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Abstract

The current wave of artificial intelligence and technological advancements has brought
intelligent assistants into our daily lives. Such personal assistants help us with simple
tasks, like providing news or weather information, smart home control, or entertainment
using natural language. Despite their appraisal as intelligent entities, personal or conver-
sational assistants are in general still stuck in the role of butlers and reactive bystanders
that act upon commands.

For enhancing the cooperation capability of these systems and unfolding their techni-
cal competencies to the fullest, the integration of proactivity has become an emerging
research topic in this area. Proactivity implies that technical systems, such as conversa-
tional assistants, possess the ability to detect a user’s need for assistance and to initiate
appropriate actions accordingly. Even though related work shows the potential benefits of
proactive behaviour with regard to human-machine cooperation, the acceptance of proac-
tive technology is still low due to an expectation gap between system behaviour and user
requirements.

For closing this gap, we propose to equip proactive systems with proactive dialogue
management in order to include the user in the system’s decision processes and nego-
tiate appropriate actions. However, how to computationally model timely and relevant
proactive dialogue without giving the user the perception of being controlled or invading
their privacy is an open question. Inappropriate proactive behaviour may have devas-
tating effects on the cooperation and lead to diminished trust in the system which may
compromise the acceptance of this technology. Therefore, this work aims at providing
accepted and trustworthy proactive assistance by developing socially and task-effective
dialogue models with the overall goal of improving the cooperation between humans and
machines. For this, three major contributions are provided.

As the first contribution, we present a proactive dialogue model for human-machine
cooperation. This concept builds upon two exploratory pilot studies observing the user
perception of state-of-the-art approaches for inferring user and system requirements of
proactive dialogue for application in cooperative contexts. Based on the outcome of the
initial studies we conduct an requirement analysis and provide a taxonomy of proactive
dialogue for cooperation. Here, we introduce proactive dialogue act types which represent
different autonomy levels of proactive dialogue behaviour. Proactive dialogue in general
is considered as the initiation of supporting dialogues for facilitating task execution. Be-
sides, we propose a cognitive system architecture with the goal of implementing proactive
dialogue in a technical system using methods of artificial intelligence and human-computer
interaction.

As a second contribution, we present the design and evaluation of four user-centred
proactive dialogue strategies based on the developed proactive dialogue model. Here, the
goal is to provide an understanding of the effects of proactive dialogue design on the
cooperation not only from a usability point of view but also from a social, user-centred
perspective including a system’s trustworthiness. For this, we develop and implement
several conversational assistance prototypes, both low- and high-fidelity, that are capa-
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ble of proactive dialogue. In laboratory and more realistic user studies, we shed light
on the effects of proactive dialogue on a system’s usability as well as human-computer
trust dependent on task context, user characteristics, and state. These experiments al-
low to synthesise guidelines for the implementation of user-centered proactive dialogue
management into cooperative conversational assistants.

As a third and last contribution, we fuse the gained understanding of the social im-
pact of proactive dialogue for implementing user-centred proactive dialogue models with
the goal of achieving trusted and task-effective conversational assistants for improving
cooperation. In this regard, we provide findings considering the user expectations of user-
adaptive proactive dialogue and the feasibility of utilising a trust measure for dialogue
adaptation. For enabling statistically-driven adaptation methods, a proactive dialogue
data corpus is collected and annotated with several features including trust. Based on the
provided data, we advance the state-of-the-art for computationally modelling trust during
conversational cooperation and present approaches for real-time prediction of trust during
dialogue. Evaluation of the trust predictors shows the utility of our approach by achiev-
ing reasonable recall and accuracy. Trust prediction is then included in a conversational
assistant for realising trust-adaptive proactive dialogue management. For dialogue man-
agement, we develop and implement a rule-based and reinforcement learning approach.
The high trustworthiness and usability of trust-adaptive proactive dialogue management
are proven in a user simulator study, for which a new socially aware user simulator has
been developed.
In summary, we provide the first user-centred approach for integrating the concept of

proactivity in human-computer dialogue. Here, we enhance the social awareness of arti-
ficially intelligent systems by equipping them with the ability to reason about their own
trustworthiness during cooperation and adapt their proactive dialogue behaviour accord-
ingly. Finally, this enables machines to provide more human-like and natural decision-
making for appropriately assisting humans in complex task environments. This forms an
important step on the way from mere conversational assistants to personal advisors.
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Resumen

El auge actual de la inteligencia artificial y los avances tecnológicos ha propiciado que
los asistentes inteligentes sean cada vez más frecuentes en nuestra vida cotidiana. Estos
asistentes personales nos ayudan en tareas sencillas, como informarnos de las últimas
noticias, escuchar el parte meteorológico, controlar elementos en un hogar inteligente o
acceder a entretenimiento, todo mediante comandos en lenguaje natural. A pesar de ser
considerados en muchas ocasiones entidades inteligentes, los asistentes conversacionales
personales siguen en general estancados en el rol de mayordomos o espectadores reactivos
que actúan en función de las órdenes que reciben por parte del usuario. Para mejorar
la capacidad de cooperación de estos sistemas y desarrollar su potencial al máximo, la
proactividad se ha convertido en un tema de investigación emergente. El que los sis-
temas conversacionales estén dotados de proactividad implica que tengan la capacidad de
detectar las necesidades de sus usuarios y actuar en consecuencia. Aunque los trabajos
relacionados con este tema han subrayado los beneficios que la proactividad ofrece para
mejorar la cooperación hombre-máquina, la aceptación de la tecnoloǵıa proactiva sigue
siendo escasa debido a la diferencia entre el comportamiento del sistema y las expectativas
de los usuarios. Para abordar esta problemática, proponemos dotar a los sistemas de una
gestión proactiva del diálogo para incluir al usuario en los procesos de decisión del sistema
y poder discernir de forma más adecuada cuáles son las acciones que se esperan. No se
trata de una tarea obvia, pues surge el reto de modelar computacionalmente un diálogo
proactivo oportuno en el contexto en el que se produce y relevante para el usuario, sin
que éste tenga la percepción de ser controlado o de que se está invadiendo su privaci-
dad. Un comportamiento proactivo inadecuado puede tener efectos devastadores en la
cooperación y conducir a una disminución de la confianza en el sistema, lo que puede com-
prometer la aceptación de esta tecnoloǵıa. Por lo tanto, este trabajo tiene como objetivo
proporcionar asistencia proactiva aceptada y fiable mediante el desarrollo de modelos de
diálogo que mejoren la cooperación entre humanos y máquinas. Con tal fin, se ofrecen
tres contribuciones principales. Como primera contribución, presentamos un modelo de
diálogo proactivo para la cooperación hombre-máquina. El concepto presentado se basa
en dos estudios piloto exploratorios en contextos de cooperación hombre-máquina, en los
que se observa la percepción que tienen los usuarios de los enfoques más avanzados para
inferir sus expectativas y necesidades y gestionar en consecuencia el diálogo de forma
proactiva. A partir de los resultados de estos estudios, realizamos un análisis de estos
requisitos y proporcionamos una taxonomı́a de diálogo proactivo cooperativo. A contin-
uación, introducimos tipos de actos de diálogo proactivo que representan los diferentes
niveles de autonomı́a del comportamiento de diálogo proactivo, entendiendo éste como
la iniciación de diálogos de apoyo para facilitar la ejecución de tareas. Además, pro-
ponemos una arquitectura de sistema cognitivo con el objetivo de implementar el diálogo
proactivo utilizando métodos de inteligencia artificial y de interacción persona-ordenador.
Como segunda contribución, presentamos el diseño y la evaluación de cuatro estrategias
de diálogo proactivo centradas en el usuario y basadas en el modelo de diálogo proactivo
desarrollado. En este caso, el objetivo es comprender los efectos del diseño del diálogo
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proactivo en la cooperación, no sólo desde el punto de vista de la usabilidad, sino también
desde una perspectiva social centrada en el usuario, incluyendo entre otros aspectos la
confianza que éste deposita en el sistema. Para ello, desarrollamos e implementamos var-
ios prototipos de asistencia conversacional con capacidad proactiva que hemos evaluado
en entornos de laboratorio con distintos tipos de tareas cooperativas, tipos de usuario y
estados de los mismos. Estos experimentos han permitido identificar directrices para la
implementación de la gestión proactiva del diálogo centrada en el usuario para asistentes
conversacionales cooperativos. Como tercera y última contribución, tenemos en cuenta la
comprensión obtenida del impacto social del diálogo proactivo para implementar modelos
de diálogo proactivo centrados en el usuario que permitan desarrollar asistentes conversa-
cionales fiables y eficaces. En este sentido, aportamos conclusiones que tienen en cuenta
las expectativas de los usuarios sobre el diálogo proactivo adaptado y la viabilidad de
utilizar medidas de confianza para adaptar el diálogo. Para la utilización de métodos
de adaptación estad́ısticos, se ha recolectado un corpus de diálogos proactivos que ha
sido anotado con diversas caracteŕısticas incluyendo la confianza. Basándonos en estos
datos, avanzamos el estado del arte del modelado computacional de la confianza durante
la cooperación a través de diálogos, y presentamos diversos enfoques para la predicción
dinámica de la confianza durante el transcurso de la conversación. La evaluación de
los predictores de confianza muestra la utilidad de nuestro enfoque alcanzando tasas de
acierto apreciables. La predicción de la confianza se imbuye en el sistema conversacional
durante la gestión proactiva del diálogo, que hemos implementado utilizando enfoques
basados en reglas aśı como basados en aprendizaje automático. La pertinencia y usabili-
dad del gestor proactivo del diálogo adaptable a la confianza se ha demostrado mediante
un estudio con simuladores de usuario, para el cual se ha desarrollado un simulador de
usuario que considera diversos parámetros del diálogo social. En resumen, aportamos
un enfoque novedoso centrado en el usuario para integrar el concepto de proactividad
en el diálogo hombre-máquina. En este caso, mejoramos los sistemas conversacionales
dotándolos de la capacidad de razonar sobre la confianza que inspiran en el usuario du-
rante la cooperación y de adaptar su diálogo proactivo en consecuencia. Esto permite
a las máquinas proporcionar una toma de decisiones más natural y parecida a la hu-
mana, asistiendo adecuadamente a los usuarios en la resolución de tareas complejas que
requieren cooperación y asistencia. Esto constituye un paso importante en el camino para
transformar los sistemas conversacionales de meros transmisores reactivos de información
en verdaderos asesores personales.
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1. Introduction

Significant technological advances in engineering and information technology have resulted
in computers and technical devices becoming an integral part of our daily lives. One of
the main reasons for this development is that interaction with technical systems is as easy
as ever before. In the past, the necessity of learning a special communication language,
e.g. text- or touch-based commands, was focal for operating computers or machines.
More recently there has been a paradigm shift towards a more intuitive interaction using
natural language. This transition is most prominently visible considering the rise of
personal chatbot assistants like Apple’s Siri or Microsoft’s Cortana, and voice-activated
smart speakers like Amazon’s Alexa or Google Home. These devices all have in
common, that they allow users to formulate their needs in their language and have the
ability to respond or act accordingly. In doing so, even technical inexperienced users
are capable of efficiently solving various tasks through human-machine collaboration, e.g.
restaurant search (Henderson et al., 2014) or smart home control (Sciuto et al., 2018).
Thus, the capability to understand natural language and reason about an appropriate
system response for contributing to a specific user goal turns machines into conversational
assistant (CA).
We use the term CA in this thesis for a computer system that is able to provide

assistance for specific tasks using natural language. The overarching term in research and
industry for intelligent systems that are able to converse with humans is (spoken) dialogue
system (DS). Generally, a DS is a user interface allowing interaction with a computer
application in a dyadic manner, i.e. both the user and the computer participate in a
conversation by taking turns. The development of DSs has been a popular research topic
for over half a century. One of the earliest well-known examples is ELIZA (Weizenbaum,
1966), which imitates a Rogerian therapist using pattern matching. ELIZA had no real
understanding of language, but only reformulated a user’s utterances or relied on pre-
defined phrases. Since then, the development of dialogue systems has taken giant leaps.
The formalisation of speech and dialogue enabled machines to understand and interpret
language (J. F. Allen & Perrault, 1980; Searle, 1969). This in turn allowed to endow
computer systems with a decision logic for adequate response generation. How DSs make
decisions has evolved greatly over the last decades, beginning with rather rigid rule- and
plan-based approaches (e.g. see J. F. Allen et al. (1995)) to flexible data-based approaches
utilising sophisticated methods of machine learning (ML) (e.g see Young et al. (2013)).
The performance and versatility of contemporary realisations of DSs let machines sound
more and more natural and human-like. While ELIZA was identified easily as a computer,
recent systems are harder to distinguish from humans. For example, Google’s Duplex
which can perform well-structured tasks on user-demand, such as restaurant reservations,
is able to sound very similar to a human.
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1. Introduction

For this reason, there exist opinions which propose to let the system identify itself as a
machine in order to not fool its interlocutor (O’Leary, 2019). However, sounding like an
intelligent being does not necessarily imply helpful intelligent behaviour.

1.1. Motivation

Humans see computers to some extent as social actors, and therefore apply social rules
during communication with them (Nass & Moon, 2000; Nass & Yen, 2012; Nass et al.,
1994). As a result, humans put similar expectations to interactions with computers as
with real persons. For example, having a naturally sounding voice makes users think that
computers seemingly possess intelligence.

However, if a CA only acts reactively during the interaction and stays on standby,
this may lead to a mismatch in the users’ expectations about how such an intelligent
entity should be assisting. Consequently, there exists a “gulf” (Luger & Sellen, 2016)
between expectations on CAs and their capabilities implicating that they are still rather
perceived as tools and not as true collaboration partners (L. Clark et al., 2019; Zamora,
2017). Furthermore, despite their ability to sound natural and being advertised as “in-
telligent”, CAs are mostly applied for rather simple tasks by human standards. For
example, communication with smart speakers is primarily based on one-shot interactions,
e.g. “Alexa/Siri/Google, what’s the weather today?”. These systems only allow a few
follow-up questions and are required to be invoked using command-based language. Also
in academia, task-oriented systems are mainly restricted to reactive assistance such as
question answering (e.g. see D. Guo et al. (2018) and Weston et al. (2015)) or form-filling
interactions (e.g. see Bordes et al. (2016) and Williams et al. (2014)). In form-filling,
also known as slot-filling interactions, the system step-wisely collects the required user
information for fulfilling a specific task, e.g. requesting information about the type of
food and price range in a restaurant search for querying a database (Henderson et al.,
2014). Although the system usually has the initiative in form-filling dialogues, it acts
reactively as it only serves as an information source and does not actively influence a
user’s decision-making. Even Google’s Duplex does not truly collaborate with a user, as
it acts in the name of the user, like a middle man, exactly as it was told to do. Thus, they
act as butlers or bystanders, but not as equal partners in cooperation. For this reason,
current CAs might not yet be able to escape their narrow, non-complex, and restricted
task domains that require little trust or human logic and have negligible consequences in
case of system failure (Zamora, 2017).

To turn CAs into truly helpful agents also in more complex task environments where
consequences of failure are more severe, computers need to be equipped with several
types of intelligence besides technical functionality (Chaves & Gerosa, 2021). Concerning
conversational systems, conversational intelligence seems to be of utmost importance
for leveraging CAs to the next level. Chaves and Gerosa (2021) describe a chatbot’s
conversational intelligence as the ability “to actively participate in the conversation and
to demonstrate awareness of the topic discussed, the evolving conversational context,
and the flow of the dialogue”. In conclusion, this type of intelligence enables systems to
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1.1. Motivation

become better cooperation partners by contributing more actively to the interaction.

Some social characteristics related to conversational intelligence are proactivity, consci-
entiousness, and communicability (Chaves & Gerosa, 2021). A conversational system’s
ability to convey to users its internal features and interactive principles can be labelled as
communicability. Conscientiousness is a system’s capability to show understanding of the
conversational context and to reasonably interpret user input (Morrissey & Kirakowski,
2013). Proactivity is manifested by a system’s capacity to engage in a conversation au-
tonomously, suggest topics, or provide further information. Proactivity seems to be the
driving force for expressing a system’s conversational intelligence, as both conscientious-
ness and communicability, are supported by adequate proactive conversation (Chaves &
Gerosa, 2021). Accordingly, equipping CAs with proactive dialogue may be the key to
improving cooperation and fostering user acceptance.

For getting a clearer idea of the concept of proactivity, consider the following example
of proactive dialogue in human-human interaction (HHI). Primarily, proactive dialogue
occurs in various situations that require two or more humans to cooperate. For illus-
tration, we provide a dialogue between a guest and waiter with the cooperative goal of
ordering food and drinks at a restaurant:

guest: Good evening, we would like to order dinner, please!

waiter: Yes, of course. What would you like for starters?

guest: Let me see...

waiter: I suggest tomato soup. May I serve you some?

guest: Yes, please.

waiter: Ok, what do you want as the main dish?

guest:: Hm, just a second... what do you suggest?

waiter: The “Coq au vin” is great. Do you want to order?

guest: That sounds good. But I’m vegan so I’ll take the pumpkin gnocchi.

waiter: Good choice. I’ll serve a dry white wine with that.

waiter: I can offer you some vegan dishes for dessert.

guest: Alright, what do you recommend?

waiter: ...

Here, the cooperation starts with deciding on starters. After the user hesitates the waiter
becomes proactive and suggests a dish without being asked. Afterward, the guest has
to decide on the main dish. Here, the waiter stays reactive and waits for the user to
make a move. The decision on which drink to take is taken by the waiter on behalf
of the guest, using his context knowledge that dry white wine is suitable for this kind
of food. For deciding on desserts, the waiter takes into account his knowledge about
the particular guest and notifies him that vegan dishes for dessert are available. As can
be seen from the example, proactive dialogue actions may take different types including
notifications, suggestions, taking actions on behalf of the user, or simply staying reactive.
Which type of action is appropriate in a given situation is quite complex and may depend
on the context, specific user information, the user state, and the relationship between
the cooperation partners. The benefits of adequate proactive dialogue expressed by the

3



1. Introduction

waiter, however, are more clear: it facilitates the cooperation process, as the waiter guides
the guest in the food ordering process which may lead to faster and more successful task
completion. In addition, if the guest perceives the waiter’s behaviour to be trustworthy,
it can increase the guest’s trust in the waiter and the establishment, which may, in turn,
increase the probability of the guest returning to the restaurant in the future.

Similarly, recent research has shown the benefits of proactivity in conversational sys-
tems. Considering human-chatbot interaction, Chaves and Gerosa (2021) identify five
major benefits of proactive behaviour: To provide additional, useful information for in-
creasing a chatbot’s naturalness and the user’s enjoyment of the interaction; To motivate
users and keep the conversation alive by suggesting new topics and disclosure about the
system’s knowledge; To naturally recover the chatbot from failure; To improve conver-
sation productivity in task-oriented dialogue by improving task efficiency; To guide and
engage users for facilitating decision-making or learning. In interactions with robots and
voice assistants, proactive dialogue has also been found to positively contribute to a sys-
tem’s helpfulness (Peng et al., 2019), usefulness (Schmidt & Braunger, 2018), and user
satisfaction during collaborative tasks (Baraglia et al., 2016).

The intriguing question, however, is how to engineer and model a CA’s proactive dia-
logue capacities for taking advantage of these benefits. As Meurisch et al. (2020) point
out, the adoption and acceptance of proactive technology are still low due to a mismatch
between system operation and user expectations. This mismatch is mostly due to issues
concerning the system’s timing and relevance of proactive actions, the user’s perception of
being controlled, and privacy (Chaves & Gerosa, 2021). Timing and relevance of proactive
actions are crucial for the system to avoid being obtrusive and getting the user out of
the task flow (McFarlane & Latorella, 2002). For example, Portela and Granell-Canut
(2017) found that a system taking the initiative in an untimely manner was perceived
as annoying and harmed engagement. Additionally, poorly timed interruptions can be
perceived as disruptive (Chaves & Gerosa, 2018; Q. V. Liao et al., 2016). As a result,
users may experience higher frustration and require an increased mental effort for situ-
ation comprehension (Adamczyk & Bailey, 2004). This ultimately leads to distrust and
thus non-acceptance of the system (Muir, 1994).

Closely related to the previous challenge is the perception of being controlled by proac-
tive interventions. The arguably best negative example for this case is Microsoft’s for-
mer office assistant Clippit. The proactive assistant developed during the Lumière
project (Horvitz, 1998) was intended to provide suggestions for a better or easier task
execution, e.g. writing of a letter. However, Clippit interrupted users at inappropriate
moments during task execution, providing non-helpful assistance, behaving highly obtru-
sively (T. W. Bickmore & Picard, 2005). This culminated in the rejection of the assistant
which has even been named one of the “50 worst inventions of all time” (Times, 2010).
Finally, privacy issues with a system’s proactivity are a concern, as such behaviour is
often deemed too intrusive and perceived as an act of user surveillance (Meurisch et al.,
2020). For example, Duijvelshoff (2017) reported that a proactive chatbot that was inte-
grated into a work-related group chat resulted in privacy concerns. Users thought that
the chatbot represented their superiors’ interests which may result in disengaged and
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discomforted users.
The state-of-the-art research currently provides little knowledge about how to model

timely and relevant proactive dialogue for overcoming these shortcomings. Consequently,
state-of-the-art proactive conversational systems lack reliability and competence resulting
in impaired user trust, which is crucial during cooperation with a technical system (Muir,
1994; Parasuraman & Riley, 1997). Therefore, the main research goal of this thesis is
to improve cooperation between humans and computers by developing a sound proactive
dialogue model for CAs. As user trust and the system’s task effectiveness are fundamen-
tal aspects of successful cooperation, the CA’s proactive dialogue behaviour needs to be
trustworthy and show high usability. For achieving this goal, it is necessary to understand
proactivity not only from a technical point of view but also from a social, user-centred
perspective. Thus, it needs to be investigated how proactive dialogue is perceived by
users, especially concerning perceived trustworthiness and usability. Furthermore, hu-
mans are highly individual beings possessing different characteristics manifested by their
personality, age, gender, knowledge, experiences, preferences, moral attitudes, etc. There-
fore, the usability and trustworthiness of proactive system actions may differ depending
on the specific user. Additionally, the perception of proactivity is also subject to change
as interaction takes place in a dynamic environment. For this reason, when developing
proactive systems it is necessary to consider not only user-specific features but also the
current situation, i.e. contextual properties related to a specific task (task type, task
complexity, task progress), the dialogue, (type of user or system action or interaction
length), and the user’s current situation (user activity, emotional or affective state).
Technically, the main challenge is to implement and optimise adequate proactive di-

alogue strategies. In this context, adequate implies a conversational system’s ability to
convey its assistance behaviour competently and reliably avoiding disruptive and obtru-
sive system interventions. Therefore, we implement various proactive dialogue strategies
and evaluate their impact on cooperation. Using the knowledge gained from the effects
of the user-centred proactive dialogue strategies on the cooperation, we develop a user
model allowing for real-time measurement of the impact of proactive dialogue on user
trust. We propose to implement this user model into a dialogue system to endow it with
the ability to reason about the trustworthiness of its actions. Such awareness is then used
to augment a system’s capability to tailor its proactive dialogue accordingly to improve
cooperation.
In summary, we will provide novel work regarding user-centred proactive dialogue mod-

elling, the development of proactive dialogue strategies, and how to equip a proactive
system with self-awareness of its trustworthiness. Furthermore, we will propose machine-
learning methods of using this information to influence a system’s decisions on whether to
become proactive and to what extent. The research contributions of the work described
in this thesis are presented in the next section.
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1.2. Contributions

To improve the cooperation between humans and machines by the means of trusted and
task-effective proactive dialogue modelling, our research contributions may be divided
into three parts:

1. Proactive dialogue modelling for human-machine cooperation

2. Design of user-centred proactive dialogue strategies and their effects on cooperation

3. Implementation and evaluation of user-centred proactive dialogue strategies for
trustworthy CAs with high usability

As a first step, we carry out exploratory work in the form of two pilot studies conducted
in the wild to establish an intuition of the user perception of current proactive interaction
approaches considering usability and human-computer trust (HCT). Further, the results
of these studies are used to distill user as well as system requirements for the application
of proactive dialogue for human-machine cooperation. Based on the outcome of the
exploratory studies and related work, we contribute a novel proactive dialogue model for
CAs. Here, we define cooperation processes as dialogues, where supporting sub-dialogues
initiated by the system during task execution are conceptualised as proactive dialogues.
Further, we introduce four different proactive dialogue act types representing different
degrees of autonomous system behaviour. For realising proactive dialogue, we contribute
a novel cognitive system architecture combining artificial intelligence (AI) and human-
computer interaction (HCI) methods.

To understand the effect of the proactive dialogue model on cooperation, we present
four novel approaches to proactive dialogue design, implement them in CA prototypes,
and provide evaluations with a focus on their impact on trustworthiness and usability.
In two studies under laboratory conditions, we shed light on the relations between the
different degrees of proactive dialogue and the HCT relationship. Particularly, novel
insights are gained concerning the application of proactive dialogue dependent on the
task context as well as different user states. Additionally, we deepen the understanding
of the influence of various user characteristics, including personality, gender, technical
affinity, and domain expertise, on the perception of proactive dialogue. Besides its impact
on trust, also results for the task effectiveness of different levels of proactive dialogue are
reported. In two experiments in realistic task scenarios under less restricted conditions, we
show the portability of our concept in sophisticated prototypes for real-world application
and confirm the results from our laboratory studies. Here, we also provide evidence of
the applicability of the developed cognitive architecture for enabling CAs to conduct a
proactive dialogue.

Finally, we implement novel approaches for the development of user-centred proac-
tive dialogue management (DM). For this, two novel evaluation frameworks utilising an
interactive video method and a serious dialogue game approach are developed. The in-
teractive video method is used to validate HCT as adaptation criterion for implementing
user-centred proactive dialogue. The serious dialogue game approach is integrated into a
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novel data collection set-up and used for the creation of a new proactive dialogue data
corpus annotated with several features including trust. Based on the data corpus, we
then introduce a novel user model that allows the prediction of the CA’s trustworthiness
online during dialogue. The user model is implemented using ML-algorithms and proved
to provide reliable predictions for including trust in the dialogue state. This enabled
the implementation of novel trust-adaptive proactive dialogue behaviour. In this regard,
we present a rule-based strategy and a statistically-driven strategy using reinforcement
learning (RL). For realising the statistically-driven strategy, we provide a novel approach
for including trust and task metrics in a reward function. In addition, we present a new
corpus-based user simulator for training the RL-based DM module and to test different
proactive dialogue strategies in user simulation. We further present a user simulator study
comparing adaptive and static proactive dialogue strategies. Here, we provide novel re-
sults and evidence that particularly RL-based trust-adaptive proactive dialogue strategies
are promising for improving cooperation with CAs.

In summary, this work has three main contributions for improving the state-of-the-
art in cooperation with CAs. Firstly, we advance the proactive capabilities of a CA by
providing a structured proactive dialogue model comprising a new taxonomy and cognitive
architecture for its sound realisation. Secondly, we improve the proactive dialogue design
by gaining an in-depth understanding of the relations between user, context, and dialogue
as well as the effects of proactive dialogue strategies on the system’s trustworthiness and
usability during cooperation. Finally, we improve the machine’s anticipation of the need
of proactive system behaviour by fusing user-, context-, and dialogue information for
a more socially and task-intelligent decision-making on whether to act reactively or in
leveled proactive ways. The work described in this thesis has been carried out within a
Joint-PhD programme between Ulm University and Universidad de Granada.

1.3. Outline

The structure of this work is as follows: In Chapter 2, we summarise and describe all rele-
vant backgrounds that this work is based on to provide a common ground of knowledge and
understanding for this work. In Chapter 3, we provide a comprehensive literature review
on the research activities in the domain of proactive human-machine interaction (HMI),
and user-centred DS. In Chapter 4, we present two pilot studies for gaining insights
on how state-of-the-art proactive interaction behaviour can be transferred into the di-
alogue domain and how this influences the user perception regarding human-machine
cooperation. In Chapter 5, we describe the development of our proactive dialogue model
including a user and system requirement analysis based on the previous exploratory stud-
ies and related work, a taxonomy for proactive dialogue, and a cognitive architecture
for implementing proactive dialogue in CAs. Based on the developed proactive dialogue
model, we describe the design of four novel user-centred proactive dialogue strategies and
their impact on the cooperation in Chapter 6. Here, the aim is to determine the selection
of the appropriate level of proactive dialogue, i.e. proactive dialogue act type, dependent
on the specific user type and context information for improving the human-computer
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cooperation by increasing a system’s trustworthiness and usability. Further, we confirm
the portability of our approach to realistic environments and the utility of the designed
cognitive architecture. In Chapter 7, we subsequently describe the implementation of
user-centred proactive DM comprising an investigation of the applicability of trust as a
measure for dialogue adaptation, the development of a trust recognition module, the cre-
ation of a socially-aware user simulator, and the development of trust-adaptive proactive
dialogue strategies. Further, we present user simulator studies showing the benefits of
our approach for achieving the stated goals of this thesis. Finally, we conclude this thesis
by reviewing our research contributions and providing promising future research areas in
Chapter 8.

1.4. Note on Copyrighted Material
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2. Background

For understanding the presented work on the development and implementation of proac-
tive dialogue models, we first provide the necessary background and explain the relevant
fundamentals. Primarily, this thesis focuses on DSs as the central component of au-
tonomous technical systems, such as CAs. For this reason, we elucidate contemporary
DS architectures, relevant dialogue models as well as strategies, and evaluation methods
for measuring dialogue quality and user experience. For user-adaptive proactive dialogue
modelling, we will largely rely on data-driven statistical methods. Therefore, we introduce
available data collection methods and describe two ML approaches relevant for statistical
DSs: unsupervised learning and RL. Concerning unsupervised learning, we will explain
often applied ML algorithms, namely decision tree, support vector machine (SVM), and
artificial neural network (ANN). For explaining RL, we introduce relevant concepts, such
as markov decision process (MDP), and describe popular algorithms for realising RL.
Finally, some psychological concepts are presented. These concepts need to be addressed,
as one of the main aims of this thesis was to study the psychological and social impact
of proactive dialogue on the user. Further, we consider user-adaptation approaches for
proactive dialogue, which require the system to know the user’s psychological state to
improve cooperation. Therefore, we cover psychological aspects that are most relevant in
a cooperative context. Here, we provide background on a theory of mind (TOM), which
addresses fundamental knowledge about how technical systems may form beliefs about
the mental states of their users. In human-machine cooperation, trust is an elementary
mental state to consider. For this, several relevant trust concepts and models are pre-
sented. Additionally, other mental states, such as cognitive load and cognitive-affective
user states are explained. As the perception of proactive dialogue is supposed to be quite
dependent on the individuality of users, we included the concept of personality into our
considerations and describe different personality models.

2.1. Dialogue Systems

A DS is an interface that allows humans to use natural language when interacting with
computers or machines. Exchanging information using natural communication modalities
such as spoken or written language seems to be a trivial task to humans, as the various
processes involved are mostly perceived subconsciously. On second sight, however, the
nature of the task is quite complex, e.g. see Card (1981) and Lindsay and Norman
(1972). To illustrate the difficulty of this, a model for human information processing
called the human processor by Card (1981) is provided as an example: The human senses
(auditory, visual, ...) perceive external signals (stimuli), which then are pre-processed
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2. Background

and transformed in electric impulses for subsequent processing. A representation of the
stimuli is then saved in a sensory register. The so-called perceptual processor takes the
representation as input and refines the information using the long-term memory, which
contains knowledge about how to perform tasks (procedural knowledge) and what to
do to accomplish them (declarative knowledge). The result is then processed by the
cognitive processor, which then plans actions taking into consideration knowledge provided
by the short-term memory, being responsible for decision-making and memory search, as
well as the long-term memory. Subsequently, the actions are controlled by a motoric
processor, which instructs the human effectors (e.g. speech production) to perform them.
Analogously, researchers from various disciplines have tried to describe interactive systems
using computational models based on human processing capacities. As a result, nowadays
there exists a range of various architectures, methods, and models for processing natural
language and providing systems with the ability to conduct dialogues.

2.1.1. Architectures

For structuring the complex processes which are involved in the conversation, an abstrac-
tion of the problem has been provided in the form of a DS architecture. Generally, a
DS needs to solve the problems of recognising user input, understanding the underlying
meaning or intention, deciding on an appropriate system response, and generating a nat-
ural system output. Currently, there exist two fundamental architectural approaches: a
modular and an end-to-end framework. While the modular approach relies on several in-
dividual components for providing natural language interaction, the end-to-end approach
makes use of an ensemble of ANN for direct language generation depending on the input.
In the following, these two approaches are described briefly.

Modular Framework

Following a modular approach, a DS distributes the different tasks for conducting a
dialogue to individual components: Semantic en- and de-coding components transform
textual user input into a machine-interpretable form, so-called dialogue acts, and convert
the system’s output back to natural language. For deciding the next system output, the
dialogue manager takes into account various pieces of information, for example, the user’s
last input and/or the dialogue context, and chooses an appropriate response. In case a
system assists by using spoken language, modules for converting speech into text and vice
versa can be included. Further, other modalities different from language can be processed
by conversational systems. Such systems are described as multi-modal DSs and are mostly
applied in embodied agents, such as virtual or robotic assistants (André & Pelachaud,
2010). Contrarily to purely text- or voice-based applications, embodied systems possess
more human-like features, e.g. extremities or a face. This allows them, for example,
to generate gestures (Mitra & Acharya, 2007) or facial expressions (Pelachaud & Poggi,
2002). However, also combinations of input modalities, e.g. speech and affective or
emotional user state, can be used by the dialogue manager to consider more information
during the decision-making process (Pittermann & Pittermann, 2006).
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2.1. Dialogue Systems

Figure 2.1.: Modular architecture of a DS.

The modular dialogue architecture is visualised in Fig. 2.1. The individual components
of this architecture are described in more detail in the following paragraphs.

Recognition: Raw input signals, e.g. audio when recognising speech or video for facial
expression recognition, are processed by recognition modules. As this work focuses
on textual and spoken interaction, the individual steps for solving the speech recog-
nition task are highlighted. The component executing these steps is called automatic
speech recogntion (ASR) module. Here, the problem is to find the most probable
word sequence given an acoustic feature vector (Jurafsky & Martin, 2020; Yu &
Deng, 2016). For achieving this, the audio signal is firstly pre-processed to reduce
noise and channel distortions. Subsequently, the signal is digitalised using Fourier
transformation and relevant features for speech recognition are extracted from the
signal spectrum. Typically, the mel-frequency cepstral coefficients (MFCC) are
used, as the human ear is only capable of perceiving certain frequency bandwidths.
Based on feature vectors containing MFCC the most probable string of words is
estimated using statistical methods. In the past, a combination of Hidden Markov
models (Juang & Rabiner, 1991) (acoustic model) and so-called n-grams (language
model) was used. While the acoustic model maps the observed feature vectors to
word sequences using a dictionary, the language model augments the recognition in-
cluding language-specific information, e.g. grammar or syntactic rules, by learning
statistical dependencies between hypothesised words. The current state-of-the-art
for speech recognition, however, is the application of encoder-decoder models which
are realised using recurrent neural network (RNN) or transformer networks (Yu &
Deng, 2016). These models have shown to significantly decrease error rates for word
recognition (Yu & Deng, 2016). For recognising affect or emotion from audiovisual
signals, similar approaches relying on deep learning architectures have obtained
promising results (Y. Kim et al., 2013).
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Semantic Encoding: For extracting the meaning of the user input, speech, or in the
case of a multi-modal system other modalities, e.g. images or visual information, are
semantically encoded. Semantic encoding is conducted by generating a semantic rep-
resentation of the user input based on formal structures. We illustrate this approach
by looking at speech processing, which employs a natural language understand-
ing (NLU) module. NLU can be realised in various ways including syntax-driven
approaches, rule-based semantic grammars, or nowadays commonly ML methods
(McTear, 2020). Utilising a syntax-driven approach, the input is analysed based
on the composition of the user’s utterance. Therefore, the sentence is split into its
syntactic components, e.g. noun or verb phrases, according to a specific grammar.
For this, often context-free grammars and lexical rules are applied (Tur & De Mori,
2011).

Another approach is to use semantic grammars. Such grammars are rule-based cod-
ing schemes that capture the semantics of speech input in the form of a semantic
frame or dialogue act. Contrarily to syntactic-based approaches, where the sen-
tence components are categorised according to their syntactic function, semantic
grammars structure the sentence depending on the communicative function of its
constituents. An example is shown in Fig. 2.2. For creating a standardised tax-
onomy of communicative functions, several proposals have been made. One of the
first attempts was provided by Searle (1969). According to his speech act theory,
communication functions can be classified. For example, it can be differentiated be-
tween assertives that address the state of a current situation, e.g. stating, claiming,
or suggesting; directives intending to commit the addressee to do something, e.g.
ordering or commanding; or commissives that attempt to commit the speaker to
do something, e.g. promising or threatening. Based on this preliminary work, sev-
eral taxonomies for describing dialogues have been developed (Core & Allen, 1997;
D. R. Traum & Hinkelman, 1992). One of the most used taxonomies is the dialog
act markup in several layers (DAMSL) that defines a set of primitive communicative
actions that can be used to semantically analyse dialogues (Core & Allen, 1997).
DAMSL differentiates between forward- and backward-looking dialogue acts. While
forward-looking acts include statements and requests, backward-looking implies for
instance the expression of agreement with the previously provided information or
answering requests.

Although these rule-based grammars can capture fine-grained distinctions in the
input, it is still required to manually craft rules for every possible input. Whereas
hand-crafting rules may be beneficial in rather small conversation domains, this
process becomes more and more expensive and time-consuming with increasing do-
main complexity, also requiring an expert grammar author. Therefore, statistical
methods using ML are predominant nowadays; which receive different names, e.g.
intent classification or dialogue act tagging. Here, the NLU-task is modelled as a
classification task: dialogue utterances labelled with semantic concepts, e.g. using
the DAMSL, are the input to the classifiers. For predicting the dialogue acts, dif-
ferent machine-learning methods have shown to be valuable e.g. SVM (Schuurmans
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Figure 2.2.: Depiction of a NLU process. Left: NLU using semantic grammars. Right:
NLU using classification.

& Frasincar, 2019) or convolutional neural networks (CNN) (Collobert & Weston,
2008). However, deep neural networks have been proven to outperform classical
ML methods (Sarikaya et al., 2014; Tur et al., 2018). Besides the classification of
the dialogue act or intent (what the user wants), also relevant information on the
word level can be classified. This process is known as entity extraction (e.g. see
(Tur & De Mori, 2011)). An example is provided in Fig. 2.2. As can be observed,
the utterance “I want to go to a chinese restaurant tonight“ can be either parsed
using predefined grammars or classes for predicting the appropriate dialogue acts
and entities. The semantic representation of the user utterance is then conveyed to
the DM module to select an adequate response

Dialogue Management: The dialogue manager is the decision-making module in the
architecture of a modular DS. It controls the flow of the dialogue, interprets the
user’s semantic input, and interacts with external services or applications for accom-
plishing different tasks (McTear, 2020). For some tasks, e.g. question-answering or
so-called chit chats that include small talk, DM does not necessarily require context
information for achieving its purpose. However, in cooperative dialogue, where both
the user and the system equally contribute to the conversation for fulfilling a goal,
DM needs to keep track of the conversation and use other relevant information for
providing adequate assistance. Considering the example presented in Fig 2.2. In-
form(food type = Chinese, date=tonight), DM takes this semantic representation as
input, verifies if some additional information, e.g. price range, is missing and either
proceeds in querying a restaurant database for providing the user with information
or asks the user for the relevant information.
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For realisation, two main concepts are involved in the DM process: dialogue state
and dialogue policy (Young et al., 2013):

The dialogue state contains relevant information for keeping track of the conversa-
tion (McTear, 2020). For this, several knowledge sources are used: The dialogue
history contains information about the dialogue participants’ contributions so far.
This information is often represented in the form of an agenda-based data structure,
that also contains knowledge about what information still has to be gathered from
the user depending on the previous input. A domain model represents a system’s
“world knowledge”, i.e. concepts and information for a specific task domain, such as
several food types or price ranges in the restaurant search domain. This knowledge
can be retrieved from a database that can be structured in the form of a knowledge
graph or ontology, for example. Besides conversation- and domain-related knowl-
edge, the dialogue state can also include user-specific information, e.g. age, gender,
or preferences, and relevant dynamic user states. For example, in the semantic en-
coding modules of multi-modal systems, the user’s affective state can be categorised
based on facial expression features found in images or videos and mapped to states,
such as anger or fear (McCrae & John, 1992).

The dialogue policy determines the next system action dependent on the last user
input and current dialogue state information. For selecting the next system action,
decisions have to be made, for example, whether the system needs to request or
provide information, and if previously provided information needs to be clarified.
Here, different dialogue strategies may be applied. Such strategies can be pre-defined
in advance, e.g. the system proceeds to the next dialogue step if the confidence that a
user input has been correctly understood exceeds a specified threshold, or otherwise
asks for clarification. Moreover, strategies can be deployed dynamically by taking
into account the dialogue state’s knowledge sources. These sources can also be used
to adapt the dialogue to the relevant user- and/or context-related information.

As DM is the focal point of this thesis, more detailed information about how dialogue
state and policy can be modelled is provided in Section 2.1.2. Furthermore, we
highlight fundamental concepts of dialogue strategies and provide relevant work in
user-centred DM in Section 3.2.

Semantic Decoding: The DM module produces system output in the form of a high-
level semantic representation. Considering our dialogue example, a possible system
output would be to ask the user for his preferred price range, represented in the di-
alogue act “Request(price range)” For being understandable to humans, the natural
text needs to be generated from this representation. This process is called semantic
decoding. For decoding abstract system actions in a textual representation, there
exist several options: The simplest way is to use templates, e.g. see Reiter and Dale
(1997). Here, either a template for each system action is stored in a look-up table,
e.g “Which price range should your restaurant have?”, or a template containing
placeholders is stored which are dynamically filled during run-time, e.g. “Which
< frame > should your restaurant have?”.
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Even though this approach is rather inflexible, it can be effective for a manageable
amount of system actions, which usually is the case for early prototype systems.
To create a more dynamic and diversified text generation, other more sophisticated
semantic decoding methods have been developed. This includes AI planning ap-
proaches (Reiter & Dale, 2000), statistical approaches relying on tagged dialogue
corpora using utterance classes (Oh & Rudnicky, 2002), supervised learning ap-
proaches using recurrent neural networks (Wen et al., 2015), end-to-end approaches
(Dušek et al., 2020), as well as RL approaches (Rieser et al., 2014). In case the
system output needs to be conveyed using natural speech, a synthesis module uses
the textual representation to generate speech signals. Furthermore, the text can be
accompanied by using additional modalities. In this case, the semantic decoding
module of an anthropomorphic agent may select, for example, adequate gestures or
facial expressions to create a more realistic user experience (Hartmann et al., 2005).

Synthesis: A synthesis module is responsible for the transformation of the system output
representation in the desired format, i.e. for producing gestures, animations are
generated by adjusting an avatar’s facial features, while for speech production text
is converted into a sequence of phonemes. In early systems, unit selection techniques
were applied (Hunt & Black, 1996). Here, linguistic units are retrieved from a large
speech database to convert a text into a sequence of sounds (Taylor, 2009). The
units are selected according to how well they represent the target specification of an
utterance and the quality of a concatenation of individual units. The target, as well
as the units, can be any mixture of acoustic and linguistic features, e.g, phonemes
or diphones with pronunciation features. For finding the best fit between units
and target specification, as well as the best combination of units, a cost function
needs to be minimised. After finding the best sequence, the speech waveform is
finally synthesised from the concatenated units’ spectral and excitation parameters
by applying a speech synthesis filter. More recently, new approaches using end-to-
end deep neural networks are applied for directly mapping words to the appropriate
speech signal, e.g. see Prenger et al. (2019).

As described, the modular DS architecture follows a pipeline approach, where the
output of one module is the input of the following. A characteristic of this approach
is that each module needs to be implemented and fine-tuned separately. This allows
reusing already implemented modules fast and easily. Further, the integration of external
services, e.g. ASR or NLU, is facilitated and the architecture is easily extensible. This
makes the modular approach especially useful for developing new prototypes. However,
a downside of the approach is that the modification of one module can result in negative
effects on the others. This also known under the term “knock-on effects” (McTear, 2020).
This possibly makes the system more difficult to maintain and to identify module-specific
errors. Additionally, this problem renders modular architectures not very transferable to
new domains. To counteract these downsides and to leverage the knowledge that can be
obtained from big data sets recently an end-to-end approach emerged. Even though this
approach is not used in the scope of this work, we provide a short introduction.
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2. Background

Figure 2.3.: End-to-End architecture of a DS.

End-to-End Framework

End-to-End DSs unify semantic en- and decoding, as well as DM into one module con-
sisting of two main components: Encoder and Decoder. Encoding implies the processing
and representation of user input, while decoding is the output generation. The basic idea
of this approach constitutes that conversation is modelled by predicting the next output
in the dialogue given some previous user input. Thus, there exists a sequence-to-sequence
mapping of input to output. For creating these mappings, primarily neural network ap-
proaches are applied, e.g. see Bordes et al. (2016). First, the encoder network creates a
context vector that represents the user input. Afterward, the decoder network uses this
vector to create an output. In the following the two components are described (McTear,
2020):

Encoder: The input of the encoder forms a sequence of words, affective states, or other
relevant user input. For an illustration of the end-to-end process, we take the
example used for describing the DM module from the previous section. In the first
step, the word sequence needs to be converted into a numerical form to be processed
by the encoder network. For this, word embedding is used to generate a unique real-
number vector given a word that represents its meaning and its relation to other
words in the vocabulary (McTear, 2020). Currently, two-word embedding techniques
are primarily used: One-hot-encoding and so-called word2vec-approaches. Using
one-hot-encoding, categorical values, e.g. words in a vocabulary, are transformed
into fixed-size vectors. The size of the vector equals the number of categorical values
to be transformed. For distinguishing the values, each but one vector cell is filled
with zeros. The exception is the cell that represents the position of a particular
categorical value which is encoded with a “1”. Using word2vec (Mikolov et al.,
2013), categorical values are represented in a so-called semantic space. Here, each
categorical value can be identified by its unique position in the space. Furthermore,
semantically similar values are closer together in the space. For transforming a
categorical value in a semantic space, it is represented as a numerical vector in
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Figure 2.4.: Sequence-to-sequence dialogue modelling.

which cell values are learned from large text corpora. The word embeddings are
then used by deep neural networks for creating the context vector that represents
the input sequence.

Decoder: The decoding component of a end-to-end framework takes one element of
the context vector at a time and generates an output sequence (McTear, 2020)
(see Fig. 2.4). The mappings from input to output sequence are learned from
large corpora of dialogues. For generating the output sequence, there exist two
methods: autoregressive generation and retrieval-based generation (McTear, 2020):
Using autoregressive generation the word that is processed is conditioned on the
word generated by the network at the previous time step, and the context vector.
On the contrary, using retrieval-based generation, a pre-defined response is retrieved
from a data source (dialogue corpus) by matching against the input.

End-to-end approaches have gained widespread popularity in research nowadays, where
they have been used for several applications. For example, Bordes et al. (2016) studied
their application for task-oriented dialogue in the restaurant reservation domain. How-
ever, end-to-end systems are mostly studied in the context of open-domain chatbots which
conversations can span a wide variety of topics, e.g. Google’s Meena (Adiwardana et al.,
2020) or Facebook’s Blenderbot (Roller et al., 2020). Despite their popularity, end-to-
end systems still have several problematic issues. For example, see McTear (2020) for an
overview. One of the main problems is the generic response problem, which concerns the
often bland or uninformative responses of such systems, e.g. “Ok.” or “I’m not sure.”.
Further, they are prone to semantic inconsistencies, i.e. their responses are inconsistent
with their previous responses. For example, they may state different cities when asked for
their current habitat. Last but not least, for end-to-end systems to work on a relatively
reliable level, they need to be trained on huge data sets. This makes them rather imprac-
ticable for deployment in domains with scarce data, and for early prototype development
for specific applications. In addition, it is still unclear how to integrate social user infor-
mation, e.g. emotion or trust, in such systems. For these reasons, we exclusively rely on
the usage of modular architectures in the scope of this thesis.
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Figure 2.5.: Typical callflow in the touristic domain.

2.1.2. Models

As outlined in the introduction, the main objective of the presented work is the develop-
ment of a dialogue model that allows CAs to interact with users proactively. Therefore,
it is necessary to define a dialogue model and explain different kinds of modelling ap-
proaches. Generally, dialogue modelling can be defined as follows: “A dialogue model
is an abstract model that is used to describe the structure of the dialogue between a
user and an interactive computer system” (Green, 1986). Here, the structure determines
how the dialogue state is represented, which actions a user and the system may take, the
methods to decide when to take which action, what dialogue information is relevant, and
how the decision influences the dialogue state.

The dialogue model is then used by DM to take control over the content and flow of the
dialogue. This is provided by interpreting the user input in the context of the dialogue,
evaluating the relevance of user requests, identifying and recovering from recognition and
understanding errors, tracking the dialogue history, and updating the current dialogue
state. Since ELIZA several approaches for modelling the dialogue and thus the design
of the DM module have been developed and extensively researched. The three main
approaches are introduced in the following:

Finite State-based

The simplest model for modelling dialogue is the finite state-based approach (McTear,
2004). Here, the dialogue structure is represented as a state transition network, where the
nodes are the possible dialogue steps and network paths depict the valid dialogue flow.
Thereby, the user is taken through the dialogue following a sequence of predetermined
states. The decisions the DM may take are modelled as pre-scripted rules which are based
on the possible user input. Usually, the transition network can be visualised in the form
of a call flow (see Fig. 2.5). The main advantage of a finite-state dialogue model is its
simplicity which makes it particularly useful for rapid prototyping. As the user’s input
is limited to single predefined words or phrases, a full natural language processing setup
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is not necessary, Instead, a simple speech recognition for recognising keywords suffices.
Furthermore, a simplified DM component can be used being easy and fast to develop.
Usually, the flow of the dialogues is system-directed which makes such system quite re-
liable, as users are not allowed to deviate from the defined network transitions. This
also makes finite-based systems suitable for well-structured tasks, e.g. restaurant infor-
mation, or bus scheduling, where dialogues can be scripted easily. However, considering
a real-world application of finite state-based models has several disadvantages. First, the
approach is problematic for covering complex domains. As the DM’s decisions must be
pre-defined in advance, a system designer has to think of all possible paths through the
dialogues which can easily become intractable for larger domains, especially when dealing
with non-atomic task structures. Furthermore, the models are quite inflexible, as users
cannot take the initiative and deviate from the current dialogue path. In such cases, a
system would ignore deviation and only ask irrelevant questions. In addition, users must
know the predefined words or phrases due to the restricted vocabulary, which may lead
to a high error rate for speech recognition. For providing systems with more flexibility,
finite-state approaches have been enhanced to information state-based approaches.

Information State-based

The dialogue structure of the information-state approach is also represented in a state
transition model. However, the dialogue is not defined as a sequence of predetermined
states, but based on a distinct set of information that is called frames or slots (Ginzburg et
al., 1996). Dialogue slots are pre-defined entities of a specific domain, which are structured
as attribute-value pairs. For an information retrieval task, e.g. restaurant search, labels
for slots could be food type, price range, location, etc. Via a dialogue, the system then
needs to retrieve values for these slots from the user, e.g. Chinese, expensive, and west
side of town, for identifying the user’s goal. When all necessary information is gathered
a database is queried for providing the user with the desired information. Contrary
to finite state-based approaches, the dialogue state transitions are not pre-defined but
dependent on which kind of information has been provided by the user. Thus, the dialogue
evolves dynamically. Larsson and Traum (2000) provided a theoretical foundation for the
information state-based approach based on five key concepts. These concepts serve as
blueprint for implementing a DM using an information state for decision-making. The
five fundamental concepts are:

Informational components are different kinds of knowledge sources for modelling the
desired system behaviour. Such knowledge sources can differ whether they carry
information about the context or the interaction itself. For example, a user’s internal
state (e.g. goals, intentions, attitudes) can be seen as context information, whereas
information about the interaction may include the dialogue length, duration, or
misunderstandings, for example. As such informational components can also be
categorised into static knowledge bases, which handle information that is not subject
to change throughout a dialogue or knowledge bases that handle dynamic aspects
of the conversation.
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Formal representation describe the way how the informational components are mod-
elled, e.g. which data structures (lists, ontologies) are used and how accessible
(private vs. shared) the data is.

Dialogue moves are basically dialogue acts. As previously described, they form an
abstract representations of possible user and system actions.

Update rules constitute a set of predefined rules that formalise the change of the in-
formation state as the dialogue progresses. Each rule has preconditions and effects.
Preconditions, e.g. a certain slot has been filled, need to be satisfied for the rule to
become executable. Effects are changes made to the information state.

Update strategy is a mechanism that decides which rule should be executed among
a set of rules which preconditions are met. Furthermore, there may exist domain-
independent update rules looking at the quality of the input recognition and tracking
possible understanding problems for executing generic protocols to deal with them.

The major advantage of using an information state-based approach is its greater flexibility
for the user. While a finite-state-based system guides the user through a static dialogue
flow, the information state allows the user to actively influence the dialogue path. For
example, over-answering may be allowed, i.e. users may provide the system with more
slots than the system asked for and hence shorten the dialogue. Furthermore, the approach
is attractive as it encourages a declarative formulation of the required knowledge sources
and the rules for computing the state transitions. From a designer’s perspective that
makes the system easier to maintain and to transfer the model to different domains.

The update strategy can be hand-crafted (Larsson & Traum, 2000) or automatically
learned (Levin & Pieraccini, 1997). For the latter, the task of finding an appropriate
dialogue strategy is formulated as an optimisation problem. Here, the information state-
based model is described as an MDP) that allows to automatically learn a dialogue strat-
egy for a given application using RL. In Section 2.2, we will provide a more detailed
overview of the concept of RL and MDPs.

As user actions are subject to uncertainty, due to imperfect speech and intention recog-
nition, the system only has a belief about what was said and does not take into account
that this belief could be false. For including uncertainty into the DM process Young et
al. (2013) extended the information state approach to a hidden information state model.
Here, it is assumed that the dialogue states are not directly observable. The dialogue state
can only be estimated by making observations, i.e. the user actions. Thus, there exists
a probability distribution over multiple information states. For allowing decision-making
under uncertainty, an information state-based dialogue model formulated as a partially
observable decision process (POMDP) has been introduced (Williams & Young, 2007).
However, this approach is not the subject of this work. Hence, it is not described more
in detail.
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Plan-Based

The previously described models, finite and information state-based, are most useful for
providing rather soft assistance, i.e. the dialogue manager interacts with a combination
of databases and web services for information retrieval and question answering. For pro-
viding a deeper and more intelligent kind of assistance, e.g. for collaborative problem
solving and decision making, querying a database or web service might not be sufficient.
In collaborative interactions with assistant systems, users expect the system to further
one’s plans and goals (J. Allen et al., 2019). For fulfilling this expectancy, CAs need
to understand what plans and goals a user has and be able to reason about them. Ad-
ditionally, CAs can facilitate achieving one’s goals by performing adequate actions. In
accordance, CAs themselves need to create plans for performing actions and for reasoning
about their actions (McTear, 2020). Thus, task-oriented DSs need to be equipped with
reasoning and planning components for becoming truly cooperative CAs.

First work regarding the integration of planning in DS was provided by P. R. Cohen
and Perrault (1979) as well as J. F. Allen and Perrault (1980). Their work presents a
theoretical model for plan-based speech acts to recognize or construct plans for collabora-
tive dialogue. An evolution of this theory is the well-known belief-desire-intention (BDI)
model (Bratman et al., 1988; P. R. Cohen & Levesque, 1990) that sets the basis to endow
intelligent agents with rational behaviour, including planning and reasoning. This enables
them to form their plans and generate a set of actions in order to reach them based on
internal and external states. Typically, AI planning approaches are used for generating
an agent’s action sequences for accomplishing its goals. The three main components of
the BDI-framework are:

Belief: This concept represents the agent’s information state, that is, its available knowl-
edge about the world including itself and other agents.

Desire: This concept represents the motivational state of the agent. Thus, desires con-
stitute objectives or an ideal state of the environment that the agent would like to
achieve.

Intention: This concept represents a subset of desires, an agent is committed to achieve.
Therefore, an agent develops a sequence of actions based on its beliefs for attaining
its goals.

For deciding which desires become intentions and how to select intentions for becoming
agent actions, a BDI model makes use of practical reasoning. A deliberation component
is used for strategic thinking and decides what desires need to be currently accomplished.
The result is a set of intentions. Afterward, a means-ends reasoning component deals
with tactical planning and selects actions that should be performed to accomplish the set
of committed intentions. As a result, a set of plans and actions is generated. In con-
versational systems, the actions would be represented as communicative action schemes.
Such action schemes consist of preconditions and effects. To achieve a desire, a conver-
sational agent has to plan a sequence of communicative acts. This sequence starts with
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the communication act having the initial belief state as precondition and ends with the
communication act having the goal state as an effect.

Practical realisations of the BDI-model can be found in the development of prototypi-
cal dialogue managers, e.g. see Sadek et al. (1997) or Bohus and Rudnicky (2009). More
recently, Galescu et al. (2018) provided an extension to the development of BDI-based
dialogue managers by including concepts of collaborative problem solving (J. Allen et al.,
2002). However, these plan-based approaches for developing a collaborative CA are in-
complete as they lack the ability to be user-adaptive and to enable personalisation. In
this regard, Biundo and Wendemuth (2016) specify the concept of Companion-technology
which aims at intelligently adapting an assistant’s functionality to individual user require-
ments. According to the authors, a cooperative CA or so-called companion, combines the
cognitive abilities of planning, knowledge reasoning, and adaptive dialogue to provide
individualised assistance. Empirical evaluations of companion systems (Behnke et al.,
2019c; Bercher et al., 2014) demonstrate the acceptance and usefulness for users in real-
world application scenarios. In this work, we follow the line of research of cooperative
CA, as we study assistance systems with cognitive abilities in this thesis.

2.1.3. Concepts of Dialogue Strategies

In CAs, the DM component has to make a recurring decision: which action to take that
suits best the current context and situation for pursuing a specific goal. Thus, a system
follows a certain strategy or policy for achieving this. Depending on the type of task
and the specific target of a system there exist different kinds of strategies. For example,
if a system’s goal is to persuade a user then it needs to find adequate argumentative
strategies. An example of such strategies is described by Rach et al. (2018). In the
tutoring domain, an assistance system aims at increasing the users’ learning gain or their
motivation (A. C. Graesser et al., 2001; D. Litman & Silliman, 2004). Here, a system
has to find appropriate engagement and motivational strategies, e.g. the timely use of
appraisals or reflective dialogues.

However, the primary goal of task-oriented systems is to increase task success, e.g. see
D. J. Litman and Pan (2002), Su et al. (2015), and Wen et al. (2016). For this, a system
needs to make sure to keep the user engaged in the task and to correctly process the user’s
input. Therefore, strategies have been defined to clarify user information (grounding) and
to decide who should have the initiative during which point of the dialogue to progress
with the task. The selection of appropriate initiative and grounding strategies has also
shown to be beneficial for another important goal in HCI: enabling user satisfaction or
providing a high interaction quality, e.g. see Forbes-Riley and Litman (2006), Hastie
et al. (2002), Ultes (2019), and Ultes et al. (2015). As the dialogue initiative selection
and grounding strategies are also important for the realm of proactive dialogue models,
we will explain those two concepts in more detail in this section.
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Grounding

One of the major challenges in DSs is to deal with uncertainty and errors due to ambiguity
of language and the sensory limitations of current systems (Skantze, 2007). Addressing
this issue, however, is not the task of an individual during the interaction. All dialogue
participants are required to collaborate for identifying positive or negative evidence of
understanding. In doing so, private knowledge and beliefs can be shared with each other
for reaching a common ground (H. H. Clark, 1996). This process is understood under the
term grounding. There exist two aspects of grounding: either as initiated by a provider
of information aiming for clarification, justification, or conviction; Or as initiated by a
receiver of information to resolve misunderstandings or disagreement (Gregor & Benbasat,
1999):

Initiated by receiver: In case a DS detects potential misunderstandings, e.g. a cer-
tain confidence threshold for the recognised user utterance has not been exceeded,
it may ask the user for a confirmation of the relevant piece of information. As a
response, the user may validate or decline the system’s assumption. For the confir-
mation of user information, a DS may use either an explicit or an implicit strategy.
Using an explicit strategy, e.g. ”Do you want a Chinese restaurant?”, the current
dialogue is halted and the user needs to affirm or deny the system’s statement.
Using an implicit strategy, e.g. ”What price range should the Chinese restaurant
have?”, the dialogue continues to the next state by restating the previously pro-
vided information. Comparing the two strategies, the implicit one may provide a
smoother and more efficient dialogue. However, false information can be confirmed
unnoticed by the user more easily, which can foster the clarification of information
more cumbersome, especially for novice users who are not familiar with the system’s
mechanisms.

Initiated by provider: A common phenomenon in human-human dialogue is to reason
about dialogue actions and identify their causes, i.e. to find a reason behind a
certain utterance or action. For this, explanations can either have an intentional, e.g
“I want to go to a Chinese restaurant because I like noodles” or functional purpose,
e.g. “The system has a button to enable its speech recognition”. As autonomous
systems are able to make independent decisions, CAs can use explanative behaviour
for providing the user with additional information about its inner processes, i.e. how
a system came to a specific decision that may be unclear to the user. In doing so, a
CA proactively integrates the user into its decision processes. Depending on the goal
which should be accomplished by explaining, it can be differentiated into five types
of explanations: transparency (how the system came to this decision), justification
(why is this decision appropriate), learning (provide the user with information about
the domain), and relevance (why is this decision relevant) (Sørmo & Cassens, 2004).

While confirmation dialogues are a basic functionality of DSs due to the inherent uncer-
tainty of language, explanative behaviour has only been recently integrated. For example,
F. Nothdurft et al. (2012) have developed an adaptive explanation architecture, that can
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select an appropriate type of explanation depending on the context- and a user profile.
However, explanations have become a hot topic in HCI, especially concerning the inter-
pretability of machine-learning behaviour which is now predominantly found in DSs (e.g.
see Du et al. (2019)). In this thesis, explanations are relevant for justifying and clarifying
proactive behaviour.

Initiative

Generally, it can be differentiated between task and dialogue initiative in the domain of
intelligent CAs. According to Chu-Carroll and Brown (1998) “an agent is said to have the
task initiative if she is directing how the agent’s task should be accomplished, i.e., if her
utterances directly propose actions that she believes the agent(s) should perform.” Such
utterances may propose particular domain actions, e.g. the ordering of Chinese food in a
decision-making scenario about a certain type of restaurant, or problem-solving actions,
e.g. constructing a plan on how to decide what are the necessary elements for making
the decision. In HCI, either the user, the system, or both can have the task initiative.
In mixed-initiative interactions, a user and an autonomous agent collaborate for solving
tasks by taking interleaving actions.

The dialogue initiative can be divided similarly into three types during conversational
interactions according to McTear (2020) and D. J. Litman and Pan (2002):

User-directed: Here, the user initiates and controls the dialogue. However, this strategy
mostly supports so-called one-shot interactions, where the user issues a question
or command and the system reacts. Hence, this strategy is typically applied in
smart speakers and smart home assistants, where the user can repeatedly ask about
different topics.

System-directed: These dialogues are led by the system. Here, McTear distinguishes
between three types: the system initiates an interaction to deliver a reminder or
notification (proactive); instructional dialogues in which the user starts the dialogue
and the system repeatedly guides the user with little input from the user; the
previously described slot-filling dialogues, in which a user commences the dialogue
with requesting a service and the system takes over the command of the interaction
posing a set of questions for working out the user’s preferences and helps with task
completion.

Mixed-initiative: The term for this kind of initiative may not be confused with the term
mixed-initiative interaction for human-machine collaboration on a specific task. In
the sense of dialogue initiative, mixed-initiative either refers to a system’s ability to
ask open-ended and specific questions, while providing the user with more freedom
when answering questions in tasks-oriented dialogues (D. J. Litman & Pan, 2002).
Otherwise, the term can also be applied in open-domain interactions where the
conversation can span a variety of topics and both the system and the user have
control over the dialogue flow (McTear, 2020).
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2.1.4. Evaluation Methods

To compare the performance or quality of individual conversational systems and to mea-
sure the effect of different dialogue strategies, evaluation concepts are necessary. There-
fore, various types of measures and methods for evaluation have been developed. For
example, system evaluations can be conducted with real or simulated users using objec-
tive or subjective measures. In the following, the dialogue evaluation measures relevant
to the studies conducted in the scope of this thesis are briefly described. Furthermore, we
discuss the evaluation with both real users and by applying a user simulator. During the
conceptualisation phase of proactive dialogue models, studies were conducted with real
users to find out specific characteristics of proactive interaction, while the performance of
the implemented model is tested using simulated users. A more detailed descriptions of
methods for dialogue evaluation can be found in McTear (2020) and Pietquin and Hastie
(2013).

Objective

Objective measures are typically derived from logs of interactions with users. There exist
different measures for the evaluation of each module of the DS. However, in this thesis,
we concentrate on the evaluation of DSs in general, as the impact of proactive dialogue
strategies on the performance of a CA is investigated. Relevant measures for the studies
conducted in this work are Task Success, Dialogue Duration, and Compliance:

Task Success implies how well a system can perform a given task. In slot-filling dia-
logues, task success is usually measured by checking the correctly identified values of
a user goal. For CAs applied in mixed-initiative tasks, however, there exist no slots.
Therefore, other measures are necessary. For example, a binary measure whether
the task at hand was accomplished by the human-machine team or not. For testing
the proactive dialogue model in this work, we apply numerical scores to individual
decisions in sequential problem-solving tasks. For example, a task step can have
multiple different options to which different numerical values (0,10,20) are attached
for representing the quality of a decision.

Dialogue Duration describes the length of a dialogue. In most applications, efficient
task solving is desired. Thus, dialogue strategies that lead to task success in less
duration are found to be superior to others.

Compliance indicates whether a user follows the lead or suggestions of a system or
not. In proactive systems, the user is provided with different kinds of notifications,
suggestions, or persuasive messages. In case the user agrees to use a suggestion by
the proactive systems, the user is compliant. Otherwise, the system would be not
successful. Compliance can also be evaluated using binary measures for “success”
or “fail”.
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Subjective

As the interaction with a DS includes human beings, another way to evaluate systems is to
let user’s express their personal opinions about a system’s behaviour or operation. This
is typically conducted relying on questionnaires. For representing the users’ opinions
as numerical values, users rate statements about their perception of the system on a
scale. One of the most common scale types constitutes the Likert scale. A Likert scale
is commonly used to measure attitudes, knowledge, perceptions, values, and behavioral
changes. Usually, Likert scales consist of five, seven, or nine points for providing users
with the possibility to express their agreement or disagreement with a statement in a more
fine-grained way. For subjectively evaluating DSs or strategies, there exists a wide range
of psychological and technical questionnaires. For the studies presented in this thesis, we
primarily make use of questionnaires for measuring the following aspects:

Quality: Three aspects play a major role in measuring the quality of a conversational
system (Möller, 2004): the effectiveness, i.e. the degree of accuracy and complete-
ness of users solving a task with the system, efficiency, i.e. the effort of solving a task
with respect to task outcome, and satisfaction, i.e. the users’ subjective opinions
about the usefulness and usability of the system. One of the earliest questionnaires
measuring this aspect was provided by Brooke (1996). He invented the system us-
ability scale (SUS) containing ten items for measuring the quality of a wide variety
of products and services, e.g. software, websites and applications. Recommended
for the subjective quality evaluation of telephone-based spoken DSs is the ITU-T
Rec. P.851 (P.851, 2003). This questionnaire comprises multiple items relating to
the quality of information obtained from the system, speech input/output capabil-
ities, a system’s interaction behavior, perceived system personality, impression on
the user, and perceived task fulfillment (Möller, 2004). While we make use of the
previous two questionnaires for some experiments presented in this thesis, primar-
ily the subjective assessment of speech system interfaces (SASSI) questionnaire by
Hone and Graham (2000) is used. The advantage of SASSI is that it is accepted
and predominantly used in the dialogue community. Thus, its usefulness is validated
and the results are comparable among different applications. Furthermore, it offers
a set of distinguishable factors for measuring the system’s quality. SASSI contains
sub-scales for measuring annoyance, user satisfaction, cognitive demand, speed, and
habitability. Except for the concept of habitability, the meaning of each sub-scale
should be comprehensible. According to the authors a “habitable system may be
defined as one in which there is a good match between the user’s conceptual model
of the system and the actual system” (Hone & Graham, 2000). Thus, this concept
measures the congruence of the user’s expected system behaviour and actual system
actions.

User Experience: The quality evaluation of conversational systems focuses on specific
system attributes and capabilities. For including more user-related aspects into the
evaluation process, several user experience questionnaires have been developed. In
this thesis, we make use of the long and shortened version of the user experience
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questionnaire (UEQ) (Laugwitz et al., 2006). The long-version of the UEQ contains
six scales with 26 items: attractiveness, i.e. do users like or dislike the system;
perspicuity, i.e. is it easy to get familiar with and learn how to use the system;
efficiency, i.e. can users solve their tasks without unnecessary effort; dependability,
i.e. does the user feel in control of the interaction; stimulation, i.e is it exciting and
motivating to use the system; novelty, i.e. is the system innovative and creative and
catches the interest of users. Attractiveness is a pure valence dimension. Perspicuity,
efficiency, and dependability are pragmatic quality aspects (goal-directed), while
stimulation and novelty are hedonic quality aspects (not goal-directed) and represent
the “feeling” about the system. The shortened version only contains 10 items and
uses the sub-categories pragmatic and hedonic qualities. Furthermore, we measured
the motivation to use a system using the intrinsic motivation inventory developed
by McAuley et al. (1989). This inventory contains dimensions for measuring the
user’s interest-enjoyment, perceived competence, effort-importance, and tension-
pressure. However, as this questionnaire has overlapping dimensions with other
used questionnaires, we mainly considered only single dimensions of this survey.

