
Optimizing Deterministically Scheduled
Fault-Tolerant Distributed Systems

vorgelegt von

Gerhard Habiger
aus Ulm

Institut für Verteilte Systeme
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

Universität Ulm

2023

Dissertation zur Erlangung des Doktorgrades Dr.rer.nat.
der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

der Universität Ulm





OPT IMIZ ING

DETERMIN I ST ICALLY SCHEDULED

FAULT-TOLERANT

DI STR IBUTED SYSTEMS

GERHARD ROLAND MART IN HABIGER





Institut für Verteilte Systeme
Universität Ulm

OPT IMIZ ING

DETERMIN I ST ICALLY SCHEDULED

FAULT-TOLERANT

DI STR IBUTED SYSTEMS

DIS SERTAT ION

zu r E r l an gung d e s Dok t o r g r a d e s D r. r e r. n a t . d e r
Fa ku l t ä t f ü r In g e n i e u r w i s s e n s c h aft en , In f o rma t i k und Ps y cho l o g i e d e r
Un i v e r s i t ä t U lm

vo r g e l e g t v on

GERHARD ROLAND MART IN HABIGER

au s U lm , D eu t s c h l and

2 0 2 3



Amtierende Dekanin
Prof. Dr. Anke Huckauf

Gutachter
Prof. Dr.-Ing. Franz J. Hauck
Prof. Dr.-Ing. Rüdiger Kapitza

Tag der Promotion
2023-01-30

kontakt

Gerhard Habiger

gerhard.habiger@alumni.uni-ulm.de
ghabiger@gmail.com

mailto:gerhard.habiger@alumni.uni-ulm.de
mailto:ghabiger@gmail.com


ABSTRACT

Fault-tolerant systems are ubiquitous—not only in the world of IT, but in every Motivation
critical system we design and build in our natural environment. Approaches
aimed at equipping systems with the resilience they need to withstand both in-
ternal and external disturbances are multitudinous. Among these approaches,
StateMachine Replication (SMR) stands out due to the remarkable guarantees
it provides system designers with in regard to the types of failures it can tol-
erate. Unfortunately, however, replicating state machines comes with high re-
source costs, and the architectural requirements of this technique are difficult
to fulfill without incurring additional, significant decreases in performance.

This thesis contributes to several research endeavors addressing the perfor- Problem Statement
mance issues SMR solutions commonly face. The primary goal of this work
is the advancement of the state-of-the-art regarding solutions that equip SMR
systems with the means to self-optimize during runtime.

The thesis first identifies a common drawback of existing optimization Approaches
methods that are based on deterministic multithreading, and provides an im-
mediate solution in the form of a novel, runtime-reconfigurable scheduling
algorithm. This forms the basis for the following research efforts contained
in this work, which improve on prior systems using two main approaches:
(i) The first approach aims at enabling SMR systems to scale vertically during
runtime, which unlocks significant potential in regard to cost efficiency of
these solutions. (ii) The second approach looks at the performance of SMR
systems as experienced by clients, i.e., usingmetrics such as throughput and re-
quest latencies, and improves these by introducing several novel optimization
solutions.

In addition to detailing these approaches and their results, the thesis also Background
introduces background knowledge about fault-tolerant systems, deterministic
multithreading, and optimization methods that is required to understand and
follow this work.

The resulting contributions consist of multiple novel algorithms in the con- Contributions
texts of deterministic scheduling, deterministic distributed measurements,
and performance optimization. Additionally, several proof-of-concept im-
plementations are presented and used for thorough evaluations, showing
significant advantages over unoptimized approaches or related work. Among
these implementations, an architecture for vertically scalable SMR systems is
presented, and a fully self-optimizing SMR setup is introduced and evaluated.
Finally, the thesis details the development of a Reinforcement Learning-based
framework for the creation of autonomous agents capable of self-optimizing
SMR systems during runtime. Some of these novel mechanisms are orthogo-
nal to prior work and can be combined with existing solutions to further boost
the performance of deterministically multithreaded systems in the context of
SMR.





ZUSAMMENFASSUNG

Fehlertolerante Systeme sind weltweit nicht mehr aus unserer Gesellschaft Motivation
wegzudenken, sichern sie doch in vielerlei Hinsicht unseren hohen Lebens-
standard. Die Ansätze mit denen DesignerInnen und IngenieurInnen die
diese Systeme entwerfen letztendlich Fehlertoleranz sicherstellen, sind vielfäl-
tig und Kernthema verschiedenster Forschungsdisziplinen. Unter all diesen
Ansätzen stechen replizierte Zustandsautomaten (State Machine Replication,
Abk. SMR) hervor, da sie ein hohes Level an Fehlertoleranz bieten, welches von
den meisten anderen Mechanismen nicht erreicht werden kann. Leider wird
diese hohe Fehlertoleranz jedoch durch intensiven Ressourceneinsatz erkauft,
und die zahlreichen Anforderungen an die Architektur von SMR-Systemen
haben oftmals starke Performanceeinbußen zur Folge.

In dieser Arbeit werden mehrere Lösungsansätze verfolgt, die Performance Problemstellung
von SMR-Systemen zu verbessern. Das Hauptziel dieser Dissertation ist, SMR-
Systeme mit der Fähigkeit auszustatten, sich während der Laufzeit selbst und
so autonom wie möglich zu optimieren, um auf Änderungen an Umgebungs-
variablen reagieren zu können und ihre Performance im Vergleich zu unopti-
mierten Systemen allgemein zu steigern.

Als erstes wird diesbezüglich eine gemeinsame Schwäche aller vorheriger Herangehensweise
auf deterministischem Multithreading basierender Optimierungsmethoden
identifiziert, und ein neuartiger deterministischer Schedulingalgorithmus als
Lösung vorgeschlagen. Dieser bildet zugleich die Basis für die weiteren For-
schungsansätze der Arbeit, welche den aktuellen Stand der Forschung hin-
sichtlich der folgenden Themen vorantreiben: (i) Der erste Ansatz zielt dar-
auf ab, SMR-Systeme zu befähigen, während ihrer Laufzeit vertikal zu skalie-
ren. Dies ermöglicht immense Kosteneinsparungen im Betrieb cloudbasierter
SMR-Installationen. (ii) Im zweiten Ansatz wird die Leistung von SMR-Syste-
men aus Perspektive der Clients betrachtet, und die entsprechendenMetriken,
wie Request-Durchsatz und -Latenzzeiten mit innovativen Optimierungsme-
thoden verbessert.

Zusätzlich zur Beschreibung dieser Forschungsansätze beinhaltet dieArbeit Hintergrundwissen
ausführliche Hintergrundinformationen zu den Kernthemen des determinis-
tischenMultithreadings undder Systemoptimierung, umLeserInnen dieMög-
lichkeit zu geben, der Arbeit auch ohne viel Vorwissen folgen zu können.

Die aus den Forschungsansätzen resultierenden Ergebnisse und Beiträge Ergebnisse und
Forschungsbeiträgeder Arbeit zum aktuellen Forschungsstand bestehen aus mehreren neuartigen

Algorithmen, mitunter für deterministisches Multithreading, für fehlertole-
rante Messungen in verteilten Systemen, und für die Leistungsoptimierung
von SMR-Systemen. Zusätzlich zeigen verschiedene Proof-of-concept Im-
plementierungen anhand ausführlicher Messungen und Evaluationen die
Vorteile unserer Lösungen im Vergleich zu vorherigen oder unoptimierten
Systemen. Unter diesen Prototypen findet sich zum einen eine Architektur
die SMR-Systemen vertikales Skalieren zur Laufzeit ermöglicht, und zum



x

anderen ein umfassender, lauffähiger Prototyp eines selbstoptimierenden
SMR-Systems. Zu guter Letzt wird eine Plattform für das Trainieren von
Reinforcement Learning-Agenten vorgestellt, durch die es ermöglicht wird,
Agenten zu kreieren die mit komplexeren Kombinationen aus Metriken und
Konfigurationsparametern umgehen können, um Systeme selbsttätig zu op-
timieren. Einige der vorgestellten Ansätze sind zudem orthogonal zu vorhe-
rigen Arbeiten und können mit diesen kombiniert werden, um zusätzliche
Leistungssteigerungen im Kontext von SMR zu erzielen.
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FOUNDATIONS





INTRODUCT ION

1
As researchers and engineers, we design, build, and test systems—systems de-
signed to prove or disprove our theories, systems that aid us in our daily work,
or just simply systems for helping us with the discovery of the undiscovered.
For any system to be useful, it has to function, i.e., provide the service it was
designed to fulfill, preferably without interruption or downtime. This admit-
tedly rather obvious insight contains the inherent requirement that a system
be dependable, i.e., resilient against perturbances, regardless of whether they
originate from outside the system or from within the system itself.

Nature has produced a manifold of resilient systems before humans ever Dependability &
Resiliencestarted thinking and innovating their way out of caves. Fish lay thousands of

eggs, although this requires more energy than producing just one egg would,
simply so at least a few offspring can survive and fulfill the function of pro-
creation. Biology favors diversity in any ecosystem, as it hardens the system
against a wide variety of threats [101]. Similarly, human engineers have always
liked to include safety margins and measures against potential disasters, es-
pecially in critical systems designed to support our civilization. By doing so,
they too can create more impervious systems. As such, it can be argued that
dependability and resilience should be core properties of almost any system—
apart maybe only from those created for purely recreational or otherwise truly
non-critical purposes.

