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Abstract  

 

The analysis of biological structures in electron microscopy (EM) images is an important task that 

can lead to a deeper understanding of cellular processes and disease development, as it is widely 

used when researching and diagnosing various diseases such as viral infections and genetic 

disorders. However, large-scale manual analysis and quantification of EM images is time-

consuming, subjective, and error-prone. 

 

Deep learning (DL) techniques have the potential to automate image analysis workflows for 

objective quantification of biological structures in EM images. Despite this, deep learning has not 

been fully explored in biological EM, as it often requires large amounts of labelled ground truth 

datasets. The availability of such data is rather scarce in the biological field, which in turn limits 

its applications. To overcome this challenge, this thesis focuses on developing DL methods that 

can classify, synthesize, detect, and segment biological structures in EM images in an effective 

manner using only small amounts of labelled ground truth data. 

 

The methods developed are intended to provide biologists with an automated quantification and 

analytical workflow for routine use. To this end, we leveraged transfer learning techniques to 

detect human cytomegalovirus (HCMV) particles in transmission electron microscopy (TEM) 

images. Two different transfer learning techniques were investigated to assess their effectiveness 

and suitability for this task. Our study provided the proof of principle that transfer learning can be 

applied to the development of DL models that allow for the automatic detection of particles in EM 

images.  

 

This work was then extended to detect and classify HCMV secondary capsid envelopment stages 

in TEM images. Since lack of large high-quality labeled ground truth datasets hampers model 

performance, we introduced a technique to generate synthetic TEM images and self-labelling data 

as an augmentation method. We could show, that the addition of synthetic data greatly improves 

the DL models' learning and generalization capability and in turn, improves particle detection. This 
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work speeds up the development of DL-based classification and detection applications, as it 

reduces the demands on data labeling.  

 

Finally, we developed a weighted average ensemble method to effectively segment various types 

of biological structures in both TEM and scanning electron microscopy (SEM) images using very 

small labelled ground truth datasets. Our approach significantly outperformed the standard single 

model approach, yielding performance almost similar to expert-labeled data. To make our model 

interpretable, we added an explainable component in our ensemble model, which visually 

communicates the model’s prediction.  

 

By making these three contributions, we have demonstrated throughout this thesis that it is feasible 

to automatically detect, synthesize, classify, and segment biological structures in EM images in an 

effective manner with a reduced number of expert labels. We hope this will help researchers and 

practitioners optimize routine analytical workflows for biological EM quantification. 
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1. Introduction  

1.1 Motivation and challenges 

 

The analysis of biological ultrastructure is an important step towards understanding various 

pathogens and diseases. Electron microscopy (EM) has evolved into a powerful tool for cell 

biology (Koster and Klumperman 2003; McIntosh 2001; Graham and Orenstein 2007; Callaway 

2020; Assaiya et al. 2021; Flannigan et al. 2010; Fernandez-Leiro, Scheres 2016). It enables 

scientists to view structures in very high resolution, yielding important insights into cellular 

processes and disease development (Pelletier et al. 2006; Franken et al. 2020; Hazelton and 

Gelderblom 2003). EM has been continuously used for the research and diagnosis of various 

diseases such as viral infections and genetic disorders (Golding et al. 2016; Richert-Pöggeler et al. 

2019; Möller et al. 2020, Goldsmith and Miller 2009).  

 

In the past decade, EM has seen an unprecedented increase in the number and size of datasets 

acquired. However, visual analysis and quantification of organelle morphology in a large volume 

of images present a substantial challenge (von Chamier et al. 2021; Radulović et al. 2022). 

Traditionally, the biological quantification process involves the manual analysis of EM images by 

experts. This analysis is time-consuming, expensive, subjective, and prone to error (Treder et al. 

2022). Most often, it is not feasible to perform large-scale manual visual assessments of EM 

samples and this, in turn, limits their applications in the biological field. To combat this challenge, 

new algorithmic methods that are less reliant on manual human intervention and expertise are 

highly desired (Treder et al. 2022). Therefore, there is currently a demand for the design and 

development of artificial intelligence (AI) based automated image analysis workflows for the 

objective quantification of electron microscopy images.  

 

Machine learning (ML) is a subfield of artificial intelligence that has gained widespread 

recognition as an advantageous technique for many computer automated tasks. In recent times, 

machine learning algorithms have been successfully used for a variety of tasks such as 
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classification, regression, clustering, classification, translation, dimensionality reduction, 

detection, recommendation, synthesis, and many others. 

 

Deep learning (DL) is a specialized branch of machine learning that has led to significant progress 

in the field of computer vision. The main strength of deep learning lies in its ability to extract 

complex high-level features from raw input data without the need for human intervention (LeCun 

et al. 2015). This differs from traditional machine learning approaches, which require carefully 

designed handcrafted features according to current domain-specific knowledge. The incorporation 

of feature engineering into the learning process has rapidly increased the popularity of DL. The 

availability of large amounts of data, as well as the continuous increase in computing power, has 

propelled it to achieve unprecedented performance in a multitude of fields (Chai et al. 2021). Deep 

learning has outperformed conventional image processing methods for tasks such as image 

classification, segmentation, object detection, image restoration, and many others (Ede 2021). 

These achievements have led to an increased interest in DL-based image analysis workflows for 

tasks that present significant challenges when performed manually.  

 

Recently, DL has demonstrated incredible success in the analysis of microscopy images in the 

biomedical domain (Ching et al. 2018; Wainberg et al. 2018; Goecks et al. 2020; Berrar and 

Dubitzky 2021; Greener et al. 2022). Despite its widespread use in light microscopic applications, 

it has not fully explored in the field of biological electron microscopy. Some of the main challenges 

that hamper the use of DL for EM images are a lack of labelled ground truth data, low contrast, 

noise, inhomogeneity, and appearance variability. To overcome the challenges associated with 

EM-based image analysis, this thesis focuses on leveraging DL methods for the morphological 

analysis of biological ultrastructure in EM images. In particular, we have focused on detection and 

classification of HCMV viral particles, synthetic generation of EM images, and the semantic 

segmentation of organelles with a focus on explainable deep learning networks.  

1.2 Objectives  

 

The main aim of this work is to leverage DL techniques for the automated analysis and 

quantification of biological EM images. While DL has shown astounding success in many 
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applications, it requires a large amount of labelled data for learning. Manually generating large 

amounts of labelled ground truth data is time-consuming, subjective, and expensive. Therefore, 

there is a scarcity of good quality ground truth data for efficient model learning in biological EM. 

To this end, the focus of this work is to overcome this limitation by developing deep learning 

methods that are able to classify, synthesize, detect, and segment biological ultrastructure in EM 

images in an effective manner using only small labelled ground truth datasets. The methods 

developed are intended to provide biologists with an automated quantification and analytical 

workflow for routine use.  

 

The following objectives briefly highlight the main steps involved in achieving this aim. 

 

1) Development of transfer learning techniques for the automated detection of human 

cytomegalovirus (HCMV) particles in transmission electron microscope (TEM) images 

(Devan et al. 2019) [SD-1]. 

2) Development of a data augmentation technique for the generation of synthetic TEM images 

which only requires a low amount of training data using a generative adversarial network 

(GAN) and the subsequent automated labelling of ground truth data for the detection of 

multi-class HCMV secondary envelopment stages (Shaga Devan et al. 2021) [SD-2]. 

3) Development of an ensemble-based semantic segmentation method for automated multi-

class segmentation of chromosomes, mitochondria, cytoplasm, and nuclei in both TEM 

and scanning electron microscope (SEM) images (Shaga Devan et al. 2022) [SD-3]. 

1.3 Thesis organization 

 

This is a cumulative thesis with the following structure. Chapter 1 introduces the motivations and 

challenges associated with the application of DL methods for biological EM along with the 

intended objectives of this work. Chapter 2 provides a brief overview of EM, such as imaging 

instruments, working principles, advantages and limitations, and sample preparation techniques. 

Chapter 3 briefly elucidates the concept of artificial intelligence. It mainly focuses on key concepts 

and terminologies of machine and deep learning, which are used throughout this thesis. The 

chapter also highlights the various applications of DL in the field of EM and their associated 
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challenges. Chapter 4 summarizes the overall contribution of this thesis, which is composed of 

three individual publications in peer-reviewed journals (Devan et al. 2019; Shaga Devan et al. 

2021, 2022) [SD-1], [SD-2] and [SD-3]. Chapter 5 contain the reprint of Devan et al. (2019)       

[SD-1] which describes the detection of herpesvirus capsids in transmission electron microscopy 

images using transfer learning techniques. This technique in then further expanded in Chapter 6 

with the improved automatic detection of herpesvirus secondary envelopment stages in electron 

microscopy by augmenting training data with synthetic labelled images generated by a generative 

adversarial network as shown by the reprint of Shaga Devan et al. 2021 [SD-2]. Chapter 7 contain 

the reprint of Shaga Devan et al. (2022) [SD-3] which describes the weighted average ensemble-

based approach for the semantic segmentation of biological structures in electron microscopy 

images. Individual contributions from the main author, as well as a short synopsis of the work, are 

given for each publication in Chapter 5, 6 and 7. Finally, Chapter 8 concludes this thesis and 

provides a future outlook to extend the currently proposed methods for the automation of EM-

based biomedical applications in a broader context.  

1.4 Publications included in this thesis 

 

This thesis is a cumulation of peer-reviewed journal publications that are listed here in order of 

their appearance in the thesis. 

  

[SD-1] Devan KS, Walther P, von Einem J, Ropinski T, Kestler HA, Read C. Detection of 

herpesvirus capsids in transmission electron microscopy images using transfer 

learning. Histochem Cell Biol. 2019 Feb;151(2):101-114. 

https://doi.org/10.1007/s00418-018-1759-5. Epub 2018 Nov 28. PMID: 30488339 
  

[SD-2] Shaga Devan K, Walther P, von Einem J, Ropinski T, A Kestler H, Read C. 

Improved automatic detection of herpesvirus secondary envelopment stages in 

electron microscopy by augmenting training data with synthetic labelled images 

generated by a generative adversarial network. Cell Microbiol. 2021 

Feb;23(2):e13280. https://doi.org/10.1111/cmi.13280. Epub 2020 Nov 16.                     

PMID: 33073426 
 

https://doi.org/10.1007/s00418-018-1759-5
https://doi.org/10.1111/cmi.13280
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[SD-3] Shaga Devan K, Kestler HA, Read C, Walther P. Weighted average ensemble-

based semantic segmentation in biological electron microscopy images. Histochem 

Cell Biol. 2022.  https://doi.org/10.1007/s00418-022-02148-3. PMID: 35988009  

 

https://doi.org/10.1007/s00418-022-02148-3
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2. Electron Microscopy  

2.1 Brief history of electron microscopy 

 

The term microscope is composed of the Greek words mikros and skopeo, which mean small and 

look at, respectively. In 1931, the first electron microscope prototype was built by Ernst Ruska 

and Max Knoll at the Technische Universität Berlin, Germany. This prototype was able to produce 

a magnification of 400 and was the first device of its kind that was able to demonstrate the 

principles of electron microscopy (EM). The first commercial electron microscope was released 

to the public in 1938 and since then, it has been an integral part of scientific development 

(Haguenau et al. 2003).  

Due to the much shorter wavelength of electrons compared to photons, the resolution of an electron 

microscope far exceeds that of a light microscope. Therefore, the electron microscope plays a 

powerful role in the characterization of a wide variety of biological and non-biological specimens. 

Its ability to render images at high spatial resolution makes it a very valuable tool for a wide variety 

of applications. In the biomedical field, EM is commonly used to investigate the detailed structure 

of tissues, cells, organelles, viral particles, and macromolecular complexes. 

2.2 Working principles of electron microscopy 

 

There are two main types of electron microscopes; which are the transmission electron microscope 

(TEM) and the scanning electron microscope (SEM). The combination of TEM and SEM into a 

single instrument gave rise to the scanning transmission electron microscope (STEM). TEM is 

capable of achieving atomic-scale resolution, while SEM magnifies surface features as small as a 

few nanometers (ThermoFisher Scientific 2022). Therefore, electron microscopes are able to 

produce detailed images that reveal complex and delicate structures of specimens.  

A TEM (Figure 1) is used to view ultrathin samples through which a high voltage beam of electrons 

can pass through, forming a projection image that relays information about the structure of the 

sample. Electrons emitted from the electron gun pass through a condenser lens before interacting 
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with the sample, close to the objective lens. The image of the sample is then magnified by a series 

of lenses and is recorded when it hits the fluorescent screen or a light-sensitive sensor such as a 

charge-coupled device (CCD) camera. The image detected by the CCD is displayed in real-time 

on a monitor or computer (Williams and Carter 1996; Winey et al. 2014).  

A SEM projects and scans a focused beam of electrons over a sample surface to generate an image. 

When the scanned beam hits the sample, backscattered and secondary electrons are emitted from 

the sample surface due to the excitation from the primary electron beam. These signals that are 

highly localized to the actual impact point of the primary beam contain information about the 

sample surface such as its topography and composition. The signals are acquired by detectors and 

are used to form an image, pixel, by pixel and line by line (Akhtar et al. 2018). Focused ion beam 

scanning electron microscope (FIB-SEM) is an evolution of SEM, in which a sample block is 

repeatedly abraded with a focused ion beam (FIB) and the newly exposed surface is imaged with 

an SEM (Figure 2).This technology produces three dimensional datasets (Kizilyaprak et al. 2014; 

AZO Life Sciences 2020). 

The work presented in this thesis was performed using datasets comprising of TEM and FIB-SEM 

images.  

2.3. Sample preparation techniques 

 

Sample preparation directly impacts the quality of the EM characterization and is therefore the 

most crucial step in biological EM. The standard protocol is to fix the biological samples with 

chemical crosslinkers such as glutaraldehyde, dehydrate it, and embed it in a polymer that is very 

stable in the electron beam of the microscope. Because this leads to structural changes due to 

osmotic effects, cryofixation has been established as an alternative. Today, cryo-electron 

microscopy has become the gold standard for sample preparation. It is a method to image frozen 

and still hydrated biological samples in a transmission electron microscope at cryogenic 

temperatures, typically below -150°C using stages cooled with liquid nitrogen. This approach 

prevents dehydration and artifacts related to dehydration that are typical for conventional specimen 

preparation. The samples are, however, very beam sensitive, which makes observation with the 

electron microscope difficult (Milne et al. 2013; Cabra and Samsó 2015). The samples used in this 

thesis have all been prepared by what is called a hybrid method: high pressure freezing, freeze 

substitution and plastic embedding. This approach combines some advantages of cryo-
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transmission electron microscopy (good structural preservation) and conventional preparation with 

plastic embedding (which makes the sample very resistant to the electron beam) (Walther and 

Ziegler, 2002).  

 

Figure 1. Schematic diagram of a transmission electron microscope (TEM) (Aryal 2022). 
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Figure 2. Schematic diagram of a focused ion beam scanning electron microscope (FIB-SEM). 

The angle (α) between the electron beam and ion beam is normally in the range of 52 and 55° 

(Yougui Liao 2007). 

 

The crucial first step of this protocol is to freeze the sample in a physiologically defined state. 

However, this is complex, since water tends to form crystals during freezing that heavily destroy 

the biological structure. An approach to overcome this limitation is high-pressure freezing. By 

applying a pressure of 2000 bar to the small sample at the very moment of freezing, the formation 

of ice crystals is suppressed, since the pressure prevents expansion of the water that occurs when 

hexagonal ice is formed, since the density of ice is less than the density of liquid water. High-

pressure freezing is currently considered the best method for fixation of cells and tissue and has 

therefore been applied for all samples of the three publications of this thesis (Walther, Schmid and 

Höhn 2013; Villinger et al. 2014; Villinger et al. 2015).  
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The frozen samples are then processed by freeze substitution; they are immersed into acetone at a 

temperature of -90°C and slowly warmed up. During this process, ice is slowly “substituted” by 

acetone, which is liquid at these cold temperatures. The sample is stabilized by fixatives, e. g. 

osmium tetroxide and uranyl acetate, which have been added to the acetone. Once the sample has 

reached room temperature, the acetone is stepwise replaced by the resin Epon, which is then 

polymerized. The result is a very stable solid-state sample. For TEM, the sample is then cut into 

very thin slices with a diamond knife for imaging in the transmission mode (Walther, Schmid and 

Höhn 2013; Villinger et al. 2014; Villinger et al. 2015).  

Samples for SEM imaging do not need to be ultra-thin as the beam of electrons does not pass 

through the sample, but instead, the beam is scanned across the sample for image formation 

(Akhtar et al. 2018). 
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3. Deep Learning 

3.1 Artificial intelligence  

 

Artificial intelligence (AI) is a broad term for technologies that enable machines to mimic human 

intelligence (Figure 3). AI uses computer systems to perform complex tasks in a way that is similar 

to the human problem-solving approach. A major subcategory of AI is machine learning (ML). It 

refers to a wide variety of methods and algorithms that allow computer systems to make decisions 

using a given set of data, without being explicitly programmed. This warrants the computer 

systems to learn on its own, gradually improving performance (Kersting 2018; Janiesch C, Zschech 

P and Heinrich 2018).  

 

 

Figure 3. Artificial intelligence is an umbrella term for technologies that are able to mimic 

intelligent human behavior. Machine learning is a subfield of artificial intelligence and deep 

learning is a subcategory of machine learning. 

There are two main approaches in ML which are; supervised and unsupervised learning. The main 

difference between these two approaches is defined by the use of training data. Supervised learning 

algorithms require labelled ground truth data for model training and subsequent prediction. On the 
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other hand, unsupervised learning algorithms work with unlabelled training datasets. It is able to 

discover patterns in the data without the need for external intervention.  

3.2 Principles of deep learning 

 

Deep learning (DL) is a major subfield of ML. DL models use large artificial neural networks to 

learn complex patterns in data and make predictions independent of human input (LeCun et al. 

2015). It automatically extracts features from the input during the model learning process, 

eliminating the need for engineering features. In contrast, many classical ML algorithms are highly 

dependent on human intervention for the feature engineering process. DL is used for both 

supervised and unsupervised learning. It is primarily credited as the catalyst for accelerating 

progress in fields such as computer vision, natural language processing, and speech recognition 

(Sarker 2021).  

 

Artificial neural networks, also known simply as neural networks, are the backbone of deep 

learning algorithms. Their structure is loosely inspired by the human brain, emulating the way that 

biological neurons signal with one another. Similar to the interconnection of neurons in the human 

brain, neural networks also have neurons that are interconnected with each other in various layers 

of the networks (Figure 4) (Mishra and Srivastava 2014). These neurons are called nodes, and 

neural networks are composed of multiple layers of nodes. An individual node may be connected 

to several nodes in the layer before it, with which it receives data, and several nodes in the layer 

behind it, to which it sends data. Neural networks consist of three types of layers, which are the 

input layer through which data enters the network, one or more hidden layers where computations 

are performed, and an output layer which produces the result.  

Each of the individual nodes consist of input data, weights, a bias (or threshold), and an output. 

When an input layer has been determined, corresponding weights are assigned. These weights 

aid in determining the significance of any given variable, with larger weights having a greater 

contribution to the output. Next, each input is multiplied by its corresponding weight and added 

together. The output is then sent through an activation function.  
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The final output of the node is the activation function of a weighted sum of the node’s input as 

denoted by the equation below, 

𝑌 = 𝑓 (𝑏 + ∑ 𝑥𝑖  𝑤𝑖𝑛
𝑖=1 ) 

where Y is the output of the node, f is the function, b is the bias, i is the index, x is the input and w 

is the weight.  

 

Figure 4. Architecture of a neural network. The neural network architecture is made of individual 

units called neurons which organization mimics the biological behavior of the brain. 

If that output exceeds a certain threshold, the node is activated and the data is forwarded to the 

next layer of the network. As a result, the input of one node becomes the output of the following 

node. This neural network is defined as a feedforward network since data is passed from one layer 

to the next layer throughout the process (IBM, 2020). 

Recently, many types of deep learning architectures have been developed due to the continually 

increasing interest in this field. These architectures include convolutional neural networks (CNN) 

(LeCun et al. 1998), recursive neural networks (RCN) (Chinea 2009), and generative adversarial 

networks (GAN) (Goodfellow et al. 2014) and Vision Transformers (Dosovitskiy et al. 2020). 

However, major advancements in computer vision have been achieved primarily with one 
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particular DL architecture, the CNN.  They are similar to the artificial neural networks described 

above. The major difference is that CNN contains a three-dimensional arrangement of neurons 

instead of the standard two-dimensional array.  

 

Common CNN architectures generally comprise three main types of layers; convolutional, 

pooling, and fully connected (O’Shea and Nash 2015) (Figure 5). The convolutional layers are the 

core building blocks of the network that gives it its name. In these layers, a convolution process is 

applied on the receptive field of an input image using a filter to produce a feature map. The layer 

performs the computation by moving the filter across the receptive fields of an image, checking if 

a feature is present. The filter is then applied to an area of the image, and a dot product is calculated 

between the input pixels and the filter. The calculated value is then stored in the output feature 

map. The filter is then shifted according to its stride, and the process is repeated until the filter has 

swept across the entire image. The resulting output from the convolution operation is a two-

dimensional array called a feature map.  

Each value in the feature map is then typically passed through a rectified linear activation function 

(ReLU) to include the nonlinearity of the input dataset. The pooling layers are typically applied 

after the convolutional layer and perform dimensionality reduction to reduce the number of 

parameters in the input. Similar to the convolutional layer, the pooling operation also moves across 

the entire input, but it does not contain any weights. The filter applies an aggregation function 

within the receptive field, in order to obtain the output array. There are two main types of pooling 

which are the max and average pooling where the maximum and average values are taken 

respectively, to populate the output array (IBM, 2020). The pooling layer helps to reduce 

complexity, limit overfitting and improve the efficiency of the CNN (Gholamalinezhad and 

Khosravi, 2020).In the final fully connected layer, each node is connected directly to a node in the 

previous layer. Fully connected layers are normally found at the end of a CNN architecture and 

are generally used to perform classification tasks based on the features extracted through the 

previous layers and their corresponding filters. It leverages activation functions such as softmax 

or sigmoid to obtain its predictions (IBM, 2020).  

https://arxiv.org/search/cs?searchtype=author&query=Gholamalinezhad%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Khosravi%2C+H
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Deep neural networks, in the form of CNN networks with three or more layers, generally perform 

better than shallow networks. CNN architectures are capable of processing image data, and are 

designed to automatically and adaptively learn spatial hierarchies of features, from low- to high-

level patterns (Yamashita et al. 2018). Earlier layers focus on low-level features such as colors and 

edges. As the image data progresses through the CNN layers, it is able to recognize high-level 

complex features of the object until it is able to fully identify the object of interest (LeCun et al. 

2015).  

 

Figure 5. The basic architecture of a LeNet-5 convolutional neural network. Max-pool indicates 

the pooling layer and dense indicates the fully connected layer (LeCun et al. 1998). 

3.3 Applications of deep learning in electron microscopy 

 

In recent times, DL methods have been applied to electron microscopy (EM) image analysis with 

impressive results (Treder et al. 2022; von Chamier et al. 2021; Ede 2021). It has been shown to 

significantly outperform classical image processing methods in terms of accuracy, specificity, and 

sensitivity. DL has been successfully applied for image denoising, restoration, synthetic image 

generation, object detection, and semantic segmentation tasks (Ede 2021).  

 

EM images inherently suffer from noise. In recent times, denoising algorithms have been applied 

to these images in order to improve the image signal-to-noise ratio. These algorithms were able to 

learn from different types of input data such as paired low- and high-quality images (Buchholz et 

al. 2019; Vasudevan and Jesse 2019; Giannatou et al. 2019; Mohan et al. 2022), unpaired low- and 
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high-quality images (Wang et al. 2020), low-quality paired images (Lehtinen et al. 2018; Li et al. 

2022), and single noisy images for noise removal (Krull et al. 2019; Kniesel et al. 2022).  

 

Automated detection of structures in EM images will be able to improve and optimize the 

analytical workflow of researchers and practitioners. Single particle picking is a widely used 

application of DL in EM, with the development of tools such as DeepEM (Zhu et al. 2017), 

DeepPicker (Wang et al. 2016), FastParticlePicker (Nguyen et al. 2021), DRPNet (Nguyen et al. 

2021),  PickerOptimizer (Li et al. 2021) and DeepCryoPicker (Al-Azzawi et al. 2020). Apart from 

that, DL was also utilized for the automated detection of a variety of structures such as 

immunogold particles (Jerez et al. 2021), viral particles (Ito et al. 2018; Devan et al. 2019; Shaga 

Devan et al. 2021; Andriasyan et al. 2021; Matuszewski and Sintorn 2021) and nanoparticles 

(Güven and Oktay 2018; Faraz et al. 2022). 

 

DL requires a large amount of labelled training data for learning. However, manual labelling is 

extremely time consuming, expensive, requires expert knowledge, and prone to error (Northcutt 

et al. 2021). Recently, a few researchers have attempted generating synthetic EM images (Kharin 

2020; Shaga Devan et al. 2021; Cid-Mejás et al. 2021) and automated labeling of ground truth 

(Weber et al. 2018; Groschner et al. 2021). In terms of image restoration, efforts have been made 

to super-resolve noisy and blurry low-resolution EM images using single image super-resolution 

(SISR) (Suveer et al. 2019; de Haan et al. 2019), point scanning (Fang et al.2021) and deep residual 

attention networks (Wang et al. 2021). 

 

Segmentation of EM images is a common task in the biological field in order to perform 

quantification and analysis of structures. Deep learning-based semantic segmentation methods 

have been recently applied to EM images with great success. Semantic segmentation is the task of 

assigning a class label to every pixel in an image (Mo et al. 2022; Sehar and Naseem 2022). 

Applications of semantic segmentation in EM include the segmentation of neurons (Urakubo et al. 

2019; Khadangi et al. 2020), nuclei (Shaga Devan et al. 2021; Spiers et al. 2021), mitochondria 

(Xiao et al. 2018; Khadangi et al. 2020, 2021; Fischer et al. 2020; Franco-Barranco et al. 2021), 

extracellular vesicles (Gomez-de-Mariscal et al. 2021) and a variety of other structures (Couedic 

et al. 2020; Abdollahzadeh et al. 2021; George et al. 2021; Akers et al. 2021; Jacobs et al. 2022). 
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3.4 Deep learning challenges in biological electron microscopy  

 

While DL has demonstrated unparalleled success in many areas, several significant issues plague 

its application to biological EM data. One common challenge faced is the inherent lack of large-

scale labelled ground truth data for model training (Sapoval et al. 2022). The success of DL is 

highly dependent on the availability of a large amount of training data, commonly ranging from 

thousands to millions of training examples (Sarker, 2021). Datasets of this magnitude are rather 

scarce in EM. Apart from that, there are often severe discrepancies between training data 

distribution and real test-set distribution causing generalization issues.  

 

Training complex DL models usually requires extensive computational resources to achieve state-

of-the-art performance. However, these high-level resources are often not available in EM around 

the globe, making DL undesirable in various applications. Beyond data and computational 

complexity, recent demands for the explainability and interpretability are a bottleneck that hampers 

progress. DL models are generally “black-box”, which means their functions are too complicated 

to comprehend (Rudin 2019). Therefore, they are not easily explainable and interpretable to users. 