Acceptance: For measuring the potential usage of a system in the real world, the ac-
ceptance of such technology is inevitable. It can be assumed that a person with
a positive usage attitude will use a specific technology (Davis et al., 1989). This
attitude can be named behavioural acceptance, which depends on the factors “per-
ceived usefulness” and “perceived ease of use” (Davis et al., 1989). Under the term
“perceived usefulness” Davis et al. (1989) understand “the prospective user’s sub-
jective probability that using a specific application system will increase his or her
job performance within an organizational context”, and by “perceived ease of use”,
the extent to which a user expects the system to be free of expense. The greater the
benefit of an information system and the simpler its usability, the sooner the user is
ready to use the new system (Davis et al., 1989). For measuring the acceptance of a
proactive dialogue model, we use the acceptance scale developed by Van Der Laan
et al. (1997). This scale consists of nine items and evaluates system acceptance on
two dimensions: a Usefulness scale and an affective Satisfying scale.

A detailed description of the questionnaires used in this thesis can be found in the Ap-
pendix. Objective and subjective evaluation metrics can be used to measure the per-
ception of a dialogue strategy or a conversational system in general. The evaluation can
be either conducted using real or simulated users. The differences between these two
evaluation paradigms is presented in the following.

Real Users vs. User Simulation

Experiments with real users can either take place under laboratory conditions or “in the
wild”, i.e. in real-life scenarios (McTear, 2020). In a laboratory setting, study participants
interact with a DS in scripted and limited scenarios. For rating the interactions, they
complete a questionnaire at the end of the session or at different time steps during the
ongoing conversation. Using this approach, the evaluation is strictly controlled and a
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wide variety of different scenarios can be explored and investigated. This ensures a high
within-test and between-test reliability that allows the collection of extensive data sets.
Furthermore, this allows more easily collect immediate feedback from participants, as
interviews are possible and study participants may be encouraged to use the thinking-
aloud method (Lewis, 1982). In this way, the users’ cognitive processes may be better
understood. However, the major problem with evaluations under laboratory conditions
is that they may not reflect real-life usage which may negatively influence the validity of
the measurements and the results may not generalise well.

These disadvantages can be alleviated using an “in the wild setting”, where study sub-
jects interact with a real system to accomplish a real task. For acquiring participants for
these kinds of studies crowd-sourcing platforms like Amazon Turk (Jurcıcek et al., 2011)
or clickworker 1 may be applied. These platforms offer a convenient way for collecting
data based on a diverse sample enhancing the validity of the results. However, studies in
the wild require to have already have a full-functioning system, which may be difficult to
obtain during the early stages of the development cycle, so simplifications have to made.
In addition, users have more freedom to act in a realistic environment with may endanger
the standardisation of the study setup.

A problem for both, laboratory and in-the-wild studies, is recruiting a sufficient number
of users for allowing a valid interpretation of data. For achieving a sufficient participant
number, often more than 30 participants need to be recruited which can make it quite
expensive to setup user studies. This especially holds true in exploration studies, where
the outcome is not easily predictable and a variety of options need to be explored. There-
fore, user simulation techniques have been developed. The idea of a user simulator is to
interact with a DS pretending to be a real user. On the one hand, this allows testing DS
prototypes with a large number of simulated “subjects”. On the other, user simulation
enables the collection of large amounts of data, which is a fundamental for training sta-
tistical, data-driven DSs (McTear, 2020). Additionally, they facilitate the exploration of
dialogue strategies that may be difficult to obtain in studies with real users and that may
not be apparent in existing dialogue corpora (McTear, 2020). Typically, user simulation
produces output in the form of semantic representations of user actions (Eckert et al.,
1997; S. Lee & Eskenazi, 2012; Levin et al., 2000; Schatzmann et al., 2006).

However, there also exist alternative approaches that can generate natural language
utterances, e.g see Kreyssig et al. (2018). López-Cózar et al. (2003) even presented a user
simulator that generates spoken utterances based on pre-recorded speech files. Consid-
ering the development of user simulators, it can be distinguished between two methods:
rule-based and corpora-based. Rule-based methods rely on hand-crafted rules and a range
of user profiles. A rule-based user simulator produces a static output for a given DS and
system action (Pietquin, 2005). For incorporating the inherent uncertainty of language
in user simulation and to model more natural user behaviour, probabilistic data-driven
approaches have been developed. One of the earliest stochastic models was developed by
Eckert et al. (1997) who made use of conditional probabilities in the form of bigrams.
Here, the dialogue context of the last turn was included for generating simulated user

1www.clickworker.de
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responses. This was then used to train a stochastic task-oriented dialogue model mod-
elled as an MDP (Levin et al., 2000). More realistic user simulators for task-oriented
dialogue were developed by Schatzmann et al. (2006) and S. Lee and Eskenazi (2012), for
example. Both approaches formulate a specific user goal model for representing the user’s
intention. Further, they apply a user model for generating a user action dependent on
the last system action and the user’s goal and use an error model for simulating speech
recognition and understanding errors. Besides only simulating task behaviour, there is
interest in modelling also the user’s social behaviour which is more relevant to the work
described in this thesis. For example, A. Jain et al. (2018) propose an data-driven ap-
proach for modelling both kinds of behaviours. For this, their user simulator comprised
four modules: a user model for generating distinct types of users having specific tasks
and social goals; a social rapport estimator for predicting the level of rapport that is
experienced by the user at every turn; a user dialogue manager that takes into account
this information, besides user model and past system actions, for deciding on the next
task- or socially-related user action. Further, a reward model can be included if the user
simulator is intended to train a dialogue model using RL.
To automatically train dialogue strategies and to generate stochastic user models, sta-

tistical methods are necessary. Statistical methods relevant to this thesis’s work are
described in the following.

2.2. Statistical Methods for Dialogue Systems

In the previous section, we have described various DS components and modules that make
use of statistical models without explaining their underlying principles. As most models
are based on ML techniques, we provide a brief introduction to the ML algorithms that
are used in this thesis. The introduction is mostly based on the popular textbook provided
by Alpaydin (2020). There, the author describes ML as “...programming computers to
optimize a performance criterion using example data or past experience”. Typically, an
algorithm, i.e. a sequence of instructions for transforming defined input to defined output,
is used to solve specific computational problems. However, for some tasks, there is no
knowledge of an appropriate algorithm, e.g. spam detection. Here, ML helps to “learn”
an algorithm for solving tasks based on example data, e.g. a set of e-mails labeled as spam
or no spam. Learning in this context implies that the computer tries to approximate the
process underlying the generation of the data. Thus, it may not be able to identify the
complete process but can detect particular patterns. These patterns may then be used to
predict the future, gain knowledge from data, or both. Usually, it can be differentiated
between three types of ML:

Supervised Learning: Supervised learning aims to learn a mapping from a set of input
features to an output, where the correct value or label of the output is known.
Considering the spam detection example, a set of input features could be specific
elements of the email, e.g. wording of the document or the sender name. Here,
the output could be labeled as a Boolean value representing if the specific email is
spam or no spam. A supervised learning algorithm would then try to identify the
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correct mappings based on a set of labeled data. Typically, a supervised learning
problem can be defined as a regression or as a classification task. Regression is used
for estimating a numerical value, while classification tries to assign input features
to one of multiple output classes that may be structured in an ordinal or categorical
manner.

Unsupervised Learning: Here, there exist no output labels. The goal of unsupervised
learning algorithms is to detect hidden structures in the input data without human
intervention. These structures are learned by finding reoccurring patterns in the
data. Popular unsupervised learning algorithms comprise clustering, where the aim
is to find groupings of input features; association, which finds relationships between
elements of the data set; and dimensionality reduction, which is a feature selection
method for identifying the most relevant features or merging several less meaningful
data into a new important feature.

Reinforcement Learning: These kinds of learning problems address finding an appro-
priate sequence of actions, i.e a policy. Thereby, an action is only good if it is part
of a good policy. Here, the policy can be described as good if it optimises a specific
cost function. For learning a good policy, this ML method needs to evaluate the
quality of a policy and learn from past action sequences for finding new, better
policies. A trial-and-error approach is utilised during the learning process, where
the system receives rewards for taking “good” actions.

In this thesis, we utilised solely supervised and RL methods. Therefore, only algorithms
from these methods are explained in more detail in the following sections. As data is
a pivotal aspect of these learning algorithms, we first address the most important data
collection methods for DS.

2.2.1. Data Collection Methods

According to Budzianowski et al. (2018), there exist three types of methods for collecting
dialogue data: machine-to-machine, human-to-human, and human-to-machine. Machine-
to-machine dialogue data is collected by simulating interaction outlines between an arti-
ficial user and a system bot via dialogue self-play (P. Shah et al., 2018). For generating a
more diverse data set, crowd workers are then recruited for paraphrasing the utterances.
This approach is useful for generating data for building task-oriented DSs. However,
procedural turn-taking, i.e. sequential planning or decision-making task, as well as the
handling of unstructured data is not covered by this approach. This approach is also
highly influenced by the quality and capabilities of the user simulator.

The arguably ideal way of collecting dialogue data are HHIs, being the most natural
approach and providing a high diversity of dialogues. With the rise of social networks,
the idea of recording publicly accessible conversations emerged. Relying on unsupervised
clustering algorithms, the Twitter data set (Ritter et al., 2010) consists of an open domain
collection with more than a million of conversations extracted from Twitter. Similarly,
the Ubuntu corpus (Lowe et al., 2015) provides chats in the area of technical support.
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Figure 2.6.: Example of a decision tree predicting the quality of wine based on the type,
alcohol and sulphates concentration.

The disadvantage of this type of collections is that parts of the data contain unusable
texts and spellings and thus require adequate cleaning. Additionally, the majority of these
conversations are not goal-oriented dialogues, while being mostly used to train end-to-end
DSs (Lowe et al., 2017). A special type of human-to-human data collections are wizard-of-
oz (WoZ) datasets (Kelley, 1984), in which a human wizard simulates system behaviour.
Here, dialogues follow a pre-defined script designating the potential actions the wizard is
allowed to take. The simulated system behaviour appears thus logically consistent and
human-like. To increase the quality and diversity of dialogues, the MultiWOZ approach
(Budzianowski et al., 2018) was developed containing 10000 dialogues in different domains
obtained by employing crowd workers. The procedure for collecting such a dataset is,
however, cumbersome and resource-intensive, since it requires additional human work-
time for the data collections as well as for the subsequent transcription and labelling.
This considerably limits the total number of samples and can lead to an inconsistent
system due to the dissimilar behaviour of different wizards.

As the last type, human-to-machine data collection is conducted with interactions be-
tween users and existing DSs. Naturally, the prerequisite for this approach is that a DS is
available and that all necessary functions have been implemented. This in turn facilitates
the annotation process as it is possible to extract objective features directly during the
experiment. So far, there already exist quite several such developed corpora, including the
“Let’s Go Bus Information system” corpus from the Carnegie Mellon University (Black
& Eskenazi, 2009).

2.2.2. Decision Trees

One of the simplest and most intuitive methods of supervised ML form decision trees.
As indicated by the name, the prediction problem is structured in a tree-like format.
Consequently, the elements of a decision tree are decision nodes, leaf nodes, and branches.
For predicting the target value of an arbitrary input vector, each decision node is labeled
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with a specific feature of the vector. The outgoing branches of a decision node represent a
decision rule for this specific feature. The branches either lead to other decision nodes or a
leaf node labeled with a target value or a probability distribution over all possible target
values. For illustration, consider an example of a toy classification problem predicting
wine quality as depicted in Fig. 2.6.

Decision trees are generated by identifying data set attributes that split observations so
that the resulting subsets are as distinguishable as possible. For identifying the attributes
that are best for making splitting decisions, the expected information gain from each
attribute with regard to the target variable is calculated. In information theory (Shannon,
1948), the expected information gain (IG) is the reduction of the information entropy H,
i.e. a measure of uncertainty of the decision problem. Entropy is a fundamental concept
for indicating uncertainty or loss in machine-learning, and can be formally described
given a discrete random variable X, with possible outcomes x1, ..., xn, which occur with
probability P(x1), ...,P(xn) as follows:

H(X) = −
n∑

i=1

P(xi) log P(xi) (2.1)

The decision tree learning algorithm uses the relative entropy between the parent node
and its children for selecting the best attributes as decision nodes. This is done recursively
in a top-down fashion until no more information gain can be achieved. A more detailed
overview of decision trees can be found in Breiman et al. (2017).

For improving the prediction performance, ensembles of decision trees are used, called
random forests (Breiman, 2001). The basic idea of random forests is that a large amount
of relatively uncorrelated trees that operate together are more accurate than any singular
tree. For modelling random forests, there exist two methods: bagging and boosting (see
Fig. 2.7:

Bagging: Using this approach the trees are built independently and in parallel. For
building the forest, each tree is trained using random sampling with replacements.
Furthermore, random sub samples of the input features are used by each tree for
generating the decision nodes as previously described. Each tree is grown to the
largest extent possible. No pruning, i.e. removing sections of the tree that have
redundant information, is applied. The final prediction is based on the results of all
decision trees. For regression tasks, the average of the decision trees’ values is used.
Majority voting is used in case of a classification problem.

Boosting: This method implies combining multiple weak learners (single decision trees)
to a strong learner. The main principle of this method is to sequentially build
trees that use information about the prediction errors their predecessors made and
apply pruning. Using this information the performance of the subsequent models
can be iteratively increased. For example, the decision tree learning algorithms
Adaboost (Freund, Schapire, et al., 1996) and extreme gradient boosting (XGB)
(Chen & Guestrin, 2016) make use of this method. Boosting usually leads to better
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Figure 2.7.: Boosting Methods.

prediction results as ensembles using the Bagging approach and is hence favoured
in ML.

As only the XGB-algorithm is used in the scope of this thesis, a few details of its model
specification are provided. XGB is a tree-boosting ML model based on ensembles of
decision tree using K additive functions to predict the output based on the prediction
outcome fk of each decision tree:

ŷi
(t) =

K∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi), fk ∈ F (2.2)

where xi is the i-th feature vector, F is a collection of k trees, ŷi is the predicted target
value, and t is the amount of training rounds. For training the model an objective function
equalling the sum of a loss function L and a regularisation term Ω is optimised.

Obj =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (2.3)

l measures the predictive power of the model between the real target value yi and ŷi,
while the regularisation term Ω measures the complexity of trees and reduces overfitting
for stable prediction.
XGB uses iterative gradient descent for optimising the objective function in an additive

manner. This is conducted by adding new trees at each training round. The trees are built
using an exact greedy algorithm. The algorithm iteratively finds the optimal splitting of a
decision tree by using residuals, i.e. the difference between the predicted and true values,
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Figure 2.8.: Support Vector based on Vapnik (1999).

and measuring the gain of each split. The tree is then pruned using the regularisation
term Ω for enhancing the generalisation of the prediction.

2.2.3. Support Vector Machine

Another popular algorithm for supervised prediction tasks are SVMs, introduced by Vap-
nik (1999). They have shown to be excellent at solving various problems such as digit
recognition, computer vision, and text categorization (Kecman, 2005). In the following,
the basics of the SVM are explained based on the books by Kecman (2005) as well as
Steinwart and Christmann (2008).

Typically for supervised learning problems, information in the form of a data set con-
sisting of a high-dimensional input vector x and output labels y. The data set can be
described as D = {xi, yi ∈ X×Y }, i = 1, l, where l represents the amount of training data
pairs. Furthermore, the underlying probability distributions are unknown, which requires
the training process to perform distribution-free learning. The goal of an SVM is to find
a linear separating hyperplane that can predict as best as possible the output label of
an unknown input vector. For this, the learning problem is stated to find a non-linear
mapping function y = f(x).

For explaining the operating principle of an SVM, a binary classification problem is
considered y is a scalar value. In the case of multi-class SVM, y would be represented as
a vector.

In a binary classification problem, a set of training examples (x1, y1), ..., (xn, yn)| xi ∈
Rn, yi ∈ {−1, 1} is used to create a hyper-plane separating two classes {−1, 1} with the
goal to maximise the margin between samples of each class. For simplifying visualisation,
only a two-dimensional input space, i.e xi ∈ R∈, is used as an example. In Fig. 2.8,
two-dimensional training samples as well as the trained linear separating hyperplane are
illustrated. The hyperplane separates instances of two classes 1 (illustrated as circles) and
−1 (illustrated as crosses). The exact position of the optimal hyperplane is determined by
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the instances of each class that are nearest to the plane. These instances are called support
vectors (drawn in bold). Optimal, in this sense, implies that the model generalises well on
unseen data, i.e. the hyperplane is able to correctly classify new data as best as possible.
The separating hyperplane can be mathematically described as a decision function:

d(x,w, b) = wTx+ b =
n∑

i=1

wixi + b = 0 (2.4)

where w denotes the normal vector of an input instance and its offset bias b. To classify
an unknown sample the following decision rule is applied:

ŷ = sgn[d(x,w, b)] =

{
+1, d(x,w, b) > 0
−1, d(x,w, b) ≤ 0

(2.5)

Depending on the position of the training sample to the hyper-plane, class 1 or -1 is
assigned to the unknown sample. Multi-class problems are solved by reducing the problem
to several binary classification problems according to a one-vs-one scheme. For finding
the optimal hyperplane among a possibly infinite set of planes that linearly separate the
classes, the margin between the hyperplane and the support vectors of each class needs
to maximised. For indicating the distance between a support vector and the hyperplane,
parallel canonical hyperplanes are used. These can be mathematically described as wTx+
b = 1, respectively wTx + b = −1. Thus, the largest margin between the canonical
hyperplane can be described as M = 2

∥w∥ . In order to maximise this margin, the norm of

the separating hyperplane’s normal weight vector ∥w∥ =
√
(wTw) needs to be minimised.

As a result, the following objective function needs to be minimised:

Obj =
1

2
wTw (2.6)

under the constraint that each input data point must lie on the correct side of the margin.
This can be described as

yi(w
Txi − b) ≥ 1, ∀ 1 ≤ i ≤ n (2.7)

For solving this problem, the saddle point of the Lagrange functional can be used stochas-
tic gradient descent can be used. However, the mathematical description of these methods
is out of the scope of this thesis.
SVMs have been designed to solve linearly separable problems. However, in real-world

scenarios, the distributions of the input features are too complex to be classified using
linear separation. For solving such non-linear problems, the so-called Kernel-Trick is
applied. Here, a non-linear kernel function is used to transfer the input features to a
higher dimension until the data is linearly separable. The original features space can be
transformed using various non-linear kernels. These comprise:

� Polynomial kernel, with a variable polynomial degree d: K(x, xi) = ((x · xi) + 1))d

� Gaussian radial basis function: K(x, xi) = exp(−γ∥x− xi|2) for γ > 0

� Sigmoid function or hyperbolic tangent: K(x, xi) = tanh(κx · xi) + 1 + c) for some
(not every) κ > 0 and c < 0
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Figure 2.9.: Artificial Neuron.

2.2.4. Artificial Neural Networks

Due to the recent advances in computational processing power and the availability of big
data, information processing using ANN has received wide recognition. Their learning
capabilities and flexibility have made them popular for solving various tasks including
pattern recognition, classification and regression, and function approximation. The el-
ementary component of ANNs is artificial neurons, which are inspired by the biological
neurons of the mammal nervous system (Rosenblatt, 1958). Biological neurons are cells
that transmit information to other neurons using electrical and chemical signals. For
allowing this kind of communication, a biological neuron possesses dendrites for receiving
information and uses a “sum-and-threshold” (Bishop et al., 1995) method for producing
an output via the neuron’s axons. These axons are connected to the dendrites of other
neurons, thus creating a dense network for information processing. Especially, the adop-
tion of a simplified “sum-and-threshold” method for artificial neurons has proven to be
useful for determining optimal discriminating functions (Bishop et al., 1995). Mathemat-
ically, the operating methods of a neuronal processing unit can be described as follows:

ŷ(k) = F

(∑
i

wi(k) · xi(k) + b

)
(2.8)

with ŷ(k) denoting the output of the k-th neuron. The output is calculated based on a non-
linear activation or transfer function. The function’s input is the sum of the data features
of an input vector xi(k) ∈ x, that are individually weighted by multiplying a factor wi(k)
and a neuron specific bias b. The components of an artificial neuron are illustrated in Fig.
2.9. The activation function can take various forms depending on the problem at hand.
In the original paper about the multi-layer perceptron (MLP) by Rosenblatt (1958), one
of the first considering neural networks, a threshold or step function is used that takes
the value 1 if the input exceeds a certain value, while outputting 0 otherwise. Nowadays,
usually rectified linear units, sigmoid, and hyperbolic tangent functions are used (Nielsen,
2015). For generating predictions or to make classifications, a high number of neurons
are interconnected creating an ANN. Based on the books by Nielsen (2015) and Bishop
et al. (1995), the learning problem and different structures of an ANN are explained in
the following.
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Figure 2.10.: Neural net.

The typical structure of an ANN is arranged using three different kinds of layers:

Input Layer: This layer poses the interface between input features and the network and
has the same size as the input vector. For example, if the data vector contains eight
entries, then the input layer would consist of eight neurons.

Hidden Layer(s): As an intermediate layer between input and output, there may exist
one or more deeply connected hidden layers. Deeply connected implies that neurons
of the hidden layers receive the outputs of all neurons of the previous layer and
transmit their output to all neurons of the next layer.

Output Layer: The output of an ANN is provided by an output layer. The number of
neurons of this layer and their activation functions are selected dependent on the
problem to solve. For example, one output neuron is often sufficient for solving a
regression or binary classification problem. For classification tasks the number of
output neurons equals the number of classes. For classification tasks, the activation
function of the output layer is often a softmax function. Softmax represents the
output as a probability distribution, as the sum of all output activations equals 1,
and individual outputs are valued between 0 and 1. This allows to interpret the
network’s output as its estimate of the probability that it is correct.

In the simplest configuration, the output of each neuron in a hidden layer is conveyed as
input to the neurons of the succeeding layer. This structure is known as a feed-forward
network, where information flows in one direction, from the input to the output. The
structure is depicted in Fig. 2.10. As usual for supervised learning problems, ANNs
are trained by adjusting its parameters for minimising an objective or loss function. For
this, usually, the quadratic cost function, or mean squared error (MSE), and the cross-
entropy function are used. These functions measure the difference between the annotated
“correct” output and the network’s estimated output.
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Figure 2.11.: Recurrent neural net.

The MSE can be described mathematically as

Obj =
1

2n

k∑
i

(yi − ŷi)
2 (2.9)

and the cross-entropy can be noted as

Obj =
1

n

k∑
i

[yi ln ŷi + (1− yi) ln (1− ŷi)] (2.10)

with n being the number of vectors in the training data, k the number of output neurons, yi
the correct output value, and ŷi and networks predicted output value. For minimising the
network’s error, and thus its objective function, e.g. stochastic gradient descent and error
back-propagation (Rumelhart et al., 1986)can be used. In doing so, the weights w and bias
b are automatically trained. In principle, the training of an ANN works as follows: First,
weights are initialised usually using small random numbers. Afterwards, the network
calculates an output based on some input data and measures the error. Subsequently,
the error is propagated backward through the network using gradients to determine the
influence of different weights on the error function. Finally, a learning algorithm, such
as stochastic gradient descent, can be used for updating the network’s parameters. The
network is trained iteratively through multiple epochs and usually using mini-batches
of the training sample. For training ANNs, several so-called hyper-parameters can be
adjusted to improve the performance of a network. This includes a learning rate α, number
of epochs, the size of the mini-batches, and using different regularisation methods (e.g. l2
regularisation, dropout) for making the ANN better at generalising to unseen input data.
Furthermore, the number of layers and neurons, as well as different kinds of activation
functions can be used. For tuning these hyper-parameters, there exist only heuristics up
to this date. Therefore, finding the correct configurations of a network is quite complex
and usually, this process is automated using greedy search methods, e.g. grid search.
Another interesting variant of ANNs are RNN that includes dynamic changes over time

in their model. Here, the basic idea is that a neuron not only feeds forward information
but also has a connection of its output back it its input. Therefore, they are called
recurrent networks, as there exists a backward information flow, i.e. information from the
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Figure 2.12.: Reinforcement learning environment based on Sutton and Barto (2018).

past can be used in the current process. This allows the model to store information over
time, and to create a kind of memory for providing context. For this reason, RNNs are
particularly useful for learning temporal and sequential dependencies. Fig. 2.11 illustrates
the topology of an RNN, which can be unfolded for representing temporal relations. For
training RNNs, a variant of back-propagation, called “back-propagation through time” is
used.

A major drawback of RNNs, however, is that it can only make use of limited context,
as back-propagation through time fails for longer sequences. This is due to the either van-
ishing or exploding outputs of the network neurons, which is also named the vanishing
or exploding gradient problem (Bengio et al., 1994). To remedy this problem , specific
neurons such as gated recurrent unit (GRU) (Chung et al., 2014) and long short term
memory (LSTM) cells (Hochreiter & Schmidhuber, 1997) can be applied. Both neuron
structures use a gating mechanism for updating and resetting their memory. This al-
lows to store or forget specific information over time, which also prevents the gradients
form exploding. LSTMs and GRUs provide comparable performance but a GRU-based
networks are significantly faster to compute.

2.2.5. Reinforcement Learning

In the following, the concept of RL is briefly described based on the books by Sutton and
Barto (2018) and Szepesvári (2010). RL is a sequential decision-making problem. An
agent interacts with an environment by taking actions in different situations or states,
As an effect the agent receives a positive or negative reward and transitions to a new
state, where the process starts over again. A reward rt is a scalar feedback value that
indicates how good the agent is doing at time step t. The goal of RL is for the agent to
find an optimal policy (sequence of actions) π(s|a) = P (A = a|S = s) that maximises the
expected discounted rewards Rt, also noted as return. For achieving the goal, the agent
learns by trial-and-error under usage of the environment’s feedback (reward) based on its
own actions and experiences. The RL problem is depicted in Fig. 2.12. It can be formally
modelled as an MDP. An MDP can be described mathematically as tuple (S,A, P,R, γ)
where S is a finite set of world states and A denotes a finite set of actions an agent can
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Figure 2.13.: Markov decision process.

execute. P describes the transition probability function P a
ss′ = P [st+1 = s′|St = s,At = a]

determining the probability of transitioning to state s′ ∈ S after taking action a ∈ A in
state s ∈ S. R is the reward function Ra

s = E[Rt+1|St = s,At = a] which describes
the expected next (immediate) reward. γ is a discount factor ranging between 0 and
1, that affects the importance of future rewards. A fundamental aspect of MDPs is the
Markov property P [St+1|St] = P [St+1|S1, ..., St] indicating that the current agent state
contains all relevant information about the interaction history. The learning objective is
to maximise the total discounted reward for time step t

Obj = Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1 (2.11)

Fig. 2.13 illustrates an MDP. As previously mentioned, for maximising the reward an RL-
agent needs to find an optimal policy. Therefore, it is required to estimate the expected
return starting from state s, and subsequently following policy π: vπ(s) = Eπ[Gt|St = s].
This function is called state-value function and is measure for how good it is to for an agent
to be a in specific state following a specific policy. Similarly, it can be measured how good
it it is to take a specific action in a given state, and then following a particular policy. This
is denoted as action-value function or Q-function: qπ(s, a) = Eπ[Gt|St = s,At = a]. Both
value functions can be decomposed into recursive formulas called Bellman equations. This
property is fundamental for solving MDPs, as they designate the relationship between the
value of a state and its successive states. Mathematically, both Bellman equations can be
described as

vπ(s) = Eπ[Rt + γvπ(st+1)|St = s] =
∑
a∈A

π(a|s)qπ(s, a) (2.12)

qπ(s, a) = Eπ[Rt+γqπ(st+1, at+1)|St = s,At = a] = r(s, a)+γ
∑
s′∈S

p(s′|s, a)vπ(s′) (2.13)

An optimal action-value function describes the best possible action selection in a MDP,
as it is the maximum action-value function over all policies q∗(s, a) = maxπ qπ(s, a).
Using the Bellman equations, the optimal value function can also be expressed in terms
of the optimal action-value function v∗(s, a) = maxa q∗(s, a). Optimal policies can be
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found by solving the Bellman equations. However, there exists no closed-form solution.
Therefore, iterative methods need to be applied. Here, it is distinguished between model-
based and model-free methods. In realistic scenarios, the agent usually has incomplete
knowledge about the dynamics of the environment, i.e. the state transition probabilities
are unknown. For this reason, we only describe model-free methods in the scope of
this thesis. In case a model is not available, it is essential to estimate the action-value
function q∗. Without a model, the state-value function v∗ is not sufficient for determining
a policy. Thus, it is required to estimate the value of each action for making inferences
about the best policy. Model-free RL comprises two phases, also known as General Policy
Iteration: Prediction, i.e. estimate the action-value function and evaluate the current
policy of an MDP, and Control, i.e. optimise the action-value function and find the best
policy. The optimal value functions can be learned by sampling experience in realistic
or simulated environments. Here, primarily two approaches are used to learn an optimal
policy: monte carlo (MC) learning and temporal difference (TD) learning. The MC-
method samples and averages the return for each state-action pair for estimating the
value function. According to the law of large numbers, the empirical mean of these
estimates converges to the true expected value as the number of samples increases. The
estimate is updated here after observing a complete episodes of training samples based
on the actual return. Contrary, TD uses bootstrapping, i.e. the estimate of the value
function of a specific state s is updated based on the estimate after subsequent n-steps of
an episode. Thus, the estimation is updated towards an estimated return instead of the
actual return. For this reason, TD learning is usually more efficient than MC and is not
restricted to episodic problems which require terminal states.

Both approaches of RL suffer from the exploration and exploitation dilemma. The
agent has to compromise between exploration for finding new information about the envi-
ronment and exploitation which uses the information to maximise the reward. For finding
new, potentially better policies, continual exploration needs to be ensured. For this, ϵ-
greedy exploration is usually applied. There, a greedy action, i.e. an action that maximises
the state-action value, is chosen with probability 1 - ϵ. Otherwise, with probability ϵ a
random action is chosen. In doing so, the policy can be continuously improved.

For learning an optimal strategy, it can also be differentiated between two learning
control mechanisms: On-policy and Off-policy methods. Using on-policy methods, the
policies used for Prediction and Control are the same. Contrary, off-policy methods make
use of two separate policies. A target policy π(a|s) is evaluated for computing qπ(s, a),
while actions are selected following a behavioural policy µ(a|s). This allows learning an
optimal target policy using an exploratory behaviour policy. Off-policy methods are more
powerful and lead to better generalisation, due to their ability to learn from old policies
and different sources, e.g. humans or other agents. For both methods there exist various
MC and TD algorithms. Due to the limited scope of this thesis, we only consider the
Off-policy TD algorithm Q-learning algorithm in the following. Applying Q-learning, the
next action is selected by sampling from the behavioral policy At+1 ∼ µ(·|St), while an
alternative action sampled from the target policy A′ ∼ π(·|St) is used for evaluation.
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Consequently, the action-values are updated towards the value of the alternative action

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, A
′)−Q(St, At)) (2.14)

For finding an optimal policy, both behaviour and target policies are improved. While
the target policy is greedy π(St+1) = maxA′ Q(St+1, A

′), the behaviour policy is ϵ-greedy
to allow for exploration. Thus, the update equation can be simplified to

Q(St, At)← Q(St, At) + α(Rt+1 +max
A′

γQ(St+1, A
′)−Q(St, At)) (2.15)

After training, The optimal strategy can then be directly derived, as π(a|s)∗ = maxAQ(s, a).
In Q-learning, the action-value function is represented by a lookup table, where each state-
action pair has an entry q(s, a). However, for large MDPs with a high number of states
and actions it is impractical to learn the value of each state-action value individually.
Therefore, generalisation from examples need to applied in order to infer from seen states
to unseen states. For this, function approximation methods are applied. For example,
ANNs can be used as a function for mapping states to action-q-value pairs. The com-
bination between neural networks as function approximators and Q-learning is called a
deep-q-network (DQN) (Mnih et al., 2015), which we briefly describe in the following.
Here, a neural network is used to approximate the action-value function Q(s, a;ϕ) ≈

Q∗(s, a), with ϕ denoting the network’s weights. The network’s structure consists of
an input layer with the size of the state features, one or more hidden layers, and an
output layer that comprises neurons equalling the number of possible actions in the MDP.
Similarly as described in the previous section, the goal is to update the weights of the
network to optimise an objective function. Concerning Q-learning, the objective function
for DQNs can be mathematically described as

Obj(ϕi) = Es,a,r,s′∼Di

[(
r + γmax

a′
Q(s′, a′;ϕ−

i )−Q(s, a;ϕi)

)2
]

(2.16)

reducing the MSE in the Bellman equation. Further, et = (st, at, rt, st+1) are the agent’s
experiences at each time step following a ϵ-greedy behavioural policy for exploration. The
experiences are stored in a data set Dt = (e1, ..., et), also known as the replay buffer.

For training the DQN, mini-batches of the replay buffer are randomly sampled. This
approach is called experience replay and is more data efficient and allows to stabilise
the learning of network parameters. Furthermore, a separate network for generating the
target Q-values is used in the Q-learning update. Usually, some older network with the
weights ϕ−

i is used for generating the target values following an greedy policy. The weights
of this network are kept fixed for a specified number of time steps to ensures the stability
of the training process. For updating the weights and to finally learn the optimal Q-value
function a variant of the stochastic gradient descent algorithm is used.

2.2.6. Evaluation Methods

For measuring and comparing the performance of different machine-learning algorithms,
evaluation metrics are necessary. Depending on the problem and used algorithm, it can
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Figure 2.14.: Example of a confusion matrix.

be chosen from a variety of metrics. As only supervised learning for classification and RL
are considered in the scope of this thesis, we limit the description of evaluation variables
for these approaches. RL in the DS domain is used to find optimal dialogue policies or
strategies based on hand-crafted rewards. For this reason, the result of RL is a dialogue
strategy and hence can be evaluated using the typical dialogue evaluation metrics as
described in the previous section. For supervised learning approaches considering classi-
fication, standard metrics are derived from a so-called confusion matrix. The confusion
matrix counts correct and incorrect predictions of the classifier concerning the true class
labels. The matrix rows denote the predicted values, while the columns correspond to
the actual classes. Fig 2.14 illustrates an exemplary confusion matrix. Several confu-
sion matrix-based metrics are explained in the following. Another important aspect of
evaluating machine-learning methods is generalisation.

For training a classifier a training data set is used. Consequently, the classifier is fit
to this specific data set with the goal to minimise the prediction error, i.e. to minimise
the number of false predictions. For this reason, evaluating algorithms on the same
data set which was used for training does not reveal anything about its true performance.
Therefore, algorithms are trained and tested on distinct data sets, named training and test
data set. This allows evaluating the performance of the classifiers on previously unseen
data for creating an objective and unbiased measurement. In doing so, the generalisation
of an algorithm can be established. In the following, different metrics for measuring
the classification performance and the most important approach for generalisation cross-
validation are described.

Metrics

One of the most used metrics for evaluating classifiers is accuracy. Formally, it can be
described as follows based on a confusion matrix

accuracy =

∑K
i=1 TP (Ci)∑K

i=1

∑K
j=1Ci,j

(2.17)
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with K being the number of classes, TP being the true positive classification, i.e. the
prediction was correct, Ci indicating the confusion matrix entries for class i, and Ci,j

denoting the confusion matrix entry at the respective row and column. Usually, accuracy
works very well for categorical class labels, that have no natural order. However, in
the case of ordinal classes, the distance between the wrong prediction to the real class
is important which is not represented in the accuracy metric. Therefore, an extended
accuracy (eA) measure can be computed for ordinal class distributions (Rach et al., 2017).
Here, the amount of guesses in which the classification was wrong only by one class is
computed. The percentage δ of these guesses in relation to the total amount of class-wise
occurrences can be derived directly from the confusion matrix C. Adding this value to
the accuracy gives a percentage of usable predictions of the classifier eA = accuracy + δ
with

δ =
1

N

(
K−1∑
k=1

Ck,k+1 +
K∑
k=2

Ck,k−1

)
(2.18)

with N the number of total entries of C and K the number of classes, i.e. the dimension
of C. For imbalanced data sets, i.e. one or more classes appear significantly less in the
data set than other classes, the accuracy measure can be misleading. In such cases, other
metrics are more reliable. For example, precision (P) may be used for measuring the
proportion of correct classifications of a specific label to all samples that are classified as
the respective label. Based on the confusion matrix, precision can be defined as follows

P =
1

K

K∑
i=1

TP (Ci)

TP (Ci) + FP (Ci)
(2.19)

with K being again the number of classes, TP being the true positive classification of
class Ci , and FP being the false positive classification of the respective class. Further,
unweighted average recall (UAR), i.e. the arithmetic average of all class-wise recalls, may
be used

UAR =
1

K

K∑
i=1

TP (Ci)

TP (Ci) + FN(Ci)
(2.20)

with all the previously introduced variables being the same and FN being the false
negative classification of the respective class, i.e. samples that were falsely labeled to
belong to the specific class.
In addition, the F1-score, i.e. the harmonic mean between precision and recall, may be

used

F1 = 2 · P · UAR

P + UAR
(2.21)

Furthermore, linearly weighted Cohen’s κ, and Spearman’s ρ were used as evaluation
metrics. Cohen’s Kappa κ (Spitzer et al., 1967) measures the relative agreement between
two sets of ratings and is defined as

κ =
pa(w) − ps(w)

1− ps(w)
(2.22)
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where pa(w) is the observed agreement, and ps(w) is the chance agreement. Hence, κ = 1
for perfect agreement and κ = −1 for perfect disagreement. However, this version of
Cohen’s Kappa does not work well for ordinal scaled class labels, as the disagreement
between the labels is not weighted accordingly, i.e. the distance between the disagreed
labels is not reflected. Therefore, Cohen introduced a linearly weighted version of Cohen’s
κ. Here, three matrices are used for the measurement.

κ = 1−
∑K

i=1

∑K
j=1wijxij∑K

i=1

∑K
j=1wijmij

(2.23)

with k being the number of classes, Cij being a particular entry of the observed confusion
matrix, wij being the weighting factor between label i and j in the weights matrix, and
mij being the respective entry in the expected matrix based on chance agreement.

Spearman’s rank correlation coefficient Rho ρ is a non-parametric measure for the rank
correlation between two variables and describes how well one variable can be expressed
by the other (Spearman, 1904).

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2.24)

where d represents the pairwise distances of the ranks of the observations xi and yi and
n is the number of samples. Thus, ρ = 1 if observations have identical ranks and ρ = −1
if observations have fully opposed ranks.

Cross-Validation

Usually, supervised learning classifiers are trained on a limited amount of labeled data
that only represent a small-scale model of the “true world”. For being applicable in
realistic environments, the predictor must be able to handle previously unseen data ob-
servations, otherwise, it will fail. Therefore, testing on unseen data is crucial for testing
the performance of a classifier. The goal of supervised learning is to perform the best
possible on such test data, as it can be concluded that the model will also be able to
generalise. The arguably best way to obtain better generalisation and less biased results,
especially for smaller data sets, is to apply m-fold cross-validation. Here, the data set is
split equally into m disjoint sets. Typically, splits of size m = 5 or m = 10 are used. For
classifier training, one subset is selected as test set, while the other m−1 subsets are used
for training. After training, the classifier is tested on the chosen subset. Subsequently,
a different subset as before is selected as test data and the cycle is repeated. This kind
of data rotation stops after all m subset have been selected as test data. The final per-
formance value of the trained model can then be calculated by taking the performance
averages of each fold. There also exists stratified m-fold cross-validation approaches for
imbalanced data sets to ensure that the minority classes are available in all subsets.
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2.3. Psychological Models for Human-Computer Cooperation

Human factors play a fundamental role in human-computer cooperation as computer-
based assistants aim to work alongside humans. Therefore, it is necessary to understand
how humans are affected by CAs, and which cognitive concepts and processes are involved
during dialogue with a CA. In the following, we present five concepts that are relevant
for the work presented in this thesis.

2.3.1. Theory of Mind

For cooperating adequately and advancing towards problem-solving in the interest of
users, a CA needs to understand to some extent how they “think” and “feel”. In doing
so, a computer may be able to predict user behaviour. This allows deciding whether
the initiation of a dialogue can be helpful or not. Theoretically, a CA might infer, for
example, user confusion from specific cues and the interaction history which allows it
to deduce that the user is possibly looking for help. Here, a system could exploit this
knowledge to act in advance and show goodwill. This in turn could foster trust in the
user towards the system as we explain in the next section. The development of trust can
subsequently be used as a positive feedback and allows the system to evaluate and adapt
its own behaviour. However, cooperation is dyadic process. Thus, the user also needs
to be able to understand a computer’s “thinking” in order to form expectations and be
able to develop trust in its behaviour for a successful interdependence. In psychology, the
concept of understanding and predicting the inner processes of others is understood as
TOM.

According to the definition by Margolis et al. (2012) “Theory of mind refers to the
cognitive capacity to attribute mental states to self and others”. TOM is also often
referred to “mindreading” or “mentalising”, for example. Generally, mental states include
perceptions, bodily feelings, emotional states, and propositional feelings (beliefs, desires,
intentions). The attribution of these states can be made verbal as well as non-verbal and
are an important aspect of social life (Cuzzolin et al., 2020). For understanding this social
phenomenon, its underlying processes are investigated. Here, the main question is, how
do cognitive systems form beliefs or judgments about others’ mental states that are not
directly observable. According to social cognitive research there exist two main theories
for explaining this:

Theory-theory: Theory theorists argue that psychologically competent humans under-
stand and predict thought and action by using implicit knowledge, a so-called folk-
psychological TOM (Carruthers & Smith, 1996). This knowledge is a theory one
has for attributing mental state concepts to oneself and others. The theory is devel-
oped by oneself using causal-explanatory generalisations. This implies that humans
create generalisations about the usage of mental concepts by making observations
through interaction with their environment. These generalisations can be under-
stood as a set of rules that map observable input to certain mental states, mental
states to other mental states, and mental states to observable outputs (Margolis et
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al., 2012). These rules are stored in a kind of mental module for making inferences
about the mental state of oneself and others.

Simulation-theory: Another approach of TOM considers the simulation of mental states,
also called empathy theory (Gordon, 1986). Here, the process of predicting the be-
haviour by others is to simulate their mental states by trying to create similar
mental states of their own as surrogates of the others. Thus, this process can also
be described as “stepping in one shoe”, where humans use their minds to model an-
other’s for predictions (Margolis et al., 2012). Thus, mental concepts are simulated,
by imagining the situation of others and consequently generating the thoughts or
actions attributed.

Even though the role of TOM in consciousness is unclear and controversial (Carruthers &
Smith, 1996), it has drawn lots of interest from the AI community. For example, Cuzzolin
et al. (2020) argue that an AI with the capacity of having a TOM would greatly increase
trust in such a system, for the reason we outlined before. Therefore, several researchers
have investigated a machine’s TOM (Rabinowitz et al., 2018). They propose that an
artificial agent could learn autonomously how to model other agents using limited data.
For accomplishing this, e.g. inverse RL (Abbeel & Ng, 2004), Bayesian TOM (C. Baker
et al., 2011) or game theory (Yoshida et al., 2008) approaches have been investigated.
Most prominent is the work by Rabinowitz et al. (2018), who let an ANN learn to predict
the future behaviour of previously unseen deep RL agents by using behavioural traces of
a high number of different agents for training. This process, which they label as “meta-
learning”, allows them to bootstrap predictions about agents’ characteristics and mental
states. In experiments, they showed that their framework passes classic TOM tasks such
as the “Sally-Anne” test (Baron-Cohen et al., 1985) of recognising that others can hold
false beliefs about the world. Passing the “Sally-Anne”-test is widely believed as the core
requirement for the manifestation of an TOM, i.e. the ability to understand that others
have their own beliefs that may not correlate with reality. Transferring these findings to
the domain of CAs may allow predicting user behaviour and their internal states from a
large amount of interaction observations. One of these states that is essential for successful
human-computer cooperation is the concept of trust, which is described in the following.

2.3.2. Trust in Human-Computer Interaction

Trust is a fundamental concept in interpersonal relationships and has been extensively
studied over the past 60 years by social and organisational scientists as well as psycholo-
gists. In one of the earliest works on trust in relationships, Deutsch (1960) defined trust
as the ability of a party (the trustor) to have confidence in the actions of another per-
son (the trustee) under the assumption that this decision may lead to either harmful or
beneficial consequences. In his work, trust is described as the belief in another person’s
ability and the intention to produce a benefit, even though a violation of trust may have
negative consequences to a greater extent than a trust fulfilment has benefits.
Rotter (1980) described trust as a stable personality trait and highlighted the benefits

of high trust in the interaction between people. A theoretical model of trust in romantic
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relationships was provided by Rempel et al. (1985). Contrary to Rotter, they proposed
trust to evolve out of experience and interaction. Hence, trust was seen as a dynamic
variable. Based on this precondition, predictability, dependability, and faith are seen as
the main aspects of trust. The predictability of a partner is determined among others by
consistent and recurring behaviour. Dependability is defined by the partner’s character-
istics and qualities, e.g. attributes such as reliability and honesty. While predictability
and dependability are mainly influenced by the partner, the third construct of faith is
one’s personal belief in the goodwill of their partner in face of an uncertain future.

Similarly, R. C. Mayer et al. (1995) investigated trust in organisational structures based
on the three factors of perceived trustworthiness of another party: ability, benevolence,
and integrity. Ability is related to another party’s set of skills or competencies to complete
certain tasks in a specific domain. The extent to which a trustee is believed to want
to do good to a partner is described as benevolence. Integrity implies that a trustee
follows a set of moral rules that a trustor finds acceptable. The authors specified trust
to be a willingness to take risks and to be vulnerable to the actions of another party
“based on the expectation that the other will perform a particular action important to
the trustor, irrespective of the ability to monitor or control that other party” (R. C. Mayer
et al., 1995). Their model also includes an outcome loop, which compares the perceived
trustworthiness and actions of a trustee for trust updates. For example, when the trustor
takes a risky action that results in a positive outcome, the trustee’s perceptions are
enhanced. Trust can also be seen as a construct of cooperativeness, as trustor and trustee
are interdependent (Simpson, 2007). The trustor needs to cooperate with the trustee
to accomplish a certain goal and requires that the trustor believes in the reliability and
helpfulness of the trustee.

The concepts of trust are transferable to interactions with computers and machines.
Particularly, since computers are perceived as social actors and social rules are believed
to be applicable in such interactions to some extent (Madhavan & Wiegmann, 2007; Nass
et al., 1994). With the increasing progress in automation and conversational AI, machines
could assist in complex task domains by providing guidance and advice. This makes hu-
mans vulnerable to the decisions of their programmed “partner” and thus a trustworthy
human-machine relationship is indispensable. Otherwise, the system is possibly not ac-
cepted and becomes obsolete. Schaefer et al. (2016) describe the effect as the ’no trust
– no use’ principle. This is also stated in the earlier works on trust in automation by
Muir (1987) and Muir and Moray (1996), who hypothesise that independent of the “in-
telligence” or finesse of an autonomous system, users will reject a system when it is not
perceived as trustworthy. In literature, this phenomenon is known under the term under
reliance (J. D. Lee & See, 2004; Parasuraman & Riley, 1997). An example for this is the
false alarm problem often occurring with fire detectors (Parasuraman & Riley, 1997). In
case the false alarm ratio is too high, people may disuse the device. even though this
could have negative consequences. Contrarily, over reliance in automation may lead to
misuse because people may overestimate the competence of a system (Parasuraman &
Riley, 1997). Therefore, trust calibration is necessary, in which a user sets an appropriate
trust level corresponding to the machines trustworthiness and uses it in accordance with
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its abilities and limits (Muir, 1987). Transferring the notion of trust to the CA domain,
we understand the term trust in the scope of this thesis according to the definition pro-
vided by J. D. Lee and See (2004) as “the attitude that an agent will help achieve an
individual’s goal in a situation characterized by uncertainty and vulnerability”. In the
following, we present relevant trust models concerning HCI.

Models

Fundamental research on modelling trust has been done in the domain of autonomy
research (Hoff & Bashir, 2015; J. D. Lee & See, 2004; Muir & Moray, 1996; Schaefer
et al., 2016). However, CA can be considered as an autonomous system, hence human-
autonomy models of trust may be transferable. For CA design, two models stemming from
autonomy research are of particular interest. Schaefer et al. (2016) as well as Hancock et
al. (2011) describe a model for categorising factors that influence trust in automation and
robots respectively. In the following, we will refer to the Schaefer et al. model as it is an
extension to Hancock’s model and provides a more general view on trust in automation.

Schaefer et al. (2016) proposed three factors that are fundamental for modelling trust:
the human, the autonomous partner, and the environment. Each factor has specific
characteristics that influence the human-automation trust relationship. Considering the
human element, individual traits, states, cognitive factors, and emotive factors play a
decisive role in trust development:

Traits: There exists some evidence that age, gender, culture, and personality influence a
human’s trusting behaviour. However, the power and direction of these relationships
have not been consistent across different experiments. An interesting human trait
is a person’s trust propensity. This trait defines how willing a human is to trust
others or machines. Therefore, it can serve as a baseline for predicting the initial
HCT level (Jian et al., 2000; Merritt & Ilgen, 2008; Merritt et al., 2013).

States: The user states stress, fatigue, and attentional control, i.e. the setting and flexi-
bly shifting of focus, are highly correlated with the perception of the interaction with
autonomous systems. There also exists a tendency that mood and affect directly
influence trust development.

Cognitive Factors: These factors comprise a human’s self-perceived ability to use au-
tomation, their technical understanding, and expectancy concerning the automa-
tion. A human’s self-perceived ability to use automation depends on the degree
of performance capability, workload, and system as well as domain expertise. The
technical understanding of the system is influenced by the ease of learning the in-
teraction, and prior experience with the same and similar systems. For example, as
it has been shown that trust develops over time, experience directly influences the
trust development (Merritt & Ilgen, 2008). Expectancy relates to the TOM and how
a user predicts the system’s perceived usefulness and the perceived benefits of the
automation. Furthermore, the reputation of a system influences its trustworthiness
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Emotive Factors: Attitudes towards the automation, confidence in the automation,
as well as comfort and satisfaction with the automation also impact the human-
automation trust relationship. For example, it has been shown that positive emo-
tions, e.g. happiness, positively affect trust in a system.

Trust antecedents of the autonomous partner are system-specific features and capability
related features:

Features: The features of an autonomous system comprise its level of automation, mode
of communication, appearance or anthropomorphism, intelligence, and personality.
The level of autonomy (LoA) is related to the amount of control a system exhibits
and correlates to some degree with a system’s proactive behaviour, which will be
explained more in detail in Chapter 3. There exists evidence that there exists no
simple correlation between trust and LoA. However, if a person finds a specific level
as “good”, this usually results in greater trust in the system. The mode of commu-
nication describes whether the system interacts via visual, auditory, or tactile cues.
The appearance, anthropomorphism, intelligence, and personality of an autonomous
system should be designed following its expected capabilities. Otherwise, there may
exist a mismatch which could result in the system falling into the uncanny valley
(Mori et al., 2012).

Capability: It has been found that especially an autonomous system’s capabilities, e.g.
competence, reliability, and predictability, are proven to have a large impact on the
trust relationship (J. D. Lee & Moray, 1994; Muir, 1994; Muir & Moray, 1996).
This involves the appropriateness of cues and feedback, effective communication, as
well as consistent behaviour. Furthermore, a system’s ability to behave adaptively
has been shown to affect its trustworthiness.

Furthermore, environmental factors such as the task/context and team collaboration char-
acteristics need to be considered:

Team Collaboration: In collaboration with autonomous systems, it has been shown
that team composition (e.g. size, diversity, roles, and characteristics), allocation
of roles, i.e. whether the system is in- or out-of-group, societal impact, and task
interdependence are relevant to consider when designing for a trustworthy system.

Task/Context: Considering the task and context in which a human interacts with an
autonomous system, the main factors influencing trust are the risk and uncertainty
of the situation, as well as the task type respectively the task difficulty.

Including these factors, Hoff and Bashir (2015) presented a three-layered model of trust.
The layers and interaction between the different layers are depicted in Fig. 2.15. Dis-
positional trust represents a user’s long-term tendency to use an autonomous systems
dependent on individual characteristics. The other two layers, situational and learned
trust are controlled by the user’s experience either with the environment, i.e. task type
and context but also a user’s self-confidence or mood, or specific features of the au-
tonomous system. Taking into account the dynamic nature of trust on a more short-term
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Figure 2.15.: Full model of factors that influence trust in automation. The dotted arrows
represent factors that can change within the course of a single interaction.
Based on Hancock et al. (2011) and Schaefer et al. (2016).

level, the authors distinguish between initially learned trust depending on preexisting
knowledge and dynamically learned trust that is possible to change during an interaction
being subject to system performance and design. CAs can be described as artificial agents
cooperatively guiding humans using natural language dialogue. As CAs can be seen as
some kind of autonomous system, many concepts of trust in automation are supposed
to be easily transferable. However, due to the ability to conduct natural dialogue and
interact on a more complex information level, some idiosyncrasies need to be taken into
consideration. For example, a dialogue can have a social, e.g., small talk (Schneider,
1988), or utilitarian purpose, e.g. solving a cooperative task. Although there exists work
studying the effects of socio-emotional dialogue, small talk, empathetic reactions, and
voice characteristics of a CA on the user’s perceived trust (see Rheu et al. (2021) for an
overview), most users rather see CAs still as “tools” and use the term trust concerning
a system’s performance or privacy (L. Clark et al., 2019). Therefore, trust in CAs re-
sembles more the concept of computer believability or credibility as presented by Tseng
and Fogg (1999). Here, a system’s trustworthiness and expertise form the bases for its
credibility, whereby under the term trustworthiness the quality of information (unbiased,
truthful, honest) is understood. However, besides the content an agent provides, also its
behaviour greatly influences its relationship with the user. Trust in the system’s behaviour
in utilitarian terms is mostly related to its performance with regard to consistency and
reliability (J. D. Lee & See, 2004). In this context, much research focuses on a system’s
capability to conduct explanation dialogues for mitigating the effects of system failures by
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Figure 2.16.: HCT is based on the two foundations cognitive- and affect-based trust. Each
base of trust comprises several sub-concepts. Based on Madsen and Gregor
(2000).

providing transparency which in turn increases trust (e.g see F. Nothdurft et al. (2012)
or Glass et al. (2008)).

Measurement

Measuring trust in CAs is complicated because trust is multi-faceted and also a latent
variable that cannot be observed directly. For this reason, several approaches for assess-
ing the HCT relationship have been proposed. The most used methods are subjective
measurements in the form of self-reported questionnaires (Gulati et al., 2019; Madsen &
Gregor, 2000; Malle & Ullman, 2021). Other possibilities include (psycho-)physiological
signal-based methods, e.g. EEG (Ajenaghughrure et al., 2019) or eye movements (Riegels-
berger et al., 2003), as well as combinations between subjective questionnaires and ob-
jective body signals (Khalid et al., 2016). Furthermore, trust can be estimated observing
the user’s past experience with a system, e.g., with regard to the system’s performance
(Y. Guo & Yang, 2020). Other work describes that trust can be assessed by observing
user behaviour. For example, it can be measured via people’s choices in an economic
game like the classic prisoner’s dilemma (Torre et al., 2018). Thus, different types of user
behaviour would implicitly indicate higher or lower levels of trust. Within the scope of
conversational systems, it has been shown that behaviour such as self-disclosure (e.g. see
Laban et al. (2021)), or reciprocity (e.g. see Zonca et al. (2021)) could implicitly indicate
higher levels of trust. Further, corpus analysis of linguistic features (Scissors et al., 2009)
or non-verbal cues (J. J. Lee et al., 2013) in human-human dialogues can be used as a
foundation for predicting trust in conversational agents.

In the scope of this work, we primarily relied on using validated psychological question-
naires for measuring subjective trust in proactive dialogue behaviour. For this, the Trust
in Automated Systems scale (Jian et al., 2000) and some variants (J. M. Kraus, 2020)
were used, where subjects could agree or disagree with statements about the system’s
impression. Sub-components of trust were measured using the HCT-model by Madsen
and Gregor (2000). The model is visualised in Fig. 2.16. This hierarchical model relates
to five fundamental components of trust: personal attachment and faith form the bases
for affect-based trust while perceived understandability, perceived technical competence,

54



2.3. Psychological Models for Human-Computer Cooperation

and perceived reliability are the bases for cognition-based trust. Affect-based trust refers
to a long-term human-computer relationship, being established through frequent inter-
actions with a system. In contrast, cognition-based trust refers to a more short-termed
trust. For the latter, mostly the functionality and usability of a system are of importance.
Each trust component is measured by user ratings of five statement items, whereas the
agreement is represented on a Likert scale.

2.3.3. Personality

Personality is a psychological construct of habitual behaviour and cognitive and emo-
tional patterns that evolve from biological and environmental factors (DeYoung et al.,
2009). Generally, psychologists agree that personality can be defined as traits or differen-
tiable characteristics than can only be inferred from behaviour and experience (McCrae
& Costa Jr, 2008). According to a theory by McCrae and Costa Jr (2008), all adults
can be characterised by a series of personality traits that influence behavioural patterns
as well as thoughts and feelings. These traits are developed during childhood and reach
maturity in adulthood, thereafter they remain stable. Furthermore, individuals make
personality-characteristic adaptations in reaction to external influences. These adaptions
form a person’s attitudes, behaviours, skills, and relationships. There exists scientific
evidence that personality correlates with job success, attractiveness, marital satisfaction,
and happiness (e.g. see a review by Alves et al. (2020)). Regarding the influence on
the perception of user interfaces, Alves et al. (2020) state that personality affects the
way the user perceives the interface design, the way they interact, and their acceptance
of a system. Studies of the effects of personality on the interaction with conversational
systems have shown the positive effect of matching personalities on the user experience
(Mairesse & Walker, 2010; Nass & Lee, 2001), trust and system likeability (Braun et al.,
2019). However, recent works suggest that the dimensions of an agent’s personality differ
significantly from human personality traits (Poushneh, 2021; Völkel et al., 2020).

Models

There exist various personality models using a different amount and nomenclature of
specific traits. However, three fundamental models have been developed during the past
century. H. J. Eysenck (1966) and H. J. Eysenck (1963) proposed a model that categorises
three personality traits: extraversion, neuroticism, and psychoticism. Extraversion is de-
scribed by Eysenck, as a combination of sociability and impulsiveness. Neuroticism is
seen as the inability of a person to remain emotionally stable, i.e. neurotic people tend
to have poor emotional adjustments, mood swings, issues of trust, etc. Psychoticism
implies a generally low impulse control and refers to traits such as a person’s lack of
empathy, cruelty, or lonerism, while its counterpart socialization refers to altruistic, em-
pathetic, and cooperative traits. The theory behind Eysenck’s personality types is based
on genetically-based personality differences stemming from biological processes. However,
also conditioning and socialisation play a role in personality development. Another early
model was Cattell’s 16 factors theory (Cattell et al., 1970). Cattell argued that three
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Personality Level
High Low

Openness Imaginative, Creative, Origi-
nal, Prefer variety, Curious,
Liberal

Down-to-earth, Uncreative,
Conventional, Prefer routine,
Uncurious, Conservative

Conscientiousness Conscientious, Hardworking,
Well-organized, Punctual,
Ambitious, Persevering

Negligent, Lazy, Disor-
ganized, Late, Aimless,
Quitting

Extraversion Affectionate, Joiner,
Talkative, Active, Fun-
loving, Passionate

Reserved, Loner, Quiet, Pas-
sive, Sober, Unfeeling

Agreeableness Softhearted, Trusting, Gen-
erous, Acquiescent, Lenient,
Good-natured

Ruthless, Suspicious, Stingy,
Antagonistic, Critical, Irrita-
ble

Neuroticism Worrying, Temperamental,
Self-pitying, Self-conscious,
Emotional, Vulnerable

Calm, Even-tempered, Self-
satisfied, Comfortable, Un-
emotional, Hardy

Table 2.1.: The big five traits and their respective characteristics adopted from John et al.
(1991).

factors were insufficient for describing the personality of a person and more dimensions
are necessary. For identifying the number of traits, he made use of factor analysis, a sta-
tistical method for identifying clusters of intercorrelated individual elements. Using this
method, Cattell found sixteen source traits, i.e. underlying traits, as opposed to surface
traits that are observable characteristics.

The model, however, which has become the most accepted and validated up to this
date is the big five-factor model (McCrae & John, 1992; Norman, 1963; Tupes & Christal,
1961). The model is also known under the acronym ocean following the five personal-
ity factors it is named after: Openness to experience, Conscientiousness, Extraversion,
Agreeableness, Neuroticism. In comparison with Eysenck’s model, three factors have been
included in the ocean model. Openness relates to a person’s level of intellectual curiosity,
creativity, and preference for novelty and variety. Conscientiousness is associated with a
person’s tendency towards self-discipline, dutifulness, and goal-directed behaviour. Agree-
ableness describes a person’s tendency towards compassion and cooperative behaviour,
as well as trust. A list of personality traits describing each factor is provided in Table
2.1. The ocean model has been developed by independent researchers using empirical
methods. It shows support for cross-cultural application and applies to people of any age.
Furthermore, the factors are conceptualised as a spectrum rather than extreme categories.

Measurement

In the domain of conversational systems, research has found methods for detecting a user’s
personality based on linguistic features (Mairesse &Walker, 2006), conversational/interaction
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patterns (Stachl et al., 2020), and multimodal features including facial and speech recog-
nition (Batrinca et al., 2012; Fung et al., 2016). However, due to the technical challenges
of this method, questionnaires are still the primary assessment tool of personality factors.
For each of the models described in the previous section, there exists an accompanying
questionnaire. The Eysenck Personality inventory comprises 57 questions that can be
answered either using yes or no responses (H. J. Eysenck & Eysenck, 1975). The ques-
tionnaire developed by Cattell et al. (1970) consists of 164 statements about a person,
that can be rated on a 5-point Likert to express a person’s agreement. Costa and McCrae
(1989) similarly designed a questionnaire containing 240 statements. Here, the rating is
also conducted on a 5-point Likert scale. In dialogue research, however, the large number
of questions of these surveys are deemed rather impracticable for usage in study design
due to time constraints. For this reason, a shortened version of the questionnaire for
rating the Big Five personality factors developed by Rammstedt et al. (2013) was used in
the scope of this thesis. The big-five-inventory (BFI)-10 consists of ten statements to be
rated on a 5-point Likert Scale. For each personality factor, the questionnaire contains
two statements.

2.3.4. Cognitive Load Theory and Cognitive-Affective States

This section introduces two concepts, the cognitive load theory and cognitive-affective
states, that are primarily relevant in problem-solving or learning task scenarios. Con-
sequently, they also need to be considered in the context of CAs which are specifically
designed for such scenarios. The concept of cognitive load theory (Chandler & Sweller,
1991; Sweller, 1988) describes the amount of effort that humans exert during cognitive
processes, e.g. reasoning and thinking. As the human’s working memory is limited in
capacity, both for processing information and memorising information, also the amount
of mental processes a human can handle is restricted (F. Paas et al., 2010). For problem-
solving or learning tasks, this implies that material has to be designed in such a way that
the usage of the working memory is optimised. Otherwise, the task would congest the
cognitive capacity and lead to a sub-optimal outcome. Cognitive-affective states combine
the human’s cognitive and also affective processes, such as emotions, moods, and feelings
(R. S. Baker et al., 2010). The idea of combining these two aspects stems from the idea
that emotions are systematically affected by the knowledge and goals of the user, and
vice versa (Mandler, 1984). For example, cognitive processes, e.g. causal reasoning,
deliberation, goal appraisal, and planning processes, influence the experiences of emo-
tion (R. S. Baker et al., 2010). On the other hand, Gasper and Clore (2000) showed
that emotions have an effect on verbal expressions, non-verbal expressions (e.g. facial
expressions and body postures), and cognitive processes (e.g. decision making, and in-
formation retrieval). Due to these complex relationships between affect and cognition,
several researchers (e.g. see R. S. Baker et al. (2010) and S. D’Mello and Graesser (2011))
identified some user states during learning and problem-solving as a blend of affect and
cognition. This resulted in the connotation of a cognitive-affective user state. Keeping
track of cognitive-affective user states in HCI may lead to a better and new understanding
of the user’s needs (Dimoka et al., 2012).
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Models

Cognitive load theory is closely related to the working processes and architecture of the
human memory, particularly the short-term memory. As previously described, the short-
term memory is limited and used as working memory for processing information (Badde-
ley, 1994; Card, 1981). Therefore, models describing cognitive load characterise different
sources that influence the capacities of the working memory. Generally, it can be dis-
tinguished between three independent sources of memory load, namely intrinsic cognitive
load (ICL), extraneous cognitive load (ECL), and germane cognitive load (GCL) (Sweller,
2010):

ICL represents the inherent load induced by the content itself. Hence, it can not be
changed by the learning material and is caused by the complexity/difficulty of the
task.

ECL arouses from the instructional design of the learning material. This kind of load is
linked to mental processes that are not relevant to the task itself, like searching for
or narrowing information.

GCL is directly linked to the learning process itself. A high germane load indicates that
learners are engaged with the task and focus their mental resources on learning
processes, e.g., the construction of learning schemes (R. E. Mayer & Moreno, 2002).

A model for cognitive-affective user states has been developed by R. S. Baker et al.
(2010). The authors take into account that certain affects occur predominantly during
cognitive activities and learning that are relevant for assistance systems (R. S. Baker et
al., 2010): boredom, frustration, confusion, engagement/flow, delight, and surprise. En-
gagement/flow is the state of engagement with a task correlated with focused attention,
intense concentration, and complete involvement. Delight and surprise can also be consid-
ered positive user states but mostly occur after a task has been completed or an important
insight has been unveiled. These states are short-lived, while engaged concentration is
more persistent (R. S. Baker et al., 2010; S. D’Mello & Graesser, 2011). Although being
considered a negative affective state, confusion is positively correlated with learning gain,
because it induces self-reasoning in the user. Related to failure, dissatisfaction, making
mistakes, and giving up, frustration and boredom should be avoided or at least users
should not get stuck in these states long-term. All cognitive-affective states are situated
within the well-known valence-arousal model by (Russell, 2003) (see Fig. 2.17).

This valence-arousal model allows decomposing of affective states into specific dimen-
sions: valence and arousal. Affective valence ranges from negative to positive or dis-
pleasure to pleasure, while affective arousal ranges from low-energy to high-energy or
deactivation to activation. These observations make clear that depending on which
cognitive-affective state the user is in, different kinds of assistance or no assistance at
all are necessary. As emotions influence cognitive processing, negative affects need to be
kept low, especially in problem-solving and decision-making (Hudlicka, 2003).
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Figure 2.17.: Two-dimensional valence-arousal model showing the position of each
cognitive-affective state adopted from R. S. Baker et al. (2010): BO - bore-
dom; CO - confusion; DE - delight; EC - engaged concentration/ flow; FR -
frustration; SU - surprise.

Measurement

For measuring cognitive load it can be differentiated between three different approaches:
subjective rating scales, dual-task measurements, and psycho-physiological measurements.
F. G. Paas (1992) developed one of the first questionnaires for subjectively measuring cog-
nitive load. However, the questionnaire only measures overall cognitive load and does not
distinguish between the individual types. Therefore, extended questionnaires including
the different types of cognitive load have been developed recently. An overview can be
found in Zheng (2018). In this thesis, a questionnaire developed by Klepsch et al. (2017)
is used. It measures all three types - ICL, ECL, and GCL - separately. The questionnaire
consists of 12 items, with 4 items per type. Dual-task measurements provide a direct
measure. Here, two tasks are executed simultaneously by a user. Under the assumption
that the user’s cognitive resources can be evenly spread between two tasks that require
an equal amount of information, the secondary task performance is a plausible proxy
measure for the cognitive load induced by the first task (Zheng, 2018).

Finally, psycho-physiological measurements make use of sensory information (e.g. heart
rate, skin temperature, EEG, pupilometry) for estimating the user’s cognitive load us-
ing regression or classification analysis (Zheng, 2018). Using sensory information allows
to measure cognitive processes in a temporal context. This makes psycho-physiological
measurements also a promising approach for measuring cognitive-affective states. Here,
several modalities have been researched ranging from facial expression, heart rate, and
speech signals, to multimodal features (Corneanu et al., 2016; Picard, 2000; Schuller et
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al., 2009, 2011). For detecting affect in a non-intrusive manner, capturing facial expres-
sions is the most used approach. In the scope of this, the Affectiva software was used
for cognitive-affective user state detection (McDuff et al., 2013). Affectiva analyses
spontaneous facial expressions with facial emotion recognition algorithms, trained using
their repository based on a large database of faces from a variety of different countries
and morphological groups.

2.4. Summary

This chapter dealt with providing fundamental background information for the reader to
understand the work presented in this thesis.
Knowledge of DS architectures and models is required to understand interaction proce-

dures between humans and machines. Further, this serves as a foundation for understand-
ing the prototypes developed in this thesis. Concepts of dialogue strategies are important
for putting in context the proactive dialogue strategies that combine elements of ground-
ing and initiative. Finally, we gave an overview of evaluation methods that are relevant
for understanding the different kinds of user studies presented in this thesis. Here, we also
explained the concept the user simulation which is necessary to understand for evaluation
purposes, but also in the context of automatically training data-driven proactive dialogue
strategies.
As this work also presents novel work on using statistical methods for developing proac-

tive dialogue models, we reviewed methods for collecting data for statistical dialogue
modelling and introduced several ML algorithms that were applied in this thesis. Deci-
sion trees, SVM, and ANN, were primarily used for user state recognition, while RL was
utilised for creating user-adaptive proactive dialogue. Here, also evaluation methodologies
for comparing the applicability of the different ML approaches were presented.
Finally, we gave an overview of relevant psychological concepts and models with regard

to HCI. Background on the TOM is necessary for understanding how computers may
predict user behaviour and internal states from observations which can subsequently be
used to adapt the dialogue considering social cues. One social cue that is of particular
interest in the scope of this thesis is the psychological concept of trust that is relevant
for appropriate cooperation between system and user. Therefore, we summarised trust
models relevant for HCI and discuss measurement methods. Besides trust, we also con-
sidered a user’s personality, cognitive load, and cognitive-affective states in relation to
proactive assistance behaviour in various studies presented in this thesis. For this reason,
we also reviewed relevant models and measurements of these concepts for enabling their
applicability during human-machine cooperation.
In this work we study the influence of proactive dialogue on cooperation and its adap-

tation to specific users and their contexts. Regarding this, we introduce related work on
proactivity in HMI and user-centred dialogue in the next chapter. There, we also provide
an in detail explanation of the differences and added value of our approach.
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This work aimed at improving the cooperation between users and CAs by including user-
adaptive proactive dialogue behaviour. For enhancing cooperation concerning task- and
socially-related aspects, the domains of proactive HMI and user-centred DS are necessary
to consider. Therefore, this chapter reviews the state-of-the-art in both areas. First,
we provide definitions of proactive behaviour and elucidate the concept concerning HHI
and HMI. Considering proactivity in HMI, several modelling approaches were reviewed in
the sub-domains of interaction with autonomous systems, human-robot interaction (HRI),
and HCI. For allowing comparison with our approach, a particular focus was set on related
work and systems that considered proactivity in a conversational context. Moreover, the
current state of knowledge of the user perception of proactive interaction with robots
and computers is presented. Here, also conversational systems were prioritised. This
information was subsequently used for modelling proactive dialogue in CAs.

