
Algebraic Decoding
over Finite and Complex Fields
using Reliability Information

DISSERTATION
zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS
(DR.-ING.)

der Fakultät für Ingenieurwissenschaften,
Informatik und Psychologie der Universität Ulm

von

Mostafa Hosni Mohamed
aus Riad - Saudi Arabien

Gutachter: Prof. Dr.-Ing. Martin Bossert

Prof. Dr.-Ing. Jürgen Freudenberger

Amtierender Dekan: Prof. Dr. rer.nat. Frank Kargl

Ulm, 26.09.2017

To Nirvana and Hassan,
to whom I owe almost everything.

Preface

This dissertation presents recent results of my research activities at the Institute
of Communications Engineering, Ulm University. Parts of the results have been
published within the following articles in conference proceedings:

[1] M. H. Mohamed, Johan S. R. Nielsen, and Martin Bossert. Reduced List-
Decoding of Reed–Solomon Codes Using Reliability Information. In Pro-
ceedings of the 21st International Symposium on Mathematical Theory of
Networks and Systems (MTNS), Groningen, the Netherlands, July 2014.

[2] M. H. Mohamed and Martin Bossert. A Chase-like Decoding Algorithm
for Reed–Solomon Codes Based on the Extended Euclidean Algorithm. In
Proceedings of the 10th International ITG Conference on Systems, Commu-
nications and Coding (SCC), Hamburg, Germany, February 2015

[3] Henning Zörlein, Shrief Rizkalla, M. H. Mohamed, and Martin Bossert. De-
terministic Compressed Sensing with Power Decoding for Complex Reed–
Solomon Codes. In Proceedings of the 10th International ITG Conference on
Systems, Communications and Coding (SCC), Hamburg, Germany, Febru-
ary 2015.

[4] M. H. Mohamed, Henning Zörlein, and Martin Bossert. Recursive Enhance-
ment of Intrinsic Soft Information for Complex Reed–Solomon Codes. In
Compressed Sensing Theory and its Applications to Radar, Sonar and Re-
mote Sensing (CoSeRa), Aachen, Germany, September 2016.

[5] M. H. Mohamed, Sven Puchinger, and Martin Bossert. Guruswami–Sudan
List Decoding for Complex Reed–Solomon Codes. In Proceedings of the
11th International ITG Conference on Systems, Communications and Cod-
ing (SCC), Hamburg, Germany, February 2017.

Parts of my work have been supported by the German research council Deutsche
Forschungsgemeinschaft (DFG) under Grant Bo 867/35-1.

iii

Acknowledgements

This dissertation contains most of my work as PhD student at the Institute of
Communications Engineering at Ulm University from June 2012 until July 2017.
During these five years, I was honored to have the support of many people to
whom I would like to express my gratitude.
First and foremost, I would like to thank my doctoral supervisor Martin

Bossert for the continuous support and his trust in me to be part of his doctoral
family. He provided me and all my colleagues with a great working environment
full of motivation, creativity and excellence.
Furthermore, I would like to express my gratitude to Prof. Dr.-Ing. Jürgen

Freudenberger from Hochschule Konstanz for taking the time to review my the-
sis. I would also like to thank Prof. Dr.-Ing. Christian Damm and Prof. Dr.-Ing.
Stephan Reuter for being part of the colloquium.
I am also very thankful for the time I spent working with Antonia Wachter-

Zeh, Vladimir Sidorenko, Johan S. H. Rosenkilde (né Nielsen) and Henning
Zörlein for teaching me how to be a professional researcher through fruitful
discussions and their always-available constructive feedback.
I would like to express my gratitude to all of my (former) colleagues, both

doctoral candidates and staff members, who made my time in the institute worth
while. Special thanks to my fantastic officemates: Susanne Sparrer for being so
relentless in helping me become a better German speaker, and Sven Puchinger
for restoring part of my faith in mathematics once more. I would like also to
give thanks to those who helped me in proofreading parts of this thesis: Susanne
Sparrer, Sven Müelich, Michael Schelling, Zaid Dhannoon, and Arthur Witt.
Last but not the least, my deepest gratitude and love belong to my lovely wife

Menna for her support, superhuman patience, and occasional well-timed advice.
I love you so much.

A shout-out to my little Maya. I love you, my princess.

Mostafa H. Mohamed
Ulm, September 2017

v

Abstract

In this dissertation, new algebraic decoding algorithms for Reed–Solomon codes
are developed, all of which use reliability information. The two main scenar-
ios are Reed–Solomon codes defined over finite fields and the complex field.
For each scenario, we introduce two new algorithms: a syndrome-based and an
interpolation-based decoder.
For the first scenario, a syndrome-based method which depends on an in-

termediate decoding result obtained by the extended Euclidean algorithm is
investigated. This method is suitable only for high-rate codes, where one or two
additionally correctable errors are valuable. The second method in this scenario,
utilizes the same intermediate result to perform an interpolation step similar to
the Wu algorithm but with a reduced number of interpolation points. As a
results, the complexity of the interpolation step is reduced considerably.
The second scenario is the decoding of complex-valued Reed–Solomon codes,

which recently gained attention in deterministic Compressed Sensing schemes.
They allow the use of known algebraic decoding algorithms for sparse vector
reconstruction. It is also possible to extract and exploit intrinsic reliability in-
formation. The first decoding method for this scenario performs a multi trial
error/erasure decoding procedure to enhance the quality of the reliability infor-
mation. While the other is a list decoder based on both the Guruswami–Sudan
algorithm and generelized minimum distance decoding.
The performance of all the aforementioned algorithms has been investigated

and compared with similar state-of-the-art algorithms. Without exceptions,
their performance surpasses that of their counterparts.
The second part of this work has been supported by the German research

council Deutsche Forschungsgemeinschaft (DFG) under Grant Bo 867/35-1.

vii

Contents

1 Introduction and Motivation 1

2 Basic Definitions 5
2.1 Finite Fields . 5
2.2 Metrics . 6

2.2.1 Hamming Distance . 7
2.2.2 Euclidean Distance . 7

2.3 Linear Block Codes . 8
2.4 Reed–Solomon Codes . 10

3 Decoding Reed–Solomon Codes 15
3.1 Syndrome-based Decoding . 15

3.1.1 Error Locator Algorithms 17
3.1.2 Gorenstein–Zierler Error Evaluation Algorithm 22

3.2 Interpolation-based Decoding . 23
3.2.1 Interpolation Algorithms . 23
3.2.2 Root Finding using Roth–Ruckenstein Algorithm 27

3.3 Error/Erasure Decoding . 28
3.3.1 Definition of an Erasure . 28
3.3.2 Generalized Minimum Distance Decoding 29

4 Decoding with Reliability in Finite Fields 33
4.1 Reliability Calculation . 34

4.1.1 Code Concatenation . 34
4.1.2 Modulation-based . 35

4.2 Decoding Algorithms Using Reliability 36
4.2.1 Chase-like Decoder . 37
4.2.2 Reduced List-Decoder (RLD) 44

4.3 Overview and Summary . 52

ix

Contents

5 Decoding with Reliability in the Complex Field 53
5.1 Reed–Solomon Codes over the Complex Field 54
5.2 Relation to Compressed Sensing 56
5.3 Padé Approximation-based Reliability 58

5.3.1 Reliability Information Calculation Methods 60
5.3.2 Properties of Reliability Information 64

5.4 Decoding Algorithms using Reliability 68
5.4.1 Recursive Enhancement Algorithm 68
5.4.2 Guruswami–Sudan-based Generalized Minimum Distance De-

coding . 74
5.5 Overview and Summary . 84

6 Conclusion 87

Bibliography 89

x

Contents

xi

List of Acronyms and Symbols

Acronyms
ADSLAsymmetric Digital Subscriber Line
AWGNAdditive White Gaussian Noise
BCASC Best Complex Antipodal Spherical Code
BCH . Bose–Chaudhuri–Hocquenghem
BMA .Berlekamp–Massey Algorithm
BPSKBinary Phase shift Keying
CAD . Continuity Assisted Decoding
CoSIPCompressed Sensing in Information Processing
CRS . Complex Reed–Solomon
CS . Compressed Sensing
DFG . Deutsche Forschungsgemeinschaft
DFT . Discrete Fourier Transform
EEA . Extended Euclidean Algorithm
GMD Generalized Minimum Distance
GZ .Gorenstein–Zierler
GS . Guruswami–Sudan
IDFT Inverse Discrete Fourier Transform
IRS . Interleaved Reed–Solomon
KV . Kötter–Vardy
LFSR Linear Feedback Shift Register
MDS .Maximum Distance Separable
mRR .modified Roth–Ruckenstein
OFDM Orthogonal Frequency-Division Multiplexing
OMP .Orthogonal Matching Pursuit
PD .Power Decoding
REA . Recursive Enhancement Algorithm
RLD . Reduced-List Decoder
RR .Roth–Ruckenstein
RS . Reed–Solomon
SNR . Signal-to-Noise Ratio

xiii

Contents

Symbols

C . Field of complex numbers
F . Finite field
Fp . Prime field
Fpm . Extension field
α . Primitive element
Fp[x] . Set of all polynomials over Fp
Fq [x]/(xn−1) Ring of polynomials over Fp and degree < n
F [·] . DFT
F−1[·] . IDFT
wtH .Hamming weight
dH . Hamming distance
dE . Euclidean distance
dG . Generalized distance
a ∈ Fpn . Vector over Fp of length n
a(x) ∈ Fq [x]/(xn−1)Polynomial over Fp and degree < n
A ∈ Fk×np Matrix over Fp with k rows and n columns
C ⊂ Fnp .A code
c ∈ C . A codeword
n . Code length
k . Code dimension
R . Code rate
C⊥ ⊂ Fnp Dual of C
RS . Reed–Solomon code
IRS . Interleaved Reed–Solomon code
G .Generator matrix
H . Parity check matrix
g(x) . Generator polynomial
h(x) . Parity check polynomial
r . Received vector
e . Error vector
Ψ . Set of error locations
t = |Ψ| .Number of errors
E(n, t) . Error code
Γ(x) . Error generator polynomial
Λ(x) . Error locator (parity check) polynomial
Ω(x) .Error evaluator polynomial

xiv

Contents

S . Syndrome
τ = bd−1/2c Classical decoding radius
τp . Power decoding radius
τGS .Guruswami–Sudan decoding radius
τWu . Wu decoding radius
Q(x, y) . Bivariate interpolation polynomial
Q(x, y, z)Trivariate interpolation polynomial
deg(wx,wy ,wz)Q(x, y, z) The (wx, wy, wz)-weighted degree of Q(x, y, z)

η .Reliability vector of r
ζ .Noise vector of r
ζS .Noise vector of syndrome S
[µ/ν]f (x) Padé approximation of a function f(x)

xv

1
Introduction and Motivation

Reliable transmission of information has always been a critical requirement
in any communication system. There is no doubt, that if a communication

system is not reliable enough for its users’ needs, it will become extinct in
due time. Whether the signal is some written text, a flash of light, a coloured
banner or even a smoke signal, the receiver should be able to recover the original
signal without errors. Entering the digital world has changed many things.
Bits became our representation of information. To save power wasted on re-
transmissions, error correction at the receiver became more imperative. As a
result, coding theory was born. After that, Shannon [Sha48] proved that there
exists a way of having an error-free transmission through coding.
There exists a plethora of different codes used for the purpose of error cor-

rection, both linear and non-linear. Linear codes are more favoured due to
the existence of efficient decoding algorithms. Popular linear codes used in er-
ror correction include the Hamming [Ham50], Bose–Chaudhuri–Hocquenghem
(BCH) [BRC60] and Reed–Solomon (RS) [RS60] codes and many more. More
than 50 years after they were invented, RS codes are still one of the most pop-
ular codes used in error correction. They have gained the attention of many
researchers due to their elegant structure based on the Discrete Fourier Trans-
form (DFT). They even found their way to a lot of day-to-day life applications
such as [WB94]: Storage devices like compact disks and spread-spectrum sys-
tems like frequency hopping. They are also used in deep space telecommunica-
tion systems like the ones on the Voyager interstellar missions. When defined
over complex fields, it was recently discovered that RS codes can be used in
the application of deterministic Compressed Sensing (CS). This discovery led
to the possibility of funding some of the work presented in this dissertation by
the German research council Deutsche Forschungsgemeinschaft (DFG) under
the priority program ‘SPP 1798: CS in Information Processing ’ (CoSIP) with

1

1 Introduction and Motivation

the project title ‘Complex-valued Reed-Solomon Codes for Deterministic CS ’. In
this scenario, where codeword symbols are complex-value, numerical inaccura-
cies such as quantization errors and the finite precision of computations start
to affect the decoding process and the robustness of a decoder against such
inaccuracies should be observed.
There are many methods which can be used in order to decode RS codes.

The optimal decoding method is maximum likelihood decoding [MS88]. Us-
ing this method, the probability of making a decoding mistake is minimized;
thus it provides the best possible performance in comparison to other methods.
Unfortunately, this method is computationally expensive since its complexity
increases exponentially with the size of the code. A more practical approach
would be to use suboptimal decoding methods like the minimum distance de-
coding. They provide adequate error correction performance with polynomial-
time complexity. Algorithms using the minimum distance decoding method can
be distinguished into two groups: First, syndrome-based decoders such as the
Extended Euclidean Algorithm (EEA) [MS88, p. 362], the Berlekamp–Massey
Algorithm (BMA) [Ber68, Chapter 7] and the Peterson algorithm [PW72]. Sec-
ondly, interpolation-based decoders such as the Welch-Berlekamp [WB86], the
Sudan [Sud97], the Guruswami–Sudan (GS) [GS99] and the Wu [Wu08] algo-
rithms.
With the help of reliability information, we can enhance the performance of

these algorithms with a not-so-large computational cost. There are many forms
of reliability information, it can be either given by an outside source ‘genie’ or
can be calculated at the receiver. The way the reliability information is utilized
differs from one algorithm to another. For instance, when dealing with binary
codes, the Chase [Cha72] algorithm flips the positions with lowest reliability,
while the Dorsch [Dor74] algorithm uses positions with highest reliability to
perform re-encoding. For non-binary codes, Generalized Minimum Distance
(GMD) decoding [For66] introduces erasures at positions with low reliability to
remove their influence on the decoding process. There is also the Kötter–Vardy
(KV) algorithm [KV03], an extension to the GS algorithm, where the reliability
determines the multiplicity of the points used in the interpolation and their
influence on the decoding result.
Using some of these algorithms combined with the presence of reliability in-

formation and error/erasure decoding, the goal of this dissertation is to show
the possibility of providing new decoders, which achieve superior performance
levels for a reasonable computational complexity. Specifically, we present new
algorithms for decoding RS codes in two scenarios, where the codes are defined
over finite fields and the complex field. For each scenario, we present two algo-

2

rithms: A syndrome-based algorithm and another which is interpolation-based.
To measure the performance of the introduced algorithms, we perform numeri-
cal simulations and compare their performance with those of already established
algorithms.
The structure of the dissertation is as follows: In Chapter 2, we provide the

basic aspects and definitions of fields and the different metrics to be used in
the following chapters. At the end of this chapter, the definition of RS codes is
given.
The various classical RS decoding algorithms upon which the new algorithms

are built, are explained in Chapter 3. We also explain error/erasure decoding,
the definition of an erasure and GMD decoding.
In Chapter 4, we discuss the decoding of RS codes over the finite fields using

reliability information. We first introduce two approaches for the calculation
of the reliability information, which is then used in two decoders. The first
decoder is the Chase-like decoder [MB15], which gets its name and idea from the
Chase algorithm in [Cha72]. The second decoder is the Reduced-List Decoder
(RLD) [?], which is based on the Wu algorithm [Wu08]. The performance of
both decoders is evaluated through numerical simulations and compared to the
performance of algorithms like GMD and KV.
In Chapter 5, we discuss the decoding of RS codes over the complex fields us-

ing reliability information. We first explain the relation between coding theory
and CS, since the decoders in this scenario are used for sparse vector recon-
struction. We also present new insights on the calculation of built-in reliability
information and its properties. Again, we present two different decoders which
utilize the calculated reliability information. The first decoder is the Recursive
Enhancement Algorithm (REA) [MZB16], which exploits the behaviour of the
calculated reliability information in order to enhance it using a GMD-like pro-
cedure. The second decoder is a GS-based GMD decoder [MPB17], which is
the result of the successful attempt to make the GS algorithm usable for decod-
ing complex-valued RS codes. The performance of both decoders is evaluated
through numerical simulations and compared to the performance of a CRS de-
coding algorithm established in [Zö15] as well as the popular CS Orthogonal
Matching Pursuit (OMP) algorithm [CBL89].
Finally, we summerize and conclude these contributions in Chapter 6.

3

2
Basic Definitions

Error correction is today an essential part of any communication system to
achieve reliable transmission. An overhead added to a block of information

before transmission provides the receiver with a chance to correct corrupted
data, making systems more efficient. The process of adding redundancy to your
information is called encoding. While recovering the information at the receiver
is called decoding. Block codes are codes where uncoded messages as well as
their encoded counterparts (codewords) have a predefined size. If any linear
combination of these codewords results in another codeword from the same
code, then they are called linear block codes. Famous linear block codes include
Hamming [Ham50], Bose–Chaudhuri–Hocquenghem (BCH) [BRC60] and Reed–
Solomon (RS) [RS60] codes. In this dissertation, the attention is focused on the
latter.
This chapter covers the basic aspects and definitions of linear block codes in

general and those of RS codes in particular. Also metrics that are used in the
decoding procedures in the following chapters are introduced.

2.1 Finite Fields
Finite fields are also named Galois fields after the French mathematician Évariste
Galois, who had many contributions to algebra. A finite field F is a set of integers
on which the operations addition and multiplication are defined, while satisfying
the axioms of a field [LN02].

Definition 2.1 (Prime field)
For a prime p, the prime field Fp is the set {0, 1, . . . , p − 1} of integers. Let α
be the primitive element of Fp, such that all the non-zero elements of the field
can be obtained from powers of α.

5

2 Basic Definitions

A polynomial over Fp can be expressed in the form a(x) = a0 + a1x + · · · +
an−1x

n−1, where the degree n − 1 is a non-negative integer and the coefficients
a0, a1, . . . , an−1 ∈ Fp. The set of polynomials over Fp is denoted as Fp[x]. An
irreducible polynomial is a polynomial having no roots in Fp and can not be
factored to polynomials of a smaller degree.

Definition 2.2 (Extension field)
Let q = pm, where p is a prime. An extension field Fq is a field containing q ele-
ments and Fp is considered as its base field. The primitive element α generating
the field is a root of any primitive polynomial p(x) ∈ Fp[x] with degree m.

In this work, polynomials are sometimes expressed as vectors and vice versa.
This bijective relation is as follows:

a = (a0, a1, . . . , an−1) ←→ a(x) = a0 + a1x+ · · ·+ an−1x
n−1. (2.1)

The set of all possible vectors of length n with coefficients from the field Fq can
be denoted as Fnq . While a polynomial ring of all polynomials having a degree
smaller than n can be denoted as Fq [x]/(xn−1).

Definition 2.3 (Discrete Fourier Transform (DFT) [Bos99])
For a given polynomial A(x) ∈ Fq [x]/(xn−1), the DFT F [A(x)] = a(x) = a0 +
· · ·+ an−1x

n−1 is defined as:

aj = A(αj), j = 0, . . . , n− 1, (2.2)

and the Inverse DFT (IDFT) F−1[a(x)] = A(x) as:

Aj = n−1a(α−j), j = 0, . . . , n− 1. (2.3)

2.2 Metrics
For a code C (defined in Section 2.3), the measure of performance is usually
measured by the number of errors it is able to correct. This has direct relation
to the minimum distance between its codewords. There exist many metrics
to measure this distance including but not limited to Hamming metric, rank
metric, Euclidean metric and many more. This metric is chosen depending on
the application at hand.

6

2.2 Metrics

For a distance function d(a, b) to be considered as a metric, the following
properties must be satisfied for any 3 vectors a, b, c ∈ Fnq [Rot06]:

• d(a, b) ≥ 0,

• d(a, b) = 0, iff a = b,

• d(a, b) = d(b,a),

• d(a, b) ≤ d(a, c) + d(b, c).

In the following chapters, only two metrics are used, namely the Hamming
and the Euclidean metrics. The former is used in Chapter 4 and the latter in
Chapter 5.

2.2.1 Hamming Distance
The Hamming distance was introduced by Richard Hamming in [Ham50], where
he also introduced Hamming codes. This distance measuring is one of the most
used in digital communications and coding theory. It is usually used when the
vectors in question are defined over finite fields. Before defining the Hamming
distance, first we introduce the Hamming weight.

Definition 2.4 (Hamming weight)
For a given vector a ∈ Fnq , the Hamming weight is defined as the number of
non-zero elements in a

wtH(a) = #{j : aj 6= 0}, (2.4)

where #{·} denotes the cardinality of a set.

Definition 2.5 (Hamming distance)
For two given vectors a, b ∈ Fnq , the Hamming distance is defined as the number
of positions where a and b are different

dH(a, b) = wtH(a− b) = #{j : aj 6= bj}. (2.5)

2.2.2 Euclidean Distance
Named after the famous Greek mathematician Euclid, the Euclidean metric is
used to measure the distance between two points in an n-dimensional space
[Bos99]. This distance is also called the Euclidean norm. This metric is used in
applications where vectors over the complex field C are used, such as Compressed
Sensing (CS) [EK12].

7

2 Basic Definitions

Definition 2.6 (Euclidean distance)
For two given vectors a, b ∈ Cn, the Euclidean distance is defined as:

dE(a, b) =

√√√√
n−1∑

j=0

(aj − bj)2. (2.6)

There exists also the squared Euclidean distance where the square root is
simply omitted. However, it can not be considered a metric as it does not
satisfy all the properties of a metric.

2.3 Linear Block Codes
Coding is used to achieve, with high probability, an error-free communication
between two points (sender and receiver) over a noisy channel. This noisy chan-
nel introduces errors to the transmitted data resulting in corrupted data at the
receiver side. Coding is used to correct these errors introduced by the chan-
nel. The method of decoding and error correction depends on the type of code
used in the system. This dissertation focuses on the use of two variants of RS
codes, which fall under the category of cyclic linear block codes. Block codes
indicate the encoding process is simply a mapping from blocks of information
with length k to blocks of codewords with length n. The ratio between the
information length and codeword length is called the rate of the code R = k

n
.

Let the information block be u = (u0, u1, . . . , uk−1) ∈ Fkq .

Definition 2.7 (Linear block code [MS88])
A code C ⊂ Fnq is considered linear if for any two codewords c1, c2 ∈ C the
following is satisfied:

ac1 + bc2 ∈ C, a, b ∈ Fq.

A linear code is a subspace of Fnq of size #C = qk. The linear mapping from
information to codewords is defined by a basis of the subspace. This basis is
referred to as the generator matrix G such that:

c = uG, G ∈ Fk×nq . (2.7)

Definition 2.8 (Dual code [MS88])
The dual code C⊥ is the orthogonal complement of C and is defined such that:

C⊥ = {s : ∀c ∈ C, 〈s, c〉 = 0}, C⊥ ⊂ Fnq , (2.8)

where 〈·, ·〉 denotes a scalar product between two vectors.

8

2.3 Linear Block Codes

Having the definition of the dual code, we can introduce the parity check
matrix H , which is a basis of the dual code C⊥. H is an (n − k) × n matrix.
As the name gives it away, this matrix is used to check whether a vector is a
codeword or not since

∀c ∈ C, cHT = 0. (2.9)

It is also worth noting that the matrix multiplication of both matrices G and
HT yields a zero matrix.

