely the property of preserving the validity of a proof problem. A “well-
typed instantiation” additionally satisfies the intended semantics of an instan-
tiation, since it meets the typing constraints imposed by ctxtP and typeP . The
notion of “preservation of well-typedness” is of intermediate strength, since,
by the above corollary, it is implied by the notion of well-typed instantiation,
whereas there are obviously instantiations that preserve well-typedness with-
out being well-typed. Since this latter kind of instantiation is of no interest, we
will in the following focus on valid and well-typed instantiations and analyze
how they interact.

77

2.6. SOLUTIONS OF METAVARIABLES

2.6.2. Verifying instantiations

Given a well-typed proof problem P and an instantiation ι for P, two undesir-
able situations may occur:

• ι is not a valid instantiation, that is, ι(P) is not a valid proof problem.

• Even though ι is a valid instantiation, ι is not well-typed, violating some
typing constraints.

Checking that an instantiation ι is valid may be expensive, if the metavari-
able dependencies of ι(P) have to be computed afresh, without taking into
account the dependencies of P. Likewise, verifying that an instantiation ι is
well-typed can be intricate, since the metavariables which are solved by ι may
depend on one another. Testing whether ι(ctxt(?n)) � ι(?n) : ι(type(?n))
holds for all metavariables ?n of a proof problem P can certainly be achieved
by completely checking the judgement, including the context ι(ctxt(?n)) whose
validity may have been compromised by the instantiation.

Thus, altogether, it may be computationally expensive to globally verify
properties of proof problems, such as validity and well-typedness. This section
explores under which conditions these properties can be ensured locally:

• The (direct) metavariable dependency order <P can be approximated by
a kind of “finite differencing” (see Lemma 2.75). The validity of instanti-
ations can be ensured when only admitting certain kinds of instantiation
(see Proposition 2.76).

• For these instantiations, well-typedness can be established by only check-
ing the correctness of solution terms with respect to their purported type
without verifying the validity of contexts, i.e. by using incremental type
checking.

Before presenting results, let us first motivate the relevance of these ques-
tions by an example. Proposition 2.72 seems to suggest that incremental type
checking (in the sense of Definition 2.60) is possible, since a well-typed instan-
tiation does not affect the type correctness of a context. However, even an
incorrect instantiation can, by a self-sustaining effect, appear to be well-typed.
The following example illustrates this problem:

Example 2.74
Assume the proof problem P is given by:

A,B : Type, a : A, b : B ,P : A → Prop �?n1 : A

78

2.6. SOLUTIONS OF METAVARIABLES

A,B : Type, a : A, b : B ,P : A → Prop, h : (P ?n1) �?n2 : (P ?n1)

The instantiation ιP with {?n1 := b, ?n2 := h} is not typecorrect, because
any solution of ?n1 has to be of type A. However, the assignment ?n2 := h is
accepted by an incremental algorithm that checks whether h : (P b) in context
A,B : Type, a : A, b : B ,P : A → Prop, h : (P b), where the validity of the
context is not verified.

In this example, even an incremental type checking algorithm will ulti-
mately reject the instantiation ι, because it correctly recognizes that ι(?n1)
does not have the required type. Quite in general, it is not clear under which
conditions an incremental verification of an arbitrary instantiation ι for a proof
problem P is possible. Instead of attempting to solve the problem in full gener-
ality, we restrict attention to elementary instantiations {?n := t} which contain
assignments to only one metavariable. They are of great practical interest, since
all algorithms to be considered in the sequel, such as unification and tableau
calculi, build up complex instantiations by a series of such elementary instan-
tiations.

The following lemma characterizes how, for an arbitrary instantiation ι,
the dependency order $ι(P) of metavariables of ι(P) can be computed as a
function of the metavariable order $P and the metavariables occurring in the
assignments ?n := t of ι.

Lemma 2.75
Let P be a valid proof problem, <P its associated immediate dependency order
(cf. Definition 2.40) and ι an instantiation. Then <ι(P) can be computed as:

<ι(P) ⊆ <P \ {(?m, ?n) | ι(?m) �=?m or ι(?n) �=?n}
∪ {(?k , ?m) |?n <P?m, ι(?m) =?m, ?k ∈ MVars(ι(?n))}

Proof: Solved metavariables do not occur in ι(P) any more. This accounts
for the pairs removed from <P . If a proof obligation ?m depends on ?n, as
in Γ[?n] �?m : T [?n], and ?n is solved by a term t [?k] containing ?k , then a
dependency from ?m on ?k is established. No other direct dependencies than
those mentioned can arise. 2

Thus, we have a “local” criterion which permits to compute the immedi-
ate dependency relation <P by examining solution terms ι(?n) only, without
traversing entire contexts. It has to be remarked that this is only an approxima-
tion (note the ⊆ in the lemma), since metavariable dependencies may disappear
by reduction. Take for example a proof problem containing Γ �?m :?P(?x)
with a metavariable order ?P $P?m and ?x $P?m. After an instantiation
{?P := λ y :?T . Q(y)}, we obtain Γ �?m : Q(?x), and the metavariable order

79

2.6. SOLUTIONS OF METAVARIABLES

is simply ?x $P?m and not also ?T $P?m. Altogether, a procedure using
this approximation to calculate $P is “sound” in that it recognizes all invalid
instantiations, but not “complete” since it may reject valid instantiations. In
such an event, it would be necessary to compute the correct order $P by a
global algorithm.

Proposition 2.76
Let P be a well-typed proof problem and ι =̂ {?n := t} an instantiation. If,
for all ?k ∈ MVars(t), not ?n $P?k , then:

• ι(P) is a valid proof problem.

• ι can be verified by an incremental type checking algorithm.

Proof:

• It has to be shown that the order $ι(P) is irreflexive. Assume, for a
contradiction, that $ι(P) is reflexive. Since proof problems have a finite
set of metavariables, we may then assume that there are metavariables
?p0, . . .?pn−1 such that ?p0 <ι(P), . . .?pn−1 <ι(P)?p0.

– Either, for all i = 0, . . . , n−1, we have ?pi <P?pi+1 (indices modulo
n). This contradicts the irreflexivity of $P .

– Otherwise, there is an index i such that ?pi <ι(P)?pi+1 but not
?pi <P?pi+1. By Lemma 2.75, ?pi ∈ MVars(t) and ?n <P?pi+1.
Again by Lemma 2.75 and an easy inductive argument, for all m > i ,
?n $P?pm , and for all k ≤ i , ?pk <P?pk+1. Thus, ?pm $ι(P)

?pi for m > i implies ?n <P?pm <P . . .?p0 <P . . .?pi and thus
?n $P?pi for ?pi ∈ MVars(t), contradicting the fact that for all
?k ∈ MVars(t), not ?n $P?k .

• Define the set M as {?k |?k ∈ MVars(t) and not ?n $P?k}. By well-
founded induction on the order $P , it can be shown that for all ?k ∈
M , ι(ctxtP(?k)) = ctxtP(?k) and ι(typeP(?k)) = typeP(?k). There-
fore, whenever ctxtP(?k) �P typeP(?k) : Type for ?k ∈ M , then also
ctxtι(P)(?k) �ι(P) typeι(P)(?k) : Type, therefore these subderivations can
be pruned.

2

Proposition 2.76 is even a “tight fit” in that any elementary instantiation
not satisfying the precondition of the proposition is not valid (neglecting the
effects described in the remark following Lemma 2.75) and, consequently, not

80

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

well-typed. Indeed, assume that {?n := t [?k]} is an instantiation and ?n $P
?k . To keep the argument simple, even assume that ?n <P?k – the more
general argument is similar. Thus, ?k has a defining context ctxtP(?k) of the
form Γ[?n] or, similarly, a defining type of the form T [?n]. After applying the
above instantiation, one obtains Γ[t [?k]] �?k : T [t [?k]], and the metavariable
dependency order becomes cyclic. This happens, for instance, in Example 2.38.

2.7. Functional Representation of Metavariables

In the following, a functional representation of metavariables will be examined.
The general idea is to replace a metavariable ?n of type T which depends on
assumptions x1 : T1, . . . , xk : Tk by a metavariable ?F which is of functional
type Πx1 : T1 . . .Πxk : Tk .T and which does not depend on assumptions.

Example 2.77
This procedure can best be illustrated by an example. Consider the following
proof problem:

A : Type,P : A → Prop �?n0 : ∀ a : A. ∃ x : A.(P a) → (P x)

Moving the universally quantified variable into the context and dissolving the
existential quantifier, this problem can be decomposed into the subproblems:

A : Type,P : A → Prop, a : A �?n1 : A

A : Type,P : A → Prop, a : A �?n2 : (P a) → (P ?n1)

It can easily be verified that {?n1 := a, ?n2 := λ y : (P a). y} is a typecorrect
solution. The problem can also be stated with metavariables ?F1 and ?F2 which
are the functional analogues of ?n1 and ?n2 and which are defined by:

�?F1 : ΠA : Type,P : A → Prop, a : A.A

�?F2 : ΠA : Type,P : A → Prop, a : A.(P a) → (P (?F1 A P a))

The solution of this proof problem is {?F1 := λ A : Type,P : A → Prop, a :
A.a, ?F2 := λ A : Type,P : A → Prop, a : A.λ y : (P a). y}.

The functional translation as defined more formally in Section 2.7.1 below is
interesting in its own right, since it shows that, at least in principle, it is possible
to do completely without metavariables depending on assumptions. A benefit

81

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

of this purely functional representation is that substitutions cannot take effect
in metavariables: ?Fσ will always be the same as ?F , since all the variables
in the domain of σ cannot occur free in a solution of ?F . Thus, under a func-
tional representation, there is no need to explicitly record substitutions applied
to metavariables – altogether, the calculus essentially behaves like a calculus
without metavariables. By showing that the reduction relations are preserved
under the functional translation, this observation will be used in Section 2.7.2
to prove that since ECC without metavariables is strongly normalizing, so is
the calculus ECCM with metavariables and explicit substitutions.

Due to the advantages mentioned above, a functional encoding of metavari-
ables is used in many algorithms and systems dealing with proof search in
higher-order logic. For example, Huet’s unification algorithm [Hue75] relies on
a functional representation to avoid variable capture, and most variants and
refinements follow in this tradition (see [Pre95] for a survey). Only recently
have there been attempts to restate unification algorithms for the simply typed
lambda calculus [DHK94, DHK95] and some of its refinements [DHKP96] in
terms of calculi of explicit substitutions.

The transformation of metavariables into a functional encoding is closely
related to Skolemization, as discussed in more depth in Section 4.4, and to
“lifting” as presented by Paulson in [Pau89]. Miller [Mil92] examines meth-
ods of exchanging existential and universal quantifiers and develops a similar
technique called “raising”.

In the Isabelle system [Pau94], in λProlog [NM88] and the Elf system
[Pfe89], proof obligations are represented in a restricted form of functional en-
coding. In Isabelle, the example problem given above would, upon refinement,
yield something like the (single) subgoal

A : Type,P : A → Prop, a : A � (P a) → (P (?f1 a))

with the metavariable ?f1 “normalized” to the context in which the proof
started (of course, in Isabelle, the context with declarations of types and propo-
sitions is not made explicit). By the use of higher-order unification, the solution
?f1 := λ x : A. x is established.

Although a functional representation of metavariables is preferable in some
respects, it has some pragmatic drawbacks which have led us to adopt the kind
of representation described in the previous sections:

• It is often more intuitive to work with a first-order than with a higher-
order representation. Most users of an interactive prover find it easier to
instantiate a metavariable ?n1 with a term a (as in the example above)
than to instantiate the corresponding functional metavariable ?f1 with a
projection function λ x : A. x .

82

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

• This problem is aggravated if proof obligations occur deeply nested inside
a term and depend on several local assumptions. Then, the notation of
a functional metavariable plus arguments tends to become quite clumsy.
This situation notoriously arises if metavariables are generated as proof
obligations for theorems inside a specification (cf. Section 1.1.4), as in
the following example:

SPEC
T: Type,
x: T,
AXIOM ax: (P_1 x),
THEOREM th: (P_2 x)

END-SPEC

The metavariable ?th: (P_2 x) is generated in the context of the dec-
larations for T, x and ax. The corresponding metavariable in functional
representation would have to abstract over these declarations, like in:
?F_th:∀ T: Type, x: T, ax: (P_1 x). (P_2 x)

2.7.1. Definition of the Functional Translation

This section gives a formal definition of the functional translation t of a term
t . It is assumed throughout this section that the terms considered here only
contain metavariables from a valid proof problem P.

Definition 2.78 (Terms and contexts in functional representation)
The translation of a term t to a term t with metavariables in functional repre-
sentation is defined as follows:

• x = x for variables x

• Prop = Prop, Typei = Typei

• Qx : T .M = Qx : T .M for Q ∈ {λ,Π,Σ}

• (f a) = (f a)

• pairT (t1, t2) = pair
T

(t1, t2)

• πi(t) = πi(t) for i = 1, 2

• If ctxt(?n) ≡ Γ ≡ x1 : T1, . . . xk : Tk and type(?n) ≡ T , then
?n�σ = (?F x1σ . . . xkσ), where ?F is a unique fresh metavariable asso-
ciated to ?n such that:

83

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

– ctxt(?F) = 〈〉
– type(?F) = ΠΓ.T 2

and where for a substitution σ ≡ {x ′
1 := t1, . . . x

′
m := tm}, the substitution

σ is defined as {x ′
1 := t1, . . . x

′
m := tm}.

The translation of a context Γ to a context Γ is an obvious extension of the
translation of terms.

It follows from Proposition 2.41 that the translation is well-defined.

Example 2.79
Consider metavariable ?n with

ctxt(?n) = A,B : Type, f : A → A,P : B → Prop, x1 : A, x2 : B

and type(?n) = (P x2). Then

?n�[B := A, x2 := (f x1)] =?F A A f P x1 (f x1)

with

?F : ΠA,B : Type, f : A → A,P : B → Prop, x1 : A, x2 : B .(P x2)

Note that the type of ?n�[B := A, x2 := (f x1)] is (P (f x1)), which is also the
translation of the type of ?F A A f P x1 (f x1).

In general, it can be shown that the translation preserves typing:

Proposition 2.80
If Γ � t : T , then Γ � t : T .

Proof: The proof is by induction on the structure of the derivation Γ � t : T .
The proof is routine for the rules of the base calculus ECC . Assume, for

example, that the last rule of the derivation is the λ-rule:

D
Γ, x : A � M : B

Γ � λ x : A.M : Πx : A.B
(λ)

Then, by induction hypothesis, there exists a derivationD ending with Γ, x : A �
M : B , from which one can conclude by the definition of the translation and
an application of the (λ) rule that Γ � λ x : A. M : Πx : A. B .

The only non-trivial cases are the applications of the metavariable rules:

2Remember here and in the following the convention of writing ΠΓ.T instead of Πx1 :
T1, . . .Πxk : Tk .T , if Γ ≡ x1 : T1, . . . xk : Tk (and similarly for λ-abstractions).

84

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

• Application of the rule (MV-base):
Assume the last rule in a derivation is:

ctxt(?n) � type(?n) : Typej

ctxt(?n) � ?n�[] : type(?n)
(MV-base)

Assume that ctxt(?n) has the form x1 : T1, . . . xk : Tk . Then, it has to be
shown that ctxt(?n) � (?F x1 . . . xk) : type(?n).

By induction hypothesis, there is a derivation for ctxt(?n) � type(?n) :
Typej , and by repeated application of the (Π-Form2) rule, we can conclude
that 〈〉 � Πctxt(?n).type(?n) : Typei (for an i possibly different from j).
This shows that 〈〉 �?F : Πctxt(?n).type(?n) is a valid metavariable.

Repeated application of weakening yields (renaming bound variables):

ctxt(?n) �?F : Πctxt(?n).type(?n)

After repeated application of the (app) rule, we obtain:

ctxt(?n) � (?F x1 . . . xk) : type(?n)

which had to be shown.

• Application of the rule (MV-weak):
Assume the last rule in a derivation is:

Γ � T : Typej Γ,∆ � ?n�σ : N

Γ, z : T ,∆ � ?n�σ : N
(MV-weak)

Then, by induction hypothesis, there are derivations for:

– Γ � T : Typej

– Γ,∆ �?F x1σ . . . xkσ : N

The weakening lemma (Proposition 2.43) then permits to conclude that
Γ, z : T ,∆ �?F x1σ . . . xkσ : N .

• Application of the rule (MV-β-Red):
Assume the last rule in a derivation is:

Γ � t : T Γ, x : T ,∆ � ?n�σ : N

Γ,∆{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

By induction hypothesis, there are derivations for:

85

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

– Γ � t : T

– Γ, x : T ,∆ � (?n�σ) : N .

With the Cut rule (Proposition 2.45), it can be concluded that Γ,∆{x :=
t} � (?n�σ){x := t} : N {x := t}. By noting that substitutions
can be pulled inside the translation (see Lemma 2.81 below), we obtain
Γ,∆{x := t} � (?n�σ){x := t} : N {x := t}, which had to be shown.

2

Lemma 2.81
For all terms M and N , M {x := N } ≡ M {x := N }

Proof: By induction on the structure of M . Only the case with M of the
form ?n�σ is interesting, the other cases require a straightforward application
of the induction hypothesis.

Assume in the following that σ = {x ′
1 := t1, . . . x

′
m := tm}, ctxt(?n) = x1 :

T1, . . . xk : Tk and {x ′
1, . . . x

′
m} ⊆ {x1, . . . xk}, so σ = {x ′

1 := t1, . . . x
′
m := tm}.

• If x ∈ {x1, . . . , xk}: By definition of substitution:
(?n�σ){x := N }
= ?n�[x ′

1 := t1{x := N }, x := N , . . . x ′
m := tm{x := N }]

=?F x1τ . . . xkτ
(for τ = {x ′

1 := t1{x := N }, x := N , . . . x ′
m := tm{x := N }}, by definition

of translation).

Applying the induction hypothesis, τ can be rewritten as
{x ′

1 := t1{x := N }, x := N , . . . x ′
m := tm{x := N }}

By definition of substitution:
?F x1τ . . . xkτ = (?F (x1σ{x := N }) . . . (xkσ{x := N }))
= (?F x1σ . . . xkσ){x := N }
Applying the translation backwards, we obtain ?n�σ{x := N }.

• If x �∈ {x1, . . . , xk}: Similar to the above reasoning.

2

Definition 2.82 (Proof problems in functional representation)
A proof problem

P := {(ctxt(?ni), ?ni , type(?ni)) | i ∈ I}

86

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

(where I is a finite index set) is translated to a proof problem

P := {(〈〉, ?Fi ,Πctxt(?ni).type(?ni)) | i ∈ I}

with metavariables in functional representation.

Proposition 2.80 implies that each (〈〉, ?Fi ,Πctxt(?ni).type(?ni)) is a well-
typed metavariable if ?ni is one. Furthermore, assume that P is a valid proof
problem with associated order $P , which is the transitive closure of <P (see
Definition 2.40). Then

?ni <P?nj iff ?ni ∈ MVars(ctxt(?nj)) or ?ni ∈ MVars(type(?nj))

iff ?Fi ∈ MVars(ctxt(?nj)) or ?Fi ∈ MVars(type(?nj))
iff ?Fi ∈ MVars(ctxt(?Fj)) or ?Fi ∈ MVars(type(?Fj))
iff ?Fi <P?Fj

Since $P is an irreflexive partial order, so is $P , the transitive closure of <P ,
and therefore P is also a valid proof problem.

Proposition 2.83
The proof problem P has a solution iff the proof problem P has one.

Proof: Assume that ιP is a solution of P. Then, for every metavariable
?ni ∈ P, ι(ctxt(?ni)) � ι(?ni) : ι(type(?ni)). Therefore,

� λ ι(ctxt(?ni)).ι(?ni) : Πι(ctxt(?ni)).ι(type(?ni))

For ?Fi ∈ P corresponding to ?ni ∈ P, define ιP(?Fi) as λ ι(ctxt(?ni)).ι(?ni).
By preservation of typing (Proposition 2.80),

� ιP(?Fi) : Πι(ctxt(?ni)).ι(type(?ni))

thus ιP is a typecorrect solution of the proof problem P.
Conversely, assume that ιP is a solution of P . Thus, for each ?Fi ∈ P,

ιP(ctxt(?ni)) � ιP(?Fi x1, . . . xk) : ιP(type(?ni))

if x1, . . . xk are the variables of ιP(ctxt(?ni)). For ?ni corresponding to ?Fi , one
can therefore choose ι(?ni) := ιP(?Fi x1, . . . xk). By an induction over the order
$P , it can then be shown that ι(ctxt(?ni)) � ι(?ni) : ι(type(?ni)). 2

For an illustration of the “if” direction of this proposition, we refer the
reader back to Example 2.77. For the “only if” direction, consider the following:

87

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

Example 2.84
We resume Example 2.77 to show how any solution of:

�?F1 : ΠA : Type,P : A → Prop, a : A.A

�?F2 : ΠA : Type,P : A → Prop, a : A.(P a) → (P (?F1 A P a))

can be converted into a solution of:

A : Type,P : A → Prop, a : A �?n1 : A

A : Type,P : A → Prop, a : A �?n2 : (P a) → (P ?n1)

The construction given in the proof of Proposition 2.83 permits to convert any
solution f1 resp. f2 of ?F1 resp. ?F2 to solutions (f1 P a) resp. (f2 P a) of ?n1

resp. ?n2. In particular, if f1 := λ A′ : Type,P ′ : A′ → Prop, a ′ : A′.a ′ and
f2 := λ A′ : Type,P ′ : A′ → Prop, a ′ : A′.λ y : (P ′ a ′). y , as suggested in Exam-
ple 2.77, then we get back the solutions ?n1 := a and ?n2 := λ y : (P a). y .

2.7.2. Strong Normalization of the Calculus with
Metavariables

In this section, strong normalization of the calculus with metavariables ECCM

will be proved by mapping reductions in ECCM to reductions in the calculus
ECC without metavariables. In order to do this, a mapping from terms contain-
ing metavariables to metavariable-free terms has to be provided. The transla-
tion defined in the last section is already quite a good approximation, because
no substitutions can be performed inside the context-independent metavari-
ables ?F and therefore the calculus almost behaves like a calculus without
metavariables, at least as far as reductions are concerned.

To formalize this idea, we define a new translation that makes the metavari-
ables disappear. We keep the notation t and only indicate where this transla-
tion differs from the one previously defined:

If ctxt(?n) = Γ = x1 : T1, . . . xk : Tk and type(?n) = T , then
?n�σ = (F x1σ . . . xkσ), where F of type ΠΓ.T is a unique constant
associated to ?n.

When typing the terms obtained by this translation, the new constants F
have to be added at the front of the typing contexts. Here again, we assume that
all metavariables are stemming from a valid proof problem P, and so the order

88

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

$P can be used to arrange the new constants in such a way that no mutual
dependencies arise. The statements made above (in particular Proposition 2.80
and Lemma 2.81) now carry over to the new translation.

Rather than spelling out the formalization in more detail, we present the
following example to illustrate the concepts:

Example 2.85
Consider the proof problem P with metavariables ?n1 and ?n2 of Example 2.77.
The translation generates the constants

F1 : ΠA : Type,P : A → Prop, a : A.A

F2 : ΠA : Type,P : A → Prop, a : A.(P a) → (P (F1 A P a))

Note that ?n1 $P?n2, so F1 has to be placed before F2 in the augmented
contexts used for typing. For example, the translation of the term (P ?n1)
yields the term (P (F1 A P a)), which is of type Prop in context

F1 : . . . ,F2 : . . . ,A : Type,P : A → Prop, a : A

The following lemma makes precise the idea of simulating reductions in the
calculus with metavariables by reductions in the metavariable-free calculus.

Lemma 2.86
If M⇒1M

′ and M �= M ′, then M⇒1M ′ and M �= M ′.

Proof: The proof is by induction on the generation of ⇒1. All the cases
not dealt with in the following require a straightforward application of the
induction hypothesis.

• Assume M is of the form (λ x : T . P) N , and M ′ of the form P ′{x :=
N ′}, where P⇒1P

′ and N⇒1N
′. By induction hypothesis, P⇒1P ′ and

N⇒1N ′, so M = (λ x : T . P) N⇒1P ′{x := N ′} = P ′{x := N ′} = M ′ by
an application of Lemma 2.81.

• Assume M is of the form ?n�[x ′
1 := t1, . . . , x

′
m := tm], and M ′ is of the

form ?n�[x ′
1 := t ′1, . . . , x

′
m := t ′m], with ti⇒1t

′
i . We define σ as {x ′

1 :=
t1, . . . , x

′
m := tm} and σ′ as {x ′

1 := t ′1, . . . , x
′
m := t ′m}.

For a metavariable ?n with ctxt(?n) = x1 : T1, . . . xk : Tk , the term M
is of the form F x1σ . . . xkσ. By parallel reduction, using the induction
hypothesis, M = F x1σ . . . xkσ⇒1 F x1σ′ . . . xkσ′ = M ′.

Since M �= M ′, there has to be at least one ti with ti �= t ′i . Because
the variables x ′

1, . . . x
′
m are all contained in the domain of the context

x1 : T1, . . . xk : Tk , for at least one i , xiσ �= xiσ′ and therefore also
M �= M ′. 2

89

2.7. FUNCTIONAL REPRESENTATION OF METAVARIABLES

Proposition 2.87 (Strong Normalization)
The calculus ECCM is strongly normalizing for reduction ⇒1.

Proof: Assume, to the contrary, that there is a well-typed term M which
permits an infinite sequence of reduction steps: M ≡ M0⇒1M1⇒1 . . ., with
each Mi �= Mi+1. Then, by Proposition 2.80, the term M is well-typed in
the calculus ECC without metavariables, and by Lemma 2.86, there is also an
infinite sequence of terms M ≡ M0⇒1M1⇒1 . . ., with each Mi �= Mi+1. This
contradicts the strong normalization property of ECC (Proposition 2.11).
2

90

3. A Sequent Calculus
Characterization

3.1. Natural Deduction and Sequent Systems

3.1.1. Survey

The calculus presented in Section 2.1 is adequate for type inference and type
checking, since it allows for derivations which are driven by the structure of
the term under consideration: When inferring the type of a term M in context
Γ, i.e. when trying to find a term ?A such that Γ � M :?A, it is sufficient to
choose a rule according to the outermost constructor of M and to apply this
rule backwards. This gives rise to new type inference problems Γi � Mi :?Ai

which are entirely determined by M since the Mi are subterms of M . Thus, this
calculus, to which we will henceforth refer as ECCN , has a subterm property
with respect to the terms of its typing judgements.

However, there is no such subterm property for types, which makes the
calculus inappropriate for proof search, i.e. for determining a term ?M such
that Γ �?M : A holds. In particular, the rules (app), (π1), (π2) and (�) destroy
the subterm property, since their premisses contain types that do not occur in
their conclusions. The purpose of this section is to develop calculi having
a subterm property for types, and which permit proof search by structural
decomposition of types. Not surprisingly, the subterm property for terms gets
lost, so these calculi are not useful for type inference.

The following considerations are inspired by the work of Gentzen [Gen34],
who introduces natural deduction calculi with a schema of introduction / elim-
ination rules and sequent calculi with left / right rules and proves their equiv-
alence. The procedure roughly works as follows:

• To establish a subterm property on types, define a calculus ECCG
1 (Def-

1A remark on notation: The N in ECCN stands for natural deduction. The G in ECCG has
become rather common for the designation of sequent systems to commemorate Gentzen,
even though he has actually introduced both kinds of system.

91

3.1. NATURAL DEDUCTION AND SEQUENT SYSTEMS

inition 3.2) which abandons the rules (app), (π1) and (π2) in favour of
rules (ΠL) and (ΣL) that decompose Π- and Σ-abstractions on the left
side, i.e. in the antecedent of a typing judgement. To compensate for
the lack of a subterm property of rule (�), a new rule having a simi-
lar effect in the antecedent of sequents is introduced; together with this
new rule, (�) is retained in ECCG . Even though this does not seem to
be an improvement, it can be shown (Section 4.2) that applications of
these two rules can be split into a deterministic reduction to weak head
normal form in the “interior” of the proof tree to be constructed and a
higher-order unification taking into account the cumulativity relation at
the leaves of the proof tree.

• It is easy to simulate derivations of ECCG in the calculus ECCN (Propo-
sition 3.4). This result can be interpreted as a proof of “correctness” of
ECCG with respect to ECCN .

• For showing “completeness”, an auxiliary system ECCG+cut is introduced,
in which the cut rule, which was shown to be admissible in ECCN , is
explicitly added to ECCG . Derivations in ECCN can be simulated in
ECCG+cut (Proposition 3.5).

• By a process of cut elimination (Proposition 3.7), it is shown that appli-
cations of the cut rule in derivations of ECCG+cut can be removed, thus
yielding derivations in ECCG . This establishes the equivalence of the
three calculi. Cut elimination will not be proved in full generality, but
only for a fragment in which terms become smaller under substitution for
an appropriately defined measure.

Even the restricted fragment turns out to be too large to permit a well-focussed
proof search, and too unwieldy because of the meager set Π,Σ of type con-
structors. Therefore, in Chapter 4, a calculus more appropriate for practical
concerns will be developed.

In the following considerations, no reference will be made to metavariables.
In particular, we will examine the relation between natural deduction calculi
(ECCN) and sequent calculi (ECCG and ECCG+cut) in a language without
metavariables. The reason is that the metavariable rules of Figure 2.5 only
permit to derive judgements of the form Γ � ?n�σ : A for metavariables ?n and
substitutions σ. However, metavariables are not a purpose in themselves, and
we are not aiming at synthesizing metavariables as proof terms, even though
proof terms arising during a proof may contain metavariables.

Metavariables will be reintroduced as devices for facilitating proof search
in Chapter 4. The resulting framework will be hybrid in the sense that proof

92

3.1. NATURAL DEDUCTION AND SEQUENT SYSTEMS

search by decomposition of formulae will be carried out with a sequent calcu-
lus, whereas verification of type correctness of solutions is obtained via type
checking solutions in a natural deduction calculus, in the style elaborated in
Section 2.6.

3.1.2. Definition of the systems

In the calculus ECCN , the following cut rule is admissible (see Proposition 2.45):

Γ, z : C ,∆ � M : A Γ � c : C

Γ,∆{z := c} � M {z := c} : A{z := c}

In subsequent proofs, it will be practical to use a slightly extended version of
this rule, which incorporates the cumulativity relation � and which expresses
that elements c which are of a smaller type C (with respect to �) can be
substituted for parameters z of larger type C ′.