Secondly, user-centred approaches for developing DSs were summarised. Here, we
stressed the importance of user modelling and made distinctions between two types of use-
centred dialogue modelling approaches: static and dynamic user adaption. For both types,
we present various approaches on how to include user-related information for adapting the
dialogue in several ways. Concerning our work, it was important to get an understanding
of which type of user information may be applicable for determining the need for proac-
tive behaviour. Further, this provided insights into the design and adaptation of proactive
dialogue. At the end of each section, we discuss extensively the differences and similari-
ties between related work and our proposed approach. Also, we provide explanations for
manifesting the novelty of our approach.

3.1. Proactive Human-Machine Interaction

For understanding the term proactivity in the context of HMI, it is first necessary to
consider the definitions of proactive behaviour in HHI. Here, the concept of proactive
behaviour has been extensively studied in the domain of organisational psychology and
management (Crant, 2000; Frese & Fay, 2001; Parker et al., 2006). For example, Crant
defines proactive behaviour in organisations as “taking initiative in improving current
circumstances or creating new ones; it involves challenging the status quo rather than
passively adapting to present conditions” (Crant, 2000). Another definition was provided
by Grant and Ashford (2008), who describe proactive behaviour as an “anticipatory ac-
tion that employees take to impact themselves and/or their environments”. In addition,
there have been identified several characteristics that can be attributed to proactive be-
haviour. For example, proactivity is supposed to have a long-term focus and intends to
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predict future states, is action-oriented and goal-directed, while also being persistent and
self-starting (Crant, 2000; Frese & Fay, 2001). In contrast, reactive behaviour is about re-
acting to environmental demands, only doing what one is told, and not about developing
plans to deal with possible difficulties (Frese & Fay, 2001). Proactive behaviour can also
either be as a personality trait and behavioural predisposition (Bateman & Crant, 1993)
or as a context-induced behaviour (Morrison & Phelps, 1999). For example, Bateman
and Crant (1993) constructed a 17-item scale for assessing a person’s tendency towards
proactive behaviour. They found correlations between proactive behaviour and the per-
sonality traits conscientiousness (goal-oriented and implying persistence toward reaching
closure on an objective) and extraversion (seeking new experiences and activities). Fur-
thermore, it was found to correlate with the need for achievement and dominance. Crant
(2000) described organisational culture and norms, as well as different situational cues,
e.g. socialisation of newcomers as context-related features that influence proactive be-
haviour. Further, Crant proposed to use a cost/benefit approach for addressing cognitive
processes by which people decide when to become proactive or not. This stems from the
idea that people evaluate the social costs and other risks before taking proactive actions.
Experiments in this research field have shown the positive effects of proactive behaviour
at work. Proactivity leads to higher job performance and team performance and is associ-
ated with leadership and innovation (Crant, 2000). Additionally, it refines one’s intrinsic
motivation and self-regulation (Frese & Fay, 2001) while also creating coworker trust in
work environments and positively contributing to socialisation (Parker et al., 2006).

Having described proactive behaviour in HHI, we now investigate the concept in HMI.
Here, it can be associated with a machine’s ability to act autonomously. Automation
is understood as the ability of technology to perform tasks or parts of tasks that were
formerly executed by a human (Parasuraman & Riley, 1997). However, the people’s
demand for a machine’s capability to deliberately take action depends on its intelligence
and purpose. For example, industrial machines are intended to automatically take over
tedious or labor-intensive tasks. Contrarily, CAs or robotic agents used in collaborative
tasks will be expected to express another kind of autonomous action-taking. Here, users
will expect the system to actively contribute to problem-solving, to integrate them into
its decision processes, and communicate naturally for action alignment and grounding.
Thus, users will apply a more human-like notion of automation or rather self-awareness
that involves cognitive processes. In the scope of this thesis, we understand proactive
behaviour under this notion of autonomous system behaviour. For modelling adequate
proactive behaviour, we review different approaches and systems in the following section,
starting with initial models in automation research.

3.1.1. Modelling Approaches of Proactive Human-Machine Interaction

For modelling human interaction with automation, Sheridan and Verplank (1978) intro-
duced the notion of LoA. In their work, how humans and computers can cooperate was
divided into ten levels, ranging from offering no assistance to completely autonomous be-
haviour. The individual levels are listed in Table 3.1. The intention behind this model was
to aid automation designers in deciding on the mixture of human and machine decision-
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Level of
Auton-
omy

Description

1. The computer offers no assistance; the human must take all decisions and actions.
2. The computer offers a complete set of decision/action alternatives.
3. The computer narrows the selection down to a few.
4. The computer suggests one alternative.
5. The computer executes that suggestion if the human operator approves
6. The computer allows the human a restricted time to veto before automatic execution
7. The computer executes automatically, then necessarily informs the human
8. The computer informs the human only if asked
9. The computer informs the human only if it, the computer, decides to.
10. The computer acts completely autonomously

Table 3.1.: Levels of Autonomy adopted from Sheridan and Verplank (1978).

making for a task at hand. Further, the authors suggested that smooth communication
and mutual understanding are crucial if the computer takes over control from the human
and vice versa. However, they did not describe any communication strategies in this
regard. Parasuraman et al. (2000) later refined this model for answering the question of
which system functions should be automated and to what extent based on the system’s
technical capabilities. For this, they applied the LoA to different functional domains or
types of system functions. These functions are based on a simplified four-stage model of
human information processing, namely information acquisition (sensing and registration
of input data), information analysis (cognitive functions, e.g reasoning), decision selection,
and action implementation (machine execution of the choice of action). Each function
can vary in its degree of automation. However, the LoA of a function does not need
to be fixed during run-time but may be adaptive to situational aspects, e.g dynamically
changing environmental factors, such as specific events or user intentions. This concept
is known under the term adaptive autonomy (e.g. see Byrne and Parasuraman (1996),
Kaber et al. (2001), and Scerbo (1996)). By adapting the level of autonomy, tasks are
dynamically allocated between the user and the system depending on the context (Byrne
& Parasuraman, 1996). LoA have been extensively studied in unmanned objects, e.g.
drones (Zhou et al., 2019), autopilots (Anderson et al., 2018), and automated driving
(Biondi et al., 2019; Flemisch et al., 2008; Walch et al., 2016). The more autonomous
a vehicle gets, the more responsibilities, e.g. steering and acceleration/deceleration, are
taken away from the operator. This allows an operator to stay in a supervisory role over
the vehicle. However, in case of events where the system is unable to make safe decisions
in the operator’s interest, a hand-over or possible alternatives need to be communicated
actively. Therefore, in autonomous driving, for example, research focuses on predicting
opportune moments when to initiate an interaction (A. Kim et al., 2019; Park et al., 2020)
and how to communicate the information (Park et al., 2020; Walch et al., 2016). Depend-
ing on user preferences or situational characteristics, e.g., emergency or non-emergency,
the style, and content of the interaction (alert, suggestion, hand-over) can be altered.
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Due to their highly autonomous nature, robotic systems have become one of the major
research streams for studying proactive interaction. Trying to structure the process of
a robot’s proactive behaviour, Peng et al. (2019) identified three elements: anticipation,
initiation of action, and target of impact.

Anticipation refers to the robot’s capability to sense its surroundings for predicting
future environmental states or the human’s intentions. This would subsequently
allow a robot to decide when to take anticipatory actions, i.e. to behave proactively.
For making assumptions about the situation and the human, there exist various
methods. For example, Grosinger et al. (2016) developed a robot with planning
capabilities that took into account context- and time-related measures to decide
when to take action. The robot could make assumptions about the human’s activity
using a simple user model that contained the user’s location and daytime. Based
on the activity, the robot would proactively interact with the user. Liu et al. (2018)
presented a shopping assistant robot that learns the appropriate moments for being
proactive using ANNs. In their work, they captured the user’s motion and speech
data to make assumptions about the user’s behaviour. Furthermore, they defined
yield actions, i.e. representations of the moment when a user yields his turn and does
nothing, for initiating proactive behaviour. This data together with a representation
of the interaction history was then fed to the neural network for producing the
desired robot behaviour. Anticipation of user behaviour has also been used to
decide on ways how to approach humans acceptably. For example, Kato et al. (2015)
identified a user’s intention to interact with a robot based on analysing the user’s
trajectories and body postures. Additionally, a human’s gaze can be interpreted to
assume potential user actions (Huang & Mutlu, 2016).

Initiation of action addresses a robot’s autonomy in the functional domains of decision
selection and action implementation. Thus, this element is closely related to the
robot’s LoA during the interaction. Following the categorisation by Sheridan et al.,
Beer et al. (2014) described ten level of robot autonomy (LORA). LORA range from
manual teleoperation to full autonomy. At the lower levels, the HRI is generally
controlled by the human, however, the robot may assist to some degree with action
implementation, e.g., the robot automatically steers to avoid a collision with an
obstacle in case a user navigates the robot inappropriately. At the intermediate
levels, both interaction partners create plans to achieve a task, however, the human
only has supervisory control, whereas the robot takes all actions. At the highest
levels, the robot performs all actions of the task with the user only providing a high-
level abstract goal. Naturally, higher LORA also allow for a more proactive initiation
of interaction, which is essential for cooperative and social robots. Even at a high
autonomous level, a robot should interact with the human to some degree due to
the human-out-of-the-loop phenomenon in automation that may cause performance
problems (Endsley & Kiris, 1995). The proactive initiation of interaction can span
various modalities and purposes. For example, a robot can verbally initiate to offer
help, if a user runs into problems during executing a task (Cramer et al., 2009), or
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making unsolicited suggestions or remarks to the user (Liu et al., 2018; Peng et al.,
2019; Rau et al., 2013). Furthermore, a robot may also proactively initiate physical
actions, e.g. reach the robot’s arm out to take something from the user (Pandey
et al., 2013) or manipulate objects without explicitly asking (Baraglia et al., 2016)
in joint task scenarios.

Target of impact denotes simply the addressee of the proactive actions. This can be
either a human or group of humans in collaborative task scenarios (Peng et al.,
2019; N. Wagner et al., 2021) or other entities in a multi-agent task scenario (Lou
et al., 2012).

Observing the concept of proactivity in the HCI domain, proactive behaviour can be
primarily associated with recommender systems as well as CAs. Recommendation systems
are proactive per se in most cases, as they provide suggestions without explicit user request
(Rook et al., 2020; C. Shah, 2018). Under the term recommendation system, a decision
support tool is understood that autonomously provides user-adapted advice on items to
ease people’s navigation in large product or information spaces (Rook et al., 2020). Such
systems are, for example, applied for assisting in restaurant search (Christakopoulou et
al., 2016), online shopping (G. Linden et al., 2003), or to recommend movies Cai and
Chen (2020) by observing context features and user preferences. A major issue in the
development of recommender systems is how to improve the accuracy of the content
provided about the user’s needs (Christakopoulou et al., 2018; Ikemoto et al., 2019;
Rook et al., 2020). For generating accurate recommendation models, user modelling
approaches are essential. For example, content-based recommender systems (Pazzani &
Billsus, 2007) model the user by characteristics of the liked or disliked items. Systems
based on collaborative filtering help users in decision-making by considering the opinions
of other people who share similar interests (Lu et al., 2015). Research on when and how
to recommend is limited, but recently context-related factors, such as the user’s activity
(Dingler et al., 2018; C. Shah, 2018), for deciding when to act as well as dialogue-based
approaches for how to provide suggestions have been studied (Cai & Chen, 2020).

As proactivity can be seen as a cooperative trait and has already been identified as a
major part of conversational intelligence (Chaves & Gerosa, 2021), proactive behaviour
has become a prerequisite to consider when developing personal and especially CAs. In
the following, we will use the term CA also for describing personal assistants as the
definitions are blurry and often interchangeable, e.g. see Sarikaya (2017). Proactive
behaviour in CAs has several definitions. For example, proactive assistance in CAs can
be defined as an “agent taking an action to assist the user without the user’s explicit
request”(Sarikaya, 2017). Similarly, F. Nothdurft et al. (2015b) define proactive behaviour
as “an autonomous, anticipatory system-initiated behaviour, with the purpose to act in
advance of a future situation, rather than only reacting to it”.

Proactive behaviour in CAs is based on the principle of mixed-initiative interaction
(Horvitz, 1999). In mixed-initiative interactions, a user and an autonomous assistant are
collaboratively working together for solving tasks. For assisting, the agent may operate
in a reactive, where it acts only upon user request, or in a proactive mode, where it
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Figure 3.1.: Reference model of digital personal assistant integrating reactive and proac-
tive behaviors based on the work of Meurisch et al. (2017).

initiates actions autonomously. In the proactive mode, the intelligent agent is required to
track the user’s activities and goals. For example, Horvitz (1998) describe this process as
“background assistance tracking”, which just observes the user during work. Further, the
agent needs to reason about the costs and benefits of taking automated actions. In this
context, the assistant may initiate a proactive dialogue to communicate and negotiate a
system’s decision process for minimizing the risk of such “speculative assistance”.

For integrating proactive behaviour in CAs, Sarikaya (2017) and Meurisch et al. (2017)
provided reference models/architectures that are quite similar in their construction. For
illustration, we therefore only describe the model by Meurisch et al. in the following.
This model is depicted in Fig. 3.1. For making inferences about their environment,
proactive CAs use sensors that can track, for example, a user’s activities and physical
or psychological states. Using this information, the CA would be able to model the
user’s goals or intention and context. This further allows for goal-aware prediction of
future contextual states. Based on this knowledge, the system may then make goal-
based decisions, and initiate intelligent actions. The way such a CA can cooperate in
a mixed-initiative interaction can be characterized by the respective proactive mode on
the interface-proactivity (IP) continuum introduced by Isbell and Pierce (2005). They
transferred the autonomy levels based on previous work by Sheridan and Verplank (1978)
to the domain of HCI, resulting in five different levels of proactive assistance behavior.
The IP continuum ranges from zero, i.e. the user acts completely autonomously, to full
automation, i.e. the assistant acts completely on behalf of the user. The gradations
between these two extremes are warnings that tell the user to pay attention, notifications
that tell the user exactly what to pay attention to, and suggestions that give the user
multiple decision options. The more proactive a system becomes, the more it takes control
and responsibility away from the user. This also increases the risk of failure, since there
is a possibility that the system will perform actions that are inconsistent with the user’s
goal due to not asking for confirmation.
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This may potentially threaten a healthy human-computer relationship (Isbell & Pierce,
2005). Therefore, most current applications in this area are concerned with notification
or suggestion management, since the cost-benefit ratio is more controllable. For example,
there are a number of works on desktop (Iqbal & Bailey, 2008), smartphone notifications
(Lopez-Tovar et al., 2015), and proactive suggestions for interactive television (Ferraz de
Abreu et al., 2019). However, there also exist some system prototypes, that span multiple
points of the IP-continuum and can perform tasks fully autonomously. For comparison
with our work, we present the most important of these assistants in the following.
The Cognitive Assistant that Learns and Organizes called Calo (Yorke-Smith et al.,

2012) was a proactive assistant that helped users with task management in an office envi-
ronment. For example, it could assist with organising meetings, reminding of important
activities, delegating work to colleagues, and collaboratively working on specific processes,
e.g. hiring a new employee. Therefore, it relied on the BDI-framework (see Section 2.1.2)
for modelling the user’s goals and knowledge. Furthermore, it applied a workflow tracker
to detect the user’s current activities. This allowed the system to collect user-specific,
e.g. preferences, and context-related information, e.g. electronic to-do lists, schedules,
and current activities. Based on this information, the system could reason about the
cost-benefit of proactive behavior and was able to adjust its level of proactivity accord-
ingly. For example, if the workload was detected to be high, the system could suggest
transferring work to others, automatically preparing background material for the meet-
ing, or offering a reminder. The cost-benefit value was calculated using system-related
metrics such as the urgency of proactive behaviour, the cost of a mistake or interruption,
and the confidence of the current workflow state. The decision on which autonomy level
to choose was based on heuristics relying on user-stated advice and fixed rules. Thus,
proactive behaviour was only modelled for the specific task and the rules were required to
be predefined. Further, the agent only interacted using textual messages and no speech.
The Reflective Agent with Distributed Adaptive Reasoning called Radar was also a

personal assistant that could help office employees to solve their tasks more efficiently
(Faulring et al., 2010; Garlan & Schmerl, 2007). Among other tasks, it could help to
reduce email overload, i.e. the difficulty of people to handle a large number of emails, by
providing adequate strategies such as filtering emails according to various criteria. For
this, it comprised several modular components. So-called task specialists were intended
to assist users in executing particular tasks, e.g. schedule management, email-handling.
The specialists were adaptive knowledge bases. These bases contained static information
on how to conduct specific tasks and learned knowledge about user-preferred methods
in task execution. A task manager coordinated the specialists while tracking current
activities and prioritising individual tasks. For deciding when and how a user should be
interrupted, i.e. whether a meeting was scheduled automatically or an interaction was
initiated, a dialogue manager was used. This module contained knowledge about a specific
user’s attention and interruption policies. Here, proactivity was also designed only for
a rigid domain, and prior user knowledge was required for making adequate decisions.
Besides, only textual interaction was considered.
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A new version of Radar was published more recently (Grover et al., 2020) that used
state-of-the-art planning techniques instead of such case-based reasoning for proving
proactive decision support. The new system could, for example, help a fire chief in
the process of developing a sequential plan to control fire in a building. Here, the sys-
tem proactively assisted with resource management, e.g. the water tanks to be sent, the
number of ambulances to be called, and the areas to be secured. For this, the system
automatically generated the respective planning problem in the background, analysed
the possible solutions, and highlighted the resources required for solving the planning
problem. Proactive assistance was provided by incorporating knowledge about the user’s
capabilities and time constraints. This was then used to increase the situational awareness
of users by suggesting or notifying them that alternatives would be available. In their
work, however, proactive behaviour was only represented as a list of abstract plan steps,
and no natural language was used. Also, prior user knowledge is required for adequate
proactive behaviour.

Another proactive agent called Virma (Virtual Insurance Risk Management Advisor)
(L’Abbate et al., 2005) was a German virtual personal insurance and finance assistant
with a focus on risk management counseling for small enterprises. For assistance, it relied
on existing expert knowledge guiding users during the elicitation of the required data
to create a user-specific risk portfolio. During unclear or problematic situations, users
could take the initiative by asking questions or expressing uncertainty while performing
tasks. However, also proactive interventions were possible. For this, the system evaluated
a set of constraints at each interaction step for deciding about the necessity of proactive
action. The constraints were based on static user profiles, e.g. business sector, expertise.
For example, one task of the finance assistant was to elicit information about the user’s
business activities. For this, users could select activities from a pre-defined list. Depending
on the user profile the system could act differently. In case the business sector was known
and the user had low expertise, the system would trigger a sub-dialogue by presenting a
refined set of information based on previous sessions by users with the same profession.
In doing so, the system would proactively pre-select adequate information instead of
showing the full list of options. The decision, of when to act proactively was pre-defined
as a set of artificial mark-up language (AIML) rules. Similar to recommender systems,
proactive behaviour was here solely used for reducing the information space and not in a
conversational manner.

Besides how to act proactively, also the decision, of when proactive behaviour should
be initiated, has been identified as a crucial topic in HCI (F. Nothdurft et al., 2015b).
Determining the timing of proactive system behavior is complicated and mostly related
to research on managing task interruptions in AI (McFarlane & Latorella, 2002). To
minimise interruptions, it is imperative to gather knowledge about the user’s context (Cha
et al., 2020; Iqbal & Bailey, 2008; McFarlane & Latorella, 2002). For example, Iqbal and
Bailey (2008) used interruption points in task execution to develop a notification delivery
strategy. Similar to the research on recommender systems, personal contextual features
have also been explored for initiating an interaction with a smart speaker (Cha et al.,
2020). In addition, device- or user-related features can be used to trigger proactive actions:
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Lopez-Tovar et al. (2015) determined the timing of smartphone notifications as a function
of device location and state, while Segal et al. (2018) predicted time steps at which the user
could disengage from a crowdsourcing task to trigger motivational messages. Additionally,
the need for assistance could be assumed based on the prediction of the user’s affective
state. In this context, S. K. D’Mello et al. (2006) inferred affective states such as boredom
or confusion from interaction patterns in a mixed-initiative dialogue.
So far, we only considered goal-directed proactive systems. However, there also exists

proactive behaviour that is not necessarily goal-oriented. For example, Wu et al. (2019)
described proactivity as the act of leading the dialogue and actively changing the discus-
sion topic, while keeping the dialogue natural, coherent and engaging. Similarly, Yoshino
and Kawahara (2015) understood the act of actively presenting or recommending topics
related to the current interaction as proactive behaviour. Here, proactivity was especially
used for resolving ambiguous user demands, by showing possible candidates for the query
instead of doing nothing. However, non-goal-directed behaviour was not considered in
this thesis.

3.1.2. User Perception of Proactive Human-Machine Interaction

Based on preceding considerations of proactive behaviour in HRI and HCI, we will now
present related work regarding the user perceptions of proactive HMI.
In Baraglia et al. (2016), proactive non-verbal behaviour of a robotic assistance system

was evaluated in an object placement joint task execution scenario. For this, they con-
ducted a study with 18 participants comparing three different robot versions: a reactive
robot that only executed tasks when users requested help; a robot initiated semi-proactive
help when it discovered that help was required; and a proactive version that executed tasks
independent of the user. Their results showed that there was no difference concerning to-
tal task duration. However, participants subjectively rated the reactive robot to be lazy,
slow, and hesitant when compared to the more proactive versions. Further, the proactive
versions were subjectively more liked by study participants.
Rau et al. (2013) proposed a design of social robot interaction for assisting in decision-

making tasks. Here, two levels of proactive interaction (high vs. low) were compared.
The authors presented a WoZ-study, in which participants had to complete a sea survival
task in collaboration with a remotely controlled robot. The HRI was modeled in such
a way that the robot provided its opinions on how to solve the task in natural spoken
language. The robot’s opinion was either provided proactively or reactively. In the study,
the influence of the robot’s proactivity on decisions, trust, robot credibility, and user
workload was evaluated. The results demonstrated that trust in the robot was higher in
the low-level (reactive) than in the high-level condition. However, cognitive load showed
no significant difference between the LoA.
In another study on social interaction, Peng et al. (2019) studied the design and evalua-

tion of an autonomous robot in a decision-making-support scenario. Proactive interaction
with the robot was designed in three dimensions, i.e low, medium, and high. Here, the
lowest level of proactive behavior could be considered reactive behavior. For evaluation
of their approach, a within-subject study using the WoZ paradigm was conducted.
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The user’s task in the study was to select gifts for fictitious personas while being assisted
by a robotic shopping assistant. A human wizard took the role of the assistant and tried
to infer the participants’ need for assistance and triggered the proactive interactions.
The results showed, that a medium-level of proactive interaction was perceived as the
most helpful. Furthermore, a high degree of autonomy was disliked and perceived as less
appropriate compared to the other two conditions.

Schmidt et al. (2020) investigated user acceptance of proactive voice assistants in cars.
For this, they conducted a driving simulator study in which a system could express proac-
tive behaviour based on particular driving events. For example, the proactive voice as-
sistant could suggest to the user the nearest gas station in case fuel was low, or propose
rerouting in case of traffic jams. Comparing such a proactive in-car voice assistant to a
reactive version of the system, the authors found that proactive behaviour was generally
well-received in an experiment with 42 subjects. However, most participants wished for
the possibility to deactivate proactive behaviour in certain situations. In addition, they
found no differences between the conditions concerning the user’s cognitive load.

Considering the original Radar system, Steinfeld et al. (2007a, 2007b) conducted a
study for measuring the effects of the proactive system concerning a less proactive version.
In a study with 66 participants, they found that the proactive version was able to perform
the planning task better than the more reactive version and was also found to be more
useful. Grover et al. (2020) evaluated a more recent version of Radar which assisted study
participants to interactively plan their studies, e.g. which study courses to take dependent
on various factors. The authors compared several versions of the system: a system that
could only provide plan suggestions, one that only could validate the effects of the user’s
plan choices, a system capable of both features, and a baseline variant. The results of a
study with 56 participants showed that the variants providing plan suggestions were more
efficient in task execution and also increased user satisfaction. Further, providing plan
validations and suggestions proved to be more effective in teaching users how to construct
study plans. Between domain experts and novice users, no differences were found.

Glass et al. (2008) conducted interviews with Calo users for evaluating the effect of the
system’s behaviour on the user’s perceived trust. Although the authors primarily focused
on the effect of explanations and transparency behaviour of trust, they also briefly con-
sidered the effect of the system’s autonomy. In interviews with four subjects, they found
that people tended to trust Calo only if they were also able to verify its behaviour. This
included the ability to override erroneous behaviour. The authors identified that users
seemed to trust the system more after time, where users could observe the performance
of the system. Generally, lower autonomy was trusted more and the relationship between
trust and autonomy depended on the magnitude of the system’s actions in the real world.

Iqbal and Bailey (2008) conducted an experiment for examining the effects of timing
(scheduled at identified breakpoints vs. immediate) and content (task-related vs. general)
of proactive desktop notifications. During the experiment, 16 study subjects had to design
a floor plan for a model workspace in a computer science building. A notification system
would provide information according to the described notification timing and content
conditions. For the timing of actions, they further differentiated between fine, medium,
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and coarse scheduled notifications. These levels represented the hierarchy of sub-tasks
of an overall problem or activity, e.g. fine described that the notification was triggered
after a small task such as manipulating the design of a small element of the workspace,
while coarse indicated that the user switched to a completely different activity. The results
showed that task-relevant notifications should be scheduled after fine or medium activities,
while general information may be provided at a coarse level. Further, the experiment
showed that users experienced lower frustration and reacted faster when notifications
were scheduled instead of being provided immediately. However, urgent messages may
be delivered immediately or at fine breakpoints. Generally, initiating interruptions at an
inappropriate point of time or in the wrong way could be perceived as disruptive and
obtrusive. Particularly, this could negatively influence the user’s perceived trust in the
system (Jenkins et al., 2016; McFarlane & Latorella, 2002).

Meurisch et al. (2020) explored user expectations of proactive AI systems based on
interviews with 272 people. In their work, the proactive level of an intelligent assistant
was differentiated in four levels: reactive, proactive support I (notifications and alerts),
proactive support II (personalised recommendations), and autonomous support (making
decisions and taking actual actions). The results of their interviews showed that users are
generally in favour of proactive support across several task domains. Particularly, users are
willing to receive proactive support for social interactions, e.g. arranging appointments
with a personal assistant. Further, they are open to proactive behaviour in physical
health support systems, as well as smart home and task management. However, users
did not wish to be proactively supported in the mental health domain. Investigating the
general acceptance of the different proactive levels, the authors discovered that proactive
support II was the most favoured followed by reactive and proactive support I. Completely
autonomous support was the least preferred. In addition, Meurisch et al. studied the
relations between the five personality traits, some selected socio-demographic traits (age,
gender, ...), and the proactive levels. Here, the results revealed that the age of the
user relates to the acceptance of proactive behaviour. They found that elderly people
tend to prefer reactive systems as compared to younger study participants. Especially,
elderly with low degrees of the personality traits openness to experience and high levels
of conscientiousness are more likely to opt for a reactive system. People with higher
levels of openness and lower levels of extraversion seem to accept a system with proactive
support level II. However, no relations between such user-specific features and proactive
support I were found. Generally speaking, they found that the user perception of proactive
behaviour is user-dependent and also domain-dependent, and might be also related to a
user’s tendency to fear a loss of control (Meurisch et al., 2017; Sankaran & Markopoulos,
2021) which could also result in mistrust and frustration.

For recommender systems, most work on the user perceptions of these systems addresses
the accuracy of the suggestions dependent on the user needs and expectations. It has been
found that an accurate system contributes positively to its perceived trustworthiness
(Rook et al., 2020) and the user’s satisfaction with suggestions (Cai & Chen, 2020).
Yoshino and Kawahara (2015) showed that proactive recommendations of new topics
encourage interaction with the system.

71



3. Related Work

3.1.3. Conclusion and Research Gaps

Generally, the concept of proactivity in HMI is closely related to computer autonomy
and may be divided into several levels called LoA that indicate different ways a computer
can autonomously offer assistance. These levels have been transferred to HRI and user
interface design, but have not yet been considered for conversational and dialogue design.
To close this research gap, this work deals with transferring the concept of LoA into the
dialogue domain by specifying novel proactive dialogue act types.

Further, the LoA may be applied to different types of system functions. Regarding DS,
for example, the ASR module would be considered to act according to the highest LoA as
it acts completely autonomously. In this thesis, we consider the LoA in the context of DM
for defining the degree of decision-making and action implementation during dialogue. As
previously noted, we define proactivity in CAs as their ability to actively contribute to
problem-solving, integrate users in their decision processes, and communicate naturally
for action alignment and grounding. In this regard, our definition follows the principles of
adequate mixed-initiative interaction design and applies them in a conversational context.

Related work also revealed that proactivity in HMI may be described in the form of a
structured process including anticipation of the need for proactive behaviour, initiation
of action, and target of impact. This process was implemented in some form by all
exemplary proactive systems that were presented as related work. Further, the reference
model of proactive digital personal assistants by Meurisch et al. (2017) also inherited
such a process structure. In this thesis, we adopt this process model for application in
CAs and conceptualise a novel cognitive architecture for enabling proactive behaviour in
conversational systems. For this, we define cooperation in decision-making and problem-
solving as a dialogue problem, where the problem of whether to become proactive and
to what extent needs to be decided on a turn-level basis. Contrary to related work, we
include dialogue information for anticipating the need for proactive behaviour and realise
the initiation of action in the form of dialogue acts. In our work, the target of impact is
a singular user.

Furthermore, the decision whether to become proactive was mostly made dependent on
specific task information and user states, including a user’s expertise level, workflow, or
user preferences. However, this information was usually pre-defined in advance resulting
in quite rigid proactive strategies. For this reason, we consider a more dynamic approach
in this thesis by integrating real-time measurements of user states, such as cognitive-
affective user states, user uncertainty, as well as context information, e.g. user activity,
in the dialogue model for determining the need of initiating proactive conversation.

Another problem of adequate proactive system behaviour concerns the timing of action
execution. Even though timing showed to influence the user’s perception of proactive
behaviour, this problem is mostly related to adequate turn-taking behaviour in dialogue
which exceeds the scope of this work. Within this thesis, we focus on the other central
aspects – whether to become proactive and to which extent. These aspects are deemed to
be the primary driving factors for improving human-machine cooperation using proactive
dialogue. For mitigating the effects of wrongful user interruption, we utilise well-defined
timing of proactive actions at the dialogue turn level in this thesis.
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The evaluation of proactive system behaviour in related work is heavily one-sided on
task-related metrics, such as task efficiency or task success. A user-centered view on
proactive system behaviour is widely underrepresented or even non-existent. For this
reason, this work adds value by integrating the user for proactive dialogue design. In
doing so, we provide a more complete view of the effects of proactive dialogue on human-
machine cooperation. Therefore, we also include subjective user metrics for evaluation,
e.g. impact on user satisfaction, cognitive load, or trust, for comparing the effects of the
designed proactive dialogue strategies on the cooperation.

As trust is an important factor in cooperation and thus essential to consider for the
design of CAs, we focus our investigations on the impact of proactive dialogue on the
social construct of trust. Oddly, trust in CAs is still an often overlooked topic. Therefore,
this work adds value to the understanding of trust in CAs with a focus on proactive
dialogue based on the concepts and findings of trust in autonomy.

For deciding on appropriate proactive system behaviour, related work usually imple-
mented some kind of a cost-benefit function. However, the used functions are mostly re-
stricted to task-related or explicit user information, e.g. preferences, and user behaviour,
for calculating the costs and benefits. Implicit user information, such as the user’s men-
tal state or personality, was widely omitted. We deem this information, and particular
perceived user trust of system behaviour, as fundamental for improving cooperation with
CAs, Therefore, we include trust in the cost-benefit function for enabling adequate proac-
tive dialogue. This was also ought to enable user-adaptive proactive dialogue.

In related work, often only one proactivity type was defined and used for the complete
interaction or scenario-specific proactive behaviour was pre-defined in advance. Thus,
proactive behaviour was designed in a rigid way and for quite limited contexts. For im-
proving cooperation, however, a more dynamic and user-centred approach is necessary.
Therefore, we aim to render proactive dialogue user-adaptive to provide more flexible
strategies for adequate assistance. In the following, we hence review related work regard-
ing techniques and methods for user-centred DSs.

3.2. User-centred Dialogue Systems

Ideally, proactive DSs are developed using a user-centred design approach. In this re-
gard, the ISO 9241-210 Part 210 (ISO, 2019) considering the human-centred design for
interactive systems promotes “system design and development that aims to make inter-
active systems more usable by focusing on the use of the system; applying human factors,
ergonomics and usability knowledge, and techniques”. The goal is to integrate the user
into the design of the system for tailoring the interaction concerning the needs, goals, and
preferences of the user. In doing so, a more effective, efficient, and satisfying user expe-
rience is envisioned. For achieving this, deep knowledge about users their context, and
the task at hand is required. This information needs then to be leveraged by intelligent
assistants to adapt the dialogue to the user. The term user-adaptive is closely related and
often interchangeable with the term personalisation. According to Fan and Poole (2006),
personalisation in digital technologies can be described as “a process that changes the

73



3. Related Work

functionality, interface, information access, and content, or distinctiveness of a system to
increase its personal relevance to an individual or a category of individuals”. For enabling
personalisation a user model is inevitable.

A user model contains an individual’s or group of individual’s characteristics, pref-
erences, interests, and needs and other relevant information for providing adaptation
(Kocaballi et al., 2019). There exist two types of how to create a user model. Using im-
plicit personalisation, user information is automatically gathered by analysing previous
interactions with the system. Explicit user modelling requires the system to involve the
user directly in the process, e.g. by asking questions at the beginning of the interaction.
Furthermore, personalisation can be characterised considering for whom the interaction
is personalised: a group of people or specific individuals. Similarly, what is personalised
can be characterised: the interaction content, information presentation, modality, and
functionality of the system itself (Kocaballi et al., 2019). As there exists a wide variety
of personalisation possibilities, we restrict to the most relevant aspects of user adaptation
concerning the topic of this thesis. Therefore, a more detailed overview of related work
in the area of static, i.e. user-dependent, and dynamic, i.e. situation-dependent, adaptive
dialogue approaches is presented. Here, static refers to an adaptation approach that re-
mains static throughout the dialogue and only differs on the type of user, while dynamic
refers to adaptive approaches that include events or more short-term information, e.g.
affective user state, for tailoring the dialogue during ongoing conversation.

3.2.1. Static User Adaptation

Related work on adapting to user-dependent features has primarily relied on user models
representing a user’s expertise or knowledge, personality, or specific static characteris-
tics and preferences. For adapting to the user’s knowledge, the expertise is modelled
dependent on the current task domain and categorized into distinct ordinal values for
representing the knowledge level. For example, Jokinen and Kanto (2004) modelled the
user experience as a scalar value on a 3-point Likert scale. Here, the individual levels were,
novice, competent, and expert. The authors integrated the user model in a speech-based
e-mail system for providing the dialogue manager with the ability to vary the content
and style of the system utterances dependent on the assumed expertise level of the user.
When a novice user interacts with the system, the system’s responses would be enriched
with extra information. Contrary, an expert user would receive concise and pragmatic
answers.
Komatani et al. (2005) proposed a more fine-grained user model by making a distinc-

tion between the user’s skill level of DS usage and their knowledge level about the task
domain. Furthermore, they introduced a further variable representing the degree of ur-
gency, as the task domain was to provide bus schedule information. The classification
of each of the expertise levels was conducted using decision tree learning. Here, it was
differentiated between either high or low skill and knowledge levels. Dependent on these
levels, the dialogue content would subsequently be adapted. For example, during inter-
action with a user having either a low skill or knowledge level, the system’s response
would be augmented with additional explanations. Additionally, the dialogue initiative
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was altered depending on the user’s skill level. The system interacted with novice users
in a system-initiated manner, while it interacted with competent users in a more open-
ended manner. Evaluating this user-adaptive behaviour, the authors found that a user’s
skill level could be increased more rapidly using the proposed user models. Further, the
dialogue duration could be decreased for more experienced users by avoiding redundancy.

More recently, F. M. Nothdurft (2015) described a more sophisticated approach by
modelling knowledge as a structural model depending on the domain. Here, it was dif-
ferentiated between declarative i.e. the being of things, and procedural knowledge, i.e.
know-how that can be applied to perform a task. The user’s expertise was modelled as
a probability distribution over a 5-point Likert knowledge scale ranging from novice to
expert with intermediate levels. Similar to previous work, the expertise level was sub-
sequently used to adapt the type and content of dialogue explanations and whether to
provide explanatory messages at all.

Another current hot topic is the adaptation of the dialogue to the user’s personality.
Typically, the personality in a user model is represented based on the Big 5 model. For
detecting the traits there exist several possibilities. Either, a questionnaire is used at
the beginning of the interaction (e.g., see Fung et al. (2016)) or data-driven methods
are applied. An extensive review of data-driven methods for detecting and adapting to
personality features is presented in Ma et al. (2020). For example, personality can be
inferred from extracting personal knowledge and possessing a long-term memory over
user-related facts and feeding it to a Decoder-Encoder model. Furthermore, personality
may be detected using text, audio, visual or multimodal features (Mehta et al., 2019).
For adapting the dialogue to the respective user personality, typically the system output’s
content and wording are altered. This is usually done in such a way, that the system is
perceived to have matching personalities (Metze et al., 2011). For example, Ahmad
et al. (2020) introduced a personality adaptive conversational agent called Raffi. It
used language cues that are specific to a particular personality dimension for mirroring
the user’s personality. Concerning tutoring systems, Vail and Boyer (2014) made use of
adaptive dialogue strategies for adapting to either introverted or extroverted students.
Introverted students were provided with additional prompts and encouraging messages
to speak more openly about their minds, while extroverts were provided with reflective
prompts to encourage discussions with the tutor. The authors presented study results
showing that adapting a dialogue to the user’s personality can have a positive effect on
learning.

Other static adaptation approaches comprise the use of lexical alignment (Linnemann
& Jucks, 2018; Oviatt et al., 2004), e.g. using the same words as the user, or adapting
to the respective user gender (Liang et al., 2020). Furthermore, user preferences, e.g.
which kind of food a user prefers in a restaurant search setting, can be considered for
providing personalised and more relevant recommendations (Walker et al., 2004). Due to
the limited scope of this thesis, these approaches are not reviewed in detail.
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3.2.2. Dynamic User Adaptation

For tailoring the dialogue dynamically during the conversation, there exist various ap-
proaches. Among other things, the dialogue strategy can be adapted according to the
user’s emotions that may change throughout the dialogue (Andre et al., 2004). For ex-
ample, Gnjatović and Rösner (2008) created an emotion-adaptive system for supporting
users while they solve the Tower-of-Hanoi puzzle. Depending on the user’s emotional state
(negative, neutral, positive) the dialogue strategy was dynamically adapted. When the
user was in a negative emotional state, high-intensity support was provided in the form of
more informative dialogue content. Contrarily in neutral and positive states, the user was
provided with low-intensity support only containing basic information. Nass et al. (2005)
observed the pairing of user emotion and car voice emotion which resulted in increased
driver safety and better user attitude during driving. However, the authors distinguished
only between a positive and negative emotional state during the study. Contrary, Pitter-
mann et al. (2010) presented an approach that incorporates all six basic emotions: anger,
boredom, disgust, fear, happiness, and sadness (Ekman, 1993). The emotion recognition
was based on extracting the relevant features from the speech signal and using the Rover
(Recognizer Output Voting Error Reduction) algorithm for classifying the emotions. The
dialogue’s emotional wording was then adjusted to match that of the user. In a simulated
environment, Papangelis et al. (2012) used an RL approach for optimising the dialogue
strategy concerning the user’s emotion. Therefore, the authors created a user simulator
for sampling 16 different user emotions.

Especially for problem-solving and learning tasks, it is relevant to adapt to the user’s
fine-grained affective state instead of basic emotions. For example, W. Liao et al. (2006)
proposed a dynamic decision framework to unify affect recognition and user assistance.
In their work, they recognised affective states through active probabilistic inference from
multimodal sensory data. User assistance was then automatically provided through a
decision-making process that evaluates the benefits of keeping the user in productive
affective states vs. the costs of performing user assistance. Their work only focused
on affective states, specifically stress and fatigue but was not specific to conversational
systems. Similarly, Friemel et al. (2018) argued that a real-time intelligent invocation
of user assistance can be done via measurements of the cognitive-affective states with
neurophysiological tools directly from the human body in real-time. They assumed that
negative cognitive-affective states influence the users’ behaviour, and therefore the need
for assistance. Additionally, they proposed to examine the effects of negative cognitive-
affective states on the users’ behaviour when they were offered assistance. The cognitive-
affective states could be measured via facial expressions with webcams and the user’s
mental effort via heart rate. Besides these decision-theoretic frameworks, there exist
several affect-adaptive conversational systems.

For example, Bui et al. (2009) used statistical dialogue modelling for optimising dialogue
strategies based on recognising the user’s affective state. They tested their approach via
simulation considering the affective state “stress” having five different manifestations
from no stress to extreme stress. As a hypothetical use case, they considered route
navigation in an unsafe tunnel, where the possibly stressed user needed a route description
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to coordinate with all other team members. Therefore, the user communicated with the
DS to receive this information. As more stressed users tend to make more mistakes, the
system was required to adapt its strategy for the dialogue to be successful. Evaluations
in the simulated environment showed the advantage of the presented statistical models
over hand-crafted models.

Similarly, Callejas et al. (2011) utilised an emotion recognition module for detecting,
if a user was angry, bored, or doubtful. This information was subsequently used by the
dialogue manager to adapt its strategy. For example, in case the user was doubtful and had
alternating behaviour patterns during the dialogue, the system selected a system-directed
initiative approach while also adding a help message after each prompt. Evaluation results
verified that the adaptive version of the system performed better in terms of dialogue
duration. Additionally, users subjectively rated the system better when adapting its
behaviour to its affective state.

D. Litman and Forbes-Riley (2014) described the adaptation of a conversational tu-
toring system towards the affective states of disengagement and uncertainty in real-time.
The classification of these states was learned on a data-corpus based on prosodic, lexical,
and contextual features. For this, the authors used two binary classification models. De-
pending on the respective states the user either provided motivational (disengagement)
or reassuring (uncertainty) messages. Comparing the system to a non-adaptive system,
the evaluation results showed an increase in satisfaction, motivation, and task success.

Another way of dynamically adapting the dialogue to the user is the selection of ap-
propriate dialogue initiatives and grounding strategies at each dialogue turn for achieving
high user satisfaction. Thus, these approaches are considered quality or user-satisfaction-
based adaptation approaches. In an early work by Chu-Carroll (2000), a mixed-initiative
adaptive movie information system called Mimic was proposed. The system selected the
type of initiative dependent on specific interaction cues, e.g. the user utterance contains
ambiguous information and the dialogue history. The cues were then used to update
probability distributions for selecting the appropriate strategy. A user evaluation of the
Mimic system revealed that the adaptive version was able to outperform a non-adaptive
version concerning user satisfaction and dialogue efficiency. Furthermore, it was found
that Mimic’s adaptive behaviour led to better user expectations of the system and re-
solved dialogue anomalies more efficiently.

Similar to this approach, D. J. Litman and Pan (2002) described an adaptive version
of the telephone train schedule system Toot. Here, the dialogue strategy was selected
dependent on the ASR performance. At each dialogue turn, the ASR confidence level
was computed for providing the system with information about the uncertainty of user
input. In case the confidence level was low, i.e. the dialogue was problematic, the system
adapted its initiative strategy. For example, if the system started with a more user-
initiative strategy, the system switched to a conservative system-directed strategy after
registering speech recognition errors. The same procedure was used for adapting the
grounding strategies. By adapting the dialogue strategy to the ASR performance, the
authors could significantly improve the task success of Toot compared to a non-adaptive
version.

77



3. Related Work

Schmitt and Ultes (2015) extended this work by introducing the interaction quality (IQ)
measure for user satisfaction recognition. IQ is an objective approach to measure the
user’s satisfaction with the dialogue (Schmitt et al., 2011). For estimating the IQ during
an ongoing dialogue at each system-user exchange, interaction parameters (e.g. automatic
speech recognition information, last system action) from three dialogue modules (ASR,
NLU, DM) as well as temporal features are computed. Temporal features are calculated
as means and counts of exchange level parameters on a window level (previous three
turns) and dialogue level (up to the current exchange). These parameters are then fed to
a SVM or LSTM-based architecture (Rach et al., 2017) in order to generate an estimate
of the IQ on a 5-point Likert scale.

It was shown that IQ correlates well with user satisfaction (Ultes et al., 2013). For
creating quality-adaptive dialogue, rule-based and statistical approaches were proposed
(Ultes, 2015). These were implemented in a hidden-information state dialogue manager
that could handle bus schedule information (Heinroth et al., 2010). Here, the user state
was extended by including the IQ value. By adapting the grounding strategy and the
initiative, the authors could show the high usability of the adaptive strategy approach
which outperformed non-adaptive and random strategies. Furthermore, it was shown
that IQ could be used for building a reward function for RL (Ultes et al., 2019). In
Ultes et al. (2017), the authors described a method for learning a suitable dialogue policy
by maximising the IQ using RL. This approach showed to increase task success and
outperform hand-crafted strategies.

Besides considering user satisfaction for adapting the interaction, there exist several
works on adaptive systems and trust. Trust is particularly important in user-adaptive
interaction because adaptive behavior raises several issues related to trust, including con-
trollability, privacy, intrusiveness, breadth of user experience, predictability, and trans-
parency Jameson (2007).

For example, Cramer et al. (2008) studied the effect of transparency on the trust of
a user-adaptive recommender system. They found that explanations of the system’s
decision-making helped the user to build an understanding of the system’s functioning,
thus having a positive impact on trust.

F. Nothdurft et al. (2014) continued this approach by including a fine-grained trust
model in the user state for dialogue adaptation. Although their work is theoretical, they
proposed an explanation framework that automatically augmented the dialogue with a
transparency explanation, if trust in the system was endangered. For this, the augmenta-
tion process was structured as a POMDP with the sub-bases of trust according to Madsen
and Gregor (2000) representing the states and affective states (e.g., confusion, frustra-
tion) being the observations. For example, the system could detect whether the user was
confused. If so, it inferred the reliability and perceived competence of the system to be
as currently low. As a result, the explanation framework would interrupt the current
dialogue flow of the DM and trigger an explanation for reacting to this incomprehensible
situation.

Similarly, Akash et al. (2020) used a POMDP model to determine the adaptive trust cal-
ibration in an automated driving take-over scenario. The authors included the user’s trust
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in the system as well as the mental workload in the user state. Using a reward function
designed to calibrate trust, the authors trained a policy for influencing the driver’s trust
level and workload by controlling the automation transparency level. The transparency
level depended on the user’s current trust and workload level as well as automation reli-
ability and traffic complexity.
Similar to the topic presented in this thesis is the work by Hammer et al. (2015). In their

work, they examined trust-based decision-making for smart and adaptive environments.
For this, the authors developed a computational trust model that derived trust from a
set of trust-based dimensions: Comfort of Use, Transparency, Controllability, Privacy,
Reliability, Security, Credibility, and Seriousness. The relationships between trust and
its dimensions were modelled as conditional probabilities in a Bayesian Network. Using
a Bayesian Network allowed us to predict a probability distribution over different levels
of trust depending on the learned conditional probabilities. Furthermore, the authors
distinguished between initial trust and interaction-based trust to incorporate the trust
dynamics. The trust dimensions were modelled as hidden variables that could be only
observed via user state and social and environmental context. The trust model was then
used in a smart office context for deciding on appropriate proactive actions to maintain
the system’s trustworthiness. For initialising the trust model, the authors gathered data
online. In doing so, an accurate mapping between proactive system actions dependent on
a specific situation or event and the system’s perceived trustworthiness could be figured.
The learned policy was then evaluated in a live study. The results showed that the context-
adaptive proactive actions could indeed maintain user trust in the system. However, the
authors did not examine how accurately the trust model could predict the user’s current
level of trust.
Closely related to trust is the concept of rapport which is used to describe harmonious

relationships both in HHI and HMI. In this regard, Pecune and Marsella (2020) studied
an RL-based approach for developing conversational strategies that were ought to achieve
both task success and rapport between user and system. For this, the authors made use
of a user simulator that included a rapport estimation module (A. Jain et al., 2018) and
equipped a CA with task-oriented and rapport-building behaviour, e.g. small talk, and
self-disclosure. Further, they included the estimated rapport besides task metrics in the
reward function for optimising both task and social dialogue policies. Training and testing
the CA with the social user simulator showed the usefulness of their approach.

3.2.3. Conclusion and Research Gaps

For both, static and dynamic user adaptation approaches, adequate user modelling is
an integral aspect. In related work, several user-specific characteristics were represented
in a user model, including user expertise, personality, satisfaction, and affective state.
However, few works considered trust for user modelling. Therefore, we intend to add
to this line of research by developing a sophisticated user model incorporating a user’s
perception of the system. This would enrich a system with a simplified TOM for making
assumptions about its trustworthiness. For trust-based user modelling in dialogues, we
adopt methods of user modelling in recommender systems that rely on both user behaviour
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and user group-specific information. This information is deemed to be beneficial for
representing trust in a user model. For realising the user model, we adopt and extend
previous work regarding dynamic user adaptation by including not only system-, and
context-related information, but also static user information. The created user model is
novel, as it is the first to represent the trust development during an ongoing dialogue. This
way, we aim for real-time measurement of an important metric indicating the success of
human cooperation. This allows to optimise proactive dialogue strategies regarding their
trustworthiness, pushing the boundaries of the state-of-the-art.

For adapting a dialogue, there exist several approaches. Mostly, the content of system
messages is adapted or additional messages for encouraging or motivational purposes
are provided. Also, the dialogue initiative and grounding behaviour may be adapted.
Contrary to related work, we adapt the level of proactive dialogue behaviour by utilising
a fine-grained set of proactive dialogue act types. In doing so, we aim to provide a more
flexible way of proactive dialogue increasing trust and usability for improving cooperation.

Adaptation behaviour concerning user trust primarily involved transparency behaviour
in the form of providing explanations and the modality of system messages. One work
considered adapting proactive actions utilising a trust model to maintain a system’s trust-
worthiness. However, this work considered proactive behaviour in smart environments
with a low degree of cooperation between system and user, e.g. the system was used to
switch on the lights automatically when the user arrived. Further, no proactive dialogues
were considered. Therefore, our approach is the first to provide methods for including
trust for dialogue adaptation.

Further, related work used Bayesian Networks for learning appropriate mappings be-
tween user trust and adequate proactive system action, we applied a sequential decision-
making method in the form of a RL-based approach for learning adequate user-adaptive
proactive dialogue strategies. A review of related work in the dialogue domain revealed
that RL-based approaches are proven to be quite useful for optimising task effective dia-
logue behaviour. However, optimising user-perceived trust during dialogue for improving
cooperation is underrepresented. Even though the work presented by Ultes et al. included
user satisfaction in the form of an IQ-value in the reward function, this metric solely con-
sidered the functionality of the system and did not reflect the trustworthiness of the DS.
M. Jain et al. (2018) proposed to include rapport, a concept close to trust, in the reward
function for achieving both socially and task-effective dialogue behaviour. However, there
no proactive dialogue was considered and the focus was set on the relationship between
user and machine and not on cooperation. Therefore, this thesis deals with novel work
on adapting the proactive dialogue by including a trust-based user model for achieving
both trustworthy and task-effective cooperation between the user and CA.

3.3. Summary

This chapter presented the state-of-the-art regarding proactive HMI and user-centred
DSs. We first reviewed various modelling approaches and user perceptions of proactive
behaviour in HMI before considering static as well as dynamic user adaptation approaches
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Figure 3.2.: The novelty of our work. All parts of the DS addressed by the novelty of this
thesis are displayed in green including the Trust State, Dialogue Management,
Taxonomy, and Cognitive Architecture.

in DS. During the review process, we identified several research gaps.

First, related work regarding proactivity in the dialogue domain is sparse. However,
there exists extensive research on this topic in other areas of HCI and autonomy. This
knowledge may be used to transfer the concept of proactivity into the dialogue domain
and to allow its structured technical realisation in conversational systems. Further, the
evaluation of proactivity in HCI from a user-centered perspective is limited. For the
creation of novel proactive dialogue strategies, it is therefore required to observe and
evaluate also user-dependent features. This allows gaining in-depth knowledge of proac-
tive behaviour for conversational assistance, e.g. which user characteristics influence the
perception of proactivity or the identification of adequate proactivity types for specific
user groups. Consequently, this information may be used for dialogue modelling to im-
prove human-machine cooperation. Contrarily to related work, which primarily relied
on the WoZ paradigm for testing the effects of proactivity on the user, we aim to eval-
uate using implementations of realistic prototypes. This way, we not only shed light on
the theoretical implications of proactive behaviour but also elucidate the challenges and
requirements of its practical realisation.

For the implementation of a more flexible and dynamic approach to proactive dialogue
modelling, instead of the rather rigid proactive behaviour in related work, we identified
adequate user modelling to be essential. Research on user-centred dialogue systems pro-
vides several different approaches for including the user in the DM process. However, none
of them sufficiently describes the inclusion of a trust metric for decision-making during
dialogue, which we deem important for two reasons: the measurement of the HCT rela-
tionship during dialogue would enable a direct way to evaluate the success of cooperation
between human and computer. Finally, this provides the possibility to optimise cooper-
ation using ML techniques, which have shown to be effective for user-adaptive dialogue
modelling. In Fig. 3.2, we illustrate the novelty of our approach. We model proac-
tive behaviour for DSs by developing a taxonomy of proactive dialogue and describing a
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cognitive architecture for realising proactive behaviour in CAs. Further, we investigate
several proactive dialogue strategies and their relation to the concept of trust and usabil-
ity to improve cooperation. For this, we include mechanisms for deciding on proactive
behaviour in the DM module. Finally, we implement a user-adaptive proactive dialogue
model. This includes the user’s trust state in the user model for creating trustworthy
proactive dialogue strategies with high usability.

Prior to the development of the proactive dialogue model, we conducted two initial
experiments for exploring the effects of proactive behaviour on cooperation. These ex-
periments, which are presented in the following chapter, are a first trial of transferring
proactive behaviour in the realm of DSs. For this, we provide a simplistic embedding of
current approaches to proactive behaviour, i.e. recommendations and notifications, in the
dialogue. This was necessary to examine the effect of state-of-the-art proactive behaviour
on aspects of cooperation by the means of trust and usability. Further, this allowed us
to gain intuition and first insights into how specific user features influence the perception
of proactive behaviour. Based on the outcome of the experimental studies, related work,
and the observed background, we then derived a proactive dialogue model with a focus
on improving human-machine cooperation.
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4. Exploratory Analysis of the Effects of
Proactive Behaviour on Cooperation

Reviewed literature has shown the importance of the concept of proactive behaviour on
both HHI and HCI. The more intelligent and autonomous computer-powered machines
become, the more humans expect them to become proactive and take actions unsolicited.
However, most literature only considers proactive behaviour from the system’s point of
view, without extensively studying the user perception of proactive systems. With the
goal of this thesis aiming at improving cooperation, it is integral to consider both, proac-
tive interaction design and its effect on the user. To get an intuition of proactive dialogue
affecting the cooperation, we needed to examine how state-of-the-art proactive interac-
tion approaches – notifications and recommendations – can be transferred to the dialogue
domain and how this influences the user perception. This was aimed to identify rele-
vant user requirements for proactive dialogue modelling with a focus on human-machine
cooperation. From a technical perspective, it was essential to embed proactive dialogue
in realistic prototypes. In doing so, technical requirements for implementing proactive
dialogue systems could also be identified. In summary, the exploratory studies answered
the following two questions for establishing user and system requirements of adequate
proactive dialogue modelling:

How does proactive dialogue influence usability? For successful cooperation, usabil-
ity is one factor that can lead to its achievement as a proactive dialogue showing high
usability may lead to task-effective cooperation. Therefore, it was necessary to observe
how singular constituents of usability relate to proactive behaviour. Further, differences
between reactive and proactive dialogue were needed to be identified for distilling user
requirements.

Which components of Human-Computer Trust are influenced by proactive dialogue?
Another prerequisite of successful cooperation is an adequate trust relationship between
system and user. Here, it was particularly interesting to consider whether proactive di-
alogue affected the HCT and in which way. For example, the question needed to be
answered if and how proactive behaviour related to cognitive- and affect-based trust.
Congruently to our observations regarding usability, we compared differences in trust
between reactive and proactive dialogue to identify user requirements for modeling trust-
worthy proactive dialogue strategies.
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4.1. Effects of Conversational Recommendations on
Cooperation

4.1.1. Motivation

In this first experiment (M. Kraus et al., 2020a), we studied the influence of proactive
recommendations during the dialogue on the system’s cooperation (perceived usability,
trustworthiness) and the overall acceptance of the cooperation itself. Related work con-
sidered various aspects of proactive recommendations, however, not form a cooperation-
wise perspective. Therefore, we observed whether recommendations affect trust in the
system, and in which way usability and acceptance were influenced. For evaluation, a
university-based restaurant information system was implemented as an Amazon Alexa
application (“Skill”) that was able to recommend meals. This domain was chosen as
providing suggestions on food and nutrition is a popular topic among recommendation
system researchers since the domain offers a large and confusing information space that
motivates the need for autonomously-made recommendations. For example, (Freyne &
Berkovsky, 2010) and (Elsweiler et al., 2015) considered intelligent food or meal planning
applications for a healthy lifestyle. Further, this domain offered to take user-dependent
actions as people generally have specific preferences towards different kinds of foods. For
identifying user requirements, we implemented several prototypes using different kinds
of recommendations. As a baseline, we implemented a system that only provided reac-
tive recommendations. Further, we implemented two kinds of proactive recommendation
strategies. These strategies differed in their degree of invasiveness and the level of user
control. In the introduction of this thesis, we illustrated controllability and privacy to be
one of the major challenges of proactive behaviour. Thus, these aspects should be also
considered concerning proactive dialogue modelling for adequate cooperation. In this
first exploratory study, it was therefore observed whether there exist differences between
proactive system dialogue in which the user has allegedly more control over the recommen-
dations (explicit strategy) and proactive dialogue relying on automatically collected user
data (implicit strategy) in which the user might not directly understand the system’s
reasoning behind the proposed suggestions. An explicit recommendation strategy was
based on user preferences that had directly been provided by the user, i.e., a user could
put favourite dishes or restaurants on a favourites list. Contrary, the implicit strategy
used autonomously gathered information while interacting with the user, i.e., a meal or
restaurant was put on the favourites list when the user asked for more details about them.
In the following sections, we describe the scenario, the system prototype, and dialogue
design, as well as the study setup, results, and discussion. Parts of the presented work
and results have been previously published in (M. Kraus et al., 2020a).

4.1.2. Scenario

For the creation of a test scenario, we implemented an information retrieval system as-
sisting the user in planning their lunchtime at Ulm University. The system contains vari-
ous information about the university’s different restaurants, Mensa, Cafeteria West,
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Amazon Voice 
Services

Speech Interaction Speech Processing
FlaskAsk

Canteen Meal Service

Recommendation System

Figure 4.1.: Overview of the combined information retrieval and proactive recommen-
dation system. A user interacted with Amazon’s Alexa speech interface.
Amazon Voice Services transformed the spoken words into text. Afterward,
a FlaskAsk-Python application handled the dialogue management, i.e. re-
trieved meal or restaurant information from the canteen’s database, and se-
lected suggestions from the recommendation system. Taken from M. Kraus
et al. (2020a), licensed under CC BY-NC 4.0 (https://creativecommons.org/
licenses/by-nc/4.0).

Cafeteria B, Bistro, Burger Bar, West Side Diner.

The information about the individual restaurants comprised their meal plans (ca. 70
different kinds of meals), meal-specific information (17 different food categories, price,
name, ingredients, vegetarian yes/no, available as menu yes/no), as well as restaurant-
specific information (location, opening times, background info). Thus, the domain fulfilled
the prerequisite of sufficiently large information space for studying the effects of proac-
tive recommendations. A meal plan for one of the restaurants consisted of several food
categories, which were repeated over all weekdays. For example, herbal cream soup and
potato soup could be assigned to the food-category “soup”. While the categories re-
mained the same over the days of the week, the offered dish of a category changed daily.
The user could receive information about the different meals and restaurants by posing
spoken requests to the system. The prototype implementation and the dialogue design
are explained in the next section.

4.1.3. Prototype Implementation and Dialogue Design

The implementation of the system was based on Amazon’s Alexa and its cloud-based
speech recognition. For communicating with the Amazon Voice Services, the Python
FlaskAsk 1 framework was used. All application data required for the system’s func-
tionalities, in particular for proactive meal suggestions, was stored in a database. This

1https://github.com/johnwheeler/flask-ask
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Common Interaction Interaction Including Recommendation

U: Alexa, start Mensa-Planner. U: Alexa, start Mensa-Planner.
S: Hi, I am the Mensa-Planner. I assist you
finding your favourite meals. How can I help
you today?

S: Hi, I am the Mensa-Planner. I assist you
finding your favourite meals.

U: What can I eat in the Burger-Bar today? S: Today, I recommend you a cheeseburger in
the Burger-Bar.

S: The Burger-Bar serves cheeseburger, chick-
enburger, ... .

U: Ah okay, nice. Thank you Mensa Planner.

U: How much is a cheeseburger? S: See you soon!
S: The price for cheeseburger is around 2 Euro.
U: Is a cheeseburger available in a menu?
S: Yes, a cheeseburger is available in a menu
with french fries.
U: Ok, put Cheeseburger on my list.
S: I put Cheeseburger on your favourites list.

Table 4.1.: Examples dialogues representing the common (reactive) interaction flow (S:
system; U: user). Left: a typical dialogue betweenAlexa and user. The green-
coloured text represents the functionality of the explicit proactive strategy.
Right: interaction including a recommendation by the system. The cyan-
coloured text represents the typical suggestion utterance for both (explicit and
implicit) proactive strategies. Note that original interactions were conducted
in German. Taken from M. Kraus et al. (2020a), licensed under CC BY-NC
4.0 (https://creativecommons.org/licenses/by-nc/4.0).

database contained all relevant information about the individual restaurants and meal
plans for each day. An overview of the system’s architecture is depicted in Figure 4.1.
Generally, the information retrieval system had two main functions: returning a list of
meals and returning detailed information about one single meal. Both existed in several
variants. A list of meals was returned by Alexa when users had asked for meals in a
specific restaurant, meals from a specific category, when they had searched for meals by
name, or when they had asked for vegetarian meals. In all cases, users could ask for meal
lists of the current day or another weekday within the next seven days: e.g. “What can
I eat in the bistro on Tuesday?”; “What are tomorrow’s meals in the category pizza?”;
“Do they serve burgers today?”.

The corresponding answer of Alexa either contained only a list of meal names when
asking for meals in a specific restaurant or a list of meal names and the related name of
the restaurant in all other cases. After receiving a list of meals, users could ask for more
detailed information about every meal which was on the list before. More precisely, users
could request information about restaurants, food categories, descriptions, and pricing
information of meals: e.g. “What do you know about vegetable soup?”; “How much is
pizza salame?”; “Where can I find this?”. For providing proactive system behaviour,
two recommendation variants during dialogue were implemented: explicit, and implicit
proactive recommendation strategy. Both extended the described basic functionalities by
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collecting user preferences and suggesting appropriate meals to users. Hence, users were
provided with personalised active assistance to retrieve information more convenient and
time efficient. The reactive strategy did not provide recommendations.

The explicit proactive recommendation strategy suggested meals by utilising user pref-
erences that were managed by the user directly. Here, personal favourites lists were
applied that could be directly manipulated. These lists contained preferred restaurants,
food categories, and meals. Users were able to explicitly add or remove content by saying,
for example, “Put a cheeseburger into my favourites.” or “I don’t like this anymore.”.
The system then recommended one meal to the user depending on these favourite lists.
An example of such system behaviour is presented in Table 4.1.

Contrary, the implicit proactive recommendation strategy suggested meals by utilis-
ing automatically-gathered user preferences. For this, the user’s previous behaviour was
considered. To illustrate this strategy, consider the examples in Table 4.1. Every time
users searched for a meal, a food category, or a restaurant, the search name was added
to a corresponding recommendation list with the value of one. In the presented example,
“What can I eat in the Burger-Bar today?” added ”Burger-Bar” to the list of favoured
restaurants. When asking for detailed information about a meal, its name was added
to the list of favorite meals. Additionally, its category and restaurant were added to re-
spective lists as well. If an entry with the same value already existed, its value increased
by one. As the user asked for detailed information about cheeseburgers in our example
(“How much is a cheeseburger?” and “Is a cheeseburger available in a menu?”), the
values of “cheeseburger”, “Burger-Bar”, and “Burger” were increased respectively. The
system then recommended meals depending on the highest rated entries of the favourites
lists, e.g. “Today, I recommend you a cheeseburger in the Burger-Bar”.

4.1.4. Experimental Design

The developed study design consisted of three independent between-subject conditions to
which participants were randomly assigned. Conditions were as follows:

Reactive: Participants used the basic version of the implemented information retrieval
system that provided no recommendations at all. This was used as a baseline
condition.

Proactive (explicit): the system provided suggestions at the beginning of each dialogue
based on the previously described explicit proactive recommendation strategy, where
participants managed their preferences themselves.

Proactive (implicit): the system provided suggestions at the beginning of each dialogue
based on the previously described implicit proactive recommendation strategy re-
lying on automatic measures of previous user behavior.
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Recommen-
dation
Strategy

Accep-
tance

SRA Likeabi-
lity

Cogni-
tive
De-
mand

Satisfac-
tion

Habita-
bility

Moti-
vation

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Reactive 4.09

(1.26)
3.50
(.88)

3.74
(1.04)

3.79
(1.22)

4.25
(1.04)

3.67
(.98)

5.28
(.61)

Proactive
(explicit)

4.79
(1.66)

3.81
(.73)

4.55
(.94)

4.58
(.88)

5.54
(.70)

4.38
(.93)

6.22
(.54)

Proactive
(implicit)

4.30
(.84)

4.17
(.77)

4.67
(.63)

4.64
(.64)

5.36
(.93)

5.21
(.80)

6.19
(.74)

Table 4.2.: Descriptive statistics of the measured dependent variables with reference to
the recommendation strategies. Results for cognitive demand are inverted (the
higher, the better). SRA implies system response accuracy. Taken from M.
Kraus et al. (2020a), licensed under CC BY-NC 4.0 (https://creativecommons.
org/licenses/by-nc/4.0).

Participants

19 German participants (52.6 % female) with an average age of 23.37 (SD = 4.06) were
recruited and received 10¿ in return for their participation. 15 participants were students,
while the other 4 were employees of our university. A condition of participation was
actually visiting the canteen on a regular basis.

Experimental Procedure

As a cover story the participants were told that they would test the new Alexa menu
assistant of the university for usability. Furthermore, participants were instructed to
interact with the Alexa Skill for about five minutes daily over a period of 5 weekdays
and to evaluate the application in a questionnaire at the end of the study. For the duration
of the evaluation, they were provided with an Alexa Echo Dot on loan. Additionally,
participants received detailed online study instructions. These instructions contained
example utterances as well as an explicit task description.

First, participants had to make meal queries (at least one) choosing from three request
types: query of meals offered by specific restaurants, the query of meals of a specific food
category, or an explicit search for meals. Subsequently, they had to make requests (also
at least one) for details about specific meals (either all details or particular details, e.g.
food price) or restaurants (description, opening times, location). The user could also
request help from the system if he or she was unsure about what to say. Furthermore, the
system was able to prompt the user again in case of low speech recognition accuracy. After
participants repeated the task for 5 days, they received access to the online questionnaire.
Upon successful completion, they were then given a reward for participation.
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Questionnaires

In our experiment, the acceptance of the cooperation (scale developed by Van Der Laan et
al. (1997)), the usability of the system, and trust in the system were assessed as dependent
variables. For measuring the usability, the SASSI questionnaire (Hone & Graham, 2000)
was employed. Trust was assessed using the German version of the trust in automation
scale (J. M. Kraus, 2020). Propensity to trust was measured using the questionnaire
provided by Merritt et al. (2013). In addition, the participant’s motivation to interact
with the system was measured using a scale developed by McAuley et al. (1989). All
scales were translated into German, as the experiments were conducted using German
participants. Additionally, the scales were slightly modified for content and study context.

4.1.5. Results

For data analysis, a one-way analysis of variance (ANOVA) was used for guaranteeing no
significant confounding variables and for testing the significance of described reactive and
proactive (explicit, implicit) recommendation strategies. To rule out confounding group
differences for the study conditions, the participants’ experiences with existing speech
assistants (Alexa, Google Home, Siri,...) were controlled for. There were no significant
group differences (F (2, 16) = 0.001, p >> .05). In addition, participants’ ages and
genders were similarly distributed in the different experimental groups and no outliers
were found in the data set. An overview of the results is presented in Table 4.2.