GHT = 0. (2.10)

For a linear code, the minimum Hamming distance of the code is equal to the
minimum Hamming weight of all codewords.

d(C) := dH = min
c1,c2∈C
c1 6=c2

dH(c1, c2),

= min
c∈C
c 6=0

wtH(c).
(2.11)

The distance dH is bounded by many famous bounds such as the Hamming bound
and the Singleton bound. For the rest of the thesis, the Hamming distance is
denoted either as dH or d for simplicity.

Theorem 2.1 (Hamming bound [Bos99])
For a code C with length n and dimension k over the Field Fq, the distance d is
bounded by the following inequality:

qk
(

1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

2

)
+ · · ·+ (q − 1)τ

(
n

τ

))
≤ qn, (2.12)

where τ = bd−1/2c.
The Hamming bound shows the maximum radius non overlapping spheres can

have if drawn around each codeword such that the total number of vectors in all
the spheres does not exceed the size of Fnq . Satisfying this bound with equality
means that all elements of Fnq are contained in these spheres, thus decoding is
always possible since any vector in Fnq is at a distance less than d/2 from a
codeword. In that case, this code is called a perfect code.

Theorem 2.2 (Singleton bound [MS88])
For a code C with length n and dimension k, the distance d is bounded by the
following inequality:

d ≤ n− k + 1.

9

2 Basic Definitions

The singleton bound relates the size of the redundancy (n−k) to the distance.
The distance can never be larger than the number of extra symbols that were
added in the encoding procedure. Satisfying this bound with equality indicates
that the code makes perfect use of the redundancy provided. This code is then
called Maximum Distance Separable (MDS) [MS88], where any k positions of a
vector determine the rest of a codeword. One famous example of codes being
MDS are RS codes.

2.4 Reed–Solomon Codes

Reed–Solomon codes were first introduced in [RS60]. Since then, they gained a
huge popularity as error correcting codes. More than 50 years after they were
defined, they are still used on a daily basis in many communication systems,
storage devices and other various scientific purposes as well as consumer appli-
cations [WB94]. There are many ways to define RS codes. Either using the
original definition introduced in [RS60] or the generalized form as in [Del75].
They are also mentioned in many text books with different points of view. For
example, in [Bos99] they are defined using polynomials, while in [Rot06] they
are defined using vectors and matrices. In this dissertation, without loss of
generality, the classical definition based on polynomials is used.

Definition 2.9 (Reed–Solomon codes [Bos99])
Let n and k be positive integers fulfilling k < n. The code RS(n, k) of length n
and dimension k is the set

RS =
{(
C
(
α0
)
, . . . ,C

(
αn−1

))∣∣C (x) ∈ Fq[x], degC (x) < k
}
, (2.13)

where α is a primitive element of Fq and the minimum distance of the code is
d = n− k + 1.

Therefore, the relation between the codeword c = (co, c1, . . . , cn−1) and the
information C = (C0, C1, . . . Ck−1, 0, . . . , 0) can be considered as a DFT rela-
tion(see Definition 2.3) such that c(x) = F [C(x)].

10

2.4 Reed–Solomon Codes

As a result, the generator matrix GRS has the following form

GRS =

1 1 1 · · · 1

1 α1 α2 · · · αn−1

...
...

...
...

...
1 αk−1 α2(k−1) · · · α(n−1)(k−1)

, (2.14)

and the parity check matrix HRS

HRS =

1 αk α2k · · · α(n−1)k

1 αk+1 α2(k+1) · · · α(n−1)(k+1)

...
...

...
...

...
1 αn−1 α2(n−1) · · · α(n−1)(n−1)

. (2.15)

Note that both matrices are partial DFT matrices in a Vandermonde matrix
form. In the matrix form, the vector C is considered the information vector
such that c = C · GRS. Another way of encoding in the polynomial form is
by multiplying the information by the generator polynomial such that c(x) =
u(x)g(x) and g(x) is defined as

g(x) =
n−1∏

j=n−k
(x− α−j), (2.16)

and the parity check polynomial h(x) as:

h(x) =
k−1∏

j=0

(x− α−j), (2.17)

with the relation between both polynomials:

g(x)h(x) = xn − 1. (2.18)

Interleaved Reed–Solomon Codes

Interleaved RS (IRS) codes are linear block codes which are constructed through
the interleaving of codewords from one or more RS codes. IRS codes are used
in many applications where burst errors are more common such as Asymmetric
Digital Subscriber Line (ADSL) [ITU99] and Compact Disks (CDs) [WB94].
The definition of IRS codes is as follows

11

2 Basic Definitions

...
...

...
...

...
...

...
...

`

k(1) d(1) − 1

n

k(`) d(`) − 1

Figure 2.1: Heterogeneous IRS codes, where each row represents a codeword.
The white and red boxes represent information and redundancy symbols

respectively.

Definition 2.10 (Interleaved Reed–Solomon codes)
Let RS(h) = RS(n, k(h)) for h = 1, . . . , ` be a group of ` RS codes of length
n with each having a dimension of k(h). An IRS code can be defined as the
following set of matrices

IRS :=

c(1)

c(2)

...
c(`)

: c(h) ∈ RS(h), h = 1, . . . , `

. (2.19)

An IRS codes is called homogeneous if the dimensions k(h) h = 1, . . . , ` are
all equal, otherwise, it is called heterogeneous. Figure 2.1 shows an example of
a heterogeneous IRS code, where each row represents a codeword. The white
and red boxes represent information and redundancy symbols respectively. Such
structure offers the possibility of collaborative decoding at the receiver [SSB06].
thus, allowing error correction beyond half the minimum distance.

12

2.4 Reed–Solomon Codes

Although, we do not deal with IRS codes directly, the idea of collaborative
decoding of multiple RS codewords is used in one of the decoding methods
presented in Chapter 3.

13

3
Decoding Reed–Solomon Codes

Based on Definition 2.9 of RS codes, we proceed in explaining different meth-
ods of decoding these codes. Let r = c + e be a received word where

c ∈ RS(n, k) and e ∈ Fnq is an error vector. The positions with non-zero ele-
ments are denoted by the set Ψ = {i : ei 6= 0} and the number of errors #Ψ = t.
The goal of decoding is to recover the codeword c from the received vector r.
Different decoders use different algebraic methods and techniques to achieve this
goal. Some use the syndrome S (explained in Section 3.1), while others use the
received word r directly. The maximum number of errors that the decoder can
correct is called decoding radius τ . Classical decoders can decode up to half the
minimum distance of the code

τ = b(d− 1)/2c. (3.1)

If t is larger than this radius, these decoders either give a wrong output or fail
to give any at all. While other more complex ones go beyond this conventional
radius, this comes at a cost. They either no longer produce a unique output
or retain an increased probability of failure. This chapter concentrates on the
different variants of RS decoders utilized in later chapters.

3.1 Syndrome-based Decoding
The syndrome is defined as follows:

S = rHT = (c+ e)HT = eHT , (3.2)

where H = HRS. From Equation (3.2), it is clear that the syndrome is consid-
ered to be the closest obtainable relative to the unknown error vector e. It can

15

3 Decoding Reed–Solomon Codes

also be obtained in its polynomial form by utilizing the IDFT (see Definition
2.3).

R(x) = F−1[r(x)] = F−1[c(x) + e(x)] = C(x) +E(x). (3.3)

Since Ck, . . . , Cn−1 are equal to 0, the following applies:

S = (S0, . . . , Sn−k−1) ←→ S(x) = S0 + · · ·+ Sn−k−1x
n−k−1

S0 = Rk = Ek,

S1 = Rk+1 = Ek+1,

...
Sn−k−1 = Rn−1 = En−1.

(3.4)

Syndrome-based decoders divide the decoding process into two steps: First,
finding the error locations, then calculating the error value. The location of
non-zero elements in e is determined by the error locator polynomial Λ(x),
which can be also regarded as the parity check polynomial of an error code to
which an error codeword E(x) belongs.

Definition 3.1 (Error Code E(n, t))
Given the error polynomial e(x) =

∑

i∈Ψ

eix
i, then the (n, τ) cyclic code over Fq

with generator polynomial

Γ(x) =
∏

i∈[0,n−1]\Ψ
(x− αi) (3.5)

and the parity check polynomial

Λ(x) =
∏

i∈Ψ

(x− αi), (3.6)

is called the error code.

Definition 3.1 was first introduced in [BB13] and from it we conclude the
following:

• The product of the polynomials Λ(x) and Γ(x) has roots at all field ele-
ments

Λ(x)Γ(x) = xn − 1. (3.7)

• A codeword from an error code can be expressed as E(x) = Ω(x)Γ(x),
where Ω(x) is the error evaluator polynomial with deg Ω(x) < t.

16

3.1 Syndrome-based Decoding

• The following polynomial multiplication between the error and its locator
polynomials:

Λ(x)E(x) = 0 mod (xn − 1). (3.8)

• From (3.8), taking only the known part of E(x) into consideration yields
[Bos99]:

Λ(x)S(x) = −Ω(x) mod x2t. (3.9)

Equations (3.8) and (3.9) are referred to as the key equation.

3.1.1 Error Locator Algorithms

Algorithms used for calculating Λ(x) through the key equation are referred to
as error locator algorithms in this work. We explain famous examples such
as the extended Euclidean [MS88] and Berlekamp–Massey [Ber68] algorithms.
These algorithms are able to find Λ(x) as long as the number of errors t is
smaller than half the minimum distance τ = b(d− 1)/2c. We also consider the
syndrome extension algorithms, which is also known as power decoding [SSB10].
Unlike the previously mentioned algorithms, this one is able to find Λ(x) for a
number of errors t which is larger than τ . This is done with the help of some
post processing on the received vector r. However, this gain comes accompanied
by a small probability of failure.

Extended Euclidean Algorithm

Similar to the Euclidean distance, the Euclidean Algorithm [MS88, p. 362] is
named after Euclid. Although it is older than a two millennia, it still has many
applications in various fields. The main purpose of the algorithm is to find the
greatest common divisor (gcd) between two integers. It was later extended to
include polynomials and to output more than just their gcd.
Let a(x), b(x) ∈ Fq [x]/(xn−1) such that dega(x) < deg b(x), where deg(·) de-

notes the degree of a polynomial which is the highest exponent with non-zero
coefficient. If b(x) is divided by a(x), a quotient χ1(x) ∈ Fq [x]/(xn−1) and a
remainder ρ1(x) ∈ Fq [x]/(xn−1) are obtained.

b(x) = a(x)χ1(x) + ρ1(x). (3.10)

17

3 Decoding Reed–Solomon Codes

The gcd(a(x), b(x)) can be obtained by repeating the process of division in
the following manner:

a(x) = ρ1(x)χ2(x) + ρ2(x),

ρ1(x) = ρ2(x)χ3(x) + ρ3(x),

ρ2(x) = ρ3(x)χ4(x) + ρ4(x),

...
ρl−1(x) = ρl(x)χl(x) + 0.

(3.11)

The process ends when the remainder becomes zero and gcd(a(x), b(x)) =
ρl(x) is obtained. Equations (3.10) and (3.11) can be extended and written in
terms of both a(x) and b(x). This form of the Euclidean Algorithm is called
the Extended Euclidean Algorithm (EEA).

b(x) = a(x)U−1(x) + b(x)V−1(x),

a(x) = a(x)U0(x) + b(x)V0(x),

ρ1(x) = a(x)U1(x) + b(x)V1(x),

ρ2(x) = a(x)U2(x) + b(x)V2(x),

...
ρl(x) = a(x)Ul(x) + b(x)Vl(x),

ρl+1(x) = 0 = a(x)Ul+1(x) + b(x)Vl+1(x),

(3.12)

where Ui(x) and Vi(x) are defined by

Ui(x) = Ui−2(x)−Ui−1(x)χi(x),

Vi(x) = Vi−2(x)− Vi−1(x)χi(x),
(3.13)

with the below initial values

U−1(x) = 0, U0(x) = 1,

V−1(x) = 1, V0(x) = 0.
(3.14)

The application of the EEA in decoding of RS codes has two variants de-
pending on the inputs given to the algorithm. Either by using the transform of
the received word R(x) (based on Equation (3.8)) or using the syndrome S(x)
(based on Equation (3.9)). Here, we only discuss the version where we input
R(x), such that gcd(R(x), xn−1) is calculated. However, we are not interested
in the gcd itself, but rather the Us and V s we get when a certain condition is
satisfied.

18

3.1 Syndrome-based Decoding

+ +

Si−1 Si−2 Si−l · · · S1 S0

−Λ1 −Λ2 −Λl

· · ·

· · ·

Figure 3.1: Generating the sequence S using a linear feedback shift register.

Theorem 3.1 (Extended Euclidean Algorithm Decoder [Bos99])
Given R(x) = C(x)+E(x), where E(x) is the DFT of the error polynomial e(x)
with t ≤ τ non-zero coefficients. The process of calculating gcd(R(x), xn − 1)
using the EEA is interrupted when degRh−1(x) > k − 1 + degUh−1(x) and
degRh(x) ≤ k − 1 + degUh(x). Then, the following applies:

Λ(x) = Uh(x), Ω(x) = −Vh(x). (3.15)

The proof of Theorem 3.1 can be found in [Bos99]. The Euclidean algorithm
is used later in Chapter 4, where the main focus is the case where the number
of errors t is larger than τ . In this case, the error locator polynomial Λ(x) is
not directly obtained, however, if soft information is available further steps can
be done to achieve successful decoding.

Berlekamp–Massey Algorithm

The Berlekamp–Massey Algorithm (BMA) [Ber68, Chapter 7] is named after
Elwyn Berlekamp, who introduced the decoding concept and James Massey, who
later simplified its description. The main goal of the algorithm is to synthesize
the shortest Linear Feedback Shift Register (LFSR) that generates a certain
sequence (see Figure 3.1). In our context, the given sequence is the syndrome
S(x), and the output should be an LFSR described by Λ(x) such that:

Λ0Si + Λ1Si−1 + · · ·+ ΛtSi−t = 0 ∀i = t, . . . , n− k − 1 (3.16)

Note that the linear system of equations (3.16) is directly obtained from the key
equation (3.9) by taking the coefficients for degree higher than t.

19

3 Decoding Reed–Solomon Codes

The process of synthesis starts by assuming that the LFSR is of length one.
In each iteration, it is checked whether the LFSR satisfies all equations in (3.16)
or not. In case they are not satisfied, the LFSR coefficients are then modified if
possible. If no such modification is possible the LFSR is increased in length by
one. The process is then repeated until either the LFSR satisfies (3.16) and Λ(x)
is found or the decoding fails. Since we have a sequence of length n− k = d− 1,
the longest LFSR which can be obtained is τ . Which means, as long as the
number of errors t is smaller τ , an LFSR can always be synthesized. The BMA
is shown in Algorithm 3.1.

Algorithm 3.1 BMA Algorithm [Ber68]
Input: S = (S0, . . . , Sn−k−1)

Initializations: l← 0, l̃← 0, j̃ ← −1
Λ(x)← 1, Λ̃(x)← 1, ω̃ ← 1

1: for j = 1 : n− k − 1 do
2: ω ← Sj +

∑l
i=1 ΛiSj−1

3: if ω 6= 0 then
4: if j − j̃ ≤ l − l̃ then
5: Λ(x)← Λ(x)− ω

ω̃
Λ̃(x)xj−j̃

6: else
7: l∗ ←, Λ∗(x)← Λ(x)

8: Λ(x)← Λ(x)− ω
ω̃
Λ̃(x)xj−j̃

9: l← j − j̃ + l̃
10: l̃← l∗, Λ̃(x)← Λ∗(x)
11: ω̃ ← ω, j̃ ← j
12: end if
13: end if
14: end for
Output: The error locator polynomial Λ(x)

Syndrome Extension (Power Decoding)

This decoding method was first introduced in [SSB10]. Its goal is to calculate
Λ(x) even when the number of errors t is greater than τ . This is done by cal-
culating extra syndrome equations, by powering the coefficients of the received

20

3.1 Syndrome-based Decoding

+ +

Sh
i−1 Sh

i−2 Sh
i−l · · · Sh

1 S
{h}
0

−Λ1 −Λ2 −Λl

· · ·

· · ·

Figure 3.2: Generating the sequences Sh ∀h = 1, . . . , ` using a linear feedback
shift register.

word r(x) with some positive integer `.

r`(x) :=
n−1∑

i=0

r`ix
i =

n−1∑

i=0

(ci + ei)
`xi =

n−1∑

i=0

(c`i + ẽ
(`)
i)xi

=c`(x) + ẽ(`)(x),

(3.17)

such that for some i, ei = 0 yields ẽ(`)
i = 0, but not necessarily the other way

around. Equivalently, the indices of the non-zero coefficients of ẽ(`)(x) are a
subset of those of e(x). This is similar to interleaving multiple codewords from
different RS codes. However, power decoding is done with only a single low
rate RS code. It follows from Definition 2.9 that powering c(x) element-wise to
c`(x) is equivalent to powering the polynomial C(x). Since degC(x) ≤ k − 1,
the relation deg (C(x))` ≤ `(k − 1) is implied, resulting in c`(x) ∈ RS(n, k(`)),
where k(`) := `(k − 1) + 1) for all ` with `(k − 1) + 1 ≤ n. We denote the
maximum ` for which this inequality is fulfilled by `p.
Having these properties, we are able to build an IRS codeword (see Section 2.4)

from a single RS codeword. Since the errors are at the same positions in all
vectors r`(x), collaborative decoding can be used to improve the decoding capa-
bility. Two examples of collaborative decoding methods are [SSB06] and [Nie16],
which are extensions of both the BMA and EEA respectively. Similar to the
BMA, the method presented in [SSB06] can be viewed as a multi-sequence shift
register synthesis, where we search for the shortest LFSR that generates multiple
sequences (see Figure 3.2).

21

3 Decoding Reed–Solomon Codes

An upper bound for `p [SSB10, Section 5] is given by

`p ≤
√

(k + 3)2 + 8(k − 1)(n− 1)− (k + 3)

2(k − 1)
. (3.18)

Using powers ` ≤ `p power decoding can correct up to

τ` :=

⌊
2`n− `(`+ 1)k + `(`− 1)

2(`+ 1)

⌋
≤ τ`p = τp. (3.19)

However, this increase in decoding radius does not come at no cost. In the
cases where the powering does not produce new linearly independent equations
the decoding fails. The probability of decoding failure is shown to be negligible
in [SSB10] and decreases with the increase of the field size q.

3.1.2 Gorenstein–Zierler Error Evaluation Algorithm
Getting to know the number of errors t and where the non-zero coefficients in
e(x) is considered the hard part in the decoding process. On the other hand,
calculating the error values after that is considered a straight forward operation.
An algorithm that is dedicated to calculating the error values is denoted as error
evaluator algorithm. Examples of such algorithms are the Gorenstein–Zierler
(GZ) [GZ61] and the Forney [For65] algorithms. In subsequent chapters, we use
the GZ algorithm as an error evaluator algorithm.
Since e(x) =

∑
j∈Ψ ejx

j and Si = Ei+k = e(α−(i+k)), an LSE of equations can
be formed:

α−j0k α−j1k · · · α−jt−1k

α−j0(k+1) α−j1(k+1) · · · α−jt−1(k+1)

...
...

...
...

α−j0(n−1) α−j1(n−1) · · · α−jt−1(n−1)

·

ej0
ej1
...

ejt−1

=

S0

S1

...
Sn−k−1

, (3.20)

where Ψ = {j0, j1, . . . , jt−1}. In (3.20), only ej0 , . . . , ejt−1 are unknowns. Thus,
only t < (n− k) equations are required and solving the LSE in (3.21) yields the
error vector e

α−j0k α−j1k · · · α−jt−1k

α−j0(k+1) α−j1(k+1) · · · α−jt−1(k+1)

...
...

...
...

α−j0(k+t−1) α−j1(k+t−1) · · · α−jt−1(k+t−1)

·

ej0
ej1
...

ejt−1

=

S0

S1

...
St−1

. (3.21)

22

3.2 Interpolation-based Decoding

3.2 Interpolation-based Decoding
In syndrome-based decoding, the target is to evaluate the error e(x) then cal-
culate the codeword c(x). However, in interpolation-based decoding, the goal
(in most cases) is to directly evaluate C(x) from the received word r(x). The
first interpolation-based decoding algorithm is the Welch–Berlekamp algorithm
[WB86]. It has a classical decoding radius of half the minimum distance τ =
b(d − 1)/2c. Later, this work was extended by Madhu Sudan in [Sud97] and a
radius beyond τ was obtained. This was done by outputting a list of possible
solutions rather than just a unique solution. Thats why usually interpolation-
based decoding are referred to as list decoders. List decoders gained a lot of
popularity in the last decade and various enhancements and applications for
this type of decoding were established. In the same manner as in syndrome-
based decoding, the procedure is divided into two steps. First, the process
of interpolation in which a bivariate polynomial Q(x, y) is calculated. While
satisfying some conditions, Q(x, y) attain certain y-roots which relate to the
decoding output. Thats why the second step is called the root finding step.
Two of the famous interpolation algorithms are used in this work, namely the
Guruswami–Sudan (GS) [GS99] and the Wu [Wu08] algorithms. While for the
root finding step, the Roth-Ruckenstein (RR) algorithm [RR00] is used.

3.2.1 Interpolation Algorithms
Guruswami–Sudan Algorithm

The Sudan algorithm [Sud97] has a drawback when high rate codes are used;
its decoding radius does not go beyond τ . In order to fix this draw back, the
algorithm was extended in [GS99]. At the cost of complexity, the algorithm
introduced the idea of multiplicities. A bivariate polynomial Q(x, y) is said to
have a zero at some point (a, b) with multiplicity s, if the polynomial Q∗(x, y) =
Q(x + a, y + b) =

∑
q∗i,jx

iyj has the coefficients q∗i,j = 0 for any i + j < s. For
a single point (a, b), the total number of coefficients q∗i,j which are equal to zero
is
(
s+1

2

)
.

Theorem 3.2 (Guruswami–Sudan algorithm [GS99])
For some positive non-zero integers `, s, τGS and the bivariate non-zero polyno-
mial Q(x, y):

Q(x, y) = Q0(x) +Q1(x)y +Q2(x)y2 + · · ·+Q`(x)y`. (3.22)

If t ≤ τGS and the following conditions are satisfied

23

3 Decoding Reed–Solomon Codes

1. Q(αi, ri) = 0 with multiplicity s,∀i = 0, . . . , n− 1

2. degQi(x) ≤ s(n− τGS)− i(k − 1)− 1,∀i = 0, . . . , `

then (y −C(x)) divides Q(x, y).

The list size `, multiplicity s are chosen depending on the required decoding
radius τGS. The cases where s = 1 and ` = s = 1 correspond to the Sudan
[Sud97] and Welch–Berlekamp [WB86] algorithms respectively. From the degree
condition, the number of unknown coefficients in Q(x, y) is

Nu =
∑̀

i=0

s(n− τGS)− i(k − 1)− 1

= s(`+ 1)(n− τGS)− 1

2
`(`+ 1)(k − 1)− 1.

