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Abstract

The thesis at hand deals with recovery algorithms for the reconstruction of signals from noisy
and linearly compressed measurements. The procedure of linearly compressing a signal with
known structure is known as compressed sensing (CS); the recovery is possible under certain
conditions.

Meanwhile, there is a number of algorithms that are designed for this kind of task; each
with own bene�ts and drawbacks. The thesis focuses on algorithms that can be derived from
a suitable processing in a factor graph, which embodies the structural dependencies of the CS
problem. This approach already leads to a variety of algorithms.

The most compartmentalized factorization leads to a form of the factor graph from which
the so-called message passing (MP) algorithm can be derived. The opposite case, a factor-
ization with fewest possible factors results in a graph with two factors, yielding Turbo-type
algorithms that iterate between those two factors. In the thesis, both types of algorithms are
derived from the respective factor graph by constrained optimization of the Kullback–Leibler
divergence between the posterior and a suitably adapted substitute distribution, i.e., the re-
spective algorithms are reconciled as instances of the same basic idea.

The thesis also comprises sequential algorithms, which are derived from factorizations of
the problem that lie in between the two extreme cases explained above. The resulting algo-
rithms can be seen as sequentialized versions of the Turbo-type algorithms. There are two pos-
sibilities. One way to sequentialize the algorithm is by iterating through the measurements;
the other is to iterate through the signal components (additionally to iterating between the
two main parts). The sequentialization allows for various schedules, which are examined in
numerical simulations.

Furthermore, an estimation-theoretic view is cast on the processing between the factors.
The result reveals possibilities for improvement of the algorithms. Several variants of the
algorithms are proposed and compared in numerical simulations.
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1

1. Introduction and Outline

Compressed sensing (a.k.a. compressive sampling) [CRT06, Don06] denotes the strategy of
simplifying the compression procedure at the point where data is acquired, at the cost of
higher e�ort for reconstruction of the signal at a receiving point. Hence, the strategy is in
need for suitable algorithms that recover the signal as exact as possible with least possible
expense.

Starting with `1-minimization1 [CRT06], which is a convex relaxation of the problem but
still has relatively high complexity, the journey of possible reconstruction algorithms went
over so-called greedy algorithms such as orthogonal matching pursuit (OMP) [PRK93] and
compressive sampling matching pursuit (CoSaMP) [NT09], which successively build a support
set for the recovered signal, to iterative algorithms. Both, greedy and iterative algorithms re-
duce the computational complexity compared to `1-minimization. For the iterative algorithms,
there is to mention iterative hard thresholding (IHT) [BD09] and iterative soft thresholding
(IST) [DDD04], which both iterate between the solution of the linear system of equations ob-
tained from the (noisy) compressed measurements—we denote this as the channel-constrained
part—and a solution that follows a given signal structure—denoted as signal-constrained part—
the di�erence being the way of adjusting to the signal structure. While being much simpler
than `1-minimization, the recovery performance of these initial iterative algorithms su�ered.

A huge step in terms of recovery performance was made with the invention of approxi-
mate message passing (AMP) [DMM09, Mal11] without increasing the complexity signi�cantly
compared to the other iterative algorithms. One step more complex and more robust to vari-
ous compression scenarios is the so-called vector approximate message passing (VAMP) [RSF19]
algorithm. The eponymous message-passing approach is an inference technique that is widely
used in communications engineering, for example in the decoding of error-correcting codes
such as low-density parity-check (LDPC) codes [Gal62] and Turbo codes [BGT93, HOP96].
Message passing (MP) usually works on graphical models, such as factor graphs [KFL01, Loe04],
that represent the structure of the problem in detail, leading to messages being passed on the
many edges in the graph, thereby creating the name. On the contrary, both, the AMP and the

1Usually performed by the simplex algorithm [DT97]. For the de�nition of the `1-norm, see Appendix A.
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Chapter 2: Compressed Sensing

Chapter 3: Message Passing Chapter 4: Turbo-type Inference

Chapter 5: Sequential Inference

Chapter 6: Numerical Results

Chapter 7: Conclusion

Figure 1.1: Visualization of the structure of the dissertation.

VAMP algorithm, combine so much of the detailed processing that in fact a Turbo-type pro-
cessing results; similarly to IHT and IST, the iteration is between two parts but the recovery
performance is much better.

In this thesis, the message-passing and Turbo-type approach are contrasted and both are
derived from the framework of constrained optimization for the compressed sensing problem.
Moreover, sequential approaches that stand in between both strategies are discussed. Further-
more, an estimation-theoretic point of view is cast on the exchange of the variables between
the di�erent solutions; leading to improved variants of the algorithms. The outline of the
thesis is illustrated in Fig. 1.1 and described more detailed in the following.

Chapter 2 contains the theoretical basis to understand the reconstruction problem behind
compressed sensing upon which the rest of the thesis is built. It de�nes the basic terms, es-
pecially for the compressed sensing model and states the estimations that are necessary to
obtain solutions for the subproblems (signal- and channel-constrained part). Furthermore, we
motivate why it is sensible to use the Kullback–Leibler divergence as cost function for the
constrained optimization and state the di�erent forms of the factor graph, that will be used in
the subsequent chapters to derive the algorithms.

The next two chapters are depicted next to each other in Fig. 1.1, because they contain two
opposing approaches to solve the recovery problem.

Chapter 3 focuses on the message-passing-type inference for CS with a detailed view on
the connections in the factor graph. A message passing (MP) algorithm as in [KMS+12] is
derived as result from minimizing the Kullback–Leibler divergence for a substitute distribution
that is tailored to the factor graph for CS under expectation constraints. Similar derivations
can be found in [YFW05] and [HOW+05] for general inference problems; here, we focus on
the CS problem. The result stresses the importance of the computation of extrinsic [BG96] for
the exchange of parameters between solutions of the subproblems.

In Chapter 4, the same derivation is used to obtain Turbo-type algorithms; the di�erence
being how the factor graph is considered. In contrast to Chapter 3, the factor graph is com-
bined to only contain two major parts between which the iterations take place. The results
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lead among others to the famous VAMP [RSF19] algorithm; with the extrinsic being the crucial
point making VAMP able to stand out from the other iterative algorithms IHT, IST, and, e.g., it-
erative soft-feedback (ISF) [SF16], which is processed as IHT and IST, but uses the same signal-
constrained estimation as VAMP. Additionally, several adaptions of the derived algorithms are
discussed that result from an estimation-theoretic view on the extrinsic calculations.

Chapter 5 discusses two sequential recovery approaches that lie in between the two ex-
treme cases of Turbo-type and message-passing-type algorithms. The derivation utilizes the
same constrained optimization strategy as before for yet di�erent factor graph representa-
tions. The chapter is divided into two parts; the �rst part (Sec. 5.1) considers the sequential
processing of the signal components, while the second part (Sec. 5.2) focuses on sequentially
processing the measurements.

In Chapter 6, the results of numerical simulations comparing the derived algorithms in dif-
ferent scenarios are shown. We depict the compressibility capability of the derived algorithms
in the standard scenario for CS in Sec. 6.3, show in Sec. 6.4 a scenario, where the estimation-
theoretic adaptions from Chapter 4 can beat the standard VAMP algorithm, discuss schedules
for the sequential processing of signal components in Sec. 6.5, and present a scenario, where
the sequential processing of measurements can improve over VAMP in Sec. 6.6.

Chapter 7 contains the conclusions and future work.
The Appendices A–D contain basic mathematical notions that are used throughout the

thesis, Appendix E collects the recovery algorithms that are presented in the thesis and in
Appendix F the notation and abbreviations used in the thesis can be found.
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2. Compressed Sensing

The idea for compressed sensing (CS) dates back to 2006, where two groups of scientists in-
dependently realized that it is possible to reconstruct information from a linearly compressed
signal under certain conditions [CRT06, Don06]. This is astonishing in the sense that the
linear compression does not make use of actual features of the signal. So far, compression
techniques had considered the signal itself to �nd out how to suitably compress it. Consider-
ing the signal, let’s call it x, as vector1 of an N -dimensional vector space (here RN ), the new
method requires only a vector-matrix-multiplication (we denote the matrix by A ∈ RM×N

withM < N ) and is therefore completely independent of signal x. The result of the compres-
sion is called y ∈ RM here. In engineering applications it usually inherits noise in the form of
an additional random vector2 n ∈ RM . The bene�t of the linear compression technique lies in
the fact that the computational e�ort is shifted to the recovery of signal x from the measure-
ments y together with known sensing matrix A, whereas the deterministic technique splits
the processing e�ort equally between compression and decompression. Especially the com-
pression part is tremendously simpli�ed by the linear acquisition of the data, since no deeper
knowledge of x is leveraged. Usual decompression obtains what it believes to be the original
signal x directly from y, which carries the recipe to the reconstruction. In the compressed
sensing approach, y does not carry this recipe and therefore requires powerful algorithms for
the reconstruction of the signal. The two strategies are summarized and compared in Fig. 2.1.
Double strike boxes indicate non-linear functions.

Naturally, the question arises, how reconstruction of the signal x is possible at all, if the
compression process is not tailored the signal.

The answer lies in the structure of the signal.
Common sources for signals, such as photographs, speech, or binary transmission streams,

although providing di�erent realizations, usually inherit a certain statistic that applies to all

1The notion of vectors and vector spaces is brie�y introduced in Appendix A; the general notation is explained
in Appendix F.2

2Note that variables in serif font, e.g., x or x, denote realizations of random variables or vectors in sans-serif
font, e.g., x or x.
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Source
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Compression
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deterministic, costly
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deterministic, costly

random, simple
independent of x

very costly

Figure 2.1: Usual transmission scheme (upper row) and compressed sensing idea (lower row).

realizations. Making use of this statistic is key to signal recovery in CS. A basic notion that
speci�es the structure of the signal is its sparsity [EK12]. A signal is said to be sparse if it
has few non-zero entries; the sparsity being the number of non-zero entries. If the signals of a
source can be represented such that they inherit a certain sparsity, this sparsity gives a natural
bound on how much the signals can be compressed, i.e., the observation dimensionM [EK12].

With this knowledge it is possible to describe our model for CS in detail.

2.1 System Model

Following an engineering perspective, a noisy model for the measurements in CS is considered

y = Ax + n ∈ RM , (2.1)

where the sensing matrix A ∈ RM×N is known and n ∼ N (0, σ2
nIM) is independent and

identically distributed (i.i.d.) Gaussian. Entries and rows of the sensing matrix are de�ned as
follows

A =


a11 a12 . . . a1N
a21 a22 . . . a2N

...
... . . . ...

aM1 aM2 . . . aMN

 =


a>1
a>2

...
a>M

 , ai = [ai1, ai2, . . . , aiN ]> . (2.2)

So far, it has been withhold that the sensing matrix also needs to ful�ll some properties for
recovery to be possible [EK12]. The basic point is that columns of the sensing matrix should
be as incoherent3 as possible to each other, so that the observation vector y carries as much
(di�erent) information as possible about the individual entries of x. A counterexample for a
coherent matrix is one with two equal columns [EK12]; the corresponding elements of x in�u-
ence y in the same way and can therefore not be distinguished anymore. Another astonishing

3For the de�nition of the coherence, see Appendix A.
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fact �gured out in [Don06] is that, when the elements aij (i ∈ {1, . . . , M}, j ∈ {1, . . . , N})
are drawn i.i.d. for example from a Gaussian distribution, the resulting matrix is likely to have
good properties. This fact will be used in the simulations in Chapter 6.

Let us turn to the statistic of the signal x. For simplicity, it is assumed that the elements xj
of x = [x1, . . . , xN ]> are i.i.d. with marginal probability density function (pdf) fx(xj), meaning
the pdf of x is separable,

fx(x) =
N∏
j=1
fx(xj) . (2.3)

A zero-mean signal x is assumed throughout the thesis. The fact that x is sparse is considered
via a Dirac delta function δ(x) at zero in the marginal pdf. A possible pdf is given by [SF14]

fx(x) = s

2N δ(x+ 1) + N − s
N

δ(x) + s

2N δ(x− 1) , (2.4)

which we call the discrete ternary (DT) prior. A prior that is very commonly used in CS is the
so-called Bernoulli-Gaussian (BG) prior, whose non-zero elements are Gaussian distributed.
The de�nition used in this thesis is given by

fx(x) =
(

1− s

N

)
δ(x) + s/N√

2π
exp

(
−x

2

2

)
. (2.5)

The task in CS is to recover the signal x for given observation y, sensing matrix A and
known noise variance σ2

n .

2.2 Estimation Criteria

The problem of recovering the signal x from the compressed measurements y under a prob-
abilistic view can be solved by �nding the vector x̂MAP that maximizes the probability that
under the condition that y was measured, x is the vector which has been compressed, i.e.,

x̂MAP = argmax
x

fx|y(x) , (2.6)

which is the so-called maximum a-posteriori (MAP) criterion [Kay93].
Using Bayes’ rule, the conditional pdf or posterior, corresponding to the CS problem, is

given by

fx|y(x) = 1
fy(y)fy|x(x) · fx(x) (2.7)

with channel part or likelihood function (‖·‖2 denotes the `2-norm, i.e., for a real vector x it
is ‖x‖2

2 = x>x, cf. Appendix A)

fy|x(x) = fn(y −Ax) = 1√
(2πσ2

n)M
exp

(
− 1

2σ2
n
‖y −Ax‖2

2

)
. (2.8)

We call fx(x) the signal part or a-priori distribution or simply prior.
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2.2.1 Minimum Mean-Squared Error Estimation

Another approach is the minimum mean-squared error (MMSE) estimation criterion, which
leads to the conditional mean4 [Kay93]5

x̂MMSE
def= Ex{x | y} = Ex∼fx|y{x} =

∫
x fx|y(x) dx . (2.9)

MAP and MMSE estimate coincide ifx and y are jointly Gaussian (which is not the case for the
given problem). Obtaining these solutions directly is infeasible due to the high dimensionality
of the signal x. Hence, there is a need for tractable procedures to recover the signal x. First,
two separate MMSE solutions are considered, which solve the two main parts of the problem
by approximating the other, respectively.

2.2.1.1 LMMSE Estimator

Considering the channel part fy|x(x) of the conditional pdf (2.7) and assuming that the signal
vector is Gaussian distributed with meanmx and covariance matrixΦx, i.e., x ∼ N (mx, Φx),
(which is not the case in CS) linear estimation is optimal in the MMSE sense [Kay93]. The
corresponding conditional mean estimator reads [Kay93]

mc = Ex{x | y} =
∫
xfy|x(x)fx(x) dx∫
fy|x(x)fx(x) dx

= mx +ΦxA
>(AΦxA

> + σ2
nIM)−1(y −Amx)

= mx + (A>A+ σ2
nΦ
−1
x )−1A>(y −Amx) , (2.10)

the conditional covariance matrix of the estimation error is obtained as [Kay93]

Φc = Ex
{
(x−mc)(x−mc)> | y

}
= σ2

n

(
A>A+ σ2

nΦ
−1
x

)−1
. (2.11)

The diagonal entries of the covariance matrix are denoted by σ2
c,j

def= [Φc]jj . The estimates
mc and Φc are called the channel-constrained estimates or LMMSE (linear minimum mean-
squared error) estimates.

Note that the second line in (2.10) results in a less complex implementation, since anM×M
matrix has to be inverted, which is easier than inverting the N × N matrix in the third line,
because in the CS scenario typically M < N .

2.2.1.2 LMMSE Estimator for Scalar Observation

Now, consider that only the ith row a>i = [ai1, . . . , aiN ] of the sensing matrixA is given and,
thus, only a scalar observation yi is measured, i.e., (ni ∼ N (0, σ2

n) for i ∈ {1, . . . , M})

yi = a>i x + ni . (2.12)
4For convenience two notations are used to denote the estimation w.r.t. a certain pdf, either by indicating

which pdf is used inside the integral or by conditioning the argument of the expectation.
5Whenever the integration boundaries are missing, the integral is restricted to the domain of the integrand.
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However, as above a Gaussian signal vector x with mean mx and covariance matrix Φx is
assumed. Then, the optimal conditional estimator for the entire signal vector x is again linear
and looks as follows

mc,i = Ex{x | yi} = mx +Φxai(a>i Φxai + σ2
n)−1(yi − a>i mx) , (2.13)

with (conditional) covariance matrix of the estimation error

Φc,i = Ex
{
(x−mc,i)(x−mc,i)> | yi

}
= σ2

n

(
aia

>
i + σ2

nΦ
−1
x

)−1
. (2.14)

Note that the inverse in (2.13) is scalar. Via the Sherman-Morrison-Woodbury identity [GV96],
the computation of the conditional varianceΦc,i can as well be written with a scalar inversion,
instead of inverting the N ×N matrix as stated above, which results in

Φc,i = Φx −
1

σ2
n + a>i Φxai

Φxaia
>
i Φx . (2.15)

Withmc,i = [mc,i,1, . . . , mc,i,N ]> and σ2
c,i,j = [Φc,i]jj as well asmx = [mx,1, . . . , mx,N ]>

and σ2
x,j = [Φx]jj the respective jth components can be written as

mc,i,j = mx,j +
σ2

x,jaij
(
yi −

∑N
j′=1 aij′mx,j′

)
σ2

n +∑N
j′=1 σ

2
x,j′a2

ij′

=
mx,jσ

2
n +mx,j

∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′ + σ2
x,jaij

(
yi −

∑N
j′=1
j′ 6=j

aij′mx,j′

)
σ2

n +∑N
j′=1 σ

2
x,j′a2

ij′
, (2.16)

σ2
c,i,j = σ2

x,j

(
1−

σ2
x,ja

2
ij

σ2
n +∑N

j′=1 σ
2
x,j′a2

ij′

)

= σ2
x,j

σ2
n +∑N

j′=1
j′ 6=j

σ2
x,j′a2

ij′

σ2
n +∑N

j′=1 σ
2
x,j′a2

ij′
. (2.17)

2.2.1.3 Individual Non-Linear MMSE Estimator

The opposite view considers the signal part fx(x) and assumes Gaussian noise. Indeed, Gaus-
sian noise is given in the model (2.1), however, the form of fy|x(x) in (2.8) with couplings
between x and y given by the sensing matrix makes the problem (2.9) intractable. Since sep-
arability is assumed, i.e., independent random variables xj , the channel-constrained part of
the posterior is approximated by ignoring the couplings and assuming independent measure-
ments x̃s,j , which represent the signal xj in zero-mean Gaussian noise, i.e., the observation is
a realization of the random variable

x̃s,j = xj + ns,j , j ∈ {1, . . . , N} , (2.18)

where xj ∼ fx(xj) and ns,j ∼ N (0, σ̃2
s,j). The corresponding estimator is non-linear but

can be computed per component, i.e., the conditional mean ms = [ms,1, . . . , ms,N ]> can be
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individually computed via

ms,j = Exj
{xj | x̃s,j} =

∫
xjfx(xj) exp

(
− (x̃s,j−xj)2

2σ̃2
s,j

)
dxj∫

fx(xj) exp
(
− (x̃s,j−xj)2

2σ̃2
s,j

)
dxj

, (2.19)

respectively, the conditional variance of estimation error

σ2
s,j = Exj

{
(xj −ms,j)2 | x̃s,j

}
=

∫
(xj −ms,j)2fx(xj) exp

(
− (x̃s,j−xj)2

2σ̃2
s,j

)
dxj∫

fx(xj) exp
(
− (x̃s,j−xj)2

2σ̃2
s,j

)
dxj

, (2.20)

for j ∈ {1, . . . , N}. The exact computation depends of course on the prior fx(xj) itself.
Note that the estimation requires both variables, x̃s,j and σ̃2

s,j , as inputs, however, we will only
denote this in the conditional expectation in case that the respective dependency needs to be
emphasized. In the CS literature, these computations are usually referred to as denoising and
the respective estimator is the denoiser. Here, ms,j and σ2

s,j (j ∈ {1, . . . , N}) may be called
signal-constrained estimates.

2.2.2 Approximate Inference

In Sec. 2.2 (cf. (2.6) and (2.9)) it was shown that fx|y(x) is the function of interest in the CS
scenario. One way to approach the CS problem is to replace the “complicated” posterior fx|y(x)
by a simpler substitute distribution that is called q(x). A natural question that arises is how
to choose q(x) suitably in order to approximate the posterior adequately. In the following,
we derive why it is suitable to approach the target distribution fx|y(x) by minimizing the
Kullback–Leibler divergence or cross entropy [KL51] (log(·) refers to the natural logarithm)

DKL
(
q(x) || fx|y(x)

)
def=
∫
q(x) log q(x)

fx|y(x) dx . (2.21)

To that end, it is motivated why the (di�erential) entropy of the substitute distribution q(x)
should be maximized, just to �nd that the entropy itself should also be used to connect the
substitute distribution q(x) with the target distribution fx|y(x). The result is also motivated
in [SJ80, SJ81] under the name cross entropy minimization. It is related to the so-called max-
imum entropy method [Jay82, WJ08, Wu12], but utilizes additionally prior knowledge. It is
furthermore used in [Moh97a] for the design of iterative decoders and detectors in digital
communication scenarios.

2.2.2.1 Moment Constraint

The substitute distribution q(x) should relate to the target fx|y(x) in some way. This is ob-
tained by requiring the equality of expectations based on the two distributions of some yet to
be speci�ed moment. Let U(x) denote the statistic of interest, then it is required that

Ex∼q{U(x)} = Ex∼fx|y{U(x)} . (2.22)
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Since there are many distributions q(x) that ful�ll this condition, a criterion that speci�es
how to choose a “suitable” one is needed.

2.2.2.2 Entropy Maximization

In order to answer the question how to approximate the posterior suitably, we make use of the
information theoretic quantity of uncertainty, as introduced by Shannon in 1948 [Sha48]. Since
the problem under consideration deals with continuous distributions, indeed, the di�erential
entropy is required. For a distribution q(x), it is de�ned as

h(q(x)) = −
∫
q(x) logq(x) dx . (2.23)

The notion of entropy o�ers a way to measure the uncertainty of a random variable, which
gives us a criterion for the adjustment of q(x). Indeed, maximizing the (di�erential) en-
tropy (2.23) prevents us from preferring certain possibilities over others when there is no
reason to do so [Jay57], i.e., a distribution with maximum entropy allows the most �exibility
in choosing x. This philosophy is known as maximum entropy method [Jay82, WJ08, Wu12].

For example, in the discrete case with �nite set X , the uniform distribution is the one that
maximizes entropy [Sha48], which means that every possible x ∈ X has the same probability
of being the solution; no element is preferred over another. Under a moment constraint the
distribution may change. With speci�ed second order moment, the Gaussian distribution is
the distribution that maximizes (di�erential) entropy (in the continuous case), which means
that the Gaussian distribution is the “most random” one in this case [HF14]. In order to derive
this for the scalar case in our notation, the maximization is formulated as minimization task
with certain equality constraints6

minimize − h(q(x))
subject to Ex∼q

{
x2
}

= σ2
x , (2.24)∫

q(x) dx = 1 .

i.e., the di�erential entropy is maximized while restricting the second order moment to some
value σ2

x and the integral over q(x) to 1, in order to obtain a valid pdf. The usual approach
to bring together the optimization task with the constraints is the combination in a so-called
Lagrangian, which reads in this case

L(q(x), µ, ν) = −h(q(x)) + µ
(
Ex∼q

{
x2
}
− σ2

x

)
+ ν

(∫
q(x) dx− 1

)
. (2.25)

In order to �nd (arguments of) extreme points in this functional, the functional derivative (for
a detailed explanation, see Appendix C) of the Lagrangian is necessary. With

∂

∂q

∫
x2q(x) dx = x2 (2.26)

6For a summary of the notions from optimization theory, which are used within this thesis, the reader is
referred to Appendix B.
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and (C.8) it is

∂L
∂q

= 1 + logq(x) + µx2 + ν
!= 0 , (2.27)

which can be solved for q(x) to obtain

q(x) = exp
(
−µx2 − 1− ν

)
. (2.28)

The second constraint in (2.24) causes normalization via the multiplier ν, i.e., it forces exp(1+
ν) =

∫
exp(−µx2) dx =

√
π/µ. Hence, the result is a Gaussian distribution with variance

σ2 = 1/(2µ). Since the mean was not speci�ed, it ended up to be zero. Additionally specifying
the mean would similarly have resulted in a Gaussian distribution with respective mean. Of
course, for non-zero mean, the value of Ex∼q{x2} would not be the variance but the second-
order non-centralized moment instead.

2.2.2.3 Constrained Optimization

On the way to motivating the use of the Kullback–Leibler divergence, a constrained optimiza-
tion problem for the task of approximating fx|y(x) with a substitute distribution q(x) under a
given moment constraint (and a normalization constraint) can now be stated

minimize − h(q(x))
subject to Ex∼q{U(x)} = Ex∼fx|y{U(x)} , (2.29)∫

q(x) dx = 1 .

Since the entropy is concave in its corresponding distribution, the optimization problem is
convex and therefore uniquely solvable, as long as there are feasible points. Although this ap-
proach seems as infeasible as the ones before, it gives an interesting viewpoint on the problem.
Indeed, the point of view on the problem can be changed by considering the so-called Lagrange
dual problem, that is obtained by minimizing the Lagrangian, which additively combines the
above minimization problem (2.29) with the constraints, over x. This new point of view yields
a representation that leads to the task of minimizing the Kullback–Leibler divergence, if the
statistic U(x) is chosen accordingly, which will get clear below. Before turning to that, the
mathematical derivation of the dual problem is considered.

With Lagrangian multipliers β and ν, the respective Lagrangian reads

L(q(x), β, ν) = −h(q(x)) + β
(
Ex∼q{U(x)} − Ex∼fx|y{U(x)}

)
+ ν

(∫
q(x) dx− 1

)
.

(2.30)

Di�erentiation with respect to q(x) yields a functional derivative, see Appendix C

∂

∂q(x)L(q(x), β, ν) = 1 + logq(x) + βU(x) + ν
!= 0 (2.31)

⇔ q(x) = 1
ZU(β) exp(−βU(x)) , (2.32)
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−h(q(x))

−h(q∗(x)) = sup
β

(
−βEx∼fx|y{U(x)} − logZU(β)

)

−βEx∼fx|y{U(x)} − logZU(β)

Figure 2.2: Schematic representation of the inequality (2.35).

where ZU(β) = exp(1 + ν) =
∫

exp(−βU(x)) dx ful�lls the normalization constraint. The
Lagrange dual function is then given by

LD(β) = − logZU(β)− βEx∼fx|y{U(x)} . (2.33)

The dual problem is speci�ed by the maximization of the Lagrange dual function, thus, another
approach to obtain the best substitute distribution q∗(x) is to maximize the right-hand side
of (2.33), i.e.,

−h(q∗(x)) = sup
β

(
−βEx∼fx|y{U(x)} − logZU(β)

)
, (2.34)

where q∗(x) is the optimizer7. This means especially that for feasible q(x) and arbitrary β it
is

−h(q(x)) ≥ −βEx∼fx|y{U(x)} − logZU(β) , (2.35)

To verify this intuitively, consider that, on the one hand, the entropy is concave in its distri-
bution, i.e., −h(q(x)) is convex. On the other hand, the supremum on the right-hand side
of (2.34) is obviously an upper bound for its argument. Hence, the optimizer q∗(x) de�nes
the point, where both functionals touch. Moving away from that point yields the inequality.
This is depicted schematically in Fig. 2.2. Noteworthy, the argument of the supremum is con-
cave in β since the integral over the convex but positive exp(−βU(x)) is convex, as well as
βEx∼fx|y{U(x)}, which is linear in β, i.e., both concave and convex, so the negative sum of
both terms is concave.

Noteworthy, the optimization problem can as well be solved by considering any reformu-
lation of the inequality (2.35) and pulling it towards equality. For feasible q(x), which ful�ll
the moment constraint, Ex∼fx|y{U(x)} can be replaced by Ex∼q{U(x)}. This way, the dual
representation (2.33) of the optimization problem can be reformulated to the inequality

− logZU(β) ≤ βEx∼q{U(x)} − h(q(x)) , (2.36)

i.e., an equivalent optimization problem is obtained by minimizing the right-hand side of (2.36).
Since, the inequality (2.36) holds for any β, one may deliberately specify it to a certain value,
say β = 1. This speci�cation will be kept throughout the thesis.

7The optimizer is indeed achieved. Since the optimization problem does not inherit inequality constraints,
Slater’s condition holds whenever the constraints are ful�lled, i.e., strong duality [BV04] holds.
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2.2.2.4 Specifying the Moment Constraint

So far, an arbitrary statistic U(x) has been considered that should tie the moments of q(x)
and fx|y(x) together. Recalling that the di�erential entropy can be written as

h(fx|y(x)) = −
∫
fx|y(x) log fx|y(x) dx = Ex∼fx|y

{
− log fx|y(x)

}
, (2.37)

a suitable statistic may be given by

U(x) = − log fx|y(x) . (2.38)

This speci�cation means that the moments speci�ed by − log fx|y(x) of the substitute distri-
bution q(x) should match the entropy of the posterior fx|y(x). With U(x) as de�ned in (2.38)
and β = 1, the right-hand side of (2.36) can be rewritten to [YFW05]8

Ex∼q{U(x)} − h(q(x)) =
∫
U(x)q(x) dx+

∫
q(x) logq(x) dx

=
∫
q(x) logq(x) dx−

∫
q(x) log fx|y(x) dx

=
∫
q(x) log q(x)

fx|y(x) dx

= DKL
(
q(x) || fx|y(x)

)
, (2.39)

with DKL(·||·) being the Kullback–Leibler divergence [KL51] or cross entropy, which was de-
�ned in (2.21). The path behind clari�es that the Kullback–Leibler divergence measures the
“closeness” between two densities on the basis of the di�erential entropy. This shows again
the actual aim in this procedure to approximate the target distribution fx|y(x), since the min-
imum of the Kullback–Leibler divergence (DKL(q(x)||fx|y(x)) = 0) is achieved exactly, if
q(x) = fx|y(x). When minimizing the Kullback–Leibler divergence, one should always keep
in mind that the basic idea behind the procedure is to maximize the entropy of a substitute
distribution q(x) while staying consistent to the di�erential entropy of the original density
fx|y(x), which means the goal is to �nd the most freely chosen distribution q(x) that �ts to
prior knowledge of fx|y(x) [SJ80].

2.2.2.5 Connection to Statistical Mechanics

In statistical mechanics, the distribution in (2.32) is known as Boltzmann-Gibbs distribution,
which describes the distribution of particles of a system in thermal equilibrium, i.e., when
there is no energy �ow [Ber20]. Indeed, the function U(x) is hereby the energy or Hamilto-
nian of the system and β is the inverse temperature. All in all, the result of the derivations
coincides with the second law of thermodynamics, stating that under the constraint of con-
serving energy, the entropy of a system is always maximized, which results in the distribution
of particles according to Boltzmann’s law (2.32). It can be shown that when the system freezes

8When the energy is only de�ned for the part that depends on x, i.e., by separating the posterior according
to fx|y(x) = 1

Z f(x) and de�ning U(x) = − log f(x), it is FV(q(x)) = − logZ + DKL(q(x)||fx|y(x)).
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(β →∞), the distribution bundles up around the state x that minimizes U(x), i.e., the system
converges to a state of minimum energy. If the energy represents the underlying system via
the speci�cation of U(x) as in (2.38) the minimization of the energy

x̂ = argmin
x

U(x) (2.40)

is equivalent to the MAP estimate (2.6).
Noteworthy, by de�ning the energy of the problem via

U(x) = − log
(
fx(x) · fy|x(x)

)
(2.41)

the problem of minimizing the energy becomes

min
x

1
2σ2

n
‖y −Ax‖2

2 − log fx(x) , (2.42)

which itself for Laplacian prior with variance σ2, given by fx(x) = 1√
2σ exp

(
−
√

2
σ
|x|
)
, yields

so-called basis pursuit denoising (BPDN) [CDS01], also known as LASSO [Tib96]9

min
x
‖y −Ax‖2

2 + λ ‖x‖1 (2.43)

with tuning parameter λ = 2
√

2σ
2
n
σ

and ‖·‖1 being the so-called `1-norm, for the de�nition,
see Appendix A.

2.3 Structure of the Compressed Sensing Problem

Now the conditional pdf (2.7) is considered, which can be factorized in di�erent ways. With

fx|y(x) = 1
Z
fx(x) · fy|x(x) , (2.44)

where

fx(x) =
N∏
j=1
fx(xj) (2.45)

is the signal part,

fy|x(x) = 1√
(2πσ2

n)M
exp

(
− 1

2σ2
n
‖y −Ax‖2

2

)

=
M∏
i=1

1√
2πσ2

n

exp
(
− 1

2σ2
n
(yi − a>i x)2

)
def=

M∏
i=1
fyi|x(x) , (2.46)

the channel part, and Z = fy(y) serves as normalization, the problem can be split into two
parts that are connected via the signal x. Note that signal and channel part can itself be
factorized as given.

9LASSO stands for least absolute shrinkage and selection operator.
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2.3.1 Factor Graph Representations

A graphical representation of the structure of the posterior is given as factor graph [KFL01] in
Fig. 2.3. In the upper left, the detailed structure of the problem with the factors broken down
to the most fragmented factorization, representing fx|y(x) = 1

Z

∏M
i=1 fyi|x(x)∏N

j=1 fx(xj), is
shown. Factors are represented by squares, the variable nodes by circles. The connections,
represented by lines between the nodes, indicate dependencies between the nodes, i.e., vari-
able nodes connected to a factor node mean that the respective variables are arguments of the
factor. One can see that each factor of the channel part is connected to all variables. On the
other hand, the signal factors only depend on one corresponding variable. The lower right
factor graph shows the splitting according to (2.44), which focuses on the fact that there are
only two di�erent kinds of factors. In order to emphasize that the factor nodes here are com-
bined versions of the factors in the upper left, a di�erent representation is used. Furthermore,
combined variable nodes are represented by a double circle.

Additionally, mixtures of both extreme cases are possible. The lower left shows a repre-
sentation that combines the channel parts into fy|x(x), but keeps the signal parts as factors,
thereby causing distinct variable nodes. Whereas, on the upper right, the opposite is shown
with combined signal parts and individual channel parts fyi|x(x) (i ∈ {1, . . . , M}). Note-
worthy, in this last case, the variable nodes are combined because the channel parts depend
on the entire signal vector x. According to the denomination we may refer to the respective
nodes as channel- or signal-constrained (factor) nodes.

2.3.2 Representatives for the Factors

The approximation of fx|y(x) by the substitute distribution q(x) needs to represent the struc-
ture of the problem suitably. To that end, distributions are de�ned that represent the substitute
distribution at certain nodes. The representation for the entire channel part fy|x(x) is called
qc(x), whereas if only the dependency of x on a single observation, i.e., fyi|x(x), is considered
the representative is denoted by qc,i(x). The signal part fx(x) is represented by qs(x) and the
combined variable node by qv(x), respectively. In contrast to qc(x) and qs(x), the represen-
tative of the combined variable node qv(x) cannot be found in the formula for the posterior
fx|y(x), indeed its existence is only motivated by the factor graph representation. The task
of the (combined) variable node x is to force equality between the arguments of the factors
fy|x(x) and fx(x) in (2.44), i.e., if they are treated individually, one has to make sure that the
argument is the same. This behavior can be described by the Dirac delta function, i.e., one can
write [LDH+07]

fx|y(x) = const. ·
∫
fx(x̃)fy|x(x)δ(x− x̃) dx̃ . (2.47)

This means, the Dirac delta function can be seen as the function of the factor behind the
variable node. Nevertheless, we will keep the denomination for variable nodes for the distin-
guishability to the actual factor nodes. The derivations in subsequent chapters will show that
the representative for the variable nodes qv(x) softens the equality constraint by allowing
also variations in the factors.
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. . . . . . . . . . . .

(a) Detailed view on all individual factors.

x

. . .
fy1|x(x) fyM |x(x)

fx(x)

(b) Combined variable node, detailed view on
channel-constrained factor nodes.

xj. . .x1 . . . xN

fy|x(x)

fx(x1) fx(xj) fx(xN)

(c) Detailed view on variable nodes, combined
channel-constrained factor nodes.

x

fy|x(x)

fx(x)

(d) Focus on the two different kinds of factors.

Figure 2.3: Several representations of the factor graph for the conditional pdf of the CS problem (2.7).
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(a) Detailed factorization.

x
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fx(x) qs(x)

qv(x)

qc(x)

(b) Two-part factorization.

Figure 2.4: Factor graphs for different factorizations with respective representatives.

Considering the individual variable nodes and individual signal factor nodes as, e.g., in
Fig. 2.3(a), requires also representatives for these (sub)nodes. As these representatives do not
depend on all variables anymore, one needs to get rid of them. This is done by marginaliza-
tion [KFL01, LDH+07]. A marginal of any distribution is in general obtained for a variable
xj by integrating (or summing in case of discrete random variables) over all elements of x
that are not xj , i.e., to obtain a marginal for a single variable at a variable node, one needs to
compute

qv,j(xj) =
∫
· · ·

∫
qv(x) dx1 . . . dxj−1dxj+1 . . . dxN , j ∈ {1, . . . , N} . (2.48)

Analogously, the marginal at a single signal factor fx(xj) is

qs,j(xj) =
∫
· · ·

∫
qs(x) dx1 . . . dxj−1dxj+1 . . . dxN , j ∈ {1, . . . , N} . (2.49)

With the marginals qv,j(xj) and qs,j(xj) the connection between xj and fx(xj) can be ex-
pressed, as will be seen later in Chapter 3.

Together with qv,j(xj), the marginals of qc,i(x) can be used to specify the connections
between xj and the channel part fyi|x(x). They are denoted and calculated by

qc,i(xj) =
∫
· · ·

∫
qc,i(x) dx1 . . . dxj−1dxj+1 . . . dxN , j ∈ {1, . . . , N} . (2.50)

In this last case, it is clearly visible that the factor marginals are edge-dependent, as one
marginal speci�es the connecting edge between corresponding factor and variable node.

To get the denomination of the di�erent marginals straight, two of the factor graph �gures
are repeated in Fig. 2.4 to show the correspondences. Furthermore, the e�ect of marginalizing
a distribution is shown in Ex. 2.1.

Example 2.1:

As an example, fy|x(x) from (2.46) of a two-dimensional CS scenario is considered as a
function of x only. To that end, let us define

py(x) def= 1√
(2πσ2

n)2 exp
(
− 1

2σ2
n
‖y −Ax‖22

)
, (2.51)



2.3. Structure of the Compressed Sensing Problem 19

−3 −2 −1 0 1 2 30

0.5

1

x1 −→

p
y
,1

(x
1)
−→

0 0.5 1
−3

−2

−1

0

1

2

3

py,2(x2) −→

x
2
−→

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

0.2

0.4

0.6

Figure 2.5: Contour plot of py(x) of Ex. 2.1 and respective marginals.

where y = [−0.23, 0.76]> is obtained from compressing the signal x = [0, 1]>, with the
sensing matrix

A =
[

0.75 −0.25
−0.5 0.75

]
(2.52)

and adding Gaussian noise with variance σ2
n = 0.2. The two-dimensional pdf py(x) is shown

as a contour plot in Fig. 2.5, surrounded by the marginals which are here computed by

py,1(x1) =
∫
py(x) dx2 (2.53)

and

py,2(x2) =
∫
py(x) dx1 , (2.54)

respectively. The integration removes the dependency of the variable that is integrated over.
Noteworthy, the pdf py(x) has a unique maximum, since the sensing matrix is square. In a
scenario, where the signal is actually compressed, e.g., by considering only y1 = a>1 x + n1
with y1 = −0.23, a1 = [0.75, −0.25]> and n1 ∼ N (0, σ2

n), the contour plot shows a Gaussian
distribution around the line defined by

y1 = −0.23 = a>1 x = a11x1 + a12x2 = 0.75x1 − 0.25x2 (2.55)
⇔ x2 = −4 · (y1 − 0.75x1) = 3x1 + 0.92 . (2.56)
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Figure 2.6: Contour plot of py1(x) of Ex. 2.1, the line x2 = 3x1 + 0.92, specifying the maximum of the pdf,
and two possible sparse solutions.