Effects of Proactive Dialogue on Usability

The data analysis revealed significant differences between conditions for the dependent
variables Satisfaction (F (2, 16) = 3.65, p < .05, η2 = 0.31), Habitability (F (2, 16) =
4.81, p < .05, η2 = 0.38), and Motivation (F (2, 16) = 4.25, p < .05, η2 = 0.35).
According to J. Cohen (1988), the limits for the size of the effect are .01 (small effect),
.06 (medium effect) and .14 (large effect). According to these rules of thumb, the effect
of our ANOVA was considered as large.

For clarifying which conditions differed significantly, post-hoc t-tests were conducted.
For Satisfaction, the explicit proactive recommendation condition was rated significantly
higher than the reactive condition (t(10) = 2.53, p < .05) The difference between im-
plicit and reactive strategy (t(11) = 2.03, p = .07) was not significant, however, may
become significant with increasing n of participants. Habitability was rated significantly
higher for the implicit vs. reactive recommendation condition (t(11) = 3.14, p < .01).
Both proactive recommendation strategies were rated significantly higher than the re-
active condition for Motivation (explicit vs. reactive, (t(10) = 3.03, p < .05; implicit
vs. reactive, (t(11) = 2.39, p < .05). There were no significant differences between the
proactive test conditions.
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1.00 2.00 3.00 4.00 5.00 6.00 7.00

Reactive

Proactive (explicit)

Proactive (implicit)

Trust Pre-Trust

Figure 4.2.: Trust trajectory for each condition measured at two time steps: before the
interaction (Pre-Trust), and after the interaction (Trust).

Effects of Proactive Dialogue on Trust

Further, the trust trajectory throughout the experiment was investigated by measuring
the differences between the user’s propensity to trust in advance of the experiment and the
rated perceived trust after the experiment. Using a paired t-test, we found a tendency for a
decrease in trust in the system for the explicit proactive condition (t(7) = 2.25, p = .065),
which may become significant using a larger number of participants. For the other condi-
tions, trust was increased but not significantly. The trust trajectories for each condition
are depicted in Fig. 4.2.

4.1.6. Discussion

The study revealed differences between proactive and reactive conditions. In the following,
we discuss the results concerning the two research questions.

How does proactive dialogue influence usability?

Both proactive recommendation strategies received, concerning the explicit strategy sig-
nificantly, higher ratings for user satisfaction. Hence, a preemptive system led to a satis-
fying dialogue for information retrieval. Furthermore, both proactive strategies motivated
the user significantly more to interact with the system than the reactive strategy. This is
a strong indicator that the dialogue incorporating proactive elements was considered more
encouraging. Since motivation was measured after 5 days of usage, proactivity seemed to
be a factor in increasing user engagement. The implicit proactive recommendation was
also rated higher on habitability. According to Hone and Graham (2000), a “habitable
system may be defined as one in which there is a good match between the user’s con-
ceptual model of the system and the actual system.” Consequently, users could build a
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better model of the system’s functionalities, when it implicitly tracked their behaviour
for recommendations. Thus, the user was able to build an adequate theory of mind of
the system’s actions. This implicated that the tracking of user behaviour seemed to work
quite well. Also, the explicit proactive recommendation strategy was rated higher for
habitability than the reactive strategy. However, the difference was not significant.

Overall, the proactive strategies were perceived as more user-friendly which was backed
up by positive tendencies in the measurements of acceptance, cognitive demand, and
likeability of the cooperation. This was in line with the results provided by Peng et al.
(2019). There, a medium-proactive robot was perceived as more appropriate and helpful
in decision-making tasks. However, they used a WoZ set up in contrast to our approach.
Hence, our study suggests that the results may be transferred to real functioning proactive
dialogue systems. Although there were no significant differences between the two types
of proactivity, some observations were possible. The implicit recommendation strategy
was rated higher in system response accuracy and habitability. Thus, it can be cau-
tiously assumed that users found implicit system behaviour to be more understandable
as both factors indicated whether the system worked according to the user’s intentions
and expectations.

The explicit recommendation strategy had higher ratings for user acceptance. This
could indicate that users want to be in charge when providing information about their
preferences and may not fully trust a system that autonomously collects their data. For
observing this claim more in detail, the trust ratings of the strategies need to be investi-
gated.

Which components of Human-Computer Trust are influenced by proactive dialogue?

This study only investigated whether trust, in general, was affected by the proactive
interaction and did not consider the sub-bases of trust. Observing the trust trajectory,
we found that the implicit recommendation strategy was the only one to lead to a trust
decrease. According to Glikson and Woolley (2020), trust in virtual CAs typically is high
at the beginning of interaction and decreases over time due to a lack of calibration between
system behaviour and its actual level of machine intelligence. However, as the implicit
recommendation strategy led to a good understanding of system behaviour, this was
not deemed the reason for trust decrease. Continuing our argumentation about a user’s
preference for explicitly providing the system with data, this may be the true reason for
the trust decrease as was also visible in the acceptance ratings. However, this also possibly
stemmed from using Alexa Echo Dots for evaluation. Hence, participants could have
been biased towards the brand. Although understandability forms a sub-base of cognitive
trust, it did not affect a trust increase of the explicit strategy. For this reason, it may
be relevant to focus on the other cognitive bases of trust, perceived competence, and
reliability. However, no clear effects which would help to determine the trustworthiness
of proactive dialogue were found.
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Limitations

A disadvantage of the experiment was the quite low number of participants. Using a
higher number could have provided more comparable results between the explicit and
implicit strategies. Furthermore, the speech recognition errors of Amazon Alexa were
troublesome, as several participants of the study reported issues. For example, participant
8 (female, 26) reported that Alexa understood several meals, but some did not. In
addition, participant 2 (female, 27) described that Alexa often did not understand the
meals, when she had asked for details about a dish. We are aware that a Wizard-of-Oz
setup would have prevented such errors. However, the creation of a realistic setup with
an experimental duration of 5 days, was deemed impracticable and not expedient in the
context of our evaluation.

4.1.7. Conclusion

This experiment dealt with the evaluation and comparison of different types of proactive
system behaviour and their effects on the usability and perceived user trust. Therefore,
two proactive dialogue strategies that differed regarding data acquisition methods for pro-
viding user-adaptive recommendations were implemented in a realistic task scenario of
planning university restaurant visits. Here, Amazon’s Alexa conversational framework
was applied for creating an information retrieval system with recommendation function-
ality in the restaurant domain. The study results provided evidence, in line with recent
research, that proactive behaviour can positively improve the usability of virtual CA when
compared to reactive behaviour. Particularly, we found that proactive dialogue has a ma-
jor influence on usability features, user satisfaction, engagement, and on the creation of
a theory of mind of system behaviour. However, users tended to trust proactive system
behaviour better when they were more in charge of the machine’s intelligence capabilities,
i.e. when they explicitly guided the system what their food preferences were. Although
no clear results were found in this regard, the findings indicated that controllability and
privacy may be also relevant for consideration in proactive dialogue.

4.2. Effects of Notifications and Topic Switching on
Cooperation

4.2.1. Motivation

In the second experiment (M. Kraus et al., 2021a), we studied the influence of proactive
notifications and topic switching on the system’s perceived trustworthiness, usability, and
acceptance of the cooperation. Similarly as described in the previous study, there exist
several works on the effect of proactive notifications and topic switching on task effec-
tiveness but not on trust, which is deemed to be the other important factor for successful
cooperation. As the observation of general trust in the previous study did not reveal
clear results, we considered the effects on the sub-categories of trust, cognitive-based,
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and affect-based trust in this study. For evaluation in a realistic environment, we imple-
mented a natural language chatbot using the open-source framework Rasa Stack 2. The
proactive strategies of the chatbot were realised in the form of sending push notifications
to the user and actively switching topics during dialogue. Furthermore, we implemented
relational dialogue strategies in the form of small talk and empathetic reactions to user in-
put. Empathetic reactions and small talk are supposed to deepen relationships and foster
trust between agents and users (T. Bickmore & Cassell, 1999; Brave et al., 2005). In the
introduction of this thesis, proactive and empathetic behaviour were both considered to
be indicators of a system’s conversational intelligence. A comparison between proactive
notification as well as topic switching during dialogue and empathetic strategies was thus
intended to explore the impact of different conversational intelligence strategies on coop-
eration. For the study, we also implemented a baseline chatbot (reactive, non-relational)
and chatbots demonstrating variations of the designed dialogue behaviour, i.e. proactive,
non-relational and reactive, relational. Thus, we could investigate, whether there exists
an interaction of proactive and empathetic dialogue on the trustworthiness of the CA.
Parts of the presented work and results have been previously published in M. Kraus et al.
(2021a).

4.2.2. Scenario

As a use case, we considered a prototypical mental health chatbot for mood and symp-
tom monitoring. Using chatbots in e-health is an emerging topic over the last years and
has resulted in various applications ranging from knowledge-based information agents to
assist caregivers (Pragst et al., 2015) to digital assistants in an intelligent operating room
(Miehle et al., 2017). Also, current research on chatbots in mental health suggests that
the psychiatric use of chatbots is favourable, as it promotes self psycho-education and
adherence (Vaidyam et al., 2019). The chatbot described in this section was designed
in the scope of the EU-funded project Mental health monitoring through interactive con-
versations 3 which deals with researching and developing conversational technologies to
promote mental health and assist people with mental ill-health (depression and anxiety)
to manage their conditions (Beńıtez-Guijarro et al., 2020). Furthermore, a study by
Beńıtez-Guijarro et al. (2020) showed that a functional requirement of such a chatbot is
configurable proactive behaviour, e.g. in the form of notifications. Therefore, this sce-
nario was an adequate way for testing the influence of proactive dialogue on the user and
identifying user requirements.

The main task of the chatbot was to interact with the user for having a daily mood
check-in. For the daily check-in, 12 items of the positive and negative affect schedule
(PANAS) (Watson et al., 1988) questionnaire were used. This scale consists of several
words that describe different feelings and emotions, e.g. interested, guilty, or active.
Users indicated to what extent (not at all to extremely) they have this feeling or emotion.
Additionally, users had the opportunity to write freely about the experiences of their day

2https://rasa.com
3ref. no.823907, https://menhir-project.eu
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and their feelings. However, the study was conducted with participants having no history
of mental health treatment due to ethical reasons. For creating a realistic experience, we
implemented the chatbot for usage within the Telegram messenger framework. This
allowed users to interact with the chatbot using their private phones under non-laboratory
conditions. The system and interaction design are described in detail in the following
section.

4.2.3. Prototype Implementation and Dialogue Design

The chatbots were implemented using the open-source framework Rasa Stack. This was
due to the free availability and privacy issues, as personal data was not shared with
external services. Rasa is a framework for creating conversational AI. The framework
consists of two modules, one for dialogue control and one for NLU. Rasa Core is a
dialogue management system that is designed for using ML to train a dialogue policy
instead of a finite-state approach. The chatbot can learn through interactive learning by
utilising so-called stories. A story is a representation of a dialogue between a user and the
chatbot, converted into a specific format where user inputs are expressed as corresponding
intents. The responses of the chatbot are expressed as corresponding action names. Rasa
NLU is a statistically-driven NLU service for intent classification, response retrieval and
entity extraction.
When Rasa receives a message from the user, it attempts to predict the intent and

extract the entities present in the message. This part is handled by Rasa NLU. Once
the user’s intention has been identified, the Rasa stack performs a specific action. In
the example, visualised in Fig. 4.3, the intent of the user’s utterance “Fine” would be
“express mood positive”. Then Rasa tries to predict what to do next. This decision is
made taking into account several factors and is made by the Rasa Core unit. In the
example, Rasa showed an empathetic reaction. It also predicted the next action that the
model should perform - to continue with small-talk and to ask users about their current
plans. The more sample data Rasa has, the more likely it is that the right decision will
be made. The model presented was trained with several stories and numerous example
utterances for training the NLU.
Telegram was used as platform for the interaction (see Fig. 4.3). Rasa offers ex-

tensions to be easily implemented in a Telegram chatbot. In addition, Telegram is
used widely and can be reached via mobile phone, tablet, and computer, which made it
much easier for test participants to use it. A virtual cloud server was used to provide
the chatbot. Rasa offers the possibility to run an HTTP server that handles requests
using a trained Rasa model. Since a local server was used, the additional software Nginx
(Reese, 2008) was installed to ensure the connection to Telegram. The Rasa NLU
server was set behind an Nginx reverse proxy, where Nginx handled the secure sockets
layer (SSL) for safeguarding sensitive data and then forwarded the data to Rasa over
hypertext transfer protocol (HTTP). So-called cronjobs were used to send the test persons
a daily push message. Under many operating systems there is the so-called Cron-System
(Cron-Daemon), which makes it possible to execute automated tasks (jobs) at special
times (Davidovi & Guliani, 2015). To send a message to users, their Telegram user IDs
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Figure 4.3.: Example dialogue with the Rasa chatbot. The system initates the dialogue
and then progresses to small-talk with the user. Taken from M. Kraus et
al. (2021a). Reprinted by permission from Springer Nature Customer Ser-
vice Centre GmbH: Springer, MultiMedia Modeling, Lecture Notes in Com-
puter Science, Vol. 12573 by Jakub Lokoc, Tomas Skopal, Klaus Schoeff-
mann, Vasileios Mezaris, Xirong Li, Stefanos Vrochidis, Ioannis Patras (eds)
©Springer Nature Switzerland AG (2021).

and Bot IDs were required. Then the text of the message and the desired time of the
cronjob could be determined.

The dialogue with the chatbot was initiated by the user with a simple greeting, which
was reciprocated by the system. Afterward, the bot initiates the daily check-in dialogue.
For examining the relational and proactive dialogue strategies, we extended the basic func-
tionality of the chatbot’s mood-tracking dialogue correspondingly. The role of empathetic
and proactive dialogue is explained in the following.

People use a variety of types of social languages, including small talk and empathy, to
build collaborative, trusting interpersonal relationships. In particular, the two constructs
small talk and empathy showed signs to increase trust by establishing a long-term social-
emotional relationship with their users (T. W. Bickmore & Picard, 2005). Empathy is
the mental process by which a person tries to understand the statements, behaviours, or
feelings of another person, from the counterpart’s perspective or preconditions. The term
“empathy” is not used uniformly in psychology. In the present experiment, the social-
psychological meaning of empathy was used (M. Linden & Hautzinger, 2008). Previous
work showed that digital emphatic agents are perceived as more caring, sympathetic,
and trustworthy than agents without emphatic abilities (Brave et al., 2005). Above all,
effective answers that correspond better to the situation of another than one’s own should
serve as the main instrument for inducing empathy (M. L. Hoffman, 2001).

The relational bot showed different emphatic reactions in different situations. During
the daily check-in, for example, the bot repeatedly showed his appreciation and under-
standing for the user during very personal topics or provided an appropriate reaction to
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Figure 4.4.: Comparison of the proactive (left) to the reactive dialogue (right). Taken
from M. Kraus et al. (2021a). Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer, MultiMedia Modeling, Lecture
Notes in Computer Science, Vol. 12573 by Jakub Lokoc, Tomas Skopal,
Klaus Schoeffmann, Vasileios Mezaris, Xirong Li, Stefanos Vrochidis, Ioannis
Patras (eds) ©Springer Nature Switzerland AG (2021).

a negative mood on the day of the check-in, e.g “Thank you, I appreciate you talking to
me about this.” or “I know the questions are not always easy to answer but you are doing
great.”.

People use small talk, to establish interpersonal collaborative trusting relationships
(Cassell & Bickmore, 2002). Research in the field of conversational agents showed that
it is not enough to limit conversations between agents and people to task-oriented topics
(T. Bickmore & Cassell, 1999). The results suggest that small talk supports deepening
relationships and building trust between virtual agents and users. Therefore, the devel-
oped chatbot was able to deal with topics such as the users’ music preferences, personal
details, feelings, current plans, and some other topics like the weather. For an example,
see the conversation depicted in Fig. 4.3.

For integrating proactive dialogue behaviour, the initiative of the chatbot was manipu-
lated in the form of notifications that intelligently remind users of their daily check-in, as
well as active topic switching strategies of the chatbot, e.g. it started small-talk directly
and changed topics automatically. A comparison of the different variants is visualised in
Fig. 4.4.

4.2.4. Experimental Design

The baseline study was realized in a 2 x 2 between-subject experimental design. The em-
pathetic (relational, non-relational) and the proactive conditions (proactive, reactive) were
implemented as two-step factors in four individual chatbots (e.g. relational-proactive,
non-relational-proactive, ...). This resulted in four experimental groups in total.
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Participants

Participants were recruited at the University. A prerequisite for the participation was the
possession of a mobile phone with the messaging program Telegram, as well as a fluent
knowledge of the English language. As an incentive, the participants were promised a 10
¿ amazon voucher. All test persons were informed about the scientific purpose, as well as
about the anonymous use of their data. A total of 41 (26 female) people took part in the
experiment. However, 5 persons had to be excluded due to insufficient language knowledge
(minimum B2). participants were between 19 and 30 years old (M = 24.83, SD = 2.93).
Most of the participants were psychology students or had an academic degree. They were
randomly distributed to each study group.

Experimental Procedure

Participants had to interact with one of the chatbots on three consecutive days. As a
cover-up, they were told to test a novel chatbot on Telegram. Thereby, their emotional
state was checked in the form of a daily check-in. Before, the experiment users had to
provide general information, e.g demographics, personality, or experience with chatbots.
During the experiment, the dependent variables were collected at two different measuring
points (after the first and last interaction with the chatbot). The mean values were used
for the evaluation for a more robust result. However, we also evaluated the trajectories of
dependent variables to include the dynamic effects of the dialogue strategies. In addition,
the participants had the opportunity to note any problems, impressions, or irregularities
in the conversations at the end of the two intermediate test questionnaires. A total of
three conversations were carried out per respondent, which took place on three consecutive
days. Any effects of the empathetic dialogue strategies should thus show their effect.

Questionnaires

Validated psychological scales were used for testing the dependent variables. To rule
out confounding variables the participants’ technical affinity (Karrer et al., 2009), and
the predisposition to trust (Merritt et al., 2013) were recorded before the experiment in
combination with demographic data. Further, we included the BFI-10 by Rammstedt et
al. (2013) for personality assessment. Trust was measured using the Trust in Automated
Systems Scale (Jian et al., 2000). Furthermore, scales for measuring the bases of trust
developed by Madsen and Gregor (2000) were used. Usability was studied with the SUS
(Brooke, 1996).

4.2.5. Results

For an exploratory data analysis, a multivariate ANOVA was conducted for guaranteeing
no significant confounding variables and for testing the significance of the empathetic
and proactive strategies. Confounding group differences for the study conditions could
be ruled out as we found no significant differences except regarding the proactivity of
the chatbot. Participants who interacted with the reactive version of the chatbot had
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Dialogue Strategy

Relational Non-Relational Proactive Reactive

Trust 4.63 (.20) 4.69 (.21) 4.89 (.21) 4.41 (.21)
Reliability 4.06 (.27) 4.25 (.29) 4.58 (.29) 3.74 (.29)
Competence 3.62 (.30) 3.63 (.31) 3.84 (.31) 3.42 (.32)
Understand-
ability

4.28 (.26) 4.43 (.27) 4.71 (.27) 4.00 (.27)

PA 1.90 (.20) 2.41 (.21) 2.24 (.21) 2.06 (.21)
Faith 2.08 (.23) 2.12 (.25) 2.19 (.25) 2.01 (.25)
Usability 2.63 (.09) 2.51 (.09) 2.61 (.09) 2.52 (.10)

Table 4.3.: Descriptive statistics of the measured dependent variables with reference to
the dialogue strategies (means and standard errors). All variables measured
on 7-point Likert scales. Taken from M. Kraus et al. (2021a). Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer,
MultiMedia Modeling, Lecture Notes in Computer Science, Vol. 12573 by
Jakub Lokoc, Tomas Skopal, Klaus Schoeffmann, Vasileios Mezaris, Xirong
Li, Stefanos Vrochidis, Ioannis Patras (eds) ©Springer Nature Switzerland
AG (2021).

an almost significantly higher technological affinity as compared to the proactive group
(t(34) = −2.01, p = .053). Therefore, this variable was used as a covariate to make up for
noisy data when considering the proactive strategies. However, there were no interaction
effects between empathetic and proactive strategies (all p-values > 0.05). For further
investigations, the effects of the strategies were investigated separately. Therefore, we
paired the individual samples and evaluated two study groups in each case: relational vs.
non-relational and proactive vs. reactive. The results can be found in Tab. 4.3.

Comparisons between Empathetic Strategies

A notable tendency was found when considering the empathetic strategies, that may be-
come relevant with an increasing number of participants. Personal attachment was rated
higher for the non-relational strategy (F (1, 31) = 3.14, p = .086), but not significantly.
For the other dependent variables no significant results were found.

Comparison between Proactive Strategies

Regarding the proactivity of the chatbots, we found two interesting tendencies. First,
participants rated the reliability of the proactive chatbot higher compared to the reactive
version( F (1, 31) = 3.92, p = .057). Additionally, the understandability of the proactive
chatbot was rated higher (F (1, 31) = 3.26, p = .081).

Looking into the trajectories of the dependent variables over the course of the ex-
periment, we found several noteworthy results for perceived trust, understandability,
personal attachment and acceptance. For both, proactive and reactive version, there
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1.00 2.00 3.00 4.00 5.00 6.00 7.00

Proactive

Reactive

Trust (Measurement T2) Trust (Measurement T1) Pre-Trust

Figure 4.5.: Trust trajectory for the reactive and proactive strategy measured at three
time steps: before the interaction (Pre-Trust), during the interaction (T1),
and after the interaction (T2).

was a significant increase in perceived trust for the first interaction as compared to the
user’s propensity to trust (proactive version t(17) = −5.97, p < .001; reactive ver-
sion t(17) = −2.99, p = .008). The trust trajectory for each condition is depicted
in Fig. 4.5. Considering the differences between the measurements for the first inter-
action and the final evaluation, we found a tendency in increase of understandability
(T1 : M = 4.22 SD = 1.49, T2 : M = 4.73 SD = 1.31; t(17) = −1.98, p = .064) and
acceptance (T1 : M = 4.17SD = 0.43, T2 : M = 4.29SD = 0.29, t(17) = −1.95, p = .068)
for the proactive version. In addition, personal attachment towards the reactive version
showed a tendency to decrease (T1 : M = 2.44 SD = 1.15, T2 : M = 1.93 SD =
1.19, t(17) = 1.93, p = .070).

Investigating the effects of personality traits on the perception of the proactive and
reactive version of the chatbot, we found interesting tendencies regarding the user’s level
of neuroticism. Using Mann-Whitney-U tests, we found that study participants with high
neuroticism had the tendency to rate the interaction with the proactive version higher
regarding understandability (M = 3.80, SD = 0.65 vs. M = 5.17, SD = 0.40; U =
12, p = 0.057) and personal attachment (M = 1.90, SD = 0.41 vs. M = 3.30, SD =
0.61; U = 12, p = 0.057). However, these results should be considered with caution, as
they were not significant. For the other personality traits, no significant differences were
found.

4.2.6. Discussion

As the results did not reveal any differences between proactive and reactive system be-
haviour regarding usability, this discussion solely focuses on our second research question
but the observation will be examined in the conclusion of this section.
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Which components of Human-Computer Trust are influenced by proactive dialogue?

Although no significant results could be reported, several interesting tendencies that re-
quire further investigation were identified. It was found that a proactive chatbot was
perceived as more reliable and understandable. Proactive behaviour, like in our case,
push notifications and more dialogue control by the system, seemed to have a positive
effect on overall trust and perceived competence as well. Thus, the cognitive-based HCT
components may be mostly influenced by proactive system actions. This may be also
an indicator that the perception of proactive behaviour in HHI could be transferred to
some degree into the HMI domain. In organisational management, for example, it was
also shown that proactive behaviour can be positively related to perceived competency
(Parker et al., 2010). Observing the trajectories of the measured dependent variables
during the experiment, we also found that the longer the interaction lasted, the further
the understandability and acceptance of proactive system behaviour increased. Contrary,
personal attachment towards reactive behaviour decreased during the experiment. The
construct of personal attachment to the system used in this study is comprised of: liking,
i.e meaning that the user finds using the system agreeable and it suits their taste, as well
as loving, i.e. that the user has a strong preference for the system, is partial to using it
and has an attachment to it (Madsen & Gregor, 2000). Combining both observations, it
seemed that the proactive system was first evaluated according to its cognitive capabili-
ties and more relationship contributing factors of proactivity may become more relevant
in longer interactions. Instead, reactive behaviour seemed to get less likable after several
trials. This could be a sign that reactive behaviour seems to be less engaging than proac-
tive behaviour, which was also discussed in the first exploratory experiment. Further,
we found that a personality trait correlated with the perception of proactive behaviour.
Users with a high degree of neuroticism rated the interaction with the proactive system as
more understandable and were more personally attached to it. High neuroticism relates
to characteristics such as low-self esteem and a high degree of uncertainty. Proactive
behaviour, on the other hand, can be characterised as goal-oriented and typically confi-
dent behaviour. Therefore, high neurotic users seemed to welcome the contrast between
their personality and the system’s behaviour. As previous work (Meurisch et al., 2020)
also found correlations between personality and the perception of proactive behaviour, a
user’s personality may provide clues about the impact of proactive dialogue on the HCT
relationship.

Interestingly, we found that proactive dialogue affected the perception of the system
regarding trust more than the empathetic strategies. It was even found that participants
were personally less attached to the chatbot capable of empathetic dialogue strategies.
Hence, the inclusion of small talk and empathetic responses had not the intended effect
of forming a trusted bond with the user. The opposite was the case. This seemed rather
strange at first sight but could be explained that the interaction dealt with very personal
and sensitive content. Therefore, participants seemed to be careful to open themselves to
the chatbot. Privacy issues concerning the use of chatbots are an emerging topic (Ischen
et al., 2019) and were already stated to be of relevance to consider also for proactive
dialogue. Another explanation could be that a kind of uncanny valley (Ciechanowski
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et al., 2019) was created, and the empathetic behaviour of the agent did not match the
participants’ expectations of a Telegram chatbot. Further, empathetic behaviour could
be even supposed to be not appropriate at the beginning of the interaction respectively
the relationship between user and system. Hence, people could be more attached to
the non-relational version, as they were more used to and comfortable with such system
behaviour during first interactions. Therefore, proactivity showed a tendency to be more
relevant for the trust relationship during first interactions as users get to know the system
when compared to the empathetic behaviour as another conversational intelligence trait.

Limitations

As a limitation of this work, the rather low usability of the chatbot needs to be addressed.
This may have occurred, due to the rigid dialogue capabilities of the chatbots that are
centered around the daily check-in dialogue. Hence, people seemed to have gotten bored
and annoyed by the system after three days of usage. This needed to be avoided in
the studies that followed. Further, in this task domain, rather low cooperation between
system and user was required. Therefore, we concluded that in such scenarios proactive
behaviour only had a minor effect on trust. In more cooperative task scenarios, it was
supposed that proactive system actions would have a more significant effect.

4.2.7. Conclusion

In this experiment, we studied the effects of proactive system behaviour, realised in the
form of push notifications and topic switching, on the HCT relationship and sub-based of
trust. We developed a chatbot prototype in the mental health domain and equipped it
with proactive capabilities. Further, we included empathetic proactive dialogue strategies
for comparing the effects of different conversational intelligence strategies on user trust.
The results showed tendencies that proactive behaviour affected the HCT relationship
positively, while the empathetic strategies had only marginal effects and even hurt building
rapport. Considering sub-components of trust, we observed that proactive behaviour
primarily seemed to affect the cognitive bases of trust. However, considering different
user personalities, we found that proactive behaviour showed a likelihood to positively
influenced affect-based trust for users with a high degree of neuroticism. Therefore,
user personalities may be also considered when studying the trust effects of proactive
behaviour. Regarding usability, no differences were found. Overall, the usability was
rated rather low. Hence, we deem that push notifications and topic switching were not
sufficiently contributing to the task execution. Therefore, for developing task-effective
proactive dialogue strategies, more cooperative contexts are required to be investigated.

4.3. Summary

This chapter presented two exploratory experiments for investigating the effects of state-
of-the-art proactive behaviour in CAs – recommendation and notifications as well as topic
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switching – on the HCT relationship and usability for identifying relevant user and system
requirements.

Overall, it was identified that there seems to be generally no “no one size fits all”
solution for proactive behaviour in cooperative DS. Both studies revealed that proactive
behaviour realised in the form of recommendations, notifications, and topic switching may
not necessarily be favoured over reactive system actions. However, observing the results
of our first experiments led to the conclusion that defining different levels of proactive
dialogue may be a considerable solution. Here, both recommendation strategies showed
tendencies to increase a system’s user satisfaction, engagement, likeability, acceptance,
and cognitive demand. This may be beneficial for enhancing the usability of CAs that
could result in better task effectiveness, one of the constituents of successful cooperation.
Regarding the other constituent of successful cooperation – HCT relationship – users only
tended to trust proactive recommendations when they had more control over the system
behaviour. Therefore, structured proactive dialogue action types seem to be necessary.
These may be defined based on the LoA which have been commonly used in related work.

The second experiment investigating the effects of push notifications and topic switching
strategies resulted in no clear implications on the system’s trustworthiness and usability.
Contrary to the first experiment, however, the system’s proactivity was not as task-related
and more considered from the view of conversational intelligence. Thus, it seems to be
required for the design of adequate proactive dialogue strategies to enable the system to
have more influence on the task itself. In doing so, measurable effects of proactive dialogue
on the cooperation should be achieved. An interesting finding of the second experiment
was that users tended to evaluate the proactive assistance system first according to its
cognitive capabilities. Contrarily, the influence of proactive behaviour on the empathetic
relationship between user and system seemed to play a subordinate role at the beginning
of the interaction and may become relevant when considering long-term human-system
relationships. As a result, we concluded that sub-components of trust, namely the cog-
nitive trust bases competence, reliability, and understandability, need to be investigated
during cooperation. Consequently, we hypothesised that cooperation can be improved by
realising trustworthy proactive dialogue that illustrates a system’s competency, reliability,
and understandability.

For the technical realisation, the experiments revealed the necessity to investigate trig-
ger mechanisms of proactive dialogue. During both experiments, proactive behaviour was
triggered according to pre-defined rules and remained constant during the interaction.
Further, they were not dependent on the current situation or specific user characteristics.
However, the results of our second experiment showed that the perception of proactive
respective reactive behaviour tended to differ depending on the state of the interaction
as well as the user’s personality trait neuroticism. We deem this to be one significant
factor why the experiment did not provide clear results regarding trust and usability.
Contrary, the first experiment showed that triggering proactive recommendations at the
beginning of the interaction seemed to be more effective. Thus, it is not enough to im-
plement just some proactive behaviour, but the right kind of proactivity. Consequently,
the development and implementation of proactive DM methods are required. For this,
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different approaches to DM need to be evaluated for their applicability. A user-centred
approach may be useful to consider the experimental results and related work showed
that proactive behaviour is perceived differently depending on the situation and the user.
However, knowledge of when to trigger which kind of proactive behaviour is dependent
on these factors is sparse and mostly non-existent.
Therefore, one goal of this work is to elucidate relations between proactive dialogue

behaviour and situational and user features for modelling adequate proactive dialogues
in order to improve cooperation. To integrate this knowledge during dialogue, however,
the cognitive capabilities of a conventional DS need to be enhanced. Thus, for modelling
adequate proactive dialogue it needs to be discussed which cognitive features should be
added and how a proactive DS can be integrated in such a cognitive architecture. Based
on these considerations, we developed a novel user-centered proactive dialogue model
which is explained in detail in the next chapter.
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Proactive Dialogue Model

For enabling a trusted and task-effective cooperation with CAs, a proactive dialogue
model that leads to a trustworthy interaction with high usability is pivotal. To model
adequate proactive dialogue fulfilling these requirements, several challenges need to be
addressed.

Firstly, proactive dialogue needs to be examined from a social, user-centred perspective.
The results of the preliminary experiments showed that embedding state-of-the-art proac-
tive behaviour in a dialogue context influences different facets of the user’s perceived trust
in and usability of a DS. However, it remains unclear which kind of proactive dialogue
needs to be triggered in which context and for which kind of user in order to foster trust
and usability. A first step towards solving these problems is to review user expectations
of proactive dialogue and the impact of proactive behaviour on the user dependent on
user-specific and situational characteristics. Therefore, we use the results of the experi-
mental studies and related work in order to distill user requirements towards a proactive
DS.

Another challenge of modelling adequate proactive dialogue is the concrete technical
realisation and a system’s behavioural aspects. An important conclusion of the experi-
mental studies was the necessity to structure proactive dialogue into well-defined action
types representing different levels of proactivity. We further identified the necessity of
cognitive capabilities and a proactive DM module to be relevant for realising proactive
dialogue that enables successful cooperation. Driven by these observations, we review
related work and background of DM for formulating behavioural and functional require-
ments of proactive DS.

Based on the outcomes of the requirement analysis, we provide a taxonomy of proac-
tive dialogue. This taxonomy comprises a definition of assistance behaviour during co-
operation, that the proactive CAs presented in this thesis should encompass. Further,
we specify proactive dialogue act types that model different LoA. Finally, for enabling
proactive dialogue in an assistance context, a cognitive system architecture is explained.
This three-layered architecture makes use of various cognitive processes, including natu-
ral language processing, planning, reasoning, and decision-making, for realising proactive
dialogue behaviour.
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5.1. Requirement Analysis for Proactive Dialogue

The requirements for developing accepted and trusted proactive dialogue strategies need
to be investigated from two points of view: that of the system and that of the user.
For rendering a sound HCI, it is necessary to consider users and their characteristics,
preferences, and expectations. This helps to understand how users want to interact with
proactive systems and facilitates the interaction design choices for proactive dialogue.
Simultaneously, it is required to consider what behavioural and functional abilities a
technical system must demonstrate in order to enable proactive dialogue. This allows to
point out technical components and features that are relevant for generating proactive be-
haviour. Further, this helps to mark technical limitations and to identify implementation
challenges. Combining these two viewpoints fosters the development of a proactive dia-
logue model that takes into account the individuality as well as the expectations of users
while also providing a valid technical foundation. Both system and user requirements are
presented in the following.

5.1.1. User Requirements

User requirements are synthesised from the expectations of users regarding proactive
systems and the impact of proactive behaviour on the user. Generally, users are open
to technical systems expressing proactive behaviour (Grover et al., 2020; Meurisch et al.,
2020; Zhang et al., 2015). Here, it is primarily expected that systems are able to provide a
medium-level of proactivity, i.e. using predictive models for generating recommendations
(e.g., see G. Hoffman and Breazeal (2007)). In our experimental studies, we also found
that the implemented medium-levels of behaviour (notification, recommendations) lead
to high usability (see Section 4.1) and positively influenced cognitive-based trust (Section
4.2), which indicated that the systems acted in accordance with user expectations.

However, Meurisch et al. (2020) also pointed out that these expectations are dependent
on the application area and user characteristics. In most areas users want to stay in
control. Thus, they initially expect a low level of system proactivity, which may be
increased as users get more familiar with the system, e.g. see Glass et al. (2008). A
trend towards such expectations was also visible in the preliminary experiment described
in Section 4.2. Here, users tended to become less attached to the system that only stayed
reactive as they familiarised themselves with the system. Contrary, proactive behaviour
showed a tendency to become more understandable and accepted with increasing user
familiarisation. As familiarity may be correlated to some degree to trust, we deem that
higher trust might result in the user allowing the system to be more proactive. Thus,
proactivity may be required to be introduced cautiously to users, i.e. by starting the
interaction using a lower degree of proactive dialogue.

In this thesis, also task domains were considered in which rather a low level of proac-
tivity was to be expected at the start of the interactions. We mostly focused on tasks
concerning activity assistance, either digital, e.g. planning tasks, or physical, e.g. house-
hold tidying or do-it-yourself (DIY) tasks. Especially, for physical activity support, users
seem to expect more reactive assistance at first.
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Thus, we hypothesise that users generally trust lower-level proactive behaviour more
in these domains than a higher degree of proactivity.
Further, the expectations of the proactive abilities of a system are supposed to vary

dependent on a user’s socio-demographic characteristics and personality traits (Meurisch
et al., 2020). For this reason, it is hard to distill relevant requirements for our specific use
cases. However, some general presumptions can be made. For example, independent of
the task domain users expect proactive systems to be intelligible regarding their decision-
making and to meet privacy needs. Particularly, when sensitive user data is used for
taking anticipatory actions. This requirement was also visible in the experimental study
presented in Section 4.1. There, proactive actions triggered using implicitly collected data
were trusted less, as it was unclear to the users which data the system used.
Regarding the impact of proactive behaviour on the user for requirement analysis,

related work is quite sparse and there exist only limited works on the effects of proac-
tive dialogue. Thus, standard interaction guidelines may be considered for transferring
proactive behaviour into the cooperative dialogue domain, e.g. the cooperative princi-
ple (Grice, 1975), guidelines for human-AI interaction (Amershi et al., 2019; Lieberman,
2009) or principles of mixed-initiative interaction design (Horvitz, 1999). Most relevant
for our approach are the principles for proactive behaviour (Yorke-Smith et al., 2012) that
are based on the mixed-initiative principles: A proactive agent should be valuable to the
user as it advances his or her interests and tasks. It should be aware of the current situa-
tion (pertinent) and act according to its abilities and knowledge (competent). Moreover,
a user should be in control of the assistant and be able to understand its actions (control-
lable and transparent). The agent should act unimposing and not interfere with the user’s
own activities and attention (deferent and unobtrusive). For adding value to the user, a
proactive assistant needs to be aware of current and future needs and opportunities (an-
ticipatory) and act in a safe way, minimising risks. For implementing proactive dialogue
behaviour in realistic systems, these user requirements must be accordingly transformed
into appropriate system requirements. Therefore, the system requirements are explained
in the following.

5.1.2. System Requirements

System requirements may be split into behavioural, i.e. how should a system express
proactive behaviour taking into account the user needs, and functional requirements, i.e.
which components or modules are necessary for achieving the desired behaviour. The
behavioural requirements largely consider the questions of when, how, and if proactive
behaviour should be triggered (F. Nothdurft et al., 2015b).
If proactive dialogue is necessary depends on the user, the current situation, and the

application area. This is mostly related to the user expectations of proactive behaviour as
described in the previous section. Further, F. Nothdurft et al. (2015b) proposed to take
into account three factors for deciding whether to become proactive. Here, it was distin-
guished between the importance of proactive actions for the success of the dialogue, the
context of proactive behaviour, and the classification accuracy for the cause of proactive
dialogue initiation. The importance of proactive behaviour needs to consider the user’s
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short- and long-term goals and can be framed into a theory of user desires according
to Yorke-Smith et al. (2012). This theory allows assessing the expected return of each
proactive action with regard to the user’s goals. Depending on the effects of proactive
action on the safety, utility, and timeliness with respect to user objectives, the importance
of proactive behaviour can be determined. For including this principle into a dialogue
model, the user’s task success is required to be integrated into the dialogue state. For the
work described in this thesis, this was realised by including a success score of cooperation
into the proactive dialogue model.

Regarding context, it can be differentiated between application- or task-focused proac-
tivity and utility-focused proactivity (Yorke-Smith et al., 2012). Task-focused proactivity
aims at providing assistance for specific, well-defined tasks, while utility-focused proactiv-
ity is more related to abstract user goals with regard to their interests, e.g. with the aim
to reduce workload or to enhance the user’s perceived trust in the system. For improving
cooperation, proactive dialogue must represent both types. Therefore, this work aims
at designing and implementing strategies that enhance utility-focused proactivity (trust)
and task-focused proactivity (usability).

Classification accuracy represents a system’s confidence measure for the recognition
of causes for inducing proactive behaviour, e.g. classification probability of certain user
states such as the user’s emotions. Therefore, proactive dialogue may be modelled using
probabilistic approaches rather than rule-based approaches.

In the following, how proactive behaviour can be expressed is elucidated. There exist
several ways for a CA to take proactive actions. Foremost, a requirement of a proactive
system is to be able to take actions on several LoA as described in Chapter 4.2. This allows
a CA to act on various degrees of proactivity and change their style of interruptions, e.g.
be less direct with notifications or be more direct using suggestions. In this regard, Yorke-
Smith et al. (2012) proposed a taxonomy of four possible proactive actions specifically
designed for a task management task. A system can either act directly, e.g. perform the
next step or steps of a shared task, act indirectly, e.g. suggest a user task be delegated to
a teammate, collect information, e.g. gather, summarise information relevant to a user,
or shared task, or use reminders or requests, e.g. remind of the user’s next step in a
shared task, ask for feedback or guidance from the user. Further, requirements for user-
driven adjustable autonomy may be transferred to proactive dialogue (Maheswaran et al.,
2003). These requirements address a system’s capability to perform a specific task and
to personalise its proactive behaviour. For this, a system needs permission requirements.
These define conditions that indicate for which actions a system must obtain authorisation
from the user. In addition, consultation requirements address decisions that should be
handed to users. Maheswaran et al. (2003) proposed to implement such reasoning using
a MDP. Therefore, this work also considered modeling proactive dialogue as an MDP for
reflecting a more user-centred approach of DM.

Moreover, proactive behaviour may lead to incomprehensible situations for users be-
cause of a mismatch of reality and mental model of system behaviour (F. Nothdurft et
al., 2015b). This requires making use of explanations for justifying system behaviour or
rendering its actions more transparent. For example, Grover et al. (2020) believed that
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providing explanations would have a positive outcome for the cooperative decision-making
process. Further, F. Nothdurft et al. (2013) showed that by providing explanations, proac-
tive behaviour can be explained better which in turn fosters trust in the system. Therefore,
we made use of explanations for rendering proactive dialogue more comprehensible, thus
eliminating the lack of a mental model as a confounding variable.

The final behavioural requirement of proactive system actions concerns the timing of
activities. The timing of proactive actions should adhere to the user requirements of
proactive behaviour to be deferent and unobtrusive. This is mostly related to turn-taking
problems. These problems can be either considered more from a conversational or from a
task-oriented point of view. Turn-taking in spoken conversations is a long-studied research
aspect. A comprehensive review can be found for example by Skantze (2021). With regard
to this thesis, turn-taking cues that a CA leverages for taking the floor during dialogue are
of interest. Here, a CA is required to be able to detect appropriate moments for taking the
initiative. For this, a system may use multi-model cues, such as verbal including syntax
semantic and pragmatics, prosody (intonation, intensity, duration), as well as breathing,
gaze, and gestures. While conversational turn-taking cues not only address the timing
of proactive actions but the timing of system utterances in a realistic fashion in general,
task-oriented turn-taking cues address well-defined points of dialogue initiation. Here,
a system may take the floor either at the task or sub-task level at pre-defined timing
thresholds.

Functional requirements consider the technical components and modules that enable
a computer to engage in a proactive dialogue. For identifying these requirements, it
is useful to consider the requirements for technical assistance systems as, for example,
described in Biundo and Wendemuth (2016) or Honold et al. (2014). In the following, we
will make references to both works. A first requirement is to have extensive knowledge
about the application domain in order to be able to provide assistance at all. This
may even require expert knowledge of specific task domains. For example, the provision
of adequate assistance in the DIY or home improvement domain requires the system
to have conceptual knowledge about the tools and materials and their characteristics
that are necessary to solve the task. This knowledge is typically represented in the
form of a knowledge base (ontology) that allows ontological reasoning about tasks and
required material for task execution. For example, M. Schiller et al. (2017) described
an ontology for the representation of knowledge for conducting DIY-tasks. Similarly, the
prototype implemented for the preliminary experiment described in Section 4.1 made use
of a knowledge base for having knowledge about different restaurants and food types
which can be used for recommendations. Therefore, knowledge bases are essential for
proactive DS for ensuring adequate task-level proactivity.

Further, it is necessary to have procedural task knowledge, i.e. knowledge about the
task steps that are necessary to achieve the overall task. For this, a problem-solving
component is required. In many cases, a planning module can be used for this task (e.g.
see Behnke et al. (2019c)). However, also script-based logic approaches can be applied,
e.g. see Miehle et al. (2021). This knowledge can then be used to model the current task
state which may be relevant for deciding on proactive system behaviour.
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Knowledge and problem-solving components form the foundation for enabling proactive
dialogue behaviour in an assistance context. At the core, however, a dialogue component
decides how to leverage the information provided by these two modules for conducting
proactive dialogue behaviour. For this, the dialogue component makes decisions about
how to integrate the user in the planning process and the kind of adequate proactive
dialogue behaviour dependent on the user and task context. The interplay between AI
planning components and dialogue systems was described, for example, by F. Nothdurft
et al. (2015a). Further, plan-based dialogue systems, e.g. see J. F. Allen et al. (1995) and
P. R. Cohen and Perrault (1979), describe how to use planning for cooperative dialogue.
For connecting a proactive DM module with such cognitive modules, we hence relied on
these previous works as a template in the scope of this thesis.
To personalise proactive dialogue to specific users and their contexts, our preliminary

experiments revealed that relying on user models is fundamental. Such user models may
use information gathered from a system’s sensor, e.g. via speech, video, or physiological
sensors, in order to trigger adequate proactive behaviour. In Section 3.2, we have already
described several methods on how to include the user for adapting the dialogue. For our
approach, we adopted rule-based as well as stochastic methods as trigger mechanisms for
enabling user-centred proactive dialogue.

5.1.3. Conclusion

In this section, we presented system and user requirements for integrating proactive be-
haviour in DS. The observations of user requirements were centred around what expec-
tations users have regarding the level and timing of proactive system actions. Here, we
concluded that these expectations are rather unclear due to the varied dependencies on
specific user characteristics, the context, and even the particular domain. Therefore, AI
interaction guidelines could serve as a foundation for modelling adequate proactive dia-
logue. Based on these guidelines, the implications of different levels of proactive dialogue
on the user and the task success can be investigated for gaining further knowledge on
trustworthy and task-effective proactive dialogue design.
Further, we identified several system requirements, both behavioural as well as func-

tional. Behavioural requirements comprised included a system’s ability to reason about
the importance, the context, and the accuracy of proactive behaviour. Here, we con-
cluded to include a quality measure for deciding on the importance of proactive dialogue,
and rely on mechanisms to provide both utility- and task-focused proactive dialogue for
increasing the quality of cooperation with CAs. Further, probabilistic methods were iden-
tified to be advantageous over rule-based methods for representing a proactive dialogue
model’s accuracy. In addition, we concluded that the primary requirement on how to
express proactive behaviour is to take actions on different LoA. Therefore, we identi-
fied the need for a valid decision-making function for selecting an appropriate level of
proactive dialogue. Other requirements were the inclusion of explanations for preserving
the user’s comprehension of the system’s proactive actions as well as the usage of well-
defined timing strategies for triggering proactive dialogue. Finally, for identifying the
functional requirements of a proactive DS, we relied on the characterisation of technical
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assistance systems. Such systems contain components, like planning, reasoning, knowl-
edge management, and dialogue that allow for implementing proactive dialogue. Here,
also personalisation approaches were identified for developing user-centred approaches.

5.2. Taxonomy of Proactive Dialogue

Based on the system and user requirements for CAs to express proactive dialogue be-
haviour, we developed a taxonomy of proactive dialogue (M. Kraus et al., 2020c, 2021b).
As we studied proactivity primary in the context of assistance systems, we defined proac-
tivity as the initiation of helpful sub-dialogues during task execution. In this thesis, we
focused on a mixed-initiative interaction where a user cooperated with a CA in decision-
making and problem-solving tasks. Therefore, we observed proactive dialogue at well-
defined points during task execution instead of considering a more turn-taking-oriented
approach. In this regard, we introduced a formalisation of proactive dialogue at the
task level. Further, we introduced proactive dialogue action types according to different
levels of system autonomy and with respect to the guidelines for appropriate proactive
behaviour as described in the previous section. First, task-level assistance is explained.
Parts of the presented work have been previously published in M. Kraus et al. (2020c)
and M. Kraus et al. (2021b).

5.2.1. Proactive Assistance on Task-Level

In mixed-initiative user interactions, a user and an autonomous agent, that is able to take
actions independently, collaborate for solving tasks (Horvitz, 1999). In the scope of this
thesis, these tasks were either decision-making tasks, where the system cooperated with
the user in order to select appropriate solutions from a sub-set of possible solutions, or
problem-solving tasks, in which a system could take actions in order to facilitate the user’s
execution of an arbitrary task at hand. Generally, both task types followed a specific task
structure. According to the online APA Dictionary of Psychology, task structure can be
defined as the “the extent to which there is a clear relationship of means to ends in the
performance of a task. In a highly structured task, the procedures required to perform
the task successfully are known, whereas, in an unstructured task, there is uncertainty
about how to proceed” 1.

For providing task assistance, an autonomous agent needs to track the user’s activities
and goals while reasoning about the costs and benefits of taking automated actions. Here,
proactive dialogue serves for communicating and negotiating a system’s decision process
for minimizing the risk of system failure and enhance comprehensibility. By this, the
agent complies with the requirements described earlier. Typically, the structure of a task
can be described as a sequence of task steps s, where at each step a specific problem has
to be solved or a decision has to be made. Theoretically, a task can be hierarchically
divided into multiple sub-task levels (see Fig. 5.1). For simplification, we considered
proactivity always on the most primitive sub-task level. Therefore, most tasks that were

1https://dictionary.apa.org/task-structure
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Figure 5.1.: Visualisation of a hierarchical task structure. An abstract task may be de-
composed iteratively into several sub-tasks.

used as exemplifying scenarios were structured on two levels: overall abstract task and
task step level. Depending on the nature of the task, humans can take different actions.
For example, in a decision-making scenario, there exist several decision options for each
task step, represented as a decision option oi. Here, humans sequentially have to make
decisions di until the cooperation process is ended after n task steps. Thus, working on
decision-making task can be formulated as follows:

(o1, d1), (o2, d2), (o3, d3), ..., (on, dn) (5.1)

The formulation of a problem-solving scenario may be described analogously. Considering
the task flow, a human is required to decide regarding a specific task, which leads to
another task step, where a new decision is required to be made. In a scenario where
a human is supported by a CA, both human and computer are able to take actions
during the individual task steps. Here, the assistance is provided either in a proactive
or a reactive manner. Being reactive, an assistant only helps on explicit requests by
a user of the assistance system. In contrast, proactive behaviour implies that the CA
suggests or takes over actions on behalf of the user. Therefore, proactive actions can
be considered as the initiation of sub-dialogues, where the assistant influences a user’s
action. Subsequently, a proactive action in a decision-making scenario can be defined as a
function of d, noted as pa(d). Under this consideration, the structure of a decision-making
task can be updated as follows:

(o1, pa(d), d1), ..., (on, pa(d), dn) (5.2)
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Figure 5.2.: The IP-continuum ranging from zero to full autonomy. Taken from M. Kraus
et al. (2021b), licensed under CC BY 4.0 (https://creativecommons.org/ li-
censes/by/4.0).

Again, the structure for problem-solving tasks is analogous. Based on this task-level
taxonomy for providing proactive assistance, the next step was to define proactive dialogue
act types. In doing so, different kinds of behaviour could be modelled. The development
of these dialogue actions is described in the following.

5.2.2. Definition of Proactive Dialogue Action Types

The proactive dialogue act types were designed following the principles of the IP-continuum
developed by Isbell and Pierce (2005). As previously described the continuum describes
the way in which a proactive assistant can cooperate in tasks. The authors differentiated
between five different levels of proactive assistant behaviour. The IP continuum ranges
from zero, i.e., the user acts fully on his own, to to full automation, i.e., the assistant acts
fully on behalf of the user. The nuances between these two extremes are alerts, telling
the user to pay attention, notifications, telling the user exactly what to pay attention
to, and suggestions, providing the user with several decision options. The more proac-
tive a system becomes, the more it takes off control and responsibilities from the user.
Hence, the risk of failure also increases, as the possibility that the system might take
actions ineptly towards the user’s goal without asking for confirmation expands. This
may possibly hurt the human-computer relationship (Isbell & Pierce, 2005). Transferring
the continuum to application in human-computer dialogue we summarised the second and
third points of the continuum (see Fig. 5.2) under the proactive action Notification. The
proactive actions content was modelled according to our requirement analysis throughout
this thesis, e.g. only task-specific information was conveyed that contributed to the user’s
interests and tasks, or the system was aware of the current situation during task execution
and aware of the user’s current and future needs. This fulfilled the user requirements of
pertinence, competence, and anticipatory behaviour. Further, all prototypes described in
this thesis were modelled to be expert systems. Thus, proactive actions were created to
minimise risks for the user in a safe manner.
In addition, proactive explanations were added to justify the behaviour of the system

to take the initiative. This fulfilled the user requirements of transparency. Besides,
justification explanations showed to improve the user’s trust in automatic systems (F.
Nothdurft et al., 2014). Therefore, these explanations also ensured the comprehensibility
requirement. Based on these considerations, we obtained four levels of proactivity, that
were transformed into distinct proactive dialogue act types:

None: This dialogue act type refers to reactive system behaviour and is the lowest level
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of proactive behaviour. In this condition, users can only explicitly request help from
the assistant.

Notification: This dialogue act type represents the most conservative proactive ap-
proach. Using this dialogue act, the participant is only notified by the system.
In this case, it was up to the user to get assistance or to ignore the system’s offer.
By applying a notification, the user is in control of the system’s proactivity and
is able to ignore it. However, this proactive action might shift the user’s focus to
possible helpful resources and might be perceived as unobtrusive.

Suggestion: Using the aforementioned proactive dialogue act type, the agent directly
suggests a solution by also providing a proactive explanation for its decision. Hence,
the system takes over some control of the interaction and asks the user to make a
choice. This represents a more rigid way of user interruption, but still lets the user
in control over the final decision. In a response to the system’s proposal, a subject
can either confirm or decline the suggestion.

Intervention: In this case the system takes over all responsibilities and performs a par-
ticular action in place of the user, also providing a proactive explanation. Utilising
this proactive dialogue act type might be perceived as quite obtrusive, but can be
helpful if the user has reached a critical level of need for proactivity.

Depending on the use case, these proactive dialogue act types formed the basis for devel-
oping proactive dialogue strategies. How the proactive dialogue act types were realised
in detail for each prototype, is explained in the sections covering the respective systems.

5.2.3. Conclusion

This section dealt with the definition of a taxonomy of proactive dialogue in CA. Here, we
considered proactive behaviour as the ability to proactively initiate sub-dialogues during
mixed-initiative interaction between system and users which cooperate on a task-level
basis for decision-making and problem-solving. Therefore, we focused on decision-making
and problem-solving scenarios for studying our research questions throughout this thesis.

Finally, we defined several proactive dialogue act types that represent different degrees
of proactive behaviour according to the IP-continuum for integration into the dialogue
domain. Here, we also stressed the importance of explanations for rendering proactive
dialogue comprehensible. These dialogue act types were then implemented in various
proactive dialogue strategies for providing assistance in decision-making and problem-
solving scenarios.

For technically realising proactive dialogue behaviour, we conceptualised a cognitive
architecture based on the described system requirements. The individual constituents of
the architecture are described in the following.
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Figure 5.3.: The cognitive architecture that forms the basis for each prototype developed
in the scope of this thesis.

5.3. Design of a Cognitive Architecture for Proactive Dialogue

For equipping a CA with proactive dialogue behaviour, we identified the system require-
ment of possessing several cognitive capabilities. Cognitive capabilities may be described
as “mental processes involved in the acquisition of knowledge, manipulation of informa-
tion, and reasoning”(Kiely, 2014). Specific cognitive functions are perception, memory,
learning, attention, decision making, and language abilities (Kiely, 2014). For includ-
ing such capabilities into a technical system, we created a model architecture comprising
three major constituents. Interface covers the system’s perception abilities and presents
a system’s output using various modalities. Interaction describes the system’s language
abilities, while also containing elements that help the system to learn from a situation
and to maintain attention. Finally, Domain Model represents a system’s memory and
decision-making functionalities. The three components are described in the following
with a focus on their application in the prototypes presented within the scope of this
thesis. The overall cognitive architecture is depicted in Fig. 5.3.

5.3.1. Interface Design

As the front-end of proactive CAs, we used web-based multimodal interfaces. For the
experimental prototypes that were developed as virtual CAs, the interface contained a
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graphical user interface (GUI) representing the cooperation task at hand. All virtual as-
sistants were basically experts in the task domain and had full knowledge about individual
task steps and properties. Therefore, the virtual CAs were able to manipulate the GUI
as a response to user requests or via proactive actions. Depending on the task type, the
task was represented as a set of instructions on how to solve a physical task (see Section
6.3) or as a set of available options for solving decision-making tasks (see Section 6.1, 6.2,
7.2). Further, we implemented a robotic CA prototype, which could directly manipulate
the physical world (see Section 6.4). Therefore, a virtual representation of the task was
obsolete, and the GUI only served for visualisation of the dialogue between the human
and the robot. The reason why the interfaces were developed as web-based applications
were to allow the integration of cloud-based language and perception components. In
doing so, we could integrate state-of-the-art speech recognition and synthesis modules for
all prototypes. Further, this allowed to include sensors for perceiving the user’s cognitive-
affective state (see Section 6.2), user activities (see Section 6.3) or the user’s environment
(see Section 6.4). Besides interacting via spoken language, we also allowed the user to
interact with virtual and robotic CAs using textual (see Section 6.3 and 6.4) as well as
pre-defined answer options (see Section 7.1, 7.2). The interaction modules for a proactive
CA are elucidated in the following.

5.3.2. Interaction Design

For extracting the meaning of spoken or written user utterances, we employed NLU mod-
ules with varying degrees of complexity. For the prototypes applied in more restricted
lab environment studies (see Section 6.1 and 6.2), the usage of simple grammar-based
language understanding was sufficient. Here, users only required a limited vocabulary
for interacting with the CAs. Contrary, for the more sophisticated prototypes applied
in more realistic settings (see Section 6.3 and 6.4), we applied state-of-the-art statistical-
based NLU methods by employing Rasa’s NLU or Microsoft’s language understanding
intelligent service (LUIS) framework. Note that the prototypes utilising pre-defined an-
swer options did not require any NLU component.
A key part of this thesis, was to develop DM modules that could handle both reactive

and proactive dialogue. For this, we applied several DM approaches. Regarding the ex-
periments exploring the effects of proactive dialogue strategies based on the previously
described proactive dialogue act types, we implemented simple rule-based DMs (see Sec-
tion 6.1 and 6.2). For the sophisticated prototypes (see Section 6.3 and 6.4), we made
use of agent-based DMs. This was due to wide variety of user input and the ability of the
system to take into account environmental and user states for selecting an appropriate
dialogue action. For the robotic CA, we extended a Rasa-based DM to handle proactive
dialogues based on specific events. For implementing a user-centred proactive DS (see
Section 7.4), either rule-based or RL-based DM approaches were used. For application of
RL-based DM, the dialogue was modelled as an MDP.
All prototypes developed in the scope of this thesis could trigger proactive dialogue

dependent on a user state. How these user states were modelled also depended on the
complexity and purpose of the application. For the prototype described in Section 6.1, we
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used a simplistic time measurement approach for estimating the user’s state of insecurity.
In Section 6.2, the prototype made use of pre-trained models for assuming the user’s
cognitive-affective state based on facial features that were captured using video input.
The prototype described in Section 6.3 applied both pre-trained statistical as well as
rule-based models to track the user’s current activity state. The robotic prototype (see
Section 6.4) modelled the user’s context rather than a particular user state. This allowed
the robotic CA to act upon specific events. In Section 7.2, we describe the development of
a novel model for predicting the user’s perceived trust in CAs. Therefore, a dataset was
collected and annotated with static as well as dynamic user-, context-, and dialogue-based
features. Further, sophisticated statistical methods were applied in order to detect the
user’s current trust state. This was then used to include a trust measure in the dialogue
state for modelling trust-adaptive proactive dialogue.
For producing textual output, all developed prototypes made use of template-based

approaches. An exception was the virtual CA described in Section 6.3 which could addi-
tionally generate text in a dynamic fashion using ontology verbalisation. The verbaliser
was developed by M. Schiller et al. (2018).

5.3.3. Domain Modelling

The domain models of each prototype contained task-specific information. This included
factual as well as procedural task knowledge allowing the virtual and robotic CAs to
maintain expert task knowledge. For modelling factual knowledge, we used well-defined
knowledge structures. For the prototypes deployed in restricted lab environments (see
Sections 6.1 and 6.2, as well as Chapter 7), factual knowledge was represented using
javascript object notation (JSON)-based structures. These knowledge representations
were modelled rather simplistic as sophisticated reasoning mechanisms were not necessary
for these limited study scenarios.
In contrast, the prototypes applied in advanced application scenarios (see Sections 6.3

and 6.4) made use of the W3C web ontology language (OWL) for formally describing
and reasoning about complex knowledge. However, these ontologies were not the main
objective of this thesis. Therefore, models developed by M. Schiller et al. (2017) and
Prasad and Ertel (2020) were used. Procedural knowledge was modelled based on hier-
archical planning methods, e.g. see Behnke et al. (2018a, 2018b). However, as this was
not the main focus of this thesis, we simulated planning for the prototypes used in the
lab environment studies. Simulating task plans implied that the order and the content of
sequential task steps were pre-defined in advance and were represented using the JSON-
format. This also allowed us to model simple relations between individual task steps.
The relations were used to measure the task success of the users using numerical scoring
models (see Chapter 7).
Solely, for the experiments conducted in the more realistic scenarios, we used full-fledged

AI-powered planning algorithms. The robotic CA described in Section 6.4 relied on
FlexBE framework (FlexBE, 2018; Schillinger et al., 2016), which utilised a concurrent
state machine for realising the robot’s action planning. The virtual CA that is explained in
Section 6.3 utilised a sophisticated hierarchical task network (HTN) planning approach.
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This approach was based on a coupled knowledge-based for planning and ontological
reasoning (M. Schiller et al., 2017). Here, the planning domain comprised atomic actions
for executing tasks in specific application domains, e.g. the DIY-domain in our case.
These actions contained preconditions under which they may be executed as well as
effects on the environment after their execution. The planner, in our case a module called
Panda developed by Behnke et al. (2018b), was able to generate a set of instructions
in order to execute a specific task physically. This information was then used by the
prototypes DM module for handling task-specific information.

5.3.4. Conclusion

In this section, we presented the design of a cognitive architecture for integrating proactive
dialogue into CAs. For designing the interface between the user and proactive system,
we utilised web-based multimodal interfaces. These were built in a modular structure
for allowing a facilitated use of various services, including self-developed GUIs as well
as off-the-shelf speech and other sensory modules. Regarding interaction design, we also
utilised a modular architecture for the implementation of proactive dialogue. Here, we
made use of various methods for NLU and text generation and proposed various methods
for proactive DM. For rendering the interaction user-adaptive, we also included a module
for user state recognition. Finally, the cognitive architecture comprised a domain model
that contained task-specific information. For domain modelling, we applied simple as well
as more advanced third-party approaches for planning and reasoning. These two cognitive
capabilities were identified to be inevitable for rendering proactive dialogue in realistic
use case scenarios with full-working prototypes.

5.4. Summary

This chapter presented a theoretical proactive dialogue model that formed the foundation
of the CA prototypes, proactive dialogue strategies, and experiments described in this
thesis.

For forming the proactive dialogue model, we first summarised user and system require-
ments regarding proactivity in assistance contexts. Examining the user requirements, we
found that in task domains that were considered in this work, user expectations rather
encompass low-level types of proactivity. Particularly, reactive behaviour seemed to be a
user expectation at the beginning of interactions with unfamiliar systems. Therefore, we
assumed that reactive behaviour may generally lead to high user-perceived trust ratings in
our following experiments. Also, a medium-level of proactivity ought to generally receive
higher trust ratings than high levels of proactive dialogue. However, as the expectations
may differ depending on the individual user characteristics, we deemed it essential to
consider the effects of different levels of proactive dialogue behaviour taking into account
user specifics and context.

For designing proactive behaviour, we relied on principles and general guidelines that
should foster good interaction design. As some of these principles comprise elements that
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are known to be related HCT, e.g. competence, control, and transparency, we assumed
that adhering to these rules for designing proactive strategies may foster user trust in
proactive CAs. We, therefore, hypothesised that adjusting the right level of proactive
dialogue at the fitting moment with respect to the specific user type may increase a CA’s
trustworthiness with regard to perceived competence, reliability, and understandability as
observed during preliminary experiments. Thus, an HCT measure seems to be essential
as a metric for assessing the social quality of cooperation with a proactive dialogue DS.

Secondly, we summarised system requirements for equipping a technical system with
proactive behaviour. Behavioural requirements comprise a system’s ability to assess the
expected return of each proactive behaviour with regard to the user’s goals and desires.
Thus, a system requires a mechanism to reason about the quality of their proactive actions
and to adjust their behaviour accordingly. We concluded that this may be achieved by
developing a module for predicting the quality or utility of proactive dialogue and using
an RL-based approach for implementing user-centered proactive dialogue. As proactive
behaviour may have a task-focused and utility-focused purpose, the quality measure of
proactive dialogue should encompass social (e.g. trust) and task-related (e.g. usability)
metrics for achieving the research goal stated in this thesis. For this reason, proactive
dialogue strategies not only need to be evaluated regarding their trustworthiness but also
their usability.

For designing different levels of proactive dialogue, the LoA known from autonomy
research seems beneficial. Further, we argued that the inclusion of explanations is neces-
sary for complying with the design principles of proactive behaviour. For the timing of
proactive actions, we restricted the system requirements to be able to act on a task-level
basis. Finally, we identified some technical requirements that included the combination
of various cognitive processes and an interplay between AI and HCI components for im-
plementing CAs capable of proactive dialogue.

Based on these considerations, we then defined a taxonomy of proactive dialogue. Fo-
cusing on task assistance and human-machine cooperation, we defined the cooperation
process as a dialogue in which individual task steps can be described as dialogue turns.
Here, proactive behaviour was defined as the initiation of sub-dialogues at task-step influ-
encing future user actions. With regard to the LoA, we defined four proactive dialogue act
types reflecting different types of autonomous system behaviour. These were developed
to be domain-independent and may be utilised in various contexts. Complying with the
principles of proactive behaviour, these dialogue act types may be enriched with justifica-
tion explanations for ensuring transparency and comprehensibility. The leveled proactive
dialogue act types formed the foundation for developing proactive dialogue strategies.

Finally, we conceptualised a cognitive architecture for implementing proactive dialogue
behaviour into CAs. We presented three layers of the architecture comprising components
for interface and interaction design as well as for domain modelling. Further, we outlined
the concrete implementations of each layer for the various CA prototypes developed in
this thesis.

This chapter provided a solution for closing the research gap on how to transfer the
concept of proactivity into the dialogue domain. Further, we provided a solution for the
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5. Development of a User-Centred Proactive Dialogue Model

structured realisation of proactive behaviour in DS. For achieving our goal of improving
the cooperation between humans and proactive CAs, the consequential next step was to
develop adequate proactive dialogue strategies that enhance the trustworthiness and the
usability of the system. Therefore, we designed several proactive dialogue strategies based
on the described model. These were then evaluated in different user studies regarding
their effects on the cooperation focusing on their impact on perceived user trust and
usability. As we identified the user’s expectations towards proactive behaviours to be
highly dynamic, it was required to observe the proactive dialogue strategies in various
user states and specific situations. The results of the evaluations may then be used to
implement appropriate proactive dialogue strategies for user-centred DM in CAs. In the
following, we describe the in-depth design and evaluations of proactive dialogue strategies.
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6. Design of User-Centred Proactive
Dialogue Strategies and their Effects on
Cooperation

In this chapter, we describe the design of four user-centred proactive dialogue strategies
and evaluate their effect on human-computer cooperation. Here, we measured the social
impact on the cooperation in the form of perceived user trust, as well as task effective-
ness measured using subjective and objective usability metrics. Regarding user trust,
we focused on measurements of cognitive-based HCT, as our preliminary studies showed
tendencies that proactive behaviour foremost influences a system’s perceived competence,
reliability, and understandability. Due to the highly dynamic nature of user expectations
towards proactive behaviour dependent on specific user states and contexts, we designed
and evaluated proactive dialogue strategies in four different assistance scenarios using
different user- and situation-related trigger mechanisms. Here, we selected scenarios that
fulfilled four important criteria for studying proactive assistance. Firstly, the scenario
was required to contain decision-making or problem-solving tasks where a cooperation
between user and machine was possible. Secondly, the task domain needed to possess
a sufficient degree of complexity and difficulty in which assistance, either provided reac-
tively or proactively, was beneficial for task solution. Strongly related to this point is the
third criterion which demands the task complexity and difficulty to be easily adjustable
for studying the impact of a user’s domain and task expertise on the perception of proac-
tive behaviour. Finally, the scenarios were required to contain mechanisms for creating
situations in which the user was vulnerable towards the system’s decision and trust mat-
tered. In doing so, trust effects of different proactive system behaviour were deemed to
be better observable and thus measurable.

For all scenarios, the level of proactivity remained constant throughout the interactions
as we wanted to investigate the impact of the individual levels in the different scenarios.

First, we studied the effects of the proactive dialogue strategies on the cooperation
depending on the task difficulty of a decision-making task. In recent works, it has been
argued that different degrees of task difficulty require distinct types of assistance Glas
et al. (2008) and Qiu et al. (2020). Therefore, we studied the impact of task difficulty on
the perception of proactive dialogue. As a trigger mechanism for proactive dialogue, we
evaluated a user insecurity measure.

In the second experiment, we examined the impact of the cognitive-affective user state
on the perception of proactive dialogue strategies during cooperation in a learning task.
For example, Friemel et al. (2018) proposed to utilise cognitive-affective user states for
triggering different types of assistance. As a trigger mechanism, we observed negative
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user states, i.e. confusion and frustration. For these experiments, two prototypes of
virtual CAs were developed. The implementation of these systems was based on the
cognitive architecture concept. However, as we conducted the user studies in restricted
lab environments to investigate the effect of the different proactive dialogue act types,
the cognitive abilities of planning and reasoning were simulated.

The third experiment dealt with investigating the impact of the user’s activity on the
cooperation with a proactive CA assisting in the user’s execution of a physical task.
Gaining procedural knowledge through the execution of physical tasks was one of the
primary goals in the development of assistive companion systems (Biundo & Wendemuth,
2016). Therefore, we embedded proactive dialogue into a similar scenario. Here, a trigger
mechanism based on the user’s progress and current activity with a connected electric
tool was studied.