(3.23)

Since the polynomial Q∗(x, y) has
(
s+1

2

)
zero coefficients, for n points, we obtain

Ne = n
(
s+1

2

)
equations. For Q(x, y) to be non-zero, the number of unknowns

should be greater than the number of equations (Nu > Ne) as follows:

s(`+ 1)(n− τGS)− 1

2
`(`+ 1)(k − 1)− 1 > n

(
s+ 1

2

)
, (3.24)

A bound on the decoding radius τGS for a given set of parameters is determined
as follows:

τGS <
n(2`− s+ 1)

2(`+ 1)
− l(k − 1)

2s
. (3.25)

Asymptotically, it was shown that the GS algorithm can reach the Johnson
bound [GS99] such that

τGS < n−
√
n(n− d). (3.26)

The GS algorithm was later extended in [KV03] where the Kötter–Vardy (KV)
algorithm was proposed. The KV algorithm enabled soft decoding such that the
multiplicity of each point reflects its reliability. Having reliability information,
the KV algorithm outperforms the GS algorithm in terms of error correction.
However, this comes at the huge cost of complexity as it is known to be a
powerful but slow algorithm.

24

3.2 Interpolation-based Decoding

Wu Algorithm

The Wu algorithm is proposed in [Wu08]. Similar to the GS algorithm, inter-
polation is done and a bivariate polynomial Q(x, y) is calculated. The decoding
radius τWu is also able to reach the Johnson bound. However, since it uses a
different set of points for the interpolation, the y-roots are not related to C(x),
but rather to the error locator polynomial Λ(x). In the case where the number
of errors t is beyond half the minimum distance τ , algorithms like the EEA
and BMA usually fail (unless wrong decoding occurs). It turns out that such
algorithms do not entirely fail, but rather lack the resources to go further. The
Wu algorithms continues where they left off, using their last result as starting
point.
Let the coprime polynomials U(x) and V (x) be outputs of the EEA at a

certain iteration. It is shown in [BB08] that a basis for Λ(x) is given as follows:

Λ(x) = A(x)U (x) +B(x)V (x), (3.27)

where A(x) and B(x) are unknown polynomials satisfying

degA(x) = θA = deg Λ(x)− degU(x),

degB(x) = θB ≤ deg Λ(x)− d− degU(x).
(3.28)

From (3.6), we know that Λ(x) evaluates to zero at all the error locations i ∈ Ψ:

A(αi)U(αi) +B(αi)V (αi) = 0. (3.29)

Equation (3.29) can be written as follows:

βi = −V (αi)

U(αi)
=
A(αi)

B(αi)
. (3.30)

In the same manner as in GS, interpolation is generalized to provide a bivariate
polynomial Q(x, y) passing through the points (αi, βi) for i = 0, . . . , n − 1.
However, the desired y-root of Q(x, y) is in this case the fraction B(x)

A(x)
(not C(x)

as in GS), enabling us to calculate Λ(x) using (3.29). Since we are looking for a
fraction of two polynomials, the interpolation is known as rational interpolation.
Before going into the details of the Wu algorithm, we first describe the general

rational interpolation problem and its solution. The goal can be expressed as
follows: given points (xi, βi) for i = 0, . . . , n−1, one seeks two polynomials f1(x),
f2(x) ∈ Fq(x) and f1(xi)

f2(xi)
= βi holds for many, but not necessarily all, values of i,

and such that deg f1(x) and deg f2(x) are both small. The fact that f2(x) might

25

3 Decoding Reed–Solomon Codes

have roots at some xi is problematic. Trifonov [Tri10] suggested to consider the
βi as partially projective points (yi : zi) ∈ P1

Fq , i.e. that (yi : zi) = (γyi : γzi) for
all γ ∈ F?q and where (0 : 0) is disallowed.
The problem is solved by constructing a polynomial Q ∈ Fq[x][y, z], homoge-

neous in y and z, in such a way that it is guaranteed thatQ(x,f1(x),f2(x)) = 0.
The f1(x),f2(x) can then be extracted from Q as roots, which is possible since
y and z are homogeneous in Q. The following theorem is a rephrasing of [Tri10,
Lemma 3]:

Theorem 3.3 (Rational Interpolation)
Let `, s and T be positive integers, and let the points {(x0, y0 : z0), (x1, y1 : z1), . . . ,
(xN−1, yN−1 : zN−1)} be N ≥ T points in Fq × P1

Fq . Assume that Q(x, y, z) =∑`
i=0Q(x)yiz`−i is non-zero and such that (xi, yi : zi) are zeroes of multiplicity

s for all i = 0, . . . , n − 1, and deg(1,w1,w2)Q(x, y, z) < sT , for two w1, w2 ∈
R+ ∪ {0}. Any two coprime polynomials f1(x),f2(x) satisfying deg f1(x) ≤
w1, deg f2(x) ≤ w2, as well as, zif1(xi) + yif2(xi) = 0 for at least T values of i,
will satisfy Q(x,f1(x),f2(x)) = 0.

In the above, deg(wx,wy ,wz) is the (wx, wy, wz)-weighted degree, such that

deg(wx,wy ,wz) x
iyjzh = wxi+ wyj + wzh. (3.31)

For polynomials, the weighted degree is the maximal weighted degree of its
monomials. The list size ` and multiplicity s, are not part of the rational in-
terpolation problem one wishes to solve. They should nevertheless be chosen in
such a way to make it possible to construct the Q-polynomial. One can regard
the root-requirements for Q as a linear system of equations in the monomials of
Q, and the weighted degree constraints as a bound on the number of monomials
available. This gives a bound on the parameters on when it is guaranteed that a
satisfactoryQ exists. Further analysis shows that this is the case if the following
is satisfied:

T 2 > N(w1 + w2). (3.32)

Such an analysis along with precise choices of ` and s can be found in [Tri10] or
in more detail in [Nie13, Proposition 5.7].
Making use of rational interpolation tool from Theorem 3.3 with the number

of points N = n and plugging our polynomials U(x) and V (x), we get the Wu
algorithm:

26

3.2 Interpolation-based Decoding

Theorem 3.4 (Wu algorithm)
For positive non-zero integers `, s, τWu and a trivariate non-zero polynomial
Q(x, y, z) :

Q(x, y, z) = Q0(x)z` +Q1(x)yz`−1 +Q2(x)y2z`−2 + · · ·+Q`(x)y`. (3.33)

If t ≤ τWu and the following conditions are satisfied

1. Q(αi,−V (αi), U(αi)) = 0 with multiplicity s,∀i = 0, . . . , n− 1

2. degQi(x) ≤ sτWu − (`− i)θA − iθB − 1, ∀i = 0, . . . , `

then (B(x)y −A(x)z) divides Q(x, y, z).

As in GS, the choice of ` and s, depends on the desired correction radius
τWu. In order for the interpolation to succeed, the number of unknowns should
be more than the number of equations. Thus, the following inequality must be
satisfied:

(`+ 1)sτWu −
(
`+ 1

2

)
(θA + θB) >

(
s+ 1

2

)
n. (3.34)

In [Wu08], it is shown that the Wu algorithm can decode also up to the Johnson
bound as the GS algorithm

τWu < n−
√
n(n− d). (3.35)

3.2.2 Root Finding using Roth–Ruckenstein Algorithm
Regardless of which interpolation method is used, the process of decoding can
not be finished without extracting the factor (y−C(x)) from Q(x, y) if GS was
used or (B(x)y−A(x)z) from Q(x, y, z) in case of Wu. The Roth–Ruckenstein
(RR) algorithm is known to be one of the efficient root finding algorithms [RR00],
[Rot06, Page 284]. Here, Algorithm 3.2 only shows the case of factorizing a
bivariate polynomial Q(x, y). For the case of the trivariate polynomials, more
details can be found in [Nie13, Section 5.1].
As shown in Algorithm 3.2, the RR algorithm tries to find the polynomial

f(x) = f0 + · · · + fk−1x
k−1 such that (y − f(x)) divides Q(x, y). In the first

run, f0 is calculated and a new bivariate polynomial T (x, y) is obtained with a
y-root at f̃(x) = f(x)−f0. The algorithm takes T (x, y) as input to a second run
and recursively calculates f̃0 = f1. The process is repeated, until all coefficients
are calculated. The output of the algorithm is a list F containing all y-roots of
Q(x, y).

27

3 Decoding Reed–Solomon Codes

Algorithm 3.2 Root-finding algorithm (RR) [RR00, Rot06]
Input: Bivariate polynomial Q(x, y), dimension k, and h ∈ N
Global Variables: Set L ⊆ F[x]

Polynomial f(x) ∈ F[x]

1: if h = 0 then
2: U = ∅
3: end if
4: m← largest integer such that xm divides Q(x, y)
5: T (x, y)← x−mQ(x, y)
6: Z ← set of all distinct y-roots of T (0, y) in F
7: for each γ ∈ Z do
8: fh ← γ
9: if h < k − 1 then

10: RR(T (x, xy + γ), k, h+ 1)
11: else
12: if Q(x,f(x)) = 0 then
13: L ← L ∪ {f(x)}
14: end if
15: end if
16: end for
Output: The list of y-roots L

3.3 Error/Erasure Decoding

3.3.1 Definition of an Erasure

Erasing a coordinate in the received vector r is simply removing its effect from
the decoding process. There are many ways to describe an erasure. In some
systems, it can happen that the channel would produce a received vector r with
a coefficient ri 6∈ F. This value is then considered corrupt and its position is
replaced by an erasure. In this dissertation, an erasure is viewed in another way.
Whenever the location of the error becomes known, it can be replaced by an
erasure. Knowing where errors are located is not always possible, but sometimes
it is possible to obtain some reliability information. Calculating reliability infor-
mation is explained in details in Section 4.1. A coordinate with low reliability
is then considered an erasure. Of course mistakenly erasing a non-erroneous co-
ordinate will reduce the decoding capabilities. However, the gain from erasing
unreliable coordinates is greater than its loss as shown later in Chapter 4. Let

28

3.3 Error/Erasure Decoding

φ ∈ {0, . . . , n−1} be the set of coordinates where an erasure is introduced. The
number of erasures is denoted as ε = #φ.

Erasures in syndrome decoding

In classical decoding techniques such as EEA and BMA (see Section 3.1), dealing
with error and erasures transforms (3.1) to the following form:

τ = b(d− ε− 1)/2c. (3.36)

In (3.36), the errors in the non-erased part of r are denoted τ . If all error
locations become known, ε ≤ d − 1 erasures can be corrected. It is because of
this, it can be said that errors are twice as expensive as erasures. Let Φ(x) be
the erasure locator polynomial such that

Φ(x) =
∏

i∈φ
(x− αi). (3.37)

Only the input of the decoding processes of EEA and BMA changes when de-
coding erasures along with errors. For EEA (Theorem 3.1), instead of using
R(x) as input, we use R̂(x) = Φ(x)R(x) mod (xn− 1). While in BMA (Equa-
tion (3.16)), the input sequence Ŝ(x) = S̃ε + S̃ε+1x · · · S̃d−2x

d−ε−2 is used, where
S̃(x) = Φ(x)S(x) mod xd−1.

Erasures in interpolation decoding

Introducing erasures in interpolation decoding methods like GS is simpler. The
erased positions should just be ignored during the interpolation step. The points
(αi, ri) with i ∈ φ should be excluded from Theorem 3.2. The parameters `, s
and τGS however will now depend on the new number of interpolation points
n̂ = n− ε. They should chosen such that (3.25) remains satisfied.
In Wu, introducing erasures does not make sense, since the goal of the inter-

polation is to get the polynomial Q(x, y, z) passing through erroneous positions.
It is, however, useful to exclude non-erroneous positions from the interpolation.
This is shown later in Chapter 4.

3.3.2 Generalized Minimum Distance Decoding
Generalized Minimum Distance (GMD) decoding was introduced by Forney in
[For66]. It is a decoding method that is able to combine reliability information

29

3 Decoding Reed–Solomon Codes

and error/erasure decoding. Later on, variants of GMD decoding started to
appear while keeping the name and origin. GMD can be used for either decoding
with reliability or decoding concatenated codes as in [Bos99, Chapter 7] and
[Rot06, Chapter 12]. The variant we are using is analogous to the one in [Bos99]
and is shown in Algorithm 3.3.
Before explaining GMD decoding, we first illustrate how reliability informa-

tion is provided to the decoder. Let the reliability information be represented
by the vector η = (η0, . . . , ηn−1). Each element in ηi reflects the probability that
a position i is erroneous

(
P (i ∈ Ψ)

)
for all i ∈ {0, . . . , n− 1}. For example, the

value in ηi can be inversely proportional with the probability P (i ∈ Ψ). The
lower the value ηi, the more probable that the coordinate i is erroneous. There
is however no standard way on how these two values are related and is totally
dependant on the system at hand.

Algorithm 3.3 Generalized Minimum Distance (GMD) decoding
Input: Received vector r, minimum distance d, reliability vector η

and an error/erasure decoder Ξ
Initializations: ε← 0, L ← ∅

1: while ε < d do
2: r̃ ← Erase the most ε unreliable positions in r depending on η
3: c̃← Decode r̃ using decoder Ξ
4: if Decoding success then
5: L = L ∪ c̃
6: end if
7: ε← ε+ 2
8: end while
9: ĉ← argmin

l∈L
dG(l, r)

Output: The codeword ĉ

GMD decoding is a multi trial decoding procedure, where multiple decoding
attempts using any error/erasure decoder Ξ are excuted. In the beginning, the
decoder Ξ attempts to decode the received vector r without introducing any
erasures. If a decoding result exists, it is saved in a list L. In the second
attempt, two erasures are introduced to the received vector r and decoding is
repeated. The erasures are introduced at the most unreliable positions in r
depending on the reliability vector η. If the second attempt results in a new
decoding result, it is added to the list L. The process is then repeated with

30

3.3 Error/Erasure Decoding

adding two new erasures with every new decoding attempt. Depending on some
defined criteria, a unique solution is chosen from the list L and is considered the
output of the decoder. In [For66], the output codeword is the code word having
the smallest generalized distance dG(r, ĉ).

dG(ĉ, r) =
n−1∑

i=0

dg(ĉi, ri), (3.38)

where

dg(ĉi, ri) =

{
δgi , ĉi = ri,

1− δgi , ĉi 6= ri.
(3.39)

The value of δgi ∈ [0, 1/2] is calculated depending on the reliability information
ηi, such that δgi = 0 for the most reliable positions and δgi = 1/2 for most
unreliable positions.
In the remaining chapters, we do not use the generalized distance defined

by (3.38) and was only mentioned for completeness. Also, GMD decoding is
only used as a performance reference for other algorithms in this dissertation.
However, since combining reliability information with error/erasure decoding is
the main building block of this dissertation, we consider it as the inspiration for
most the new algorithms to be presented later in Chapters 4 and 5.

31

4
Decoding with Reliability in Finite
Fields

When it comes to error correction, the optimal decoding method is maxi-
mum likelihood decoding [MS88], where the probability of having wrong

decoding decision is minimized. However, using this method is computationally
expensive as it has exponential complexity. So suboptimal decoding methods
like minimum distance decoding are used since they provide acceptable error
correction capabilities while having a reasonable complexity. Examples of algo-
rithms in this category are those presented in Chapter 3. In order to increase
the correction radius and provide a performance close to that of maximum like
decoding, we can use reliability information. Reliability is a form of soft infor-
mation. It is extra information given to a decoder to produce a better decoding
performance. Depending on the communications system, it can be either given
by an outside source "genie" or can be calculated at the receiver. Different algo-
rithms use the reliability in different ways. For binary codes, the Chase [Cha72]
algorithm flips the positions with low reliability, while the Dorsch [Dor74] algo-
rithm focuses more on recovery using positions with high reliability. For non-
binary codes, GMD decoding [For66] introduces erasures at positions with low
reliability. There is also the Kötter–Vardy (KV) algorithm [KV03] which is an
extension to the GS algorithm. In KV, the reliability determines the multi-
plicity of the points used in the interpolation. The higher the reliability for a
position, the higher the multiplicity assigned to its corresponding interpolation
point. The KV algorithm is considered to give one of the best performances
when compared to other RS decoding techniques that use reliabilities. There-
fore, we use the KV algorithm as a reference algorithm for comparison. Before
going into details of the proposed algorithms, we first show the different ways
to calculate reliabilities.

33

4 Decoding with Reliability in Finite Fields

4.1 Reliability Calculation

A received vector r ∈ Fnq is coupled with a reliability vector η ∈ Rn. The
elements of η = (η0, . . . , ηn−1) indicate if a position of r is likely to be erroneous,
in other words, if it is reliable or not. The reliability ηi is inversely proportional
to the probability of position i being in the error set Ψ

(
P(i ∈ Ψ)

)
. The lower

the value ηi, the higher the probability that the position i is erroneous. Such
positions, with low reliability, are called unreliable positions for the rest of this
chapter. There are various ways of calculating this vector, they all depend on
the used channel model. In the following we explain two possible methods.

4.1.1 Code Concatenation

This method of reliability calculation is used in many publications including
[SSBZ10] and [CSS14]. If a q-ary symmetric channel exists, a code concate-
nation is best suited to calculate reliabilities. Code concatenation is initially
investigated in [For66], where two codes are being used to create a stronger
code. The first code Co(no, ko, do) is called the outer code while the second
C i(ni, ki, di) is called the inner code. The resulting code will have the following
parameters Cc(noni, koki, dc ≥ dodi). The encoding process is done such that the
information symbols u ∈ Fkoq is mapped to a codeword co ∈ Co. Each symbol
coj ∈ Fkiq is then used as information symbols to the outer encoder and is encoded
to form the codeword ci ∈ C i with symbols cij ∈ Fq. Errors are introduced by
the channel such that the vector ri = ci+e is received. The inner decoder either
calculates an estimate of the transmitted codeword c̃i or fails. This provides the
outer decoder with the vector ∆ = (∆0, . . . ,∆no−1) such that:

∆j =

di/2, decoding failure,

dH(rij, c̃
i
j), otherwise.

(4.1)

In this case, the reliability vector η is then defined as follows:

ηj :=
di − 2∆j

di
, where ηj ∈ [0, 1]. (4.2)

More details and insights on code concatenation and decoding them using relia-
bility information can be found in [Bos99, Chapter 9] and [Rot06, Chapter 12].

34

4.1 Reliability Calculation

4.1.2 Modulation-based

For memoryless Additive White Gaussian Noise (AWGN) channels, we calcu-
late the reliability vector η using the method mentioned in [KNIH94, KWB10].
Unlike the previous method, only a single RS code over Fqm is needed. Each
coefficient in a codeword c ∈ RS can be written as m elements from Fq such
that ci = (ci,0, ci,1, . . . , ci,m−1) ∈ Fmq . Using q-ASK modulation, the codeword c
is mapped to the vector x ∈ Rnm. It is also possible to use q-PSK, however,
for q > 2 the elements of the vector x will be complex-valued. In this chap-
ter, we only consider the real- valued case. Through the channel, vector x is
transmitted and y = x+ ν is received, where ν is the added noise vector. The
elements of ν are extracted from a normally distributed random variable with
mean zero and standard deviation σ. The value of σ depends on the desired
Signal-to-Noise Ratio (SNR) such that

SNR = 10 log10

Es
R · σ2

, (4.3)

where Es is the energy of a transmitted symbol and R = k/n is the code rate.
Let ∆ be a matrix with dimensions n × qm. An element ∆i,z ∈ R reflects the
probability that ri was a certain element z ∈ Fqm before the noise was added

∆i,z = ln
P(ri|ci = z)∑

l∈Fmq , l 6=z
P(ri|ci = l)

. (4.4)

The symbols ri and z can be written as m elements from Fq such that ri =
(ri,0, ri,1, · · · , ri,m−1) and z = (z0, z1, . . . , zm−1). Assuming the channel is mem-
oryless and the components of the noise vector ν are drawn from a normal dis-
tributed random source with zero mean and standard deviation σ, the following
applies

P(ri|ci = z) =
m−1∏

κ=0

P(ri,κ|ci,κ = zκ), (4.5)

=
1√

2πσ2
m exp

{
m−1∑

κ=0

− 1

2σ2
(ri,κ − zκ)2

}
. (4.6)

35

4 Decoding with Reliability in Finite Fields

Combining (4.4) and (4.6) yields

∆i,z = ln

m−1∏

κ=0

P(ri,κ|ci,κ = zκ)

∑

l∈Fmq , l 6=z

m−1∏

κ=0

P(ri,κ|ci,κ = lκ)

. (4.7)

= ln

exp

{
m−1∑

κ=0

− 1

2σ2
(ri,κ − zκ)2

}

∑

l∈Fmq , l 6=z
exp

{
m−1∑

κ=0

− 1

2σ2
(ri,κ − lκ)2

} . (4.8)

After calculating ∆ from (4.8), it is used to define the reliability vector η for
this case such that

ηi := (∆i1st −∆i2nd), for i ∈ 0, . . . , n− 1. (4.9)

where ∆i1st and ∆i2nd are the largest two value in the column ∆i. The process
of calculating ∆ and finding the largest entries in each of its columns increases
exponentially with the increase of m. This is because of the size of ∆ with a
number of rows equal to the size of the field (qm).

4.2 Decoding Algorithms Using Reliability

Having calculated the reliability vector η, we are able to use this extra infor-
mation to correct more errors. Still, classical methods like BMA or GS are not
designed to make use of the reliability information provided. Either some tweak-
ing or extra steps are required to achieve this gain in decoding radius. Similar to
the decoding algorithms mentioned in Chapter 3, the algorithms presented in the
following sections are two examples of both syndrome-based decoding (Chase-
like decoder 4.2.1) and interpolation-decoding (Reduced list-decoding 4.2.2). It
is important to note that we are only interested in the cases where the number
of errors t exceeds half the minimum distance τ . Using the reliability informa-
tion, we show that we are able to correct errors beyond τ using the proposed
algorithms.

36

4.2 Decoding Algorithms Using Reliability

4.2.1 Chase-like Decoder
There exist many Chase-like decoders in the scientific community. They are all
alterations of the original Chase decoder presented in [Cha72]. The extent of
changes from the original usually depends on the system in which it is imple-
mented and the code to be used in this system. The variant we consider here in
this section is the one presented in [MB15]. But before we go into its details, we
briefly explain the idea behind the original version of the decoder. In addition,
we present a method of the decoding beyond half the minimum distance τ when
some side information about the error locations exists.
The original Chase decoder was proposed for binary codes. Given the relia-

bility vector η, let the set L ⊂ {0, . . . , n− 1} contain the L = #L least reliable
positions. Based on some criteria, let the set of some combinations of the ele-
ments of L be Υ ⊂ P(L), where P(L) is the power set of L. For a combination
υ ∈ Υ, the corresponding bits are flipped (zeros are changed to ones, while ones
are changed to zeros) and the modified received vector is decoded. This process
is repeated for all combinations Υ. For q-ary codes, the act of flipping corre-
sponds trying out all the q − 1 other symbols. For a large q, this is considered
tedious work. So instead of flipping, we introduce erasures, which is similar to
GMD decoding (see Section 3.3.2).