To achieve resilience, or—as theUSDepartment of Homeland Security Risk Fault Tolerance
Steering Committee describes it—the ability to adapt to changing conditions
and prepare for, withstand, and rapidly recover from disruption [105], we gen-
erally want systems to have the ability to continue operating even when faced
with faults. These faults can originate from within the system itself, or be in-
troduced into the system by outside influence, but always take effect in com-
ponents of the system. The main concept of tolerating faults within a system,
regardless of their origin, is aptly named fault tolerance (FT), and lies at the
heart of most strategies aimed at hardening systems against failures1.

Even though these motivations and thoughts may seem a bit diffuse, they
are in fact non-trivial: FT techniques always add to the total cost of a system
(even if only at design time) and are usually resource intensive. However, the
benefits that arise from their inclusion are a good motivation and justification.
Having these carte-blanche reasons for adding resilience to systems—like the
onesmotivated in first two paragraphs of this introduction—simplifies our rea-
soning for expendingmore energy when building or running resilient systems.
Nonetheless, this high energy expenditure is also, of course, reason enough to
look into ways to minimize these added costs, to overall increase the attrac-
tiveness of employing FT techniques further.

1 There are clear terminological differences between faults and failures, the details of which are
explained in Section 2.1.
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1.1 objectives and contributions

The core goal of this thesis is to provide several optimizations to specific FTThesis Goals
techniques under themantle of theOptSCORE project, funded by theDeutsche
Forschungsgemeinschaft (DFG, German Research Foundation), so as to con-
tribute to the state-of-the-art of building critical systems for general use. In
particular, this thesis significantly contributes to the field of research that fo-
cuses on building Byzantine fault-tolerant distributed systems, which are opti-
mized by way of introducing concurrency through deterministic multithread-
ing. Of course, in order to convey what this means and to comprehensibly talk
about our research in the pursuit of this as yet relatively vague goal, common
ground and basic understanding about fault-tolerant distributed systems have
to be established first. Afterwards, the research goals of this thesis will bemore
clearly defined using the established terminology and background knowledge.
Nonetheless, for readers familiar with these topics, we will succinctly summa-
rize our three main contributions in the following paragraphs, giving forward
references to definitions where applicable.

1.1.1 Developing Runtime-Configurable Deterministic Multithreading

In the field of deterministic multithreading, especially in the context of stateFirst Contribution
machine-replicated (SMR) systems, several prior works have established a
common system model and working baselines. One of the central approaches
utilizes deterministic schedulers to enable multithreading while preserving
determinism. However, one of the major lacking features of these existing
solutions is adaptability, in the sense that the system can be reconfigured or
reconfigure itself during runtime, e.g., to react to changes in the system’s en-
vironment or behavior. To remedy this situation, we first contributed to the
initial development and publication of a novel runtime-configurable deter-
ministic scheduling algorithm. Afterwards we implemented and tested this al-
gorithm within an event-based simulation to gather results on the scheduler’s
effects, e.g., on system performance and efficiency metrics. This contribution
in itself is a valuable addition to the field of deterministic multithreading, as
it constitutes a condensation of prior works into a single algorithm capable of
emulating not only the behavior of these previous algorithms, but opens up
a larger configuration space that allows for exploration of novel scheduling
strategies in the context of replicated systems. Lastly, several bug fixes and
optimizations to the algorithm were added over the years, since integrating
the scheduler into various systems was key to enabling many of the further
research efforts presented in this thesis.

1.1.2 Improving Resource-Efficiency for SMR Systems in Cloud Environments

SMR systems are frequently deployed to virtualized cloud environments to in-Second Contribution
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crease their resilience against hardware failures2. However, due to their nature,
these systems usually require the strict provisioning of hardware resources in
order to meet performance targets under variable load conditions, e.g., while
the number of connected clients fluctuates during a day. This strict provision-
ing wastes resources and costs money. We proposed an architecture for dy-
namical vertical rescaling of replicated state machines during runtime to ad-
just the provided hardware resources on-the-fly. To demonstrate the feasibility
of this approach, we then implemented a prototype system for measuring the
impact of vertical scaling decisions on system efficiency. An evaluation of the
approach based on this prototype was then performed, revealing that signifi-
cant reductions in operating costs of SMR systems are possible, thereby fitting
into our general motivation of optimizing these systems.

1.1.3 Enabling Performance Self-Optimization of SMR Systems

Despite recent advancements in the field of SMR performance optimization,
one feature that has persistently been a roadblock against further improve-
ments is the efficient concurrent execution of requests. Firstly, only the most
cutting-edge, prototypical research implementations of replicated state ma-
chines allow for concurrent execution, while the few actually available options
to the public, i.e., those outside of the labs of research groups specializing in
optimizing SMR systems, still utilize single-threading in order to preserve de-
terminism. Secondly, among those few proposed solutions that do parallelize
the execution stage of state machines, none can react to changes in the envi-
ronment, e.g., fluctuating load, diverse application profiles, or switching of the
replicated applications. Lastly, in order to improve the runtime-performance
of a deterministically scheduled system, at least one deterministic metric is
required to measure whether any employed optimization actions have a bene-
ficial or detrimental effect. However, deterministically measuring a Byzantine
fault-tolerant distributed system is no easy feat, as any measurement mecha-
nism has to be resilient against any Byzantine influence, too. Our final contri-
butions to solving these problems can be broken down as follows:

Deterministic Byzantine Fault-Tolerant Measurements

First, we developed a way to deterministically measure current system load, Third Contribution
and analyzed this algorithm’s behavior under different failure models. After-
wards, we implemented the algorithm, and evaluated its real-world charac-
teristics using an SMR benchmarking setup. We then integrated our previ-
ously mentioned runtime-reconfigurable scheduling solution (Contribution
#1) with this prototype SMR system to enable concurrent execution of requests.
This architecture itself is a significant contribution to the field because it al-
lows for the development of algorithms that require a deterministic decision
basis within a distributed, BFT SMR system. Additionally, the architecture

2 Chapter 2 will explain the background behind SMR from the ground up.
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allowed us to research and evaluate two optimization strategies for enabling
self-optimization in SMR in the following contributions.

Rule-Based Self-Optimization of SMR Systems

To this end, we developed a rule-based self-optimization algorithm using in-Fourth Contribution
ferred knowledge about our scheduler’s behavior gathered during its initial
implementation and evaluation stages while working towards Contribution #1.
We implemented this algorithm in our research platform, and evaluated its be-
havior in scenarios with variable load. With this setup, we demonstrated that
self-optimizing SMR deployments can experience considerable performance
improvements utilizing reconfigurable scheduling during runtime. This again
ties back to our initial motivations.

Agent-Based Self-Optimization of SMR Systems

Finally, to generalize this previous approach and enable our system to reactFifth Contribution
to a broader set of circumstances, we investigated the latest state-of-the-art in
Reinforcement Learning (RL) techniques, with the goal of applying their in-
nate potential to handle complex systems to this optimization problem. With
this in mind, we transformed our environment to be suitable for the applica-
tion of RL methods, and set out to training a neural network-based RL agent,
which would in the best case take over parameter adjustments in our runtime-
configurable prototype system. Themain contribution of this research was the
development of this fully working RL training platform based on cutting-edge
approaches, alongside a collection of valuable insights into the feasibility of
this approach in general.

1.2 roadmap

The remainder of Part I introduces the foundations and background knowl-
edge on which most of the remaining thesis is built. It is aimed at readers who
are familiar with general concepts of computer science and who have at least
dipped their feet into the realm of FT before. Part II introduces our previously
mentioned novel deterministic scheduling solution, called Unified Determin-
istic Scheduling/-er (UDS). It is one of the core mechanisms on which the op-
timizations developed during our research are based. In Part III we detail our
contribution that improves the efficiency of deterministically scheduled fault-
tolerant systems in cloud environments. This approach works especially well
in regard to hardware resource utilization, resulting in significantly lower oper-
ating costs of such systems. Part IV, finally, introduces an additional selection
of related work pertaining to performance optimization of SMR systems, and
details our efforts into improving the performance of these systems by way
of dynamically reconfiguring their parameters during runtime. To close, Part
V summarizes our main results and contributions, and concludes by leaving
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the reader with an outlook on open future work in this interesting subfield of
distributed systems research.

Depending on one’s available time or interest in certain topics, we recom- Reading Paths
mend alternative reading paths for readers only interested in specific themes.

executive summary This selection provides the most condensed sum-
mary of the contributions of this thesis.

Relevant chapters: Chapters 5, 7, 8, 11, 16, and 17.

uds This chapter selection covers the development, specification, implemen-
tation, and debugging of UDS. It also includes complementary aspects
such as background information on deterministic multithreading. Af-
terwards, it skips over large parts of the thesis directly to its closing chap-
ter, where the main ways in which UDS was used in our contributions
is summarized a last time.

Relevant chapters: Chapters 3, 6 to 8, and 17.

resource efficiency The next selection covers the chapters directly in-
volved in our discussions about resource efficiency optimizations, in-
cluding two of the three background chapters to prepare the terminol-
ogy used while later describing our approaches.

Relevant chapters: Chapters 2, 3, 9 to 11, and 17.

performance optimization As one of the main goals of this thesis, if
you are interested mainly in a summary of our performance optimiza-
tion endeavors, we recommend reading the following chapters, includ-
ing the initial chapters introducing foundational knowledge.

Relevant chapters: Chapters 2 to 4 and 12 to 17.