Finally, we observed the impact of external events on the cooperation with a proactive
dialogue assistant in a household assistance setting. Especially, robot-based assistance in
the domestic domain has become an increasingly recognised research topic (e.g. see Pham
et al. (2017) or Graf et al. (2004)). Therefore, we implemented proactive behaviour into
a robot that was able to physically manipulate objects in its surroundings and execute
simple household duties, e.g. tidying up or bringing tasks. As a trigger mechanism, we
investigated specific contextual events.

Contrary to the first two experiments, experiments three and four examined proactive
dialogue in more realistic application scenarios. For this, we equipped high-fidelity pro-
totypes with proactive dialogue capabilities. High fidelity in this context implied that
cognitive abilities, such as planning and reasoning, were not simulated anymore, but pro-
vided by sophisticated AI modules. For assisting with the execution of the DIY task, we
developed a high-fidelity virtual CA. For assisting in the execution of household tasks, a
robotic CA was developed. Due to the complexity of the interaction in the realistic task
domains using high-fidelity prototypes, only medium-levels of proactive dialogue were
investigated.

The experiments aimed to determine the selection of the appropriate level of proactive
dialogue, i.e. proactive dialogue act type, dependent on the specific user type and con-
text information for improving the human-computer cooperation by increasing a system’s
trustworthiness and usability. By also observing the impact of proactive dialogue in more
realistic task scenarios, as per experiments three and four, we also intended to evaluate
the portability and validity of our proactive dialogue model. The results of the experi-
ments were then used to implement a user model which finally resulted in the realisation
of a user-centred proactive DS. In the following, we provide an in-depth description of
the developed prototypes, proactive dialogue strategies, and experiments.

122



6.1. Effects of Proactive Dialogue Strategies Dependent on Task Difficulty

6.1. Effects of Proactive Dialogue Strategies Dependent on
Task Difficulty

6.1.1. Motivation

In the first experimental lab study (M. Kraus et al., 2020c), we investigated the impact of
proactive dialogue strategies on cooperation dependent on the task difficulty. For assessing
the difficulty of a task, we made use of the ICL value of the task that was explicitly rated by
users during evaluation. We hypothesised that dependent on the task difficulty, different
proactive levels were more trustworthy than others and show different usability effects.
Further, it was tested if there exist general differences between the proactive dialogue act
concepts and the HCT relationship. Also, we tested whether user insecurity or hesitation
could be used as a trigger mechanism to initiate proactive behaviour. For evaluation,
we implemented a prototype that assisted with decision-making by initiating proactive
behaviour dependent on recognised user uncertainty. Generally, during decision-making
users have to make choices using their knowledge and the available information. Here, we
expected the need for proactivity if users had problems with making a profound decision.
A sign of arising problematic situations could be user hesitation to select a decision option.
To prevent such problematic situations, proactive behaviour may be beneficial. It was
assumed that using this trigger mechanism might increase trust and enhance the system’s
usability. In addition, we evaluated the quality of the study setup using different quality
measures. In the following, we describe the use case scenario, the development of the
virtual CA prototype, and the design of the proactive dialogue strategies based on the
previously described conceptualisations. Further, we provide details about the experiment
and present the results. Finally, the outcomes of the experiment are discussed. Parts of
the presented work and results have been previously published in M. Kraus et al. (2020c)
and M. Kraus et al. (2021b).

6.1.2. Scenario

For developing and evaluating proactive dialogue strategies, a use case in the DIY home
improvement domain was chosen. DIY is one of the most popular hobbies around the
world. According to a German poll, 11.91 million people aged 14 and older showed par-
ticular interest in the topic of home improvement (Allensbach, 2019). Thus, the domain
should provide an engaging environment for study participants. However, for novices of
craftsmanship and the handling of tools the entrance into the DIY-domain is complicated.
For example, beginners do not have task-specific knowledge about materials and tools.
Consequently, they lack the technical and practical abilities for planning and conducting
DIY projects. This makes it hard for them to decide which methods and tools to use for
a specific project without proper instructions. For this reason, novices need trusted and
competent assistance to receive appropriate guidance and tutoring. Taking these con-
siderations into account, this scenario was deemed to be particularly suitable for testing
the effects of proactive CA behaviour on HCT and usability. Besides, the rich amount
of different DIY-projects of varying complexity allowed to easily configure tasks having
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Figure 6.1.: The robotic assistant Nao was placed in front of the task screen right beside
the subject. In doing so, the robot should be perceived as a team member for
task completion. Additionally, Nao has been seated during the interaction
for a better quality of speech recognition. Taken from M. Kraus et al. (2020c),
reprinted according to author rights of ACM.

different degrees of difficulty. Therefore, we developed a virtual CA prototype that was
augmented with the ability to express proactive behaviour. In the DIY-scenario the user
was accompanied by the CA using different degrees of proactivity. In doing so, the effects
of proactive CA behaviour on the HCT and usability could be explored. The user’s task
in the test scenario was to plan and make decisions on two separate DIY-projects: the
building of a wooden nesting box and the assembly of a wall candle holder made from
copper tubes. The projects differed in their familiarity with users and might affect their
perception of the difficulty of the task. While building a nesting box was ought to be
more known to users, a copper-tube wall candle holder was supposed to require a higher
degree of imagination from the subjects and could hence be perceived as more difficult.
Each project consisted of a predefined set of five sub-tasks. The building of the wooden
nesting box comprised the steps “wood cutting”, “pre-drill holes”, “connecting the parts
of the nesting box”, “creating an entrance hole”, and “process wood”. Contrarily, the
steps for the wall candle holder were “saw copper tubes”, “connect copper tubes”, “pol-
ishing copper tubes”, “pre-drill wall and dwell”, and “attach wall candle holder”. The
construction of the DIY-projects and the different options were based on the extensive
internet research on how to perform the projects at hand. For each task, users had to
make decisions on how they would perform individual task steps. However, they did not
physically work on the DIY-project. They only had to select between different pre-defined
approaches or tools which could help to solve a particular task step. The possibilities on
how to solve a task step were presented on a task screen implemented as GUI. The order
of the task steps was fixed and could not be altered by the user. For each step, four
options on how to accomplish the task were presented.
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Figure 6.2.: Screenshot of the interface for the planning task. Users could choose between
four different methods for task completion. All options were presented textu-
ally and visually. The selection was made either by clicking on the respective
button or by confirming Nao’s proposal. Taken from M. Kraus et al. (2020c),
reprinted according to author rights of ACM.

An example of possible options for the sub-task “connect the parts of the nesting box” is
depicted in Fig. 6.2. Subjects were told to select the options they considered best. Further,
they were informed that a virtual CA would be able to help with decision-making if
required. Additionally, an artificial rewarding system was implemented to better motivate
participants to engage in the task. This was also intended to provide a risky environment
in which trust would be important. Therefore, options were associated with a rating
system based on three fictional categories: quality of product, cost, and time efficiency.
Each category was rated between 0 and 10 scoring points. The most common approach to
performing a task was awarded the highest scoring (30). Alternative approaches that were
functional but more cumbersome or cost-intensive were awarded 0, 10, or 20 depending
on their usefulness. In the example depicted in Fig. 6.2, the cordless screwdriver was
the best option, while the usage of the nail gun was rated as an inappropriate tool for
this task and rated with 0 points. After selection, the score of the chosen approach was
presented to the user as direct feedback.

The assistant was designed to be an expert system avoiding the unintended side effects
of incompetent system behaviour on perceived user trust and usability. Thus, it would
only suggest the most suited options. This allowed us to only consider the effects of the
proactive levels for evaluation.

For the experimental setup, study participants worked on the decision-making task
using a laptop with a purpose-built GUI. The GUI could be manipulated using mouse
clicks. As an external representation of our assistance system constituted a better sepa-
ration of task and assisting technology, a Nao robot was positioned next to the laptop.
This 120 cm high humanoid robot from Softbank Robotics has an integrated speech
interface that enables a natural approach to dialogue control. Hence, the setup seemed
more realistic and was expected to deliver more significant results. To avoid confusing
the user and to achieve a better quality of speech recognition, the robot had a fixed po-
sition and deactivated autonomous movements. The experimental setup is illustrated in
Fig. 6.1. The user was instructed which phrases can be used, e.g. “Which option do you
recommend in this situation?”. However, if user input was not recognised, the system
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Figure 6.3.: Depiction of the study apparatus.

automatically requested a repeat. Note that the robot could not physically solve any
tasks, but only advise users using natural language. Thus, the robot was implemented to
be a virtual CA.

6.1.3. Prototype Description

For conducting the user study, we implemented a prototypical system consisting of a task
interface, a domain and reward model, as well as a virtual CA in the form of a Nao robot.
The study apparatus is visualised in Fig. 6.3. The implementation of the prototype was
based on the previously described conceptualisation of the cognitive architecture. The
user interface presenting task content was implemented as a clickable web application
using the JavaScript framework with a Bootstrap plugin for designing the web pages.
Fig. 6.2 shows a screenshot of the designed interface. The web page was structured
in such a way that the description of the sub-task was presented on top of the screen,
whereas the four different options were put in the line below the assignment. Each option
was presented with a picture of the tool or approach and the corresponding label. Nao’s
proactive messages and responses to user requests were provided as spoken utterances
using natural language. At each task step, the user could select one option using a
mouse click and/or conducting a spoken dialogue with the robot for receiving guidance
on decision-making. The domain model contained the content of the individual task steps,
options as well as the content of the assistance messages. The corresponding texts and
images were pre-defined in advance and stored as hypertext markup language (HTML)-
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templates. Similarly, the reward model was pre-defined while the association of the scoring
points to the respective options was carried out relying on DIY-knowledge from internet
research. The associations between scoring points and options were implemented using
key-value pairs.
To obtain knowledge about when and how to provide the proactive messages, we con-

nected the Nao assistant to the web interface using Nao’s QiMessaging developing
framework. QiMessagingmakes use of JavaScript bindings for accessing Nao’s speech
modules. The bindings provide the class QiSession that connects to the robot and gets
proxies to services. After creating a session, Nao’s modules (services) can be called us-
ing the service() function. This provides a JavaScript proxy to any service. These
services are JavaScript objects exposing methods and signals. A service method, e.g.
the “AlTextToSpeech” method allowing Nao to provide speech output, is completely
asynchronous. This enabled the interaction of Nao to be proactively initiated through
timeouts on a web interface. Additionally, we implemented the “ALSpeechRecognition”
service method for setting the language and vocabulary of the assistant’s speech recogni-
tion. We provided a rich vocabulary for ensuring the recognition of multiple paraphrases
of the statements the user was allowed to utter. For creating a system response upon
the recognised user input, Nao’s internal memory “ALMemory” was used. This memory
provides callbacks on specific events, e.g. when speech was recognised. The event for
speech recognition was subscribed to by our agent to react appropriately to speech com-
mands. For example, in case the user uttered ‘Which option do you recommend in this
situation?’ at the previously described task step “connect the parts of the nesting box”,
the assistant would provide the suggestion “The solution with the cordless screwdriver
sounds good because it is the most time-efficient way. Should we choose this solution?”.
As a response, the user could either accept or decline this offer using speech. This in turn
would also trigger a speech event. How the timing and proactive dialogue actions of Nao
were designed and implemented is described in detail in the next section.

6.1.4. Design of Proactive Dialogue Strategies

Proactive assistance was modelled according to the conceptualisation of proactive dialogue
action types defined in Chapter 5: None, Notification, Suggestion, Intervention. Since
the scenario was a sequential decision-making task and the user was supposed to select
the best option in their opinion per individual task step, the purpose of CA behaviour
was to provide helpful information and suggestions for the selection process via natural
language. Therefore, we modelled the content of the general proactive action types to
fit our use case. The explanations accompanying the proactive messages were generated
using scripted templates.
Using the reactive None action, the system awaited the user to explicitly ask for sug-

gestions. For example, a user could say “Nao, help me.” for receiving assistance with
decision-making. As a response, the robot would then suggest the solution with the
highest score, which was equivalent to the Suggestion action. The more conservative
proactive actions Notification and Suggestion let the user confirm the assistant’s propos-
als and differ only in the degree of directness. While Notification allowed users to ignore
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Figure 6.4.: Flowchart, visualising the dialogue content of different levels of proactivity.
User utterances are coloured in blue, while system actions are red-coloured.
Take from M. Kraus et al. (2020c), reprinted according to author rights of
ACM.

the system’s message and proceed on their own, the Suggestion action expected the user
to accept or decline the offer. When users reacted to a system’s notification, a sugges-
tion was triggered. The Intervention action took the responsibility completely out of the
user’s hands by autonomously choosing an option. Here, the system would utter: “I have
chosen the solution with the cordless screwdriver because it is the most time-efficient”.
Simultaneously, the option was selected on the task screen and the user was led to the
next task step. Possible dialogue flows of the proactive strategies are depicted in Fig.
6.4. The reason why the Suggestion strategy was used, either upon user request or after
the user had reacted to an active system notification, was to induce a natural interaction
behaviour. If Nao’s proposal was rejected by the user, the system did not engage in any
further proactive interaction at the present task step.

For triggering the proactive system’s actions, we made use of timeouts. This allowed
for specifying an elapse of a certain time, after which the robot was taking the initia-
tive. Thus, the timing of the proactive actions was well-defined. The rules upon which
we implemented the timing of system actions are explained in the following. Here, we
differentiated between two timing strategies:

Fixed timing strategy: This strategy was used as a baseline. For this purpose, we
hard-coded the points of time the system took the initiative during the execution
of the planning task. Of the five possibilities for taking the initiative, the system
proactively acted on the sub-tasks one, four, and five. In doing so, a “quasi”-random
proactive system behaviour was simulated. Randomly distributing the timing was
omitted to guarantee better comparability among subjects. Technically, Nao took
the initiative eight seconds after the respective task screen was loaded. To avoid
that subjects could select an option before Nao had behaved proactively, we blocked
the selection buttons for this period. As a cover-up, participants were told that we
wanted to guarantee that they have read and understood the task.
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Figure 6.5.: Schematic description of the study procedure. Both planning tasks consisted
of five sub-tasks. For the strategy “fixed timing”, the system intervened
proactively in the sub-tasks 1, 4, and 5. For the strategy “uncertainty’, the
system intervened proactively each time user insecurity was detected. The
two strategies were switched depending on the test condition. Taken from
M. Kraus et al. (2020c), reprinted according to author rights of ACM.

Uncertainty-based timing strategy: Here, the robot could take the initiative at each
project step, if the subject had not requested help or had not selected an option be-
fore a time limit of twelve seconds. We interpreted the four seconds of user inactivity
after the selection buttons had been enabled as uncertainty in task performance.
As using hesitation as an indicator for uncertainty is extremely user-dependent, this
period was chosen as a heuristic measure based on pre-testing.

By testing uncertainty-based against baseline timing, we intended to gain knowledge of
whether it was possible to use hesitation as a signal for user uncertainty. If yes, this
would allow to include this measure in the user state for initiating proactive dialogue
behaviour. Consequently, the usefulness of this metric for triggering adequate proactive
dialogue behaviour could be evaluated. In summary, the developed prototype including
the different proactive dialogue strategies allowed us to study the impact of proactive
dialogue level and trigger mechanism on the cooperation. In the following, we describe
the experimental design for studying our research questions concerning trustworthiness
and usability.

6.1.5. Experimental Design

In our study setup, a 2x2x4 mixed factorial experimental design was conducted with
proactive dialogue action types (none - notification - suggestion - intervention) as between-
independent variables. Moreover, task difficulty (low: nesting box - high: wall candle
holder), as well as the timing strategies for proactive behaviour (fixed - insecurity-based),
were used as within-subject variables. The order of the timing strategies was randomised
for each proactive dialogue strategy except for the none condition, which did not require
any timing due to reactive behaviour. The order of the tasks was the same for all users.
Participants were distributed randomly to each experimental group.
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Participants

42 German participants (50 % female) with an average age of 26 (SD = 4.15) were
recruited and received 10 ¿ as a reward. Most subjects were students (37) majoring
either in psychology (27 %) or in computer science (38 %).

Experimental Procedure

After the welcome procedure, participants were provided with first instructions and details
about the study. As a cover story they were told that the purpose of the study was to
test a decision-making algorithm of the Nao robot and to generally consider problem-
solving between humans and robots. Afterward, they had to read and sign the informed
consent. In addition, they had to fill out a pre-test questionnaire regarding demographics,
their personality, and possible confounding variables. Before the first interaction cycle,
they received detailed information about the tasks and the procedure of the study. This
included details about the speech capabilities of Nao and about the task to rate the
interaction with the robot. Subsequently, the participants had to work on planning the
first DIY-project. After completion, they had to fill in a questionnaire to assess the
dependent variables and to check the manipulations. The same procedure was repeated
for the second task scenario. In addition, the questionnaire provided after the second
task also contained an evaluation of the overall perceived user experience with the virtual
CA. In conclusion, participants received their reward and were dismissed. A graphical
representation of the procedure is depicted in Fig. 6.5.

Questionnaires

In our experiment, we assessed trust and its five bases (competence, reliability, under-
standability, personal attachment, and faith) in the robot and the participants’ cognitive
loads during the interaction to evaluate the effects of proactive dialogue behaviour on the
cooperation. Furthermore, we measured the user’s experience with the system in general
for checking the quality of the setup. Each variable was measured with items from es-
tablished and validated scales. To determine trust towards the robot, the short version
of the Trust in Automated Systems Scale (Jian et al., 2000) in German by J. M. Kraus
(2020) was implemented. Furthermore, scales for measuring the bases of trust developed
by Madsen and Gregor (2000) were used. For measuring three types of cognitive loads
(extraneous, germane, intrinsic), a questionnaire developed by Klepsch et al. (2017) was
included. The user’s experience with the system was assessed via the user experience
questionnaire (UEQ) developed by Laugwitz et al. (2006). Besides, for personality as-
sessment, the Big-Five-Inventory BFI-10 by Rammstedt et al. (2013) was included. The
scales, which were only available in the English language, were translated into German.
Besides, all scales were slightly modified for content and study context.

Possible confounding variables were measured using scales of propensity to trust au-
tonomous systems (Merritt et al., 2013), negative attitudes towards robots scale (NARS)
(Nomura et al., 2006), as well as self-developed scales for previous experience with speech
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DSs and DIY-tasks. All scales were rated on a 7-point Likert-scale from 1 (strongly
disagree; word adjective (UEQ)) to 7 (strongly agree; word adjective (UEQ)).

6.1.6. Results

For data analysis, we used t-tests for the manipulation checks, a multivariate analysis of
variance (ANOVA) for confounding variables, as well as a mixed ANOVA for testing the
significance of the developed proactive dialogue strategies. No significant outliers were
found in the data set. Due to the number of samples, a normal distribution could be
assumed.

Confounding Variables and Manipulation Check

Confounding group differences for proactive behaviour could be ruled out as the multivari-
ate ANOVA did not reveal any significant differences (all p-values >> .05 ). The evalua-
tion of the manipulation check confirmed the successful manipulation of proactive dialogue
behaviour (all p-values < .05 concerning the non-proactive strategy). However, the ma-
nipulation of the timing of proactive behaviour dependent on the subject’s uncertainty
was not recognised by users (all p-values >> .05 ). Therefore, we concluded that user
uncertainty could not be measured using hesitation. The two tasks differed significantly
in their level of difficulty as expected. The conduction of a paired t-test revealed that the
intrinsic cognitive load, related to the difficulty of a task, was rated significantly higher
for the wall candle than for the nesting box decision-making task (M = 1.94, SD = 1.08
for nesting box vs. M = 2.48, SD = 1.20 for wall candle, t(41) = −3.46, p < .01).
Hence, differences between proactive dialogue actions depending on task difficulty could
be observed.

User Experience with the Experimental Prototype

In order to ensure the functionality and usefulness of employing Nao as virtual CA, we
evaluated the system regarding user experience. In general, the system received positive
feedback. Participants rated their interaction partner well understandable, represented
by a high value for perspicuity (M = 5.45, SD = 1.18). Furthermore, the system
received good ratings for dependability (M = 5.42, SD = .87) and efficiency (M =
5.21, SD = .99). In addition, the interaction with Nao received moderately good ratings
for attractiveness (M = 4.99, SD = .83), novelty (M = 4.77, SD = .92), and stimulation
(M = 4.80, SD = .87). Thus, the design of the system prototype for assisting in this
task domain was successful.

Effects of Proactive Dialogue Strategies on Usability

Regarding usability which was measured using the UEQ’s “Efficiency” sub-scale, the
Notification action showed the highest ratings (M = 5.55, SD = 1.02) followed by the
Intervention action (M = 5.18, SD = .92). The Suggestion action showed the lowest
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Proactive
Action

Trust Efficiency

Female Male Overall Female Male Overall
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

None 5.70 (.78) 5.25 (1.05) 5.52 (.87) 5.41 (.92) 4.56 (1.39) 5.08 (1.14)
Notification 6.52 (.45) 6.09 (.67) 6.25 (.61) 6.13 (1.09) 5.21 (.88) 5.55 (1.02)
Suggestion 5.72 (1.05) 5.98 (1.43) 5.82 (1.14) 5.39 (.93) 4.44 (.66) 5.05 (.94)
Intervention 6.27 (.34) 5.21 (1.00) 5.64 (.94) 5.31 (.83) 5.08 (1.04) 5.18 (.92)

Table 6.1.: Descriptive statistics of overall perceived trust and task efficiency regarding
the proactive dialogue actions and respective participant gender. Taken from
M. Kraus et al. (2021b), licensed under CC BY 4.0 (https://creativecommons.
org/licenses/by/4.0)).

usability scores (M = 5.05, SD = .94). The None action received slightly higher ratings
in comparison (M = 5.08, SD = .92).

Effects of Proactive Dialogue Strategies on Trust

There was a statistically significant interaction between proactive dialogue actions and
task difficulty for perceived competence (F (3, 38) = 8.25, p < .001, η2 = .39) and
for perceived reliability (F (3, 38) = 3.95, p = .015, η2 = .24). In order to investigate
further which groups differed significantly in which task, a series of t-tests with Bonferroni
correction was conducted. First, we examined the effects of proactive actions on perceived
competence. The Notification action was evaluated significantly higher than the None,
and Intervention action for the task nesting box (t(19) = 4.46, p < .001 vs. None; t(19) =
2.93, p = .038 vs. Intervention). Furthermore, for the more difficult task wall candle the
Notification action was rated higher than the Intervention action (t(19) = 2.90, p = .038).

In the following, results for perceived reliability are presented. For the relatively easier
task nesting box, the Notification action was graded significantly higher than the None
(t(19) = 3.03, p = .028 vs. None). For the harder task wall candle the Notification and
None action were rated significantly higher than the Intervention action (Notification vs.
Intervention, t(19) = 2.96, p = .032; None vs. Intervention, t(18) = 2.84, p = .044).
These results are depicted in Fig. 6.7.

Finally, we investigated significant main effects of proactive dialogue action types. The
Notification action was evaluated significantly higher than the Intervention action for
the categories perceived competence (t(19) = 3.02, p = .028) and perceived reliability
(t(19) = 3.16, p = .020). Additionally, the Notification action was rated significantly
higher than the None action for perceived competence (t(19) = 2.00, p = .036). No
significant results were found for all of the remaining dependent variables. Considering
the trust progression throughout the experiment depending on the proactive actions,
we investigated the within-subject differences of the trust ratings before the experiment
and after each task. Hereby, initial trust was measured using the trust propensity in
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Figure 6.6.: Trust progression throughout the experiment concerning the proactive dia-
logue actions. Pre-Trust represents predisposition to trust autonomous sys-
tems, while Trust T1 and T2 represent the trust measurements after the
tasks “nesting box” and “wall candle holder” respectively. Taken from M.
Kraus et al. (2021b), licensed under CC BY 4.0 (https://creativecommons.
org/licenses/by/4.0)).

autonomous systems scale. For testing the significance of the differences, we used paired
t-tests. We found a significant trust difference for the None action measured after the
first and second task (t(9) = −3.00, p = .015). Furthermore, we found significant trust
differences between initial trust and trust measured after the first task for the actions
Notification (t(10) = −3.95, p = .003) and Suggestion (t(10) = −2.90, p = .016). There
was no significant trust progression for the Intervention action. The results are depicted
in Fig. 6.6.

Interplay between Proactive Dialogue and User Characteristics regarding Trust

Further exploring the data, we found significant gender differences using t-tests on the
independent samples. Females rated themselves to be less experienced with DIY (t(40) =
2.13, p = .039). Additionally, they showed tendencies to be less experienced interacting
with CAs (t(40) = 1.94, p = .059). Considering personality characteristics, females had
higher ratings for neuroticism (t(40) = −3.33, p = .002) and conscientiousness (t(40) =
−2.22, p = .032). Females rated themselves also considerably more open to experiences
(t(40) = −1.83, p = .075).

For observing the effects of the proactive actions depending on the individual gender,
we split the data set accordingly and tested for significant differences. Due to the resulting
smaller sample size, a normal distribution of the data was not further provided. Therefore,
we utilised a Kruskal–Wallis one-way analysis of variance for testing the effects of the
different proactive actions. Here, several significant differences were found for the female
gender. For the task “nesting box”, significant differences were found for reliability (p =
.042) and competence (p = .038). A significant difference was found for the task “wall
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Figure 6.7.: Depiction of the results for perceived reliability (left) and perceived com-
petence (right) depending on the four proactive dialogue strategies (In-
tervention, None, Notification, Suggestion) and the two tasks (1 = ‘nest-
ing box’; 2 = ‘wall candle’). Mean values and standard errors are pro-
vided. Taken from M. Kraus et al. (2021b), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0)).

candle” regarding reliability (p = .005). Additionally, we found a significant effect on
overall perceived reliability (p = .020).

In order to investigate further which groups differed significantly for each task, post-hoc
tests using the Dunn-Bonferroni method were conducted. The results showed that the
Notification action was rated higher than the None action for reliability (Z = −2.83, p =
.028 and competence (Z = −2.88, p = .024in the task“nesting box”. For the task
“wall candle”, the None and Notification action were rated higher than the Intervention
action for reliability (Z = −3.18, p = .009; Z = −2.95, p = 0.019). Additionally, we
found a tendency that proactive actions had an effect on competence (p = .055) and
understandability (p = .059) for the task “wall candle” and for the UEQ-dimensions
novelty (p = .090) and dependability (p = .093). For the male gender no significant
differences were found.

6.1.7. Discussion

The study results verified our hypotheses that altering the degree of proactive system
behaviour has a significant impact on the user’s trust in the CA. Especially, we dis-
covered interesting insights into the relations between proactive actions and task knowl-
edge/difficulty as well as user characteristics on the perceived competence and reliability
of the system. In the following, we discuss the results with a focus on the formulated
research questions.
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Influence of Proactive Dialogue Level on Usability

Even though there were no significant differences between the measures for perceived
usability, it was interesting that the Notification action provided the best results ahead
of the Intervention action, which naturally provided the highest task success due to the
system being an expert system for this task domain. This was a further indicator that
the Notification action let the system be perceived as more competent for the task. None
and Suggestion action received the lowest scores. This was found to be quite plausible, as
users had to make decisions completely on their own in the reactive condition. Considering
the Suggestion action, it seemed that the additional decision to accept or to decline the
system’s action was perceived to be a factor that decreased usability.

Influence of Proactive Dialogue Level on Trust

For the first, easier perceived task “nesting box”, low- and medium-level proactive system
actions were particularly trusted more than the reactive condition. This was validated
both by the examination of the trust progression analysis and the ANOVA. For this,
there exist two possible explanations.

First, users could have been more sure about the decision on appropriate planning steps
for this task in comparison to the “wall candle task”. Therefore, the proactive actions
could have been perceived as a confirmation or reinforcement of their decision-making
processes and relieved them in task execution. This in turn could foster trust, as the
benefits of proactive actions were higher as compared to the risks of wrongful system
advice. Particularly, as the low- and medium-level are more controllable (Isbell & Pierce,
2005).

The relatively low ratings for competence and reliability of the None action for the
“nesting box”-task could be explained that the ratio between expenses and benefits of
system usage was too low, as requesting the system for help was perceived as an un-
necessary step and could have been more a distraction. For the second, more difficult
task, the None action was trusted similarly to the medium-level proactive conditions,
as the benefits of requesting system help outweighed the costs of addressing the system.
Another explanation could be those study participants perceived low- and medium-level
proactive actions to help better in getting familiar with the task and the CA’s design
and performance than a reactive system that does not actively communicate. Hence, the
dynamically learned trust according to Hoff and Bashir (2015) was increased more by
proactive actions in the first task, because they initially made the system more trans-
parent. For the second task, the None action increased the dynamically learned trust as
subjects started communicating more with the system and learned about its benefits.

Among the proactive strategies, the Notification action had the most impact on convey-
ing competence and reliability of the system. This particularly held for assistance in the
first, easier task. The Notification strategy was the most conservative proactive strategy,
which offered help more subtly. Hence, study participants always felt in control but were
also aware of the system’s active assistance. Furthermore, this strategy comprised the
most (four) dialogue turns. It seemed that subjects tended to accept proactive system
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behaviour more when it was possible for them to have natural dialogues.

In line with the findings from our requirement analysis and previous work by Rau
et al. (2013), the most autonomous system behaviour, the Intervention action, was less
trusted than the more conservative strategies. Subjects considered this strategy to be too
obtrusive and perceived the system to be imposing. In summary, when being proactive,
a system should act more subtle and give the user a feeling of system involvement in the
task, i.e. by notifying about or suggesting information. The Intervention strategy could
be used for really tedious or annoying tasks. Therefore, we considered the Notification
and Suggestion strategies as more trustworthy for the user.

These findings reinforce the results by Peng et al. (2019), who designated medium-level
proactivity as the most helpful.

When considering how user characteristics affect the relation of proactive system ac-
tions and HCT, we found significant gender differences. The interplay between gender
and trust is a common phenomenon in engineering and science (M. Kraus et al., 2018; Law
et al., 2020; Tannenbaum et al., 2019). We found that varying the degree of proactive sys-
tem behaviour had a particularly significant impact on the female user’s cognitive-based
trust, reliability, and competence. Female study participants were less experienced with
CAs and DIY than male subjects. This suggested the first evidence, that the perception
of proactive system behaviour as trustworthy is crucially affected by the user’s experience
with the task and technology. Furthermore, we found significant differences between the
genders regarding the big five personality traits as females rated themselves higher for
neuroticism, conscientiousness, and to some degree openness towards new experiences.
A high degree of openness to experience relates to curious, innovative, adventurous per-
sons. A high degree of conscientiousness relates to goal-oriented, efficient, disciplined,
organised behaviour. Sensitive, insecure individuals have a high degree of neuroticism.
Examining the individual personality traits it could be reasoned that proactive behaviour
primarily affects innovative, goal-driven, but also more insecure persons. Interestingly, in
organisational psychology and management, proactive behaviour is associated with goal-
directed activities and innovation (Crant, 2000; Frese & Fay, 2001) relating to the traits
of openness and conscientiousness. Seibert et al. (1999) also introduce the “proactive
personality”. Hence, there could be a correlation between one’s tendency for proactive
behaviour and the perception of a proactive CA. However, more research on this topic
is necessary for providing clear insights and underpin this hypothesis. Nonetheless, tak-
ing into consideration the user’s personality when developing a proactive CA could be
beneficial.

The reason why overall trust in the system did not differ significantly could lie in the
short duration of the interaction. These kinds of interactions only influence the cognitive-,
and not the affect-based trust. To get significant differences in overall trust, a more long-
term human-machine relationship might be necessary. According to Madsen and Gregor
(2000), both cognitive- and affect-based trust must be perceived as high to establish an
overall trustworthy CA. Further, our investigations of user requirements showed that
reactive behaviour may be more expected in this task domain. Thus, reactive behaviour
was supposed to receive higher trust ratings. As there was no significant difference,
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we deemed the proactive dialogue act types to comply with the principles of proactive
behaviour which validated their utility.

Influence of the Trigger Mechanism on Cooperation

Manipulation of timing strategy according to the user’s uncertainty failed. In consequence,
we assumed that a time-dependent measure for uncertainty is insufficient for usage as a
trigger-variable of proactive dialogue actions. Arguably, time as initiation-criterion needs
to be avoided because there exist too many side factors, which are not necessarily user-
related, that could lead to a delay in time.

Limitations

Our work had several limitations. Even though we let subjects interact with an actual au-
tonomous system, the study was still conducted in a controlled environment. In a realistic
scenario, a DIY-planning task would be much more unpredictable and unbounded. Addi-
tionally, Nao only allows for a limited speech interaction due to its technical constraints.
Thus, more sophisticated interfaces may be beneficial for a more realistic evaluation.
Furthermore, the timing strategies can only be controlled in an experimental setup and
can hardly be transferred to a real case scenario. However, using the user’s insecurity
as a metric for timing proactivity proved to be unreliable. Therefore, other metrics are
required to be identified for measuring user insecurity. Finally, since we kept using the
same level of proactivity for a subject while going through a study run, this may have
resulted in the perception of a rigid system harming the overall user experience. This
approach was necessary to consider the independent effects of the individual proactive
dialogue acts on the cooperation though.

6.1.8. Conclusion

The results of this study on the user perception of proactive dialogue action types showed
an overall benefit of low- to medium-level proactivity and its relations to the HCT re-
lationship. Furthermore, we discovered an interaction between proactive actions and
perceived task difficulty, as well as dependencies between proactive dialogue and certain
user characteristics, such as domain experience, technical affinity, and personality proper-
ties. The results further showed that the low- to medium-level proactivity was better for
establishing an immediate trust relationship. Particularly, the proactive dialogue seemed
to be especially relevant for novice users. Further, we found a slight effect of proactive
dialogue act types on usability, which stressed the benefits of the Notification action.
Using a time-based hesitation measure for measuring user uncertainty did not have the
intended effect. Thus, there was no difference between the different implemented timing
strategies for proactive behaviour. For this reason, we decided to use more sophisticated
user state models for triggering the initiation of proactive dialogue behaviour. As related
work showed that a user’s cognitive-affective state could be useful for enabling proactive
assistance, we included the measurements of such in a follow-up prototype. This was
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then used to investigate the effects of different proactive dialogue strategies dependent on
cognitive-affective user states on the cooperation.

6.2. Effects of Proactive Dialogue Strategies Dependent on
Cognitive-Affective User States

6.2.1. Motivation

In this experiment (M. Kraus et al., 2022a), we investigated the effects of the modelled
proactive dialogue actions on human-machine cooperation similar to the previously de-
scribed experiment. However, the main research question was to consider, whether it
was possible to determine the user’s need for assistance with the presence of negative
cognitive-affective states during a decision-making task. Therefore, the user’s cognitive-
affective states were taken into account as an indicator of an appropriate point in time
for the invocation of conversational assistance. For this, it was important to define which
cognitive-affective states would be considered. According to the attentional control the-
ory, mainly the user state anxiety pose a need for assistance (M. W. Eysenck et al.,
2007). However, research has been extended to other negative cognitive-affective states,
in particular those related to the interaction with technical systems (Hibbeln et al., 2017).
Those negative cognitive-affective states have been described by a negative affective va-
lence which can be evaluated by facial expression analysis or with facial electromyography
tools (Ekman, 1993). To be more specific, some of these negative states would be bore-
dom, frustration, and confusion (S. D’Mello & Graesser, 2011). According to S. D’Mello
and Graesser (2011), negative states such as confusion and frustration are usually associ-
ated with mistakes, failure, struggling with problems, or revising plans, while positive ones
such as excitement or delight are associated with task completion or making discoveries.

In the following experiment, we focused on the negative states of confusion and frustra-
tion for initiating proactive dialogue. Similarly to Friemel et al. (2018), these states were
measured using visual cues. For this, a high-resolution camera and the Affectiva (Mc-
Duff et al., 2013) software for classifying affective states were used. For measuring the
effects of proactive dialogue depending on the user’s cognitive-affective state on coopera-
tion, a user study was conducted. Here, study participants performed a concept learning
task that involved planning, categorising, and decision making. During the task, they in-
teracted with a Nao robot as virtual CA similar to the previous experiment. It would also
provide help either in a reactive or proactive manner. Here, it was also tested whether
there exist general differences between the conceptualised proactive dialogue act types
and HCT and usability with a focus on the present user state. Therefore, the virtual CA
was equipped with different timing strategies. The intervention started either after a ran-
dom time interval or after the detection of frustration or confusion. For this experiment,
proactive behaviour was applied for assisting users during decision-making for a learning
task. Therefore, we also observed the effects of the different proactive dialogue act types
on the user’s cognitive load depending on the cognitive-affective user state. This was due
to the relations between cognitive load and associated learning of a user as described in
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Figure 6.8.: Depiction of the user interface for solving the conceptual learning task.
Taken from M. Kraus et al. (2022a), licensed under CC BY 4.0 (https:
//creativecommons.org/licenses/by/4.0).

Chapter 2. In addition, we evaluated the quality of the study setup by investigating user
experience measures for ensuring the usefulness of the prototype. In the following, we
describe the experiment including the use case scenario, system description, and proac-
tive dialogue strategy design. Moreover, we explain the study setup in detail and report
results. These outcomes are then thoroughly discussed. Parts of the presented work and
results have been previously published in M. Kraus et al. (2022a).

6.2.2. Scenario

For testing the proactive dialogue strategies, a concept learning scenario was selected
in which the user was accompanied by a Nao robot serving as virtual CA. Here, the
assistant took the role of a tutoring system (A. C. Graesser et al., 2005) that did not
physically take action. Using a concept learning task was inspired by the work of Bruner
et al. (2017). Their work was based on how humans categorise information by applying a
coding system. The participants saw ten objects divided into two columns: Five labeled
as members, and five as non-members. The task of the participants was to deduce the
correct rule. Instead of explicitly asking the participants for the rule, a new unlabelled
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Figure 6.9.: Examples of relational rules between objects. Taken from M. Kraus et al.
(2022a), licensed under CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0).

object was presented separately. They were then asked to classify it as a member or non-
member of the group. The properties that defined each object were as follows: Number
of elements: One, two, or three elements. The shape of elements: A square, a cross, or a
circle. The number of borders: One, two, or three borders. Filled or not filled elements.
Fig. 6.8 illustrates an example of the task presented. This scenario was chosen for two
reasons:

Firstly, the concept learning task provided a scenario with sufficient complexity where
the assistance of a technical system ought to be perceived as useful. Secondly, the rule-
based structure of the task allowed to equip the assistant with expert knowledge. This
enabled the system to provide helpful contributions to the task. During task completion,
a four-minute timer was added for putting the participant under pressure. This aimed
at creating a situation of vulnerability in which trust in the assistant was necessary for
successful task completion. In the following, the relational rules between objects are
described. A visualisation of all possible relations is provided in Fig. 6.9:

And The two properties are connected with an “AND”. The depiction of the members
and non-members in the top left of Fig. 6.9 exemplifies this rule. In this example,
the two properties are two borders and two elements. All members have two borders
and two elements in the middle.
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Figure 6.10.: System architecture. Taken from M. Kraus et al. (2022a), licensed under
CC BY 4.0 (https://creativecommons.org/ licenses/by/4.0).

Specification The two properties are in a certain relation to each other. The depiction
of the members and non-members in the top right of Fig. 6.9 exemplifies this rule.
In this example, the number of borders is the same as the number of elements.

Or The two properties are connected with an “OR”. The depiction of the members and
non-members in the bottom left of Fig. 6.9 exemplifies this rule. All members have
two elements or circles.

Exclusive Or The two properties are connected with an “EITHER OR”. The depiction
of the members and non-members in the bottom right of Fig. 6.9 exemplifies this
rule. All members either have a cross or a filled element in the middle but not both.
The cross in red in the non-member’s column refers to an example that has both
properties, an element in the middle and a cross, and therefore does not classify as
a member.

6.2.3. Prototype Description

The prototype was developed similarly to the previous experiment. A Lenovo Thinkpad
laptop computer, equipped with a webcam, was used for the experiment administration
and information recording. A Tomcat Apache server version V9 served as the back-end
and enabled the communication between the components. The code was implemented as
a dynamic web project in Eclipse, based on JavaServer Pages, HTML, and JavaScript.
The front-end with the task to be solved was presented to the participants in a Google
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Chrome web browser. While the participants were performing the task, assistance was
provided through the Nao robot. The robot was programmed to listen to user speech
and, if requested by the user, to provide hints for solving the task. This behavior was
implemented in the JavaScript QiMessaging application program interface (API) by
Aldebaran. Nao received information about task-relevant hints through the back-end.
Further, the connection to the back-end allowed to trigger proactive dialogue after a ran-
dom amount of time or after the cognitive-affective states of frustration or confusion had
been detected. The random timing strategy was implemented with built-in JavaScript
functions. For the detection of cognitive-affective states, the Affectiva JavaScript
API was used (McDuff et al., 2013). Generally, Affectiva analyses spontaneous facial
expressions with facial emotion recognition algorithms. These are trained based on a large
database of faces from a variety of different countries and morphological groups. Fig. 6.10
shows the interaction between the user and the components on an abstract level.

6.2.4. Design of Proactive Dialogue Strategies

The proactive behavior of the robotic assistant was modelled again according to the
previously described conceptualisation. The content of the proactive actions was adjusted
to fit the context. In the following, the individual proactive actions are described more
in detail:

None: This level was the foundation considered to create the reactive condition which
would serve as the baseline. In the reactive condition, the robot reacted to any user
help request but did not show any proactive behavior. In this level, the user could
ask for help with any word similar to “Help.” or “Give me hints, please.”, but the
system would not initiate the help autonomously nor provide solutions. Therefore
this level did not require any timing strategy. For example, consider the following
dialogue:

U: Nao, help me please.
N: The rule is of type or.
U: Thanks, can you give me another hint?
N: Pay attention to the number of elements, it is part of the rule.
U: Thank you, Nao.
N: You are welcome.

Notification: This strategy was the first level of expressing proactive behavior. It was
implemented by informing the user that a hint was available. Users then had the
option to say whether they wanted to hear it or not. If the user replied affirmatively,
they would receive the hint. If they replied negatively the robot would wish them
luck solving the task. For example, consider the following dialogue:

N: Help is available. Do you want me to give you a hint?
U: Yes, please. / No thanks.
N: Focus on the borders. It is relevant for the rule. / Good luck solving the task.
U: Thank you, Nao.
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N: You are welcome.

Suggestion: This level was implemented by the robot suggesting a hint to solve the task
and the user could decide whether to use the hint or not., e.g. see the following
example:

N: A hint is now available. The rule is of type and.
U: Thank you, Nao.
N: You are welcome.

Intervention: This strategy was implemented by the robot saying the answer to the
task and simultaneously the correct answer was chosen on the laptop screen. In this
level of proactivity, the system took the decisions for the user. For exemplifying
this strategy, consider the following dialogue:

N: Help is now available. The rule is: The number of borders is one less than the
number of elements.

U: Thank you, Nao.
N: You are welcome.

The timing strategy determined when the system would take the initiative. Depending
on when the system would intervene, it could be perceived as helpful, disruptive, or
distracting. A strategy with well-defined timing was considered as the baseline. In this
condition, three moments were set in each task and a random function was implemented
in JavaScript, to choose one of these three moments at each task. The moments could
be thirty seconds, two minutes and a half, and three minutes. Each task lasted 4 minutes
so the intervention would occur within this time-lapse at different moments for each task.
For acting upon detected cognitive-affective states an Affectiva-based strategy was

used. This strategy would initiate proactive behavior in the detection of confusion or
frustration. These two states were detected by using facial action units (AU) based on
facial action coding system (FACS) (Ekman, 1993). In general, the FACS allows linking
active AUs to the underlying basic emotions of sadness, happiness, surprise, disgust,
anger, and fear. Based on this, McDaniel et al. (2007) and Craig et al. (2008) showed
that AUs 4 and 7 indicate confusion and AUs 1 and 2 are a manifestation of frustration.
AU 4 corresponds to brow lowered and AU 7 to lid tightener. On the other side, AU
1 corresponds to inner brow raise in the face muscles, and AU 2 to outer brow raise.
Proactive dialogue was triggered when either frustration or confusion was detected by the
Affectiva API (McDuff et al., 2013). The individual steps handled internally by the API
were as follows: First, the webcam would provide raw pixel images. Afterward, regions
of interest, i.e. pixels of facial information, were extracted using landmark detection.
Finally, machine learning regressors predicted activity scores between 0 (no activity) and
1 (high activity) for each AU and returned the results to the caller of the API. The
predictors were trained on the Affectiva dataset.

The activity detected by Affectiva API in each of the AUs was compared to a thresh-
old that would trigger the robot. That threshold was defined in a pre-test with three ad-
ditional participants. In this way, thresholds that seemed to provide a sensible trade-off
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between precision and recall were determined empirically. The details of this Affec-
tiva implementation will be furtherly explained in the pseudocode in Algorithm 1. In

Algorithm 1: Pseudo-code for the detection of the cognitive-affective states
frustration and confusion.
subscribe to Face Detection Event triggered by Affectiva API;
set au activity tresholds;
initialize expression detected to False;
while not expression detected do

if face detected then
compute AU activities;
# below: Check if confusion was detected
if au activity 1 > au treshold 1 ∩ au activity 2 > au treshold 2 then

trigger proactive behavior in Nao;
expression detected = True;
break;

end
# below: Check if frustration was detected
if au activity 4 > au treshold 4 ∩ au activity 7 > au treshold 7 then

trigger proactive behavior in Nao;
expression detected = True;
break;

end

end

end

summary, the developed prototype including the different proactive dialogue strategies al-
lowed to study the main research questions of this thesis concerning the human-machine
cooperation and the applicability of the trigger mechanism. In the following, we describe
the experimental design for studying our research questions.

6.2.5. Experimental Design

A factorial 2 x 4 mixed design was used for the experiment. The independent variables
manipulated were: timing strategies triggering proactive dialogue (randomised timing
vs. triggered by the cognitive-affective states confusion/frustration) as within-subject
and the levels of proactive dialogue (reactive - notification - suggestion - intervention)
as the between-subject factor. Participants were randomly distributed to each of the
between-subject factors and were confronted with both timing strategies during the study.
To minimise sequence effects, the order of the timing strategies was randomised among
participants.

Participants

40 participants were recruited for the study. However, three participants had to be ex-
cluded due to not complying with the study guidelines. The average age of the participants
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was 26 years (Std = 5.14). 37 % of the participants were females, while 63 % percent
were males. A high to advanced level of English knowledge was required to perform the
study, which was why 72 % percent of the participants had a C-level of English. This
corresponds to experts according to the Common European Framework of Reference for
Languages. The rest of the participants had advanced knowledge. Participants’ English
proficiency was self-reported. 60 % of the participants were students and the rest of the
participants were employees. For compensation, they received a 5¿-Amazon-Voucher.

Experimental Procedure

The participants were welcomed to the study and the initial instructions for the study
were presented. The informed consent was given along with any clarification on the
adherence to data privacy standards. Participants were told they would participate in
a study based on hri in which decision-making skills and cooperation with the robot
would be evaluated. Participants were also informed they would be recorded via video
for further analysis of the interaction. Information about the assistance via proactive
dialogue strategies using their facial expression analysis for cognitive-affective states and
timing was initially omitted to avoid expectancy effects. However, they received details
about the speech capabilities of Nao. After the introduction, a base questionnaire was
presented including the demographics and possible confounding variables. Afterward,
the experiment consisting of ten tasks for each participant was started. For each task,
they would see 10 objects like those exemplified in Fig.6.9. Additionally, each task had
an upper limit of 4 minutes indicated by a timer on the screen. The ten tasks were
divided into two partitions of five tasks. For the first five tasks, subjects were randomly
confronted with one of the two timing strategies. After completion, they had to fill in a
questionnaire to assess the dependent variables and check the manipulations. The same
procedure was then repeated for the other five tasks using the other timing strategy. The
whole procedure lasted between 45 minutes to one hour. After the study, the participants
were dismissed and additional clarification was provided if requested.

Questionnaires

Trust was measured using the Trust in Automated Systems Scale (Jian et al., 2000).
Furthermore, scales for measuring the bases of trust developed by Madsen and Gregor
(2000) were used. Acceptance was evaluated by the acceptance scale developed by Van
Der Laan et al. (1997). User experience with the system was studied via the short UEQ by
Laugwitz et al. (2006). Cognitive load’s three types (intrinsic, extraneous, and germane)
were measured with the questionnaire developed by Klepsch et al. (2017). Usability was
studied with the SUS (Brooke, 1996). Possible confounding variables were taken into
account with the Affinity for Technology Scale (Karrer et al., 2009), NARS (Bartneck &
Forlizzi, 2004), and the Propensity to Trust Scale (Merritt et al., 2013). Additional de-
mographic information and items related to the experience with DSs were considered. All
questionnaires were adapted to a seven-point Likert scale from “Completely disagree.” to
“Completely agree.”, and some were slightly modified to fit the study. Previous experience
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Proactive Action Perceived Activeness T-test compared to None-
Action

None 0.36 (1.38) ***
Notify 2.04 (3.39) p = .296
Suggestion 1.85 (2.80) p = .296
Intervention 3.17 (2.19) p = .030

Table 6.2.: Manipulation check of the perceived proactivity of the system. Perceived
Activeness was measured as the mean of the difference for the rating scales if
users perceived the assistant as active and the scale asking the users if they
perceived it as reactive. Taken from M. Kraus et al. (2022a), licensed under
CC BY 4.0 (https://creativecommons.org/ licenses/by/4.0).

with DSs was the only non-Likert scale-based item, as it inquired about user experience
with different existing DSs. Informed consent forms were used which contained informa-
tion about the procedure, purpose of the study, data treatment, and confidentiality of the
information.

6.2.6. Results

For data analysis, we used t-tests for the manipulation checks, a multivariate ANOVA
for confounding variables, as well as a mixed ANOVA for testing the interaction between
the different proactive actions and timing strategies. A Bonferroni-Holm correction was
applied, where multiple testing was conducted. No significant outliers were found in the
data set. Confounding group differences for proactive behavior could be ruled out as the
multivariate ANOVA did not reveal any significant differences (all p-values >> .05). The
evaluation of the manipulation check confirmed a successful manipulation of proactive
dialogue behavior, as the proactive actions were consistently rated higher than reactive
behavior for the user-perceived activeness of the system. However, only the difference
between the intervention action and reactive behavior was significant. The means and
standard deviations along with the p-values are presented in Table 6.2. The manipulation
of the triggers of proactive behavior failed, by explicitly requesting whether the user
perceived that the system acted when they were confused or frustrated (Affectiva:
M = 3.94; Baseline: M = 4.19; p = 0.305). However, as the perception of the level of
being confused or frustrated varies from user to user and subtle frustration or confusion
could occur during the experiment without the participant consciously noticing, we still
conducted the comparisons concerning the different timing strategies.

User Experience with the Experimental Setup

In general, the system received positive feedback. Participants accepted their interaction
partner (M = 5.24, SD = 1.11) and had a good experience, represented by a high UEQ-
value (M = 5.40, SD = 0.93). In addition, the interaction with Nao received moderate
ratings for usability (M = 3.78, SD = .39). Generally, users had high trust in the system
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(M = 5.63, SD = .78) as well as their sub-components reliability (M = 5.21, SD = 1.02),
competence (M = 5.24, SD = 1.01), understandability (M = 5.67, SD = .93), and faith
(M = 5.25, SD = 1.09). Moderate ratings for personal attachment (M = 3.98, SD =
1.37) were reported.

Effects of Proactive Dialogue Strategies on Usability

Regarding usability, we only found a statistically significant effect of the timing strategies
for the Intervention action. Here, the Affectiva-trigger was rated significantly lower
than the baseline-trigger for usability (F (1, 8) = 12.34, p = .027, η2 = .61). Since the
user’s cognitive load can be also used for measuring a system’s usability to some degree,
we consider the effects of GCL depedent on the proactive dialogue strategies. GCL is
correlated with a learner’s task engagement and task focus (R. E. Mayer & Moreno,
2002). Considering the Intervention strategy, we found the germane cognitive load to be
rated higher for the Affectiva-trigger (F (1, 8) = 4.67, p = .063, η2 = .37).

Effects of Proactive Dialogue Strategies on Trust

There was a statistically significant interaction between proactive dialogue actions and the
timing strategies for perceived understandability (F (3, 34) = 3.45, p = .027, η2 = .23)
and a tendency towards an interaction for personal attachment (F (3, 34) = 2.51, p =
.076, η2 = .18). For investigating the simple main effects of proactive actions and timing
strategies, we conducted a one-way, respective repeated measures ANOVA. There were
no simple main effects of the proactive actions depending on the timing strategies (all p-
values >> .05). However, we found a statistically significant effect of the timing strategies
for the Intervention action. The Affectiva-trigger was rated significantly lower than
the baseline-trigger for perceived understandability (F (1, 8) = 6.40, p = .035, η2 = .44).
Furthermore, we found a tendency towards faith in the system (F (1, 8) = 3.64, p =
.093, η2 = .31) being increased by the Intervention action.

A significant effect the timing strategy on faith in the system was found (F (1, 34) =
4.46, p = .042, η2 = .12). Generally, users had more faith in the CA acting according
to the baseline timing condition Additionally, we found a tendency that the Affectiva-
trigger resulted in less perceived system competency (F (1, 34) = 3.25, p = .080, η2 = .09)

For considering the trust progression throughout the experiment depending on the
proactive actions, we investigated the within-subject differences in the trust ratings before
and after the experiment. As described in the previous study, initial trust was measured
using the predisposed trust in autonomous systems scale. For testing the significance
of the differences, we used paired t-tests. Here, we found a significant positive trust
development for the Suggestion action (t(9) = −4.28, p = .002). In summary, reactive and
proactive behavior had a positive effect on establishing trust, except for the Intervention
action. The results are depicted in Fig. 6.11. No significant effects were found for user
characteristics, e.g. gender or previous experience with the DS were found.
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Figure 6.11.: Evolution of the trust development over the course of the experiment with
regard to the proactive dialogue actions. Taken fromM. Kraus et al. (2022a),
licensed under CC BY 4.0 (https://creativecommons.org/ licenses/by/4.0).

Proactive
Action

Trust Accep-
tance

Usability UEQ GCL

M (SD) M (SD) M (SD) M (SD) M (SD)
None overall 5.80 (.75) 5.46 (.70) 3.89 (.34) 5.48 (.96) 5.19 (.74)

Affectiva 5.79 (.74) 5.43 (.73) 3.96 (.36) 5.43 (1.08) 5.33 (.75)
Random 5.81 (.83) 5.49 (.75) 3.81 (.43) 5.54 (.87) 5.05 (.73)

Notification overall 5.70 (.90) 5.30 (1.33) 3.76 (.45) 5.54 (1.08) 4.59 (1.40)
Affectiva 5.65 (1.03) 5.33 (1.53) 3.71 (.88) 5.52 (1.06) 4.61 (1.55)
Random 5.75 (.87) 5.27 (1.16) 3.81 (.37) 5.56 (1.11) 4.56 (1.25)

Suggestion overall 5.77 (.69) 5.30 (1.06) 3.90 (.39) 5.37 (.93) 4.99 (.96)
Affectiva 5.79 (.67) 5.26 (.96) 3.89 (.47) 5.40 (.67) 5.00 (1.05)
Random 5.75 (.85) 5.33 (1.16) 3.91 (.31) 3.34 (1.00) 4.97 (.84)

Intervention overall 5.26 (.73) 4.99 (.79) 3.63 (.39) 5.26 (1.04) 4.97 (.77)
Affectiva 5.11 (1.00) 4.97 (.98) 3.37 (.47) 5.06 (1.19) 5.37 (.72)
Random 5.41 (.64) 5.02 (0.88) 3.90 (.44) 5.47 (.99) 4.56 (.82)

Table 6.3.: Descriptive statistics of the overall perceived trust and acceptance towards the
system, as well as ratings for usability, user experience and germane cognitive
load with reference to the proactive dialogue strategies. Taken from M. Kraus
et al. (2022a), licensed under CC BY 4.0 (https://creativecommons.org/ li-
censes/by/4.0).
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6.2.7. Discussion

According to the results reported in this study, triggering assistance behavior depend-
ing on the negative user’s cognitive-affective state had an impact on the virtual CA’s
perception. In the following, we discuss the results concerning the elaborated research
questions.

Influence of Proactive Dialogue Level on Usability

For answering this question, we only observe the value for the random time trigger of
the “Usability” sub-scale, due to the negative impact of the Affectiva-based timing for
this metric (see Table 6.3). Here, higher levels of proactive dialogue contributed better to
high usability than lower levels of proactive dialogue, even though the differences were not
significant. Not surprisingly, the Intervention action was again providing high usability,
while the None action was less task effective. We already described the reasons for the
previous experiment. However, the perceived usability of the medium-level proactive
strategies was reversed for this task context. Thus, medium-level strategies might be
task-dependent in the context of usability.

As described earlier, the user’s GCL may be also related to usability as it correlated
with the user’s learning during task execution. Surprisingly, the Intervention action was
the only action to significantly increase a user’s rated GCL (see Table 6.3). A high GCL is
related to a learner’s engagement with the task and their focus on the learning processes
(R. E. Mayer & Moreno, 2002). Even though being considered less understandable, and
usable, and users had less faith in the system’s decisions, this action positively contributed
to a user’s learning when triggered during states of confusion or frustration. We assumed
that the low trustworthiness of this proactive dialogue act type could explain the user’s
increased learning gain. As users did trust the automatic decision of the system less, they
may have double-checked the answers of the system more closely and put more thought
into the task, which could have resulted in a learning gain. Thus, a competitive CA that
presents and selects the correct solution for providing samples to the users when they
are frustrated or confused could be beneficial for a user’s learning and thus the system’s
usability.

Influence of Proactive Dialogue Level on Trust

As shown in Table 6.3, low- to medium-levels of proactive dialogue (None, Notification,
Suggestion) received higher ratings for perceived trust than a high-level of proactivity
(Intervention). In related work considering proactive behavior for decision-making and
problem-solving tasks, a high degree of proactivity also showed to have a decreasing effect
on trust (Rau et al., 2013). This is also in line with the study presented in the previous
section, where we reported a negative effect on the trust antecedents competence and
reliability.

Further, we considered the trust evolution throughout the experiment depending on
the proactive dialogue actions (see Fig. 6.11). According to Glikson and Woolley (2020),
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initial trust starts at a low level and builds over time during interaction with robotic AI.
In this regard, we found that the Reactive-, and Notification strategy showed a tendency
but only the Suggestion strategy significantly increased the perceived user trust. Thus,
these trust trajectories seem to be in line with related work. However, for the Intervention
strategy a trust decrease was found. This is a strong indicator that the usage of highly
autonomous system behaviour needs to be carefully considered when designing proactive
systems.

Influence of the Trigger Mechanism on Cooperation

Considering this research question, we found no significant differences for the low- to
medium-levels of proactive dialogue concerning the timing strategies. However, high
system proactivity showed to have significant negative effects on the CA’s perceived un-
derstandability and usability when triggered after the detection of user frustration or
confusion. An explanation for this could be those study participants were focused on
resolving their state of frustration or confusion and considered the system interruption
as disruptive or even obstructive. Hence, they could not understand the system’s trigger
mechanism. Also, a decrease in usability was measured which showed that the wrongful
decision also negatively influenced the task effectiveness (see Table 6.3). R. S. Baker et al.
(2010) stated that frustration and confusion may be a natural aspect of the experience
of learning when dealing with difficult material. Furthermore, A. Graesser et al. (2007)
noted that confusion, although being considered a negative state, positively contributes
to a user’s learning experience. Hence, it could be argued that triggering highly intrusive
proactive dialogue during these states needs to be avoided or additional information, e.g
context or user features, is necessary for initiation. For these reasons, we concluded that
acting upon recognised user confusion or frustration seems to be not a reliable trigger
mechanism for determining the need for proactive dialogue behaviour. Especially, since
the Affectiva-trigger generally decreased faith in the system and perceived competence
of the system.

Limitations

This study also had a few limitations: Like in the previous experiment, we applied a
Nao robot for interaction in a controlled environment. Thus, the same limitations as
described in the previous experiment can be noted. Furthermore, some challenges that
Li and Ji (2005) mentioned could be contemplated when considering cognitive-affective
states. The first of the challenges is related to the sensory observations often being
imprecise and uncertain. To reduce this imprecision, different modalities are suggested to
be considered. This was not done in the current study to create a more natural interaction
and avoid being intrusive. Subsequently, for future studies, multi-modal affect detection
in non-intrusive ways could be considered.
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6.2.8. Conclusion

In summary, we did not find evidence for the usefulness of considering negative cognitive-
affective user states as a criterion for initiating proactive assistance behaviour. Therefore,
we propose to focus more on the individuality of the users. Modeling the idiosyncrasy of
each user would lead to personalised systems by using models that can adapt to the user’s
characteristics. One example of this is the use of predictive models that consider the user’s
characteristics (Bull & Kay, 2010). Depending on specific user characteristics, different
proactive actions could be more beneficial for creating a trustworthy learning experience.
Furthermore, it could be useful to consider more states than confusion and frustration
for triggering proactive behaviour. In this experiment, we assumed negative user states
to be relevant for triggering proactive assistance. As this assumption did not turn out
to be successful, including other states could be more reasonable for assisting. According
to S. D’Mello and Graesser (2011), users cycle through different cognitive states during
learning. Hence, a more dynamic approach may be more effective for determining the need
for proactive dialogue. Further, we found that triggering an intervening dialogue during
the experience of confusion or frustration, was not perceived as trustworthy behaviour.
However, this positively led to a learning gain as users might have tended to reflect more
on the system’s decision. For this reason, it may be beneficial to look more into the
relations between trust in a tutoring system and the user’s learning gain. Similar to
the first study, however, the experiment showed that highly proactive dialogue behaviour
was generally less trusted than more reactive behaviour, even though it contributed the
best regarding usability. In the following, we shift our focus on implementing proactive
behaviour into more sophisticated prototypes for realistic tasks. In doing so, we wanted
to reduce the limitations of our previously described study setups and investigate the
portability of our model. Realistic task scenarios are less controllable than restricted lab
experiments. Thus, they pose more challenges due to more diverse interaction scenarios
resulting in unpredictable user behaviour and higher system requirements. For evaluating
proactive dialogue regarding the effect on the human-machine cooperation in realistic task
scenarios, we developed a virtual and a robotic CA relying on fully modelled cognitive
capacities including planning and reasoning.

6.3. Effects of Proactive Dialogue Strategies Dependent on the
User Activity

6.3.1. Motivation

In this experiment (M. Kraus et al., 2020b), proactive dialogue behaviour was embedded
in virtual CA combining sophisticated planning, reasoning, and dialogue capabilities. The
CA was applied in a complex task scenario, where users interacted with the assistant for
receiving guidance for the execution of a real DIY-task using electric tools. An initial,
non-proactive version of the CA was developed in collaboration with the use case partner
Robert Bosch GmbH during a nationally-funded project by the German Research
Foundation. For testing its applicability as virtual CA for helping with DIY tasks, an
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initial study was conducted. Due to the limited scope of this thesis, we briefly summarise
the results of the study. For more information, we refer the reader to the works of M.
Schiller et al. (2017) and Behnke et al. (2019c). For evaluation, we tested the system
against a baseline version of the assistant without any interactive features, i.e. voice
commands and question answering were not supported. The baseline provided only static,
pre-defined instructions in the form of text and images. The instructions were presented as
a slide mimicking the state-of-the-art of current online guides for DIY. During the initial
study, the HCT relationship was used as the main evaluation criterion. As the DIY-
domain is a complex and delicate application domain, the user is required to accept the
system as a trustworthy partner for following its instructions. In this regard, misguidance
could even lead to harmful consequences. The results of the initial study showed that
the virtual CA received a higher rating of trustworthiness than the baseline version and
also significantly reduced the duration for setting up the tools for deployment (Bercher
et al., 2021). Thus, the study outcomes validated the usefulness of the virtual CA for
application in this task domain.

In this section, we provide an investigation of the inclusion of a medium level of proac-
tive dialogue into the virtual CA by applying Notification actions. As a trigger mechanism,
we utilised a user activity tracking method. For this, useful intervention points during the
plan-based dialogue were identified by tracking the user’s progress and current activity.
The user’s activity was tracked using a connected electric drill, which was developed at
the Robert Bosch Company. Based on movement data of the electric drill a classification
algorithm was trained that could predict specific actions the user was presently executing
using the device. The primary goal of the investigation was to study the impact of proac-
tive dialogue on cooperation depending on the user’s activity. Further, it was observed
whether the results of the previously described studies using low-fidelity prototypes were
transferable and reproducible in realistic task scenarios.
In the following, we describe the scenario in detail. Further, we outline the system

components and their interplay. Subsequently, we explain the design of the proactive
dialogue strategy, describe the study setup, and present the results. Afterward, the
results are discussed concerning our research questions. Parts of the presented work and
results have been previously published in M. Kraus et al. (2020b).

6.3.2. Scenario

In the DIY-domain, the virtual CA was intended to assist novice users in the performance
of home improvement projects that require knowledge of the use of power tools (electric
drills, saws, etc.). For this reason, the system provided support for the user in the form of
an instructional dialogue and could provide further background knowledge about materials
and tools on request. For a given DIY project, the CA provided its user with step-by-
step instructions on how to complete the task successfully. These steps were generated
by a planner and adapted to the specific user situation. The assistant presented the
individual instructions using text, images, voice, and videos (see Fig. 6.13), which were
selected automatically using description logic reasoning. The instructive dialogues were
intended to give the user experience in the usage of individual power tools and encourage
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Figure 6.12.: The task of the use case scenario was to build a wooden key rack.

them to employ such tools in different projects. For demonstrating and evaluating the
assistant’s capabilities, the specific use case scenario was the construction of a key rack
from a wooden plank (as shown in Fig. 6.12) using an electric drill driver and an electric
jigsaw while being supported by the artificial assistant. As we limited the number of tools
that may be used for this task, the planning module of the assistant created the following
abstract plan, i.e. a sequence of actions, for building the key rack: sawing a plank into
two boards, connecting the boards, attaching two hangers to the back, and adding four
hooks to the tray. Each step of the abstract plan was composited from several sub-tasks.
For example, the first task ‘sawing a plank into two boards’ comprised six steps: ‘attach
the saw’s top unit’, ‘attach the saw’s battery’, ‘mark the cutting line on the board’, ‘fixate
the board’, ’saw the board into two pieces’, and ‘loosen the fixated board’. Overall, the

Figure 6.13.: Screenshot of the interface. Taken from M. Kraus et al. (2020b), reprinted
according to author rights of ACM.
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Figure 6.14.: Overview of Robert’s architecture. A user interacted with the assistant’s
interface capable of multimodal input recognition. User input was forwarded
to a server-based dialogue manager that mediated the interaction with the
HTN planner and the ontology manager. In addition, the system was able to
track the user’s activity with a connected electric drill for proactive dialogue
initiation. Taken fromM. Kraus et al. (2020b), reprinted according to author
rights of ACM.

project consisted of 33 sub-tasks. During the initial study, the virtual CA was named
after the founder of the Robert Bosch Company. Thus, the assistant is referred to as
Robert in the following.

6.3.3. Prototype Description

Robert comprised three components for providing suitable assistance to novice DIYers
according to our previously described conceptualisation of a cognitive architecture for
enabling proactive dialogue: User Interface, Interaction, and a Domain Model.
An overview of the workflow between these components is depicted in Fig. 6.14. All

three components shared the same model information. However, each component only
stored the information for handling the tasks for which it was best suited. When re-
quired, information was transmitted from one component to another. To allow for this
interoperability and to ensure the coherent storage of models and information, a specific
modelling paradigm was used. The paradigm allowed to store parts of the planning model
in a structured way in the ontology (M. Schiller et al., 2017). In the following, the three
constituents are described.

Interface

Users interacted with Robert using a browser interface based on JavaScript. The in-
terface was implemented as a multimodal GUI using the Vue.js 1 framework. It presented
the generated plan in the form of step-by-step instructions. These were presented to the
user as a sequence of slides, where each slide corresponds to one plan step. The content of

1https://vuejs.org/
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one plan step was provided in the form of a textual and visual (picture, video-on-demand)
task description. The interface was capable of processing multi-modal user input (speech,
touch, text). Spoken language was transformed into text using Google Chrome’s web
speech API. For speech activation, a push-to-talk implementation was used. Spoken
language system responses were provided to the user in the form of a pop-up modal con-
taining a textual and/or visual description. The written descriptions were synthesised
to speech using Chrome’s Text-to-Speech API. Proactive messages were presented to
the user in the same way. Each user input was forwarded to the modules handling the
interaction using HTTP-methods (POST, GET, PUT) and JSON as data format.

Interaction

For enabling interaction between the user and the assistant, an HTTP API-server served
as a broker for exchanging information between the user interface and a modular DS.
Using a modular architecture allowed us to easily extend the functionality of the system
and maintain its components individually. The DS’s purpose was to mediate the interac-
tion with the ontology and the planner. For semantically encoding user input, we made
use of statistically-driven approaches. In the first version of the prototype, Microsoft’s
cloud-based LUIS (Williams et al., 2015) was used. Generally, the natural language un-
derstanding approach of LUIS relies on the two trainable concepts of intent and entity.
Intent refers to the intention of a user, i.e. the purpose of an utterance, whereas an entity
contains meaningful parts of an utterance. For example, when a user communicates the
following planning request: “I want to build a key rack” the Intent would be startPlan-
ning, while “key rack” would be recognised as a value for the entity named project. For
later iterations of the assistant, we switched to Rasa NLU, which used the same concepts,
but was easier to maintain and modify due to its availability as an open-source project
contrary to LUIS.
For DM, an agent-based approach was implemented (Rao, Georgeff, et al., 1995), which

is typical for plan-based DM. For each component of the CA there existed a dialogue agent
that carried out module-specific tasks. For example, when the system’s semantic encoding
component recognised a plan-related intention from users, such as receiving instructions
for a specified DIY project or the wish to modify the plan according to their preferences,
the planner was invoked by its respective dialogue agent. The planner then generated a
sequence of actions, i.e. the plan, providing appropriate instructions. The ontology was
used to enrich the symbolic description of the actions with textual instructions and media
contents for presentation to users.
The ontology-related agent was able to handle requests for information and explanation

of specific materials and tools. The system’s ontology was able to handle three different
kinds of conceptual knowledge-based requests: encyclopedic requests, media requests, and
availability requests. Encyclopedic requests concerned the appearance or the purpose of
a material or tool, e.g. “What is a drill-bit?” or “What does a drill-bit look like?”. For
receiving an image or a video of a DIY item, a media request was used, e.g. “Can you
show me a video of how to use a drill-bit?”. To check the availability of certain items,
and availability request could be posed, e.g. “Is there a drill-bit available?”.
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The dialogue-related agent was responsible for meta-dialogues (information confirma-
tion/grounding, proactive behaviour) and for keeping track of the project and dialogue
state, stored in an interaction state S. This state S contained information about the
project step (Action) the user was currently working on, as well as past user input (User-
Act), and system output (SystemAct). The system used this information for adequate
response generation. System responses were semantically decoded, i.e. transformed into
text, using a combination of templates and using the verbalisation tool developed by
M. R. Schiller et al. (2017).