All points on that line maximize the pdf and may therefore be seen as solution. Setting either
of the signal values x1 or x2 to zero, recovers a sparse solution, e.g., x1 = 0 leads to x2 = 0.92.
The pdf that corresponds to the single measurement scenario

py1(x) = 1√
2πσ2

n
exp

(
− 1

2σ2
n

(y1 − a>1 x)2
)

(2.57)

is depicted in Fig. 2.6 as contour plot. Additionally the line following the maximum and the
two sparse solutions are shown.
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3. Inference on Factor Graphs

The use of factor graphs [Loe04, For01] and other graphical models for inference was exploited
in several �elds of engineering already. There is to mention the decoding of LDPC codes via
Tanner graphs [Tan81], or algebraic codes via Ising-type models [For18], other decoding strate-
gies, such as the BCJR or the Viterbi algorithm [Loe04], multiuser detection in CDMA [GW06]
and several aspects in signal processing [LDH+07], as, e.g., Kalman �ltering or recursive least-
squares algorithms. The underlying algorithm is called belief propagation (BP) [Pea88] or mes-
sage passing (MP) and may adopt certain forms; for an overview see [KFL01].

In the following, an optimization problem with constraints that are imposed by the struc-
ture of the considered factor graph is set up. Based on that, a form of (Gaussian) message
passing for the CS problem with factor graph representation in Fig. 2.3(a) as basis is derived.
The resulting algorithm is equal to the one stated in [KMS+12, Sec. 3.1], however, the deriva-
tion di�ers from the one considered here.

An optimization-based view has been used in [YFW05] to show the connection between
MP and the so-called Bethe free energy [Bet35]. A similar derivation is given in [HOW+05],
where approximate inference with expectation constraints is considered for general inference
problems. An overview over signal processing strategies encompassing, next to MP and the
Bethe approach, also AMP and the EP framework for general inference is given in [PSC+15].
Here, we follow the approaches given in [HOW+05, YFW05], but focus on the CS problem.

Noteworthy, the optimization-based derivation reveals that the notion of extrinsic [BGT93,
HOP96] is inherently given in this approach to the solution of the problem.

3.1 Structure of the Factor Graph

In Chapter 2 it has been pointed out that the high dimensionality of x makes it di�cult to
recover the signal from the observations. As a �rst approach, the computation is simpli�ed
as much as possible by breaking down the structure to its basic components. To that end,
the representation for the CS problem that factorizes the problem as much as possible, cf.
Fig. 2.3(a), is regarded. With this �ne-granular view, the multi-dimensional estimation is split
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into several one-dimensional ones, which simpli�es the estimations the most. In the following,
this structure will be used to derive a suitable representation of the approximation for the
factorization.

3.1.1 Factorization of the Substitute Distribution

First, it is important to �nd a suitable form for the substitute q(x) that should be worked
with. The substitute distribution q(x), which is used to approximate the posterior fx|y(x),
should inherit the structure of the factor graph in Fig. 2.3(a). To that end, the corresponding
factorization is considered as a function of x. In order to allow variations in the factors, the
product is expanded by functions of x for each factor, i.e.,

fx|y(x) = const. ·
N∏
j=1
fx(xj)

M∏
i=1
fyi|x(x)

= const. ·
N∏
j=1
fx(xj)

M∏
i=1
fyi|x(x) ·

∏N
j=1 sj(xj)

∏M
i=1 ci(x)∏N

j=1 sj(xj)
∏M
i=1 ci(x)

= const. ·
∏N
j=1 fx(xj)sj(xj)

∏M
i=1 fyi|x(x)ci(x)∏N

j=1 sj(xj)
∏M
i=1 ci(x)

. (3.1)

The association of the factors and the respective functions may now be interpreted as the
corresponding representatives from Sec. 2.3.2, i.e.,

qc,i(x) = fyi|x(x) · ci(x) , i ∈ {1, . . . , M} , (3.2)
qs,j(xj) = fx(xj) · sj(xj) , j ∈ {1, . . . , N} . (3.3)

Assuming that the function for the channel-constrained approximation split as follows

ci(x) =
N∏
j=1

cij(xj) , i ∈ {1, . . . , M} , (3.4)

one can write

fx|y(x) = const. ·
∏N
j=1 qs,j(xj)

∏M
i=1 qc,i(x)∏N

j=1

(
sj(xj)

∏M
i=1 cij(xj)

) . (3.5)

This way, the sorting in the denominator is chosen such that functions of the same variable
xj (j ∈ {1, . . . , N}) are packed together. These clustered variable-dependent functions can
now be set in relation with the representatives qv,j(xj) (j ∈ {1, . . . , N}) that were chosen
for the variable nodes.

The expansion of the product by the introduced deviations may be visualized by attach-
ing them as factors (in numerator and denominator) to the corresponding variable nodes,
cf. Fig. 3.1. The approximations qc,i(x) and qs,j(xj) are then obtained by grouping the fac-
tors correspondingly.

Recall, that the distributions representing the variable nodes are Dirac delta functions,
cf. (2.47), i.e., the equality between the arguments of the di�erent functions is obtained by the
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Figure 3.1: Visualization of the grouping of the factors to allow for variations.

integration over respective Dirac functions. The central box in Fig. 3.1 can, thus, be described
by

const.
sj(xj)

∏M
i=1 cij(xj)

= const. ·
∫
· · ·

∫ ∏M
i=1 δ(xj − xi,j)

sj(xj)
∏M
i=1 cij(xi,j)

dx1,j . . . xM,j , (3.6)

where the slack variables x1,j, . . . , xM,j are introduced to indicate the arguments of the dif-
ferent deviations. The argument of sj(xj) is chosen to be xj for convenience, so that the usual
argument is recovered after the integration.

It is important to note that the M -fold integral on the right-hand side of (3.6) does not
describe the e�ect of the variable node on other factors as in (2.47) but rather represents an
internal behavior. In Chapter 2, variable nodes have been de�ned by their (integral) e�ect of
the Dirac delta function (cf. (2.47)) on other factors, i.e., they do not have an internal behavior.
Therefore, the internal behavior that is present on the right-hand side in (3.6) needs to be
compensated. If the integral were separable, it would constitute anM -fold multiplication, i.e.,
the multiplication of M functions. However, the marginal qv,j(xj) for the variable node xj
represents one function. When drawing the connection between marginal qv,j(xj) and (3.6),
this inherent multiplication is therefore compensated by taking the M th root, i.e.,

qv,j(xj) = const. · M

√√√√sj(xj) M∏
i=1

cij(xj) , j ∈ {1, . . . , N} . (3.7)

Note that the denominator is represented directly for better readability. Interestingly, the
approach of allowing variations in the factors led to the e�ect of the Dirac delta function being
replaced by corresponding variations, which means that the equality between the arguments
of di�erent factors is not as strict as before. This way, the entire substitute reads [YFW05]

q(x) = const. ·
∏N
j=1 qs,j(xj)

∏M
i=1 qc,i(x)(∏N

j=1 qv,j(xj)
)M . (3.8)

Note that since the interest lies in the argument x of the function, the constant factor in
the formula does not harm the processing [LDH+07]; it is therefore not stated in subsequent
derivations.
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qc,1(x1, x2)

x2 qv,2(x2)x1qv,1(x1)

qs,1(x1) qs,2(x2)

Figure 3.2: Factor graph and representatives for Ex. 2.1 with one observation y1.

This factorization represents the most �ne-granular view possible, as every individual fac-
tor and variable node is represented by its own marginal distribution. According to [YFW05],
this factorization is the underlying principle of the Bethe free energy, that was shown to be
connected to the BP algorithm. The procedure amounts to the simple rule that for each vari-
able xj (j ∈ {1, . . . , N}) that occurs “too often” in the numerator, one representative qv,j(xj)
occurs in the denominator as compensation. In the given case, each variable xj is part of
qs,j(xj) as well as the M channel-constrained representatives, i.e., the node xj has M + 1
neighbors. Therefore, (M + 1)− 1 = M instances of qv,j(xj) appear in the denominator.

An example computation is conducted in Ex. 3.1.

Example 3.1:

For Ex. 2.1, when considering only one observation y1 for the two signal components x1
and x2, the factor graph, shown in Fig. 3.2, consists of three factors and two variable nodes,
which are connected by the single channel-constrained factor, i.e., the observation. Instead
of the factors, the representatives of the notation above are placed at the respective positions.
Since the multiplication of qs,1(x1), qs,2(x1), and qc,1(x1, x2) contains each of the variables
x1 and x2 two times, one needs to divide by qv,1(x1) and qv,2(x2), which results in an overall
approximation

q(x) = qs,1(x1)qs,2(x2)qc,1(x1, x2)
qv,1(x1)qv,2(x2) . (3.9)

3.1.2 The Moment-Matching Constraint

As already mentioned, a suitable solution q(x) must represent the structure of the problem
correctly. In this �ne-granular view, this means that the marginals of respective nodes must
be consistent, when following the connecting edges. Consistency, here, means that there is
no contradiction to neighboring factor nodes, when marginalizing the respective pdfs to the
variable under consideration. In [HOW+05] this constraint is called local consistency condition.
For the marginals at hand, this reads

qc,i(xj) != qv,j(xj) , j ∈ {1, . . . , N} , i ∈ {1, . . . , M} , (3.10)

qs,j(xj) != qv,j(xj) , j ∈ {1, . . . , N} . (3.11)
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The resulting constrained optimization problem leads to the famous message passing (MP)
algorithm, also known as (loopy) belief propagation (BP)1 [Pea88]. The algorithm propagates
pdfs as messages to update the so-called beliefs, which are approximates for the exact marginals
of the signal x [YFW05].

Since this is a rather unhandy representation, this step is skipped and it is directly worked
with moments instead of the distributions, which is equal to restricting the marginals to some
exponential family [Bro86]2. This is a class of distributions that is entirely determined by cer-
tain moments; the respective moments are speci�ed by the so-called su�cient statistics g(x).
For a given su�cient statistics, an exponential family is parameterized by the so-called natural
parameters, which is here denoted by θ. Noteworthy, there is a direct dependency between the
moments speci�ed by the su�cient statistics and the natural parameters; examples are given
in Appendix D. An exponential family has, consequently, the bene�cial property of allowing to
transfer the computations w.r.t. distributions into a parameter space, i.e., instead of handling
the distribution, one can compute estimates and process them. Restricting to the Gaussian
distribution, which requires only �rst and second order moments for its statistic to be spec-
i�ed, will lead to so-called Gaussian BP [KMS+12]. For the derivation thereof, the su�cient
statistics g(x) of the respective exponential family are �xed to (D.11), i.e.,

g(x) = [gλ(x)>, gΛ(x)>]> (3.12)

with

gλ(x) = [x1, . . . , xN ]> , gΛ(x) = −1
2[x2

1, . . . , x
2
N ]> , (3.13)

and respective natural parameter θ = [λ>, Λ>]>. In order to specify the moment of a single
variable, we may use the notation g(xj) = [gλj

(xj), gΛj
(xj)]> = [xj, −x2

j/2]>.
The respective constraints, ensuring the representation of the structure of the CS poste-

rior fx|y(x), is called weak consistency condition in [HOW+05] and can be stated by using the
marginals and the speci�ed su�cient statistics for j ∈ {1, . . . , N}

Exj∼qv,j
{g(xj)} != Exj∼qc,i

{g(xj)} , i ∈ {1, . . . , M} , (3.14)

respectively,

Exj∼qv,j
{g(xj)} != Exj∼qs,j

{g(xj)} . (3.15)

These requirements will be referred to as the moment-matching constraints.

3.2 Constrained Optimization

In the following, the task of approximating fx|y(x) suitably is described as constrained op-
timization problem for the given structure and the stationary points of the respective La-
grangian is sought, which eventually is used to derive a recovery algorithm for the CS problem.

1In the given case the BP algorithm is loopy because the factor graph is not a tree, i.e., has cycles.
2The necessary knowledge about exponential families is summarized in Appendix D.
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To that end, the idea of minimizing the Kullback–Leibler divergence, which was motivated in
Sec. 2.2.2, is seized and combined with the moment-matching constraints (3.14) and (3.15) of
the �ne-granular view on the factor graph. This way, a constrained optimization problem is
obtained that reads

minimize DKL
(
q(x) || fx|y(x)

)
subject to Exj∼qv,j

{g(xj)} − Exj∼qc,i
{g(xj)} = 0 , j ∈ {1, . . . , N} , i ∈ {1, . . . , M} ,

Exj∼qv,j
{g(xj)} − Exj∼qs,j

{g(xj)} = 0 , j ∈ {1, . . . , N} , (3.16)∫
qv,j(xj) dxj = 1 ,

∫
qs,j(xj) dxj = 1 , j ∈ {1, . . . , N} ,∫

qc,i(x) dx = 1 , i ∈ {1, . . . , M} .

3.2.1 Cost Function for Compressed Sensing

Before considering the optimization itself, the Kullback–Leibler divergence to be minimized is
stated, utilizing the structure imposed by CS. Inserting the factorization (3.8) into the Kullback–
Leibler divergence yields a certain form, because the term disintegrates to a sum of parts de-
pending solely on the factors, respectively variable marginals due to the normalization prop-
erty of pdfs. The result to be minimized in the above optimization problem reads

DKL
(
q(x) || fx|y(x)

)
=

N∑
j=1

∫
qs,j(xj) logqs,j(xj) dxj +

M∑
i=1

∫
qc,i(x) logqc,i(x) dx

−
N∑
j=1

∫
qs,j(xj) log fx(xj) dxj −

M∑
i=1

∫
qc,i(x) log fyi|x(x) dx

−M
N∑
j=1

∫
qv,j(xj) logqv,j(xj) dxj . (3.17)

This form of the Kullback–Leibler divergence is called Bethe free energy in [YFW05].

3.2.2 Stationary Points of the Lagrangian

Constrained optimization problems can be dealt with by considering the so-called Lagrangian,
which combines the optimization task and the constraints in one function(al), cf. Appendix B.
As motivated in Appendix B, the optimizer of the problem needs to ful�ll a stationary con-
dition of the Lagrangian, which means the stationary points of the Lagrangian are of inter-
est for us to be achieved. By introducing the Lagrangian Multipliers νc,ij and νs,jj for the
moment-matching constraints, as well as νj , νc,i, and νs,j as normalization constraint to ensure
valid marginals, the Lagrangian reads (omitting the Lagrangian multipliers in the argument
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for brevity)

L(q(x)) = DKL
(
q(x) || fx|y(x)

)
+

M∑
i=1

N∑
j=1
ν>c,ij

(
Exj∼qv,j

{g(xj)} − Exj∼qc,i
{g(xj)}

)

+
N∑
j=1
ν>s,jj

(
Exj∼qv,j

{g(xj)} − Exj∼qs,j
{g(xj)}

)

+
N∑
j=1

(
νj(
∫
qv,j(xj) dxj − 1) + νs,j(

∫
qs,j(xj) dxj − 1)

)

+
M∑
i=1

νc,i(
∫
qc,i(x) dx− 1) . (3.18)

The stationary points can be obtained by di�erentiating the Lagrangian with respect to
its parameters and setting the term to zero. When di�erentiating w.r.t. one of the Lagrangian
multipliers, this leads to the respective constraint, while di�erentiation w.r.t. the marginals
specify the form of the respective marginal, because the stationarity constraint on the deriva-
tive �xates the form of the marginal in the optimal point. This form will help us to derive
algorithms for the solution to the problem, since the stationary points are the targets to aim
for. In the latter case, the di�erentiation is again a functional derivative, for more details see
Appendix C.

The derivatives, that subsequently are set to zero, read

∂

∂qv,j
L(q(x)) = −M logqv,j(xj) +

(
ν>s,jj +

M∑
i=1
ν>c,ij

)
g(xj) + const. != 0 , (3.19)

∂

∂qc,i
L(q(x)) = logqc,i(x)− log fyi|x(x)−

N∑
j=1
ν>c,ijg(xj) + const. != 0 , (3.20)

∂

∂qs,j
L(q(x)) = logqs,j(xj)− log fx(xj)− ν>s,jjg(xj) + const. != 0 , (3.21)

where parts that do not depend on any element of x are summarized to a constant addend.
The resulting terms, solved for the marginals, read [HOW+05]

qv,j(xj) = 1
Zv,j

exp
(

1
M

(νs,jj +
M∑
i=1
νc,ij)>g(xj)

)
, (3.22)

qc,i(x) = 1
Zc,i

fyi|x(x) exp
 N∑
j=1
ν>c,ijg(xj)

 , (3.23)

qs,j(xj) = 1
Zs,j

fx(xj) exp
(
ν>s,jjg(xj)

)
, (3.24)

where Zv,j , Zc,i, and Zs,j are introduced to ful�ll the normalization constraint.
As expected, the marginals at the stationary points are members of exponential families.

Noteworthy, the Lagrangian multipliers turn out to work as natural parameters. We de�ne

θj
def= 1
M

(νs,jj +
M∑
i=1
νc,ij) , (3.25)
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Figure 3.3: Factor graph for compressed sensing and edge-dependent multipliers.

in order to specify the natural parameter at the variable node. The computational connec-
tion of the variable node to the factor nodes, i.e., the marginals qc,i(x), respectively qs,j(xj)
is given by the Lagrangian multipliers νc,ij , respectively νs,jj since the multipliers appear in
these connected marginals as well. Hence, each multiplier belongs to one edge, i.e., they are
edge-dependent, cf. Fig. 3.3. The variable node marginal qv,j(xj) is entirely speci�ed by the re-
spective Lagrangian multipliers and speci�es a Gaussian distribution with the given su�cient
statistics g(x). The factor marginals qc,i(x) and qs,j(xj), however, include also the factors
fyi|x(x) and fx(xj), respectively.

3.3 Algorithms

The stationary points derived above can be seen as targets to aim for, because they solve the
given problem. A recovery algorithm for CS should therefore end up with the forms for the
marginals (3.22)–(3.24) above. In order to get there, the algorithm needs to make use of the
structural connections incorporated in the Lagrangian multipliers. Since these multipliers are
natural parameters of an exponential family, they express the entire knowledge about the
corresponding distribution. As they are, furthermore, edge-dependent, they can be seen as
“messages” to be broadcasted to other nodes. The connection between natural parameters
and moments of exponential families, cf. Appendix D.2, thus, makes it possible to shift the
processing from the distributions to the parameter domain, which comes in handy, as the
interest lies in the conditional mean (2.9). In the following, it is important to �nd out, how the
processing is done. At �rst, the moments that are computed at the factor nodes are considered.

3.3.1 Expectations

Since the above speci�ed su�cient statistic represents a Gaussian distribution, the natural
parameters of qs,j(xj) can be identi�ed as νs,jj = [x̃s,j/σ̃

2
s,j, 1/σ̃2

s,j]> with x̃s,j and σ̃2
s,j being

mean and variance of the Gaussian distribution. With this identi�cation, it is obvious that the
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moments to be computed relate to the non-linear estimators (2.19) and (2.20), i.e.,

Exj∼qs,j

{
gλj

(xj)
}

= Exj
{xj | x̃s,j} = ms,j , (3.26)

Exj∼qs,j

{
gΛj

(xj)
}

= −1
2Exj

{
x2
j | x̃s,j

}
= −1

2
(
σ2

s,j +m2
s,j

)
. (3.27)

For the channel-constrained factor, this is similar. First note that by stacking, it is possible
to de�ne a new natural parameter, such that

N∑
j=1
ν>c,ijg(xj) = ν>c,ig(x) . (3.28)

Using the identi�cation

νc,i = [mx,1/σ
2
x,1, . . . ,mx,N/σ

2
x,N , 1/σ2

x,1, . . . , 1/σ2
x,N ]> , (3.29)

the moment computations (for the entire vector) relate to (2.13) and (2.14) by

Ex∼qc,i
{gλ(x)} = Ex{x | yi} = mc,i , (3.30)

Ex∼qc,i
{gΛ(x)} = −1

2diag
(
Ex
{
xx> | yi

})
= −1

2diag
(
Φc,i +mc,im

>
c,i

)
. (3.31)

The operator diag(·) shall denote the vector of diagonal entries of the matrix, which is
input to the operator. Otherwise, if a single element with an index, usually j is inserted, it
shall denote the diagonal matrix with diagonal entries speci�ed by the indexed input variable,
e.g., if j ∈ {1, . . . , N} then the resulting matrix is a N ×N matrix.

The estimates for a single variable, thus, relate to the respective jth components in (2.16)
and (2.17) via

Exj∼qc,i

{
gλj

(xj)
}

= mc,i,j , (3.32)

Exj∼qc,i

{
gΛj

(xj)
}

= −1
2
(
σ2

c,i,j +m2
c,i,j

)
. (3.33)

As intended, all estimations are one-dimensional for the given consideration.

3.3.2 Projection to Exponential Family

Having the moments computed at the factor nodes, it is necessary to �nd out, how to process
them for the exchange between the nodes, i.e., we have to get back to the edges. Since the
Lagrangian multipliers νc,ij and νs,jj specify the connections in the factor graph, they can
be interpreted as “messages” on an edge. To that end, the two possible sending directions on
the edge have to be distinguished. Consider the variable node with qv,j(xj) in (3.22). Here, as
already mentioned, the distribution is entirely speci�ed by the respective Lagrangian multipli-
ers, i.e., they tell something about the distribution and can therefore be interpreted as outgoing
messages. For the distinction to the outgoing messages, the incoming messages are denoted
by ν̃c,ij and ν̃s,jj , the denomination is exemplary shown for one node in Fig. 3.4.
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Figure 3.4: Detailed view on the factor graph for CS with edge- and direction-dependent messages.

In order to close the gap between the moments on the nodes and the natural parameters
that serve as messages on the edges, we have a look at the moment-matching constraints (3.14)
and (3.15). These were enforced between factor nodes and connected variable nodes. Since the
marginals at the variable nodes represent members of an exponential family, i.e., a Gaussian
distribution for the su�cient statistics g(x) as speci�ed above, the moments can be mapped
according to Ex. D.2 from Appendix D to the natural parameter of the marginal at the variable
node to obtain for a channel-constrained factor node (j ∈ {1, . . . , N})

θc,i,j = [mc,i,j/σ
2
c,i,j, 1/σ2

c,i,j]> , i ∈ {1, . . . , M} , (3.34)

respectively,

θs,j = [ms,j/σ
2
s,j, 1/σ2

s,j]> , (3.35)

for a signal-constrained factor node.

3.3.3 Processing for Stationarity

The mapping in (3.34) and (3.35) above shows a way how to represent the signal component
xj after the corresponding processing. However, it does not state what messages have to
be sent on the respective edges. The edges are currently described by messages that pass
it in the two possible directions. For example in Fig. 3.4 the edge between variable xj and
(signal-constrained) factor fx(xj) transports the messages ν̃s,jj and νs,jj . Since this edge is
connected to the signal component xj , it should provide knowledge about this variable. As
already mentioned, this knowledge is (after processing at the factor node) given by θs,j . In the
following, the connection between these three parameters is sought.

To that end, consider the following partitioning of the posterior

fx|y(x) = const. · fx(xj) ·

 N∏
j′=1
j′ 6=j

fx(xj′)
M∏
i=1
fyi|x(x)

 , (3.36)

i.e., it is split into the factor fx(xj) on the one side and everything else on the other side. This
extracts the edge under consideration as the combining element between the two parts. It also
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Figure 3.5: Depiction of the partitioning of the factor graph with the messages between the parts and the
representation of the knowledge θs,j on the connecting edge.

shows that a message from fx(xj) must represent knowledge from the respective factor, while
a message towards fx(xj) must carry the knowledge from everywhere else. Obviously, the
multiplication of both parts yields (up to a constant factor) the posterior again. The splitting is
displayed in Fig. 3.5 with fx(xj) on the left, the other part on the right, and the corresponding
representation of the knowledge θs,j , as well as the messages in between.

In this consideration, the interest lies in the variable xj only, which means that mathemat-
ically

fxj |y(xj)
def=
∫
· · ·

∫
fx|y(x) dx1 . . . dxj−1dxj+1 . . . dxN (3.37)

should be approximated. Since fx(xj) does not carry an argument that is used in the integral,
it is

fxj |y(xj) = const. · fx(xj) ·
∫
· · ·

∫ N∏
j′=1
j′ 6=j

fx(xj′)
M∏
i=1
fyi|x(x) dx1 . . . dxj−1dxj+1 . . . dxN ,

(3.38)

i.e., the same separation as before can be obtained. This can now be set into relation with the
messages. The messages used here are natural parameters specifying a member of an exponen-
tial family. The distributions corresponding to the messages therefore express approximations
for the two separated parts. Following the thought that the message ν̃s,jj must represent the
factor fx(xj) and νs,jj the other part leads to an entire approximation, which reads

fxj |y(xj) ≈ const. · exp
(
ν̃>s,jjg(xj)

)
· exp

(
ν>s,jjg(xj)

)
. (3.39)

The knowledge about xj that is associated to this edge is, as already mentioned, given by θs,j ,
i.e.,

fxj |y(xj) ≈ const. · exp
(
θ>s,jg(xj)

)
. (3.40)

Hence, the approximation of fxj |y(xj), which should �t to the respective incoming and out-
going messages, is given by the exponential family carrying θs,j as natural parameter. The
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multiplication of the members of this exponential family transforms to an addition of the nat-
ural parameters, meaning that the natural parameter θs,j representing the entire knowledge
is given by the summation of the natural parameters describing the messages, i.e., [LDH+07,
Eqs. (54), (55)]

θs,j = ν̃s,jj + νs,jj , j ∈ {1, . . . , N} . (3.41)

Note that in [LDH+07] this connection is derived from the sum-product rule [KFL01] for Gaus-
sian distributions, which is one of the instances of a message passing algorithm.

Neglecting the loops in the graph, this holds similarly for the channel-constrained factors
fyi|x(x), i.e.,

θc,i,j = ν̃c,ij + νc,ij , j ∈ {1, . . . , N} , i ∈ {1, . . . , M} . (3.42)

Having these connections, it is now possible to turn to the necessary processing in the
algorithm. To that end, recall that the stationary points of the optimization problem are already
given in (3.22)–(3.24). These are the goals an iterative algorithm should achieve. In order to
derive the processing for the algorithms, it is therefore suitable to stick to updates that ful�ll
these equations, i.e., stay in a stationary point once reached. In particular (3.25), i.e.,

θj = 1
M

(
νs,jj +

M∑
i=1
νc,ij

)
, j ∈ {1, . . . , N} , (3.43)

is of importance for that matter as it encodes the structure of the factor graph in itself. In a
stationary point, the representation of xj given in θj from (3.25) should not change with the
processing, which means that eventually

θj
!= θs,j

!= θc,1,j
!= · · · != θc,M,j , j ∈ {1, . . . , N} , (3.44)

must hold. With this equality, (3.41) and (3.42) can be inserted into the stationary condi-
tion (3.25), which yields

θj
(3.25)= 1

M

(
νs,jj +

M∑
i=1
νc,ij

)

= 1
M

(
θj − ν̃s,jj +

M∑
i=1

(θj − ν̃c,ij)
)

= M + 1
M

θj −
1
M

(
ν̃s,jj +

M∑
i=1
ν̃c,ij

)
(3.45)

⇔
(
M + 1
M

− 1
)
θj = 1

M
θj = 1

M

(
ν̃s,jj +

M∑
i=1
ν̃c,ij

)
, (3.46)

i.e.,

θj = ν̃s,jj +
M∑
i=1
ν̃c,ij . (3.47)
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Figure 3.6: Visualizations for the connections between incoming and outgoing messages, i.e., Eqs. (3.49) on
the left and (3.48) on the right.

Comparing again with (3.41) and (3.42), this means that the connection between messages
leaving the variable node and adjacent incoming messages must be given by

νs,jj =
M∑
i=1
ν̃c,ij , (3.48)

respectively

νc,ij = ν̃s,jj +
M∑

i′=1
i′ 6=i

ν̃c,i′j . (3.49)

The processing is depicted in Fig. 3.6.
The character of the separation in (3.41) and (3.42) is known as extrinsic [BG96], i.e., the

a-priori knowledge (from before) is distinguished from the knowledge obtained by the process-
ing. From (3.48) and (3.49) it becomes clear that the procedure is characterized by excluding
knowledge of the incoming edge on which the next message should be sent. From an algo-
rithmic point of view, especially for graphs with loops, broadcasting extrinsic is crucial to the
success of the algorithm, because sending something on an edge that has been received there
before, would lead to feedback loops and overemphasizing of certain aspects, which is pre-
cisely what was pursued to prevent by the approach based on the maximum entropy method,
which was motivated in Sec. 2.2.2. This concept has been proven worthwhile not only in
the context of the message passing algorithm, but also, e.g., in Turbo decoding [HOP96] and
detection [GH11].

On the one hand, the connections in (3.41) and (3.42) reveal a simple relationship between
outgoing and incoming messages as well as the moments computed at the nodes, i.e., the input
has to be subtracted from the result θj to obtain the returning message on the respective
edge. The Equations (3.48) and (3.49), on the other hand, indicate that when computing the
message for a certain edge, it is necessary to leave out the incoming message of that very
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edge. Hence, there are two ways of processing extrinsic. In the following, the relation is
examined in detail for a channel-constrained node fyi|x(x), where the input parameter is given
by νc,ij = [mx,j/σ

2
x,j, 1/σ2

x,j]> as above, Eq. (3.34) is used for the mapping between moments
and natural parameters and ν̃c,ij

def= [m\jc,i,j/σ
2,\j
c,i,j, 1/σ2,\j

c,i,j]> is de�ned for i ∈ {1, . . . , M} and
j ∈ {1, . . . , N}. Then Eq. (3.42) can be rewritten as

ν̃c,ij = θc,i,j − νc,ij (3.50)

so that the elements compute to

m
\j
c,i,j

σ
2,\j
c,i,j

= mc,i,j

σ2
c,i,j
− mx,j

σ2
x,j

(2.16)=
mx,jσ

2
n +mx,j

∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′ + σ2
x,jaij

(
yi −

∑N
j′=1
j′ 6=j

aij′mx,j′

)

σ2
x,j

(
σ2

n +∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′

) − mx,j

σ2
x,j

=
aij

(
yi −

∑N
j′=1
j′ 6=j

aij′mx,j′

)
σ2

n +∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′
(3.51)

and

1
σ

2,\j
c,i,j

= 1
σ2

c,i,j
− 1
σ2

x,j

(2.17)=
σ2

n +∑N
j=1 σ

2
x,ja

2
ij

σ2
x,j

(
σ2

n +∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′

) − 1
σ2

x,j

=
σ2

n +∑N
j=1 σ

2
x,ja

2
ij − σ2

n −
∑N

j′=1
j′ 6=j

σ2
x,j′a2

ij′

σ2
x,j

(
σ2

n +∑N
j′=1
j′ 6=j

σ2
x,j′a2

ij′

)

=
a2
ij

σ2
n +∑N

j′=1
j′ 6=j

σ2
x,j′a2

ij′
. (3.52)

This reveals that in the calculation for ν̃c,ij , one can directly leave outνc,ij = [mx,j/σ
2
x,j, 1/σ2

x,j]>
as input parameter, i.e., the calculation of the extrinsic can be done as post-processing via the
subtraction imposed by (3.42) or as pre-processing by omitting the respective input parameter.
The respective computations are contrasted in the upper row of Fig. 3.8 as block diagrams,
where the notation of the GMP algorithm (stated below) is used. On the left (Fig. 3.8(a)),
the pre-processed extrinsic is shown, whereas on the right (Fig. 3.8(b)) the extrinsic is post-
processed. Both philosophies, pre- and post-processed extrinsic, are used in the literature. For
example, estimation theoretic extrinsic [GH11] in the context of Gaussian noise uses the sub-
tractions as speci�ed above. The pre-processing is used for example in the decoding procedure
for low-density parity-check (LDPC) codes [Gal62]. In the message passing context, usually
the pre-processing, i.e., incident parameter omitting strategy is considered [KMS+12, Pea88].
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In case of a signal factor fx(xj), the relation (3.48) indicates to compute the estimates (2.19)
and (2.20) based on all messages coming from the channel-constrained nodes. Via the projec-
tion (3.35) and connection (3.42), an outgoing message νc,ij is computed. Since the estima-
tors (2.19) and (2.20) are usually non-linear, it is not possible to move the e�ect of the subtrac-
tion to the input of the estimator. Thus, the equivalence of post- and pre-processed extrinsic
only holds if the factor marginal is Gaussian. This is usually not the case for the signal factors
in CS. Hence, both procedures yield di�erent results. The di�erent processings are depicted in
the lower row of Fig. 3.8; pre-processed extrinsic can be found on the left side, post-processed
extrinsic on the right side.

3.3.4 Message Passing

Following the notion of pre-processing the extrinsic, i.e., omitting the incoming message of
the edge for which the message is computed yields the Gaussian belief propagation (GBP) or
Gaussianmessage passing (GMP) as stated in [KMS+12, Sec. 3.1]. In order to get there, recall that
an outgoing message νc,ij carries the information of the signal-constrained factor stimulated
by all incoming messages ν̃c,i′j with i′ ∈ {1, . . . , M} \ {i}, i.e., all except the message of the
considered edge. This means that the input parameters to the corresponding estimates (2.19)
and (2.20) are computed via

x̃
\i
s,j

σ̃
2,\i
s,j

=
M∑

i′=1
i′ 6=i

m
\j
c,i′,j

σ
2,\j
c,i′,j

, and
1

σ̃
2,\i
s,j

=
M∑

i′=1
i′ 6=i

1
σ

2,\j
c,i′,j

. (3.53)

With these inputs, one can de�ne

m
\i
s,j

def= Exj

{
xj | x̃\is,j

}
=

∫
xjfx(xj) exp

(
− (x̃\i

s,j−xj)2

2σ̃2,\i
s,j

)
dxj

∫
fx(xj) exp

(
− (x̃\i

s,j−xj)2

2σ̃2,\i
s,j

)
dxj

(3.54)

and

σ
2,\i
s,j

def= Exj

{
(xj −m\is,j)2 | x̃\is,j

}
=

∫
(xj −ms,j)2fx(xj) exp

(
− (x̃\i

s,j−xj)2

2σ̃2,\i
s,j

)
dxj

∫
fx(xj) exp

(
− (x̃\i

s,j−xj)2

2σ̃2,\i
s,j

)
dxj

. (3.55)

The resulting estimates, mapped to the natural parameters, serve as input to the computation
of the channel-constrained estimate. Therefore, de�ning νc,ij = [m\is,j/σ

2,\i
s,j , 1/σ2,\i

s,j ]>, the
computations at the channel-constrained nodes become

ν̃c,ij =
m\jc,i,j
σ

2,\j
c,i,j

,
1

σ
2,\j
c,i′,j

> =


aij

(
yi −

∑N
j′=1
j′ 6=j

aij′m
\i
s,j′

)
σ2

n +∑N
j′=1
j′ 6=j

σ
2,\i
s,j′ a2

ij′

,
a2
ij

σ2
n +∑N

j′=1
j′ 6=j

σ
2,\i
s,j′ a2

ij′


>

. (3.56)
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The resulting algorithm iterates between the nodes by choosing the indices j ∈ {1, . . . , N}
and i ∈ {1, . . . , M} in a suitable manner. The entire procedure is stated in Algorithm 3.1
below and in Algorithm E.1 in Appendix E. The notation uses only means and variances for
comprehensibility, however, for the implementation it is bene�cial to resort to scaled means
and inverse variances (precisions), so that, e.g., the summations in Lines 7 and 8 spare the
inverses, and scalings.

Algorithm 3.1:ms = GMP(y, A, σ2
n)

1 m
\i
s,j = 0 , σ2,\i

s,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M} // initialization
2 m

\j
c,i,j = 0 , σ2,\j

c,i,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M}
3 while stopping criterion not met do
4 Choose j ∈ {1, . . . , N} and i ∈ {1, . . . , M}
5 m

\j
c,i,j = (yi −

∑N
j′=1
j′ 6=j

aij′m
\i
s,j′)/aij // “upward” messages

6 σ
2,\j
c,i,j = (σ2

n +∑N
j′=1
j′ 6=j

σ
2,\i
s,j′ a2

ij′)/a2
ij

7 σ̃
2,\i
s,j =

(∑M
i′=1
i′ 6=i

1/σ2,\j
c,i′,j

)−1
// input to NLMMSE (edge-dependent)

8 x̃
\i
s,j = σ̃

2,\i
s,j

∑M
i′=1
i′ 6=i

m
\j
c,i′,j/σ

2,\j
c,i′,j

9 m
\i
s,j = Exj

{xj | x̃\is,j, σ̃
2,\i
s,j } // “downward” messages

10 σ
2,\i
s,j = Exj

{(xj −m\is,j)2 | x̃\is,j, σ̃
2,\i
s,j }

11 σ̃2
s,j =

(∑M
i=1 1/σ2,\j

c,i′,j

)−1
∀ j ∈ {1, . . . , N}

12 x̃s,j = σ̃2
s,j
∑M
i=1m

\j
c,i′,j/σ

2,\j
c,i′,j ∀ j ∈ {1, . . . , N}

13 ms = Ex{x | x̃s, σ̃
2
s,1, . . . , σ̃

2
s,N} // NLMMSE

The statement of GMP in Algorithm 3.1 implies that the messages are sent from one factor
node fyi|x(x) to one variable node xj (“upwards”) and then the messages from variable node xj
(by employing factor node fx(xj)) to factor node fyi|x(x) (“downwards”); subsequently choos-
ing the next indices to be processed. This notation is used to simplify readability; for the
simulations in Chapter 6, a schedule that iterates between computing all upward messages,
followed by computing all downward messages, is used. Of course also other schedules are
possible.

The “upward” and “downward” messages as used in the statement of the algorithm are
also visualized in Fig. 3.7. The input message for the signal factor fx(xj) is not shown, because
it depends for which outgoing edge (downwards) the estimate is computed; here it may be
either x̃\1s,j , together with σ̃2,\1

s,j , or x̃\Ms,j and σ̃2,\M
s,j .
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Figure 3.7: Visualization of “upward” and ”downward” messages in terms of means and variances in the
factor graph for CS.

3.3.5 Related Algorithms

Despite simplifying to two scalar moments instead of computing arbitrary marginals or multi-
dimensional estimates, the resulting algorithm still inherits high computational complexity.
The reason lies in the �ne-granular view on the factor graph that causes edge-dependent es-
timates (and messages) that have to be computed, stored and propagated and the fact that the
variable nodes are connected to all channel-constrained factors, i.e., the sensing matrix A is
not sparse. The edge-dependent processing therefore impedes scalability, i.e., the algorithm
can only be used for tasks with small dimensions.

One way to reduce the computation overhead is to utilize post-processed extrinsic, instead
of pre-processed extrinsic as in Algorithm 3.1. In Eqs. (3.51) and (3.52), it has been shown that
for the channel-constrained estimation both processings are mathematically the same. The
post-processed extrinsic has in combination with the schedule that computes all “upward”
messages together the advantage that the expectations get node-dependent, i.e., have to be
performed M times, instead of M · N times, when they are edge-dependent as it is the case
when the extrinsic is pre-processed. Of course, afterwards the computation of the extrinsic
is again edge-dependent, but this involves only scalings and one subtraction (per edge and
parameter), as opposed to the multiple summations of (almost) all parameters in the compu-
tation of the expectations. This form of the algorithm is not stated in detail, but referred to as
GMPpostExtLin for GMP with post-processed extrinsic at the linear estimation.

If it is assumed that the non-linear estimation in the signal-constrained factor behaves
similarly for pre- and post-processed extrinsic, then the same strategy can be applied again to
the computation of the respective estimates, i.e., one can switch from pre- to post-processed
extrinsic. The resulting algorithm is shown in Appendix E.2 as Algorithm E.2—it is called
GMPpostExt—and bene�ts from the fact that the input parameters for the signal-constrained
estimation do not have to be computed edge-dependently. Therefore, the signal-constrained
estimation can be computed once for all variables x1, . . . , xN and the “downward” message is
obtained by subtracting only the message from the incoming edge.

GMP and its variants can be composed from the block diagrams shown in Fig. 3.8. The GMP
algorithm itself utilizes pre-processed extrinsic, i.e., only blocks from the left side (and perhaps
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Figure 3.8: Computations at the channel-constrained (upper row) and the signal-constrained nodes (lower
row). The left side shows pre-processed, the right side shows post-processed extrinsic.
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a suitable transformation from output to input parameters between the blocks). In contrast,
GMPpostExt only uses the right-side blocks; and GMPpostExtLin mixes the approaches by
taking the upper right and lower left blocks for its processing. Note that, for simplicity, the
block representing the signal-constrained estimation accepts here scaled mean and inverse
variance (similar to the implementation in (6.1)–(6.3)) as inputs and returns conditional mean
and variance.