FAULT-TOLERANT DI STR IBUTED SYSTEMS

2
As motivated in Chapter 1, this thesis aims to improve the performance of
specific FT mechanisms in a certain class of systems. This chapter aims to
clarify exactly what kind of specific mechanisms and systems we are talking
about, while also giving background information about their inner workings.

2.1 background

The very first important distinction to be made is already hidden in the head- Distributed Systems
ing of this chapter: We are exclusively interested in distributed systems and
their unique properties. In fact, many FT techniques rely on a system being
distributed, or, put differently, many systems can only be made reliable by
transforming them to distributed systems.

Distributed systems in the context of computer science can—a little cheekily—
be defined as follows:

“A distributed system is one in which the failure of a computer
you didn’t even know existed can render your own computer un-
usable.” [98]

We will shortly introduce a slightly more technical definition of distributed Terminology
systems, but chose this quote because it lets us segue to a fulfillment of the
promise made in the introduction: That we briefly talk about terminology.

In the seminal work of Avižienis et al. from 2004, the most common terms
used when describing dependable systems are succinctly differentiated [15]:

• Failure: A deviation from the state where the system correctly delivers
its provided service, i.e., it does not fulfill its functional specification
anymore. This is visible to the system’s environment, so in our case, to
the system’s clients.

• Error: Systems internally transition through states in order to provide
their service to clients; an error, then, is a deviation from any correct
state, which can — but does not have to — lead to an externally visible
failure.

• Fault: An underlying cause of a potential error. Faults can be internal or
external, and examples include, but are not limited to, hardware faults
(e.g., physical deterioration), human-made faults (e.g., a missing inter-
action, forgotten by a system’s maintainer), development faults (e.g., er-
roneous design of an internal component), and many more. For an ex-
ternal fault to cause an error within a system, a previously existing inter-
nal fault (a vulnerability) has to exist in the system.

Note that not all faults have to lead to errors, and not all errors lead to fail-
ures. The goal of FT mechanisms is of course to tolerate as best as possible any
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occurring faults, so that the system can transparently mask errors and never
experiences a failure (or, in other words, FT tries to equip a system with the
means to ignore occurring errors so that clients of the system never notice a
failure).

Further, the way a system behaves in case a failure occurs can be described
by differentiating between failure models:

fail-stop The simplest form of failure behavior; a failed system in this
case fails permanently, i.e., it crashes, and can be detected as being in a
crashed state by other systems. Also called crash-stop.

fail-silent A system crashes, i.e., stops delivering its service, but other
systems may have trouble detecting this failure and cannot access the
crashed system’s last state.

crash-recovery A system may intermittently fail to deliver messages re-
quired for service provision, but can recover from this failure.

byzantine A failed system may deliver arbitrarily erroneous results —
within the bounds of computational feasibility —, including ones with
malicious intent designed to harm other systems, or showing any of the
symptoms of the previous failure models.

This brief terminological introduction shall suffice for the purposes of this
thesis. For further reading, see for example [75], [15], or [10].

For an alternative definition of distributed systems, maybe a little less hu-
morous and more apt than the previous one, we could follow van Steen and
Tanenbaum’s view:

“A distributed system is a collection of autonomous computing el-
ements that appears to its users as a single coherent system.” [108]

This is a very broad definition, hence whenever we talk about distributedClient-Server
Architecture systems in the context of this thesis, we generally mean individual physical or

virtualmachines connected via a local orwide area network, which collectively
aim to provide a service to ephemerally connected clients, i.e., employing a
classical client-server architecture.

Several approaches to introduce FT exist for this generic architecture. In
the following sections, we will briefly introduce the main concepts using an
example application, to give context on FT mechanisms and slowly transition
to the main FT mechanism this thesis is aiming to improve.

2.2 time-based, data-based, and operation-based ft

Let us assume we are trying to build an FT distributed system of the sort de-
fined above, i.e., a collection of network-connected machines, which accept
queries from clients wanting to make use of the provided service.

To start small, a single machine with appropriate software providing service
functionality shall serve as version 𝑣0 of our (as yet undistributed) system. In
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this case, any fault in the machine whatsoever will lead to system failure, as
a single machine without any further FT measures will have no way to mask
occurring errors to clients. Even worse, when system 𝑣0 fails, it will likely fail
for good, since we have no way of restoring it to a correct state — internal
faults may have led to irreversible corruption of required data. Hence, 𝑣0 is a
fail-stop (or possibly even a fail-silent) system.

From Fail-Stop to Crash-Recovery

For a version 𝑣1, we can therefore employ time-based FT methods, which save Time-Based FT
a system’s internal state required for service restoration to any kind of persis-
tent medium (which is in itself another fault-tolerant system, but we shall ig-
nore this digression for now). For example, periodic checkpointing of the sys-
tem’s application data to a hard disk which can survive power outages, or event
sourcing-based application design which continuously streams events to a net-
work storage both constitute time-based FT methods. The latter would even
turn our system 𝑣1 into a proper distributed system. With 𝑣1 we have elevated
our system to the crash-recovery failure model, as after a crash we can now
restore the system’s state and resume service1. Note that the primary mecha-
nism which granted us FT was the addition of a level of redundancy, in this
case in the temporal domain. We will encounter this paradigm multiple times
in the next few sections, since redundancy of any form is the foundational en-
abling concept of FT. This is of course also a very general overview, skipping
overmany of the details required to actually make time-based FTmechanisms
work properly, but shall suffice for our current discussion of techniques.

Avoiding Service Interruptions

A problem we still have with 𝑣1 is that whenever the system experiences a Data-Based FT
failure—regardless of the actual underlying fault → error → failure chain—, all
current clients of the system will be affected by this failure. In other words,
service is interrupted for a period of time while the system is restored to an
operational state. It would be beneficial if we had a way to reduce the impact
of failures, i.e., continue service delivery for at least a percentage of clients. For
example, let us assume without loss of generality that our system is meant to
provide clients with simple access to a set of data2. If we were to partition the
data, i.e., separate it into multiple distinct subsets, and then distribute these
subsets to their own machines, any failure of a single machine would only af-
fect clients trying to access the subset of data that was provided by this par-
ticular machine. However, this would not be a good choice if our goal is to
avoid service interruptions, as those clients trying to access data on a crashed
machine still experience a full service outage. Alternatively, we could replicate
the entire dataset tomultiple machines, which could transparently tolerate the
failure of one or more of these, but only if we pay close attention to how write

1 This restoration can happen either manually, or even automatically by some external system
2 like e.g., a REST-like system would [94]
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access to any data within our dataset are distributed among the replicas. Note
how in the case where we partitioned the data ontomultiplemachines without
replication, we were missing redundancy and did not gain any FT, whereas in
the latter case the replication of data constituted redundancy in the data- or
storage-domain.

If our service is trulymeant to only provide read- andwrite-access to a set of
data, a step up from the simple replication of data would be the usage of error
correction codes such as erasure coding [110]. In erasure coding, data is not
simply partitioned or distributed fully, but is first separated into 𝑛 data chunks.
Now, a particular code and parameter 𝑘 can be chosen that signifies howmany
missing chunks of data we can tolerate and still be able to reconstruct the orig-
inal dataset. Thanks to themathematical principles behind error codes, which
we will not dive into in this thesis, choosing a proper algorithm and 𝑛 would
yield (𝑛, 𝑘)-code, where in addition to 𝑘 data chunks, only 𝑘 additional chunks
need to be determined by the erasure code and saved to storage to be able to
restore the full dataset. This works when less than 𝑘 chunks fail, and it works
regardless of which chunks out of all 𝑛 + 𝑘 chunks get lost, and would be just
one example of a data-based FT mechanism. This new version 𝑣2 would allow
us to completely mask the failure of a certain number 𝑘 out of 𝑛 total machines
within our system, so clients would not have to endure any service interrup-
tion as long as only a maximum of 𝑘 machines fail simultaneously3.

It is important to note here that even though we make it sound easy to add
these measures to a system, in real environments, these are in and of them-
selves rather complicated problems, which require careful engineering in or-
der for a system to properly function and fulfill its FT guarantees. For exam-
ple, simply “adding erasure coding” also requires that all writes be properly
ordered on all shards, lest we run the risk of garbling our redundancy data.
However, for the sake of this discussion, where our goal is a readily under-
standable and digestible description of FT mechanisms, we sometimes take
the liberty of omitting implementation details of mechanisms which are not
required to be fully understood for the purposes of this thesis.

What About More Complex Systems?

The level of FT we have achieved with 𝑣2 is already rather impressive, but stillOperation-Based FT
leaves some things to be desired. If, for example, the system needs to do more
than just provide access to a set of data (e.g., perform a series of complicated
calculations on the entirety of our dataset before a single data point can be up-
dated or read), it would be difficult or even impossible to get sharding to work.
To provide k-fault-tolerance for a more complex system, operation-based FT
mechanisms can be used. These add redundancy at the level of operations, i.e.,
each operation in the system is executed on multiple machines.

To achieve this, instead of sharding or erasure coding the data, we could
try to model our entire system as a deterministic finite state machine (DFSM)
and replicate this entire DFSM onto multiple machines. If we initialize all ma-

3 A system with this property is said to be k-fault-tolerant.



2.2 time-based, data-based, and operation-based ft 13

chines with the same initial state and could find a way to distribute all client
queries to thesemachines in exactly the same total order, all of themwould de-
terministically (hence the name) execute exactly the sameoperations, reaching
the same result for each client query. In other words, if we feed client queries
into all of our DFSM sequentially and in the same order, every machine will
individually execute the exact same steps as all the other machines, and all
of them will reach the same outcome. As a first, very simple solution for dis-
tributing queries to all clients in the same order, we could employ a sequencer.
This component would receive all queries from all clients and sequentialize
them before forwarding them to the DFSM. The idea of replicating state ma-
chines comes with a high resource cost, as we need multiple machines capable
of executing the entire service plus a component for ordering requests. The
immediate benefit of this approach is that since the DFSM are independent of
each other, it would suffice for just one machine to fully execute a client query
in order for this query to be answered successfully4.