Domain Model

Robert proposed a course of action to its user that if performed would complete the
given DIY project. Robert’s planning component was responsible for determining this
course of action – called a plan. For determining a suitable plan, the planner utilised
a general description of the DIY setting and the user’s project in terms of a planning
model. This model encompassed formal descriptions of the available tools and materials
as well as the actions that could be used to manipulate the environment in a DIY setting,
e.g. sawing, drilling, and fixating. The model itself did not pertain to the characteristics
of a single (or some) particular problems or projects, but instead represented a general
description of the possible activities that could be performed in a DIY setting. This
generality allowed Robert’s planner to flexibly adapt its plan to the current situation
and project of the user. For example, it could come up with other means of making a
large hole, if no Forstner bit was available. For formalising the model, we applied the
concept of HTN planning (Bercher et al., 2019).
Using HTNs enabled the suitable combination of the planning model and the ontol-

ogy (Behnke et al., 2015; M. Schiller et al., 2017). Hence, information was stored only
once and could be handled by a suitable component. Lastly, the hierarchical nature of
the description allowed Robert to provide abstract instructions in addition to detailed
instructions. This was useful for the case that a user was already familiar with some pro-
cedures in the DIY setting (e.g. pre-drilling) and thus did not need to be instructed on
how to perform them again. Robert used a SAT-based planner to find optimal (short-
est) plans (Behnke et al., 2018a, 2018b, 2019a, 2019b) . More information regarding the
planning framework used for the implementation of the here described virtual CA can be
found in Behnke et al. (2019c, 2020).
The ontology manager organised Robert’s static knowledge specific to the DIY do-

main. DIY tools and objects (e.g. drills, bits, saw blades, . . . ) were organised in an
ontology and characterised by properties such as colour, shape, but also technical param-
eters (e.g. battery voltage) and functionalities (e.g. that a drill driver can serve both as
a drill and as a screwdriver).
The ontology also stored suitable configurations for instantiating actions in the do-

main, e.g. the recommended speed settings for drilling in wood. The ontology’s DIY
domain model was provided both to the planner and the DM. In addition, the ontology
manager organised the instruction elements (texts, images, videos) from which the step-
by-step instructions were to be assembled. The instructions were based on the actions
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and parameters instantiated by planning. For this, logical reasoning (classification) in
the ontology was used. The ontology manager was also queried when Robert answered
factual questions from the user. In this case, text was generated from the stored descrip-
tions, and media was retrieved. A more thorough overview of the functionalities of the
ontology can be found, for example, in Behnke et al. (2019c).

6.3.4. Design of Proactive Dialogue Strategies

According to our conceptualisation of modelling proactive dialogue, we implemented the
proactive strategies for appropriately initiating sub-dialogues during the instructional
dialogue provided by the CA. We implemented the medium-level of proactive dialogue
in the form of a Notification action. This level was selected heuristically for being the
most appropriate for the scenario and the purpose of this experiment. We developed two
proactive dialogue strategies for the updated version of the DIY assistant: a progress-based
and an activity-based strategy.

Following a progress-based strategy, proactive system behaviour was triggered at the end
of important sub-tasks. These moments marked an important intermediate step during
task execution, enabling the user to pause, reflect, and prepare for the next sub-task.
For example, “cutting the wooden board into two pieces (rear and shelf)” was the first
main task of building the key rack in the evaluation scenario. As the last step of this
task, the user was instructed to loosen the screw clamps that are used for fixating the
wooden board. There, a reflective meta-dialogue was initiated after the user had spent
ten seconds on the instructional slide. The intent of reflective dialogue was for users
to understand the processing of the project and to actively inquire about their actions.
This was aimed to enrich the users’ experiences and to learn (Frølund & Nielsen, 2009).
Reflection was shown to have a positive impact on learning (Katz et al., 2007). The
timing was chosen heuristically based on the average reading duration of the instruction.
An example dialogue of this interaction scenario between the system (S) and its user (U)
is provided in the following:

S: The first step to building a key rack has been taken. Are you satisfied so far?
U: Yes, everything went fine.
S: What did you like about this craft step?
U: I enjoyed using the electric saw. Never thought I could handle it so easily.
S: How did you like the instruction up to here?
U: Nothing to complain right now.
S: Thanks for your response. Would you like to know the steps for the next sub-task?
U: Yes! Thanks!

As can be seen in the example, each reflective meta-dialogue consisted of a maximum of
four turns: Questioning the overall satisfaction, asking about an appraisal of the finished
craft step and the instruction, and proposing the initiation of the next project step. The
interaction followed a static dialogue flow, where the NLU was only applied for confir-
mations. Here, the system expected affirmations or negations from the user and made
use of reprompts otherwise. For the appraisal questions, users could provide arbitrary
answers. Questioning the overall satisfaction was intended to boost self-awareness about
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the finished sub-task. In combination with the specific question about the appraisal of
the completed craft step, this was intended to animate the user to appreciate the made
progress. Self-appraisal showed positive results on users of tutoring systems regarding
learning and task performance (Katz et al., 2000). In that sense, it was supposed to posi-
tively affect the perceived assistance of the CA. Questioning the appraisal of the provided
instructions was intended to foster the perceived competence and reliability of the system
concerning its helpful guidance. This was considered to manifest trust in the assistant as
observed in our previous studies regarding the impact of proactive system actions. After-
ward, the user was proposed to move on to the next task which then finished the reflective
meta-dialogue. In summary, the reflective meta-dialogue served the purpose to get users
to talk to the system to establish a trust relationship by providing a careful and compe-
tent system appearance. Additionally, it was supposed to reinforce the users’ thinking
about their capabilities and positively contribute to their task success with the system.
It was possible to ignore the assistant’s proactive behaviour or to quit the dialogue at
each step to continue with the project. The wording of the system’s utterances was al-
ternated for each sub-task to increase naturalness. Following an activity-based strategy,
context-dependent proactive behaviour was triggered using information from a connected
drill serving as an external sensor of user behaviour. To proactively assist, sensor data
for tracking the user’s current activity was used, e.g. drilling or screwing. To collect
sensor data, an inertial measurement unit was integrated into a standard cordless drill
driver and connected to a Wi-Fi development board. In doing so, gyroscopic, accelero-
metric, and compass data could be transmitted from the device. Activity classification
was provided by a neural network trained with data from 12 participants. This data was
collected in a separate experiment. A deep neural network approach was preferred since
it is considered state-of-the-art in human activity recognition and yields good results for
classifying movement patterns based on sequences of raw sensor inputs (e.g. see Ordóñez
and Roggen (2016)).

Classification served to distinguish the following classes of (in-)activity: off (machine
not moved), screwing, drilling, drill change, battery change, in use (machine is moved,
motor is off), and other. Average accuracy of activity classification of better than 0.9
was achieved (in 4-fold cross-validation) in the classifier-training experiment. Additional
information was made available in the form of probability distributions, e.g. of the current
activity, the activity’s operation time and frequency of its occurrence. The CA received
new information about the user’s activities every 500 ms via TCP-socket connection. For
leveraging this information during the interaction, the concept of a machine state as a part
of the interaction state S was introduced. While the interaction state stored information
about the user’s (spoken) input and the dialogue history, the machine state allowed to
trigger proactive system actions based on implicit knowledge about the user’s tool activity.
It consisted of so-called MachineActs. An act had information about the current activity,
its operation time, and how often this act had occurred before. The machine state was
updated each time a different user activity was tracked with high confidence, i.e. the
activity’s probability had to be higher than 0.95.

Activity-based proactive system behaviour addressed the active initiation of a reflec-
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tive meta-dialogue with users to check whether they were performing the project’s steps
correctly and to provide help in the case of failure. In the initial study evaluating this
specific DIY assistant, we discovered that users favoured videos for visualising the task de-
scriptions. For example, subjects explicitly mentioned the “helpful video instructions” or
that “... videos have been very helpful”. Therefore, the primary content of the proactive
dialogue was to offer help in the form of instructional dialogues.
Here, a rule-based decision model was implemented. At each project step, where the

connected tool was required to be applied, the CA was able to actively start a dialogue
with its user. Depending on the context it was differentiated between three different in-
teraction scenarios: A message was triggered after the user had picked up the machine
(in use-classification): “You seem to be working with the connected tool for the first time.
Don’t worry, I’ll guide you through the steps!” This message was used to foster trans-
parency of the activation of the connected tool and could be triggered only once. To react
to possible user insecurity about the current project step, a help request was sent to the
user after three minutes of inactivity (off -classification). This kind of request was only
executed during steps where actions with the connected tool have to be performed: “I
haven’t seen any tool activity by you in three minutes. Do you need help?” In case the
user confirmed this question, they were invited to watch a video of the current step.
Finally, the assistant checked whether the user performed the instructed task correctly.

An interaction was initiated whenever one of the activities battery change, drilling, drill
change, or screwing was recognised. The user was then asked whether the current step
was going successfully. If the user responded with no, further help was offered. After
users accepted the help, the system started an explanatory video of the task. Otherwise,
the system apologised for the disturbance.

S: I noticed that you were drilling. Was that successful?
U: No, it wasn’t.
S: Ok, do you need additional help?
U: Yes, please.
S: A video of this project step could help. I’m going to play it for you. (Then a video

is played.)
By integrating the previously described proactive behaviour into the virtual CA we aimed
to investigate the impact of the designed strategies on the cooperation focusing on the
assistant’s perceived trustworthiness and its usability. In the following, we describe the
experimental design for studying these research questions.

6.3.5. Experimental Design

For comparing the effect of the proactive dialogue in real use case scenario, a between-
subject A/B-test was conducted. Here, the proactivity of the CA was used as an inde-
pendent variable, where an assistant capable of a medium-level of proactive dialogue was
compared to a baseline variant without any proactive functionalities. Participants were
randomly distributed to both study groups. Dependent variables were selected similarly
to the previously described experiments and primarily focused on the HCT relationship
and usability.
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Figure 6.15.: A user attaches the battery of the electric drill driver while being assisted by
the CA. Taken from M. Kraus et al. (2020b), reprinted according to author
rights of ACM.

Participants

33 German subjects were recruited by a professional institute for study consulting MTO.
They were evenly assigned to each study group regarding gender and age. A criterion
for study participation was to be a novice in DIY projects. However, three subjects had
to be excluded from the evaluation, as they were rated as “quite experienced” by study
observers in hindsight. In addition, two participants had to be excluded because they
did not work according to the study plan. One participant had to be excluded due to a
malfunction of the system, and one participant aborted the project. This resulted in data
from 26 subjects being considered for evaluation. The average age of subjects was 37.54
(SD = 14.72). Study participants had various professional and educational backgrounds.
The group size of subjects working with the proactive assistant was 12 (5 male, 7 female),
while 14 subjects (5 m, 9 f) worked with the baseline version of the assistant. All subjects
received 50 ¿ independently of the study outcome.

Experimental Procedure

After the welcome procedure, the subjects were provided with first instructions and details
of the study. They had to read and sign the informed consent and fill out a pre-test ques-
tionnaire concerning demographics and possible confounding variables as in previously
described experiments. Afterward, they received an interactive tutorial to get familiar
with the standard functionalities of the virtual CA, e.g. how to activate the speech recog-
nition, and how to navigate through the user interface. Subsequently, they were asked
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to build a key rack from a wooden board in cooperation with the DIY assistant. For
the duration of the construction, an experiment facilitator was in the same room as the
participant for observation but was not allowed to assist. The study was captured on
video and audio and streamed to a separate room.

There, study observers took notes about specific events and participant features, e.g.
their subjective assessment of participants’ DIY-experience levels. After completion, they
had to fill in a questionnaire to assess the dependent variables. The total duration of the
experiment was between 1.5-2.5 hours. The study setup is depicted in Fig. 6.15.

Questionnaires

In the experiment, the system’s perceived trust, acceptance, and user experience with the
system were assessed as dependent variables. Regarding trust and acceptance, we used
the same questionnaires as for the studies using low-fidelity prototypes. Contrary to these
studies, we omitted the UEQ-questionnaire and opted to measure the speech capabilities
of the system of the DIY assistant. This was due to the less restricted interaction as
opposed to communication with the Nao robot. For this, the SASSI questionnaire (Hone
& Graham, 2000) was employed. All scales were translated into German and slightly
modified for the study context as in previous studies. All scales were assessed with a 7-
point (except where noted with a 5-point) Likert scales ranging from 1 = “totally disagree”
to 7 = “totally agree” except for the acceptance assessment which used contrary adjective
pairs on a 7-point Likert scale.

6.3.6. Results

For data analysis, a Mann-Whitney-U-Test was calculated to determine whether there
were differences in confounding as well as dependent variables. A non-parametric test was
chosen, as a rather small sample size was examined. Additionally, a Pearson-Chi-Square
test was used for the confounding variables, previous experience in DIY-tools (drilling,
sawing,...) and in speech assistants (Siri, Alexa, Google Assistant, ...). These were
measured on nominal scales. Confounding group variables for proactive behaviour could
be ruled out, as measurements for predisposed trust in autonomous systems (Merritt et
al., 2013), technical affinity (Karrer et al., 2009), previous experience in DIY-tools and
speech assistants were not significant (all p-values > 0.05). Solely, the Chi-Square test
for previous experience with Alexa (χ2 = 7.22, p < 0.01) became significant. However,
experience with similar assistants was evenly distributed, hence this result was negligible.

In addition, participants’ age and gender were similarly distributed for the different
experimental groups and no outliers were found in the data set. An overview of the
results is presented in Table 6.4.

User Experience with the Experimental Setup

Overall, the virtual CA received positive reviews regarding its user experience. Users
rated the system to be likable (M = 5.47, SD = 1.27), not cognitive demanding (M =
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Dialogue Strategy
Proactive M (SD) Baseline M (SD)

male female overall male female overall

Trust* 4.49 (.33) 4.55 (.54) 4.52 (.45) 4.11
(1.01)

4.22 (.58) 4.18 (.72)

Acceptance* 3.71 (.94) 4.44 (.60) 4.14 (.81) 3.67 (.83) 3.88 (.73) 3.80 (.74)
Reliability 4.68

(1.65)
5.60 (.98) 5.22

(1.32)
4.76
(1.82)

5.18 (.82) 5.03
(1.22)

Competence 4.88
(1.40)

5.46
(1.14)

5.22
(1.23)

4.72
(2.11)

4.80 (.81) 4.77
(1.33)

Predictability 5.90
(1.21)

6.07
(1.05)

6.00
(1.07)

5.40
(1.42)

6.17 (.63) 5.89
(1.00)

Personal Attach-
ment

2.28
(1.60)

3.23
(1.60)

2.83
(1.60)

4.56
(2.20)

2.93
(1.20)

3.51
(1.74)

Faith 3.36
(2.17)

4.49
(1.17)

4.02
(1.67)

4.40
(1.64)

4.82
(1.01)

4.67
(1.22)

Satisfaction 4.93
(1.50)

6.32 (.45) 5.74
(1.20)

5.44
(1.84)

5.14
(1.04)

5.25
(1.32)

Cognitive De-
mand

4.96 (.90) 5.46 (.87) 5.25 (.88) 5.68
(1.21)

5.27
(1.13)

5.41
(1.13)

Annoyance 4.04 (.68) 5.20
(1.25)

4.72
(1.17)

4.92 (.93) 4.56
(1.08)

4.69
(1.01)

Habitability 5.00 (.77) 5.21
(1.64)

5.13
(1.30)

5.00
(1.76)

4.92
(1.41)

4.95
(1.47)

Speed 5.80
(1.10)

6.29
(1.29)

6.08
(1.18)

5.60
(1.52)

5.28
(1.18)

5.39
(1.26)

Table 6.4.: Descriptive statistics of the measured dependent variables with reference to the
dialogue strategies. Results for cognitive demand and annoyance are inverted
(the higher, the better). *Trust and acceptance measured on 5-point Likert
scales. Taken from M. Kraus et al. (2020b), reprinted according to author
rights of ACM.
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5.34, SD = 1.01), and not annoying (M = 4.70, SD = 1.06). Further, users could learn
the handling of the interface easily (M = 5.03, SD = 1.38) and the system reacted in
a fast manner (M = 5.71, SD = 1.25). However, the virtual CA was only moderately
accepted (M = 3.96, SD = .78).

Significant gender differences regarding experience in DIY-tools and speech assistants
were found. Chi-Squared tests revealed that females had substantially less experience in
the usage of two out of four questioned electric tools (percussion drill, χ2 = 4.63, p = 0.03;
electric jigsaw, χ2 = 5.10, p = 0.02) than men. Besides, females had less experience in
two out of three speech assistants (Google Assistant, χ2 = 6.52, p = 0.01; Alexa, χ2 =
4.51, p = 0.03). Therefore, gender-based differences regarding proactive meta-dialogue
were considered. Females rated the proactive meta-dialogue with the CA significantly
higher than interacting with the baseline variant for the categories satisfaction (U =
8.00, Z = −2.50, p = 0.01) and speed (U = 13.00, Z = −2.00, p = 0.046). Furthermore,
there was a notable higher rating for acceptance of proactive behaviour by females (U =
14.50, Z = −1.81, p = 0.07).

Effects of Proactive Dialogue Strategies on Usability

The users interacting with the proactive version of Robert took an average of M =
54.67, SD = 21.13 minutes until completion of the project. In contrast, users interacting
with the non-proactive version took an average of M = 56.93, SD = 12.78 minutes
until completion. The difference, however, was not significant (p = 0.560). Further,
we asked the study participants to rate the difficulty of the task before and after the
experiment and to rate the quality of their own performance on 5-point Likert scales. Here,
we found that users rated their performance higher when using the proactive assistant
(M = 3.67, SD = .89) as compared to the non-reactive version (M = 3.29, SD =
1.07). Further, users found the task easier after their performance when interacting with
proactive CA (M = −0.17, SD = .71). Contrary, they found the task more difficult
after the study when using the non-proactive CA (M = 0.43, SD = 1.02). None of these
differences were significant (all p >> 0.05).

Effects of Proactive Dialogue Strategies on Trust

There were no significant between-subject differences for the dependent variables. How-
ever, a significant within-subject difference was found regarding the development of trust
towards the CA. Therefore, the difference between trust ratings before and after com-
pletion of the project was assessed using a Wilcoxon-Signed-Ranks test (initial trust was
measured with a propensity towards trust in autonomous systems questionnaire). In
comparison to the baseline group, which showed no difference (Z = −0.39, p = 0.71),
the group with the proactive assistant showed a significant higher trust-building (Z =
−2.58, p < 0.01). The results are visualised in Fig. 6.16. Further, there was a visible
trend that males evaluated the personal attachment towards the baseline assistant higher
than the proactive version of the assistant (U = 4.00, Z = −1.49, p = 0.07). Regarding
the age of the participants, no significant differences were found. In general, the proactive
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Figure 6.16.: Depiction of the results for the development of trust towards the CA de-
pending on the study condition. Mean values and standard deviations from
the user ratings on a 5-point Likert scale are provided. Taken from M. Kraus
et al. (2020b), reprinted according to author rights of ACM.

behaviour was rated as reliable, competent, and predictable. However, the affect-based
trust of the proactive assistant was perceived as rather low. Thus, the overall trust in
proactive system behaviour was mediocre. The means and standard deviations can be
found in Table 6.4.

6.3.7. Discussion

The study revealed differences between the proactive and the baseline condition. In the
following, we discuss the results with a focus on the formulated research questions.

Influence of Proactive Dialogue Level on Trust

It could be shown that the integration of proactive dialogue led to a significantly better
establishment of trust between the user and CA as compared to the non-proactive baseline.
This result fostered our observations from our previous study on proactivity and validated
the application of developed proactive actions in realistic use cases. The specific DIY use
case provided a quite intuitive result, as a system that actively engages with the user and
tries to participate in the project should be perceived as a more trustworthy assistant.
Especially for novices, to which the entry to a new topic can be quite challenging, a
more natural and social assistant than a rigid, non-communicative system seems to be
beneficial. This manifests our previously discovered effects of proactive dialogue actions
on less experienced users.

Even though there were no significant group differences found regarding the overall
measurements of trust and its components, a trend can be observed that timely proactiv-
ity enhances trust towards assistants. Means for overall trust and cognitive-based trust
(competence, reliability, and predictability) were all higher for the proactive condition
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than for the baseline condition. This is in line with our previous findings of low- to
medium-level proactivity to positively affect a system’s perceived competence and re-
liability. For affect-based trust an opposite tendency was observable. Both variables,
personal attachment, and faith were rated higher for the baseline condition. This may be
explained by noting that users were more familiar with reactive systems. However, the
overall score of these variables was rather low for both conditions. For fostering a better
affect-based trust, a long-term relationship with the user may be required. Furthermore,
the standard deviations were quite high for the affect-based variables. This could be a
sign that proactive behaviour has a very individual impact on the user’s affect towards
assistants.
Furthermore, gender-dependent effects of proactive dialogue were found similar to the

study presented in Section 6.1. There was a significant difference between proactive and
the baseline condition for satisfaction and speech response accuracy rated by females.
Additionally, females tended to accept the proactive assistant more. These gender effects
seemed to be due to differences in the experience in DIY-tools and speech assistants
between males and females. The more experienced males showed the tendency to prefer
working with a non-proactive assistant, as can be seen in the ratings of reliability, personal
attachment, satisfaction, and annoyance. This could be explained that men might have
felt patronised by the active assistance and found that the help offered was unnecessary, as
they could work independently based on their tool knowledge. Contrarily, females, being
less experienced, tended to welcome the more communicative guidance by the assistant,
as they required a higher level of cooperation.
Overall, the results of this study verified that the developed proactive dialogue model

is transferable into realistic use scenarios and can be used for sophisticated dialogue
applications. In line with the previous studies, this experiment showed the benefits of a
medium-level of proactive system behaviour by improving the perceived reliability and
competence. We found that this was especially the case when interacting with novice
users, as an active system seemed to reduce the barrier of interacting with a machine.

Influence of Proactive Dialogue Level on Usability

A positive trend of proactive dialogue in CAs was also noticeable considering the usability
of the system through the measurements for acceptance and user experience. Means for
acceptance, satisfaction and habitability were higher for the proactive condition. This is
similar to the results of a Wizard-of-Oz study reported by Peng et al. (2019), where a
medium-proactive robot was perceived as more appropriate and helpful in decision-making
tasks. However, the differences found in our work were not significant. Nonetheless, the
effect of proactive dialogue strategies on the user’s acceptance and satisfaction should be
further examined, as proactive behaviour showed much potential. Interestingly, there was
no difference between the two conditions regarding the rating of annoyance, as proactive
intervention can be perceived as obtrusive. Therefore, the possibility to ignore the system-
initiated dialogues, i.e. to let the user have control over the interaction, was appropriate
in this scenario. As proactive dialogue requires the attention of the user, it was no
surprise that the non-proactive variant of the CA was rated better regarding cognitive
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demand. Another measure that contributed to usability was naturally the subject’s task
performance of building a wooden key rack.

Although the results considering the user’s performance were not significant, we could
observe some tendencies. First, the task duration while interacting with the virtual CA
capable of proactive dialogue was roundabout two minutes shorter than task completion
with the non-proactive assistant.

This can be seen as a positive result, as proactive dialogue usually leads to longer in-
teractions than reactive dialogue, as the system initiates more sub-dialogues. Further,
proactive dialogue led to better ratings of the users’ performances and even let the task
appear easier. Thus, we assumed that proactive dialogue can indeed increase task per-
formance. However, as the differences were not significant in this study, this assumption
needs to be verified in future research.

Influence of the Trigger Mechanism on Cooperation

Generally, relying on an activity-based trigger mechanism seemed to positively contribute
to the perception of the proactive dialogue during cooperation. For explanation, consider
the results depicted in Table 6.4. The best metrics for observing the effect of the trigger
mechanism on the cooperation are predictability, cognitive demand, the system’s speed,
and annoyance. Considering predictability, there was no significant difference between the
proactive and baseline version of Robert. Consequently, the proactive dialogue seemed
to be initiated timely and did not appear to be unpredictable, but at defining moments.
In addition, triggering proactive dialogue actions were not perceived as significantly more
annoying and did not leverage a user’s cognitive load more than reactive behaviour. Hence,
we concluded that the utilised trigger mechanism did not lead to obtrusive behaviour and
also did not distract the user from their main task of building the key rack. Further,
the proactive system seemed to be perceived to accelerate the interaction as measured by
the system’s subjective speed measurement. Therefore, including contextual features for
designing trigger mechanisms for initiating proactive dialogue may enhance the perception
of a system’s usability, and thus improve the cooperation with the system.

Limitations

Comparing the strengths and weaknesses of the study design, the advantages of the setup
were a highly realistic test scenario with a sophisticated CA. A disadvantage was the
quite low number of participants. Using a higher number could have provided more
significant results between the two conditions. Besides, the quality of the speech synthesis
was troublesome as several participants of the study reported the synthetic voice to be
unnatural and even annoying. Another problem was that speech had to be activated by
“push-to-talk” for technical reasons. Even though users were instructed to use this kind
of voice activation in the tutorial, they found this to be cumbersome and annoying.
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6.3.8. Conclusion

Comparing two versions of a high-fidelity prototype, one capable of providing medium-
level proactive dialogue and one reactive version, showed that the developed proactive
dialogue concept is transferable to realistic task scenarios. Here, we observed similar
positive effects of Notification actions as in our previously described studies. Especially,
the perceived competence and reliability of the virtual CA could be increased by including
proactive dialogue behaviour.
This effect was also primarily observable in the studies with low-fidelity prototypes.

Additionally, also gender-differences concerning the perception of proactive behaviour
were detected again. By observing the results, however, it seemed that the reason for
this difference again was largely due to differences in domain experience and technical
affinity between the genders. These seemed to validate our previous findings that domain
experience and technical affinity may be a driving factor in the user’s trusting behaviour
towards proactive dialogue. Domain experience was also considered a trust-influencing
feature concerning autonomous systems (Schaefer et al., 2016). Further, the inclusion of
proactive dialogue also led to better user performances and thus usability, even though
the differences were only marginal due to the small sample size. Also, the application
of the user’s progress and activity as a trigger mechanism seemed to be beneficial, as
they had no negative effect on the cooperation. Thus, we propose to not only rely on
user state information for triggering proactive behaviour but also to focus on including
context information.
So far, we considered the effects of virtual CA’s proactive dialogue capabilities on the

HCT relationship. Virtual CA’s are limited in the sense that they cannot physically assist
users in the execution of particular tasks. Robotic CA’s in turn possess this capability.
A robot’s actuators can mimic human body motions by simulating muscles and joints.
Thus, they can take over physical tasks from humans. Due to the higher degree of
anthropomorphism of robotics in comparison to virtual CA, a robot’s proactive behaviour
might be perceived differently. This may especially hold for perceived trust in the system,
as a robot’s action may even result in physical harm or property damage. Therefore, we
investigate the implementation of our developed proactive dialogue concepts into a robotic
CA in the following.

6.4. Effects of Proactive Dialogue Strategies Dependent on
External Events

6.4.1. Motivation

Similar to the previous experiment, we investigated the impact of a medium-level proactive
dialogue on the cooperation with a high-fidelity CA prototype. However, we applied
Suggestion actions in a robotic CA depending on external events for this experiment (M.
Kraus et al., 2022c). This proactive dialogue act type was selected because we considered
a more free-form conversation in this task scenario in which the interaction was not
restricted to the manipulation of a user interface. Therefore, more direct suggestions
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should ensure a safer interaction. These proactive actions were triggered dependent on
the user’s context and external events. Thus, we focused more on an environment-based
than a user-based trigger mechanism for initiating proactive dialogue in this experiment.
Here, the main goal was to study the impact of event-based proactive dialogue strategies
on cooperation. Similar to the previously described experiment, we also investigated
whether the results of the lab studies using low-fidelity prototypes are transferable and
reproducible for robotic CAs.

For this, we implemented a DS for allowing HRI that mediated the interaction between
the user and the robot’s cognitive modules. These cognitive modules were responsible for
robotic action planning and reasoning. Further, a domain ontology contained knowledge
about the robot’s and user’s shared environment. The robotic CA was deployed in a
household-assistance task scenario. After having been accepted and applied in an indus-
trial context for quite a time, robotic applications have gradually entered our homes in
recent years. This fact is quite visible when observing the current unit sales of robots for
domestic tasks (18.6 million) as well as entertainment and leisure (4.6 million) for 2019
(of Robotics, 2021). However, domestic robots are currently mostly used for simple and
restricted tasks, such as vacuum cleaning or cutting grass. Due to advancements in AI
and robotic technology, it seems plausible that domestic robots can assist with simple
household tasks in the future and be able to communicate their actions using natural lan-
guage. As this may result in a user expectation of proactive robotic CAs, we selected a
domestic task domain for our experiments. Further, the domestic domain is a vulnerable
user domain as the wrongful robot behaviour may be perceived as an invasion of privacy.
Thus, trust is an important aspect of HRI in the domestic domain. The work described
in the following was part of the project RobotKoop that was nationally funded by the
German Federal Ministry of Education and Research.

In the following, we describe the scenario in detail. Further, we outline the system
components and their interplay. Subsequently, we explain the design of the proactive
dialogue strategy, describe the study setup, and present the results. Afterward, the
results are discussed concerning our main research questions. Parts of the presented work
and results have been previously published in M. Kraus et al. (2022c).

6.4.2. Scenario

As robot type, we used a Tiago robot from Pal Robotics2 for this experiment. The
Tiago robot contains various motors, sensors, and a gripper. This enabled the robot
to assist in the household by executing give- and take-actions. Furthermore, it was im-
plemented with the capability of anomaly detection. This implies, that it inspected its
surroundings and was able to detect deviations from a learned standard (tidy) state.
Therefore, it could detect whether its environment was in an untidy state and automat-
ically started a clean-up. The robot used in the scope of this experiment was called
Kurt. For evaluating the robot’s proactive capabilities, we tested Kurt in a small user
study. For conducting the study in a realistic setup, a lab environment was furnished

2https://pal-robotics.com

168



6.4. Effects of Proactive Dialogue Strategies Dependent on External Events

Figure 6.17.: Depiction of a study session with a subject. The user can choose between
allowing the robot to remove the bottle of bleach or ignoring it. Taken from
M. Kraus et al. (2022c) with kind permission by IEEE ©2022 IEEE.

with a couch, couch table, closet, and dining table. Furthermore, this “living room” was
equipped with typical household items. In doing so, the environment was intended to
simulate a typical living room in a domestic environment. In this environment, the user
interacted with Kurt in three different scripted scenarios.

First, Kurt provided helpful information about its sensory system and functionalities
through an introductory dialogue. The purpose was to get users with different degrees of
experience with robots on the same level. This was intended to ensure the comparability
of the results.

In the next step, Kurt asked for permission to inspect the domestic environment
and to memorise the position of the furniture and different categories of objects (e.g.
kitchen utensils, fruits, cutlery). After inspection, the robot recognised an anomaly, i.e.
a deviation from the original tidy state, which the robot had learned by observing its
surroundings. According to our script, a bottle of bleach that had been placed on the
couch table were such an anomaly. To resolve this “untidy” state, the robot proactively
approached the user by suggesting to take the object back to the closet where the other
detergents were stored. If the user affirmed the routine, Kurt proceeded with the task.
Otherwise, the robot left the scene untouched. A picture of this sequence is shown in
Fig. 6.17.

The last scenario dealt with the system’s ability to offer and negotiate alternatives.
Here, the user initiated the interaction by asking for an item (“Bring me some crackers.”).
However, Kurt did not find the requested item in its object database. Consequently,
the robot returned to the user and announced that the object was not in stock (“I am
sorry, there are no crackers available.”). Subsequently, the assistant began to suggest
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alternatives based on a list of related items that had a sufficient conceptual overlap with
the initially requested object in the robot’s world model database, e.g. “Would you like
crisps instead?”. If the user agreed, the robot proceeded with the routine and handed
over the alternative. If rejected, the robot left the user alone. After this, the use case
scenario ended.

6.4.3. Prototype Description

Figure 6.18.: Depiction of the overall architecture. Taken from M. Kraus et al. (2022c)
with kind permission by IEEE ©2022 IEEE.

For developing the robotic CA, we adhered to the cognitive architecture for enabling
proactive dialogue. The main components of Kurt were the physical device in the form
of a Tiago robot, the cognitive robot capabilities in the form of a planning and reasoning
framework, and a spoken DS that was based on theRasa 3 dialogue framework. Generally,
the Tiago robot is a customisable robot with a configurable height of 110-145 cm and
an arm payload of 3 kg (without end-effector), running on an Ubuntu operating system.
Furthermore, the robot has an RGB depth camera and stereo microphone speakers. The
model that was used in the experiment included a gripper arm for fetch-and-carry tasks.
We developed an Android application as a user interface that allowed users to interact
with the spoken DS. The overall architecture of the system is depicted in Fig. 6.18. In
the following, we present the individual components.

3https://rasa.com/
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User Interface

The robot’s microphones and internal speech recognition modules were prone to com-
munication errors due to background noise of robot movements and varying distances
between user and robot during the experiment. Therefore, the user interacted with Kurt
through an Android-based user interface that could access Google’s speech recognition
and synthesis engines for handling spoken language. In doing so, a more stable speech
recognition quality could be ensured. The user interface was implemented as an Android
application using the Kotlin programming language 4. Besides handling the system’s
speech input and output capabilities, the interface could also handle written input. Fur-
ther, the interface presented the dialogue history of the current conversation up to the
current turn. This was intended to help users with their situational awareness, as task
execution by the robot could take up to a few minutes. Information between the user
interface and the interaction components was exchanged via HTTP messages using the
JSON-data format. The interface continuously scanned for system actions to be able to
handle proactive dialogue behaviour.

Interaction

The interaction components were based on the open-source ML framework Rasa5. The
framework consists of the Rasa NLU framework and Rasa Core, which can be used for
DM. The Rasa NLU framework was used for semantic encoding of user utterances in the
same way as presented in the previous experiment. Rasa Core as the decision framework
selected the next system action depending on the given user input. The procedure of
Rasa Core has been already explained in Section 4.2. However, adjustments had to be
made for handling proactive dialogue based on external events. These adjustments in-
cluded the definition of external intent concepts for NLU. External intents are pre-defined
concepts that tag proactive system actions coming from an external source. These are
then treated in the same way as user intents by the Rasa Core. Another adjustment was
to extend the framework with an additional action server for allowing proactive robot-
initiated dialogue. This server checked for incoming messages from Kurt and contained a
rule-based logic for taking action based on external events. Messages between Rasa Core
and the robot’s cognitive capabilities were exchanged using a specifically defined mqtt
protocol 6. mqtt is a widely used Internet-of-things protocol and allows an easy imple-
mentation of an asynchronous and bi-directional interaction that was required to enable
proactive dialogue. For an illustration of the working method of the specified Rasa model
for enabling proactive dialogue, consider the following example. The interaction between
robotic and interaction modules via mqtt was conducted by both parties subscribing to
a so-called topic. Both interaction and robotic modules were able to publish on topics
and an mqtt-broker forwarded the message to the entities that had subscribed to this
topic. If an external event occurred, e.g. the robot sighted bleach on the couch table and

4https://developer.android.com/kotlin
5https://rasa.com/
6https://mqtt.org/
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thus reasoned the environment to be in an untidy state, the robot published this event
on the specific topic. Subsequently, The action server received this message and used a
rule-based mechanism for determining whether this contextual information required the
initiation of proactive dialogue. When the need for proactive dialogue was determined,
the action server triggered an external intent for further processing at Rasa Core. De-
pending on the external intent, Rasa Core then initiated a proactive message which was
then provided to the user via the interface. How the domain was modelled by Kurt’s
cognitive modules is described in the following.

Domain Model

To detect the current state of the environment, it was important to know the tidy state.
However, in the experimental domestic environment, this state was not unique, as the
objects could have multiple correct locations. Therefore, Kurt recorded the location of
each object and calculated probability clusters for each object. The size of the clusters
corresponded to the probability of objects being located at a specific place. This infor-
mation was utilised for bring and place tasks. Furniture was detected by using QR-codes,
however, for detecting the household objects, the learned shape of the objects was used.
This learned information along with a small part of general world knowledge, such as Coke
is a Drink, was used to form the knowledge graph of the robot. The knowledge graph was
stored using a relational object ontology relying on the database framework ArangoDB
(ArangoDB, 2021). All environmental entities were characterised by three conceptual
categories in the robot knowledge base, locations, objects, and properties. Each of these
categories had its hierarchy of specific classes and instances called nodes. Furthermore,
the nodes were connected with edges that represented their relationships. The knowledge
graph was used for inference reasoning. Misplaced objects were detected by consulting
the knowledge base. Further, Kurt could offer alternatives using the knowledge of the
conceptual categories. For example, if the user asked for crackers and they were not
available in the database, Kurt offered chips as an alternative as the object “chips” was
listed in the same category, “snacks”. For more information about the robot’s knowledge
and reasoning capabilities, we refer the reader to Prasad and Ertel (2020).

Kurt’s action planning behaviour was implemented using the FlexBe framework
(FlexBE, 2018; Schillinger et al., 2016). A concurrent state machine was built that han-
dled a particular task and also allowed user interrupts during task execution. To perform
pick and place actions, the object had to be grasped, which potentially was surrounded by
other objects. Depending upon the shape of an object, Kurt simulated multiple motion
plans and executed the first successful plan that would not result in collisions.

6.4.4. Design of Proactive Dialogue Strategies

We defined proactive dialogue in the form of a Suggestion action for two scenarios. The
first scenario for proactive robot behaviour was the detection of anomalous situations and
their associated objects. For this, Kurt exploited knowledge gained from learning the
environmental state. To resolve a disordered (or untidy) state, a clean-up sequence was
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required to be initiated. To avoid confusion and misunderstandings, the robot first needed
to proactively communicate this to the user. This allowed them to intervene if necessary.
For example, a newspaper on the table could be a deviation from the original state, but
it may not be desirable to remove it. In any case, the user’s decision was then added to
the robot’s knowledge base, which empowered Kurt to resolve a similar situation on its
own in the future.

For our use case, the robot detected a deviation from the “normal” environmental
state by sighting a bleach bin located on the couch table. This would induce the following
proactive dialogue between Kurt (K) and its user (U).

(...Kurt detects bleach bin on the couch table.)
K: I have noticed a bleach bin on the couch table. I do not think that it belongs there.

Should I put it back in the closet?
U: Yes, please!
K: Ok, I will put it back.

Furthermore, proactivity was deemed to be necessary for situations where a user’s goal
could not be fulfilled and alternatives were required to be offered. This was also intended
to help alleviate the already mentioned problem of confusion and misunderstanding. For
illustration consider the following interaction scenario, in which the user had the intention
to eat a snack:

U: Kurt, bring me some crackers!
K: Alright, I will do that.

(...Kurt detects that the item the user wished for is not available)
K: I am sorry, there are no crackers available. Would you like crisps instead?
U: Yes, please!
K: Ok, I will get you some.

Using these proactive dialogue strategies, we aimed to answer our research questions
regarding cooperation. In the following, we describe the experimental design for studying
these questions.

6.4.5. Experimental Design

We tested the described proactive version of Kurt in a realistic task scenario. Due to the
complexity of the study setup, we restrained from testing against a non-proactive version.

Participants

For the study, 17 participants were recruited and received 20 ¿ in return for their par-
ticipation. However, five had to be excluded due to the malfunctioning of the system.
Hence, data from 12 subjects (34 % male) with an average age of 27.17 (SD = 10.71)
were used for evaluation. 16 subjects were students of which 66 % were enrolled in a
psychology major. Even though subjects had low experience (M = 2.92; SD = 1.68
measured on a 7-point Likert scale) and few prior knowledge (M = 3.17; SD = 1.90)
regarding robots, they had no negative attitudes towards the interaction with a robotic
system (M = 2.58; SD = 1.06 measured using the NARS (Nomura et al., 2006) scale).
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Furthermore, subjects had moderately high predisposition to trust autonomous systems
(Merritt et al., 2013) (M = 5.15; SD = 0.98) as well as affinity towards technical systems
(Karrer et al., 2009) (M = 5.39; SD = 0.78). All participants had to sign a declaration
of consent to join the study and were assured of the confidentiality of their data.

Experimental Procedure

The experimental procedure was as follows: First, subjects were briefed about details of
the data survey, e.g. duration (30 minutes) and purpose of the survey.
Subjects were told that they would take the role of a person in the household of the

future. They would have purchased the household robot called Kurt recently. After the
introduction, they had to fill out a pre-test questionnaire. Here, participants had to rate
their predisposed trust in autonomous systems, NARS, and provide general information,
e.g. age, gender, and major. Subsequently, the participants were introduced to the robot
and received a note that described the scenario. They were told that the robot would
introduce itself and that they would be required to ask for a snack after the robot has
observed its surroundings. This served the purpose of standardising the study setup for
all participants. Furthermore, subjects were also informed that Kurt was operated via
tablet through which they could communicate with the robot using natural language.
Afterward, the interaction with Kurt started. Upon completion, they had to fill in a
questionnaire to assess the robot’s proactive dialogue behaviour. Finally, the participants
received their reward and were dismissed.

Questionnaires

The research questions were evaluated using the same questionnaires as used in the pre-
vious experiments. In the present study, we measured the robot’s trustworthiness (J. M.
Kraus, 2020), reliability, competence, usability, and acceptance. Contrary to the previous
studies, we used the AttrakDiff questionnaire (Hassenzahl et al., 2003) for evaluat-
ing the usability of proactive dialogue. All scales were rated on a 7-point Likert scale
from 1 (strongly disagree; word adjective (acceptance)) to 7 (strongly agree; word adjec-
tive (acceptance)), except usability which was rated on an 11-Point Likert scale (word
adjective).

6.4.6. Results

The results of the study are presented in Table 6.5. In the following, we distinguish
between individual result categories as we did for the other experiments.

Effects of Proactive Dialogue Strategies on Usability

The robot received generally positive ratings for the usability categories including the
AttrakDiff and acceptance questionnaire. Observing the individual items of the used ac-
ceptance scale, we particularly found the interaction with the robot to be “good” (M =
6.08; SD = 0.79 7-point Likert Scale), “non-annoying” (M = 6.17; SD = 0.84), and
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Dimension Score

Trust 5.76 (0.67)
Reliability 5.10 (1.16)
Competence 5.42 (1.18)
Acceptance 5.85 (0.73)
AttrakDiff 8.83 (1.11)

Table 6.5.: Mean scores with standard deviations in brackets. Taken from M. Kraus et al.
(2022c) with kind permission by IEEE ©2022 IEEE.

“pleasant” (M = 6.00; SD = 0.85). Furthermore, considering theAttrakDiff question-
naire, we found the proactive robot to be perceived “sympathetic” (M = 9.08; SD = 1.68
11-point Likert Scale) and “innovative” (M = 9.50; SD = 1.57). Thus, we deemed Kurt
to be well accepted amongst the study participants and showed tendencies towards high
usability.

Effects of Proactive Dialogue Strategies on Trust

Considering the trust-related measures, the robot’s proactive dialogue strategy received
positive ratings for overall perceived trust, as well as reliability and competence (see Table
6.5). Additionally, a significant within-subject difference was found regarding the devel-
opment of trust towards the robot. Therefore, the differences between trust ratings before
and after completion of the scenarios were assessed using a Wilcoxon-Signed-Ranks test
(initial trust was measured with a propensity towards trust in autonomous systems ques-
tionnaire). The proactive robot could significantly increase trust during the experiment
(Z = −2.04, p = 0.041).

6.4.7. Discussion

In the following, we discuss the results of the experiment regarding the influence of the
robot’s proactive dialogue strategies on HCT and usability. Further, we describe the
observed impact of the trigger mechanism on cooperation.

Influence of Proactive Dialogue Level on Trust

Similar to the preceding experiments, we found that a robotic CA expressing a medium-
level proactive behaviour significantly increased trust in the system throughout the ex-
periment. Generally, Kurt’s proactivity led to high perceived trust in the application.
Congruently to our previous observations regarding the trust effects of the Suggestion
action, this proactive dialogue act type seems to positively influence the robotic CA’s
cognitive trust bases – competency and reliability. Due to similar effects of medium-level
proactive behaviour on trust and its related concepts in a full-scale robotic CA, we deemed
the results of the more restricted lab studies with virtual CA’s transferable to realistic
use case scenarios.
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Influence of Proactive Dialogue Level on Usability

The experiment also showed a positive impact of proactive dialogue on the system’s
usability. In this regard, the interaction with the assistant was rated as good and pleasant,
and let the robot even be perceived as highly sympathetic and innovative. Further, the
robot achieved to fulfill the required tasks for all scenarios showing high usability for this
specific task domain.

Influence of the Trigger Mechanism on Cooperation

Using the same argumentation as for the previous experiment, we deem the trigger mech-
anism utilised for the robotic CA to have a positive effect on the cooperation because
the interaction was highly perceived as not annoying. Thus, the initiation of proactive
seemed to be conducted in a natural, non-intrusive fashion fostering an adequate proactive
dialogue between human and robot.

Limitations

A limitation of this study was the rather small amount of experimental subjects. This was
due to the complexity and expensiveness of the study setup. Further, more insights could
have been gathered comparing different versions of the robotic CA being able to express
distinct levels of proactivity. However, one purpose of this study was to measure the
portability of the results found using the low-fidelity prototypes to realistic task scenarios
and more sophisticated prototypes. Therefore, this study set up deemed to be appropriate
for studying this aspect. Besides, comparing different prototype versions would have also
further increased the study’s complexity. For this reason, we conducted an interactive
video study with Kurt, where the robot was able to express different types of proactive
dialogue. This study is described in the next chapter. Finally, we found that the robotic
planning framework required considerable computational effort and accordingly was not
able to operate in a time frame most users would expect. Therefore, this could have
negatively influenced the user’s perception of the robot.

6.4.8. Conclusion

This experiment showed the benefits of using external events as a trigger mechanism for
proactive behaviour and provided evidence for the portability of a medium-level of proac-
tive dialogue to the domain of robotic CAs. Here, proactive behaviour was enabled by
including modules for reasoning, planning, and dialogue capability in a Tiago robot. In
a small experiment considering a realistic task scenario, where users collaborated with the
robot on tidy-up and fetch-and-carry tasks, it was shown that a medium-level of proactiv-
ity provoked similar effects on users as found in previous experiments. In summary, the
proactive robot was perceived as competent and reliable in the domestic task scenario,
which led to high ratings of trust towards the robot. Further, the developed proactive
dialogue strategy showed tendencies to positively contribute to the system’s usability by
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expressing unobtrusive and natural proactive behaviour. Thus, the usage of external
events for triggering proactive dialogue seemed to benefit human-machine cooperation.

6.5. Summary

In this chapter, we contributed four experiments that provided novel insights into the
effects of proactive dialogue strategies on human-machine cooperation. For this, we con-
sidered the impact of the individual proactive dialogue act types on a system’s trustwor-
thiness and usability dependent on the task context, user characteristics, specific user
states as well as activities, and external events that were supposed to require proactive
assistance. In doing so, we aimed to understand proactive dialogue behaviour from a so-
cial and task-related perspective during cooperation. This understanding should be then
used to implement a user-centred proactive DS for improving the cooperation. The first
two experiments were conducted in restricted laboratory settings using rather simplistic
prototypes, due to the complexity of the experimental designs and to enable standardis-
ation.

The first experiment revealed different effects of proactive dialogue act types on HCT
dependent on task difficulty and several user characteristics. Due to the effects of task
difficulty, other task properties, e.g. task complexity, may also play a role in the trust
perception of proactive dialogue. Considering user properties, we found differences in
the trust perception of the dialogue act types for the user’s level of domain expertise
and technical affinity. For novice users with low technical affinity, a medium-level of
proactive behaviour during the first interactions might be beneficial for building rapport
and increasing cognitive trust in the system’s abilities. Further, we also found differences
in several personality traits. Here, we found that similar to the pilot study presented
in Section 4.2, neuroticism may affect the perception of proactive dialogue. Further, we
found differences in the traits of conscientiousness, and openness.

The second study provided insights that using only one specific user state (cognitive-
affective user state) may be insufficient for deciding whether to become proactive. This
observation was similar to the first experiment where the trigger mechanism was the
user’s insecurity level. Therefore, we concluded to include more information about dif-
ferent types of user information for developing a more adequate trigger mechanism for
these decisions. Generally, the results of both experiments showed that the perception
of the dialogue act types at the extremes of the continuum of our proactive dialogue act
concept, namely the reactive None and the most proactive Intervention action, are highly
affected by the context and the user. Therefore, we assumed that the decision of whether
the system should express reactive or highly proactive behaviour largely depends on the
social expectations regarding the proactivity of individual users given a specific situation.
Contrary, the medium-level proactive behaviour in the form of the Notification and Sug-
gestion action, generally led to a trust increase, and a system expressing such behaviour
was considered reliable and competent.

For this reason, we deemed a medium-level proactive dialogue useful for the HCT rela-
tionship with being only slightly influenced by context and the individual user. Similarly

177



6. Design of User-Centred Proactive Dialogue Strategies and their Effects on Cooperation

to Isbell and Pierce (2005) and Yorke-Smith et al. (2012), the problem of selecting an ad-
equate level of proactive dialogue can be considered as a cost-benefit function concerning
a system’s trustworthiness.

For medium-level proactive dialogue, the benefits generally outweigh the costs. For
reactive or highly proactive dialogue behaviour the benefit of successful action imple-
mentation, as well as the cost of failure, are high. If a user expects a system to take
over actions from the user (Intervention action), then the benefit is high. In case such
behaviour is not expected, the costs are high. Also, Isbell and Pierce describe this rela-
tionship as considering highly proactive user interfaces. However, they claim that reactive
behaviour has neither benefits nor costs.

Based on our results, we argue that reactive system behaviour may have similarly high
benefits and costs as highly proactive behaviour. For example, when a user expects a
system to become proactive for a given situation but it stays reactive, then this has
a high cost as the user might question the system’s competence and reliability which
could damage the HCT relationship. Considering the usability of proactive dialogue act
types during the first two experiments, we found that a high level of proactivity was
generally perceived to be more task effective, wherein reactive system behaviour received
the lowest scores for task effectiveness. Considering the medium-level of proactivity, we
could make no clear statement. However, the Notification action showed tendencies to
increase usability dependent on the task context.

For the third and fourth experiments, we switched to high-fidelity prototypes for inves-
tigating user-centred proactive dialogue strategies in more realistic task contexts. Further,
we studied the influence of more contextual trigger mechanisms – user activity and ex-
ternal events – on cooperation.

The third study provided evidence that the approach is transferable into virtual CAs
for application in realistic task scenarios. Here, the results emphasized our previous find-
ings that proactive dialogue largely affects cognitive-based trust. Similar to our previous
experiments, we found the proactive dialogue to have a low impact on affect-based trust.
Further, the study stressed the influence of a user’s domain expertise and technical affinity
regarding the trustworthiness of proactive dialogue. Differentiating between different lev-
els of domain expertise even revealed marginal differences between proactive and reactive
behaviour for personal attachment. Considering the influence of proactive dialogue on the
system’s usability, we found positive tendencies of proactive dialogue on increasing task
efficiency and task success. This reinforces our previous results of the Notification action
increasing task effectiveness. Also, the usage of the user’s activity as a trigger mechanism
provided promising results in improving the cooperation by fostering a system’s usability.

The fourth study aimed to test the applicability of proactive dialogue in robotic CAs.
Here, the results further validated the generalisability of our concept and provided further
evidence on the usefulness of the cognitive architecture for enabling proactive dialogue.
Additionally, it stressed the importance of reasoning and planning for the adequate real-
isation of proactive behaviour. Here, we also found a positive impact of utilising external
events as a trigger mechanism for cooperation. Generally, we found the usage of more
context-related than user-specific information as a trigger mechanism for proactive be-
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haviour highly useful when considering the third and fourth experiments. Thus, we con-
cluded a combination of context- and user-specific information to be suitable for deciding
whether to become proactive and to which extent.
In the next chapter, we fused the gained knowledge from our experimental studies to

implement a user-adaptive proactive DS for improving the cooperation CAs. For this, we
realised a user model for the inclusion of a trust measurement as a trigger mechanism
for proactive dialogue behaviour in order to improve trustworthiness. In addition, we
also included task-related features in the user model for also improving the usability
of the system. For DM, we utilised statistical and rule-based approaches relying on
study results from the examination of the different proactive dialogue strategies in this
chapter. For realising a user-centred DS, adaptation mechanisms to the specific users
and situations were required. Here, the question that needed to be answered was, how
to adapt proactive dialogue behaviour and to how to identify a metric that may be used
as decision criteria to adapt to. In doing so, the next chapter concludes the development
process of a novel proactive dialogue model by implementing a sophisticated DM module
that allows trustworthy and task-effective cooperation with CAs.
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7. Improving Cooperation by Implementing
User-Centred Proactive Dialogue
Strategies

The overall goal of this thesis was the development of trustworthy CAs by implementing
adequate proactive behaviour for improving human-machine cooperation from a social
and a task-oriented point of view. During the design process of user-centred proactive
dialogue strategies presented in the previous chapter, we gained an understanding of
the effects of proactive dialogue on cooperation. From a social perspective, we showed
that an appropriately selected proactive dialogue level may increase a system’s trust by
rendering it more reliable and competent. From the viewpoint of considering a system’s
usability, we found that the choice of trigger mechanisms for initiating proactive behaviour
has an important influence on the user’s task effectiveness. Further, we identified several
implications of specific user characteristics and task context on the perception of proactive
dialogue regarding cooperation.

The gained knowledge was exploited for the implementation of user-centred proactive
DM. A central aspect in this regard was to provide the system with a mechanism that
adapts the level of proactivity to the specific user and the current situation during coop-
eration. As a result of our previous experiments, measurements of a system’s trustwor-
thiness and usability seemed to form adequate decision criteria for adapting the proactive
dialogue to improve cooperation. Usability measurements in the form of user satisfaction
(D. Litman & Silliman, 2004) and interaction quality (Ultes et al., 2015) have already
shown to be adequate adaptation criteria for improving human-computer dialogue. How-
ever, a trustworthiness measurement has yet to be shown to be successfully integrated for
dialogue adaptation. Therefore, we first needed to evaluate trustworthiness as adaptation
criteria for user-centred proactive dialogue. Subsequently, methods to adequately model
trust during dialogue needed to be implemented.

For this, several steps were necessary. The first step towards this goal was to cre-
ate a user model for taking into account a proactive system’s perceived trustworthiness
during an ongoing interaction. However, in current dialogue literature, there does not ex-
ist interaction data representing proactive system behaviour and the system’s perceived
trustworthiness. Hence, a trust-based proactive dialogue corpus had to be created in
advance.

For generating the corpus, data was collected online with 308 users who had to interact
with an artificial advisor agent in a serious proactive dialogue game. The data was
annotated with objective features, e.g, task duration and success, as well as subjectively
self-reported features, e.g. user’s age, gender, and personality, for capturing the interplay
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between proactive behaviour as well as situational and user-dependent characteristics. For
reflecting the trust relationship, interactions in the corpus were labeled with self-reported
measures on the system’s trustworthiness and its related concepts.

Based on the annotated data corpus a user model was implemented. The model in-
corporated user-, system-, and context-dependent features and can be used for a live
prediction of the user’s trust in the proactive actions of a virtual CA during an ongoing
interaction. For predicting the user’s trust level, three machine-learning algorithms were
trained and tested on the corpus for comparing their applicability for the given task.

Finally, we implemented a user-centred proactive dialogue model including trustworthi-
ness and usability measures and compared two different adaptation strategies: a rule-based
and an RL-based method. For evaluation, we developed a user simulator based on the col-
lected corpus data. In the following, we describe the steps for implementing user-centred
proactive dialogue strategies.

7.1. Evaluation of Trustworthiness as Adaptation Criterion for
User-Centred Proactive Dialogue

7.1.1. Motivation

Generally, humans tend to personify and associate human traits with machines (e.g., see
Nass et al. (1994)). Thus, people have certain social expectations regarding interactions
with such, similar to interacting with a fellow human being. In case, there exists a
mismatch between a CA’s impression of intelligence and its actual behaviour, a so-called
expectation gap (Kwon et al., 2016) may be created. As a result, a loss of trust may occur.

In the introduction of this thesis, we explained that proactive behaviour is integral for
CA’s to be perceived as intelligent. Thus, proactive behaviour that fulfills the user’s social
expectation should result in a formation of trust and otherwise should result in a trust
decrease. Therefore, trust may be an adequate measure to determine whether proactive
behaviour is socially expected or not and may be used for selecting adequate proactive
dialogue strategies to improve cooperation. Thus, we utilise this relationship to evaluate
trust as adaptation criteria for user-centred proactive dialogue.

For evaluation, we equipped a household assistance robot with proactive behaviour that
adapted to the user’s social expectations and present a user study showing the effects on
perceived user trust (M. Kraus et al., 2022e). The domestic domain and a robotic CA were
selected, as social expectations particularly influence the interaction with such when they
are applied in more social settings, e.g. as a household assistance robot (A. Edwards et al.,
2019; C. Edwards et al., 2016). Further, the domestic domain fulfilled the requirements of
an adequate test scenario for studying the impact of proactive as described in the previous
chapter.

To evaluate trust as an adequate evaluation metric, we compared an expectation-driven
proactive dialogue strategy to four static strategies based on our conceptualisation of
proactive dialogue act types (None, Notification, Suggestion, Intervention). Here, we
deemed our assumption to be successful in the case that the trust relationship is enhanced
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Figure 7.1.: Left: Depiction of the decision screen during the interactive video. The
user may choose between asking the user to collect the garbage or ignore
the robot. Right: Setup of the video recording in the simulated domestic
environment. Taken from M. Kraus et al. (2022e), licensed under CC BY-SA
4.0 (https://creativecommons.org/ licenses/by-sa/4.0).

by the expectation-driven strategy.

To produce a large sample size and to strengthen the standardisation of the study
design, data were collected online using an interactive video method. Using this method,
study participants were able to interact with the robot while watching a video. At certain
moments, subjects were able to explicitly make decisions that directly influenced the
robot’s behavior and the further course of the experiment. In preparation for the study,
the corresponding videos had been created with a manually operated robot that assisted
in six typical domestic assistance scenarios. For evaluation, study participants rated
the robot’s trustworthiness, as well as whether they complied with the robot’s proactive
actions. Further, we evaluated the user experience with the study setup.

In the following, we present the approach, the design of the proactive dialogue strategies,
and the experimental design. Further, we provide and discuss the results of the evaluation.
Parts of the presented work and results have been previously published in M. Kraus et al.
(2022e).

7.1.2. Approach

For evaluating trust as an adaptation criterion for user-adaptive proactive dialogue, a
collaborative task scenario in the domestic domain was set up. As previously mentioned,
related research showed that the domestic domain is particularly suitable for measuring
trust in a robotic CA (de Graaf et al., 2019). One’s own home is a place of intimacy
and vulnerability, where forming a bond of trust is inevitable for allowing a robot to
autonomously perform actions. Thus, robotic systems need to understand the user’s
intentions in such environments and adapt to socially adequate criteria, e.g. via engaging
in a proactive dialogue.

In the presented use case, a user collaboratively interacted with a robot to solve typical
tasks occurring in the domestic domain, e.g managing groceries or tidying up. As a
household assistant, a Tiago robot was utilised for the high-fidelity prototype study. The
Tiago robot, called Kurt again in the following, was embedded in a lab environment
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that was furnished with a couch, couch table, closet, and dining table. In doing so, the
environment should resemble a typical living room and simulate a domestic environment.
A schematic drawing of the lab is depicted in Fig. 7.1. In the experiment, the individual
study subject took the role of the user and could control their actions.

Further, the user applied the thinking aloud method for keeping the study subject in
the loop of the user’s intentions. The user interacted with Kurt in six different scenarios.
In all but two scenarios the robot could interact proactively with the user. The robot’s
proactive dialogue behaviour was modelled according to our proactive dialogue concepts.
In the following, the distinct task scenarios are explained.

Scenario 1: Robot Introduction The purpose of this scenario was for the users to
familiarise themselves with the system. Here, the assistant provided helpful information
about its sensory system and functionalities through an introductory dialogue. This
allowed novice users to obtain an overview of the features of the system. The interaction
started with the robot greeting the user. Here, the proactive behaviour of the robot was
not manipulated, as the robot’s interaction purpose was only to present itself and not to
assist in any task.

Scenario 2: Groceries Management This scenario was intended to provide the user a
first experience of the assistance functionalities of Kurt for a simple household task. At
the end of Scenario 1, the user thought aloud about going groceries shopping. After re-
turning, the user put their groceries on the table and was welcomed back by the assistant.
Depending on the configured proactivity level, different strategies were used for offering
support in putting the groceries away.

Scenario 3: Bring Task I The purpose of the third scenario was to make the user aware
of the robot’s fetch-and-carry capability. Here, no robot proactivity was required. In
this scenario, the user rested on the couch and developed an appetite for a snack. While
the robot navigated through the room, the user could select from a list of options, e.g.
“Get me some chips!”, and instruct the robot to perform the task. Subsequently, the
robot fetched the snack and handed it over to the user. Another fetch-and-carry task was
initiated by the user in scenario 5.

Scenario 4: Tidy Up I Here, the user decided to read a newspaper at the couch table.
The user’s point of view is depicted in Figure 7.2. After a while, an incoming phone call
(simulated by cell phone noises) caused the user to leave the table. In the meanwhile,
Kurt approached the table and noticed the newspaper. Analogously to scenario 2, the
robot selected one of the proactive strategies for offering assistance. However, in this
scenario, the user thought aloud about not having finished reading yet and only needed
to interrupt the activity due to the distraction. Hence, the dialogue strategies applying a
higher level of proactivity were deemed inappropriate at this point. This scenario aimed
to get feedback on how subjects perceive unwanted help from Kurt.
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Figure 7.2.: Screenshots of the interactive videos. Left: Groceries Management (Scenario
2). Right: Bring Task I (Scenario 3). Taken from M. Kraus et al. (2022e),
licensed under CC BY-SA 4.0 (https://creativecommons.org/ licenses/by-
sa/4.0).

Scenario 5: Bring Task II Similar to scenario 3, this scenario dealt with a fetch-and-
carry task. Here, the user thought aloud of being thirsty and asked Kurt for a soft drink.
The robot confirmed the task and went away for fetching the drink. However, it returned
shortly afterward and reported that the desired beverage was not in stock (“I’m sorry.
Coke is not available”). Subsequently, the robot acted according to one of the proactive
strategies. In the reactive condition, the user had to ask explicitly for an alternate drink.
In the proactive conditions, Kurt notified about or recommends alternatives, or directly
told the user that it would get an alternative drink instead. The purpose of this scenario
was to let subjects experience the robot’s behaviour acting upon unexpected events.

Scenario 6: Tidy Up II Contrary to scenario 4, in which high proactive behaviour was
supposed to be inappropriate for the given situation, this scenario was intended to favour
proactive robot actions. Here, the user left an empty bottle on the table. After Kurt had
approached the table, it noticed the bottle. Depending on the proactive configuration of
the robot, it could offer to throw away the bottle in the already described ways. Generally,
users were expected to want a robot action in this context and to request or let the robot
perform the task.

We did not utilise an actual “system” prototype for the experiment, but combined an
WoZ approach (Kelley, 1984) with an interactive video method. Using this method, study
participants were able to interact with the robot while watching a video. This allowed
the study to be conducted online and to produce a large sample size for strengthening
the standardisation of the study design. Further, this was intended to reduce the study’s
complexity. The description of the combined approach can be divided into two parts: the
creation of the video material and the development of the interactive videos.

Creation of Video-Material

The video recordings were based on a screenplay that comprised different interaction sce-
narios. The screenplay featured two protagonists: the user and the household assistance
robot called Kurt. The recordings were shot from the first-person perspective. In doing
so, a more realistic experience regarding the HRI could be created where the viewer em-
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pathised better with the main character. As the actor was a male, a male voice was used
for this character. For shooting the videos the protagonist held a GoPro HERO8 camera
in his hand. This camera allowed video production in high definition with a resolution
of 2704 x 1520 pixels and a frame rate of 50 fps. In addition, the sound was recorded
at a sampling rate of 48 kHz with stereo microphones. For facilitating the control of
the camera, i.e. starting and stoppage of filming, a “director” remotely controlled the
GoPro using a smartphone. The director was able to watch the camera’s footage on the
smartphone screen. This further allowed us to correct the camera settings in case of
unfavorable perspectives. The WoZ-paradigm was realised by a human operator control-
ling the movements of the robot, the gripper, and triggering the robot’s speech output
at well-defined moments. The robot’s utterances were scripted in the screenplay. The
appropriate moments for triggering the robot’s speech were pre-defined in the script and
the same for each proactive configuration of the robot. Depending on the proactive level,
Kurt used slightly different wording.

For each scenario where the robot could engage in a proactive conversation, video snip-
pets of different proactive behavior were created. The whole video creation process lasted
approximately seven hours and served as the foundation for developing the interactive
videos. How the videos were provided with interactivity is described in the following.

Development of Interactive Videos

After recording the video material, data processing was carried out. This included sorting
and editing the files, and occasionally filtering out background noise. As a result, the
human-robot dialogue was segmented into separate video segments with a duration of
10 - 30 seconds. Subsequently, the toolkit Eko 1 was employed to create an interactive
movie. The basic structures of these movies were similar to a decision tree. In our videos,
each dialogue step ended with a system question. The user could then select an answer
from a list of options. While the options menu was displayed, the video was stopped and
blurred. A picture presenting the options menu is provided in Fig. 7.1. Depending on
the user’s selection, the appropriate follow-up video was displayed. During the interactive
movie, it was possible to repeat the entire conversation as well as individual steps. In the
next section, the design of the proactive dialogue strategies is explained in detail.

7.1.3. Design of Proactive Dialogue Strategies

In the domestic task domain, a household assistant robot was able to perform tasks
using different levels of autonomy on the spectre provided by Sheridan and Verplank
(1978). For communication of these degrees, our conceptualisation of proactive dialogue
act types was applied. For each proactive dialogue act type, a separate video was created
for the respective use case scenarios. In the following, the individual proactive actions are
described more in detail:

1https://studio.eko.com/
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None This strategy implied reactive robot behavior and constituted the lowest level of
autonomy. In this condition, users could only explicitly request help from the robotic
CA. For the presented use case scenarios, this was implemented as a “wait and see”
behavior expressed by Kurt. In scenarios 2, 4, and 6, the robot positioned itself
near the household objects (groceries, newspaper, and empty bottle) and awaited
the user to act. In scenario 5, the robot simply said that the beverage would be out
of stock. In all scenarios, the user could ignore the robot or ask for assistance. For
example, consider the following dialogue:

(Kurt positions itself in front of the empty bottle)
U: Hey Kurt, can you put away the empty bottle?
K: Yes, I will put the empty bottle away for you.
(Kurt starts to grab the empty bottle)

Notification This strategy was the least intrusive proactive approach. Here, the robot
verbally notified the user to shift their focus on the current situation. Afterward,
it was left to the user to ask the robot for assistance or to ignore the notification.
For the use case scenarios 2, 4, and 6 the robot positioned itself again close to the
household objects but instead of waiting for a user action, the robot would notify
about its detection. In scenario 5, the robot would explicitly tell the user which
beverage was still available. In all scenarios, the user could ignore the robot or ask
the robot for assistance. For example, consider the following dialogue:

(Kurt positions itself in front of the empty bottle)
K: There seems to be garbage on the table.
U: Hey Kurt, can you put away the empty bottle?
K: Yes, I will put the empty bottle away for you.
(Kurt starts to grab the empty bottle)

Suggestion Using the aforementioned strategy, the robot directly proposed an action
the robot could take on behalf of the user. Thus, Kurt took more initiative in the
interaction and presented an option. In response to the robot’s proposal, the user
could either confirm or decline the offer. In all use case scenarios, where proactive
robot behavior was applicable the system positioned itself either close to the object
or the user and proposed action, e.g. see the following example:

(Kurt positions itself in front of the empty bottle)
K: There seems to be garbage on the table. Should I put it away for you?
U: Yes, Kurt. I allow it.
K: Ok, I will put the empty bottle away for you.
(Kurt starts to grab the empty bottle)

Intervention Following this strategy, Kurt executed a particular action in place of the
user. In all use case scenarios where proactive behaviour was applicable, the robot
explicitly conducted either tidy-up tasks or provided the user with an alternative
beverage. However, users were able to stop the robot verbally during execution.
For exemplifying this strategy, consider the following dialogue:
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(Kurt positions itself in front of the empty bottle)
K: There seems to be garbage on the table. I am going to put it away for you.
(Kurt starts to grab the empty bottle)
(User lets the robot take over)

Static proactive behavior was realised by providing the user with the same proactive
action, i.e. only None, Notification, ..., throughout all scenarios. To act upon the user’s
social expectations of the robot’s behaviour, we created an adaptive strategy that varied
the proactive actions for each scenario dependent on social guidelines.