This is a critical issue in the biomedical domain because the question of why a DL model made a 

certain prediction needs to be addressed in order to evaluate its trustworthiness.  

 

Our work specifically focuses on addressing the lack of large-scale ground truth training data in 

biological EM. This work is intended to contribute to the existing body of work by introducing 

methods that can utilize a small amount of labelled ground truth training data for improving model 

learning capabilities, training efficiencies, generalization, and interpretability of biological EM 

deep learning models. 
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4. Summary of Contributions 

 

This thesis focuses on the application of deep learning (DL) methods to biological electron 

microscopy (EM). The proposed methods in our publications have been developed for the analysis 

and subsequent quantification of EM images, with a focus on automated analytical workflows. 

This work is intended to assist researchers and practitioners in the quantification of various 

biological ultrastructures. We have focused on the development of DL-based models that are able 

to work with small labelled ground truth training datasets as well as with limited computational 

resources.  

 

This thesis contributes to the existing body of knowledge in the following ways: First, it provides 

a fast and efficient method for the detection of human cytomegalovirus (HCMV) capsids in 

transmission electron microscopy (TEM) images by using transfer learning techniques [SD-1]. 

This enables the deep learning model to learn with a small amount of training data by leveraging 

transfer learning where the existent knowledge of networks pretrained with common every-day 

images was harnessed to be used for the detection of capsids. Second, it focuses on the generation 

of synthetic EM images as a means of data augmentation for increasing dataset size and diversity. 

It also introduces a method for the automatic labeling of the secondary envelopment stages of 

HCMV to serve as ground truth data. These two techniques are incorporated together in a DL 

framework for the automated detection of HCMV secondary capsid envelopment stages [SD-2]. 

The third contribution focuses on the semantic segmentation of various biological organelles in 

both TEM and SEM images using a weighted average-based ensemble model [SD-3]. 

 

The peer-reviewed journal publications that form the main contribution of this thesis are denoted 

as [SD-1], [SD-2] and [SD-3] and are presented as individual chapters (Chapter 5-7). In the 

following, we give a brief introduction to each publication as well as a brief summary of its content 

and contributions.  
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4.1 Detection of herpesvirus capsids in transmission electron microscopy images using 

transfer learning [SD-1] (Chapter 5) 

 

The Human betaherpesvirus 5, also known as human cytomegalovirus (HCMV), is a member of 

the viral family known as Herpesviridae or herpesviruses. Depending on the socioeconomic status 

of a country, HCMV infects between 50 and 100% of the adult population (Cannon et al. 2010). 

A major characteristic of HCMV is the ability to establish life-long latent infection. Generally, 

primary infection and subsequent reactivation rarely causes any health problems for healthy 

individuals. However, it can cause a life-threatening disease in immunocompromised individuals 

and severe sequelae in newborns as a result of infection during pregnancy (Forte et al. 2020; 

Jackson et al. 2021). Currently, there are no vaccines available for HCMV and antiviral drugs used, 

showed poor effectiveness (Andrei et al. 2009; Mercorelli et al. 2011). Therefore, a better 

understanding of the life cycle could lead to the development of antiviral agents for controlling 

virus transmissions.  

 

Quantitative analysis of HCMV capsids in TEM images has proven to be an essential step towards 

this process. Manual analysis is the de facto standard for these analyses, which is generally time-

consuming, labor intensive, prone to error, and requires expert knowledge. Therefore, automatic 

detection of HCMV nucleocapsids in TEM images could help biologists to perform large-scale 

quantitative studies of virion morphogenesis in an objective and time-efficient manner.  

 

In this work, we used DL techniques to develop an automated pipeline for the detection of HCMV 

nucleocapsids in TEM images. However, DL requires a large amount of labelled training for 

effective learning. The availability of such data is often scarce in biological electron microscopy 

as it is expensive and time-consuming to generate. In order to overcome this limitation, we 

leveraged transfer learning techniques to detect nucleocapsids in TEM images utilizing only a 

small labelled dataset for model training.  

 

The process of transfer learning involves utilizing convolutional neural network models that have 

been trained to perform a specific task, and adapting them to a related but different task by 

transferring knowledge (Weiss et al. 2016). In our study, we applied this approach to detect HCMV 

https://en.wikipedia.org/wiki/Herpesviridae
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nucleocapsids in TEM images by using CNN models that were pre-trained on the ImageNet 

dataset. This dataset consists of over 14 million images belonging to more than 21000 object 

classes (Deng et al. 2009). Specifically, we utilized pre-trained models including VGG16, 

ResNet50, and InceptionV3. 

 

VGG16 is a deep neural network that has 16 layers (Simonyan & Zisserman. 2015). It is a large 

network, with 138 million parameters, and was able to achieve an impressive accuracy of 92.7% 

in ImageNet. In fact, it was also one of the top performing models in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) 2014 competition (Russakovsky et al. 2015). VGG16 is 

similar to AlexNet in architecture (Krizhevsky et al. 2012), but the authors behind it found that by 

increasing the depth of the network to 16-19 weight layers and using small convolution filters, 

they were able to significantly improve its performance compared to previous configurations. The 

VGG16 network is made up of 13 convolutional layers and 3 fully connected layers. 

 

The concept of using deeper networks to improve accuracy by incorporating more layers was first 

introduced by the VGG authors. However, this approach can cause the vanishing gradient problem, 

which occurs when the model's weight cannot change due to an extremely low learning rate. To 

address this issue, the Residual Network architecture was developed by He et al. (2016). ResNet 

is short for Residual Network, and ResNet50 is a convolutional neural network with 50 layers, 

including 48 convolutional layers, one MaxPool layer, and one average pool layer, with 23 million 

parameters. ResNet is constructed by stacking residual blocks, which allows for the addition of 

more convolutional layers to a CNN without encountering the vanishing gradient problem by using 

skip connections. Skip connections bypass certain convolutional layers, transforming a 

conventional network into a residual network, substantially reducing training time while 

improving accuracy. ResNet is typically less complicated than VGG and has fewer filters.  

InceptionV3 is a CNN network which has 25 million parameters (Szegedy et al. 2016). Unlike 

previous architectures, Inception network uses wider networks that contain multiple inception 

modules. These modules extract features from different levels by performing 1x1, 3x3, and 5x5 

convolutions within the same module. The filters' output is stacked along channel dimensions and 
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passed to the subsequent layer of the network. In terms of the number of parameters and 

computational resources, InceptionV3 has proven to be efficient. 

We explored two transfer learning techniques: feature extractor and fine-tuning. In the feature 

extractor method, pre-trained CNNs were utilized with their original weights, but the classifier 

portion was removed. The remaining part of the CNNs was utilized as a fixed feature extractor for 

the training dataset. A new classifier with a fully connected (FC) layer with 1024 nodes and ReLU 

activation, as well as a second FC layer with a single node output activated by sigmoid function, 

was added to the end of each CNN. The features extracted by this method represent the last 

activation maps before the FC layers. The new classifiers were trained on the transmission electron 

microscopy training dataset for new classifications, with all the convolutional layers of the pre-

trained CNN models frozen (Shin et al. 2016). The models resulting from this technique are called 

VGG16-FE, InceptionV3-FE, and ResNet50-FE.  

 

To address the limited size of the training dataset (only 190 images) and the low similarity to the 

ImageNet dataset, an alternative approach was used; the fine-tuning technique. This involved 

removing the classifier portion of the pre-trained CNN models and replacing it with a custom 

classifier, as outlined in the feature extractor approach. Additionally, some of the higher-level 

convolutional layers of the CNN were unfrozen and re-trained using the transmission electron 

microscopy dataset, while the remaining convolutional layers were left frozen (Tajbakhsh et al. 

2016). Approximately 25% of the convolutional layers were re-trained, with the remaining 75% 

remaining frozen. For the VGG16 model, 3 out of 16 convolutional layers were re-trained, while 

for the ResNet50 model, 12 out of 50 layers were re-trained. Finally, for the InceptionV3 model, 

9 out of 48 layers were re-trained. These models were subsequently referred to as VGG16-FT, 

ResNet50-FT, and InceptionV3-FT respectively. 

 

It was observed that the fine-tuning technique outperformed the feature extractor technique for all 

the models, with ResNet50-FT emerging as the best performing model with InceptionV3-FT as 

the second best. In order to further investigate the effect of the fine-tuning approach in order to 

determine whether a better performance could be accomplished, we utilized a deep fine-tuning 

method were a higher number of convolutional layers than the ones mentioned above were 



Summary of Contributions 

 

25 

 

unfrozen and retrained. For this, we selected the InceptionV3-FT model and the convolutional 

layers were increasingly unfrozen and re-trained in a block wise manner. The reason InceptionV3 

was selected for deep fine-tuning despite ResNet50 exhibiting the best performance is because 

generally the smaller the number of learning parameters in a model, the better is its performance 

on a small dataset as overfitting is prevented. Therefore, generally ResNet50-FT would have given 

a good performance for deep fine-tuning as it had the lowest number of learning parameters (23 

million parameters) compared to InceptionV3 (24 million parameters). However, InceptionV3-FT 

performed the second best and the Inception-FE model performed the best out of all in the feature 

extractor method. Therefore, we were curious about its performance when deep fine-tuned and 

therefore this model was selected for further fine-tuning. It was observed that, as a higher number 

of convolutional layers were re-trained, the performance of the InceptionV3 model improved. 

However, this only worked up to a certain number of convolutional layers re-training. At a certain 

point, we observed that the results became worse as a higher number of convolutional layers were 

unfrozen. This indicates that there is a trade-off between the number of layers re-trained and the 

performance of the model.  

 

Our study provides proof-of-principle that transfer learning can be applied for the development of 

DL models that allow automatic detection of particles in EM images. We have also successfully 

shown that using transfer learning techniques, it becomes possible to obtain good performance 

with only a small dataset of labelled ground truth (190 images). With this we have developed the 

basis for future applications of transfer learning approaches for not only automatic detection but 

also for the categorization of viral capsids from TEM images. 

4.2 Improved automatic detection of herpesvirus secondary envelopment stages in electron 

microscopy by augmenting training data with synthetic labelled images generated by a 

generative adversarial network [SD-2] (Chapter 6) 

 

The virion of HCMV consists of a dsDNA filled capsid, a tegument layer, and a lipid bilayer as a 

viral envelope. The secondary envelopment process refers to the completion of virion 

morphogenesis in a virally regulated process, in which the capsids acquire their envelope. 

Currently, TEM is the gold standard for imaging secondary envelopment process and it has been 

proven crucial for HCMV morphogenesis studies (Read et al. 2019).  
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There are three stages of the secondary envelopment process: (a) capsids without contact to a 

bending membrane (naked capsids), (b) capsids in the process of being enwrapped by a membrane 

(budding capsids), and (c) capsids that are enclosed by the membrane envelope (enveloped 

capsids) (Read et al. 2019). Quantitative analysis of the capsids and the three envelopment stages 

require a large number of images to be manually analyzed which is rather tedious and time-

consuming. Therefore, the analysis of the HCMV secondary envelopment stages could greatly 

benefit from automation. In [SD-1], we presented the first step towards automatic quantification 

of the three stages of secondary envelopment in TEM images by showing that automatic detection 

of virus capsids, irrespective of their envelopment stage, is possible even with a small ground truth 

training dataset when a transfer learning approach is utilized. We now further extend this approach 

for the automated detection and classification of HCMV capsids into the three secondary 

envelopment stages.  

 

In this work, we introduced a new data augmentation method that is able to increase training 

dataset size, improve data diversity, and balance data classes. As high-quality labelled ground truth 

training data is scarce in the biological EM field, synthetic training data will be beneficial for 

model learning. A CNN based generative network was used to generate synthetic TEM images as 

a form of data augmentation to increase the number of ground truth training data for each capsid 

class.  

 

In 2014, Goodfellow et al. introduced Generative Adversarial Networks (GANs). GANs are a type 

of generative modelling approach that can learn patterns in input training data and create new 

synthetic data that appear realistic. The GAN is made up of two main parts: the generator and 

discriminator. The generator is a neural network that produces fake data, while the discriminator 

is another neural network that tries to differentiate between real and fake input data. The 

generator's aim is to deceive the discriminator and learn from more data to create synthetic outputs 

that look more realistic. 

The architecture of GAN is adversarial in nature, where the generator and discriminator work 

against each other with opposing objectives. The generator strives to produce data that looks 
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realistic, while the discriminator aims to effectively distinguish between real and fake data. This 

creates a competitive environment where both entities improve their abilities over time. The 

construction of GANs follows a minimax game approach, where the generator aims to minimize 

the loss function value (V) and the discriminator aims to maximize it. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧 (𝑧) [log 1 − 𝐷(𝐺(𝑍)))] 
The generator's output when it receives input noise z, the discriminator's probability that the 

original data x is real, and the discriminator's probability that a synthetic sample G(z) of data is 

real are denoted by G(z), D(x), and D(G(z)), respectively. The mean likelihood over all original 

data and synthetic data is represented by Ex and Ez, respectively. The discriminator (D) focuses on 

maximizing its likelihood to achieve the correct prediction (real or synthetic) during the 

classification of the input data, while the generator (G) focuses on generating synthetic data that 

is able to fool the discriminator, according to the loss function used during the training process.  

For synthetic data generation in this study, a particular type of GAN known as SinGAN (Shaham 

et al. 2019) was utilized. This generative model can capture the internal statistics of an image and 

is unconditional. The training samples are patches of a single image, and the SinGAN network 

captures the statistics of the image structures at different scales, including the global properties of 

the images, fine details, and textural information. To accomplish this, the SinGAN consists of a 

hierarchy of patch-based GANs, with each responsible for capturing the statistical distribution in 

the patch at different scales. The GANs have small receptive fields, preventing them from 

memorizing the entire image, and each generator produces a realistic image with respect to the 

patch distribution in the corresponding image using the adversarial approach. 

During the training of SinGAN, noise is injected at every level, starting from the coarsest to the 

finest scale. Each generator and discriminator have the same receptive field, which allows them to 

capture finer details as the generative process progresses. Once the GAN is trained, it is fixed and 

training moves to the next level to generate realistic-looking synthetic images. The training loss is 

a combination of adversarial and reconstruction loss. The adversarial loss penalizes for differences 

between the patch distribution of synthetic and generated images, while the reconstruction loss 

enables the existence of a specific set of noise maps that can create the original image. 
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Using an unconditional generative model, we were able to learn from only a single image to 

produce multiple synthetic images. In this work, a single image was used to generate 50 synthetic 

images. A total of 10 original images were used to generate 500 synthetic electron microscopy 

images. A self-labeling technique was also used in conjunction with the TEM synthetic images for 

fast and automated labelled ground truth generation for HCMV capsid envelopment stage 

detection.  

To train the CNN based Faster R-CNN detector (Ren et al. 2017) for detecting the HCMV capsid 

envelopment stages, synthetic images were generated and combined with the original training 

images. The Faster R-CNN was trained using real ground truth data (350 images) and synthetic 

images (500 images). It acts as an object detector, identifying the three envelopment stages. The 

Faster R-CNN consists of a region proposal network (RPN), a CNN backbone, an ROI pooling 

layer, and fully connected layers with two branches for classification and bounding box regression 

networks. The RPN generates region proposals, which reduces computational time and improves 

feature representation by allowing the region proposal stage to share layers with the subsequent 

detection stages. 

 

Two experiments were conducted where varying ratio of original image and synthetic images were 

fed into the detector as training data in order to understand the effect of synthetic data augmentation 

on model performance. In the first experiment, synthetic images were added in an incremental 

manner to original ground truth dataset for model training. In the second experiment, the reverse 

was performed, where original ground truth data were incrementally added to the synthetic image 

dataset for model training. Synthetic images were only utilized for training purposes while original 

images were used for both validation and testing.  A holdout set of test images were used for testing 

the performance of the detector. The average precision (AP) was used as the evaluation metric and 

indicates the average AP for all the three classes.  

 

These experiments were conducted to investigate the effect of synthetic images on the HCMV 

capsid detection model's prediction. In the first experiment, it was observed that training the model 

with Faster R-CNN model with only original 315 ground truth images gave a reasonable but a non-

satisfactory performance. However, the performance of the model increased linearly as synthetic 
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images were incrementally added to the training dataset.  In the second experiment, training the 

model with only 500 synthetic images resulted in extremely poor performance. However, when 

original ground truth images were incrementally added to the synthetic training dataset, the 

performance of the model also increased in a linear fashion. 

 

Based on these results, we can summarize that in situations where there are only small limited 

training datasets, data augmentation using synthetic image generation could be highly beneficial. 

Using a small purely original ground truth dataset, a reasonable performance was possible, 

however this was not satisfactory. The addition of synthetic images acted as a booster in order to 

improve the performance of the model. This is because, the Faster R-CNN was able to obtain 

additional low-level feature information from the added synthetic images thereby boosting model 

performance. We found that original ground truth data is highly important for model performance. 

Model trained with only synthetic images gave extremely poor performance. This indicates that 

the model was not able to learn useful discriminative features from them. The model was able to 

obtain high level feature information from original images and additional supplementary low-level 

feature information from the synthetic images for improved performance. Therefore, it can be 

deduced that original ground truth data constitute the fundament of the detection model and a high 

ratio of original ground truth images is the most crucial element for model performance.  

 

However, the addition of synthetic data can be effectively used as a data augmentation method to 

improve the model’s learning and generalization capabilities and in turn, increases its detection 

capability in situation with limited labeled training dataset. In a nutshell, we believe that our work 

speeds up the development of deep learning-based classification and detection applications as it 

removes the need for large data labeling efforts.  

4.3 Weighted average ensemble-based semantic segmentation in biological electron 

microscopy images [SD-3] (Chapter 7) 

 

Advancements in the field of EM have enabled the acquisition of large volumes of data. Biologists 

have routinely used segmentation methods to quantify the morphological parameters of organelles 

and cell structures in electron micrographs. However, manual segmentation of large EM image 
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datasets is time-consuming and prone to errors and bias. While there are many segmentation tools 

available, a significant amount of user interaction is required for corrections and quality control. 

Therefore, there is a demand for the development of accurate and efficient automated segmentation 

tools for the quantification of these images. 

We have previously utilized DL methods for the classification and detection of HCMV capsids 

and their secondary envelopment stages [SD-1] and [SD-2]. In this work, we extend the application 

of deep learning in biological EM toward the development of semantic segmentation models for 

biological ultrastructures. Inherent to DL, most of the currently available semantic segmentation 

methods require a large amount of labelled training data in order to perform and generalize well. 

However, manually labeling large amounts of data with pixel-wise accuracy is not feasible.  

To overcome this limitation, we have exploited the concept of ensemble-based deep learning to 

improve segmentation performance. Our proposed method utilizes a CNN-based weighted 

averaging ensemble approach that can learn complex discriminant features from a small labelled 

training dataset to segment biological structures in both TEM and SEM images. We were able to 

perform multiclass semantic segmentation of biological structures such as cytoplasm, nuclei, 

mitochondria, and chromosomes in the images with a very small amount of training images.  

To achieve multiclass segmentation of EM images, we used a weighted average ensemble model 

consisting of U-Nets (Ronneberger et al. 2015). Each U-Net was trained with a different pretrained 

network, and their predictions were combined through a weighted average technique. Our 

ensemble model comprised of five individual base-learners, all constructed using the popular U-

Net architecture widely used for semantic segmentation applications. This architecture has an 

encoder network that includes convolution blocks followed by maxpool downsampling, designed 

to encode the input image into feature representations at different levels of the U-Net. The decoder 

network projects discriminative features learnt by the encoder onto the pixel space to obtain 

classification. The decoder comprises of concatenation and upsampling followed by convolution 

operations. 

For this project, we replaced the standard encoder with pre-trained CNN networks that act as pixel 

classifiers. These networks were trained on ImageNet (Deng et al. 2009) and included ResNet34 

(He et al. 2016), InceptionV3 (Szegedy et al. 2015), VGG19 (Simonyan and Zisserman 2015), 
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SeResNet34 (Hu et al. 2019), and EfficientNet-B4 (Tan and Le 2020), resulting in five base-

learners. Each of these pre-trained networks has its own unique architecture, number of 

parameters, and model complexity. In order to address the vanishing gradient problem, we utilized 

skip connections in the U-net architecture to allow gradients to flow freely through the model. 

These skip connections were also used to concatenate the encoder's features with the same scale 

features of the decoder, compensating for any loss of spatial information during the downsampling 

process of the encoder. We made sure to use the appropriate number of layers in both the encoder 

and decoder to regain the input images' resolutions. To combine the varied architectures of the pre-

trained models with the decoder block of the U-Net, we used the Segmentations Models library 

(Iakubovskii 2019) with Tensorfow 2.2.0. Due to the differences in their architectures and model 

complexity, the five base-learner models have varying learning and generalization capabilities on 

the training data. 

 

Seven different electron microscopy image datasets were used to train five base-learners, and their 

performance based on the Jaccard Index and F1 score was carefully monitored. The three top-

performing models for each dataset were then chosen to be combined into a weighted average 

ensemble model. To create the ensemble model, a grid search was conducted to find the optimal 

weight combination of the base-learners in order to achieve the best possible accuracy in terms of 

evaluation metrics. Individual base-learner performance was used to select the weights, with larger 

weights indicating better-performing models. The optimal weight combination for the ensemble 

model was determined to be one that outperformed any individual base-learner and an ensemble 

that used equal weights (Liashchynskyi and Liashchynskyi 2019). The weighted sum was 

calculated by multiplying the optimized weight for each learner with the corresponding base-

learner's prediction and summing it for all learners. The final classifier output was determined by 

averaging the weighted sum to obtain the weighted average prediction. 

Our weighted average ensemble significantly outperformed the standard single convolutional 

neural network model approach yielding performance almost similar to expert labelled ground 

truth. Our approach was able to give better predictive performance since it produces a lower error 

rate and reduces variance. By combining multiple diverse learners, more information can be 

captured of the underlying structure which can significantly improve the accuracy of the 

prediction. In order to make our model interpretable, gradient-weighted class activation 
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mapping (Grad-CAM) visually demonstrates how the ensemble model achieved the segmentation 

prediction obtained in this work. Grad-CAM was able to show regions in an image that is important 

for the prediction of the various biological segmentation classes.  

While multiple machine learning based-ensemble approaches have been proposed in literature 

(Khadangi et al. 2021; Haberl et al. 2018; Ghosh et al. 2021; Baskaran et al. 2022; Yin et al. 2022), 

our work is one of the very first ones that have used this approach in biological electron microscopy 

focusing specifically on biological structures and multiple electron microscopy imaging 

modalities. In this work, we have combined multiple CNN networks with varying architectures, 

model complexities, learning parameters as well as learning and generalization capabilities.  We 

have analyzed the effect of these various combination of ensemble models on a variety of different 

biological structures for both transmission and scanning electron microscopy images.  We believe 

that this could help biologists in determining the best models for various multi-class classifications 

and segmentation tasks for a variety of biological structures. Taken together, this work leveraged 

ensemble-based learning for the semantic segmentation of EM images using a very small labelled 

training dataset. Therefore, we believe that our approach can lead to the rapid development of deep 

learning-based tools for biological EM.  
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5. Detection of herpesvirus capsids in transmission electron microscopy images 

using transfer learning [SD-1] 
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Abstract

The detailed analysis of secondary envelopment of the Human betaherpesvirus 5/human cytomegalovirus (HCMV) from 

transmission electron microscopy (TEM) images is an important step towards understanding the mechanisms underlying 

the formation of infectious virions. As a step towards a software-based quantification of different stages of HCMV virion 

morphogenesis in TEM, we developed a transfer learning approach based on convolutional neural networks (CNNs) that 

automatically detects HCMV nucleocapsids in TEM images. In contrast to existing image analysis techniques that require 

time-consuming manual definition of structural features, our method automatically learns discriminative features from 

raw images without the need for extensive pre-processing. For this a constantly growing TEM image database of HCMV 

infected cells was available which is unique regarding image quality and size in the terms of virological EM. From the two 

investigated types of transfer learning approaches, namely feature extraction and fine-tuning, the latter enabled us to suc-

cessfully detect HCMV nucleocapsids in TEM images. Our detection method has outperformed some of the existing image 

analysis methods based on discriminative textural indicators and radial density profiles for virus detection in TEM images. 

In summary, we could show that the method of transfer learning can be used for an automated detection of viral capsids in 

TEM images with high specificity using standard computers. This method is highly adaptable and in future could be easily 

extended to automatically detect and classify virions of other viruses and even distinguish different virion maturation stages.

Keywords Human cytomegalovirus · Human betaherpesvirus 5 · Secondary envelopment · Transfer learning · Artificial 

intelligence · Transmission electron microscopy · Automated image analysis

Introduction

The Human betaherpesvirus 5, also known as human cyto-

megalovirus (HCMV), is an important human pathogen that 

is distributed worldwide. Depending of the socioeconomic 

status of a country, 50–100% of the adult population are 

latent carriers of the virus. After primary infection, HCMV 

establishes a latent infection from which it can reactivate. 

While infection of healthy individuals is mostly asympto-

matic, HCMV can cause life-threatening disease in immu-

nosuppressed individuals and severe sequelae in newborns 

as result of infection during pregnancy. Currently, there is 

no licensed HCMV vaccine available and the currently used 

antiviral drugs show long-term toxicity, poor oral bioavail-

ability and can be overcome by the development of drug 

resistances (Andrei et al. 2009; Mercorelli et al. 2011). 

Therefore, a better understanding of the HCMV life cycle 

is an important step towards development of new antiviral 

agents that can control virus transmission.
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All members of the herpesvirus family are character-

ized by a linear double-stranded DNA genome packaged 

within an icosahedral capsid, a tegument layer and a host 

cell derived viral envelope (Mocarski et al. 2007). Pack-

aging of viral DNA into preformed capsids occurs in the 

nucleus, resulting in a nucleocapsid. The nucleocapsid needs 

to be translocated into the cytoplasm where it acquires its 

tegument layer and envelope in a process called secondary 

envelopment, resulting in the generation of infectious viri-

ons. HCMV secondary envelopment only occurs in a virally 

induced perinuclear region in the cytoplasm, the cytoplasmic 

viral assembly complex (cVAC) (Schauflinger et al. 2013). 

There partially tegumented capsids establish contact to cel-

lular vesicles and start budding into those. The vesicle mem-

brane then wraps around the tegumented capsid, resulting in 

the complete enveloped virion. The complete virion inside 

the vesicle is then transported towards the plasma membrane 

where it is released from the cell.

Quantitative analysis of secondary envelopment from 

transmission electron microscopy (TEM) images of the viral 

assembly complex has been proven essential to determine 

the role of viral proteins for this process (Cappadona et al. 