In the literature, one can also �nd various approaches to mitigate the scalability problem
by simplifying the strategy. In [KMS+12] the complexity is reduced by restricting to signal-
constrained and channel-constrained estimates for each variable xj while also keeping two
estimates (mean and variance) per observation yi, the resulting algorithm is called generalized
approximate message passing (GAMP) [Ran11]. Further simpli�cations, e.g., the step from in-
dividual variances to average variances and the insertion of the observation dependent parts
into the calculation of the residuum, lead to the regular form of approximate message passing
(AMP) [DMM09, Mal11]. Noteworthy, the LMMSE solution in the linear estimation is sim-
pli�ed to a matched �lter (MF), i.e., the transpose of the sensing matrix is used without the
inverse that is computed in the LMMSE estimator. The AMP and the GAMP algorithm are
stated in the notation used here in Appendices E.3 and E.4, respectively. AMP works well for
Gaussian sensing matrices and possesses very low computational complexity, but deteriorates
for more general classes of sensing matrices [CZK14].

With the focus on factor graphs and its various representations of the CS problem, we will
not follow this path but instead consider the opposite approach to the �ne-granular view that
is considering only two factors.
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4. Turbo-type Inference

The notion of Turbo-type processing was established in [BGT93] in the form of Turbo decod-
ing. The idea is to consider codes composed of two component codes. Decoding can then
be done for the component codes, which is less computationally costly, with the results be-
ing passed in a suitable way between the decoders, i.e., an iterative scheme is present; for an
overview, see [HOP96]. The overall goal is, thus, the exchange of messages between two major
parts constituting to the problem. The suitable way to process the message for sending leads
again to the notion of extrinsic [BG96, GH11].

The Turbo principle has also been used in detection for digital transmission schemes and
is known as Turbo equalization [DJB+95] there, for an overview see [TS11].

In this chapter, the processing of Turbo-type algorithms for CS is derived and connections
to the famous VAMP algorithm [RSF19] are revealed. To that end, the same procedure of con-
sidering a constrained optimization problem for the approximation of the CS posterior—only
this time for a di�erent form of the factorization—as in the chapter before is employed. This
shall show that the underlying principles are the same. For inference in general, the optimiza-
tion approach has in [HOW+05] been shown to be equivalent to expectation-consistent (EC)
approximate inference [OW05], which coincides with the VAMP algorithm in the given case.

For the case of Turbo codes, the connection to message passing (MP) has already been
shown in [MMC98], [KF98], and [Wib96]. Noteworthy, VAMP is also derived from a message-
passing-type view in [RSF19], however, the exposition here puts everything into one notation,
states the derivation in detail and draws attention to the optimization point of view.

Other literature that considers optimization-based approaches, usually adds the optimiza-
tion on top, so that a double-loop algorithm results [OW05, RFSK16]. Here, the focus lies on
the optimization within the factor graph, yielding single-loop algorithms only.

The connection of Turbo-type processing and minimization of the Kullback–Leibler diver-
gence is investigated in [MG98] for iterative decoding and in [Moh97a, Moh97b] for multi-user
detection in digital transmission scenarios.
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x

fy|x(x)

fx(x)

Figure 4.1: Factor graph for CS separating the two different kinds of factors.

4.1 Structure of the Factor Graph

The Turbo approach implies two opposing parts of a problem. In the compressed sensing case,
this is given by considering the factorization

fx|y(x) = const. · fy|x(x) · fx(x) (4.1)

of the posterior, which combines factors of the same kind in one factor, thereby explicitly sep-
arating channel and signal part while keeping the di�erent components of each part together.
The corresponding factor graph is shown in Fig. 2.3(d) and for convenience plotted here in
Fig. 4.1 again.

The approach can be motivated by the fact that the parts, which complicate the overall
estimation, are separated. In order to comprehend this, recall that the computation of the
conditional mean (2.9) is infeasible, since the multi-dimensional integral depends on the signal
prior fx(x) and can in general not be solved analytically. Further recall, that the estimators in
Sec. 2.2.1.1 and Sec. 2.2.1.3 have been derived by replacing either of the factors with a Gaussian
distribution, respectively, which resulted in feasible MMSE estimators. On the one hand, the
multi-dimensionality of the estimator (2.10) can be handled, since the estimator is linear, which
is optimal under the assumption of a Gaussian prior fx(x). If one or more signal components
xj were supposed to be distributed di�erently, the linear estimator would not be optimal and
the corresponding multi-dimensional non-linear estimator could not be expressed, i.e., the
computational e�ort would increase disproportionately. On the other hand, the non-linear
estimators (2.19) can be handled because they are separated into one-dimensional integrals that
can be solved, i.e., the multi-dimensionality is broken down, since the dependencies induced
by the observations y and the sensing matrixA are ignored.

Hence, the approach in this chapter aims to separate what needs to be separated without
going further into detail, i.e., what can be considered together is considered as one factor.
Thereby, the issue of scalability, which arose for MP from the huge number of edges in the
factor graph, is also addressed since the number of edges is decreased drastically. However,
one has to keep in mind that instead of two scalars, the messages on the edges are now N -
dimensional vectors.
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4.1.1 Factorization of the Substitute Distribution

This more distanced view with less focus on the details has direct consequences on the form of
the approximating distribution q(x). For the given factorization, the partial approximations
qs(x) are used for fx(x), as well as qc(x) for fy|x(x). Comparing to Chapter 3, the number of
approximations is drastically reduced. Here, the adaptions by the variations may be written
as follows

fx|y(x) = const. · fx(x) · fy|x(x) · s(x) · c(x)
s(x) · c(x)

= const. · qs(x) · qc(x)
s(x) · c(x) , (4.2)

i.e., the representatives are de�ned as

qs(x) = fx(x) · s(x) , (4.3)
qc(x) = fy|x(x) · c(x) . (4.4)

Since, only two deviations are present, the manipulated variable node obeys
const.

s(x) · c(x) = const.
∫
δ(x− x̃)
s(x) · c(x̃) dx̃ , (4.5)

so that the representative distribution for the variable node is de�ned as

qv(x) = const. · s(x) · c(x) . (4.6)

All in all, the substitute distribution is given by

q(x) = qs(x) · qc(x)
qv(x) . (4.7)

4.1.2 The Moment-Matching Constraint

The connection between the approximated factors is routed via the (combined) variable node.
Since the variable node has an edge to both factors, the consistency is now required on these
edges. Our interest in moments, especially in the conditional mean (2.9), justi�es the use of a
moment constraint in this case as well. Therefore, exponential families are used again, i.e., a
certain statistic is speci�ed on which to rely the estimation and which should be matched in
order to achieve consistency. That is, for an arbitrary su�cient statistic g(x) of the exponential
family,

Ex∼qv{g(x)} != Ex∼qs{g(x)} , (4.8)

Ex∼qv{g(x)} != Ex∼qc{g(x)} (4.9)

is required. Note that depending on the su�cient statistic that speci�es the form of consis-
tency, the requirements and thereby the resulting messages are based on multi-dimensional
vectors. For example, in Chapter 3, the individual variances case was employed, which leads
to 2N -dimensional messages per edge. Another possibility introduced in Appendix D is the
average variance case yielding N + 1-dimensional messages. For now, this may stay open;
later it will be speci�ed for the respective algorithms.
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4.2 Constrained Optimization

As in Chapter 3, the minimization of the Kullback–Leibler divergence is considered for the
given structure to derive stationary points that are aspired to be achieved by recovery algo-
rithms. For the structure at hand, there are vector-wise consistency constraints for the match-
ing of moments and two approximating factors given. The constrained optimization problem
reads

minimize DKL
(
q(x) || fx|y(x)

)
subject to Ex∼qv{g(x)} − Ex∼qc{g(x)} = 0 ,

Ex∼qv{g(x)} − Ex∼qs{g(x)} = 0 , (4.10)∫
qv(x) dx− 1 = 0 ,

∫
qs(x) dx− 1 = 0 ,

∫
qc(x) dx− 1 = 0 .

4.2.1 Cost Function for Compressed Sensing

For the given case, the Kullback–Leibler divergence to be minimized splits directly into

DKL
(
q(x) || fx|y(x)

)
=
∫
qs(x) logqs(x) dx+

∫
qc(x) logqc(x) dx

−
∫
qs(x) log fx(x) dx−

∫
qc(x) log fy|x(x) dx

−
∫
qv(x) logqv(x) dx . (4.11)

For this form of the Kullback–Leibler divergence, the stationary points of the Lagrangian in-
corporating additionally the moment-matching constraints are derived. The stationary points
are of interest, because they minimize the cost function under the given constraints, and will
later be used to derive recovery algorithms.

4.2.2 Stationary Points of the Lagrangian

As before, the Lagrangian, cf. Appendix B, is used to insert the moment-matching constraint
into the optimization problem. By introducing the Lagrangian multipliers νc and νs for the
moment-matching constraints and νv, νc, and νs for the normalization constraints, the La-
grangian reads (again without multipliers in the argument)

L(q(x)) = DKL
(
q(x) || fx|y(x)

)
+ ν>s (Ex,qv{g(x)} − Ex,qs{g(x)}) + ν>c (Ex,qv{g(x)} − Ex,qc{g(x)})

+ νv

(∫
qv(x) dx− 1

)
+ νs

(∫
qs(x) dx− 1

)
+ νc

(∫
qc(x) dx− 1

)
.

(4.12)

The optimal form for the distributions is given by the stationary points of the Lagrangian.
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Hence, the Lagrangian is di�erentiated w.r.t. the distributions, which yields

∂

∂qv
L(q(x)) = − logqv(x) + (νs + νc)>g(x) + const. , (4.13)

∂

∂qs
L(q(x)) = logqs(x)− log fx(x)− ν>s g(x) + const. , (4.14)

∂

∂qc
L(q(x)) = logqc(x)− log fy|x(x)− ν>c g(x) + const. . (4.15)

By setting the above terms to zero, the respective stationary points, thus, calculate to

qv(x) = 1
Zv(νs, νc)

exp
(
(νs + νc)>g(x)

)
, (4.16)

qs(x) = 1
Zs(νs)

fx(x) exp
(
ν>s g(x)

)
, (4.17)

qc(x) = 1
Zc(νc)

fy|x(x) exp
(
ν>c g(x)

)
, (4.18)

with normalizing partition functions1

Zv(νs, νc) =
∫

exp
(
(νs + νc)>g(x)

)
dx , (4.19)

Zs(νs) =
∫
fx(x) exp

(
ν>s g(x)

)
dx , (4.20)

Zc(νc) =
∫
fy|x(x) exp

(
ν>c g(x)

)
dx . (4.21)

These forms show directly the connection between variable and factor nodes, as the nat-
ural parameters of the variable node are given by

θ
def= νc + νs . (4.22)

Considering that the two summands are the input parameters for the estimations Ex∼qc{g(x)},
and Ex∼qs{g(x)}, respectively, it is already visible how the extrinsic calculations are performed
here. Which is to say, the extrinsic is obtained via post-processing of the parameter θ, i.e., the
input for the other estimation is achieved by subtracting the input of the currently considered
estimation from the result of the estimation. This is usual for Turbo-type approaches, e.g., in
coding related publications [HOP96] a-priori log-likelihood ratios (LLRs) are subtracted from
the decoding results of component codes to obtain the extrinsic values.

4.2.3 The Lagrange Dual Function

Before continuing with the derivation of algorithms for this approach, we take a step back and
consider the Lagrange dual function of the problem. It is de�ned as in�mum of the Lagrangian
w.r.t. the optimization parameter, which is q(x) in the given case, i.e.,

LD(νs, νc) = inf
q(x)
L(q(x)) . (4.23)

1The term partition function stems from exponential families, for details see Appendix D.
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Therefore, it is a function of the Lagrangian multipliers only. It o�ers a di�erent way in ap-
proaching the optimal value, namely from below. The so-called dual problem is the task of
maximizing the Lagrange dual function. Since strong duality holds, the maximum value of
LD(νs, νc) is indeed the desired optimum. For more information, see Appendix B. Notewor-
thy, the switch from primal to dual problem, also shifts the focus to the Lagrangian multipliers
as parameters to be optimized.

Since the stationary points which minimize the Lagrangian are already given, the dual
function is obtained by inserting the solution for the distributions qv(x), qs(x), and qc(x)
into the Lagrangian. Note that at the stationary points the constraints must be ful�lled, i.e.,
they vanish. The insertion leads to

LD(νs, νc) =
∫
qs(x)

(
log fx(x) + ν>s g(x)− logZs(νs)

)
dx

+
∫
qc(x)

(
log fy|x(x) + ν>c g(x)− logZc(νc)

)
dx

−
∫
qs(x) log fx(x) dx−

∫
qc(x) log fy|x(x) dx

−
∫
qv(x)

(
(νs + νc)>g(x)− logZv(νs, νc)

)
dx

= − logZs(νs)
∫
qs(x) dx− logZc(νc)

∫
qc(x) dx

+ logZv(νs, νc)
∫
qv(x) dx

+ ν>s (Ex,qs{g(x)} − Ex,qv{g(x)})
+ ν>c (Ex,qc{g(x)} − Ex,qv{g(x)}) . (4.24)

Since the equality constraints are ful�lled [HOW+05]

LD(νs, νc) = − logZs(νs)− logZc(νc) + logZv(νs, νc) (4.25)

results. This means that alternatively to minimizing the Kullback–Leibler divergence between
densities, an approach to solve the CS problem is to adjust the parameters νs and νc such that
the cost function (4.25) is maximized. Noteworthy, this cost function already incorporates the
moment-matching and normalization constraints in itself due to the de�nition of the partition
functions Zv(νs, νc), Zs(νs), and Zc(νc).

Equation (4.25) is the cost function that the expectation-consistent (EC) approximate in-
ference framework [OW05] builds upon. There, so-called single-loop algorithms are derived,
which are in the given case equivalent to VAMP or variants of it. Furthermore, it is suggested
to optimize the Lagrange dual (4.25) partially, which leads to so-called double-loop algorithms.

The connection between EC, as well as EP (expectation propagation) [Min01] and convex
optimization has already been shown in [HOW+05] for general inference problems.

4.3 Turbo-Type Algorithms—Optimization-Based Derivation

Having the stationary points of the Lagrangian, we can now turn to the derivation of algo-
rithms by iteratively following the restrictions imposed by the structure of the densities.
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Figure 4.2: Factor graph for CS of the Turbo kind with respective messages.

The optimization-based view on the problem gives us already strict connections between
the (natural) parameters, cf. (4.22). In Chapter 3, the use of this computation was called post-
processed extrinsic, because an outgoing message on an edge could be obtained by subtracting
the in�uence of the incoming message on the same edge from the result of the estimation that
was obtained from all incoming messages. In the given case, each factor node is connected
with only one edge to the variable node. Hence, for the given structure, the extrinsic computed
at one factor node is directly the input to the other factor as indicated in (4.22). The respective
forwarding of the messages is depicted in Fig. 4.2.

The mapping of the estimates Ex∼qs{g(x)}, respectively Ex∼qc{g(x)} to the natural pa-
rameters θ depend on the form of the exponential family, i.e., on the de�nition of the su�-
cient statistics g(x). In the following, two cases for the speci�cation of g(x) are considered,
starting with average variances.

4.3.1 Average Variances—VAMP

The aspired estimate (2.9) is a conditional mean that speci�es the value of the components of
the signal vector x for the given observations y. The advantage of working with a Gaussian
density as exponential family is that it additionally speci�es the variance or second order
moment, thereby introducing a measure of reliability for the random variable, thus, also for
the estimate.

In Chapter 3, the individual variance case was considered, where each estimate had its
own variance, i.e., reliability. Due to the detailed view on the factor graph and the resulting
scalar estimations this speci�cation was necessary. In the given case, where always the entire
vector is processed, this constraint can be relaxed to considering a variance that represents
the average reliability of the entire vector, which yields a complexity reduction in terms of the
number of messages to be sent.

The average variance case of a Gaussian density is speci�ed in (D.11), i.e.,

g(x) = [gλ(x)>, gΛ(x)>]> (4.26)



48 4. Turbo-type Inference

with

gλ(x) = x , gΛ(x) = −1
2x
>x . (4.27)

This speci�cation will eventually lead to the VAMP algorithm [RSF19].
Let us consider the moment computed at the factor nodes �rst. Obviously, the estimation

at the channel factor is related to the LMMSE estimation in Sec. 2.2.1.1. To compare with those
estimators, regard that an average variance at the input is equivalent toΦx = σ2

xIN . With the
identi�cation νc = [m>x /σ2

x , 1/σ2
x ]>, it is (trace(M) = ∑N

j=1[M ]jj)

Ex∼qc{gλ(x)} = mc , (4.28)

Ex∼qc{gΛ(x)} = −1
2trace

(
Ex
{
xx> | y

})
= −1

2trace
(
Φc +mcm

>
c

)
. (4.29)

The resulting average variance is then given by

σ2
c

def= 1
N

trace(Φc) = − 2
N

Ex∼qc{gΛ(x)} −m>c mc . (4.30)

The mapping to the natural parameter θ of the variable node is then obtained via

θ = [m>c /σ2
c , 1/σ2

c ]> , (4.31)

and the extrinsic (which serves as input for the signal factor) is obtained via (4.22), i.e.,

νs = θ − νc . (4.32)

For the signal factor, the estimator similarly relates to (2.19) and (2.20) from Sec. 2.2.1.3 with
νs = [x̃>s /σ̃2

s , 1/σ̃2
s ]>, i.e., in the average variance case it is σ̃2

s,j = σ̃2
s for all j ∈ {1, . . . , N},

as follows

Ex∼qs{gλ(x)} = Ex{x | x̃s} = ms , (4.33)

Ex∼qs{gΛ(x)} = −1
2trace

(
Ex
{
xx> | x̃s

})
= −1

2

N∑
j=1

(σ2
s,j +m2

s,j) , (4.34)

and a respective average variance is obtained via

σ2
s

def= 1
N

N∑
j=1

σ2
s,j = − 2

N
Ex∼qs{gΛ(x)} −m>s ms . (4.35)

The mapping is analogously θ = [m>s /σ2
s , 1/σ2

s ]> and the extrinsic calculation νc = θ − νs,
respectively.

Given a suitable initialization, the iterative processing of the steps above yields a recovery
algorithm for the CS problem, which is termed VAMP in the literature. The entire algorithm
is stated in pseudo code in Appendix E.5. Note that the use of natural parameters is omitted in
the description by directly computing mean and variance via the respective transformations.

Noteworthy, an algorithm called orthogonal approximate message passing (OAMP) [MP17]
was proposed simultaneously to VAMP, essentially identical.
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4.3.2 Individual Variances

The VAMP algorithm can simply be varied by specifying the su�cient statistics di�erently.
Two cases have been considered in [FSRS16]: so-called uniform diagonalization, which equals
the speci�cation we termed average variance, and vector-valued diagonalization, leading to
individual variances. This second case may lead to better insights into the estimates, as the
reliability is evaluated on an individual level. However, the complexity increases in terms
of messages—from N + 1-dimensional to 2N -dimensional vectors—and also the computation
of the LMMSE estimate gets more di�cult. In [FSRS16], generalizations of the EC frame-
work [OW05], i.e., variants of VAMP, are considered for general inference problems, but not
the compressed sensing problem itself.

By changing the speci�cation, the basic processing steps stay the same as in VAMP; only
the moment computation and the mapping from and to natural parameters di�er.

Mathematically, the su�cient statistic need to be de�ned by g(x) = [gλ(x)>, gΛ(x)>]>
with

gλ(x) = x , (4.36)

gΛ(x) = −1
2diag

(
xx>

)
. (4.37)

The individual variances case for the estimates in (2.10) and (2.11) is obtained by specifying
Φx = diag(σ2

x,j). To compare with the estimators from Sections 2.2.1.1 and 2.2.1.3, the input
variables are identi�ed by

νc = [mx,1/σ
2
x,1, . . . ,mx,N/σ

2
x,N , 1/σ2

x,1, . . . , 1/σ2
x,N ]> , (4.38)

respectively,

νs = [x̃s,1/σ̃
2
s,1, . . . , x̃s,N/σ̃

2
s,N , 1/σ̃2

s,1, . . . , 1/σ̃2
s,N ]> . (4.39)

The expectations w.r.t. gλ(x) are the same as for the average variances case. For the second
order moment, the channel-constrained estimation reads

Ex∼qc{gΛ(x)} = −1
2diag

(
Φc +mcm

>
c

)
, (4.40)

respectively

Ex∼qs{gΛ(x)} = −1
2diag

(
diag

(
σ2

s,j +m2
s,j

))
, (4.41)

for the signal-constrained estimation. The mapping to the natural parameters is then given by

θ = [m•,1/σ2
•,1, . . . , m•,N/σ

2
•,N , 1/σ2

•,1, . . . , 1/σ2
•,N ]> (4.42)

with • ∈ {c, s}, respectively. The extrinsic calculation is the same as before, i.e., subtraction
of the natural parameters. The entire algorithm is stated in Algorithm E.6; we call it VAMPind,
for VAMP with individual variances. Again, the representation with means and variances is
used in the statement of the algorithm.
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4.4 Estimation-Theoretic Bias Compensation

The simple additive connection (4.22) between the natural parameters of variable and factor
nodes turns out to be crucial for the processing in the algorithms. So far, it was called the
computation of extrinsic, since previously known values are subtracted [BG96, GH11].

In [SF17, SF18] a connection to bias compensation [For03] from an estimation theoretical
point of view was drawn. This already shows that di�erent perspectives can yield the same
results, but also open the view for more possibilities, as will be visible soon.

Bias compensation describes the task of removing the bias, which is a systematic o�set
in the estimate, from the estimate. The procedure usually degrades the reliability of the es-
timate [For03, Fis02]. MMSE estimates are always biased, since they are by de�nition or-
thogonal to the error. This causes a part of the signal (to be estimated) to be accounted for
the error [For03]. The compensation is then usually realized by scaling the estimate ade-
quately [Fis02].

In the following, forms of post-processing for the extrinsic based on the estimation-theoretical
viewpoint of bias compensation are derived and compared to the extrinsic calculations ob-
tained so far. Similar derivations can be found in [SF18, Spa19, FS22, SF22].

There are two kinds of estimations to be considered; the linear estimation which is used
for the channel part of CS and the non-linear estimation as in the signal part; starting with
the derivations for the channel-constrained estimations, i.e.,mc as de�ned in (2.10).

4.4.1 Channel-Constrained Estimation

The bias in the channel-constrained estimate

mc = mx +ΦxA
>(AΦxA

> + σ2
nIM)−1(y −Amx) (4.43)

can be seen in the fact that the end-to-end cascade K between signal x and estimate mc,
which is given by [Spa19, FS22]

K = ΦxA
>(AΦxA

> + σ2
nIM)−1A

= (A>A+ σ2
nΦ
−1
x )−1A>A

= IN −ΦcΦ
−1
x , (4.44)

is not an identity matrix, which can be easily veri�ed reformulating Φc from (2.11) via the
Sherman-Morrison-Woodbury identity [GV96]. A visualization of the end-to-end cascade by
block diagrams is given in Fig. 4.3. The compensation for an unbiased estimate mc,u can be
done by inserting a respective scaling matrixW in the block diagram (shown in Fig. 4.4) under
various restrictions.

4.4.1.1 Average Unbiasing

First, a rather loose requirement is considered; the e�ect of the end-to-end cascade should be
compensated on average [Fis16]. This requirement is suitable as long as the energies (squared
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K = ΦxA
>(AΦxA

> + σ2
nIM)−1A

x
A

n
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−
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nIM)−1
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A

Figure 4.3: Visualization of the end-to-end cascade K between signal x and estimate mc.

K = ΦxA
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> + σ2
nIM)−1A
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−
ΦxA

>(AΦxA
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nIM)−1 W
mc,u

mx

A

Figure 4.4: Visualization of the bias compensation procedure with scaling matrix W .

`2-norms) of the columns of the sensing matrix as well as the variances of signal components
of x do not vary much. For this procedure, it is therefore assumed that Φx = σ2

xIN . Mathe-
matically, the requirement means, a scaling matrixW must ful�ll [Fis16, FS22]

1
N

trace(W ·K) != 1 . (4.45)

The solution is

W = 1
1
N

trace(K)IN , (4.46)

i.e., there is a single unbiasing factorw = N/trace(K), which is used to (re-)scale all elements
ofmc. The resulting unbiased estimatemc,u is then given by

mc,u = mx +WΦxA
>(AΦxA

> + σ2
nIM)−1(y −Amx) . (4.47)

Noteworthy, with Φx = σ2
xIN , one obtains from (4.44)

w = N

trace(K) = N

trace(IN −ΦcΦ
−1
x )

= 1
1− 1

σ2
x

1
N

trace(Φc)

= 1
1− σ2

c
σ2

x

= σ2
x

σ2
x − σ2

c
. (4.48)

The covariance matrix corresponding to estimatemc,u reads [Spa19]

Φc,u = Ex
{
(x−mc,u)(x−mc,u)> | y

}
= Φx −ΦxK

>W> −WKΦx +WΦxK
>W> .

(4.49)
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The average unbiased variance therefore reads (trace(W ·K) = trace(K> ·W>) = N )

σ2
c,u = 1

N
trace(Φc,u) = σ2

x − σ2
x − σ2

x + wσ2
x = σ2

x(w − 1)

= σ2
x

(
σ2

x
σ2

x − σ2
c
− 1

)
= σ2

x
σ2

x − σ2
x + σ2

c
σ2

x − σ2
c

= σ2
xσ

2
c

σ2
x − σ2

c
=
(

1
σ2

c
− 1
σ2

x

)−1

. (4.50)

So, the unbiased estimate can be written as

mc,u = mx + σ2
x

σ2
x − σ2

c
ΦxA

>(AΦxA
> + σ2

nIM)−1(y −Amx)

=
(

1− σ2
x

σ2
x − σ2

c
+ σ2

x
σ2

x − σ2
c

)
mx + σ2

x
σ2

x − σ2
c
ΦxA

>(AΦxA
> + σ2

nIM)−1(y −Amx)

= σ2
c

σ2
c − σ2

x
mx + σ2

x
σ2

x − σ2
c
mc = σ2

c,u(mc/σ
2
c −mx/σ

2
x) . (4.51)

By slightly rearranging these equations to

mc,u/σ
2
c,u = mc/σ

2
c −mx/σ

2
x , 1/σ2

c,u = 1/σ2
c − 1/σ2

x , (4.52)

one can make the connection x̃c = mx, respectively σ̃2
c = σ2

x , as well as mc,u = x̃s and
σ2

c,u = σ̃2
s , to see that the bias compensation procedure equals the exchange after the linear

estimation in the VAMP algorithm. This means that VAMP performs (at this point) average
bias compensation with an average variance.

4.4.1.2 Individual Unbiasing

A stricter requirement is the compensation of the individual scaling e�ects that K causes on
the signal components. In this case, the scaling matrixW must ful�ll [FS07, FS22]

diag(W ·K) != IN . (4.53)

This is obtained for scaling matrix

W = diag(1/[K]jj) . (4.54)

Being more careful in the compensation, allows us to handle variations in the energies (squared
`2-norms) of both, columns of the sensing matrix, as well as the signal components itself.
This procedure is, thus, suitable for the use of individual variances, i.e., the more general
case Φx = diag(σ2

x,j) is considered. The diagonal entries of the compensation matrix can be
calculated via (4.44) [Spa19]

[W ]jj = 1
[K]jj

= 1
1− σ2

c,j/σ
2
x,j

=
σ2

x,j

σ2
x,j − σ2

c,j
, (4.55)

which resembles the unbiasing factor before, only with the individual variances. The (individ-
ual) unbiased variances compute to ([W ]jj · [K]jj = 1)

σ2
c,u,j

def= [Φc,u]jj = σ2
x,j − σ2

x,j − σ2
x,j + [W ]jjσ2

x,j = σ2
x,j([W ]jj − 1)

= σ2
x,j

(
σ2

x,j

σ2
x,j − σ2

c,j
− 1

)
=

σ2
x,jσ

2
c,j

σ2
x,j − σ2

c,j
=
(

1
σ2

c,j
− 1
σ2

x,j

)−1

, (4.56)
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leading to an unbiased estimate of the form

mc,u = mx + diag
(

σ2
x,j

σ2
x,j − σ2

c,j

)
ΦxA

>(AΦxA
> + σ2

nIM)−1(y −Amx)

=
(
IN − diag

(
σ2

x,j

σ2
x,j − σ2

c,j

)
+ diag

(
σ2

x,j

σ2
x,j − σ2

c,j

))
mx

+ diag
(

σ2
x,j

σ2
x,j − σ2

c,j

)
ΦxA

>(AΦxA
> + σ2

nIM)−1(y −Amx)

= diag
(

σ2
c,j

σ2
c,j − σ2

x,j

)
mx + diag

(
σ2

x,j

σ2
x,j − σ2

c,j

)
mc , (4.57)

i.e., the components of the estimate compute to (j ∈ {1, . . . , N})

mc,u,j =
σ2

x,j

σ2
x,j − σ2

c,j
mc,j −

σ2
c,j

σ2
x,j − σ2

c,j
mx,j =

σ2
x,jσ

2
c,j

σ2
x,j − σ2

c,j

(
mc,j

σ2
c,j
− mx,j

σ2
x,j

)

= σ2
c,u,j

(
mc,j

σ2
c,j
− mx,j

σ2
x,j

)
, (4.58)

or slightly rephrased

mc,u,j/σ
2
c,u,j = mc,j/σ

2
c,j −mx,j/σ

2
x,j , 1/σ2

c,u,j = 1/σ2
c,j − 1/σ2

x,j . (4.59)

Hence, there is a connection to the recovery algorithm with individual variances from Sec. 4.3.2,
when making the identi�cations mc,u,j = x̃s,j , σ2

c,u,j = σ̃2
s,j and mx,j = x̃c,j , respectively,

σ2
x,j = σ̃2

c,j .
The resulting average unbiased variance of individual unbiasing computes with the de�-

nition of the arithmetic mean as MA(xj) = 1
N

∑N
j=1 xj to [Fis16]

σ2
c,u,i = 1

N

N∑
j=1

σ2
c,u,j = MA

(
σ2

x,j[W ]jj
)
−MA

(
σ2

x,j

)
. (4.60)

In case of the speci�cation by a single (average) variance, i.e., Φx = σ2
xIN , with harmonic

mean MH(xj) = N∑N

j=1 1/xj
= 1

MA(1/xj) this simpli�es to

σ2
c,u,i = σ2

x (MA([W ]jj)− 1) = σ2
x (MA(1/[K]jj)− 1) = σ2

x

(
1

MH([K]jj)
− 1

)
. (4.61)

Comparing this with the average variance (4.50) for average bias compensation

σ2
c,u = σ2

x(w − 1) = σ2
x

(
N

trace(K) − 1
)

= σ2
x

(
1

MA([K]jj)
− 1

)
, (4.62)

shows that σ2
c,u < σ2

c,u,i, since MA([K]jj) > MH([K]jj) for varying [K]jj .
Noteworthy, in the optimization-based view, average variances and average unbiasing

is inherently connected and so are individual variances and individual unbiasing. From the
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estimation-theoretic perspective, there is no need in restricting to these combinations. A re-
spective consideration of individual variances with average unbiasing is unlikely to yield good
results, as the “loose” requirement of compensating only the average e�ect of the end-to-end
cascadeK cannot capture the variability in the variances σ2

x,j . This case will therefore not be
considered here. However, at �rst sight, there is no reason not to use individual unbiasing,
when an average variance is present (case Φx = σ2

xIN ). Hence, algorithms with this com-
bination will be composed below. Before that, the non-linear estimation and the respective
unbiasing procedure are considered from an estimation-theoretic perspective.

4.4.2 Signal-Constrained Estimation

In this section, we recapitulate suitable bias compensation techniques for the scalar non-linear
MMSE estimation2 (2.19) similar to [Fis16, SF18, Spa19, FSG20, FS22], where the derivation is
based on a geometric point of view as used in [Kay93, Fis02, For03]. Random variables allow
a geometrical interpretation, since joint estimation can be interpreted as inner product of a
vector space [Kay93, Sec. 12.4]. To understand this, recall that the observation model for this
case is given by (cf. also (2.18))

x̃s = x + ns , with x ∼ fx(x) , ns ∼ N
(
0, σ2

ns

)
. (4.63)

Note that the noise variance is denoted by σ2
ns here, instead of σ̃2

s , as in (2.18). The denomination
shall stress the connection to the observation noise ns. For the algorithms, σ̃2

s will be used again
to point out the connection to x̃s.

In CS, the sparse prior x usually is assumed to have zero-mean, i.e., mx = Ex{x} = 0.
Furthermore, assuming that the noise / error ns is uncorrelated to the signal, it is [Kay93]

Exns{xns} = Ex{x}Ens{ns} = 0 , (4.64)

where the �rst estimation is w.r.t. the joint pdf fxns(x, ns). Interpreting the joint expectation
Exns{xns} as inner product, implies that the random variables x and ns are orthogonal, when
considered as vectors in a vector space, cf. [PP02, p. 211]; for a summary of the notion of vector
spaces, the reader may be referred to Appendix A. The norm of the vector space is accordingly
given by “joint” expectation of the random variable with itself, i.e., when considering a Eu-
clidean vector space, the squared “length”, i.e., the squared `2-norm of the vector representing
observation noise ns is given by

Ens

{
n2

s

}
= σ2

ns . (4.65)

Respectively, the signal x has a squared length of σ2
x = Ex{x2}.

Let us get back to the MMSE criterion. There, the estimation error es = x − ms between
signal x and estimate ms is considered. The criterion aims to minimize the squared version of
this error given the observation x̃s, i.e.,

ms = argmin
m

Ex
{
(x −m)2 | x̃s

}
. (4.66)

2For simplicity, the index j is omitted in this section.
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The resulting conditional mean is justi�ed by the fact that [Kay93, PP02]
∂

∂m
Ex
{
(x −m)2 | x̃s

}
= −2(Ex{x | x̃s} −m) != 0 , (4.67)

requires m = ms = Ex{x | x̃s}. The corresponding reliability of the estimate for the given
observation is de�ned as [PP02, GWSV11]

σ2
s = Ex

{
(x −ms)2 | x̃s

}
= Ex

{
x2 | x̃s

}
−m2

s , (4.68)

cf. also (2.20). As both estimates are functions of x̃s, we may in the following use the notation
ms(x̃s) and σ2

s (x̃s) to emphasize this dependency. The so-called (minimum)mean-squared error
(MSE) [Kay93] of this strategy is obtained by integration over the statistic of the observation
x̃s, i.e., it de�nes the observation-independent reliability of the estimation, [Kay93, GWSV11]

σ2 def= Ex̃s

{
σ2

s (x̃s)
}

=
∫
fx̃s(x̃s)σ2

s (x̃s) dx̃s . (4.69)

Calculating this integration within a recovery algorithm would lead to an unnecessary com-
plexity overhead. Since the MSE is only a function of the variance σ2

ns (σ̃2
s within the algo-

rithms), the computation can be done beforehand and stored in a look-up table (LUT).
The MSE σ2 is depicted over the input σ2

ns (a.k.a. σ̃2
s ) in Fig. 4.5 for the distribution (2.4),

which is called discrete ternary (DT) prior, for N = 250. Also, two bounds from [GWSV11]
are given. The rougher one (dashed) states that the MSE σ2 is always smaller than the input
variance σ2

ns and the variance of the prior σ2
x . The second bound (dotted) is the MSE of a

Gaussian random variable, which reads

σ2 = (1/σ2
x + 1/σ2

ns)
−1 = σ2

x
1 + σ2

x/σ
2
ns

= σ2
xσ

2
ns

σ2
ns + σ2

x
. (4.70)

According to [GWSV11], the MSE of a Gaussian random variable is always larger (or equal)
than the MSE of any other random variable with the same variance σ2

x . Noteworthy, this
feature is connected to the maximum-entropy property of Gaussian random variables. On the
left side, the MSE of the DT prior is compared to the two bounds and the Bernoulli-Gaussian
(BG) prior (2.5) with a sparsity of s = 5, i.e., σ2

x = s/N = 5/250 = 0.02. One can see
that the MSEs of both priors converge to the bound given by σ2

x for large values of the input
variance σ2

ns . It is also visible that the DT prior has a tremendous decrease in the MSE for small
input variances, when compared to the BG prior; only around σ2

ns = 10−1 the MSE of the DT
prior is larger. The reason for the faster descent is the discrete nature of the prior, which
simpli�es the estimation in less noise. On the right side, the DT prior is compared for di�erent
sparsities that will be used in the simulations in Chapter 6. According to the bounds, the value
of convergence towards large input variances changes, but the descents towards small input
variances is similar. For more properties of the MSE, cf. [GSV05, GWSV11].

It can be shown that joint estimation of estimation error es and observation x̃s, in fact any
function of x̃s, is zero, i.e., [Fis16, PP02]

Eesx̃s{esf(x̃s)} = Exx̃s{(x −ms(x̃s))f(x̃s)} = Ex̃s{f(x̃s)Ex{x −ms(x̃s) | x̃s}}
= Ex̃s{f(x̃s)(Ex{x | x̃s} − Ex{ms(x̃s) | x̃s})}
= Ex̃s{f(x̃s)(ms(x̃s)−ms(x̃s))} = 0 , (4.71)
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Figure 4.5: Comparison of the MSE for two different priors forN = 250. On the left, the priors are compared;
on the right, the MSE of the DT prior (2.4) is compared for different sparsities. Note that σ2

ns
is called σ̃2

s , when
referring to the algorithmic procedures.

with f(x̃s) being an arbitrary function of x̃s. Since ms is a function of x̃s, this means that the
MMSE estimate is orthogonal to the resulting estimation error es. Naturally, also the observa-
tion x̃s when considered a random variable, is orthogonal to es.

Since there are right angles between di�erent vectors, if the estimation is not linear, this
requires a three-dimensional space to be displayed, because the estimate (considered as ran-
dom variable) needs to lie on a Thales circle between x and σ2

x/(σ2
x + σ2

ns)x̃s, which is the
corresponding linear estimator and optimal if the signal x is Gaussian distributed, for a visual-
ization see [For03]. The random variables are depicted as vectors in a vector space in Fig. 4.6,
similarly to a �gure in [FSG20]. The vector space is spanned by the direction of x, ns, and a
third axis, which we call v. The right angles are depicted as squares in the respective perspec-
tive. The vector for the estimatems is here constructed by the intersection of two tilted Thales
circles, that span vector x and ns, respectively, thereby ensuring the above derived right angles
between the vectors. The displayed measures are squared distances, i.e., the variances of the
corresponding random variables.

Since the estimation error es is not orthogonal to the signal x itself, i.e., a projection towards
x does not yield zero, which means a part of the signal is accounted to the error. This may
be interpreted as bias, for which two ways of compensation are introduced in the following
sections.

Noteworthy, by use of total expectation, the expected value of the MMSE estimate is ob-
tained as [Fis18]

Ems{ms} = Ex̃s{Ex{x | x̃s}} = Ex{x} = 0 , (4.72)

which means that on average an MMSE estimate is expectation-consistent and thereby unbi-
ased, however, this notion of bias is not considered here.
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Figure 4.6: Visualization of the random variables involved in the estimation as vectors (cf. [Fis16]).