Beyond Half the Minimum Distance Decoding Using EEA

In the presented Chase-like decoder, error/erasure decoding is done using the
following EEA based decoder. If the number of errors t is smaller than or
equal to the EEA decoding radius τ , the EEA is able to find Λ(x) without
going through any extra steps of decoding (see Section 3.1.1). If t > τ , EEA
fails in calculating Λ(x) but it provides us with coprime polynomials U(x) and
V (x) as outputs [BB08]. The degrees of both polynomials are τ and τ − 1
respectively. Let the number of errors be t = τ + t0. As mentioned before in
Section 3.2.1, [BB08] shows that a basis for Λ(x) is given as follows:

Λ(x) = A(x)U(x) +B(x)V (x), (4.10)

where A(x) and B(x) are unknown polynomials with degrees:

degA(x) = t0

degB(x) ≤ t0 − 1
(4.11)

From (4.11), the number of unknown coefficients in A(x) and B(x) is 2t0 + 1.
Since we are only interested in the roots of Λ(x), we can set any coefficient to

37

4 Decoding with Reliability in Finite Fields

any value (we set At0 = 1). Thus, the number of unknowns becomes 2t0. From
Definition 3.1, we know that

Λ(αi) = A(αi)U(αi) +B(αi)V (αi) = 0, where i ∈ Ψ. (4.12)

Using any 2t0 equations from (4.12) is enough to calculate the two unknown
polynomials A(x) and B(x). The problem is that we do not know the set of
error positions Ψ. Given the reliability information, we can choose a set υ of 2t0
positions from the least reliable positions. Erasures are introduced by forcing a
set of positions υ to satisfy the following system of equations:

Λ̂(αi) = Â(αi)U(αi) + B̂(αi)V (αi) = 0, where i ∈ υ. (4.13)

If υ ∈ Ψ, then Â(x) = A(x) and B̂(x) = B(x) and Λ(x) is calculated using
(4.10). However, if υ 6∈ Ψ, we might end up with a polynomial Λ̂(x) instead of
Λ(x). We would have try again and choose a different set υ.

Chase-like Decoder

Any 2to error positions should be enough to solve Equation (4.13). If t was
known, it is guaranteed to find 2t0 error positions in any n − t + 2t0 positions
since n − t positions are correct. Then, we obtain possible solutions of Λ̂(x)
by substituting in Equation (4.13) for all

(
n−t+2t0

2t0

)
possible combinations. By

solving the resulting linear system of equations for each combination, we get
a list of polynomials. Some having t roots and one of those is guaranteed to
be the error locator polynomial Λ(x). Unfortunately, this brute force decoding
has a large list size due to the huge number of combinations, which results in a
high decoding complexity. However, if reliability information is used, we would
not need to go through n − t + 2t0 positions. We would only need to choose
the least reliable L positions (since they are highly likely to contain more errors
than other positions) and search for 2t0 error positions in them. Thus, reducing
the combinations that should be considered to

(
L

2τ0

)
combinations.

Since t is not known at the receiver side, let t̂ = τ+t̂0 be the designed decoding
radius. The parameters L and t̂0 are our design parameters. They are limited by
how much complexity we can afford. The choice of L should reflect the amount
of errors that could be found in the least reliable L positions, such that we
are able to calculate the correct Λ(x) with low probability of failure. Without
loss of generality, assume that the reliabilities for the vector r are sorted in an
ascending order such that η0 ≤ η1 ≤ · · · ≤ ηn−1, such that the chosen positions
are the L first positions (L = {0, . . . , L−1}). Since L should be greater than 2t̂0

38

4.2 Decoding Algorithms Using Reliability

and is dependent on the quality of the reliability information η, it is considered
as a function of t̂0. Let L(κ) be the set containing the first L(κ) least reliable
positions. For the set L(κ) to contain the required number of erroneous positions,
L(κ) should be designed depending on the quality of the reliability information.
However, the larger L becomes, the more time it will take to go through all
combinations.
The proposed Chase-like algorithm is an iterative algorithm. In the first

iteration, all subsets of size two within the set L(1) are used to try and solve
Equation (4.13) for a Λ̂(x) with degree τ + 1. For each successive iteration, the
current decoding radius is increased to τ + κ with κ = 1, 2 . . . , t̂0 until we reach
our designed decoding radius t̂ = τ + t̂0. Within each iteration, we try subsets
of L(κ) of size 2κ in order to get a Λ̂(x) that has a number of roots equal to its
degree. This corresponds to

(
L(κ)
2κ

)
different linear systems of equations for each

iteration.
At the end of the algorithm, the output of the decoder is a list of valid solutions

for Λ(x) having a number of roots equal to their degrees. A success is declared
when the list is not empty. Otherwise, a failure is declared. A correct solution
occurs when the correct Λ(x) is in the list. We consider a wrong solution as an
undetected failure. The list size has an upper bound of

∑t̂0
κ=1 bL(κ)/2κc, which

occurs only if every 2κ in our L(κ) least reliable symbols result in a possible
solution, which rarely happens as shown later in the numerical simulations. The
Chase-like algorithm is shown in Algorithm 4.1.

Single Iteration Chase-like

The algorithm can be made in a single iteration by setting κ = t̂0 directly.
Let the difference between the designed radius and the number of errors be
δ = t̂− t = t̂0 − t0. In the case of t < t̂, we have more unknowns in (4.13). The
calculated Λ̂(x) will have δ more roots than the correct Λ(x). These extra roots
are roots at non-erroneous positions which can be removed by just checking
whether has also roots at these positions. The polynomial Ω̂(x) is calculated
along with Λ̂(x) using the EEA and should satisfy the following relations:

(xn − 1) = Λ(x)Γ(x) = Λ̂(x)Γ̂(x), (4.14)

E(x) = Ω(x)Γ(x) = Ω̂(x) · Γ̂(x). (4.15)

Based on Definition 3.1, any root we move from Γ(x) to Λ(x) is also moved to
Ω(x). The only difference here is that not 2t̂0 erroneous positions are needed

39

4 Decoding with Reliability in Finite Fields

Algorithm 4.1 Chase-like Algorithm
Input: U(x)V (x),η, t̂0)
Initializations: Empty list Ξ = {}

Set L(κ) depending on η
1: for κ = 1 : t̂0 do
2: L(κ) ← {0, 1, . . . , L(κ)− 1}
3: Z ← {z : z ⊂ L(κ), |z| = 2κ}
4: for z ∈ Z do
5: Solve ∀i ∈ z: Λ̂(αi) = A(αi)U(αi) +B(αi)V (αi) = 0

6: if Λ̂(x) is a valid solution then
7: Ξ← Ξ ∪ Λ̂(x)
8: end if
9: end for

10: end for
Output: A list Ξ of valid possible solutions for Λ(x).

to solve (4.13), but 2t̂0− δ erroneous positions and δ non-erroneous positions to
find Λ̂(x).

Performance and Complexity

Assume that a position i being erroneous is with probability pi. Let P (j) denote
the probability of j errors occurring in the received vector r and P (j /∈ L)
denotes the probability that the set L does not contain j errors or more, which
can be calculated by:

P (j /∈ L) =

j−1∑

l=0

∑

(L(j)
l)

∏

l

pi
∏

L(j)−l
(1− pi). (4.16)

Then, the probability of a decoding failure Pf , which also includes wrong de-
coding, can be expressed as follows:

Pf =
∑

j>t̂

P (j) +

t̂0∑

κ=1

P (τ + κ)P (2κ /∈ L(κ)). (4.17)

From (4.16,4.17), it is shown that the probability of failure Pf depends entirely
on the quality of the reliability information. The more erroneous positions that
are included in the set L, the lower the probability of failure.

40

4.2 Decoding Algorithms Using Reliability

The complexity C of the Chase-like algorithm with a designed decoding radius
t̂ and probability of failure Pf is mainly based on solving small linear systems
of equations with 2κ unknowns for

(
L(κ)
2κ

)
times for every iteration.

C ∼
t̂0∑

κ=1

(
L(κ)

2κ

)
(2κ)3. (4.18)

Since the complexity is is exponential in L(κ), this expression can be approxi-
mated to the dominant term:

C ∼
(
L(t̂0)

2t̂0

)
(2t̂0)3. (4.19)

The term L(t̂0) is the biggest contributor to the complexity and has to be mini-
mized to achieve low complexity. However, to be able to choose a small L(t̂0), the
reliability measure needs to maximize the number of errors in the least reliable
symbols.

Numerical Evaluations

Using an RS(63,57) code with BPSK (Binary Phase shift Keying) modulation,
transmission over an AWGN channel with SNR varying from 5.2 to 6.4 dB is
simulated. At the receiver, the reliability vector η is calculated using the method
proposed in Section 4.1.2. Based on the calculated vector η, the probability that
the least reliable positions are erroneous is investigated and shown in Figure
4.1. The figure shows that the probability is monotonically decreasing with the
positions reliability. With the current setup, the highest probability of error
occurs at the least reliable position with a probability varying between 30% and
50%. This means that, on average, less than half of the least reliable position
are errors. To achieve correct decoding all the time, 2t0 errors should exist in
the L(t0) least reliable positions. Therefore, the value of L should be designed
such that L(κ) > 4κ.
The performance of the Chase-like decoder is compared to other decoders

that utilize reliability information: A basic GMD decoder and an advanced
KV decoder. Note that the GMD decoder is based on the fact that among
the L to-be-erased positions there should be more than L/2 errors, which is not
the case as shown in Figure 4.1. Hence, a bad performance is expected from
GMD. Nonetheless, it is used as a reference to see how much better the new
decoder performs. The complexity of KV is O(ð3), where ð is the so-called
cost. In [MT11], it was proved that decoding with KV can be achieved with

41

4 Decoding with Reliability in Finite Fields

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

Least reliable positions (i)

P
ro

ba
bi

lit
y

th
at

po
si

ti
on

is
er

ro
ne

ou
s

(p
i)

SNR=5.2 dB
SNR=5.6 dB
SNR=6 dB
SNR=6.4 dB

Figure 4.1: Probability of least reliable positions being erroneous. Symbols of
codewords from an RS(63,57) code with BPSK modulation are transmitted

over an AWGN channel [MB15].

a lower complexity, namely O(ð2). Up to our knowledge this is lowest known
complexity for the KV algorithm. We compare both Chase-like and KV such
that the complexities of both algorithms are similar. In order to get simulation
results without going through the complex implementation of the KV decoder,
we only checked if the bound in [KV03, Theorem 3] is satisfied.
In Figure 4.2, the probability of failing to recover the transmitted codeword

(block failure probability) is plotted using different decoders for various SNR
values. The Chase-like decoder has a designed decoding radius t̂ = τ + 2. Two
variants of the decoders are investigated: one with L(κ) = 4κ and the other
more complex version with L(κ) = 10κ. Also a genie decoder that can correct all
t ≤ 5 errors is simulated as a lower bound. The complexities of both KV and the
Chase-like (L = 10κ) algorithms are equal. From Figure 4.2, it can be seen that

42

4.2 Decoding Algorithms Using Reliability

5.2 5.4 5.6 5.8 6 6.2 6.4

10−3

10−2

10−1

SNR (dB)

B
lo

ck
Fa

ilu
re

P
ro

ba
bi

lit
y

Classical EEA τ = 3
GMD
Kötter–Vardy
Chase-Like, L = 4κ
Chase-Like, L = 10κ
Genie decoder with τ = 5

Figure 4.2: Probability of failure vs. SNR. Symbols of codewords from an
RS(63,57) code with BPSK modulation are transmitted over an AWGN

channel [MB15].

the Chase-like decoder with both its variants outperforms both the GMD and
KV decoders. Although it was only expected for the GMD to be surpassed, the
KV lacked the sufficient resources to perform adequately due to the complexity
limitation. The more complex version of Chase-like (L = (10κ)) is almost as
good as the genie decoder that can correct extra two errors. Simulations also
show that the Chase-like output list size is equal to 1 for t = 1, 2.

So in conclusion, if a good enough reliability vector η is available, we can
correct a small number of errors beyond half the minimum distance τ with a
relatively reasonable complexity and a small probability of failure compared to
known algorithms when used with high-rate codes. The main disadvantage of
the Chase-like decoder is that it has exponential complexity in L(τ0), which puts
limitations on the designed decoding radius t̂.

43

4 Decoding with Reliability in Finite Fields

4.2.2 Reduced List-Decoder (RLD)
The algorithm in this section was first presented in [MNB14]. The idea of this
algorithm is based on the Wu algorithm mentioned in Section 3.2.1. We focus on
the case where the decoding of the vector r using EEA (or BMA) is unsuccessful.
That is when t > τ , where decoding fails in finding the error locaor polynomial
Λ(x). In this case, we proceed with rational interpolation while utilizing the
outputs obtained from EEA. The goal of rational interpolation in the Wu al-
gorithm is to find a polynomial Q(x, y, z) satisfying the conditions in Theorem
3.4. But instead of using all n points from (3.30) in the interpolation, we only
consider to the least reliable positions, obtained from the reliability vector η.
Interpolating with smaller number of points would result in lower complexity.
Also a better performance is expected when compared to the original Wu al-
gorithm. This is due to the fact that positions taken into consideration should
contain more errors than those that are reliable. Whether the interpolation pro-
cess succeeds as intended depends on the ratio of errors caught in the unreliable
positions. Without loss of generality, assume that the reliabilities for the vector
r are sorted in an ascending order such that η0 ≤ η1 ≤ · · · ≤ ηn−1, such that
the chosen positions are the L first positions (L = {0, . . . , L − 1}). The points
which are used in the interpolation are as follows:

βi = −V (αi)

U(αi)
=
A(αi)

B(αi)
, ∀i = 0, . . . , L− 1. (4.20)

The coprime polynomials U(x) and V (x) are outputs of the EEA (or BMA) at
a certain iteration, while A(x) and B(x) are unknown polynomials satisfying

degA(x) = θA = deg Λ(x)− degU(x)

degB(x) = θB ≤ deg Λ(x)− d− degU(x)
(4.21)

Since t stands for the total number of errors, let tL be the number of errors
in the L chosen positions. Because both of them are unknown to the receiver,
we assume the two values: t̂ and t̂L ≤ t̂. Choosing t̂ depends on the maximum
number of errors one wishes to correct. As for t̂L, one would assume that
it should be chosen such that it somehow relates to tL. However, it is not
that straightforward and we will get back to choosing this value later on. A
visualisation of the parameters is shown in Figure 4.3.
Provided with Theorem 3.3, we then formulate a rational interpolation prob-

lem for finding A(x) and B(x) using the obtained polynomials U(x) and V (x):

44

4.2 Decoding Algorithms Using Reliability

tL t− tL

tL t− tL

n

n

(a)

(b)

L

L

t̂L

t̂L

t̂

t̂

Figure 4.3: Visualisation of L, t, tL, t̂ and t̂L. Error positions have been
ordered for overview. In (a) t > t̂ and in (b) t < t̂, but in either case decoding

succeeds since tL is sufficiently large, as according to Lemma 4.2.

Lemma 4.1
Consider Theorem 3.3 and let the number of interpolation points N = L and
(xi, yi : zi) =

(
αi,A(αi) :B(αi)

)
for i = 0, . . . , L − 1, as well as T = t̂L, θA =

t̂− degA(x) and θB = t̂− d+ degB(x). If

t̂2L > L(2t̂− d), (4.22)

there exist valid choices of s and ` such that a polynomial Q(x, y, z) satisfying
the requirements of Theorem 3.3 exists. Furthermore, if t = t̂ and tL = t̂L, then
Q(x,A(x),B(x)) = 0.

Proof. The existence of the Q-polynomial follows directly from Theorem 3.3
and (3.32). The property Q(x,A(x),B(x)) = 0 follows from the arguments of
Section 3.2.1 since the equation A(αi)U(αi)+B(αi)V (αi) = 0 holds for T = t̂L
out of N = L values of i, and since degA(x) + degB(x) ≤ 2t − (degU(x) +
degV (x)) = 2t̂− d = θA + θB.

Lemma 4.1 shows that the desired Q-polynomial is obtainable only for the
case where the chosen value t̂ is equal to the number of errors t. Nevertheless,
we have to also consider if that is also possible whenever t̂ 6= t. For the original
Wu algorithm, it is proven that success is guaranteed even for t̂ > t. Here the
situation turned out to be surprisingly different.

45

4 Decoding with Reliability in Finite Fields

Lemma 4.2
Considering Lemma 4.1 when t 6= t̂, then
Q(x,A(x),B(x)) = 0 if:

`

s
≥ t̂L − tL

t̂− t
, whenever t̂ > t, (4.23)

`

s
≤ t̂L − tL

t− t̂
, whenever t̂ < t. (4.24)

Proof. This statement is proven by showing that Q is a valid interpolation
polynomial satisfying the requirements of Theorem 3.3 for almost the same
rational interpolation problem but with T̃ = tL and θ̃A = t − degU(x) and
θ̃A = t+ d− deg V (x).
Since only T, θA and θB are changed in the newly considered rational inter-

polation, we only need to show that the new weighted-degree constraints on Q
are satisfied, i.e. that:

deg(1,θ̃A,θ̃B)Q < stL. (4.25)

Since Q satisfied the original interpolation problem, then deg(1,θA,θB)Q < st̂L.
We then compute

deg(1,θ̃A,θ̃B)Q ≤ deg(1,θA,θB)Q (4.26)
− min

i=0,...,`
{i(θA − θ̃A) + (`− i)(θB − θ̃B)} (4.27)

= deg(1,θA,θB)Q− `(t̂− t). (4.28)

Thus deg(1,θA,θB)Q is satisfactory low whenever

stL ≥ st̂L − `(t̂− t),
which is equivalent to the conditions of the lemma.

From Lemma 4.2, it turns out that, similar to the Wu algorithm, rational
interpolation succeeds even for the case of t̂ > t. This can be even done when
fewer errors than t̂L exist in the L chosen positions. Surprisingly, however, it
turns out that even when t̂ < t, rational interpolation succeeds if more errors
exist in the chosen positions. As a result, it would be a mistake to call t̂ a
decoding radius, since success is guaranteed (under some conditions) even when
errors beyond this value occur. Instead of radius, we would call t̂ the decoding
pivot. Equations (4.23) and (4.24), can also be written in the following form:

t̂L ≤ tL +
`

s
(t− t̂) (4.29)

46

4.2 Decoding Algorithms Using Reliability

Algorithm 4.2 shows the complete proposed decoding algorithm. While Theo-
rem 4.1 defines which codewords are contained in the list returned by Algorithm
4.2:

Theorem 4.1
Let r,η be the received word and its reliability vector respectively. Let L, `, s, t̂, t̂L
be parameters as defined in Algorithm 4.2. If ∃ c ∈ RS s.t. wtH(c − r) ≤ τ ,
then c is returned. Otherwise, the set T ⊂ RS is returned s.t c ∈ T iff:

wtH(c− r)L ≥ t̂L −
`

s
(t̂− wtH(c− r)), (4.30)

where wtH(x)L is the Hamming weight of x within the least reliable L positions
according to η.

Proof. Follows from Lemma 4.1 and Lemma 4.2.

Algorithm 4.2 RS Reduced list-decoding with reliability information
Require: A code RS(n, k) over Fq as in Definition 2.9.

The vector r ∈ Fnq with its corresponding reliability vector η.
The decoding pivot t̂ and the number of interpolation points L.

Ensure: A list of codewords in RS or Fail.

1: Calculate the syndrome S(x) from r as in (3.4).
2: Run the EEA on xd−1,S(x) and calculate U(x),V (x).
3: If U(x) is a valid error-locator of degree less than d/2, use it to correct r,

and if this yields a word in RS, return this one word.

4: Otherwise, we seek A(x),B(x) as in (4.10). Set t̂L =

⌊√
L(2t̂− d) + 1

⌋

and set θA, θB as in Lemma 4.1. Construct the Q(x, y, z) described in that
lemma, using satisfactory values of s and `.

5: Find all pairs of polynomials A?(x) and B?(x) such that
Q(x,A?(x),B?(x)) = 0. Return Fail if no such pairs exist.

6: For each such pair, construct Λ?(x) = A?(x)U(x) +B?(x)V (x). If it is a
valid error-locator, use it for correcting r. Return Fail if none of the factors
yield error-locators.

7: Return those of the corrected words that are in RS. Return Fail if there are
no such words.

47

4 Decoding with Reliability in Finite Fields

Classical minimum distance decoding takes place until Step 3 in Algorithm
4.2, which can be performed with a complexity of O(n log2+o(1) n). The rest
of the algorithm is exactly as the steps of the Wu algorithm. However, in our
variant, we only use L of the total n points. This reduces the complexity of the
list decoding part to a complexity of O(`MsL logO(1)(`L)).

Numerical Evaluation

Before we go to the actual results, we discuss first how the parameters of the
RLD are chosen. How to optimally choose the parameters L, t̂, t̂L, ` and s used
in Algorithm 4.2 is not yet clear. For example, there is no actual decoding
radius; rather a decoding pivot t̂. It should not be looked upon as the maximum
number of the errors that can be corrected, since the decoder manages to correct
even beyond it as shown in Lemma 4.2. Still, for a specific case, we later show
that the approach used to choose these values is fairly plausible.
From (4.22), it is clear that the success of the interpolation step will depend

on both L and τL. Also from (4.29), the goal would be to catch as many tL errors
as possible in the least L reliable positions. Provided we have good reliability
information, we could lower the complexity of the decoder and choose a small
value for L since most of the positions would be erroneous. While in the case of
bad reliability information, one would need to consider more points to achieve
an adequate performance; at the cost of complexity of course. In conclusion,
the value of L should be dependant on the quality of the reliability information
provided by η. Since there are no restrictions on L, we simulate using small,
medium and large values of L to see the effect of the change. From Lemma (4.2),
we know that the value of t̂L does not necessarily need to be equal to tL. Actually,
(4.29) shows that t̂L should be chosen as minimum as possible while satisfying
(4.22). Thus, the perfect choice for τL would be τL = b

√
L(2τ − d) + 1c.

To calculate the list size ` and multiplicity s, we use the method proposed
by Trifonov in [Tri10]. This method produces the numerically smallest possible
values for ` and s, which would certainly minimize the computational complexity
of the simulations. However, one must not ignore the fact that according to
Lemma 4.2 the ratio `/s has an impact on the decoding performance. For
example, if t̂ > t, the ratio `/s should be chosen as large as possible to maximize
the probability of success. While in the case that t̂ < t, it should be as small
as possible. This change will definitely result in a change of the complexity; an
increase to more be precise. In any case, the number of errors t is not known,
so there is not much that can be done. A suggestion would be to spilt every
decoding trial into two trials with each having different ratios `/s; one maximized

48

4.2 Decoding Algorithms Using Reliability

10 20 30 40 50 60

5

10

15

20

L

E
[t
L
+

` s
(t
−

t̂)
]
an

d
√

L
(2
t̂
−

d
)

SNR = 5 dB
SNR = 5.4 dB
SNR = 6 dB√
L(2t̂− d)

Figure 4.4: E[tL + `
s
(t− t̂)] for L least reliable positions vs

√
L(2t̂− d).

Symbols of codewords from an RS(63,31) code with BPSK modulation are
transmitted over an AWGN channel.

and the other minimized. Another suggestion would be to simply increase the
decoding pivot t̂, such that we are more likely to fall in the case where t̂ > t.
These suggestions are yet to be proved useful and should be subject to future
investigation. Also the optimized values for the parameters at hand are yet to
be established. This means that there is still room for possible improvement in
the algorithms performance.

We compare our RLD with two other decoding algorithms. The Wu algo-
rithm is chosen as our hard-decision decoder to see the improvement when using
reliability information. The second decoder is chosen as a rival that also uses
reliability information. For that purpose, we decided to chose one of the best
performing decoders, the KV algorithm. Symbols of codewords from the code

49

4 Decoding with Reliability in Finite Fields

5 5.2 5.4 5.6 5.8 6

10−4

10−3

10−2

10−1

SNR (dB)

B
lo
ck

Fa
ilu

re
P
ro
ba

bi
lit
y

Classical EEA τ = 16

Wu, τWu = 19

Kötter–Vardy
RLD, L = 15

RLD, L = 20

RLD, L = 25

RLD, L = 45

Figure 4.5: Probability of failure vs. SNR. Symbols of codewords from an
RS(63,31) code with BPSK modulation are transmitted over an AWGN

channel.