Definition 3.1 (Cut Rule)

Γ, z : C ′,∆ � M : A Γ � c : C C � C ′

Γ,∆{z := c} � M {z := c} : A{z := c} (cut)

Γ, z : C ′,∆ validc Γ � c : C C � C ′

Γ,∆{z := c} validc
(cut)

Let us formally define the systems referred to in the following:

Definition 3.2 (Systems ECCN , ECCG and ECCG+cut)
The system ECCN is the same as the previously defined system ECC , given
by the rules of Figure 2.2.

The system ECCG differs from ECCN as follows:

• The rules (app), (π1) and (π2) are removed.

• The following rules are added:

Γ, p : Πx : A. B [x],Γ′ �N1 :A
Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1]�N2 :G

Γ, p : Πx : A. B [x],Γ′ �N2{p ′ := (p N1)} :G
(ΠL)

Γ, p : Σx : A. B [x],Γ′, p1 : A, p2 : B [π1(p)]�N :G

Γ, p : Σx : A. B [x],Γ′ �N {p1 := π1(p), p2 := π2(p)} :G
(ΣL)

Γ, p : T ′,Γ′ � M : A Γ �NT : Typej T � T ′

Γ, p : T ,Γ′ � M : A
(� L)

93

3.1. NATURAL DEDUCTION AND SEQUENT SYSTEMS

〈〉 validc
(Cempty)

Γ �NA : Typej x �∈ FV (Γ)

Γ, x : A validc
(Cvalid)

Γ validc

Γ � Prop : Type0
(UProp)

Γ validc

Γ � Typej : Typej+1
(UType)

Γ, x : A,Γ′ validc

Γ, x : A,Γ′ � x : A
(var)

Γ � A : Typej Γ, x : A � P : Prop

Γ � Πx : A.P : Prop
(Π-Form1)

Γ � A : Typej Γ, x : A � B : Typej

Γ � Πx : A.B : Typej
(Π-Form2)

Γ, x : A � M : B

Γ � λ x : A.M : Πx : A.B
(ΠR)

Γ, p : Πx : A. B [x],Γ′ � N1 : A
Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G

Γ, p : Πx : A. B [x],Γ′ � N2{p ′ := (p N1)} : G
(ΠL)

Γ � A : Typej Γ, x : A � B : Typej

Γ � Σx : A.B : Typej
(Σ-Form)

Γ � M : A Γ � N : B {x := M } Γ, x : A � B : Typej

Γ � pairΣx : A. B (M , N) : Σx : A. B
(ΣR)

Γ, p : Σx : A. B [x],Γ′, p1 : A, p2 : B [π1(p)] � N : G

Γ, p : Σx : A. B [x],Γ′ � N {p1 := π1(p), p2 := π2(p)} : G
(ΣL)

Γ � M : A Γ �NA′ : Typej A � A′

Γ � M : A′ (� R)

Γ, p : T ′,Γ′ � M : A Γ �NT : Typej T � T ′

Γ, p : T ,Γ′ � M : A
(� L)

Figure 3.1.: Rules of the calculus ECCG

94

3.1. NATURAL DEDUCTION AND SEQUENT SYSTEMS

• The premiss A : Type is added to rule (Π-Form1).

• In the rules (Cvalid) and (�), the precondition of the form “Γ � T :
Typej” is changed to the form “Γ �NT : Typej” (see remarks below).

• The rules (λ), (pair) and (�) are renamed to (ΠR), (ΣR) and (� R),
respectively.

• All other rules remain unchanged.

The system ECCG is summarized in Figure 3.1.
The system ECCG+cut is defined as the system ECCG together with the

(cut) rule.
Each of the systems ECCN , ECCG and ECCG+cut defines a different deriv-

ability relation �N , �G and �C . For readability, we omit the index and
simply use the symbol � whenever the system under consideration is clear.

Definition 3.3 (Principal Formula)
The formula to which (ΠL) resp. (ΣL) is applied is called the principal formula
of the application. The premiss Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G of
(ΠL) is called its main premiss, the branch of a proof tree following the main
premiss the main branch.

The adequacy of the rules introduced above will ultimately become appar-
ent from the equivalence results for the systems ECCN , ECCG and ECCG+cut

proved in the following. The rules (ΠL) and (ΣL) have already been moti-
vated above. The rule (� L) can be justified by Lemma 2.8. In order to
give an intuition for situations where an application of (� L) is required, con-
sider the following proof goal: It has to be shown that B holds in context
Γ =̂ a : A, h : (λP : Prop.P → B) A. In the system ECCN , this proof can be
carried out as follows:

Γ � h : (λ P : Prop.P → B) A

Γ � h : A → B
(�)

Γ � a : A

Γ � (h a) : B
(app)

A similar proof in the system ECCG can only succeed with an application of
(� L), since no other rules are applicable to the initial goal:

a : A, h : A → B � a : A a : A, h : A → B , h ′ : B � h ′ : B

a : A, h : A → B � (h a) : B
(ΠL)

a : A, h : (λP : Prop.P → B) A � (h a) : B
(� L)

95

3.1. NATURAL DEDUCTION AND SEQUENT SYSTEMS

Hypotheses like h : (λP : Prop.P → B) A which are not in normal form
may seem to be artificial and therefore situations like the above easily avoidable
by stipulating that hypotheses in a proof have to be normalized. However,
redexes in the list of hypotheses may arise during proof search by an application
of rule (ΠL), whenever x in B [x] is applied to arguments and the term N1 is a
λ-abstraction (see Example 4.2 for an illustration).

Let us now comment on the judgement form “Γ �NT : Type” in the rules
(Cvalid), (� R) and (� L): For applying the rules (Cvalid), (� R) and (� L),
it has to be ensured that A, A′ resp. T are types. Assume these rules had been
stated with the judgement form Γ �GT : Type instead of Γ �NT : Type. Then,
an easy inductive argument shows that whenever Γ �GM : P is derivable, M
is in normal form (in particular, the substitutions p ′ := (p N1), p1 := π1(p),
p2 := π2(p) do not introduce redexes since p is a variable). This would have
the following consequences:

• Whenever a context contains a declaration x : A with A not in normal
form, this context cannot be shown to be valid, because, by rule (Cvalid),
this would require a derivation of Γ �GA : Type. As remarked above,
contexts with non-normalized terms arise naturally in proof search, so
proof search would lead to invalid contexts.

• It is not possible to derive Γ �GA′ : Type or Γ �GT : Type whenever A′

or T are not in normal form, so backwards applications of rules (� R)
and (� L) will be blocked in these cases, leading to an unnecessary loss
of completeness. However, since the types A′ resp. T are known when
the rules (� R) and (� L) are applied in proof search, there is no need
to use the proof search calculus ECCG to check these side conditions.

Altogether, this discussion suggests that the test for being a type is better
not performed in the calculus ECCG , but rather in the calculus ECCN . By
inspection of the rules in Figure 3.1, it is obvious that the judgement Γ validc is
then derivable in ECCG iff it is derivable in ECCN . All this makes the calculus
ECCG hybrid in the sense that ECCG-derivations “invoke” subderivations in
ECCN . In proof search, the test for being a valid type in a context or a
valid context is however not made explicit: A more detailed analysis of ECCG -
derivations in Section 4.2 will show that these conditions are either implicitly
ensured (in applications of (� R) and (� L) that reduce types to weak head
normal form) or will be imposed by the well-typedness conditions that have
been developed for metavariables in Section 2.6.

96

3.2. PROPERTIES OF SEQUENT SYSTEMS

3.2. Properties of Sequent Systems

3.2.1. Correctness
Proposition 3.4 (Derivability in ECCG implies derivability in ECCN)
If a judgement Γ � M : A (or Γ validc) is derivable in system ECCG , then it is
derivable in system ECCN .

Proof: By induction on the structure of the derivation in ECCG . We will first
show that the rules (ΠL) and (ΣL) can be simulated by applications of rules
of ECCN :

• Rule (ΠL): Given the following derivations D1 and D2:

Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G

Γ, p : Πx : A. B [x],Γ′ � λ p ′ : B [N1]. N2 : Πp ′ : B [N1]. G
(λ)

Γ, p : Πx : A. B [x],Γ′ � p : Πx : A. B [x] Γ, p : Πx : A. B [x],Γ′ � N1 : A

Γ, p : Πx : A. B [x],Γ′ � (p N1) : B [N1]
(app)

Form the following derivation (note that p ′ does not occur in G):

D1 D2

Γ, p : Πx : A. B [x],Γ′ � (λ p ′ : B [N1]. N2) (p N1) : G
(app)

Then use the subject reduction property of ECCN to obtain the judge-
ment

Γ, p : Πx : A. B [x],Γ′ �N2{p ′ := (p N1)} :G

• Rule (ΣL): From the judgement

Γ, p : Σx : A. B [x],Γ′, p1 : A, p2 : B [π1(p)] � N : G

derive

λ p1 : A. λ p2 : B [π1(p)]. N : Πp1 : A. Πp2 : B [π1(p)]. G

in context Γ, p : Σx : A. B [x],Γ′ by two applications of rule (λ). Then,
in this context, derive π1(p) : A and π2(p) : B [π1(p)] with rules (π1) and
(π2). Twofold application of rule (app) and subject reduction gives the
desired result

Γ, p : Σx : A. B [x],Γ′ �N {p1 := π1(p), p2 := π2(p)} :G

97

3.2. PROPERTIES OF SEQUENT SYSTEMS

Thus, (ΠL) and (ΣL) can be conceived as derived rules of the calculus
ECCN . By Lemma 2.8, the rule (� L) is admissible in ECCN and so does not
permit the derivation of new judgements, and, clearly, neither does adding a
precondition to rule (Π-Form1). 2

3.2.2. Completeness

As mentioned in the introduction, completeness will be proved in two steps:
First by showing that derivability in ECCN implies derivability in ECCG+cut ,
and then, by a cut elimination proof, that ECCG+cut and ECCG are equivalent.

Proposition 3.5 (ECCN implies ECCG+cut)
If a judgement Γ � M : A (or Γ validc) is derivable in system ECCN , then it is
derivable in system ECCG+cut .

Proof: By induction on the structure of the derivation in ECCN . Since the
system ECCN only differs from ECCG+cut in the rules (app), (π1) and (π2) and
the strengthened premiss of (Π-Form1), only these rules have to be considered:

• Assume the last rule of the derivation is (app):

D0

Γ � M : Πx : A.B [x]
D1

Γ � N : A

Γ � M N : B [N]
(app)

By induction hypothesis, there are derivations D∗
0 and D∗

1 in ECCG+cut

corresponding to D0 and D1. Weaken the derivation D∗
1 to derivation D′

1

by introducing the assumption p : Πx : A. B [x] in the antecedents of D∗
1.

Call the following derivation D2:

D′
1

Γ, p : Πx : A. B [x] � N : A Γ, p : Πx : A. B [x], p ′ : B [N] � p ′ : B [N]

Γ, p : Πx : A. B [x] � p N : B [N]
(ΠL)

Then, form the derivation:

D2

D∗
0

Γ � M : Πx : A. B [x]

Γ � M N : B [N]
(cut)

• Assume the last rule is (π1):

D
Γ � M : Σx : A.B [x]

Γ � π1(M) : A
(π1)

98

3.2. PROPERTIES OF SEQUENT SYSTEMS

Then form the ECCG+cut -derivation:

D1

D∗

Γ � M : Σx : A. B [x]

Γ � π1(M) : A
(cut)

with D1 defined as:

Γ, p : Σx : A. B [x], p1 : A, p2 : B [π1(p)]� p1 :A

Γ, p : Σx : A. B [x]�π1(p) :A
(ΣL)

• Assume the last rule is (π2):

D
Γ � M : Σx : A.B

Γ � π2(M) : B [π1(M)]
(π2)

Then form the ECCG+cut -derivation:

D1

D∗

Γ � M : Σx : A. B [x]

Γ � π2(M) : B [π1(M)]
(cut)

with D1 defined as:

Γ, p : Σx : A. B [x], p1 : A, p2 : B [π1(p)]� p2 :B [π1(p)]

Γ, p : Σx : A. B [x]� π2(p) :B [π1(p)]
(ΣL)

• Assume the last rule is (Π-Form1) of calculus ECCN . The premiss Γ, x :
A � P : Prop is derivable in ECCN if and only if Γ � A : Typej and Γ, x :
A � P : Prop are both derivable in ECCN , because the latter derivation
contains Γ � A : Typej as a subderivation. Therefore, by induction
hypothesis, both premisses of rule (Π-Form1) of calculus ECCG+cut are
derivable.

2

Cut Elimination

As announced above, we will restrict cut elimination to a fragment in which
“terms become smaller under substitution”, for an appropriate measure on
terms. The reason for this restriction is a technicality in the proof of cut elim-
ination as presented below. For being able to apply an induction hypothesis,

99

3.2. PROPERTIES OF SEQUENT SYSTEMS

terms of the form B{x := M } have to be smaller than terms of the form
Πx : A. B and terms of the form Σx : A. B , where M is a term of type A.
Possibly, a completely different setup of the proof would permit to eliminate
this requirement, see the discussion in Section 1.3.2. In any case, there are
certain choices of M , A and B that violate this constraint, take for example
M =̂ ΠX : Prop. X → X , A =̂ Prop and Πx : A. B =̂ ΠX : Prop. X → X .
Then B{X := M } ≡ (ΠX : Prop. X → X) → (ΠX : Prop. X → X), which
is greater than ΠX : Prop. X → X for any reasonable term order, i.e. a term
order respecting subterms.

Let us now define properties of a measure function on terms which are
required to let the cut elimination proof go through.

Definition 3.6 (Measure for cut elimination)
A measure m mapping terms to a well-founded total order < is a term measure
for cut elimination if it fulfills the following requirements:

• If t ′ and t are well-typed terms (w.r.t. ECCN) in normal form and t ′ is
a proper subterm of t , then m(t ′) < m(t).

• For all contexts Γ and terms M , B and A: whenever Γ � M : A is deriv-
able in ECCN , B{x := M } and Πx : A. B are well-typed terms in nor-
mal form, then m(B{x := M }) < m(Πx : A. B). Similarly, m(B{x :=
M }) < m(Σx : A. B).

• If t ′ and t are well-typed terms (w.r.t. ECCN) not in normal form, then
m(t ′) < m(t) if m(nf (t ′)) < m(nf (t)) for the respective normal forms.

It is intuitively clear that such a measure can be defined for a simple first-
order language. A quantified formula like ∀ x : A.B is then greater than a
formula B{x := M } having less quantifiers (since M does not contain quanti-
fiers), even though the term size | B{x := M } | may be greater than the term
size | ∀ x : A.B |. This statement will be made more precise in Section 3.3 and
generalized to all predicative subsystems of CC .

Apart from the restriction to a fragment for which a measure for cut elim-
ination can be defined, some care has to be taken as to how an “equivalence”
between derivations in ECCG+cut and ECCG can be stated: As observed at the
end of Section 3.1.2, whenever Γ � M ′ : A′ is derivable in ECCG and M ′ is not
a type, then M ′ is at least in weak head normal form. However, a derivation of
Γ � M : A in ECCG+cut can produce a topmost redex in M , for example if the
cut term is a λ-abstraction and the variable for which it is substituted occurs in
the functional position of an application. Thus, ECCG and ECCG+cut do not

100

3.3. A MEASURE FOR CUT ELIMINATION

derive exactly the same judgements, but only judgements equal up to conver-
sion. Since ECCG only serves as a calculus for proof search and is not intended
to be used for type checking, this restriction is of no practical significance.

Proposition 3.7 (Cut Elimination)
Let F be a fragment in which a term measure for cut elimination can be defined.
If the judgement Γ � M : A is derivable in the system ECCG+cut (restricted
to F), then Γ � M ′ : A is derivable in ECCG (restricted to F), where M ′ is a
term convertible to M .

Proof: The proof is by induction on derivations, using a measure whose main
ingredients are the rank and the level of an applications of (cut):

• The rank of an application of (cut) is m(C), where m is the measure over
which the cut elimination theorem is parameterized and C is the formula
to which (cut) is applied.

• The level of an application of the cut rule is the sum of the depths of the
deductions of its premisses.

For a given application of (cut) in a derivation, the derivations leading to
its premisses are examined. It is then shown that the application of (cut) can
either be removed altogether, or can be moved further upwards (thus decreasing
its level) or can be replaced by cuts of lower rank and/or level. The proof is
carried out in detail in Appendix A.2. 2

With respect to the original proof by Gentzen (and variants), this proof is
complicated considerably by two factors, apart from the more complex measure:
Firstly, proof terms have to be taken into account. More seriously, formulae
in the antecedent (context) are labeled by variables, variables may occur in
subsequent formulae. This requires more attention when applying operations
such as weakening and contraction, and some of the standard structural rules
(like exchange of formulae) are not valid.

3.3. A Measure for Cut Elimination

3.3.1. The Lambda-Cube

The proof of cut elimination in Section 3.2.2 is parameterized by a measure
which has been called “term measure for cut elimination”. In that section, an
example is given which shows that no such measure can be defined for the full
Extended Calculus of Constructions ECC . In order to assess the strength of

101

3.3. A MEASURE FOR CUT ELIMINATION

the cut elimination proof, we will in the following examine subsystems of the
Calculus of Constructions CC . A classification of such subsystems is given by
the λ-cube. The analysis of these subsystems will reveal that a measure for
cut elimination can be defined for all predicative systems of the cube, whereas
the counterexample of Section 3.2.2 can be reproduced for all impredicative
systems of the cube. Consequently, completeness of proof search extends to all
predicative systems of the λ-cube.

The discussion in this section takes as basis the Calculus of Constructions
CC and not its ’extended’ version ECC , because it permits a cleaner identifica-
tion of subsystems. However, as we will see below, the difference between CC
and ECC is not essential for the question under consideration, and a similar
analysis could be performed for the calculus ECC .

The material in this Section 3.3.1, which has mostly been taken from the
survey article [Bar92], is not new and is thought to provide the necessary
background for an understanding of the following sections.

λω λ C

λ 2

�����������
λ P2

�����������

λω λPω

λ→

�����������
λP

�����������

Figure 3.2.: The Lambda Cube

The λ-cube has been introduced by Barendregt to elucidate the fine struc-
ture of the Calculus of Constructions. The systems of the cube are often
referred to as “Pure Type Systems” (PTS), a denotation which we occasion-
ally use in the following. The corners of the cube (Figure 3.2) are marked with
subsystems of the Calculus of Constructions. The inclusion relation between
systems is depicted by an edge leading to the right, upwards or backwards.
Some of the systems are artificial in the sense that they have been defined with
the λ-cube in mind. However, most systems historically predate the Calculus
of Constructions and have been known under different names than the ones

102

3.3. A MEASURE FOR CUT ELIMINATION

given in the cube, for example:

• λ→ is the simply typed λ-calculus as defined by Church.

• λ 2 is Girard’s System F, λ ω Girard’s System Fω [Gir72].

• λ P is the system LF as proposed in [HHP87]. This also corresponds to
the logic used in a version of the Automath system [dB70].

• λ C is the Calculus of Constructions CC which is a synthesis of all the
systems of the λ-cube.

〈〉 � Prop : Type

Γ � A : s

Γ, x : A � x : A
(var)

Γ � A : B Γ � C : s

Γ, x : C � A : B
(weak)

Γ � M : Πx : A.B Γ � N : A

Γ � M N : B {x := N } (app)

Γ, x : A � M : B Γ � Πx : A. B : s

Γ � λ x : A.M : Πx : A.B
(λ)

Γ � A : B Γ � B ′ : s B
 B ′

Γ � A : B ′ (conv)

Γ � A : s1 Γ, x : A � B : s2

Γ � Πx : A.B : s2
(Π)

Figure 3.3.: Typing rules for the systems of the Lambda Cube

The systems of the λ-cube are generated by a scheme of typing rules, de-
picted in Figure 3.3. The systems of the cube have all the rules except for (Π)
in common. The systems differ in that the pair of sort variables (s1, s2) in the
(Π) rule may only be instantiated with the sorts Prop or Type according to the
sort combinations specified in Figure 3.4.

The systems of the upper plane of the λ-cube (those in which the sort pair
(Type, Prop) is admissible) are impredicative: A type can be formed by quanti-
fying over a domain to which the type under consideration itself belongs. For

103

3.3. A MEASURE FOR CUT ELIMINATION

λ→ (Prop, Prop)
λ 2 (Prop, Prop) (Type, Prop)
λ P (Prop, Prop) (Prop, Type)
λ P2 (Prop, Prop) (Type, Prop) (Prop, Type)
λ ω (Prop, Prop) (Type, Type)
λ ω (Prop, Prop) (Type, Prop) (Type, Type)
λ Pω (Prop, Prop) (Prop, Type) (Type, Type)
λ C (Prop, Prop) (Type, Prop) (Prop, Type) (Type, Type)

Figure 3.4.: Sort combinations for the systems of the Lambda Cube

example, one such type is the term ΠX : Prop. X → X , whose typing deriva-
tion is:

� Prop : Type

X : Prop � X : Prop X : Prop, x : X � X : Prop

X : Prop � X → X : Prop
(Π)

� ΠX : Prop. X → X : Prop
(Π)

The lower inference uses an “impredicative” application of the (Π) rule, with
combination (Type, Prop), the upper inference a “predicative” application with
combination (Prop, Prop).

Formally, the rules of Figure 3.3 are not a subset of the rules of ECC
on which previous considerations were based. In particular, the weakening
rule of the λ-cube systems is not made explicit in the rules of ECC , but can
be shown to be admissible. The most notable difference is the use of type
universes: In ECC , there is a hierarchy of universes Prop,Type0,Type1, . . .,
where � Prop : Typei and � Typei : Typei+1. In the λ-cube, there are only
two universes (traditionally called sorts and denoted by s , s1, s2 in the rules
of Figure 3.3) Prop and Type, where � Prop : Type and Type is not a typeable
term. Since there is no cumulativity between sorts (i.e., a type A of Prop is not
also in Type), the rule (conv) directly corresponds to (�) in ECC . Altogether,
the system ECC and the systems of the λ-cube are sufficiently close to justify
a comparison. In particular, the cut elimination proof of Section 3.2.2 carries
over with only minor modifications.

In the same way that the systems of the λ-cube are fragments of the Calculus
of Constructions CC , it is possible to define fragments of the calculus ECC by
replacing the rules (Π-Form1) and (Π-Form2) of ECC by the rule scheme (Π)
with its corresponding sort constraints. In this sense, impredicative subsystems
of ECCG (resp. ECCG+cut) are the counterparts of impredicative subsystems of

104

3.3. A MEASURE FOR CUT ELIMINATION

the Calculus of Constructions. By taking into account the results established in
the following, Proposition 3.7 can be interpreted as saying that corresponding
predicative subsystems of ECCG resp. ECCG+cut are equivalent.

3.3.2. Facts about Pure Type Systems

In the following, some facts and lemmas about predicative Pure Type Systems
will be proved. The purpose of this section is to show that, for predicative
PTSs, a measure for cut elimination can indeed be defined. Note that some of
the properties do not also hold in impredicative systems.

Lemma 3.8 (Facts about predicative PTSs)
The following facts hold in predicative PTSs, considering terms in normal form:

1. Γ �� Type : T for all Γ, T .

2. Πx : Type. B is not typeable for any term B (follows from rules (Π) and
(var)).

3. If Γ � T : Type, then T has the form Πx1 : C1. . . . xn : Cn .Prop, where
each Ci is of type Prop or Type (follows from rule (Π)).

4. If Γ � T : Prop, then T has one of the following forms (follows from
induction over structure of T):

• T is a variable

• T is of the form (f a) with f : Πx : A. Prop and A : Prop and a : A.

• T is of the form Πx1 : C1. . . . xn : Cn .B , with Ci : Prop and B : Prop.

The notion of “level” of a term can be found under various guises in the
literature. We define it as follows:

Definition 3.9 (Level)
Assume that t is a term which is well-typed in a context Γ. The level levelΓ(t)
of t is defined inductively on the structure of t as follows:

• levelΓ(t) = 3 if t ≡ Type.

• levelΓ(t) = 2 if Γ � t : Type.

• levelΓ(t) = 1 if there exist a T such that Γ � t : T and Γ � T : Type.

• levelΓ(t) = 0 if there exist a T such that Γ � t : T and Γ � T : Prop.

The index Γ is usually omitted from levelΓ.

105

3.3. A MEASURE FOR CUT ELIMINATION

The function level is well-defined. Note, in particular, that in the λ-cube, there
is no such “inclusion” as Prop ⊂ Type. Thus, we do not have T : Prop and
T : Type at the same time.

A term of level 2 is usually called a kind, a term of level 1 a constructor (if
it is of functional type) or a type, and a term of level 0 an object.

The Π-depth counts the number of Π-abstractions of a term:

Definition 3.10 (Π-depth)
The Π-depth depth(t) of term t is defined by:

• depth(t) = 0 for all term constructors except for Π

• depth(Πx : A. B) := depth(B) + 1

Definition 3.11 (PTS Measure)
Assume that t is a well-typed term. The PTS measure m(t) yields a multiset
of pairs (l , d), where l and d are natural numbers. For terms t in normal form,
m(t) is defined inductively on the structure of t as follows:

• m(t) = {(level(t), 0)} for all term constructors except for Π-abstractions

• m(Πx : A. B) = {(level(Πx : A. B), depth(Πx : A. B))}∪m(A)∪m(B)2

For t not in normal form, m(t) is defined as m(nf (t)), the result of computing
the measure for the normal form of t .

A term t1 is smaller than term t2 with respect to the PTS measure (written
as t1 < t2) if m(t1) is less than m(t2) with respect to the multiset order induced
by a lexicographic ordering of the pairs (l , d).

Lemma 3.12
Let Γ � T : Type. Then for any term M , depth(T{x := M }) = depth(T).

Proof: By Lemma 3.8, T has the form Πx1 : C1. . . . xn : Cn .Prop. Then
T{x := M } has the form Πx1 : C1{x := M }. . . . xn : Cn{x := M }.Prop. Both
terms have depth n. 2

Lemma 3.13
1. For all typecorrect terms t ,M , if {x := M } is a type-respecting substitu-

tion (i.e., x has the same type as M), then level(t) = level(t{x := M }).

2. For all typecorrect terms t1, t2: If t1 β-reduces to t2, then level(t1) =
level(t2).

2Here and in the following, ∪ stands for the union of multisets

106

3.3. A MEASURE FOR CUT ELIMINATION

Proof:

1. By induction on the structure of t .

2. By induction on the length of the reduction, using the subject reduction
property of PTSs.

2

In the following, we will restrict the discussion to type-correct terms.

Lemma 3.14
1. For all applications (f a), either level(f a) = 0 or level(f a) = 1.

2. If level(f a) = 1, then level(f) = 1.

Proof:

1. level(t) = 3 implies t = Type, level(t) = 2 implies that t is of the form
Πx1 : T1, . . . , xn : Tn .Prop (by Lemma 3.8).

2. Assume level(f) = 0. Then there exist context Γ and types T1,T2 such
that3 Γ � f : (Πx : T1. T2) : Prop. In predicative systems, T1 and T2

then even have to be of type Prop. Then, for any a such that Γ � a : T1,
Γ � (f a) : T2 : Prop, thus level(f a) = 0. The statement follows with 1.

2

The following lemma gives bounds for m(T) for type terms T , that is, terms
T for which there exists a context Γ such that Γ � T : Type or Γ � T : Prop.

Lemma 3.15
1. For all type terms T : If level(T) = n, then {(n, 0)} ≤ m(T)

2. For all type terms T : If level(T) = n, then m(T) < {(n + 1, 0)}

3. For all terms M , A: If Γ � M : A, then m(M) < m(A).

Proof: 1. and 2.: By induction on the structure of T .
3.: If Γ � M : A : Type, then level(M) = 1 and level(A) = 2, thus

m(M) < {(2, 0)} ≤ m(A). Analogously for Γ � M : A : Prop. 2

Note that if m respects subterm structure, the third condition fails for
impredicative systems – take for example M ≡ ΠX : Prop. X and A ≡ Prop.
For this choice of M and A, we have � M : A, so by Lemma 3.15, m(M) <
m(A). However, since A is a type subterm of M , we would also have m(A) <
m(M).

3Here and in the following, Γ � M : A : s abbreviates Γ � M : A and Γ � A : s

107

3.3. A MEASURE FOR CUT ELIMINATION

Lemma 3.16 (Measure under substitution)
Assume Γ � M : A and Γ � A : s , with s ∈ {Prop, Type}. Assume that T is
Type or a type term which is well-typed in Γ and possibly has free occurrences
of a variable x of type A. Then:

• m(T{x := M }) ≤ m(T) or m(T{x := M }) < m(A)

• If T ≡ Type or Γ � T : Type, then even m(T{x := M }) ≤ m(T) alone
holds.

• If Γ � T : Prop and Γ � M : A : Prop, then even m(T{x := M }) ≤ m(T)
alone holds.

Proof: By induction on the structure of T .

• The cases T ≡ Type or T ≡ Prop are obvious.

• Assume T is a variable y .

– If y �= x , then m(y{x := M }) = m(y).

– If y = x , then m(y{x := M }) = m(M) < m(A) by Lemma 3.15

Note in particular that there are no variables of Type (which handles the
second statement of the lemma) and that if y : Prop and also M : A :
Prop (and consequently also x : A : Prop), then y �= x and therefore
m(T{x := M }) ≤ m(T) (third statement of lemma).

• Assume T is of the form (f a). By Lemma 3.14, we only have to examine
the cases that level(f a) = 0 or level(f a) = 1, and since T is assumed
to be a type term, only the case level(f a) = 1 remains.

– Assume level(f a) = 1 and level(M) ≥ 1. Then, by Lemma 3.13,
also level((f a){x := M }) = 1. Since level(A) ≥ 2, we have
m((f a){x := M }) < m(A).

– Assume level(f a) = 1 and level(M) = 0. Since the term (f a) is
assumed to be in normal form, it can be written as (h a1 . . . an a),
where h is a variable. By Lemma 3.14, level(h) = 1. In particular,
h is not x , since level(x) = level(M) = 0. The normal form of
(f a){x := M } then has the form (h a ′

1 . . . a ′
n a ′), where a ′

1, . . .a
′
n , a ′

are the normal forms of a1{x := M }, . . . an{x := M }, a{x := M }.
Thus, m((f a){x := M }) = {(1, 0)} = m(f a).