4.4.2.1 Individual Unbiasing

The precise handling of the bias compensation procedure is obtained by scaling realizations
of the random variables, which are involved in the estimation, adequately. In this work, only
what is called noise-oriented unbiasing in [FSG20] and [Spa19] is considered, since it has bet-
ter properties for the recovery in CS, for more details, see [Spa19]. This means, that instead
of scaling directly the estimate ms, the error between observation x̃s and estimate ms is re-
garded, which needs to be decomposed into a part of the actual observation noise ns and an
uncorrelated distortion dn. For this, one needs to set up the model [Fis16, Ban13]

en = x̃s −ms = knns + dn , (4.73)

where kn is the factor that is necessary to scale the observation noise such that it is uncor-
related to the distortion, i.e., Ensdn{nsdn} = 0. The error en is already depicted in Fig. 4.6 as
vector. The scaling factor can be obtained by considering similar triangles in the shaded area
of Fig. 4.6. The shaded triangle of Fig. 4.6 is drawn again in Fig. 4.7, such that the triangle
lies in the drawing plane. The corner points of the triangle are the endpoints of x, ms, and
x̃s, the edges are given by ns, es, and en. The estimation error es has by de�nition a squared
length equal to the MSE, i.e., Ees{e2

s} = σ2. With the Pythagorean theorem, one can infer the
respective squared length of en. The relations between sides of the two right triangles yields

Ens{(knns)2}
Een{e2

n}
= k2

nσ
2
ns

σ2
ns − σ2

!= Een{e2
n}

Ens{n2
s}

= σ2
ns − σ

2

σ2
ns

, (4.74)

and �nally

kn = σ2
ns − σ

2

σ2
ns

. (4.75)



58 4. Turbo-type Inference

x x̃s

ms

ms,u

ns

enes

1
kn

en

k2
nσ

2
ns = (σ2

ns − σ
2)2/σ2

ns

σ
2

σ 2ns −
σ 2

σ
2 σ

2 n s
/(
σ

2 n s
−
σ

2 )

Figure 4.7: Visualization of the random variables involved in the noise-oriented bias compensation.

The scaling factor tells us, how much the observation noise ns is scaled in order to obtain
the di�erence en. Returning to the estimates, an unbiased version ms,u of estimate ms is ob-
tained by inversely applying the scaling to the di�erence between observation and estimate
and subtracting it from the observation, i.e.,

ms,u = x̃s + 1
kn

(x̃s −ms) = x̃s + σ2
ns

σ2
ns − σ2 (ms − x̃s) . (4.76)

The corresponding unbiased variance is obtained as

σ2
s,u = σ2

s +
(

σ2

σ2 − σ2
ns

)2

(ms − x̃s)2 . (4.77)

This is called the individual unbiasing case, as it is exactly tailored for one observation x̃s with
respective noise variance σ2

ns . The case, where the reliability of an entire vector is speci�ed in
one variance is discussed in the next section.

4.4.2.2 Average Unbiasing

In the following, the connection between the previously explained noise-oriented unbiasing
and the extrinsic calculations performed in VAMP is shown, which has similarly been stated
in [SF18].

First, consider that since VAMP uses one variance σ2
ns to adjust the non-linear estimators

for all components of the signal vector x, the corresponding MSE σ2 is equal for all compo-
nents because it is a function of the input variance only. Furthermore, for a high-dimensional
signal, the empirical average over the conditional variances σ2

s,j suitably approximates the
MSE, since the averaging may be interpreted as Monte-Carlo integration with many samples
/ observations x̃s,j , i.e., it is

σ2 = lim
N→∞

1
N

N∑
j=1

σ2
s,j(x̃s,j) . (4.78)
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With this in mind, (4.76) can be reformulated to obtain

ms,u = x̃s + σ2
ns

σ2
ns − σ2 (ms − x̃s) = x̃s + σ2

nsσ
2

σ2
ns − σ2 (ms/σ

2 − x̃s/σ
2)

=
(

1
σ2 −

1
σ2

ns

)−1 (
ms/σ

2 + x̃s

(
σ2

ns − σ
2

σ2
nsσ

2 − 1
σ2

))
= (1/σ2 − 1/σ2

ns)
−1(ms/σ

2 − x̃s/σ
2
ns) , (4.79)

which already reminds us of the update in VAMP without indices. Note that in VAMP σ2
ns is

denoted σ̃2
s and as already discussed, σ2

s takes on the role of σ2.
Last but not least, the unbiased MSE is stated, which is obtained as the observation-

independent version of σ2
s,u, i.e., with (4.68), Ex̃s{x̃2

s} = σ2
x + σ2

ns ,

Ex̃s{ms(x̃s)x̃s} = Ex̃s{(x − es)x̃s} = Ex̃s{xx̃s} = Ex̃s{x(x + ns)} = σ2
x , (4.80)

Ex̃s

{
ms(x̃s)2

}
= Ex̃s

{
Ex
{
x2 | x̃s

}}
− Ex̃s

{
σ2

s (x̃s)
}

= Ex
{
x2
}
− σ2 = σ2

x − σ2 , (4.81)

it is

σ2
u = Ex̃s

{
σ2

s,u(x̃s)
}

= Ex̃s

{
σ2

s (x̃s)
}

+
(

σ2

σ2 − σ2
ns

)2

Ex̃s

{
(ms(x̃s)− x̃s)2

}

= σ2 +
(

σ2

σ2 − σ2
ns

)2 (
σ2

x − σ2 − 2σ2
x + σ2

x + σ2
ns

)
= σ2 + (σ2)2(σ2

ns − σ
2)

(σ2 − σ2
ns)2

= σ2(σ2
ns − σ

2) + (σ2)2

σ2
ns − σ2 = σ2σ2

ns

σ2
ns − σ2 =

(
1
σ2 −

1
σ2

ns

)−1

, (4.82)

which justi�es the use of the respective update for the variance as well. This can also be de-
rived graphically, the resulting squared length is shown in Fig. 4.7. Noteworthy, the averaging
of variances performed in VAMP approximates MSEs3, which are the parameters to use in
bias compensation when deriving it from an estimation-theoretic perspective. Therefore, the
procedure in VAMP is valid especially for high-dimensional signals x.

All in all, this shows that the extrinsic computation derived for VAMP is also justi�ed from
an estimation-theoretic perspective.

4.5 Turbo-Type Algorithms—Estimation-Theoretic Adaption

The previous sections have opened di�erent possibilities of treating the MMSE estimates to
prepare them as input for the other estimator. This insight will be used in the following to
compose algorithms by replacing the strategies at respective steps. At �rst, an algorithm with
individual variances is considered.

3In case of linear estimation conditional variance and MSE are the same, so σ2
ns

a.k.a. σ̃2
s is indeed an MSE.



60 4. Turbo-type Inference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.210−2

101

104

107

1010

|x̃s,j| −→

1/
σ̃

2 c,
j
−→

(4.83)
(4.87)

Figure 4.8: Inverse of the unbiased variance σ̃2
c,j for the two strategies: optimization-based approach (4.83)

and estimation-theoretic bias compensation (4.87), for N = 250, s = 5, 10 log10(1/σ̃2
s,j) = 16 dB.

4.5.1 Individual Variances and Estimation-Theoretic Bias Compensation

When comparing the individual unbiasing procedure in Sec. 4.4.2.1 with the extrinsic calcu-
lation in the algorithm of Sec. 4.3.2, one can see certain di�erences. For example, although
the update for the mean estimates shares the same form, the initial algorithm does not make
use of the MSE itself, but instead works with conditional variances. In [FSG20] this treatment
of variances was shown to be disadvantageous as negative variances may result frequently in
the algorithm, when computing

1
σ̃2

c,j
= 1
σ2

s,j
− 1
σ̃2

s,j
, j ∈ {1, . . . , N} . (4.83)

Since negative variances have no useful meaning, this has to be prevented by, e.g., clipping
the result to a positive interval [RSF19]. However, this a�ects the processing of the algorithm
and ultimately deteriorates the performance.

A way to solve this problem is naturally given by the estimation-theoretic bias compen-
sation view in Sec. 4.4.2.1. The corresponding algorithm is obtained by replacing the updates
after the signal-constrained estimation with the derived Eqs. (4.76) and (4.77), which is stated
below in Eqs. (4.86) and (4.87) in the notation of the algorithms again. The two computations
of the unbiased variance (4.83) and (4.87) are compared in Fig. 4.8 for parameters that are used
in the simulations in Chapter 6. The procedure with the subtraction leads to negative values
in the gray area, while the estimation-theoretic unbiasing stays positive for all possible values
of x̃s,j and σ̃2

s,j .
The resulting algorithm was introduced in [FSG20] �rst, a similar version is called euIMS

in [Spa19], here it is called VAMPire, for VAMP with individual reliabilities enhanced.
The main steps in the algorithm can be summarized as follows (in estimation-theoretic

notation with mean and variances). Starting with a suitable initialization for the input vari-
ables of the channel-constrained estimation, e.g., x̃c = 0 and Φ̃c = s/N · IN , the unbiased
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conditional mean and variance can directly be computed via

x̃s = x̃c +WΦ̃cA
>(AΦ̃cA

> + σ2
nIN)−1(y −Ax̃c) , (4.84)

σ̃2
s,j = σ̃2

c,j([W ]jj − 1) , (4.85)

where the diagonal entries of the compensation matrix read [W ]jj = 1/[Φ̃cA
>(AΦ̃cA

> +
σ2

nIN)−1A]jj . The results are used to compute signal-constrained conditional mean ms,j

from (2.19) and conditional variance σ2
s,j from (2.20) for j ∈ {1, . . . , N}.

For the subsequent bias compensation, the procedure derived in Sec. 4.4.2.1 is used, i.e.,
one needs to compute

x̃c,j = x̃s,j +
σ̃2

s,j

σ̃2
s,j − σ2

j

(ms,j − x̃s,j) , (4.86)

σ̃2
c,j = σ2

s,j +
(

σ2
j

σ2
j − σ̃2

s,j

)2

(ms,j − x̃s,j)2 . (4.87)

The MSEs σ2
j are a direct function of σ̃2

c,j and can therefore be tabulated to reduce the com-
plexity [FSG20]. In the next iteration, x̃s = [x̃s,1, . . . , x̃s,N ]> and Φ̃c = diag(σ̃2

c,j) are used
as input variables for the channel-constrained estimation and the computations are repeated
until a suitable stopping criterion is met. The Algorithm is also stated in Appendix E.7.

It has to be noted that the computational complexity of this algorithm ranges in4 O(M ·
N2), whereas VAMP is in O(MN), for the derivations see [Spa19]. The reason for the in-
creased complexity of VAMPire is that in the channel-constrained estimation, a M ×M ma-
trix has to be inverted. For the VAMP case, the inverse can be simpli�ed to the inversion of
a diagonal matrix, i.e., scalar inversions are performed, by utilizing the singular value decom-
position (SVD) of the sensing matrix [RSF19, Spa19]. Switching from scaled identity matrix
Φ̃c = σ̃2

cIN to a diagonal version Φ̃c = diag(σ̃2
c,j), i.e., individual variances, the decompo-

sition cannot yield a diagonal inverse, so the complexity reduction is not possible. This is of
course a huge drawback and means that the gained insight into the individual reliabilities of
the linear estimate is relative costly.

4.5.2 VAMP with Individually Unbiased LMMSE Estimate

It has been shown in Sec. 4.4.1.1 that the usual version of the VAMP algorithm inherently per-
forms average bias compensation after the linear estimation. The individual bias compensation
strategy has so far only been used, when individual variances were present. With individual
variances in the linear estimator, this leads to a huge increase in complexity, since the compu-
tation of the inverse can not be facilitates by the SVD trick, as suggested in [RSF19]. However,
there is no reason not to use individual unbiasing in a setting with average variances. As will
be shown in numerical simulations in Chapter 6, individual unbiasing is particularly useful
if the columns of the sensing matrix carry di�erent energies, i.e., have di�erent (squared) `2-
norms. In the following, we therefore compose algorithms that combine the use of an average

4By f(x) = O(g(x)) the Landau notation is denoted, which bounds the growth of f(x) for x → ∞ by the
function g(x) in the sense that |f(x)| ≤ const. · g(x) for x ≥ x0 from some point x0 ∈ R on [Lan09].
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variance in the linear estimation with individual bias compensation after the linear estimation.
The respective scheme has been published in [SF22].

The channel-constrained estimation is for this case given as

x̃s = x̃c +WA>(AA> + σ2
n
σ̃2

c
IM)−1(y −Ax̃c) , (4.88)

where [W ]jj = 1/[A>(AA> + σ2
n
σ̃2

c
IM)−1A]jj . As reliability for the signal-constrained esti-

mation in (2.19) and (2.20), one can either keep the individual unbiased variances

σ̃2
s,j = σ2

x ([W ]jj − 1) , (4.89)

or average them to obtain

σ̃2
s = σ2

x (MA([W ]jj)− 1) . (4.90)

This leads to two di�erent variants of the VAMP algorithm, which is denoted by VAMPii for
individual unbiasing and individual (unbiased) variances and VAMPia for individual unbiasing
and average (unbiased) variances.

For the unbiasing after the signal-constrained estimation, the procedure of average un-
biasing is utilized, since the resulting input variance for the channel-constrained estimation
needs to be an average one. Therefore, it is in both cases

x̃c = σ̃2
c (ms/σ

2
s − x̃s/σ̃

2
s ) , σ̃2

c = (1/σ2
s − 1/σ̃2

s )−1 , (4.91)

where σ2
s = MA(σ2

s,j) has to be averaged for both algorithms and σ̃2
s = MA(σ̃2

s,j) additionally
for VAMPii.

The complete algorithms are stated in Appendix E.8.
On the next double page, the Turbo algorithms are summarized in the form of block dia-

grams.
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4.6 Block Diagrams of the Turbo Algorithms

In the following, the Turbo-type algorithms are summarized in the form of block diagrams.
Here, the block for the signal-constrained estimation accepts the mean x̃s and corresponding
variance(s) as input parameters and returns the conditional mean ms. The depiction shows
exemplary the signal-constrained estimation for the DT prior over input values x̃s,j for a given
variance.

4.6.1 VAMP
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4.6.4 VAMPia
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5. Sequential Inference

In the last two chapters, we have seen the two extreme cases of working with the factor graph
for CS. Chapter 3 factorized the conditional pdf (2.7) as much as possible to yield the most sim-
plest estimators, which led to a relative high complexity because of the huge number (O(M ·N)
due to the number of connecting edges) of messages that needed to be broadcasted.

In Chapter 4, the opposite approach was considered by factorizing to a minimum number
of components, i.e., separating only what really needed to be apart. The result were two major
components, between which the recovery algorithms iterated to achieve a suitable solution.

The chapter at hand, describes cases that lie in between these two extreme approaches.
The idea is to factorize the posterior fx|y(x) more than in the Turbo case (Chapter 4) but not
as much as in the MP case (Chapter 3). In contrast to the Turbo procedure, this leads to the
possibility of (di�erent) schedules, as in the MP case, but without the corresponding high
computational complexity in terms of messages to be propagated. The processing will result
in a sequential version of the (parallel) Turbo case.

Subsequently two di�erent approaches will be considered that follow the remaining factor-
ization possibilities of Fig. 2.3, starting with separated variables nodes, but combined channel
factors, i.e., Fig. 2.3(c) and �nishing o� with the �nal part Fig. 2.3(b), which depicts separated
channel factor nodes and a combined variable node.

5.1 Sequential Processing of Variables

When considering the processing in the Turbo case, one may realize that the computation
of the signal-constraint estimates (2.19) and (2.20), although being processed in parallel, not
necessarily need to be computed together, since the variables are considered i.i.d., cf. (2.18).
A natural idea for sequentializing the Turbo process is, therefore, to consider only one com-
ponent xj of the signal vector in the signal-constrained estimation to �nd the impact of the
single variable on the channel-constrained estimation. In the next step, another component is
considered, eventually leading to a sequential processing of the variables x1, . . . , xN .

Sequential processing of variables can for the CS literature be found, e.g., in [MKTZ15],
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where the AMP algorithm is sequentialized. In contrast, in this chapter sequential versions
of VAMPind, i.e., VAMP with individual variances, and VAMPire are considered. Other ex-
amples for sequential (variable) processing in CS are [SN08], where the focus lies on the de-
sign of the sensing matrix A—in contrast, we consider A �xed and focus on the algorithmic
part— and [BMPP20], which considers a Bernoulli-Gaussian prior whose sparsity parame-
ter is learned throughout the algorithm. A similar algorithm to the one in [BMPP20] is also
described in [OW05, Appendix D] for a general inference problem with binary prior. The re-
spective algorithm for CS with arbitrary prior is explained in Sec. 5.1.4 below. The algorithm
was improved in [SF21] by an estimation-theoretic consideration of the bias compensation;
here, this version of the algorithm is discussed in Sec. 5.1.5.

Noteworthy, the mentioned algorithms in [OW05, BMPP20, SN08] are all based on the
expectation propagation (EP) [Min01] framework, which considers (in its initial version) se-
quential updates in a general inference problem but is often interpreted in a parallel schedule,
last but not least also for VAMP [RSF19].

Recent work on sequential processing is also given in [ÇLO22], which analyzes a sequen-
tial version of VAMP with random schedule for a Gaussian model with latent parameter.

Another study on sequential CS, which is further away than the previously mentioned ref-
erences, is [LCJ15], where dynamically changing signals with spatial and temporal correlation
are processed sequentially in a wireless sensor network (WSN).

The derivation given here, follows the optimization-based approach that was also consid-
ered in the previous chapters.

5.1.1 Structure of the Factor Graph

The idea for the sequential processing of the variables x1, . . . , xN that is pursued in this part of
the chapter is motivated by the fact that the components of the signal vector x are i.i.d.. Conse-
quently, the signal factors fx(xj) are considered individually in the factorization, which yields
individual processing of the signal-constrained estimates. The channel-constrained part, on
the other hand, is kept together, thereby enabling the possibility to propagate e�ects of a single
signal-constrained estimation to the other signal components in one step. The factorization
that is considered here is therefore given by

fx|y(x) = const. · fy|x(x) ·
N∏
j=1
fx(xj) . (5.1)

The corresponding factor graph is the one shown in Fig. 2.3(c), which is plotted in Fig. 5.1 for
convenience again.

5.1.1.1 Factorization of the Substitute Distribution

Following the factorization in (5.1), qc(x) approximates fy|x(x) as in (4.4) and qs,j(xj) ap-
proximates fx(xj) (j ∈ {1, . . . , N}) as in (3.3), where it is assumed that the deviation in the
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Figure 5.1: Factor graph for sequential processing of variable nodes.

approximation for the channel-constrained factor splits according to

c(x) =
N∏
j=1

cj(xj) . (5.2)

The individual marginals qv,j(xj) are then given by

qv,j(xj) = const. · sj(xj) · cj(xj) . (5.3)

The individual representation is used (instead of an entire representative qv(x)) because the
variable nodes are considered separately in the factor graph. The resulting factorization of the
substitute distribution reads

q(x) =
qc(x) ·∏N

j=1 qs,j(xj)∏N
j=1 qv,j(xj)

. (5.4)

5.1.1.2 The Moment-Matching Constraint

The consistency constraints, which need to be de�ned per edge in the factor graph, are in the
given case set up for all variables x1, . . . , xN . Since each variable node is connected to a signal
factor and the channel factor, two constraints need to be established per variable node. As
before, exponential families are used, especially in the form of Gaussian distributions, because
eventually the (�rst-order) moment of the MMSE estimate (2.9) is desired. However, since the
signal factors are considered individually per variable, it is necessary to specify the reliability
of the estimation individually. Therefore, the su�cient statistics of the exponential family is
determined by

g(x) = [gλ(x)>, gΛ(x)>]> (5.5)

with

gλ(x) = [x1, . . . , xN ]> , gΛ(x) = −1
2[x2

1, . . . , x
2
N ]> , (5.6)
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cf. Ex. D.2 in Appendix D. For convenience, the notation g(xj) = [gλj
(xj), gΛj

(xj)]> =
[xj, −x2

j/2]> may be used. With these speci�cations, the constraints on the moments read

Exj∼qv,j
{g(xj)} != Exj∼qs,j

{g(xj)} , j ∈ {1, . . . , N} , (5.7)

Exj∼qv,j
{g(xj)} != Exj∼qc{g(xj)} , j ∈ {1, . . . , N} . (5.8)

5.1.2 Constrained Optimization

The optimization-based approach that is used to derive the parameter connections for the al-
gorithm takes on the form of a constrained optimization problem, where the task of minimiz-
ing the Kullback–Leibler divergence is combined with the moment constraints from above and
normalization constraints for the representativesqc(x), qs,j(xj), andqv,j(xj) (j ∈ {1, . . . , N}).
The entire problem reads

minimize DKL
(
q(x) || fx|y(x)

)
subject to Exj∼qv,j

{g(xj)} − Exj∼qc{g(xj)} = 0 , j ∈ {1, . . . , N} ,
Exj∼qv,j

{g(xj)} − Exj∼qs,j
{g(xj)} = 0 , j ∈ {1, . . . , N} , (5.9)∫

qv,j(xj) dxj = 1 ,
∫
qs,j(xj) dxj = 1 , j ∈ {1, . . . , N} ,∫

qc(x) dx = 1 .

5.1.2.1 Cost Function for Compressed Sensing

For the sake of completeness, the form of the Kullback–Leibler divergence for the given case
is stated, which is somewhat a mixture of the cases in the chapters before

DKL
(
q(x) || fx|y(x)

)
=

N∑
j=1

∫
qs,j(xj) logqs,j(xj) dxj +

∫
qc(x) logqc(x) dx

−
N∑
j=1

∫
qs,j(xj) log fx(xj) dxj −

∫
qc(x) log fy|x(x) dx

−
N∑
j=1

∫
qv,j(xj) logqv,j(xj) dxj . (5.10)

5.1.2.2 Stationary Points of the Lagrangian

To see the parameter connections that are necessary for the recovery algorithm, a Lagrangian
is set up and the stationary points are derived, because the stationary points indicate the form
of the solution to the problem. For the Lagrangian, multipliers νc,j and νs,j (j ∈ {1, . . . , N})
are de�ned for the moment-matching constraint, as well as νc, νj , and νs,j (j ∈ {1, . . . , N})
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for the normalization constraint. The resulting Lagrangian reads

L(q(x)) = DKL
(
q(x) || fx|y(x)

)
+

N∑
j=1
ν>c,j

(
Exj∼qv,j

{g(xj)} − Exj∼qc{g(xj)}
)

+
N∑
j=1
ν>s,j

(
Exj∼qv,j

{g(xj)} − Exj∼qs,j
{g(xj)}

)

+
N∑
j=1

(
νj(
∫
qv,j(xj) dxj − 1) + νs,j(

∫
qs,j(xj) dxj − 1)

)

+ νc(
∫
qc(x) dx− 1) . (5.11)

Similar to the previous chapters, the stationary points are obtained by di�erentiating w.r.t. the
representatives qc(x), qv,j(xj), and qs,j(xj) (j ∈ {1, . . . , N}), respectively, setting the results
to zero and solve for the respective representative, i.e.,

∂

∂qv,j
L(q(x)) = − logqv,j(xj) + (νc,j + νs,j)>g(xj) + const. != 0 , (5.12)

∂

∂qs,j
L(q(x)) = logqs,j(xj)− log fx(xj)− ν>s,jg(xj) + const. != 0 , (5.13)

∂

∂qc
L(q(x)) = logqc(x)− log fy|x(x)−

N∑
j=1
ν>c,jg(xj) + const. != 0 . (5.14)

Finally, one obtains

qv,j(xj) = 1
Zv,j

exp
(
(νs,j + νc,j)>g(xj)

)
, (5.15)

qc(x) = 1
Zc
fy|x(x) exp

 N∑
j=1
ν>c,jg(xj)

 , (5.16)

qs,j(xj) = 1
Zs,j

fx(xj) exp
(
ν>s,jg(xj)

)
, (5.17)

with normalizing partition functions Zv,j , Zc, and Zs,j .
The basic result of the derivations is that again the connection of the natural parameters

in the variable node is given by

θj
def= νc,j + νs,j , (5.18)

which means that in the algorithm, post-processing is done as extrinsic calculation, i.e., the
inputs to the estimations are obtained by subtractions of previously computed estimates. The
procedure will be discussed in detail below.

5.1.2.3 Connection to Expectation Propagation

The basic idea behind expectation propagation (EP) [Min01] is to re�ne an approximation
q(x) by replacing a representing factor of the approximation by the corresponding exact term
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and projecting the re�nement back into the space of distributions that is considered. This
is iteratively conducted for all the parts / factors, that are available in the structure of the
considered problem.

In terms of exponential families, it is directly visible how this connects to the derivation
here. Starting with a representative q(x) = 1

Z(θ) exp
(
θ>g(x)

)
, which encodes the structure

of the problem by a respective summation of its natural parameters, e.g., θj = νc,j + νs,j

in the case above (then the entire natural parameter might be θ = [θ>1 , . . . , θ>N ]>). The
representing factor is removed by subtracting its corresponding natural parameter from the
natural parameter representing the entire distribution. The resulting parameter is called the
cavity parameter, because it excludes the in�uence of the respective factor. Inserting the exact
factor—in the given case any of fx(xj) (j ∈ {1, . . . , N})—yields something of the form of
the stationary points qs,j(xj) = 1

Zs,j
fx(xj) exp

(
ν>s,jg(xj)

)
of the Lagrangian, i.e., the cavity

parameter is here νs,j = θj − νc,j . The projection is then performed as minimization of the
Kullback–Leibler divergence such that the result is a member of an exponential family, i.e., of
the form, e.g., [Min05]

qv,j(xj) = min
q(xj)

DKL(qs,j(xj) || q(xj)) . (5.19)

As indicated, the result of the projection is of the form of qv,j(xj) from (5.15). The restriction to
members of an exponential family causes a matching of moments, as shown in the insert below.
Noteworthy, the minimization of the Kullback–Leibler divergence considered here has the
position of substitute distribution and given distribution swapped compared to the instances
used so far and it requires arguments of a di�erent form.

The matching of moments can be interpreted as in Chapter 3 and be realized by computing
moments and the resulting natural parameters of a corresponding member of an exponential
family, which yields an updated θj . The remaining task is to update the so-called site param-
eters, i.e., the complementary part of the cavity parameters, here by νc,j = θj − νs,j .

Another interesting aspect is that the computation of extrinsic is directly realized in this
procedure and can intuitively be explained by the fact that one has to make room in the ap-
proximation (by subtracting the corresponding natural parameter representation) for the exact
part to be inserted.

Insert

We show that, when restricting the result of the minimization (5.19) to an exponen-
tial family, a matching of moments is obtained. Assume thatq(xj) = 1

Z(θ) exp
(
θ>g(xj)

)
.

Under this assumption, the Kullback–Leibler divergence can be written as

DKL(qs,j(xj) || q(xj)) =
∫
qs,j(xj) logqs,j(xj) dxj − θ>

∫
qs,j(xj)g(xj) dxj + logZ(θ) .

(5.20)

Then di�erentiation of DKL(qs,j(xj)||q(xj)) w.r.t. θ yields
∂

∂θ
DKL(qs,j(xj) || q(xj)) = ∂

∂θ

(
logZ(θ)− θ>Exj∼qs,j

{g(xj)}
)

= Exj∼q{g(xj)} − Exj∼qs,j
{g(xj)} , (5.21)
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where (D.18) was used for the di�erentiation of logZ(θ). Subsequently setting this to zero,
yields the matching of moments Exj∼q{g(xj)} = Exj∼qs,j

{g(xj)}, which means that any ex-
tremum must ful�ll this relation.

End Insert

5.1.3 Expectations and Rank-One Update

The approach considered here has been motivated by the idea of re�ning the LMMSE (channel-
constrained) estimate sequentially based on the impact of single estimations on the signal-
constrained side of the problem. For the signal-constrained estimations, the individual calcu-
lations are needed for which it is known from Chapter 3 that with νs,j = [x̃s,j/σ̃

2
s,j, 1/σ̃2

s,j]>,
it is

Exj∼qs,j

{
gλj

(xj)
}

= Exj
{xj | x̃s,j} = ms,j , (5.22)

Exj∼qs,j

{
gΛj

(xj)
}

= −1
2Exj

{
x2
j | x̃s,j

}
= −1

2
(
σ2

s,j +m2
s,j

)
. (5.23)

On the side of the channel-constrained estimation it is useful to stack the input parameters
such that

N∑
j=1
ν>c,jg(xj) = ν>c g(x) . (5.24)

With the identi�cation

νc = [mx,1/σ
2
x,1, . . . , mx,N/σ

2
x,N , 1/σ2

x,1, . . . , 1/σ2
x,N ]> , (5.25)

it can be referred to Chapter 4, where for individual variances it has been found that

Ex∼qc{gλ(x)} = mc , (5.26)

respectively,

Ex∼qc{gΛ(x)} = −1
2diag

(
Φc +mcm

>
c

)
. (5.27)

For the moment-matching, the respective jth components are required, i.e.,

Exj∼qc

{
gλj

(xj)
}

= mc,j , (5.28)

and

Exj∼qc

{
gΛj

(xj)
}

= −1
2(σ2

c,j +m2
c,j) . (5.29)

In the following, the e�ect of the changes in the channel-constrained estimates induced
by a single signal-constrained estimation at position j is considered. To that end, assume that
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νc and the corresponding estimates mc and Φc are �xed. In order to simplify the notation,
the following de�nitions are set up

λc
def= [λc,1, . . . , λc,N ]> = [mx,1/σ

2
x,1, . . . , mx,N/σ

2
x,N ]> , (5.30)

Λc
def= [Λc,1, . . . , Λc,N ]> = [ 1/σ2

x,1, . . . , 1/σ2
x,N ]> , (5.31)

then the combined input parameter reads νc = [λ>c , Λ>c ]>. With these input parameters, the
channel-constrained estimation can be written as follows by reformulating (2.10) and making
the identi�cations Φ−1

x = diag(Λc,j) and λc = Φ−1
x mx = diag(Λc,j)mx

Φc = σ2
n(A>A+ σ2

ndiag(Λc,j))−1

= ( 1
σ2

n
A>A+ diag(Λc,j))−1 , (5.32)

mc = mx + (A>A+ σ2
ndiag(Λc,j))−1A>(y −Amx)

= (A>A+ σ2
ndiag(Λc,j))−1((A>A+ σ2

ndiag(Λc,j))mx +A>y −A>Amx)
= (A>A+ σ2

ndiag(Λc,j))−1(A>y + σ2
ndiag(Λc,j)mx)

= ( 1
σ2

n
A>A+ diag(Λc,j))−1( 1

σ2
n
A>y + λc)

= Φc(
1
σ2

n
A>y + λc) . (5.33)

The change in position j a�ects only the input parameter νc,j = [λc,j, Λc,j]>. The changed
(new) parameters at position j are denoted by λ◦c,j and Λ◦c,j , respectively. With jth unit vector
ej , which contains a 1 at the jth position and zeros elsewhere, and ∆λc,j = λ◦c,j − λc,j , as well
as ∆Λc,j = Λ◦c,j − Λc,j one can write the resulting input parameter vectors as (cf. [OW05])

λ◦c = [λc,1, . . . , λc,j−1, λ
◦
c,j, λc,j+1, . . . , λc,N ]> = λc +∆λc,jej , (5.34)

Λ◦c = [Λc,1, . . . , Λc,j−1, Λ
◦
c,j, Λc,j+1, . . . , Λc,N ]> = Λc +∆Λc,jej . (5.35)

The last line can be written in matrix form as

diag(Λ◦c) = diag(Λc) +∆Λc,jeje
>
j . (5.36)

The additive form of the change in the vector helps us to formulate the change in the resulting
channel-constrained as follows. Using the Sherman-Morrison-Woodbury identity [GV96], the
new covariance matrix Φ◦c can be written as a rank-one update of the previous one Φc via

Φ◦c =
(

1
σ2

n
A>A+ diag(Λ◦c)

)−1

=
(
Φ−1

c +∆Λc,jeje
>
j

)−1

= Φc −
∆Λc,j

1 +∆Λc,je>j Φcej
Φceje

>
j Φc . (5.37)

Since the unit vector picks the jth column, i.e., it isΦcej = φc,j , respectively e>j Φc = φ>c,j for
Φc = [φc,1, . . . , φc,N ]> and e>j Φcej = σ2

c,j , this can be simpli�ed to

Φ◦c = Φc −
∆Λc,j

1 +∆Λc,jσ2
c,j
φc,jφ

>
c,j . (5.38)
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xj. . .x1 . . . xN

fy|x(x)

fx(x1) fx(xj) fx(xN)

1. x̃s,j, σ̃
2
s,j 2. ms,j, σ

2
s,j

3. ∆λc,j, ∆Λc,j

4. mc,N , σ
2
c,N4. mc,1, σ

2
c,1

Figure 5.2: Procedure for sequential processing of variable nodes [SF21].

The corresponding new conditional mean m◦c can be calculated from the “old” one mc by
inserting the result into (5.33) and using (5.34)

m◦c = Φ◦c(
1
σ2

n
A>y + λ◦c)

= (Φc −
∆Λc,j

1 +∆Λc,jσ2
c,j
φc,jφ

>
c,j)(

1
σ2

n
A>y + λc +∆λc,jej)

= Φc(
1
σ2

n
A>y + λc) +Φc∆λc,jej −

∆Λc,j

1 +∆Λc,jσ2
c,j
φc,jφ

>
c,j(

1
σ2

n
A>y + λc)

− ∆Λc,j∆λc,j

1 +∆Λc,jσ2
c,j
φc,jφ

>
c,jej . (5.39)

Noticing that mc,j = φ>c,j( 1
σ2

n
A>y + λc) and φc,jej = σ2

c,j , this may be simpli�ed to

m◦c = mc + φc,j∆λc,j

(
1−

∆Λc,jσ
2
c,j

1 +∆Λc,jσ2
c,j

)
− ∆Λc,jmc,j

1 +∆Λc,jσ2
c,j
φc,j

= mc + ∆λc,j −∆Λc,jmc,j

1 +∆Λc,jσ2
c,j

φc,j . (5.40)

This way, a change induced by signal-constrained estimation of one variable, can simply
be propagated to the other variables. The procedure is depicted in Fig. 5.2; starting with a
signal-constrained estimation, the change in the extrinsic parameters is fed into the channel-
constrained estimation and via the rank-one update, the impact on other variables can be
computed. Then, another variable can be chosen.

The procedure of the resulting algorithm is summarized in the section below.

5.1.4 Sequential Version of VAMPind

The basis for the algorithm is the linear estimate mc, which is sequentially re�ned by sin-
gle signal-constrained estimations. Therefore, the algorithm is initialized by computing the
LMMSE estimate (5.33) and (5.32) once with suitable values for λc and Λc.

For the re�nement, a component xj of the signal vector x is chosen. As it is known
from (5.18), the extrinsic is calculated via a subtraction. Hence, the input to the signal-constrained
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estimator is computed via

x̃s,j/σ̃
2
s,j = mc,j/σ

2
c,j − λc,j , 1/σ̃2

s,j = 1/σ2
c,j − Λc,j , (5.41)

so that the signal-constrained estimate can be computed as usual by

ms,j = Exj

{
xj | x̃s,j, σ̃

2
s,j

}
, (5.42)

σ2
s,j = Exj

{
(xj −ms,j)2 | x̃s,j, σ̃

2
s,j

}
. (5.43)

The connection (5.18) is used afterwards for the extrinsic calculation again, so that

λ◦c,j = ms,j/σ
2
s,j − x̃s,j/σ̃

2
s,j , Λ◦c,j = 1/σ2

s,j − 1/σ̃2
s,j , (5.44)

The additive parameters ∆λc,j and ∆Λc,j in (5.34) and (5.35), respectively, thus, read

∆λc,j = λ◦c,j − λc,j = ms,j/σ
2
s,j − x̃s,j/σ̃

2
s,j − λc,j

= ms,j/σ
2
s,j − (mc,j/σ

2
c,j − λc,j)− λc,j = ms,j/σ

2
s,j −mc,j/σ

2
c,j , (5.45)

∆Λc,j = Λ◦c,j − Λc,j

= 1/σ2
s,j − 1/σ̃2

s,j − λc,j

= 1/σ2
s,j − (1/σ2

c,j − Λc,j)− Λc,j

= 1/σ2
s,j − 1/σ2

c,j , (5.46)

With this, the rank-one update (5.38) simpli�es to

Φ◦c = Φc −
1/σ2

s,j − 1/σ2
c,j

1 + (1/σ2
s,j − 1/σ2

c,j)σ2
c,j
φc,jφ

>
c,j

= Φc −
σ2

s,j

σ2
c,j

(
1
σ2

s,j
− 1
σ2

c,j

)
φc,jφ

>
c,j

= Φc + 1
(σ2

c,j)2 (σ2
s,j − σ2

c,j)φc,jφ
>
c,j , (5.47)

which yields the interesting interpretation that the covariance matrix is adjusted by the dif-
ference of the variances of the two estimators. Basically that means, at position j it is

[Φ◦c]jj = σ2
s,j , (5.48)

i.e., the previous variance σ2
c,j is replaced by the variance σ2

s,j obtained in the signal-constrained
estimation and at any other position j′ 6= j

[Φ◦c]j′j′ = σ2
c,j′ +

(σ2
c,j′)2

(σ2
c,j)2 (σ2

s,j − σ2
c,j) . (5.49)

For the update of the conditional mean, one obtains (m◦c = [m◦c,1, . . . , m◦c,N ]>)

m◦c = mc +
σ2

s,j

σ2
c,j

(∆λc,j −∆Λc,jmc,j)φc,j

= mc +
σ2

s,j

σ2
c,j

(
ms,j

σ2
s,j
− mc,j

σ2
c,j
−
(

1
σ2

s,j
− 1
σ2

c,j

)
mc,j

)
φc,j

= mc + 1
σ2

c,j
(ms,j −mc,j)φc,j , (5.50)
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i.e., the update is based on the di�erence between the conditional mean estimates. Here, again
mc,j is replaced by ms,j and at other positions j′ 6= j

m◦c,j′ = mc,j′ +
σ2

c,j′

σ2
c,j

(ms,j −mc,j) , (5.51)

which means the estimate is updated by the scaled di�erence between the conditional means of
the two opposing estimators, where the scaling is de�ned by the relation between the variance
at the considered position j′ and the variance of the position that has been updated.

At this point, the next position needs to be chosen to calculate another signal-constrained
estimate and further re�ne the channel-constrained estimate. The complete algorithm is stated
in Appendix E.9 as seqVAMPind. The denomination is chosen because it is the sequential
version of VAMPind. The algorithm can be found in [OW05, Appendix D] for a binary prior
and in [BMPP20] for a Bernoulli-Gaussian prior.

5.1.5 Sequential Version with Estimation-Theoretic Bias Compensation

In Chapter 4 we have seen that an estimation-theoretic view on the extrinsic calculation can
lead to di�erent procedures than derived from the optimization-based view. These updates
have been used to compose the VAMPire algorithm, which has been proposed in [FSG20]. Sim-
ilarly, the respective updates will be used here to obtain a variant of the previously explained
algorithm seqVAMPind. The resulting algorithm is called seqVAMPire, as it is a sequential
version of the VAMPire algorithm. It was �rst published in [SF21].

The start of the algorithm is identically to before, i.e., the channel-constrained estimates (5.33)
and (5.32) are computed with suitably chosen input parametersλc andΛc. The ensuing extrin-
sic computation is equal for estimation-theoretic and optimization-based view, i.e., position j
is chosen and (5.41), as well as the signal-constrained estimates as in (5.42) and (5.43) are com-
puted. The estimation-theoretic bias compensation after the signal-constrained estimation
di�ers from the optimization-based extrinsic, since the estimator is non-linear. Instead of the
subtraction of natural parameters, the updates (4.86) and (4.86) are used, which are stated here
for convenience again

x̃c,j = x̃s,j +
σ̃2

s,j

σ̃2
s,j − σ2

j

(ms,j − x̃s,j) , (5.52)

σ̃2
c,j = σ2

s,j +
(

σ2
j

σ2
j − σ̃2

s,j

)2

(ms,j − x̃s,j)2 , (5.53)

where σ2
j = Ex̃s,j

{σ2
s,j(x̃s,j)} is the MSE of the respective prior. Noteworthy, with

1/σ̃2
j = 1/σ2

j − 1/σ̃2
s,j (5.54)

the �rst line can be rewritten to

x̃c,j/σ̃
2
j = ms,j/σ

2
j − x̃s,j/σ̃

2
s,j . (5.55)
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One has to be aware, that this di�ers from the update in (5.44) since the MSE σ2
j and its unbiased

version σ̃2
j are used instead of σ2

s,j and σ̃2
c,j , respectively. Also, σ̃2

c,j is computed di�erently here.
All in all, the updated parameters are obtained as

λ◦c,j = x̃c,j/σ̃
2
c,j =

σ̃2
j

σ̃2
c,j

(ms,j/σ
2
j − x̃s,j/σ̃

2
s,j) , (5.56)

Λ◦c,j = 1/σ̃2
s,j , (5.57)

and the additive components, thus, as

∆λc,j =
σ̃2
j

σ̃2
c,j

(ms,j/σ
2
j − x̃s,j/σ̃

2
s,j)− λc,j

=
σ̃2
j

σ̃2
c,j

(ms,j/σ
2
j −mc,j/σ

2
c,j) + λc,j

(
σ̃2
j

σ̃2
c,j
− 1

)
, (5.58)

∆Λc,j = 1/σ̃2
c,j − Λc,j . (5.59)

These equations have the e�ect that the rank-one updates (5.38) and (5.40) cannot be simpli�ed
to easier scaling operations as in the previous section. Nevertheless, the changes induced by
the single signal-constrained estimation can be computed and another position for re�nement
may be chosen to proceed with the recovery.