We would now almost be able to provide k-fault-tolerance for any service
we can model as a DFSM. The last issue lies in the sequencer component we
introduced to ensure the same total order of client requests at each replica.
This component itself is currently not protected by any of the FT mechanisms
we introduced so far, and it’s quite clear that it would be impossible to harden
it without employing some kind of distribution. We then immediately arrive
at the conundrum that now the sequencer itself would have to be replicated,
requiring a total order of incoming requests, and so on. In other words, the
sequencer constitutes a single point of failure and ruins the entire premise of
trying to heave the system into a new class of FT. Nevertheless, let us call this
version of our system 𝑣3, and we shall now see how we can improve it further.

What we require is an atomic distribution of requests (i.e., messages) in a Consensus
Algorithmstotal order to multiple participants, which is aptly named atomic multicast. In

order to solve the problem of atomically multicasting messages, machines can
try to agree on the first message they should receive, before agreeing on the
second message, and so on, until they have agreed on all messages that should
be received. This effectively establishes an order. The process of agreeing on
values is called consensus, and it has been shown that atomicmulticast is solved
if consensus is solved [27].

Hence, current systems employ complex distributed consensus algorithms
to vote on an agreed upon order of requests, thereby fully distributing the pro-
cess of ordering requests and removing the remaining single point of failure in
system 𝑣3. These algorithms, originating from the first versions of the Paxos al-
gorithm [58], have been supplying their own community of researchers with a
steady stream of optimization problems for more than 30 years now, and have
been developed to a pointwhere it is difficult to reason about themwithout spe-
cialized tools [24]. For the purposes of this thesis, it suffices to introduce the
main concepts behind (and requirements of) popular consensus algorithms.

4 This is only valid if we assume a crash-stop model for individual machines in our system, and
if clients accept the first answer they receive as correct. It is also a little unusual to think about
replicated state machines in this way. More on this follows in the next subsection.
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In the most general sense, all consensus algorithms are based on similar
ideas. Participants will go through multiple voting rounds or phases, exchang-
ing messages containing votes and meta-information about globally agreed
upon variables, until a certain outcome has been reached by a defined quorum
of participating nodes. Typically, majority quorums are used, i.e., if a major-
ity of nodes agrees on an outcome, this outcome is agreed and will henceforth
never change. We can intuitively reason about the exact number of nodes re-
quired to guarantee our pursued k-fault-tolerance as follows: In a fail-stop or
crash-recovery-level system, the smallest possible majority required to reach
agreement over a value is two, since one machine cannot be a majority com-
pared to anything else. If we need at least twomachines to agree on a value, and
machines can fail-stop or temporarily crash, we need at least three machines
to tolerate a possible failure of one of them (so that two are still left to vote on
a value). Therefore, to generalize this, we need at least 2𝑘 +1 machines for the
crash-recovery failure model, where 𝑘 is the maximum number of machines
that can fail before the entire system fails5.

The approach of replicating deterministic finite statemachines (DFSM) andState Machine
Replication using a distributed consensus algorithm to agree on a total order of incoming

requests is commonly known as State Machine Replication, and has been an
active area of research for more than three decades ([59], [72], [16]).

This thesis contributes to a subfield of this area of research, so while we have
been laying some important foundations so far, we shall continue our brief in-
troduction to further narrow our focus and pinpoint where exactly this thesis
improves on the state of the art. For future reference however, this current
system, being capable of true k-fault-tolerance, will be our fourth version, 𝑣4.

The Highest Rung of the Ladder

Systems 𝑣2, 𝑣3, and 𝑣4 have allowed us to transparently mask many faults in
our system and increased the complexity of systems we can harden thusly.
However, they did not yet manage to climb to the highest rung of the fail-
ure model ladder and claim Byzantine FT. As a reminder, a system failing in aByzantine Fault

Tolerance Byzantine way could exhibit arbitrarily erroneous behavior to clients, includ-
ing the sending of wrong results. We can assume for a moment a system 𝑣4
with exactly three statemachines, and a fault occurswhich corrupts some inter-
nal part in one of the machines in a way that this machine sends out different
consensus messages to the other two machines6. It is then entirely possible
these other machines can become confused about the order of messages they
are voting on, and no majority quorum can be reached.

5 Slightly confusingly, this parameter 𝑘 is nowadays commonly an 𝑓 , even though we call it k-
fault-tolerance, and despite the fact that historically seminal papers used 𝑚 [60]; so from here
on outwe say2𝑓 +1 instead of2𝑘+1 (or similar). We just need to remember that 𝑘 signifies how
many machines (or subsystems) can fail in our current failure model before the FT mechanism
breaks and the system fails.

6 This could be the result of a software development error or an active attack by a malicious party.
The nature of the fault is irrelevant to this discussion, as long as it occurs.
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In other words, it can be shown that in order to tolerate Byzantine faults, a
quorum size of at least 2𝑓 + 1 is required; so if 𝑓 machines can fail in a Byzan-
tine manner, we need at least 𝑓 + 2𝑓 + 1 = 3𝑓 + 1 total machines to tolerate
this [60]. There are additional requirements and pitfalls to making SMR sys-
tems Byzantine fault-tolerant when actually implementing them, but for now,
we are content to know that for a final system 𝑣5, we require at least 3𝑓 +1 ma-
chines. With this enormous overhead we buy the highest level of FT for our
system—even a Byzantine fault in 𝑓 subsystems cannot stop it from deliver-
ing its service to clients. We have thus finally managed to transparently mask
arbitrarily complicated faults in our system, albeit at a rather high resource
cost.

2.3 summary

In the last sections, we journeyed from a single, easily failing system to a com-
plex system of subsystems with assumptions about failure models and sophis-
ticated measures against faults of almost any kind, all to transparently mask
internal faults to the outside world and continue service delivery. This goal,
first motivated in the very beginning of this chapter, is an important one to
reach, especially for critical systems. In addition, for all future discussions
in this thesis, we shall assume the following7: The systems we are trying to
optimize are state machine-replicated and seek to be Byzantine fault-tolerant,
hence they are of distributed nature and employ multiple networked, commu-
nicating, and cooperating machines. Each machine is supplied with the same
client queries in the same total order, executing a DFSM representing our ser-
vice.

While we have now introduced the ideas and motivations behind such an
architecture, we have not yet detailed how determinism can be achieved, espe-
cially when trying to optimize for performance. The next chapter will detail
solutions to this problem.

7 A proper system model will be introduced in Section 3.4.
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For our previous journey from system 𝑣0 to 𝑣5, we at some point started to
assume deterministically executing finite state machines in order to work our
way up to Byzantine fault tolerance. These, as a reminder, require mainly two
basic assumptions: (i) Their input is totally ordered, which — as we have seen
— is usually achieved by employing consensus algorithms, and (ii) they exe-
cute their provided service deterministically, i.e., for a given initial state and
execution (initiated by a client request) they all reach the same result1. While
we have talked about the former requirement in the previous chapter, the latter
has yet to be explored.

3.1 background

Achieving deterministic execution might seem trivial at first, since at their
core, our current digital computers are already highly deterministic machines.
For example, one can have them add the same two numbers together several
billion times a second, and barring any hardware faults or disturbances due to
cosmic rays2, they will always reach the same result.

However, even though science has blessed us with nearly 50 years of bien- Multi-Threading
nially doubling transistor counts in microchips —a fact that has been astutely
observed by the rather well-known Moore’s Law— alongside proportional per-
formance and efficiency gains, the recent years have seen a slowing or even
stagnation of raw performance gains in single-threaded workloads [106], as
chip designers are fighting the so-called Power Wall [89]. Thus, since the mid-
2000s, most of the new transistors gained by improved manufacturing pro-
cesses have been used to add more and more cores to CPUs. In order to fully
make use of these multicore CPUs, workloads had to be increasingly paral-
lelized. Unfortunately, since in parallel programs multiple processes are coop-
erating to solve a problem, synchronization and timing become critical, and
programs might not execute deterministically anymore, i.e., multiple execu-
tions of the same parallelized program, given the same inputs, might not yield
the same results.

Take for example two processes A and B, which execute a simple program
that updates a shared variable. Without any synchronization measures, the or-
der in which process A and B are allowed to access the variable is arbitrarily de-
cided at runtime by the operating system’s scheduler, depending on ephemeral
factors like e.g., other processes in the system or wall clock time. If the oper-
ations carried out by processes A and B are not commutative, then multiple
executions (e.g., on replicated state machines) can result in differing states af-

1 No matter which machine (or how often a single machine) executes this request, when starting
from the same state.

2 Faults like these fall into a category called “soft errors”.
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ter the executions finish, breaking the determinism required for StateMachine
Replication as introduced in Section 2.2.

To prevent this, while at the same time keeping the performance advantages
of parallelism, we have to find a way to make indeterministic executions of
parallelized programs deterministic.

This is where Deterministic Multithreading enters the scene. Specifically, weDeterministic
Multithreading focus on a technique called deterministic scheduling to achieve deterministic

multithreading As the name implies, with deterministic scheduling the two
processesA andBwould always execute at least those of their actions that affect
determinism in the same order, guaranteeing the same result over different
executions.