• Assume T ≡ Πz : T1. T2.

108

3.3. A MEASURE FOR CUT ELIMINATION

– If T1 : Type and T2 : Type, then (Πz : T1. T2) : Type.
By induction hypothesis, m(T1{x := M }) ≤ m(T1) and m(T2{x :=
M }) ≤ m(T2). Furthermore, by Lemma 3.12, depth(Πz : T1. T2) =
depth((Πz : T1. T2){x := M }), thus

m((Πz : T1. T2){x := M })
= {(2, depth((Πz : T1. T2){x := M }))}

∪m(T1{x := M }) ∪m(T2{x := M })
≤ {(2, depth(Πz : T1. T2))} ∪m(T1) ∪m(T2)
= m(Πz : T1. T2)

– If T1 : Prop and T2 : Type, then (Πz : T1. T2) : Type.
By induction hypothesis, m(T2{x := M }) ≤ m(T2). Further-
more, level(T1) < 2 and by Lemma 3.13, level(T1{x := M }) < 2,
thus according to Lemma 3.15, m(T1{x := M }) < {(2, 0)} ≤
{(2, depth(Πz : T1. T2))}. By Lemma 3.12, depth(Πz : T1. T2) =
depth((Πz : T1. T2){x := M }). Altogether:

m((Πz : T1. T2){x := M })
= {(2, depth((Πz : T1. T2){x := M }))}

∪m(T1{x := M }) ∪m(T2{x := M })
≤ {(2, depth(Πz : T1. T2))} ∪m(T2)
≤ m(Πz : T1. T2)

– If T1 : Prop and T2 : Prop, then (Πz : T1. T2) : Prop.
Either, M : A : Type or M : A : Prop.

If M : A : Type, then, since

level(Πz : T1. T2) = level((Πz : T1. T2){x := M }) = 1

but level(A) = 2, we have by Lemma 3.15 that

m((Πz : T1. T2){x := M }) < {(2, 0)} ≤ m(A)

If M : A : Prop, then m(T1{x := M }) ≤ m(T1) and m(T2{x :=
M }) ≤ m(T2) and depth(Πz : T1. T2) = depth((Πz : T1. T2){x :=
M }), thus

m((Πz : T1. T2){x := M })
= {(1, depth((Πz : T1. T2){x := M }))}

∪m(T1{x := M }) ∪m(T2{x := M })
≤ {(1, depth(Πz : T1. T2))} ∪m(T1) ∪m(T2)
= m(Πz : T1. T2)

2

109

3.3. A MEASURE FOR CUT ELIMINATION

Proposition 3.17
For the measure m defined in Definition 3.11, the following holds:

1. If T and T ′ are well-typed type terms and T ′ is a type subterm (cf.
Definition 2.2) of T , then m(T ′) < m(T).

2. If Γ � M : A is derivable, M and A are in normal form, and Πx : A. B
is a term in normal form and well-typed in Γ, then m(B{x := M }) <
m(Πx : A. B).

Therefore, m is a term measure for cut elimination.

Proof:

1. Obvious from the definition of m.

2. By definition of m,

m(Πx : A. B) = {(level(Πx : A. B), depth(Πx : A. B))} ∪m(A) ∪m(B)

By 1. and Lemma 3.16, we have:

• m(B{x := M }) ≤ m(B) < m(Πx : A. B), or

• m(B{x := M }) < m(A) < m(Πx : A. B). 2

110

4. Methods of Proof Search

4.1. Introduction

This chapter ties together the results developed in the two previous chapters,
by showing how the mechanisms for securely manipulating metavariables, de-
veloped in Chapter 2, can be combined with the sequent calculus of Chapter 3
to produce practically useful proof search algorithms.

The idea of using some kind of “metavariable” to postpone construction of
unknown terms is not new. However, it will be demonstrated in the following
how the notion of well-typed instantiation (Definition 2.71) ensures the usual
side-conditions of sequent calculi (see in particular Section 4.4.2). Conversely,
the typing rules for a calculus with metavariables (Section 2.5) yield a criterion
for showing that the proof terms built up during proof search are correct by
construction, thus no a posteriori type checking of proof terms is necessary
to ascertain that “nothing went wrong”. By this means, proof terms can be
understood as a conceptual device for establishing soundness of proof search,
but their construction is often not actually required.

In the following, we will present two examples, one of them rather simple,
the other more involved, which, for one part, give a general idea of how proof
search proceeds, and which, for another part, demonstrate how the behaviour
of proof search is influenced by the choice of rules of the calculus ECCG that
have to be applied. This dependency of the “complexity” (in a non-technical
sense) of proof search on fragments of the language in which proof problems are
expressed will subsequently be further analyzed, and specialized proof search
procedures will be presented.

Example 4.1
We will show that, for a given type T and propositional functions P ,Q : T →
Prop, the implication (∀ x : T .(P x))∧(∀ y : T .(Q y)) → ∀ z : T .(P z)∧(Q z)
holds. For the proof term to be constructed, a metavariable ?n0 is introduced.
We start by decomposing the connectives → and ∧ on the left side (the formal

111

4.1. INTRODUCTION

rules and the proof terms associated with them will be given in Section 4.4):

h1 : ∀ x : T .(P x), h2 : ∀ y : T .(Q y) �?n2 : ∀ z : T .(P z) ∧ (Q z)

h0 : (∀ x : T .(P x)) ∧ (∀ y : T .(Q y)) �?n1 : ∀ z : T .(P z) ∧ (Q z)
(∧L)

�?n0 : (∀ x : T .(P x)) ∧ (∀ y : T .(Q y)) → ∀ z : T .(P z) ∧ (Q z)
(→ R)

Application of these rules yields solutions ?n0 := λ h0 : (∀ x : T .(P x)) ∧ (∀ y :
T .(Q y)).?n1 and ?n1 := ?n�

2 [h1 := (andEl h0), h2 := (andEr h0)], respectively.
The next step is the elimination of the universal quantifier on the right side.

As opposed to traditional tableau calculi, the universally quantified variable is
not simply dropped or converted into a “constant”, but moved into the context.

h1 : ∀ x : T .(P x), h2 : ∀ y : T .(Q y), z : T �?n3 : (P z) ∧ (Q z)

h1 : ∀ x : T .(P x), h2 : ∀ y : T .(Q y) �?n2 : ∀ z : T .(P z) ∧ (Q z)
(∀R)

...

Of course, this can be interpreted as fixing the previously variable z so that
it becomes a constant. It can also be interpreted as stating that the type T ,
when understood as a set, is non-empty (a priori, no assumptions are made
about the emptiness or non-emptiness of types).

After ∧-splitting on the right side, a metavariable ?x is introduced for
variable x , by application of (∀L) at position h1.

h1 : ∀ x : T .(P x), h2 : . . . , z : T �?x : T
h1 : ∀ x : T .(P x), h2 : . . . , z : T , h3 : (P ?x) �?n7 : (P z)

h1 : ∀ x : T .(P x), h2 : . . . , z : T �?n5 : (P z)
(∀L)

. . . �?n6 : (Q z)
...

(∧R)

Unification of ?n7 with h3 succeeds and at the same time solves ?x with z .
Here, it is important to note that some subgoals are solved by unification and
not necessarily by application of sequent rules. The proof of subgoal ?n5 is
now completely finished, with proof term h1 z . The branch of goal ?n6 can
be handled in a similar manner, by application of (∀L) at position h2 and
subsequent unification.

Altogether, when reconstructing the proof term of the original goal from
the individual steps, we obtain:

λ h0 : (∀ x : T .(P x)) ∧ (∀ y : T .(Q y)). λ z : T .andI (andEl h0 z) (andEr h0 z)

This example is comparatively simple, in the following sense:

• Proof search proceeds deterministically, by decomposition of connectives.

112

4.1. INTRODUCTION

• For the “existential” variables x and y (universally quantified on the left
of �), metavariables are introduced.

• It is essential that a solution of the goals ?x : T and ?y : T is not
attempted directly, but that these goals are delayed and appropriate in-
stantiations are obtained by a (first-order) unification procedure.

Even though unification restricted to a “first-order” fragment is non-trivial
since type information has to be taken into account (see Section 4.3), no search
space is generated during unification.

The second example below is more complex because goals of the form Γ �
?n : Prop have to be dealt with. Apart from left-rules, the only rule of the
calculus ECCG that is applicable to such a goal is (Π-Form1):

Γ � A : Typej Γ, v : A � B : Prop

Γ � Πv : A.B : Prop
(Π-Form1)

which solves ?n by a term of the form Πv :?A.?B and creates new subgoals
Γ �?A : Typej and Γ, v :?A �?B : Prop.

Example 4.2
In this example, it will be proved that Leibniz equality is symmetric, where
Leibniz equality =T for a type T is defined by

x =T y =̂ ∀P : T → Prop.(P x) → (P y)

Thus, we have to show ∀T : Type, x , y : T .x =T y → y =T x . Let us
sketch the main steps in the proof. Expansion of the definition of =T gives the
following initial goal:

�?n0 : ∀T : Type, x , y : T .
(∀P : T → Prop.(P x) → (P y)) → (∀P : T → Prop.(P y) → (P x))

Introduction of hypotheses by repeated application of the (ΠR) rule leaves
a goal Γ �?n1 : (P x), where the context Γ is

T : Type, x : T , y : T , h0 : (∀P : T → Prop.(P x) → (P y)),
P : T → Prop, h1 : (P y)

(Remember that Π-rules are applicable to ∀-quantified formulae and to impli-
cations, which are both syntactic variants of Π-abstractions.)

To this goal, we apply rule (ΠL) at position h0, and since the resulting
sequents are not immediately solvable, we repeat application of (ΠL), this

113

4.1. INTRODUCTION

time at position h2.

Γ �?P0 : T → Prop

Γ, h2 : (?P0 x) → (?P0 y) �?n3 : (?P0 x)
Γ, h2 : (?P0 x) → (?P0 y), h3 : (?P0 y) �?n4 : (P x)

Γ, h2 : (?P0 x) → (?P0 y) �?n2 : (P x)
(ΠL)

Γ �?n1 : (P x)
(ΠL)

Even though (higher-order) unification of (?P0 x) with (P y) or of (?P0 y)
with (P x) is possible, leading to instantiations ?P0 := λ z : T .(P y) and
?P0 := λ z : T .(P x), respectively, these solutions do not advance the state of
affairs. We therefore turn to the goal Γ �?P0 : T → Prop, which so far has
only served as a side condition, and apply the following rules:

Γ, t : T �?A : Type Γ, t : T , v :?A �?B : Prop

Γ, t : T �?P1 : Prop
(Π-Form1)

Γ �?P0 : T → Prop
(ΠR)

By these rule applications, the metavariable ?P0 is instantiated to the term
λ t : T .Πv :?A. ?B . With this instantiation, we can return to goal ?n4 and
continue as follows:

Γ, h2 : . . . , h3 : Πv : ?A�[t := y]. ?B�[t := y] �?n6 : ?A�[t := y]
Γ, h2 : . . . , h3 : . . . , h4 : ?B�[t := y , v :=?n6] �?n7 : (P x)

Γ, h2 : . . . , h3 : Πv : ?A�[t := y]. ?B�[t := y] �?n5 : (P x)
(ΠL)

Γ, h2 : . . . , h3 : ((λ t : T .Πv :?A. ?B) y) �?n4 : (P x)
(� L)

One solution of unifying ?n6 : ?A�[t := y] with h1 : (P y) is the instanti-
ation {?n6 := h1, ?A := (P t)}. Similarly, unifying ?n7 : (P x) with h4 :
?B�[t := y , v :=?n6] yields {?n7 := h4, ?B := (P x)}.

Altogether, we have synthesized the term λ t : T .(P t) → (P x) as a
solution of ?P0. Propagating this solution to the only remaining subgoal ?n3,
we obtain Γ, h2 : . . . �?n3 : ((λ t : T .(P t) → (P x)) x), which, after reduction
of the goal formula, is trivial to prove.

The search space generated by this proof is hard to control, mainly because:

• Higher-order unification does not produce a single most general unifier,
but there are possibly several independent unifiers. For example, unifi-
cation of ?A�[t := y] and (P y) has the two solutions ?A := (P y) and
?A := (P t).

• Application of the rule (Π-Form1) (similarly (Π-Form2)) to a proof obli-
gation ?P creates two new proof obligations, each of which has the same
“complexity” as ?P itself. It is not evident how to interleave the rule
(Π-Form1) with other rules during proof search.

114

4.1. INTRODUCTION

After these illustrations of some of the specificities of proof search in type
theory, the following sections concentrate on techniques which help to make
proof search practicable, at least for restricted fragments. Unification is one
such technique which plays a major role in proof search, but which is also used
for other purposes in verification environments like Typelab.

Example 4.3
In Typelab, as well as in other proof assistants like Lego [LP92], function
expressions can be written in a style of “implicit polymorphism”, which avoids
making type arguments of functions explicit whenever they can be inferred.
(This is not to be confused with an ML-style type inference, which is undecid-
able in the presence of dependent types [Wel94]. Even though incomplete, the
algorithm sketched below works well in practice.)

For example, the explicit notation map (List Nat) Nat sum [[1, 2], [3, 4, 5]]
can be abbreviated to map sum [[1, 2], [3, 4, 5]]. Here, the function map has
type ΠA,B | Type.(A → B) → (List A) → (List B) and sum (adding up the
elements of a list) the type (List Nat) → Nat . In ΠA,B | Type. . . ., the vertical
bar indicates that the types A and B have to be inferred.

To type-check the incomplete expression map sum [[1, 2], [3, 4, 5]] in a con-
text Γ, the algorithm proceeds as follows: For the hidden type variables A and
B , metavariables Γ �?A : Type and Γ, ?A : Type �?B : Type are generated.
Now, type checking of the “explicit” expression map ?A ?B sum [[1, 2], [3, 4, 5]]
is carried out. For the subexpression map ?A ?B , the type (?A →?B) →
(List ?A) → (List?B) is determined. Unifying the domain type (?A →?B)
with the type (List Nat) → Nat of sum yields the substitution {?A :=
(List Nat), ?B := Nat}. Applying the resulting map (List Nat) Nat sum
to argument [[1, 2], [3, 4, 5]] of type (List Nat) leads to no further instantiation
of type parameters.

In Section 4.3, we will take a closer look at unification. Even in the “first-
order” case, unification is not trivial, because several issues related to typing
have to be taken into account. As a motivation, we show in Section 4.2 how
some of the properties unification has to satisfy can be derived from the calcu-
lus ECCG presented in Chapter 3, in particular from the rules (� L) and (� R),
which are directly related to conversion. This gives a basis for defining which
problems have to be solved by unification and what constitutes an acceptable
solution (Section 4.3.1). We then proceed to discuss procedures resembling
standard first-order unification (Section 4.3.2), and we establish a correspon-
dence to general higher-order unification (Section 4.3.3) and to a special kind of
higher-order unification problems, so-called patterns (Section 4.3.4). We finally
discuss why it is does not appear to be useful to devise a complete unification
algorithm for the whole language under consideration (Section 4.3.5).

115

4.2. THE STRUCTURE OF PROOFS

Having introduced unification, we extend the calculus ECCG to the stan-
dard logical connectives (Section 4.4). The resulting calculus strongly bears
resemblance to traditional tableau calculi, and we will discuss to which de-
gree some of the techniques developed for tableau calculi are adequate for our
calculus.

4.2. The Structure of Proofs

In Chapter 3, a sequent system ECCG has been presented and shown to be
(in a certain sense) “equivalent” to the natural deduction system ECCN of
Chapter 2. The system ECCG is not directly usable for proof search, for the
following reasons:

• When trying to prove whether type A is inhabited in context Γ, the proof
term M with Γ � M : A would have to be known in advance in order
to apply the rules of system ECCG . Of course, as illustrated by the
examples of Section 4.1, the solution to this problem is to introduce a
metavariable ?M for the term to be constructed, to carry out the proof
and to instantiate ?M with a term according to the rule that has been
applied to the goal Γ �?M : A. The search space is further pruned by de-
termining appropriate instantiations of metavariables with a unification
procedure.

• Because of the rules (� L) and (� R), the calculus ECCG still suffers
from a lack of subformula property. For example, in the rule (� R)

Γ � M : A Γ �NA′ : Type A � A′

Γ � M : A′ (� R)

the term A is not known in advance.

The purpose of this section is to deal with the second problem, by showing
that in a derivation, applications of a �-rule can be split into two parts, where
the first part is an innocent deterministic reduction of A′ to its weak head
normal form Aw , and the second, more difficult part is shifted towards the leaves
of the proof tree, where it can be incorporated into the unification procedure.

Example 4.4
Given the goal a : A, h : (λ X : Prop.X → B → Prop) A �?M0 : B → Type0,

116

4.2. THE STRUCTURE OF PROOFS

the following derivation can be carried out with the rules of ECCG :

. . . � a : A

...
a : A, h : A → B → Type0, h

′ : B → Type0 �?M2 : B → Type0
(var)

a : A, h : A → B → Type0 �?M1 : B → Type0
(ΠL)

a : A, h : (λ X : Prop.X → B → Prop) A �?M0 : B → Type0
(� L)

(with ?M2 := h ′ and ?M1 :=?M0 := (h a)).
In this derivation, the conversion of (λX : Prop.X → B → Prop) A to

A → B → Type0 does not have an obvious motivation. Compare this with the
following derivation:

. . . � a : A

...
a : A, h : A → B → Prop, h ′ : B → Type0 �?M3 : B → Type0

(var)

a : A, h : A → B → Prop, h ′ : B → Prop �?M2 : B → Type0
(� L)

a : A, h : A → B → Prop �?M1 : B → Type0
(ΠL)

a : A, h : (λ X : Prop.X → B → Prop) A �?M0 : B → Type0
(whnf L)

This derivation is demand-driven in that the weak head normal form reduction
of (λ X : Prop.X → B → Prop) A to A → B → Prop by (whnf L) is required
for an application of the (ΠL)-rule, and the conversion of B → Prop to B →
Type0 is required for an application of the (var) rule.

The unification procedure developed below will permit to perform applica-
tions of (� L), (� R) and (var) in one step, so that the derivation becomes

. . . � a : A

...
a : A, h : A → B → Prop, h ′ : B → Prop �?M2 : B → Type0

(var*)

a : A, h : A → B → Prop �?M1 : B → Type0
(ΠL)

a : A, h : (λ X : Prop.X → B → Prop) A �?M0 : B → Type0
(whnf L)

where (var*) is the (var) rule comprising a generalized unification which permits
to equate h ′ : B → Prop and ?M2 : B → Type0 because B → Prop � B →
Type0.

Let us now formally introduce the rules (whnf L) and (whnf R) which will
supplant applications of the �-rules in the interior of proof trees:

Γ � M : A Γ �NA′ : Type A whnf of A′

Γ � M : A′ (whnf R)

Γ, p : T ,Γ′ � M : A Γ �NT : Type T whnf of T ′

Γ, p : T ′,Γ′ � M : A
(whnf L)

117

4.2. THE STRUCTURE OF PROOFS

Since these rules are weakened versions of (� L) and (� R), their correctness
is obvious. Also note that the side conditions Γ �NA′ : Type and Γ �NT :
Type are required when reading the rules from premiss to conclusion, because
the converse of a subject reduction theorem (“subject expansion”) does not
hold. However, they do not lead to proof obligations when the rule is applied
backwards in proof search, because Proposition 2.47 insures that the condition
is verified.

Proposition 4.5
If there is a derivation of Γ � M : A in system ECCG , then there is a derivation
Γ � M ′ : A in the system with the rules of ECCG and (whnf L), (whnf R),
such that:

• M
 M ′

• The rule (� L) is only applied directly below the (var) rule, and only
at the position which is the subject of the (var) rule (i.e. the variable x
with Γ, x : T ,Γ′ � x : T).

• The rule (� R) is only applied directly below (UProp), (UType), (var)
and (� L)

Proof: The proof proceeds by induction on derivations, showing that applica-
tions of (� L) and (� R) can be permuted upwards in the derivation tree. The
proof is lengthy, but not difficult. Details are given in Appendix A.3, page 178.

2

Proposition 4.5 has the following consequences for proof search: A proof can
be transformed in such a way that the only occurrences of the nondeterministic
rules (� R) and (� L) are as follows:

Γ validc

Γ � Prop : Type0
(UProp)

Γ � Prop : U
(� R)

Γ validc

Γ � Typej : Typej+1
(UType)

Γ � Typej : U
(� R)

for U convertible to an appropriate type universe, and

Γ, x : A,Γ′ validc

Γ, x : A,Γ′ � x : A
(var)

Γ, x : A′,Γ′ � x : A
(� L)

Γ, x : A′,Γ′ � x : A′′ (� R)

where A′ � A � A′′.

118

4.3. UNIFICATION

For the purpose of proof search, the combination of (� R) and universe
rules will be merged into a rule

U ∈ {Prop,Type0, . . .Typej−1}
Γ � U : Typej

(Univ)

The combination of (� R), (� L) and the (var) rule will be merged into

A′ � A′′

Γ, x : A′,Γ′ � x : A′′ (var*)

It is obvious that with these new rules (that is, (Univ), (var*) and the whnf-
rules), applications of (� R) and (� L) can completely be dispensed with. In
the practice of proof search, all applications of the (Univ) rule can be delayed
and solved at the end of the proof as a set of constraints between universes,
comparable to the approach in [HP91] (this will not be described in detail
below). The precondition A′ � A′′ in rule (var*) will be ensured by a spe-
cial unification procedure taking into account cumulativity. This issue will
be examined in detail in the following sections. Note that in proof search,
we assume that we manipulate valid contexts, so the corresponding validity
conditions have been omitted from the above rules.

4.3. Unification

4.3.1. Unification Problems

A unification problem consists in finding an instantiation ι which, when applied
to two terms t1 and t2, makes both terms equal. In this informal definition, the
concepts of “equality” and of “instantiation” have to be made more precise.

Equality is taken modulo convertibility
 , thus the unification problems
we obtain will in general be higher-order. The discussion of the previous section
even suggests that it is useful to consider a unification which equates terms
modulo cumulativity �.

Furthermore, we have the choice between arbitrary instantiations and in-
stantiations fulfilling some additional requirements, such as being well-typed
in the sense of Definition 2.71, that is, producing only typecorrect terms. In
the first case, solutions of unification problems may be easier to obtain, but
they are practically useless for proof development. We will therefore only re-
gard instantiations as acceptable solutions to unification problems if they are
well-typed. This introduces some additional complexity in the definition, since
a unification problem is then defined relative to a context and a proof problem.

119

4.3. UNIFICATION

Definition 4.6 (Unification Problem)
Let P be a well-typed proof problem, Γ be a valid context, and s and t terms
which are well-typed in Γ.

• A unification problem is a pair of the form 〈P ; Γ � s
?
 t〉.

• A cumulative unification problem is a pair of the form 〈P ; Γ � s
?
� t〉.

The terms s , t of a unification problem have to be well-typed in a context Γ
(with metavariables taken from a proof problem P). This is required because
on some occasions, we have to compute the types of terms – see for example rule
(MV-term) below – or reduce terms to normal form, which can only securely be
done for well-typed terms. However, the types of the terms do not have to be
equal. On the contrary, it is one of the main purposes of a unification procedure
to determine an instantiation that makes two terms and their types agree.

Alternatively, one could postulate for Γ � s
?
 t that s and t not only have to

be well-typed in Γ, but even have to be of the same type (this is for example
the approach taken in most higher-order unification algorithms). However, if
two terms have the same type, their subterms do not necessarily share this
property, so a unification algorithm would have to enforce this condition at
each step – take for example f : A → B → C , g : A → C , a : A, b : B �
(f a b)

?
 (g a), where (f a b) and (g a) have the same type, but their respective
subterms (f a) and g do not. For simply-typed calculi, another approach than
a decomposition of an application into function and argument is conceivable
(see Section 4.3.3), which does not seem to scale up well to dependently typed
calculi (see Section 4.3.5).

Example 4.7
Consider the unification problem 〈P ; Γ �?n1

?
 h〉, where P is:

{Γ �?n1 : (P ?n2), Γ �?n2 : A}

and the context Γ:

A : Type,P : A → Prop, a : A, h : (P a)

The unification problem can easily be solved by an instantiation {?n1 := h},
which, however, is not typecorrect, since ?n1 is of type (P ?n2) and h of type
(P a). The instantiation {?n1 := h, ?n2 := a} also solves the equation and, in
addition, is typecorrect. Only instantiations of this kind will be accepted as
solutions of unification problems.

120

4.3. UNIFICATION

Definition 4.8 (Solution of a unification problem)
A solution of a unification problem 〈P ; Γ � s

?
 t〉 (resp. of a cumulative

unification problem 〈P ; Γ � s
?
� t〉) is an instantiation ι with the following

properties:

• ι is well-typed for P.

• ι(s)
 ι(t) (resp. ι(s) � ι(t)).

It is important to note that a unification problem depends on a proof prob-
lem, but not vice versa. This is in contrast to the representation proposed
by Dowek [Dow93], where unification equations are kept in a generalized con-
text together with variable and metavariable declarations and are simplified as
metavariables are instantiated. As a consequence, typecorrectness of terms can
depend on the solvability of unification equations, type checking is therefore
not decidable in general. Whereas this is acceptable for a proof search method
which exhaustively generates solutions for metavariables, possibly delaying a
verification of their typecorrectness, such a procedure is not appropriate for an
interactive proof development system.

In order to define a correctness criterion, unification problems and their
solutions are stated relative to a fixed proof problem P, which permits to as-
sess the validity of instantiations. It might be objected that these definitions
are too restrictive, in that they do not allow for the creation of new metavari-
ables. Thus, for example, some standard methods for higher-order unification
seem to be excluded. They can, however, be accommodated in our frame-
work by slightly extending the notion of solution given in Definition 4.8, see
Section 4.3.3.

4.3.2. First-order unification

In the following, an algorithm which essentially carries out first-order unifi-
cation will be presented. Roughly speaking, we are aiming at a unification
that equates terms modulo α-convertibility, but not modulo β-convertibility.
The notion of “essentially first-order” does not imply that the language is re-
stricted to a fragment that does not comprise features such as λ-abstraction.
Operationally, first-order unification is a structural comparison of two terms;
a metavariable ?n and a term t can be compared by adding an appropriate
assignment ?n := t to the instantiation to be constructed.

The interest in first-order unification derives from the fact that it is rather
straightforward to relate correctness criteria of unification to notions such as
validity and well-typedness of instantiations which were examined in Section 2.6
(see also Definition 4.8). Completeness criteria are more difficult to state. For

121

4.3. UNIFICATION

reasons laid out more fully in Section 4.3.3, explicit substitutions induce a
higher-order aspect which makes it harder to delimit an appropriate fragment
and to develop a complete algorithm for it. In Section 4.3.4, a comparison is
made with unification algorithms of “patterns” which are sometimes claimed
to display an essentially first-order behaviour.

The rules defining the unification algorithm (Figure 4.1) use a judgement

of the form 〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1, which expresses that the unification

problem 〈P0 ; Γ � t1
?
 t2〉 can be solved by instantiation ι1, leaving open the

metavariables of the proof problem P1.
Let us comment on some peculiarities of the rules:

• The preconditions of some of the rules have a sequential reading, even
though in most cases, there is no intrinsic necessity to impose any partic-
ular order on how subterms are unified. For example, applications could
be decomposed in the style of a Martelli-Montanari unification algorithm.
However, the presentation chosen here simplifies reasoning about the be-
haviour of the algorithm, as it keeps track of which proof problems and
which instantiations are generated at each stage.

• In the quantifier rule (Q-Q), the types of the abstraction variables are
unified before the bodies. An α-conversion is carried out by renaming
the binder variable of the second term to the binder variable in the
first term. In this particular case, the order in which subterms are
unified does matter. For example, if fNat : Nat → Nat and fBool :
Bool → Bool , then each of the terms is typecorrect in the unification

problem � λ x1 : Nat . (fNat x1)
?
λ x2 : Bool . (fBool x2), although the types

are incompatible. If not solving the preconditions in the indicated or-
der, one would obtain a type-incorrect intermediate unification problem

x1 : Nat � (fNat x1)
?
 (fBool x1).

• Some of the rules use the combination ι1 (ι2 of instantiations. The
constraint imposed by Definition 2.65 to make the resulting instantiation
defined is satisfied, since if ι1(?m) �=?m, then the proof problem P1 from
which instantiation ι2 is computed does not contain ?m any more, thus
whenever (?n := t) ∈ ι2, then ?m �∈ MVars(t).

Rule (MV-term) deserves some closer attention. In order to unify a metavari-
able ?n and an arbitrary term t , the type of ?n and the type T of t are first
unified, yielding an instantiation ι1 (remember that in a unification problem

with Γ � t1
?
 t2, it is not known whether the types of t1 and t2 agree). It

now still has to be verified that the instantiation {?n := ι1(t)} is valid. If all

122

4.3. UNIFICATION

〈P ; Γ � x
?
 x 〉 ⇒ P; {}

(var-var)

〈P ; Γ � Prop
?
Prop〉 ⇒ P; {}

(Prop-Prop)

〈P ; Γ � Typei
?
Typei〉 ⇒ P; {}

(Type-Type)

〈P0 ; Γ � f1
?
 f2〉 ⇒ P1; ι1

〈P1 ; ι1(Γ) � ι1(a1)
?
 ι1(a2)〉 ⇒ P2; ι2

〈P0 ; Γ � (f1 a1)
?
 (f2 a2)〉 ⇒ P2; ι1 (ι2

(app-app)

〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1

〈P0 ; Γ � πi(t1)
?
πi(t2)〉 ⇒ P1; ι1

(π-π)

〈P0 ; Γ � A1
?
A2〉 ⇒ P1; ι1

〈P1 ; ι1(Γ, x1 : A1) � ι1(B1)
?
 ι1(B2{x2 := x1})〉 ⇒ P2; ι2

Q ∈ {λ,Π,Σ}
〈P0 ; Γ � Qx1 : A1.B1

?
Qx2 : A2.B2〉 ⇒ P2; ι1 (ι2
(Q-Q)

〈P0 ; Γ � T1
?
T2〉 ⇒ P1; ι1

〈P1 ; ι1(Γ) � ι1(s1)
?
 ι1(s2)〉 ⇒ P2; ι2

〈P2 ; ι2(ι1(Γ)) � ι2(ι1(t1))
?
 ι2(ι1(t2))〉 ⇒ P3; ι3

〈P0 ; Γ � pairT1(s1, t1)
?
 pairT2(s2, t2)〉 ⇒ P3; ι1 (ι2 (ι3

(pair-pair)

ctxtP0(?n) � t : T

〈P0 ; ctxtP0(?n) � T
?
� typeP0(?n)〉 ⇒ P1; ι1

∀?k ∈ MVars(T).?k $P0?n
valid({?n := ι1(t)},P1)

ι2 := ι1 ({?n := ι1(t)} P2 := P1{?n := ι1(t)}
〈P0 ; Γ �?n ?
 t〉 ⇒ P2; ι2

(MV-term)

Figure 4.1.: First-order unification

123

4.3. UNIFICATION

these conditions are satisfied, it can be concluded that this instantiation is well-
typed (this will be proved in Proposition 4.10). By definition, the predicate
valid(ι,P) used in rule (MV-term) is satisfied if:

• the instantiation ι passes the occurs check implicit in Definition 2.62 and

• the instantiation ι is valid in the sense of Definition 2.71, i.e., ι(P) is a
valid proof problem, that is, a proof problem without circular metavari-
able dependencies.