The entire procedure is stated in Appendix E.10 as seqVAMPire(sequential version of VAM-
Pire).

So far, we have focused on the steps of updating the changes induced by a single signal-
constrained estimation. For the overall procedure of the algorithm, one has to think of the
order of processing the variables one after the other, as the sequential approach opens the
possibilities for various schedules. The discussion of these opportunities is postponed to Chap-
ter 6.

5.2 Sequential Processing of Observations

In this section, a CS model is considered that slightly di�ers from the one that is introduced
in Chapter 2. So far, it has been assumed that the noise vector n is i.i.d., which means each
element of the vector is distributed in the same way, and especially the noise variance σ2

n
is the same for all elements. In the following, the case of noise with individual variances is
considered, i.e., n ∼ N (0, diag(σ2

n,i)), respectively ni ∼ N (0, σ2
n,i) for i ∈ {1, . . . , M},

where it is assumed that the individual variances are known. The entries of the noise vector
are thereby still independent, but not identically distributed anymore. We call this case the
non-i.i.d. noise case. Such a model is justi�ed, if some form of channel equalization, which
colors the noise, is performed on the measurements before reconstructing the signal, which
happens, e.g., in several PAR reduction schemes for OFDM [KPN+14, LHD20], or when sparse
noise is assumed [SSF13].

Since the observations yi carry di�erent reliabilities in this model, one may bene�t from
a sequential processing of the observations. This will be examined in the following based on
the optimization-based approach that was considered in the previous chapters as well.
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x

. . .
fy1|x(x) fyM |x(x)

fx(x)

Figure 5.3: Factor graph for sequential processing of the observations.

Sequential processing of observations has been considered in [HTP12, MSW10], where one
observation is processed after the other and the reconstruction is stopped if enough observa-
tions have been processed. In contrast, here, a particular observation vector y is measured
once and the algorithm works on the individual observations of the vector, so that the partic-
ular schedule is in the focus. Other work that considered variable noise variances in the CS
scenario is given in [BG18], which introduces an algorithm based on AMP. Also the GAMP
algorithm [Ran11], which is also stated in Appendix E can cope with the variable noise, if the
noise variance σ2

n is replaced by the respective individual noise variances. As before, the work
at hand is based on VAMP instead of AMP.

5.2.1 Structure of the Factor Graph

For the considerations that are pursued here, the channel factors are considered fyi|x(x) inde-
pendently, since each one should get its own e�cacy. In order not to complicate the problem
too much—separating the signal components as well, would lead to the MP case of Chapter 3
anyway—the signal-constrained part is kept together. Hence, the factorization of the posterior
reads

fx|y(x) = const. · fx(x) ·
M∏
i=1
fyi|x(x) , (5.60)

and the resulting factor graph is the remaining one in Fig. 2.3, i.e., Fig. 2.3(b), which is plotted
in Fig. 5.3 for convenience again.

5.2.1.1 Factorization of the Substitute Distribution

The factorization above tells us that qs(x) is needed as approximation for fx(x), as well as the
individual qc,i(x) for approximating fyi|x(x) (i ∈ {1, . . . , M}), i.e.,

qs(x) = fx(x)s(x) , (5.61)
qc,i(x) = fyi|x(x)ci(x) . (5.62)



80 5. Sequential Inference

The (combined) variable node is therefore constituted by M + 1 instances, which leads to an
M -fold integration as in Chapter 3, i.e., the internal behavior of the variable node is given by

const.
s(x)∏M

i=1 ci(x)
= const. ·

∫
· · ·

∫ (
s(x)

M∏
i=1

ci(xi)
)−1 M∏

i=1
δ(x− xi) dx1 . . .xM (5.63)

with slack variables x1, . . . , xM (the argument of s(x) is chosen to be the original argument
for convenience). So, the connection between variable node and deviations is obtained as

qv(x) = const. · M

√√√√s(x)
M∏
i=1

ci(x) . (5.64)

The resulting factorization reads

q(x) = qs(x) ·∏M
i=1 qc,i(x)

(qv(x))M . (5.65)

5.2.1.2 The Moment-Matching Constraint

As can be seen in the factorization (5.60), respectively the factor graph in Fig. 5.3 above, all
factors are connected to the (combined) variable node, which represents the entire vector x,
in the center. The matching of moments for the su�cient statistics g(x) is therefore set up
between the representative of the variable node qv(x) and the respective representatives of
the factors, yielding

Ex∼qv{g(x)} != Ex∼qs{g(x)} , (5.66)

Ex∼qv{g(x)} != Ex∼qc,i
{g(x)} , i ∈ {1, . . . , M} . (5.67)

Here, the expectation constraint is vector-wise, i.e., the focus is not on individual signal com-
ponents xj . Therefore it is possible to restrict to the average variance case, i.e., g(x) =
[x>, −1

2x
>x]> from Ex. D.1 and (D.12), which means the reliability of the entire vector is

represented with a single variance.

5.2.2 Constrained Optimization

The constrained optimization problem that is obtained, when combining minimization of the
Kullback–Leibler divergence with the moment-matching constraints above (and additional
normalization constraints for valid pdfs) reads

minimize DKL
(
q(x) || fx|y(x)

)
subject to Ex∼qv{g(x)} − Ex∼qc,i

{g(x)} = 0 , i ∈ {1, . . . , M} ,
Ex∼qv{g(x)} − Ex∼qs{g(x)} = 0 , (5.68)∫
qv(x) dx = 1 ,

∫
qs(x) dx = 1 ,∫

qc,i(x) dx = 1 , i ∈ {1, . . . , M} .
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5.2.2.1 Cost Function for Compressed Sensing

The corresponding Kullback–Leibler divergence between substitute distributionq(x) and pos-
terior fx|y(x), which needs to be minimized, is here given by

DKL
(
q(x) || fx|y(x)

)
=
∫
qs(x) logqs(x) dx+

M∑
i=1

∫
qc,i(x) logqc,i(x) dx

−
∫
qs(x) log fx(x) dx−

M∑
i=1

∫
qc,i(x) log fyi|x(x) dx

−M
∫
qv(x) logqv(x) dx . (5.69)

5.2.2.2 Stationary Points of the Lagrangian

In order to �nd the basic relations that a solution to the CS problem with the given structural
conditions need to ful�ll, the stationary points of the respective Lagrangian are computed. To
that end, the Lagrangian multipliers νc,i and νs are de�ned for the moment-matching con-
straints, as well as νv, νs, and νc,i for the normalization constraints, respectively. Then, the
Lagrangian reads

L(q(x)) = DKL
(
q(x) || fx|y(x)

)
+

M∑
i=1
ν>c,i

(
Ex∼qv{g(x)} − Ex∼qc,i

{g(x)}
)

+ ν>s (Ex∼qv{g(x)} − Ex∼qs{g(x)})

+
N∑
j=1

(
νv(
∫
qv(x) dx− 1) + νs(

∫
qs(x) dx− 1)

)

+
M∑
i=1

νc,i(
∫
qc,i(x) dx− 1) . (5.70)

As usual, the stationary points are obtained by di�erentiating w.r.t. the representatives
qv(x), qc,i(x), and qs(x), respectively, and setting the result to zero, which yields

∂

∂qv
L(q(x)) = −M logqv(x) +

(
νs +

M∑
i=1
νc,i

)>
g(x) + const. != 0 , (5.71)

∂

∂qc,i
L(q(x)) = logqc,i(x)− log fyi|x(x)− ν>c,ig(x) + const. != 0 , (5.72)

∂

∂qs
L(q(x)) = logqs(x)− log fx(x)− ν>s g(x) + const. != 0 . (5.73)

With Zv, Zc,i, and Zs functioning as normalizing factors, the stationary-point forms for the
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representatives read

qv(x) = 1
Zv

exp
(

1
M

(νs +
M∑
i=1
νc,i)>g(x)

)
, (5.74)

qc,i(x) = 1
Zc,i

fyi|x(x) exp
(
ν>c,ig(x)

)
, (5.75)

qs(x) = 1
Zs
fx(x) exp

(
ν>s g(x)

)
. (5.76)

Again, as expected, exponential families are involved.
The respective natural parameter of the (combined) variable node representative qv(x) is

given by

θ
def= 1
M

(
νs +

M∑
i=1
νc,i

)
. (5.77)

This reminds us of the connection (3.25) of Chapter 3 and will be used in the following to
derive the parameter update for the recovery algorithm tailored to the structure given by the
factor graph considered here. The correspondences between edges and the respective edge-
dependent natural parameters are depicted in Fig. 5.4(a).

5.2.3 Algorithm

Based on the stationary points of the given structure, an algorithm for the recovery of signal
x is derived in the following.

5.2.3.1 Expectations

First, the computations at the factor nodes are regarded, which are expectations with input
parameters νc,i (i ∈ {1, . . . , M}) and νs, respectively. Since only the average variance case
is considered and the estimates of all signal vector elements are computed at once, one can (as
in Sec. 4.3.1) connect the signal-constrained estimation at factor fx(x) to (2.19) and (2.20) by
making the identi�cation νs = [x̃>s /σ̃2

s , 1/σ̃2
s ]>, i.e.,

Ex∼qs{gλ(x)} = ms , (5.78)

Ex∼qs{gΛ(x)} = −1
2

N∑
j=1

(σ2
s,j +m2

s,j) . (5.79)

The corresponding average variance σ2
s is obtained as in (4.35), i.e.,

σ2
s = 1

N

N∑
j=1

σ2
s,j = − 2

N
Ex∼qs{gΛ(x)} −m>s ms . (5.80)

The expectations at channel factors fyi|x(x) can be related to the estimates in Sec. 2.2.1.2
by considering the average variance case, i.e., Φx = σ2

xIN , and making the identi�cation
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νc,i = [m>x /σ2
x , 1/σ2

x ]>. The estimation reads then

Ex∼qc,i
{gλ(x)} = mc,i = mx + σ2

xai(σ2
xa
>
i ai + σ2

n,i)−1(yi − a>i mx)

= mx +
yi −

∑N
j=1 aijmx,j

σ2
n,i/σ

2
x +∑N

j=1 a
2
ij

ai , (5.81)

Ex∼qc,i
{gΛ(x)} = −1

2trace
(
Φc,i +mc,im

>
c,i

)
= −1

2trace
(
σ2

n,i(aia>i +
σ2

n,i

σ2
x
IN)−1 +mc,im

>
c,i

)
. (5.82)

Furthermore, the resulting average variance of the estimatemc,i reads

σ2
c,i = 1

N
trace(Φc,i) =

σ2
n,i

N
trace

(
(aia>i +

σ2
n,i

σ2
x
IN)−1

)
. (5.83)

5.2.3.2 Projection to Exponential Family

The moment-matching between the variable node and the respective factor node, which shall
ensure consistency, means that the computed moments of the section above have to repre-
sent the variable node distribution. Therefore, the natural parameter of qv(x) can directly be
obtained from these moments via

θ = [m>s /σ2
s , 1/σ2

s ]> , (5.84)

respectively,

θ = [m>c,i/σ2
c,i, 1/σ2

c,i]> , i ∈ {1, . . . , M} . (5.85)

For the further processing, one needs to consider the restrictions on the natural parameters
induced by the structure of the problem, which �nds its expression in the natural parame-
ter (5.77) of the representative qv(x) of the variable node.

5.2.3.3 Extrinsic

In order to make use of the connection (5.77) for the processing of (natural) parameters in
the algorithm, recall that the basic idea for the iterative schemes aiming towards stationary
points is the notion of extrinsic, i.e., only knowledge obtained via the processing is submit-
ted for further processing (in order to prevent feedback loops). Compared to in Chapter 3,
the derivation is reversed, i.e., it starts with the processing that sums up all incoming edges
except the one that the message is going to be sent on, to see that in the end, the same connec-
tions hold. To apply the notion here, the Lagrangian multipliers are interpreted as messages
on the corresponding edges and a distinction between the messages in di�erent directions is
made. As the multipliers itself specify the representative of the variable node qv(x) entirely,
they are interpreted as outgoing messages of the variable node and denoted by θ\s = νs and
θ\i = νc,i (i ∈ {1, . . . , M}), respectively. The messages on the backward direction, from the
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x

. . .
fy1|x(x) fyM |x(x)

fx(x)
νs

νc,1 νc,M

(a) Depiction of edge-dependent multipliers.

x

. . .
fy1|x(x) fyM |x(x)

fx(x)

θ\1

θ(1) θ\M

θ(M)

θ\sθ(s)

(b) Depiction of edge- and direction-dependent
messages.

Figure 5.4: Factor graph for the sequential processing of observations and edge-dependent parameters.

factor nodes towards the variable node will be denoted by θ(s) and θ(i) (i ∈ {1, . . . , M}), re-
spectively. The direction-dependent messages are shown on the respective edges in the factor
graph in Fig. 5.4(b). The notation is chosen in order to show the connection to the expectation
propagation (EP) [Min01] framework, where the idea is to replace parts of the approximations
by the respective exact factor, in order to re�ne the estimation by the knowledge obtained by
the factor. In the EP literature, the variables θ\• are called the cavity parameters and θ(•) are
the so-called site parameters.

The notion of extrinsic can now be established by ensuring that an outgoing message from
variable node to factor node is only speci�ed by incoming messages from factor nodes other
than the one to send to, i.e.,

θ\s =
M∑
i=1
θ(i) , (5.86)

θ\i = θ(s) +
M∑

i′=1
i′ 6=i

θ(i′) , i ∈ {1, . . . , M} . (5.87)

By inserting this into the connection (5.77), one �nds

θ = 1
M

 M∑
i=1
θ(i) +

M∑
i=1

θ(s) +
M∑

i′=1
i′ 6=i

θ(i′)




= 1
M

M∑
i=1
θ(i) + θ(s) + 1

M
(M − 1)

M∑
i=1
θ(i)

= θ(s) +
M∑
i=1
θ(i) . (5.88)

A comparison to the de�nitions for the outgoing messages of the variable node, which are also
the incoming messages for the factor nodes, shows that the inputs for the estimations at the
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factors can be obtained from the natural parameter θ of the variable node by

θ\s = θ − θ(s) , (5.89)
θ\i = θ − θ(i) , i ∈ {1, . . . , M} , (5.90)

respectively, i.e., post-processed extrinsic calculations are at hand and the sum of messages in
di�erent directions yields, as in Chapter 3, the knowledge about the signal. This means that
in order to be able to get an input to the expectations, it is necessary to store and keep track
of the site parameters θ(•), which can be updated after the estimation via θ(•) = θ − θ\•

(• ∈ {s, 1, . . . , M}). With this knowledge, it is possible to state the entire procedure.

5.2.3.4 Procedure

When starting the algorithm with expectations, �rst suitable input parameters θ\• are required
for all factors. For the simpli�cation of notation, we introduce θ\• = [(x̃\•)>/σ2

\•, 1/σ2
\•]>,

and θ(•) = [(x̃(•))>/σ2
(•), 1/σ2

(•)]> (• ∈ {s, 1, . . . , M}) and use θ = [m>/σ2, 1/σ2]> to
represent the moments that are mapped to the natural parameters of the variable node. The
computation of the signal-constrained estimation is performed as usual,

m = Ex
{
x | x̃\s, σ2

\s

}
, (5.91)

σ2 = 1
N

N∑
j=1

Ex
{
(x −mj)2 | x̃\sj , σ2

\s

}
, (5.92)

and the site parameters are obtained by

x̃(s)/σ2
(s) = m/σ2 − x̃\s/σ2

\s , 1/σ2
(s) = 1/σ2 − 1/σ2

\s . (5.93)

For the channel-constrained estimations, one can spare the computation of the N × N

inverse for the covariance matrix by using the knowledge about bias compensation from
Sec. 4.4.1. Since average unbiasing is performed here, one can compute the unbiased esti-
mate directly by computing the scaling factor based on the end-to-end cascade between x and
mc,i via

w = 1
N

trace
(
ai(a>i ai + σ2

n,i/σ
2
\i)−1a>i

)
= 1
N

∑N
j=1 a

2
ij

σ2
n,i/σ

2
\i +∑N

j=1 a
2
ij

, (5.94)

which involves as visible only a scalar inverse. The unbiased a.k.a. site estimates then read

x̃(i) = x̃\i +
σ2
\i

w
ai(σ2

\ia
>
i ai + σ2

n,i)−1(yi − a>i x̃\i) , (5.95)

σ2
(i) = σ2

\i(1/w − 1) , (5.96)

and the biased estimates can be retrieved by

σ2 = (1/σ2
(i) + 1/σ2

\i)−1 , (5.97)
m = σ2(x̃(i)/σ2

(i) + x̃\i/σ2
\i) . (5.98)
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Noteworthy, the estimates m and σ2 need to proceed with the algorithm at the next factor
and the site parameters x̃(i) and σ2

(i) must be stored for when the factor fyi|x(x) is addressed
the next time. Whenever a factor is accessed again, one can simply compute θ\• = θ − θ(•)

(• ∈ {s, 1, . . . , M}) to obtain the corresponding input parameter. The entire algorithm is
called seqVAMPobsand stated in Appendix E.11.
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6. Numerical Results

This chapter comprises the results of numerical simulations that compare the algorithms
presented in this thesis in di�erent scenarios. Before the simulation results are shown, an
overview over the algorithms that were presented and whose results will be shown in the
following is given.

6.1 Overview over Recovery Algorithms

The algorithms that are presented in this thesis are summarized and categorized according
to their derivations in Fig. 6.1. The �rst two columns show the di�erent approaches in terms
of factorization of the factor graph, which leads to a separation into message-passing-type,
Turbo-type, and sequential algorithms. The last two columns specify, whether the algorithm
is directly obtained from the processing in the factor graph, or if it has been adjusted by an
estimation-theoretic bias compensation strategy. The arrows indicate which algorithms are
related to each other. The background color highlights algorithms utilizing individual vari-
ances.

The message-passing-type algorithms that are considered here are Gaussian message pass-
ing (GMP), GMPpostExt, which uses post-processed extrinsic, instead of pre-processed extrin-
sic, and GMPpostExtLin, which is a mixture of both with post-processed extrinsic only at the
linear (channel-constrained) estimation.

For the Turbo algorithms, there are two starting points: VAMP, which utilizes average
variances as reliabilities and VAMPind with individual variances. The algorithms VAMPia,
and VAMPii are obtained from VAMP by employing individual bias compensation after the
channel-constrained estimation (instead of average bias compensation). The di�erence be-
tween VAMPia and VAMPii is that VAMPia uses an average variance in the signal-constrained
estimation, whereas VAMPii keeps the individual ones.

The algorithm VAMPire results from VAMPind by inserting the estimation-theoretic bias
compensation after the signal-constrained estimation.

seqVAMPind and seqVAMPire can be seen as sequential versions (sequentially process-
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Principle Factor graph
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—
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Chapter 4
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VAMPire

. . . . . .
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Sequential
Inference

—
Chapter 5

Figure 6.1: Categorization of the algorithms presented in this thesis. The arrows indicate which algorithms
are related to each other; the background color highlights algorithms utilizing individual variances. VAMPii
uses individual variances only in the signal-constrained estimation and is therefore highlighted differently.
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Table 6.1: References for the algorithms used in the simulations.

Algorithm Main Part Appendix no. Reference(s)
AMP Sec. 3.3.5 Sec. E.3 Alg. E.3 [DMM09, Mal11]
GAMP Sec. 3.3.5 Sec. E.4 Alg. E.4 [Ran11]
GMP Sec. 3.3.4 Sec. E.1 Alg. E.1 [KMS+12]
GMPpostExt Sec. 3.3.5 Sec. E.2 Alg. E.2
GMPpostExtLin Sec. 3.3.5
seqVAMPind Sec. 5.1.4 Sec. E.9 Alg. E.10 [OW05, BMPP20]
seqVAMPire Sec. 5.1.5 Sec. E.10 Alg. E.11 [SF21]
seqVAMPobs Sec. 5.2 Sec. E.11 Alg. E.12
VAMP Sec. 4.3.1 Sec. E.5 Alg. E.5 [RSF19]
VAMPia Sec. 4.5.2 Sec. E.8 Alg. E.8 [SF22]
VAMPii Sec. 4.5.2 Sec. E.8 Alg. E.9 [SF22]
VAMPind Sec. 4.3.2 Sec. E.6 Alg. E.6 [FSRS16]
VAMPire Sec. 4.5.1 Sec. E.7 Alg. E.7 [FSG20]

ing variables) of VAMPind, respectively VAMPire, because this sequential processing requires
individual variances (so it is not a direct descendant from VAMP).

However, the algorithm that processes observations sequentially (seqVAMPobs) utilizes
average variances and can therefore be interpreted as a sequential version (in terms of pro-
cessing observations) of VAMP.

Additionally, all the algorithms used in the simulations are listed in Table 6.1 with refer-
ences to the respective sections in the main part of the thesis, as well as section and algorithm
number in the appendix. If the algorithms were published previous to this thesis, the reference
is also given in the last column.

6.2 Simulation Setup

For the simulations, 105 realizations of sensing matricesA, as well as signal vectors x obeying
the pdf fx(x), are drawn. If not stated otherwise, the elements of the sensing matrices are
drawn i.i.d. Gaussian and the columns are normalized to unit `2-norm, i.e., ‖ãj‖2

2 = 1 for j ∈
{1, . . . , N}. As signal model, the discrete ternary (DT) prior from (2.4) with non-zero signal
alphabet X ∈ {−1, +1} is used. The Bernoulli-Gaussian prior is not considered, because in
engineering applications often a speci�c (discrete) signal model is given [Pro00, SF14].

The computations for the signal-constrained estimation in case of the DT prior are given
as follows, cf. also [SF16, Spa19]. De�ning the input variables λ = x̃s,j/σ̃

2
s,j and Λ = 1/σ̃2

s,j ,
the estimates read

ms,j = exp(λ− Λ/2)− exp(−λ− Λ/2)
exp(λ− Λ/2) + exp(−λ− Λ/2) + 2(N−s)

s

, (6.1)

Exj

{
x2
j | x̃s,j

}
= exp(λ− Λ/2) + exp(−λ− Λ/2)

exp(λ− Λ/2) + exp(−λ− Λ/2) + 2(N−s)
s

, (6.2)

σ2
s,j = Exj

{
x2
j | x̃s,j

}
−m2

s,j . (6.3)



90 6. Numerical Results

Note that this implementation is numerically more stable than the one used in [SF16], because
the assembly of the two parameters λ and Λ in the exponential functions have a neutralizing
e�ect, which makes the terms being computable for a wide range of values. If numerical
instabilities occur, this makes itself noticeable already at the computation of ms,j . Using the
implementation above this only occurs, for very small variances σ̃2

s,j when ms,j ∈ {+1,−1}
should actually be the result. In this case, the result can be obtained by setting ms,j = sgn(λ),
where sgn(·) is the signum-function, i.e.,

ms,j = sgn(λ) def=


+1 , if λ > 0 ,

0 , if λ = 0 ,
−1 , if λ < 0 ,

, (6.4)

and the variance σ2
s,j to an arbitrary small positive value.

For a detailed explanation of the construction of the estimators for other priors, the reader
may be referred to [Bir19].

Since the signal amplitude of the DT prior only attains discrete values, the estimates re-
sulting from the algorithms are quantized before evaluation. The model (2.4) assumes to know
the sparsity s of the signal, indeed the signal vectors are drawn such that they entail sparsity
s. Therefore, this knowledge is applied by setting the smallest (in magnitude) N − s values
in the �nal estimate ms to zero. Other methods are discussed in [Spa19]. Subsequently, the
remaining s entries of ms are quantized to X . Here, this can easily be done by utilizing the
signum-function, i.e., m̂s,j = sgn(ms,j) for j ∈ {1, . . . , N}.

The noise vector is drawn i.i.d. zero-mean Gaussian with variance σ2
n , which results in a

signal-to-noise ratio (SNR) de�ned as 10 log10(1/σ2
n) in decibel (dB).

The performance is evaluated after a �xed number of iterations. As performance mea-
sure the symbol error rate (SER) is averaged over the realizations. The SER per realization is
measured as

SER(m̂s, x) = 1
N
|{m̂s,j 6= xj | j ∈ {1, . . . , N}}| , (6.5)

where | · | denotes the cardinality of a set. If not stated otherwise, the performance is evaluated
after 20 iterations. As pointed out in [RSF19] and [FSG20], the occurrence of negative vari-
ances in any of the recovery algorithm causes a drastic deterioration in performance, since
a negative variance does not have a suitable meaning. Hence, this has to be mitigated. As
suggested in [RSF19], the precisions, a.k.a. inverse variances are clipped to a suitable inter-
val. The result of the signal-constrained estimation is clipped stricter than other variances,
i.e., 1/σ2

s,j ∈ [10−8, 108] and 1/σ2
c,j, 1/σ̃2

c,j, 1/σ̃2
s,j ∈ [10−12, 1012], since this resulted in sta-

ble simulations for a wide range of parameters. Note that clipping the precisions (instead of
the variances) results in negative variances being transferred to the upper end of the interval,
which is more useful since an estimation result corresponding to a negative variance (even if
only produced by numerical inaccuracy) is usually not reliable. If one uses an implementation
with precision (Λ = 1/σ2) and scaled mean (λ = m/σ2) and the precision is clipped, one has
to make sure that the parameter λ is scaled respectively, in order not to change the underlying
mean value m.
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6.3 I.i.d. Gaussian Sensing Matrix

The standard case of sensing matrices for recovery in CS in the literature [Don06, EK12] is to
draw the elements of the sensing matrices i.i.d. from a zero-mean Gaussian distribution with
variance 1/M , i.e., aij ∼ N (0, 1/M). The choice of the variance causes the `2-norm of the
columns to be roughly one, i.e., ‖ãj‖2

2 ≈ 1 for j ∈ {1, . . . , N}. For the �rst scenario, such
Gaussian matrices are considered, but with a scaling factor that ensures unit column norms,
i.e., ‖ãj‖2

2 = 1, cf. [Spa19].
In this scenario, the ability of the di�erent algorithms to compress the signal x is inves-

tigated by displaying steady-state performance, which denotes the performance after conver-
gence, over the observation dimension M .

To that end, all the algorithms listed above are simulated, except for VAMPia, VAMPii, and
seqVAMPobs, because separate sections (Sec. 6.4 and Sec. 6.6) are spent for the discussion of
their properties and they perform exactly as VAMP in the given scenario, which will be shown
in the respective sections.

The �rst results in Fig. 6.2 show the performance over the observation dimension M for
a signal dimension N = 100 and di�erent values of sparsity s. The upper plot (Fig. 6.2(a))
compares the Turbo algorithm VAMP, with the message-passing-type algorithms GMP and
GMPpostExt, as well as the approximate versions AMP [Mal11] and our implementation (Al-
gorithm E.4) of GAMP [Ran11]. Throughout this chapter, the message-passing-type algorithms
utilize schedules that iterate between the upward and downward messages by computing all
messages of one type, e.g., downward, sequentially and then switching to the other type. In
this scenario, AMP and VAMP show a very similar performance in terms of steady-state error,
which is not surprising. Our implementation of the GAMP algorithm shows worse perfor-
mance, especially for larger observation dimensions M , because the neglection of the o�-
diagonal elements in the LMMSE inverse (for details see Appendix E.4) gets harder to com-
pensate for larger M and GAMP cannot bene�t from the averaging e�ects of usual AMP. The
message-passing-type algorithms perform similar to or only slightly worse than VAMP, but
GMPpostExt shows some deterioration for small to mid-level values of M . The fact that the
performance of GMPpostExt is generally very close to the one of GMP shows that the “post-
processing” of the extrinsics after the signal-constrained estimation does not di�er much from
the “pre-processing” case; at least for larger sparsities s.

In Fig. 6.2(b) the focus lies on the comparison of the Turbo algorithms with VAMP on
the one hand, which uses average variances, and on the other hand VAMPind and VAMPire
using individual variances. It is visible that the algorithms with individual variances can im-
prove over VAMP in terms of compressibility and general steady-state performance, except
for very small M . Moreover, VAMPire usually is slightly better than VAMPind, because of
the estimation-theoretic bias compensation after the signal-constrained estimation that omits
negative variances, thereby guaranteeing sensible variance values and improving performance
compared to the treatment in VAMPind.

This di�erence is even more visible in Fig. 6.2(c), where the Turbo algorithms with indi-
vidual variances are compared to its versions that process the signal components sequentially
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(a) Comparison of the message-passing-type algorithms (GMP and GMPpostExt), VAMP as repre-
sentative of a Turbo-type algorithm, and the AMP-type algorithms.
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(b) Comparison of Turbo algorithms with average (VAMP) and individual variances (VAMPind,
VAMPire).
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(c) Comparison between parallel and sequential algorithms (processing of variable nodes, individ-
ual variances).

Figure 6.2: Performance over the observation dimension M . N = 100, i.i.d. Gaussian sensing matrices with
columns normalized to unit `2-norm, DT prior, 10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.
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Figure 6.3: Performance over FLOPs per iteration. N = 100, i.i.d.Gaussian sensing matrices with columns
normalized to unit `2-norm, DT prior with sparsity s = 4, M ∈ {20, 40, 50, 80} with increasing mark size,
10 log10(1/σ2

n) = 16 dB, evaluation after 50 iterations.

(seqVAMPind and seqVAMPire). Here, the performance of the purely optimization-based se-
quential approach seqVAMPind performs visibly worse than the other algorithms. The reason
therefor is that a negative variance a�ects the processing even more, since the result is directly
broadcasted to all other variables, without a compensating e�ect from other variables. The se-
quential version of the estimation-theoretically improved algorithm (seqVAMPire) performs
very close to the Turbo-type version VAMPire.

Before turning to more results that investigate the compressibility, let us have a quick
look at the complexity of the algorithms. The computational complexity of the algorithms is
compared by counting the �oating-point operations (FLOPs) per iteration. The term FLOPs
shall here comprise additions, subtractions, multiplications, and divisions. The counting is
done as explained in [Spa19, Appendix E]. Note that for the signal-constrained estimation the
FLOP count in [Spa19, Appendix E] involves the cardinality of the alphabet of non-zero entries,
which is for the given prior (2.4) |X | = 2.

The counting for the GMPpostExt algorithm is based on the notation that can be found
in Appendix E.2. For GMP a version that utilizes scaled means and inverse variances to save
the inversions in Lines 7 and 8 is used as basis for the complexity calculations. Of course, all
algorithms could further be optimized, both in terms of storage and computational complexity,
but since the requirements depend a lot on the architecture on which the algorithm runs, only
a rough overview over the range that the algorithms span in terms of complexity is given.

The results are shown in Fig. 6.3 for the scenario that was investigated before with sparsity
s = 4 and observation dimension M ∈ {20, 40, 50, 80}. On the horizontal axis, the counted
FLOPs per iteration are shown; the vertical axis depicts, as usual, the SER. For increasingM the
performance gets, as expected, better but in most algorithms also the FLOP count increases.

The AMP and the VAMP algorithm have roughly the same complexity, because the SVD
implementation is used for the inverse in the LMMSE, as suggested in [RSF19, Algorithm 2].
The e�ort of computing the SVD is not added, because it can be computed once before the
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execution of the algorithm. So, especially if a sensing matrix is used several times, the expense
can be neglected. For the algorithms with individual variances (VAMPind and VAMPire), this
simpli�cation is not possible, because the decomposition does not lead to a diagonal to be
inverted, as for the case with an average variance [Spa19, Appendix C]; this leads to a drastic
increase in complexity compared to AMP and VAMP. The FLOP count for GAMP is slightly
higher than the one of VAMP and AMP, because it involves individual variances, but not as
high as VAMPind and VAMPire, because it does not compute the entire LMMSE inverse, but
instead only the diagonal elements.

The computational complexity of the GMP-based algorithms (diamonds) spreads over a
wide range, i.e., the FLOP counts depends very much on the implementation. The version with
pre-processed extrinsic (GMP) has the highest FLOP count, because the expectations have to
be computed per edge (M ·N ). Post-processing the extrinsic after the channel-constrained es-
timation (GMPpostExtLin) already saves so much that the algorithm costs less than the Turbo-
type algorithms with individual variances. Note that this implementation performs exactly as
GMP, because the updates are mathematically the same. The second simpli�cation (GMPpost-
Ext), which uses post-processed extrinsic also at the signal-constrained estimation, may lead
to a slight loss in performance, but can further decrease the computational complexity. Hence,
it makes sense to implement in message-passing-type algorithms for CS at least the channel-
constrained estimation with post-processed extrinsic.

The computational complexity of the sequential approaches, seqVAMPind and seqVAM-
Pire, does not scale well. Since the rank-one update operates on an N × N matrix, one such
update is in the order of O(N2) and as will be visible in simulations later on, at least N in-
ner iterations are required so that the overall complexity is of order O(N3). Nevertheless,
the number of FLOPs does not depend on M so that these algorithms can compete with its
Turbo-type versions for values of M close to N . A slight reduction in complexity may be pos-
sible by utilizing a Cholesky factorization as suggested in [SN08]; however the factorization
dictates the succession of processing the variables, so the �exibility of most of the schedules
to be proposed in Sec. 6.5 is lost. Recalling that this kind of processing is related to the (se-
quential) EP algorithm [Min01, SN11], cf. also Sec. 5.1.2.3, one may �nd other approaches for
simpli�cation in the respective literature. The idea of average EP (AEP) [DB18] and stochas-
tic EP (SEP) [LHLT15] is for example to reduce the parameter space and thereby the storage
complexity by in case of AEP averaging the natural parameters suitably such that only the
averaged parameter has to be kept. This also simpli�es the analysis of the procedure [DB18].
In the CS case this seems to remove to much of the necessary information, so that these tech-
niques were not considered in this thesis. Consequently, these sequential algorithms are only
suitable for small systems.

The version of VAMP that processes the observations sequentially (seqVAMPobs) is shown
here for completeness; its FLOP count is in the order of GAMP, because the sequentialization
increases the computational e�ort w.r.t. VAMP.

The results in Fig. 6.4 show the scenario with a signal dimension N = 250, i.e., the di-
mensionality of x is increased. The results are plotted for the same relative sparsities s/N
as in the �gures for N = 100. For this choice of signal dimension, the computation of the
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(a) Comparison of VAMP, to (approximate) message-passing-type algorithms.
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(b) Comparison of Turbo algorithms with average and individual variances.
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(c) Comparison between parallel and sequential algorithms (processing of variable nodes, individ-
ual variances).

Figure 6.4: Performance over the observation dimension M . N = 250, i.i.d. Gaussian sensing matrices with
columns normalized to unit `2-norm, DT prior, 10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.
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I.i.d. Gaussian sensing matrices with columns normalized to unit `2-norm, DT prior, 10 log10(1/σ2

n) = 16 dB,
evaluation after 20 iterations.

GMP algorithm is already very tedious, especially for large M . Therefore, the results for the
GMP algorithm are not shown. The performances of AMP and VAMP are now even closer, the
degradation in GAMP stays, cf. Fig. 6.4(a).

In the middle (Fig. 6.4(b)) the comparison of the behavior of the Turbo-type algorithms
with average and individual variances is shown. Here, the performances are also closer than
before, i.e., the performance of VAMP improves compared to the algorithms with individual
variances (VAMPind and VAMPire). The improvement of AMP and VAMP can be explained by
the fact that for larger signal dimensions the performance of recovery algorithms in CS (with
average variance) generally improves for growing N because the averaging pulls the (condi-
tional) variances towards the MSE, which is the actual desired measure. For higher sparsities
the algorithms with individual variances tend to have a worse compression capability than
VAMP, but the steady-state error for large values of M is the same. This shows that the al-
gorithms with individual variances are most suited for systems of small dimensions and very
sparse vectors.

The comparison of parallel and sequential algorithms in Fig. 6.4(c) shows similar features
as for N = 100. The performance of seqVAMPind is worst; the other algorithms di�er only
slightly in compressibility and steady-state error.

In Fig. 6.5 the e�ect of an increased signal dimension on the recovery performance for
AMP, VAMP, VAMPind, and VAMPire is assessed. The main di�erence is that the relative com-
pressibility gets better, i.e., the so-called phase-transition region [WV12] gets steeper, which is
a well known fact in the literature [DMM09]. Indeed, the algorithms with average variances,
AMP and VAMP, play to their strengths the larger the system size. Therefore, the algorithms
with individual variances can improve mostly for smaller system sizes.

In Fig. 6.6 the convergence of the Turbo algorithms over the iterations is depicted; on the
left for N = 100, M = 50 and on the right for N = 250, M = 125 with the respective
sparsity values used above. On the right side, AMP and VAMP are compared to the algorithms
with individual variances, VAMPind and VAMPire, for N = 250. AMP shows the slowest
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sparsity is the same, i.e., s/N ∈ {0.02, 0.04, 0.08}). M = N/2, i.i.d. Gaussian sensing matrices with columns
normalized to unit `2-norm, DT prior, 10 log10(1/σ2

n) = 16 dB.

convergence but reaches (as VAMP) better steady-state performance than the algorithms with
individual variances for s = 20. For smaller sparsities (in the examples s ∈ {5, 10}), VAMPire
supersedes the other algorithms in terms of steady-state performance, whereas VAMPind only
achieves the performance of AMP and VAMP, despite using the more complex computation
with individual variances. Generally, the algorithms with individual variances show the fastest
convergence. This shows that the algorithms bene�t from utilizing individual variances only
if the treatment is performed correctly, as derived in the estimation-theoretic approach.

On the left, additionally to the algorithms on the right, also GMP and GMPpostExt are
displayed in the scenario with N = 100. Both message-passing-type algorithms show slower
convergence than AMP, because the �ne-granular processing requires more steps to settle.
The steady-state error is close to the one of AMP and VAMP, which is in general higher than
on the right, which is due to less compressibility for smaller signal dimensions, as discussed
beforehand. Again, one can see that the bene�t of individual variances has most e�ect for the
smaller system size of N = 100.

6.4 Model for Wireless Sensor Networks

Wireless sensor networks (WSNs) [YMG08] are an interesting application for CS [CSD+17,
LCJ15, SD11, XDS13]. For several applications, it is necessary to gather information from a
certain area. If the respective sensors are spread within this area, the direct access of the
sensors might not be given or not desired. For this use, wireless sensor networks are deployed,
in which the information of the sensors is collected at a so-called fusion center.

In order to reduce the power consumption at the sensors they only send if it is necessary,
i.e., their activity may be sporadic [SD11]. Considering a large amount of sensors of whom only
few are active in one time step, results in a sparse vector of high dimensionality. This brings
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compressed sensing into play, which can simplify the hardware at the fusion center, e.g., by
measuring with fewer antennas. Subsequently, the sparse vector needs to be recovered from
the measurements. Therefore, the suitability of the discussed algorithms in such a scenario is
investigated in the following.

The main e�ect that has to be addressed in this scenario is the fact that, since the sensors
are distributed arbitrarily around the fusion center, the distances to the fusion center vary
and together with it the receive power with which the signals of the sensors reach the fusion
center. The assumption of unit-`2-norm columns as in the previous section would require
power control of the senders, i.e., the sensors need to send with a signal strength such that the
receive power at the fusion center is equal for all sensors. In order to control this, additional
communication is required, which is usually not desired since it reduces the battery lifetime
of the sensors.