In the following sections, we will introduce how deterministic schedulers
work by showing related work and established deterministic scheduling algo-
rithms. Afterwards, we will have compiled the basic knowledge required for
presenting the first contribution of this thesis in Chapters 6 and 7: A new and
flexible deterministic scheduling solution, which can unlock further optimiza-
tion potential in SMR systems.

3.2 determinism fundamentals and terminology

A brief summary of the most important terminology will help with the follow-
ing discussions of scheduling algorithms.

First, let us properly define determinism for the purposes of our research, inDeterminism
the most general way possible: A system shall at any moment in time consist
of its current state, which shall encompass all of its internal variables required
for full provision of the service it was designed for, and a set of possible transi-
tions from that state. The transition that is chosen to get to the next state (i.e.,
configuration of variables) depends only on the input received while at the
previous state. The next state thereby depends only on the previous state and
received input. It follows that if such a system starts at the same initial state
and receives the same inputs in the same order, it will always reach exactly the
same resulting state.

Note that the system can include non-deterministic state and operations,
but their status is irrelevant to the provision of the system’s service. In other
words, when setting up an exact replica of the systemwith the goal of providing
the same service, only the parts that have to be copied over to achieve this
are said to be deterministic, while non-deterministic state is everything that
can be randomized without changing the system’s behavior as observed from
the outside. The following section will specify less abstractly what the system
model for our research considers states and inputs.

The internal modifications that happen in a system to transition from aDeterministic
Scheduling given state when receiving input can either be applied sequentially or concur-

rently. In a sequential system, all updates to internal state variables happen in
a defined order by default. However, in a concurrent system, we assume that
the order of modifications are governed by external random influences. We
have to make sure these updates also happen in a defined order, lest we risk
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differences between two instances of the same system applying the same input
to the same state, thereby violating our definition of determinism. We shall
call the mechanism ensuring this order a deterministic scheduler.

If a system contains indeterministic events, but it is possible to identify all Piecewise
Determinismof these events and control for all pertaining variables in such a way that the

re-execution of such events would happen in exactly the same way, the sys-
tem is said to be piecewise deterministic (PWD) [39]. In other words, if we
manage to find all possible influences that govern the outcome of each inde-
terministic event in a system, its execution can bemade deterministic, and the
system is PWD. An example of this would be a system with multiple threads
that randomly interleave in different executions, but we take control of these
interleavings by way of introducing a control component such as a determinis-
tic scheduler. Iff the system is PWD, this component, i.e., scheduler, can make
sure the executions of such a system are always deterministic.

Considering we aim to optimize state machine-replicated systems, another Full Determinism
useful definition is that of full determinism [34]: Systems which can be made
deterministic without requiring any further communication between individ-
ual instances after the input to the systems has been totally ordered, are fully
deterministic. In other words, a system is fully deterministic if a scheduler can
ensure determinism while only relying on totally ordered input, and no other
information from other replicated instances (such as, for example, previous
execution logs obtained from a leader) is required.

Lastly, we classify a system as being weakly deterministic, if its determin- Weak vs. Strong
Determinismism depends on correct interleaving of accesses to certain primitives, like mu-

texes [68]. By this, we mean to say that the system has to make use of special
primitives—and do so correctly—for any operation that could endanger deter-
minism, so as to ensure that the scheduler can fulfill its main goal. A com-
mon example of such primitives are locks, which can be acquired and released
by threads modifying shared data. This is usually done in order to prevent
data race conditions, but as will be shown in Section 6.1.2, we can also achieve
determinism by properly ordering access to these primitives—as long as the
application is weakly deterministic, i.e., correctly using these primitives. By
specifying that a system has to utilize e.g., mutexes correctly, we mean to say
that regardless of musings about determinism, an application has no inher-
ent race conditions because of logical implementation errors. An example of
incorrect usage would be an application with an implementation bug that for-
gets to protect a shared data resource with a mutex, allowing multiple threads
to modify the data at the same time, inviting race conditions and all their in-
herent troubles. Such a system could not be considered weakly determinis-
tic, as this source of indeterminism could not be removed by a deterministic
scheduler which bases its operation on the manipulation of e.g., mutexes. In
contrast to weak determinism, strongly deterministic systems take measures to
transform any regular execution into a deterministic one, for example by en-
suring that all memory accesses, not only those protected by mutexes, are de-
terministically ordered [68]. These systems can do so by, e.g., modifying code
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at compile time, or by injecting layers between runtimes and the OS, which
can intercept possibly indeterministic system calls.

With these terms defined, let us investigate prior work surrounding these
terms, to get a feeling for the current state-of-the-art regarding deterministic
multithreading, especially in the context of state machine replication. Finally,
at the end of this chapter, we will specify our system model, on which the
remaining research presented in this thesis will be based.

3.3 previous work

Several prior publications have devised deterministic scheduling solutions
aimed at introducing determinism to replicated state machines. We will look
at a selection of these previous works, to pinpoint both similarities and dif-
ferences between them and our following contributions. In a later chapter
(cf. Section 7.3), we will also revisit some of these publications in greater de-
tail, when we discuss how our novel scheduling solution, i.e., our first major
research contribution, can imitate their behavior.

Deterministic Scheduling Algorithms

One of the very first deterministic scheduling solutions for replicated sys-MTRDS
tems, Multithreaded Deterministic Scheduling (MTRDS), was presented in
2000 [49]. It is based on a transactional model, wherein replicas can abort
transactions, and supports long-running replica threads for multiple client re-
quests per transaction. This is in contrast to the singular RPC calls we assume
in our system model. The remaining model is very similar to ours as defined
below (Section 3.4).

With MTRDS, once a thread for handling a client-interaction is created, it
can either be blocked, e.g., when waiting on a mutex, or be ready to run. At
a high level, MTRDS works by carefully separating system-level and client-
level requests and defining the order in which the deterministic schedulermay
transfer control (i.e., continue execution) to any ready thread. Control is alter-
nated between the deterministic scheduler and the next ready thread chosen to
run by the scheduler. The order in which ready threads are chosen is governed
only by the order of the single queue they arrive at (called the external queue).
The scheduler deterministically maintains multiple internal queues, which it
populates by taking requests out of the external queue, to manage multiple
services running on a replica. Threads are then first taken from the internal
queues whenever there is at least one such queue that is not empty. Trans-
lated to the previously introduced system model used in this thesis, only one
such internal queue would exist. Note that MTRDS toggles control between
the scheduler thread and the actual request threads, but only one thread is
running at a time. It does therefore not achieve actual parallelism.

A different approach is taken by an algorithm called loose synchronizationLSA
algorithm (LSA), published in 2002 by Basile et al. [18]. LSA does not explicitly
preclude replicas from communicating after the total ordering of messages via
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consensus has been achieved3. In LSA, a single leader-replica executes client
requests and records the order of mutex acquisitions between threads. All
other replicas are follower-replicas and receive the recorded mutex acquisition
order via messages sent from the leader. They then assign mutexes to threads
in exactly the same order. Therefore, to achieve determinism, LSA requires
additional communication overhead between replicas even after a total order
of requests has been established, foregoing full determinism. In comparison
to MTRDS, however, LSA can achieve true parallelism.

Shortly thereafter, the authors of LSA proposed an improvement over LSA PDS
called Preemptive Deterministic Scheduling Algorithm (PDS) [17]. It introduces
the concept of rounds to deterministic scheduling, whichwill bemotivated and
explained in greater detail in Section 6.1.1. Nonetheless, a brief introduction
will be given here, to explain how PDS works.

A scheduling round is a deterministically chosen collection of threads that Scheduling Rounds
are allowed to acquiremutexes in a specific, pre-determined order. All threads
trying to acquire mutexes without being part of a round are blocked. These
threads then have to wait until the round is over, and they get the chance to be
part of the next scheduling round. In the publication, PDS is separated into
PDS-1 and PDS-2. In PDS-1, threads can only acquire one mutex per round,
while in PDS-2 they are allowed to acquire up to twomutexes in a single round.
The authors of [17] also posit (in a footnote) that allowing threads to acquire
more than two mutexes per round would lead to race conditions and would
have to be further studied. However, as publications like MAT and Kendo
(cf., the next few paragraphs), or our own scheduling solution (cf., Chapter 7)
show, this is not the case. In comparison to LSA, PDS improves efficiency by
eliminating the need for inter-replica communication, butmay achieve slightly
worse performance because of round-based blocking of threads.

In 2006, Reiser et al. introduced terminology to distinguish between the SAT vs. MAT
models MTRDS and LSA/PDS implied regarding the number of threads ac-
tually executing in parallel: MTRDS is a so-called SingleActiveThread (SAT)
solution, while both LSA and PDS can be called MultipleActiveThreads (MAT)
algorithms. Correspondingly, the newly presented algorithm by Reiser et al.
was namedAspectix DEterministicThread Scheduler—Multiple ActiveThreads
(ADETS-MAT) [71]. In ADETS-MAT, threads are separated into primary and ADETS-MAT
secondary threads. Primary threads are allowed to performmutex acquisitions
(and other operations affecting determinism), but only one primary thread
may execute at any given time. Secondary threads may run in parallel to
the currently running primary thread, as long as they do not attempt to per-
form actions only permitted to primary threads. In comparison to PDS, there
are certain types of replicated services which can benefit from ADETS-MAT’s
scheduling, while others may experience better performance under PDS [38].
An advantage of ADETS-MAT over PDS is the former’s support for nested
thread invocations and its ability to handle wait/signal operations as in-
troduced by Hoare in 1974 [96].