Section 2.6.2 has discussed methods which permit to efficiently compute the
predicate valid .

The side condition ∀?k ∈ MVars(T).?k $P0?n serves two purposes: It
is used in the proof of termination of the unification algorithm (see proof of
Proposition 4.11) and it ensures that ι1 ({?n := ι1(t)} is well-defined (see
proof of Proposition 4.10). To see which kind of a situation this condition is
thought to prevent, consider the following example derivation which violates
this condition: Assume that metavariable ?n is defined by Γ �?n : A for an
(unspecified) context Γ and there is a term s such that Γ � s :?n. Unification

of Γ �?n ?
 s is first reduced to Γ �?n
?
�A by application of rule (MV-term),

and then further to Γ �?n ?
A. One potential problem of such a derivation is

non-termination, since situations of the form ?n
?
 s and ?n

?
A reoccur and
there is no obvious measure which decreases in the course of the derivation.
Secondly, if an assignment ?n := A were possible (which it is not in this case),
two conflicting assignments ?n := A and ?n := s would result. Note that this
example is not a conclusive argument for the necessity of including the above
side condition in rule (MV-term). In fact, we conjecture that the properties
of unification stated in the following theorems would remain valid even if this
condition were dropped. On the other hand, adding this restriction does not
do any harm in applications such as proof search in sequent calculi, where it
can be shown to be satisfied a priori.

In rule (MV-term), the problem of testing whether the types of metavariable
?n and term t are compatible is reduced to a cumulative unification problem.
This is justified by the discussion in Section 4.2, in particular the rule

A′ � A′′

Γ, x : A′,Γ′ � x : A′′ (var*)

derived there. To see the practical implications, consider the problem of uni-
fying a metavariable ?x of type Type1 with a variable x of type Type0 (in this
case, A′ is Type0 and A′′ is Type1). Obviously, the instantiation {?x := x}
is well-typed, since by cumulativity, x is also of type Type1. Thus, it is not

124

4.3. UNIFICATION

sufficient to simply unify the type of ?x and the type of x in order to find out
whether x is a valid solution of ?x .

The rules for cumulative unification are given in Figure 4.2. They follow
the generation of the cumulativity relation � (see Definition 2.3). The rule
(cu-term-term) handles all the cases not covered by the other rules.

κ ∈ {Prop,Typei}

〈P ; Γ � Prop
?
�κ〉 ⇒ P; {}

(cu-Prop-Kind)

i ≤ j

〈P ; Γ � Typei

?
�Typej 〉 ⇒ P; {}

(cu-Type-Kind)

〈P0 ; Γ � A1
?
A2〉 ⇒ P1; ι1

〈P1 ; ι1(Γ, x1 : A1) � ι1(B1)
?
� ι1(B1{x2 := x1})〉 ⇒ P2; ι2

〈P0 ; Γ � Πx1 : A1.B1

?
�Πx2 : A2.B2〉 ⇒ P2; ι1 (ι2

(cu-Π-Π)

〈P0 ; Γ � A1

?
�A2〉 ⇒ P1; ι1

〈P1 ; ι1(Γ, x1 : A1) � ι1(B1)
?
� ι1(B1{x2 := x1})〉 ⇒ P2; ι2

〈P0 ; Γ � Σx1 : A1.B1

?
�Σx2 : A2.B2〉 ⇒ P2; ι1 (ι2

(cu-Σ-Σ)

〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1

〈P0 ; Γ � t1
?
� t2〉 ⇒ P1; ι1

(cu-term-term)

Figure 4.2.: First-order cumulative unification

After these remarks, let us point out one technicality: Rule (MV-term) has
a companion rule in which the roles of ?n and t are reversed, that is, which

solves a unification problem of the form Γ � t
?
 ?n instead of Γ �?n ?
 t .

Example 4.9
Unification is extensively used in proof search. A frequently occurring situ-
ation is the following: given a hypothesis h : ∀ x : T .P(x) and a constant
z : T , one tries to establish that P(?y) holds. Thus, the proof goal is:

125

4.3. UNIFICATION

Γ �?n : P(?y), where the context Γ contains the hypothesis h and the con-
stant z . We can attempt to solve this goal by unifying (h z) and ?n. Let us
spell out in detail how the unification algorithm proceeds. The original unifi-

cation problem is 〈P0 ; Γ �?n ?
 (h z)〉, which is transformed to the problem

〈P0 ; ctxtP0(?n) � P(z)
?
�P(?y)〉 by application of the rule (MV-term), be-

cause ctxtP0(?n) � (h z) : P(z). After applications of the rules (cu-term-term),
(app-app), (var-var) and after switching sides, we are left with the problem

〈P0 ; ctxtP0(?n) �?y ?
 z 〉. Let us examine the following situations:

• ctxt(?y) does not contain the declaration z : T . In this case, computing
the type of z in ctxt(?y) fails and the rule (MV-term) is not applicable.

This ultimately leads to a failure of ?n
?
 (h z).

• ctxt(?y) contains the declaration z : T , thus ctxt(?y) � z : T . Since the
type of z is compatible with type(?y) = T , and assuming that the validity

of the instantiation can be established, we obtain 〈P0 ; Γ �?y ?
 z 〉 ⇒
P1; {?y := z}, where P1 contains the proof problem Γ{?y := z} �?n :
P(z). Since the types of h z and ?n have now been shown to be unifiable,
we can equate ?n and h z . Thus, in the end, the original unification
problem is solved by the instantiation {?y := z , ?n := (h z)}.

The first kind of situation can arise when trying to prove (∀ x : T .P(x)) →
(∃ y : T . ∀ z : T .P(y)), which does not hold, because there is no witness
of type T for variable y . The second situation arises when trying to prove
(∀ x : T .P(x)) → (∀ z : T . ∃ y : T .P(y)), which does hold. Section 4.4.2
will discuss in depth how unification and our particular presentation of proof
rules interact to deal with questions of quantifier alternations and eigenvariable
conditions, of which these two formulae are reminiscent.

Altogether, the rules satisfy the following invariants, which can be under-
stood as stating the correctness of the unification algorithm.

Proposition 4.10 (Invariants of Unification)
Assume 〈P0 ; Γ � t1

?
 t2〉 is a unification problem (resp. 〈P0 ; Γ � t1
?
� t2〉 a

cumulative unification problem). If 〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1 is derivable

with the rules of Figure 4.1 (resp. 〈P0 ; Γ � t1
?
� t2〉 ⇒ P1; ι1 is derivable with

the rules of Figure 4.2), then:

• ι1(t1)
 ι1(t2) (resp. ι1(t1) � ι1(t2))

• ι1 is a valid, well-typed instantiation for P0.

126

4.3. UNIFICATION

• P1 = ι1(P0). This entails that P1 is a valid, well-typed proof problem.

Proof: Induction on the structure of the derivation of the unification judge-
ment. The condition ι1(t1)
 ι1(t2) (resp. ι1(t1) � ι1(t2)) is immediately
verified by inspection of the rules.

The fact that P1 = ι1(P0) is also established by a simple inductive argu-
ment, observing the following ’transitivity’ in rules (MV-term), (app-app) etc.:
if P1 = ι1(P0) and P2 = ι2(P1), then P2 = (ι1 (ι2)(P0).

To show that ι1 is a valid, well-typed instantiation for P0, we only consider
the rule (MV-term). For the other rules, the claim follows from the induction
hypothesis.

The following conditions have to be verified in order to show that the re-
sulting instantiation is valid and well-typed:

• The unification problem in the precondition of the rule has to be valid in
the sense that both typeP0(?n) and T are well-typed in context ctxtP0(?n).
Since P0 is a valid proof problem and ?n ∈ P0, we have that typeP0(?n)
is well-typed in ctxtP0(?n). The fact that T is well-typed in ctxtP0(?n) is
enforced by the first premiss of rule (MV-term).

• The resulting instantiation (in particular the assignment of ι1(t) to ?n)

must be well-typed. If 〈P0 ; Γ � T
?
� typeP0(?n)〉 ⇒ P1; ι1, we can con-

clude by induction hypothesis that ι1(T) � ι1(type(?n)). The fact that ι1
is a well-typed instantiation permits to show (cf. Proposition 2.72) that
ι1(ctxt(?n)) � ι1(t) : ι1(T) and thus, by cumulativity, that ι1(ctxt(?n)) �
ι1(t) : ι1(type(?n)). Therefore, ?n := ι1(t) is a typecorrect assignment.

• The validity of the resulting instantiation has to be ensured. This follows
immediately from the definition of the predicate valid .

• The instantiation ι1 ({?n := ι1(t)} is defined (in the sense of Defini-
tion 2.65): By the precondition ∀?k ∈ MVars(T).?k $P0?n, dom(ι1)
only contains metavariables ?k $P0?n, thus dom(ι1)∩ {?n} = ? and by
the definition of instantiation, for all ?m ∈ MVars(ι1(t)), ι1(?m) =?m.

2

There is a natural interpretation of the set of rules of Figures 4.1 and 4.2 as a
unification algorithm. We will now show that this algorithm always terminates.

Proposition 4.11 (Termination of Unification Algorithm)
The unification algorithm obtained by applying the rules of Figure 4.1 (resp.
Figure 4.2) backwards always terminates when invoked with a unification prob-

lem 〈P0 ; Γ � t1
?
 t2〉 (a cumulative unification problem 〈P0 ; Γ � t1

?
� t2〉).

127

4.3. UNIFICATION

Proof: As far as termination is concerned, this unification algorithm mainly
differs from traditional first-order unification by the recursive “call” in rule
(MV-term) that is required to unify the types of ?n and t in order to solve

?n
?
 t . For showing termination, we define a measure as the lexicographic

order on the quadruple (| P |, MVars(t1)∪MVars(t2), | t1 | + | t2 |, j), where
| P | is the number of metavariables of P, MVars(t1) ∪ MVars(t2) is the set
of metavariables occurring in t1 and t2, ordered by the multiset order induced
by $P , | t1 | + | t2 | is the sum of the term sizes of t1 and t2 and j = 1

if the unification problem under consideration is of the form 〈P ; Γ � t1
?
� t2〉

and j = 0 if it is of the form 〈P ; Γ � t1
?
 t2〉 (in order to take the rule (cu-

term-term) into account). We verify that this measure decreases for the rules
(MV-term) and (app-app), the other cases being similar:

• For (MV-term): by the side condition ∀?k ∈ MVars(T).?k $P0?n and
the fact that ∀?k ∈ MVars(typeP0(?n)).?k $P0?n, it can be concluded
that MVars(T) ∪MVars(typeP0(?n)) is smaller with respect to the mul-
tiset order than MVars(?n) ∪MVars(t). Therefore,
(| P0 |, MVars(T) ∪MVars(typeP0(?n)), | T | + | typeP0(?n) |, 0)
< (| P0 |, MVars(?n) ∪MVars(t), |?n | + | t |, 0)

• For (app-app), we trivially have:
(| P0 |, MVars(f1) ∪MVars(f2), | f1 | + | f2 |, 0)
< (| P0 |, MVars(f1 a1) ∪MVars(f2 a2), | (f1 a1) | + | (f2 a2) |, 0)
We have
(| P1 |, MVars(ι1(a1)) ∪MVars(ι1(a2)), | ι1(a1) | + | ι1(a2) |, 0)
< (| P0 |, MVars(f1 a1) ∪MVars(f2 a2) | (f1 a1) | + | (f2 a2) |, 0)
since either | P1 |<| P0 | or | P1 |=| P0 |, in which case it can shown by
an easy argument that ι1 must be the identity instantiation, thus
MVars(ι1(a1)) ∪MVars(ι1(a2)) ≤ MVars(f1 a1) ∪MVars(f2 a2)
and
| ι1(a1) | + | ι1(a2) |=| a1 | + | a2 |<| (f1 a1) | + | (f2 a2) |.

2

4.3.3. Higher-order unification

The unification algorithm of Section 4.3.2 has been stated for substitution-
free metavariables only. This algorithm will fail for unification problems of

the form ?n�[y1 := t1, . . . ym := tm]
?
 t , so it is definitely not complete. As we

will see further below, unification involving metavariables with substitutions

128

4.3. UNIFICATION

is equivalent to full higher-order unification. We will not attempt to treat
higher-order unification in full generality here. Instead, we will sketch how
unification problems for terms containing metavariables with substitutions can
be translated to traditional higher-order unification problems. This opens the
way to adapt standard higher-order unification algorithms to the problems
dealt with here (however, see the discussion in Section 4.3.5). A special case
of higher-order unification problems, involving only so-called patterns, will be
examined in Section 4.3.4.

Higher-order unification is concerned with solving term equations modulo
β-conversion. A simple structural comparison of terms is not sufficient, since
β-reduction can completely change the structure of a term. For unifying two
simply-typed λ-terms in βη normal form, Huet [Hue75] has developed an al-
gorithm, which we sketch here for later reference: common λ-abstractions are

removed, that is, λ x : T .s
?
 λ x : T .t is simplified to s

?
 t . Similarly, if
both terms to be unified are applications whose head symbols are variables
or constants (rigid-rigid equations), then the arguments are unified or unifi-
cation fails, depending on whether the head symbols are equal or not. The
fundamental difference with respect to first order unification is the treatment
of applications where one of the heads (flex-rigid, rigid-flex) or both (flex-flex)
are metavariables. Here, sequences of applications are not decomposed into
function and argument, as in our (app-app) rule, but are handled ’en bloc’.

Flex-rigid (and similarly rigid-flex) equations (?F s1, . . . sm)
?
 (g t1, . . . tn) can

be solved by:

• imitation of the form λ x1, . . . xp .(g (?H1 x1, . . . xp), . . . (?Hn x1, . . . xp)).
Here, the ?Hi are new metavariables and p and the types of the ?Hi are
determined by m, n and the types of ?F and g .

• projection of the form λ x1, . . . xp. (xi (?H1 x1, . . . xp), . . . (?Hn x1, . . . xp)),
with 1 ≤ i ≤ p.

In both of the above cases, there may be several appropriate choices for p, so
in general the tree constructed in search of a unifier has branching points with

a finite number of successors. Flex-flex equations (?Fs1, . . . sm)
?
 (?G t1, . . . tn)

can always be solved by a uniform procedure, therefore the unification algo-
rithm does not compute solutions for them, but leaves them as constraints
for a postprocessing phase. In calculi in which the η rule does not hold, the
algorithm becomes more complex as still more cases have to be taken into
account.

The algorithm sketched above uses a functional encoding of scopes. For
example, the fact that the new metavariables ?Hi created in the imitation and

129

4.3. UNIFICATION

projection steps possibly depend on the variables x1, . . . xp is indicated by the
applications (?Hi x1, . . . xp).

The transformation given in Section 2.7.1 is the key to translating any

equation s
?
 t in which s or t contain metavariables with substitutions to

an equation only containing substitution-free metavariables: Just substitute
every ?n�[y1 := t1, . . . ym := tm] in s resp. t by its translation (?F a1 . . . ak), as

specified in Definition 2.78, and then unify s
?
 t , following the above algorithm,

for example.
Before formalizing this observation, let us note that when applying the

inverse of the above translation (implicit in the proof of Proposition 2.83), we
can transform any equation containing a metavariable in functional position
of an application, as in (?F a1 . . . ak), to an equation in which metavariables
(possibly with substitutions) only occur in non-functional position (cf. the
treatment of higher-order patterns in Section 4.3.4). This approach has been
taken in [DHK95].

The transformation of an equation s
?
 t to an equation s

?
 t according to
the translation of Section 2.7.1 is a viable approach, but often too drastic:
Usually, an explicit substitution attached to a metavariable ?n does not affect
all the variables of ctxt(?n), but only some of them, say up to some variable xi .
Thus, the metavariable term is of the form ?n�[xi := ti , . . . xj := tj]. We will
say that we lift such a term up to some variable xi if we produce an instantiation
for ?n that makes the substitution [xi := ti , . . . xj := tj] disappear. The lifted
term contains a functional metavariable ?F that depends on all variables of
ctxt(?n) up to, but not including xi . More precisely:

Definition 4.12 (Lift)
Let ?n be a metavariable with ctxt(?n) = x1 : T1, . . . , xi : Ti , . . . xk : Tk and
type(?n) = T . Then, lift(?n, xi) is defined as the pair 〈?F , ι〉, where ?F is
a new metavariable with ctxt(?F) = x1 : T1, . . . , xi−1 : Ti−1 and type(?F) =
Πxi : Ti , . . . xk : Tk . T and ι is the instantiation {?n := (?F xi , . . . xk)}.

The lift operation is related to the translation into functional representation
of Section 2.7.1 as follows: If ctxt(?n) = x1 : T1, . . . xk : Tk and lift(?n, x1) =
〈?F , ι〉, and substitution σ does not contain ?n, then ?n�σ = ι(?n�σ).

Lifting can be carried out during a preprocessing phase before unifica-
tion. The introduction of superfluous metavariables resulting from consec-
utive applications of lifting to the same metavariable can then be avoided.
More precisely, if ctxt(?n0) = x1 : T1, . . . , xi : Ti , . . . , xj : Tj , . . . , xk : Tk and
type(?n0) = T , then lift(?n0, xj) = 〈?n1, ι1〉 and lift(?n1, xi) = 〈?n2, ι2〉, with
ι1 = {?n0 := (?n1 xj , . . . xk)} and ι2 = {?n1 := (?n2 xi , . . . xj−1)}. Instead of car-
rying out these lifts in two steps, one could directly apply lift(?n0, xi) = 〈?n, ι〉,

130

4.3. UNIFICATION

where ?n would have the same type and context as ?n2 and ι would be the
composition of ι1 and ι2.

Example 4.13
Consider a term ?n�[x2 := (f x1), x3 := x1], where ?n is defined by:

A,B : Type, f : A → B , x1 : A, x2 : B , x3 : A �?n : A

Then lift(?n, x2) = 〈?F , {?n :=?F x2 x3}〉, where

A,B : Type, f : A → B , x1 : A �?F : Πx2 : B , x3 : A. A

Note that (?n�[x2 := (f x1), x3 := x1]){?n :=?F x2 x3} =?F (f x1) x1, thus
contains no more explicit substitution.

lift(?n, y1) = 〈?F , ι1〉 P1 := ι1(P0) ∪ {?F}
〈P1 ; ι1(Γ) � ι1(?n

�[y1 := t1, . . . ym := tm])
?
 ι1(t)〉 ⇒ P2; ι2

〈P0 ; Γ � ?n�[y1 := t1, . . . ym := tm]
?
 t〉 ⇒ P2; ι1 (ι2

(lift)

Figure 4.3.: Lift rule

When trying to unify s
?
 t , where s or t contains metavariables with explicit

substitutions, we can apply the (lift) rule of Figure 4.3, possibly repeatedly if
there are several such metavariables, to obtain terms s ′ and t ′ containing no
more metavariables with explicit substitutions. The terms s ′ and t ′ can then
submitted to a higher-order unification algorithm. Standard algorithms such
as Huet’s have to be adapted with care. We will not expand on this issue here
– a discussion of possible pitfalls can be found in Section 4.3.5.

Example 4.14
Continuing with Example 4.13, assume that we want to solve the following

unification problem: ?n�[x2 := (f x1), x3 := x1]
?
 (f x1). After lifting, we

obtain the unification problem ?F (f x1) x1
?
 (f x1). A traditional higher-

order unification algorithm yields, among others, the following solutions:

• Projection solution: ?F := λ u : B . λ v : A. u. Composed with the solu-
tion ?n :=?F x2 x3, one obtains ?n := x2.

• Imitation solution: ?F := λ u : B . λ v : A. (f x1). Composed with the
solution for ?n, one obtains ?n := (f x1).

131

4.3. UNIFICATION

Invariants of the resulting unification algorithm are more difficult to state
than in the first-order case, since new metavariables are generated and possibly

instantiated during unification. Thus, if 〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1, then the

domain and the solution terms of ι1 may contain metavariables which are not
in P0. One may be tempted to take into account the metavariables added
during unification as follows: Assume P1 contains metavariables ?n1, . . .?nk not
in P0. Then add ?n1, . . .?nk to P0 and claim that ι1 is a valid and well-typed
instantiation for this extension of P0. Unfortunately, metavariables added later
during unification or during a proof may not be well-typed with respect to a
previous proof problem.

Example 4.15
Assume P0 = {Γ �?n0 : Type,Γ �?n1 :?n0} is a valid, well-typed proof problem.
Then, ι = {?n0 := A}, with A : Type, is a type-correct instantiation for P0,
and P1 := ι(P0) = {?n1 : A}. Assume that an (unspecified) proof rule adds a
metavariable ?n2 : P(?n1) to P1, for P : A → Prop. This can legally be done,
the resulting proof problem {?n1 : A, ?n2 : P(?n1)} is valid and type-correct.
However, adding ?n2 : P(?n1) to P0 would lead to an ill-typed proof problem,
since in P0, Γ �?n1 :?n0, thus P(?n1) is not well-typed.

The following proposition states invariants of the extended unification al-
gorithm with a criterion that avoids these difficulties:

Proposition 4.16 (Invariants of Unification with Lift Rule)
Assume that 〈P0 ; Γ � t1

?
 t2〉 is a unification problem (〈P0 ; Γ � t1
?
� t2〉 a

cumulative unification problem).

If 〈P0 ; Γ � t1
?
 t2〉 ⇒ P1; ι1 (resp. 〈P0 ; Γ � t1

?
� t2〉 ⇒ P1; ι1) is derivable

with the rules of Figures 4.1, 4.2 and 4.3, then:

• ι1(t1)
 ι1(t2) (resp. ι1(t1) � ι1(t2))

• P1 is a valid, well-typed proof problem.

• For every ?m ∈ P0, there is a derivation of ι1(ctxtP0(?m)) �P1
ι1(?m) :

ι1(typeP0(?m))

Proof: Similar to the proof of Proposition 4.10. 2

This proposition has the following limit case: Whenever the set of metavari-
ables of P1 is contained in the set of metavariables of P0, then the validity and
well-typedness of the resulting instantiation can be characterized more directly,
as in Proposition 4.10, by P1 = ι1(P0).

132

4.3. UNIFICATION

Corollary 4.17
If 〈P0 ; Γ � t1

?
 t2〉 ⇒ P1; ι1 (resp. 〈P0 ; Γ � t1
?
� t2〉 ⇒ P1; ι1) is derivable

with the rules of Figures 4.1, 4.2 and 4.3 and P1 ⊆ P0, then ι1 is a valid,
well-typed instantiation of P0.

With minor modifications, the termination proof of Proposition 4.11 car-
ries over to the system of rules of Figure 4.1, 4.2 and 4.3. Instead of a lexico-
graphic order on a quadruple as defined there, we define a lexicographic order
on a quintuple (| P |, || P ||, MVars(t1) ∪ MVars(t2), | t1 | + | t2 |, j),
where || P ||:= ∑

?n∈P length(ctxt(?n)) adds up the lengths of the contexts of
the metavariables in P. Lifting a metavariable ?n leaves the total number of
metavariables unchanged, but introduces a metavariable ?F instead of ?n with
length(ctxt(?F)) < length(ctxt(?n)).

4.3.4. Unification of Higher-Order “Patterns”

As already mentioned in Section 2.7, most existing proof assistants which have
a notion of metavariables use a functional encoding of scopes, as opposed to a
dependence on contexts, as in our case. In particular, whenever an existential
variable in the scope of universal variables is converted to a metavariable, as in
∀ a : A. ∃ x : A.(P a) → (P x) (compare with Example 2.77 and the following
remarks), a “raising” step is performed which turns the existential variable into
a metavariable of functional type and the universal variables into its arguments,
as in (P a) → (P (?x a)).

It has been observed by Miller [Mil91] that this raising operation only gen-
erates terms of a certain form, so-called patterns, and that unification for these
patterns resembles first-order unification in that unification is decidable and
most general unifiers exist. In the framework of a simply-typed calculus, as
examined in [Mil91], a pattern is a term in which metavariables ?F only occur
in subterms of the form ?F v1 . . . vn (with n ≥ 0), where the vi are distinct
variables. For example, (g (?F1 x y) ?F2) is a pattern, but not (?F (λ x .y)) or
(?F1 (?F2 x)). The notion of pattern directly carries over to the Calculus of
Constructions.

It is easy to see that the translation of terms t into functional representation
t of Section 2.7.1 only produces patterns when applied to terms t that only
contain metavariables of the form ?n�[], i.e. without an explicit substitution.
The unification procedure of Section 4.3.2 above is essentially specialized to
terms of this form. As will be seen below, it turns out that in the converse
direction, patterns describe a slightly more general class of terms than our
metavariables of the form ?n�[]. However, it may be questioned whether this
increased generality is ever exploited to a significant extent, that is, whether

133

4.3. UNIFICATION

patterns not in the image of our translation function t ,→ t (for terms t with
substitution-free metavariables) arise in practice very often.

The interest of this section is to take a closer look at the correspondence
between patterns and certain terms of the calculus with explicit substitutions
and to investigate the consequences for unification. In [DHKP96], a unifica-
tion algorithm for the simply-typed explicit substitution calculus λσ [ACCL91]
is given. Pfenning [Pfe91b] describes pattern unification in the Calculus of
Constructions, however not for a calculus with explicit substitutions. The
algorithm in [Pfe91b] is incomplete because it cannot deal with unification

problems like (?F A)
?
 (A → A). Neither is completeness achieved with the

rules presented below, although for different reasons. Some of the obstacles to
obtaining completeness are discussed in Section 4.3.5.

Definition 4.18 (Pattern)
A pattern metavariable is a metavariable of the form ?n�[x1 := v1, . . . xn := vn],
where vi �∈ dom(ctxt(?n)) for all vi ∈ {v1, . . . vn} and all vi are mutually
distinct.

A pattern is a term all of whose metavariable occurrences are pattern
metavariables.

Patterns in the standard sense can easily be converted to patterns ac-
cording to the above definition: If ?f v1 . . . vk is such a standard pattern,
where �?f : Πx1 : T1 . . .Πxm : Tm .T , then ?f can be instantiated with
λ x1 : T1, . . . xk : Tk .?n, where ?n is defined by x1 : T1, . . . xk : Tk �?n :
Πxk+1 : Tk+1 . . .Πxm : Tm .T , which, after reduction, yields a pattern metavari-
able ?n�[x1 := v1, . . . xk := vk]. The vi differ from the xj , and from the fact
that ?f v1 . . . vk is a pattern, it follows that the vi are mutually different, so
?n�[x1 := v1, . . . xk := vk] is indeed a pattern in the above sense.

Conversely, when subjected to the translation of Section 2.7.1, a pattern
as defined above yields a pattern in the standard sense. This is not difficult
to see for most of the term constructors, so we only examine the transla-
tion ?n�[x1 := v1, . . . xk := vk] of a pattern metavariable. If ctxt(?n) = y1 :
T1, . . . yn : Tn and type(?n) = T , and x1, . . . xk are among y1, . . . yn , then for a
metavariable �?F : Πy1 : T1, . . . yn : Tn .T , we obtain ?n�[x1 := v1, . . . xk := vk]
=?F a1 . . . an , where each ai is either one of the vi or a variable y ∈ {y1, . . . , yn}\
{x1, . . . , xk}. Each vi differs from all variables of ctxt(?n), by condition vi �∈
dom(ctxt(?n)). Since all vi and all yi are mutually distinct, we can conclude
that in ?F a1 . . . an , the ai are mutually distinct, so this term indeed is a pattern
in the standard sense.

Since in pattern metavariable ?n�σ, the substitution σ = {x1 := v1, . . . xn :=
vn} in fact defines a renaming of variables, i.e. a one-to-one mapping from vari-

134

4.3. UNIFICATION

ables xi to variables vi , we can define a substitution σ−1 =̂ {v1 := x1, . . . vn :=

xn}. A unification problem of the form Γ � ?n�σ
?
 t can then be reduced to

Γσ−1 �?n ?
 tσ−1, which can be described by the following rule:

〈P0 ; Γσ−1 �?n ?
 tσ−1〉 ⇒ P1; ι1

〈P0 ; Γ � ?n�σ
?
 t〉 ⇒ P1; ι1

(pattern)

Even though it is obvious that this rule leads to structurally equal terms,

it is not evident that the unification problem 〈P0 ; Γσ−1 �?n ?
 tσ−1〉 fulfills
the precondition of Definition 4.6, viz. that the terms ?n and tσ−1 are well-
typed in context Γσ−1 (which again implies that the context Γσ−1 is valid at
all). We conjecture that this is indeed the case, but make no attempt to prove
this here. As will be discussed below, this fact is not trivial, and it depends
on the metavariable ?n�σ being a pattern metavariable. For substitutions
{x1 := v1, . . . xk := vk} which violate the requirement vi �∈ dom(ctxt(?n)), even
if they define a bijection between variables, ill-typed terms may result, as shown
by Example 4.19 below.

4.3.5. Discussion

The unification rules presented in the preceding sections are “modular” in
that they can be combined to approximate completeness to varying degrees.
A question that comes to mind is why no complete method is presented that
subsumes the individual methods given so far. In the following, we discuss some
of the reasons why a complete procedure is hard to achieve. In particular, they
indicate that a complete general-purpose procedure would be of no practical
use in a theorem proving environment. Therefore, composing a unification
algorithm of building blocks that can be tailored to specific needs is of greater
interest.