Alternatively, the e�ect may be interpreted as a non-uniform power distribution over
the signal components x1, . . . , xN that is modeled into the sensing matrix A by scaling the
columns accordingly, which means that the power distribution is known to the receiver. The
power distribution, given by pj (j ∈ {1, . . . , N}) is applied as follows

A = cA · Ã · diag
(√

pj
)

= [ã1, . . . , ãN ] , (6.6)

where Ã consists of i.i.d. Gaussian entries and the columns are normalized to unit `2-norm. For
comparability, indeed to ensure that each sensing matrix carries the same energy, the factor
cA is adjusted such that ‖A‖2

F = N by

cA =
√
N∥∥∥Ã · diag(√pj)

∥∥∥
F

, (6.7)

i.e., the Frobenius norm (for the de�nition see Appendix A) is equal to the unit-`2-norm case.
In the simulations, the power distribution is speci�ed by parameter v ∈ (0, 1] in the form of

p` = v(`−1)/(N−1) , ` ∈ {1, . . . , N} , (6.8)

and the scaling factor is assigned to the jth column by a random permutation j = π(`). For
v = 1, the unit-`2-norm case is recovered; with decreasing v the variations in the scalings
vary more and more. Furthermore, also the condition number (cf. Appendix A) of the sensing
matrix increases. Noteworthy, the largest column power (before Frobenius normalization) is
1, the smallest is v.

An example for such a power distribution is plotted for v = 0.5 and N = 250 in Fig. 6.7.
It shows also the e�ect of the Frobenius normalization for a sensing matrix of size 125× 250.

As pointed out in Sec. 4.4, VAMP is challenged by this scenario because the e�ects of the
sensing matrix are treated on average, not individually. As alternative, the algorithms that
utilize individual unbiasing instead are considered. These are VAMPind and VAMPire, which
use individual variances throughout the entire iteration, as well as VAMPia and VAMPii, the
algorithms with average variance in the channel-constrained estimation. This comparison
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‖ã`‖22

Figure 6.7: Power distribution (6.8) for N = 250, v = 0.5, i.i.d. Gaussian matrices before and after Frobenius
normalization.
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has �rst been considered in [SF22], the scenario with power distribution has slightly di�erent
earlier been used in [SF21].

Assuming simple binary transmission of the sensors in the WSN, translates into the DT
prior (2.4) being a suitable choice for the signal model. In this section, we stick to signal
dimension N = 250, observation dimension M = 125 and SNR 10 log10(1/σ2

n) = 16 dB if not
stated otherwise.

First, the convergence over the iterations is depicted in Fig. 6.8. The left side compares
VAMP and the variants for the usual case where the columns are normalized to unit `2-norm,
which coincides with the power distribution (6.8) with v = 1. One can see that the variants
VAMPia and VAMPii perform exactly the same as VAMP. To understand why this is, regard
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the end-to-end cascadeK from (4.44) with Φx = σ2
xIN

K = σ2
xA
>(σ2

xAA
> + σ2

nIM)−1A = (A>A+ σ2
n
σ2

x
IN)−1A>A . (6.9)

First, note that the Gram matrix ofA can be written as

A>A =


∑M
i=1 a

2
i1

∑M
i=1 ai1ai2 . . .

∑M
i=1 ai1aiN∑M

i=1 ai1ai2
∑M
i=1 a

2
i2 . . .

∑M
i=1 ai2aiN

...
... . . . ...∑M

i=1 ai1aiN
∑M
i=1 ai2aiN . . .

∑M
i=1 a

2
iN

 , (6.10)

which shows that the diagonal contains the column energies (squared `2-norms), which are
in the case v = 1 all equal to 1, i.e.,

∑M
i=1 a

2
ij = 1 for j ∈ {1, . . . , N}. Sensing matrices are

usually chosen such that the measurements are as independent as possible from each other, in
order to gain as much information as possible from each individual measurement. This means
that the sensing matrices should have a low coherence [EK12, Def. 1.5]. Luckily, i.i.d. Gaussian
matrices meet this requirement relatively well, if the dimensions are large enough [Don06]1,
leading to

∑M
i=1 aijaij′ ≈ 0 or at least |∑M

i=1 aijaij′| � 1. With this knowledge, one �nds that
M = A>A+ σ2

n
σ2

x
IN can in this case be written as

M =



1 + σ2
n
σ2

x
ε12 ε13 . . . ε1N

ε12 1 + σ2
n
σ2

x
ε23 . . . ε2N

ε13 ε23 1 + σ2
n
σ2

x

...
...

... . . . εN−1N

ε1N ε2N . . . εN−1N 1 + σ2
n
σ2

x


, (6.11)

with |εjj′| � 1 for j′ 6= j, j, j′ ∈ {1, . . . , N}. Hence, one can deduce that in the inverse
M−1 mostly the diagonal elements 1 + σ2

n
σ2

x
contribute and, consequently, the diagonal entries

of K are dominated by equal or close to equal scaling factors. Compensating the e�ects on
average ignores the small variation but does not result in signi�cant errors. Thus, the e�ect
of average bias compensation is in this case very close to individual bias compensation. The
other two algorithms, VAMPind and VAMPire, show a somewhat faster convergence due to
their utilization of individual variances for the channel-constrained estimation.

By decreasing v, variations between the column energies appear due to the di�erent scal-
ing factors of the power distribution. So, the e�ect of individual and average bias compen-
sation after the channel-constrained estimation di�ers. The convergence over iterations for
v = 0.5 is shown on the right side of Fig. 6.8. Comparing to the left reveals that the steady-
state performance is in general worse, which is due to the fact that the estimation problem
overall gets harder under these conditions. It is clearly visible that the performance of VAMP
degrades most for the considered algorithms. This can be explained by the stronger variations
that appear in the diagonal entries of the end-to-end cascade K; the e�ect can no longer be
compensated on average.

1There are ways to generate matrices, that ful�ll the property of low coherence even better [Spa19], but for
our purposes, the Gaussian matrices su�ce. For a de�nition of the coherence, see also Appendix A.
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An example for the variations that result in the diagonal of K is displayed for an i.i.d.
Gaussian matrix of size 125 × 250, whose columns are normalized to unit `2-norm in one
case and compared to the case with applied power distribution (6.8) with v = 0.5. For the
calculation ofK , σ2

x = 1/25 is used, which corresponds to the initialization with s = 10, and
σ2

n = 0.2, which represents an SNR of roughly 10 log10(1/σ2
n) = 17 dB. The diagonal entries

are sorted in ascending order for better visibility in the plot. One can see that with employed
power distribution, the variations between diagonal elements increase.

In order to see the entire picture, the simulations over the parameter v of the power distri-
bution are shown in Fig. 6.10. One can see that the performance of VAMP degrades much more
than the other algorithms when v decreases and, thus, more power variations are present.
Considering the algorithms with individual bias compensation and average variance in the
channel-constrained estimation, VAMPii is preferable over VAMPia, because VAMPii shows
slightly better or equal steady-state error. This means that the usage of individual variances in
the signal-constrained estimation can yield some insight to lower the steady-state error. For
s = 20, the algorithms with individual variances are inferior to the ones with average vari-
ances when v → 1, which coincides with the slightly worse compressibility of the algorithms
for larger variances in Fig. 6.4(b). In this case, the individual variance algorithms show their
bene�t only for very small values of v, i.e., they are generally less impaired by large varia-
tions in the column powers, because of more insight to reliabilities of the channel-constrained
estimates.

In Fig. 6.11 the steady-state error in terms of SER over the SNR, given by the inverse noise
variance in dB, is considered. On the left, the results for v = 1 are shown, where the curves
are very close. Noteworthy, the algorithms with individual variances are generally better for
higher SNR, except for s = 20, where they generally deteriorate as already discussed. On the
right, one can see the results for v = 0.5; it is again apparent that the performance of VAMP
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Figure 6.10: Performance over parameter v of the power profile (6.8). N = 250, M = 125, i.i.d. Gaussian
sensing matrices, DT prior, 10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.
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Figure 6.11: Performance over SNR. N = 250, M = 125, i.i.d. Gaussian sensing matrices with power
profile (6.8), DT prior for different sparsities, evaluation after 20 iterations.
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Figure 6.12: Performance over FLOPs per iteration. N = 250, i.i.d. Gaussian sensing matrices with power
profile (6.8), v = 0.5, DT prior with sparsity s = 5, M ∈ {50, 100, 125, 200} with increasing mark size,
10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.

degrades more than all other algorithms with VAMPii being mostly the best.
Up to now, it has become clear that the algorithms VAMPia and VAMPii can very well

compete with the algorithms with individual variances. In order to see the actual bene�t over
the strategies with individual variances, the computational complexity of the algorithms is
compared by counting the �oating-point operations (FLOPs) per iteration. The results are
plotted in Fig. 6.12; the simulations and computations were executed for a sparsity s = 5 and
observation dimension M ∈ {50, 100, 125, 200}. For the algorithms with average variance
in the channel-constrained estimation, the SVD implementation is utilized for the inverse in
the LMMSE [RSF19, Algorithm 2]. The bene�t of the SVD implementation is obvious, as the
individual variance algorithms need up to two orders of magnitude more FLOPs per iteration.
Since the algorithms combine both, the low complexity of VAMP as well as a good perfor-
mance due to the individual bias compensation after the channel-constrained estimation, they
are the algorithms to be preferred in such a scenario. Since VAMPii is due to the usage of
individual variances in the signal-constrained estimation usually slightly better than VAMPia,
it is preferable over VAMPia.

VAMP is usually promoted by its stability in ill-conditioned sensing scenarios, where the
sensing matrix has high condition number κ [RSF19], for the de�nition of the condition num-
ber in the form that it is used here, see Appendix A. The comparison of the algorithms in such
a scenario2, see Fig. 6.13, shows that the algorithms utilizing individual variances can improve
over VAMP, as well as the algorithms with individual bias compensation and average variance
at the channel-constrained estimation. Noteworthy, VAMPii supersedes partially even the
algorithms with individual variances, which is remarkable considering the much lower com-
plexity. The explanation for that is the average variance in the channel-constrained estimation,
which brings more stability into the algorithm, thereby improving the overall convergence.

2The sensing matrixA is generated as in [RSF19, Sec. VI.A], which is explained in Appendix A.
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Figure 6.13: Performance over condition number κ of sensing matrix A. N = 250, M = 125, DT prior,
10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.

6.5 Schedules for the Sequential Processing of Variables

In this section, simulation results for the algorithms that utilize a sequential processing of
the signal components and were introduced in Sec. 5.1.4 and 5.1.5 are presented. They are
compared to the Turbo-type algorithms VAMP, VAMPind, and VAMPire, since they are closest
to them in terms of estimation strategy with VAMP being furthest apart, because it employs
average variances as reliabilities for the estimations.

The scenario is the same as in the section above, i.e., i.i.d. Gaussian sensing matrices of
size 125 × 250 are drawn and the power distribution (6.8) is applied. As signal model, the
DT prior (2.4) with s = 5, if not stated otherwise, is assumed. The signal-to-noise ratio is
set to 10 log10(1/σ2

n) = 16 dB throughout the simulations. Similar results have been shown
in [SF21].

The simulations in Sec. 6.3 have already shown that seqVAMPire usually performs close
to VAMPire and improves over seqVAMPind in the standard setting utilizing i.i.d. Gaussian
matrices with columns normalized to unit `2-norm. The comparison in the section at hand
focuses mostly on the di�erence in convergence speed, but before turning to that, the per-
formance over the parameter v of the power distribution (6.8) is considered, in order to get a
picture of the performance. The results are shown in Fig. 6.14. For small values of v, the perfor-
mance of the sequential algorithms is very close to the Turbo-type algorithms with individual
variances from which they are derived. For v → 1, the performance tends to get worse than
the parallel algorithms, which is especially visible for the larger sparsity value s = 20. The
sequential algorithms utilize the σ2↗ schedule, which will be explained below. Noteworthy,
this schedule was also used in the simulations over the observation dimensions in Sec. 6.3.

In the following, the simulations are restricted to s = 5 and v ∈ {0.5, 1}.
Opposing the Turbo-type algorithms, where each processing step is prescribed, the se-

quential processing of the signal components enables a degree of freedom in choosing among
the signal components the one to be processed in the next step. This opens the possibility for
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Figure 6.14: Performance over parameter v of the power profile (6.8). N = 250, M = 125, i.i.d. Gaus-
sian sensing matrices, DT prior, 10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations. Comparison between
Turbo-type and sequential (processing variables) algorithms. The sequential algorithms utilize the σ2↗ sched-
ule, which will be explained below.

a variety of schedules. The schedules that are discussed here were �rst introduced in [SF21].
In order to be able to properly de�ne the schedules, a distinction between inner iterations

and outer iterations is employed. One inner iteration comprises the computation steps that are
described in Fig. 5.2, i.e., the signal-constrained estimation of one signal component xj and
the subsequent broadcasting of the result to the other signal components. An outer iteration
describes the processing of N inner iterations, i.e., the number of inner iterations that are
necessary to process each signal component at least once. These outer iterations are used to
compare to the Turbo-type algorithms, which process all signal components together.

At �rst, schedules that sweep entirely through the signal components are considered, so
that no component is left out and none is processed twice in one outer iteration. Therefore,
one can directly compare over the outer iterations. As schedules, a random choice and two
deterministic choices are introduced. The random choice (random) draws the order to be pro-
cessed before each outer iteration, i.e., permutes the sequence [1, . . . , N ] and runs through
it. For the deterministic choices, the variances σ2

c,j (j ∈ {1, . . . , N}) that represent the reli-
ability in the channel-constrained estimation of the respective signal component need to be
considered. The variances are either sorted in ascending (σ2↗), or in descending (σ2↘) order
and the order is kept throughout the outer iteration.

The comparison of these schedules over the iteration is depicted in Fig. 6.15, on the left for
v = 1, on the right for v = 0.5. In the unit-column-norm case (v = 1), there is almost no di�er-
ence between the schedules. Nevertheless, it is visible that the convergence of the sequential
algorithms is slightly faster than the Turbo-type algorithms in terms of outer iterations. Fur-
thermore, in contrast to seqVAMPire, whose steady-state error ends up at the same level as
VAMPire, the sequential version of VAMPind (called seqVAMPind) results in a steady-state
error worse than all the compared Turbo-type algorithms. This shows that the estimation-
theoretic view on bias compensation becomes even more important, when the view on the
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estimation is even more detailed as in this sequential processing case. The faster convergence
of the sequential algorithms can be explained by the fact that the knowledge gained by pro-
cessing a single variable is immediately fed back to the other variables, so that within an outer
iteration already more knowledge can be gained as when processing all variables together.

For v = 0.5, one can see a di�erence between the schedules; especially after the �rst
outer iteration. Later the schedules tend to the same level in terms of SER. The schedules
that exceeds the other two in the �rst few iterations is σ2↗, i.e., the processing in order of
ascending variances. The schedule σ2↘ is worst and the random schedule is between the
other two.

The reason for this order is as follows. Since the variance σ2
c,j represents the reliability in

the estimates, starting with low variances (as in σ2↗) means to start with the ones one is most
sure about, which leads to more con�dence in subsequent estimations of signal components
and thereby to faster convergence. The second deterministic schedule σ2↘ works oppositely
and therefore performs worst, although still being better than the Turbo-type algorithms.

The schedules examined so far followed the strategy of choosing the order once before
an outer iteration and kept this order throughout the outer iteration. However, it might be
worthwhile to reconsider and perhaps change the order of processing within one outer itera-
tion. For that purpose, the index set J ⊆ {1, . . . , N} of cardinality |J | = T is introduced,
which speci�es the T variables that are processed before reconsidering the order.

There are plenty of ways to choose the index set J . Again two deterministic and one
random strategy are examined. The deterministic approaches follow the deterministic choices
introduced earlier, i.e., one picks the positions corresponding to the T smallest variances, the
other goes for the T highest variances.

For the random approach, a strategy that prefers high variances is chosen. The moti-
vation therefor is that the recovery algorithm needs to make sure that the reliability in the
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estimation increases over the iterations, i.e., the variances need to decrease. The variance of
a signal component generally decreases most, when the signal component itself is processed
in the signal-constrained estimation, because the signal-constrained (non-linear) estimation
yields more accurate estimates than the channel-constrained (linear) one. Signal components
with high variance σ2

c,j therefore indicate that they require to be processed via the signal-
constrained estimation.

In order to focus on high variances, the positions are drawn according to a respective
probability distribution. The distribution is created such that the probability for a position j
to be drawn is proportional to its corresponding variance σ2

c,j . Since unique positions in the
set J are necessary, it is built successively. Assume that ` < T positions have already been
drawn, i.e., de�ne J (`) = {j1, . . . , j`}. Then, the probability for the other positions to be
drawn is given by

Pr{j`+1 = j} =
σ2

c,j∑N
j′=1,j′ /∈J (`) σ2

c,j′
, j ∈ {1, . . . , N} \ J (`) . (6.12)

This procedure is denoted by “rv”.
In order to make sure that all the positions are processed equally often, one can track the

number of processings conducted for each position j with a counter cj . For later reference,
the set of positions with minimal counters is denoted by

Jc = {j | cj ≤ cj′ ∀j, j′ ∈ {1, . . . , N}} . (6.13)

This procedure is especially necessary for the procedure minv, which chooses always the po-
sitions with lowest variances (see below), because, as explained before, processing a signal
component leads to a decrease of the respective variance, which means that this procedure is
likely to pick signal components that it has chosen in the �rst iteration over and over again,
without ever processing the high-variance components which actually needs to be processed.
When considering the deterministic strategies, we will additionally always keep track of the
processing by the counter.

Furthermore, one can deliberately switch between the strategies before choosing the next
J . When the index set J is speci�ed, the order of processing the set can be chosen as one of
the previously considered strategies, namely, σ2↗, σ2↘, and random.

In the simulations, we restrict to the extreme case, opposing the strategies shown before,
i.e., T = 1 so that after each inner iteration, the processing order is reconsidered. In this case,
there is of course no need to order the set, which consists of one position only, i.e., J = {j}.
In summary, the following strategies are considered

maxv: choose j = argmaxj′∈Jc σ
2
c,j′ with Jc from (6.13),

minv: choose j = argminj′∈Jc σ
2
c,j′ with Jc from (6.13),

rv: draw position from {1, . . . , N} randomly with probability given by (6.12),

minv + maxv,

minv + rv,
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Figure 6.16: Comparison of schedules with T = 1 over inner iterations. N = 250, M = 125, power
distribution (6.8) with v = 0.5, DT prior with s = 5, 10 log10(1/σ2

n) = 16 dB.

where the plus means that the strategy is switched after every processed signal component.
Because the schedules show di�erences, especially when the power distribution is applied, the
focus lies now on simulations with v = 0.5.

The simulation results are shown in Fig. 6.16 over the inner iterations, where on the left
side the individual variance version of VAMP (VAMPind) is compared to its sequential version
(seqVAMPind) and on the right the respective algorithms improved by estimation-theoretic
bias compensation (VAMPire and seqVAMPire) are depicted. The Turbo-type algorithms are
evaluated at multiples of N = 250, because they process all N signal components at once.
As can be seen, the general behavior of the schedules is for both sequential algorithms, se-
qVAMPind and seqVAMPire the same, only the steady-state performance di�ers, which is a
property of the algorithm, as already discussed.

For better visibility, the results of estimation-theoretically improved algorithms is again
shown in Fig. 6.17, so that one can describe and interpret the behavior of the schedules. Since
the counter is used for the deterministic strategies, they process all signal components once
between multiples of N , i.e., per outer iteration. When choosing always the largest variance
(maxv) from the (per outer iteration) not yet processed signal components, a fast convergence
at the beginning of the outer iteration results, because the respective positions require process-
ing the most. Towards the end of the loop, the performance �attens out, because the positions
that need less attention are addressed. This leads to a staircase behavior. The staircase is better
visible in the opposite case (minv), which chooses the position with lowest variance (among
the per outer iteration not yet processed signal components). The behavior is contrary to
maxv in the sense that the performance stays equal at the beginning of the outer iteration and
shows a drop at the end. Noteworthy, with this drop it gets below the maxv strategy, which
is consistent with the results from Fig. 6.15, where the strategy going for low variances �rst
(σ2↗) improved over the opposite strategy (σ2↘).

The probabilistic approach does not make use of the counter and therefore converges
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smoothly, but the convergence is not as steep as for maxv at the beginning.
With the switching between opposing strategies, it is possible to combine the advantages

of the respective strategies and yield both fast convergence and well performance at conver-
gence; in the given comparison, the combination of rv and minv is the preferable schedule,
since it combines the good convergence of the minv schedule with the smoothness (no steps)
of the rv schedule.

6.6 Variable Noise Scenario

In this last scenario, the case of non-i.i.d. noise with independent but individual noise variances
as introduced in Sec. 5.2 is considered, i.e.,

n ∼ N
(
0, diag

(
σ2

n,i

))
. (6.14)

This scenario was used to motivate the sequential processing of observations, which contrasts
VAMP in the sense that VAMP considers all observations at once, i.e., parallel. The algorithm
seqVAMPobs is therefore compared to two versions of VAMP. Naturally, the known noise
variances σ2

n,1, . . . , σ
2
n,M can simply be considered in the VAMP algorithm by computing the

channel-constrained estimation by

mc = x̃c + σ2
xA
>
(
σ2

xAA
> + diag

(
σ2

n,i

))−1
(y −Ax̃c) , (6.15)
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with respective error covariance matrix

Φc =
(
A>diag

(
1/σ2

n,i

)
A+ 1

σ2
x
IN

)−1

. (6.16)

Note that our implementation uses the direct computation of the unbiased variable x̃s by
employing the scaling matrix W appropriately, so that Φc does not have to be computed
directly and, thus, the computation of the N ×N inverse can be spared. The other variant of
VAMP averages the noise variances σ2

n̄ = 1
N

∑M
i=1 σ

2
n,i and uses this single value for the noise

variance as usual.
If not stated otherwise, a scenario with N = 250, M = 125, the DT prior with various

sparsities, and 10 log10(1/σ2
n) = 16 dB is simulated.

The di�erent noise variances are obtained by scaling the noise variance σ2
n, which is spec-

i�ed by the SNR, with factors that are drawn uniformly from the interval [1 − b/2, 1 + b/2],
i.e., the random variable ς2

n representing the noise variance σ2
n, is uniformly distributed around

its mean value σ2
n with width bσ2

n by

ς2
n ∼ U

(
[σ2

n(1− b/2), σ2
n(1 + b/2)]

)
. (6.17)

Since negative variances are not possible, this naturally yields a maximum of b ≤ 2 on the
width parameter b of the uniform distribution. For b = 0, the i.i.d.-noise case is retrieved.

First, the standard case with i.i.d. noise is considered. As before, i.i.d. Gaussian sensing
matrices with columns normalized to unit `2-norm are used. VAMP and seqVAMPobs are
compared over the observation dimension M in Fig. 6.18(a). The simulation shows that in this
standard case, both algorithms perform exactly the same, which is no surprise since they are
based on the same framework.

In contrast, the same plot is shown for non-i.i.d. noise with noise variance uniformly dis-
tributed around σ2

n with parameter b = 1 in Fig. 6.18(b), where one can see that seqVAM-
Pobs improves over VAMP both, in terms of compressibility and resulting steady-state error
for M → N . Interestingly, VAMP performs better, when the average of the noise variances
is used in the algorithms, but still not getting the performance of seqVAMPobs. The worse
performance of VAMP with individual noise variances can be explained by the fact that the
scaled identity matrix of using a single noise variance has an averaging e�ect in the processing,
thereby making the inverse of the LMMSE much more stable, especially compared to the case
when small values occur on the diagonal of the matrix that has to be inverted. The sequential
approach bene�ts over these approaches because it can make use of the knowledge about the
individual noise variances without getting impairments by the less stable matrix inverse.

In order to see the impact of the noise variance model on the behavior of the algorithms,
they are compared over the value of b that parameterizes the width of the uniform distribution.
Recall that for b = 0 the i.i.d.-noise case is recovered and the maximum is naturally given by
b = 2. The results are shown in Fig. 6.19 for M = 125. On the left side, one can see that since
b = 0 recovers the i.i.d. case, VAMP and seqVAMPobs perform the same. Towards the right,
the performance of VAMP that utilizes the individual noise variances decreases, due to the
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(a) Usual case with i.i.d. noise.
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(b) Non-i.i.d.-noise case (6.17) with b = 1.

Figure 6.18: Comparison of VAMP and seqVAMPobs over the observation dimension M . N = 250, i.i.d.
Gaussian sensing matrices with columns normalized to unit `2-norm, DT prior, 10 log10(1/σ2

n) = 16 dB,
evaluation after 20 iterations.
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Figure 6.19: Performance over width parameter b of the uniform distribution (6.17) for the noise variance.
N = 250, M = 125, i.i.d. Gaussian sensing matrices with columns normalized to unit `2-norm, DT prior,
10 log10(1/σ2

n) = 16 dB, evaluation after 20 iterations.

missing averaging e�ect inside the LMMSE inverse, as already mentioned. When the average
of the noise variances is used, the performance of VAMP stays almost constant. In contrast,
the sequential version seqVAMPobs can actually improve performance w.r.t. the i.i.d.-noise
case, because it handles the observations individually, which only gets less stable for b ≈ 2.

The sequential processing of the observations enables the use of certain schedules. As
in the previous section, a random schedule is compared to two deterministic schedules with
opposite ordering. For the deterministic sorting, a measure is needed that characterizes the
reliability of the respective factor. In case of the channel-constrained factors fyi|x(x), this is the
`2-norm of the rowai, which tells us how much the signal is ampli�ed by the measurement, di-
vided by the respective noise variance σ2

n,i. Additionally, there is the signal-constrained factor
fx(x), which is characterized by σ2

x = s/N . Since these measures do not change throughout
the iterations of the algorithm, the sorting is done once at the beginning and stays until the
end. The random approach permutes theM +1 possibilities before each iteration through the
factors.

The sequential approach for the signal components from Sec. 5.1 showed that the process-
ing of the signal-constrained estimation is very crucial for the progress of the algorithm. One
may therefore emphasize on the factor fx(x), when designing schedules for the sequential
processing of observations. In order to stay somewhat fair to VAMP, an iteration for the se-
quential algorithm seqVAMPobs is de�ned to be the processing of exactlyM+1 factors. In the
simulations below, versions of the previously introduced schedules are shown that process the
factor fx(x) every second time; so after one channel-constrained factor fyi|x(x) always fx(x)
is processed, before the next channel-constrained factor is chosen. All in all, the following
schedules are considered (the index s is used to denote the signal factor)

↗: sort {‖ai‖2
2 /σ

2
n,i | i ∈ {1, . . . , M}} ∪ {s/N} in ascending order

↘: sort {‖ai‖2
2 /σ

2
n,i | i ∈ {1, . . . , M}} ∪ {s/N} in descending order
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Figure 6.20: Performance over iterations with comparison of schedules. N = 250, M = 125, i.i.d. Gaus-
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π: random permutation of [s, 1, . . . , M ] before each iteration

 : sort ‖ai‖2
2 /σ

2
n,i ↗ and interleave indices with s

 : sort ‖ai‖2
2 /σ

2
n,i ↘ and interleave indices with s

πs: permutation of [1, . . . , M ] interleaved with s,
yielding [s, π(1), s, π(2), . . . , s, π(M)]

The simulations shown so far used the scheduling that starts with the most reliable obser-
vation and proceeds towards the least reliable one, i.e.,↗.

The comparison of the schedules over the iterations are shown in Fig. 6.20 for b = 1. One
can see that VAMP converges faster, but has higher steady-state error, as expected from the
previous results. The schedules considering every factor once per iteration are shown with
�lled markers and the schedules emphasizing on the signal-constrained factor fx(x) are shown
lighter and with non-�lled markers. The sequential algorithm is evaluated each time when the
schedule is run through entirely. Because the schedules emphasizing on s process 2M factors,
instead of M + 1 as the others, they are only plotted every second iteration.

Except for the �rst iteration the two deterministic procedures yield very close results;
also the emphasis on the signal-constrained estimation does not gain much, if at all. The
approach with ascending variances yields the most bene�t in the �rst iteration, which means
the most insight from reliable observations is obtained at the beginning. The random and
the descending variance schedule start similar in the �rst iteration, but the random approach,
converges a little slower; a deterministic approach seems to be the means of choice. The
steady-state error of the di�erent schedules is the same.
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7. Conclusions and Future Work

The thesis at hand considered recovery algorithms for compressed sensing (CS), i.e., the re-
construction of high-dimensional signals from linearly compressed measurements in noise.
Turbo-type and message-passing-type algorithms were derived from the framework of mini-
mizing the Kullback–Leibler divergence under expectation constraints tailored to the respec-
tive factor graph representation, which shows the common basis for both types of algorithms.
Furthermore, sequential algorithms were developed under the same framework and compar-
isons of all algorithms were documented via numerical simulations.

7.1 Conclusions

In Chapter 2, the CS model was introduced and the reconstruction task was characterized
by two di�erent kinds of estimations that resulted from independently treating the two basic
constraints, which are imposed by the problem. These constraints were distinguished as the
channel-constrained part, resulting from the linear compression with known (sensing) matrix,
and the signal-constrained part, which is de�ned by the inherent structure of the signal, i.e., its
statistical properties (in form of a probability density function) and especially its sparsity. The
exact form of the channel-constrained estimation depended on the considered factorizations
of the problem. Di�erent representations of the problem were introduced in the form of factor
graphs and the approach of minimizing the Kullback–Leibler divergence was motivated.

The most �ne-granular representation of the problem led in Chapter 3 to message-passing
algorithms, which simplify the estimation to the treatment of scalars (instead of vectors). This
simpli�cation of the estimation required extensive exchange (messages) between the many
factors and variables. In the exchange between the estimations, the well-known concept of
extrinsic was found to be crucial for the processing of the algorithm. In its usual form, the
resulting algorithm su�er in the CS scenario from its �ne-granularity because of the high
number of messages that have to be processed individually [KMS+12]. The expense could
be reduced by exploiting the bene�ts of post-processing the extrinsic, which requires less es-
timations because the estimation becomes edge-independent, instead of pre-processing it. In
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Chapter 3 it was shown that post-processing and pre-processing the extrinsic is mathemati-
cally the same for the channel-constrained estimation due to its linearity. Numerical results
in Chapter 6 pointed out that the usage of post-processed extrinsic for the signal-constrained
estimation do not yield a signi�cant drawback.

The Turbo approach of Chapter 4 contrasted the message-passing approach as it denoted
the factorization with least possible fragmentation, i.e., signal- and channel-constrained part
oppose each other directly, resulting in two separated estimations. The derivation, again, mo-
tivated the use of extrinsic and led to the famous VAMP algorithm [RSF19] and a version of it
utilizing individual variances. The estimation-theoretic analysis of the extrinsic computation
revealed the connection to bias compensation. The optimization-based derivation linked the
treatment of individual variances directly with individual bias compensation, as well as aver-
age variances and average bias compensation. For the bias compensation after the channel-
constrained estimation it was proposed to cut the tie and combine individual bias compensa-
tion with the use of average variances. The algorithm with individual variances, which was
directly derived from the optimization framework showed the drawback of not preventing the
computation of negative variances. With the estimation-theoretic approach an adapted up-
date was derived for the processing after the signal-constrained estimation, which guarantees
positive unbiased variances. Utilizing these methods, several variants of the so far existing
algorithms were proposed.

Both, the message-passing and the Turbo approach, elucidated the well-known importance
of the computation of extrinsic in the exchange of parameters between di�erent estimations.

The constrained optimization framework was also used to derive algorithms that process
either signal components or measurements in a sequential manner in Chapter 5. Since the se-
quential processing of variables requires individual variances, the estimation-theoretic adap-
tions could be used to enhance the algorithm resulting directly from the optimization-based
derivation.

In summary, four di�erent factorizations of the posterior representing the CS problem
were considered. One framework was used to provide derivations of algorithms for the di�er-
ent factorizations. Estimation-theoretical bias compensation was used to improve the derived
algorithms.

The simulation results in Chapter 6 showed that the estimation-theoretically improved
algorithms could generally beat the algorithms directly derived from the optimization-based
approach in terms of compressibility and steady-state error. The model for wireless sensor net-
works showed a drawback of VAMP for unequally scaled sensing matrix columns, which could
be overcome by individual bias compensation after the channel-constrained estimation with-
out increasing the computational complexity signi�cantly. The sequential algorithms have the
freedom of varying the schedule of processing either the signal components or the observa-
tions. For the algorithms that process signal components sequentially, the possible schedules
were examined in detail. It could be shown by numerical simulations that the sequential pro-
cessing of measurements can defeat VAMP in scenarios with non-i.i.d. noise.

All in all, the alternative approaches (leading to sequential algorithms) and the estimation-
theoretic enhancements turned out to be able to improve VAMP in certain speci�c scenarios.
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Generally, on the one hand, the algorithms with individual variances play to their strengths
for small signal dimensions N , where the advance to VAMP is stronger and the restraint of
their high complexity does not (yet) kick in. On the other hand, one could see that the average
variance strategy of VAMP inherits useful stability properties on both sides of noise and prior
variances. Nevertheless, the usage of average variance can be bene�cially combined with
individual bias compensation.

7.2 Future Work

In order to focus on the estimation-theoretic concepts within the algorithms, the thesis was
restricted to relatively basic assumptions on the scenario, such as independent and identically
distributed signal components with known sparsity and measurements obtained by a known
sensing matrix in Gaussian noise. Possible future work could therefore encompass to test and
adapt the proposed algorithms in less restrictive scenarios, closer to real-world applications; a
keyword being block sparsity [BCDH10] or multidimensional priors [BG19, Bir19] that model
dependencies between the signal components. It would also be interesting to see how robust
the algorithms are when there is a mismatch to the prior assumption [Ver10, VS13]. Addi-
tionally, also the performance in the multiple measurement vector (MMV) problem [EK12,
CREK05] or the distributed compressed sensing (DCS) [SBW+05] problem could be examined.
Both problems work with multiple measurements, where DCS utilizes di�erent sensing ma-
trices per measurement vector; while the MMV problem considers the same sensing matrix
in each measurement. The multiple measurements may be exploited to gain more knowledge
from temporal or spatial correlations.

The algorithm, which processes measurements sequentially has not been investigated very
thoroughly yet. Possible applications could be PAR reduction schemes for OFDM, which have
to handle varying noise variances [KPN+14, LHD20, LHL+19]. Moreover, the trade-o� between
computing the channel-constrained estimate based on a single observation (as in the sequential
algorithm), some part of the observation vector, or the entire observation vector (as in VAMP)
might be worthwhile to consider, both in terms of performance and complexity.

Furthermore, the estimation-theoretic adaptions in the bias compensation strategies might
be bene�cially applicable in inference problems outside the CS scenario, as long as they inherit
minimum mean-squared error estimators.
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A. Vector Spaces

In this appendix, the notion of a vector space is discussed because the entire thesis is based
on the treatment of vectors and matrices. Furthermore, the notion is used in Chapter 4 for
a geometrical interpretation of estimation and bias compensation. The appendix comprises
a summary of the necessary de�nitions, e.g., norms, and necessary properties of vectors and
matrices.

A vector space V over a certain (scalar) �eld F is a set of objects that can be linearly
combined, i.e., scaled and added, without leaving the set. Mathematically this means the set is
closed under addition and multiplication with elements of the corresponding scalar �eld, i.e.,
with a, b ∈ F, it holds for all x,y ∈ V that ax + by ∈ V . The scalar �eld is in this thesis
always the set of real numbers R. For mathematical details and more properties, the reader is
referred to [HJ09, Sec. 0.1.2].

A.1 Vectors

In this thesis, the objects are mostly vectors, which are represented by a list of entries, e.g.,

x =
[
x1
x2

]
=
[
0
1

]
= [0, 1]> , y =

[
y1
y2

]
=
[
−0.23
0.76

]
, (A.1)

as in Ex. 2.1. Note that vectors are represented as column vectors. Other examples for the
objects are functions and thereby random variables, which is discussed in detail in Sec. 4.4.2.

The objects span the space. In the above example, the space is of dimension two, because
there are two entries in the vectors and the vectors are linearly independent (one cannot get
the other vector by simply scaling one of them). The same space is spanned by x and [1, 0]>
as well, which together form an orthonormal basis. This means that the vectors are orthogonal,
i.e., the inner product is zero. The inner product of vectors x,y ∈ V of dimension N is here
given by the sum of the component-wise multiplied entries

x>y =
N∑
j=1

xj · yj . (A.2)
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x = [0, 1]>

y = [−0.23, 0.76]>

‖x‖2 = 1

‖x‖1 = 1

‖x‖0 = 1

‖y‖2 =
√

(−0.23)2 + 0.762 = 0.79

‖y‖1 = | − 0.23|+ |0.76| = 0.99

‖y‖0 = 2
‖y‖2 = 0.79

‖y‖1 = 0.99

Figure A.1: Depiction of x and y from Ex. 2.1 in the space spanned by x and [1, 0]>.

In the example, it is x>y = 0.76 and x>[1, 0]> = 0 · 1 + 1 · 0 = 0. The orthogonality of the
basis makes a graphical representation convenient and the inner product allows for geometric
notions as length and angles. In Fig. A.1 a coordinate system is used that is obtained by scaling
the vectorsx and [1, 0]> to represent vectorsx and y from Ex. 2.1. The vectors are represented
as arrows that point to the coordinates that de�ne them. This shows, as already mentioned,
that the vectors are de�ned by a direction and a length; x points in the direction of one of the
coordinate axes, because the axis is de�ned based on it. In the following, it is considered what
is meant by “length”.

If the inner product is speci�ed as in (A.2), the vector space is called a Euclidean vector
space, because the norm corresponding to the inner product is the so-called Euclidean norm or
`2-norm, which for is x ∈ V (dimensionality N ) de�ned by [GV96, HJ09]

‖x‖2
def=
√
x>x =

√√√√√ N∑
j=1

x2
j . (A.3)

Another example for a norm is the `1-norm or Manhattan norm, which is de�ned as [GV96,
HJ09]

‖x‖1
def=

N∑
j=1
|xj| . (A.4)

Both norms are special cases of the `p-norm with de�nition [GV96, HJ09]

‖x‖p
def=
 N∑
j=1
|xj|p

1/p

. (A.5)

Noteworthy, for p < 1, the de�nition of the `p-norm does not yield a norm in the mathemat-
ical sense anymore and for p → 0 the result yields the sparsity, i.e., the number of non-zero
elements, of the vector [EK12]

‖x‖0
def= |{xj 6= 0 | j ∈ {1, . . . , N}}| . (A.6)

A comparison of the di�erent norms is given in Fig. A.1 for x and y from Ex. 2.1. The
Euclidean norm is usually associated as length of a vector.
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Generally, the vectors of one vector space can be represented in other vector spaces,
cf. [Kay93, PP02]. In Sec. 4.4.2, this is used to represent random variables in the Euclidean
space. Note that the vector space of the random variables itself does not use the Euclidean
norm as inner product.

A.2 Matrices

By appending vectors column-wise, one obtains matrices, e.g., in Ex. 2.1, it is

A =
[
a11 a12
a21 a22

]
=
[

0.75 −0.25
−0.5 0.75

]
, (A.7)

which consists of the vectors ã1 = [a11, a21]> = [0.75, −0.5]> and ã2 = [a12, a22]> =
[−0.25, 0.75]>.

An important property of matrices that is used in this thesis is the so-called Frobenius
norm [GV96], which is forA ∈ RM×N given by

‖A‖F
def=

√√√√√ M∑
i=1

N∑
j=1

a2
ij . (A.8)

The Frobenius norm of the matrix given above is, thus,

‖A‖F =
√

2 · 0.752 + (−0.25)2 + (−0.5)2 = 0.9345 . (A.9)

A.2.1 Coherence

The coherence [EK12], which is mentioned in Chapters 2 and 6, is de�ned as

c(A) = max
i,j∈{1, ..., N}

i 6=j

|ã>i ãj|
‖ãi‖2 ‖ãj‖2

, (A.10)

where | · | denotes the absolute value. A matrix satisfying c(A) = 0 is called an orthogonal
matrix, because it implies that every column is orthogonal to each other column; noteworthy,
an orthogonal matrix needs to be square, i.e., M = N .

A.2.2 Condition Number

Furthermore, the notion of a condition number of a matrix is required. The condition number
ofA gives the chance to bound the relative error obtained when inverting the matrix to solve
a system of equationsAx = b for x based on the relative error in b [HJ09]. In this thesis, we
restrict to the condition number based on the `2-norm, so that the condition number is basically
the ratio between largest and smallest singular value of the matrix. With matrix A ∈ RM×N

(where M < N ) having singular value decomposition (SVD) given by A = Udiag(sj)V >,
i.e., singular values s1, . . . , sM > 0 and sM+1 = · · · = sN = 0, where the singular values are
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sorted in descending order, meaning s1 ≥ s2 ≥ · · · ≥ sM , then the condition number of A is
de�ned as [HJ09, Sec. 5.7 Problem 1]

κ(A) = s1

sM
. (A.11)

If the condition number is large,A is said to be ill conditioned or poorly conditioned, meaning
that errors are generally ampli�ed. For κ(A) close or equal to one, one may say thatA is well
conditioned.