User-adaptive Strategy For adapting Kurt’s proactive behavior to the user’s social
expectations, a hand-crafted strategy was created. The strategy was designed for
choosing the most suitable proactive action for the respective use case scenario. For
making the decisions on which proactive actions to use at which moment, we adhered
to the guidelines of “social etiquette” in the design of human-automation interaction
by Sheridan and Parasuraman (2005), the theory of proactivity by Yorke-Smith
et al. (2012), and our considerations. An example of good etiquette in human-
automation interaction is to act in such a way that serves the present purpose
and is not interrupting but patient (Sheridan & Parasuraman, 2005). The theory
of proactivity comprises the theory of user desires (“assess the situated value of
each potential agent action in terms of the user’s objectives”), theory of helpfulness
(“agent’s reasoning to determine what actions would (most) aid the user now and
in the future”), and the theory of safe actions (“bounds on what an agent is allowed
to do when performing tasks proactively”). Based on this, we selected a proactive
action for each scenario that was supposed to match the subjects’ expectations. For
scenario 2, the suggestion action was deemed to be the most socially appropriate.
People might have a certain preferred arrangement for groceries, so there was a need
for more control of the human in this situation. Further, this scenario described the
first assistance context in the study and the subject was not yet familiar withKurt’s
actions. Therefore, suggestion behaviour was implemented for avoiding imposing
behavior and being perceived as more polite. For scenario 4, reactive behaviour was
implemented. Here, proactive behaviour may not be expected by users as they were
only distracted from the task. For scenario 5, a notification action was selected.
Here, directly offering a specific alternate drink was deemed inappropriate as the
robot did not know the user’s preferences. Thus, only notifying the user that there
exist alternatives was implemented. For the final scenario, the intervention action
was implemented, as a robot that is autonomously able to dispose of the waste
was deemed to be socially expected. In the video-based experiment, we compared
this expectation-based strategy to the four static proactive dialogue strategies. The
experimental setup is explained in the following section.

In summary, the design of the expectation-driven proactive dialogue strategy allowed us
to study whether trust represented an adequate decision criterion for adapting proactive
dialogue strategies. In the following, we describe the experimental design of the investi-
gation.
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Figure 7.3.: Procedure of experiment. After each experimental session, dependent vari-
ables were assessed. At the beginning, study participants received instruc-
tions about the study and filled out a pre-questionnaire concerning their de-
mographics, etc. Taken from M. Kraus et al. (2022e), licensed under CC
BY-SA 4.0 (https://creativecommons.org/ licenses/by-sa/4.0).

7.1.4. Experimental Design

The study setup followed a mixed-factorial experimental design. Here, the proactive dia-
logue strategies (none - notification - suggestion - intervention - adaptive) were evaluated
to be independent between-subject variables. Study participants were evenly distributed
among these five groups. In our experiment, we assessed trust and its five bases (com-
petence, reliability, understandability, personal attachment, faith) towards the robot as
well as the participants’ cognitive workload during the interaction to evaluate the effects
of proactive dialogue behavior. Furthermore, we measured the user’s experience with the
robot. These measures were collected twice during the experiment for each study partici-
pant. Users answered the questionnaire after scenario 4 and after the final scenario. The
reason for this was to measure the immediate impact of the respective robot behaviour
that was either contrasting (e.g. high level of proactivity in scenario 4) or in favour (e.g.,
high level of proactivity in scenario 6) of the social expectation. In addition, we assessed
the compliance rates, i.e. how often subjects agreed with the robot’s decisions, as an
objective measurement of the user’s trust.

Participants

Data collection was conducted using the German clickworker platform 2. Eligibility con-
ditions required users to be aged between 18 and 65, to be a native speakers of German,
and to watch the interactive videos on a desktop computer for compatibility reasons. In
total, 200 participants were recruited. However, some participants were excluded due
to violations of the study instructions and technical errors. As a result, 163 subjects
(34 % female) with an average age of 41 (SD = 12.04) were considered for evaluation.
Participation was compensated with a monetary reward of 3.50 ¿.

Experimental Procedure

In advance of the experiment, users were briefed about details of the data survey, e.g.
duration (20 minutes) and purpose of the survey, and had to give signed consent. Further-

2www.clickworker.de
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more, participants were informed that concentration checks were included in the ratings
to avoid misuse. For this reason, also the videos could not be skipped. After the intro-
duction, subjects had to fill out a pre-test questionnaire comprising demographics and
confounding variables. Subsequently, the participants had to watch the interactive videos
for scenarios 1 through 4. After completion, they filled in a questionnaire to assess the
dependent variables and to check the manipulations. The same procedure was repeated
for the last two scenarios. In conclusion, participants received their clickworker code for
compensation and were dismissed. The experimental procedure is depicted in Fig. 7.3.

Questionnaires

Each dependent variable was measured with items from established and validated psy-
chological scales. To determine trust towards the robot, a short version of the Trust
in Automated Systems Scale (Jian et al., 2000) in German by J. M. Kraus (2020) was
implemented. Furthermore, scales for measuring the bases of trust developed by Madsen
and Gregor (2000) were used. The user’s experience with the system was assessed using a
short version of the user experience questionnaire (UEQ s) developed by Laugwitz et al.
(2006). For measuring three types of cognitive loads (extraneous, germane, intrinsic), a
questionnaire developed by Klepsch et al. (2017) was included. Besides, for personality
assessment, the Big-Five-Inventory BFI-10 by Rammstedt et al. (2013) was included. The
scales, which were only available in the English language, were translated into German.
Besides, some scales were slightly modified for content and study context. For exam-
ple, we clarified that participants rate the interaction with “the robot”, as the original
questionnaires make use of the neutral term “system” in the scale statements.

Possible confounding variables were measured using scales of predisposed trust in au-
tonomous systems (Merritt et al., 2013), NARS (Nomura et al., 2006), as well as self-
developed questions for previous experience with spoken dialog systems and the users’
responsibility for household tasks. In doing so, we wanted to detect user-dependent bi-
ases for any study group. All scales were rated on a 7-point Likert scale from 1 (strongly
disagree; word adjective (UEQ)) to 7 (strongly agree; word adjective (UEQ)).

7.1.5. Results

For data analysis, a multivariate ANOVA for confounding variables and the manipulation
checks, as well as a mixed ANOVA for the independent variables at different time steps
were used. No significant outliers were found in the data set.

Confounding group differences for proactive behaviour could be ruled out as the mul-
tivariate ANOVA did not reveal any significant differences (all p-values >> .05 ) except
for the users’ responsibility for household tasks (F (4, 158) = 3.48, p = .009). However,
the Bonferroni-Holm corrected post-hoc t-tests were not significant. For this reason,
responsibility for household tasks was not specifically considered for analysis.

The evaluation of the manipulation check confirmed the successful manipulation of
proactive dialogue behavior (all p-values < .001 concerning the non-proactive strat-
egy). Regarding the manipulation of the robot’s adaptivity, all strategies were rated as
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Proactive
Strategy

Trust Competence Reliability Understandability

M (SD) M (SD) M (SD) M (SD)
None 0.15 (1.20) 0.11 (1.08) 0.45 (1.00) 0.62 (0.95)
Notification 0.12 (1.27) 0.19 (1.07) 0.34 (1.29) 0.55 (1.20)
Suggestion 0.11 (0.93) 0.12 (.93) 0.21 (0.85) 0.68 (0.67)
Intervention -0.22 (1.00) -0.13 (1.02) 0.02 (0.88) 0.38 (0.88)
Adaptive 0.43 (0.7) 0.34 (0.76) 0.42 (0.69) 0.65 (0.79)

Table 7.1.: Descriptive statistics of perceived trust, competence, reliability, understand-
ability in the system with reference to proactive dialogue strategy. Values
are taken from the final evaluation after the last scenario. Trust and its sub-
bases were baseline-corrected according to measurement of predisposed trust
in each group. The means for each group: None = 4.97, Notification =
5.10, Suggestion = 5.26, Intervention = 5.01, Adaptive = 4.83. Taken
from M. Kraus et al. (2022e), licensed under CC BY-SA 4.0 (https://
creativecommons.org/licenses/by-sa/4.0).

adaptive: Adaptive (M = 5.29, SD = 1.02), Intervention (M = 5.42, SD = 1.20),
Suggestion (M = 5.92, SD = .82), Notification, (M = 5.53, SD = 1.03), None
(M = 5.05, SD = 1.41). Therefore, we conclude that study participants perceived
the robot’s ability to adjust its functions and vocabulary to different tasks as adaptivity.
Hence, the manipulation of the robot’s proactive dialogue strategy to different situations
was only implicitly perceivable.

As the feeling of trust is quite individual and is dependent on several factors, e.g.
attitudes of a person or previous experiences, trust measurements should be baseline-
corrected concerning a subject’s propensity to trust (Merritt et al., 2013). For allowing
such a correction, the correlations between a user’s propensity to trust and all trust-related
concepts needed to be considered. Using Spearman’s ρ, we found strong correlations (J.
Cohen, 1988) of a subject’s propensity to trust and the measurements of trust towards
the robot (ρ = 0.55, p < .001), perceived competence (ρ = 0.59, p < .001), reliability
(ρ = 0.61, p < .001), and understandability (ρ = 0.59, p < .001). Furthermore, we
found moderate relationships with the measurements of faith and personal attachment
(both ρ = 0.49, p < .001). However, it only seemed reasonable to consider only the
strong correlations for the baseline correction. Hence, the correction was conducted by
subtracting the value of a participant’s propensity to trust from the values of perceived
trust, competency, and reliability. For a clearer description of the results, the evaluation
was split regarding the user experience with the study setup, as well as the effects of the
different proactive dialogue strategies on trust, and user experience.

191

https://creativecommons.org/ licenses/by-sa/4.0
https://creativecommons.org/ licenses/by-sa/4.0


7. Improving Cooperation by Implementing User-Centred Proactive Dialogue Strategies

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

None Notification Suggestion Intervention Adaptive

Trust 1 Trust 2 Competence 1 Competence 2

Figure 7.4.: Trust and competence development in the robot’s actions during the experi-
ment with respect to the proactive strategy. All values are baseline corrected.
The indices “1” and “2” represent the times of measurements: “1” = after
scenario 4 and “2” after scenario 6. Indications of standard deviations were
omitted for clarity reasons. Taken from M. Kraus et al. (2022e), licensed
under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0).

User Experience with the Experimental Design

Generally, the experimental setup received favourable ratings. The hedonic quality of
the interaction with the robotic CA was rated positively with an average rating of M =
5.16, SD = 1.16. Also the pragmatic quality of the interaction was well received M =
5.22, SD = 1.15. Considering the individual questionnaire items, the interaction with
the robotic CA was particularly rated as “easy” (M = 5.45, SD = 1.14), “clear” (M =
5.28, SD = 1.21), and “leading edge” (M = 5.45, SD = 1.31).

Effects of Proactive Dialogue Strategies on Human-Computer Trust

The mixed ANOVA showed a tendency towards interaction effects for perceived trust
(F (4, 158) = 2.21, p = .070) and competency (F (4, 158) = 2.01, p = .096) depend-
ing on the measurement timing. For further evaluation, the simple main effects of the
proactive strategy and the timing of measurements were investigated. Using Welch’s
ANOVA, a significant influence of the level of proactive dialogue on trust was found for
both measurements (F (4, 158) = 2.64, p = .040 for t1, F (4, 158) = 2.54, p = .047 for t2).
However, Bonferroni-Holm corrected post-hoc tests, revealed no significant differences
between the proactive strategies. For examining the influence of the degree of proactive
behaviour between and after the experiment, paired t-tests were applied. Here, signifi-

192

https://creativecommons.org/ licenses/by-sa/4.0


7.1. Evaluation of Trustworthiness as Adaptation Criterion for User-Centred Proactive Dialogue

2.2

2.3

2.4

2.5

2.6

2.7

2.8

ICL 1 ICL 2

None Notification Suggestion Intervention Adaptive

Figure 7.5.: Development of the ICL over the course of the experiment with respect to the
proactive dialogue strategies. The indices “1” and “2” represent the times of
measurements: “1” = after scenario 4 and “2” after scenario 6. Indication of
standard deviations were omitted for clarity reasons.

cantly increased trust ratings between the two measurements were found for the Adap-
tive- (t(27) = 2.20, p = .036) and the Intervention strategy (t(40) = 2.27, p = .029).
The perceived competence in the robot significantly decreased for the None strategy
(t(30) = −2.73, p = .011). The understandability of the Intervention strategy increased
significantly (t(40) = 2.51, p = .016). The results for each trust-related variables with
respect to the proactive strategy after the final evaluation are depicted in Table 7.1, where
the baseline corrected values for trust, competence, reliability and understandability are
presented. The temporal differences of the proactive strategies on trust and competence
are visualised in Fig. 7.4. Here, also the baseline-corrected values are shown which were
measured after scenario 4 and after scenario 6.

Effects of Proactive Dialogue Strategies on User Experience and Cognitive Load

The mixed ANOVA revealed a statistically significant interaction between proactive dia-
logue strategies and the different measurement times for the measured ICL (F (4, 158) =
2.99, p = .020). Utilising the Adaptive strategy resulted in an attenuation of the ICL
(t(27) = −3.29, p = .003). Additionally, the ICL was decreased by the Notification-
strategy (t(36) = −2.55, p = .015). The results regarding the within-subject factor
are visualised in Fig. 7.5 for the ICL. The mixed ANOVA revealed a tendency to-
wards interaction effects for the proactive dialogue strategies measured during and af-
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Figure 7.6.: Descriptive results of the user experience ratings over the course of the ex-
periment with respect to the proactive dialogue strategies. The indices “1”
and “2” represent the times of measurements: “1” = after scenario 4 and “2”
after scenario 6.
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Proactive
Strategy

Scenario 2 Scenario 4 Scenario 5 Scenario 6 Mean

None 87 % 65 % 74 % 81 % 77 %
Notification 97 % 41% 87 % 81 % 77 %
Suggestion 96 % 23 % 50 % 77 % 62%
Intervention 88 % 20 % 63 % 88 % 65%
Adaptive 93 % 54 % 93 % 93 % 83 %

Table 7.2.: Compliance rates with the robot’s actions dependent on the scenario and the
proactive strategy. Taken from M. Kraus et al. (2022e), licensed under CC
BY-SA 4.0 (https://creativecommons.org/ licenses/by-sa/4.0).

ter the experiment for pragmatic (F (4, 158) = 2.28, p = .063) and hedonic quality
(F (4, 158) = 2.05, p = .090) of the user experience (F (3, 38) = 3.95, p < .05). Us-
ing Welch’s ANOVA, there were no significant regarding the influence of the proactive
strategies (all p > .010). However, several significant results were found while investi-
gating the influence of the degree of proactive behaviour dependent on the measurement
timing. Utilising the Adaptive strategy resulted in an increased rating for hedonic qual-
ity (t(27) = 2.79, p = .010). The pragmatic quality was increased by the Intervention
strategy (t(40) = 2.80, p = .008) and Suggestion-strategy (t(25) = 2.31, p = .029). The
results regarding the within-subject factor are visualised in Fig. 7.6.

7.1.6. Discussion

In the following, we discuss the results under consideration whether trust formed an
adequate decision criterion for proactive dialogue adaptation. In addition, we describe
limitations of the study design.

Trust as Adaptation Criterion for Proactive Dialogue

The results suggested that trust may be indeed useful for the selection of an appropriate
level of proactive dialogue during cooperation. This was supported by the significant in-
crease of trust in the expectation-driven proactive dialogue strategy throughout the exper-
iment (see Fig. 7.4). Furthermore, perceived competence increased the most as compared
to the static strategies, whereas the Adaptive strategy also yielded the highest scores
for overall trust and competence (see Table 7.1). Besides, the Adaptive strategy showed
high values for reliability and understandability. Thus, including social expectations for
choosing the level of proactive dialogue increased the robotic CA’s trustworthiness.

However, this primarily held considering cognition-based trust (competence, reliability,
understandability) as there were no findings in this regard for affect-based trust. This
is congruent with our previous experiments. A reason for this may be that we only
considered short-term interactions with the robot where only the system’s functional
capabilities were the centre of attention. Related work showed that the adaptation of the
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level of autonomy, either explicitly by the user, e.g. see Sanders et al. (2011), or the task
difficulty, e.g. see de Visser and Parasuraman (2011), similarly helped to foster cognition-
based trust in a robot’s autonomous behaviour. Also, in Section 6.1, we showed that using
different proactive dialogue strategies dependent on the task difficulty could increase user
cognition-based trust. Therefore, only cognitive-based trust should be considered as an
adaptation criterion for proactive dialogue.

The main driving factor for the trust increase by the Adaptive strategy concerning
cognition-based trust seemed to be the avoidance of communication errors. These were
prevented by changing the communication behaviour according to the user’s social ex-
pectations. For example, the inappropriate use of the None and Intervention strategy,
produced communication errors that negatively influenced the perceived trust towards
the robot (see Fig. 7.4).

Similar results concerning the negative influence of communication errors on trust were
shown by Wang et al. (2010). Using a constant medium-level of proactivity (Notification-
, Suggestion-strategy) seemed to mitigate this effect, as there occurred no notable drop
in the user’s trust. Thus, we propose to carefully consider the use of reactive and fully
proactive dialogue strategies dependent on social expectations.

Other evidence that the robot’s assistance was objectively trusted the most using the
Adaptive-strategy, was provided by the compliance rates with the robot’s actions (see Table
7.2). Surprisingly, in Scenario 4, where users were not supposed to accept help from the
system, they requested robot assistance when it expressed a low level of proactivity (None:
65%; Notification: 41 %). When the robot expressed higher proactivity, users tended to
decline the offer or even stopped the robot in execution (Suggestion: 23 %; Intervention:
20%). This could be a sign that users are more to change their intention if they have
more control over the interaction and the system acts more in the background as opposed
to imposing itself. However, this needs to be investigated in different studies.

Considering the user experience with the robot, the Adaptive strategy increased the
hedonic quality of the robot throughout the interaction. Hedonic quality is mostly non-
goal-oriented and related to concepts of stimulation and novelty (Laugwitz et al., 2006).
Thus, an adaptive robot seemed to increase the social aspects of cooperation. However,
there were no differences in the absolute values of the measurement of hedonic quality and
pragmatic quality. The Suggestion and Intervention strategies improved the pragmatic
quality between the two measurement times. Pragmatic quality is a goal-oriented concept
that is related to the ease of use of a system or its efficiency. A reason for the increase
in the pragmatic quality of these strategies seemed to be that they were perceived as
less goal-directed in scenario 4. As previously mentioned, users’ expected the robot to
not intervene actively during this task. Thus, the robot using these strategies could
rebuild its pragmatic quality after acting in favor of the users’ expectations. Therefore,
we concluded that trust as an adaptation criterion may only improve the social aspects
of the cooperation, but may not necessarily enhance the usability of a system for task
effectiveness.

Another interesting finding was that the Adaptive strategy could significantly decrease
the measured ICL. The ICL is usually associated with the difficulty of the experimental
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task. In this experiment, the user’s task was to interact with the robot. Thus, ICL was
related to the inherent difficulty or complexity of the task. As a result, the interaction
with the adaptive robot was perceived as less complex and exhaustive. However, this
finding was not surprising as the system always acted following the user’s expectations.
Furthermore, the Notification strategy led to a decrease in the experienced ICL. This
could be a reason why this strategy was more robust for contextual changes, as the
interaction was perceived as less complex. Regarding the ECL and GCL no significant
differences were observed. Based on these observations, we concluded that task difficulty
or the complexity of the task may be considered for dialogue adaptation as well besides
a HCT measurement.

Limitations

A limitation of this experiment was that no face-to-face interaction with the robot took
place. Interacting with a robot in person may reveal further insights and more significant
effects as compared to a video study. However, Babel et al. (2021) provide support for
the validity of online study findings for robot evaluations as compared to lab studies.
By conducting an interactive video study, the validity of our study should be further
increased, as users were more actively integrated into the experiment. Despite utilising
an online study design. Furthermore, only a short-term interaction consisting of six
dialogue turns was investigated. Including more dialogue steps would most likely show
more effects regarding the dynamics of proactive dialogue.

7.1.7. Conclusion

In this experiment, we investigated whether trust may be used as an adaptation crite-
rion for the selection of adequate proactive dialogue strategies. For this, a hand-crafted
expectation-driven proactive dialogue strategy was created and evaluated regarding its
influence on trust in a domestic use case scenario. The adaptive strategy was compared
to four static proactive levels (None, Notification, Suggestion, Intervention). For evalua-
tion, we employed an interactive video method to collect data. Using this method, study
participants were able to interact with the robot while watching a video. At certain mo-
ments, subjects were able to explicitly make decisions that directly influence the robot’s
behavior and the further course of the experiment. The results showed that trust may be
a useful adaptation criterion for user-adaptive proactive dialogue to improve cooperation.
Here, we found that especially cognition-based trust features may be used for adapting
the proactive dialogue. Regarding the influence on the cooperation, we concluded that
deciding on an adequate level of proactive dialogue based on such a trust measurement
may solely improve the social aspects of the cooperation but not necessarily its usability.
Therefore, usability features should also be integrated for dialogue adaptation. Further,
we reinforced the results from previous findings that task difficulty or complexity had a
major influence on the effect of proactive dialogue regarding usability. To use a trust
metric as an adaptation criterion during proactive dialogue, we first needed to model
trust during cooperation to finally recognise and measure trust. The development and
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implementation of such a recognition module are presented in the following section.

7.2. Implementation and Evaluation of a Trust Recognition
Module

As extensively described in Section 3.2, a (spoken) dialogue can be adapted to various
features. For example, the decision on which dialogue action to choose can be based
on solely performance-based or usability-based criteria, such as task success (Lemon,
2008; Young et al., 2013). Further, also more user-related information may be taken
into account, e.g. perceived user satisfaction with the system (D. J. Litman & Pan,
2002) or interaction quality (Schmitt et al., 2011). The latter was used by Ultes (2019)
and Ultes et al. (2015) for creating user-adaptive dialogues in an information retrieval
domain. There, it was shown that adaptive dialogue led to higher task performance
and increased the quality of the dialogue. Although being labeled as user-adaptive, the
dialogues were rather adapted to the performance of the spoken DS modules and did
not include individual user characteristics. Besides, user adaptations were conducted
for a rather soft assistance task, i.e information retrieval, in which the system was not
required to become proactive. In more complex task scenarios, e.g. decision-making,
proactive behaviour as a machine intelligence trait showed to be socially expected for
CAs. However, the experiments regarding different proactive dialogue strategies stressed
that the decision when to become proactive and to which extent largely depended on the
user and context. Further, this decision highly benefited or harmed the HCT relationship,
in case proactivity was provided adequately respectively wrongfully. Therefore, not only
usability-based measures but also the HCT relationship seemed to be useful for deciding
on appropriate proactive CA behaviour. As previous trust-related work revealed various
human, machine, and context-related factors influencing the trust relationship (Hoff &
Bashir, 2015; J. D. Lee & See, 2004; Muir, 1994; Parasuraman & Riley, 1997), an extensive
set of information needs to be taken into account for modelling trust in proactive mixed-
initiative interaction.
Although there exists a variety of data corpora (e.g. DSCT (Williams et al., 2014),

MultiWoz (Budzianowski et al., 2018)) for conventional dialogue modeling, none of them
are sufficient for modeling proactive dialogue. The main reason for this is that proactive
behaviour is simply not included in such corpora or highly underrepresented (Balaraman
& Magnini, 2020). Further, existing data corpora were also not sufficiently annotated
using trust-related features. Therefore, a novel data corpus for this purpose was created
in the scope of this thesis (M. Kraus et al., 2022b). For this, a low-fidelity CA prototype
for personal advising was developed incorporating a proactive dialogue model. The CA
was then used for collecting personal and dialogue data in a serious gaming scenario.
This resulted in a trust-annotated data corpus containing interactions with the proactive
assistance system. The corpus was then used for developing a user model for predicting
the perceived trustworthiness of a proactive system (M. Kraus et al., 2021c). A depiction
of this user modelling process is presented in Fig. 7.7. The goal here was to accurately
model and predict trust using user-, system-, and context-related features during mixed-
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Figure 7.7.: Illustration of the development process for modelling user trust.

initiative dialogue. In the following, the data collection method, details about the corpus,
and the methods for predicting the HCT relationship are described. Parts of the presented
work and results have been previously published in M. Kraus et al. (2021c) and M. Kraus
et al. (2022b).

7.2.1. Data Collection Method

For the human-to-machine data collection, a low-fidelity prototypical proactive dialogue
assistant was implemented based on our developed proactive dialogue model. The assis-
tant was embedded in a mixed-initiative serious games environment. Serious games are
“games used for purposes other than mere entertainment” (Susi et al., 2007), and are
intended to lever “the power of computer games to captivate and engage end-users for a
specific purpose, such as to develop new knowledge and skills” (Corti, 2006). Two prop-
erties of serious gaming are particularly beneficial for the approach of data acquisition
presented in this work: First, serious games are highly motivating for users and foster
engagement and intrinsic motivation (Abt, 1970). Engaged users are required for taking
the game and the assistant’s actions seriously. In doing so, an environment of risk and
vulnerability was intended to be created. Thus, trust in the system could be developed
or destroyed depending on the agent’s actions in such an environment. Secondly, testing
and evaluating policies (or in our case dialogue strategies) in the real world is too expen-
sive and cumbersome. For this reason, serious games provide a simulated reality based
on reduced-scale models for allowing problem-solving (Abt, 1970). Hence, such games
enabled the evaluation of the consequences of alternative dialogue policies on the HCT in
different situations, promoting the development of data-driven adaptive strategies.

The data acquisition itself was conducted online with crowd workers, that interacted
with the system and provided annotations regarding their perception of the system at de-
fined time steps. Objective features were automatically collected by the system itself and
combined with user annotations to be written into a database. In the following sections,
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Figure 7.8.: Illustration of the proactive assistant and its suggestion during the CEO-
game. Taken from M. Kraus et al. (2021c), reprinted according to author
rights of ACM.

a detailed description of the serious game scenario and an overview of the prototypical
system is provided. A role-playing game was selected as a scenario, in which a user took
the role of the CEO of a high-tech company that develops, produces, and sells electrically
powered cars. The user’s goal was to successfully manage the company by executing
strategic actions to maximise profits. In doing so, users had to make step-by-step deci-
sions and plan undertakings in the interest of the company, such as location planning or
personnel management. Individual decisions had consequences and affected the success
of the management.

The game was designed as a turn-based decision-making task, in which the system
sequentially presented a task step and the available choices, whereas the user could take
different actions and cooperatively solve the task with a CA. Hence, the task structure of
the game resembled that of a system-directed dialogue in which both dialogue participants
took turns, i.e. the system took an action providing task step relevant information, upon
the user took an action solving the respective task step. The game ended after a total of
12 task steps. The order of the tasks was fixed and could not be altered by the user. For
each step, several options from which the user had to select were presented. The number
of options changed from task to task ranging from a minimum of three to a maximum of
five options. The purpose of this was to vary the complexity of each task to influence the
user’s perceived task difficulty, as this showed to affect the perceived trustworthiness of
proactive behaviour in our previous experiments.

At each task step, users could execute four actions: select an option without system
assistance and continue with the game, explicitly ask the CA for a suggestion, or ask for
help. By asking for help, general information about the game is provided, e.g. which
previous decisions need to be considered at the current task step.

By asking the assistant for a suggestion, appropriate advice was provided. The user
could either accept or decline the system’s proposal. When an answer option had been
selected, the user could continue with the game.
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The success of the user’s decision-making was measured by attaching numeric scores to
the individual selection options. This allowed previous decisions to directly influence the
value of future actions. Consider the following example: User Alice is currently required
to decide on task “Research”, where a plausible research direction concerning the built-up
company needs to be chosen. This task is influenced by Alice’s selections in previous tasks
“Management” and “Banking”. Depending on the combination of selections in respective
tasks, one of the four options (Hydrogen Drive, Autonomous Driving, Battery Research,
Climate Neutral Production) would yield the most points, whereas in the worst-case
scenario a user would yield zero points minimum. The concept of a game score should
create a vulnerable but also engaging environment for the user. Thus, performance was
used as an incentive for the users to take the game seriously. The game score was based
on an artificial scoring model, particularly developed for this application.
During the game, the user was supported with decision-making by a CA. The agent was

introduced to the user as an AI-driven virtual assistant called Nao, who would provide
business advice. An anthropomorphised assistant was chosen to form a clearer separation
of task and assistance technology compared to using simple pop-up messages. For this,
the assistant was presented as a picture of the famous humanoid robot Nao from Softbank
Robotics. Nao could either provide suggestions actively or reactively. A depiction of the
CA and its proactive text messages is presented in Fig. 7.8.
Nao was designed to be an expert system avoiding the unintended side effects of in-

competent system behaviour on its trustworthiness. This allowed us to only consider the
effects of the proactive levels on the HCT. For selecting the best option per task step,
the assistant made use of a simple reasoning mechanism by knowing past user selections
and accordingly querying the game’s scoring model. Further, proactive explanations were
added to justify the behaviour of the system to take the initiative. For creating the ex-
plaining messages, a template-based approach was used. The relation between the best
option and previous user selections that led to finding this option was exploited to in-
clude information about past user behaviour in the explanation. This information was
transformed into natural language and wrapped into a predefined sentence template. For
example, “As your adviser, I recommend option A. My recommendation is based on your
choice of B in Task C, whose characteristics of D best fit our concept”.

7.2.2. System Design

For creating the virtual CA for the CEO game, we relied on the proposed cognitive archi-
tecture for proactive dialogue. The CEO game was implemented as a servlet application
based on a client-server model. On the client-side, a user played the game and interacted
with the proactive assistant using a clickable GUI. On the server-side, a dialogue control
logic received user input from the GUI and provided task-related content to the interface
by accessing a domain model. A JSON-based database served as the domain model for
the application and contained the complete game content and structure as well as the
scoring model. This entity was used to simulate the planning and reasoning components
that would be used in high-fidelity prototypes Information between GUI and dialogue
control was exchanged using HTTP client requests and Javascript forms. The system’s
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Figure 7.9.: Overview of the system’s architecture for creating a data collection environ-
ment. Taken from M. Kraus et al. (2022b), licensed under CC BY-NC 4.0
(https://creativecommons.org/ licenses/by-nc/4.0).

architecture is visualised in Fig. 7.9. The individual constituents are described in the
following.

User Interface

The GUI was created as an HTML/Javascript-based web page. The web page’s content
was created dynamically on the fly for each task retrieving content from the database
through the dialog control. In general, the tasks were presented on the GUI using the
title and number of the current task, a task description, and the different task options
(name, image). Users could interact with the GUI using its action buttons (help, suggest,
continue). The action buttons were blocked for 20 seconds for providing the user with
enough time to read the information about the task and to guarantee that the user received
the system’s proactive messages which were triggered after the same amount of time. In
this way, the CA did not interfere with the user’s process of getting familiar with the task
description.

Interaction

The dialogue control logic was implemented as an HTTP web server. It was responsible
for controlling the (proactive) interaction with the user and stored information of a game
session while interacting with a game-specific database for retrieving relevant domain in-
formation. For receiving information from the GUI and to read/write data to a database,
the server made use of the typical life-cycle methods init, doPost, and doGet. The mode
of operation of each function is described in the following:

init: This method was only called once at the initialisation of the web page and used for
retrieving the game content and the scoring model from the database.

doPost: This function was called at the start of the game and iteratively after the user had
clicked the ’continue’ button to progress with the game. At the game’s beginning,
this method initialised all parameters and randomised the timing of the proactive
dialogue strategies. Additionally, it provided the GUI with the task content and
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used methods for automatically determining the best option depending on the user’s
past behaviour and created the corresponding explanation. This behaviour was then
repeated for each task. After the user clicked the “continue”-button on the GUI’s
game web page, a JavaScript form containing objective user-related data was
passed to this function. Subsequently, the function stored the data as an attribute
of the current game session in the JSON-format. Besides the method redirected the
user to the rating web page after every three task steps for letting the user rate the
CA’s trustworthiness.

doGet: For storing the user’s self-reported user data, this method was called after the
user had clicked the “continue” button on the rating web page. Equally to clicking
this button on the game web page, a form was conveyed to this function which in
turn stored the data as JSON in the session attributes. After the fourth and final
user rating, this function collected the objective and self-reported user data. Both
data types were stored in a JSON file. The information was then written to a corpus
database and the user was redirected to the game’s ending web page.

Domain Model

The database contained models for the game content and structure as well as for the scor-
ing model, both defined in the JSON format. The game model consisted of a sequence
of task steps comprising relevant task information. Each option possessed the option’s
name, supplementary information, and a file path to a depiction of the option. In corre-
spondence to the game model, the scoring model was also constructed as a sequence of
task steps. However, the individual task steps comprised information about the influence
of previous decisions on the options of the current task step. This concept was called
“Dependencies”. If one of the options was positively influenced by a previous selection it
was valued with a score of 10, otherwise, it received a score of 0. This composition allowed
the dialogue control to determine the best selection of the current task step concerning
previous choices, which was then used as content of the proactive or reactive assistance.

7.2.3. Implementation of Proactive Dialogue Behaviour

Potential proactive behaviour by Nao was triggered after 20 seconds into the task step to
avoid disturbance of the user in getting familiar with the specific problem. Transferring
the framework of proactive dialogue act types into this particular use case scenario, NAO
possessed the following four levels of proactivity:

None: Only reactive behaviour was expressed. In case the user requested a suggestion
by the system, assistance was provided as if the Suggestion action was triggered.
For example, according to the “Research” task example, the system would respond
to Alice: “As your adviser, I recommend option ’Autonomous Driving’. My rec-
ommendation is based on your choices in Task ’Management’ and ’Banking’, whose
characteristics best fit our concept. Should we take this action?”.
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Figure 7.10.: Flowchart visualising the dialogue content of different levels of proactivity.
User utterances are coloured in blue, while system actions are red-coloured.
Taken from M. Kraus et al. (2021c), reprinted according to author rights of
ACM.

Notification: Here, the system would utter: “As your adviser, I have a suggestion.”.
After this prompt, the user could either ignore the message or proceed by selecting
the “Learn more” button.

Suggestion: The system provided a suggestion: “As your adviser, I recommend option
’Autonomous Driving”. My recommendation is based on your choices in Task ’Man-
agement’ and ’Banking’, whose characteristics best fit our concept. Should we take
this action?”. As a response, the user could either decline or accept the suggestion.

Intervention: The system took the action out of the hand of the user: ‘As your adviser, I
have chosen the option ’Autonomous Driving’. My decision is based on your choices
in Task ’Management’ and ’Banking’, whose characteristics best fit our concept”.
Afterward, the game proceeded to the next task step.

The dialogue flows of the different actions are depicted in Fig. 7.10. For gathering a suf-
ficient amount of data, the proactive dialogues were initiated at random task steps using
a restricted randomising policy for ensuring naturalness. The policy restricted proactiv-
ity to occur only on four out of twelve task steps, as too frequent system interventions
were deemed unrealistic and annoying in a counseling scenario. Further, proactivity was
restricted to occur only once within every three task steps for facilitating the annotation
process. The annotation process is described in detail in the next section.
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User-Dependent Features Context-Dependent Features Target Features
Age Proactive Dialogue Strategy Trust
Gender Task Difficulty Competence
Technical Affinity Task Complexity Reliability
Trust Propensity Task Duration Understandability
Domain Expertise User Selection Acceptance
Big 5 personality traits Suggestion Request Annoyance

Help Request User Satisfaction

Table 7.3.: Overview of the collected features using the described data collection method.
Taken from M. Kraus et al. (2022b), licensed under CC BY-NC 4.0 (https:
//creativecommons.org/licenses/by-nc/4.0).

7.2.4. Annotation Process

The annotation process was divided into two phases. First, users provided anonymised
personal information by answering a questionnaire.

Secondly, for collecting data on the perception of the proactive dialogue assistant, users
were instructed to rate their experience with the system, e.g. trust, competence, and user
satisfaction, after every three tasks. By not measuring trust at each step, it was supposed
to prevent survey fatigue of the users and preserve the participants’ cognitive loads.

The CA was designed to become proactive at one task step during each segment of
three tasks. This was intended to capture the effect of one specific proactive level at a
time. The specific task step and proactive dialogue act type were selected randomly by
the system using a uniform distribution.

During the decision-making users were unaware of the consequences of the respective
option selection, nor did they know about the expertise of the CA. This method was
intended to ensure the vulnerability of the user towards the assistant and let the user
self-explore the abilities and usefulness of the system.

For helping the users to rate their experience with the assistant, the outcome of their
choices was presented in the form of a game score after every three steps. The user
experience ratings were then attached to the previous three exchanges. For obtaining a
sufficiently large distribution of different proactive actions across all steps, a high number
of user interactions was required. Objective annotations, like task success, duration, or
the user’s actions taken, were captured by the system itself at each task step.

7.2.5. Corpus Information

In this section, the method for data collection is described in detail. Information about
corpus-formatting and associated parameters as well as a summary of collected data is
presented.
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Corpus-Formatting and -Parameterisation

A corpus for the creation of user-adaptive proactive dialogue was generated by collect-
ing data from user interactions with the described CA during the CEO game. The data
collection was centred around features known to be affecting the user’s trust in the CA.
Characteristic features from previous work on trust in automation and HCI in general
were selected. Based on literature research, 10 user-dependent and 7 context-dependent
features were considered for predicting the user’s trust. An overview of the features is
described in Table 7.3. User-dependent features were collected using a questionnaire be-
fore the user had started the game and therefore remained static throughout playing the
game. In the questionnaire, users could state their age by providing a numeric value.
Three options (female, male, diverse) were possible for expressing the gender. Personality
information was collected using the BFI-10 scale developed by Rammstedt et al. (2013).
Affinity towards technical systems was assessed using the TA-EG-scale comprising six
statements designed by Karrer et al. (2009). For measuring domain expertise, we de-
veloped our questionnaire consisting of three items for checking the user’s experience in
management. Further, propensity towards trust in autonomous systems using the scale
by Merritt et al. (2013) was measured to gain information about the user’s initial trust.
All scales were measured on 5-point Likert scales.

Context-dependent features were collected for each of the twelve task steps. Proactive
actions were annotated at each step in the format None, Notification, Suggestion, or
Intervention. Perceived task difficulty was self-reported by the user on segment-level, i.e.
after three task steps, using a 5-point Likert scale ranging from 1=“very low” to 5=“very
high”. Task complexity denoted the number of options of a specific task step and ranged
from three to five. User selection indicated the number of points a user received for his
or her decision at a task step. The minimum points a user could receive is zero, while
it was possible to gather a maximum of 40 points for one decision. Task duration was
measured in seconds for each task step. When the user triggered a suggestion or a help
request for a certain task step, either a 1 (= action triggered) were annotated. Otherwise,
a 0 (=action not triggered) was noted.

The target variable trust was measured on a 5-point Likert scale after each segment of
the game for the reasons described in the previous section. The scale ranged from 1=“very
low” to 5=“very high”. The annotated trust value was also applied to the previous three
task steps. We deemed trust to stay invariant during this time frame as only one proactive
action was triggered. Additionally, the user’s perceived competence, predictability, and
reliability to represent the user’s cognition-based trust (Madsen & Gregor, 2000) were
annotated. This was due to our previous study identifying cognition-based trust to be a
useful adaptation criterion for adapting the dialogue.

Data Summary

Data collection was conducted using the German clickworker platform. Eligibility con-
ditions required users to be aged between 18 and 60, to be a native speaker of German,
and to play the game on a desktop computer for compatibility reasons. In total 320
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#Dialogues 308
#System-User Exchanges 3696
Avg. Dialogue Duration in seconds 492 s ± 191
Avg. Duration System-User Exchange in seconds 41 s ± 16
Avg. Perceived Task Difficulty 2.6 ± 0.6
Avg. #Help Clicks 0.6 ± 1.8
Avg. #Suggestion Clicks 5.2 ± 3.3
Avg. #Total Points 154 ± 28 /210
#Proactive-None 2523
#Proactive-Notification 364
#Proactive-Suggestion 419
#Proactive-Intervention 390
Avg. User Age in years 37 y ± 11
#Male 194
#Female 113
#Other 1
Avg. Technical Affinity 4.0 ± 0.5
Avg. Experience Management 2.9 ± 1.0
Avg. Propensity to Trust 3.5 ± 0.7
#Trust-Very Low 69
#Trust-Low 336
#Trust-Neutral 1242
#Trust-High 1707
#Trust-Very High 342

Table 7.4.: Descriptive statistics of the generated corpus. Counts are symbolised with the
prefix #. Taken from M. Kraus et al. (2021c), reprinted according to author
rights of ACM.

participants were recruited. However, twelve had to be excluded due to violation of in-
structional terms and technical errors resulting in a final number of 308 users for data
collection. In advance of the start of the game, users were briefed about details of the
data survey, e.g. duration (20 minutes) and purpose of the survey. Further, participants
were informed that concentration checks were included in the ratings to take the game
and the evaluation seriously. When users did not pass the checks they did not receive
their reward. Participation was compensated with a monetary reward of 3 ¿. Further,
the actions buttons were blocked for 20 seconds to avoid users clicking through the tasks.
The details of the corpus are depicted in Table 7.4. Overall, the agent was rated gener-
ally as trustworthy with 52 % of the system-user exchanges being labeled with “High” or
“Very High”. Consequently, the expert assistance system was able to provide adequate
help as was expected per design. More interestingly, even though the assistant always
provided a correct suggestion, still 11 % of the system exchanges were rated with below
neutral trustworthiness. This could be explained either by inappropriate proactive system
behaviour or by a user’s general low tendency to trust a technical system irrespective of
its capabilities. However, the tendency to use the agent for help was evident by consider-
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ing the number of suggestion clicks. Requests for the system’s suggestion messages were
used in 43 % of the dialogue. Hence, this may be more related to the random dialogue
strategy of the system.

Requests for help regarding the principle of the game were used rarely (5 % per dia-
logue). This indicated a clear and understandable design of the developed dialogue game.

For evaluating the usefulness of the collected data, we investigated whether there existed
the same correlations between user- and system-related factors in the corpus as found in
related work. In line with related work, the user characteristics that correlated the most
with trust were the user’s propensity to trust a technical system (r = 0.32, p < .001)
and technical affinity (r = 0.23, p < .001), e.g. see Merritt et al. (2013) and J. M.
Kraus (2020). While the user’s age (r = −.005, p = 0.76) and gender (F = 0.84, p =
0.36) did not generally correlate with trust and its related concepts (also mentioned in
Hoff and Bashir (2015)), the domain expertise of an individual user showed a significant
relationship (r = 0.13, p < .001). In contrast to related work (Sanchez et al., 2014),
where a higher domain expertise related to a lower trust in the technical system, a positive
correlation was found in this corpus. Further, significant correlations between the user’s
personality and the HCT were discovered. In line with related work, a positive correlation
between extraversion (Evans & Revelle, 2008) (r = 0.12, p < .001), agreeableness (r =
0.09, p < .001), and conscientiousness (r = 0.16, p < .001) (Chien et al., 2016) and
trust was found. Additionally, a negative correlation between neuroticism and trust was
found (r = −0.10, p < .001). This was also indicated by a previous study of Evans
and Revelle (2008). As the corpus was annotated with only one trust value, including
more items may contribute to the robustness of the target variable. Thus, we tested
the monotonicity between trust and respectively competence (r = −0.73, p < .001),
reliability (r = −0.70, p < .001), and predictability (r = −0.21, p < .001). The results
showed that a combination of the variables should have more predictive power, especially
since cognition-based trust was identified to be highly influenced by the levels of proactive
dialogue.

The proactive actions did not differ significantly regarding their influence on the sys-
tem’s perceived trustworthiness (F = 0.98, p = 0.40). Consequently, there seems to exist
no “one size fits all” solution to designing proactive dialogue strategies. However, this
could be expected as we randomly triggered the proactive actions without taking into
account user features or context. Later in this thesis, the personal and context informa-
tion gathered was used for creating a user simulator (see Section 7.3). The simulator was
intended to train appropriate proactive dialogue strategies.

Furthermore, the results highlighted the importance of the system’s perceived com-
petence, reliability, and understandability for the HCT relationship in short-term inter-
actions with proactive agents as they showed comparable correlations to features that
contribute to trust. Therefore, we deemed the modeling of a user’s cognition-based trust
to be relevant for adequately predicting the user’s perceived trust in a virtual CA.

For predicting the user’s perceived trust in the system at each task step, feature engi-
neering and several ML algorithms were applied to the presented corpus. In the following,
we describe in detail the steps taken for adequately modelling and predicting trust based
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Features Trust Competence Reliability Understandability

Trust r = 0.32 r = 0.30 r = 0.29 r = 0.05
Propensity p < .001 p < .001 p < .001 p = .002
Technical r = 0.23 r = 0.20 r = 0.22 r = 0.10
Affinity p < .001 p < .001 p < .001 p < .001
Age r = −.005 r = 0.02 r = −0.03 r = 0.02

p = 0.76 p = 0.19 p = 0.12 p = 0.30
Gender* F = 0.84 F = 1.38 F = 0.15 F = 4.35

p = 0.36 p = 0.24 p = 0.70 p = 0.04
Domain r = 0.13 r = 0.08 r = 0.08 r = 0.25
Experience p < .001 p < .001 p < .001 p < .001
Neuroticism r = −0.10 r = −0.12 r = −0.10 r = −0.05

p < .001 p < .001 p < .001 p = .002
Agreeable- r = 0.09 r = 0.13 r = 0.11 r = −0.06
ness p < .001 p < .001 p < .001 p < .001
Conscien- r = 0.16 r = 0.17 r = 0.16 r = −0.02
tiousness p < .001 p < .001 p < .001 p = 0.28
Extraversion r = 0.12 r = 0.14 r = 0.12 r = −0.03

p < .001 p < .001 p < .001 p = 0.06
Openness r = 0.03 r = 0.02 r = 0.04 r = 0.04

p = 0.07 p = 0.17 p = 0.02 p = .008
Proactivity* F = 0.98 F = 0.37 F = 0.62 F = 0.19

p = 0.40 p = 0.77 p = 0.60 p = 0.91

Table 7.5.: Correlation between the corpus features and the trust-related target variables.
Correlations measured using spearman’s r, except where noted. * indicates
usage of a one-way ANOVA for comparing the effect of categorical values on
the target variables.

on this corpus.

7.2.6. Predicting Trust for Proactive Dialogue Adaptation

Analysis of the corpus revealed several outliers concerning the duration of an exchange.
For example, some exchanges lasted for over eight minutes, while the average duration of
a system-user exchange was 41 seconds. A reason for this was that the proactive dialogue
game was performed using a web browser. Therefore, users could interrupt the game at
any time to resume later on. Hence, such outliers indicated user disengagement from the
crowdsourcing task. This possibly negatively influenced the user’s trust annotation and
created noisy data. Therefore, exchanges with a duration of over two minutes as well as
the following exchanges of the particular dialogue game were discarded. In doing so, only
coherent user engagement was aimed to be represented in the data. This resulted in 3161
usable exchanges for online trust prediction. As features for the prediction, we selected
all corpus parameters. This was grounded on the findings of the corpus analysis and the
preceding considerations in related work.
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Figure 7.11.: Modelling of temporal information in the interaction parameters used as
input for trust prediction. Taken from M. Kraus et al. (2021c), reprinted
according to author rights of ACM.

The corpus parameters comprised numerical as well as categorical values. For repre-
senting all parameters as a numerical input vector, categorical features were encoded in a
one-hot vector. As the numerical values were either measured on ordinal scales (e.g. trust
propensity) or metric scales (e.g. age), these values were standardised for comparability
using z-transformation. Encoded categorical and standardised numerical parameters were
then concatenated to a feature vector totalling 27 entries for each exchange.

As trust is a dynamic variable (Hoff & Bashir, 2015) and depends on previous interac-
tion with the proactive agent, each feature vector was enriched with temporal information.
Therefore, the non-static, i.e. interaction parameters, were used to artificially create tem-
poral features. This was conducted by taking means from the turn-based information for
a window of the last three system-user-exchanges and the complete dialogue up to the
current exchange (see Fig. 7.11). This approach is similar to the modelling of temporal
information for IQ estimation (Ultes et al., 2015).

The total size of the feature vector containing personal user parameters PUP (12 en-
tries), interaction parameters IAP (15 entries), and temporal interaction parameters TIP
(30 entries) amounted for 57 features.

For considering the effects on short-term trust during the action, we calculated a com-
bined target variable as the rounded mean of the labels for trust, competence, reliability,
and predictability. This value ranged between 1 and 5 as a result of using a Likert scale.
As we modelled trust and its related concepts on a discrete, ordinal scale, the prediction
problem was formulated as a multi-class classification task. The target classes were the
distinct trust values. By combining the variables the prediction was also supposed to be
more robust to outliers, i.e. noise. However, this also contributed to the skewness of the
distribution of the labels towards labels 3 and 4, while the other labels were annotated
significantly less. For facilitating training on an imbalanced data set, class weights were
balanced before classifier training. Three machine-learning approaches were compared for
solving the prediction task; an SVM, XGB, and a GRU-based RNN approach. The SVM
was trained using all parameter sets {PUP, IAP, TIP}. For training the XGB, input
variables were the same features from the described groups as for the SVM. Contrary to
these static approaches, where temporal features were required to be modelled by hand,
also a sequential approach using a RNN was implemented. In doing so, temporal infor-
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F1 UAR κ ρ eA
SVM All 0.415 0.512 0.224 0.293 0.867
SVM PUP 0.332 0.506 0.182 0.294 0.852
SVM IP 0.256 0.388 0.143 0.208 0.809
XGB All 0.377 0.529 0.212 0.279 0.854
XGB PUP 0.316 0.510 0.178 0.262 0.821
XGB IP 0.269 0.438 0.139 0.192 0.800
GRU All 0.381 0.479 0.198 0.282 0.875
GRU PUP 0.273 0.472 0.143 0.228 0.803
GRU IP 0.211 0.436 0.096 0.140 0.772

Table 7.6.: Dialogue-wise Cross-Validation. Taken from M. Kraus et al. (2021c), reprinted
according to author rights of ACM.

mation could be learned automatically instead of being provided manually (Rach et al.,
2017; Ultes, 2019). Therefore, only the exchange level parameters were used as input for
the network {IAP}. For allowing trust estimation using an GRU approach, the exchange
level parameters of a particular time step t were required to be included in a sequence.
Therefore, the classification problem was transformed in such a way that the trust value
at time t was estimated for the corresponding sub-dialogue sequence consisting of all
exchanges from the beginning up to t. For guaranteeing a consistent sequence length
of twelve, which is congruent to the number of total dialogue steps of the game, future
information beyond time step t was encoded using zero vector padding.

Experiments and Results

For comparison, all classifiers were trained and tested on the previously described corpus.
The SVM was implemented using the scikit-learn SVC library based on LIBSVM (Chang
& Lin, 2011). The deep neural net model was implemented with Keras (Chollet, 2015),
while the XGB model was implemented using the XGBoost 1.3.3 library.

As evaluation measures, the F1-score, UAR, linearly weighted Cohen’s κ, and Spear-
man’s ρ were used. For deciding on an adequate proactive action based on the user’s
trust level, it was crucial to also consider the extreme cases, i.e. a trust level of 1 and 5.
As these classes were underrepresented in the corpus, we optimised the classifiers regard-
ing F1-score and UAR for classifying all labels as correctly as possible and not only the
majority classes.

As trust was measured on an ordinal scale, the distance between a wrong prediction
and the real class was important, particularly given a real-life application. Therefore,
the number of guesses in which the classification was wrong only by one class, e.g. an
instant of trust 4 classified as trust 5 or vice versa, was computed (Rach et al., 2017;
Ultes, 2019). Therefore, the extended accuracy metric eA was used. Due to the novelty
of our approach, the evaluation baseline was a random prediction (F1 = 0.2, UAR = 0.2,
κ = 0.0).

Experiments were conducted using a dialogue-wise and a classical stratified 10-fold
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Figure 7.12.: Confusion matrices for each classifier. The top row shows the classification
results using the classical cross-validation setup, while the bottom row shows
the results using the dialogue-wise setup. The percentages of the class-wise
recognition results are colourised. Taken from M. Kraus et al. (2021c).

cross-validation setup. First, a dialogue-wise setup was employed to optimise the hyper-
parameters of each classifier on 10 folds of disjoint sets of dialogues.

In doing so, the classifiers were tested on completely new dialogues as opposed to po-
tential overlapping sub-dialogues in the training and test sets using the classical approach.
Hence, the classifiers’ performances were deemed to be better generalisable. A stratified
approach was used due to imbalanced trust labels. Hyper-parameter optimisation was
conducted using a combination of grid and heuristic search. The optimal model of the
SVM was constructed with a radial basis function as kernel, a regularisation parameter
C = 1, and a scaled γ. The optimal XGB model was trained against mlogloss using
n = 1000 estimators with a maximum depth of 3 and a learning rate of 0.01. The GRU-
model was trained against cross-entropy loss using the Adam optimiser (Kingma & Ba,
2014) with a learning rate of 0.0001 and a mini-batch size of 16, run for a total of 100
epochs. The GRUs consisted of 60 neurons and were each followed by a dropout layer.
The results are presented in Table 7.6.

To get an understanding of the impact of solely personal user information and (tem-
poral) interaction parameters on the classification performance, evaluation results con-
sidering only these parameters as input variables are also provided. However, the results
of the dialogue-wise setup were too pessimistic, as a scarce amount of dialogues (< 300)
was used. Furthermore, the minority classes were underrepresented in the training and
test sets due to imbalanced data, complicating the training procedure. Therefore, the
optimised models on the dialogue-wise setup were also evaluated using the classical cross-
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F1 UAR κ ρ eA
SVM 0.533 0.654 0.363 0.426 0.895
XGB 0.435 0.660 0.342 0.399 0.879
GRU 0.465 0.633 0.296 0.379 0.906

Table 7.7.: Classical Cross-Validation. Taken from M. Kraus et al. (2021c), reprinted
according to author rights of ACM.

validation setup. These results are visualised in Table 7.7.

7.2.7. Discussion

In the following, we discuss the results of the experimentation for developing a trust
estimator using different machine-learning predictors. Here, we emphasise whether trust
can be predicted accurately using the proposed model. Further, the limitations of the
data collection method and the trust model are explained.

Predicting Trust using Statistical Models based on Context and User-Related
Features

The results showed that each classifier performed well on the given prediction task, clearly
outperforming the random baseline. The SVM model performed best overall by achieving
an F1-score of 0.533, κ of 0.363 and a ρ of 0.426. XGB provided the best result for UAR
with a value of 0.660, while the GRU network showed the best accuracy with an eA of
0.906. An explanation for the advantage of the SVM over the other approaches could be
that deep learning approaches and boosted trees typically require large data to perform
well (LeCun et al., 2015). However, the used data set was quite scarce which favoured the
usage of an SVM. Overall, all classifiers outperformed a random baseline, which validates
the applicability of the developed user model for predicting trust during interaction with
a proactive dialogue agent. Furthermore, the presented approach allowed us to predict
well the two extremes of the combined trust scale, i.e. 1 and 5, with an accuracy of
over 80 % in the classical cross-validation setup. These two trust levels were supposed to
be especially useful when considering trust for developing proactive dialogue strategies,
as they were the best indicators of why a specific proactive strategy failed respectively
succeeded.

A further finding of the experiments was that personal user information had more
impact on the trust prediction than the interaction parameters. This was not surprising,
as the personal user information features could be assigned to two (dispositional and
situational) of the three trust layers according to Hoff and Bashir (2015). Therefore, these
features represented the user’s tendency to trust in general. Contrary, the interaction
parameters represented the third layer – learned trust in the system – which is subject
to change during interaction depending on the system’s performance and design. Hence,
these features measured the subtle changes in the user’s trust in the proactive agent.
However, combining both features showed the best results as we expected.
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As all classifiers achieved an eA of at least 0.879, i.e. over 88 % of the classifier’s
guesses were usable, the proposed trust prediction model may be useful for application in
real-life scenarios. For example, Ultes (2019) used an BiLSTM-based IQ predictor with
an eA of 94 % for modelling the reward function of an RL approach for training user-
adapted dialogue policies. Similarly, the presented trust prediction model could be used
to develop proactive dialogue strategies. This can be used to design trustworthy CAs in
various application scenarios where users collaborate with a system on a certain task, e.g.
decision-making or recommendation systems. For implementing a proactive DS based on
a user trust model, several user-, and situation-specific features needed to be acquired.
Some user features are hard to obtain in real-world applications but may be collected
implicitly, e.g. personality data, or by asking the user explicitly for the information. In
doing so, it may be possible to investigate different aspects of proactive behaviour and
their effect on the HCT relationship.

Limitations

A limitation of the presented data collection method was that only the assistant itself
used natural language for communication, while the user interacted via actions buttons
that trigger predefined utterances. Allowing users to interact with the interface using text
or even speech input would create another great possibility to capture relevant features
(lexical, linguistic, etc.) for predicting the effect of the proactive actions. However, a more
complex communication channel would also add noise and increase the possibility of fail-
ures, which are independent of the actions and only related to the system’s performance
regarding speech recognition and understanding. A more restricted input channel was
beneficial for establishing safe communication between assistant and user. Another draw-
back was that a perfect system endowed with expert knowledge was used. In a real-world
scenario, a system that always provides the best counseling is unrealistic. However, as
the proactive behaviour was randomised and limited to a reasonable frequency, a certain
naturalness was added to the agent, as absent system activity could have been perceived
as unknowing behaviour. In future work, an error model could be included in the system
to simulate not ideal counseling. Here, it may be interesting to study whether proactive
behaviour remedies a low system performance. A limitation of training the classifiers was
that they were trained on a relatively scarce data set. Training with more data could
provide more generalisable results.

7.2.8. Conclusion

For implementing a trust recognition module, several individual processing steps were
necessary. First, we described a method for creating a corpus of proactive dialogue using
a human-to-machine approach. Therefore, an autonomous assistant embedded in a serious
game scenario was developed and implemented as a web service. Data from 308 dialogues
were collected via crowdsourcing and annotated with several user-dependent, context-
dependent, as well as several target variables, whereas the focus was set on the HCT
relationship. Analysis of the corpus revealed the usefulness of the collected data and
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the necessity to consider proactive actions in combination with user characteristics and
personality when developing trustworthy strategies. Using the rich feature pool of this
corpus allowed us to develop a novel user model for predicting trust in interactions with
a proactive CA. Therefore, trust parameters were categorised into user-, system-, and
context-dependent features. This allowed us to predict trust online during interaction with
a virtual CA using the developed set of proactive dialogue action types. For predicting
trust, three classification algorithms (SVM, XGB, GRU) were trained and tested on the
proactive dialogue corpus. The experimental results showed that the model was well-
suitable for predicting trust in proactive dialogue. Each applied classifier proved to be
useful for the classification task, showing reasonable recall and accuracy. However, an
SVM-based model provided the most well-rounded performance. For this reason, we used
this model for recognising the user’s trust during the interaction. Further, the collected
data allowed us to develop a socially-aware user simulator, that was used to create a train-
and test environment for developing proactive strategies. This environment enabled the
exploration of the effect of different proactive dialogue strategies on the HCT relationship
inexpensively and efficiently. The development of the user simulator is described in the
following.

7.3. Implementation of a Trust-Aware User Simulator for
User-Centred Proactive Dialogue Modelling

For allowing the implementation of a user-centred proactive dialogue model, a corpus-
based user simulator was developed. Here, the main objective was to replicate realistic
user characteristics, task, and trusting behaviour for training and testing various dialogue
policies. Task behaviour implied the actions taken by users on a sub-task level basis
and their effects on task duration and the game score. Trusting behaviour implied the
user’s perceived trust level per task step. The simulation relied on relevant personal and
dialogue data gathered from the previously described corpus collection. In doing so, socio-
demographic features (age, gender), personality traits, and other user-specific information
could be simulated. Further, this enabled us to reproduce user behaviour as a reaction
to proactive system actions. Both, simulated user personal information and behaviour,
were then used to estimate the current trustworthiness of system behaviour. This in
turn allowed the integration of trust in the dialogue state and into a reward function for
creating trust-adaptive proactive dialogue strategies. In the following, the architecture of
the developed user simulator and an evaluation regarding its realism and usefulness for
application is presented.

7.3.1. User Simulator Architecture

User simulation was based on two components: a user model and a user dialogue manager.
The user model contained all the necessary information for modelling distinct user types
whose specific task and trust behaviours were imitated. The user dialogue manager
was designed as a rule-based agent that triggered various behaviours dependent on the
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proactive CA’s actions and the current task context. First, the user model is described
in detail.

User Model

For creating distinct user types, the corpus’ user-dependent information was used: age,
gender, technical affinity, the propensity to trust, domain expertise, and the Big 5 per-
sonality traits. In the first step, random distributions for these variables were calculated.
Except for gender, which was randomised based on the gender’s likelihood of occurrence
in the corpus, all other variables were randomised using truncated Gaussian distributions.
Truncated normal distributions were necessary, because technical affinity, the propensity
to trust, domain expertise, and personality traits were rated on 5-point Likert scales.
Also, a user’s age was limited in the data collection process due to the study restrictions
only allowing participants between the age of 18 and 60. Our definition of a user’s task
behaviour comprised the selection of options, which was represented as the game score,
help requests about the game, and suggestion requests towards the CA.

While all features of the created user types were used for trust estimation, we only
deemed three variables relevant for the specific user’s task behaviour: domain expertise,
the propensity to trust, and technical affinity. Domain expertise was deemed relevant for
task behaviour as it would influence their decision-making. A novice would probably ask
more for recommendations than a more experienced user. Propensity to trust was used
because we assumed that a user’s reactions to proactive behaviour would be dependent
on their attitude to trust an autonomous system. For example, a low propensity to
trust may lead to rejections of the CA’s offers or not asking the system for assistance.
Similarly, a user’s technical affinity was supposed to influence the decision-making process
in collaboration with an autonomous technical system.

For simplifying the selection of specific task behaviour, these three user traits were
transformed into binary values. When a generated trait value was above or equal to
the threshold of 3 on the 5-point Likert scale, it was represented with a value of “1”.
Otherwise, it was represented as a “0”. The purpose of this transformation was to reduce
the rule space for simulating more profound user behaviour.

Finally, user-specific task behaviour and the CA’s actions affect the duration and the
perceived difficulty of a specific task step. Both task-related variables were randomised
also using truncated Gaussian distributions, as the duration of a task step was always
greater than 20 seconds and perceived task difficulty was measured on a 5-point Likert
scale. The user’s task behaviour was based on a pre-defined rule set. This was generated
by a user dialogue manager. The user’s DM process is described in the next section.

User Dialogue Manager

For generating task behaviour, two different approaches were used: complexity-based and
task-step-based. The serious dialogue game consisted of 12 task steps with varying com-
plexities. Complexity in this context meant the number of options from which a user had
to select one for decision-making. As previously mentioned, the number of options ranged
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Algorithm 2: Pseudo-code for simulating user behaviour dependent on the
task-step-based approach.

generate user traits;
load step based data;
step number = 0;
game ended = False;
while not game ended do

receiveproactive act step number ++;
associatecomplexitywithstepnumber if step number == 12 then

game ended = True;
end
The relevant user traits domain experience, propensity to trust, and technical affinity

are represented as tuples of three binary values;
if relevant user traits == 000 then

if step number == 1 then
if system action == None then

trait data, step data = get data for None 1 000;
if trait data < 10 then

trait data = fallback
end
if step data < 10 then

step data = fallback
end
sugg request = generate sugg request(trait data, step data);
help request = generate help request(trait data, step data);
if sugg request == Falseandhelp request == False then

duration data, difficulty data = get data for None 1 000 False False;
if duration data < 10 then

duration data = fallback
end
if difficulty data < 10 then

difficulty data = fallback
end
duration = generate duration(trait data, step data, duration data);
difficulty = generate difficulty(trait data, step data, difficulty data);

end
if sugg request == Falseandhelp request == True then

· · ·
end
· · ·
points =
generate points(step number, trait data, step data, sugg request, help request);

end

end

end

end
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between three and five options per task in a sequentially repetitive order, i.e. 3, 4, 5, 3, 4, 5.
Using the complexity-based method, the user’s task behaviour was simulated depending
on the CA’s action and the complexity of a task step. For example, if the current proac-
tive dialogue act type was Notification and the current task step had a complexity level
of 3, the simulator would use the corpus data distributions for these specific cases for
generating task behaviour.

Contrarily, the task-step-based method incorporated information from a certain task
step and the CA’s action. For example, if the current proactive dialogue act type was
Notification and the user was working on the seventh task step, the simulator would use
the corpus’ data distributions for these specific cases for generating task behaviour.

An advantage of including task complexity in DM was that user behaviour could be
generated in a more generalised way, and was not dependent on the particular task steps.
However, the advantage of the task-step-based method was that sequential dependencies
between the task steps could be modelled better. Thus, there existed a certain trade-off
between both variants. In the following, both approaches are described in more detail.

For both approaches, user behaviour was simulated by generating values for the game
score, whether a user initiated a suggestion or help request, along with the corresponding
duration of the task step and perceived task difficulty. The probabilities for each specific
user behaviour were based on structured data sets depending on the user model and the
current dialogue situation.

First, the overall data set was sorted concerning the occurrences of user behaviour
dependent on the relevant user traits. Therefore, the user traits domain experience,
propensity to trust, and technical affinity were represented as tuples of three binary
values, i.e. “000” to “111”. For example, “000” represented low domain experience, low
propensity to trust, and low technical affinity.

Contrary, “111” represented high domain experience, high propensity to trust, and high
technical affinity. Afterward, the data set was structured for the individual approach.

According to the complexity-based method, the already categorised user-dependent
data was first summarised based on the tasks of the same complexity. For example,
user behaviour occurrences from task steps 1, 3, 4, and 7 were summarised, as they all
had three options the user could select from. Next, the processed data was summarised
according to the used types of assistant proactivity, i.e. None, Notification, Suggestion,
and Intervention. As the last step, the resulting data was then structured according to
the occurrences of help and suggestion requests. These were also represented as binary
values. For example, occurrences of both help and suggestion requests were classified
as “11”, whereas non-occurrences of both features were labeled as “00”. The task-step-
based approach used the same method. However, categorised user-dependent data was
here summarised based on the respective task step and not based on the complexity of
the task. For example, user behaviour for the first, second, third, etc. task steps was
summarised.

Each approach also used fallback data sets in case the occurrences of specific parameters
did not exceed a specific threshold. If there was not enough data for a specific user
trait, i.e. occurrences for a trait were below 10, then this parameter was omitted and
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the means and standard deviations or counts of all user traits were used for calculating
the probabilities for user behaviour generation. This was also done if the classification
depending on the complexity, the step number, and help as well as suggestion requests
resulted in a too low number of data for probability generation.

The simulation process using the task-step-based approach is depicted in Algorithm
2. The algorithm for the complexity-based approach was structured analogously. Here,
complexity-based data distributions were loaded instead of task-step-based distributions.
Further, the if-statement did not consider the specific task step number, but the complex-
ity level. In the following, the algorithmic process is described. First, a user type with
specific traits was generated and the approach-specific structured data sets were loaded.
Afterward, the dialogue game was initialised and the task steps (1-12) with the respective
complexities (3,4,5) were iterated. For each task step, values for help and suggestion
request, duration, perceived difficulty, and the achieved game score were calculated de-
pending on the user type and CA’s action. For this, the relevant traits’ categories were
queried, e.g. “000”, and the context was determined, i.e. proactive system action and
complexity or task step number. Here, it was checked whether the fallback threshold had
been exceeded. If this was not the case, the personality traits would be neglected and
overall means were used for probability calculation. Afterward, it was simulated whether
a help and/or suggestion request would be set. Again, a fallback check for the respective
request types was conducted. Depending on the specific case the perceived difficulty, task
step duration, and the achieved game score were simulated.

7.3.2. Experiments and Results

For deciding which approach to use for training and testing trust-adaptive proactive
dialogue strategies, we conducted an evaluation. The evaluation aimed to determine the
degree of realism of each user simulation approach and to select the approach that was
the closest to realistic user behaviour as seen in the data. For this, we simulated user
behaviour using both approaches based on the user types and CA actions that occurred
during the data collection process with real users. We then compared the simulated user
behaviour with the actual behaviour. For comparison, we used the Kullback-Leibler (KL)
(Kullback & Leibler, 1951) distance between distributions of behaviour generated by the
user simulator and real users. KL distance is a measure of how one probability distribution
Q is different from a second, reference probability distribution P :

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(7.1)

where the distances range from 0, i.e. distributions are equal, to 1, i.e distributions
are completely different. The lower the distance between the distributions, the more
realistic is the respective user simulator. For evaluation, we calculated the distances of
distributions between the complexity-, respectively task-step-based approach and actual
behaviour for each task step. In Table 7.8, the overall mean distances for each task step as
well as the individual distances for the game score, duration, help and suggestion request,
and perceived difficulty are listed.
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Complexity-based M (SD) Task-step-based M (SD)
KL MSE KL MSE

Game Score 0.369 (.185) 73.19 (64.6) 0.354 (.166) 70.94 (64.7)
Duration 0.261 (.064) 1722 (844) 0.244 (.079) 1530 (104e1)
Difficulty 0.145 (.011) 1.909 (.155 ) 0.149 (.008) 1.887 (.217)
Help Request 0.029 (.009) 0.088 (.028) 0.031 (.011) 0.097 (.035)
Suggestion
Request

0.084 (.006) 0.352 (.025) 0.082 (.010) 0.337 (.034)

Overall 0.178 (.151) 359.5 (780) 0.172 (.142) 320.6 (765)

Table 7.8.: Descriptive statistics of the KL distances and MSEs for each user simulator
type with regard to the measures of game score, duration, help and suggestions
request, and perceived difficulty.

7.3.3. Discussion

The results showed that both user simulator types had a comparable performance. There
were no significant differences for all measured features (all p-values p > 0.05). As can
be seen from Table 7.8, the task-step-based approach produced a slightly more realistic
behaviour than the complexity-based method. This was mostly due to simulating more
realistic game scores and durations of specific task steps. The reason why the task-step
approach generated slightly more realistic values may be that the averages of distinct
task steps were used to create the distributions. Using the complexity-based method,
averages values over four task steps of the same complexity were applied for distribution
creation. Help and suggestion requests were simulated almost identically to the observed
user behaviour during the data collection. Due to the slightly more realistic results, we
selected the task-step-based approach creating the train- and test-environment for the
implementation of user-centred proactive dialogue.