2015; Dietz et al. 2018; Schauflinger et al. 2011). Quanti-

fication of different stages of secondary envelopment can 

reveal defects in this process. It could be shown recently that 

the HCMV tegument protein pUL71 is required for efficient 

secondary envelopment because in its absence the majority 

of nucleocapsids at the cVAC have not finished the process 

(Schauflinger et al. 2011). While these quantitative analy-

ses are very informative, they are generally labor intensive, 

time consuming and prone to subjective decisions and thus 

require highly skilled personal. Therefore, an automatic 

detection of nucleocapsids in TEM images would be a mile-

stone towards a better applicability of quantitative studies of 

virion morphogenesis.

There are only few reports about the automatic detection 

of virus particles in TEM images. Detection of viral capsids 

in those studies has been performed mostly using computer-

aided detection techniques, which generally make use of 

feature extraction of color, shape and texture information 

in combination with machine learning classifiers. Methods 

such as radial density profile (Kylberg et al. 2012; Sintorn 

et al. 2004), linear deformation analysis (Ryner et al. 2006) 

and discriminative textural indicators were used to detect the 

viral particles in TEM images (Proença et al. 2013).

A major problem with viral capsids, however, is that 

they change their appearance during the maturation pro-

cess. In addition, their appearance in TEM images var-

ies considerably depending on their spatial projection, 

the sample preparation protocol and the settings used for 

image acquisition. Thus, the development of computer-

aided detection methods for accurate capsid detection 

requires a set of well-defined hand-crafted features, such 

as texture, contrast, size, gray level values and others. 

Proper characterization of these features is difficult as 

TEM images are often corrupted by noise, blurring and 

illumination issues. Apart from that, finding a robust set 

of features that ideally represents all the characteristics 

of the nucleocapsids is a challenging task that requires a 

high-level of specific knowledge.

Deep learning has the potential to overcome these limita-

tions. It is a subfield of the machine learning and artificial 

intelligence field. Convolutional neural network (CNN) is 

a type of deep learning method that eliminates the need to 

determine a set of features manually as it enables the auto-

matic acquisition of features from the objects of interest. It 

has produced state-of-the-art results in the field of computer 

vision and image classification (LeCun et al. 2015). The 

effectiveness of CNNs in the field of electron microscopy 

(EM) has already been demonstrated by a few studies.

CNNs have been used to detect feline calicivirus particles 

in TEM images (Ito et al. 2018) as well as secondary struc-

ture elements of proteins from 3D cryo-EM images (Li et al. 

2016). Automated segmentation methods based on CNNs 

were used to segment mitochondrial membranes and neu-

ral structures in TEM images (Roels et al. 2017). Zhu et al. 

(2017) developed an automated particle extraction method 

from raw cryo-EM micrographs in the absence of a tem-

plate. The efficiency of CNNs, however, relies heavily on the 

availability of a large amount of training data ranging from 

thousands to millions of images (Bengio 2012; LeCun et al. 

2015). A limited amount of training data leads to overfitting 

where the model learns the details but also the noise of the 

training data to the extent that it inhibits the performance 

of the model on a new set of data. A small training dataset 

may also lead to the model not being able to generalize the 

features learnt well, resulting in poor performance when the 

model makes predictions on unseen data (Bengio 2012).

In the field of EM, the availability of training data is, 

however, typically quite limited because it requires time-

consuming sample preparation, image acquisition, manual 

labelling and therefore specific expertise. One approach to 

overcome these issues of CNNs for automated image clas-

sification is the concept of transfer learning. Transfer learn-

ing is a technique in which neural networks are used that 

has proven to do well on a specific classification task (base 

task). What is learned from that task is then adapted to a 

separate but potentially related task (target task) (Yosinski 

et al. 2014). In our work, the base task is the classification of 

common natural world images, such as images of animals, 

vehicles or people and the target task is the detection of 

HCMV nucleocapsids in TEM images. This strategy utilizes 

the fact that many different datasets of images share impor-

tant characteristics and features which can be transferred 

between them. This allows building of powerful image clas-

sification systems using a small training dataset.
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In recent years, the transfer learning method has been 

widely used to detect and classify breast cancer (Ribli et al. 

2018), skin cancer (Esteva et al. 2017), lung diseases (Shin 

et al. 2016), retinal lesion (Lam et al. 2018), colonic polyps 

(Ribeiro et al. 2016), brain lesion (Ghafoorian et al. 2017) 

and coronary artery tissue (Abdolmanafi et al. 2017). Con-

cerning the field of EM, only a few studies have investigated 

the applicability of transfer learning for classification pur-

poses. Sousa et al. (2015) used a transfer learning framework 

based on stacked denoising autoencoder for the recognition 

of immunogold particles in TEM images. Transfer learning 

was also used for the automatic categorization and label-

ling of images obtained by scanning electron microscopy 

(Modarres et al. 2017).

In this work, we investigated the applicability of differ-

ent transfer learning methods for the automated detection of 

HCMV nucleocapsids in TEM images. We tested how well 

low-level features from a non-electron microscopy domain 

learned by the CNNs can be adapted to detect virus cap-

sids in TEM images. This was done by two transfer learning 

approaches which were using pre-trained CNN models as 

a feature extractor and then fine-tuning them. We initially 

shallow fine-tuned the CNN models and the best performing 

model was layer-wise deep-tuned to find out the amount of 

tuning necessary to obtain a good capsid detection accu-

racy. To validate the effectiveness of the transfer learning 

approach, we also built and trained a CNN without any fea-

ture transfer and compared its performance to our transfer 

learning models. As a result, we show that state-of-the-art 

pre-trained CNN models could be used without creating and 

training a deep CNN from scratch. This enables us to use the 

computational resources available in a standard EM labora-

tory environment. With this we have developed the basis for 

future applications of transfer learning approaches not only 

for the automatic detection but also the categorization of 

virus capsids from TEM images.

Materials and methods

TEM specimen preparation

TEM samples were prepared as previously described 

(Schauflinger et al. 2013; Villinger et al. 2014, 2015; Dietz 

et al. 2018). Briefly, human foreskin fibroblasts (HFFs) 

were maintained in minimal essential medium (Gibco, 

ThermoFisher Scientific Inc., Waltham, MA, USA) supple-

mented with 10% fetal calf serum (Biochrom AG, Berlin, 

Germany), 2 mM L-glutamine (PAA Laboratories GmbH, 

Pasching/Linz, Austria), 1% penicillin–streptomycin (PAA 

Laboratories) and 1% non-essential amino acids (Biochrom 

AG). HFFs were seeded on carbon-coated sapphire discs 

(Engineering Office M. Wohlwend GmbH, Sennwald, 

Switzerland). After attachment of the cells for 24 h, HFFs 

were infected with different recombinant versions of the 

HCMV bacterial artificial chromosome (BAC) clone TB40-

BAC4 (Sinzger et al. 2008) with a multiplicity of infection 

of 1 and incubated for 3 or 5 days at 37 °C and 5%  CO2. 

Infected cells on sapphire disks were prepared for TEM by 

high-pressure freezing, freeze substitution and Epon embed-

ding as described. Ultrathin sections were cut parallel to the 

sapphire disk and mounted on formvar and carbon-coated 

single slot grids. The sections were obtained from nine Epon 

blocks from six independent experiments.

Data acquisition and processing

Ultrathin sections were analyzed with a Jeol 1400 TEM 

(Jeol, Tokyo, Japan) at an accelerating voltage of 120 kV 

and the images were digitally recorded with a Veleta CCD 

camera (Olympus, Münster, Germany). The resolution of 

the TEM images ranges from a pixel size of 2.78 nm to a 

pixel size of 0.33 nm. The TEM images were 8-bit grayscale 

TIFF with a dimension of 2048 × 2048 pixels. A total of 190 

images were used for training and validation of the network 

and 21 images were set aside as an independent test set.

Naturally, EM images contain a large variety of different 

structures (Fig. 1) of which an algorithm would have to rec-

ognize the structure of interest. An issue with EM data very 

often is that the same structure appears differently in differ-

ent images. Therefore, we aimed to approach this with a con-

volutional neural network, where the algorithm self-learns 

characteristics of nucleocapsids from a training dataset. This 

approach is superior to manual definition of nucleocapsid 

features. To generate the training dataset, we manually anno-

tated nucleocapsids in our training TEM images.

First, 1623 HCMV nucleocapsids were manually labelled 

in 190 TEM images by annotating the capsid center. The 

annotated nucleocapsids comprised all the three categories 

of the secondary envelopment process (naked, budding 

and enveloped nucleocapsids). Based on the images with 

the annotated capsid centers, capsid patches with a size of 

128 × 128 pixels were extracted from the TEM images. The 

patches enclosed the entire capsid. To account for a wide 

variety of non-capsid regions which include structures such 

as endosomes and other cellular compartments also non-

capsid patches were extracted from the TEM images. The 

non-capsid patches were randomly extracted from the non-

annotated regions in the TEM images. These both types of 

capsid patches make up the two class labels in our work.

In result, the training data contained 1623 capsid patches 

(Fig. 2, left) and 1623 non-capsid patches (Fig. 2, right). 

An equal number of capsid and non-capsids patches were 

used to avoid bias towards the majority class during train-

ing. We further increased the size of the training dataset 

using data augmentation methods (Krizhevsky et al. 2012). 
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The augmentations performed on the patches were rotation 

(0°–180° in increment of 20°), shearing (factor 0.2), verti-

cal and horizontal flipping, vertical and horizontal shifting 

(factor 0.2), scaling (factor 0.2) and contrast limited adaptive 

histogram equalization. This resulted in a total of 55,182 

training patches.

CNN trained from scratch

We first created a CNN (CNN-TFS) that we trained from 

scratch (TFS) without transfer learning. The CNN-TFS con-

sisted of four layers and was based on the work of LeCun 

et al. (1998). The network architecture is depicted in Fig. 3. 

The network configurations for our CNN-TFS such as image 

resolution, network depth, filters’ size for each individual 

layer, and the batch size were determined experimentally 

using our training data to maximize the detection rate and to 

allow use of the available technical resources in an EM lab. 

Optimized results were achieved by setting the filter size for 

all the convolutional layers to 3 × 3 and the maximum pool-

ing size to 2 × 2. The patches were resized to 52 × 52 pixel 

images and used as the input of the first convolutional layer 

with 32 filters and a rectified linear units (ReLU) activation 

(Krizhevsky et al. 2012). This was followed by a max-pool-

ing layer. The second convolutional layer took the output of 

the first layer and filtered it with 32 filters. The third con-

volutional layer took the output of the previous layer and 

filtered it with 64 filters and the final convolutional layer 

filtered the previous layer output with 64 filters. The output 

from the convolutional layers was then flattened and fed into 

the fully connected (FC) layers. The first FC layer had 64 

output nodes and is activated by a ReLU. The second FC 

layer which was also the final output layer had a single node 

which then actually performed the classification into capsid 

or non-capsid using sigmoid activation.

According to Chollet (2017) and Yosinski et al. (2014), 

the filter activations retain most of the information present 

in the input image at the earlier convolutional layer, such as 

edge, color, texture or gradient features. Later layers extract 

higher level features that are very class-specific, meaning 

that as the image progresses through the later layers, the acti-

vations became continuously more abstract and less visually 

interpretable (Fig. 4). The layers started to encode higher 

level concepts such as the membrane layers and capsids. The 

Fig. 1  Examples for TEM images of HCMV-infected cells from our 

dataset illustrating the variety of capsid and non-capsid structures. 

Also note the variations in HCMV nucleocapsid appearance, contrast, 

magnification levels and noise that would make it difficult to define 

a good set of discriminative features for classification (bars 500 nm)
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later layers contain increasingly less information about the 

visual properties of the input image but increasingly more 

information related to the class of the image.

Transfer learning

We have used three popular pre-trained deep CNNs, which 

are VGG16 (Simonyan and Zisserman 2015), InceptionV3 

(Szegedy et al. 2016) and Residual Neural Networks 50 

(ResNet50) (He et al. 2016). These CNN models have been 

pre-trained on the ImageNet, which is a dataset that contains 

over 15 million labelled high-resolution images belonging to 

roughly over 22,000 categories (Deng et al. 2009). VGG16, 

InceptionV3 and ResNet50 have achieved state-of-the-art 

performance on the ImageNet challenge in 2014 and 2015 

(Russakovsky et al. 2015). We then transferred the features 

learned by these pre-trained networks from the ImageNet 

database to the task of capsid detection. In recent years, 

researches have shown that using pre-trained CNN models 

and applying it to other domains have yielded better per-

forming models compared to training a network from scratch 

(Shin et al. 2016).

In this work, we used two main transfer learning 

approaches. We first used the pre-trained CNNs as a fixed 

feature extractor and then additionally fine-tuned the pre-

trained CNNs in a layer-wise manner (Tajbakhsh et  al. 

2016). To determine whether these pre-trained models 

were good candidates for our transfer learning approach, 

Fig. 2  Typical capsid patches used as training data. (Left) Capsid patches including nucleocapsids belonging to the three maturation stages 

enveloped, budding and naked. (Right) Non-capsid patches with a wide variety in appearance (bar 100 nm)

Fig. 3  Schematic overview of the CNN-TFS model. Conv convolutional layer, FC fully connected, ReLU rectified linear units activation
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we initially performed a t-distributed stochastic neighbor 

embedding (t-SNE) on the features extracted from the pre-

trained CNNs (Fig. 5) (Van Der Maaten and Hinton 2008). 

t-SNE is a dimensionality reduction technique that is used to 

visualize high dimensional data to two or three dimensions.

CNN as a feature extractor

The CNNs pre-trained on ImageNet were taken with their 

weights, and then the last FC layer was removed. The 

remaining portion of the CNNs was used as a fixed fea-

ture extractor for our own dataset. For each CNN model, 

we added a FC layer with a global average pooling layer 

with 1024 nodes and with ReLU activation. We then added 

a second FC layer with a single node output activated by 

sigmoid function. The features extracted by this method are 

called ‘bottleneck features’. These bottleneck features rep-

resent the last activation maps before the FC layers in the 

pre-trained model. With the layers of the pre-trained model 

frozen, we then trained our FC network on those extracted 

Fig. 4  Visualizations of the feature maps of the CNN-TFS model. These feature maps show what the filter learned at every convolutional layer
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bottleneck features with our training data to classify our 

dataset (Shin et al. 2016). The reason for this was that when 

the layers of a CNN are frozen and initialized from a pre-

trained model, there is no need to back-propagate through 

them during training and they behave as fixed features with-

out changing on the new task (Yosinski et al. 2014). The 

resulting models were then used as feature extractors and 

are from hereby referred to as VGG16-FE, InceptionV3-FE 

and ResNet50-FE.

Fine‑tuning the CNN

In our work, the size of the dataset is limited as well as the 

data similarity to ImageNet is very low. Therefore, another 

approach was to fine-tune the weights of the networks. There 

is no specific method to fine-tune a network. However, the 

standard practice is to start from the last layer and then incre-

mentally include more layers in the update process until the 

desired performance is reached.

We initially shallow tuned all the three pre-trained mod-

els. We did this by first removing the last FC layer and 

adding our own FC network as described in our CNN as a 

feature extractor approach. We then re-trained some of the 

higher level convolutional layers of the network and froze 

the lower-level layers (Tajbakhsh et al. 2016). For this, we 

froze the initial k number layers of the pre-trained models 

and trained the remaining n–k layers again. The top layers 

were then customized to our TEM dataset. The small size 

of the dataset was compensated by keeping the initial layers 

pre-trained (which have been previously trained on the Ima-

geNet) and the weights for those layers were frozen.

The convolutional layers were re-trained using a block-

wise manner. For VGG16-FT, we re-trained only the last 

convolutional block of the VGG16 architecture as well as 

the FC layers. This model is referred to as VGG16-FT. 

For both the InceptionV3 and ResNet50 models, we re-

trained the final two convolutional blocks as well as the 

FC layers and these models are referred to as InceptionV3-

FT and ResNet50-FT, respectively. The InceptionV3-FT 

model was then used for deep fine-tuning to determine 

whether better performance can be accomplished. The 

deep fine-tuning was performed by increasing the number 

of convolutional layers that were used for re-training. The 

deep fine-tuned models are referred to as InceptionV3-

FT-2 (2 convolutional blocks retrained), InceptionV3-FT-3 

(3 convolutional blocks retrained), InceptionV3-FT-4 (4 

convolutional blocks retrained) and InceptionV3-FT-5 (5 

convolutional blocks retrained).

Hyperparameter settings

Adam optimization algorithm (Kingma and Ba 2015) was 

used to update the model parameters such as weights and 

bias values of the CNNs used in this work. The initial 

learning rate was set to 0.001. The stride was set as 1. 

We used a mini batch size of 16. To prevent our models 

from over-fitting, a dropout of 0.5 was used for all the 

models in this work to avoid that a layer sees twice the 

exact same pattern, thereby acting in a similar manner to 

data augmentation (Bengio 2012). All the models were 

trained for 100 epochs. The training was performed on a 

NVIDIA GeForce GTX 1060 3 GB GPU machine with 

Keras software on a Tensorflow backend. To avoid bias 

in training, we performed a five times fivefold stratified 

cross-validation (CV) to evaluate the models.

Fig. 5  t-SNE embedding of the features from the pre-trained models VGG16, ResNet50 and InceptionV3 into capsid (blue) and non-capsid 

(green) classes
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Capsid detection

We used a sliding window to detect the HCMV nucleocap-

sids in the TEM images. It is a rectangular region of fixed 

width and height that “slides” across an image in a left to 

right and top to bottom manner. For each of these windows, 

the ResNet50-FT model was applied to the window region 

to detect the nucleocapsids. When a window with a capsid is 

detected, the centroid coordinate of the window is saved. The 

obtained centroid coordinates are then used to plot the location 

of the nucleocapsids in the 21 test TEM images. We combine 

the sliding window with image pyramids, which is a multi-

scale representation of an image so that the CNN can detect 

the nucleocapsids at various scales and locations in the TEM 

images (Adelson et al. 1984). Two major parameters for the 

sliding window are the window size and step size. The window 

size indicates the size of the rectangular region of the window 

and the step size indicates how many pixels are skipped in both 

the x and y direction. In our work, the window size was set as 

52 × 52 pixels and the step size was set as 20 pixels.

Validation and evaluation of CNN performance

The performance of the feature extractor models and the fine-

tuned models was evaluated in comparison to the CNN-TFS. 

For this, we evaluated the CNNs using four widely used per-

formance measures: accuracy, recall, precision and F1 score. 

These measures were computed from the true positive (TP), 

false positive (FP), true negative (TN) and false negative (FN) 

results obtained. True positives are correctly identified nucle-

ocapsids, false positives are structures, which were detected as 

nucleocapsids but are not nucleocapsids and false negatives are 

nucleocapsids that were not detected as such.

The formulas for the performance measures are given 

below:

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

We also applied two existing image analysis techniques, 

the radial density profile (RDP) method (Kylberg et al. 

2012; Sintorn et al. 2004) and texture indicator (TI) method 

(Proença et al. 2013) to our TEM image dataset and com-

pared the results obtained to our work to validate the effec-

tiveness of our transfer learning methods.

Results and discussion

The model CNN-TFS which was generated without any 

transfer learning gave the poorest performance for all perfor-

mance measures (Table 1). This is not surprising as the high 

feature variability in TEM images requires deeper architec-

tures to obtain a full representation of features from the EM 

images. Training such a deep network from scratch is not 

feasible because it requires a large amount of annotated data 

as well as expensive computational and memory resources. 

Thus, this approach had its practical limitations. Therefore, 

we wanted to investigate the application of transfer learning 

techniques to our work. This is in line with the study by 

Yosinski et al. (2014) that stated that transferring features 

from a distance task may actually give a better performance 

than just using random features. The pre-trained models, 

InceptionV3, VGG16 and ResNet50 were used as our base 

for the transfer learning approach.

Before we conducted feature extraction from the pre-

trained models InceptionV3, VGG16 and ResNet50, we 

tested how high their potential for nucleocapsid detection is. 

For that we applied the t-SNE test. A good transfer learning 

model will have an embedding that will be visually separated 

better. As can be seen in Fig. 5, the blue capsid class cluster 

is well separated from the green non-capsid class cluster for 

all the three models. In none of the models, however, there is 

(3)Recall =
TP

TP + FN

(4)F1 score = 2 ×
precision × recall

precision + recall
.

Table 1  Performance measure 

of the models

The mean and standard deviation for all the measures are listed. The best performing model is highlighted 

in bold

Accuracy Recall Precision F1 score

CNN-TFS 0.8242 ± 0.0018 0.8142 ± 0.0040 0.8014 ± 0.01260 0.8077 ± 0.060

VGG16-FE 0.8304 ± 0.0022 0.8333 ± 0.0054 0.8169 ± 0.0085 0.8250 ± 0.0066

ResNet50-FE 0.8381 ± 0.0025 0.8026 ± 0.0038 0.8197 ± 0.0006 0.8833 ± 0.0010

InceptionV3-FE 0.8936 ± 0.0034 0.8901 ± 0.0068 0.8942 ± 0.0036 0.8921 ± 0.0047

VGG16-FT 0.9300 ± 0.0019 0.9218 ± 0.0011 0.9287 ± 0.0040 0.9252 ± 0.0017

ResNet50-FT 0.9544 ± 0.0046 0.9539 ± 0.0007 0.9505 ± 0.0022 0.9522 ± 0.0011

InceptionV3-FT 0.9474 ± 0.0035 0.9412 ± 0.0121 0.9387 ± 0.0032 0.9399 ± 0.0037
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perfect separation. Visually, InceptionV3 has the most effi-

cient separation between classes, followed byResNet50 and 

VGG16. This indicates that all the three pre-trained state-

of-the-art models are good candidates for transfer learning.

The selection of the transfer learning approach (fea-

ture extraction and fine-tuning) is dependent on the size of 

the dataset and its similarity to the original large dataset 

which the pre-trained model was trained upon (Tajbakhsh 

et al. 2016). Since it was not known which transfer learning 

approach and pre-trained CNN is most suitable for nucle-

ocapsid detection, we first used the three pre-trained models 

VGG16, ResNet50 and InceptionV3 as fixed feature extrac-

tors and then fine-tuned them with our TEM dataset. Finally, 

we compared the nucleocapsid detection performance of all 

models with the CNN-TFS with the four widely used per-

formance measures accuracy, recall, precision and F1 score 

(Table 1).

The fine-tuned models VGG16-FT, ResNet50-FT and 

InceptionV3-FT gave better results for all performance met-

rics compared to the feature extractor models VGG16-FE, 

InceptionV3-FE and ResNet50-FE (Table 1). From this, we 

can conclude that an efficient transfer of features could not 

be achieved by just re-training the FC layers alone, some 

of the convolutional layers need to be re-trained as well to 

obtain better performance. The reason for that is the very 

low similarity between the ImageNet database which the 

models were pre-trained with and our TEM image data-

set (Yosinski et al. 2014). However, the transfer learning 

approach was still able to learn features from the ImageNet 

database which could be applied for nucleocapsid detection. 

For example, features learned from images of the musical 

instrument gong and nematodes (roundworms) were use-

ful for our model to learn the appearance of the nucleocap-

sids and their membrane layer. The validation accuracy of 

VGG16-FE, VGG16-FT, InceptionV3-FT and ResNet50-FT 

stabilizes at an earlier point compared to the other models 

for 100 epochs trained (Fig. 6).

ResNet50-FT yielded the best performance among all the 

models. InceptionV3-FT also performed very well and the 

differences between the performances between them were 

minimal. Both, InceptionV3-FT and ResNet50-FT had low 

numbers of false negatives and false positives. In the context 

of HCMV nucleocapsid detection, achieving a low number 

of false negatives is highly desirable. False positives have to 

be tolerated as a comprehensive detection of nucleocapsids 

is important to fully analyze TEM images.

The number of trainable parameters for each and every 

model differs based on the architecture of the models. 

Table 2 shows the number of parameters trained for all 

the models in our work. The higher the number of trained 

parameters, the higher is the amount of fine-tuning per-

formed on the models to adapt them to our TEM image data-

set. However, as the structure of the convolutional layers 

and FC layers in the CNN-TFS, VGG16, InceptionV3 and 

ResNet50 differs greatly, the number of trained parameters 

is relative to the total number of parameters in each model.

The higher the number of parameters re-trained in 

a model, the better was the performance of the model 

(Tables 1, 2). The training time for the networks is depend-

ent on the complexity of the network as well as the type of 

computer and graphical processing unit (GPU) being used. 

Complex networks such as InceptionV3 and ResNet50 gen-

erally have larger training time compared to VGG16. Addi-

tionally, the training time also increases with the amount 

of layers re-trained, the dataset size and the extent of data 

augmentation performed.

The best performing network was the ResNet50-FT. This 

network has a different architecture compared to the standard 

CNN, VGG16 and InceptionV3 networks. Thus, setting up 

and training this model took a longer time compared to the 

other models. Setting up the neural network of ResNet50-FE, 

consumed about 4 human working hours, and 50,412 s com-

puter training time. Setting up the neural network ResNet50-

FT required about 6 human working hours and the computer 

training time was 56,173 s since a higher number of layers 

needed to be re-trained compared to the ResNet50-FE. The 

computer training time for the other networks is specified in 

Table 2. Computer training of the networks generated the 

models that were used for the detection of capsids in the test 

images which took about 64 s per image with the ResNet50-

FT model. The detection time is heavily influenced by the 

step size of the sliding window process. The step size for the 

sliding window in this work was 20 pixels. A smaller step 

Fig. 6  Graph showing the validation accuracy of all the models for 

100 epochs
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size would increase the detection time per image, whereas a 

larger step size would decrease the detection time per image. 

Setting up of the neural networks and training is a one-time 

process. Once the model is generated, it could be deployed 

as a stand-alone software for the detection of any amount of 

images with about 64 s detection time per image.

We additionally performed deep fine-tuning with a higher 

number of parameter re-training to investigate its impact 

on the network performance. We selected InceptionV3-FT 

for deep fine-tuning as its performance is almost similar to 

ResNet50 but its architecture is more easily interpretable 

compared to ResNet50. As the architecture of InceptionV3 

is structured in convolutional blocks, deep fine-tuning is per-

formed by block-wise re-training. Figure 7 shows the valida-

tion accuracy of the various deep fine-tuned InceptionV3-FT 

models for 100 epochs.

We observed that the validation accuracy improved when 

a higher number of convolutional blocks were re-trained. 

There seems to be a trade-off between the number of param-

eters re-trained and the amount of data available for training. 

Thus, while the accuracy of the models initially increased 

up to re-training four convolutional blocks, the performance 

started to degrade when five convolutional blocks were re-

trained. Re-training larger amounts of parameters with a 

small dataset could lead to degradation of performance. This 

is because, as the FC layers on top are randomly initial-

ized, very large weight updates would propagate through 

the network and effectively destroy the features previously 

learned. It was observed that the improvement in accuracy 

for deeper fine-tuning was rather minimal but the training 

time increased.

To validate the effectiveness of our transfer learning 

method, we compared the performance of InceptionV3-FT 

and ResNet50-FT to radial density profile (RDP) method 

(Kylberg et al. 2012; Sintorn et al. 2004) and texture indica-

tor (TI) method (Proença et al. 2013) on our dataset.