It is well known (see for example [Hue75]) that already in the simply-typed
λ-calculus,

• unification is undecidable

• no most general unifiers exist, i.e., there are terms t1, t2 such that for
each unifier ι of t1 and t2, there is a more general unifier ι′.

Given these facts, it is nevertheless possible to define algorithms, such as Huet’s
[Hue75], which enumerate a possibly infinite complete set of unifiers, that is,
a set C of instantiations which is correct (for all ι ∈ C , ι(t1)
 ι(t2)) and
complete in that any unifier ι′ is an instance of a ι ∈ C .

135

4.3. UNIFICATION

In the simply-typed λ-calculus, the type level and the term level are clearly
separated. This has, among others, the following consequences for unification
algorithms:

• The type of terms is not affected by instantiations. When unifying two
terms, it can be tested in advance whether their type is identical. If this
is so, the algorithm proceeds by structural manipulations, as sketched in
Section 4.3.3, relying on fixed type information. In dependently typed cal-
culi, some seemingly obvious structural manipulations may lead to type-
incorrect instantiations. This problem is illustrated by Example 4.19.

• In dependently-typed calculi, it may be necessary to unify types, and not
only to compare them for testing whether they are identical. Since there
are functions yielding types as result, there is a much greater number
of cases to be considered than in the simply-typed calculus (see Exam-
ple 4.20).

• There is possibly no upper bound on the number of arguments a function
may have. A unification procedure in the style of Huet’s algorithm, as
described in Section 4.3.3, would in some cases have to build an infinitely
branching search tree, as in Example 4.21.

The following example illustrates the problem of dependent typing in uni-
fication:

Example 4.19
Consider the problem of unifying A : Type, g : A → A � ?n�[T := A]

?
 λ x :
A.(g x). An instantiation that comes to mind is ?n := λ x : T . (g x), which
corresponds to the solution suggested by the (pattern) rule of Section 4.3.4.
Whether this instantiation is correct or not depends on the definition of metavari-
able ?n.

• Suppose ?n is defined by T : Type, g : T → T �?n : T → T , then
the instantiation is correct. The context A : Type, g : A → A of
?n�[T := A] may for example result from a derivation in which the
original T : Type, g : T → T �?n : T → T is first weakened to
A : Type,T : Type, g : T → T �?n : T → T and then reduced by
rule (MV-β-Red) to A : Type, g : A → A � ?n�[T := A] : A → A, which
also gives a correct typing to λ x : A. (g x). In this case, the metavariable
?n�[T := A] is indeed a pattern metavariable.

• Suppose ?n is defined by A : Type,T : Type, g : A → A �?n : A → A. In
this case, the instantiation ?n := λ x : T . (g x) is not typecorrect, since

136

4.3. UNIFICATION

g expects an argument of type A and not type T . Note that we can again
derive A : Type, g : A → A � ?n�[T := A] : A → A by an application
of (MV-β-Red), but this time, ?n�[T := A] is no pattern metavariable,
since A ∈ dom(ctxt(?n)).

Even though this example is taken from a polymorphic calculus, a similar
problem can also be stated in a calculus with type dependencies on terms, but
not on types, as for example LF, for which Elliot [Ell89] and Pym [Pym90]
have devised unification algorithms. The (almost identical) algorithms [Ell89]
and [Pym90] use metavariables without explicit substitutions, but with the
aid of the lifting operation described in Section 4.3.3, an adaptation of their
algorithms to our calculus should be possible.

Even though [Ell89] and [Pym90] claim completeness of their algorithms,
just as [Pfe91b] for pattern unification in the Calculus of Constructions, their
approaches do not deal with cases as the following. Since proofs of these claims
are direct adaptations of [Hue75], it is difficult to assess how the completeness
statement should be interpreted. Probably, a tacit assumption of [Ell89] and
[Pym90] is that metavariables only stand for elements of types (that is, ?n : A
with A : Type), but not for types or type constructors (that is, ?n : A1 →
. . . → Type).

Example 4.20
In many calculi of the λ-cube, functions can be defined whose range are propo-
sitions or types. Assume we want to unify T : Type, x : T ,P : T → Prop �
?f x

?
 (P x) → (P x), with T : Type, x : T ,P : T → Prop �?f : T → Type.
Obviously, ?f := λ z : T . (P z) → (P x) and ?f := λ z : T . (P z) → (P z) are
typecorrect solutions to this problem. Notice that Huet’s algorithm does not
apply here, since a combination of outermost term constructors such as flexible
application – implication (strictly speaking, Π-abstraction) does not arise in
the simply-typed λ-calculus.

The above two examples describe situations that occur in all dependently
typed calculi. When a metavariable ?A can stand for types and not only ele-
ments of types, there is an additional difficulty: The number of Π-abstractions
of a solution of ?A is not bounded, and neither is the number of arguments a
function of type ?A has.

Example 4.21
Assume Γ is a valid context, and the proof problem P is given by metavariables
Γ �?A : Type and Γ �?f :?A →?A. The unification problem we want to solve

is 〈P ; Γ � (?f a)
?
 b〉, where a and b are two terms such that Γ � a :?A and

Γ � b :?A. In its “match” phase, an adaptation of Huet’s algorithm would have

137

4.4. TABLEAU-STYLE PROOF SEARCH

to generate, among others, all of the following “projection” instantiations for
?f (for simplicity, we do not give the more general dependently-typed solution
terms):

• ι0 =̂ {?f := λ z :?A. z}

• ι1 =̂ {?f := λ z :?A1 →?A′. (z ?a1), ?A :=?A1 →?A′} with Γ �?A1 :
Type, Γ �?A′ : Type and Γ �?a1 :?A1.

• ι2 =̂ {?f := λ z :?A2 →?A1 →?A′. (z ?a1 ?a2), ?A :=?A2 →?A1 →?A′},
with Γ �?A2 : Type, . . ., Γ �?a2 :?A2.

• and so forth.

The ι1, ι2, . . . are mutually independent, i.e. none of these instantiations can
be represented as an instance of the other ones.

4.4. Tableau-Style Proof Search

In Chapter 3, it has been argued that the natural deduction presentation ECCN

of the calculus ECC is unsuitable for proof search, and that a sequent style
calculus, baptized ECCG , is more appropriate because it permits a structural
decomposition of formulae. However, for practical concerns, even the calculus
ECCG is not a good choice, mainly for two reasons:

• The language characterized by ECCG is very expressive, and consequently,
inferences in this language can be expected to be quite expensive. In spite
of the subformula property of ECCG , some of its rules generate a search
space that is hard to keep under control, for example formation rules such
as (Π-Form1), which are applicable to goals of the form Γ �?P : Prop.
The utility of these rules for a particular proof problem has been demon-
strated in Example 4.2, but since this kind of problem does not arise
often in practice, these rules should not be available for general proof
search, but be relegated to specialized procedures.

• The language is very minimalistic, imposing an awkward encoding of
natural notions such as conjunction, disjunction, existence etc. As men-
tioned in Section 2.1.4, the usual logical connectives can be expressed in
ECC , and a proof search calculus should provide appropriate rules for
manipulating them.

In the following, we will examine a calculus resembling the usual pred-
icate logic tableau calculi. In Section 4.4.1, we will first give its rules and

138

4.4. TABLEAU-STYLE PROOF SEARCH

discuss differences with respect to standard presentations of tableau calculi. In
Section 4.4.2, it will be shown that the mechanisms developed in Chapter 2
can cope with the eigenvariable provisos of sequent calculi and thus offer an
alternative to Skolemization. The raw form of the calculus is amenable to op-
timizations (Section 4.4.3), which brings an implementation into the realm of
dedicated theorem provers, in spite of some insufficiencies that persist (cf. the
discussion in Section 5.2).

Even though equational and inductive reasoning are interesting topics which
raise particular problems, especially in polymorphic calculi (see [Sor96]), they
will not be considered here.

4.4.1. Sequent Calculus Rules

In Section 2.1.4, an encoding of the standard connectives of predicate logic in
the calculus ECC has been given, and it has been verified that this encoding
is adequate in the sense that the usual introduction and elimination rules of
a natural deduction calculus can be shown to hold. Figure 4.4 lists the cor-
responding sequent calculus rules. As usual, these rules are supposed to be
applied backwards, starting with a judgement Γ �?n : G , where G is the goal
formula to be proved under hypotheses Γ. Each backwards application of a rule
gives rise to an instantiation of the current metavariable ?n0 with a proof term
containing the metavariables of the new subgoals, as displayed in Figure 4.5.
These proof terms use the definitions of proof elements of Figure 4.6, which are
shown together with their types. In order to keep proof terms small, we will
omit type arguments as long as these can be synthesized from the remaining
arguments (compare with Example 4.3 to see how this is done). For example,
we usually write (andI pA pB) instead of (andI A B pA pB).

The rules marked with an asterisk – (FalseL), (∨L), (¬L), (∃L) – are subject
to the proviso that the goal formula G is of type Prop, i.e. ctxt(?n0) � G : Prop,
for a reason to be explained in a moment. However, the eigenvariable condition
need not be enforced explicitly. A discussion of this question is deferred to
Section 4.4.2.

A statement of correctness of the rules of Figure 4.4 can be given in a
similar fashion as for the rules of the calculus ECCG in Section 3.2.1, and a
proof of correctness proceeds along the same lines, once the definitions of the
connectives have been expanded. As an example, we now give a derivation of
the proof term of rule (¬L) (surrounding contexts Γ,Γ′ are omitted for better
readability), which also elucidates the requirement that G is of type Prop.
Derivations of the remaining rules can be found in [Wag95].

139

4.4. TABLEAU-STYLE PROOF SEARCH

p : ¬P � p : ¬P
(var)

p : ¬P � p : (P → ΠX : Prop.X) p : ¬P �?n1 : P

p : ¬P � (p ?n1) : (ΠX : Prop.X)
(app)

p : ¬P � G : Prop

p : ¬P � (p ?n1 G) : G
(app)

The double lines in this derivation symbolize an unfolding of definitions:
¬P ≡ P → False ≡ P → ΠX : Prop.X .

The Right rules of the logical connectives are standard and deserve no
special mention, but there are some peculiarities about the other rules setting
them off from standard sequent calculus rules as found, for example, in [Gal87]:

• The Γ and Γ′ occurring in the rules are valid contexts and not only
sets of hypotheses. Thus, apart from formulae, they contain variable
declarations. In order to preserve well-typing, the variables x and y of
rules (∀R) and (∃L) cannot simply be fixed as “constants”, but have to
be added to the context explicitly.

• Even though certain antecedent formulae in the premiss of some rules are
“redundant” (such as p : A∧B in (∧L)), they cannot simply be dropped,
because this might lead to ill-typed contexts or terms. In Section 4.4.3,
we make this notion of redundancy more precise and show how to deal
with it.

• The rules for the quantifier ∀ are directly obtained from the (ΠL) and
(ΠR) rules of Section 3.1.2. Similarly, the rules for implications are just
the non-dependent versions of the Π rules, added for comparison with
standard presentations of sequent calculi.

• The rules (∃R) and (∀L) have two premisses, one requiring the construc-
tion of a witness ?n1, the other, depending on ?n1, pursuing the proof of
the goal formula. When the rules are operationalized for proof search,
it is reasonable to delay the subgoal ?n1, with the intention of finding a
solution through unification in the branch of subgoal ?n2. However, if a
proof does not lead to an instantiation of ?n1, search has to be resumed
for subgoal ?n1 (cf. Example 4.23).

• The (axiom) rule makes appeal to unification: x is acceptable as solution

for ?n0, if x and ?n0 can be unified, i.e. if Γ, x : T1,Γ
′ � x

?
 ?n0, using
unification rules as those presented in Section 4.3. By unification rule
(MV-term), this again leads to a (cumulative) unification of the types

140

4.4. TABLEAU-STYLE PROOF SEARCH

Γ, x : T1,Γ
′ � x

?
 ?n0

Γ, x : T1,Γ
′ � ?n0 :T2

(axiom)

Γ� ?n0 :True
(TrueR)

Γ, p : False,Γ′ � ?n0 :G
(FalseL)∗

Γ� ?n1 :A Γ� ?n2 :B
Γ� ?n0 :A ∧ B

(∧R)

Γ, p : A ∧ B ,Γ′, pA : A, pB : B � ?n1 :G

Γ, p : A ∧ B ,Γ′ � ?n0 :G
(∧L)

Γ� ?n1 :A
Γ� ?n0 :A ∨ B

(∨Rl)
Γ� ?n1 :B

Γ� ?n0 :A ∨ B
(∨Rr)

Γ, p : A ∨ B ,Γ′, pA : A� ?n1 :G Γ, p : A ∨ B ,Γ′, pB : B � ?n2 :G

Γ, p : A ∨ B ,Γ′ � ?n0 :G
(∨L)∗

Γ, x : A� ?n1 :B

Γ� ?n0 :A → B
(→ R)

Γ, p : A → B ,Γ′ � ?n1 :A Γ, p : A → B ,Γ′, p ′ : B � ?n2 :G

Γ, p : A → B ,Γ′ � ?n0 :G
(→ L)

Γ, p : A� ?n1 :False

Γ� ?n0 :¬A
(¬R)

Γ, p : ¬P ,Γ′ � ?n1 :P

Γ, p : ¬P ,Γ′ � ?n0 :G
(¬L)∗

Γ� ?n1 :T Γ� ?n2 :P [?n1]

Γ� ?n0 : ∃ x : T .P [x]
(∃R)

Γ, p : ∃ x : T .P [x],Γ′, y : T , p ′ : P [y]� ?n1 :G

Γ, p : ∃ x : T .P [x],Γ′ � ?n0 :G
(∃L)∗

Γ, x : T � ?n1 :P [x]

Γ� ?n0 : ∀ x : T .P [x]
(∀R)

Γ, p : ∀ x : T .P [x],Γ′ � ?n1 :T
Γ, p : ∀ x : T .P [x],Γ′, p ′ : P [?n1]� ?n2 :G

Γ, p : ∀ x : T .P [x],Γ′ � ?n0 :G
(∀L)

Figure 4.4.: Rules of the Tableau calculus

141

4.4. TABLEAU-STYLE PROOF SEARCH

(axiom) ?n0 := x
(TrueR) ?n0 := λ X : Prop. λ x : X . x
(FalseL) ?n0 := p G

(∧R) ?n0 := andI (A,B , ?n1, ?n2)
(∧L) ?n0 := ?n�

1 [pa := andEl(A,B , p), pb := andEr(A,B , p)]

(∨Rl) ?n0 := orIl(A,B , ?n1)
(∨Rr) ?n0 := orIr(A,B , ?n1)
(∨L) ?n0 := orE (A,B ,G , λ pa : A.?n1, λ pb : B .?n2, p)

(→ R) ?n0 := λ x : A. ?n1

(→ L) ?n0 := ?n�
2 [p ′ := (p ?n1)]

(¬R) ?n0 := λ p : A. ?n1

(¬L) ?n0 := p ?n1 G

(∃R) ?n0 := exI (T ,P , ?n1, ?n2)
(∃L) ?n0 := p G (λ y : T . λ p ′ : P [y].?n1)

(∀R) ?n0 := λ x : T . ?n1

(∀L) ?n0 := ?n�
2 [p ′ := (p ?n1)]

Figure 4.5.: Solutions associated with the Tableau rules

of x and ?n0, so the type T1 of x and T2 of ?n0 will be compared with
respect to �.

In the rules of Figure 4.4, the information about proof problems remains
implicit. In analogy to unification, we can restate the rules in a somewhat less
readable, but more precise form as transformation rules which convert a proof
problem P0 to a new proof problem P1 and an instantiation ι1. By this means,
we can relate the type correctness of rules, as stated above, to the notion of
well-typed instantiation as given by Definition 2.71 and by this means arrive at
a formal correctness criterion for the proof terms that are constructed during
proof search.

The proof transformation relation P0 =⇒ P1; ι1 can be obtained by a
canonical translation of the rules of Figure 4.4. The transformation rules for
(axiom), (∧R) and (∧L) are displayed in Figure 4.7, the remaining rules should
then be obvious. Side conditions of the transformation rules are indented,
disjoint set union is denoted by

.
∪.

Based on the relation =⇒, the relation =⇒∗ is defined inductively by:

142

4.4. TABLEAU-STYLE PROOF SEARCH

andI := λ A,B : Prop, a : A, b : B .
λ R : Prop. λ h : (A → B → R).(h a b)

: ΠA,B : Prop. A → B → A ∧ B

andEl := λ A,B : Prop, p : A ∧ B .(p A (λ p1 : A, p2 : B .p1))
: ΠA,B : Prop. A ∧ B → A

andEr := λ A,B : Prop, p : A ∧ B .(p B (λ p1 : A, p2 : B .p2))
: ΠA,B : Prop. A ∧ B → B

orIl := λ A,B : Prop, a : A.
λ R : Prop, f1 : A → R, f2 : B → R.(f1 a)

: ΠA,B : Prop. A → A ∨ B

orIr := λ A,B : Prop, b : B .
λ R : Prop, f1 : A → R, f2 : B → R.(f2 b)

: ΠA,B : Prop. B → A ∨ B

orE := λ A,B ,G : Prop, f1 : A → G , f2 : B → G .
λ p : A ∨ B .(p G f1 f2)

: ΠA,B ,G : Prop. (A → G) → (B → G) → (A ∨ B) → G

exI := λ T : Type,P : T → Prop, x : T , p : P(x).
λ R : Prop. λ h : (Πy : T . (P(y) → R)).(h x p)

: ΠT : Type,P : T → Prop, x : T , p : P(x). ∃ x : T .P(x)

Figure 4.6.: Proof elements of logical connectives and quantifiers

• P0 =⇒∗ P0; {}, where {} is the identity instantiation.

• P0 =⇒∗ Pn+1; ιn+1 if there is a proof problem Pn and an instantiation
ιn such that P0 =⇒∗ Pn ; ιn and Pn =⇒ Pn+1; ι′ and ιn+1 = ιn (ι′.

During proof search, new metavariables are generated, so some care has to
be taken when stating a correctness criterion for the proof rules (cf. the dis-
cussion in Section 4.3.3, in particular the remarks preceding Proposition 4.16).

Proposition 4.22 (Correctness of Proof Transformations)
Assume P0 is a well-typed proof problem. If P0 =⇒ P ′; ι′ and P0 =⇒∗ Pn ; ιn ,
then:

• P ′ and Pn are well-typed proof problems

143

4.4. TABLEAU-STYLE PROOF SEARCH

P
.
∪ {Γ, x : T1,Γ

′ �?n0 : T2}
〈P ; Γ, x : T1,Γ

′ � x
?
 ?n0〉 ⇒ P1; ι1

=⇒ P1; ι1

P
.
∪ {Γ �?n0 : A ∧ B}
ι1 := { ?n0 := andI (A,B , ?n1, ?n2) }

=⇒ ι1(P ∪ {Γ �?n1 : A, Γ �?n2 : B}); ι1

P
.
∪ {Γ, p : A ∧ B ,Γ′ �?n0 : G}
ι1 := { ?n0 := ?n�

1 [pa := andEl(A,B , p), pb := andEr(A,B , p)] }
=⇒ ι1(P ∪ {Γ, p : A ∧ B ,Γ′, pA : A, pB : B �?n1 : G}); ι1

Figure 4.7.: Rules of Proof Transformation System

• For every ?m ∈ P0, there are derivations of:
ι′(ctxtP0(?m)) �P ′ ι′(?m) : ι′(typeP0(?m)) and
ιn(ctxtP0(?m)) �Pn

ιn(?m) : ιn(typeP0(?m))

Proof: For the statements about relation =⇒, the proof is by induction on
the generation of =⇒, and for the statements about relation =⇒∗, the proof is
by induction on n.

As to relation =⇒, the statement for the transformation corresponding to
the (axiom) proof rule follows directly from similar properties of the relation
⇒ of the unification algorithm (see Propositions 4.10 and 4.16). For the other
proof rules, the statement follows from the typecorrectness of the proof terms
and Proposition 2.72.

As to relation =⇒∗: The base case for n = 0 is trivial. Assume that the
properties stated in the proposition have been shown for P0 =⇒∗ Pn ; ιn , so Pn

is a well-typed proof problem and ιn(ctxtP0(?m)) �Pn
ιn(?m) : ιn(typeP0(?m))

is well-typed. Then, by the definition of =⇒∗ and the properties of =⇒, also
Pn+1 is a well-typed proof problem. Furthermore:
ιn(ctxtP0(?m)) �Pn

ιn(?m) : ιn(typeP0(?m)) for all ?m ∈ P0

(by induction hypothesis) entails:
ι′(ιn(ctxtP0(?m))) �Pn+1

ι′(ιn(?m)) : ι′(ιn(typeP0(?m))) for all ?m ∈ P0

(using properties of =⇒ and Proposition 2.72) entails:
ιn+1(ctxtP0(?m)) �Pn+1

ιn+1(?m) : ιn+1(typeP0(?m)) for all ?m ∈ P0

(by ιn+1 ≡ ιn (ι′ and definition of () 2

We conclude this section with an example which demonstrates the necessity

144

4.4. TABLEAU-STYLE PROOF SEARCH

of having two premisses in the rules (∃R) and (∀L), which is a significant
departure from standard (untyped) logic, where the same rules would be stated
as

Γ � P [t]

Γ � ∃ x .P [x]
(∃R)

Γ, ∀ x : T .P [x],Γ′,P [t] � G

Γ, ∀ x : T .P [x],Γ′ � G
(∀L)

where t is any well-formed term. Since the domain of interpretation (for ex-
ample in classical first-order logic) is assumed to be non-empty, the term t can
always be taken to be a variable y , which stands for an arbitrary element of
the domain.

Example 4.23
We compare a proof of the proposition ∃ x1, x2.P(x2) → P(f (x1)) in classical
logic with a proof of Γ � ∃ x1 : A, x2 : B .P(x2) → P(f (x1)) in type theory,
where (f : A → B) ∈ Γ.

A derivation of the first proposition in classical logic is:

P(y2) � P(f (y1))
(axiom)

� P(y2) → P(f (y1))
(→ R)

� ∃ x1, x2.P(x2) → P(f (x1))
(∃R)

This proof is finished by unification of P(y2) and P(f (y1)), thus an assignment
y2 := f (y1).

Compare this with the following proof in type theory:

Γ �?y1 : A Γ �?y2 : B

Γ, h : P(?y2) �?n3 : P(f (?y1))
(axiom)

Γ �?n1 : P(?y2) → P(f (?y1))
(→ R)

Γ �?n0 : ∃ x1 : A, x2 : B .P(x2) → P(f (x1))
(∃R)

The instantiation ?y2 := f (?y1) is typecorrect (given that ?y1 : A and f : A →
B) and solves the subgoal Γ �?y2 : B . However, this does not yet finish the
proof. If the context Γ contains no other declaration than f : A → B , then
the goal is not provable, because no element of type A can be constructed. If,
for example, the context Γ contains declarations c : C , g : C → A, then the
proof search continues with goal Γ �?y1 : A, eventually yielding ?y1 := (g c)
as a solution.

This example seems to suggest that establishing the non-emptiness of a
given type can be reduced to theorem proving in the propositional fragment of
type theory, which is decidable (see [Kle52b] and [Wag95] for an implementa-
tion). However, this is not so – as mentioned in Section 1.1.3, adding polymor-
phic types makes the question of emptiness of a type undecidable. Apart from
that, propositions themselves may contain statements about the emptiness of

145

4.4. TABLEAU-STYLE PROOF SEARCH

types, so deciding whether a type is non-empty is as hard as general theorem
proving.

4.4.2. Eigenvariable Conditions

In traditional presentations of sequent calculi, the rules (∀R) and (∃L) are
usually stated with an “eigenvariable condition”. Typically, the rule (∀R) is
then given by:

Γ � B(c)

Γ � ∀ x . B(x)
(∀R)

under the proviso that the newly introduced constant c does not occur in Γ.
In this section, we will examine how the eigenvariable condition is enforced in
different calculi, in particular the calculus presented above. Since it has already
been shown that the rules of Figure 4.4 and the associated proof transformation
system are correct, this section does not provide an additional correctness proof,
but rather informal evidence for one aspect of correctness. Since most of the
argument is independent of typing, we will omit type information whenever
convenient.

Example 4.24
As an illustration, we will use the following formulae throughout this section,
the first of which: ∀ x . ∃ y .x = y is valid, the second of which: ∃ x . ∀ y .x = y is
not.

In traditional tableau calculi, Skolemization is used to eliminate a uni-
versal quantifier by keeping track of existential quantifiers on which it de-
pends. Skolemization expresses that the formula ∃ x . ∀ y .P(x , y) is valid iff
∃ x .P(x , f (x)) is valid, where f is a fresh function constant. (NB: There are
two variants of Skolemization, one of which eliminates existential quantifiers
and preserves satisfiability. Since we are interested in proving, not refuting,
a formula, the dual variant preserving validity is required here). In classical
logic, Skolemization is justified by semantic arguments. Similar arguments can
certainly be provided for intuitionistic logic (though a standard reference like
[Fit83] does not even mention the techniques of Skolemization and unification
to delay the instantiation of existential quantifiers).

When Skolemizing the above examples, the first formula is reduced to c =?y
the second formula to ?x = f (?x). Obviously, unification succeeds in the first
case, but an occurs check makes it fail in the second case.

There are two impediments to using Skolemization in our framework. The
first is that it is hard to justify the introduction of a new function constant
f proof-theoretically. When considering, in a typed calculus, the transition

146

4.4. TABLEAU-STYLE PROOF SEARCH

from ∃ x : A. ∀ y : B .P(x , y) to ∃ x : A.P(x , f (x)), we make a claim as to the
existence of a function f : A → B , for which we have no direct evidence. The
second reason for not using Skolemization, related to the first but of a more
practical nature, is that it can blow up formulae and make them difficult to
understand.

The method that is implicit in our approach is to describe the dependence
of existential variables on universal variables. A proof obligation x1 : T1 . . . xk :
Tk �?n : T expresses that the existential variable ?n occurs in the scope of
the universal variables x1, . . . xk and can only be solved by terms containing at
most x1, . . . xk . The examples demonstrate the procedure: In the first example,
the proof succeeds because ?y can be unified with x .

x : T �?y : T x : T �?n2 : x =?y

x : T �?n1 : ∃ y : T .x = y
(∃R)

�?n0 : ∀ x : T . ∃ y : T .x = y
(∀R)

In the second example, however, ?x does not unify with y because y does not
occur in the context of ?x (cf. the description of unification in Example 4.9).

�?x : T

y : T �?n2 : ?x = y

�?n1 : ∀ y : T .?x = y
(∀R)

�?n0 : ∃ x : T . ∀ y : T .x = y
(∃R)

Again, this dependence could be made explicit by a functional encoding of
scopes. In the Isabelle system, for example, the two formulae would be simpli-
fied to

∧
x .x = (?y x) and

∧
y .?x = y , respectively, where

∧
is the universal

quantifier of Isabelle’s meta logic. Unification would succeed in the first case
with the function metavariable solved by ?y := λ z .z , whereas it would fail in
the second case, since ?x has global scope and y is bound locally.

These informal observations are corroborated by the following proposition:

Proposition 4.25 (Eigenvariable Condition)
Assume Γ, x : A is a valid context with occurrences of metavariables ?m1, . . .?mk

in Γ. Then there is no well-typed instantiation ι of ?m1, . . .?mk such that x
occurs free in ι(Γ)

Proof: Since Γ, x : A is a valid context and ι a well-typed instantiation,
by Proposition 2.72, ι(Γ) is a valid context and thus cannot contain a free
occurrence of x . 2

This proposition expresses that instantiations of metavariables do not per-
mit to introduce variables in places where they are out of scope. This is a

147

4.4. TABLEAU-STYLE PROOF SEARCH

re-statement of the eigenvariable condition which says that, after finishing a
proof with an instantiation ι, the variable x does not occur free in the hypothe-
ses ι(Γ):

ι(Γ), x : ι(A)� ι(?n1) : ι(B(x))

ι(Γ)� ι(?n0) : ι(Πx : A. B(x))
(∀R)

A similar remark holds for the rule (∃L).

4.4.3. Optimizations of Proof Search

In this section, we will examine the following two optimizations that lead to a
noticeable reduction of the search space when carrying out proof search with
the rules of Figure 4.4:

• Omission of the formulae to which some of the Left-rules have been ap-
plied.

• Giving preference to “invertible” rules in proof search.

Both optimizations are per se no novelties. What makes them interesting for us
is that they are applicable even in our framework, and that they can be justified
by an elementary reasoning about proof terms (and not about derivations),
given some very liberal assumptions about the structure of proof goals.

For the proofs below, we need the following lemma, which states that under
certain conditions, hypotheses can be exchanged:

Lemma 4.26
If Γ,Γ′, h : H � M : A (or Γ,Γ′, h : H validc) is derivable in ECCG and
dom(Γ′) ∩ FV (H) = ?, then Γ, h : H ,Γ′ � M : A (or Γ, h : H ,Γ′ validc) is
derivable.