When constructing sensing matrices with speci�ed condition number κ, the procedure
from [RSF19, Sec. VI. A] is chosen, where the matrix A is constructed via an SVD A =
Udiag(sj)V > with non-zero singular values being speci�ed by

sj = κ(M−j+1)/(M−1) , j ∈ {1, . . . , M} , (A.12)

as well as U ∈ RM×M and V ∈ RN×N being drawn randomly from the group of orthogonal
matrices.
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B. Convex Optimization

This appendix comprises the notions of optimization theory that are necessary to follow the
derivation of the algorithms in Chapter 3 through 5.

The following de�nitions are according to [BV04]. A setA is convex if for any two elements
of the set, let’s call them x1 and x2, and γ ∈ [0, 1], the convex combination is in the set, i.e.,

γx1 + (1− γ)x2 ∈ A . (B.1)

This holds as well for vector spaces, i.e., X is convex if for x1, x2 ∈ X , γ ∈ [0, 1], it is
γx1 + (1− γ)x2 ∈ X . This means that line segment between x1 and x2 is always inside the
set X . A convex function is a function with convex domain satisfying

f(γx1 + (1− γ)x2) ≤ γf(x1) + (1− γ)f(x2) , (B.2)

i.e., the line segment connecting the points f(x1) and f(x2) is always above the function, cf.
Fig. B.1. A function f(x) is concave, if −f(x) is convex.

Constrained optimization problems are usually formulated in the following way

minimize f(x)
subject to fk(x) = 0 , k ∈ {1, . . . , K} . (B.3)

f(x)

xx1 x2

f(x1)
f(x2)

Figure B.1: Example for a convex function and the line segment according to the definition.
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The function f(x) is called the objective function or cost function, x is the optimization variable,
and fk(x) = 0 , k ∈ {1, . . . , K} are the equality constraints. We do not de�ne inequality
constraints since they do not appear in the thesis. In the given case, the optimization problem
is called convex, if the cost function f(x) and the constraints are convex.

A point x that satis�es all constraints, while also being part of the respective domains of
the functions, is called feasible. A point that minimizes the problem (in the sense of an in�mum,
if the minimum can not be attained) is called optimal point or optimizer x∗ and p∗ = f(x∗) is
the optimal (minimal) value.

In order to ful�ll one equality constraint, an optimal point must lie where the contour
line of the objective function and the respective constraint function is tangential, because
otherwise that means the objective function changes along the constraint function, which in
turn means the objective function can still further be minimized without violating the con-
straint [Gra14, HF14]. Mathematically, this can be formulated as collinearity of the gradi-
ents1 [Gra14], meaning that the di�erentiation w.r.t. every possible direction of the constraint
function and the objective function must be multiples of each other. If several constraints are
imposed, the same reasoning leads to the insight that the gradient of the objective function
must be a linear combination of the equality constraints. By introducing respective multipliers
µ = [µ1, . . . , µK ]>, this yields a system of equations

∇f(x∗) != −
K∑
k=1

µk∇fk(x∗) . (B.4)

The reason for placing the minus here, stems from alternatively writing the functions on one
side and setting the sum to zero, i.e.,

∇f(x∗) +
K∑
k=1

µk∇fk(x∗) != 0 (B.5)

⇔ ∇
(
f(x∗) +

K∑
k=1

µkfk(x∗)
)

!= 0 . (B.6)

Then, it is only one step left to summarizing the procedure by additively combining objective
function and the (weighted) constraint functions into a new function. The result is the so-
called Lagrangian

L(x, µ) = f(x) +
K∑
k=1

µkfk(x) (B.7)

with µ = [µ1, . . . , µK ]> being called Lagrange multipliers.
This way, the optimization problem is converted to �nding the stationary points of the

Lagrangian. An example in two dimensions is shown for illustration purposes.

Example B.1:
Here, Ex. 2.1 is extended for the purpose of showing the idea of the Lagrangian. Let

py(x) = 1√
(2πσ2

n )M
exp

(
− 1

2σ2
n
‖y −Ax‖22

)
with the values ofA, y, and σ2

n taken from Ex. 2.1

1Gradients summarize the di�erentiation with respect to the elements of the argument, i.e., if x ∈ RN , then
∇f(x) = [ ∂

∂x1
f(x), . . . , ∂

∂xN
f(x)]>. We may use∇f(x∗) as shorthand for∇f(x)|x=x∗ .
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x∗ = [−0.68, 0]>
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Figure B.2: Contour plot of py(x) from Ex. 2.1 with constraints x1 = 0 and x2 = 0 as white lines and the
solution x∗ = [−0.68, 0]> of the minimization with constraint x2 = 0.

be the negative cost function, i.e., f(x) = −py(x) should be minimized. Further, assume

that it is known that x2
!= 0, so an equality constraint f1(x) = x2 is added. py(x) is shown as

contour plot in Fig. B.2, the equality constraint is the horizontal white line. The Lagrangian
reads L(x, µ1) = −py(x) + µ1f1(x). Differentiation w.r.t. x1, x2, and µ1 and subsequent
zeroing yields three equations, which can be use to solve for the variables.

Differentiation w.r.t. µ1 retrieves the constraint f1(x), i.e.,

∂

∂µ1
L(x, µ1) = ∂

∂µ1
(−py(x) + µ1f1(x)) = f1(x) = x2

!= 0 . (B.8)

Together with the other equations, the missing values of x1 and µ1 can be obtained.
First note that

∂

∂xj
py(x) = py(x) ·

(
− 1
σ2

n

M∑
i=1

(yi − aix) · (−aij)
)
. (B.9)

Therefore,

∂

∂x1
L(x, µ1) = − ∂

∂x1
py(x) + µ1

∂

∂x1
x2

= −py(x) ·
(

1
σ2

n

M∑
i=1

ai1(yi − aix)
)

+ 0 != 0 (B.10)

⇒
M∑
i=1

ai1(yi − aix) != 0 , (B.11)
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which yields together with x2 = 0

a11(y1 − a11x1) + a21(y2 − a21x1) != 0 (B.12)

⇒ x1 = a11y1 + a21y2
a2

11 + a2
21

= −0.68 . (B.13)

With the values x1 = −0.68 and x2 = 0, the last equation yields the value for µ1

∂

∂x2
L(x, µ1) = − ∂

∂x2
py(x) + µ1

∂

∂x2
x2

= −py(x) ·
(

1
σ2

n

M∑
i=1

ai2(yi − aix)
)

+ µ1
!= 0 (B.14)

⇒ µ1 = py(x) ·
(

1
σ2

n

M∑
i=1

ai2(yi − aix)
)
. (B.15)

Hence, the solution is given by x∗ = [−0.68, 0]>, which fulfills the equality constraint x2 = 0
and maximizes py(x), given the constraint. As one can see, the constraint x2 = 0 and the
contour lines are tangential in the solution point.

Note that y was generated by x = [0, 1]>, so the constraint x1 = 0 is much closer to the
actual maximum of py(x).

It can be shown that the optimal point minimizes the Lagrangian. This property is used in
the Lagrange dual function. It is de�ned as

LD(µ) = inf
x
L(x, µ) . (B.16)

Noteworthy, the dual function is concave, even if the problem itself is not convex. This con-
cavity ensures that the dual function yields lower bounds on the optimal value p∗, i.e.,

LD(µ) ≤ p∗ . (B.17)

If the optimal value can be attained, i.e.,

max
µ
LD(µ) = p∗ , (B.18)

one speaks of strong duality, otherwise of weak duality. Note that this leads the way for an
approach to solve the optimization problem from a di�erent point of view. The resulting for-
mulation of the problem is called Lagrange dual problem

maximize LD(µ) .

Noteworthy, Slater’s condition states that the optimal value can be attained via this approach,
i.e., (B.18) holds in this case, if there exists a feasible point.
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C. Functional Derivatives

A functional describes a function which has itself functions as arguments; the di�erential
entropy (2.23) is an example for a functional, since it depends on the form of the density
q(x). The term functional derivative or variational derivative stems from the calculus of vari-
ations [GFS63], which addresses the search for extrema in such functionals.

Here, functionals of the form

F (q(x)) =
∫
f(q(x), x) dx (C.1)

are considered, with f(· , ·) being a function of the two variables. The task of variational
calculus is to �nd the function q(x) that maximizes or minimizes the functional. For the
derivation of the form of the functional derivative in this case, the necessary conditions to
obtain an extremum in such a functional are described. The explanations follow the exposition
given in [Gra14] as it focuses on a rather intuitive understanding. An entirely mathematical
description is given in [GFS63].

In order to derive conditions for an extremum of such a functional, one considers the opti-
mal function q∗(x) and a variation δq(x) thereof, i.e., any solution q(x) may be represented
as

q(x) = q∗(x) + εδq(x) , (C.2)

with scalar parameter ε quantifying the amount of variation. Obviously, for ε→ 0, the optimal
solution is obtained. This also means that at an extremum, the derivative w.r.t. ε must vanish,
as otherwise q∗(x) would not be the optimal solution. Mathematically, it is

δF
def= dF (q∗(x) + εδq(x))

dε

∣∣∣∣
ε=0

!= 0 , (C.3)

where δF is called the (�rst) variation or di�erential. By use of the chain rule1 the di�erentia-
1The chain rule states that a derivative of nested functions f(a(ε)) w.r.t. the variable ε can be computed by

di�erentiating the outer function f(·) w.r.t. the inner function as argument and multiplying it to the derivative
of the inner function a(ε), i.e., d

dεf(a(ε)) = d
daf(a) · d

dεa(ε).
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tion w.r.t. ε yields in the given case

δF =
∫ d

dεf(q∗(x) + εδq(x), x)
∣∣∣∣
ε=0

dx

=
∫ ∂

∂q
f(q(x), x) · d

dε(εδq(x)) dx

=
∫ ∂

∂q
f(q(x), x)δq(x) dx . (C.4)

At this point, one needs to make use of the fundamental lemma of the calculus of varia-
tions [GFS63, Lemma 1], which states that for every continuous function δq(x) from∫

X
f(x)δq(x) dx = 0 (C.5)

it follows that f(x) = 0 for any x ∈ X .
Since δF = 0 is required for all variations δq(x), it can be deduced that

∂

∂q
f(q(x), x) != 0 (C.6)

must hold at an extremum, i.e., the integral can be dropped for these considerations. Ulti-
mately, the left hand-side of (C.6) yields the desired way of computing the functional deriva-
tive.

Noteworthy, the di�erentiation in (C.6) is carried out as if q(x) were a simple variable
instead of a function. Hence, the classical di�erentiation rules as sum, product, and chain rule,
hold as usual. All in all, the procedure to di�erentiate a functional as in (C.1) w.r.t. q(x) is to
drop the integral and di�erentiate the function(al) inside as if q(x) were a variable (not a func-
tion). In order to get familiar with this type of di�erentiation, the functional derivative of the
di�erential entropy (2.23) and the Kullback–Leibler divergence (2.21) are computed exemplary.

Example C.1:
Recall that the differential entropy is defined as

h(q(x)) = −
∫
q(x) logq(x) dx , (C.7)

i.e., it is f(q(x), x) = −q(x) logq(x). Hence,

∂h
∂q

= − ∂

∂q
q(x) logq(x) = −1− logq(x) . (C.8)

Example C.2:
The Kullback–Leibler divergence is defined as

DKL(q(x) || fx(x)) =
∫
q(x) log q(x)

fx(x) dx , (C.9)

i.e., f(q(x), x) = q(x) log q(x)
fx(x) and, thus,

∂

∂q
DKL(q(x) || fx(x)) = ∂

∂q
(q(x) logq(x)− q(x) log fx(x)) = 1 + logq(x)− log fx(x) . (C.10)
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D. Exponential Families

Exponential families denote a class of distributions which are entirely described by certain
moments. The moments that specify the respective distribution are collected in the so-called
su�cient statistics g(x). One can see the su�cient statistic as measure that needs to be known
in order to fully characterize a given distribution [Fis22, PP02]. To point out the importance
of the su�cient statistics, we derive the form of an exponential family as result of the mini-
mization of the Kullback–Leibler divergence under a moment constraint.

D.1 Projection Property of the Kullback–Leibler Divergence

Throughout the thesis, the minimization of the Kullback–Leibler divergence plays an impor-
tant role. In this section, we show the strong connection between exponential families and the
minimization of the Kullback–Leibler divergence under a moment constraint by considering
a constrained optimization problem and especially its Lagrangian. The task is to approximate
an arbitrary distribution fx(x) by a substitute distribution q(x), while being consistent to the
moments Ex∼fx{g(x)}, i.e., a constrained optimization problem

minimize DKL(q(x) || fx(x))
subject to Ex∼q{g(x)} = Ex∼fx{g(x)} (D.1)∫

q(x) dx = 1

is given. The respective Lagrangian with multipliers θ for the moment constraint and ν for
the normalization constraint reads

L(q(x), θ, ν) = DKL(q(x) || fx(x)) + θ> (Ex∼q{g(x)} − Ex∼fx{g(x)})

+ ν
(∫

q(x) dx− 1
)
. (D.2)

For the functional derivative with respect to q(x), one gets
∂L
∂q

= logq(x) + 1− log fx(x) + θ>g(x) + ν
!= 0 . (D.3)
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Hence, the form of the substitute distribution that minimizes the Kullback-Leibler divergence
under the moment constraint is given by

q(x) = fx(x) exp
(
θ>g(x)− 1− ν

)
. (D.4)

For q(x) to ful�ll the normalization constraint, the constant terms together with the multiplier
ν must form the following equality

Z(θ) def= exp(1 + ν) =
∫
fx(x) exp

(
θ>g(x)

)
dx (D.5)

and is called partition function.
All in all, an exponential family fθ(x) is represented as1

fθ(x) = 1
Z(θ) exp

(
θ>g(x) + k(x)

)
. (D.6)

The elements of the Lagrangian multiplier θ are called natural parameters. The pdf fx(x) is
called base measure or carrier density, log fx(x) is called carrier measure [NG09].

This also means that minimizing the Kullback–Leibler divergence of q(x) with respect to
fx(x) forces the substitute distribution to be a member of an exponential family, if a moment
constraint is given; the family is speci�ed by the respective moments.

Note that the Boltzmann distribution (2.32) is also an exponential family with su�cient
statistics −U(x) and natural parameter β.

D.2 Sufficient Statistics

It has been shown above that the su�cient statistic plays an important role for an exponen-
tial family, as it speci�es the measure that needs to be known for full characterization of the
distribution. Since the thesis mainly works with the exponential family of Gaussian distribu-
tions, the corresponding speci�cations of the su�cient statistics are displayed here. For the
�rst-order moments, we de�ne

gλ(x) = [x1, . . . , xN ]> , i.e., gλj
(xj) = xj , (D.7)

with corresponding natural parameters

λ = [λ1, . . . , λN ]> , (D.8)

while for the second-order moment, either a vector parameter Λ = [Λ1, . . . , ΛN ]> with suf-
�cient statistics

gΛ(x) = −1
2[x2

1, . . . , x
2
N ]> = −1

2diag
(
xx>

)
, i.e., gΛj

(xj) = −1
2x

2
j (D.9)

1Use the de�nition k(x) def= log fx(x) for consistency to the last representation



D.2. Sufficient Statistics 131

Table D.1: Summary of the parameter connections for Gaussian densities with individual and average vari-
ances.

individual variances average variances

g(x) [x>,−1
2diag(xx>)>]> [x>,−1

2x
>x]>

λ Φ−1
x mx mx/σ

2
x

λj mx,j/σ
2
x,j mx,j/σ

2
x

Λj 1/σ2
x,j –

Λ – 1/σ2
x

or, alternatively, a single parameter Λ with corresponding statistics function

gΛ(x) = −1
2

N∑
j=1

x2
j = −1

2x
>x (D.10)

is utilized.
Together, the individual variances case is given by

g(x) = [gλ(x)>, gΛ(x)>]> , with θ = [λ>, Λ>]> (D.11)

and in the average variance case

g(x) = [gλ(x)>, gΛ(x)]> , with θ = [λ>, Λ]> . (D.12)

The representation of Gaussian distributions as exponential families and the connection be-
tween the di�erent parameterizations are explained in the examples below. The results are
summarized in Table D.1.

Example D.1:

Consider the N -dimensional Gaussian random vector x ∼ N (mx, σ
2
xI) with mean mx

and (isotropic) variance σ2
x , i.e., the elements of x are independent but share the same vari-

ance. The probability density function reads

fx(x) = 1√
(2πσ2

x)N
exp

(
− 1

2σ2
x

(x−mx)>(x−mx)
)
. (D.13)

The density can be expressed as exponential family with sufficient statistics g(x) = [x>,−1
2x
>x]>

and natural parameters λ = mx/σ
2
x and Λ = 1

σ2
x

, as well as partition function Z(λ, Λ) =√
(2πσ2

x)N exp
(

1
2Λλ

>λ
)
, since

− 1
2σ2

x
(x−mx)>(x−mx) = m>x x/σ

2
x −

1
2σ2

x

(
m>x mx + x>x

)
= 1
σ2

x
m>x x−

1
2

(
1
σ2

x
m>x

σ2
x
σ2

x
mx + 1

σ2
x
x>x

)

= λ>x− 1
2Λλ

>λ− Λ

2 x
>x . (D.14)
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Using the denomination for exponential families, the pdf becomes

fλ,Λ(x) = 1
Z(λ, Λ) exp

(
λ>x− Λ

2 x
>x

)
. (D.15)

Example D.2:

Here, the N -dimensional Gaussian random vector x ∼ N (mx,Φx) with mean mx and
covariance matrix Φx = diag(σ2

x,j) is considered, i.e., the elements of x are independent
but not identically distributed, since each has an individual variance. The probability density
function reads

fx(x) = 1√
(2π)N detΦx

exp
(
−1

2(x−mx)>Φ−1
x (x−mx)

)
. (D.16)

With sufficient statistics g(x) = [x>,−1
2diag(xx>)>]> and natural parameters λ = Φ−1

x mx
and Λ = diag(Φ−1

x ) = [(σ2
x,1)−1, . . . , (σ2

x,N )−1]>, i.e., λj = mx,j/σ
2
x,j , respectively Λj =

1/σ2
x,j . The partition function reads in this case Z(λ,Λ) =

√
(2π)N detΦx exp

(
1
2m
>
x λ
)
.

The reformulation of the exponent reads in this case

−1
2(x−mx)>Φ−1

x (x−mx) = m>x Φ
−1
x x− 1

2
(
m>x Φ

−1
x mx + x>Φ−1

x x
)

= λ>x− 1
2
(
m>x λ+Λ>diag

(
xx>

))
. (D.17)

D.3 Derivative of the Log-Partition Function

One very helpful property of exponential families is that the di�erentiation of the logarithm
of partition function Z(θ) (usually called log-partition function) with respect to the natural
parameters θ yields the moments (speci�ed by the su�cient statistics) of the exponential fam-
ily [WJ08]

∇ logZ(θ) = ∂

∂θ
log

∫
exp

(
θ>g(x) + k(x)

)
dx

= 1
Z(θ)

∫
g(x) exp

(
θ>g(x) + k(x)

)
dx

=
∫
g(x)fθ(x) dx = Ex∼fθ{g(x)} . (D.18)
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E. Reconstruction Algorithms

On the following pages, all algorithms that are used within the thesis are summarized in
pseudo code notation. The stopping criterion, mentioned in the algorithms below, can, e.g., be
realized by comparing the squared (Euclidean) distance between the estimatesmc andms to
a given threshold ε, i.e.,

‖mc −ms‖2
2 ≤ ε . (E.1)

In the simulations for this thesis, the algorithms always run for a given number of iterations
before the result is evaluated.
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E.1 Gaussian Message Passing (GMP)

This algorithm is close to an algorithm stated in [KMS+12] and results from the �ne-granular
view on the factor graph. Note that the extrinsic is here pre-processed. The notation here
utilizes means and variances for comprehensibility; using natural parameters (scaled means
and inverse variances) where appropriate instead can lead to better computational complexity,
because some (scalar) inversions can be saved.

Algorithm E.1:ms = GMP(y, A, σ2
n)

1 m
\i
s,j = 0 , σ2,\i

s,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M} // initialization
2 m

\j
c,i,j = 0 , σ2,\j

c,i,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M}
3 while stopping criterion not met do
4 Choose j ∈ {1, . . . , N} and i ∈ {1, . . . , M}
5 m

\j
c,i,j = (yi −

∑N
j′=1
j′ 6=j

aij′m
\i
s,j′)/aij // “upward” messages

6 σ
2,\j
c,i,j = (σ2

n +∑N
j′=1
j′ 6=j

σ
2,\i
s,j′ a2

ij′)/a2
ij

7 σ̃
2,\i
s,j =

(∑M
i′=1
i′ 6=i

1/σ2,\j
c,i′,j

)−1
// input to NLMMSE (edge-dependent)

8 x̃
\i
s,j = σ̃

2,\i
s,j

∑M
i′=1
i′ 6=i

m
\j
c,i′,j/σ

2,\j
c,i′,j

9 m
\i
s,j = Exj

{xj | x̃\is,j, σ̃
2,\i
s,j } // “downward” messages

10 σ
2,\i
s,j = Exj

{(xj −m\is,j)2 | x̃\is,j, σ̃
2,\i
s,j }

11 σ̃2
s,j =

(∑M
i=1 1/σ2,\j

c,i′,j

)−1
∀ j ∈ {1, . . . , N}

12 x̃s,j = σ̃2
s,j
∑M
i=1m

\j
c,i′,j/σ

2,\j
c,i′,j ∀ j ∈ {1, . . . , N}

13 ms = Ex{x | x̃s, σ̃
2
s,1, . . . , σ̃

2
s,N} // NLMMSE
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E.2 GMP with Post-processed Extrinsic

In contrast to the previous algorithm, an algorithm that computes the extrinsics via post-
processing is shown, which is computationally much simpler because the estimates do not
have to be calculated per edge (M · N ), but per factor node (M + N ). Here, scaled means
λ
\j
ij and inverse variances Λ\jij are used as upward messages, because they are summed up

in the next step, i.e., a conversion to mean and variance would have to be converted back
immediately.

Algorithm E.2:ms = GMPpostExt(y, A, σ2
n)

1 m
\i
s,j = 0 , σ2,\i

s,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M} // initialization
2 m

\j
c,i,j = 0 , σ2,\j

c,i,j = s/N ∀ j ∈ {1, . . . , N}, i ∈ {1, . . . , M}
3 while stopping criterion not met do
4 for i ∈ {1, . . . , M} do
5 mc,i = m\is + diag(σ2,\i

s,j )ai(yi − a>i m\is )/(σ2
n +∑N

j′=1 σ
2,\i
s,j′ a2

ij′)
6 for j ∈ {1, . . . , N} do
7 σ2

c,i,j = σ
2,\i
s,j (1− σ2,\i

s,j a
2
ij/(σ2

n +∑N
j′=1 σ

2,\i
s,j′ a2

ij′))

8 Λ
\j
ij = 1/σ2

c,i,j − 1/σ2,\i
s,j // “upward” messages

9 λ
\j
ij = mc,i,j/σ

2
c,i,j −m

\i
s,j/σ

2,\i
s,j

10 for j ∈ {1, . . . , N} do
11 σ̃2

s,j =
(∑M

i′=1 Λ
\j
i′j

)−1
// input to NLMMSE (not edge-dependent)

12 x̃s,j = σ̃2
s,j
∑M
i′=1 λ

\j
i′j

13 ms,j = Exj
{xj | x̃s,j, σ̃

2
s,j} // NLMMSE

14 σ2
s,j = Exj

{(xj −ms,j)2 | x̃s,j, σ̃
2
s,j}

15 for i ∈ {1, . . . , M} do
16 σ

2,\i
s,j = (1/σ2

s,j − Λ
\j
ij )−1 // “downward” messages

17 m
\i
s,j = σ

2,\i
s,j (ms,j/σ

2
s,j − λ

\j
ij )

18 ms = [ms,1, . . . , ms,N ]>
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E.3 Approximate Message Passing (AMP)

The AMP algorithm was �rst introduced in [DMM09] and rigorously analyzed in [BM11]. Here,
the “Bayesian version” [DMM10] is displayed, i.e., the case with non-linear MMSE estimator
as so-called denoiser, i.e., for the signal-constrained estimation. The algorithm is stated in
the notation used throughout the thesis. In AMP, the residuum with the so-called Onsager
correction term plays an important role, since it removes the correlations between estimates of
di�erent iterations, which is in the other algorithms done by bias compensation or computing
extrinsic. Consequently, the processing omits the unbiased estimates, i.e., when comparing
to VAMP one may set x̃c = ms and x̃s = mc, as well as σ̃2

c = σ2
s and σ̃2

s = σ2
c before the

estimations.

Algorithm E.3:ms = AMP(y, A, σ2
n)

1 ms = 0, r = y, σ2
s = s/N // initialization

2 while stopping criterion not met do
3 mc = ms +A>r // MF
4 σ2

c = σ2
n + N

M
σ2

s

5 ms = E{x |mc, σ
2
c} // NLMMSE

6 σ2
s = 1

N

∑N
j=1 Ex{(x −ms,j)2 | mc,j, σ

2
c}

7 r = y −Ams + N
M

σ2
s
σ2

c
· r // residuum with Onsager term

8 ms = [ms,1, . . . , ms,N ]>
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E.4 Generalized Approximate Message Passing (GAMP)

When referring to GAMP, what is meant is the algorithm stated in [Ran11], but restricted
to additive Gaussian noise in the measurements. Closer to the notation here, is the same
algorithm stated in [KMS+12, Sec. 3.2] or [MKTZ15, Sec. 2.2], where it is called relaxed Belief
Propagation.

Algorithm E.4:ms = GAMP(y, A, σ2
n)

1 ms = 0, σ2
A,i = s

N
a>i ai i ∈ {1, . . . , M}, r = diag( 1

σ2
n +σ2

A,i
)y // initialization

2 while stopping criterion not met do

3 σ2
c,j =

(∑M
i=1

a2
ij

σ2
n +σ2

A,i

)−1
j ∈ {1, . . . , N}

4 mc = ms + diag(σ2
c,j)A>r // MF with bias compensation

5 for j ∈ {1, . . . , N} do
6 ms,j = Ex{x | mc,j, σ

2
c,j} // NLMMSE

7 σ2
s,j = Ex{(x −ms,j)2 | mc,j, σ

2
c,j}

8 σ2
A,i = a>i diag(σ2

s,j)ai i ∈ {1, . . . , M}
9 r = diag( 1

σ2
n +σ2

A,i
)(y −Ams + diag(σ2

A,i)r) // res. with Onsager term

10 ms = [ms,1, . . . , ms,N ]>

Note that GAMP imitates the LMMSE inverse from (2.10) by scaling the residuum with
diag(1/(σ2

n + σ2
A,i)), which is the inverse of the diagonal of M = AΦxA

> + σ2
nIM . The

scaling with diag(σ2
c,j) in the linear estimation (Line 4) performs the respective individual

bias compensation, since the entries of the end-to-end cascade between x andms +A>r are
here given by

[A>diag
(

1
σ2

n + σ2
A,i

)
A]jj =

M∑
i=1

a2
ij

σ2
n + σ2

A,i

= 1
σ2

c,j
, j ∈ {1, . . . , N} . (E.2)

Note that the usual unbiased variance is given by (4.56)

σ2
c,u,j = σ2

x,j([W ]jj − 1) = σ2
x,j(

1
[K]jj

− 1)

= σ2
x,j

(
1

[ΦxA
>M−1A]jj

− 1
)

= 1
[A>M−1A]jj

− σ2
x,j , (E.3)

i.e., the variance σ2
c,j in the algorithm is an approximation of an unbiased variance, which

should work at least for small variances σ2
x,j . Compared to VAMP, one may interpret the

Onsager correction term in Line 9 as a compensation for the neglection of the o�-diagonal
elements in the LMMSE inverse and the missing of the bias compensation procedure after the
signal-constrained estimation.
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E.5 Vector Approximate Message Passing (VAMP)

The VAMP algorithm was �rst introduced in [RSF17], derived from the expectation-consistent
(EC) approximate inference framework [OW05]. A di�erent approach leading to the same
algorithm is shown in [Spa19, SF17].
Algorithm E.5:ms = VAMP(y, A, σ2

n)
1 σ̃2

c = s/N , x̃c = 0 // initialization
2 while stopping criterion not met do
3 mc = x̃c + (A>A+ σ2

n
σ̃2

c
IN)−1A>(y −Ax̃c) // LMMSE

4 σ2
c = trace(σ2

n(A>A+ σ2
n
σ̃2

c
IN)−1)/N

5 σ̃2
s = ( 1

σ2
c
− 1

σ̃2
c
)−1 // unbiasing

6 x̃s = σ̃2
s (mc

σ2
c
− x̃c

σ̃2
c
)

7 ms = Ex{x | x̃s, σ̃
2
s } // NLMMSE

8 σ2
s = 1

N

∑N
j=1 Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s }

9 σ̃2
c = ( 1

σ2
s
− 1

σ̃2
s
)−1 // unbiasing

10 x̃c = σ̃2
c (ms

σ2
s
− x̃s

σ̃2
s
)

The representation here, shall show the connection to extrinsic calculation as subtraction
of natural parameters. For the implementation, it is better suited to directly compute the
unbiased channel-constrained estimate via

w =
(

1
N

trace
(
A>(AA> + σ2

n
σ̃2

c
IN)−1A

))−1

, (E.4)

x̃s = x̃c + wA>(AA> + σ2
n
σ̃2

c
IM)−1(y −Ax̃c) , (E.5)

σ̃2
s = σ̃2

c (w − 1) , (E.6)

because it involves only the inversion of an M × M matrix, instead of an N × N matrix,
which is bene�cial, since M < N . Furthermore, one can simplify the algorithm by utilizing
the SVD of sensing matrix A for the computation of the inverse. Let the SVD be given by
A = Udiag(si)V >, where U ∈ RM×M is an orthonormal matrix (satisfying U−1 = U>),
s1 ≥ s2 ≥ · · · ≥ sM > 0, and V ∈ RN×M is a matrix with orthonormal column vectors,
which means V >V = IM . Then, the estimate x̃s can be written as

x̃s = x̃c + wV diag(si)
(

diag
(
s2
i

)
+ σ2

n
σ̃2

c
IM

)−1

(U>y − diag(si)V >x̃c) , (E.7)

where w is computed as

w =
 1
N

trace
V diag(si)

(
diag

(
s2
i

)
+ σ2

n
σ̃2

c
IM

)−1

diag(si)V >
−1

. (E.8)

The important simpli�cation lies in the fact, that the matrix inverse is replaced by M scalar
inverses, since the matrix to be inverted is diagonal. For details see [RSF19, Spa19].
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E.6 VAMP with Individual Variances (VAMPind)

This algorithm results from VAMP, when simply replacing the averaged variances by individ-
ual ones without changing anything else in the processing. It was �rst proposed in [FSRS16].
For comparability, the same notation as in the VAMP algorithm above is used. Mathemat-
ically the same but better for the implementation of the LMMSE is the processing used in
Algorithm E.7 below.
Algorithm E.6:ms = VAMPind(y, A, σ2

n)
1 Φ̃c = s

N
IN , x̃c = 0 // initialization

2 while stopping criterion not met do
3 mc = x̃c + (A>A+ σ2

nΦ̃
−1
c )−1A>(y −Ax̃c) // LMMSE

4 Φc = σ2
n(A>A+ σ2

nΦ̃
−1
c )−1

5 for j ∈ {1, . . . , N} do
6 σ2

c,j = [Φc]jj
7 σ̃2

s,j = ( 1
σ2

c,j
− 1

σ̃2
c,j

)−1 // unbiasing

8 x̃s,j = σ̃2
s,j(

mc,j

σ2
c,j
− x̃c,j

σ̃2
c,j

)

9 ms,j = Ex{x | x̃s,j, σ̃
2
s,j} // NLMMSE

10 σ2
s,j = Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s,j}

11 σ̃2
c,j = ( 1

σ2
s,j
− 1

σ̃2
s,j

)−1 , [Φ̃c]jj = σ̃2
c,j // unbiasing

12 x̃c,j = σ̃2
c,j(

ms,j

σ2
s,j
− x̃s,j

σ̃2
s,j

)

13 ms = [ms,1, . . . , ms,N ]>
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E.7 VAMPire

The Algorithm E.6 shows signi�cant drawbacks in the processing of the variances, since it
allows for negative variances. By an estimation-theoretic point of view, this treatment can be
corrected and leads to, what we call VAMPire; for the derivation see Sec. 4.4.2.1. The algorithm
was �rst published in [FSG20].
Algorithm E.7:ms = VAMPire(y, A, σ2

n)
1 Φ̃c = s

N
IN , x̃c = 0 // initialization

2 while stopping criterion not met do
3 K = Φ̃cA

>(AΦ̃cA
> + σ2

nIN)−1A
4 [W ]jj = 1/[K]jj j ∈ {1, . . . , N}
5 x̃s = x̃c +WΦ̃cA

>(AΦ̃cA
> + σ2

nIN)−1(y −Ax̃c) // unbiased LMMSE

6 for j ∈ {1, . . . , N} do
7 σ̃2

s,j = σ̃2
c,j([W ]jj − 1)

8 ms,j = Ex{x | x̃s,j, σ̃
2
s,j} // NLMMSE

9 σ2
s,j = Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s,j}

10 σ2
j = Ex̃s{σ2

s,j} // x̃s = x + ns, ns ∼ N (0, σ̃2
s,j)

11 σ̃2
c,j = σ2

s,j +
(

σ2
j

σ̃2
s,j−σ

2
j
(ms,j − x̃s,j)

)2
// unbiasing

12 x̃c,j = (1/σ2
j − 1/σ̃2

s,j)−1(ms,j

σ2
j
− x̃s,j

σ̃2
s,j

)

13 Φ̃c = diag(σ̃2
c,j), x̃c = [x̃c,1, . . . , x̃c,N ]

14 ms = [ms,1, . . . , ms,N ]>
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E.8 VAMP with Individually Unbiased LMMSE Estimator

The following algorithms result from VAMP by replacing the average bias compensation that
is performed after the channel-constrained estimation with individual unbiasing. They di�er
in the treatment of the variances before the signal-constrained estimation. VAMPia averages
the variances before the signal-constrained estimation; VAMPii uses the individual variances
directly. The algorithms were �rst published in [SF22].
Algorithm E.8:ms = VAMPia(y, A, σ2

n)
1 σ̃2

c = s/N , x̃c = 0 // initialization
2 while stopping criterion not met do
3 K = A>(AA> + σ2

n
σ̃2

c
IM)−1A

4 W = diag(1/[K]jj)
5 x̃s = x̃c +WA>(AA> + σ2

n
σ̃2

c
IM)−1(y −Ax̃c) // unbiased LMMSE

6 σ̃2
s = σ̃2

c ( 1
N

∑N
j=1

1
[K]jj

− 1)

7 ms = Ex{x | x̃s, σ̃
2
s } // NLMMSE

8 σ2
s = 1

N

∑N
j=1 Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s }

9 σ̃2
c = ( 1

σ2
s
− 1

σ̃2
s
)−1 // unbiasing

10 x̃c = σ̃2
c (ms

σ2
s
− x̃s

σ̃2
s
)

Algorithm E.9:ms = VAMPii(y, A, σ2
n)

1 σ̃2
c = s/N , x̃c = 0 // initialization

2 while stopping criterion not met do
3 K = A>(AA> + σ2

n
σ̃2

c
IM)−1A

4 W = diag(1/[K]jj)
5 x̃s = x̃c +WA>(AA> + σ2

n
σ̃2

c
IM)−1(y −Ax̃c) // unbiased LMMSE

6 σ̃2
s,j = σ̃2

c (1/[K]jj − 1) j ∈ {1, . . . , N}

7 ms,j = Ex{x | x̃s,j, σ̃
2
s,j} j ∈ {1, . . . , N} // NLMMSE

8 σ2
s = 1

N

∑N
j=1 Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s,j}

9 σ̃2
s = 1

N

∑N
j=1 σ̃

2
s,j

10 σ̃2
c = ( 1

σ2
s
− 1

σ̃2
s
)−1 // unbiasing

11 x̃c = σ̃2
c (ms

σ2
s
− x̃s

σ̃2
s
)

12 ms = [ms,1, . . . , ms,N ]>



142 E. Reconstruction Algorithms

E.9 VAMPind with Sequentially Processed Variables

The usage of individual variances enables the possibility for a sequential processing of the sig-
nal components to be recovered. The algorithm seqVAMPind is therefore a sequential version
(in terms of processing the variables) of VAMPind. The idea for the algorithm was given by
the algorithm stated in [OW05, Appendix D.], which di�ers from the algorithm here by the
utilization of a binary prior. In [BMPP20, Algorithm 1], the algorithm is stated for Bernoulli-
Gaussian prior.
Algorithm E.10:ms = seqVAMPind(y, A, σ2

n)
1 Λc = [N

s
, . . . , N

s
]>N , λc = 0 // initialization

2 Φc = ( 1
σ2

n
A>A+Λc)−1 = [φc,1, . . . , φc,N ], σ2

c,j = [Φc]jj // LMMSE
3 mc = Φc( 1

σ2
n
A>y + λc)

4 while stopping criterion not met do
5 Choose index set J ⊆ {1, . . . , N} with |J | = T
6 Specify sequence sJ = [j1, j2, . . . , jT ] : ji ∈ J ∀i ∈ {1, . . . , T}
7 for j = sJ do
8 σ̃2

s,j = (1/σ2
c,j − Λc,j)−1 // unbiasing

9 x̃s,j = σ̃2
s,j(mc,j/σ

2
c,j − λc,j)

10 ms,j = Ex{x | x̃s,j, σ̃
2
s,j}, // NLMMSE

11 σ2
s,j = Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s,j}

12 λc,j = ms,j/σ
2
s,j − x̃s,j/σ̃

2
s,j // unbiasing

13 Λc,j = 1/σ2
s,j − 1/σ̃2

s,j

14 mc = mc + 1
σ2

c,j
(ms,j −mc,j)φc,j // rank-one update

15 Φc = Φc + 1
(σ2

c,j)2

(
σ2

s,j − σ2
c,j

)
φc,jφ

>
c,j

16 for j′ = 1, . . . , N do
17 σ2

c,j′ = [Φc]j′j′

18 ms = [ms,1, . . . , ms,N ]>
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E.10 VAMPire with Sequentially Processed Variables

The algorithm shown here improves upon seqVAMPind by employing estimation-theoretic
bias compensation after the signal-constrained estimation, i.e., it is the sequential version of
VAMPire. It was introduced by the author in [SF21].
Algorithm E.11:ms = seqVAMPire(y, A, σ2

n)
1 Λc = [N

s
, . . . , N

s
]>N , λc = 0, // initialization

2 Φc = ( 1
σ2

n
A>A+Λc)−1 = [φc,1, . . . , φc,N ], σ2

c,j = [Φc]jj j ∈ {1, . . . , N} // LMMSE
3 mc = Φc( 1

σ2
n
A>y + λc)

4 while stopping criterion not met do
5 Choose index set J ⊆ {1, . . . , N} with |J | = T
6 Specify sequence sJ = [j1, j2, . . . , jT ] : ji ∈ J ∀i ∈ {1, . . . , T}
7 for j = sJ do
8 σ̃2

s,j = (1/σ2
c,j − Λc,j)−1 // unbiasing

9 x̃s,j = σ̃2
s,j(mc,j/σ

2
c,j − λc,j)

10 x̃s,j = λs,j/Λs,j , σ̃2
s,j = 1/Λs,j

11 ms,j = Ex{x | x̃s,j, σ̃
2
s,j}, // NLMMSE

12 σ2
s,j = Ex{(x −ms,j)2 | x̃s,j, σ̃

2
s,j}

13 σ2
j = Ex̃s{σ2

s,j} // x̃s = x + ns, ns ∼ N (0, σ̃2
s,j)

14 σ̃2
c,j = σ2

s,j + ( σ2
j

σ̃2
s,j−σ

2
j
(ms,j − x̃s,j))2

15 σ̃2
j = (1/σ2

j − 1/σ̃2
s,j)−1

16 ∆Λc,j = 1/σ̃2
c,j − Λc,j

17 Λc,j = 1/σ̃2
c,j

18 ∆λc,j = σ̃2
j/σ̃

2
c,j · (ms,j/σ

2
j − λs,j)− λc,j

19 λc,j = σ̃2
j/σ̃

2
c,j · (ms,j/σ

2
j − λs,j)

20 mc = mc + ∆λc,j−∆Λc,jmc,j

1+∆Λc,jσ2
c,j

φc,j // rank-one update

21 Φc = Φc − ∆Λc,j

1+∆Λc,jσ2
c,j
φc,jφ

>
c,j

22 for j′ = 1, . . . , N do
23 σ2

c,j′ = [Φc]j′j′

24 ms = [ms,1, . . . , ms,N ]>
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E.11 Sequential Processing of Observations

Here, the algorithm based on VAMP, that processes the observations in a sequential way, is
stated. As in VAMP, an average variance is used to represent the reliability of the entire vector.
Note that ai is the ith row of sensing matrixA.