RS(63, 31) with BPSK modulation are transmitted over an AWGN channel
while varying the SNR. The reliability vector η is calculated as described in
Section 4.1.2. For each SNR, the transmission of a total number of one million
codewords is simulated. For the RS(63, 31) code, the half minimum decoding
radius is τ = 16, while the maximum possible hard-decision list-decoding radius
of the Wu decoder is τWu = 19. We chose the decoding pivot t̂ = 19, similar to
that of the Wu algorithm, to see the improvement of using reliability information
provided by the vector η.
As mentioned before, if (4.29) is satisfied, decoding succeeds. To get a feel-

ing on the effect of choosing different values of L and consequently t̂L, the
right-hand-side of (4.29) is investigated. Our simulation consist of a million
RS(63, 31) codewords such that codeword symbols are transmitted with BPSK

50

4.2 Decoding Algorithms Using Reliability

modulation over an AWGN channel. The value E[tL + `
s
(t− t̂)] is calculated at

various SNRs, where E[x] denotes the expected value of x.

In Figure 4.4, the red curve corresponds to
√
L(2t̂− d) which is the lower

bound for t̂L allowing rational interpolation to succeed (see Lemma 4.1). The
rest of the curves show the expected value of tL + `

s
(t̂− t) at different SNRs.

For a million codewords, it was expected that the curves obtained would turn
out smoother than what is shown in Figure 4.4. This would be the case if it
were not for the effect of L on the choices of ` and s. For each value of L, we
get a different ratio `/s, which sometimes suddenly increase or decrease; thus
explaining the rugged behaviour of the curves. Based on this figure, we can
decide what values for L that corresponds in a better value for t̂L. For example,
choosing an L < 10 would result in a t̂L which is way larger than the value
E[tL + `

s
(t− t̂)] resulting in a decoding failure. So for this specific code and

SNRs, a number of points L > 10 should be used in the interpolation. With
the increase of SNR, we see the gap between the bound and the other curves
increase. This indicates that a better success rate would result with a higher
SNR. A final conclusion from Figure 4.4 would be that having an L that results
in a large gap between the bound and the other curves would result in a better
performance, which turns out to be true.
In Figure 4.5 the probability of a decoding failure is plotted for the chosen

code while varying the SNR from 5 to 6 dB. An RLD decoding failure in this
simulation is either the decoder producing an empty list or a list that does not
contain the transmitted codeword.
Up to our knowledge, the KV algorithm is considered one of the best reli-

ability information decoders. This however comes at the cost of the decoding
complexity. For the purpose of this simulation, we assumed that the KV de-
coder has a really high complexity. This is achieved by setting its maximum
multiplicity-sum to the value of 2n, which can be considered, in terms of com-
plexity, an expensive decoder. As expected, it outperforms all other decoders as
seen in Figure 4.5.
The figure also shows that using RLD with choosing L = 15 and L = 20

is almost equivalent to using the Wu algorithm. Note that, the Wu algorithm
can be viewed as RLD with L = n. Increasing the number of interpolation
points to L = 25 increases the performance of RLD drastically. Resulting in a
performance that is almost equal to that of the highly complex KV. Increasing
the L further to 45 degrades the performance. If we increase L even further
to 63, we get the performance of the Wu algorithm. This is expected since the
curves from Figure 4.4 start getting closer to the lower bound, thus satisfying

51

4 Decoding with Reliability in Finite Fields

(4.29) less often.
It is worth mentioning, that the value of the ration `/s is 5/3 for L = 15, 20, 2

for L = 25, and 3 for L = 45. According to (4.29), these values play a important
role in the success rate of the decoder and, hence, should be subjected to further
investigation.

4.3 Overview and Summary
This chapter focused on algebraic decoding of RS codes over finite fields with the
help of reliability information. Using already established concepts and algorithm
like GMD, Chase, Wu and Kötter–Vardy, we show the performance of new
methods. The goal was to achieve either a better performance from that of
the known algorithms or the same performance using much less computational
complexity.
First, the Chase-like decoder [MB15] is investigated. It is shown that cor-

recting one or two extra errors using this decoder does not add much of com-
putational complexity to the basic EEA (BMA) decoder. However, correcting
even more errors would increase the complexity of the decoder exponentially. A
single iteration Chase-like decoder presents a chance of a slight speed up but at
the cost of performance. This is due to the oversight of combinations that would
result in a decoding success. Compared to KV decoder with limited computa-
tional power, the Chase-like decoder is able to outperform it. Still, this good
performance hinges on the existence of good reliability information, since one is
required to catch a certain number erroneous positions in the least reliable ones.
On the other hand, when an interpolation-based decoder like Wu is used, such

a strict condition does not exist. Provided with reliability information, a reduced
version of Wu was established [MNB14]. The RLD algorithm, similar to the Wu
algorithm, uses rational interpolation as a tool for decoding. The difference is
that the RLD does not use all the points provided by the received vector and
uses only those that are likely to be erroneous. In terms of complexity, the new
decoder offers less computational complexity than that of the Wu algorithm.
Simulations show that RLD greatly exceeds the Wu algorithm in performance
and is comparable with an extremely expensive KV decoder. Even so, the RLD
did not yet reach its maximum potential. There are still parts that need to be
investigated regarding the choice of parameters. It is clear that with the proper
optimization, the RLD would produce even better results.

52

5
Decoding with Reliability in the
Complex Field

Complex Reed–Solomon codes (CRS) are first presented by Wolf [Wol83] and
Marshall [Mar84]. They are defined over the complex field C using DFT,

so they were referred to at the time as analog or DFT codes. Even though the
digital revolution has already changed the way computers and communication
systems were designed, CRS codes, being defined over C, proved to be an inter-
esting topic for researchers. Some focused on studying and enhancing already
existing decoders to suit these type of codes. In [Wol83], the focus was the re-
moval of impulse noise from discrete-time continuous-amplitude data sequence
whose DFT has a string of continuous zeros. Having continuous zeros in a data
sequence can occur if a continuous band-limited is sampled with a sampling rate
higher than the Nyquist rate. While in [Mar84], it is shown that it is possible,
under some condition, to correct d/2 errors if the distance of the code is even.
Extension of CRS codes to achieve a better performance when decoding using
BMA and EEA is investigated in [MS85]. In [Kum85], the use of CRS codes to
correct burst errors is examined and it is shown that with interleaving better
decoding results are achieved.
Other researchers focused on applications for such codes. Examples of these

applications are protection against packet loss in IP networks [RHG01] and
estimation of the direction of arrival of plane waves [RG03]. They can be also
utilized in Orthogonal Frequency-Division Multiplexing (OFDM) [Hen00, HH05,
ADAA08, HHH12]. There are also other publications that are worth mentioning
such as [Hen89, MHET99, Red00, TH08, AT08, HHZ11, VL14]. However, our
motivation for studying CRS codes lies in their application in Compressed Sens-
ing (CS), where reconstruction of sparse vectors from their compressed counter-
parts is investigated. The utilization of CRS codes in deterministic CS started

53

5 Decoding with Reliability in the Complex Field

by Parvaresh and Haassibi in [PH08], where they used the Coppersmith–Sudan
decoding algorithm [CS03]. Motivated by these results, [MRZB15] shows that
known decoders such as BMA and EEA can achieve an exceptional performance
even when dealing with a noisy scenario of data compression. As a result to this
work, it is later established in [Zö15, Chapter 7] that one can extract reliability
information whenever the algorithm used fails to recover the sparse vector. This
reliability information can be used in another second attempt of sparse vector
reconstruction.
In this chapter, we define the CRS codes and how they can be used for CS

sparse reconstruction. Then, we show the origin of the built-in reliability infor-
mation and investigate different methods of reliability information extraction.
Finally, we discuss two new decoding algorithms that make use of this reliability
information and show their performance.

5.1 Reed–Solomon Codes over the Complex Field
Before redefining RS codes over the complex field, we need first to also redefine
the DFT, which is already defined in Definition 2.3 for polynomials over the
finite field. From this point onward, we use the following definition for DFT for
complex-valued polynomials.

Definition 5.1 (DFT for complex-valued polynomials)
For a given polynomial A(x) ∈ C[x]/(xn−1), the DFT F [A(x)] = a(x) = a0 +
a1x+ · · ·+ an−1x

n−1 is defined as

aj =
1√
n
A(αj), j = 0, . . . , n− 1, (5.1)

and the Inverse DFT (IDFT) F−1[a(x)] = A(x) as:

Aj =
1√
n
a(α−j), j = 0, . . . , n− 1, (5.2)

with α = e−j 2π
n .

The scalar factor 1/
√
n is the same as that in Definition 2.3, which was only

in the IDFT side with the value of 1/n. Putting this factor on both transform
and inverse transform provides some kind of symmetry between the transforms
which simplifies future relations.
RS codes over the complex fields are also called Complex Reed–Solomon

(CRS) codes. Similar to Definition 2.9, while taking the changes done in the
definition of the DFT into consideration, we define CRS codes as follows

54

5.1 Reed–Solomon Codes over the Complex Field

Definition 5.2 (Complex Reed–Solomon codes)
Let n and k be positive integers fulfilling k < n. The RS code CRS(n, k) of
length n and dimension k is the set

{
1√
n

(
C
(
α0
)
, . . . ,C

(
αn−1

))∣∣∣∣C (x) ∈ C[x] ∧ degC (x) < k

}
,

where α = e−j 2π
n , and j =

√
−1, such that αn = 1 and αi 6= 1 for 0 < i < n.

The minimum Hamming distance of the code is d = n − k + 1. The corre-
sponding generator matrix GCRS has the following form:

GCRS =
1√
n

1 1 1 · · · 1

1 α1 α2 · · · αn−1

...
...

...
...

...
1 αk−1 α2(k−1) · · · α(n−1)(k−1)

, (5.3)

and the parity check matrix HCRS:

HCRS =
1√
n

1 αk α2k · · · α(n−1)k

1 αk+1 α2(k+1) · · · α(n−1)(k+1)

...
...

...
...

...
1 αn−1 α2(n−1) · · · α(n−1)(n−1)

. (5.4)

For simplicity, we redefine H for this chapter such that H = HCRS. The
relation between the parity-check matrix H and a codeword c ∈ CRS remains
unchanged and is cH† = 0, where c† is the Hermitian conjugate of c. A received
vector r ∈ Cn is the addition of a sparse error vector e ∈ Cn to a codeword c
such that r = c+ e. A syndrome S is defined for CRS codes as it is defined for
RS codes in Equation (3.2), where S = rH† = (c+ e)H† = eH†. Since we are
dealing with complex numbers, there is a new factor that appears in the received
vector r = c+e+ζ, where ζ ∈ Cn is the noise vector. This noise term represents
numerical inaccuracies such as quantization errors, measurement noise and the
finite precision of the computation. As a result also the syndrome has its own
noise term such that S = eH† + ζH† = eH† + ζS. The values of the vectors
ζ and ζS are drawn from a random distribution. The type of this distribution
and its parameters depend on the application where CRS codes are used and
the implementation method of the decoding system and their precision.
Using the syndrome, Wolf showed in [Wol83] that it is possible to correct up

to t ≤ d − 2 errors. Although, this method is exponential in complexity, there

55

5 Decoding with Reliability in the Complex Field

exists no other known algorithm that can achieve such radius. Conventional
syndrome-decoding techniques presented in Section 3.1 are able to decode up
to half the minimum distance τ = b(d − 1)/2c. Even in the presence of some
noise, it is possible to achieve successful decoding if the decoders were to be
tweaked to operate with CRS codes. This tweaking of algorithms such as the
BMA and EEA is shown in [MRZB15]. Further observations on the difference in
performance of syndrome-decoding algorithms can be found in [Zö15, Chapter
7]. When referring to one of the algorithms in this chapter, we refer to their
CRS-adapted version presented in [MRZB15] and [Zö15, Chapter 7].

5.2 Relation to Compressed Sensing
Compressed Sensing (CS) is becoming more popular over the last few years. It
can be claimed that the field gained the attention after [Don06, CT06] were
published. It is also worth mentioning that the term “CS” appeared first in
[Don06]. Since then, CS was used in many applications [EK12, FR13]. The
main objective of CS is to solve an under-determined linear system of equations
while searching for the solution with the smallest support; hence, the sparsest
solution. The linear system of equations is denoted as

zD† = b, (5.5)

where D ∈ Cm×n is called the sensing matrix, b ∈ Cm is the measurement
vector. For a given D and b, calculating the vector z ∈ Cn is the goal of CS.
The process is referred to as reconstruction or recovery. Since it is an under-
determined linear system of equations, there are infinitely many solutions. Call-
ing a vector sparse means that it contains a small number of non-zero elements;
a vector with a small support. By assuming the vector z to be sparse, obtaining
a unique solution becomes possible if it is indeed sparse enough. Searching for
the sparsest possible solution for z is considered NP-hard [Nat95]. However,
there exist many suboptimal reconstruction algorithms such as the Orthogonal
Matching Pursuit (OMP) algorithm [CBL89].
The sensing matrix D is usually chosen to be a random sensing matrix. In

order to give bounds on the allowed sparsity for a successful reconstruction of
the sparse vector z, several properties for the sensing matrix have been pro-
posed. The maximal coherence between the columns of D is a very popular
property [DE03]. The matrices presented in [ZB15] where described by Best
Complex Antipodal Spherical Codes (BCASCs). To the best of our knowledge,
these matrices are the best known matrices to be used for sparse reconstruction

56

5.2 Relation to Compressed Sensing

with respect to the coherence and are used for performance comparisons later
in the chapter.
CS is called deterministic CS if the matrix D is chosen with a specific non-

random structure. For deterministic CS, sensing matrices are constructed in
order to have advantageous properties and provide non-probabilistic reconstruc-
tion guarantees as well as faster less complex reconstruction [DeV07, AMM12].
Depending on the chosen structure, dedicated algorithms can even offer im-
proved performance compared to general algorithms [CHJ10].
In [PH08], a deterministic CS reconstruction algorithm based on CRS codes

is proposed, where reconstruction is done using the Coppersmith–Sudan algo-
rithm [CS03]. In this approach, the matrix D is chosen to be the CRS parity
check matrixH as defined in (5.4) with m = n−k. If the sparse vector z we are
trying to reconstruct is considered as the error vector e, the measurement vector
b would be simply the syndrome S. As a result, Equation (5.5) is transformed
to Equation (3.2).

zD† = b ⇐⇒ eH† = S. (5.6)

Equation (5.6) implies that sparse reconstruction in CRS-based CS is equiv-
alent to the decoding of CRS codes. This also indicates that the methods pre-
sented in Chapter 3 can be used to recover the sparse vector e. The difference
between (3.2) and (5.6) is that the e, H and S are complex-valued; such that
e ∈ Cn, H ∈ C(n−k)×n and S ∈ Cn−k. Unlike in Chapter 4, our focus is on the
application of CRS codes in deterministic CS. Thus, the process of encoding a
message and transmitting a codeword does not exist any more. Instead, we have
the compression process expressed by (5.6). Syndrome-based decoding methods
(see Section 3.1) can be used directly for sparse reconstruction by utilizing the
measurement vector S [MRZB15]. On the other hand, to be able to utilize
interpolation-based methods (see Section 3.2), the vector r (no longer called a
received vector in this chapter) needs to be calculated as follows

r = H†S = c+ e, (5.7)

where c ∈ CRS is an arbitrary codeword. The actual value of codeword c
does not affect the reconstruction process. Still, in some interpolation-based
decoding methods, the calculation of c is required. An example is the GS-based
decoder from [MPB17], which is later presented in Section 5.4.2.
Based on the results established in [MRZB15], Zörlein showed in [Zö15, Chap-

ter 7] that when reconstruction with classical algorithms (like BMA) fails due
to a large number of errors t (sparsity), one obtains reliability information that

57

5 Decoding with Reliability in the Complex Field

can be used in another advanced step to attempt the reconstruction. This relia-
bility information comes from the fact that syndrome-based decoding methods
are considered a Padé approximation [BGM96]. In [Zö15, Algorithm 7.1], Zör-
lein also presented the Continuity Assisted Decoding (CAD) algorithm which
makes use of the reliability information provided by the first attempt of de-
coding. We later use CAD as reference when checking the performance of the
proposed algorithms.

5.3 Padé Approximation-based Reliability
The Padé approximation was first introduced by Henry Padé in [Pad92]. This
mathematical problem can be seen in many fields such as coding theory, conver-
gence theory and quantum mechanics [BGM96]. For a given function f(x) with
the power series

f(x) =
∞∑

i=0

fix
i, (5.8)

the Padé approximation [µ/ν]f (x) is the rational function

[µ/ν]f (x) =
a(x)

b(x)
=
a0 + a1x+ · · ·+ aµx

µ

b0 + b1x+ · · ·+ bνxν
. (5.9)

In this dissertation, we ignore the case where b0 = 0 and assume that b(x) is
normalized such that b0 = 1. For a more detailed study of the case when b0 = 0,
the reader is referred to [BGM96] where a thorough investigation is made. The
MacLaurin series of [µ/w]f (x) coincides with the power series of f(x) up to a
degree of µ+ ν. This can be mathematically expressed as follows

deg
(
a(x)− f(x)b(x)

)
> µ+ ν as x→ 0. (5.10)

To get a solution for b(x), Equation (5.10) can be expressed by the following
linear system of equations

fν−µ+1 fν−µ+2 · · · fν

fν−µ+2 fν−µ+3 · · · fν+1

fν−µ+3 fν−µ+4 · · · fν+2

...
...

...
fν fν+1 · · · fν+µ−1

bµ

bµ−1

...
b1

= −

fν+1

fν+2

...
fν+µ

. (5.11)

58

5.3 Padé Approximation-based Reliability

After determining b(x), the polynomial a(x) is then calculated by

a0

a1

a2

...
aν

=

f0 0 0 · · · 0

f1 f0 0 · · · 0

f2 f1 f0 · · · 0
...

...
...

...
fν−1 fν−1 fν−2 · · · f0

1

b1

b2

...
bµ

. (5.12)

If we were to calculate the Padé approximation of the syndrome S(x) as
in (5.10), this would be equivalent to the Peterson algorithm [PW72]. Other
decoding algorithms like BMA and EEA are also shown to be equivalent in
[Fit95]. If the number of errors t is smaller than the decoding radius τ (or τp
in the case of power decoding), the Padé approximation of S(x), represented in
the key equation (3.9), is as follows

[(t− 1)/t]S (x) =
Ω(x)

Λ(x)
. (5.13)

Having a number of independent equations more than or equal to the number
of unknowns, we are able to determine the error locator polynomial Λ(z) by
a Padé approximation. If t > τ , the equations are not enough to calculate
Λ(z); hence, the key equation (3.9) is unsolvable. It is still, however, possible
to determine a low-degree Padé approximation of the syndrome S(x)

[(τ − 1)/τ]S (x) =
Ω̂(x)

Λ̂(x)
, (5.14)

where Λ̂(x) and Ω̂(x) are low-degree approximations of the actual error locator
Λ(x) and the actual error evaluator Ω(x) respectively. Since C is algebraically
closed, Λ̂(x) has a number of roots equal to its degree, which is equal to τ .

Λ̂(x) =
τ∏

i=1

(x− βi), βi ∈ C. (5.15)

Although the roots of Λ̂(x) are close to those of Λ(x), they are not all (if any)
the same roots. An example to show the closeness of the roots is presented in
Figure 5.1. For a code CRS(50, 12) and an error with a locator polynomial Λ(x)

with degree t = 21, the BMA is used to calculate the approximation Λ̂(x) with
degree τ = 19. The roots of both polynomials Λ(x) and Λ̂(x) are plotted.

59

5 Decoding with Reliability in the Complex Field

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y Code locators
Roots of Λ(x)

Roots of Λ̂(x)

Figure 5.1: An example with code locators of a CRS(50, 12) code, roots of an
error locator polynomial Λ(x) with t = 21 errors and the roots of its

low-degree approximation Λ̂(x) with degree τ = 19 calculated using BMA.

It is clear that although the number of errors t is greater than the radius τ ,
there are many roots of Λ̂(x) (9 out of 19) coinciding with roots of Λ(x). Even
if they do not coincide, some are really close to the actual roots. Using this
behaviour as motivation, it was shown in [Zö15], that Λ̂(x) can provide us with
reliability information.

5.3.1 Reliability Information Calculation Methods

The quality of the reliability information provided by the low-degree Padé ap-
proximation not only depends on the degree difference between both Λ(x) and
Λ̂(x) (which is t− τ), but also on how it is calculated. Different decoding algo-

60

5.3 Padé Approximation-based Reliability

rithms, namely BMA, EEA and Peterson, are used and compared in [Zö15]. The
reliability information provided by Peterson proved to be the best. However, in
order to use power decoding (see Section 3.1.1) to provide a better low-degree
approximation (since τp > τ), we intended to use either the variants of BMA or
EEA, which are [SSB10] and [Nie16] respectively. Since [Zö15] shows that BMA
is better than EEA in terms of reliability information, we only use the BMA
and its power decoding variant from [SSB10] for the rest of the dissertation. Let
the distance between the i-th code locator αi and the j-th root of Λ̂(x) βj be

δi,j =
∣∣(αi − βj)

∣∣
= dE(αi, βj),

(5.16)

where i = 0, . . . , n−1 and j = 1, . . . , τ . The operation |.| gives the magnitude of
a complex-valued element. This is also equivalent to the Euclidean distance be-
tween the two points in a a 2-dimensional space (see Section 2.2.2). By utilizing
these distances, we now propose different methods of calculating the reliability
vector η = (η0, . . . , ηn−1).

Direct Evaluation (Distance Product)

This method has been used in previous publications such as [MZB16] and [Zö15].
The polynomial Λ̂(x) is evaluated at all the code locators. Then, the magnitude
of these evaluations is used as reliability of information.

ηi = |Λ̂(αi)| =
∣∣∣∣∣
τ∏

j=1

(αi − βj)
∣∣∣∣∣ . (5.17)

Using the distance notation introduced earlier in (5.16), Equation (5.17) can be
written as follows:

ηi =
τ∏

j=1

δi,j. (5.18)

If this method is used, elements of η should be arranged in an ascending order
with lower values corresponding to positions having a higher probability of being
erroneous. The motivation for using this method is that it is considered to be a
fast method, since it only requires evaluating the polynomial Λ̂(x) at the code
locators and taking the magnitude. Figure 5.2 [Zö15] shows an example where
this method is used to get the reliability information. In the example, the actual
error locator polynomial Λ(x) has degree t = 22. The polynomial is calculated

61

5 Decoding with Reliability in the Complex Field

0 π
2

π 3π
2

2π
10−4

10−3

10−2

10−1

100

101

102

κ

|Λ̂
(e

−
jκ
)|,
|Λ

(e
−
jκ
)|

Actual Approximation

Figure 5.2: Magnitude of a low-degree approximation |Λ̂(z)| plotted as dashed
line for 22 = t > τp = 21. Ideal reference Λ(z) is gray. Values corresponding to
Λ̂(αi) are marked by circles. Filled marks belong to the τ smallest magnitudes,

where a dash-dotted horizontal line indicates the largest of
them [Zö15, MZB16].

using power decoding Λ̂(x) with τp = 21 and is then evaluated at the unit circle
(e−jκ = 1). The magnitude of the polynomial at the code locators is marked by
circles. It is shown that the locators with the least reliability value correspond
to actual error locations (marked by filled circles).

Minimum Distance

In this method, the value ηi depends only on the minimum distance between a
root βi and the closest code locators.

ηi = min
j
{δi,j}. (5.19)

Unlike the first method, the reliability of a position i depends only on the closest
root of Λ̂(x) to its locator αi. Same as in the direct evaluation method, elements
of η with lower values correspond to position with higher probability being
erroneous.