Proof: The proof is by induction on derivations in ECCG . The only inter-
esting case is the application of the rule (Cvalid), the other cases only require
application of the induction hypothesis. Assume, then, that Γ,Γ′, h : H validc

has been derived as follows:

Γ,Γ′ �NH : Type

Γ,Γ′, h : H validc
(Cvalid)

Since dom(Γ′) ∩ FV (H) = ?, we can by strengthening (Proposition 2.44)
conclude that Γ � H : Type, and with a renewed application of (Cvalid),
that Γ, h : H validc. With weakening (Proposition 2.43), we obtain Γ, h :
H ,Γ′ validc. 2

148

4.4. TABLEAU-STYLE PROOF SEARCH

We now state the first optimization: For proof-term free goals, the prin-
cipal formula (cf. Definition 3.3) can be omitted from the premisses of rules
(∧L), (∨L), (∃L) and from the right branch of rule (→ L) without sacrificing
completeness, provided the variable declaring the principal formula does not
occur elsewhere in the sequent. More precisely:

Proposition 4.27 (Redundant Premisses)
If ∆ � M : P can be derived with the proof rules of Figure 4.4, then there
exists a term M ′ and a derivation of ∆ � M ′ : P in which the rules (∧L),
(∨L), (∃L) and (→ L) are modified as follows (assuming that p �∈ FV (G) and
p �∈ FV (T) for all (x : T) ∈ Γ′):

Γ,Γ′, pA : A, pB : B � ?n1 :G

Γ, p : A ∧ B ,Γ′ � ?n0 :G
(∧L)

Γ,Γ′, pA : A� ?n1 :G Γ,Γ′, pB : B � ?n2 :G

Γ, p : A ∨ B ,Γ′ � ?n0 :G
(∨L)

Γ,Γ′, y : T , p ′ : P [y]� ?n1 :G

Γ, p : ∃ x : T .P [x],Γ′ � ?n0 :G
(∃L)

Γ, p : A → B ,Γ′ � ?n1 :A Γ,Γ′, p ′ : B � ?n2 :G

Γ, p : A → B ,Γ′ � ?n0 :G
(→ L)

This presentation of the rules is the one usually found in textbooks (for example
[TS96], p. 65).
Proof: The proof is by induction on the derivation of ∆ � M : P , with a case
distinction on the last proof rule that has been applied. Instead of carrying
out a subinduction on derivations for each of the cases, we can show that the
principal formula is indeed superfluous in the premisses of the rules, by using
propositions previously proved for the term calculus:

• Rule (∧L): Assume the premiss Γ, p : A ∧ B ,Γ′, pA : A, pB : B � M1 : G
has been derived with the original set of rules, for a term M1, so by the
exchange lemma (4.26) above, also Γ, pA : A, pB : B , p : A ∧ B ,Γ′ � M1 :
G is derivable. We can derive Γ, pA : A, pB : B � andI (pA, pB) : A ∧ B ,
so by the cut rule, Γ, pA : A, pB : B ,Γ′ � M1{p := andI (pA, pB)} :
G . Another application of the exchange lemma to the declarations in
Γ′ permits to obtain a derivation of Γ,Γ′, pA : A, pB : B � M1{p :=
andI (pA, pB)} : G .

• Rule (∨L): Similar. The derivation Γ, p : A ∨ B ,Γ′, pA : A � M1 : G of
the left premiss is turned into Γ,Γ′, pA : A � M1{p := orIl(pA)} : G , and
analogously for the right premiss, using a substitution p := orIr(pB).

149

4.4. TABLEAU-STYLE PROOF SEARCH

• Rule (∃L): The derivation Γ, p : ∃ x : T .P [x],Γ′, y : T , p ′ : P [y] � M1 : G
can be turned into Γ,Γ′, y : T , p ′ : P [y] � M1{p := exiI (y , p ′)} : G

• Rule (→ L): In this case, we only consider a derivation Γ, p : A →
B ,Γ′, p ′ : B � M2 : G of the right premiss. This derivation can be turned
into Γ,Γ′, p ′ : B � M2{p := λ x : A.p ′} : G , if x is a fresh variable.
It is worth noting that this kind of reasoning does not succeed in the
dependent case, i.e. for the rule (∀L), because the proof term obtained
for the left premiss, which also occurs in the context of the right premiss,
may depend on p, so strengthening does not apply here.

2

The second optimization is based on the notion of invertible rule.

Definition 4.28
A rule of the form

Γ1 � M1 : A1 . . . Γn � Mn : An

Γ0 � M0 : A0

is called invertible if Γ0 � M0 : A0 is provable if and only if all Γi � Mi : Ai

(i = 1, . . . , n) are provable.

By applying an invertible rule backwards, “no information is lost”. If several
rules are applicable to a goal Γ0 � M0 : A0, an invertible rule can safely be
chosen first. If one of the Γi � Mi : Ai turns out to be unprovable, the original
goal is unprovable, so no backtracking with other rules is required.

The concept of invertibility is illustrated best with a counterexample. The
intuitionistic rule (∨Rl) is not invertible, as can be seen when applying it to
the goal A,B : Prop �?n : A ∨ (B → B). The classical counterpart

Γ � P ,Q

Γ � P ∨ Q
(∨R)

of this rule is invertible, so the greater proof-theoretic complexity of intu-
itionistic logic (intuitionistic propositional logic is PSPACE-complete [Sta79])
becomes plausible.

Proposition 4.29 (Invertible Rules)
The rules (∧R), (∧L), (∨L), (→ R), (∀R), (¬R) and (∃L) are invertible.

Proof: We will illustrate the idea of the proof for the rule (∧R), the proof is
similar for the other rules. Assume that Γ � pt : A ∧ B , for a proof term pt .
Then the premisses Γ � ptA : A and Γ � ptB : B are provable with proof terms
ptA := andEl(pt) and ptB := andEr(pt). 2

150

4.4. TABLEAU-STYLE PROOF SEARCH

Apart from the rules mentioned in Proposition 4.29, the rules (→ L) and
(∀L) are semi-invertible in the sense that provability of the conclusion of the
rule implies provability of its right premiss.

Let us emphasize again that we do not claim originality as far as the above
optimizations are concerned, but proving their adequacy is facilitated by the
type-theoretic apparatus developed so far. Historically, Kleene’s [Kle52a] “per-
mutability” of proof rules anticipates most of the concept of invertibility ex-
amined above, but is more difficult to handle. The idea has later been taken
up in various forms, see for example the notion of “uniform proof” [MNPS91],
the optimizations described in [Sha92] and [Wei95] and implemented in the
intuitionistic theorem prover described in [SFH92]. Altogether, there is reason
to hope that these refinements can be transferred into a type-theoretic setting
without major difficulties.

151

4.4. TABLEAU-STYLE PROOF SEARCH

152

5. Conclusions

5.1. Summary of Results

This thesis has presented methods underlying machine assisted proof construc-
tion in type theory, which are applicable both in interactive proof development
and in the form of automated proof search procedures.

The main contributions of this thesis are:

• Analysis of situations commonly encountered when carrying out proofs
in type theory; identification of difficulties arising with a naive approach
of manipulating incomplete proof objects.

• Presentation of a calculus with explicit substitutions which solves these
difficulties. A detailed investigation of its properties confirms that desir-
able meta-theoretic properties of type theoretic calculi (confluence, de-
cidability of type inference, subject reduction, strong normalization) are
preserved.

• Development of a sequent calculus having a subterm property for types;
the sequent calculus is correct with respect to the original natural deduc-
tion calculus and complete for predicative fragments.

• Gradual transformation and refinement of a general proof search proce-
dure, resulting in a unification algorithm, primarily for a “first-order”
fragment, but also allowing for higher-order extensions, and a first-order
proof search procedure including some optimizations.

Calculi with explicit substitutions and proof search procedures based on se-
quent systems are not an invention of this thesis and have been used elsewhere,
however mostly in conjunction with weaker logics and for a different purpose.
Dependent types often lead to a perceptible increase in complexity (e.g. typing
rules; proof of cut elimination) and require non-standard adaptations of some
algorithms (e.g. unification; proof search). To the best of our knowledge, a
similar combination of a calculus with explicit substitutions and methods of

153

5.2. EVALUATION AND PERSPECTIVES

proof search has not been described elsewhere and thus constitutes a novelty
of this thesis.

A recurring theme is the comparison of our calculus with approaches based
on a functional encoding of scopes, which helps to gain insight into properties
of our calculus (strong normalization, Section 2.7.2) and permits to establish a
correspondence with some standard algorithms (e.g. higher-order unification,
Section 4.3.3), but also shows that a functional encoding of scopes is inappro-
priate for practical proof development in the given logic.

A technique employed throughout this thesis is the constructive transfor-
mation of a calculus into a form which makes it more suitable for proof search
(cut elimination proof in Section 3.2.2, motivation of unification in Section 4.2,
optimizations of proof search in Section 4.4.3). A closer analysis of these trans-
formations has permitted to compare properties of the target with properties
of the source calculus (e.g. completeness proof for predicative subsystems of
the λ-cube in Section 3.3). It has helped to track down the origin of exces-
sive branching in proof search (e.g. synthesis of types in goals of the form
Γ �?T : Type in Section 4.1) and lead to the proposal of a practically useful
proof search calculus.

Apart from the theoretical results showing that the calculi under inves-
tigation have the desired properties, the viability of the approach has been
demonstrated by an implementation of the key algorithms in the Typelab
system.

5.2. Evaluation and Perspectives

In this section, we will assess the results obtained in this thesis and outline
future work, first discussing some issues related to theory and then addressing
aspects of an implementation.

The theory of a calculus with metavariables and explicit substitutions pre-
sented here can be considered as completed in the sense that the properties
proved in this thesis show that the calculus is adequate for the purpose it was
designed for. In practice, this view is confirmed by the (admittedly still not
very numerous) external users of the Typelab system who perceive work-
ing with the calculus as intuitive. However, we feel that the presentation of
the calculus together with all the accompanying side conditions (proof prob-
lems, order on metavariables etc.) is still too complex. This is an obstacle
to a completely formal reasoning about the calculus or to an integration into
a reflexive architecture [Rue95, Pfe95], and it also has negative effects on an
efficient implementation. A topic of future research is therefore to find out
whether a streamlined presentation of the calculus is possible without impos-

154

5.2. EVALUATION AND PERSPECTIVES

ing restrictions which make the calculus useless for program development or
proof search.

Even though of purely theoretical interest, another question that remains
to be solved is whether the cut elimination proof for predicative fragments of
CC can be extended to the whole calculus. A direct adaptation of the method
employed in Section 3.2.2 is unlikely to succeed, so it is tempting to exploit the
structure of normal terms to guide cut elimination, as suggested in the more
detailed discussion in Section 1.3.2.

Several practical issues have to be settled to make automated proof search
satisfactory in realistic applications in verification and software development.
Currently, proof search in Typelab performs well on medium-sized problems
not depending on many assumptions, but often fails in more complex environ-
ments. To use proof search techniques efficiently in a larger context, users have
to split propositions into sufficiently small portions in order to benefit from the
automation provided by the system. In the following, we will discuss inherent
problems and possible improvements.

The problem of how to deal with definitions and computational behaviour is
one of the most prominent problems from which we have largely abstracted in
this thesis. For a practically useful system, it is indispensable to have a means
of binding terms to an identifier by a definition. In general, this leads to an
extension of the notion of context where contexts may consist of declarations
like x : T , as used before, and definitions d := t . It is not obvious how to handle
definitions during proof search, and, in particular, when to expand them. The
following algorithms have to be revised in the presence of definitions:

• Unification: First expanding all definitions and then applying an algo-
rithm in the style of Section 4.3 is practically infeasible, in particular
for complex or deeply nested definitions, mostly because it destroys the
abstraction mechanism which definitions provide in the first place. For

example, solving the unification problem (d a1)
?
 (d a2) may be inexpen-

sive (provided a1 and a2 are easy to unify), even if d represents a large
term. For this reason, unification has to proceed incrementally, expand-
ing definitions only if non-expansion has lead to a failure. For example,

even if a1 and a2 are not unifiable, (d a1)
?
 (d a2) may still succeed if

d expands to a function that forgets its first argument. This induces a
simple form of search with backtracking even in apparently “determinis-
tic” fragments like first-order logic. An interesting question is whether
there are optimal unification strategies which are complete (for a given
fragment), but only expand a minimal number of definitions.

• Proof search: In a similar fashion, proof rules may become applicable

155

5.2. EVALUATION AND PERSPECTIVES

after definitions have been expanded. For example, a higher-order pred-
icate d can take an arbitrarily complex proposition p as argument. The
term (d p) may then expand to an expression whose structure has little
in common with p.

Developing term indexing techniques which take into account definitions may
improve the current situation considerably.

In this thesis (and in particular in Chapter 4), theorem proving has pri-
marily been considered from a “logical” angle. For realistic applications, ded-
icated techniques for equality reasoning and induction are required. Experi-
ments with interfacing an external untyped, first-order term rewriting system
and Typelab [SS97] have shown that the gap between the logics involved is
too large to permit a direct adaptation of traditional rewriting techniques to
type theory. Not surprisingly, typing information is relevant. In particular, de-
pendent typing prohibits a simple structural replacement of terms, because this
may produce ill-typed terms. Some of the fundamental algorithms developed
in this thesis (such as unification) are currently used in Typelab’s rewrite
package, but specialized techniques have to be integrated to make rewriting
more efficient. The same holds true for induction. It can currently be in-
voked manually in Typelab, but so far no further automation in the spirit of
[BM79, BSvH+93] is available.

156

A. Appendix

A.1. A formulation with de Bruijn Indices

A.1.1. Elementary concepts of de Bruijn Indices

In order to make some of the concepts developed in the previous sections
clearer, some of the definitions will be restated using de Bruijn indices. De
Bruijn indices [dB72] were devised to provide a representation of λ-terms (and,
more generally, of quantification) in which variables bear no names and in
which the usual difficulties related to variable names can be avoided.

A term in de Bruijn notation can be understood as a representative of a
class of mutually α-equivalent terms. The general idea of de Bruijn indices
is to indicate the binding position of a variable occurrence in a term not by
its name, but by its distance from the binding position, a natural number.
More precisely, the de Bruijn index of a variable occurrence in a term is the
number of quantifiers that have to be crossed when moving from the occurrence
towards the root of the term tree, plus 11. For example, the untyped λ-term
(λ x .(λ y .(y x))x) is represented as (λ(λ(1 2))1). The advantage of de Bruijn’s
notation is its precision, which also makes it an adequate internal representation
for system implementations, in particular in purely functional programming
languages. However, the fact that it is difficult to read makes it inappropriate
for textual presentation. Besides, programming languages offering some notion
of “reference” (such as object-oriented languages) may permit other means to
represent bindings, thus de Bruijn indices are not an inevitable choice.

This section is concerned with the representation of terms and contexts in de
Bruijn’s notation (Section A.1.2), a definition of the typing rules (Section A.1.3)
and of instantiation (Section A.1.4). The proofs given for the calculus with
names can be transcribed in an obvious manner, so they are omitted here.

1Some alternative presentations are 0-based and not 1-based.

157

A.1. A FORMULATION WITH DE BRUIJN INDICES

A.1.2. Term calculus with de Bruijn Indices

Terms in nameless representation have almost the same structure as terms with
named variables. The main difference is that named references to variables
are replaced by numbers and that in an abstraction, the name behind the
quantifier (λ, Π or Σ) is cancelled, only the type remains. Thus, the term
λT : Type1. λ x : T . x is turned into λType1. λ 1. 1. In general, terms are
generated by the grammar of Figure A.1, N being the syntactic category of
natural numbers.

T ::= N
| Prop | Typei

| ΠT .T | λ T .T | (T T)
| ΣT .T | pairT (T , T) | π1(T) | π2(T)
| M�S

S ::= [] | [N := T] :: S

Figure A.1.: Grammar defining the language with de Bruijn Indices

We use the same abbreviations as in the named version, notably for Π types.
Consequently, a term to the left of an arrow → counts like a quantifier. For
example, Π1. 2 becomes 1 → 2 and not 1 → 1.

Contexts undergo similar transformations: A context now is a list of terms,
not a list of declarations. Thus, contexts are built up by 〈〉, the empty context,
and (T ,Γ), where T is a term and Γ a context. The function length computes
the length of a context.

Remember that according to the formalization given in Section 2.3, the
variable-term pair list σ attached to a metavariable ?n�σ records all the sub-
stitutions that can possibly become effective in any solution for ?n. This sub-
stitution list is gradually built up, starting from an empty list, as in ?n�[].
Depending on whether x occurs in the defining context of ?n or not, the vari-
able assignment {x := t} is added to substitution σ in a metavariable term
?n�σ or simply propagated (see Definitions 2.22 and 2.40).

Although awkward in general, it will be more convenient in the following
to slightly shift the perspective and to assume that the initial substitution of a
metavariable is a substitution in which each variable of the metavariable con-
text is mapped to itself. Thus, if x1, . . . xk are the variables of ctxt(?n), then
?n�[] becomes ?n�[x1 := x1, . . . xk := xk]. In a nameless representation, the list

158

A.1. A FORMULATION WITH DE BRUIJN INDICES

of variables produced by the function svars of Section 2.3.1 is no longer inter-
esting. Rather, it is the length of svars(?n) (and thus the length of ctxt(?n))
that matters. Accordingly, Definition 2.19 is modified as follows:

Definition A.1 (Metavariables – de Bruijn version)
M is an infinite set of objects called metavariables disjoint from the set V of
variables. The function svars# : M → Nat associates to each ?n ∈ M the
number of variables that may be substituted in ?n. The identity substitution
idSubst(?n) of metavariable ?n is the substitution [k := k , . . . 1 := 1], provided
svars#(?n) = k . A metavariable term ?n�σ is well-formed if σ is of the form
[k := tk , . . . 1 := t1] provided svars#(?n) = k .

In the following, it will be assumed that all metavariable terms are well-formed.
Note that Definition 2.40 has to be adapted in an obvious manner to the above
terminology.

Some simple arithmetic has to be performed to shift indices in terms as
substitutions are carried out. The following is an auxiliary definition to Defi-
nition A.3.

Definition A.2 (Variable shifting)
The shift operation s+i increments by i the indices of all free variables in term s
and leaves indices of bound variables unchanged. The shift operation is defined
as s+i := inc(s , 0, i) by means of the function inc(s , k , i) which increments
the free variables with number > k in s by i . The function inc is defined
recursively by:

• For variables m:

inc(m, k , i) :=

{
m + i if m > k
m if m ≤ k

• inc(Prop, k , i) := Prop, inc(Typej , k , i) := Typej

• inc((Q T . M), k , i) := (Q inc(T , k , i). inc(M , k + 1, i + 1)) for Q ∈
{λ,Π,Σ}

• inc((f a), k , i) := (inc(f , k , i) inc(a, k , i))

• inc(pairT (t1, t2), k , i) := pairinc(T ,k ,i)(inc(t1, k , i), inc(t2, k , i))

• inc(πj (t), k , i) := πj (inc(t , k , i)) for j = 1, 2

• inc(?M �[y1 := t1, . . . yn := tn], k , i) :=
?M �[y1 := inc(t1, k , i), . . . yn := inc(tn , k , i)]

159

A.1. A FORMULATION WITH DE BRUIJN INDICES

The definitions are extended to contexts Γ by: Γ+i := inc(Γ, 0, i), where:

• inc(〈〉, k , i) := 〈〉

• inc((T ,Γ), k , i) := (inc(T , k , i), inc(Γ, k + 1, i + 1))

Definition A.3 (External Substitutions with de Bruijn Indices)
Substitution is defined by the mapping

s→ as follows:

Variable

m{i := s} s→


m − 1 if m > i
s if m = i
m if m < i

Constant (Prop){i := s} s→ Prop, (Typej){i := s} s→ Typej

Quantifier For Q ∈ {λ,Π,Σ}:
(QT . M){i := s} s→ QT{i := s}. M {i + 1 := s+1}

Application (f a){i := s} s→ (f {i := s} a{i := s})

Pair (pairT (t1, t2)){i := s} s→ pairT{i :=s}(t1{i := s}, t2{i := s})

Projection πj (t){i := s} s→ πj (t{i := s}) for j = 1, 2.

Metavariable

(?M �[y1 := t1, . . . yn := tn]){i := s} s→

?M �[y1 := t1{i := s}, . . . yn := tn{i := s}]

Substitution is extended to contexts as follows:

• 〈〉{i := s} := 〈〉

• (T ,Γ){i := s} := (T{i := s}, Γ{i + 1 := s+1})

As noted above, any metavariable ?M is equipped with a full substitution
whose domain already contains all the variables of the domain of ctxt(?M).
For this reason, when substituting {i := s}, the distinction of whether i de-
notes a variable of ctxt(?M) or not, necessary in Definition 2.22, now becomes
immaterial.

160

A.1. A FORMULATION WITH DE BRUIJN INDICES

The above definition of substitution can again be extended to parallel sub-
stitutions. Since it is not clear how the “variable” case of the definition
can be stated for arbitrary parallel substitutions, we only consider parallel
substitutions for a consecutive interval of indices, that is, for substitutions
σ := {i := si , . . . j := sj} where i ≤ j and there are only assignments k := sk
with i ≤ k ≤ j in σ, and there is an assignment for each such k . We can then
define the variable case by:

m{i := si , . . . j := sj} s→


m − (j − i + 1) if m > j
sk if m = k for i ≤ k ≤ j
m if m < i

Given the above definitions of substitution, Beta reduction is defined as:
(λ T .M) N →β M {1 := N }.

Example A.4
Assume, in a named calculus, a metavariable ?n defined by:

T : Type, a : T , f : T → T , x : T � ?n�[] : T

Then, it can be derived that:

T : Type, a : T , f : T → T � (λ x : T . ?n�[]) a : T

Reduction of the application yields ?n�[x := a].

In the nameless calculus, the metavariable is defined by:

Type, 1, 2 → 3, 3 � ?n�[4 := 4, . . . 1 := 1] : 4

Using the rules of Figure A.2, one can derive:

Type, 1, 2 → 3 � ((λ 3. ?n�[4 := 4, . . . 1 := 1]) 2) : 4{1 := 2}

Computation of 4{1 := 2} yields 3, reduction of ((λ 3. ?n�[4 := 4, . . . 1 := 1]) 2)
yields ?n�[4 := 3, 3 := 2, 2 := 1, 1 := 2]. This result has to be interpreted as
follows: the variable with index 4 in the original metavariable context, T :
Type, is mapped to term 3 in the current context (also T), . . ., variable 1 in
the metavariable context, x : T , is mapped to term 2 in the current context
(a). Translating this back to a named representation yields the same result as
above.

161

A.1. A FORMULATION WITH DE BRUIJN INDICES

〈〉 validc
(Cempty)

Γ � A : Typej

Γ,A validc
(Cvalid)

Γ validc

Γ � Prop : Type0
(UProp)

Γ validc

Γ � Typej : Typej+1
(UType)

Γ,A,Γ′ validc length(Γ′) = n

Γ,A,Γ′ � n + 1 : A
(var)

Γ,A � P : Prop

Γ � ΠA.P : Prop
(Π-Form1)

Γ � A : Typej Γ,A � B : Typej

Γ � ΠA.B : Typej
(Π-Form2)

Γ,A � M : B

Γ � λ A.M : ΠA.B
(λ)

Γ � M : ΠA.B Γ � N : A

Γ � M N : B {1 := N } (app)

Γ � A : Typej Γ,A � B : Typej

Γ � ΣA.B : Typej
(Σ-Form)

Γ � M : A Γ � N : B {1 := M } Γ,A � B : Typej

Γ � pairΣA.B(M , N) : ΣA.B
(pair)

Γ � M : ΣA.B

Γ � π1(M) : A
(π1)

Γ � M : ΣA.B

Γ � π2(M) : B {1 := π1(M)} (π2)

Γ � M : A Γ � A′ : Typej A � A′

Γ � M : A′ (�)

Figure A.2.: Typing rules using de Bruijn Indices

162

A.1. A FORMULATION WITH DE BRUIJN INDICES

A.1.3. Typing with de Bruijn Indices

A translation of the typing rules of the base logic is rather straightforward.
It is given in Figure A.2. Some remarks concerning the metavariable rules
(Figure A.3):

• Rule (MV-base): Instead of a metavariable with an empty substitution
list, the base case is now given by a variable with an identity substitution
of the form ?n�[k := k , . . . 1 := 1].

• Rule (MV-weak): Whereas the named variant of this rule (see Figure 2.5)
does not leave any traces when it is applied, a shift of the indices of
variables declared in Γ becomes necessary here which takes into account
that a new declaration is inserted between Γ and ∆.

• Rule (MV-β-Red): Note again the close correspondence between β-reduc-
tion which takes place in a term and application of this rule which is
carried out on part of the context. Again, this rule can be simulated
on terms: Assume Γ � t : T and Γ � λ T . λ∆. ?n�σ : ΠT .Π∆. N .
Then applying rule (λ), performing β-reduction and moving substitu-
tions inside yields the term λ∆{1 := t}.((?n�σ){k + 1 := t+k}) of type
Π∆{1 := t}.(N {k + 1 := t+k}) in context Γ, where k is the length of ∆.

ctxtP(?n) �P typeP(?n) : Typej

ctxtP(?n) �P ?n�idSubst(?n) : typeP(?n)
(MV-base)

Γ �P T : Typej Γ,∆ �P ?n�σ : N length(∆) = k

Γ,T ,∆+1 �P inc(?n�σ, k , 1) : inc(N , k , 1)
(MV-weak)

Γ �P t : T Γ,T ,∆ �P ?n�σ : N length(∆) = k

Γ,∆{1 := t} �P (?n�σ){k + 1 := t+k} : N {k + 1 := t+k}
(MV-β-Red)

Figure A.3.: Typing rules for Metavariables using de Bruijn Indices

A.1.4. Definition of instantiations using de Bruijn Indices

The definition of instantiations using de Bruijn indices is almost literally the
same as the one given in Definition 2.62, using named variables. Note how the

163

A.1. A FORMULATION WITH DE BRUIJN INDICES

requirement that bound variables are not renamed translates to a purely homo-
morphic mapping of ι over quantifiers and contexts in the following definition:

Definition A.5 (Instantiation using de Bruijn Indices)
The applicability conditions and notation for instantiations are the same as in
Definition 2.62. The definition for the behaviour of instantiations on terms is
as follows:

• ι(x) = x for variables x .

• ι(Prop) = Prop, ι(Typei) = Typei

• ι(QT .M) = Qι(T).ι(M) for Q ∈ {λ,Π,Σ}

• ι(f a) = (ι(f) ι(a))

• ι(pairT (t1, t2)) = pairι(T)(ι(t1), ι(t2))

• ι(πi (t)) = πi(ι(t)) for i = 1, 2

• ι(?n�[x1 := t1 . . . xk := tk]) = ι(?n){x1 := ι(t1) . . . xk := ι(tk)}

Instantiations can be extended to contexts by the following inductive defi-
nition:

• ι(〈〉) = 〈〉

• ι(T ,Γ) = ι(T), ι(Γ)

Example A.6
Continuing with Example A.4, we instantiate ?n with the following terms and
observe the effect on t =̂ ?n�[4 := 3, 3 := 2, 2 := 1, 1 := 2], where Type, 1, 2 →
3 � t : 3.

• ι1 := {?n := x}, which translates to {?n := 1}. Then ι1(t) = 2, which
corresponds to the term a

• ι2 := {?n := a}, which translates to {?n := 3}. Then ι2(t) = 2, which
corresponds to the term a

• ι3 := {?n := (f a)}, which translates to {?n := (2 3)}. Then ι3(t) =
(1 2), which corresponds to the term (f a)

164

A.2. PROOF OF CUT ELIMINATION

A.2. Proof of Cut Elimination

We recall the cut elimination theorem (Proposition 3.7):

Let F be a fragment in which a term measure for cut elimination
can be defined. If the judgement Γ � M : A is derivable in the
system ECCG+cut (restricted to F), then Γ � M ′ : A is derivable in
ECCG (restricted to F), where M ′ is a term convertible to M .

A.2.1. Proof

Proof: Before getting into details of the proof, we state the following facts
about derivations in ECCG+cut , which can be proved by easy inductions on
derivations:

1. Every derivation of Γ � M : A contains a subderivation of Γ validc.

2. Weakening: If Γ � c : C and Γ,∆ validc are derivable without use of
(cut), then also Γ,∆ � c : C is derivable without (cut).

3. Contraction: If Γ1, x : T ,Γ2, y : T ,Γ3 � M : A is derivable without
(cut), then Γ1, x : T ,Γ2,Γ3{y := x} � M {y := x} : A{y := x} is
derivable without cut.

Recall the following definitions from Proposition 3.7:

• The rank of an application A of the cut rule is m(C), where m is the
measure over which the cut elimination theorem is parameterized (Defi-
nition 3.6) and C is the cut formula to which the rule is applied.

• The level of an application A of the cut rule is the sum of the depths of
the deductions of its premisses.

Given a derivation D, the general idea of the proof is to eliminate cuts
in D by selecting an application of the cut rule having no application of cut
above it, and replacing it by cuts of lower rank or level. More precisely, we
measure the weight of an application A of the cut rule by (rank(A), level(A)),
ordered lexicographically. For derivation D, we take the multiset of weights
of its cuts, and we show that this multiset becomes smaller by each of the
transformations described below. In practice, this amounts to showing that
each of the transformations introduces cuts which are of lower rank or which
have the same rank but lower level.

For derivations ending with (cut), we make a case distinction on the rule
applied in the left premiss of (cut). The following situations may arise:

165

A.2. PROOF OF CUT ELIMINATION

1. The application of the cut rule can be removed altogether.

2. The application of (cut) can be moved upwards in the left premiss of the
derivation, which leaves the rank constant, but decreases the level.

3. The cut can neither be removed nor moved upwards in the left premiss
in case the cut rule is applied to the principal formula of (ΠL) or (ΣL).
In this case, the cut is replaced with several cuts of lower rank and/or
lower level. This case is technically quite involved and will be handled
separately.

Moving the cut into the left premiss
We assume that the derivation is of the form

· · · � · · ·
Γ, z : C ′,∆ � t : T

(Rl)
Γ � c : C C � C ′

Γ,∆{z := c} � t{z := c} : T{z := c} (cut)

or
· · · � · · ·

Γ, z : C ′,∆ validc
(Rl)

Γ � c : C C � C ′

Γ,∆{z := c} validc
(cut)

and make a case distinction on (Rl). Whenever the side condition C � C ′ is
not essential, it will be omitted.

• Rule (Cvalid): We have the following two cases:

– Application of (cut) is redundant because the derivation of Γ �N C :
Type already contains a subderivation of Γ validc:

Γ �N C : Type

Γ, z : C validc
(Cvalid)

Γ � c : C

Γ validc
(cut)

– Assume the derivation is as follows:

Γ, z : C ,∆ �N A : Type

Γ, z : C ,∆, x : A validc
(Cvalid)

Γ � c : C

Γ,∆{z := c}, x : A{z := c} validc
(cut)

If Γ � c : C in calculus ECCG , then by the correctness of ECCG

(Proposition 3.4), also Γ �N c : C , so by the admissibility of (cut)
in ECCN , we can form the derivation:

Γ, z : C ,∆ �NA : Typej Γ �N c : C

Γ,∆{z := c} �NA{z := c} : Typej
(cut)

Γ,∆{z := c}, x : A{z := c} validc
(Cvalid)

166

A.2. PROOF OF CUT ELIMINATION

• Rule (var): Distinguish the following cases:

– Variable z occurs before variable x :

Γ, z : C ,∆′, x : A,∆′′ validc

Γ, z : C ,∆′, x : A,∆′′ � x : A
(var)

Γ � c : C

Γ,∆′{z := c}, x : A{z := c},∆′′{z := c} � x : A{z := c} (cut)

This can be transformed into:

Γ, z : C ,∆′, x : A,∆′′ validc Γ � c : C

Γ,∆′{z := c}, x : A{z := c},∆′′{z := c} validc
(cut)

Γ,∆′{z := c}, x : A{z := c},∆′′{z := c} � x : A{z := c} (var)

– Variable z occurs after variable x : Similar.