Kendo, published in 2009 by Olszewski et al. [68] takes a different approach Kendo

3 This is the previously mentioned case where full determinism doesn’t apply.
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altogether, and introduces a deterministic logical clock for each thread, e.g.,
by using deterministic hardware events like certain CPU instruction coun-
ters, which, together with unique thread-IDs are used for determining an
overall mutex locking order. However, while Kendo seems very applicable
to use cases where multithreaded programs are run multiple times (e.g., for
debugging purposes), it does not quite become clear how certain problems
with Kendo would be solved when distributing it over several machines, even
though the authors mention the possibility of applying Kendo to an SMR
setting. Most importantly, the authors do not explain how thread creation in
the case of new threads for incoming requests could practically work without
either stalling the system, introducing indeterminism, or relying on uncertain
knowledge. This will be further touched upon in Section 7.3.3.

Platforms Utilizing Deterministic Scheduling

The following publications are integrated solutions providing deterministic
execution environments, as opposed to the previously presented conceptual
schedulers.

The “COmpiler and Runtime Environment that executes multithreaded CCoreDet
and C++ programs DETerministically” by Bergan et al. [23] aims to provide
strongly deterministic execution using a compiler-based approach. Their envi-
ronment adds additional synchronization code to make an application deter-
ministic, e.g., for debugging scenarios. This means it works on a level closer
to hardware than the approaches described above, and is capable of providing
determinism even if an application does not explicitly obey high-level APIs as
in weakly deterministic systems.

DThreads was heavily inspired by CoreDet. Its deterministic schedulingDThreads
part is therefore not significantly different [61]. DThreads exchanges the stan-
dard POSIX pthreads library with a dthreads version, intercepting syn-
chronization operations and enforcing strong determinism, similar to Core-
DET. However, in contrast to CoreDET, DThreads claims to be more robust in
terms of the actually achieved deterministic executions when compared to pre-
vious approaches, since their schedules only depend on the synchronization
operations. In this regard, it is similar to UDS, albeit on another system level.
We can simulate the behaviors of CoreDET and DThreads with our upcoming
scheduling solution, which will be detailed in Section 7.3.4 and Section 7.3.5.

Parrot is also based on intercepting pthreads synchronization calls. OneParrot
of its central claims, however, is that purely focusing on determinism is not suf-
ficient for reliably testing multithreaded programs, as determinism says noth-
ing about the stability of deterministic schedules in the face of slightly changed
input [32]. Instead, the authors propose StableMT, which significantly reduces
the number of possible schedules of a deterministic program, allowing devel-
opers to check each execution possibility for correctness. To this end, Parrot
provides a new contract to developers, where by default programs are sched-
uled in a simple manner —similar to CoreDET and DThreads— but with the
possibility of adding performance hints to programs, with which advanced de-
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velopers can achieve better performance. However, their arguments, while
likely true for debugging and development purposes, are relatively moot for
the use case of SMR: Inputs to a program replicated tomultiple state machines
are identical between replicas anyway, and further, actual executions have to
be deterministic without compromise, rendering stability relatively meaning-
less in this context. Nonetheless, the basic mode of Parrot can again be simu-
lated by our scheduling solution (cf. Section 7.3.6).

CRANE is an SMR framework to equip arbitrary applications with trans- CRANE
parent crash-fault tolerance. It was published by the authors of Parrot, and is
based on the same scheduler Parrot had presented earlier. Hence, it uses the
same deterministic round-robin scheduling as in Parrot’s non-performance-
hinted versions, albeit with an additional “time-bubble” mechanism, as a
workaround to prevent indeterminism in special cases (when the arrival
times of ordered threads show large wall-clock differences between different
replicas). For more details, readers are referred to the CRANE publication,
specifically section 2.2 [31].

3.4 system model

With this related work and the basic terminology and foundational knowledge
from the previous two chapters in our minds, we can define a system model
for our future discussions. Thismodelwas originally implicitly adopted during
the beginning of our research efforts on the upcoming scheduling algorithm as
our first contribution, since this solutionwill be conceptually share similarities
with related work such as PDS or MAT. The following explicit definition of
this system model will clear up any potential ambiguities that exist between
the models of the just presented related publications.

Our system will comprise a set of multithreaded processes running on dif-
ferent machines (also called replicas), so exactly one of the processes is run-
ning on eachmachine. Each process is responsible for execution of the service
the system is designed to provide. Machines are connected via a network, with
the capability to communicate and cooperate. The service is modeled as a syn-
chronous remote procedure call (RPC) interface, i.e., clients can call a single
method provided by the service while blocking and waiting for a single reply,
before they can initiate another call4.

Client requests are provided tomachines in the same total order, established
by a group consensus as described in the previous chapter. For each incoming
client request, the processes on each machine all start one thread responsible
for handling this request, which also sends a reply to the client after complet-
ing. All code for handling requests running within the threads has to be deter-
ministic as defined in the beginning of this chapter, i.e., it can not introduce or

4 Since the service is replicated overmultiple machines, clients will actually have to send requests
to multiple replicas and be prepared to receive and compare multiple replies to see whether a
quorumhas been reached. This detail is irrelevant for the purposes of the provided service itself,
however, as these tasks can be fulfilled by a supporting platform providing SMR primitives, so
any service can be replicated easily.
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depend on randomness5. Each process and its threads required for execution
of the replicated state machine are exactly identical between nodes, but the
surrounding environment in each machine may differ from other machines
(e.g., in the operating system or hardware capabilities). Therefore, any deter-
ministic scheduler needs to be able to fulfill its purpose (of making executions
deterministic and identical between all machines) without relying on its ma-
chine’s environment. We also assume our system to be fully deterministic, i.e.,
there is no further communication between replicas after the consensus has or-
dered requests and the threads for handling these requests are spawned. Note
that for some of the following discussions of related work this last assumption
does not necessarily hold.

Further, all access to shared data in a node is mediated by mutexes, mean-
ing they protect access to variables that are to be shared between threads. We
assume that the application (i.e., the process executing the replicated state ma-
chine) is implemented correctly, i.e., is weakly deterministic.

3.5 summary

In this chapter, we first motivated the introduction of multithreading to cur-
rent systems, before detailing a series of terms for properly describing char-
acteristics of deterministically multithreaded distributed systems. A series of
related work was presented afterwards, which introduced concepts and sys-
tems that previously implemented deterministic multithreading using various
strategies. Finally, we defined the system model our research in the remain-
der of this thesis will be based on. For now, we are left with the penultimate
chapter of this first part of our work, which will introduce a last compilation of
background information on optimization approaches. Afterwards, we specify
our research goals and formulate the problems this thesis aims to solve, before
transitioning to our contributions in Parts ii and iv.

5 For example, by depending on wall clock time, random functions, or other factors that might
differ between replicas
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The last part of our thesis title that remains to be properly introduced is the
very first of its words: Optimization. Broadly speaking, optimization gener-
ally refers to the process of finding an optimal, i.e., best, solution from a larger
set of possible solutions. Mathematically speaking, optimization methods at-
tempt to find a value within a set of given possible values for which an objective
function is always smaller or larger than for all other values of the set [90].

4.1 choosing an approach

However, this seemingly simply definition hides a concept that coversmultiple Large Field of
Researchdisciplines of research and is entirely too big a term to fully do its complexity

justice within a single background chapter such as this one. One simply has to
consider the fact that optimization approaches can be subcategorized in such
amyriad of ways, that, nomatter which perspective one chooses to look at this
field, its multitudinous facets have the tendency to overwhelm by their sheer
number.

To give just a few examples of this, we could begin by dividing optimization Categorization by
Problemproblems into those that provably contain one global best solution—without

yet knowing anything at all about how this optimum could be found—, or
those that may contain multiple optimal solutions with respect to locally
confined boundaries within the set of all possible solutions. The former are
called problems with convex objective functions, while the latter problems are,
not surprisingly, called nonconvex [90]. Just determining whether particular
problems are convex or not is the subject of entire research fields.

We could also try to categorize optimization not by the problems it is try- Categorization by
Methoding to tackle, but by the methods it employs. These could, for example, be

distinguished by whether they can provably find an optimal solution out of
all possible solutions, or whether they are only approximating it. Among the
latter methods, a further subcategorization can tell us whether these methods
yieldmathematically provable upper limits to the distance between the approx-
imated solution to the truly optimal one (called approximation algorithms),
or whether an approach simply finds a good solution without any hard evi-
dence about how good this solution is compared to the overall best one (many
heuristics fall into this last category). For each of these categories, a veritable
deluge of techniques rears their heads and promises various degrees of accu-
racy, speed, ease-of-use, and maturity ([40], [102], [28], [76]).

A wholly different categorization attempt could subdivide optimization ap- Categorization by
Shape of Dataproaches intowhether they find the best solution to a problem that is described

by discrete or continuous data. In other words, this categorization would dis-
tinguish betweenmethods that iterate over a discretized space of variables, and
methods that attempt to find optimal values for continuous functions.

Optimization can yet again completely differently be categorized into on- Categorization by
Knowledge
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line and offline approaches, where offline approaches are those that have full
knowledge of the behavior of a system, including future states after input is ap-
plied, whereas online optimization has to deal with only having an inaccurate
picture. Put differently, online optimization attempts to inch towards its goal
by deciding new parameters based on periodical and partial or even inaccu-
rate feedback from the system, while offline methods have access to a full data
set about a system’s behavior or a fully accurate model of the system in terms
of its reactions to optimizations ([81], [86]).