7.3.4. Conclusion

Based on the created data corpus, we developed two different types of user simulators.
a complexity- and a task-step-based approach. Both types comprised a user model that
maintained the distinct user data distributions, either dependent on the complexity levels
or the respective turn number of the specific task steps. A rule-based user dialogue
manager then generated user behaviour in the form of a game score, the task step duration,
perceived task step difficulty, and whether a help or suggestion request occurred. This
generation was based on the specific simulated user type and the proactive dialogue act
type. As the task-step-based approach generated more realistic user behaviour, this type
of user simulator was employed for training and testing rule- as well as RL-based proactive
dialogue strategies. The implementation and evaluation of these strategies are presented
in the following.

220



7.4. Implementation and Evaluation of Trust-Adaptive Proactive Dialogue Strategies

7.4. Implementation and Evaluation of Trust-Adaptive
Proactive Dialogue Strategies

The overall goal of this thesis was to improve the cooperation with CA by utilising user-
centred proactive dialogue modeling. For achieving this goal, a CA needs to express task-
oriented and also socially effective proactive behaviour. Whether proactive behaviour is
socially effective can be determined by estimating the user’s perceived trust in the system:
inappropriate system proactivity would result in lower trust than adequate behaviour.
However, as seen in our previous studies, the development of trustworthy proactive dia-
logue strategies is quite user- as well as context-dependent. Therefore, we made use of
our previously described trust estimation module for integrating trust as a user state in
dialogue processing (M. Kraus et al., 2022d). This allowed the development of dialogue
strategies or policies that take into account the user’s perceived trust state for socially
appropriate decision-making. By also including the current dialogue context and usability
measures for action selection, we aimed to improve the proactive dialogue model concern-
ing task success, efficiency, and thus fostering enhanced cooperation with the CA. In the
following, we present a rule-based and a RL-based approach for enabling such user-centred
proactive dialogue strategies. Using the rule-based approach, an explicit adaptation mech-
anism was implemented, while the RL-based approach used the estimated trust value in
the dialogue state as well as in a reward function for implicitly learning an adaptation
mechanism. Parts of the presented work and results have been previously published in
M. Kraus et al. (2022d).

7.4.1. Rule-based Strategy

For adapting the dialogue to users and their current situation, adequate adaptation rules
are required. Here, we developed rules for proactive action selection dependent on the
present dialogue state. The dialogue state for rule-based action selection comprised the
complexity level of the current task step and the trust value of the last task step. Task
complexity was deemed to influence the need for proactive behaviour from a usability
perspective. For example, based on our previous results, a task with high complexity was
ought to require a higher degree of system proactivity than tasks with lower complexity.
Further, we deemed the last task step’s trust value to indicate whether a user wished for
proactive system behaviour which influenced the system’s trustworthiness. For example,
if the last proactive action was perceived as inappropriate by the user and resulted in a
low trust value, the system may need to switch its strategy and act according to a lower
level of proactivity.

However, hand-crafting rules for these two adaptation criteria were not trivial. Taking
into account the four possible proactive system actions (None, Notification, Suggestion,
Intervention), three different levels of task complexity, and five possible trust values, the
amount of valid rules was 415 = 1.073.741.824. Thus, we used a randomised approach
for finding an appropriate rule-based strategy. The approach was inspired by the grid
search method for hyper parameter tuning for ANNs. The rule set for selecting actions

221



7. Improving Cooperation by Implementing User-Centred Proactive Dialogue Strategies

Figure 7.13.: Illustration of the proactive assistant and its suggestion during the serious
dialogue game. Taken from M. Kraus et al. (2022d), licensed under CC
BY-SA 4.0 (https://creativecommons.org/ licenses/by-sa/4.0).
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Figure 7.14.: Illustration of the RL approach for trust-adaptive DM.

was modelled using if-else statements. First, we checked the current complexity of the
task step, i.e. 3, 4, 5, and then selected one action dependent on the last trust value.
In summary, this resulted in 15 rules for selecting a proactive action. For finding ap-
propriate rules concerning the user’s perceived trust in the CA, actions were randomly
selected for these 15 rules and evaluated with 500 simulated users. To generate a broad
set of different rule-based strategies, we applied 100 random action initialisation. Each
rule-based strategy was tested on the same set of simulated users to guarantee compara-
bility. Considering the different evaluations, we selected the strategy which resulted in
the highest mean value for perceived user trust, by also taking into account the adequate
task success and efficiency of this strategy. The rule-based strategy that was used for
comparisons with the static, random, and the RL-based strategies is visualised in Fig.
7.13. Due to the difficulty of finding adequate hand-crafted rules for this problem, we
made use of ML techniques to let the CA explore effective strategies during training with
the user simulator. This approach is described in the following.

7.4.2. Reinforcement Learning Strategy

RL allows an agent to learn strategies for solving complex problems by maximising a
reward. This reward is a feedback signal from the agent’s environment for determining
the goodness of agent behaviour. To apply a RL-based approach for the adaptation of
proactive dialogue behaviour, it was required to model the interaction between the user
simulator and the CA as an MDP. Thus, dialogue states, actions, and rewards needed
to be defined. Further, the states had to be modelled according to the Markov property,
so that the evolution of the dialogue only depended on the present state and not the
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history. The RL approach is depicted in Fig. 7.14. For modelling the dialogue state, we
included the current task step sstep and the level of task complexity scomplexity. These
states represented the agent’s static knowledge of the task, as the dialogue game consisted
of 12 task steps and three recurring levels of complexity.
Dynamic knowledge was represented by integrating the last known estimated user trust

value strust, as well as the task success ssuccess and the duration sduration of the last task
step. These values changed dynamically depending on the context of the interaction.
Trust (1-5) and task success (0-40) could respectively take five different values, while
duration was measured in seconds and could take 100 different values ranging from a
minimum of 20 seconds to 120 seconds. Consequently, the state space

S = {sstep, strust, scomplexity, ssuccess, sduration} (7.2)

had a dimension of 90000 different states. For modelling the action space

A = {anone, anotification, asuggestion, aintervention} (7.3)

we relied on our taxonomy of proactive dialogue acts: None anone, Notification anotification,
Suggestion asuggestion and Intervention aintervention. The reward function was modelled
in order to promote usability-focused and trustworthy proactive behaviour. As trust-
worthy proactive dialogue behaviour does not necessarily imply task effective or efficient
behaviour and vice versa, several aspects were taken into account for designing the re-
ward function. To enable both trustworthy, successful, and efficient proactive dialogue
behaviour, the reward was modelled as the sum of the rewards for estimated trust, task
success, and task duration

rt = rtrust + rsuccess + rduration (7.4)

In the following, we present the design of the individual reward functions. The reward
function based on the trust rating for each task step was modelled in such a way that high
levels of trust, i.e. trust levels 4 and 5, were rewarded with a positive numerical value,
while low levels of trust, i.e. 1 and 2, were punished with a negative numerical value. A
medium level of trust received zero rewards.
This resulted in the following reward function for training trustworthy proactive be-

haviour.

rtrust =



20 , if strust = 5
10 , if strust = 4
0 , if strust = 3
−10 , if strust = 2
−20 , if strust = 1

(7.5)

For modelling the reward function based on task step success, we first measured the game
score mean for each individual task step taken from the data collection. This was then
used as decision criterion for assigning a specific numerical reward. Above average task
success resulted in the highest reward regarding task success. The reward value was
reduced step-wise for task success scores that were equal to the mean, were below it, or
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were equal to the minimum. In conclusion, the reward function concerning task success
was defined as follows

rsuccess =


15 , if ssuccess > mean
10 , if ssuccess = mean
5 , if ssuccess < mean
0 , if ssuccess = min

(7.6)

Similarly, we measured the mean duration of each task step for modelling the reward
function based on task duration. Here, we defined the reward function for promoting task
efficient behaviour, i.e. the duration of a specific task step was below or equal to the mean
duration, and not rewarding actions that resulted in a task duration that was above the
average. Thus, this culminated in the following reward function

rduration =

{
10 , if sduration ≤ mean
0 , if sduration > mean

(7.7)

Note that we weighted the individual reward functions regarding their importance. Fore-
most, we wanted to achieve trustworthy behaviour. Therefore high trust received the
highest possible reward amongst all functions, whereas low trustworthy behaviour even
resulted in negative numerical scores. For fostering high usability, we also rewarded suc-
cessful and efficient actions. However, unsuccessful and not efficient behaviour did not
receive a negative reward for balancing the training more to benefit trustworthy dialogue
actions.

Using the presented reward function, the CA’s proactive dialogue policy was then
trained in numerous interactions with simulated users. As the state space was quite
large with ≈ 90.000 possible states, conventional model-free Q-leaning was not feasible.
For this reason, we implemented a DQN (Mnih et al., 2015) approach with a stacked
MLP for function approximation. Using a DQN is sample efficient and can handle dis-
crete state and action spaces, as used in this thesis. For implementing the DQN, we
utilised the stable-baseline implementation 3. The architecture of the DQN consisted of
two MLP-layers with 256 neurons, an input layer sized in the dimension of the state space,
and an output player for producing the Q-values of the dialogue actions. For creating the
output a softmax layer is used. Using heuristic search, we applied the following hyper
parameters to the DQN. For discounting future rewards, we set γ = 0.99. Further, we
trained the network using the RMSProp-algorithm with the ADAM optimiser (Kingma
& Ba, 2014), a learning rate of 0.00005, and a mini-batch size of 64. The replay buffer
had a size of 100000 samples. The target network was updated every 500 time steps. In
addition, we used ϵ-greedy for training the behaviour policy. Here, ϵ annealed linearly
from 1 to 0.1 over 15 % of the training sample and was fixed at 0.1 thereafter. The DQN
was trained on a total of 300000 training samples (task steps) or 25000 dialogue games
with different simulated users. For speeding up the training process, we normalised the
state space using min-max scaling for transforming the state values to range between 0

3https://stable-baselines.readthedocs.io/en/master/modules/dqn.html
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Figure 7.15.: The averages and standard deviations of the evaluation metrics with respect to the
proactive dialogue strategies.

and 1. The trained RL-based strategy was then evaluated against the rule-based, ran-
dom, and static proactive dialogue strategies. Here, we primarily studied our main two
research questions on how these trust-adaptive proactive dialogue strategies influence the
system’s trustworthiness and usability. Further, we compared the performances of the
different approaches to trust-adaptive proactive dialogue. The evaluation and the results
are presented in the following.

7.4.3. Experiments and Results

For studying the effects of integrating trust and context into the dialogue state (rule-based
strategy) as well as the reward function (RL-based approach) to implement trust-adaptive
proactive dialogue behaviour, we conducted an empirical evaluation with simulated users.
For comparison, we tested the trust-adaptive dialogue strategies against the four static
baseline strategies, i.e only one proactive dialogue act type (None, Notification, Sugges-
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Proactive
Strategy

None Notifi-
cation

Sugges-
tion

Inter-
vention

Random Rule-
based

RL-
based

None 1.000 .000 .000 .000 .000 1.000 .315
Notification .000 1.000 1.000 .000 1.000 .002 .174
Suggestion .000 1.000 1.000 .000 1.000 .000 .002
Intervention .000 .000 .000 1.000 .000 .000 .000
Random .000 1.000 1.000 .000 1.000 .000 .025
Rule-based 1.000 .002 .000 .000 .000 1.000 1.000
RL-based .315 .174 .002 .000 .025 1.000 1.000

Table 7.9.: Comparison of the significance of differences between each proactive dialogue
strategy regarding trust.

tion, Intervention) was used by the CA throughout the dialogue games. Further, we
tested against a random baseline strategy that selected the proactive dialogue act type
randomly for each task step. For evaluation, we simulated 500 dialogue games per strat-
egy. For each dialogue game, a different user type was simulated. However, the set of
simulated users was kept constant for each strategy to ensure comparability of the results.
The number of dialogue games was selected to produce normally distributed data sets,
that allow the usage of parametric statistical significance tests. As evaluation metrics, we
used the average overall trust ratings, overall task success score, and overall task duration.
Further, we observed the percentage of suggestion requests per strategy. The results of
the evaluation are depicted in Fig. 7.15. Fig. 7.15a shows the average trust ratings. Fig.
7.15b shows the average task success score. Fig. 7.15c shows the average task duration.
Fig. 7.15d shows the average of suggestion requests by the simulated users.

Significance tests for the differences between the strategies were conducted using t-tests
with Bonferroni correction regarding multiple testing. For readability, we indicated the p-
values for significant differences in separate tables, except for average suggestion requests
for which only two non-significant differences were found. The p-values for differences
regarding trust are presented in Table 7.9. The p-values for differences regarding task
duration are presented in Table 7.10. Finally, the p-values for differences regarding task
success are presented in Table 7.11. In the following, the results of the evaluation between
the strategies regarding trust are described.

Effects of Proactive Dialogue Strategies on Trust

Here, the None strategy produced the highest trust ratings, followed by rule-based and
RL-based strategies. However, differences between None strategy and these two strategies
were not significant. Trust ratings declined with an increased level of system proactiv-
ity. However, differences between the medium-levels of proactivity were not significant.
Trust-adaptive strategies were rated significantly higher for trust than medium-levels of
proactivity. An exception were the trust ratings between RL-based and Notification strat-
egy. There was a drastically decrease of trust for the Intervention strategy. Here, there
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Proactive
Strategy

None Notifi-
cation

Sugges-
tion

Inter-
vention

Random Rule-
based

RL-
based

None 1.000 .001 .000 .000 1.000 .098 .000
Notification .001 1.000 1.000 .000 .000 .000 .000
Suggestion .000 1.000 1.000 .000 .000 .000 .000
Intervention .000 .000 .000 1.000 .000 .033 .113
Random 1.000 .000 .000 .000 1.000 .156 .000
Rule-based .098 .000 .000 .033 .156 1.000 .000
RL-based .000 .000 .000 .113 .000 .000 1.000

Table 7.10.: Comparison of the significance of differences between each proactive dialogue
strategy regarding task duration.

Proactive
Strategy

None Notifi-
cation

Sugges-
tion

Inter-
vention

Random Rule-
based

RL-
based

None 1.000 .000 .000 .000 .000 .000 .000
Notification .000 1.000 .076 .000 .000 .401 .000
Suggestion .000 .076 1.000 .000 1.000 1.000 .000
Intervention .000 .000 .000 1.000 .000 .000 .000
Random .000 .000 1.000 .000 1.000 .563 .000
Rule-based .000 .401 1.000 .000 .563 1.000 .000
RL-based .000 .000 .000 .000 .000 .000 1.000

Table 7.11.: Comparison of the significance of differences between each proactive dialogue
strategy regarding task success.

were measured significant differences to all other strategies. The trust ratings for the Ran-
dom strategy were between the ratings for Notification and Suggestion strategy. Both
trust-adaptive strategies were rated significant higher for trust than the Random strategy.
Next, the results regarding average task duration are described.

Effects of Proactive Dialogue Strategies on Task Duration

The RL-based strategy followed by the Intervention strategy led to the fastest game
completion. The difference between those strategies was not significant. However, there
were measured significant differences of both strategies to all other strategies. A further
observation was that the task duration was increased step-wise by applying the rule-based
and None strategy. The Random strategy resulted in a task duration almost equal to the
None strategy. Differences between those strategies were non-significant.

Finally, the strategies with the longest task duration were Notification- followed by the
Suggestion strategy. Here, the differences were not significant.
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Effects of Proactive Dialogue Strategies on Task Success

The None strategy produced the lowest task success score measured in game points. Here,
the measurements were significant lower than those of all other strategies. The strategies
with the next higher task success were the Notification and Suggestion strategy. The rule-
based strategy produced similar task success scores than the Suggestion strategy. Further,
the Random- strategy led to a slightly higher task success than these two strategies. The
differences between the strategies of a medium-level of proactivity and the rule-based
strategy were not significant. Also the Random strategy was only rated significantly
higher than the Notification strategy regarding task success. The RL-based strategy
produced significantly higher task success than all previously mentioned strategies. Only
applying the Intervention strategy resulted in a significantly higher task success.

In the following, some observations from the percentages of suggestion requests for
each strategy are described. Naturally, the None strategy resulted in the highest amount
of suggestion requests, followed by the rule-based strategy. The rule-based strategy was
followed by the Random and RL-based approach. They almost had the same amount of
suggestion requests. Thus, the difference was not significant. Notification and Suggestion
strategy led to significantly lower suggestions requests. Both strategies had almost the
same request frequency (no significant difference). The Intervention strategy resulted in
no suggestion requests.

Comparison of the Trust-Adaptive Proactive Dialogue Strategies

In the following, we continue to solely compare the trust-adaptive dialogue strategies. In
Fig. 7.16, the distributions of proactive dialogue act types with regard to these strategies
are visualised. Using the rule-based strategy, the most frequent proactive dialogue act
type was the None action with 42 %. Notification and Suggestion action were almost
evenly distributed. The least frequent occurring proactive dialogue act type was the
Intervention action with 11 %. Considering the RL-based strategy, the Notification action
was the most frequent used act type with 38 %. The Intervention and None action were
the second most used act types with almost the same distribution. The least used act type
was the Suggestion action with 14 %. Table 7.12 describes which proactive dialogue act
type was used how often at different task step complexities per trust-adaptive strategy.
For both strategies, the None action type was most frequently used in task steps with
a complexity of 1, i.e. three options. Using the rule-based strategy, the Notification act
type was most frequently used for complexity 3 tasks (five different options). Using the
RL-based strategy, the Notification act type was most frequently used for complexity 2
tasks (four options). For both strategies, the Suggestion act type was most frequently
used for complexity 1 tasks. Using the rule-based strategy, the Intervention act type was
most frequently used for complexity 3 tasks. Contrary, the Intervention act type was
most frequently used for complexity 2 tasks using the RL-based strategy. For complexity
1 tasks, the most frequent used proactive dialogue act type, was the None action for both
strategies.

Additionally, we compared the distributions of proactive dialogue act types dependent
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Figure 7.16.: Left: Distribution of proactive dialogue act types using an RL-based ap-
proach. Right: Distribution of proactive dialogue act types with regard to
rule-based trust adaptation.

Proactive
DialAct

Rule-based RL-based

Complexity
1

Complexity
2

Complexity
3

Complexity
1

Complexity
2

Complexity
3

None 1195 818 531 1097 117 203
Notification 0 509 802 110 1152 1064
Suggestion 804 673 1 793 34 11
Intervention 1 0 666 0 797 723

Table 7.12.: Description of the counts of proactive dialogue act types dependent on the
task step complexity and the trust-adaptive proactive dialogue strategy.

on the task complexity type. The distributions between all dialogue act types were similar
for complexity 1 tasks. For complexity 2 tasks, the most frequent used proactive dialogue
act type was the None action for the rule-based strategy and the Notification action
for the RL-based strategy. For complexity 3 tasks, the most frequently used proactive
dialogue act type was the Notification action for both strategies.

Further, it could be observed that for both trust-adaptive strategies, None and Sugges-
tion actions were rather used at task steps with lower complexity. Meanwhile, Notification
and Intervention actions were applied at task steps with a higher degree of complexity. In
addition, the RL-based strategy showed to make a clearer use of the None and Suggestion
actions. While the rule-based strategy applied both actions more evenly at tasks with
complexities of 2 and 3, the RL-based strategy, applied those actions primarily for com-
plexity 1 task steps. Moreover, the RL-based strategy applied the Intervention strategy
almost evenly for task steps with complexities 2 and 3. Contrary, the rule-based strategy
almost entirely used the Intervention action for complexity 3 tasks.
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Proactive
DialAct

Trust = 1 Trust = 2 Trust = 3 Trust = 4 Trust = 5

None 0 169 669 517 62
Notification 2 897 1000 408 19
Suggestion 0 158 288 359 32
Intervention 0 184 481 742 13

Table 7.13.: Description of the counts of proactive dialogue act types for the RL-based
strategy dependent on the last observed trust value.

Understanding the Behaviour of the RL-based Strategy

In the following, we focus our investigation solely on the RL-based strategy, in order to
understand the reasons for its learned behaviour. Therefore, the system’s selection of
proactive dialogue acts dependent on its last known trust value was observed. The results
are presented in Table 7.13. We further analysed the dialogue act selection dependent on
the game score of the last task step. These results are shown in Table 7.14.
Regarding trust, it could be observed that only two times a trust value of Trust =

1 was estimated. For the task step after this estimation, the system always chose a
Notification action. After the system observed an estimated trust value of Trust = 2,
also a Notification action was selected the most. The action was chosen 64 % of the time,
while the selection of the other actions was almost evenly distributed. As a response to an
estimated trust score of Trust = 3, again the Notification action was selected the most.
Here, the action was however used only 41 % of the time, followed by the None action
with 27 %. After estimating a trust value Trust = 4, the Intervention action was the
most frequently selected action with an occurrence 37 %.
For all three previously described trust values, the Suggestion action was selected the

least frequently. A trust value of Trust = 5 was not frequently observed by the system
like a trust value Trust = 1. Here, predominantly the None action was selected at 49 %.
In the following, the relation between the selected proactive dialogue act dependent on the
user’s last game score is investigated. After a user received zero points, the system selected
a Notification action the most. Here, a medium level of proactivity was predominant with
an occurrence of 85 %. A None action was selected only at 1 % of the time. After a user
received 10 points, the system also selected a Notification action the most at 57 %. Also
the Intervention action was selected frequently at 27 %. After the user received a game
score of 20 points, the system mostly selected a Intervention- (44%) and None action (38
%). A None action was the most selected proactive dialogue act after the user received a
game score of 30 points (89%) and 40 points (100 %).

7.4.4. Discussion

First, we discuss the results of the static proactive dialogue strategies for the user sim-
ulation study and put them into context with our previous experiments. As indicated
by Fig. 7.15a and Table 7.9, the user’s perceived trust (measured as a combination of
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Proactive
DialAct

Points = 0 Points = 10 Points = 20 Points = 30 Points = 40

None 8 377 409 401 198
Notification 355 1808 115 8 0
Suggestion 130 139 90 42 0
Intervention 81 865 474 0 0

Table 7.14.: Description of the counts of proactive dialogue act types for the RL-based
strategy dependent on the last observed game score in points.

the cognition-based trust ratings) steadily decreased with an increasing level of proac-
tive dialogue. Except for the medium-level proactive dialogue strategies, the differences
between the static strategies were significant. These results were congruent to our ex-
periments with human subjects and suggested that the user simulator results are close
to reality. Considering the task success scores of each static strategy, the inverted effect
was observable (see Fig. 7.15b and Table 7.11). The higher the level of proactivity, the
higher the task success. Again, only the differences between the medium-level strategies
were not significant. These results, however, were to be expected, as the virtual CA was
designed to be an expert system having complete domain knowledge. Therefore, the In-
tervention strategy led to optimal task success, as the CA consistently selected the best
option. More interesting seemed to be the fact that trust was not positively correlated
to task success, even though complete system autonomy led to the highest task success
rates. This was also observable for the medium-level proactive dialogue strategies that
showed significantly higher trust than the Intervention strategy, but simulated users did
not always comply with the assistant’s notifications or suggestions, as indicated by the
lower task success scores. This is a strong indicator that high-performing systems are
not necessarily more trustworthy, but also the way a system communicates its decision
processes seems to be important.

Further, the concept of trust and usability may not be handled independently. For
this, a compromise between high-performing but also trustworthy behaviour needs to be
found. Looking at the average task success results provided in Fig. 7.15c and Table 7.10,
the Intervention strategy was naturally the most time-efficient as it did not negotiate the
decision with users. For this reason, the medium-level strategies had the highest average
task duration as these strategies provoked the longest dialogues. The None strategy led
to the shortest task duration behind the Intervention strategy, as the CA stayed reactive
and users were not necessarily required to interact with the system. However, for roughly
80 % of the task steps users requested suggestions from the reactive version of the CA
(see Fig. 7.15d). This indicated that help by the CA was welcomed by the simulated
users. Overall, the results seem to be in line with our previous experiments.

In the following, we focus on the effects of the trust-adaptive adaptive strategies con-
cerning the main research questions of this thesis.
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Influence of Trust-Adaptive Proactive Dialogue on Trust and Usability

For this investigation, we looked into the performance and trust metrics of both rule-
and RL-based strategy in comparison with the other strategies. Regarding trust, both
strategies led to significantly higher trust than random, high- and medium-level strate-
gies. They were only rated slightly lower for trust than the None strategy albeit not
significantly. Note that the reactive strategy resulted in the optimal trust values (RL-
based strategy only learning to increase trust resulted in None strategy). For this reason,
both trust-adaptive strategies achieved near-optimal values regarding trust. Regarding
task success, the rule-based strategy performed at the same level as the random, and
medium-level strategies. The RL-based strategy outperformed all other strategies ex-
cept the Intervention strategy which achieved optimal results regarding task success. For
task duration the results are similar for the RL-based strategy. Here, also the rule-based
strategy performed well resulting in significantly shorter interactions than medium-level
proactivity and notably shorter interactions than the None strategy. Considering the
task efficiency as a comparison between task success and task duration, it was observable
that the trust-adaptive strategies than the other strategies except for the Intervention
strategy. However, it must be noted that regarding task efficiency, the rule-based strat-
egy performed at a similar rate to the random strategy. Taking the trust ratings into
account, it became clear that the trust-adaptive strategies achieved the best compromise
for providing socially and task-effective proactive dialogue employing high trustworthi-
ness and usability. Therefore, we deemed trust to be an adequate metric for designing
proactive dialogue strategies for improving the cooperation with CAs.

Performance of the RL-Based User-Centred Proactive Dialogue Strategy

The RL-based strategy outperformed the hand-crafted strategy regarding task efficiency
while simultaneously achieving comparable trust ratings. Therefore, it may be interesting
to look more closely into the decisions the RL-based strategy made in comparison to
the rule-based strategy. This may help to find reasons, why this strategy performed
that well for this task and provide further insights into the user perception of proactive
dialogue behaviour. The first interesting finding was that increased usage of Notification
and Intervention action possibly led to a higher task efficiency of the RL-based strategy
without losing the user’s trust. Similar to our findings in Section 6.1 and 6.2, this indicated
that both reactive and highly proactive system behaviour needs to be applied carefully,
but can lead to enhanced trustworthiness and usability when applied properly. Further,
it was shown again that a medium-level of proactivity (primarily a Notification action)
seemed beneficial for providing trustworthy but also successful assistance.

Next, it may be useful to consider the frequency at which each proactive dialogue
act type was selected depending on the task complexity level. Here, the most notable
difference between the strategies was that the RL-based strategies more distinctively made
use of None and Suggestion actions. The RL-based strategy almost predominantly used
None and Suggestion actions for tasks with a complexity level of 1. Notification and
Intervention actions were almost evenly distributed for tasks with a complexity level of 2
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or 3, but rarely (or not at all used) for tasks with a complexity level of 1. Combined, this
possibly resulted in high task efficiency. Observing both strategies, the usage of None
and Suggestion actions at task steps with lower complexity while using Notification and
Intervention actions at task steps with a higher degree of complexity seemed to positively
contribute to the high trust ratings of these strategies.
Finally, it may be useful to consider the RL-based strategy proactive dialogue act type

selection dependent on the system’s lastly obtained trust value or game score. Under
consideration of the user’s last perceived trust in the system, it could be observed that
the Notification action was primarily used after the system had observed low or medium
trust values. The higher the lastly observed trust value, the more one of the other proac-
tive dialogue act types was selected. However, after observing a positive trust value of 4,
the system predominantly used an Intervention action. Interestingly, in the case of the
highest trust values, the system switched into a reactive mode. Thus, it can be stated
that for developing socially and task-effective proactive dialogue, notifications should be
considered if the system estimates its trustworthiness to be low to medium, while sug-
gestions and highly proactive behaviour may be applied at higher trust levels. However,
when trust is estimated as the highest, it seems to be more useful to stay reactive and
wait for the user’s action to not harm the relationship between the user and CA.
Similar behaviour was also observable considering the RL-based strategy’s proactive

action selection dependent on the last game score. Here, the virtual CA primarily used
a medium level of proactivity after the user was unsuccessful and received zero points.
This is a clear sign of the system taking control into its own “hands” to provide helpful
behaviour, but still letting the user control the final decision in order not to lose trust.
For low task success (points = 10), the system primarily selected a Notification action
but also often selected an Intervention action. As the Intervention strategy was primarily
used for trust values trust = 4, whereas the Notification action was used for lower trust
values, it may be concluded that after observing low success by the user, the system
only triggered highly proactive behaviour if it also observed a high trust value. After the
system observed high task success by the user, it gradually almost exclusively selected a
None action. Here, it could be reasoned that the virtual CA opted to take more control
into the hands of the user after detecting successful user behaviour. This may be due
to the success of the task not being endangered and reciprocal trust was deemed to be
established.

Limitations

The limitations of these experiments were similar to those of the data collection. First,
using more features for modelling the states and the proactive actions could lead to more
general results. However, as we measured similar effects as compared to our experiments
with human subjects, the results of the study should be sufficiently validated. Nonethe-
less, experiments of real users interacting with a RL-based virtual CA are necessary for
final validation. Further, we tested the strategies in a simplified task domain for decision-
making. Decision-making in real-life is far more complex. Therefore, the here presented
approaches need to be transferred into more realistic use case scenarios to make more
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profound claims. However, due to the quality of the results and the overlaps of this study
with previous experiments, we deemed the findings to be reproducible in realistic set-
tings. Further, the study results may provide guidelines for designing proactive dialogue
behaviour in realistic task scenarios.

7.4.5. Conclusion

We developed two trust-adaptive proactive dialogue strategies to improve the coopera-
tion with CAs by achieving a socially and task-effective dialogue. A rule-based method
utilised the current trust estimate and task complexity for proactive dialogue action selec-
tion. Further, an RL-based method was trained using both trust estimate and usability
measures for providing adequate proactive dialogue behaviour. For evaluating the ap-
proaches, we compared them with static and random proactive dialogue strategies.

Including trust in the dialogue model for enabling trust-adaptive dialogue proved to
be successful in creating trustworthy CAs with high usability. Both methods achieved
the best compromise of contributing to task completion effectively but also acting in a
trustworthy manner. Particularly, the RL-based trust-adaptive proactive dialogue strat-
egy was evaluated to be superior to all other strategies. Thus, these results showed that
the main research goal of this thesis could be successfully achieved.

Further, examining the behaviour of the RL-based strategy allowed us to provide in-
sights on the utility of a proactive dialogue action dependent on the user and the context.
In several cases, our previous findings were emphasised by observing the behaviour of
the RL-based strategy. For example, the Notification actions were primarily used by
the RL-based strategy for achieving the desired behaviour. However, also new findings
could be discovered. Generally, the proactive agent seemed to learn a quite human-like
strategy. The system adjusted its behavior depending on current the level of the HCT
relationship. Recognising a rather low trust level, the system primarily expressed a low-
to medium-level of proactivity. However, the more it recognised that the user trusts its
abilities, the more it expressed higher levels of proactivity and decided on its own. An
exception was the highest level of the HCT-relationship. Here, the system mostly stayed
reactive. Therefore, it may be concluded that the system did not want to risk the damage
of the HCT relationship by becoming proactive when the user had the highest trust in
the system. For a medium leveled trust relationship, the benefits of becoming proactive
seemed to outweigh the costs of damaging the relationship. Further, the system seemed
to recognise the need for proactive behaviour if users were less successful at task execu-
tion. The more successful the user got, the less the system interferes in the user’s decision
making.. This behaviour strongly resembled the behaviour of human assistants that act
more actively if they recognise that the person they help trusts them and requires help
due to low task success. In summary, the inclusion of trust in the reward function seemed
to have equipped the proactive CA not only with the ability to provide task effective
assistance but also more human-likeness which is reflected in the social effectiveness.
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7.5. Summary

This chapter presented the implementation of a user-centred proactive dialogue model for
achieving our main research goal of improving the cooperation with CAs that act both
socially and task effectively by the means of trustworthiness and usability.

First, we presented a study showing that the concept of trust represents a valid adapta-
tion criterion for proactive dialogue. Here, we found that especially cognition-based trust
features may be used for adapting the proactive dialogue. However, this may only increase
a CA’s trustworthiness during cooperation and not its usability. Therefore, a combina-
tion of trustworthiness and usability/performance-related measures was proposed to be
included for improving the cooperation using user-adaptive proactive dialogue strategies.
In a second step, we contributed a novel trust recognition module for measuring a user’s

trust in the system’s actions online during a dialogue. For developing the trust module,
we fused knowledge gained from our experimental studies and related work regarding
HCT. The development of the trust module comprised several steps. First, we created a
data corpus containing proactive system behaviour and trust annotations.
Subsequently, we developed a novel dialogue-based trust model. Finally, we used the

trust model for implementing the trust recognition module using machine-learning pre-
dictors. Evaluation of different predictors revealed that an SVM approach was best suited
for estimating trust during an ongoing dialogue. This allowed to include trust into the di-
alogue model for generating trust-adaptive proactive dialogue strategies. For testing and
training trust-adaptive proactive dialogue strategies, we developed a novel user simulator
that was able to simulate different user types and user-specific task behaviour. This infor-
mation could then be used by a proactive CA to measure its trustworthiness concerning
the simulated user. Evaluation of the user simulator showed realistic behaviour.
Finally, we developed a rule-based and an RL-based trust-adaptive proactive dialogue

strategy that was trained in interaction with the user simulator. We subsequently tested
the strategies and their influence on cooperation by applying user simulator evaluation.
The results proved the success of our approach in achieving the main goal of this thesis
of developing a user-centred proactive dialogue model for rendering CAs trustworthy and
improving the cooperation from a social as well as from a task-oriented perspective.
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In this thesis, we presented work on improving human-machine cooperation by taking a
user-centred approach in proactive dialogue modelling for developing trusted and task-
effective CAs. Despite providing intelligent functionalities, current assistance systems lack
the ability to provide trustworthy highly usable proactive conversation strategies due to
a mismatch between user expectations and actual system behaviour. For overcoming this
“gulf” and thus improve cooperation, we divided the problem into several sub-problems:

1. Proactive dialogue modelling for human-machine cooperation

2. Design of user-centred proactive dialogue strategies and their effects on cooperation

3. Implementation and evaluation of user-centred proactive dialogue strategies for
trustworthy CAs with high usability

For providing a proactive dialogue model in cooperation contexts, we first conducted
two experimental pilot studies embedding state-of-the-art proactive behaviour in the form
of recommendations and notifications into the dialogue domain. These studies provided
a foundation for the user perception of proactive dialogue on a system’s usability and
trustworthiness. In combination with related work, the results of these studies allowed
to distill user and system requirements for enabling proactive dialogue in CAs. Based on
these requirements, we formulated the human-machine cooperation process as a dialogue
problem and defined four novel proactive dialogue act types representing different levels
of system autonomy. Additionally, we presented a novel cognitive system architecture,
combining AI and HCI components, for implementing proactive DM in assistance systems.

We advanced the state-of-the-art understanding of the effect of the proactive dialogue
model on cooperation by developing four novel approaches to user-centered proactive
dialogue design and implementing them into prototypical CAs. In two laboratory exper-
iments, we were able to reveal significant relations between proactive dialogue act types
and the HCT relationship dependent on specific user characteristics, task properties, and
cognitive-affective user states. Further, we found that proactive dialogue mainly had an
impact on the user’s cognitive-based trust (perceived competence, reliability, understand-
ability). In addition, a high level of proactive dialogue showed tendencies to increase a
system’s usability in comparison to reactive behaviour, however, with reversed trust ef-
fects. For determining the need for proactive dialogue behaviour, we found evidence that
the usage of singular user states seems to be insufficient for this task. In two user studies
in realistic task scenarios using high-fidelity proactive system prototypes, we showed that
our findings from the laboratory experiments are transferable and gained several novel
insights.
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The user studies revealed positive results of a medium-level of proactive dialogue for
inexperienced users with low technical affinity. In addition, including more context-related
features as a trigger mechanism for proactive decision-making proved to be useful for
improving the cooperation and may be enhanced by including various user states. The
gained knowledge from these experimental studies considering proactive dialogue design
was then used to implement a user-centered proactive DS

The implementation of a user-centered DS provided several individual contributions to
advancing the state-of-the-art. First, we identified trust to be an adequate metric for
the assessment of whether proactive dialogue meets social expectations and may be used
for the adaptation of proactive dialogue. For including trust in the proactive dialogue
model, we contributed a novel user model that allows the prediction of the user’s trust
level during an ongoing dialogue. The evaluation of the model provided promising results
for utilising a trust metric as dialogue adaptation criteria. Finally, the implementation of
a trust-adaptive proactive DM module was achieved to enable trusted and task-effective
proactive behaviour. Particularly, a novel approach including trust and task metrics in a
reward function for RL-based DM proved to be beneficial for improving human-machine
cooperation.

Overall, we consider technical systems with the ability to recognise and measure social
aspects, such as trust, during interaction with humans to be fundamental for providing
adequate proactive assistance. Equipping CA with these capabilities is an important
step towards the development of more human-like and true cooperation partners. While
the major findings and conclusions of this thesis were outlined so far, a more detailed
description of the contributions of our work is presented in the following.

8.1. Thesis Contributions

The presented work on user-centred proactive dialogue modelling for trustworthy CAs
provided several contributions that advance the state-of-the art of proactive DM. In
the following, we summarise our contributions grouped into theoretical, practical, and
experimental contributions.

8.1.1. Theoretical

We contributed a theoretical proactive dialogue model building upon the state-of-the-art
of proactive interaction design. This included modelling the mixed-initiative cooperation
process between humans and machines as a dialogue problem, where we defined proactive
dialogue as the initiation of sub-dialogues at turn-level influencing future user actions
(M. Kraus et al., 2021b). In addition, we introduced four different levels of proactive
dialogue act types based on autonomy research (M. Kraus et al., 2020c). Further, a novel
cognitive architecture for proactive DM was developed (M. Kraus et al., 2019, 2020b).
This architecture comprised modules for planning, reasoning, and dialogue for allowing
proactive behaviour during task assistance. The dialogue module utilised a user model
for deciding whether to become proactive and to which extent.
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For evaluating proactive dialogue, we developed two novel evaluation frameworks. The
first introduced the concept of a serious dialogue game for enabling data collection and for
testing different proactive dialogue strategies in cooperation contexts (M. Kraus et al.,
2020c, 2021c, 2022b). The second framework utilised an interactive video method for
allowing users to conduct a dialogue with a CA while watching a video. At a certain
moment during the video, users could take actions that directly influenced the CA’s
behavior and the further interaction (M. Kraus et al., 2022e).
Moreover, we developed four novel user-centred proactive dialogue strategies that utilised

different kinds of user state and context recognition. One strategy utilised the user’s state
of insecurity for proactive dialogue (M. Kraus et al., 2020c, 2021b). In addition, we devel-
oped a proactive dialogue design based on the user’s cognitive-affective state (M. Kraus
et al., 2022a), and two context-related strategies based on the detection of contextual
events (M. Kraus et al., 2022c) and user activity (M. Kraus et al., 2020b).
A trust model was developed for integrating trust as metric for user-adaptive proactive

DM (M. Kraus et al., 2021c). In this regard, we also introduced a human-to-machine
data collection setup (M. Kraus et al., 2022b) and a trust recognition approach based on
methods for ML (M. Kraus et al., 2021c).
Finally, we developed two trust-adaptive proactive dialogue strategies: a rule-based and

a RL-based method (M. Kraus et al., 2022d). For the RL-based method, we modelled
the dialogue as an MDP and developed a novel socially-aware user simulator for training
purposes. This allowed us to optimise a proactive strategy taking into account task-
related metrics and information about the user’s trust. In this regard, we developed a
reward modelling strategy for creating effective user-adaptive dialogue strategies from
both a social (trustworthy) and a task-oriented (usability) perspective.

8.1.2. Practical

For allowing experimentation, the previously described theoretical contributions were
implemented into a range of prototypes. For our pilot studies, we implemented two
DM prototypes into existing dialogue frameworks. A recommendation functionality was
implemented into the Amazon Alexa framework (M. Kraus et al., 2020a). Utilising
the Rasa dialogue framework, we implemented proactive behaviour in the form of push
notifications and topic switching behaviour into a mental health assistant (M. Kraus et
al., 2021a).
For the design of user-centered proactive dialogue strategies and for measuring their

effects on cooperation, we implemented two low- as well as two high-fidelity DM pro-
totypes. The low-fidelity prototypes implemented rule-based DM for controlling a Nao
robots proactive behaviour. One version utilised the user’s insecurity state measured as
a specific duration of user inactivity for managing the dialogue (M. Kraus et al., 2020c,
2021b), while the other utilised the user’s cognitive-affective state which was measured
using an off-the-shelf recognition module for controlling the flow of the dialogue (M. Kraus
et al., 2022a).
The high-fidelity prototypes implemented context-related strategies utilising an agent-

based approach. Here, several dialogue agents handled the interplay between the dialogue
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manager and AI planning as well as reasoning modules. We implemented the agent-based
approach in a virtual CA (M. Kraus et al., 2019, 2020b) and in a robotic CA (M. Kraus
et al., 2022c)

For including the concept of trust in proactive DM, we implemented a web-based data
collection setup and created a trust-annotated proactive dialogue corpus (M. Kraus et al.,
2022b). Further, we implemented a trust recognition module using ML frameworks (M.
Kraus et al., 2021c). Additionally, ML frameworks were applied for implementing an
RL-based proactive dialogue manager (M. Kraus et al., 2022d). The manager was trained
with a purpose-built user simulator.

8.1.3. Experimental

Based on the presented theories and practical implementations, we conducted user simu-
lator and real-world experiments, both in the laboratory (M. Kraus et al., 2020c, 2021b,
2022a, 2022d, 2022e) and in realistic environments (M. Kraus et al., 2020b, 2020a, 2021a,
2022c).
For building an intuition of the user perception of proactive dialogue on the human-

machine cooperation and to distill user requirements, we conducted two pilot experiments
in the wild. Here, users interacted with the respective prototype either using their smart-
phone messenger service (M. Kraus et al., 2021a) or via the Amazon Alexa device (M.
Kraus et al., 2020a).
For contributing to the understanding of the effect of user-centered proactive dialogue

design on the cooperation, we conducted two laboratory experiments (M. Kraus et al.,
2020b, 2020c, 2021b, 2022a, 2022c). Here, we considered the impact of the individual
proactive dialogue act types on a system’s trustworthiness and usability dependent on
the task context, user characteristics, specific user states as well as activities, and ex-
ternal events that were supposed to require proactive assistance. We found significant
relations between proactive level and specific user characteristics, namely personality
traits, technical affinity, domain expertise (M. Kraus et al., 2021b). Furthermore, how
difficult a task is perceived by the user seemed to have an effect on the trustworthiness of
proactive dialogue actions (M. Kraus et al., 2020c). Additionally, the effect of different
levels of proactivity on the user experience and trust depending on the user’s cognitive-
affective states was studied during a learning task (M. Kraus et al., 2022a). Here, we
found the proactive dialogue to have an impact on the learning process and identified
negative cognitive-affective user states (confusion, frustration) to be insufficient for de-
tecting the user’s need for assistance. Considering the usability of proactive dialogue act
types during the first two experiments, we found that a high level of proactivity was gen-
erally perceived to be more task effective, wherein reactive system behaviour received the
lowest scores for task effectiveness. Considering the medium-level of proactivity, we could
make no clear statement. However, notification showed tendencies to increase usability
dependent on the task context.
Findings of the impact of proactive dialogue design on the cooperation could be con-

firmed in realistic task scenarios using sophisticated virtual (M. Kraus et al., 2020b) and
robotic CAs (M. Kraus et al., 2022c). Here, the results showed that proactive dialogue
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was able to build an adequate level of user trust, particularly in interaction with technical
and domain novices. Considering the outcomes of the experiments in more realistic task
scenarios, we found the usage of more context-related than user-specific information as a
trigger mechanism for proactive behaviour highly useful. Consequently, we concluded a
combination of context- and user-specific information to be suitable for deciding whether
to become proactive and to which extent.
Further, we conducted an experiment on the application of trust as a measure for

proactive dialogue adaptation using an interactive video method (M. Kraus et al., 2022e).
Here, the main finding was that trust is indeed a reasonable metric for measuring the
match between social expectations and proactive dialogue behaviour and thus be used as
an adaptation criterion. Regarding the influence on the cooperation, we concluded that
deciding on an adequate level of proactive dialogue based on such a trust measurement
may however solely improve the social aspects of the cooperation but not necessarily its
usability. Therefore, usability features should also be integrated for dialogue adaptation.
Subsequently, we conducted experiments for testing the utility of a trust-based model

for accurately predicting the user’s perceived trust in the system. The results showed
that the model is well-suitable for predicting trust in proactive dialogue. Each applied
classifier proved to be useful for the classification task, showing reasonable recall and
accuracy (M. Kraus et al., 2021c).
Our final user simulation experiments showed promising results indicating that the in-

clusion of trust for user-centered proactive DM can be used for improving the cooperation
with CAs by rendering a DS trustworthy and task effectively. Particularly, an RL-based
trust-adaptive proactive dialogue approach achieved high usability and adequate user
trust in the system.

8.2. Future Directions

This work presented positive results for improving human-machine cooperation utilising
user-centred proactive dialogue models. However, there is a long road with many obstacles
ahead until proactive dialogue can be used to its fullest potential in CAs. In the following,
we, therefore, address some open questions and limitations of our work.

Advanced Turn-Taking: The decision when to initiate proactive actions was handled on
a (sub-)task-level basis using well-defined points of time. In order to allow more
natural and flexible turn-taking for proactive conversation a less rigid approach
needs to be taken. For example, user cues, e.g. utterances, pauses, etc. could be
processed incrementally to increase the quality of predicting the appropriate timing
of proactive actions. Here, computational models for turn-taking (Schlangen, 2006)
and incremental dialogue processing (Schlangen & Skantze, 2011) could be used as a
foundation. Furthermore, this could help to observe proactive system behaviour in a
more conversational than an assistance context, e.g. investigate proactive actions for
collaborative utterance construction. Furthermore, the timing of proactive dialogue
could be based on multimodal cues e.g. gaze of the user (Huang & Mutlu, 2016),
or verbal cues (Seon et al., 2012).
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System Errors: Another important aspect of HMI is errors in cooperation and responding
to them. While in this thesis expert systems were used for evaluation standardisa-
tion, erroneous system behaviour needs to be considered for transferring proactive
dialogue models to real-world applications. Therefore, repair strategies and the im-
pact of wrongful proactive actions on the user need to be studied. The development
of repair strategies for CA has emerged to become a current hot topic in research,
e.g. see Cuadra et al. (2021) and Candello and Pinhanez (2018). However, for being
able to repair, a CA must first recognise that it has made an error that requires
correction. This is a quite difficult problem for which the complexity of the DM
module needs to be increased. For this, sophisticated reasoning and decision-making
mechanisms are required to characterise the type of error and to elaborate adequate
actions. A promising approach that may allow computational systems to self-detect
erroneous behaviour seems to be an inference from a user’s behavioural and social
signals in the face of errors, e.g. see Kontogiorgos et al. (2020).

Modelling Trust in Conversation: In this work, a trust model for dyadic conversations
was presented. The computational model was based on several factors known to
influence a proactive system’s trustworthiness, including system-, task-, and user-
related features. However, due to the highly multi-faceted nature of trust, it was
only possible to include a subset of factors in the user model. For creating a more
general concept of conversational trust, additional trust-related factors need to be
represented in the user model. Here, affective computing (e.g. see Picard (2000))
and especially the interpretation of a user’s social signals (J. Wagner et al., 2013) can
help to develop more accurate models. Besides, the measurement of trust is still
an open topic. Current measurements are based on Likert scales, however other
forms of representations need to be explored. Additionally, the application of deep
learning architectures, e.g. transformer embeddings (e.g. see Chiang et al. (2020)),
may be beneficial for improving the trust prediction. This may help to provide a
trust-based user model which is applicable in real-life scenarios.

Augmentation with Argumentation: As future assistants are expected to operate in more
and more complex tasks, providing explanations for system behaviour might make
the user aware of its internal processes. However, it might not help users to ac-
cept the system’s actions as users could be unsatisfied with the explanations, due
to the system using the wrong arguments. Furthermore, users might want to de-
bate about the system’s actions before they accept them. Therefore, augmenting
a proactive dialogue with argumentative strategies might be an adequate way of
convincing users to trust a CA actions and become a more versatile helper. The
development of argumentative dialogue systems has received wide recognition in
the last decade (Rach et al., 2018; Rosenfeld & Kraus, 2016). Especially with re-
gard to AI-based human-machine teaming in which the user is supposed to follow
the judgment/recommendation of an AI system (e.g. see Chesñevar et al. (2009)).
Here, argumentation serves as the basis to explain the reasoning of the internal
processes of a recommendation system. Such “black box” explanations of internal
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system reasoning are known under the term explainable AI which could boost a
system’s trustworthiness(e.g. see (Adadi & Berrada, 2018)). Furthermore, Weld
and Bansal (2019) argue to augment an interactive system’s capability to provide
explanations by allowing users to ask further questions. The authors identified a
number of follow-up question types that a system should answer, e.g. questions
about a basis for decision-making, queries about the sensitivity of the system, or
questions for further details. As a response, an intelligent system could engage in
dialogue with the user presenting its arguments for justifying its decisions. Such
explanatory approaches enriched with argumentation can also be beneficial for re-
search on proactive dialogue systems. However, how to combine argumentation and
proactivity is still an open quest.

Multi-Party Dialogue: In this thesis, we assumed cooperation during task execution be-
tween two participants: a human and a proactive CA. In reality, however, often
groups of people or teams collaborate for solving complex tasks or making decisions
as a group. Here, the natural language interaction takes place in the form of a
multi-party dialogue (Branigan, 2006; D. Traum & Rickel, 2002). Applying a CA
in multi-party dialogues poses several new challenges for proactive dialogue design.
For example, the CA needs to detect the needs of individuals in the group and the
ensemble itself for contributing to the cooperation. Thus, it is required to be aware
of not only individual user states and contexts, but also specific group dynamics for
deciding whether to become proactive. Further, the target of the impact of proac-
tive behaviour is no longer only one user, but a subset of users or even the whole
group. Therefore, multiple users are affected by a proactive action which may even
affect the relationships between the users themselves. Considering such challenges,
the interesting question is whether the results of this thesis may be transferred to
the domain of multi-party dialogue. For application in this domain, we deem the
prediction of social group dynamics, similar to the inclusion of trust in this thesis,
as a promising approach for determining the need for proactive behaviour. Further,
the proactive dialogue acts types need to be extended in order to receive the atten-
tion of the addressee, which is not as easy as in dyadic interaction. In this regard,
several barge-in techniques may be relevant to consider (N. Wagner et al., 2021). In
summary, proactivity in multi-party dialogue provides a challenging new research
topic, for which the findings in this work may provide a solid foundation.

243





A. Questionnaires

Nr. Items Sub-Scales
1. I see myself as someone who is reserved. Extraversion
2. I see myself as someone who is generally trusting. Agreeableness
3. I see myself as someone who tends to be lazy. Conscientiousness
4. I see myself as someone who is relaxed, handles stress well. Neuroticism
5. I see myself as someone who has few artistic interests. Openness
6. I see myself as someone who is outgoing, sociable. Extraversion
7. I see myself as someone who tends to find fault with others. Agreeableness
8. I see myself as someone who does a thorough job. Conscientiousness
9. I see myself as someone who gets nervous easily. Neuroticism
10. I see myself as someone who has an active imagination. Openness

Table A.1.: The BFI-10 items and the respective sub-scales according to Rammstedt et al.
(2013).
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Nr. Items Sub-Scales
1. I enjoyed doing this activity very much. Interest
2. This activity was fun to do. Interest
3. I thought this was a boring activity. Interest
4. This activity did not hold my attention at all. Interest
5. I would describe this activity as very interesting. Interest
6. I thought this activity was quite enjoyable. Interest
7. While I was doing this activity, I was thinking about how

much I enjoyed it.
Interest

8. I think I am pretty good at this activity. Perceived Competence
9. After working at this activity for awhile, I felt pretty com-

petent.
Perceived Competence

10. I am satisfied with my performance at this task. Perceived Competence
11. I was pretty skilled at this activity. Perceived Competence
12. This was an activity that I couldn’t do very well. Perceived Competence
13. I put a lot of effort into this. Effort
14. I didn’t try very hard to do well at this activity. Effort
15. I tried very hard on this activity. Effort
16. It was important to me to do well at this task. Effort
17. I didn’t put much energy into this. Effort

Table A.2.: The Intrinsic Motivation Inventory (IMI) items and the respective sub-scales
according to McAuley et al. (1989).

Nr. Items Sub-Scales
1. For this task, many things needed to be kept in mind si-

multaneously.
ICL

2. This task was very complex. ICL
3. made an effort, not only to understand several details, but

to understand the overall context.
GCL

4. My point while dealing with the task was to understand
everything correct.

GCL

5. The learning task consisted of elements supporting my com-
prehension of the task.

GCL

6. During this task, it was exhausting to find the important
information.

ECL

7. The design of this task was very inconvenient for learning. ECL
8. During this task, it was difficult to recognize and link the

crucial information..
ECL

Table A.3.: The Cognitive Load Survey items and the respective sub-scales according to
Klepsch et al. (2017).
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Nr. Items Sub-Scales
1. I enjoy trying out a technical system. Enjoyment
2. I know most of the functions of the technical systems I own. Competence
3. It is easy for me to learn how to operate of a technical

system.
Competence

4. Technical systems make my everyday life easier. Positive Attitude
5. Technical systems make many things more cumbersome. Negative Attitude
6. Technical systems cause stress. Negative Attitude

Table A.4.: The technological affinity scale items and the respective sub-scales adopted
from Karrer et al. (2009).

Nr. Items Sub-Scales
1. I would feel uneasy if I was given a job where I had to use

robots.
Situations and Interac-
tions with Robots

2. The word “robot” means nothing to me. Situations and Interac-
tions with Robots

3. I would feel nervous operating a robot in front of other
people.

Situations and Interac-
tions with Robots

4. I would hate the idea that robots or artificial intelligences
were making judgements about things.

Situations and Interac-
tions with Robots

5. I would feel very nervous just standing in front of a robot. Situations and Interac-
tions with Robots

6. I would feel paranoid talking with a robot. Situations and Interac-
tions with Robots

Table A.5.: The NARS-items and the respective sub-scales according to Nomura et al.
(2006).

Nr. Items Sub-Scales
1. I usually trust machines until there is a reason not to. -
2. For the most part, I distrust machines. -
3. In general, I would rely on a machine to assist me. -
4. My tendency to trust machines is high. -
5. . It is easy for me to trust machines to do their job. -
6. I am likely to trust a machine even when I have little knowl-

edge about it.
-

Table A.6.: The Propensity to Trust Scale items according to Merritt et al. (2013).
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A. Questionnaires

Nr. Items Sub-Scales
1. Useful-Useless Usefulness
2. Pleasant-Unpleasant Satisfying
3. Bad-Good Usefulness
4. Nice-Annoying Satisfying
5. Effective-Superfluous Usefulness
6. Irritating-Likeable Satisfying
7. Assisting-Worthless Usefulness
8. Undesirable-Desirable Satisfying
9. Raising Alertness-Sleep-inducing. Usefulness

Table A.7.: The Acceptance Scale items and the respective sub-scales according to Van
Der Laan et al. (1997).

Nr. Items Sub-Scales
1. The system is deceptive. -
2. The system behaves in an underhanded manner -
3. I am suspicious of the system’s intent, action, or outputs -
4. I am wary of the system. -
5. The system’s actions will have a harmful or injurious out-

come.
-

6. I am confident in the system. -
7. The system provides security -
8. The system has integrity -
9. The system is dependable. -
10. The system is reliable. -
11. I can trust the system. -
12. I am familiar with the system. -

Table A.8.: The Trust in Automated Systems Survey items according to Jian et al. (2000).

Nr. Items Sub-Scales
1. The system is deceptive. -
2. I am suspicious of the system’s intent, action, or outputs -
3. I am wary of the system. -
4. The system’s actions will have a harmful or injurious out-

come.
-

5. I am confident in the system. -
6. The system is reliable. -
7. I can trust the system. -

Table A.9.: The Short Learned Trust in Automation Scale items according to J. M. Kraus
(2020).
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Nr. Items Sub-Scales
1. The system always provides the advice I require to make

my decision.
Perceived Reliability

2. The system performs reliably. Perceived Reliability
3. The system responds the same way under the same condi-

tions at different times.
Perceived Reliability

4. can rely on the system to function properly. Perceived Reliability
5. The system analyzes problems consistently. Perceived Reliability
6. The system uses appropriate methods to reach decisions. Perceived Technical

Competence
7. The system has sound knowledge about this type of prob-

lem built into it.
Perceived Technical
Competence

8. The advice the system produces is as good as that which a
highly competent person could produce.

Perceived Technical
Competence

9. The system correctly uses the information I enter. Perceived Technical
Competence

10. The system makes use of all the knowledge and information
available to it to produce its solution to the problem.

Perceived Technical
Competence

11. I know what will happen the next time I use the system
because I understand how it behaves.

Perceived Understand-
ability

12. I understand how the system will assist me with decisions
I have to make.

Perceived Understand-
ability

13. Although I may not know exactly how the system works, I
know how to use it to make decisions about the problem.

Perceived Understand-
ability

14. It is easy to follow what the system does. Perceived Understand-
ability

15. I recognize what I should do to get the advice I need from
the system the next time I use it.

Perceived Understand-
ability

16. I believe advice from the system even when I don’t know
for certain that it is correct.

Faith

17. When I am uncertain about a decision I believe the system
rather than myself.

Faith

18. If I am not sure about a decision, I have faith that the
system will provide the best solution.

Faith

19. When the system gives unusual advice I am confident that
the advice is correct.

Faith

20. Even if I have no reason to expect the system will be able
to solve a difficult problem, I still feel certain that it will.

Faith

21. I would feel a sense of loss if the system was unavailable
and I could no longer use it.

Personal Attachment

22. I feel a sense of attachment to using the system. Personal Attachment
23. I find the system suitable to my style of decision making. Personal Attachment
24. I like using the system for decision making. Personal Attachment
25. I have a personal preference for making decisions with the

system.
Personal Attachment

Table A.10.: The Human-Computer Trust Scale items and the respective sub-scales ac-
cording to Madsen and Gregor (2000).
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A. Questionnaires

Nr. Items Sub-Scales
1. I think that I would like to use this system frequently. -
2. I found the system unnecessarily complex. -
3. I thought the system was easy to use. -
4. I think that I would need the support of a technical person

to be able to use this system.
-

5. I found the various functions in this system were well inte-
grated.

-

6. I thought there was too much inconsistency in this system. -
7. I would imagine that most people would learn to use this

system very quickly.
-

8. I found the system very cumbersome to use. -
9. I felt very confident using the system. -
10. I needed to learn a lot of things before I could get going

with this system.
-

Table A.11.: The SUS items according to Brooke (1996).

Nr. Items Sub-Scales
1. annoying-enjoyable Attractiveness
2. bad-good Attractiveness
3. unlikeable-pleasing Attractiveness
4. unpleasant-pleasant Attractiveness
5. unattractive-attractive Attractiveness
6. unfriendly-friendly Attractiveness
7. slow-fast Efficiency
8. inefficient-efficient. Efficiency
9. impractical-practical. Efficiency
10. cluttered-organized Efficiency
11. not understandable - understandable Perspicuity
12. difficult to learn - easy to learn Perspicuity
13. complicated - easy Perspicuity
14. confusing - clear Perspicuity
15. unpredictable-predictable Dependability
16. obstructive-supportive Dependability
17. not secure-secure Dependability
18. does not meet expectations-meets expectations Dependability
19. inferior-valuable Stimulation
20. boring-exciting Stimulation
21. not interesting-interesting Stimulation
22. demotivating-motivating Stimulation
23. dull-creative Novelty
24. conventional-inventive Novelty
25. usual-leading edge Novelty
26. conservative-innovative Novelty

Table A.12.: The UEQ items and the respective sub-scales according to Laugwitz et al.
(2006).
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Nr. Items Sub-Scales
1. obstructive-supportive Pragmatic Quality
2. complicated - easy Pragmatic Quality
3. inefficient-efficient. Pragmatic Quality
4. confusing - clear Pragmatic Quality
5. boring-exciting Hedonic Quality
6. not interesting-interesting Hedonic Quality
7. conventional-inventive Hedonic Quality
8. usual-leading edge Hedonic Quality

Table A.13.: The UEQ-S items and the respective sub-scales according to Laugwitz et al.
(2006).
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A. Questionnaires

Nr. Items Sub-Scales
1. The system is accurate. System Response Accu-

racy
2. The system is unreliable. System Response Accu-

racy
3. The interaction with the system is unpredictable. System Response Accu-

racy
4. The system didn’t always do what I wanted. System Response Accu-

racy
5. The system didn’t always do what I expected. System Response Accu-

racy
6. The system is dependable. System Response Accu-

racy
7. The system makes few errors. System Response Accu-

racy
8. The interaction with the system is consistent. System Response Accu-

racy
9. The interaction with the system is efficient. System Response Accu-

racy
10. The system is useful. Likeability
11. The system is pleasant. Likeability
12. The system is friendly. Likeability
13. I was able to recover easily from errors. Likeability
14. I enjoyed using the system Likeability
15. It is clear how to speak to the system. Likeability
16. It is easy to learn to use the system. Likeability
17. I would use this system. Likeability
18. I felt in control of the interaction with the system. Likeability
19. I felt confident using the system. Cognitive Demand
20. I felt tense using the system. Cognitive Demand
21. I felt calm using the system. Cognitive Demand
22. A high level of concentration is required when using the

system.
Cognitive Demand

23. The system is easy to use Cognitive Demand
24. The interaction with the system is repetitive. Annoyance
25. The interaction with the system is boring. Annoyance
26. The interaction with the system is irritating. Annoyance
27. The interaction with the system is frustrating. Annoyance
28. I sometimes wondered if I was using the right word. Habitability
29. I always knew what to say to the system. Habitability
30. I was not always sure what the system was doing. Habitability
31. It is easy to lose track of where you are in an interaction

with the system.
Habitability

32. The interaction with the system is fast. Speed
33. The system responds too slowly. Speed

Table A.14.: The SASSI items and the respective sub-scales according to Hone and Gra-
ham (2000).
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Behnke, G., Höller, D., & Biundo, S. (2019a). Bringing order to chaos – A compact
representation of partial order in SAT-based HTN planning. Proc. of the 33rd
AAAI Conf. on AI (AAAI 2019). https://doi.org/10.1609/aaai.v33i01.33017520
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Bercher, P., Alford, R., & Höller, D. (2019). A survey on hierarchical planning – One
abstract idea, many concrete realizations. Proc. of the 28th Int. Joint Conf. on
AI (IJCAI 2019).

Bercher, P., Behnke, G., Kraus, M., Schiller, M., Manstetten, D., Dambier, M., Dorna,
M., Minker, W., Glimm, B., & Biundo, S. (2021). Do it yourself, but not alone:
Companion-technology for home improvement—bringing a planning-based inter-
active diy assistant to life. KI-Künstliche Intelligenz, 35 (3), 367–375.

Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., & Schattenberg,
B. (2014). Plan, repair, execute, explain—how planning helps to assemble your
home theater. Proceedings of the International Conference on Automated Planning
and Scheduling, 24.

Bickmore, T., & Cassell, J. (1999). Small talk and conversational storytelling in embodied
conversational interface agents. AAAI fall symposium on narrative intelligence,
87–92.

Bickmore, T. W., & Picard, R. W. (2005). Establishing and maintaining long-term human-
computer relationships.ACM Transactions on Computer-Human Interaction, 12 (2),
293–327.

Biondi, F., Alvarez, I., & Jeong, K.-A. (2019). Human–vehicle cooperation in auto-
mated driving: A multidisciplinary review and appraisal. International Journal
of Human–Computer Interaction, 35 (11), 932–946.

Bishop, C. M., et al. (1995). Neural networks for pattern recognition. Oxford university
press.

Biundo, S., & Wendemuth, A. (2016). Companion-technology for cognitive technical sys-
tems. KI-Künstliche Intelligenz, 30 (1), 71–75.

Black, A. W., & Eskenazi, M. (2009). The spoken dialogue challenge. Proceedings of the
SIGDIAL 2009 Conference, 337–340.

Bohus, D., & Rudnicky, A. I. (2009). The ravenclaw dialog management framework:
Architecture and systems. Computer Speech & Language, 23 (3), 332–361.

Bordes, A., Boureau, Y.-L., &Weston, J. (2016). Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Branigan, H. (2006). Perspectives on multi-party dialogue. Research on Language and
Computation, 4 (2), 153–177.

Bratman, M. E., Israel, D. J., & Pollack, M. E. (1988). Plans and resource-bounded
practical reasoning. Computational intelligence, 4 (3), 349–355.

Braun, M., Mainz, A., Chadowitz, R., Pfleging, B., & Alt, F. (2019). At your service:
Designing voice assistant personalities to improve automotive user interfaces. Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
1–11.

Brave, S., Nass, C., & Hutchinson, K. (2005). Computers that care: Investigating the
effects of orientation of emotion exhibited by an embodied computer agent. Inter-
national journal of human-computer studies, 62 (2), 161–178.

Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5–32.

256



Bibliography

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and
regression trees. Routledge.

Brooke, J. (1996). Sus: A “quick and dirty’usability. Usability evaluation in industry, 189.
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (2017). A study of thinking. Routledge.
Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Ultes, S., Ramadan, O., &
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Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition. Sensors, 16 (1), 115.

Oviatt, S., Darves, C., & Coulston, R. (2004). Toward adaptive conversational inter-
faces: Modeling speech convergence with animated personas. ACM Transactions
on Computer-Human Interaction (TOCHI), 11 (3), 300–328.

P.851, I.-T. R. (2003). Subjective quality evaluation of telephone services based on spoken
dialogue systems. International Telecomm. Union, Geneva.

Paas, F., Van Gog, T., & Sweller, J. (2010). Cognitive load theory: New conceptualiza-
tions, specifications, and integrated research perspectives. Educational psychology
review, 22 (2), 115–121.

Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in
statistics: A cognitive-load approach. Journal of educational psychology, 84 (4),
429.

Pandey, A. K., Ali, M., & Alami, R. (2013). Towards a task-aware proactive sociable robot
based on multi-state perspective-taking. International Journal of Social Robotics,
5 (2), 215–236.

Papangelis, A., Karkaletsis, V., & Makedon, F. (2012). Online complex action learning and
user state estimation for adaptive dialogue systems. 2012 IEEE 24th International
Conference on Tools with Artificial Intelligence, 1, 642–649.

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and
levels of human interaction with automation. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 30 (3), 286–297. https :
//doi.org/10.1109/3468.844354

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse.
Human factors, 39 (2), 230–253.

Park, S. Y., Moore, D. J., & Sirkin, D. (2020). What a driver wants: User preferences in
semi-autonomous vehicle decision-making. Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, 1–13.

Parker, S. K., Bindl, U. K., & Strauss, K. (2010). Making things happen: A model of
proactive motivation. Journal of management, 36 (4), 827–856.

Parker, S. K., Williams, H. M., & Turner, N. (2006). Modeling the antecedents of proactive
behavior at work. Journal of applied psychology, 91 (3), 636.

273

https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354


Bibliography

Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The
adaptive web (pp. 325–341). Springer.

Pecune, F., & Marsella, S. (2020). A framework to co-optimize task and social dialogue
policies using reinforcement learning. Proceedings of the 20th ACM International
Conference on Intelligent Virtual Agents, 1–8.

Pelachaud, C., & Poggi, I. (2002). Subtleties of facial expressions in embodied agents. The
Journal of Visualization and Computer Animation, 13 (5), 301–312.

Peng, Z., Kwon, Y., Lu, J., Wu, Z., & Ma, X. (2019). Design and evaluation of service
robot’s proactivity in decision-making support process. Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 98.

Pham, T., Hayashi, K., Becker-Asano, C., Lacher, S., & Mizuuchi, I. (2017). Evaluat-
ing the usability and users’ acceptance of a kitchen assistant robot in household
environment. 2017 26th IEEE International Symposium on Robot and Human In-
teractive Communication (RO-MAN), 987–992.

Picard, R. W. (2000). Affective computing. MIT press.
Pietquin, O. (2005). A framework for unsupervised learning of dialogue strategies. Presses

univ. de Louvain.
Pietquin, O., & Hastie, H. (2013). A survey on metrics for the evaluation of user simula-

tions. The knowledge engineering review, 28 (1), 59–73.
Pittermann, J., & Pittermann, A. (2006). Integrating emotion recognition into an adap-

tive spoken language dialogue system. 2006 2nd IET International Conference on
Intelligent Environments-IE 06, 1, 197–202.

Pittermann, J., Pittermann, A., & Minker, W. (2010). Emotion recognition and adap-
tation in spoken dialogue systems. International Journal of Speech Technology,
13 (1), 49–60.

Portela, M., & Granell-Canut, C. (2017). A new friend in our smartphone? observing
interactions with chatbots in the search of emotional engagement. Proceedings of
the XVIII International Conference on Human Computer Interaction, 1–7.

Poushneh, A. (2021). Humanizing voice assistant: The impact of voice assistant person-
ality on consumers’ attitudes and behaviors. Journal of Retailing and Consumer
Services, 58, 102283.

Pragst, L., Ultes, S., Kraus, M., & Minker, W. (2015). Adaptive dialogue management in
the kristina project for multicultural health care applications. Proceedings of the
19thWorkshop on the Semantics and Pragmatics of Dialogue (SEMDIAL), 202–
203.

Prasad, P. K., & Ertel, W. (2020). Knowledge acquisition and reasoning systems for service
robots: A short review of the state of the art. 2020 5th International Conference
on Robotics and Automation Engineering (ICRAE), 36–45. https://doi.org/10.
1109/ICRAE50850.2020.9310835

Prenger, R., Valle, R., & Catanzaro, B. (2019). Waveglow: A flow-based generative net-
work for speech synthesis. ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3617–3621.

274

https://doi.org/10.1109/ICRAE50850.2020.9310835
https://doi.org/10.1109/ICRAE50850.2020.9310835


Bibliography

Qiu, S., Gadiraju, U., & Bozzon, A. (2020). Improving worker engagement through con-
versational microtask crowdsourcing. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 1–12.

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. A., & Botvinick, M. (2018).
Machine theory of mind. International conference on machine learning, 4218–4227.

Rach, N., Minker, W., & Ultes, S. (2017). Interaction quality estimation using long short-
term memories. Proceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, 164–169.
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