The initialization is stated as in the implementation used for the simulations.
Algorithm E.12:m = seqVAMPobs(y, A, σ2

n)
1 for i = s, 1, . . . , M do
2 x̃(i) = 0, σ2

(i) = 108 // initialization

3 m = 0, σ2 = 5 · 107

4 while stopping criterion not met do
5 Choose i ∈ {s, 1, . . . , M}
6 σ2

\i = (1/σ2 − 1/σ2
(i))−1, x̃\i = σ2

\i(m/σ2 − x̃(i)/σ2
(i))

7 if i ∈ {1, . . . , M} then

8 w = 1
N

trace(ai
(
a>i ai + σ2

n,i

σ2
\i

)−1
a>i )

9 x̃(i) = x̃\i + 1
w
ai

(
a>i ai + σ2

n,i

σ2
\i

)−1
(yi − a>i x̃\i) // unbiased LMMSE

10 σ2
(i) = σ2

\i

(
1
w
− 1

)
11 σ2 =

(
1/σ2

(i) + 1/σ2
\i

)−1

12 m = σ2
(
x̃(i)/σ2

(i) + x̃\i/σ2
\i

)
13 else
14 m = Ex{x | x̃\s, σ2

\s} // NLMMSE

15 σ2 = 1
N

∑N
j=1 Ex{(x −mj)2 | x̃\sj , σ2

\s}
16 σ2

(s) = (1/σ2 − 1/σ2
\s)−1, x̃(s) = σ2

(s)(m/σ2 − x̃\s/σ2
\s)
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F.1 Abbreviations

Acronym Meaning

a.k.a. also known as

AMP approximate message passing

avg. average

GAMP generalized AMP

BCJR Bahl-Cocke-Jelinek-Raviv (algorithm)

BG Bernoulli-Gauss (prior)

BP belief propagation

CDMA code-division multiple access

cf. conferatur (compare)

CoSaMP compressive sampling matching pursuit

CS compressed sensing, also compressive sampling

dB decibel

DT discrete ternary (prior)

EC expectation-consistent (approximate inference framework)

e.g. exempli gratia (for example)

EP expectation propagation

FLOP �oating-point operation

GBP Gaussian belief propagation

GMP Gaussian message passing
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Acronym Meaning

GMPpostExt GMP with post-processed extrinsic

GMPpostExtLin GMPpostExt at linear estimation

i.e. id est (it is)

i.i.d. independent and identically distributed

ind. individual

IHT iterative hard thresholding

ISF iterative soft feedback

IST iterative soft thresholding

LMMSE linear minimum mean-squared error

LDPC low-density parity-check

LLR log-likelihood ratio

LUT look-up table

MAP maximum a-posteriori

MF matched filter

MMSE minimum mean-squared error

MP message passing

OAMP orthogonal approximate message passing

OFDM orthogonal frequency-division multiplexing

OMP orthogonal matching pursuit

PAR peak-to-average power ratio

pdf probablity density function

SER symbol error rate

seqVAMPind sequential VAMPind (sequential variable processing)

seqVAMPire sequential VAMPire (sequential variable processing)

seqVAMPobs sequential VAMP observation processing

SNR signal-to-noise ratio

SVD singular value decomposition

VAMP vector approximate message passing

VAMPia VAMP with individual unbiased LMMSE and average variance

VAMPii VAMP with individual unbiased LMMSE and individual variance

VAMPind VAMP with individual variances

VAMPire VAMP with individual reliabilities enhanced
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Acronym Meaning

w.r.t. with respect to

WSN wireless sensor network

F.2 Mathematical Symbols

Throughout the thesis, scalars are denoted by lower-case letters, e.g., x, vectors by bold ones,
e.g.,x, matrices by upper-case bold, e.g.,X , random variables in sans-serif font, e.g., x, random
vectors in sans-serif bold, e.g., x, and random matrices in upper-case bold font, e.g., X. Vectors
are always de�ned as column vectors.

F.2.1 System Parameters

Symbol Meaning

i row index of sensing matrixA

j column index of sensing matrixA

M observation dimension

N signal dimension

s sparsity, number of non-zero entries

σ2
n noise variance

F.2.2 System Model Variables

Symbol Meaning

A sensing matrix

a>i ith row of sensing matrixA

ãj jth column of sensing matrixA

aij entry in sensing matrixA in ith row and jth column

n noise vector

ni ith element of noise vector n

x signal vector

xj jth element of signal vector x

y observation vector

yi ith element of observation vector y
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F.2.3 Estimation Variables

Symbol Meaning

mc channel-constrained estimate / linear MMSE estimate

mc,j jth element of linear MMSE estimatemc

m◦c updated linear MMSE estimate estimate

m◦c,j jth element of updated linear MMSE estimatem◦c
mc,i linear MMSE estimate based on ith observation yi
mc,i,j jth element of linear MMSE estimatemc,i

ms signal-constrained estimate / non-linear MMSE estimate

ms,j jth element ofms

Φc (conditional) covariance corresponding tomc

Φc,i (conditional) covariance corresponding tomc,i

φc,j jth column of covariance matrix Φc

σ2
c,j jth diagonal entry of covariance matrix Φc

σ2
c average variance corresponding tomc

σ2
s,j jth (conditional) variance corresponding to ms,j

σ2
s average (conditional) variance corresponding toms

mx mean vector of signal x
mx,j jth element ofmx

Φx (co)variance matrix of signal x
σ2

x,j variance corresponding to xj
σ2

x average variance corresponding to x
K end-to-end cascade between x andmc

W scaling matrix for bias compensation

w scaling factor for bias compensation

x̃c input mean vector for channel-constrained estimation

x̃c,j jth element of x̃c

x̃s input mean vector for signal-constrained estimation

x̃s,j jth element of x̃s

Φ̃c input (co)variance matrix corresponding to x̃c,j

σ̃2
c,j jth input variance corresponding to x̃c,j

σ̃2
c average input variance corresponding to x̃c
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Symbol Meaning

σ̃2
s,j jth input variance corresponding to x̃s,j

σ2
s average input variance corresponding to x̃s

F.2.4 Other Variables

Symbol Meaning

const. arbitrary constant

ej jth unit vector with zeros everywhere, except a 1 at jth
position

Im identity matrix of size m×m
0 null vector of respective dimension

F.2.5 Stochastics

Symbol Meaning

fx(x) probability density function of random variable x
fx|y(x) conditional probability density function of random vari-

able x given a realization of random variable y
N (mx, σ

2
x) Gaussian distribution with mean mx and variance σ2

x

N (mx, Φx) multi-dimensional Gaussian distribution with mean mx
and covariance matrix Φx

U([a, b]) uniform distribution over the interval [a, b]
E{·} expectation

E{· | ·} conditional expectation

Ex∼fx{·} expectation of random variable x w.r.t. pdf fx(x)
Pr{·} probability
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F.2.6 Operators

Symbol Meaning

| · | absolute value of a scalar or cardinality of a set

‖·‖p `p-norm

‖·‖F Frobenius norm

[M ]jj jth diagonal entry of matrixM

DKL(·||·) Kullback–Leibler divergence

diag(xj) diagonal matrix with x1, . . . , xN as entries

diag(x) diagonal matrix with entries of vector x as entries

diag(M ) vector with diagonal entries of matrixM

δ(·) Dirac delta function

h(·) di�erential entropy of a distribution

κ(A) condition number of matrixA

L(·) Lagrangian function

LD(·) Lagrangian dual

log(·) logarithmus naturalis (natural logarithm)

MA(xj) arithmetic mean MA(xj) = 1
N

∑N
j=1 xj

MH(xj) harmonic mean MH(xj) = N/
∑N
j=1 1/xj

∇f(x) gradient of f(x): ∇f(x) = [ ∂
∂x1
f(x), . . . , ∂

∂xN
f(x)]>

O(·) Landau notation, bound on growth of a function

π(·) permutation

sgn(·) signum function

trace(M) trace of N ×N matrixM : trace(M) = ∑N
j=1[M ]jj

F.2.7 Exponential Families

Symbol Meaning

g(x) su�cient statistic

θ natural parameters

Z(θ) partition function

k(x) carrier measure
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F.2.8 Representatives

Symbol Meaning

q(x) substitute distribution for posterior fx|y(x)
qc(x) representative for channel factor fy|x(x)
qc,i(x) representative for fyi|x(x)
qs(x) representative for signal factor fx(x)
qs,j(xj) representative for fx(xj), marginal of qs(x)
qv(x) representative for variables x

qv,j(xj) representative for variable xj , marginal of qv(x)



152 F. Notation



153

Bibliography

[Ban13] Paolo Banelli. Non-Linear Transformations of Gaussians and Gaussian-Mixtures
with Implications on Estimation and Information Theory. arXiv preprint
arXiv:1111.5950, 2013.

[BCDH10] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, Chinmay Hegde. Model-
Based Compressive Sensing. IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1982–2001, 2010.

[BD09] Thomas Blumensath, Mike E. Davies. Iterative Hard Thresholding for Com-
pressed Sensing. Applied and Computational Harmonic Analysis, vol. 27, no. 3,
pp. 265–274, 2009.

[Ber20] Ali Bereyhi. Statistical Mechanics of Regularized Least Squares. PhD thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, June 2020.

[Bet35] Hans A. Bethe. Statistical Theory of Superlattices. Proceedings of the Royal Society
of London A, vol. 150, no. 871, pp. 552–575, 1935.

[BG96] Claude Berrou, Alain Glavieux. Near Optimum Error Correcting Coding and
Decoding: Turbo-Codes. IEEE Transactions on Communications, vol. 44, no. 10,
pp. 1261–1271, October 1996.

[BG18] Stefan C. Birgmeier, Norbert Goertz. Optimizing Approximate Message Passing
for Variable Measurement Noise. In European Signal Processing Conference (EU-
SIPCO), pp. 484–488, 2018.

[BG19] Stefan C. Birgmeier, Norbert Goertz. Exploiting General Multi-Dimensional Pri-
ors in Compressed-Sensing Reconstruction. In 12th International ITG Conference
on Systems, Communications and Coding (SCC), pp. 1–6, 2019.

[BGT93] Claude Berrou, Alain Glavieux, Punya Thitimajshima. Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes. In Proceedings IEEE International
Conference on Communications (ICC), pp. 1064–1070, Geneva, Switzerland, May
1993.



154 BIBLIOGRAPHY

[Bir19] Stefan Birgmeier. Message Passing For Multidimensional Inverse Problems. PhD
thesis, TU Wien, 2019.

[BM11] Mohsen Bayati, Andrea Montanari. The Dynamics of Message Passing on Dense
Graphs, with Applications to Compressed Sensing. IEEE Transactions on Informa-
tion Theory, vol. 57, no. 2, pp. 764–785, 2011.

[BMPP20] Alfredo Braunstein, Anna Paola Muntoni, Andrea Pagnani, Mirko Pieropan. Com-
pressed Sensing Reconstruction using Expectation Propagation. Journal of Physics
A: Mathematical and Theoretical, vol. 53, no. 18, 2020.

[Bro86] Lawrence D. Brown. Fundamentals of Statistical Exponential Families: with Appli-
cations in Statistical Decision Theory. Institute of Mathematical Statistics, 1986.

[BV04] Stephen P. Boyd, Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[CDS01] Scott Shaobing Chen, David L. Donoho, Michael A. Saunders. Atomic Decompo-
sition by Basis Pursuit. SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[ÇLO22] Burak Çakmak, Yue M. Lu, Manfred Opper. Analysis of Random Sequen-
tial Message Passing Algorithms for Approximate Inference. arXiv preprint
arXiv:2202.08198, 2022.

[CREK05] Shane F. Cotter, Bhaskar D. Rao, Kjersti Engan, Kenneth Kreutz-Delgado. Sparse
Solutions to Linear Inverse Problems With Multiple Measurement Vectors. IEEE
Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005.

[CRT06] Emmanuel J. Candès, Justin Romberg, Terence Tao. Robust Uncertainty Princi-
ples: Exact Signal Reconstruction from Highly Incomplete Frequency Informa-
tion. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

[CSD+17] Jun Won Choi, Byonghyo Shim, Yacong Ding, Bhaskar Rao, Dong In Kim. Com-
pressed Sensing for Wireless Communications: Useful Tips and Tricks. IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 3, pp. 1527–1550, 2017.

[CZK14] Francesco Caltagirone, Lenka Zdeborová, Florent Krzakala. On Convergence of
Approximate Message Passing. In Proceedings IEEE International Symposium on
Information Theory (ISIT), pp. 1812–1816. IEEE, 2014.

[DB18] Guillaume Dehaene, Simon Barthelmé. Expectation Propagation in the Large
Data Limit. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), vol. 80, no. 1, pp. 199–217, 2018.

[DDD04] Ingrid Daubechies, Michel Defrise, Christine De Mol. An Iterative Thresholding
Algorithm for Linear Inverse Problems with a Sparsity Constraint. Communica-
tions on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.



BIBLIOGRAPHY 155

[DJB+95] Catherine Douillard, Michel Jézéquel, Claude Berrou, Annie Picart, Pierre Di-
dier, Alain Glavieux. Iterative Correction of Intersymbol Interference: Turbo-
Equalization. European Transactions on Telecommunications, vol. 6, no. 5, pp. 507–
511, 1995.

[DMM09] David L. Donoho, Arian Maleki, Andrea Montanari. Message-Passing Algorithms
for Compressed Sensing. Proceedings of the National Academy of Sciences, vol. 106,
no. 45, pp. 18914–18919, 2009.

[DMM10] David L. Donoho, Arian Maleki, Andrea Montanari. Message Passing Algorithms
for Compressed Sensing: I. Motivation and Construction. In Proceedings IEEE
Information Theory Workshop (ITW), pp. 1–5, 2010.

[Don06] David L. Donoho. Compressed Sensing. IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[DT97] G. B. Dantzig, M. N. Thapa. Linear Programming 1: Introduction. Springer Series
in Operations Research. Springer, 1997.

[EK12] Yonina C. Eldar, Gitta Kutyniok. Compressed Sensing: Theory and Applications.
Cambridge University Press, 2012.

[Fis22] Ronald A. Fisher. On the Mathematical Foundations of Theoretical Statistics.
Philosophical Transactions of the Royal Society of London. Series A, containing pa-
pers of a mathematical or physical character, vol. 222, no. 594-604, pp. 309–368,
1922.

[Fis02] Robert F. H. Fischer. Precoding and Signal Shaping for Digital Transmission. John
Wiley & Sons, 2002.

[Fis16] Robert F. H. Fischer. Notes on MMSE Estimation and Bias Compensation. Un-
published Manuscript, 2016.

[Fis18] Robert F. H. Fischer. Signal Theory. Lecture Notes, Ulm University, 2018.

[For01] G. David Forney. Codes on Graphs: Normal Realizations. IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 520–548, 2001.

[For03] G. David Forney. On the Role of MMSE Estimation in Approaching the
Information-Theoretic Limits of Linear Gaussian Channels: Shannon meets
Wiener. In Allerton Conference on Communication, Control, and Computing,
pp. 430–439, 2003.

[For18] G. David Forney. Codes on graphs: Models for elementary algebraic topology
and statistical physics. IEEE Transactions on Information Theory, vol. 64, no. 12,
pp. 7465–7487, 2018.



156 BIBLIOGRAPHY

[FS07] Robert F.H. Fischer, Cristian Siegl. In�ated Lattice Precoding, Bias Compensation,
and the Uplink/Downlink Duality: The Connection. IEEE Communications Letters,
vol. 11, no. 2, pp. 185–187, 2007.

[FS22] Robert F. H. Fischer, Carmen Sippel. Unbiasing in Iterative Reconstruction Al-
gorithms for Discrete Compressed Sensing. In Gitta Kutyniok, Holger Rauhut,
Robert J. Kunsch, editors, Compressed Sensing in Information Processing, Applied
and Numerical Harmonic Analysis, chapter 6. Birkhäuser, 2022.

[FSG20] Robert F. H. Fischer, Carmen Sippel, Norbert Goertz. VAMP with Vector-Valued
Diagonalization. In Proceedings IEEE International Conference on Acoustics, Speech
and Signal Processing, 2020.

[FSRS16] Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter.
Expectation Consistent Approximate Inference: Generalizations and Conver-
gence. In Proceedings IEEE International Symposium on Information Theory (ISIT),
pp. 190–194, 2016.

[Gal62] Robert Gallager. Low-Density Parity-Check Codes. IRE Transactions on Informa-
tion Theory, vol. 8, no. 1, pp. 21–28, 1962.

[GFS63] Izrail Moiseevitch Gelfand, Sergej Vasilevitch Fomin, Richard A. Silverman. Cal-
culus of Variations. Prentice-Hall, Inc., 1963.

[GH11] Qinghua Guo, Defeng David Huang. A Concise Representation for the Soft-In
Soft-Out LMMSE Detector. IEEE Communications Letters, vol. 15, no. 5, pp. 566–
568, 2011.

[Gra14] Knut Graichen. Methoden der Optimierung und optimalen Steuerung. Vor-
lesungsskript (in German), Universität Ulm, 2014.

[GSV05] Dongning Guo, Shlomo Shamai, Sergio Verdú. Mutual Information and Minimum
Mean-Square Error in Gaussian Channels. IEEE Transactions on Information The-
ory, vol. 51, no. 4, pp. 1261–1282, 2005.

[GV96] Gene H. Golub, Charles F. Van Loan. Matrix Computations. John Hopkins Uni-
versity Press, 3 edition, 1996.

[GW06] Dongning Guo, Chih-Chun Wang. Asymptotic Mean-Square Optimality of Belief
Propagation for Sparse Linear Systems. In Proceedings IEEE Information Theory
Workshop (ITW), pp. 194–198. IEEE, 2006.

[GWSV11] Dongning Guo, Yihong Wu, Shlomo Shamai Shitz, Sergio Verdú. Estimation in
Gaussian Noise: Properties of the Minimum Mean-Square Error. IEEE Transac-
tions on Information Theory, vol. 57, no. 4, pp. 2371–2385, 2011.



BIBLIOGRAPHY 157

[HF14] Johannes B. Huber, Robert F.H. Fischer. Informationstheorie und deren Anwen-
dungen zur Nachrichtenübertragung. Vorlesungsskript (in German), Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2014.

[HJ09] Roger A. Horn, Charles R. Johnson. Matrix Analysis. Cambridge University Press,
2009.

[HOP96] Joachim Hagenauer, Elke O�er, Lutz Papke. Iterative Decoding of Binary Block
and Convolutional Codes. IEEE Transactions on Information Theory, vol. 42, no. 2,
pp. 429–445, 1996.

[HOW+05] Tom Heskes, Manfred Opper, Wim Wiegerinck, Ole Winther, Onno Zoeter. Ap-
proximate Inference Techniques with Expectation Constraints. Journal of Statis-
tical Mechanics: Theory and Experiment, vol. 2005, no. 11, 2005.

[HTP12] Jinping Hao, Filippo Tosato, Robert J. Piechocki. Sequential Compressive Sensing
in Wireless Sensor Networks. In IEEE 75th Vehicular Technology Conference (VTC
Spring), pp. 1–5, 2012.

[Jay57] Edwin T. Jaynes. Information Theory and Statistical Mechanics. Physical Review,
vol. 106, no. 4, pp. 620–630, 1957.

[Jay82] Edwin T. Jaynes. On the Rationale of Maximum-Entropy Methods. Proceedings
of the IEEE, vol. 70, no. 9, pp. 939–952, 1982.

[Kay93] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, Inc., 1993.

[KF98] Frank R. Kschischang, Brendan J. Frey. Iterative Decoding of Compound Codes
by Probability Propagation in Graphical Models. IEEE Journal on Selected Areas
in Communications, vol. 16, no. 2, pp. 219–230, 1998.

[KFL01] Frank R. Kschischang, Brendan J. Frey, H.-A. Loeliger. Factor Graphs and the
Sum-Product Algorithm. IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 498–519, 2001.

[KL51] Solomon Kullback, Richard A. Leibler. On Information and Su�ciency. The An-
nals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, March 1951.

[KMS+12] Florent Krzakala, Marc Mézard, Francois Sausset, Yifan Sun, Lenka Zdeborová.
Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Dia-
grams, and Threshold Achieving Matrices. Journal of StatisticalMechanics: Theory
and Experiment, vol. 2012, no. 08, 2012.

[KPN+14] Kee-Hoon Kim, Hosung Park, Jong-Seon No, Habong Chung, Dong-Joon Shin.
Clipping Noise Cancelation for OFDM Systems Using Reliable Observations



158 BIBLIOGRAPHY

Based on Compressed Sensing. IEEE Transactions on Broadcasting, vol. 61, no. 1,
pp. 111–118, 2014.

[Lan09] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, volume 1.
B. G. Teubner, 1909.

[LCJ15] Markus Leinonen, Marian Codreanu, Markku Juntti. Sequential Compressed
Sensing With Progressive Signal Reconstruction in Wireless Sensor Networks.
IEEE Transactions on Wireless Communications, vol. 14, no. 3, pp. 1622–1635, 2015.

[LDH+07] Hans-Andrea Loeliger, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, Frank R.
Kschischang. The Factor Graph Approach to Model-Based Signal Processing. Pro-
ceedings of the IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[LHD20] Ning Li, Mengjia Huang, Zhongliang Deng. Elimination of Noise Distortion for
OFDM Systems by Compressed Sensing Based on Distance Metric. IEEE Access,
vol. 8, pp. 223700–223707, 2020.

[LHL+19] Xinghui Liu, Lingna Huy, Yue Liz, Lianghui Ding, Feng Yang, Cheng Zhi. Modi�ed
Peak Clipping and Compressed Sensing Recovery Scheme in OFDM System. In
2019 IEEE International Symposium on Broadband Multimedia Systems and Broad-
casting (BMSB), pp. 1–5. IEEE, 2019.

[LHLT15] Yingzhen Li, José Miguel Hernández-Lobato, Richard E. Turner. Stochastic Expec-
tation Propagation. Advances in Neural Information Processing Systems, vol. 28,
2015.

[Loe04] H.-A. Loeliger. An Introduction to Factor Graphs. IEEE Signal Processing Maga-
zine, vol. 21, no. 1, pp. 28–41, 2004.

[Mal11] Arian Maleki. Approximate Message Passing Algorithms for Compressed Sensing.
PhD thesis, Stanford University, September 2011.

[MG98] Michael L. Moher, T. Aaron Gulliver. Cross-Entropy and Iterative Decoding. IEEE
Transactions on Information Theory, vol. 44, no. 7, pp. 3097–3104, 1998.

[Min01] Thomas Peter Minka. Expectation Propagation for Approximate Bayesian Infer-
ence. In Proceedings UAI-2001, pp. 362–369, 2001.

[Min05] Thomas Peter Minka. Divergence Measures and Message Passing. Technical
report, Microsoft Research, 2005.

[MKTZ15] Andre Manoel, Florent Krzakala, Eric Tramel, Lenka Zdeborovà. Swept Approx-
imate Message Passing for Sparse Estimation. In International Conference on Ma-
chine Learning, pp. 1123–1132, 2015.



BIBLIOGRAPHY 159

[MMC98] Robert J. McEliece, David J. C. MacKay, Jung-Fu Cheng. Turbo Decoding as an
Instance of Pearl’s "Belief Propagation" Algorithm. IEEE Journal on Selected Areas
in Communications, vol. 16, no. 2, pp. 140–152, 1998.

[Moh97a] Michael L. Moher. Cross-Entropy and Iterative Detection. PhD thesis, Carleton
University, 1997.

[Moh97b] Michael L. Moher. Turbo-based Multiuser Detection. In Proceedings IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 195–195, 1997.

[MP17] Junjie Ma, Li Ping. Orthogonal AMP. IEEE Access, vol. 5, pp. 2020–2033, 2017.

[MSW10] Dmitry M. Malioutov, Sujay R. Sanghavi, Alan S. Willsky. Sequential Compressed
Sensing. IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 435–
444, 2010.

[NG09] Frank Nielsen, Vincent Garcia. Statistical Exponential Families: A Digest with
Flash Cards. arXiv preprint arXiv:0911.4863, 2009.

[NT09] Deanna Needell, Joel A. Tropp. CoSaMP: Iterative Signal Recovery from Incom-
plete and Inaccurate Samples. Applied and Computational Harmonic Analysis,
vol. 26, no. 3, pp. 301–321, 2009.

[OW05] Manfred Opper, Ole Winther. Expectation Consistent Approximate Inference.
Journal of Machine Learning Research, vol. 6, pp. 2177–2204, December 2005.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, INC., 1988.

[PP02] Athanasios Papoulis, S. Unnikrishna Pillai. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, 2002.

[PRK93] Yagyensh Chandra Pati, Ramin Rezaiifar, Perinkulam Sambamurthy Krish-
naprasad. Orthogonal Matching Pursuit: Recursive Function Approximation with
Applications to Wavelet Decomposition. In Proceedings of 27th Asilomar Confer-
ence on Signals, Systems and Computers, pp. 40–44, 1993.

[Pro00] John G. Proakis. Digital Communications. McGraw-Hill, New York, NY, USA, 4th
edition, 2000.

[PSC+15] Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet,
Jean-Yves Tourneret, Alfred O. Hero, Steve McLaughlin. A Survey of Stochas-
tic Simulation and Optimization Methods in Signal Processing. IEEE Journal of
Selected Topics in Signal Processing, vol. 10, no. 2, pp. 224–241, 2015.

[Ran11] Sundeep Rangan. Generalized Approximate Message Passing for Estimation With
Random Linear Mixing. In Proceedings IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 2168–2172, 2011.



160 BIBLIOGRAPHY

[RFSK16] Sundeep Rangan, Alyson K. Fletcher, Philip Schniter, Ulugbek S. Kamilov. In-
ference for Generalized Linear Models via Alternating Directions and Bethe Free
Energy Minimization. IEEE Transactions on Information Theory, vol. 63, no. 1,
pp. 676–697, 2016.

[RSF17] Sundeep Rangan, Philip Schniter, Alyson K. Fletcher. Vector Approximate Mes-
sage Passing. In Proceedings IEEE International Symposium on Information Theory
(ISIT), pp. 1588–1592, 2017.

[RSF19] Sundeep Rangan, Philip Schniter, Alyson K. Fletcher. Vector Approximate Mes-
sage Passing. IEEE Transactions on Information Theory, vol. 65, no. 10, pp. 6664–
6684, 2019.

[SBW+05] Shriram Sarvotham, Dror Baron, Michael Wakin, Marco F. Duarte, Richard G.
Baraniuk. Distributed Compressed Sensing of Jointly Sparse Signals. In Asilomar
Conference on Signals, Systems, and Computers, pp. 1537–1541, 2005.

[SD11] Henning F. Schepker, Armin Dekorsy. Sparse Multi-User Detection for CDMA
Transmission Using Greedy Algorithms. In 8th International Symposium onWire-
less Communication Systems, pp. 291–295, 2011.

[SF14] Susanne Sparrer, Robert F. H. Fischer. Adapting Compressed Sensing Algorithms
to Discrete Sparse Signals. In 18th International ITG Workshop on Smart Antennas
(WSA), 2014.

[SF16] Susanne Sparrer, Robert F. H. Fischer. Enhanced Iterative Hard Thresholding for
the Estimation of Discrete-Valued Sparse Signals. In European Signal Processing
Conference (EUSIPCO), pp. 71–75, 2016.

[SF17] Susanne Sparrer, Robert F. H. Fischer. Unveiling Bias Compensation in Turbo-
Based Algorithms for (Discrete) Compressed Sensing. In European Signal Process-
ing Conference (EUSIPCO), pp. 2091–2095, 2017.

[SF18] Susanne Sparrer, Robert F. H. Fischer. Bias Compensation in Iterative Soft-
Feedback Algorithms With Application to (Discrete) Compressed Sensing. In IEEE
Statistical Signal Processing Workshop (SSP), pp. 35–39, 2018.

[SF21] Carmen Sippel, Robert F. H. Fischer. VAMP with Individual Variances and Sequen-
tial Processing for Compressed Sensing. In European Signal Processing Conference
(EUSIPCO), Dublin, Ireland, August 2021.

[SF22] Carmen Sippel, Robert F. H. Fischer. Variants of VAMP for Signal Recovery in
Wireless Sensor Networks. In IEEE International Mediterranean Conference on
Communications and Networking (MeditCom), Athens, Greece, September 2022.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, vol. 27, pp. 379–423, July 1948.



BIBLIOGRAPHY 161

[SJ80] John E. Shore, Rodney W. Johnson. Axiomatic Derivation of the Principle of Max-
imum Entropy and the principle of Minimum Cross-Entropy. IEEE Transactions
on Information Theory, vol. 26, no. 1, pp. 26–37, 1980.

[SJ81] John Shore, Rodney Johnson. Properties of Cross-Entropy Minimization. IEEE
Transactions on Information Theory, vol. 27, no. 4, pp. 472–482, 1981.

[SN08] Matthias W. Seeger, Hannes Nickisch. Compressed Sensing and Bayesian Exper-
imental Design. In Proceedings of the 25th International Conference on Machine
Learning, pp. 912–919, 2008.

[SN11] Matthias Seeger, Hannes Nickisch. Fast Convergent Algorithms for Expectation
Propagation Approximate Bayesian Inference. In Proceedings of the Fourteenth
International Conference on Arti�cial Intelligence and Statistics, pp. 652–660, 2011.

[Spa19] Susanne Sparrer. Algorithms for (Discrete) Compressed Sensing—A Communica-
tions Engineering Perspective. PhD thesis, Ulm University, September 2019.

[SSF13] Susanne Sparrer, Andreas Schenk, Robert F.H. Fischer. Communication over Im-
pulsive Noise Channels: Channel Coding vs. Compressed Sensing. In 9th Inter-
national ITG Conference on Systems, Communication and Coding (SCC), 2013.

[Tan81] R. Tanner. A Recursive Approach to Low Complexity Codes. IEEE Transactions
on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[Tib96] Robert Tibshirani. Regression Shrinkage and Selection via the LASSO. Journal of
the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[TS11] Michael Tüchler, Andrew C. Singer. Turbo Equalization: An Overview. IEEE
Transactions on Information Theory, vol. 57, no. 2, pp. 920–952, 2011.

[Ver10] Sergio Verdú. Mismatched estimation and relative entropy. IEEE Transactions on
Information Theory, vol. 56, no. 8, pp. 3712–3720, 2010.

[VS13] Jeremy P. Vila, Philip Schniter. Expectation-Maximization Gaussian-Mixture Ap-
proximate Message Passing. IEEE Transactions on Signal Processing, vol. 61, no. 19,
pp. 4658–4672, 2013.

[Wib96] Niclas Wiberg. Codes and Decoding on General Graphs. PhD thesis, Department
of Electrical Engineering, Linköping University Sweden, 1996.

[WJ08] Martin J. Wainwright, Michael I. Jordan. Graphical Models, Exponential Families,
and Variational Inference. Foundations and Trends R© in Machine Learning, vol. 1,
no. 1–2, pp. 1–305, 2008.

[Wu12] Nailong Wu. The Maximum Entropy Method, volume 32. Springer Verlag, 2012.



162 BIBLIOGRAPHY

[WV12] Yihong Wu, Sergio Verdú. Optimal Phase Transitions in Compressed Sensing.
IEEE Transactions on Information Theory, vol. 58, no. 10, pp. 6241–6263, 2012.

[XDS13] Tong Xue, Xiaodai Dong, Yi Shi. Multiple Access and Data Reconstruction in
Wireless Sensor Networks Based on Compressed Sensing. IEEE Wireless Commu-
nications (Magazine), vol. 12, no. 7, pp. 3399–3411, 2013.

[YFW05] Jonathan S. Yedidia, William T. Freeman, Yair Weiss. Constructing Free-Energy
Approximations and Generalized Belief Propagation Algorithms. IEEE Transac-
tions on Information Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[YMG08] Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal. Wireless Sensor Network
Survey. Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.



163

List of Scientific Publications and
Presentations

[1] Jonathan Bechter, Carmen Sippel, Christian Waldschmidt. Bats-inspired Frequency Hop-
ping for Mitigation of Interference between Automotive Radars. In IEEE MTT-S Inter-
national Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, CA, USA,
May 2016.

[2] Carmen Sippel, Sven Puchinger, Robert F.H. Fischer. Di�erential Linear Network Coding
in Slowly-Varying Networks. Presentation at 33. Sitzung der ITG-Fachgruppe "Angewandte
Informationstheorie", Codes, Lattices, and Decoding, Ulm, Germany, March 2019.

[3] Carmen Sippel, Sven Puchinger, Robert F.H. Fischer. Di�erential Linear Network Coding
in Slowly-Varying Networks. Poster at the 19th Joint Workshop on Communications and
Coding (JWCC), Kühtai, Austria, March 2019.

[4] Carmen Sippel, Sven Puchinger, Robert F.H. Fischer. Di�erential Linear Network Coding
in Slowly-Varying Networks. Presentation at Stuttgart Workshop on Coding and Commu-
nications (SWCC), Stuttgart, Germany, July 2019.

[5] Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert. Reed–Solomon Codes over
Fields of Characteristic Zero. In Proceedings of the IEEE International Symposium on In-
formation Theory (ISIT), pp. 1537–1541, July 2019.

[6] Carmen Sippel, Robert F.H. Fischer. On the Invariance of Recovery Algorithms for Com-
pressed Sensing based on Expectation-Consistent Approximate Inference. In Proceedings
of the 24th International ITG Workshop on Smart Antennas (WSA), Hamburg, Germany,
February 2020.

[7] Robert F.H. Fischer, Carmen Sippel, Norbert Goertz. VAMP with Vector-Valued Diagonal-
ization. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), Barcelona, Spain, May 2020.

[8] Carmen Sippel, Robert F.H. Fischer. VAMP with Individual Variances and Sequential Pro-
cessing for Compressed Sensing. In Proceedings of the 29th European Signal Processing
Conference (EUSIPCO), pp. 1935–1939, Dublin, Ireland, August 2021.



164 List of Scientific Publications and Presentations

[9] Carmen Sippel, Robert F.H. Fischer. Stabilization Techniques for Iterative Algorithms in
Compressed Sensing. Online available at arxiv, https://arxiv.org/abs/2109.14917,
2021.

[10] Carmen Sippel, Robert F.H. Fischer. Variants of VAMP for Signal Recovery in Wireless
Sensor Networks. In Proceedings of the IEEE International Mediterranean Conference on
Communications and Networking (MeditCom), Athens, Greece, September 2022.

[11] Carmen Sippel, Robert F.H. Fischer. Comparison of Parallel and Sequential Algorithms
for Compressed Sensing. In Proceedings of the 7th International Conference on Frontiers of
Signal Processing (ICFSP), Paris, France, September 2022.

[12] Carmen Sippel, Robert F.H. Fischer. Evaluation of the Fractional Approach for Iterative
Algorithms in Compressed Sensing. In Proceedings of the International ITG 26thWorkshop
on Smart Antennas (WSA) and 13th Conference on Systems, Communications, and Coding
(SCC), Braunschweig, Germany, February 2023.

[13] Elena Sterk, Carmen Sippel, Robert F.H. Fischer. Comparison of Damping Approaches for
AMP. In Proceedings of the International ITG 26th Workshop on Smart Antennas (WSA) and
13th Conference on Systems, Communications, and Coding (SCC), Braunschweig, Germany,
February 2023.

https://arxiv.org/abs/2109.14917


165

Curriculum Vitæ

For data protection reasons, the curriculum vitæ has been removed from the online version.



ISBN: 978-3-948303-38-9


	Abstract
	Introduction and Outline
	Compressed Sensing
	System Model
	Estimation Criteria
	Minimum Mean-Squared Error Estimation
	LMMSE Estimator
	LMMSE Estimator for Scalar Observation
	Individual Non-Linear MMSE Estimator

	Approximate Inference
	Moment Constraint
	Entropy Maximization
	Constrained Optimization
	Specifying the Moment Constraint
	Connection to Statistical Mechanics


	Structure of the Compressed Sensing Problem
	Factor Graph Representations
	Representatives for the Factors


	Inference on Factor Graphs
	Structure of the Factor Graph
	Factorization of the Substitute Distribution
	The Moment-Matching Constraint

	Constrained Optimization
	Cost Function for Compressed Sensing
	Stationary Points of the Lagrangian

	Algorithms
	Expectations
	Projection to Exponential Family
	Processing for Stationarity
	Message Passing
	Related Algorithms


	Turbo-type Inference
	Structure of the Factor Graph
	Factorization of the Substitute Distribution
	The Moment-Matching Constraint

	Constrained Optimization
	Cost Function for Compressed Sensing
	Stationary Points of the Lagrangian
	The Lagrange Dual Function

	Turbo-Type Algorithms—Optimization-Based Derivation
	Average Variances—VAMP
	Individual Variances

	Estimation-Theoretic Bias Compensation
	Channel-Constrained Estimation
	Average Unbiasing
	Individual Unbiasing

	Signal-Constrained Estimation
	Individual Unbiasing
	Average Unbiasing


	Turbo-Type Algorithms—Estimation-Theoretic Adaption
	Individual Variances and Estimation-Theoretic Bias Compensation
	VAMP with Individually Unbiased LMMSE Estimate

	Block Diagrams of the Turbo Algorithms
	VAMP
	VAMPind
	VAMPire
	VAMPia
	VAMPii


	Sequential Inference
	Sequential Processing of Variables
	Structure of the Factor Graph
	Factorization of the Substitute Distribution
	The Moment-Matching Constraint

	Constrained Optimization
	Cost Function for Compressed Sensing
	Stationary Points of the Lagrangian
	Connection to Expectation Propagation

	Expectations and Rank-One Update
	Sequential Version of VAMPind
	Sequential Version with Estimation-Theoretic Bias Compensation

	Sequential Processing of Observations
	Structure of the Factor Graph
	Factorization of the Substitute Distribution
	The Moment-Matching Constraint

	Constrained Optimization
	Cost Function for Compressed Sensing
	Stationary Points of the Lagrangian

	Algorithm
	Expectations
	Projection to Exponential Family
	Extrinsic
	Procedure



	Numerical Results
	Overview over Recovery Algorithms
	Simulation Setup
	I.i.d. Gaussian Sensing Matrix
	Model for Wireless Sensor Networks
	Schedules for the Sequential Processing of Variables
	Variable Noise Scenario

	Conclusions and Future Work
	Conclusions
	Future Work

	Vector Spaces
	Vectors
	Matrices
	Coherence
	Condition Number


	Convex Optimization
	Functional Derivatives
	Exponential Families
	Projection Property of the Kullback–Leibler Divergence
	Sufficient Statistics
	Derivative of the Log-Partition Function

	Reconstruction Algorithms
	Gaussian Message Passing (GMP)
	GMP with Post-processed Extrinsic
	Approximate Message Passing (AMP)
	Generalized Approximate Message Passing (GAMP)
	Vector Approximate Message Passing (VAMP)
	VAMP with Individual Variances (VAMPind)
	VAMPire
	VAMP with Individually Unbiased LMMSE Estimator
	VAMPind with Sequentially Processed Variables
	VAMPire with Sequentially Processed Variables
	Sequential Processing of Observations

	Notation
	Abbreviations
	Mathematical Symbols
	System Parameters
	System Model Variables
	Estimation Variables
	Other Variables
	Stochastics
	Operators
	Exponential Families
	Representatives


	Bibliography
	List of Scientific Publications and Presentations
	Curriculum Vitæ