62

5.3 Padé Approximation-based Reliability

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

i, sorted based on Λ̂(x)

P
(i
∈

Ψ
)

Direct evaluation
Minimum distance
Sum of inverse distances
t = 20
t = 25

Figure 5.3: The probability of being an actual error position P(i ∈ Ψ).
Positions are sorted based on reliability information extracted from Λ̂(x),
which is calculated using BMA with τ = 19 for a code CRS(50, 12) and

number of errors t = 20 and 25.

Sum of Inverse Distances

Another way where all the roots of Λ̂(x) are taken into consideration is the sum
of inverse distances method. Elements of the vector η are calculated as follows

ηi =
τ∑

j=1

1

δi,j
(5.20)

Since an inversion has been done, the elements of η should be arranged in a
descending order such that higher values correspond to position with higher
probability being erroneous.

In order to determine which of the methods better reflects the actual error
positions, a numerical comparison is shown in Figure 5.3. Using BMA with
a CRS(50, 12) code, we calculate the reliability vector η from the low-degree

63

5 Decoding with Reliability in the Complex Field

approximation Λ̂(x) with degree τ = 19. The number of errors used in the sim-
ulations are t = 20, 25. After sorting the positions according to η, we calculate
how often a position is an error (P(i ∈ Ψ)). The main areas of interest are both
extremes, which are the reliable positions (positions with low probability being
erroneous) and the unreliable positions (positions with high probability of being
erroneous). For the unreliable positions, both the minimum distance and the
sum of inverse distances methods produce better reliability information than
that provided by the direct evaluation method. As for the reliable positions, it
is the other way around with the better reliability information being provided
by the direct evaluation method. The minimum distance method turns out to
be unstable in this part. This is because of the fact that the reliability of each
position is only dependent on a single root of Λ̂(x) (the closest) resulting in an
absence of a relation between the probability of error and the reliability infor-
mation. Therefore, we conclude that the minimum distance method should not
be used at all. Also, note that for a large number of errors, the direct evaluation
and sum of inverse distances methods become almost the same.
Choosing which method of the two to use for reliability information extrac-

tion will in any case depend on the algorithm used. For example, algorithms
depending on reliable positions being error-free to succeed such as the CAD
algorithm from [Zö15] are not suited in combination with the sum of inverse
distances method. A mixture of both methods could be used to provide better
reliability information for both reliable and unreliable positions. This concept
of mixing methods together has yet to be used and for the decoding algorithms
presented in Section 5.4, the reliability information is calculated using only the
direct evaluation method.

5.3.2 Properties of Reliability Information

While investigating the methods mentioned in Section 5.3.1, we came to real-
ize that the reliability information acquired by all the methods had interesting
properties, namely the rate dependence and the robustness against noise. For
the simulations in this section the following applies

• The elements of the sparse error vector e (both real and imaginary) are
extracted from a normally distributed random variable with mean zero
and standard deviation σe = 1/

√
2.

• The reliability information is extracted using an approximated error loca-
tor polynomial Λ̂(x) which is calculated using the BMA.

64

5.3 Padé Approximation-based Reliability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

i/n, sorted based on Λ̂(x)

P
(i
∈

Ψ
)

Direct evaluation
Minimum distance
Sum of inverse distances
CRS(50, 12), t = 25
CRS(100, 24), t = 50

Figure 5.4: The probability of being an actual error position P(i ∈ Ψ), where
the positions are sorted based on reliability information extracted from Λ̂(x).
Codes having the same rate (CRS(50, 12), CRS(100, 50) are used with number

of errors t = 25 and 50 respectively.

Rate Dependence

For the purpose of studying the effect of the length of the code n on the reliability
information extracted, we performed a numerical simulation. The codewords
used in the simulation are from a CRS(50, 12) code and a CRS(100, 24) code,
where both codes have the same rate R = k/n = 6/25. Errors are added to
codewords from both codes with a number of errors t = 25 and 50 respectively.
The number of errors added are chosen such that the ratio t/n = 1/2 is equal
for both cases. The results of this simulation are shown in Figure 5.4. From
it we can observe that, for all three reliability information extraction methods,
both codes produce the same behaviour, with some negligible variations.

65

5 Decoding with Reliability in the Complex Field

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

i, sorted based on Λ̂(x)

P
(i
∈

Ψ
)

Direct evaluation
Minimum distance
Sum of inverse distances
σζS = 0
σζS = 10−6
σζS = 10−4

Figure 5.5: The probability of being an actual error position P(i ∈ Ψ), where
the positions are sorted based on reliability information extracted from Λ̂(x)
when syndrome S is affected by different noise levels. A code CRS(50, 12) is

used with number of errors t = 20.

Robustness against Noise

Another factor we wished to study was the effect on noise on the reliability in-
formation on all three methods. As already mentioned in 5.1, there is always a
noise term ζS present in the syndrome (measurement) vector S. Depending on
the actual implementation (either hardware or software), this noise term rep-
resents the quantization errors and measurement noise, among other things of
course. We assume that the elements of ζS are extracted from a normally dis-
tributed random variable with mean zero and standard deviation σζS . Using a
code CRS(50, 12), we observe the behaviour of the reliability information under
the effect of noise of different noise levels σζS = 0, 10−6 and 10−4. Figures 5.5
and 5.6 show the cases when the number of errors is t = 20 and t = 25 respec-
tively. It was expected that the noise would degrade the quality of the reliability
information. However, we can see that this degradation is really small in Fig-

66

5.3 Padé Approximation-based Reliability

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

i, sorted based on Λ̂(x)

P
(i
∈

Ψ
)

Direct evaluation
Minimum distance
Sum of inverse distances
σζS = 0
σζS = 10−6
σζS = 10−4

Figure 5.6: The probability of being an actual error position P(i ∈ Ψ), where
the positions are sorted based on reliability information extracted from Λ̂(x)
when syndrome S is affected by different noise levels. A code CRS(50, 12) is

used with number of errors 25.

ure 5.5 and is not visible in 5.6. This implies that the reliability information
obtained by the methods in question are all noise resistant. The only reason
there would be a difference between the levels of degradation when dealing with
different number errors is that the approximated polynomial Λ̂(x) contributes
to this degradation, with it being dominant when the number of errors increase.

Results obtained in this section should come last if this chapter was chrono-
logically ordered. That is why the algorithms discussed later in Section 5.4 use
only reliability information obtained by the direct evaluation method. The ef-
fect of using the other two methods for reliability information calculation in the
examined decoders is yet to be investigated.

67

5 Decoding with Reliability in the Complex Field

5.4 Decoding Algorithms using Reliability
Although CRS codes were first presented many years ago in [Wol83] and [Mar84],
there has been little investigation of reliability-based decoding algorithms for
their decoding. There already exist many of those algorithms for RS codes over
finite fields. However, not all of those algorithms are suitable to decode CRS
in their original form. This is due to the presence of the noise factor ζ in the
vector r (or ζS in the vector S) as well as the quantization noise introduced
with every computation done in the algorithm. When dealing with CRS codes
it is important how an algorithm is implemented. It should be done in a way
that keeps the noise from growing with each step in the algorithm. One would
need to either change a few steps or even add new parts in the algorithm. This
is not always possible to satisfy for all algorithms. A new criteria that should be
considered when decoding CRS codes is the robustness against noise propagation
through different phases of the algorithm used. Another reason for the shortage
of research in this part is the fact that it is still a young branch. The reliability
information obtained by the direct evaluation method shown in Section 5.3.1 was
not known until [MRZB15] and [Zö15] were published. It is those publications
that provided the framework upon which the algorithms discussed in this section
are based.

5.4.1 Recursive Enhancement Algorithm

In this section, we discuss the Recursive Enhancement Algorithm (REA) intro-
duced in [MZB16]. The REA focusses on enhancing the reliability information
through the use of error/erasure decoding (see Section 3.3). Using the syn-
drome S(x) as input, one initially runs the BMA decoder. If the number of
errors t is higher than half the minimum distance τ , the error locator Λ(x)
is not obtainable with the BMA. Instead, the decoder obtains the low-degree
approximation Λ̂(x). Then, the reliability vector η is calculated by the direct
evaluation method as shown in Section 5.3.1. After that, erasures are intro-
duced at some of the most unreliable positions based on the information con-
tained in η and decoding is repeated. Let these positions be denoted by the
set φ ⊂ {0, . . . , n − 1} and the erasure locator polynomial based on this set
by Φ(x). This time, the input for the BMA would be Φ(x)S(x), resulting in
a new low-degree approximation Λ(x). If it was guaranteed that the erased
positions were in fact erroneous positions (φ ⊂ Ψ), the new polynomial Λ(x)
would provide even better reliability vector η for the rest of the positions. It is
unfortunately not guaranteed, thus another approach is presented.

68

5.4 Decoding Algorithms using Reliability

Rather than taking the risk and relying only on the new polynomial Λ(x),
the idea is to combine both Λ̂(x) and Λ(x) to recalculate the reliability infor-
mation, such that the direct evaluation is done on the multiplication of both
polynomials Λ̂(x)Λ(x). Let the direct evaluation of Λ∗(x) = Λ̂(x)Λ̃(x) pro-
duce the reliability vector η∗. At this point, we can have one of three possible
scenarios.

• φ ⊆ Ψ: The vector η∗ is an enhanced version of the vector η. This event
is the most frequent of all three.

• φ ∩Ψ 6= ∅ and φ 6⊂ Ψ: If the number of error positions in the set φ are
more than those which are not, the vector η∗ is an enhanced version of
the vector η. Otherwise, it would be a degraded version. The probability
that a degradation occurs is smaller than an enhancement.

• φ ∩Ψ = ∅: The vector η∗ is a degraded version of the vector η. This event
occurs with a very small probability.

The probability of each event occurring is solely dependent on the original reli-
ability vector η. However, if this vector is calculated using the direct evaluation
method, the probability that an enhancement occurs is always higher than that
of a degradation, regardless of the quality of the information contained in η.
This is a direct result of the behaviour observed when the reliability information
extraction methods were analyzed in Section 5.3.1. Also, note that the use of
other reliability extraction methods is not straight forward. That is because the
multiplication of the low-degree approximations of Λ(x) would only be compat-
ible to the direct evaluation method. One must change the way used to enhance
the reliability vector η if other reliability extraction methods were to be used.
The core idea of the REA is to repeat this process multiple times while in-

creasing the number of erased positions to enhance the reliability information
even further. In some way, this is similar to GMD decoding explained in Sec-
tion 3.3.2. The REA can be combined with any conventional error locator algo-
rithm, not necessarily the BMA. Since the actual decoding process is unchanged
one can also use either EEA or even PD for a better low-degree approxima-
tion of Λ(x). The output of the REA is the enhanced reliability information
and is then conveyed to a CRS error evaluator algorithm, such as the CAD
algorithm [Zö15, Algorithm 7.1].
The proposed REA is shown in Algorithm 5.1. The number of erased positions

is increased by two with every enhancement iteration (starting from zero erased
positions with up to b(n− k)/2c iteration). The complexity of Algorithm 5.1 is

69

5 Decoding with Reliability in the Complex Field

Algorithm 5.1 Recursive Enhancement Algorithm (REA) [MZB16]
Input: Syndrome S(x), error locator algorithm Ξ
Initialization: ε← 0, Λ∗(x)← 1

1: while ε < n− k do
2: if ε > 0 then
3: η ← Direct evaluation of Λ∗(x)
4: φ← The most ε unreliable positions based on η
5: Φ(x)←∏

i∈φ(x− αi)
6: else
7: Φ(x)← 1
8: end if
9: Λ̂(x)← Run Ξ with input Φ(x)S(x)

10: Λ∗(x)← Λ∗(x) · Λ̂(x)
11: ε← ε+ 2
12: end while
13: η ← Direct evaluation of Λ∗(x)
14: return η

upper bounded by the complexity of the decoder used multiplied by the number
of iterations.

Numerical Evaluation

In order to evaluate the performance of the REA, we ran a numerical simula-
tion. The code chosen for the simulation is a CRS(50, 12) code. As error locator
algorithms, we use the BMA and PD with decoding radii τ = 19 and τp = 21
respectively. As for the error evaluator algorithm, we chose CAD to produce the
estimated error vector ê. The elements of the sparse error vector e and the noise
vector ζS (both real and imaginary parts) are extracted from a normally dis-
tributed random variable with mean zero with standard deviations of σe = 1/

√
2

and σ = σζS/
√

2 with σσζS = 10−5 respectively. The number of errors (sparsity)
t has been varied from 19 to 32. In the simulation, a number of 10000 different
error vectors are generated for each value of t. Each vector is compressed by
the sensing matrix H , corrupted by noise and then reconstructed using REA
combined with CAD. The REA provides the CAD with reliability of information
while the CAD calculates an estimation ê of the sparse vector e.
The level of performance is determined by observing two aspects: The quality

70

5.4 Decoding Algorithms using Reliability

of the reliability information obtained from REA and the squared error ||e− ê||2,
which is equivalent to the square Euclidean distance (dE(e, ê))2 = d2

E(e, ê). The
performance of such a system is compared to that of OMP [CBL89], since it is one
of the popular CS reconstruction algorithms used in the CS community. How-
ever, since we are dealing with a deterministic CS scheme where REA and CAD
take advantage of the chosen sensing matrix structure, it is only fair to choose
a sensing matrix for OMP from which it can benifit. Therefore, an optimized
matrix based on Best Complex Antipodal Spherical Codes (BCASCs) [ZB15] is
chosen as the sensing matrix for OMP, since they produce better performance
when compared to random matrices [Zö15].
The results of the simulation are plotted using boxplots. These plots are

used to show multiple properties of the distribution of a given dataset in one
plot. There exist several different variants of boxplots [FHI89]. Here, we use the
model provided by Tukey [Tuk77]. The most important properties are described
as follows: The main part of the boxplot is built by a rectangle, which resembles
the values between first and third quartile. The median is represented by a black
horizontal bar within this box and the mean (average) is shown as a circle.
Let Q be the smallest set of positions sorted according to the reliability vec-

tor η such that all actual error positions are contained in this set (Ψ ⊆ Q). The
best case is when the first t unreliable positions (based on η) are the actual error
positions, such that Ψ = Q. If the set Q is large, this means that there is at
least one error position that falls far from the unreliable positions. In this case,
it is safe to say that the reliability information contained in η is bad and does
not reflect the location of actual errors any more. To investigate the quality of
the reliability information provided by REA, we therefore investigate the size of
the set Q. Figure 5.7 contains boxplots illustrating the distribution of the cardi-
nality of Q when reliability information is obtained through BMA and PD with
REA for a different number of errors. For comparison, we show the previous
best known reliability information which is that provided by PD without REA.
From [Zö15, Section 7.3], we know that CAD is only able to reconstruct the
vector e correctly if the errors are all located in the lowest n− k = 38 positions.
Therefore, if the set Q has a cardinality falling in the greyed out areas, CAD
will fail if given the vector η.
As shown in Figure 5.7, PD without REA starts to have outliers in the grey

area starting from t = 22. This is expected since its correction radius is restricted
to τp = 21. This means that the quality of the reliability information it provides
starts to deteriorate when the number of errors is larger than τp = 21. However,
when using REA, outliers do not start to appear in the grey area until t = 25.
The performance of both variants of REA could be considered (to some extent)

71

5 Decoding with Reliability in the Complex Field

19 20 21 22 23 24 25 26 27 28 29 30 31 32
20

25

30

35

40

45

50

Number of Errors t

C
ar

di
na

lit
y

of
Q

BMA with REA
PD with REA
PD without REA

Figure 5.7: Boxplots illustrating the distribution of the cardinality of Q, where
Q the smallest set of positions sorted according to η such that all actual error
positions are contained in this set. Non-gray area allows application of CAD

[MZB16].

similar. But one should note that there are more outliers for BMA with REA
than for PD with REA, which is still not at all strange since the decoding radius
of BMA (τ = 19) is lower than PD (τp = 21).

The rectangular box representing the area between the first and third quartile
does not appear until the number of errors is t = 26 for BMA with REA and
t = 27 for PD with REA. This means that for more than 50% of the time the
first t unreliable positions are the actual error locations. This does not continue
for long with the quality of the reliability information starting to deteriorate.
This figure gives us a kind of a prediction on the performance of CAD when
combined with the reliability information obtained from the simulated methods.

72

5.4 Decoding Algorithms using Reliability

19 20 21 22 23 24 25 26 27 28 29 30 31 3210−12

10−9

10−6

10−3

100

103

106

109

1012

Number of Errors τ

Sq
ua

re
d

E
uc

lid
ea

n
di

st
an

ce
d
2 E
(e
,ê
)

BMA with REA
PD with REA
OMP (optimized)
PD without REA

Figure 5.8: Boxplots illustrating the distribution of the squared Euclidean
distance d2

E(e, ê) for a deterministic CRS based CS scheme with different
algorithms and the OMP algorithm in combination with an optimized sensing

matrix [MZB16].

In Figure 5.8, the distribution of the squared Euclidean distance d2
E(e, ê) re-

sulting from the chosen reconstruction algorithms is illustrated by boxplots.
Lets focus first on the CRS reconstruction methods. Having an enhanced relia-
bility information for the CAD algorithm provided a considerable gain to that
without enhancement. PD without REA already starts to have outliers start-
ing from t = 20 and falls apart producing an estimation ê that is far from the
original vector e as the number t increases. While the methods that used en-
hancement (both BMA/PD with REA) produce no outliers until the number
of errors reaches t = 24. That means that the enhancement allows (perfect)
reconstruction of the vector e even when the number of errors is beyond the
decoding radius of the original algorithm. As the number of errors increase,
the reconstruction rates start to drop, but up to t = 30 more than 50% of the

73

5 Decoding with Reliability in the Complex Field

reconstruction attempts with enhancement succeed. By this we also show that
the new proposed methods also outperform the optimized OMP. The optimized
OMP has already outliers starting from t = 20 (similar to PD without REA)
and becomes totally unreliable at t = 29, while both REA variants start being
so at t = 31.
From these results, we can see that the REA utilizes the concept of er-

ror/erasure decoding to provide an improved reliability information, which al-
lows the reconstruction of the sparse error vector in scenarios beyond the classical
decoding radius. It is even able to outperform the optimized OMP algorithm
for reasonable noise levels. All this is achieved with the non-optimized Algo-
rithm 5.1, which is a GMD-like version. There is still room for improvement by
changing the number of erasures in the first iteration as well as the increase of
erasures in every other iteration. These parameters will definitely have a direct
effect on the performance, thus, they should be further studied for an optimized
application of the algorithm.
The reliability information is utilized by the novel REA in order to provide

an improved approximation of the error locator polynomial for scenarios well
beyond the classical correction radius. REA is based on fundamental ideas of
error/erasure decoding. Simulations showed that the new algorithm not only
allows improving significantly on the performance but also surpasses the OMP
algorithm with optimized low-coherence matrices for reasonable noise levels.

5.4.2 Guruswami–Sudan-based Generalized Minimum
Distance Decoding

In this section, we investigate the application of the GS algorithm (see Section
3.2.1) for CRS codes with the help of reliability information. Unlike the REA in
the previous section, this algorithm is interpolation-based. The reconstruction
of the sparse error vector e is not directly done using the syndrome S. Instead,
we first calculate the vector r = c+ e using (5.7). Using the elements of r
as interpolation points, we then recover the IDFT of the arbitrary codeword
c ∈ CRS by a root finding algorithm, such as the RR algorithm (see Algorithm
3.2). Finally, vector e is simply calculated by subtracting c from r.
In theory, this decoding process is applicable to CRS codes as it is for RS codes

over finite fields. Having a decoding radius larger than that in classical decoders
(τGS ≥ τ), such as BMA, was motivation for us to pursue its application in CS
sparse reconstruction. However, since we are dealing with a new setup, namely
the use of complex-valued numbers, the stability of the GS algorithm proved to

74

5.4 Decoding Algorithms using Reliability

be a problem. The numerical inaccuracies arising from floating point calcula-
tions proved catastrophic for the application of the GS algorithm for CRS-based
CS. It was first to be investigated by Parvaresh and Hassibi in [PH08], where
they indicated the sensitivity of the RR root finding algorithm to numerical
inaccuracies. Therefore, to be able to use these algorithms, each phase in the
decoding process (interpolation and root finding) should be tweaked and ad-
justed to the new environment we are dealing with. Also by making use of the
obtainable reliability information (see Section 5.3.1), we are able to construct a
better algorithm which is more efficient in dealing with these numerical inaccu-
racies. The findings and results of this part of the dissertation can also be found
in [MPB17].
First, let us discuss the interpolation step. Just to remind the reader, the

interpolation step is concerned with the calculation of the polynomial Q(x, y).

Q(x, y) = Q0(x) +Q1(x)y +Q2(x)y2 + · · ·+Q`(x)y`. (5.21)

This polynomial should satisfy the conditions mentioned in Theorem 3.2, such
that (y −C(x)) divides it. The polynomial C(x) is the IDFT of the code-
word c(x) (see Definition 5.2). For the interpolation to succeed, we choose the
algorithms parameters to satisfy the following inequality

s(`+ 1)(n− τGS)− 1

2
`(`+ 1)(k − 1)− 1 > n

(
s+ 1

2

)
, (5.22)

where s and ` are the multiplicity and the list size. By solving a linear system of
equations constructed from the interpolation points (αi, ri) for i = 0, . . . , n−1.,
we are able to calculate the coefficients of the polynomials Qi(x) for i = 0, . . . , `
with s(n− τGS)− i(k− 1) coefficients each. From this step, the numerical inac-
curacies start to appear in the decoding process. Since our goal is to minimize
it, we solve the linear system of equations using the Singular Value Decompo-
sition (SVD). According to [DR08, Section 4.7], [GVL96, Section 2.5], the SVD
is considered to be a stable method. As a result, the interpolation step can be
considered the most stable step in the algorithm. There are other dedicated
methods for the interpolation step such as [Ale05, Tri07, BB10, ZGA11]. Al-
though these methods provide a more efficient interpolation, their numerical
stability over C are yet to be investigated.
After getting Q(x, y), the next phase is to obtain the root (y −C(x)) using a

root finding algorithms. When dealing with polynomials over a finite field, the
RR algorithm is one of the most efficient root finding algorithms. Still, it can not
be used in its original form to find complex-valued roots. So we introduce a few
changes and end up with its modified version, mRR, shown in Algorithm 5.2.