We could also categorize techniques by their ability to optimize a single ob-Categorization by
Number of Goals jective function, in contrast to those that allow for the optimization of multi-

ple objectives at once. The latter category alone is still large enough to warrant
whole survey papers laying out its further subcategorization ([73], [65]).

Simply put, the mere attempt to categorize the field of optimization has the
potential to induce headaches. Nonetheless, we have to, of course, provide
the proper context to situate the research presented in this thesis within the
larger area of possible optimization approaches. To this end, this chapter will
use core assumptions of our system model, as defined in the previous chapter,
coupled with circumstances during our PhD, such as available resources and
previous knowledge, to narrow down possible optimization methods.

Optimization Goals and Metrics

To narrow down the possibilities for choosing valid optimization approaches,Definition of
Optimization Goals we first define what exactly it is that we want to optimize. In order to opti-

mize a real-world system, we need to define one or more proper goal(s) (i.e.,
the objective function) we want to optimize for, and a metric—or multiple
ones—which allow us to track our progress towards achieving the chosen op-
timization goals. Additionally, we should have a clear understanding of the
parameters we can manipulate in order to influence the metrics and move to-
wards our optimization goals.

A non-exhaustive list of some common optimization goals for real-world
systems could include:

• System Output / Performance

– Throughput

– Latencies

– Success and error rates

– System uptime / Reliability / Availability

• Efficiency

– CPU utilization

– Memory pressure

– Hard disk utilization

– Queue lengths within protocols or hardware



4.1 choosing an approach 27

– Network / Bandwidth usage

– Electricity usage / Operation costs

• Domain-specific goals like

– Sales closed

– Entities manufactured

– Events generated

The exact definition of metrics required to measure these goals vary greatly Definition of Metrics
from goal to goal, and are dependent on specific cases. For example, in order
to measure request success and error rates, we have to define exactly what con-
stitutes a successful request as opposed to an erroneous one. Maybe errors can
be thrown during the execution of a request, but with proper error handling
the client still receives a valid answer. In this case, a metric measuring error
rates has to decide whether it includes these occurred errors or whether it can
ignore them because the overall request still completed successfully. For this
thesis, we defined the main optimization goals to be performance and resource
efficiency, the latter specifically regarding the operation costs of SMR systems.
The choices fell on these goals after discussions within our research group and
comparison of previous works in this area of research. It was envisioned that
optimizing these goals could help with the adoption of SMR as a technique,
which in turn would increase the reliability of systems used in the wild—a
common desired outcome of our research we have already expressed in the
very first pages of this thesis.

Regarding metrics that could track the effectiveness of employed optimiza-
tionmethods regarding performance, a common approach in SMR systems re-
search is to measure request throughput rates and end-to-end latencies, where
we would like to maximize the former and minimize the latter. As for a sim-
ple metric that shows cost optimization, we simply look at the daily fees that
running a single replica would cost when deployed in a common cloud envi-
ronment.

Finally, while the exact set of parameters we could manipulate within our Definition of
Parametersprototype systems became clearer during the course of our research, a few core

properties of the envisioned systemwere known from the outset. Our soon-to-
be-presented novel deterministic scheduling solution had preliminarily been
proposedwhenwe started our PhD, sowe knew some of its parameters already.
On top of that, the underlying library we were to use for our implementations
was known to be BFT-SMaRt [25] from very early on, since apart from this
library, no other suitable SMR libraries for research purposes existed. Building
our own SMR library from scratch was quickly ruled out as an option (cf., [36]
for a good up-to-date summary of the reasons why). Hence, we knew the
parameters this library offered, too. Altogether, this anticipated collection of
all parameters of our system setup consisted of tens of variables, both discrete
and continuous.
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Rule Inference

With these first facts about goals, metrics and parameters known, a few ini-The First Approach
tial decisions regarding the suitability of optimization approaches were possi-
ble. First and foremost, it was clear that our entire approach would have to be
primarily based around implementations and measurements of prototype sys-
tems, since creating sound mathematical models of our entire distributed sys-
tem setup seemed impractical, if not outright impossible with our resources.
Previous research efforts within our group showed that the mere attempt to
formalize a single Byzantine consensus protocol using state-of-the-art tools
already represents a huge undertaking, requiring many simplifications and re-
strictions for a model to work at all—not to mention the formalization of a
whole SMR setup.

Therefore, a first approach we decided to pursue was rigorous simplification
and manual inference of rules and relationships between system parameters
and behaviors. By this wemean that we planned to look at only certain subsets
of our system, e.g., the deterministic scheduling by itself, and to use models
and simulations to get an intuitive understanding of this subsystem’s behavior
under different circumstances and various configurations.

Based on this understanding then, we intended to create simple proof-of-
concept algorithms focused only on optimizing those parameters we had built
an intuition for, in order to evaluate their effects within the entire system setup.
This approach later led to our first successes in regard to self-optimizing SMR
systems, which will be discussed in Chapter 14.

Reinforcement Learning

For true self-optimization of the entire system as described above, with a mul-The Second Approach
titude of parameters and goals, we were primarily looking towards online opti-
mization methods, i.e., methods that have the ability to interact with complex
live systems. This subcategory of optimization is also often called optimal con-
trol. Theoretically, these optimal control problems could still be solved using
more classical methods such as dynamic programming (cf., [70], for example),
but the aforementioned lack of a solid mathematical model of our environ-
ment finally led to researching recent advances in online learning. This field, a
discipline of machine learning, has in recent years made great strides in tack-
ling difficult optimal control problems [45]. Online learning approaches are
particularly well suited to optimizing systems which are not mathematically
modeled or formalized, but that exist in the real world and can be interacted
with. One popular and especially well-suited approach to optimizing these
complex, unmodeled live systems is Reinforcement Learning (RL) [88]. While
the idea of RL itself is not that young ([50]), its recent advances, for example
in robotics control ([95], [51]), in beating humans at complicated games ([66],
[74], [79]), or for optimization tasks in real-world systems ([67]) were primar-
ily achieved by combining it with Deep Learning, i.e., the use of deeply layered
neural networks. More background information and related work on this ap-
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proach, called Deep Reinforcement Learning ([100]), will be presented later,
when we talk about howwe attempted to utilize RL for the optimization of our
systems (cf., Chapter 15).

4.2 summary

With this penultimate chapter in the foundational part of our thesis, we briefly
introduced the multidisciplinary field of optimization and drew attention to
its wide variety of research areas. We motivated the optimization goals that
were to lead us through our research, and followed this by giving insight into
our rationale behind choosing mainly two optimization approaches. The
first of these approaches, rule inference and the manual development of algo-
rithms exploiting these rules, would play an important role in the first years
of the PhD, where we designed and implemented the prototype of our self-
optimizing SMR system. Finally, we teased Reinforcement Learning as our
second approach, which will be further presented towards the end of this
thesis.
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The previous three chapters have introduced background knowledge, termi-
nology, and related work to define the context of our research and help with
understanding the contributions of this work. Wewill now conclude this foun-
dational first part of the thesis by outlining our initial research goals when we
began our PhD, alongside a few updated goals that developed over the years
as we grew into the topic and discovered potential avenues of further research.
The goals are formulated alongside short problem statements pertaining to
the respective goal, so as to both motivate our approaches and show the initial
conditions we encountered when starting our research efforts.

5.1 research goals

From the outset, our primary research goal for our PhD, when condensed to Main Thesis Goal
its core, read:

main goal Utilizing deterministic multithreading, investigate approaches
that can enable state machine-replicated fault-tolerant systems to self-
optimize themselves during runtime, while requiring minimal input
fromdevelopers or operators. Research themost promising approaches,
using—where possible—prototype implementations, measurements,
evaluations, and comparisons to similar existing solutions.

This overarching goal was then further subdivided into individual research
goals that were either developed during the initial weeks of the PhD, or evolved
over the following months, in collaboration with fellow researchers and coop-
eration partners within our DFG-funded research project.

5.1.1 Runtime-Configurable Deterministic Scheduling

In previous work, it has been shown that the performance of multithreaded First Research Goal
systems based on deterministic scheduling can vary greatly depending on the
combinations of particular scheduling solutions and application execution
characteristics [38]. This problem could be mitigated by inserting a runtime-
reconfigurable scheduling solution into these deterministically multithreaded
systems, by enabling adaptation to various application profiles and to other
changes in the surrounding execution environment. One sub-goal therefore
was to first contribute to the finalization of research on such a scheduling al-
gorithm, which was already underway when we joined this project. Further
sub-goals then had in mind the implementation, testing, and evaluation of this
scheduling algorithm, to bring it from the realm of ideas to the physical world.
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5.1.2 Improved Resource-Efficiency of SMR Systems

With deterministic multithreading, state machines can utilize modern multi-Second Research Goal
core hardware better. However, this added performance comes at a cost: Ma-
chines have to be provisioned for maximum achievable throughput lest they
risk poor user experiences during high load phases, which costs money and
needlessly takes up resources. The goal was to develop an architecture capable
of automatically scaling hardware resources of these machines during runtime,
to save costs and free hardware for dynamic re-allocationwithin cloud contexts.