– Variables z and x agree:

Γ, z : C ′,∆ validc

Γ, z : C ′,∆ � z : C ′ (var)
Γ � c : C C � C ′

Γ,∆{z := c} � c : C ′ (cut)

The derivation

Γ, z : C ′,∆ validc Γ � c : C C � C ′

Γ,∆{z := c} validc
(cut)

has a lower cut level than the original derivation, so by induction
hypothesis it can be converted into a cut-free derivation. From this
and from the assumption Γ � c : C , we can, by an application
of weakening (assumption 2. above) derive Γ,∆{z := c} � c :
C without use of (cut). Applying rule (� R) yields the desired
judgement Γ,∆{z := c} � c : C ′.

• All other rules except for the Left-rules: We illustrate the principle by
considering the rule (Π-Form2), where an application of the (cut) rule:

Γ, z : C ,∆ � A : Typej

Γ, z : C ,∆, x : A � B : Typej

Γ, z : C ,∆ � Πx : A.B : Typej
(Π-Form2)

Γ � c : C

Γ,∆{z := c} � (Πx : A.B){z := c} : Typej
(cut)

can be permuted to: (with σ =̂ {z := c})
Γ, z : C ,∆ � A : Typej

Γ � c : C

Γ,∆σ � Aσ : Typej
(cut)

Γ, z : C ,∆, x : A � B : Typej

Γ � c : C

Γ,∆σ, x : Aσ � Bσ : Typej
(cut)

Γ,∆σ � Πx : Aσ. Bσ : Typej
(Π-Form2)

167

A.2. PROOF OF CUT ELIMINATION

The rules with one resp. three premisses are treated similarly. For rule
(� R), note that A � A′ implies A{z := c} � A′{z := c}. For rule
(pair), apply the Substitution Lemma 2.34.

The Left-Rules – Survey:
We have the following two cases:

• The cut is applied to a formula other than the principal formula of (� L),
(ΠL) or (ΣL). In this case, the cut can be moved upwards in a way similar
to rule (Π-Form2), see above.

• The cut is applied to the principal formula. The case of rule (� L)
can be handled with the extended (cut) rule. Assume that the original
derivation has the form:

Γ, z : C ′′,∆ � N : G C ′ � C ′′

Γ, z : C ′,∆ � N : G
(� L)

Γ � c : C C � C ′

Γ,∆{z := c} � N {z := c} : G{z := c} (cut)

By transitivity of �, this can be transformed into:

Γ, z : C ′′,∆ � N : G Γ � c : C C � C ′′

Γ,∆{z := c} � N {z := c} : G{z := c} (cut)

• If the cut is applied to the principal formula of (ΠL) or (ΣL), the situation
is more complex. In the case of (ΠL), for example, we have the following
situation:

Γ, z : · · ·Γ′ � · · · Γ, z : · · · ,Γ′, z ′ : · · · � · · ·
Γ, z : Πx : A. B ,Γ′ � N : G

(ΠL)
...

Γ � c : Πx : A. B
(Rr)

Γ,Γ′{z := c} � N {z := c} : G{z := c} (cut)

Moving the cut upwards towards the left premiss cannot be done in the
same straightforward fashion as in the preceding cases, since this would
make a renewed application of (ΠL) impossible. To deal with this case, we
make a case distinction on (Rr) in order to find out how Γ � c : Πx : A. B
has been generated. There are essentially the following possibilities:

– (Rr) is the (var) rule: This case can be dealt with by the third
assumption stated at the beginning of this proof.

– (Rr) is the (� R) rule: Using transitivity of � and applying (cut) di-
rectly to the premiss of (Rr), the application of (Rr) can be dropped
altogether.

168

A.2. PROOF OF CUT ELIMINATION

– (Rr) is the (λ) rule: See case “Cut with formula generated by (λ)”.

– (Rr) is a left rule: See case “Cut with formula generated by a left
rule”. Eventually, this amounts to moving the cut upwards towards
the right premiss. However, this is far more complex than, for ex-
ample, in the case of standard predicate logic, due to dependent
context entries. See the remarks following this proof in A.2.2.

An analogous reasoning has to be applied for Σ types, where we have a
similar case distinction:

– (Rr) is the (var) or (� R) rule: As for Π types.

– (Rr) is the (pair) rule: See case “Cut with formula generated by
(pair)”.

– (Rr) is a left rule: The reasoning is as spelled out under “Cut with
formula generated by a left rule” for Π types, with obvious adap-
tations to Σ types. However, we do not treat this case explicitly
here.

Cut with formula generated by (λ)
Assume that the derivations of the right and left premiss of the (cut) rule

(called Dλ
0 and DΠL, respectively) have the following form:

D0

Γ, x : A � b : B

Γ � λ x : A. b : Πx : A. B
(λ)

D1

Γ, z : Πx : A. B ,Γ′ � N1 : A
D2

Γ, z : Πx : A. B ,Γ′, z ′ : B{x := N1} � N2 : G

Γ, z : Πx : A. B ,Γ′ � N2{z ′ := z N1} : G
(ΠL)

Thus, altogether, the derivation Dcut in ECCG+cut has the following form
(the substitution {z := λ x : A. b} is called σ1):

DΠL

Γ, z : Πx : A. B ,Γ′ � N2{z ′ := z N1} : G
Dλ

0

Γ � λ x : A. b : Πx : A. B

Γ,Γ′σ1 � N2{z ′ := z N1}σ1 : Gσ1
(cut)

To obtain a proof of lower complexity, construct the derivation D consisting
of the following series of applications of the cut rule:

169

A.2. PROOF OF CUT ELIMINATION

A B
· · · � · · ·

c3
C

D E
· · · � · · ·

c1

· · · � · · ·
c2

· · · � · · ·
c4

In detail, the derivations are as follows:

D1

Γ, z : Πx : A. B ,Γ′ � N1 : A
Dλ

0

Γ � λ x : A. b : Πx : A. B

Γ,Γ′σ1 � N1σ1 : A
(cut)1

Note that z does not occur in A, therefore Aσ1 ≡ A. The level of (cut)1 is
lower than the level of (cut) in Dcut , whilst the cut rank remains the same or
decreases. Thus, by induction hypothesis, (cut)1 can be eliminated.

D0

Γ, x : A � b : B

Γ,Γ′σ1, x : A � b : B
(weak)

...
Γ,Γ′σ1 � N1σ1 : A

c1

Γ,Γ′σ1 � bσ2 : Bσ2
(cut)2

Here, the substitution {x := N1σ1} is called σ2. The cut rank of (cut)2 is
lower than the cut rank of (cut) in Dcut . Thus, by induction hypothesis, (cut)2
can be eliminated.

D2

Γ, z : Πx : A. B ,Γ′, z ′ : B{x := N1} � N2 : G
Dλ

0

Γ � λ x : A. b : Πx : A. B

Γ,Γ′σ1, z
′ : B{x := N1}σ1 � N2σ1 : Gσ1

(cut)3

Again, with respect to the cut in Dcut , the level of (cut)3 decreases, the cut
rank remains the same. Thus, (cut)3 can be eliminated.

...
Γ,Γ′σ1, z

′ : B{x := N1}σ1 � N2σ1 : Gσ1

c3

...
Γ,Γ′σ1 � bσ2 : Bσ2

c2

Γ,Γ′σ1 � N2σ1{z ′ := bσ2} : Gσ1
(cut)4

Note that the last application of (cut) is typecorrect since B{x := N1}σ1 and
Bσ2 are the same term: Indeed, by the Substitution Lemma (Lemma 2.34),
B{x := N1}σ1 ≡ B{x := N1}{z := λ x : A. b}, which, by the fact that z does
not occur in B , equals B{x := N1{z := λ x : A. b}} ≡ B{x := N1σ1} ≡ Bσ2.

Similarly, Gσ1{z ′ := bσ2} ≡ Gσ1. Again by the Substitution Lemma, the
term N2{z ′ := z N1}σ1 ≡ N2{z ′ := z N1}{z := λ x : A. b} resulting from the

170

A.2. PROOF OF CUT ELIMINATION

derivation Dcut is β-convertible to (but not the same as!) the term N2{z :=
λ x : A. b}{z ′ := b{x := N1σ1}} ≡ N2σ1{z ′ := bσ2} resulting from the cut-free
derivation.

The cut rank decreases for (cut)4, provided that for every M : A, m(B{x :=
M }) < m(Πx : A. B), in particular for N1σ1. Thus, by induction hypothesis,
(cut)4 can be eliminated.
Cut with formula generated by a left rule

The application of (cut) has the following form:

D0

Γ, z : Πx : A. B ,Γ′ � N1 : A
D1

Γ, z : Πx : A. B ,Γ′, z ′ : B [N1] � N2 : G

Γ, z : Πx : A. B ,Γ′ � N2{z ′ := z N1} : G
(ΠL) R

Γ,Γ′σ � N2{z ′ := z N1}σ : Gσ
(cut)

The derivation R terminates with a judgement Γ � c : Πx : A. B (so σ ≡
{z := c}), which has been generated by a left rule ((ΠL) or (ΣL)). Following
the main premiss of this application, there is a sequence of other applications
of left rules which is eventually terminated by an application of rule (λ) or rule
(var).

• If the sequence of successive applications of left rules terminates with
rule (λ), the application of (λ) can be permuted below the applications
of (ΠL) and (ΣL). Therefore, this case can be reduced to the case “Cut
with formula generated by (λ)” handled above.

• Otherwise, the sequence of successive applications of (ΠL) terminates
with rule (var), which we will examine in the following.

Thus, assume that derivation R has the following form. In order not to
clutter up notation, we present the derivation as if only (ΠL)-rules had been
applied. The reasoning is the same for any combination of (ΠL)- and (ΣL)-
rules.

Γ0 � t0 : T0

Γn−1 � tn−1 : Tn−1

...
Γn � cn : Πx : A. B

(var)

...
(ΠL)n−1

Γ1 � c1 : Πx : A. B

Γ0 � c0 : Πx : A. B
(ΠL)0

where c0 ≡ c and where Γ0 ≡ Γ and Γi+1 ≡ Γi , xi : Pi for a Pi which need
not be specified in detail here. For 1 ≤ i < n, define the substitution γi to be

171

A.2. PROOF OF CUT ELIMINATION

{xi+1 := (ai ti)}, where ai is the variable where (ΠL)i has been applied. Then
cn ∈ dom(Γn) and for 1 ≤ i < n, we have ci ≡ ci+1γi , thus c0 ≡ xnγn−1 . . . γ0.

As a preparation, form new derivations A:

D0

Γ, z : Πx : A. B ,Γ′ � N1 : A
R

Γ � c0 : Πx : A. B

Γ,Γ′σ � N1σ : A
(cut)1

Γ,Γ′σ, x1 : P1, . . . xn : Pn � N1σ : A
(weak)

and B:

D1

Γ, z : Πx : A. B ,Γ′, z ′ : B [N1] � N2 : G
R

Γ � c0 : Πx : A. B

Γ,Γ′σ, z ′ : B [N1]σ � N2σ : Gσ
(cut)2

Note that the cut level of A and B is lower than the level of the original
cut, the rank remains the same.

Since cn ∈ Γn and cn : Πx : A. B , the rule (ΠL) can be applied once more
at position cn , which gives the following subderivation:

A
Γ,Γ′σ, x1 : P1, . . . xn : Pn � N1σ : A

Γ,Γ′σ, x1 : P1, . . . xn : Pn , xn+1 : B [N1]σ � xn+1 : B [N1]σ

Γ,Γ′σ, x1 : P1, . . . xn : Pn � (xn N1σ) : B [N1]σ
(ΠL)n

Call this derivation V.
We can now modify R as follows, by replacing the derivation above (var) by

V and weakening the contexts Γi by defining: Γ′
0 =̂ Γ,Γ′σ and Γ′

i+1 =̂ Γ′
i , xi : Pi .

Γ′
0 � t0 : T0

Γ′
n−1 � tn−1 : Tn−1

V
Γ′

n � (xn N1σ) : B [N1]σ

...
(ΠL)n−1

Γ′
1 � c ′

1 : B [N1]σ

Γ′
0 � c ′

0 : B [N1]σ
(ΠL)0

Note that the validity of each Γ′
i can be shown by a cut of the contexts

Γ, z : Πx : A. B ,Γ′, x1 : P1 . . . xi−1 : Pi−1 with Γ � c0 : Πx : A. B . These cuts
can be eliminated, since they have lower level than the original cut.

With γi as defined above, we now have c ′
n ≡ (xn N1σ) and c ′

i ≡ c ′
i+1γi ,

which gives c ′
0 ≡ (xn N1σ)γn−1 . . . γ0.

With the result of derivation B and the judgement just derived, we can
perform a cut, whose rank is lower than the rank of the original cut (note that
B [N1]σ ≡ B [N1σ] and thus m(B [N1σ]) < m(Πx : A. B).

172

A.2. PROOF OF CUT ELIMINATION

Γ′
0, z

′ : B [N1]σ � N2σ : Gσ Γ′
0 � c ′

0 : B [N1]σ

Γ′
0 � N2σ{z ′ := c ′

0} : Gσ{z ′ := c ′
0}

(cut)

It remains to be shown that the resulting judgement is the same as the
judgement obtained by the original derivation. Note, first, that for all substitu-
tions γi ≡ {xi+1 := (ai ti)}, we have z ′ �∈ FV ((ai ti)) and therefore z ′ �∈ FV (c0).
Besides, z ′ �∈ FV (G), and therefore Γσ ≡ Γ{z := c0} ≡ Γ{z := c0}{z ′ := c ′

0}.
Furthermore, N2{z ′ := zN1}σ ≡ N2{z ′ := zN1}{z := c0} ≡ N2{z :=

c0}{z ′ := c0 N1σ} ≡ N2{z := c0}{z ′ := c ′
0} by the Substitution Lemma

and the following reasoning: Expanding the definitions of c0 and c ′
0, we obtain

(c0 N1σ) ≡ (xnγn−1 . . . γ0 N1σ) ≡ (xn N1σ)γn−1 . . . γ0 ≡ c ′
0 (observe that the

domain of none of the γi occurs in N1σ).
Cut with formula generated by (pair)

Assume the derivation Dcut in ECCG+cut has the following form:

D2

Γ, z : Σx : A. B ,Γ′, z1 : A, z2 : B{x := π1(z)} � N2 : G

Γ, z : Σx : A. B ,Γ′ � N2σ1 : G
(ΣL)

...
...

· · · � · · · (pair)

Γ,Γ′σ2 � N2σ1σ2 : Gσ2
(cut)

with the subderivation

D0

Γ � N0 : A
D1

Γ � N1 : B{x := N0}
Γ � pair(N0,N1) : Σx : A. B

(pair)

inserted at the indicated position, and where the substitution σ1 is defined
as {z1 := π1(z), z2 := π2(z)}, the substitution σ2 as {z := pair(N0,N1)}.

This derivation can be turned into a derivation D of lower complexity,
having the following form:

A B
· · · � · · ·

c1
C

· · · � · · ·
c2

D

· · · � · · ·
c3

where the subderivations are given by:

D2

Γ, z ,Γ′, z1, z2 � N2 : G

D0

Γ � N0 : A
D1

Γ � N1 : B{x := N0}
Γ � pair(N0,N1) : Σx : A. B

(pair)

Γ,Γ′σ2, z1 : A, z2 : B{x := N0} � N2σ2 : Gσ2

(cut)1

173

A.2. PROOF OF CUT ELIMINATION

The type of z2, B{x := N0}, is the result of applying a π-reduction to
B{x := π1(z)}{z := pair(N0,N1)}. The level of (cut)1 is lower than the level
of (cut) in Dcut and thus, by induction hypothesis, (cut)1 can be eliminated.

...
Γ,Γ′σ2, z1 : A, z2 : B{x := N0} � N2σ2 : Gσ2

(cut)1
D0

Γ � N0 : A

Γ,Γ′σ2, z2 : B{x := N0} � N2σ2{z1 := N0} : Gσ2
(cut)2

Note that z1 does not occur in B , G , N0 or N1, thus B{x := N0}{z1 :=
N0} ≡ B{x := N0}, similarly for Γ′σ2, Gσ2.

The rank of (cut)2 is lower than the rank of (cut) in Dcut and thus, by
induction hypothesis, (cut)2 can be eliminated.

...
Γ,Γ′σ2, z2 : B{x := N0} � · · ·

(cut)2
D1

Γ � N1 : B{x := N0}
Γ,Γ′σ2 � N2σ2{z1 := N0}{z2 := N1} : Gσ2

(cut)3

Note that by the Substitution Lemma, the terms N2σ2{z1 := N0}{z2 :=
N1} ≡ N2{z := pair(N0,N1)}{z1 := N0}{z2 := N1} and N2σ1σ2 ≡ N2{z1 :=
π1(z), z2 := π2(z)}{z := pair(N0,N1)} (the term resulting from derivationDcut)
are the same modulo π-conversion.

The rank of (cut)3 is lower than the rank of (cut) inDcut , provided m(B{x :=
N0}) < m(Σx : A. B). Thus, by induction hypothesis, (cut)3 can be elimi-
nated.

2

A.2.2. Discussion

The procedure taken in the case “Cut with formula generated by a left rule”
may seem overly complicated. In the following, we will see where an attempt
to adopt a method suitable for standard predicate logic breaks down.

So assume the situation is the following:

Γ, z : · · ·Γ′ � · · · Γ, z : · · · ,Γ′, z ′ : · · · � · · ·
Γ, z : Πx : A. B ,Γ′ � N : G

(ΠL)1

...
...

Γ � c : Πx : A. B
(ΠL)2

Γ,Γ′{z := c} � N {z := c} : G{z := c} (cut)

where the right subderivation is

D1

∆, q : Πy : D . E ,∆′ � M1 : D
D2

∆, q : Πy : D . E ,∆′, q ′ : E [M1] � M2 : Πx : A. B

∆, q : Πy : D . E ,∆′ � M2{q ′ := (q M1)} : Πx : A. B
(ΠL)2

174

A.3. PROOFS OF MISCELLANEOUS THEOREMS

and thus Γ ≡ ∆, q : Πy : D . E ,∆′ and c ≡ M2{q ′ := (q M1)} . Let us
define Γ0 =̂ ∆, q : Πy : D . E ,∆′, q ′ : E [M1].

In order to move the cut into the right premiss, we first weaken the assump-
tions throughout the left branch of the cut rule, which leads to a derivation:

Γ0, z : · · ·Γ′ � · · · Γ0, z : · · · ,Γ′, z ′ : · · · � · · ·
Γ0, z : Πx : A. B ,Γ′ � N : G

(ΠL)1

We then move the cut upwards into D2 as follows (note that weakening in
the left branch of the cut rule is a necessary prerequisite for being able to do
this):

· · ·
Γ0, z : Πx : A. B ,Γ′ � N1 : G

(ΠL)1
D2

Γ0 � M2 : Πx : A. B

Γ0,Γ
′{z := M2} � N1{z := M2} : G{z := M2}

(cut)

Now, it would be necessary to apply (ΠL) again to this judgement and a
judgement resulting from (a weakening of) derivation D1. However, this turns
out to be impossible, as the context entry q ′ : E [M1] occurs buried inside
the antecedent and cannot be moved to the right, since context entries in
Γ′{z := M2} possibly depend on it.

A.3. Proofs of Miscellaneous Theorems

Proof of Proposition 2.55:

Whenever Γ � ?n�σ : N is derivable, then it is derivable by a
standard derivation.

Proof: We show that whenever Γ � ?n�σ : N is derivable by a derivation D
with main branch of length k , then there is a derivation of the same judgement
whose main branch has length at most k . The proof is by induction on k .

Assume that k = 1. This is only possible if for an application of (MV-base),
which makes the derivation standard.

In order to conclude from k to k +1 for k > 1, we examine the last rule that
has been applied, either (MV-β-Red) or (MV-weak), and exploit permutability
of rules to obtain a standard derivation. Assume that derivation D has the
form:

S1

S2

D′

M2

M1
(U)

M0
(L)

175

A.3. PROOFS OF MISCELLANEOUS THEOREMS

where, by induction hypothesis,

S2

D′

M2

M1
(U)

is in standard form and the upper application (U) is one of the metavariable
rules (side condition S2 does not exist if (U) is (MV-base)).

Case 1: Last rule application is (MV-β-Red), thus (L) is (MV-β-Red).
We further make a case distinction on the rule (U):

• (U) is (MV-base): In this case, the derivation is in standard form, as the
variable x to which (MV-β-Red) is applied has to be in dom(ctxt(?n)),
and there are no other applications of metavariable rules above (U).

• (U) is (MV-weak): If D is not a standard derivation, the following can
go wrong:

Case (a): (L) is applied to a variable x �∈ dom(ctxt(?n))

Either the variable introduced by (U) occurs before or behind the variable
eliminated by (L), or the variable introduced is immediately eliminated
again. The first two cases are covered by the methods of Case (b). In
the third case, the derivation is of the following form:

Γ � t : T

Γ � T : Type
D′

Γ,∆ � ?n�σ : N

Γ, x : T ,∆ � ?n�σ : N
(MV-weak)

Γ,∆{x := t} � (?n�σ){x := t} : N {x := t} (MV-β-Red)

Since x �∈ FV (∆)∪FV (?n�σ)∪FV (N), we conclude that the judgement
derived by (U) and (L) is the same as Γ,∆ � ?n�σ : N , thus the shorter
derivation D′ derives the same judgement.

Case (b): (L) is applied to xi and there is an application (A) of (MV-β-
Red) in D′ applied to an xj , where xi occurs before xj .

The derivation can be of two forms: Either, the variable z introduced by
(U) occurs behind xi , or z occurs before xi (because of Case (a), we may
exclude that z = xi).

In the first case, the derivation has the following form (τ =̂ {x := t}):

Γ � t : T

Γ, xi : T ,∆′ � Z : Type
D′

Γ, xi : T ,∆′,∆′′ � ?n�σ : N

Γ, xi : T ,∆′, z : Z ,∆′′ � ?n�σ : N
(MV-weak)

Γ,∆′τ, z : Z τ,∆′′τ � (?n�σ)τ : N τ
(MV-β-Red)

176

A.3. PROOFS OF MISCELLANEOUS THEOREMS

By Lemma 2.52, we may permute the application of (MV-β-Red) above
the application of (MV-weak) and apply the induction hypothesis above
the application of (MV-β-Red) to the derivation tree obtained after per-
mutation. The resulting derivation is a standard derivation, since by
induction hypothesis, the two conditions on (MV-β-Red) are met and
the relative position of z with respect to other variables introduced by
(MV-weak) has not been affected by the permutation.

In the second case, the derivation has the form

Γ′, z : Z ,Γ′′ � t : T

Γ′ � Z : Type
D′

Γ′,Γ′′, xi : T ,∆ � ?n�σ : N

Γ′, z : Z ,Γ′′, xi : T ,∆ � ?n�σ : N
(MV-weak)

Γ′, z : Z ,Γ′′∆τ � (?n�σ)τ : N τ
(MV-β-Red)

By assumption, there is an application (A) of (MV-β-Red) in D′ which is
applied to an xj with xi < xj (where < denotes position in the context).
Since the derivation above (U) is in standard form, we know that all
variables z ′ introduced by an application of (MV-weak) between (L) and
(A) have z ′ < z < xi < xj . By Lemma 2.53, we can permute application
(A) below all weakenings and by Lemma 2.48, we can then permute (L)
above (A). By application of induction hypothesis, we obtain a standard
derivation.

(Note: This argument is not completely formal. A complete proof would
require induction on the number of occurrences of (MV-β-Red) in D′, and
nested therein, an induction on the number of applications of (MV-weak)
between applications of (MV-β-Red)).

• (U) is (MV-β-Red): If D is not a standard derivation, (L) is applied to
a variable x �∈ dom(ctxt(?n)), or (L) is applied to xi and (U) is applied
to xj , where xi occurs before xj in dom(ctxt(?n)) (this may be assumed,
since the derivation above (U) is in standard form). In both cases, we
can, by Lemma 2.48, permute the applications of (L) and (U) and apply
induction hypothesis to obtain a derivation in standard form.

Case 2: Last rule application is (MV-weak), thus (L) is (MV-weak). Again,
we make a case distinction on the rule (U):

• (U) is (MV-base): In this case, the derivation is in standard form, as
there are no other applications of metavariable rules above (U).

• (U) is (MV-weak): If D is not a standard derivation, (L) introduces a
variable before the variable introduced by (U) (by induction hypothesis,

177

A.3. PROOFS OF MISCELLANEOUS THEOREMS

the derivation above (U) is in standard form). In this case, we can, by
Lemma 2.49, permute (L) and (U) and apply induction hypothesis.

• (U) is (MV-β-Red): The only reason why D may fail to be a standard
derivation is that there is an application (A) of (MV-weak) in D′ which
introduces a variable zj such that zj appears in the context segment
behind the variable zi introduced by application (L). With respect to the
relative variable orders of zi and the variable x eliminated by application
(U), we can distinguish the following situations:

If the derivation has the form:

Γ′ � Zi : Type

Γ′,Γ′′ � t : T
D′

Γ′,Γ′′, x : T ,∆ � ?n�σ : N

Γ′,Γ′′,∆τ � (?n�σ)τ : N τ
(MV-β-Red)

Γ′, zi : Zi ,Γ
′′,∆τ � (?n�σ)τ : N τ

(MV-weak)

and zj is introduced in the context segment Γ′′, x : T ,∆, we may apply
Lemma 2.53 to permute (U) and (L) and apply induction hypothesis.
The resulting derivation is in standard form, because the properties pos-
tulated for applications of (MV-β-Red) are not affected by the permuta-
tion.

If the derivation has the form:

Γ′ � Zi : Type

Γ � t : T
D′

Γ, x : T ,∆′,∆′′ � ?n�σ : N

Γ,∆′τ,∆′′τ � (?n�σ)τ : N τ
(MV-β-Red)

Γ,∆′τ, zi : Zi ,∆
′′τ � (?n�σ)τ : N τ

(MV-weak)

and zj is introduced in the context segment ∆′′, we remark that since x
precedes zj , we can apply Lemma 2.52 to permute (A) below all appli-
cations of (MV-β-Red) and Lemma 2.49 to permute (A) and (L). After
application of the induction hypothesis, we obtain a standard derivation.
(cf. Case 1(b) above, which uses a similar line of reasoning, and the
accompanying note).

2

Proof of Proposition 4.5:

If there is a derivation of Γ � M : A in system ECCG , then there is
a derivation Γ � M ′ : A in the system with the rules of ECCG and
(whnf L), (whnf R), such that:

178

A.3. PROOFS OF MISCELLANEOUS THEOREMS

• M
 M ′

• The rule (� L) is only applied directly below the (var) rule,
and only at the position which is the subject of the (var) rule
(i.e. the variable x with Γ, x : T ,Γ′ � x : T).

• The rule (� R) is only applied directly below (UProp), (UType),
(var) and (� L)

Proof: It has to be shown that applications of (� L) and (� R) can be
moved upwards in the derivation tree, possibly leaving behind a “residue” in
the form of an application of (whnf L) or (whnf R). The proof is by induction
on derivations. We distinguish the following cases:

• (� L) occurs below (UProp) or (UType), for example as follows:

Γ, p : T ′,Γ′ validc

Γ, p : T ′,Γ′ � Prop : Type0
(UProp)

Γ �NT : Type T � T ′

Γ, p : T ,Γ′ � Prop : Type0
(� L)

Using the assumption Γ �NT : Type, the derivation of Γ, p : T ′,Γ′ validc

can be converted into a derivation of Γ, p : T ,Γ′ validc in system ECCN

(Proposition 2.8), from which Γ, p : T ,Γ′ � Prop : Type0 can be derived
by (UProp). Thus, (� L) can be eliminated altogether.

• An application of (� L) below (var) at a position p which is not the
position of the subject x of the (var) rule can, by a similar reasoning, be
eliminated. The derivation

Γ, p : T ′, x : A,Γ′ validc

Γ, p : T ′, x : A,Γ′ � x : A
(var)

Γ �NT : Type T � T ′

Γ, p : T , x : A,Γ′ � x : A
(� L)

becomes
Γ, p : T , x : A,Γ′ validc

Γ, p : T , x : A,Γ′ � x : A
(var)

• If (� L) occurs below a Right-rule or a formation-rule, (� L) can directly
be permuted above it.

• Assume (� L) occurs directly below another application of (� L). By
induction hypothesis, it may be assumed that the upper application of
(� L) is only at the “subject” position of a (var) rule. If both applications
of (� L) are at the same position, these applications can be combined
into one, by transitivity of �. Otherwise, the lower application of (� L)
can be permuted above the upper one.

179

A.3. PROOFS OF MISCELLANEOUS THEOREMS

• Assume (� L) occurs directly below (ΠL), and both rules are applied at
the same position (otherwise, the rule applications can be permuted):

Γ, p : Πx : A. B [x],Γ′ � N1 : A Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G

Γ, p : Πx : A. B [x],Γ′ � N2{p ′ := (p N1)} : G
(ΠL)

Γ, p : T ,Γ′ � N2{p ′ := (p N1)} : G
(� L)

Here, T � Πx : A. B [x]. By the definition of �, T is of the form
Πx : A′. B ′[x] for A′
 A and B ′[x] � B [x], or T is convertible to such
a Π-abstraction. In the latter case, we may assume that Πx : A′. B ′[x],
with the given properties, is a whnf of T .