It can be seen that our method gave superior results for all 

performance measures compared to the RDP and TI method 

(Table 3). In contrast, CNN-TFS, VGG16-FE, ResNet50-FE 

performed worse than the RDP and TI method (Tables 1, 3). 

This proves that the fine-tuning approach of transfer learning 

is able to yield generally a better performance compared to 

existing image analysis techniques for viral capsid detection 

in TEM images.

As Resnet50-FT was the best performing model, we 

applied it for nucleocapsid detection in our test image 

dataset (Fig.  8). The test dataset was an independent 

dataset that was not used for training and validation. The 

model was successful in detecting nucleocapsids. There 

were a total of 366 nucleocapsids in the test images. The 

model detected 328 true positives, 38 false negatives and 

35 false positives. However, the false positives and false 

negatives resulted from black dots that looked similar to 

nucleocapsids, other imaging and preparation artifacts 

as well as nucleocapsids with a faint core and the low 

number of training data available (Fig. 9). The sliding 

window method is not the state-of-the-art technique for 

object detection. Thus, while the ResNet50-FT had a high 

Table 2  The total number 

of parameters, re-trained 

parameters, frozen parameter 

(un-trained) and training time 

in seconds for all the models is 

listed

Model Re-trained parameters Frozen parameters Total parameters Training time (s)

CNN-TFS 69,793 0 69,793 1890

VGG16-FE 2,097,665 14,714,688 16,812,353 9912

InceptionV3-FE 33,554,945 21,802,784 55,357,729 46,823

ResNet50-FE 524,801 23,587,712 24,112,513 50,412

VGG16-FT 9,177,089 7,635,264 16,812,353 12,480

InceptionV3-FT 34,361,823 13,734,106 55,357,729 54,418

ResNet50-FT 21,010,689 3,101,824 24,112,513 56,173

Fig. 7  Graph of validation accuracy for 100 epochs trained with 

InceptionV3 model. InceptionV3-FT-2 indicates two convolu-

tion blocks re-trained, InceptionV3-FT-3 indicates there convolu-

tion blocks re-trained, InceptionV3-FT-4 indicates four convolution 

blocks re-trained and InceptionV3-FT-5 indicates five convolution 

blocks re-trained
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Table 3  Comparison for the 

performance measures of 

existing image analysis and the 

here developed transfer learning 

methods

The values of the finally selected ResNet50-FT are shown in bold

Method Accuracy Recall Precision F1-score

TI 0.8657 ± 0.0013 0.8642 ± 0.0033 0.8656 ± 0.0010 0.8641 ± 0.0022

RDP 0.8328 ± 0.0090 0.8335 ± 0.0011 0.8382 ± 0.020 0.8324 ± 0.0015

ResNet50-FT 0.9544 ± 0.0046 0.9539 ± 0.0007 0.9505 ± 0.0022 0.9522 ± 0.0011

InceptionV3-FT 0.9474 ± 0.0035 0.9412 ± 0.0121 0.9387 ± 0.0032 0.9399 ± 0.0037

Fig. 8  Examples of test images showing nucleocapsids detected using the Resnet50-FT model. The green circles indicate true positives, the red 

indicate false positives and blue indicate false negatives (bars 1 µm)
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accuracy, its detection using the sliding window method 

is slightly lower. Other state-of-the-art methods such as 

Faster RCNN or YOLO may yield better detection rate 

compared to the sliding window. However, as the main aim 

of this work is to investigate the applicability of transfer 

learning for nucleocapsids, the scope of this work was 

focused towards the transfer learning techniques such as 

feature extraction and fine-tuning. The investigation of 

advanced object detection methods will be the scope of 

future work.

Our study provides the proof-of-principle that transfer 

learning can be applied for the generation of CNNs that 

allow automatic detection of objects in EM images. In this 

study, the CNNs were trained to specifically detect HCMV 

nucleocapsids in TEM images of high-pressure frozen, 

freeze substituted and Epon embedded samples. The object 

automatically detected by a CNN is determined by the type 

of training data regarding sample preparation and imag-

ing technique and obviously by the biological structure of 

interest annotated for training. Thus, it is possible to extend 

the presented approach to a variety of other structures (e.g., 

mitochondria or synaptic vesicles) originating from differ-

ent EM sample preparation protocols and imaging modali-

ties (e.g., scanning electron microscopy; SEM). For every 

individual task the CNN needs to be optimized and trained 

individually. However, the performance of the networks is 

dependent on the structural complexity and diversity of the 

objects being classified as well as the resolution and qual-

ity of the images used for training. VGG16, InceptionV3 

and ResNet50 were the networks used within the scope of 

this work. There are other transfer learning networks that 

are also available for use. While ResNet50-FT was the best 

performer for this work, for a different application, another 

network such as InceptionV3 or VGG16 might be more 

suitable.

Nevertheless, this work provides the basis for the genera-

tion of an automated pipeline for structure detection in EM 

images, not only for quantification but possibly also for data 

representation purposes (segmentation). This will cut down 

time for manual interaction with the data tremendously. 

Furthermore, this automated pipeline allows to analyze EM 

data in an efficient and, more importantly, reproducible way. 

This is even valuable for analysis of relatively small TEM 

datasets as used for routine phenotyping of HCMV mutants 

where for one mutant virus about 60 images of a total of 15 

cells are subjected to quantitative analysis to gain significant 

results (Cappadona et al. 2015). In line with this, compari-

son of results between different researchers and labs would 

become possible, given that they work with the same EM 

preparation and imaging techniques.

It is furthermore worth mentioning that the current devel-

opment of EM techniques aims at the automatic acquisition 

of large 3D datasets with a size of up to several terabytes 

(reviewed in Peddie and Collinson 2014). The most applied 

techniques for this purpose are automated serial section-

ing and block face SEM (e.g., Villinger et al. 2015). Our 

approach can be further developed to be applied to large 3D 

datasets produced by these methods.

Conclusion and future work

While deep learning methods have exhibited better clas-

sification and detection capability compared to traditional 

image processing methods, they generally require a large 

amount of training data with manual annotation to perform 

well. We have shown that using transfer learning techniques 

it is possible to obtain good results with a small training 

dataset. In this work, we applied transfer learning for the 

detection of HCMV nucleocapsids in TEM images. We 

Fig. 9  Some of the false positives (top row) and false negatives (bottom row) detected by the ResNet50-FT model in our test images (bar 

100 nm)
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compared the performance of a CNN that was trained from 

scratch with pre-trained CNN models as well as existing 

image analysis methods. It was observed that pre-trained 

CNN models performed significantly better than the CNN 

trained from scratch showing that features learned from the 

ImageNet database could be successfully transferred to the 

detection of viral capsids although the TEM images were 

extremely dissimilar to the ImageNet images. Furthermore, 

fine-tuning of the pre-trained models gave significantly bet-

ter performances compared to the feature extractor models 

indicating that re-training both the convolutional and the FC 

layers, is more beneficial than just re-training the FC layers. 

The fine-tuned models also performed better than the exist-

ing image analysis methods. Performing the classification 

of different capsid maturation stages with state-of-the-art 

detection methods would be the next step with this approach.
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Abstract

Detailed analysis of secondary envelopment of the herpesvirus human cytomegalovi-

rus (HCMV) by transmission electron microscopy (TEM) is crucial for understanding

the formation of infectious virions. Here, we present a convolutional neural network

(CNN) that automatically recognises cytoplasmic capsids and distinguishes between

three HCMV capsid envelopment stages in TEM images. 315 TEM images containing

2,610 expert-labelled capsids of the three classes were available for CNN training. To

overcome the limitation of small training datasets and thus poor CNN performance,

we used a deep learning method, the generative adversarial network (GAN), to auto-

matically increase our labelled training dataset with 500 synthetic images and thus to

9,192 labelled capsids. The synthetic TEM images were added to the ground truth

dataset to train the Faster R-CNN deep learning-based object detector. Training with

315 ground truth images yielded an average precision (AP) of 53.81% for detection,

whereas the addition of 500 synthetic training images increased the AP to 76.48%.

This shows that generation and additional use of synthetic labelled images for detec-

tor training is an inexpensive way to improve detector performance. This work com-

bines the gold standard of secondary envelopment research with state-of-the-art

deep learning technology to speed up automatic image analysis even when large

labelled training datasets are not available.

K E YWORD S

automatic object detection, convolutional neural network, deep learning, generative

adversarial network, HCMV, transmission electron microscopy

1 | INTRODUCTION

The virion of the human cytomegalovirus (HCMV), also known as the

human betaherpesvirus 5, consist of a dsDNA filled capsid, a tegument

layer and a lipid bilayer as viral envelope (Figure 1a). This lipid bilayer is

derived from host cell membranes and is acquired by the virus via bud-

ding into cytoplasmic vesicles. This process is referred to as secondary

envelopment (Mettenleiter, 2004). Several viral proteins are involved

in this process (Dietz, Villinger, Becker, Frick, & von Einem, 2018;

Mach et al., 2007; Smith, Kosuri, & Kerry, 2014) and there is growing

evidence that these viral proteins as well as cellular proteins and host

cell membranes form an intricate interaction network that drives the

secondary envelopment process (Kuan et al., 2016; Phillips, Cygnar,

Thomas, & Bresnahan, 2012; Seo & Britt, 2007).
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Electron microscopy (EM) is the only method that allows direct

visualisation of secondary envelopment processes and has been

proven crucial for understanding HCMV morphogenesis. From these

studies three major stages of secondary envelopment can be distin-

guished (Figure 1b): (a) capsids without contact to a bending mem-

brane (naked capsids), (b) capsids in the process of being enwrapped

by a membrane (budding capsids) and (c) capsids that are enclosed by

the membrane envelope (enveloped capsids) (Read, Schauflinger,

Nikolaenko, Walther, & von Einem, 2019; Schauflinger, Villinger,

Mertens, Walther, & von Einem, 2013). Commonly, transmission elec-

tron microscopy (TEM) studies of embedded cells in combination

with mutational analyses are performed to discover the factors

involved in regulating HCMV secondary envelopment (Chevillotte

et al., 2010; Kestler et al., 2013; Mach et al., 2007; Phillips &

Bresnahan, 2012; Read et al., 2019; Schauflinger et al., 2013; Seo &

Britt, 2007). To assess whether a mutation affects this process, quali-

tative TEM characterizations must be supported by quantitative ana-

lyses of capsids and their differentiation of the different

envelopment stages, including naked, budding and enveloped capsids

(Read et al., 2020; Schauflinger et al., 2013). As in all biological sys-

tems, high numbers of cells and capsids need to be involved in these

analyses. This is time-consuming and laborious and would greatly

benefit from automation.

Automatic object detection has revolutionised biomedical image

analysis over the past decade (Wainberg, Merico, Delong, &

Frey, 2018). The advantages of automatic object detection go beyond

the mere analysis of large datasets in a short time. The data can be

analysed independently of the availability and knowledge of a human

expert with automated detection, thus avoiding inter- and intra-

observer variations. It therefore allows data analysis in a consistent

manner at any place and time and even over long periods during

which human experts may lose concentration. Nowadays, deep learn-

ing techniques, particularly convolutional neural networks (CNNs), are

the most common way to perform automatic object detection. They

have already achieved remarkable success in many computer vision

related tasks, such as image classification, object detection and

semantic segmentation (LeCun, Bengio, & Hinton, 2015; Szegedy,

Vanhoucke, Ioffe, Shlens, & Wojna, 2015; Tang et al., 2019). The big-

gest advantage of CNNs is that they automatically extract and learn

high-level features from the input data, thereby eliminating the need

for complicated feature extraction that requires a high level of domain

expertise (Tajbakhsh et al., 2016). In other words, the network does

not need information about the characteristics and appearances of

the objects, instead, the network is fed with training data containing

images with labelled objects of interest and the network learns to dis-

tinguish them from other objects and from the image background.

F IGURE 1 TEM images of HCMV particles. (a) HCMV virion in the cytoplasm after budding into a host cell vesicle. (b) HCMV capsid

envelopment stages naked, budding and enveloped. Note the intra-class variations and inter-class similarities of the depicted capsids
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The major requirement for a successful object detection through

CNNs is the availability of large labelled training datasets. The larger

the training dataset, the better is the ability of the CNN to learn.

Therefore, CNNs do not perform well when trained with a limited

amount of training data (Tajbakhsh et al., 2016). The limited size of

labelled training data might be the reason that automatic object detec-

tion based on deep learning approaches are not yet routinely applied

in the field of biomedical EM of embedded samples. First, access to

large labelled EM datasets is often limited because the preparation of

biological samples for EM and the collection of high-quality EM

images is time consuming. Second, reliable labelling of EM data

requires specialised skills, experience and time. Third, the scientific

questions are often highly specialised and vary depending on the type

of structure of interest, sample preparation technique and imaging

modality. Another reason for the hesitation of biologists to develop

deep learning-based object detection tools might be that collabora-

tions with computer scientists are often not at hand and the opinion

prevails that establishing such collaborative projects might take longer

than performing the quantification by hand. However, the demand for

automatic data analysis tools is steadily increasing especially since the

development towards automatic image acquisition tools has started.

In a recent study we presented the first step towards automatic

quantification of the three stages of secondary envelopment in TEM

images of embedded samples. We showed that automatic detection

of virus capsids, irrespective of their envelopment stage (single-class

detection), is possible by deep learning based methods even with a

small TEM dataset when a transfer learning approach is used (Devan

et al., 2019). However, the use of this transfer learning approach in

the same manner is not suitable for classification of capsids into the

three capsid envelopment stages (multi-class detection) due to high

intra-class variabilities, inter-class similarities (Figure 1b), imbalance of

naked, budding and enveloped capsids in the training dataset and the

training dataset's insufficient size. A common technique to overcome

the limitation of small training datasets is to adopt classical data aug-

mentation techniques, such as geometric and intensity transforma-

tions of original images (Shorten & Khoshgoftaar, 2019). However,

those augmented images intrinsically resemble the original ones, lead-

ing to limited learning abilities of the CNN that would not be suffi-

cient to detect the three capsid classes (Shorten &

Khoshgoftaar, 2019). Therefore, we applied image synthesis tech-

niques to generate realistic new images that are similar to the real

image distribution but with varied object configurations.

In this context, the generative adversarial network (GAN), a type

of generative models that has excellently performed in general com-

puter vision tasks (Goodfellow et al., 2014), was used to generate new

synthetic images. Generative modelling is an unsupervised machine

learning task that involves automatic learning of patterns from input

data in a way that the model can automatically generate plausible

images resembling the input images. A GAN usually includes a genera-

tor and a discriminator network, which are two independent neural

networks (Figure 2). The generator network takes a random noise vec-

tor as input and generates synthetic images, which are then fed to the

discriminator network. The discriminator uses the real and generated

images to determine whether the input image is a real image or a gen-

erated one. Every time the discriminator notices a difference between

the real and generated images, the generator slightly adjusts its

parameters to reduce these differences. If the synthetic images can-

not be distinguished anymore from the real image by the discrimina-

tor, it is given out as new synthetic image.

GAN and its variations were recently proposed for generating high

quality realistic looking natural images (Arjovsky, Chintala, &

Bottou, 2017; Karras, Aila, Laine, & Lehtinen, 2018; Radford, Metz, &

Chintala, 2016; Shaham et al., 2019). Recently, GANs have demon-

strated promising results with biological data such as X-ray image syn-

thesis (Galbusera et al., 2018), MRI to CT image translation (Nie

et al., 2017), brain MRI image (Dar et al., 2018; Kazuhiro et al., 2018;

Sanchez & Vilaplana, 2018), retinal image synthesis (Costa et al., 2017;

Yu et al., 2019; Zhao, Li, Maurer-Stroh, & Cheng, 2018), skin lesion

image synthesis (Bissoto, Perez, Valle, & Avila, 2018) and synthesis of

fluorescence microscopy images of cells (Baniukiewicz, Lutton, Collier, &

Bretschneider, 2019; Osokin, Chessel, Salas, & Vaggi, 2017). In the field

of EM, Han, Murphy, and Ramanan (2018) produced realistic synthetic

EM images in which the positions of cell membranes and mitochondria

have been automatically labelled using GAN. Apart from synthetic

image generation, GAN has been already used in the EM field for den-

oising (Su, Zhang, Schawinski, Zhang, & Cianfrocco, 2018) and resolu-

tion enhancement (de Haan, Ballard, Rivenson, Wu, & Ozcan, 2019).

In this study, we focused on the development of automatic detec-

tion of three different secondary envelopment stages of cytoplasmic

HCMV capsids in TEM images. The limited availability of a large

labelled dataset prompted us to explore the generation of synthetic

labelled TEM images by a GAN. We applied GAN to generate syn-

thetic TEM images containing the three labelled capsid classes that

resemble the original image. We then used a deep learning-based

F IGURE 2 A generic GAN model

architecture consists of a generator

network, which generates images using a

noise input, and a discriminator network,

which discriminates between the real and

generated images. The discriminator uses

both the real and generated images to

generate realistic synthetic images
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object detection model, the Faster R-CNN, for capsid detection. The

augmentation of the CNN training dataset by these synthetic images

substantially improved the detection performance. Taken together,

we developed an end-to-end CNN approach for automatic detection

of three different secondary envelopment stages of HCMV capsids in

TEM images of embedded cells.

2 | RESULTS

2.1 | Generation of synthetic labelled TEM images

Data labelling to generate ground truth data for training of CNN is

usually the most time-consuming and tedious part of the deep

learning process. We thought to overcome this hurdle by creating

synthetic data that is already labelled. The synthetic TEM images

should contain HCMV capsids from the three secondary envelop-

ment stages. By using the SinGAN technique we generated

500 labelled synthetic TEM images with a vast variety in appearance

from only 10 single ground truth labelled images (Example in

Figure 3). Generation of these images took 10 hr on a Nvidia

GeForce GTX 1060 3GB GPU. The 10 ground truth images con-

tained expert-labelled capsids of the three capsid classes naked,

budding and enveloped. The synthetically generated images shared

some characteristics of the ground truth images, such as a realistic

TEM image appearance or the presence of similar structures, but

contained minor differences in each of the generated training

images, making them unique (Figure S2).

After extraction of the bounding box coordinates from the

labelled images, these coordinates and the unlabeled synthetic images

were used as training images for the Faster R-CNN detector. An

example of an ground truth unlabeled TEM image with one of the

50 corresponding labelled synthetic images and the same synthetic

image after removal of the labels is shown in Figure 4. The generation

F IGURE 3 One of ten labeled ground truth TEM images showing

the three classes of HCMV capsids that was used as input for GAN

for generation of synthetic images; labels annotated by human expert

in LabelImg were substituted by color-coded bounding boxes

corresponding to the three capsid classes

F IGURE 4 Example of a labeled image synthetically generated from a ground truth TEM image. (A) This images is shown without labels for

better visibility of structures. (B) Labeled synthetic image generated by GAN. (C) Synthetic image with the labels removed is used as training

image for the Faster R-CNN detector together with the bounding box coordinates of the labels

4 of 13 SHAGA DEVAN ET AL.
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of 500 synthetic images by SinGAN increased the number of capsids

for Faster R-CNN detector training from a total of 2,610 (naked:

767, budding: 1,508, enveloped: 335) to 9,192 capsids (352.2%;

naked: 4,031, budding: 3,644, enveloped: 1,517, Table 1).

2.2 | Evaluation of automatic HCMV capsid class

detection

To evaluate the impact of synthetic images generated by SinGAN on

the performance of our secondary envelopment stage detector, we

added the 500 synthetic images to the training dataset to train the

Faster R-CNN detector. The training time for the complete dataset of

both ground truth and synthetic images was 10 hr on a Nvidia

GeForce GTX 1060 3GB GPU. Then, the trained model was used for

the detection of capsids in the 35 validation images. The time of

detection of a single validation image was 15 seconds. Thus, analysis

of all validation images was finished after approximately 9 min.

Figure S3 shows example validation images comparing expert detec-

tion and automatic detection after training with both truth and syn-

thetic images. In addition, the 35 validation images were analysed

with capsid detection models that were trained with only ground truth

and only synthetic images, respectively.

Figures 5 and S4 show two representative validation images after

detection by an expert and automatic detection by our Faster R-CNN

model after training with only synthetic (Syn), only ground truth

(Gt) and ground truth and synthetic (Gt+Syn) images. The Syn-trained

model showed a poor detection performance as most capsids in the

validation images were not detected (Figures 5b and S4b, Table 2),

indicating that the Faster R-CNN model is not able to learn well when

only synthetic images are supplied.

The Gt-trained model detected more capsids in the validation

images, however, detection resulted in substantial numbers of

incorrect and missed detections as well as lower confidence scores

for individual capsids (Figures 5c and S4c, Table 2). The model was

able to correctly identify naked capsids but showed weaknesses in

identifying budding and enveloped capsids.

The Gt+Syn-trained model showed superior performance com-

pared to the other two models (Figures 5d and S4d). The Gt+Syn-

trained model detected most of the HCMV capsid envelopment clas-

ses similarly to the expert-labelled ground truth images (Figures 5a, S3

and S4a), resulting in a high number of true positive detections as well

as high confidence scores (Table 2). Budding capsids contributed to

the high amounts of false negatives and false positives while naked

capsids showed the lowest number of false negatives and false posi-

tives. This might be explainable by the intra-class variability which is

higher for budding capsids compared to naked and enveloped capsids

(Figure 1b). In a few cases, automatic detection failed to detect indi-

vidual capsids, especially when there were many capsids located close

to each other, when the capsid core appeared in another grey value

than black, as it is the case for capsids that are not filled with DNA, or

when the capsid structures were low on contrast. However, the Gt

+Syn-trained model performed well even on images with preparation

artefacts (Figure 5a, white areas) and detected capsids that were not

labelled by the expert. Most interestingly, the model succeeded in dis-

criminating nuclear and cytoplasmic capsids although they have a sim-

ilar appearance (Figure S4). The confidence scores for all capsid

classes were similar (naked: 52–99%; budding: 50–99%; enveloped:

55–99%) indicating that the model was not biased towards any spe-

cific capsid class (Figures 5, S3 and S4). In conclusion, the performance

of object detection improved by augmentation of the training dataset

by synthetic images.

To further evaluate how the performance of the object detection

model increases by adding synthetic images to the training data, we

conducted two experiments. In the first experiment we trained the

detector model with the available 315 original images as ground truth

TABLE 2 Numbers of true positive,

false negative and false positive capsids

detected in the two example images in

Figure 5 and Figure S4 for differently

trained models

Validation image in figure

Model

Number of

True positives False negatives False positives

6 Gt 18 14 0

Syn 1 20 2

Gt+Syn 30 6 1

S4 Gt 13 4 1

Syn 6 25 1

Gt+Syn 22 1 1

TABLE 1 Details of the dataset for

training the Faster R-CNN detector

including ground truth and synthetic

images

Ground truth images Synthetic images Total images

Number of images 315 500 815

Number of capsids 2,610 6,582 9,192

Naked 767 3,264 4,031

Budding 1,508 2,136 3,644

Enveloped 335 1,182 1,517
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images and called this the baseline model. Then, we gradually added

100 randomly selected synthetic images to the training dataset and

trained the detector model again. Figure 6a shows the performance

(AP0.50 and AP0.75) of the HCMV capsid class detection. The baseline

model achieved 53.81% for AP0.50 and 43.53% for AP0.75. As

expected, addition of increasing numbers of synthetic images gradu-

ally improved the performance of the HCMV capsid detector. For the

complete dataset comprising of 315 ground truth images and 500 syn-

thetic images, we managed to achieve 76.48% for AP0.50 and 70.01%

for AP0.75, respectively. Adding more synthetic images achieved

higher detection rates.

In the second experiment we kept the number of synthetic

images constant at 500. Our baseline model was now the model that

was only trained with 500 synthetic images. We then incrementally

F IGURE 5 Validation image after (A) manual and (BD) automatic capsid detection by Faster R-CNN model trained with different training

datasets for comparison of detection efficiencies. Confidence scores are shown for each bounding box. Detection by (B) model trained with only

synthetic images, (C) model trained with only ground truth images and (D) model trained with both, ground truth and synthetic images. N: naked,

B: budding, E: enveloped

6 of 13 SHAGA DEVAN ET AL.

 1
4
6
2
5
8
2
2
, 2

0
2
1
, 2

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cm

i.1
3
2
8
0
 b

y
 K

IZ
 d

er U
n
iv

ersitat U
lm

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

5
/1

0
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



added ground truth images to the training dataset in steps of

35 images until 315. The baseline model yielded very low detection

rates for virus capsids with 6.10% for AP0.50 and 2.30% for AP0.75

(Figure 6b). By contrast, adding 35 ground truth images increased the

AP0.50 and AP0.75 to 55.57 and 14.17%, respectively. While AP0.50

increased rapidly with just the addition of 35 ground truth images,

AP0.75 increased to a reasonable value (above 50%) only after the

addition of 175 ground truth images to the training dataset. This

experiment shows that the addition of increasing numbers of ground

truth images to the training dataset of 500 synthetic images gradually

improves the HCMV capsid detector performance.

2.3 | DISCUSSION

The field of biological EM often requires quantification to obtain

meaningful results. This is usually done manually and therefore time

consuming. Thus, quantification tasks in biological EM analyses would

greatly benefit from automation. The first step towards this goal is the

development of a model for automatic object detection in biological

EM images. The state-of-the-art approach for this is machine learning.

However, application of machine learning techniques is often stalled

by the requirement of large labelled training datasets, which are usu-

ally not easily available in such specialised fields such as biological

EM. In this study, we demonstrate that the generation of synthetic

labelled data by using GAN technology and their addition to detector

network training datasets can greatly improve performance of detec-

tion. We show the potential of this approach to train a CNN that

automatically detects three classes of cytoplasmic HCMV capsids in

TEM images of high-pressure frozen, freeze substituted and plastic

embedded specimens.

We used the SinGAN architecture to generate labelled synthetic

images, instead of classical image synthesis GANs, such as Conditional

GAN (Mirza & Osindero, 2014) and Deep Convolutional GAN

(DCGAN) (Radford et al., 2016). The incentive for this was that the

SinGAN architecture is able to generate multiple synthetic images

from a single original image while classical image synthesis GANs

require large number of training data for image generation. Impor-

tantly, SinGAN generates synthetic images that maintain the global

structure and the fine textures of the individual original images, while

creating significant structural variability. In addition to this, the high

degree of natural diversity among the 10 original ground truth TEM

images that were used for synthetic image generation increased the

variability to the training dataset. Thus, our SinGAN model learns from

highly variable ground truth images and generates synthetic images

that are representative of the diverse nature of the ground truth

dataset. This is especially important for our approach of secondary

envelopment stage classification because the different stages are

defined by complex morphological differences (Read et al., 2019;

Schauflinger et al., 2013). Preliminary training of a detector model per-

formed before synthetic data was available within this project indi-

cated that extensive geometric data augmentation techniques did not

help to improve detection performance (data not shown). Those aug-

mented images intrinsically resemble the original ones, leading to lim-

ited learning abilities of the CNN. Thus, extensive geometric data

augmentation techniques were not used for training of the detector

model. Our detector model was able to learn well with just GAN-

based augmentation. This enhanced the model's generalisation
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F IGURE 6 Impact of ground truth and synthetic images on performance of the Faster R-CNN network detector. (A) Experiment 1: Model was

trained with 315 ground truth (Gt) images (baseline model) or with 315 ground truth images plus the indicated numbers of additional synthetic

images (Syn) generated by SinGAN. (B) Experiment 2: Model was trained with 500 synthetic images (baseline model) or with 500 synthetic images

plus indicated numbers of ground truth images. For each training outcome, AP0.50 and AP0.75 values are given
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capability significantly, forming an important base for future develop-

ment of the model for other EM related tasks, such as capsid detec-

tion in chemically fixed samples, detection of other viruses or cell

organelles. Another field of application are viruses imaged by other

EM techniques, especially 3D approaches (Risco et al., 2014; Romero-

Brey & Bartenschlager, 2015), such as scanning electron microscopy

(SEM) from block face (Kantor, Grant, Balaraman, White, &

Franz, 2018) or array (Kataoka et al., 2019) tomography, or scanning

transmission electron microscopy (STEM) tomography data (Read

et al., 2019). These tomography approaches are mostly automated

and produce large datasets in a short time. Analysis of this data by

automatic object detection is a highly intuitive application of the here

described method.