75

5 Decoding with Reliability in the Complex Field

Algorithm 5.2 modified Roth-Ruckenstein (mRR) [MPB17]
Input: Bivariate polynomial Q(x, y), dimension k, and i ∈ N
Global Variables: Set U ⊆ Ck[x]

Polynomial f(x) ∈ Ck[x]

1: if i = 0 then
2: U = ∅
3: end if
4: Q̃(x, y)← Q(x, y)

5: if Q̃i,j < ε then
6: Q̃i,j ← 0
7: end if
8: ω ← largest integer such that xω divides Q̃(x, y)

9: T (x, y)← x−ωQ̃(x, y)
10: Z ← set of all distinct y-roots of T (0, y) in C
11: for each γ ∈ Z do
12: fi ← γ
13: if i < k − 1 then
14: mRR(T (x, xy + γ), k, i+ 1)
15: else
16: U ← U ∪ {f(x)}
17: end if
18: end for
Output: The list of y-roots U

We introduced two main modifications (shown in red in Algorithm 5.2): The
first is the introduction of a threshold ε before finding the integer ω. Since we
can never end up with an exact zero during floating point calculations we must
force small values to zero. The second is the removal of the IF condition in line
12 in Algorithm 3.2. This IF condition is to make sure that a solution is a y-root
of Q(x, y). But due to the fact that there will always be a deviation from the
correct solution, it does not make sense to keep it. This will unfortunately allow
more wrong solutions to be present in the set U . This problem will be addressed
shortly in a process that refines the entries in the output set. First, we explain
how numerical inaccuracies destabilize this algorithm, making it unsuitable for
operation over the complex field.
To find the polynomial f(x) = f0 + · · · + fk−1x

k−1, the algorithm calculates
its coefficients one by one, starting with the calculation of f0. With every iter-

76

5.4 Decoding Algorithms using Reliability

ation, the algorithm recursively calculates a coefficient fi using the previously
calculated coefficient fi−1. The process is then repeated until all the coefficients
are found. Assuming a small insignificant numerical inaccuracy occurred when
calculating a coefficient fi, this discrepancy propagates as we calculate every
new coefficient, which will eventually add up, increasing exponentially, as the
algorithm progresses. That is why the most accurately calculated coefficient is
f0, while the high order coefficients can sometimes be fatally inaccurate.
That’s not the only part where numerical inaccuracies are produced. Another

even more critical element to be calculated is the integer ω, which is the greatest
integer such that xω divides Q̃(x, y). The process of calculating ω is done by
checking if the polynomials Q̃i(x) for i = 1, . . . , ` are divisible by xω, hence, the
first ω coefficients are zero. If a coefficient of Q̃i(x) happens to be slightly above
the threshold ε, the integer ω will be wrongly calculated. If this event occurred
in some iteration i, the coefficient fi will also be wrong, causing all the following
coefficients of f(x) to be totally inaccurate. To sum things up, we can say that
the numerical inaccuracies are inevitable and they are more visible in high order
coefficients of f(x). It is indisputable that with our modification (removal of
the IF condition from the RR algorithm) and the numerical inaccuracies, the
set U , which is output of the mRR algorithm, will include degraded versions of
the correct solutions as well as wrong ones. Another step to refine the elements
of the set U must be introduced. We propose the use of Newton’s method for
the refinement step.

Newton’s method

Newton’s method is used to numerically find a root of any polynomial [DR08].
It can be also used to find an approximate solution of a non-linear system of
equations, which is the same as finding the roots of continuously differentiable
functions. Our goal is to find the root f(x) with degree k − 1 for the polyno-
mial Q(x, y).

Q(αi,f(αi)) = 0 ∀i = 0, . . . , n− 1. (5.23)

This can be done by considering the following evaluation map as a function in
the coefficients f0, . . . , fk−1 of f(x),

ϕ : Ck → Cn,

f :=

f0

...
fk−1

 7→

ϕ1(f)

...
ϕn(f)

 =

Q(α0,f(α0))
...

Q(αn−1,f(αn−1))

 ,

(5.24)

77

5 Decoding with Reliability in the Complex Field

and then solving a system of k non-linear equations

ϕ(f) = 0. (5.25)

Given an initial point z0 ∈ Ck, Newton’s method tries to converge to an actual
solution z ∈ Ck of ϕ(z) = 0. This is done iteratively with an iteration denoted
by zi−1 7→ zi. In a single iteration, a new vector zi is caculated by solving the
following linear system of equations

(zi − zi−1) · Jϕ(zi−1) = −ϕ(zi−1), (5.26)

where Jϕ(zi−1) is the Jacobi matrix of ϕ at the point zi−1,

Jϕ(zi−1) =

∂ϕ1

∂f0
(zi−1) . . . ∂ϕ1

∂fk−1
(zi−1)

...
∂ϕn
∂f0

(zi−1) . . . ∂ϕn
∂fk−1

(zi−1)

 ∈ Cn×k. (5.27)

To calculate the derivative ∂ϕi
∂fj

(f), let us look first at the exact expression of
ϕi(f) for i = 0, . . . , n− 1,

ϕi(f) =
∑

µ

∑

ν

Qµ,ν(α
i)µ(f(αi))ν (5.28)

=
∑

µ

∑

ν

Qµ,να
iµ

(
k−1∑

ξ=0

fξα
iξ

)ν

, (5.29)

where the indices µ, ν depend on the the degree restrictions provided by param-
eters used in the GS interpolation problem. The only part that is relevant to
the derivation is the expression (f(αi))ν , therefore the derivative is as follows

∂ϕi
∂fj

(f) =
∑

µ

∑

ν

Qµ,ννα
i(µ+j)

(
k−1∑

ξ=0

fξα
iξ

)ν−1

. (5.30)

Equation (5.30), gives us an explicit expression of the Jacobi matrix Jϕ(f)
for any f ∈ Ck, allowing us to proceed with solving the system of equations
represented by (5.26).
From the root finding step, we already have a set of polynomials U that con-

tains degraded versions of roots of the polynomial Q(x, y). Using these poly-
nomials as initial points to Newton’s method, we try to find a more accurate

78

5.4 Decoding Algorithms using Reliability

approximation for the roots ofQ(x, y). The number of iterations needed to reach
the correct solution, depends on the initial point used as well as the behaviour
of the polynomial Q(x, y). It might even happen that the method may not con-
verge to a root at all, regardless of how many iterations were to be considered.
However, if it does, it often locally converges quadratically in the number of
iterations. In order to achieve convergence, a “good” initial point z0 must be
chosen. As already mentioned, the numerical inaccuracies occurring in a poly-
nomial p(x) ∈ U is at its lowest in the coefficient p0 and at its highest in the
coefficient pk−1. As a result to this fact, we decided to choose the initial point to
be z0 = p0 + · · ·+plx

l, where l < k−1. By ignoring the coefficients that contain
higher inaccuracies, we end up with better convergence rate (smaller number
of iterations). The effect of the parameter l on the whole decoding process is
yet to be investigated. For the rest of this section, we choose l = bk/2c. Later
numerical simulations show that this choice provides a good initial point.
At this stage, a list of possible roots to the polynomial Q(x, y) has been

obtained. However, since the algorithm is to be used for the application of
CS, it is expected to have a distinct output rather than a list. To acquire a
single solution, an extra operation is to be executed. Aided by the possibility
of calculating reliability information for CRS codes and error/erasure decoding,
we propose a method to obtain a single solution allowing us to reconstruct the
sparse vector e.

GS-based GMD decoding

In order to choose the best solution from the list obtained by Newton’s method,
we propose a multi trial GMD decoder based on the GS algorithm. Similar
to classical GMD decoding, within each trial erasures are introduced at the
unreliable elements of the vector r depending on some reliability information
provided to the algorithm. There exists many different definitions for an erasure,
each depending on the decoding method used. Here, an erasure is defined as
an element in the vector r which is not used in the interpolation step in the
GS algorithm. For each trial, the number of erased positions is increased, which
implies that a new polynomial Q(x, y) is calculated for each decoding trial using
the unerased elements of r. The parameters of the interpolation ` and s are
recalculated for each trial since the number of interpolation points changes.
Their values are chosen to be as minimal as possible while satisfying (5.22). Let
the interpolation step be denoted by GS(r, I), where the set I ∈ {0, . . . , n− 1}
contains the position of the erased elements. In a decoding trial, the roots of the
calculatedQ(x, y) are obtained with the mRR (Algorithm 5.2) and refined using

79

5 Decoding with Reliability in the Complex Field

Newton’s method; providing us with a list of possible solutions for the vector e.
Each entry in this list gets a score which depends on the number of iterations
in which it appeared. After finishing all the decoding trials, the entry with the
highest score is considered as the solution of reconstruction of the vector e.

Algorithm 5.3 GS-based GMD decoding [MPB17]
Input: Vector r, length n, dimension k, decoding radius τg,

number of trials N , initial erasures ε and erasure step ε+

Initialization: i← 0, L ← {}
1: Λ(x)← BMA(r) # Classical decoding
2: if Λ(x) is a proper error locator then
3: ê← GZ(r,Λ(x))
4: else # GS-based GMD decoding
5: η ← Direct evaluation of Λ(x) # Reliability information
6: while i < N do
7: I ← Unreliable to be erased positions (based on η)
8: τGS ← τg − ε, n← n− ε
9: Choose `, s such that Equation (5.22) is satisfied.

10: Q(x, y)← GS(r, I) # Interpolation
11: U ← mRR(Q(x, y), k, 0) # Root finding
12: for each U ∈ U do
13: C̃ ← Newton(U) # Newton’s method
14: c̃← DFT (C̃)
15: ẽ← r − c̃
16: if supp(ẽ < ε) ≤ τg then
17: if ẽ ∈ L then
18: score(ẽ)← score(ẽ) + 1
19: else
20: L ← L ∪ ẽ, score(ẽ)← 1 # New entry in L
21: end if
22: end if
23: end for
24: i = i+ 1, ε← ε+ ε+

25: end while
26: ê← argmax

l∈L
score(l) # Solution with highest score

27: end if
Output: The reconstructed sparse error vector ê

80

5.4 Decoding Algorithms using Reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−30

10−25

10−20

10−15

10−10

10−5

100

Number of Errors t

d
2 E
(e
,ê
)

GS-based GMD
PD with CAD
BMA with CAD

Figure 5.9: Boxplots illustrating the distribution of the squared Euclidean
distance d2

E(e, ê) in a noiseless scenario for a CRS(32, 8) code for different
decoding schemes.

For this decoding setup, we define a few parameters: Let the number of
decoding trials be denoted by N , the algorithms designed decoding radius by τg,
the initial number of erasures by ε and the increase in the number of erasures
per trial by ε+. These parameters should be chosen depending on the desired
performance and complexity of the algorithm. Before running this algorithm,
decoding using a classical BMA decoder is attempted. If it fails, the output of
the BMA is used to calculate reliability information using the direct evaluation
method mentioned in Section 5.3.1. The proposed GS-based GMD decoder is
shown in Algorithm 5.3.

Numerical Evaluation

Numerical simulations are performed to investigate the performance of Algo-
rithm 5.3. To provide a better insight into its performance, we compare the
algorithm with state-of-the-art CRS decoding algorithms, namely the BMA and
PD with CAD from [Zö15]. The codes used in the simulations are the CRS(32, 8)

81

5 Decoding with Reliability in the Complex Field

and CRS(16, 4) codes. For each code, we randomly generate a total number of
10000 sparse error vectors e with varying number of non-zero elements t to be
added to a randomly generated codeword c resulting in a vector r = c+e. The
vector r is affected by a randomly generated noise vector ζ. The elements of
a sparse error vector e and the noise vector ζ (both real and imaginary parts)
are extracted from a normally distributed random variable with mean zero with
standard deviations of σe = 1/

√
2 and σ = σζ/

√
2 with σσζ = 10−7 respectively.

The number of decoding trials is set to be N = τg − 1, the initial number of
erasures ε = 0 and the increase in erasures per trial ε+ = 1.
Each algorithm considered in this simulation provides the output ê, which

is the estimation of the original sparse vector e. The level of performance is
determined by observing the squared Euclidean distance (dE(e, ê))2 = d2

E(e, ê).
The distribution of the squared Euclidean distance d2

E(e, ê) is plotted using
boxplots. There exist several different variants of boxplots [FHI89]. Similar to
the boxplots used in Section 5.4.1, we use the model provided by Tukey [Tuk77].
For reading convenience, we revisit the most important properties shown in a
boxplot: The main part of the boxplot is built by a rectangle, which resembles
the values between first and third quartile. The median is represented by a black
horizontal bar within this box and the mean (average) is shown as a circle.
For the CRS(32, 8) code, the decoding radii of different decoding methods

used are as follows: GS-based GMD decoding radius is τg = 15, half minimum
distance (BMA) τ = 12 and power decoding radius τp = 13. The results for
the simulation for the noiseless and noisy cases are shown in Figures 5.9 and
5.10 respectively. In the noiseless scenario, Figure 5.9 shows that the newly
proposed algorithm provides satisfactory decoding results up to its radius, thus
outperforming its competitors in terms of number of errors. It is even able to
find a highly accurate estimation of the sparse error vector, which is almost
as good as the other two algorithms. However, it should be noted that a few
insignificant outliers exist for some of results. The number of outliers increases
considerably when noise is added. Figure 5.10, representing the noisy scenario,
shows that even when the new algorithm is able to correct more errors, it loses
its accuracy for an exceptionally low noise level (σζ = 10−7). This should have
been expected, especially after showing that interpolation-based decoding is
extremely sensitive to noise and numerical inaccuracies, which would obstruct
the chances of getting a flawless and accurate result,.
The same behaviour is observed when using a shorter CRS(16, 4) code. The

new decoding radii are as follows: GS-based GMD decoding radius is τg = 8,
half minimum distance τ = 6 and power decoding radius τp = 7. The noiseless
and noisy scenarios are shown in Figures 5.11 and 5.12 respectively. In Figure

82

5.4 Decoding Algorithms using Reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−15

10−10

10−5

100

Number of Errors t

d
2 E
(e
,ê
)

GS-based GMD
PD with CAD
BMA with CAD

Figure 5.10: Boxplots illustrating the distribution of the squared Euclidean
distance d2

E(e, ê) in a noisy scenario (σζ = 10−7) for a CRS(32, 8) code for
different decoding algorithms.

5.12, the effect of noise can still be seen, although its impact is not as large as for
the longer code. This means the length of the code plays a role in the decoding
performance in a noisy scenario. However, it should not be forgotten that the
degradation in performance comes from numerical inaccuracies arising from the
root finding step, which increases exponentially with the dimension k.
From these results, we show that it is possible to use the interpolation-based

decoding for sparse reconstruction in a deterministic CS based on CRS codes
scheme. Overcoming existing obstacles, such as inaccurate results produced by
the root-finding algorithm can be done by a few modifications and the use of
Newton’s method. Numerical simulations show that the proposed algorithm is
able to function properly while having a good performance and an increased
decoding radius when compared to syndrome-based decoding algorithms. How-
ever, in a noisy scenario, syndrome-based decoding shows more robustness to
numerical instability and noise. The proposed algorithm is extremely sensitive
to noise, which is still a concern to be dealt with. Studying the effect of the
choice of parameters as well as of other cost efficient root finding algorithms on

83

5 Decoding with Reliability in the Complex Field

1 2 3 4 5 6 7 8 9
10−30

10−25

10−20

10−15

10−10

10−5

100

Number of Errors t

d
2 E
(e
,ê
)

GS-based GMD
PD with CAD
BMA with CAD

Figure 5.11: Boxplots illustrating the distribution of the squared Euclidean
distance d2

E(e, ê) in a noiseless scenario for a CRS(16, 4) code for different
decoding algorithms [MPB17].

the performance and stability should be one of the points to be addressed in any
future research in the topic.

5.5 Overview and Summary

This chapter focuses on the use of CRS codes in the application of deterministic
CS. Known algebraic decoding algorithms can be used in sparse vector recon-
struction. It is shown in [Zö15] that when using a classical decoders (like BMA
or EEA) beyond their capabilities for sparse reconstruction, it is possible to
obtain reliability information for further decoding attempts.
With the help of this reliability information, we are in a position to use the

concept of error/erasure decoding to achieve a better performance when com-
pared to that of the known CS sparse reconstruction schemes like OMP. An-
other possible use of the reliability information is overcoming the numerical
inaccuracies that occur in interpolation-based decoding algorithms when used

84

5.5 Overview and Summary

1 2 3 4 5 6 7 8 9
10−15

10−10

10−5

100

Number of Errors t

d
2 E
(e
,ê
)

GS-based GMD
PD with CAD
BMA with CAD

Figure 5.12: Boxplots illustrating the distribution of the squared Euclidean
distance d2

E(e, ê) in a noisy scenario (σζ = 10−7) for a CRS(16, 4) code for
different decoding algorithms [MPB17].

for applications in the complex field.
First, we explain the origin of the reliability information obtained from de-

coding CRS codes. We also show different methods of calculating it and offer a
comparison between the quality of the reliability information they provide. In
the process of studying these methods, we come across some of the properties
they attain, namely the robustness against noise and the rate dependence.
After that, we discuss two algorithms which make use of the calculated reliabil-

ity information. The first investigated algorithm is the REA [MZB16]. With the
use of error/erasure decoding, the multi-trial algorithm produces an enhanced
version of the reliability information, allowing an increase in performance when
compared to pre-enhancement results. It even outperform the OMP algorithm
even when coupled with an optimized matrix to achieve its best results.
We also investigate the use of interpolation-based algorithms for the appli-

cation of deterministic CS. Algorithms such as the GS algorithm were always
avoided when dealing with complex numbers. That is because of the sensitivity
of the root finding phase to numerical inaccuracies. Through a few modifica-

85

5 Decoding with Reliability in the Complex Field

tions and a few added steps like the use of Newton’s method, it was established
in [MZB16] that the GS algorithm can still function properly even when consid-
ering an application over the complex field. For the use in sparse reconstruction,
the algorithms used should output a single solution. The GS algorithm, how-
ever, is considered a list decoder; producing a list of possible solutions as its
output. Therefore, an algorithm which utilizes reliability information, the GS-
based GMD decoder, is introduced in order to achieve this requirement. By
numerical simulations, it is shown that it provides a better performance when
compared to other syndrome-based decoders like CAD. It is still however more
vulnerable to numerical inaccuracies, especially when affected by noise.
Although CRS codes are over 30 years old, we consider investigating their

use in various applications a young field of research. It was not long ago that
they were discovered to be used for deterministic CS. Even if the algorithms
investigated in this work, both REA and GS-based GMD, deliver some of the
best known results, they are far from being perfect. The effect of changing the
parameters on their performance should be further studied and optimized. The
functionality of many other RS decoding algorithms, like Wu or KV, in the
complex field is still an open question.

86

6
Conclusion

Within this dissertation, algebraic decoding of Reed–Solomon (RS) codes,
defined over finite fields as well as the complex field, is investigated. With

the aid of reliability information, it is possible to reach better performance by
decoding beyond half the minimum distance. In some cases, its is even possible
to reduce the complexity of some known decoders.
In the course of this thesis, four decoding algorithms were developed specifi-

cally for these purposes: Two algorithms for RS codes defined over finite fields
and another two for RS codes defined over the complex field. Each pair consist
of a syndrome-based decoder and an interpolation-based decoder. All these new
algorithms are inspired by the the well-known Generalized Minimum Distance
(GMD) decoding technique [For66], which is a multi-trial technique where er-
ror/erasure decoding is performed with the number of erasures is varied in each
trial. Classical RS decoders, like the Berlekamp–Massey algorithm, are used as
building blocks for the new algorithms and a brief explanation of them can be
found in Chapter 3. The main results can be summerized in the following.
For RS codes defined over finite fields, the Chase-like and the reduced-list

decoders are explained and their performance evaluated in Chapter 4. The
Chase-like decoder, named after the original Chase decoder, utilizes reliability
information to perform multiple error/erasure decoding attempts without re-
peating the whole decoding process from scratch. It is able to outperform the
Kötter–Vardy decoder, provided they both have the same limited complexity.
The Chase-like decoder is most suitable for decoding high-rate codes, where cor-
recting one or two more errors beyond half the minimum distance is considered
valuable. To correct more than two errors, the computational cost becomes ex-
ponentially large and other decoding techniques are recommended. A more cost
efficient algorithm can be seen in the reduced-list decoder, which is developed
from the Wu algorithm. Using the reliability information, we introduce a smaller

87

6 Conclusion

set of interpolation points consisting of the least reliable positions. Initially the
goal was to reduce the complexity of the decoding process, however, it turns out
that this reduction enhances the error correction capabilities. The performance
of our low complexity decoder surpasses that of a Kötter–Vardy decoder having
a huge computational cost. Although, its performance is considered more than
acceptable, parameters like the reduced number of interpolation points is yet to
be optimized and should be subjected to further analysis.
It was recently discovered that RS codes defined over the complex field can be

used in Compressed Sensing (CS). Decoding algorithms can be viewed as sparse
vector reconstruction algorithms. Even more recently, it was shown that relia-
bility information can be extracted from a failed decoding attempt. In Chapter
5, we show new methods of extracting reliability information and investigate
their properties. We also develop the Recursive Enhancement Algorithm (REA)
and the Guruswami–Sudan (GS)-based GMD decoder. The REA focuses on
enhancing the quality of the available reliability information through multiple
error/erasure decoding trials. The enhanced reliability information is then input
to the continuity assisted decoder from [Zö15]. With the provided enhancement,
the decoder exceeds its previous results. It also surpasses the performance of
Orthogonal Matching Pursuit, which is a popular sparse reconstruction scheme.
The number of iterations and the number of erasures introduced in an itera-
tion are not yet optimized. A more detailed study on their influence can be
considered as an invited question for future researchers.
Due to the presence of numerical inaccuracies when dealing with complex

numbers, interpolation-based decoders are usually avoided due to their high
sensitivity. In an attempt to show that interpolation-based algorithms, like GS,
can still be used for sparse reconstruction, the GS-based GMD decoder was
established. To counter the effect of the numerical inaccuracies, modifications
such as altering the Roth-Ruckenstein root finding algorithm and using New-
ton’s method are proposed. In order to provide a single solution for the sparse
reconstruction instead of a list of possible solutions, reliability information is
used in a GS-based GMD decoder. The overall decoder provides a more stable
performance with a correction radius exceeding the classical half minimum dis-
tance decoding. However, results show that syndrome-based decoders are still
more robust to numerical inaccuracies and noise. Therefore, it is recommended
to use the new interpolation-based algorithm only in a noise free scenario.

88

Bibliography

References
[ADAA08] F. Abdelkefi, P. Duhamel, F. Alberge, and J. Ayadi. On the use of

cascade structure to correct impulsive noise in multicarrier systems.
IEEE Trans. Comm., 56(11):1844–1858, November 2008. doi:10.
1109/TCOMM.2008.060532. Cited on page 53.

[Ale05] M. Alekhnovich. Linear Diophantine Equations over Polynomials
and Soft Decoding of Reed-Solomon Codes. IEEE Trans. Inf. The-
ory, 51(7):2257–2265, July 2005. Cited on page 75.

[AMM12] A. Amini, V. Montazerhodjat, and F. Marvasti. Matrices with small
coherence using p-ary block codes. IEEE Trans. Signal Process.,
60(1):172–181, January 2012. doi:10.1109/TSP.2011.2169249.
Cited on page 57.

[AT08] M. Akcakaya and Vahid Tarokh. A frame construction and a uni-
versal distortion bound for sparse representations. IEEE Trans.
Sign. Proces., 56(6):2443–2450, June 2008. doi:10.1109/TSP.
2007.914344. Cited on page 53.

[BB08] M. Bossert and S. Bezzateev. Decoding of Interleaved RS Codes
with the Euclidean Algorithm. In IEEE International Symposium on
Information Theory, 2008. ISIT 2008., pages 1803–1807, July 2008.
doi:10.1109/ISIT.2008.4595299. Cited on pages 25 and 37.

[BB10] P. Beelen and K. Brander. Key Equations for List Decoding of
Reed–Solomon Codes and How to Solve Them. J. Symbolic Comp.,
45(7):773–786, 2010. Cited on page 75.

[BB13] M. Bossert and S. Bezzateev. A unified view on known algebraic
decoding algorithms and new decoding concepts. IEEE Transactions
on Information Theory, 59(11):7320–7336, Nov 2013. doi:10.1109/
TIT.2013.2274454. Cited on page 16.

89

http://dx.doi.org/10.1109/TCOMM.2008.060532
http://dx.doi.org/10.1109/TCOMM.2008.060532
http://dx.doi.org/10.1109/TSP.2011.2169249
http://dx.doi.org/10.1109/TSP.2007.914344
http://dx.doi.org/10.1109/TSP.2007.914344
http://dx.doi.org/10.1109/ISIT.2008.4595299
http://dx.doi.org/10.1109/TIT.2013.2274454
http://dx.doi.org/10.1109/TIT.2013.2274454

Bibliography

[Ber68] E. R. Berlekamp. Algebraic coding theory. McGraw–Hill, 1968.
Cited on pages 2, 17, 19, and 20.