The above derivation can therefore be transformed to:

Γ, p : Πx : A. B [x],Γ′ � N1 : A

Γ, p : Πx : A′. B ′[x],Γ′ � N ′
1 : A′

Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G

Γ, p : Πx : A′. B ′[x],Γ′, p ′ : B ′[N ′
1] � N ′

2 : G

Γ, p : Πx : A′. B ′[x],Γ′ � N ′
2{p ′ := (p N ′

1)} : G
(ΠL)

Γ, p : T ,Γ′ � N ′
2{p ′ := (p N ′

1)} : G
(whnf L)

If T is already a Π-abstraction, application of (whnf L) can be omitted.
The inferences above the double lines in the left branch are applications
of (� L) at position p and (� R). By the induction hypothesis, the
�-rule applications in the left branch can be propagated upwards in the
derivation tree, yielding a derivation of Γ, p : Πx : A′. B ′[x],Γ′ � N ′

1 : A′

having the properties stated in the proposition, where N1
 N ′
1.

Similarly, propagating application of (� L) at positions p and p ′ in the
right branch, the derivation of Γ, p : Πx : A. B [x],Γ′, p ′ : B [N1] � N2 : G
can be turned into a derivation of Γ, p : Πx : A′. B ′[x],Γ′, p ′ : B ′[N ′

1] �
N ′

2 : G , with N2
 N ′
2. Renewed application of (ΠL) and (whnf L) gives

the desired result.

The argument for an occurrence of (� L) below (ΣL) is similar.

• Applications of (� R) can obviously be permuted above all applications
of Left-rules.

• As to permutations of (� R) above formation rules, we consider the
following case, all other formation rules being similar:

Γ � A : Typej Γ, x : A � B : Typej

Γ � Πx : A.B : Typej
(Π-Form2)

Γ � Πx : A.B : T
(� R)

180

A.3. PROOFS OF MISCELLANEOUS THEOREMS

Here, Typej � T , thus T is Typei for a i > j or can be reduced to a term
having this form. We assume the latter case, and by a similar reasoning
as further above, transform the derivation into

Γ � A : Typej

Γ � A : Typei
(� R)

Γ, x : A � B : Typej

Γ, x : A � B : Typei
(� R)

Γ � Πx : A.B : Typei
(Π-Form2)

Γ � Πx : A.B : T
(whnf R)

• For permutations of (� R) above Right-rules, we consider the case of
(ΠR), the rule (ΣR) is treated similarly. Assume the deduction has the
form

Γ, x : A � M : B

Γ � λ x : A.M : Πx : A.B
(ΠR)

Γ � λ x : A.M : T
(� R)

where Πx : A.B � T . By a similar reasoning as above, this derivation
can be converted into

Γ, x : A � M : B

Γ, x : A � M : B ′ (� R)

Γ, x : A′ � M : B ′ (� L)

Γ � λ x : A′.M : Πx : A′.B ′ (ΠR)

Γ � λ x : A′.M : T
(whnf R)

Here, Πx : A′.B ′ � Πx : A.B . Note that the term λ x : A′.M resulting
from this derivation is convertible to the term λ x : A.M of the original
derivation, because A
 A′.

2

181

Bibliography

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit sub-
stitutions. Journal of Functional Programming, 1(4):375–416, Oc-
tober 1991. 1.3.1, 4.3.4

[And86] Peter B. Andrews. An introduction to mathematical logic and type
theory: To truth through proof. Academic Press, 1986. 1.3.2

[Bar84] H.P. Barendregt. The Lambda Calculus. Elsevier Science Publish-
ers, 1984. 2.3.2, 2.3.2, 2.3.3

[Bar92] Henk Barendregt. Handbook of Logic in Computer Science, chap-
ter Lambda Calculi with Types, pages 117–309. Clarendon Press,
1992. 3.3.1

[Bar98] B. Barras et al. The Coq Proof Assistant Reference Manual, Ver-
sion 6.2. INRIA Rocquencourt – CNRS - ENS Lyon, May 1998.
1.1.5

[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and
W. Zuber. Proof theory at work: program development in the
Minlog system. In W. Bibel and P. Schmitt, editors, Automated
Deduction — A Basis for Applications. Kluwer Academic Publish-
ers, 1998. 1.1.2

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic
Press, 1979. 5.2

[BSvH+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ire-
land, and Alan Smaill. Rippling: a heuristic for guiding inductive
proofs. Artificial Intelligence, (62):185–253, 1993. 5.2

[CH88] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
Information and Computation, 76(2/3):95–120, 1988. 1.1, 2.1

182

Bibliography

[Con86] R.L. Constable et al. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, 1986. 1.1.5, 1.3.2

[dB70] N. G. de Bruijn. The mathematical language AUTOMATH, its
usage and some of its extensions. In Symposium on automatic
demostration, volume 125 of Lecture Notes in Mathematics, pages
29–61, 1970. 1.1.5, 3.3.1

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation. Indag. Math., 34:381–
392, 1972. A.1.1

[Der85] Nachum Dershowitz. Termination. In Proceedings of the First In-
ternational Conference on Rewriting Techniques and Applications,
volume 202 of Lecture Notes in Computer Science, pages 180–224,
Berlin, May 1985. Springer Verlag. 2.4

[DHK94] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order
unification via explicit substitutions. Technical Report 94R243,
CRIN, 1994. 2.7

[DHK95] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order
unification via explicit substitutions. In Dexter Kozen, editor, Pro-
ceedings of the 10th IEEE Symposium on Logic in Computer Sci-
ence, pages 366–374, 1995. Extended abstract. 1.3.3, 1.3.3, 2.6.1,
2.7, 4.3.3

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfen-
ning. Unification via explicit substitutions: The case of higher-
order patterns. In Joint International Conference and Symposium
on Logic Programming (JICSLP’96), 1996. 1.3.3, 2.7, 4.3.4

[Dow93] Gilles Dowek. A complete proof synthesis method for the cube of
type systems. Journal of Logic and Computation, 3(3):287–315,
1993. 1.3.2, 1.3.2, 4.3.1

[Ell89] Conal M. Elliott. Higher-order unification with dependent function
types. In N. Dershowitz, editor, Proc. 3rd Intl. Conf. on Rewrit-
ing Techniques and Applications, volume 355 of Lecture Notes in
Computer Science, pages 121–136. Springer Verlag, 1989. 1.1.5,
1.3.3, 4.3.5, 4.3.5, 4.3.5, 4.3.5

183

Bibliography

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer.
IMPS: An interactive mathematical proof system. Journal of Au-
tomated Reasoning, 11:213–248, 1993. 1.1.4, 1.1.5

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics.
D. Reidel Publishing Company, 1983. 4.4.2

[Gal87] Jean H. Gallier. Logic for Computer Science. John Wiley & Sons,
1987. 4.4.1

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210 and 405–431, 1934. 1.3.2,
3.1.1

[Gir72] J.Y. Girard. Interprétation fonctionnelle et élimination des
coupures dans l’arithmétique d’ordre supérieur. PhD thesis, Uni-
versité Paris 7, 1972. 1.1.3, 3.3.1

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1989. 1.1.3

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL – A the-
orem proving environment for higher order logic. Cambridge Uni-
versity Press, 1993. 1.1.5, 1.3.1

[GW88] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Techni-
cal Report SRI-CSL-88-9, SRI International, August 1988. 1.1.4

[Har85] Robert Harper. Aspects of the Implementation of Type Theory.
PhD thesis, Cornell University, April 1985. 1.3.2, 1.3.2

[Has97] The Haskell Report, Version 1.4, April 1997. Available from
http://www.haskell.org/. 1.1.3

[Hel91] Leen Helmink. Resolution and type theory. Science of Computer
Programming, 17:119–138, 1991. 1.1.5

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. In Proceedings of the 2nd IEEE Symposium on
Logic in Computer Science, pages 194–204, June 1987. 1.1.5, 1.3.2,
3.3.1

[Hin97] J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1997. 1.1.1

184

Bibliography

[HN88] S. Hayashi and H. Nakano. PX: A Computational Logic. MIT
Press, 1988. 1.1.2

[HP91] Robert Harper and Robert Pollack. Type checking with universes.
Theoretical Computer Science, 89:107–136, 1991. 2.1.1, 4.2

[Hue73] Gérard Huet. A mechanization of type theory. In Proceedings of
the 3rd International Joint Conference on Artificial Intelligence,
pages 139–146, 1973. 1.3.2, 1.3.2

[Hue75] Gérard Huet. A unification algorithm for typed lambda-calculus.
Theoretical Computer Science, pages 27–57, 1975. 1.3.2, 1.3.2,
1.3.3, 2.7, 4.3.3, 4.3.5, 4.3.5, 4.3.5

[KBS91] Bernd Krieg-Brückner and Donald Sannella. Structuring specifi-
cations in-the-large and in-the-small: Higher-order functions, de-
pendent types and inheritance in SPECTRAL. In Proceedings of
TAPSOFT’91, volume 494 of Lecture Notes in Computer Science,
pages 313–336, 1991. 1.1.4, 1.1.4

[Kle52a] S. C. Kleene. Permutability of inferences in Gentzen’s Calculi LK
and LJ. Memoirs of the A.M.S, 10, 1952. 4.4.3

[Kle52b] S.C. Kleene. Introduction to Meta-Mathematics. North Holland,
1952. 1.1.1, 1.1.2, 4.23

[Koh98] Michael Kohlhase. Higher-order automated theorem proving. In
W. Bibel and P. Schmitt, editors, Automated Deduction — A Basis
for Applications. Kluwer Academic Publishers, 1998. 1.3.2

[Les94] Pierre Lescanne. From λσ to λ ν a journey through calculi of
explicit substitutions. In Proceedings of POPL’94, pages 60–69,
January 1994. 1.3.1, 1.3.1

[Löb76] M. H. Löb. Embedding first order predicate logic in fragments of
intuitionistic logic. Journal of Symbolic Logic, 41(4):705–718, Dec.
1976. 1.1.3

[LP92] Zhaohui Luo and Robert Pollack. Lego Proof Development System:
User’s Manual. University of Edinburgh, May 1992. 1.1.3, 1.1.5,
4.3

[Luo90] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis,
University of Edinburgh, July 1990. 1.1.4, 2.1, 2.1, 2.1.3, 2.1.3,
2.1.4, 2.5.2, 2.5.2, 2.5.2, 2.5.2

185

Bibliography

[Luo94] Zhaohui Luo. Computation and Reasoning. Oxford University
Press, 1994. 1.1.1, 2.1

[Mag95] Lena Magnusson. The Implementation of ALF - a Proof Editor
based on Martin-Löf ’s Monomorphic Type Theory with Explicit
Substitution. PhD thesis, Chalmers University of Technology, 1995.
1.3.1, 1.3.1, 1.3.1

[Mel95] Paul-André Melliès. Typed λ-calculi with explicit substitutions
may not terminate. In Typed Lambda Calculi and Applications,
volume 902 of Lecture Notes in Computer Science, 1995. 1.3.1,
1.3.1, 1.3.1

[Mil91] Dale Miller. A logic programming language with lambda-
abstraction, function variables and simple unification. Journal of
Logic and Computation, 1(4):497–536, 1991. 4.3.4, 4.3.4

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14:321–358, 1992. 2.7

[Mit96] John Mitchell. Foundations for Programming Lanugages. MIT
Press, 1996. 1.1.1

[MN94] Lena Magnusson and Bengt Nordström. The ALF proof editor and
its proof engine. In H. Barendregt and T. Nipkow, editors, Types
for Proofs and Programs, volume 806 of Lecture Notes in Computer
Science, pages 213–237, 1994. 1.1.5

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sce-
drov. Uniform proofs as a foundation for logic programming. An-
nals of Pure and Applied Logic, 51:125–157, 1991. 4.4.3

[Muñ96] Cézar Muñoz. Confluence and preservation of strong normalisa-
tion in an explicit substitutions calculus (extended abstract). In
Proceedings of the 11th IEEE Symposium on Logic in Computer
Science, New Brunswick, New Jersey, July 1996. IEEE Computer
Society Press. 1.3.1, 1.3.1

[Muñ97] Cézar Muñoz. Un calcul de substitutions pour la représentation de
preuves partielles en théorie de types. Thèse de doctorat, Université
Paris 7, 1997. 1.1.5, 1.3.1, 1.3.1, 1.3.1

[NL96] George Necula and Peter Lee. Proof-carrying code. Technical
Report CMU-CS-96-165, Carnegie Mellon University, September
1996. 1.1.2

186

Bibliography

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In
Proc. Fifth International Logic Programming Conference, pages
810–827, 1988. 1.1.5, 2.7

[NP95] Tobias Nipkow and Christian Prehofer. Type reconstruction for
type classes. Journal of Functional Programming, 5(2):201–224,
1995. 1.1.5

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Program-
ming in Martin-Löf ’s Type Theory. Oxford University Press, 1990.
1.1.1

[OK95] Jens Otten and Christoph Kreitz. A connection based proof
method for intuitionistic logic. In P. Baumgartner, R. Hähnle, and
J. Posegga, editors, Proceedings of TABLEAUX’95, volume 918
of Lecture Notes in Artificial Intelligence, pages 122–137. Springer
Verlag, 1995. 1.3.3

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verifi-
cation System. In Deepak Kapur, editor, Proceedings of CADE-11,
volume 607 of Lecture Notes in Artificial Intelligence, pages 748–
752. Springer Verlag, October 1992. 1.1.5

[Ott97] Jens Otten. ileanTAP: An intuitionistic theorem prover. In
D. Galmiche, editor, Proceedings of TABLEAUX’97, volume 1227
of Lecture Notes in Artificial Intelligence, pages 307–312. Springer
Verlag, 1997. 1.3.3

[Pau89] Lawrence Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5:363–397, 1989. 2.7

[Pau91] Larry Paulson. ML for the working programmer. Cambridge Uni-
versity Press, 1991. 1.1.3

[Pau94] Lawrence Paulson. Isabelle - a generic theorem prover, volume
828 of Lecture Notes in Computer Science. Springer Verlag, 1994.
1.1.5, 1.3.1, 2.7

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified
meta-programming. In Proceedings of the 4th IEEE Symposium
on Logic in Computer Science, pages 313–322. IEEE Computer
Society Press, June 1989. 2.7

187

Bibliography

[Pfe91a] Frank Pfenning. Logic programming in the LF logical framework.
In Huet and Plotkin, editors, Logical Frameworks, pages 149–181.
Cambridge University Press, 1991. 1.1.5

[Pfe91b] Frank Pfenning. Unification and anti-unification in the Calculus
of Constructions. In Proceedings of the 6th IEEE Symposium on
Logic in Computer Science, pages 74–85. IEEE Computer Society
Press, July 1991. 1.3.3, 4.3.4, 4.3.4, 4.3.5

[Pfe95] Holger Pfeifer. Eine reflexive Architektur zur Darstellung von
Beweis- und Softwareentwicklungsschritten in Typentheorie. Diplo-
marbeit, Universität Ulm, 1995. 5.2

[Pit87] A. M. Pitts. Polymorphism is set theoretic, constructively. In D. H.
Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory
and Computer Science, volume 283 of Lecture Notes in Computer
Science, pages 12–39. Springer Verlag, 1987. 1.1.2

[PM89] Christine Paulin-Mohring. Extraction de programmes dans le Cal-
cul des Constructions. PhD thesis, Université Paris 7, 1989. 1.1.2

[PMW93] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML
programs in the system Coq. Journal of Symbolic Computation,
11:1–34, 1993. 1.1.2

[Pol94] Robert Pollack. The Theory of LEGO – A proof checker for the
Extended Calculus of Constructions. PhD thesis, University of Ed-
inburgh, 1994. 1.1.3

[Pra65] Dag Prawitz. Natural Deduction – A proof-theoretic study.
Almqvist & Wiksells, 1965. 2.1.4, 2.1.4

[Pre95] Christian Prehofer. Solving Higher-Order Equations: From Logic
to Programming. PhD thesis, TU München, 1995. 2.7

[PW91] David Pym and Lincoln Wallen. Logical Frameworks, chapter
Proof-search in the λΠ-calculus, pages 311–340. Cambridge Uni-
versity Press, 1991. 1.3.2

[Pym90] David Pym. Proofs, Search and Computation in General Logic.
PhD thesis, University of Edinburgh, 1990. 1.3.2, 1.3.2, 1.3.3,
4.3.5, 4.3.5, 4.3.5, 4.3.5

188

Bibliography

[Rey84] John Reynolds. Polymorphism is not set-theoretic. In Int. Symp.
on Semantics of Data Types, volume 173 of Lecture Notes in Com-
puter Science, pages 145–156. Springer Verlag, 1984. 1.1.2

[RSSB98] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured
specifications and interactive proofs with KIV. In W. Bibel and
P. Schmitt, editors, Automated Deduction — A Basis for Applica-
tions. Kluwer Academic Publishers, 1998. 1.1.4

[Rue95] Harald Rueß. Formal Meta-Programming in the Calculus of Con-
structions. PhD thesis, Universität Ulm, 1995. 5.2

[SFH92] Dan Sahlin, Torkel Franzén, and Seif Haridi. An intuitionistic
predicate logic theorem prover. Journal of Logic and Computation,
2(5):619–656, 1992. 1.3.3, 4.4.3

[Sha92] N. Shankar. Proof search in the intuitionistic sequent calculus. In
CADE-11, volume 607 of Lecture Notes in Computer Science, 1992.
1.3.3, 4.4.3

[SJ94] Y. V. Srinivas and R. Jüllig. Specware: Formal support for com-
posing software. Technical Report KES.U.94.5, Kestrel Institute,
1994. Updated version appeared in Proc. of the Conference on
Mathematics of Program Construction, Kloster Irsee, Germany,
July 1995. 1.1.4

[Sor96] Maria Sorea. Integration von Gleichheitsbeweisen in einen typen-
theoretischen Beweiser. Diplomarbeit, Universität Ulm, 1996. 4.4

[Spe92] The Munich Spectrum Group. The requirement and design specifi-
cation language Spectrum. An informal introduction. Version 0.3.
Technical report, TU München, May 1992. 1.1.4

[SS97] Martin Strecker and Maria Sorea. Integrating an equality prover
into a software development system based on type theory. In
G. Brewka, Ch. Habel, and B. Nebel, editors, Proceedings KI’97,
volume 1303 of Lecture Notes in Artificial Intelligence, pages 147–
158, 1997. 5.2

[Sta79] R. Statman. Intuitionistic propositional logic is polynomial-space
complete. Theoretical Computer Science, 9:67–72, 1979. 4.4.3

[Tam96] Tanel Tammet. A resolution theorem prover for intuitionistic logic.
In Proceedings of CADE-13, volume 1104 of Lecture Notes in Com-
puter Science, pages 2–16. Springer Verlag, 1996. 1.3.3

189

Bibliography

[Tho91] Simon Thompson. Type Theory and Functional Programming.
Addison-Wesley, 1991. 1.1.1

[TS96] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, vol-
ume 43 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1996. 1.1.3, 4.4.3

[vHLS97] F.W. von Henke, M. Luther, and M. Strecker. Typelab: An
environment for modular program development. In M. Dauchet
M. Bidoit, editor, Proceedings of TAPSOFT’97, volume 1214 of
Lecture Notes in Computer Science, pages 851–854, 1997. 1.1

[Wag95] Matthias Wagner. Entwicklung und Implementierung eines Beweis-
ers für konstruktive Logik. Diplomarbeit, Universität Ulm, 1995.
4.4.1, 4.23

[Wei95] Klaus Weich. Beweissuche in intuitionistischer Logik. Diplomar-
beit, Universität München, 1995. 4.4.3

[Wel94] Joe Wells. Typability and type checking in the second-order
lambda calculus are equivalent and undecidable. In Proceedings
of the 9th IEEE Symposium on Logic in Computer Science, pages
176–185, 1994. 1.1.3, 4.3

[Wir86] Martin Wirsing. Structured algebraic specifications: A kernel lan-
guage. Theoretical Computer Science, 42:123–249, 1986. 1.1.4

190

Index

<P , 53
FV

free variables, 29, 42
MVars, 52
=⇒

one step proof transformation,
142

=⇒∗

proof transformation, 142
⇒

defining unification, 122
$P , 53
�, 30
�P , 57
(, 72
svars, 40
validc, 31
→β, 46
⇒1, 49
→π, 46
→1, 47
s→, 42
�, 47
�G , 95
�C , 95
�N , 95

context, 30
convertibility, 47
cumulativity, 30
cut, 61
cut elimination, 101

domain

of context, 30
of instantiation, 72
of substitution, 41

free variables, 29, 42

ground instantiation, 72

instantiation
combination of, 72
properties of, 75

judgement, 31

main branch, 95
main premiss, 95
measure

for PTS, 106

normal form, 47
normalization

strong, 34, 90
weak, 34

parallel substitution, 43, 161
pattern, 134
pattern metavariable, 134
principal formula, 95
principal type, 33
proof problem

valid, 53
proof problem, 53

well-typed, 58
PTS, 102

redex, 47

191

Index

reduct, 47

strengthening, 59
subcontext, 30
subterm, 29
system

ECCG+cut , 93
ECCG , 93
ECCM , 56
ECCN , 93
ECC , 27

type subterm, 29

valid
instantiation, 75
proof problem, 53
substitution, 40

weak head normal form, 47
weakening, 59
well-typed

instantiation, 75
whnf, 47

192

Zusammenfassung
(Abstract in German)

Diese Dissertation beschäftigt sich mit interaktiver Beweiskonstruktion und
automatisierter Beweissuche in Typentheorien, insbesondere dem Konstruk-
tionskalkül (Calculus of Constructions) und Teilsystemen davon.

Typentheorien kombinieren eine funktionale Sprache, ein starkes Typsys-
tem und eine Logik höherer Ordnung in einem einheitlichen Rahmen und eignen
sich somit als Grundlage für Spezifikations- und Verifikationswerkzeuge. So
lassen sich unter anderem Spezifikationen als Typen darstellen und Realisierun-
gen und Verfeinerungen von Spezifikationen innerhalb des Kalküls selbst ent-
wickeln und als korrekt nachweisen.

Dieser Ausdrucksmächtigkeit steht die Schwierigkeit gegenüber, geeignete
Mechanismen zur Unterstützung von Deduktionsprozessen in Typentheorien
bereitzustellen. Zur Lösung dieser Problematik leistet die vorliegende Disser-
tation einen zweifachen Beitrag: Es werden allgemeine Methoden untersucht,
mit denen Beweise in Typentheorien entwickelt werden können; daraufhin wer-
den spezielle Verfahren vorgestellt, die eine Automatisierung der Beweissuche
in eingeschränkten Fragmenten des Konstruktionskalküls erlauben.

Im allgemeinen erfordert Beweisentwicklung in Typentheorien die Kon-
struktion eines Terms M , der in einem Kontext Γ von einem Typ A ist. In logi-
schem Zusammenhang kann Γ als Menge von Hypothesen aufgefaßt werden und
A als zu beweisende Aussage. In Erweiterung dessen enthält Γ in Typentheo-
rien Variablendeklarationen, wodurch Bindungsstrukturen wie in funktionalen
Programmiersprachen entstehen; zudem können Typen von vorher deklarierten
Variablen abhängen (dependent types).

Für den zu konstruierenden Term M kann eine Metavariable eingeführt wer-
den, die im Verlauf des Beweises sukzessive instanziiert wird. Es werden einige
Probleme identifiziert, die bei einer naiven Verwendung von Metavariablen
auftreten. Insbesondere führen Instanziierung von Metavariablen und Reduk-
tion von Termen, je nach Reihenfolge der Anwendung, zu unterschiedlichen
Ergebnissen und möglicherweise zu typ-inkorrekten Termen. Zur Lösung der

193

Probleme wird ein Kalkül mit Metavariablen und expliziten Substitutionen
vorgeschlagen, dessen wesentlichste Idee es ist, die bei einer Reduktion an-
fallenden Substitutionen an Metavariablen aufzubewahren und sie erst bei
deren Instanziierung auszuführen. Es wird nachgewiesen, daß der entstehende
Kalkül wünschenswerte Eigenschaften wie Konfluenz und Termination der Re-
duktionsrelation sowie Entscheidbarkeit der Typisierung besitzt und zudem die
erwähnten Probleme beseitigt.

Einer unmittelbaren Automatisierung der Beweisentwicklung steht im Wege,
daß die Typisierungsrelation in Typentheorien üblicherweise in Form eines
Kalküls des Natürlichen Schließens durch Angabe von Einführungs- und Elimi-
nationsregeln definiert wird. Bei einer vom Beweisziel ausgehenden Rückwärts-
anwendung dieser Regeln müssen unter Umständen Terme erraten werden, so
daß ein auf diesen Regeln basierendes Verfahren impraktikabel ist. Stattdessen
wird ein Sequenzenkalkül definiert, der die Einführungs- und Elimination-
sregeln ersetzt durch Regeln, die (Typ-)Terme im Sukzedens bzw. Anteze-
dens zerlegen. Dieses Vorgehen ist angelehnt an entsprechende Verfahren in
der Prädikatenlogik, wird jedoch erschwert dadurch, daß die Reduktionsrela-
tion in die Betrachtungen einbezogen werden muß. Der Sequenzenkalkül wird
als korrekt in Bezug auf den Kalkül des Natürlichen Schließens nachgewiesen.
Der Beweis der Vollständigkeit verwendet ein Schnitteliminations-Verfahren,
das gegenüber dem aus der Prädikatenlogik bekannten substantiell erweit-
ert werden muß, um das Fehlen bestimmter struktureller Regeln (wie z.B.
Vertauschung von Hypothesen) zu kompensieren. Der Vollständigkeitsbeweis
wird nicht für den gesamten Konstruktionskalkül durchgeführt, sondern nur
für Fragmente, für die eine Maßfunktion auf Termen mit bestimmten Eigen-
schaften existiert. Es wird gezeigt, daß eine solche Maßfunktion gerade für die
prädikativen Systeme des Lambda-Würfels, einer Klassifikation der Subsysteme
des Konstruktionskalküls, angegeben werden kann.

Die zuvor beschriebenen Konzepte – Metavariablen, Kalkül mit expliziten
Substitutionen und Sequenzenkalkül – bilden die Basis für praktikable Be-
weisverfahren, wie sie in dem vom Autor mitentwickelten Typelab-System
implementiert sind. Durch Einführung von Metavariablen für existentiell quan-
tifizierte Variablen und anschließende Unifikation kann ein noch bestehender
Nichtdeterminismus des reinen Sequenzenkalküls abgemildert werden. Es wer-
den durch Transformation des Sequenzenkalküls Anforderungen abgeleitet, die
eine Unifikationsprozedur zu erfüllen hat, und es wird ein in diesem Sinne kor-
rekter Unifikationsalgorithmus angegeben. Insbesondere wird sichergestellt,
daß die durch Unifikation erhaltenen Lösungen typkorrekt sind. Der Algorith-
mus ist nicht vollständig bezüglich β-Äquivalenz, jedoch läßt sich eine Analogie
herstellen zu den aus dem einfachen Lambda-Kalkül bekannten “Pattern”. Die
hier entwickelten Mechanismen eignen sich unter anderem für Beweissuche in

194

der intuitionistischen Prädikatenlogik, die sich direkt in den Konstruktions-
kalkül einbetten läßt. Vor allem werden die bei der Anwendung von Quan-
torenregeln relevanten Eigenvariablenbedingungen erfüllt von typkorrekten In-
stanziierungen von Metavariablen, wie sie durch Unifikation entstehen.

195

Lebenslauf Martin Strecker

17.3.1966 Geboren in Darmstadt
1972 - 1976 Grundschule
1976 - 1985 Gymnasium
1985 - 1990 Studium der Informatik mit Nebenfach Mathematik

an der Technischen Hochschule Darmstadt
1990 - 1991 Studienjahr an dem

Institut National Polytechnique de Grenoble / Frankreich
1991 - 1999 Wissenschaftlicher Angestellter an der Universität Ulm

196

	Titlepage
	Abstract
	Acknowledgements
	Contents
	Figures
	1 Introduction
	1.1 Background and Applications
	1.1.1 The Essence of Type Theory
	1.1.2 Intuitionistic Logic and Type Theory
	1.1.3 Dependent types
	1.1.4 Specifications and mathematical theories
	1.1.5 Proof Assistants

	1.2 Methods
	1.2.1 ``Construction'': Metavariables
	1.2.2 ``Deduction'': Proof Search

	1.3 Survey of this thesis
	1.3.1 Metavariables
	1.3.2 Theory of proof search
	1.3.3 Pragmatics of proof search

	2 A Calculus with Metavariables
	2.1 The Extended Calculus of Constructions
	2.1.1 Base calculus -- Term language
	2.1.2 Base calculus -- Typing
	2.1.3 Properties of the base calculus
	2.1.4 Base calculus -- Encodings

	2.2 Introducing Metavariables
	2.3 Term calculus with Metavariables
	2.3.1 Metavariables
	2.3.2 Reduction Relations
	2.3.3 Properties of the Term Calculus

	2.4 Proof Problems
	2.5 Typing
	2.5.1 Typing: Rules and Definitions
	2.5.2 Some properties of typing
	2.5.3 Type inference algorithm

	2.6 Solutions of Metavariables
	2.6.1 Instantiations
	2.6.2 Verifying instantiations

	2.7 Functional Representation of Metavariables
	2.7.1 Definition of the Functional Translation
	2.7.2 Strong Normalization of the Calculus with Metavariables

	3 A Sequent Calculus Characterization
	3.1 Natural Deduction and Sequent Systems
	3.1.1 Survey
	3.1.2 Definition of the systems

	3.2 Properties of Sequent Systems
	3.2.1 Correctness
	3.2.2 Completeness

	3.3 A Measure for Cut Elimination
	3.3.1 The Lambda-Cube
	3.3.2 Facts about Pure Type Systems

	4 Methods of Proof Search
	4.1 Introduction
	4.2 The Structure of Proofs
	4.3 Unification
	4.3.1 Unification Problems
	4.3.2 First-order unification
	4.3.3 Higher-order unification
	4.3.4 Unification of Higher-Order ``Patterns''
	4.3.5 Discussion

	4.4 Tableau-Style Proof Search
	4.4.1 Sequent Calculus Rules
	4.4.2 Eigenvariable Conditions
	4.4.3 Optimizations of Proof Search

	5 Conclusions
	5.1 Summary of Results
	5.2 Evaluation and Perspectives

	A Appendix
	A.1 A formulation with de Bruijn Indices
	A.1.1 Elementary concepts of de Bruijn Indices
	A.1.2 Term calculus with de Bruijn Indices
	A.1.3 Typing with de Bruijn Indices
	A.1.4 Definition of instantiations using de Bruijn Indices

	A.2 Proof of Cut Elimination
	A.2.1 Proof
	A.2.2 Discussion

	A.3 Proofs of Miscellaneous Theorems

	Bibliography
	Index