By using the here described approach we obtained reasonable

capsid detection results with just a small dataset of ground truth

labelled TEM images (Figure 6a). Most capsids are correctly detected

and in some cases the model even outperforms the human expert by

detecting capsids that were missed in the ground truth expert label-

ling. We were also pleased to realise that nuclear capsids in the

images were not detected by the model, which means that when the

model is used in the next development phase for automatic quantifi-

cations, the presence of nuclear capsids in TEM images will not influ-

ence the results of cytoplasmic capsids. We do not suspect that the

model distinguishes nuclear from cytoplasmic capsids based on the

different background texture that is found between nucleoplasm and

cytoplasm, but rather that the model is able to detect the fine differ-

ences between the capsid appearance itself. The fact that also cap-

sids in images with sample preparation artefacts (e.g., knife marks,

wrinkles or poor resin infiltration causing holes, see Figure S3) were

detected unequivocally demonstrates the robustness of the

approach. However, detection performance could further be

optimised in the future. For instance, our model was not successful in

detecting every capsid for example, in dense clusters or that showed

a less electron dense structure than the capsids shown in Figure 1.

One reason for this could be that capsids are small (bounding box

area of 24 pixel2) and many deep learning-based object detection

models do not work well on very small objects, for example, objects

of less than 32 pixel2 (Tong, Wu, & Zhou, 2020). CNNs generally

have several convolutional layers followed by a pooling layer. Most

object detection networks use these layers, in which the resolution

of input images is reduced as it progresses through the layers.

Accordingly, small object features that are extracted at the very first

layers may be lost in the middle of the network and not used for

detection. Despite this limitation, our model has been able to give

very good performance in detecting capsids. The automatic detection

of small objects could either be optimised when future images are

recorded in slightly higher magnifications or by modifying the

network.

When we evaluated the impact of synthetic images for training,

we observed that the addition of the synthetic images to the ground

truth dataset resulted in a major improvement in the Faster R-CNN

model's performance (Figures 5, 6a and S4), that resembled the per-

formance of the human expert. The more synthetic images where

added, the more AP0.50 and AP0.75 values increased. This suggests

that the performance of the model is not yet saturated and may fur-

ther increase with the addition of more than 500 synthetic images.

This is underlined by the basic principle of deep learning technology

stating that the larger the training dataset used for CNN model train-

ing, the better will be the model performance (Shorten &

Khoshgoftaar, 2019). In this study, we used only 500 synthetic images

to show that a limited number of synthetic images can already greatly

improve the model's performance. Here we show that our model is

able to learn how to classify HCMV capsids from synthetic images

and that it generalised well on our validation images. Our model was

able to return similar confidence score ranges for all the three capsid

classes. This indicates that the model does not exhibit any bias

towards a specific capsid class.

We furthermore observed that the model performed very poorly

with just synthetic images (Syn) as training dataset (Figure 6b). How-

ever, the performance of the model increased already with just the

addition of a small number of ground truth images. A good value of

AP0.75 (above 50%) was only obtained after the addition of a larger

number of ground truth data compared to AP0.50. This is because,

after the addition of 35 ground truth training images, the capsids with

an IoU overlap of 50% could be detected and classified, however,

since AP0.75 required an overlap of 75%, a larger number of ground

truth images is needed to train the model to detect and classify cap-

sids at a higher cut-off value.

In the Gt+Syn-trained model, information learned from both syn-

thetic and ground truth capsids contributed to its performance. These

were 9,192 capsids in 815 images (Table 1). Thus, we can predict that

similarly good detection could be reached with only ground truth cap-

sids (without generation and addition of synthetic capsids) if a similar

number of capsids were used for training (approximately 9,000 cap-

sids with ideally 3,000 for each capsid class). For this, several hundred

additional TEM images need to be recorded and manually labelled. As

the availability of labelled images is scarce in most biological fields,

addition of synthetic images to the training dataset considerably

speeds up the development of deep learning-based capsid detection

model.

Taken together, in this work we explored the possibility of gener-

ating synthetic labelled TEM images using GAN. We were able to

obtain good quality realistic labelled images using just 10 ground truth

images. We demonstrated that these synthetically generated images

can be used to enlarge a training dataset and therefore improve the

learning and generalisation capability of the deep learning model.

While there are a few techniques published for synthetic image gener-

ation (Mirza & Osindero, 2014; Radford et al., 2016; Shaham et al.,

2019), to our knowledge, generation of already labelled synthetic

images is a novel approach in the biological EM field. Generation of

synthetic images will be highly useful in applications with limited data

availability, such as studies that involve specialised imaging data. Our

method could be further adopted for the detection of various other

structures in the field of biological image analysis, such as nuclei and

mitochondria, and for other types of microscopy, including 3D elec-

tron microscopy.
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2.4 | EXPERIMENTAL PROCEDURES

2.4.1 | EM specimen preparation and image

acquisition

EM samples were prepared as previously described by Dietz

et al. (2018). Briefly, human foreskin fibroblasts (HFFs) were used

before passage 23 and maintained in minimal essential medium

(Gibco, ThermoFisher Scientific Inc., Waltham, MA, USA) sup-

plemented with 10% fetal calf serum (Biochrom AG, Berlin, Germany),

2 mM L-glutamine (PAA Laboratories GmbH, Pasching/Linz, Austria),

1% penicillin–streptomycin (PAA Laboratories) and 1% non-essential

amino acids (Biochrom AG). For TEM experiments, HFFs were seeded

on carbon coated sapphire discs (Engineering Office M. Wohlwend

GmbH, Sennwald, Switzerland). After attachment of the cells for 24 hr

HFFs were infected with different recombinant versions of the HCMV

bacterial artificial chromosome (BAC) clone TB40-BAC4 (Sinzger,

Digel, & Jahn, 2008) with a multiplicity of infection of 1 and incubated

for three or 5 days at 37�C and 5% CO2 (Schauflinger et al., 2013;

Villinger, Neusser, Kranz, Walther, & Mertens, 2015). Infected cells on

sapphire disks were prepared for TEM by high pressure freezing and

freeze substitution as described in Villinger et al. (2014). Ultrathin sec-

tions (75–80 nm) were cut parallel to the sapphire disk and mounted

on formvar and carbon coated single slot grids. Sections were

analysed with a Jeol 1400 TEM (Jeol, Tokyo, Japan) at an accelerating

voltage of 120 kV, and the images were digitally recorded with a

Veleta camera (Olympus, Münster, Germany). The magnification of

the TEM images ranged from 25,000× with a pixel size of 2.78 nm to

120,000× with a pixel size of 0.57 nm. A total of 350 TEM images

were acquired. The TEM images were 8-bit grayscale TIFF with a

dimension of 2048 × 2048 pixels.

2.4.2 | Ground truth dataset preparation

In order to obtain the ground truth dataset for generation of synthetic

images and detector training, all 350 TEM images were manually anno-

tated with ground truth bounding boxes for the three HCMV capsid

envelopment stages by a biologist via the LabelImg tool (Tzutalin, 2015)

(Figure 1b). These images were randomly divided into a training and

validation dataset with a ratio of 9:1. Our training dataset contains a

diverse set of EM images, which varied in terms of magnification, con-

trast, brightness and noise levels to account for the variability that is

typical for biological EM. A total of 2,969 cytoplasmic HCMV capsids

were labelled in 350 images. The number of capsids for each envelop-

ment stage in our dataset is summarised in Table 3.

2.4.3 | Training methodology

Generation of synthetic images and training and validation of auto-

matic capsid detection was done by using a Nvidia GeForce GTX

1060 3GB GPU with Tensorflow 1.14.0 and Python 3.6.7. Figure 7

shows the pipeline for the automatic detection of HCMV envelop-

ment stages in TEM images.

2.4.4 | Generation of synthetic labelled TEM

images

We used only 10 randomly selected ground truth (original) images for

synthetic image generation by GAN. These 10 expert-labelled TEM

images showed large variations in appearance and contained the three

classes of HCMV capsids. All images were converted from grayscale

to RGB and the three expert-labelled capsid classes in the image were

labelled with colour-coded bounding boxes before the images were

used as input for the GAN. The GAN network generated synthetic

images with capsids, which were automatically colour-coded

according to the capsid class they belonged to.

For the generation of synthetic TEM images, we used the GAN

variant called SinGAN with the published settings (Shaham et al.,

2019). This technique uses an unconditional generative model that

has the capability to learn from a single image. This is an important

factor for most EM applications as large ground truth datasets are

often not available. SinGAN contains a pyramid of fully con-

volutional GANs, which are responsible for learning the patch dis-

tribution at different scales of the image ranging from coarse to

fine. This task differs from a classical GAN setting as in SinGAN the

training samples are patches of a single image, rather than whole

image samples from a database.

The images were first resized to 512 x 512 pixels using bicubic

downsampling for training. Each SinGAN training session for one

ground truth image produced 50 synthetic variations of this TEM

image. Thus, a total of 500 synthetic images were produced from

10 ground truth images. The synthetic images had a size of

TABLE 3 Number of labelled capsids in the ground truth dataset

(350 images)

Dataset Number of images Naked Budding Enveloped

Training 315 767 1,508 335

Validation 35 118 187 54

F IGURE 7 Pipeline for the automatic

detection of HCMV envelopment stages.

Step 1 and 3 are performed manually

while steps 2, 4 and 5 are automatically

performed by deep learning models
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256 × 256 pixels. The capsids in the synthetic TEM images were

automatically labelled with the bounding boxes according to the

colour-coded capsid classes of the ground truth images. Coordi-

nates of the bounding boxes were extracted from the synthetic

images and converted to PASCAL visual object classes format as it

is the common format used by many deep learning-based object

detectors (Everingham et al., 2015). After extraction of the coordi-

nates, the coloured boxes were removed from the synthetic images

and the images were converted back to grayscale. The grayscale

synthetic images and bounding box coordinates were used as part

of the training data.

2.4.5 | Detection of HCMV capsid envelopment

stages in TEM images

The Faster R-CNN (Ren, He, Girshick, & Sun, 2017) architecture was

used for the automated detection of the HCMV capsid envelopment

stages in the validation images. Faster R-CNN uses a fully con-

volutional data driven approach for generating region proposals by

using a region proposal network (RPN). The RPN generates bounding

boxes of possible objects in the images. The Faster R-CNN detector

classifies and refines these bounding boxes around those proposals.

The ResNet-101 was used as feature extractor for our model.

Before training Faster R-CNN with the respective ground-truth

data, we did not perform any preprocessing on the training images

so that the system is able to also learn from noisy, low contrast

images. Data augmentation by horizontal flip was performed to

increase the diversity of the training dataset. The input images had

a size of 512 × 512 pixels. We used the momentum optimizer with

a value of 0.90. The initial learning rate was set to 0.0003. The mini

batch size was set to 1. The feature stride was set to 16. We fine-

tuned the models with pre-trained weights. The non-maximum sup-

pression method was used for detection. We used the transfer

learning mechanism where we first initialized CNN frameworks

with pre-trained models based on ImageNet dataset and then fine-

tuned all layers of the network using our own training dataset

(Deng et al., 2009; Devan et al., 2019). The model was trained for

50,000 steps.

2.4.6 | Evaluation metrics

The trained Faster R-CNN model for HCMV envelopment stage

detection was tested on a validation dataset consisting of 35 randomly

chosen ground truth TEM images. The model evaluation was per-

formed using the MS COCO evaluation metric, which is the average

precision (AP). This is the gold standard evaluation metric for deep

learning-based object detection (Everingham et al., 2015; Everingham,

Van Gool, Williams, Winn, & Zisserman, 2010; Hoeim, Cho-

dpathumwan, & Dai, 2012; Lin et al., 2014; Russakovsky et al., 2015).

For object detection (capsid detection) two tasks need to be per-

formed: object classification and object localization. Object classification

means that the model tests if a capsid is present in an image and allo-

cates it to its corresponding object class (naked, budding or enveloped).

Object localization predicts the coordinates of the capsid and draws a

bounding box around it. The accuracy of localization is evaluated by

Intersection over Union (IoU), which measures the degree of overlap

between the coordinates of the predicted bounding box and the ground

truth bounding box (Rezatofighi et al., 2019, Figure S1). The IoU is

defined by Equation (1), where SP is the predicted bounding box and SG

represents the ground truth bounding box.

IoU=
SP\SG

SP[SG
: ð1Þ

For each capsid detection, an IoU score is computed. The object

detector predicts bounding boxes, each associated with a confi-

dence score. The confidence score is the probability that a capsid

class appears in that bounding box (Everingham et al., 2015; Ren

et al., 2017), that is, the probability that the capsid in this particular

bounding box can be classified as an enveloped, budding or naked

capsid. Accordingly, we set an IoU threshold to turn this probability

into a classification. This means detections with a confidence score

above the threshold are considered true positives, while the ones

below the threshold are considered false positives. In our experi-

ments, two IoU thresholds of 50% and 75% are set, which represent

a bounding box overlap of 50% and 75%, respectively. True posi-

tives are correctly detected capsids, false positives are non-capsid

structures which were detected as capsids and false negatives are

undetected capsids. In our example with a threshold of 50%, this

means that a capsid with a bounding box for enveloped capsid and a

confidence score of 45% is not classified as enveloped whereas a

capsid with a confidence score of 80% is classified as enveloped

(true positive). AP stands for average precision. It is a metric that

evaluates the performance of object detectors by combining preci-

sion and recall.

Precision (P), also referred to as positive predictive value, is the

probability of the predicted bounding boxes matching the ground

truth bounding boxes and describes the ratio of correctly detected

capsids to the total detected capsids. Precision scores range from 0 to

1. A precision close to 1 means that almost all detected capsids were

detected correctly, that is, corresponding to the classes described in

the ground truth data. Recall (R) is the true positive rate and measures

the probability of ground truth capsids being correctly detected.

Recall ranges from 0 to 1. A recall score close to 1 means that almost

all ground truth capsids were detected correctly. The mathematical

definitions of precision and recall are shown in Equations (2) and (3).

Precision Pð Þ=TP=TP+FP ð2Þ

Recall Rð Þ=TP=TP+FN: ð3Þ

The AP value summarises the precision-recall curve by averaging

precision across recall values of the capsids from 0 to 1 as given by its

mathematical definition in Equation (4).
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AP=

ð1
0

P Rð Þdr: ð4Þ

This means that for assessing the AP0.50 value only capsids with

an IoU and a confidence score of 50% and above are considered,

whereas AP0.75 is computed with only capsids with an IoU and confi-

dence score of 75% or above. Thus, AP0.75 values are a more conser-

vative measure than AP0.50 values.
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Abstract

Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis 

of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often 

unavailable. To address this limitation, we present a weighted average ensemble model that can automatically segment 

biological structures in electron microscopy images when trained with only a small dataset. Thus, we exploit the fact that 

a combination of diverse base-learners is able to outperform one single segmentation model. Our experiments with seven 

different biological electron microscopy datasets demonstrate quantitative and qualitative improvements. We show that 

the Grad-CAM method can be used to interpret and verify the prediction of our model. Compared with a standard U-Net, 

the performance of our method is superior for all tested datasets. Furthermore, our model leverages a limited number of 

labeled training data to segment the electron microscopy images and therefore has a high potential for automated biological 

applications.

Keywords Artificial intelligence · Deep learning · Automated image analysis · Electron microscopy · Semantic 

segmentation · Ensemble-based machine learning

Introduction

Comprehensive analysis of organelles, cell structures, and 

viral particles leads to understanding of various patho-

logical processes, enabling discoveries, and insights into 

disease mechanisms. Electron microscopy (EM) has been 

proven to be a valuable method for biologists to analyze 

these biological structures in high resolution. In recent 

years, advancements in this field have enabled the acquisi-

tion of large volumes of three-dimensional EM data (Vil-

linger et al. 2014; Kubota et al. 2018; Zheng et al. 2018; 

Maniates-Selvin et al. 2020; Read et al. 2021). To quantify 

these large volumes of EM data, biologists have routinely 

used segmentation tools to obtain critical information about 

the morphological parameters of the organelles, cell struc-

tures, and viral particles. However, manual segmentation 

of large EM datasets requires expert input, and is tedious 

as well as labor-intensive. To address this issue, attempts 

have been made to develop semi-automated segmentation 

methods using machine learning approaches such as ilastik 

(Sommer et al. 2011) and DeepMIB (Belevich et al. 2016).

While these approaches successfully improved the rate 

of segmentation, a considerable amount of manual interac-

tion is required for corrections and quality control. This is 

because the inherently low contrast in EM images and the 

variations in appearances in biological structures and sample 

preparation artifacts could lead to segmentation inaccura-

cies. Therefore, the lack of fully automatic methods for EM 

segmentation impedes the routine use for quantitative analy-

sis of biological structures, and there is a demand for the 

development of accurate and efficient tools for the automatic 

quantification of EM images.

Recently, deep learning (DL) methods including the 

above-mentioned approaches have shown incredible success 

in a wide variety of biomedical image analysis applications 

(Webb 2018; Ching et al. 2018; Tang et al. 2019; Tian et al. 

2021). Convolution neural networks (CNNs) are a class of 
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deep neural networks, which are most commonly applied 

to analyze visual images. The main advantage of the CNN 

approach is that it utilizes raw images and expert-labeled 

data instead of hand-crafted feature vectors that require a 

high level of domain expertise. As a result, it can automati-

cally learn high-level discriminant features for visual pat-

tern recognition tasks from the input data (Tajbakhsh et al. 

2016). The success of CNNs has prompted the development 

of several deep architectures for the semantic segmentation 

of images, whereby each pixel is classified into a specific 

class. CNN-based semantic segmentation has been proven 

to outperform traditional segmentation methods (Mahony 

et al. 2020).

In this context, U-Net (Ronneberger et al. 2015) has been 

widely used by the biomedical image analysis community 

and is regarded as one of the most successful architectures 

for semantic segmentation. Heinrich et al. (2021) developed 

a U-Net-based 3D segmentation model that is able to seg-

ment 35 different cellular organelle classes in focused ion 

beam scanning electron microscopy (FIB-SEM) images. 

Modified versions of U-Net have also been successfully used 

to segment various biological structures such as cells, small 

extracellular vesicles, and mitochondria in EM images (Cas-

ser et al. 2020; Fischer et al. 2020).

Monchot et al. (2021) utilized the Mask R-CNN archi-

tecture to segment titanium dioxide particles in the form 

of agglomerates in scanning electron microscopy (SEM) 

images. SegNet, a Bayesian-based architecture, was intro-

duced by Koobragade and Agarwal (2018) to carry out 

multi-class segmentation in serial section transmission 

electron microscopy (ssTEM) images. George et al. (2021) 

developed CASSPER, a DL tool for the automated segmen-

tation of protein particles in cryogenic transmission electron 

microscopy (cryo-TEM) images. The rise in the application 

of deep CNNs for EM images prompted Kharabag (2021) 

to compare the performance of four DL architectures for the 

semantic segmentation of HeLa cells in serial block-face 

scanning electron microscopy (SBFSEM) images. On the 

other hand, Horwath et al. (2020) studied a variety of CNN 

architectures to define the most important features of DL 

models for the efficient segmentation of structures in TEM 

images.

Most of the currently available semantic segmentation 

methods require a large number of representative ground 

truth data, in order to be successful and generalize well on 

unseen images. Generalization is the ability of the model to 

perform well on unseen data and is an essential character-

istic of a successful DL model. Therefore, a large number 

of images have to be manually labeled to provide sufficient 

ground truth for algorithm learning. However, labeling 

large amounts of data in the biological field requires expert 

knowledge, is extremely time-consuming, and also expen-

sive. Moreover, the task is prone to inter- and intra-user 

bias. It therefore could lead to poor quality of ground truth 

images, especially when many images need to be manually 

labeled. The low availability of large labeled training data 

might be the reason that automatic analysis of EM images 

based on deep learning approaches are not yet routinely 

applied in the field of biomedical EM.

To mitigate this issue, researchers have been studying 

various techniques for segmenting EM images with a small 

labeled dataset and still obtaining performance that is on 

par with human experts. Roels and Saeys (2019) proposed a 

method for cost-efficient segmentation of electron micros-

copy images using active learning by smartly selecting 

the samples that require labeling. Generative adversarial 

networks were used by Shaga Devan et al. (2021) for the 

generation of synthetic EM images as a data augmenta-

tion method which improved the detection and localiza-

tion of herpesvirus human cytomegalovirus (HCMV). The 

authors of EM-Net developed a scalable deep neural net-

work ensemble for rapid learning from ground-truth data 

for binary image segmentation (Khadangi et al. 2021). The 

model was trained and tested with two binary datasets. For 

the ensemble process, multiple models were created with 

various batch normalizations modifications and combined 

for final prediction.

Our work was inspired by CDeep3M (Haberl et al. 2018), 

which is a ready-to-use large-scale image segmentation tool 

employing cloud-based deep convolutional neural networks 

for the segmentations of biological structures from both 

electron and light microscopy modalities. This tool was 

developed using an ensemble structure integrating models 

trained with one, three, and five consecutive image frames 

and utilizes the concept of transfer learning. For perform-

ing segmentations, users are provided with a series of pre-

trained networks for structures such as mitochondria, syn-

apses, membranes, and vesicles that were originally trained 

on electron tomography and serial block-face scanning elec-

tron microscopy (SBEM) images.

While the availability of a plug-and-play segmenta-

tion tool such as CDeep3M is indeed revolutionary and 

extremely helpful to the biological EM community, it may 

not be able to segment a large variety of biological structures 

due to the intra-class variations and inter-class similarities 

in appearances that is inherent in many viral particles, cells 

and organelles. EM images appearances also often vary due 

to image acquisition, noise, and sample preparations artifacts 

that could lead to segmentation inaccuracies which will then 

still require pre- and post-processing user intervention.

Therefore, encouraged by this tool, we aim to develop a 

semantic segmentation model for the multi-class segmen-

tation of biological structures in EM images using user 

customized limited labeled ground truth training data-

sets curated by biologists. In this work, we explore the 

segmentation of biological structures such as cytoplasm, 
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nucleus, mitochondria, and chromosomes in both TEM 

and SEM images. Our goal is to provide the biologists with 

a segmentation model that can be easily adapted to their 

own EM image datasets as well as biological structures 

of choice. These enables biologists to have flexibility and 

control in the usage of deep learning for their custom-

ized segmentation needs without the need for large unaf-

fordable labeling efforts. To this end, we have explored 

the concept of DL ensembles for improving segmentation 

quality. We investigated the feasibility of using off-the-

shelf ImageNet (Russakovsky et al. 2015) pre-trained net-

works for our ensemble model which differed from the 

method used by Haberl (2018).

While there is no standard size requirement for DL 

training datasets, generally, the larger the training data-

set, the better is the ability of the CNN to learn. There-

fore, CNNs do not perform well when trained with a 

small amount of training data (Tajbakhsh et al. 2016). To 

overcome this limitation, our proposed method utilizes a 

CNN-based weighted averaging ensemble approach that 

can learn complex discriminant features from a small 

dataset to segment biological structures in both TEM and 

SEM images. The amount of training images in all of the 

datasets used in this work range from 66 to 258. The pri-

mary motivation for using a weighted average ensemble 

approach is that it has better predictive performance com-

pared than a single model since it produces a lower error 

rate and reduces variance (Mustafa et al. 2020). However, 

a single model will not capture the entire underlying struc-

ture of the data to achieve optimal predictions. Therefore, 

by combining multiple base-learners, more information 

can be captured of the data’s underlying structure and can 

significantly improve prediction accuracy (Shahhosseini 

et al. 2021).

We refer to our proposed model as WAE-Net (weighted 

average ensemble network). It is built from an ensemble 

of U-Nets, each of which is trained with a different pre-

trained network and, their predictions are combined in a 

weighted average manner for the multi-class segmentation 

of EM images. To provide a deeper understanding of the 

segmentation results given by the ensemble model, we fur-

ther applied a visual CNN interpretation approach called 

Gradient-weighted Class Activation Mapping (Grad-

CAM) (Selvaraju et al. 2017) to identify critical regions 

in the images for prediction. We compared our proposed 

approach against the standard U-Net for quantitative and 

qualitative performance. Our ensemble method enabled 

us to obtain better segmentation results than the U-Net. 

Taken together, we have developed an approach to per-

form end-to-end multi-class segmentation of EM images 

using small datasets allowing us to leverage the benefits 

of current DL developments without needing unaffordable 

extensive labeling efforts.

Materials and methods

Image dataset

We evaluated our proposed method using seven biologi-

cal EM image datasets encompassing two types of EM 

imaging modalities; TEM and SEM for both training and 

testing. Datasets 1–3 are biological cells prepared by high-

pressure freezing, freeze substitution, and plastic embed-

ding. The EM datasets were obtained with two different 

approaches. The first approach is to mount the embed-

ded cells in a scanning EM additionally equipped with 

a focused ion beam (FIB-SEM). A small portion of the 

embedded cell is removed with the focused ion beam and 

the newly produced surface is imaged with the scanning 

EM. This process is repeated several hundred times and 

the images can then be reconstructed to a three-dimen-

sional model (Villinger et al. 2012). We have used this 

approach to obtain dataset 1. The second approach is to 

section the plastic embedded cell using an ultra-microtome 

equipped with a diamond knife and then taking images 

of each section with a TEM, which was used to obtain 

datasets 2 and 3 (Villinger et al. 2014). Datasets 1–3 are 

comprised of two-dimensional images obtained from 

three-dimensional samples; a biological cell embedded 

in a plastic that is then sectioned either with a diamond 

knife or an ion beam. Datasets 4–7 were publicly avail-

able two-dimensional image datasets from Morath et al. 

(2013). All the images used in this work, were processed 

as two-dimensional images. The details of each dataset are 

listed in Table 1.