[BGM96] George A. Baker and Peter R. Graves-Morris. Padé approximants.
Cambridge University Press, Cambridge, 2. ed. edition, 1996. Cited
on page 58.

[Bos99] Martin Bossert. Channel Coding for Telecommunications. Wiley,
1999. Cited on pages 6, 7, 9, 10, 17, 19, 30, and 34.

[BRC60] R.C. Bose and D.K. Ray-Chaudhuri. On a Class of Error Cor-
recting Binary Group Codes. Information and Control, 3(1):68
– 79, 1960. doi:http://dx.doi.org/10.1016/S0019-9958(60)
90287-4. Cited on pages 1 and 5.

[CBL89] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares meth-
ods and their application to non-linear system identification. Int. J.
Control, 50:1873–1896, 1989. Cited on pages 3, 56, and 71.

[Cha72] D. Chase. Class of algorithms for decoding block codes with chan-
nel measurement information. IEEE Transactions on Information
Theory, 18(1):170–182, Jan 1972. doi:10.1109/TIT.1972.1054746.
Cited on pages 2, 3, 33, and 37.

[CHJ10] R. Calderbank, S. Howard, and Sina Jafarpour. Construction of a
large class of deterministic sensing matrices that satisfy a statistical
isometry property. IEEE J. Sel. Top. Sign. Proces., 4(2):358–374,
April 2010. doi:10.1109/JSTSP.2010.2043161. Cited on page 57.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three
(and higher) dimensional space from noisy data. In Proc. 35th Symp.
Theory Comput., page 136–142, New York, USA, 2003. ACM. doi:
10.1145/780542.780563. Cited on pages 54 and 57.

[CSS14] Anas Chaaban, Vladimir Sidorenko, and Christian Senger. On multi-
trial forney-kovalev decoding of concatenated codes. Advances in
Mathematics of Communications, 8(1):1–20, 2014. doi:10.3934/
amc.2014.8.1. Cited on page 34.

[CT06] E. J. Candes and T. Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? IEEE Transactions on

90

http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/10.1109/TIT.1972.1054746
http://dx.doi.org/10.1109/JSTSP.2010.2043161
http://dx.doi.org/10.1145/780542.780563
http://dx.doi.org/10.1145/780542.780563
http://dx.doi.org/10.3934/amc.2014.8.1
http://dx.doi.org/10.3934/amc.2014.8.1

Bibliography

Information Theory, 52(12):5406–5425, Dec 2006. doi:10.1109/
TIT.2006.885507. Cited on page 56.

[DE03] David L. Donoho and Michael Elad. Optimally sparse representation
in general (nonorthogonal) dictionaries via `1 minimization. Proc.
Natl. Acad. Sci. USA, 100(5):2197–2202, 2003. doi:10.1073/pnas.
0437847100. Cited on page 56.

[Del75] P. Delsarte. On subfield subcodes of modified reed-solomon codes
(corresp.). IEEE Trans. Inf. Theor., 21(5):575–576, September 1975.
doi:10.1109/TIT.1975.1055435. Cited on page 10.

[DeV07] Ronald A. DeVore. Deterministic constructions of compressed sens-
ing matrices. J. Complexity, 23(4-6):918 – 925, 2007. doi:DOI:
10.1016/j.jco.2007.04.002. Cited on page 57.

[Don06] David L. Donoho. Compressed sensing. IEEE Trans. Information
Theory, 52(4):1289–1306, 2006. doi:10.1109/TIT.2006.871582.
Cited on page 56.

[Dor74] B. Dorsch. A decoding algorithm for binary block codes and j -ary
output channels (corresp.). IEEE Transactions on Information The-
ory, 20(3):391–394, May 1974. doi:10.1109/TIT.1974.1055217.
Cited on pages 2 and 33.

[DR08] Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure
und Naturwissenschaftler. Springer, Berlin; Heidelberg, 2., korr.
aufl. edition, 2008. Cited on pages 75 and 77.

[EK12] Yonina C. Eldar and Gitta Kutyniok. Compressed Sensing: Theory
and Applications. Cambridge UP, 2012. Cited on pages 7 and 56.

[FHI89] Michael Frigge, David C. Hoaglin, and Boris Iglewicz. Some imple-
mentations of the box plot. The American Statistician, 43(1):50–54,
February 1989. Cited on pages 71 and 82.

[Fit95] Patrick Fitzpatrick. On the key equation. IEEE Trans. Inf. Theory,
41(5):1290–1302, 1995. Cited on page 59.

[For65] G. D. Forney. On decoding BCH codes. IEEE Trans. Inf. Theory,
11:549–557, October 1965. Cited on page 22.

91

http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1109/TIT.1975.1055435
http://dx.doi.org/DOI: 10.1016/j.jco.2007.04.002
http://dx.doi.org/DOI: 10.1016/j.jco.2007.04.002
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.1974.1055217

Bibliography

[For66] G. Forney. Generalized Minimum Distance Decoding. IEEE Trans-
actions on Information Theory, 12(2):125–131, April 1966. doi:
10.1109/TIT.1966.1053873. Cited on pages 2, 29, 31, 33, 34,
and 87.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction
to compressive sensing. Appl. Numer. Harmon. Anal. Birkhäuser,
2013. Cited on page 56.

[GS99] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon
and Algebraic-Geometry Codes. IEEE Transactions on Informa-
tion Theory, 45(6):1757–1767, Sep. 1999. doi:10.1109/18.782097.
Cited on pages 2, 23, and 24.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix computations.
Johns Hopkins Univ. Pr., Baltimore, Md., 3. ed. edition, 1996. Cited
on page 75.

[GZ61] D. C. Gorenstein and N. Zierler. A class of error-correcting codes
in pm. J. Soc. Indust. Appl. Math., 9:207–214, June 1961. Cited on
page 22.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. Bell
System Technical Journal, 29(2):147–160, 1950. doi:10.1002/j.
1538-7305.1950.tb00463.x. Cited on pages 1, 5, and 7.

[Hen89] W. Henkel. Zur Decodierung algebraischer Blockcodes über kom-
plexen Alphabeten. Fortschritt-Berichte VDI. VDI-Verlag, 1989.
Cited on page 53.

[Hen00] Werner Henkel. Analog codes for peak-to-average ratio reduction.
In Proc. 3rd ITG Conf. Source Channel Coding, Munich, January
2000. Cited on page 53.

[HH05] Werner Henkel and Fang Ning Hu. OFDM and analog RS/BCH
codes. In Proc. OFDM-Workshop, Hamburg, August 2005. Cited
on page 53.

[HHH12] M. Huemer, C. Hofbauer, and J. B. Huber. Non-systematic complex
number RS coded OFDM by unique word prefix. IEEE Trans. Signal
Process., 60(1):285–299, January 2012. Cited on page 53.

92

http://dx.doi.org/10.1109/TIT.1966.1053873
http://dx.doi.org/10.1109/TIT.1966.1053873
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x

Bibliography

[HHZ11] Fang Ning Hu, Werner Henkel, and Ming Jie Zhao. Analog codes for
gross error correction in signal transmission. Adv. Mat. Res., 341–
342:514–518, September 2011. doi:10.4028/www.scientific.net/
AMR.341-342.514. Cited on page 53.

[ITU99] International Telecommunication Union ITU. Asymmetric Digital
Subscreiber line (ADSL) transceivers. G.992.1, July 1999. Cited on
page 11.

[KNIH94] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa. An Efficient
Maximum-Likelihood-Decoding Algorithm for Linear Block Codes
With Algebraic Decoder. IEEE Transactions on Information The-
ory, 40(2):320–327, March 1994. Cited on page 35.

[Kum85] R. Kumaresan. Rank reduction techniques and burst error-
correction decoding in real/complex fields. In Proc. Asilomar Conf.
Sign., Syst. Comp., pages 457–461, November 1985. doi:10.1109/
ACSSC.1985.671503. Cited on page 53.

[KV03] R. Kötter and A. Vardy. Algebraic Soft-Decision Decoding of
Reed-Solomon Codes. IEEE Transactions on Information The-
ory, 49(11):2809–2825, Nov. 2003. doi:10.1109/TIT.2003.819332.
Cited on pages 2, 24, 33, and 42.

[KWB10] S. Kampf, A. Wachter, and M. Bossert. A method for soft-decision
decoding of reed-solomon codes based on the extended euclidean
algorithm. In International ITG Conference on Source and Channel
Coding (SCC), pages 1–6, Jan. 2010. Cited on page 35.

[LN02] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and
their applications. Cambridge Univ. Press, Cambridge [u.a.], rev. ed.
edition, 2002. Cited on page 5.

[Mar84] T. Jr. Marshall. Coding of real-number sequences for error correc-
tion: A digital signal processing problem. IEEE J. Select. Areas
Commun., 2(2):381–392, March 1984. doi:10.1109/JSAC.1984.
1146063. Cited on pages 53 and 68.

[MHET99] F. Marvasti, M. Hasan, M. Echhart, and S. Talebi. Efficient al-
gorithms for burst error recovery using FFT and other transform
kernels. IEEE Trans. Sign. Proces., 47(4):1065–1075, April 1999.
doi:10.1109/78.752604. Cited on page 53.

93

http://dx.doi.org/10.4028/www.scientific.net/AMR.341-342.514
http://dx.doi.org/10.4028/www.scientific.net/AMR.341-342.514
http://dx.doi.org/10.1109/ACSSC.1985.671503
http://dx.doi.org/10.1109/ACSSC.1985.671503
http://dx.doi.org/10.1109/TIT.2003.819332
http://dx.doi.org/10.1109/JSAC.1984.1146063
http://dx.doi.org/10.1109/JSAC.1984.1146063
http://dx.doi.org/10.1109/78.752604

Bibliography

[MS85] Y. Maekawa and K. Sakaniwa. An extension of DFT code and the
evaluation of its performance. In Proc. IEEE Int. Symp. Inf. Theory,
pages 24–28, June 1985. Cited on page 53.

[MS88] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-
Correcting Codes. North Holland Publishing Co., June 1988. Cited
on pages 2, 8, 9, 10, 17, and 33.

[MT11] V. Miloslavskaya and P. Trifonov. Hybrid interpolation Algorithm
for Algebraic Soft Decision Decoding of Reed-Solomon Codes. In
8th International Symposium on Wireless Communication Systems
(ISWCS), pages 131–135, Nov. 2011. doi:10.1109/ISWCS.2011.
6125324. Cited on page 41.

[Nat95] B. K. Natarajan. Sparse approximate solutions to linear sys-
tems. SIAM J. Comput., 24(2):227–234, April 1995. doi:10.1137/
S0097539792240406. Cited on page 56.

[Nie13] Johan S. R. Nielsen. List Decoding of Algebraic Codes. PhD thesis,
Technical University of Denmark, 2013. Cited on pages 26 and 27.

[Nie16] Johan S. R. Nielsen. Power Decoding Reed–Solomon Codes up to
The Johnson Radius. Advances in Mathematics of Communications
(AMC), 10, November 2016. Cited on pages 21 and 61.

[Pad92] H. Padé. Sur la représentation approchée d’une fonction par des
fractions rationnelles. Annales scientifiques de l’École Normale
Supérieure, 9:3–93, 1892. Cited on page 58.

[PH08] F. Parvaresh and B. Hassibi. Explicit measurements with almost
optimal thresholds for compressed sensing. In IEEE Int. Conf.
Acoust., Speech, Signal Process., pages 3853–3856, March 2008. doi:
10.1109/ICASSP.2008.4518494. Cited on pages 54, 57, and 75.

[PW72] W. W. Peterson and E. J. Weldon. Error-Correcting Codes. MIT
Press, second edition, 1972. Cited on pages 2 and 59.

[Red00] G.R. Redinbo. Decoding real block codes: activity detection wiener
estimation. IEEE Trans. Inf. Theory, 46(2):609–623, March 2000.
doi:10.1109/18.825828. Cited on page 53.

94

http://dx.doi.org/10.1109/ISWCS.2011.6125324
http://dx.doi.org/10.1109/ISWCS.2011.6125324
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1109/ICASSP.2008.4518494
http://dx.doi.org/10.1109/ICASSP.2008.4518494
http://dx.doi.org/10.1109/18.825828

Bibliography

[RG03] G. Rath and C. Guillemot. Real error and erasure correction with dft
codes for communication channels. In 2003 IEEE Wireless Commu-
nications and Networking, 2003. WCNC 2003., volume 1, pages 311–
316 vol.1, March 2003. doi:10.1109/WCNC.2003.1200366. Cited
on page 53.

[RHG01] G. Rath, X. Henocq, and C. Guillemot. Application of dft codes for
robustness to erasures. In Global Telecommunications Conference,
2001. GLOBECOM ’01. IEEE, volume 2, pages 1246–1250 vol.2,
2001. doi:10.1109/GLOCOM.2001.965685. Cited on page 53.

[Rot06] Ron M. Roth. Introduction to coding theory. Cambridge UP, 2006.
Cited on pages 7, 10, 27, 28, 30, and 34.

[RR00] R. M. Roth and G. Ruckenstein. Efficient decoding of reed-solomon
codes beyond half the minimum distance. IEEE Transactions on
Information Theory, 46(1):246–257, Jan 2000. doi:10.1109/18.
817522. Cited on pages 23, 27, and 28.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960. Cited on pages 1, 5, and 10.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell sys-
tem technical journal, 27:379–423,623–656, 1948. Cited on page 1.

[SSB06] G. Schmidt, V. Sidorenko, and M. Bossert. Decoding Reed–Solomon
codes beyond half the minimum distance using shift-register synthe-
sis. In Proc. IEEE Int. Symp. Inf. Theory, pages 459–463, July 2006.
doi:10.1109/ISIT.2006.261711. Cited on pages 12 and 21.

[SSB10] G. Schmidt, V. R. Sidorenko, and M. Bossert. Syndrome decoding
of Reed–Solomon codes beyond half the minimum distance based
on shift-register synthesis. IEEE Trans. Inf. Theory, 56:5245–5252,
October 2010. Cited on pages 17, 20, 22, and 61.

[SSBZ10] C. Senger, V. R. Sidorenko, M. Bossert, and V. V. Zyablov. Mul-
titrial decoding of concatenated codes using fixed thresholds. Prob-
lems of Information Transmission, 46(2):127–141, 2010. doi:10.
1134/S0032946010020031. Cited on page 34.

95

http://dx.doi.org/10.1109/WCNC.2003.1200366
http://dx.doi.org/10.1109/GLOCOM.2001.965685
http://dx.doi.org/10.1109/18.817522
http://dx.doi.org/10.1109/18.817522
http://dx.doi.org/10.1109/ISIT.2006.261711
http://dx.doi.org/10.1134/S0032946010020031
http://dx.doi.org/10.1134/S0032946010020031

Bibliography

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-
correction bound. J. Complex., 13(1):180–193, March 1997. doi:
10.1006/jcom.1997.0439. Cited on pages 2, 23, and 24.

[TH08] G. Takos and C.N. Hadjicostis. Determination of the number of
errors in DFT codes subject to low-level quantization noise. IEEE
Trans. Sign. Proces., 56(3):1043–1054, March 2008. doi:10.1109/
TSP.2007.908939. Cited on page 53.

[Tri07] P. Trifonov. Interpolation in List Decoding of Reed–Solomon Codes.
Probl. Inf. Transm., 43(3):190–198, 2007. Cited on page 75.

[Tri10] P. Trifonov. Another Derivation of Wu List Decoding Algorithm and
Interpolation in Rational Curve Fitting. In IEEE SIBIRCON, pages
59–64, July 2010. doi:10.1109/SIBIRCON.2010.5555314. Cited
on pages 26 and 48.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
Cited on pages 71 and 82.

[VL14] M. Vaezi and F. Labeau. Generalized and extended subspace algo-
rithms for error correction with quantized DFT codes. IEEE Trans.
Comm., 62(2):410–422, February 2014. doi:10.1109/TCOMM.2014.
010414.130440. Cited on page 53.

[WB86] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block
codes, December 30 1986. US Patent 4,633,470. URL: https://www.
google.com/patents/US4633470. Cited on pages 2, 23, and 24.

[WB94] S.B. Wicker and V.K. Bhargava. Reed-Solomon Codes and Their
Applications. IEEE Press, 1994. Cited on pages 1, 10, and 11.

[Wol83] J. K. Wolf. Redundancy, the discrete Fourier transform, and impulse
noise cancellation. IEEE Trans. Comm., 31(3):458–461, March 1983.
doi:10.1109/TCOM.1983.1095820. Cited on pages 53, 55, and 68.

[Wu08] Yingquan Wu. New List Decoding Algorithms for Reed–Solomon
and BCH Codes. IEEE Transactions on Information The-
ory, 54(8):3611–3630, July 2008. doi:10.1109/TIT.2008.926355.
Cited on pages 2, 3, 23, 25, and 27.

96

http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1109/TSP.2007.908939
http://dx.doi.org/10.1109/TSP.2007.908939
http://dx.doi.org/10.1109/SIBIRCON.2010.5555314
http://dx.doi.org/10.1109/TCOMM.2014.010414.130440
http://dx.doi.org/10.1109/TCOMM.2014.010414.130440
https://www.google.com/patents/US4633470
https://www.google.com/patents/US4633470
http://dx.doi.org/10.1109/TCOM.1983.1095820
http://dx.doi.org/10.1109/TIT.2008.926355

Bibliography

[ZB15] Henning Zörlein and Martin Bossert. Coherence optimization and
best complex antipodal spherical codes. IEEE Trans. Signal Pro-
cess., 63(24):6606–6615, December 2015. doi:10.1109/TSP.2015.
2477052. Cited on pages 56 and 71.

[ZGA11] Alexander Zeh, Christian Gentner, and Daniel Augot. An Interpo-
lation Procedure for List Decoding Reed–Solomon Codes Based on
Generalized Key Equations. IEEE Trans. Inf. Theory, 57(9):5946–
5959, 2011. Cited on page 75.

[Zö15] Henning Zörlein. Channel Coding Inspired Contributions to Com-
pressed Sensing. PhD thesis, Ulm University, 2015. URL: http:
//vts.uni-ulm.de/doc.asp?id=9748. Cited on pages 3, 54, 56,
57, 58, 60, 61, 62, 64, 68, 69, 71, 81, 84, and 88.

Publications Containing Parts of this Thesis
[MNB14] Mostafa H. Mohamed, Johan S. R. Nielsen, and Martin Bossert. Re-

duced list-decoding of Reed–Solomon codes using reliability information.
In Proceedings of the 21st International Symposium on Mathematical Th.
of Networks and Systems, Jul 2014. Cited on pages 44 and 52.

[MB15] Mostafa H. Mohamed, and Martin Bossert. A Chase-like decoding al-
gorithm for Reed–Solomon codes based on the extended Euclidean algo-
rithm. In Proc. Int. ITG Conf. Sys., Commun. Coding, Feb 2015. Cited
on pages 3, 37, and 52.

[MRZB15] Mostafa H. Mohamed, Shrief Rizkalla, Henning Zörlein, and Mar-
tin Bossert. Deterministic compressed sensing with power decoding for
complex Reed–Solomon codes. In Proc. Int. ITG Conf. Sys., Commun.
Coding, Feb 2015. Cited on pages 54, 56, 57, and 68.

[MZB16] Mostafa H. Mohamed, Henning Zörlein, and Martin Bossert. Recur-
sive enhancement of intrinsic soft information for complex Reed–Solomon
codes. In 4th Int. Workshop on Compressed Sensing Theory and its Ap-
plications to Radar, Sonar and Remote Sensing, Sep 2016. Cited on
pages 3, 61, 68, 70, 85, and 86.

[MPB17] Mostafa H. Mohamed, Sven Puchinger, and Martin Bossert.
Guruswami–Sudan list decoding for complex Reed–Solomon codes. In

97

http://dx.doi.org/10.1109/TSP.2015.2477052
http://dx.doi.org/10.1109/TSP.2015.2477052
http://vts.uni-ulm.de/doc.asp?id=9748
http://vts.uni-ulm.de/doc.asp?id=9748

Bibliography

Proc. Int. ITG Conf. Sys., Commun. Coding, Feb 2017. Cited on pages
3, 57, 75, 76, and 80.

98

Mostafa Hosni Mohamed

Curriculum Vitae

For reasons of data privacy, the curriculum vitae has been removed.

List of Publications

[1] M. H. Mohamed, Johan S. R. Nielsen, and Martin Bossert. Reduced List-Decoding of
Reed–Solomon Codes Using Reliability Information. In Proceedings of the 21st
International Symposium on Mathematical Theory of Networks and Systems (MTNS),
Groningen, the Netherlands, July 2014.

[2] M. H. Mohamed and Martin Bossert. A Chase-like Decoding Algorithm for Reed–

Solomon Codes Based on the Extended Euclidean Algorithm. In Proceedings of the 10th
International ITG Conference on Systems, Communications and Coding (SCC),
Hamburg, Germany, February 2015

[3] Henning Zörlein, Shrief Rizkalla, M. H. Mohamed, and Martin Bossert. Deterministic

Compressed Sensing with Power Decoding for Complex Reed-Solomon Codes. In
Proceedings of the 10th International ITG Conference on Systems, Communications and
Coding (SCC), Hamburg, Germany, February 2015.

[4] M. H. Mohamed and Martin Bossert. Combinatorial Metrics and Collaborative

Error/Erasure Decoding for Translational Metrics. In Proceedings of the IITP RAS 39th
interdisciplinary School-Conference Information Technologies and Systems (ITaS),
Sochi, Russia, September 2015.

[5] M. H. Mohamed, Henning Zörlein, and Martin Bossert. Recursive Enhancement of

Intrinsic Soft Information for Complex Reed-Solomon Codes. In Compressed Sensing
Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Aachen,
Germany, September 2016.

[6] M. H. Mohamed, Sven Puchinger, and Martin Bossert. Guruswami–Sudan List

Decoding for Complex Reed–Solomon Codes. In Proceedings of the 11th International
ITG Conference on Systems, Communications and Coding (SCC), Hamburg, Germany,
February 2017.

	Introduction and Motivation
	Basic Definitions
	Finite Fields
	Metrics
	Hamming Distance
	Euclidean Distance

	Linear Block Codes
	Reed–Solomon Codes

	Decoding Reed–Solomon Codes
	Syndrome-based Decoding
	Error Locator Algorithms
	Gorenstein–Zierler Error Evaluation Algorithm

	Interpolation-based Decoding
	Interpolation Algorithms
	Root Finding using Roth–Ruckenstein Algorithm

	Error/Erasure Decoding
	Definition of an Erasure
	Generalized Minimum Distance Decoding

	Decoding with Reliability in Finite Fields
	Reliability Calculation
	Code Concatenation
	Modulation-based

	Decoding Algorithms Using Reliability
	Chase-like Decoder
	Reduced List-Decoder (RLD)

	Overview and Summary

	Decoding with Reliability in the Complex Field
	Reed–Solomon Codes over the Complex Field
	Relation to Compressed Sensing
	Padé Approximation-based Reliability
	Reliability Information Calculation Methods
	Properties of Reliability Information

	Decoding Algorithms using Reliability
	Recursive Enhancement Algorithm
	Guruswami–Sudan-based Generalized Minimum Distance Decoding

	Overview and Summary

	Conclusion
	Bibliography