These seven datasets contain diverse images, which differ 

in biological structures, imaging modality, pixel resolution, 

contrast, brightness, and noise levels to account for the vari-

ability typical for biological EM. All seven datasets, contain-

ing whole-slice images, were pixel-wise manually labeled by 

biologists and serve as the ground truth for network training 

and testing. These datasets were randomly divided into a 

training and hold-out test set with a ratio of 8:2. In order 

to avoid bias, a 5 × 5-fold cross validation was performed 

during model training. The hold-out test set was only used 

for testing. Table 2 shows the details of the distribution of 

images for training and testing and the number of segmenta-

tion classes for all the datasets. In this work, the background, 

which comprises all structures that are not of interest in the 

EM images, is also considered a segmentation class.

Experimental methods pipeline

A representative diagram illustrating the pipeline of our 

proposed weighted average ensemble model (WAE-Net) 
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for the semantic segmentation of biological structures in 

EM images is shown in Fig. 1. All the tasks in the pro-

posed model pipeline were done using a Tesla T4 GPU 

with Tensorflow 2.2.0, Keras 2.3.1 and Python 3.7.11.

Base‑learner construction and training

We first trained five individual base-learners as ensemble 

members to construct the weighted average ensemble. The 

base-learners were created using the U-Net architecture. Fig-

ure 2 shows the typical architecture of a U-Net. Its archi-

tecture contains an encoder network that is followed by a 

decoder network (Ronneberger et al. 2015). The bottom-

most layer at the base of the U-shaped network is the bottle-

neck section. The encoder is a classification network consist-

ing of alternating convolution layers with rectified linear unit 

(ReLU) and batch normalizations, followed by maximum 

pooling-based downsampling operations which increases 

the number of feature maps per layer. The input images are 

encoded into feature representations at various levels.

The bottleneck layer provides mediation between the 

encoder and decoder layer. The decoder semantically pro-

jects the discriminative features learned by the encoder onto 

the pixel space to obtain a dense classification. It consists 

of upsampling of the feature maps followed by convolution 

operations. Upsampling is performed to restore the con-

densed feature maps to the original size of the input image. 

This is achieved by expanding the feature dimensions.

In the base-learners of our WAE-Net, short and long 

skip connections were used within the pre-trained encod-

ers as well as between the encoders and decoders. Detailed 

diagrams indicating the convolutional layers and skip con-

nections of our proposed model are given as Electronic 

Supplementary Material. For ResNet34, SeResNet34, and 

EfficientNetB4, short skip connections were used within 

the encoders to pass information from the initial layers to 

deeper layers via matrix additions. Specifically, activations 

and convolutional layers were short skip connected to the 

layers performing arithmetic operations (Electronic Sup-

plementary Material). These skip connections provide an 

uninterrupted gradient flow from the first layer to the last 

layer, thereby mitigating the effects of the vanishing gradient 

problem, which is a common occurrence in deep architec-

tures such as the encoders mentioned above. InceptionV3 

and VGG19 architectures did not use short skip connections 

within their encoders.

Long skip connections were utilized in ResNet34, Incep-

tionV3, VGG19, SeResNet34, and EfficientNetB4 pre-

trained base-learners (Fig. 2). They were used to concat-

enate the feature maps from the encoder’s layer to the same 

scale feature maps of the decoder. Specifically, the activation 

layers in the encoder were connected to the corresponding 

concatenate layers in the decoder (Electronic Supplementary 

Material). This was done in order to compensate for the loss 

of spatial information in the encoder during the downsam-

pling process. Taken together, the use of skip training in 

our WAE-Net helped to stabilize training and convergence. 

Simply stated, the encoder part encodes the semantics and 

contextual information of the input images while the decoder 

part uses this encoded information for the generation of seg-

mentation maps.

To construct the individual base-learners, we replaced 

the encoder part of the U-Net with a pre-trained CNN net-

work. The decoder part was maintained as depicted in Fig. 2. 

Table 1  Summary of details about the datasets used in this work

Dataset Specimen Imaging modality Pixel resolution 

(nm)

Structures for segmentation

Dataset 1 Human pancreatic carcinoid cell line FIB-SEM 9 Cytoplasm, nucleus

Dataset 2 BON cell during interphase Serial section TEM 9 Cytoplasm, chromosomes

Dataset 3 BON cell during mitosis Serial section TEM 26.3 Cytoplasm, nucleus, mitochondria

Dataset 4 Human T-cell line Jurkat TEM 6.41 Cytoplasm, nucleus

Dataset 5 Primary human T-cell blood TEM 2.33 Cytoplasm, nucleus

Dataset 6 Murine B-cell line J558L TEM 15.26 Cytoplasm, nucleus

Dataset 7 Phytohemagglutinin/IL-2 expanded human 

T cells

TEM 15.74 Cytoplasm, nucleus

Table 2  Number of segmentation classes, total images, training 

images and test images for all datasets

Dataset Classes for 

segmentation

Total images Training 

images

Test images

Dataset 1 3 323 258 65

Dataset 2 3 167 133 34

Dataset 3 4 117 66 17

Dataset 4 3 135 108 27

Dataset 5 3 122 97 25

Dataset 6 3 115 92 23

Dataset 7 3 108 86 22
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We built the encoder by removing the fully connected lay-

ers of the pre-trained networks and replacing them with 

a single convolutional layer of 1024 feature channels that 

serve as the bottleneck part of the base-learner, separating 

the encoder from the decoder. The output of the transposed 

convolution layers is then concatenated with the output of 

the corresponding part of the decoder. The resultant fea-

ture maps are treated by convolution operations to keep the 

number of channels the same to preserve symmetry of the 

network.

Pre-trained networks were used as encoders in order to 

leverage transfer learning for our segmentation goals. Devan 

Fig. 1  Schematic architecture of the proposed ensemble-based 

semantic segmentation of biological electron microscopy images. 

The individual base-learners were trained with the ImageNet dataset. 

Then, the top-three best-performing learners were combined in an 

ensemble. The ensemble model was further trained with the electron 

microscopy datasets and tested. The Grad-CAM was used to further 

verify the correctness of the predictions
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et al. (2019) have shown that transfer learning is a highly 

effective performance booster for EM images when work-

ing with a small labeled dataset. It is the process of taking a 

pre-trained neural network and adapting the neural network 

to a different dataset by transferring its learned features. 

Therefore, in this work, the encoder was initialized with 

pre-trained weights from ImageNet database (Russakovsky 

et al. 2015) and trained on our own datasets.

The rationale for using pre-trained networks is that the 

imported network will already have sufficient knowledge in 

the broader aspects of images such as edge, texture, and 

shape information that could also be useful for EM image 

segmentation (Kolesnikov et al. 2020; Dhillon and Haque 

2020). While the U-Net can also be trained from scratch 

on the ImageNet database, however, training the huge data-

set, which contains over 14 million images, will require 

extremely high computational resources, which is a major 

limitation in many electron microscopy laboratories around 

the globe. Therefore, using pre-trained networks will be an 

optimized cost-effective solution. We selected five state-

of-the-art pre-trained networks, and for each dataset, we 

replaced the encoder of the U-Net with each of the five net-

works, yielding five base-learners.

For an ensemble to outperform any of its members, the 

base-learners must be accurate and diverse enough to cap-

ture the structure of the data effectively. The diversity in 

the base learners is where the strength of the ensemble lies 

(Zhou 2009). Furthermore, different pre-trained networks 

have different properties and learning schemes that con-

tribute towards the performance of the base-learners in the 

ensemble. Therefore, proper selection of pre-trained net-

works is imperative to the success of our ensemble model.

While many pre-trained networks are available, we 

selected these five based on three requirements. First, is 

that the networks have consistently given state-of-the-art 

performance. Secondly, the networks must have different 

architectural designs, and finally, the networks should only 

have a small number of parameters. While the first require-

ment is self-explanatory, the second requirement is crucial 

for creating diversity in our ensemble as different base 

learners have different properties and learning paradigms. 

A diverse ensemble can maximize the learning ability of 

the model while minimizing variance and bias. The final 

requirement regarding the network's parameters warrants 

deeper analysis.

Current CNN-based state-of-the-art networks have bil-

lions of learning parameters that provide highly competitive 

results when trained with large datasets. On the other hand, 

these large networks perform poorly when trained with small 

datasets. It has been observed that training large complex 

networks with small datasets often leads to overfitting (Ying 

2019). Overfitting happens when noise or random fluctua-

tions in the training data is picked up and learned as features 

Fig. 2  A standard U-Net architecture. The network consists of an 

encoder and decoder path. Each blue box corresponds to a multi-

channel feature map. The number of channels for each feature map 

is denoted at the top of the box. The image dimension is provided at 

the lower-left edge of the box. White boxes represent copied feature 

maps. The arrows denote the various convolutional neural-network 

operations (Ronneberger et al. 2015)

Fig. 3  Graph depicting the total number of learning parameters in 

publicly available state-of-the-art pre-trained convolutional neural 

networks. The total number of parameters encompass both trainable 

and non-trainable learning parameters
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by the network to the extent that it negatively impacts its 

performance and subsequently affects segmentation quality. 

Figure 3 shows a selection of commonly used state-of-the-

art pre-trained networks and their corresponding number of 

parameters.

Based on Fig. 3, we have selected networks that yield 

good performance, are diverse in their learning approach, 

and have a total number of parameters of less than 30 mil-

lion. A threshold of 30 million parameters was chosen 

because based on preliminary testing (data not shown), a net-

work with a larger number of parameters overfit the datasets 

while a network with lower number of parameters did not 

learn effectively from the training data. Therefore, the pre-

trained networks used as encoders in this work are ResNet34 

(He et al. 2016), InceptionV3 (Szegedy et al. 2015), VGG19 

(Simonyan and Zisserman 2015), SeResNet34 (Hu et al. 

2019), and EfficientNet-B4 (Tan and Le 2020). Table 3 

shows the details of the selected pre-trained networks. For 

each dataset, the above-mentioned five pre-trained networks 

were individually used as encoders in the U-Net and trained. 

This results in five individual base-learners for each dataset.

Hyperparameter optimization

Hyperparameters are all the parameters that are set in a CNN 

model before starting the training process in order to config-

ure the model to our dataset. Hyperparameter optimization 

has a major impact on the performance of the model because 

it directly influences the training process. Efficient hyper-

parameter selection can avoid overfitting, improve results, 

and form a generalized model. Data augmentation was per-

formed on the original image datasets to expand the size of 

the training dataset (Shorten and Khoshgoftaar 2019). In 

order to optimize computational resources while increasing 

dataset size, we have applied five geometric image augmen-

tation methods that preserve the semantic information on the 

training images using the Albumentations library (Buslaev 

et al. 2020). The augmentations applied were vertical flip, 

random rotate, horizontal flip, transpose, and grid distortion. 

These augmentations were selected on the basis of the most 

useful transformations for the structures of interest in this 

work which are the cytoplasm, nucleus, chromosomes, and 

mitochondria.

For the training of our WAE-Net model, we used the 

Adam optimizer with an initial learning rate of 0.0001. We 

reduced the learning rate by a factor of 4 when the validation 

loss has stopped decreasing for ten epochs. The mini-batch 

size was set to 1. Next, weight balancing was performed so 

that the model is not biased towards a specific segmentation 

class.

Loss functions play a critical part in effective CNN learn-

ing. In order to reduce the validation loss, a combination of 

focal and dice loss function was used for training (Jadon 

2020). Focal loss addresses class imbalance by down-

weighting the contribution of easy training examples and 

therefore enabling the model to focus more on learning hard 

examples (Wang et al. 2020). This is crucial to our work, as 

the segmentation classes in this work, such as chromosomes, 

mitochondria, cytoplasm, and nucleus have unbalanced rep-

resentation in the image, thereby increasing the risk of the 

training being dominated by the most prevalent class. The 

mathematical definition of focal loss is shown in Eq. (1),

where, p is the model’s estimated probability, α, γ are two 

hyperparameters, α is used to adjust the distribution of the 

easy samples, and (1-p)γ is the dynamic scaling factor, which 

is used to adjust the distribution of hard samples. 

The dice loss was introduced by Milletari et al. (2016) 

and is derived from the Sørensen–Dice coefficient. It is 

commonly used for bio-medical image segmentation tasks. 

Equation (2) shows the mathematical definition of dice coef-

ficient, in which pi and gi represent pairs of corresponding 

pixel values of prediction and ground truth, respectively.

Weighted average ensemble training

Our weighted average ensemble, WAE-Net, is constructed 

by combining the predictive base-learners, where the con-

tribution of each base-learner to the final prediction is 

weighted by the performance of the individual learner. A 

representative diagram of the proposed WAE-Net is shown 

in Fig. 4.

We experimented with our ensemble method to seg-

ment the EM images into various biological classes such 

as cytoplasm, nucleus, mitochondria, and chromosomes. 

For each dataset, its top-three best-performing base-learn-

ers were combined together for the ensemble. We avoided 

(1)Lfl = −�(1 − p)� log(1 − p)

(2)D =

2
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Table 3  Number of parameters in the selected pre-trained networks

Model Trainable param-

eters

Non-

trainable 

parameters

Total parameters

ResNet34 24,439,094 17,350 24,456,444

InceptionV3 36,416 29,896,979 29,933,395

VGG19 4032 29,058,227 26,062,259

SeResNet34 17,350 24,600,290 24,617,640

EfficientNet-B4 25,735,307 25,608,123 25,735,307
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including all base-learners because not all learners per-

formed well. The inclusion of weak-performing base-

learners in the ensemble wastes computational resources 

and time.

The challenging aspect of using a weighted average 

ensemble is how to choose the relative weighting for each 

ensemble member. We used the grid search method to 

search for the appropriate weights between 0 and 1 for 

each ensemble member based on the training data, where 

the learners with better performance receive a higher 

weight (Liashchynskyi and Liashchynskyi 2019). The best 

optimized weights are those that result in performance that 

is better than any contributing individual base-learner and 

an ensemble that uses equal weights. These weights are 

then multiplied by the prediction made by the individual 

base-learners and the weighted average is then used for the 

final prediction. The prediction of the ensemble was then 

tested on the test images. We use the original U-Net as a 

benchmark comparison for evaluating the performance of 

our WAE-Net. The same hyperparameters, losses, augmen-

tations, and data split with cross-validation as described 

above were applied for both the U-Net and WAE-Net for 

the training process.

Explainable segmentation using Grad‑CAM

While CNN-based architectures yield impressive perfor-

mance for image segmentation, their black-box nature 

makes it challenging to understand why it has given a 

specific prediction (Lin et al. 2019). Therefore, an inter-

pretative and transparent model will be highly valuable 

to understand how the CNN makes its decisions, thereby 

allowing biologists to perform more informative and effi-

cient data analysis.

In our effort to develop such models, we employ the 

Grad-CAM technique (Selvaraju et al. 2017) to visually 

show the activation regions of a particular biological class 

in EM images for model prediction. Grad-CAM exploits 

the spatial information that is preserved through convo-

lutional layers of the CNN in order to understand which 

parts of an input image were important for the prediction. 

Grad-CAM specifically measures the gradients of features 

maps in the final convolution layer on a CNN model for 

an image to identify the critical regions that are class-

discriminating saliency maps. The class-discriminative 

saliency map, Lc for the target biological class, c in an 

image is defined as follows,

Fig. 4  Graphical representa-

tion of the proposed WAE-

Net. ResNet34, InceptionV3, 

VGG19, SeResNet34, and Effi-

cientNet-B4 are the pre-trained 

networks that serve as the 

base-learners. EM1, EM2, and 

EM3 represent the predictions 

of the top-three best-performing 

base-learners that make up the 

ensemble. WAE-Net denotes the 

final prediction for our proposed 

ensemble
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where, Ak
i,j denotes the activation map for the k-th filter at a 

spatial location (i,j) and ReLU captures the positive features 

of the target class. The target class weights of the k-th filter 

are computed as given by Eq. (4).

The field-of-view (FOV) of a network is the size of 

the region in the input space that produces the feature. 

It is a measure of association of an output feature to the 

input region (Luo et al. 2017). The FOV plays an impor-

tant role for Grad-CAM class-discriminating saliency maps 

because it gives an indication of where we are obtaining our 

results from as data flows through the layers of the network. 

The advantages of FOV in recognizing visual patterns lie in 

the fact that the units or neurons within a layer are directly 

tasked with learning visual features from a small region of 

the input data. It is therefore imperative to have a convo-

lutional model with a FOV that covers the entire relevant 

input image region. The Grad-Cam takes an input image and 

predicts the output class-discriminating saliency map. How-

ever, if the network does not have the capacity to consider 

all the relevant pixels when performing the predictions, the 

resultant activation map will not be complete. Taking this 

into account, all the pre-trained networks used in this work 

have FOVs that cover the entire input image to yield correct 

information.

In our work, the Grad-CAM visualization is incorporated 

at the end edge of the proposed ensemble model after the 

training process, as displayed in Fig. 1. The GradCAM is 

applied to the convolutional layers at the U-Net bottleneck, 

which is at the end of the encoder before upsampling pro-

cess. The class discriminatory saliency map for a specific 

biological class is then calculated and used to create an acti-

vation heat-map. The heat-map is then superimposed onto 

the given input image. The final Grad-CAM image enables 

us to verify that the proposed model obtained information 

of the biological structures from the correct regions in the 

images. It also enables us to identify the various regions in 

the EM image that are important for the prediction of each 

of the base-learners in the WAE-ensemble.

Evaluation metrics

A successful segmentation by a CNN model is one that max-

imizes the overlap between the predicted and ground truth 

regions in an image. In order to evaluate the performance of 

(3)Lc
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the proposed method, we considered two commonly used 

evaluation metrics for semantic segmentation tasks, which 

are the Jaccard index and the F1 score. The Jaccard index 

(JI), which is also referred to as the Intersection over Union 

(IoU) metric, (Ronneberger et al. 2015; Cetina et al. 2018) 

quantifies the percentage of overlap between the ground 

truth mask and predicted output mask. The Jaccard index is 

defined by Eq. (5) below,

where, GT and PO denote the pixels in the ground truth 

mask and predicted output respectively.

The F1 score (Gadosey et al. 2020) conveys the balance 

between the precision and the recall of the model and is 

defined by Eq. (6).

Both of these metrics range from 0 to 1, with 0 signi-

fying no overlap and 1 signifying a perfectly overlapping 

segmentation.

Results

Quantitative results

For each of the datasets, the five base-learners were trained 

and the top-three best-performing learners were then 

selected and combined together in order to construct the 

weighted average ensemble. The best-performing learners 

and their corresponding ensemble weighting for each dataset 

are shown in Table 4, whereby the sum of the weights for 

each dataset is equal to 1. Base-learners with zero weighting 

were not included in the ensemble. Based on our experi-

ments (data not shown), grid search on different subsets of 

(5)Jaccard index =
GT ∩ PO

GT ∪ PO

(6)F1 − score =
2|GT ∩ PO|

|GT| + |PO|

Table 4  Top-three best-performing base-learners for each dataset 

and their corresponding ensemble weighting obtained from Grid-CV 

search

Dataset Top-three best-performing base-learners Weighting

Dataset 1 ResNet34, InceptionV3, VGG19 0.34, 0.33, 0.33

Dataset 2 ResNet34, InceptionV3, EfficientNet-B4 0.50, 0.50, 0.00

Dataset 3 ResNet34, SeResNet34, EfficientNet-B4 1.00, 0.00, 0.00

Dataset 4 ResNet34, VGG19, EfficientNet-B4 0.50, 0.00, 0.50

Dataset 5 ResNet34, InceptionV3, EfficientNet-B4 0.40, 0.40, 0.20

Dataset 6 ResNet34, InceptionV3, EfficientNet-B4 0.40, 0.20, 0.40

Dataset 7 ResNet34, InceptionV3, VGG19 0.40, 0.20, 0.40
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the training data based on the 5 × 5-fold cross validation lead 

to the same weighting for the top-three performing models 

for each dataset.

ResNet34 has emerged as the best-performing base-

learner for all the seven EM datasets. This was followed by 

InceptionV3 and EfficientNet-B4, respectively. SeResNet34 

was the most poorly performing base-learner, as it only 

emerged once as a top-three best performer. In terms of 

ensemble weighting, the combination of two or more base-

learners resulted in the best performance for most of the 

datasets. However, dataset 3 did not benefit from an ensem-

ble model as only the contribution of ResNet34 was useful 

for its final prediction (Table 4).

After the construction of the WAE-Net using the best-

performing base-learners, we evaluated its segmentation 

performance and compared it with the U-Net (Table 5). The 

results were quantitatively evaluated by using the Jaccard 

index and F1 score metric. WAE-Net yielded a mean Jaccard 

index (JI) of 0.9087 and mean F1 score of 0.9203 for all the 

seven datasets while U-Net only yielded a mean JI of 0.7709 

and mean F1 score of 0.7680.

In order to further understand the segmentation results 

obtained by the proposed model, we evaluated the per-

formance of both WAE-Net and U-Net on the individual 

segmentation classes (Table 6). Both U-Net and WAE-Net 

were able to segment the background class similar to ground 

truth data with a mean JI of above 0.90 for all datasets. Our 

model performed very well in segmenting the cytoplasm 

with a mean JI of 0.9160 while U-Net’s performance dete-

riorated with a mean JI value of 0.7636. When segmenting 

the nucleus, our ensemble model yielded good segmenta-

tion results with a mean JI of 0.9309 while the U-Net had 

only managed to achieve a mean JI of 0.6966. The chromo-

somes were able to be segmented by WAE-Net with a JI of 

0.6826 compared to U-Net which performed poorly with a 

JI of only 0.4867. Both models performed very badly for 

the segmentation of mitochondria in dataset 3. The U-Net 

was not able to segment any mitochondria at all, while our 

model was able to segment only some of the mitochondria 

pixels with a JI of 0.2143. The reason for the low segmenta-

tion rates for both chromosomes and mitochondria might be 

because both of these structures are quite small compared 

to the other structures in the EM images and therefore our 

model did not have sufficient pixel coverage in the training 

images for learning. Furthermore, in dataset 3, there were 

very few training images but a higher number of segmenta-

tion classes which explains the low segmentation rate for 

chromosomes. Generally, WAE-Net was able to consistently 

obtain superior performance compared to the U-Net for all 

datasets as well as for all individual segmentation classes 

(Tables 5 and 6, Figs. 5, 6, 7 and S1). Dataset 1 had the best 

performance while the worst was from dataset 3.

We also performed a small experiment to investigate the 

performance of smaller base-learner U-Nets compared to 

their relatively larger counterparts that were used in our 

WAE-Net. The size was defined by the number of learning 

parameters and convolutional layers and the performance 

was evaluated using Jaccard index (JI).

We compared the performance of base-learners using 

ResNet18 and ResNet34, VGG16 with VGG19, and 

Table 5  Segmentation performance comparison between WAE-Net 

and U-Net

The Jaccard index and F1 score were averaged over all test images in 

each dataset

U-Net WAE-Net

Jaccard index F1 score Jaccard index F1 score

Dataset 1 0.8552 0.8980 0.9865 0.9923

Dataset 2 0.7645 0.6942 0.8448 0.8842

Dataset 3 0.5571 0.5381 0.7243 0.6915

Dataset 4 0.7686 0.7866 0.9692 0.9685

Dataset 5 0.8753 0.7994 0.9725 0.9784

Dataset 6 0.8456 0.7924 0.9644 0.9817

Dataset 7 0.7099 0.8676 0.8992 0.9452

Table 6  Segmentation performance comparison between WAE-Net 

and U-Net for each segmentation class

The performances are evaluated in terms of Jaccard index

Dataset Segmentation class U-Net WAE-Net

Dataset 1 Background 0.9296 0.9567

Cytoplasm 0.8663 0.9882

Nucleus 0.7742 0.9918

Dataset 2 Background 0.9157 0.9321

Cytoplasm 0.8936 0.9143

Chromosomes 0.4867 0.6826

Dataset 3 Background 0.9547 0.9762

Cytoplasm 0.6858 0.8416

Nucleus 0.5783 0.8052

Mitochondria 0.0000 0.2143

Dataset 4 Background 0.9344 0.9897

Cytoplasm 0.6838 0.9464

Nucleus 0.6728 0.9676

Dataset 5 Background 0.9646 0.9912

Cytoplasm 0.8166 0.9452

Nucleus 0.8372 0.9645

Dataset 6 Background 0.9769 0.9941

Cytoplasm 0.8154 0.9567

Nucleus 0.7461 0.9569

Dataset 7 Background 0.9562 0.9765

Cytoplasm 0.5838 0.8191

Nucleus 0.5712 0.8994
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EfficientNetB0 with EfficientNetB4. Both ResNet and VGG 

were trained on a subset of data from dataset 1 while Effi-

cientNet was trained on a subset of data from dataset 4. We 

observed that ResNet18, which has 18 convolutional lay-

ers and 14,340,860 parameters, gave a Jaccard index (JI) 

of 0.8045 while ResNet34 with 34 layers and 24,456,444 

parameters gave a JI of 0.8288. VGG16 that has 16 lay-

ers and 23,752,563 parameters yielded a JI of 0.8147 while 

VGG19 with 19 layers and 29,062,259 parameters yielded 

a JI of 0.8197. We compared EfficientNetB0, which has 

10,115,791 parameters with EfficientNetB4, which has 

25,735,307 parameters and observed that the former had a JI 

of 0.7622 while the latter had a JI of 0.8206. This indicates 

that the smaller networks performed almost as well as their 

relatively larger counterpart for the structures of interest in 

this work, with the larger counterparts giving only slightly 

improved performances. Surprisingly, VGG16 and VGG19 

gave almost similar performance.

Qualitative results

Figures 5, 6, 7, and S1 show representative test images 

after segmentation, comparing input image, ground truth, 

WAE-Net prediction, and U-Net prediction. An expert 

biologist verified that the WAE-Net was able to segment 

the biological structures in all test EM images more accu-

rately compared to U-Net. Both the models were able to 

segment the background very well, however, the U-Net 

was not able to segment the boundary of both cytoplasm 

and nucleus accurately and was only able to detect the 

chromosomes partially. In comparison, our ensemble 

model was able to segment the cytoplasm and nucleus in 

a highly accurate manner and was able to detect most of 

the chromosomes. We observed that our model detected 

some of the mitochondria present in dataset 2 (Fig. 6) and 

classified them as chromosomes. This could be attributed 

to the fact that the chromosomes and mitochondria shared 

certain similarities in terms of appearance and there were 

very small amounts of mitochondria present in dataset 2 

for our model to learn to differentiate between these two 

structures.

The worst performance was obtained from dataset 3 

(Fig. 7), where both models were unsuccessful in segment-

ing the mitochondria. Our model was not able to segment 

the mitochondria in the images in a manner similar to the 

ground truth. Most of the mitochondria were not detected. 

However, the ensemble model still exhibited better perfor-

mance, as the U-Net was not able to detect any mitochon-

dria at all and was incorrect in segmenting the cytoplasm 

and nucleus. Overall, based on the segmented images 

obtained, we are able to visually verify that our model 

was able to give segmentation results that are nearer to the 

ground truth compared to the U-Net.

Fig. 5  Quantitative evaluation of the segmentation results produced by WAE-Net and U-Net over a single image in dataset 1. The ground truth 

and predicted output images contains three segmented structures which are the background (black), cytoplasm (grey), and nucleus (white)
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Visualization with Grad‑CAM

We applied the Grad-CAM method to visually depict the 

pertinent areas in the test images where WAE-Net empha-

sizes the segmentation decision for a given biological class. 

We found that the convolutional layers of the U-Net bot-

tleneck, which is at the end of the encoder before upsam-

pling, are more informative than layers close to the end of 

the U-Net decoder. Figure 8 and S2 show representative 

images of the Grad-CAM visualization using the top-three 

base-learners for each segmentation class. The Grad-CAM 

visualization locates the relevant areas in the EM image 

that is important for the segmentation of a specific biologi-

cal structure for each of the base-learners. The red regions 

highlight the most important discriminative regions and the 

blue regions the least important as depicted by the color bar 

in Fig. 8.

Importantly, we were able to learn the behavior of the 

individual base-learners that compose the WAE-Net. It 

was observed that not all base-learners in the WAE-Net 

were triggered by the same region for prediction. Different 

base-learners look at different areas in an image for the 

segmentation of the same biological structure. Figure 8 

shows that both ResNet34 and InceptionV3 were triggered 

by the correct regions to identify the background of the 

EM image. However, VGG19 was triggered by regions 

that were outside of the background area, specifically the 

nucleus for background segmentation. For the cytoplasm, 

all the three base-learners were triggered by the correct 

region. GradCAM visualizations indicate that different 

areas within the cytoplasm was important for different 

base-learners. In example, the cytoplasm area that was 

very relevant for InceptionV3 prediction was however less 

relevant for ResNet34 and VGG19. Both InceptionV3 and 

VGG19 were strongly triggered by the main nucleus in the 

image for nucleus segmentation. In contrary, ResNet34 

was not triggered by the main nucleus, but rather by a 

small nucleus region at the right of the image. Further 

visualizations in S2 provide insight into the behavior of 

the individual base-learners. We observed in both Fig. 8 

and S2 that areas that were not part of the object of interest 

were also triggered as relevant by the model for prediction.

Fig. 6  Quantitative evaluation 

of the segmentation results pro-

duced by WAE-Net and U-Net 

over a single image in dataset 2. 

The ground truth and predicted 

output images contains three 

segmented structures which are 

the background (black), cyto-

plasm (grey), and chromosomes 

(white)
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Fig. 7  Quantitative evaluation 

of the segmentation results pro-

duced by WAE-Net and U-Net 

over a single image in dataset 3. 

The ground truth and predicted 

output images contains four seg-

mented structures which are the 

background (black), cytoplasm 

(dark grey), nucleus (light grey) 

and mitochondria (white)

Fig. 8  Grad-CAM visualization 

on the input image of Fig. 5 

using the WAE-Net. These visu-

alizations were obtained from 

the bottleneck layer of the base-

learners of our network. The 

columns indicate the respective 

base-learners while the rows 

indicate the target segmentation 

class localized by Grad-CAM. 

The red regions highlight the 

most important discriminative 

regions, while the blue regions 

the least important. The pink 

outline indicates that the region 

of interest is contained within 

this area
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Discussion

The key to new insights and discoveries about cell struc-

tures and organelles goes hand in hand with new techno-

logical developments that enable acquiring and analyzing 

relevant, high-quality information from EM images. How-

ever, the implementation of state-of-the-art DL approaches 

for biological analysis is often hindered by the requirement 

of large labeled training datasets, which are usually scarce 

in specialized fields such as biological EM. In order to 

provide a novel contribution towards eliminating this limi-

tation, we have presented a robust approach for the fully 

automatic semantic segmentation of biological structures 

in EM images using limited training dataset. This study 

demonstrates that a weighted average ensemble of CNN 

models can significantly improve the segmentation rate 

compared to a single model trained with a small labeled 

dataset. We show the potential of this approach to segment 

both TEM and SEM.

We first constructed the individual base-learners using 

a transfer learning approach. This approach increased the 

segmentation ability of the learners significantly even 

though our images differ greatly from the ImageNet data-

base. The base-learners were able to extract feature repre-

sentations from ImageNet and successfully applied them 

to the EM images. Then, we combined the best-performing 

top-three learners for each dataset in a weighted average 

manner for the final segmentation.

We observed that the best base-learners differs for each 

dataset. This indicates that no one ultimate combination 

of base-learners gave the best results for all the datasets. 

This is because the datasets differ from one another in 

terms of image properties as well as biological appear-

ances. Therefore, one base-learner might be suited to learn 

the semantic information of specific biological structure 

while another is better at a different one. Thereby, combin-

ing these base-learners in an ensemble model enables us 

to harness this learning power.

We have demonstrated that an ensemble model is 

imperative for a good segmentation. Most of the datasets 

gave the best results with a combination of two or more 

base-learners. Datasets 1, 2, and 4 had equal weight-

ing among its ensemble members while, the rest of the 

datasets had unequal weighting (Table 4). This proves 

that not all base-learners contribute equally towards the 

performance of an ensemble model and weighting their 

contribution has a powerful effect on the final prediction. 

Only dataset 3 did not benefit from the ensemble process 

as only one base-learner significantly contributed to the 

final prediction. This is because this dataset contained a 

higher number of segmentation classes compared to the 

other datasets but was trained with comparatively low 

amount of training images (Table 2). Therefore, most of 

the base-learners were not able learn sufficient discrimi-

native features for segmentation, rendering the ensemble 

model inefficient for this dataset.

The WAE-Net’s results were compared with the original 

U-Net from quantitative and qualitative perspectives. Our 

ensemble model outperformed the U-Net for all the data-

sets significantly (Tables 5 and 6 and Figs. 5, 6, 7 and S1). 

This suggests that an ensemble of models can outperform 

one single model when trained with only a small number 

of ground truth images. In addition, we investigated the 

performance of both the models on the individual seg-

mentation classes (Table 6). Large differences between the 

two models were observed in their abilities to detect cyto-

plasm, nucleus, chromosomes, and mitochondria. Overall, 

the WAE-Net was able to segment the EM images in a 

manner similar to the ground truth for most of the data-

sets despite the low availability of training images. Our 

proposed model was able to generalize well on the hold-

out test dataset (Figs. 5, 6, 7, and S1). When we look at 

the training time of the WAE-Net, it takes approximately 

between 4 and 8 h on a single GPU, depending on the 

pre-trained network parameters. Because it takes several 

months for a biologist to segment a large dataset manually, 

the total cost of training time is far less.

From the small study conducted to observe the perfor-

mance of smaller pre-trained U-Net base-learners compared 

to their relatively larger counterparts, we learned that smaller 

networks than those utilized in this work are able to give 

good predictive performance. However, further study needs 

to be conducted with a larger variety of biological structures 

and electron microscopy modalities to understand the feasi-

bility of small pre-trained U-Nets for semantic segmentation.

The Grad-CAM has demonstrated to be a powerful tool to 

visually understand how the ensemble model achieved the seg-

mentation prediction obtained in this work (Figs. 8 and S2). 

Its inclusion enabled us to understand the behavior of the indi-

vidual base-learners for the various segmentation classes. We 

observed that different regions were found relevant by different 

base-learners for the segmentation of the same structure. Since 

the WAE-Net model is a combination of learners, strongly rel-

evant regions found by all learners were combined for the final 

prediction, thereby improving the model’s overall performance.

While Grad-CAM visualizations are class-discriminative 

and are able to localize relevant image regions well, they 

lack the ability to show fine-grained pixel-wise details. 

Despite this, we believe that the Grad-CAM based visuali-

zations is a first step towards the incorporation of transpar-

ency and interpretability in deep learning for biological EM 

applications. As deep learning is a black-box approach in the 

computer science domain, the inclusion of these visualiza-

tions may increase biologists trust in the model’s prediction. 

It may also be useful for future applications where model 

selection is crucial.
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Concludingly, this work explored the possibility of 

semantically segmenting EM images using a very small 

training dataset. Our model has shown the ability to seg-

ment four types of biological structures in both TEM and 

SEM images. More importantly, the WAE-Net segmentation 

predictions provide a close estimate of the ground truth data. 

The standard U-Net might be able to reach and even surpass 

the performance of WAE-Net given the availability of large 

amount of labeled ground truth data. However, since the 

availability of large amounts of labeled data is often scarce 

in the biological EM field, we believe that our approach can 

lead to the rapid development of deep learning applications 

in this area.

Since our method reduces the labeling burden on biolo-

gists, it could be further adopted for the segmentation of 

various other structures in the field of biological image 

analysis, as well as for other types of microscopy modali-

ties. Apart from that, our approach can also be used with 

many other pre-trained networks not explored in this work. 

Therefore, WAE-Net can be easily customized to suit the 

individual segmentation needs of the biologists. As there is 

still room for improvement in terms of segmentation perfor-

mance for very small datasets, further pursuit in the direction 

of this study would be worthwhile. Finally, we believe that 

the integration of this tool into the morphological analysis of 

images could help biologists to have a deeper understanding 

of disease mechanisms as well as help expand the impact of 

artificial intelligence in the biological domain.
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8. Conclusion and Future Outlook 

 

Novel technologies, significant instrumentation improvements, and advances in specimen 

preparation methods have enabled rapid developments in EM field (Assaiya et al. 2021; Flannigan 

et al. 2010; Fernandez-Leiro, Scheres 2016). This has given rise to the production of considerably 

larger volumes of electron microscopy data in recent years (Yury et al. 2019; Yilai et al 2020). 

However, analysis and quantification of these data are still being predominantly performed in a 

manual manner which creates a massive workload for scientist and practitioners. Recently, DL-

based techniques have demonstrated success in the automated analysis of EM images in a wide 

variety of computer vision tasks such as image classification, detection, segmentation, generation, 

and restoration (Ede 2021). In this work, we focused on the development of DL-based methods 

for the objective analysis and quantification of biological structures in EM images. DL methods 

generally require a large amount of labelled ground truth data for efficient model learning, which 

in turn requires expensive and time-consuming labeling efforts. To alleviate this issue, in this 

thesis, we proposed DL techniques that enable efficient model learning with just small labelled 

EM training datasets. A brief conclusion of the work undertaken in this thesis, as well as future 

research outlook is presented as follows.  

8.1 Conclusion 

 

In [SD-1] (Chapter 5), we proposed a method for the automatic detection of human 

cytomegalovirus nucleocapsids in TEM images. We utilized the concept of transfer learning to 

leverage models pre-trained on real-world common images. The models were adapted to work on 

our capsid detection task by employing knowledge transfer of features. Two types of transfer 

learning techniques were investigated to determine the feasibility of this method for our data. Our 

experimental results show that transfer learning enabled efficient model performance with only a 

small dataset of labelled ground truth data.  This technique was then developed as a standalone 

application for HCMV viral particle detection in the Central Facility of Electron Microscopy, Ulm 

University, to be used by in-house biologists and virologists.  
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In [SD-2] (Chapter 6), we extended this approach for the automated detection of three types of 

human cytomegalovirus secondary envelopment stages in TEM images. A synthetic TEM image 

generation method was proposed for data augmentation as a means of increasing training data size 

and diversity. A generative adversarial network (GAN) was used to achieve this. As manual 

labeling of ground truth data is a rather time-consuming and tedious task, automated self-labeling 

was incorporated with synthetic image generation for fast and efficient ground truth generation. A 

DL-based detector was then trained with both real ground truth data and synthetic images for the 

envelopment stages detection. We showed that the addition of synthetic images to the original 

ground truth dataset resulted in a significant increase in model performance. This reduces the need 

for unaffordable data labeling efforts.    

 

Moreover, in [SD-3] (Chapter 7), we dealt with the challenging task of segmenting a variety of 

biological structures in both TEM and SEM images. Our weighted average ensemble model 

combines predictions from multiple pre-trained DL networks for the multi-class segmentation of 

EM images. Using this method, we were able to segment the cytoplasm, chromosomes, 

mitochondria, and nuclei using only small labelled ground truth datasets and generalize well on 

unseen images. The proposed method significantly outperformed the standard single model 

approach yielding performance almost similar to expert labeling. In order to increase model 

transparency and interpretability, we incorporated the gradient-weighted class activation 

mapping (Grad-CAM) technique into this work. This technique is able to visually indicate regions 

in an image that were important for the prediction of a certain segmentation class, thereby 

increasing user trust.  

8.2 Future outlook 

8.2.1 Semi-supervised and unsupervised learning 

 

DL methods are generally data-expensive and require huge manual labeling efforts. In this thesis, 

we have introduced techniques to reduce these limitations [SD-1], [SD-2] and [SD-3] (Devan et 

al. 2019; Shaga Devan et al. 2021, 2022). Unsupervised and semi-supervised learning is another 

potential solution for this issue as they require very little to no labelled ground truth data. However, 
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their application in biological EM is rather limited. Despite this, we believe that unsupervised and 

semi-supervised learning is a fruitful approach that requires further work.  

8.2.2 Explainability, interpretability, and transparency 

 

Most machine learning models, such as deep neural networks are black boxes, meaning that it is 

extremely difficult for humans to comprehend how variables are combined to make the final 

predictions (Rudin 2019). However, recent events have revealed that a lack of transparency, 

interpretability, and explainability in deep learning models can lead to severe consequences for its 

users. Therefore, there has been a rising interest in efforts to improve the interpretability, 

explainability, and transparency of machine learning models (Doshi-Velez and Kim 2017; Lipton 

2017; Chakraborty et al. 2017; Meng et al. 2022; Li et al. 2022).  

 

Explainability indicates the degree to which a model can provide clarity for its predictions, while 

transparency is the degree to which a model reveals information about its inner workings (Belle 

and Papantonis, 2021). Model interpretability is a combination of both explainability and 

transparency and is the degree to which a human can understand the cause of a prediction (Miller 

2019). In the biological field, interpretable models are highly desirable to build trust between the 

user and the model and to enable researchers and practitioners to make a better judgment of the 

trustworthiness of the model based on their expert knowledge (Sheu 2020). Apart from that, model 

interpretation helps to improve human understanding of data and algorithm interaction, thereby 

giving rise to the development of better models.  Interpretability is highly critical for researchers 

and developers to explain their models and understands the value and accuracy of their findings 

and subsequently perform better model validation. This also enables the development of fair and 

ethical decision-making models (Leilani et al. 2018).  

 

In order to contribute to a more ethical and fairer AI movement, we have incorporated an 

interpretable decision-making component into our segmentation model in [SD-3] (Shaga Devan et 

al. 2022). This enables scientists and practitioners to have a better understanding of DL model’s 

prediction and evaluate the trustworthiness of the model. As fairness and ethics are becoming an 
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integral part of machine learning model development, further research in this area will be highly 

beneficial to science and society.  

8.2.3 Synthetic data generation 

 

Scarcity of EM training images is a major deterrent to the development of DL applications in 

biology. Although large volumes of images are produced due to advances in the image acquisition 

process, collecting and curating these datasets is difficult due to data copyright, privacy and 

ownership issues. Therefore, the generation of synthetic EM images could help reduce this 

problem. Generative models have typically been used to generate synthetic images with 

astonishing results (Karras, Laine and Aila 2019; Brock, Donahue, Simonyan 2018; Ramesh et al. 

2021). We have demonstrated the effectiveness of this method for the automatic detection of viral 

particles in [SD-2] (Shaga Devan et al. 2021). Synthetic data generation warrants further research 

for the rapid application of DL based automated computer vision tasks in biological EM.  

8.2.4 Vision transformer-based methods 

 

Recently, vision transformers have emerged as a powerful competitor to convolutional neural 

networks for computer vision tasks. They are based on the working nature of transformer structures 

used in the field of natural language processing (Dosovitskiy et al. 2020). Generally, the 

transformer learns by measuring relationship between input token pairs. In computer vision, 

patches of images are taken as the token and the relationship is learned by attention in the network 

(Dosovitskiy et al. 2020). In biology, vision transformers have yet to outperform DL techniques. 

Despite this, vision transformers have shown huge potential in the medical field (He et al. 2022) 

and many research works are currently being carried out to realize their full potential in biology.  
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Supplementary Material 

 

Coding for the methods described in our work 

Model: CNN-TFS 

 
 
import datetime 
import keras 
import os 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
import matplotlib.pyplot as plt 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from keras.metrics import categorical_crossentropy 
from sklearn.metrics import confusion_matrix, classification_report 
import itertools 
from sklearn.metrics import roc_curve, auc 
 
plt.style.use('ggplot') 
 
 
batch_size = 16  
numEpochs = 100 
img_width, img_height = 52, 52 
model_architecture = 'convnet_4' 
 
data_dir = 'data/training-patches_latest' 
nb_train_samples = 13008  
nb_validation_samples = 3248  
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
if K.image_data_format() == 'channels_first': 
    input_shape = (3, img_width, img_height) 
else: 
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    input_shape = (img_width, img_height, 3) 
         
model = Sequential() 
model.add(Conv2D(32, (3, 3), input_shape=input_shape)) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
model.add(Conv2D(32, (3, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
model.add(Conv2D(64, (3, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
model.add(Conv2D(64, (3, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
model.add(Flatten()) 
model.add(Dense(64)) 
model.add(Activation('relu')) 
 
model.add(Dropout(0.5)) 
model.add(Dense(1)) 
model.add(Activation('sigmoid')) 
 
model.compile(loss='binary_crossentropy', 
                  optimizer='adam', 
                  metrics=['accuracy']) 
 
 
 
# serialize model to YAML - yaml file is used for object detection 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
 
# this is the augmentation configuration we will use for training 
train_datagen = ImageDataGenerator( 
    rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
# this is the augmentation configuration we will use for testing: 
# only rescaling 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
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    train_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary', shuffle=False) 
 
 
 
 
history = model.fit_generator( 
          train_generator, 
          steps_per_epoch=nb_train_samples // batch_size, 
          epochs=numEpochs, 
          validation_data=validation_generator, 
          validation_steps=nb_validation_samples // batch_size) 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 

 

 

Model : VGG16-FE 
 
 
from keras.applications import VGG16 
 
import datetime 
import keras 
import os 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
import matplotlib.pyplot as plt 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from keras.metrics import categorical_crossentropy 
from sklearn.metrics import confusion_matrix, classification_report 
from keras.applications.vgg16 import VGG16 
from keras.applications.resnet50 import ResNet50 
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import itertools 
from sklearn.metrics import roc_curve, auc 
from keras import models 
from keras import layers 
 
 
numEpochs = 100 
batch_size = 16 
img_width, img_height = 150, 150 
model_architecture = 'vgg-fe' 
 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
 
data_dir = 'data/training-patches_latest' 
nb_train_samples = 13008 
nb_validation_samples = 3248 
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
 
conv_base = VGG16(weights='imagenet',include_top=False,input_shape=(150, 
150, 3)) 
#conv_base.summary() 
 
 
model = models.Sequential() 
model.add(conv_base) 
model.add(layers.Flatten()) 
model.add(layers.Dense(256, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(layers.Dense(1, activation='sigmoid')) 
 
#model.summary() 
 
#print('This is the number of trainable weights '      'before freezing 
the conv base:', len(model.trainable_weights)) 
 
conv_base.trainable = False 
 
#print('This is the number of trainable weights '       'after freezing 
the conv base:', len(model.trainable_weights)) 
 
train_datagen = ImageDataGenerator( 
    rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
# this is the augmentation configuration we will use for testing: 
# only rescaling 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
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train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary', shuffle=False) 
 
 
 
 
 
model.compile(loss='binary_crossentropy', 
                  optimizer=optimizers.RMSprop(lr=2e-5), 
                  metrics=['accuracy'])  
 
# serialize model to YAML - yaml file is used for object detection 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
 
history = model.fit_generator( 
        train_generator, 
        steps_per_epoch=nb_train_samples // batch_size, 
        epochs=numEpochs, 
        validation_data=validation_generator, 
        validation_steps=nb_validation_samples // batch_size) 
 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
 

 

 

Model: InceptionV3-FE 
 
import datetime 
import keras 
import os 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
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from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.applications.resnet50 import ResNet50 
from keras.applications.vgg16 import VGG16 
from keras.models import Model 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
import matplotlib.pyplot as plt 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from keras.metrics import categorical_crossentropy 
from sklearn.metrics import confusion_matrix, classification_report 
import itertools 
from sklearn.metrics import roc_curve, auc 
from keras import models 
from keras import layers 
 
 
numEpochs = 100 
batch_size = 16 
img_width, img_height = 299, 299 
model_architecture = 'inception-fe' 
 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
 
data_dir = 'data/training-patches_latest' 
nb_train_samples = 13008 
nb_validation_samples = 3248#647#1302  
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
#conv_base.summary() 
conv_base = InceptionV3(weights='imagenet', include_top=False, 
input_shape=(299, 299, 3)) 
 
 
model = models.Sequential() 
model.add(conv_base) 
model.add(layers.Flatten()) 
model.add(layers.Dense(256, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(layers.Dense(1, activation='sigmoid')) 
 
#model.summary() 
 
 
#print('This is the number of trainable weights before freezing the conv 
base:', len(model.trainable_weights)) 
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conv_base.trainable = False 
 
#print('This is the number of trainable weights after freezing the conv 
base:', len(model.trainable_weights)) 
 
train_datagen = ImageDataGenerator( 
    rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
# this is the augmentation configuration we will use for testing: 
# only rescaling 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary', shuffle=False) 
 
 
model.compile(loss='binary_crossentropy', 
                  optimizer=optimizers.RMSprop(lr=2e-5), 
                  metrics=['accuracy'])  
 
# serialize model to YAML - yaml file is used for object detection 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
 
history = model.fit_generator( 
        train_generator, 
        steps_per_epoch=nb_train_samples // batch_size, 
        epochs=numEpochs, 
        validation_data=validation_generator, 
        validation_steps=nb_validation_samples // batch_size) 
 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
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Model: ResNet50-FE 
 
 
import datetime 
import keras 
import os 
import sys 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
import matplotlib.pyplot as plt 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
from keras.applications.resnet50 import ResNet50 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from sklearn.metrics import confusion_matrix, classification_report 
from keras.applications.inception_v3 import InceptionV3 
from keras.callbacks import ModelCheckpoint 
from keras.callbacks import TensorBoard 
import os.path 
 
from sklearn.metrics import roc_curve, auc 
plt.style.use('ggplot') 
 
 
 
data_dir = 'data/training-patches_latest' 
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
model_architecture = 'Resnet-FE' 
 
numEpochs = 100 
img_width, img_height = 224, 224  # change based on the shape/structure of 
your images 
batch_size = 16  # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU 
memory capacity (powers of 2 values). 
nb_train_samples = 13008 
nb_validation_samples = 3248 
top_model_wt_path = "cl_model.h5" 
 
top_layers_checkpoint_path = 'cp.feature_resnet-fe.hdf5' 
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#fine_tuned_checkpoint_path = 'cp.fine_tuned.best_inception_dt_165.hdf5' 
 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
  
input_tensor = Input(shape=(224, 224, 3))  # this assumes 
K.image_data_format() == 'channels_last' 
 
    # create the base pre-trained model 
base_model = 
ResNet50(input_tensor=input_tensor,weights='imagenet',include_top=False) 
 
 
 
x = base_model.output 
x = GlobalAveragePooling2D(data_format='channels_last')(x) 
x = Dense(1, activation='sigmoid')(x) 
 
model = Model(base_model.input, x) 
 
for layer in base_model.layers: 
    layer.trainable=False  
 
 
# serialize model to YAML 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
model.compile(optimizer='rmsprop', loss='binary_crossentropy', 
metrics=['accuracy']) 
     
   
     
train_datagen = ImageDataGenerator(   
rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
test_datagen = ImageDataGenerator() 
 
train_generator = train_datagen.flow_from_directory( 
      train_data_dir, 
      target_size=(img_width, img_height), 
      batch_size=batch_size, 
      class_mode='binary', shuffle=True) 
 
validation_generator = test_datagen.flow_from_directory( 
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      validation_data_dir, 
      target_size=(img_width, img_height),batch_size=batch_size, 
      class_mode='binary', shuffle=True ) 
 
mc_top = ModelCheckpoint(top_layers_checkpoint_path, monitor='val_acc', 
verbose=0, save_best_only=True) 
 
print("start history model") 
 
history = model.fit_generator( 
      train_generator, 
      steps_per_epoch=nb_train_samples // batch_size, 
      epochs=numEpochs, 
      validation_data=validation_generator, 
      validation_steps=nb_validation_samples // batch_size, 
callbacks=[mc_top]) 
 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
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Model: VGG16-FT 
 
 
import datetime 
import keras 
import os 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
import matplotlib.pyplot as plt 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
 
 
#model_architecture = 'vgg16-ft' # vgg16 requires the number of samples to 
be a multiple of batch_size 
 
numEpochs = 100 
batch_size = 16 
 
 
data_dir = 'data/training-patches_merged' 
nb_train_samples = 13008 
nb_validation_samples = 3248 
 
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
 
def createModelVGG16(img_width, img_height): 
 
    def save_bottleneck_features(): 
        datagen = ImageDataGenerator(rescale=1 / 255) 
     
        # build the vgg16 model 
        model = applications.VGG16(include_top=False, weights='imagenet') 
     
        generator = datagen.flow_from_directory(train_data_dir, 
target_size=(img_width, img_height), shuffle=False, class_mode=None, 
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                                                batch_size=batch_size)  # 
class_mode=None means our data will only yield 
        # batches of data, no labels, shuffle=False means our data will be 
in order  
     
        # generates predication for a generator. Steps: total no of 
batches. Returns a numpy array of predictions 
        bottleneck_features_train = 
model.predict_generator(generator=generator, steps=nb_train_samples // 
batch_size) 
        # saves an array to a binary file 
        np.save(file='models/vgg16_tt' + timeStamp + 
'_bottleneck_features_train.npy', arr=bottleneck_features_train) 
     
        generator = datagen.flow_from_directory(validation_data_dir, 
target_size=(img_width, img_height), batch_size=batch_size, 
                                                class_mode=None, 
shuffle=False) 
        bottleneck_features_validation = 
model.predict_generator(generator, nb_validation_samples // batch_size) 
        np.save(file='models/vgg16_tt' + timeStamp + 
'_bottleneck_features_validate.npy', arr=bottleneck_features_validation) 
     
    def train_top_model(): 
        train_data = np.load(file='models/vgg16_tt' + timeStamp + 
'_bottleneck_features_train.npy') 
        train_labels = np.array([0] * (nb_train_samples // 2) + [1] * 
(nb_train_samples // 2)) #np.empty_like(train_data)# 
     
        validation_data = np.load(file='models/vgg16_tt' + timeStamp + 
'_bottleneck_features_validate.npy') 
        validation_labels = np.array([0] * (nb_validation_samples // 2) + 
[1] * (nb_validation_samples // 2))#= np.empty_like(validation_data)# 
     
        model = Sequential() 
        model.add(Flatten(input_shape=train_data.shape[1:]))  # don't need 
to tell batch size in input shape 
        model.add(Dense(256, activation='relu')) 
        model.add(Dropout(0.5)) 
        model.add(Dense(1, activation='sigmoid')) 
     
        model.compile(optimizer='rmsprop', 
                      loss='binary_crossentropy', metrics=['accuracy']) 
     
        model.fit(train_data, train_labels, 
                  epochs=numEpochs, 
                  batch_size=batch_size, 
                  validation_data=(validation_data, validation_labels)) 
        model.save_weights('models/vgg16_tt' + timeStamp + 
'_prefinetuning.h5') 
     
         
    save_bottleneck_features() 
    train_top_model() 
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    # build the VGG16 network 
    base_model = applications.VGG16(weights='imagenet', include_top=False, 
input_shape=(150,150,3)) 
     
    # build a classifier model to put on top of the convolutional model 
    top_model = Sequential() 
    top_model.add(Flatten(input_shape=base_model.output_shape[1:])) 
    top_model.add(Dense(256, activation='relu')) 
    top_model.add(Dropout(0.5)) 
    top_model.add(Dense(1, activation='sigmoid')) 
     
    # note that it is necessary to start with a fully-trained 
    # classifier, including the top classifier, 
    # in order to successfully do fine-tuning 
    top_model.load_weights('models/vgg16_tt' + timeStamp + 
'_prefinetuning.h5') 
     
    # add the model on top of the convolutional base 
    # model.add(top_model) 
    model = Model(inputs=base_model.input, 
outputs=top_model(base_model.output)) 
     
    # set the first 25 layers (up to the last conv block) 
    # to non-trainable (weights will not be updated) 
    for layer in model.layers[:15]: 
        layer.trainable = False 
         
        # compile the model with a SGD/momentum optimizer 
    # and a very slow learning rate. 
    model.compile(loss='binary_crossentropy', 
                  optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), 
                  metrics=['accuracy'])     
    return model 
 
 
# set parameters and build architecture for desired model 
if model_architecture == 'vgg16-ft': 
    img_width, img_height = 150, 150 
    model = createModelVGG16(img_width, img_height) 
 
# serialize model to YAML 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
 
# this is the augmentation configuration we will use for training 
train_datagen = ImageDataGenerator( 
    rescale = 1.0 / 255, 
    shear_range=0.2, 
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    zoom_range=0.2, 
    horizontal_flip=True) 
 
# this is the augmentation configuration we will use for testing: 
# only rescaling 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
model.fit_generator( 
    train_generator, 
    steps_per_epoch=nb_train_samples // batch_size, 
    epochs=numEpochs, 
    validation_data=validation_generator, 
    validation_steps=nb_validation_samples // batch_size) 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
 
 
 

 

Model: InceptionV3 - FT  
 
 
 
import datetime 
import keras 
import os 
import sys 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
import matplotlib.pyplot as plt 
from keras.utils.data_utils import get_file 
from keras import optimizers 
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from keras import backend as K 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from sklearn.metrics import confusion_matrix, classification_report 
from keras.applications.inception_v3 import InceptionV3 
from keras.callbacks import ModelCheckpoint 
from keras.callbacks import TensorBoard 
import os.path 
 
from sklearn.metrics import roc_curve, auc 
plt.style.use('ggplot') 
 
 
 
data_dir = 'data/training-patches_latest' 
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
numEpochs = 100 
img_width, img_height = 299, 299  # change based on the shape/structure of 
your images 
batch_size = 16  # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU 
memory capacity (powers of 2 values). 
nb_train_samples = 13008 
nb_validation_samples = 3248 
top_model_wt_path = "cl_model.h5" 
 
 
top_layers_checkpoint_path = 'cp.top.best.hdf5' 
fine_tuned_checkpoint_path = 'cp.fine_tuned.best.hdf5' 
 
 
 
 
 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
model_architecture = 'InceptionV3-FT' 
 
 
 
 
# create the base pre-trained model 
base_model = InceptionV3(weights='imagenet', include_top=False) 
 
# add a global spatial average pooling layer 
x = base_model.output 
x = GlobalAveragePooling2D()(x) 
# let's add a fully-connected layer 
x = Dense(1024, activation='relu')(x) 
# and a logistic layer -- let's say we have 200 classes 
predictions = Dense(1, activation='sigmoid')(x) 
 
 
 
# this is the model we will train 
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model = Model(inputs=base_model.input, outputs=predictions) 
 
 
 
 
# first: train only the top layers (which were randomly initialized) 
# i.e. freeze all convolutional InceptionV3 layers 
for layer in base_model.layers: 
    layer.trainable = False 
     
     
# serialize model to YAML 
model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
     
# compile the model (should be done *after* setting layers to non-
trainable) 
model.compile(optimizer='rmsprop', loss='binary_crossentropy', 
metrics=['accuracy']) 
 
 # this is the augmentation configuration we will use for training 
train_datagen = ImageDataGenerator( 
rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
     
 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
            train_data_dir, 
            target_size=(img_width, img_height), 
            batch_size=batch_size, 
            class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
            validation_data_dir, 
            target_size=(img_width, img_height), 
            batch_size=batch_size, 
            class_mode='binary', shuffle=False) 
 
mc_top = ModelCheckpoint(top_layers_checkpoint_path, monitor='val_acc', 
verbose=0, save_best_only=True) 
 
#Save the TensorBoard logs. 
#tb = TensorBoard(log_dir='./logs', histogram_freq=1, write_graph=True, 
write_images=True) 
 
model.fit_generator( 
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          train_generator, 
          steps_per_epoch=nb_train_samples // batch_size, 
          epochs=numEpochs, 
          validation_data=validation_generator, 
          validation_steps=nb_validation_samples // batch_size, 
callbacks=[mc_top]) 
 
 
# let's visualize layer names and layer indices to see how many layers 
# we should freeze: 
#for i, layer in enumerate(base_model.layers): 
   #print(i, layer.name) 
    
    
mc_fit = ModelCheckpoint(fine_tuned_checkpoint_path, monitor='val_acc', 
verbose=0, save_best_only=True) 
 
 
# we chose to train the top 2 inception blocks, i.e. we will freeze 
# the first 249 layers and unfreeze the rest: try 229, 197, 165 
for layer in model.layers[:249]: 
   layer.trainable = False 
for layer in model.layers[249:]: 
   layer.trainable = True 
    
# we need to recompile the model for these modifications to take effect 
# we use SGD with a low learning rate 
from keras.optimizers import SGD 
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), 
loss='binary_crossentropy', metrics=['accuracy']) 
 
 
history = model.fit_generator( 
          train_generator, 
          steps_per_epoch=nb_train_samples // batch_size, 
          epochs=numEpochs, 
          validation_data=validation_generator, 
          validation_steps=nb_validation_samples // batch_size, 
callbacks=[mc_fit]) 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
 
 
 

 

 

Model: ResNet50-FT 
 
""" 
 
import datetime 
import keras 
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import os 
import numpy as np 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import ZeroPadding2D, AveragePooling2D 
from keras.layers import Dense, Dropout, Activation, Flatten, 
BatchNormalization, Input 
from keras.layers import GlobalAveragePooling2D 
from keras.applications.inception_v3 import InceptionV3 
from keras.models import Model 
from keras.utils.data_utils import get_file 
from keras import optimizers 
from keras import backend as K 
import matplotlib.pyplot as plt 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from sklearn.metrics import confusion_matrix, classification_report 
from sklearn.metrics import roc_curve, auc 
 
plt.style.use('ggplot') 
 
 
model_architecture = 'Resnet-FT' #  
numEpochs = 100 
batch_size = 16 
img_width, img_height = 224, 224 
 
 
data_dir = 'data/training-patches_latest' 
nb_train_samples = 13008 
nb_validation_samples = 3248 
train_data_dir = data_dir + '/train' 
validation_data_dir =  data_dir + '/validation' 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
 
 
def createModelResnetFT(img_width, img_height): 
 
    def save_bottleneck_features(): 
        datagen = ImageDataGenerator(rescale=1 / 255) 
     
        # build the model 
        model = applications.ResNet50(include_top=False, 
weights='imagenet',input_shape=(224, 224, 3)) 
     
        generator = datagen.flow_from_directory(train_data_dir, 
target_size=(img_width, img_height), shuffle=False, class_mode=None, 
                                                batch_size=batch_size)  # 
class_mode=None means our data will only yield 
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        # batches of data, no labels, shuffle=False means our data will be 
in order  
     
        # generates predication for a generator. Steps: total no of 
batches. Returns a numpy array of predictions 
        bottleneck_features_train = 
model.predict_generator(generator=generator, steps=nb_train_samples // 
batch_size) 
        # saves an array to a binary file 
        np.save(file='models/resnet-ft_tt' + timeStamp + 
'_bottleneck_features_train.npy', arr=bottleneck_features_train) 
     
        generator = datagen.flow_from_directory(validation_data_dir, 
target_size=(img_width, img_height), batch_size=batch_size, 
                                                class_mode=None, 
shuffle=False) 
        bottleneck_features_validation = 
model.predict_generator(generator, nb_validation_samples // batch_size) 
        np.save(file='models/resnet-ft_tt' + timeStamp + 
'_bottleneck_features_validate.npy', arr=bottleneck_features_validation) 
     
    def train_top_model(): 
        train_data = np.load(file='models/resnet-ft_tt' + timeStamp + 
'_bottleneck_features_train.npy') 
        train_labels = np.array([0] * (nb_train_samples // 2) + [1] * 
(nb_train_samples // 2)) #np.empty_like(train_data)# 
     
        validation_data = np.load(file='models/resnet-ft_tt' + timeStamp + 
'_bottleneck_features_validate.npy') 
        validation_labels = np.array([0] * (nb_validation_samples // 2) + 
[1] * (nb_validation_samples // 2))#= np.empty_like(validation_data)# 
     
        model = Sequential() 
        model.add(Flatten(input_shape=train_data.shape[1:]))  # don't need 
to tell batch size in input shape 
        model.add(Dense(256, activation='relu')) 
        model.add(Dropout(0.5)) 
        model.add(Dense(1, activation='sigmoid')) 
     
        model.compile(optimizer='rmsprop', 
                      loss='binary_crossentropy', metrics=['accuracy']) 
     
        model.fit(train_data, train_labels, 
                  epochs=numEpochs, 
                  batch_size=batch_size, 
                  validation_data=(validation_data, validation_labels)) 
        model.save_weights('models/resnet-ft_tt' + timeStamp + 
'_prefinetuning.h5') 
     
         
    save_bottleneck_features() 
    train_top_model() 
     
    # build the network 



 20 

    base_model = applications.ResNet50(weights='imagenet', 
include_top=False, input_shape=(224,224,3)) 
     
    # build a classifier model to put on top of the convolutional model 
    top_model = Sequential() 
    top_model.add(Flatten(input_shape=base_model.output_shape[1:])) 
    top_model.add(Dense(256, activation='relu')) 
    top_model.add(Dropout(0.5)) 
    top_model.add(Dense(1, activation='sigmoid')) 
     
    # note that it is necessary to start with a fully-trained 
    # classifier, including the top classifier, 
    # in order to successfully do fine-tuning 
    top_model.load_weights('models/resnet-ft_tt' + timeStamp + 
'_prefinetuning.h5') 
     
    # add the model on top of the convolutional base 
    # model.add(top_model) 
    model = Model(inputs=base_model.input, 
outputs=top_model(base_model.output)) 
     
    model.trainable = True 
 
    set_trainable = False 
    for layer in model.layers: 
        if layer.name == 'res4a_branch2a': 
            set_trainable = True 
        if set_trainable: 
            layer.trainable = True 
       else: 
           layer.trainable = False 
     
     
     
     
    # set the first 25 layers (up to the last conv block) 
    # to non-trainable (weights will not be updated) 
     
     
    #for layer in model.layers[:249]: 
        #layer.trainable = False 
         
        # compile the model with a SGD/momentum optimizer 
    # and a very slow learning rate. 
    model.compile(loss='binary_crossentropy', 
                  optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), 
                  metrics=['accuracy'])     
    return model 
 
 
     
model = createModelResnetFT(img_width, img_height) 
 
# serialize model to YAML 
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model_yaml = model.to_yaml() 
if not os.path.exists('models/'): 
    os.makedirs('models/') 
with open('models/' + model_architecture + '_tt' + timeStamp + '.yaml', 
'w') as yaml_file: 
    yaml_file.write(model_yaml) 
 
 
# this is the augmentation configuration we will use for training 
train_datagen = ImageDataGenerator( 
    rescale = 1.0 / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
# this is the augmentation configuration we will use for testing: 
# only rescaling 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary') 
 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='binary', shuffle=False) 
 
 
history = model.fit_generator( 
        train_generator, 
        steps_per_epoch=nb_train_samples // batch_size, 
        epochs=numEpochs, 
        validation_data=validation_generator, 
        validation_steps=nb_validation_samples // batch_size) 
 
model.save_weights('models/' + model_architecture + '_tt' + timeStamp + 
'.h5') 
 
 
 
 

 

 

 

Sliding window detection 
 
import datetime 
import csv 
import glob 
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import imageio 
import matplotlib.pyplot as plt 
import numpy as np 
import os 
import sys 
import time 
from keras.models import model_from_yaml 
from PIL import Image, ImageDraw 
from scipy import ndimage 
from scipy.ndimage.interpolation import zoom 
from skimage import measure 
from skimage import morphology 
from skimage.transform import resize 
from skimage.feature import peak_local_max 
from skimage.filters import threshold_otsu 
from skimage.morphology import watershed 
 
# timestamp as string used to name output files of the current run 
timeStamp = datetime.datetime.now().strftime("%y%m%d-%H%M") 
 
def drawMarkerFilled(arr2, posX, posY, size, increment): 
    for x in range(size): 
        for y in range(size): 
            if (posX+x < arr2.shape[0] and posY+y < arr2.shape[1]): 
                if (arr2[posX+x,posY+y] < 255-increment): 
                    arr2[posX+x,posY+y] += increment 
 
 
# classify image patch contained in area 
# do not call directly, called from classifyImage 
def classifyPatch(model, patch, patchScale): 
    patch = zoom(patch, (patchScale[0], patchScale[1], 1.0), order=1) 
    patch = np.expand_dims(patch, axis=0) 
    #plt.imshow(patch) 
    #Image.resize(size, resample=0) 
 
    #print(patch.shape) 
    #print(str(patchScale[0]) + ";") 
    #print(patchScale[1]) 
    #print(type(patch)) 
    #patch = resize(patch, (52, 52)) 
    #patch = np.kron(patch, np.ones((52,52))) 
    preds = model.predict(patch, 32, 0) 
    return preds[0,0] 
 
 
# classify entire image by splitting into patches 
# do not call directly, called from classifyDirectory 
def classifyImage(inputDirectory, resultDirectory, inputImage, myModel, 
patchWidth, patchHeight, model_input_width, model_input_height, offset, 
csvWriter): 
    inputArray = imageio.imread(inputDirectory + '/' + inputImage) 
    # if image is gray scale only, convert to RGB 
    if (inputArray.ndim == 2): 
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        rgbArray = np.zeros((inputArray.shape[0], inputArray.shape[1], 3), 
'uint8') 
        rgbArray[..., 0] = inputArray[...] 
        rgbArray[..., 1] = inputArray[...] 
        rgbArray[..., 2] = inputArray[...] 
        inputArray = rgbArray 
     
    # scale image wrt magnification level 
    # 20, 25 (ref), 30, 40, 50, 60, 80, 100, 120, 150, 200, 250, 300 
    resizeFraction = 1.0 
    if (inputImage.count('300k') > 0): 
        resizeFraction = 25.0/300.0 
    elif (inputImage.count('250k') > 0): 
        resizeFraction = 25.0/250.0 
    elif (inputImage.count('200k') > 0): 
        resizeFraction = 25.0/200.0 
    elif (inputImage.count('150k') > 0): 
        resizeFraction = 25.0/150.0 
    elif (inputImage.count('120k') > 0): 
        resizeFraction = 25.0/120.0 
    elif (inputImage.count('100k') > 0): 
        resizeFraction = 25.0/100.0 
    elif (inputImage.count('80k') > 0): 
        resizeFraction = 25.0/80.0 
    elif (inputImage.count('60k') > 0): 
        resizeFraction = 25.0/60.0 
    elif (inputImage.count('50k') > 0): 
        resizeFraction = 25.0/50.0 
    elif (inputImage.count('40k') > 0): 
        resizeFraction = 25.0/40.0 
    elif (inputImage.count('30k') > 0): 
        resizeFraction = 25.0/30.0    
    elif (inputImage.count('25k') > 0): 
        resizeFraction = 25.0/25.0 
    elif (inputImage.count('20k') > 0): 
        resizeFraction = 25.0/20.0 
    else: 
        print('WARNING: ' + inputImage + ' has unknown magnification 
level!') 
    if (resizeFraction != 1.0): 
        zoomedArray = zoom(inputArray, (resizeFraction, resizeFraction, 
1.0), order=1) 
    else: 
        zoomedArray = inputArray 
    #plt.imshow(zoomedArray) 
     
    # initialize markerArray and mark object location in there 
    markerArray = np.empty((zoomedArray.shape[0], zoomedArray.shape[1])) 
    markerArray.fill(0) 
    patchScale = (model_input_width/patchWidth, 
model_input_height/patchHeight)  
    for i in range(markerArray.shape[0]): 
        #if (i % 100 == 0): 
            #sys.stdout.write('.') 
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            #sys.stdout.flush() 
        for j in range(markerArray.shape[1]): 
            if (i%offset == 0 and j%offset == 0): 
                if (i+patchWidth < markerArray.shape[0] and j+patchHeight 
< markerArray.shape[1]): 
                    patch = zoomedArray[i:i+patchWidth, j:j+patchHeight] 
                    probability = classifyPatch(myModel, patch, 
patchScale) 
                    if (probability > 0): 
                        sys.stdout.write(str(probability)  + '\n') 
                    sys.stdout.flush() 
 
                    if (probability == 1): 
                        drawMarkerFilled(markerArray, i, j, 52, 20) 
 
 
    #PARAMETERS: OFFSET + GAUSS + PEAKMAXIMADIST (=OFFSET?) 
    # GAUSSIAN DEPENDENT ON ZOOM? 
    #postprocess labels stored in markerArray 
    # apply Gaussian convolution 
    markerImage = Image.fromarray(markerArray) 
    markerArray = ndimage.gaussian_filter(markerImage, 9) 
    plt.imshow(markerArray) 
 
    if markerArray.min() != markerArray.max(): 
        # apply global Otsu threshold 
        val = threshold_otsu(markerArray) 
        maskArray = markerArray < val 
     
        # apply watershed transform 
        maskArray = np.invert(maskArray) 
        distanceArray = ndimage.distance_transform_edt(maskArray) 
        #plt.imshow(distanceArray) 
        localMaxi = peak_local_max(distanceArray, indices=False, 
footprint=np.ones((offset, offset)), labels=maskArray) 
        markers = morphology.label(localMaxi) 
        labelArray = watershed(-distanceArray, markers, mask=maskArray)     
        #plt.imshow(labelArray) 
     
        # analyze region properties, annotate images, and write 
coordinates to csv file 
        markerRadius = 50*round(1.0/resizeFraction); 
        properties = measure.regionprops(labelArray) 
        sys.stdout.write(' (' + str(len(properties)) + ' objects 
detected)\n') 
        sys.stdout.flush() 
        resultImage = Image.fromarray(inputArray)#.convert('RGB')    
        draw = ImageDraw.Draw(resultImage) 
        for property in properties: 
            centroidZoomed = property.centroid 
            centroid = (centroidZoomed[0] * round(1.0/resizeFraction), 
centroidZoomed[1] * round(1.0/resizeFraction)) 
            csvWriter.writerow([inputImage, str(centroid[0]), 
str(centroid[1])]) 
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            # draw circle 
            draw.ellipse((centroid[1]-markerRadius+2, centroid[0]-
markerRadius+2, centroid[1]+markerRadius+2, centroid[0]+markerRadius+2), 
outline=128) 
            draw.ellipse((centroid[1]-markerRadius+1, centroid[0]-
markerRadius+1, centroid[1]+markerRadius+3, centroid[0]+markerRadius+3), 
outline=128) 
            draw.ellipse((centroid[1]-markerRadius, centroid[0]-
markerRadius, centroid[1]+markerRadius, centroid[0]+markerRadius), 
outline=255) 
            draw.ellipse((centroid[1]-markerRadius-1, centroid[0]-
markerRadius-1, centroid[1]+markerRadius+1, centroid[0]+markerRadius+1), 
outline=255) 
        del draw 
         
        #resultImage.show() 
        resultImage.save(resultDirectory + '/' + inputImage[:-4]+'_m.png') 
    else: 
        sys.stdout.write(' (0 objects detected)\n') 
        sys.stdout.flush() 
     
     
# classify all images in the provided directory 
def classifyDirectory(inputDirectory, modelFileName, patchWidth, 
patchHeight, model_input_width, model_input_height, offset): 
    # load model architecture and weights 
    yamlFile = open(modelFileName + '.yaml', 'r') 
    yamlModel = yamlFile.read() 
    yamlFile.close() 
    myModel = model_from_yaml(yamlModel) 
    myModel.load_weights(modelFileName + ".h5") 
    myModel.compile(loss='binary_crossentropy', optimizer='rmsprop', 
metrics=['accuracy']) 
    print("Pre-trained model sucessfully loaded.") 
        
    scriptDirectory = os.getcwd() 
    os.chdir(inputDirectory) 
    fileList = glob.glob('*.png') 
    os.chdir("../") 
    modelName = modelFileName[modelFileName.rfind('/')+1:] 
    resultDirectory = 'automatic-annotations_' + modelName + '_ct' + 
timeStamp 
    if not os.path.exists(resultDirectory): 
        os.mkdir(resultDirectory)    
    os.chdir(resultDirectory) 
    resultDirectory = os.getcwd() 
    with open('centroid-list.csv', 'w', newline='') as csvfile: 
        csvWriter = csv.writer(csvfile, delimiter=';', quotechar='"', 
quoting=csv.QUOTE_MINIMAL) 
        curImage = 1; 
        start = time.clock()        
        os.chdir(scriptDirectory) 
        print(os.getcwd()) 
        for file in fileList: 
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            sys.stdout.write('Processing image ' + str(curImage) + ' from 
' + str(len(fileList)) + ' (' + file + ')') 
            sys.stdout.flush() 
            classifyImage(inputDirectory, resultDirectory, file, myModel, 
patchWidth, patchHeight, model_input_width, model_input_height, offset, 
csvWriter) 
            curImage = curImage + 1 
        duration = time.clock() - start; 
        print('Finished in ' + str(round(duration)) + ' seconds (' + 
str(round(duration/len(fileList))) + ' per image)') 
 
                       
#classifyDirectory('data/annotated-images_1708/original-images_png', 
'models/convnet_tt180114-1805', 52, 52, 52, 52, 10) 
#classifyDirectory('data/annotated-images_1708/original-images_png', 
'models/resnet_tt180114-1831', 52, 52, 224, 224, 10) 
#classifyDirectory('data/annotated-images_1708/original-images_png', 
'models/vgg16_tt180114-2023', 52, 52, 150, 150, 10) 
#classifyDirectory('data/annotated-images_1708/original-images_png', 
'models/inceptionv3_tt180114-1939', 52, 52, 299, 299, 10) 
 
 
classifyDirectory('data/test_images', 'models/vgg16-ft_tt180723-1020', 52, 
52, 150, 150, 20) 
 
#classifyDirectory('data/test_images', 'models/classification/resnet-
FT_tt180316-1257', 52, 52, 224, 224, 20) 
##classifyDirectory('data/annotated-images_1705/original-images_png', 
'models/resnet_tt180114-1831', 52, 52, 224, 224, 10) 
#classifyDirectory('data/annotated-images_1705/original-images_png', 
'models/vgg16_tt180114-2023', 52, 52, 150, 150, 10) 
#classifyDirectory('data/annotated-images_1705/original-images_png', 
'models/inceptionv3_tt180114-1939', 52, 52, 299, 299, 10) 
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secondary envelopment stages in electron microscopy by augmenting training 

data with synthetic labelled images generated by a generative adversarial 

network [SD-2] (Chapter 6) 

 

Shaga Devan K, Walther P, von Einem J, Ropinski T, Kestler HA, Read C. Improved automatic 
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training data with synthetic labelled images generated by a generative adversarial network. Cell 
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Supplementary Figure S1

This figure shows a capsid with both the ground truth bounding box (blue) and
the automatic predicted bounding box (orange). The overlap of these two
boxes represent the Interval over Union (IoU) overlap.



Supplementary Figure S2

Sample of synthetic generated images used as part of the training dataset for the Faster
R-CNN model. Column A shows the original ground truth images. Column B and C shows the
corresponding synthetic images at different scales.

<<<<<<<<<<<<<<<<<<
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Supplementary Figure S3

The left column shows expert labeled ground truth images and the right
column shows automatically detected HCMV capsids with confidence scores
in the validation images. N-Naked, B-Budding and E-Enveloped.













Supplementary Figure S4

This figure is supplementary to Figure 6. Validation image after (A) manual and
(B-D) automatic capsid detection for comparison of detection efficiencies.
Confidence scores in %. Manual detection was performed by a virologist,
automatic detection was performed by Faster R-CNN model trained with
different training datasets (B-D): (B) Model trained with only synthetic images,
(C) model trained with only ground truth image and (D) model trained with both,
ground truth and synthetic images. E: enveloped, B: budding, N: naked.

Expert detection Training with only synthetic images

Training with only ground truth images Training with ground truth and synthetic images

A

C

B

D
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segmentation in biological electron microscopy images [SD-3] (Chapter 7) 
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Supplementary Figure S1 

 

Representative test image from dataset 4. Bar 2µm 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input image Ground truth 

U-Net segmentation WAE-Net segmentation  



Representative test image from dataset 5. Bar 2µm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input image Ground truth 

U-Net segmentation WAE-Net segmentation  



Representative test image from dataset 6. Bar 2µm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input image Ground truth 

U-Net segmentation WAE-Net segmentation  



Representative test image from dataset 7. Bar 2µm 

 

 

 

 

 

 

Input image Ground truth 

U-Net segmentation WAE-Net segmentation  



Supplementary Figure S2 

 

 

 

 

 

 

 

 

 

 

 

 

ResNet34 InceptionV3 EfficientNet-B4 

Background 

Cytoplasm 

Chromosomes 

Representative Grad-CAM images from Dataset 2 



 

 

 

 

 

 

 

ResNet34 SeResNet34 EfficientNet-B4 

Background 

Cytoplasm 

Nucleus 

Representative Grad-CAM images from Dataset 3 

Mitochondria 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ResNet34 VGG19 EfficientNet-B4 

Background 

Cytoplasm 

Nucleus 

Representative Grad-CAM images from Dataset 4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ResNet34 InceptionV3 EfficientNet-B4 

Background 

Cytoplasm 

Nucleus 

Representative Grad-CAM images from Dataset 5 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representative Grad-CAM images from Dataset 6 

ResNet34 InceptionV3 EfficientNet-B4 

Background 

Cytoplasm 

Nucleus 



 

ResNet34 InceptionV3 VGG19 

Background 

Cytoplasm 

Nucleus 

Representative Grad-CAM images from Dataset 7 



The following pages show representative sections of all the model architectures used 

in the work. These model architectures are of large dimensions (average image 

height of 18943 pixels) and are best viewed in electronic format using large image 

viewer tools.  
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