5.1.3 Improved Performance of SMR Systems

Utilizing not only deterministic multithreading, but our novel and recon-Third Research Goal
figurable version thereof, potentially significant performance improvements
were thought to be possible for SMR systems that face highly variable load or
other changes in their environment. Our goal in this regard was to research
ways in which the dynamicity of our scheduler could be applied to realize these
envisioned performance gains, and build a prototype system with which the ef-
fectiveness of our approaches could be measured. During this research, three
sub-goals emerged, which can be summarized as follows:

First, to have a basis on which reconfiguration decisions could be formed, aSubgoal 3.1
deterministic metric was required that would work even in Byzantine settings.
We were to develop, implement, and evaluate a technique for providing this de-
cision basis, and had the further goal of integrating it with our prototype for
evaluating SMR system performance.

Second, a straightforward proof-of-concept mechanism was to be inventedSubgoal 3.2
which clearly demonstrates the validity of the research approach, i.e., the idea of
utilizing reconfigurable deterministic multithreading to improve system per-
formance during runtime. In this vein, our goal was to look at experiences we
had gathered so far in the previous months of research, and to identify a way
that would quickly lead to a successful demonstration of our approach.

Finally, our last goal was to realize the originally envisioned, fully self-Subgoal 3.3
optimizing system, by way of first researching the most promising approaches.
Then we were to choose a suitable method, implement it within our system
prototype, and finally measure its effects on performance during runtime under
a variety of different load and application profiles.

5.2 summary & outline

This presentation of research goals concludes the first part of our thesis.
While the introduction already laid out a roadmap of the thesis (cf., Sec-

tion 1.2), this following outline ismeant for a quick re-orientation, now that we
have finished laying the foundations and provided an enhanced understand-
ing of our research topics and goals.

Thevery next partwill introduce and explain in detail our runtime-reconfigurableOutline
deterministic scheduling solution, called UDS, which completes our first re-
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search goal and provides us with an elementary tool for all further research
efforts. In Part III, we then explore how exactly deterministic multithread-
ing, enabled for example by schedulers such as UDS, can allow for resource
efficiency optimizations in SMR systems. This part will also demonstrate
evaluations based on a prototype implementation and thereby complete our
second research goal. Finally, Part IV will present our research into using
UDS’ reconfigurability to improve the performance of SMR systems during
runtime. We first develop and evaluate ByTI, our solution for deterministic
measurements of certain performance metrics in Byzantine settings. Then we
implement and benchmark a first iteration of a self-optimizing SMR system,
based on rules we inferred from our experience gained through using UDS.
As our last contribution, the research and implementation efforts we put
into a neural network-based Reinforcement Learning approach are laid out.
Altogether, this part completes our final three research goals. To conclude
and provide an outlook, Part V concisely summarizes the contributions of
this thesis, provides a collection of future work we identified in these areas
of research, and closes with an outlook and rather brief personal opinions on
some matters surrounding this research.
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Deterministic scheduling, e.g., for replicated statemachines or debuggingmul-
tithreaded programs, has been a topic of research since at least the early 2000s.
Previous work in this area has already been presented in Section 3.1. However,
as Domaschka et al. have shown in 2008, the runtime performance of sys-
tems employing such a scheduling solution highly depends on the particular
locking patterns of the application that is being executed [38]. Switching to a
different scheduler optimized for a deployed application could therefore sig-
nificantly improve performance, as long as that application does not change
in its execution behavior, or a new one is deployed to the system. One idea to
mitigate this problem depends on a feature that all previously published works
lack: Reconfiguring the scheduler during runtime of the system, in order to
adapt to changing system parameters. These can include the current load put
on the system by clients, the distribution of the type of requests being sent
to the system or even reconfiguration of the SMR cluster to include new or
exclude old nodes. In other words, existing deterministic schedulers are ei-
ther not configurable at all (MTRDS, LSA, MAT, Kendo), or offer only very
little configurability (e.g., by choosing between PDS-1 and PDS-2 at system
startup). This makes them unsuitable to our research goal of improving the
performance of deterministically multithreaded systems.

6.1 fundamental principles and notations

To tackle this problem, our research group set out to develop a novel schedul-
ing solution, to potentially unlock substantial optimization potential. We
christened this scheduling solution theUnified Deterministic Scheduler (UDS),
and it was designed to provide both significantly more opportunities for con-
figuration than previous algorithms and also to have the capability to be
reconfigured during runtime of the system, all while preserving determinism.

The following sections will detail the underlying ideas of UDS and provide
a thorough description of its development, its exact operation, and the func-
tionality and opportunities it unlocks when being used in favor of previous
deterministic scheduling solutions.

6.1.1 Scheduling Rounds

UDS is a round-based deterministic scheduler. While this terminology was Motivating
Round-Based
Scheduling

first introduced in Section 3.3, we provide a more in-depth introduction, spe-
cific to UDS, here. Let us first motivate the concept of scheduling rounds. As
discussed before, all replicated state-machines are guaranteed to receive the
same requests in the same total order, and each request will be handled by a
single thread spawned in each replica. Each thread can be given a unique and
identical ID between all replicas, simply by assigning ascending numbers in
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the order of arrival. In order to fulfill request processing, these threads will
occasionally require access to shared data. According to our system model,
shared data should be guarded by mutexes to prevent data races. When ob-
serving the same order of mutex acquisitions among all threads in a piecewise
andweakly deterministic system (see Section 3.1), the systemwill behave deter-
ministically [5]. From here on out, we will call attempted mutex acquisitions,
or more generally all actions that could affect determinism, critical actions.
Guaranteeing the same order of critical actions across several replicas will en-
sure their determinism, as long as they are not implemented incorrectly (e.g.,
by deliberately generating randomness).

A sequential scheduler is therefore trivially deterministic, e.g., by executingSequential vs.
Parallel Execution each thread in ascending order of IDs, and letting each thread complete its exe-

cution before starting the next. Since the order of threads is identical between
replicas, the order of critical actions taken by sequentially scheduled threads
will also be deterministicwithout further efforts. When trying to parallelize ex-
ecution, however, we are presented with a problem: In order to achieve deter-
minism, a scheduler has to decide on a certain order of critical actions, based
on currently available information. In systems that are fully deterministic to
comply with our system model (cf., Section 3.4), this means that the scheduler
needs to decide this order without communicating with other replicas.

Looking at the information we have available, it might seem at first glanceHandling Input
that since we know the order of requests, we can design a scheduler that op-
timally schedules critical actions with relative ease. However, while the order
of incoming requests is guaranteed by the system’s consensus solution, the ex-
act timing of message reception is not, meaning that between two different
state machines, one can receive a request much earlier than the other (when
measuring arrival using an abstract, absolute wall-clock time). All we can rea-
sonably assume is that messages are received in a timely manner, meaning that
the system will eventually deliver all messages to all replicas—within sensible
boundaries (a concept known as Liveness). Any algorithm trying to decide on
parallel scheduling of critical actions can therefore never know deterministi-
cally which threads are currently available, or, in other words, can not know
whether the thread list it sees in its local replica is the same as other schedulers
see in other replicas. Without further help, schedulers therefore can not know
which threads to include in their scheduling decisions, because new inputmay
arrive at any time.

Additionally, if threads are permitted to spawn their own sub-threads, these
difficulties are exacerbated: We do not currently have a way to deterministi-
cally insert them into the list of ordered threads, since at specific points in time
these lists could be of different lengths at different replicas. Put differently,
without any additional help or a new idea that solves this problem, in a live
system, i.e., a system which continuously receives input, it is impossible for a
deterministic scheduler to knowwhen exactly to decide on a schedule, orwhen
to include new threads into its scheduling decisions. In systems that merely
require deterministic scheduling for debugging purposes, i.e., where the exe-
cution of the same sequence of threads is to be repeated multiple times, we
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know the total order of all threads across the entire execution without having
to deal with additional incoming input. For such systems designing a sched-
uler that at least works would be relatively easy1, since we can take the entire
list of threads and impose a fixed order of critical actions across all of them
before starting execution.

When dealing with continuous input, we need to somehow introduce deter- Introducing Rounds
ministic points in (logical) time, at which our envisioned parallel scheduling
algorithm can—with certainty—plan ahead and assign an order of critical ac-
tions to a known number of threads. Our solution to this problem is to take
the next 𝑛 threads, where 𝑛 is a small and known number, and assign criti-
cal actions to these 𝑛 threads. Since 𝑛 can be counted up deterministically in
the identical total order of all threads, we can be sure that all schedulers will
always include the same subset of 𝑛 threads for their next decision2. Such a
deterministic subset of 𝑛 threads in combination with the particular assigned
order of critical actions is called a scheduling round, as first introduced by [17].
After all 𝑛 threads of a round have either terminated or “used up” all of their
assigned critical actions, the round ends and a new round is started, for which
the scheduler can now deterministically pick the next 𝑛 threads from the list of
remaining threads (which may or may not include threads that have been part
of a previous round before). Rounds themselves are numbered for reference,
usually startingwith 𝑟0 for the first round and counting up for each subsequent
scheduling round. If we assume that a system can have multiple instances of a
deterministic scheduler, then these schedulers are named by unique IDs. The
tuple of scheduler ID and round number uniquely identifies any scheduling
round in a system.

Scheduling rounds break down the problem of having a list of unknown Primary Threads
length of threads during runtime, into smaller, deterministically known sub-
sets of threads which can be safely reasoned about. From here on out, we will
adopt the name primary (threads) for all threads which are currently part of a
scheduling round, and generally denote the number of primaries (i.e., the size
of a scheduling round) with the letter 𝑛. For example, if we let our scheduler
choose four threads for a scheduling round, we say that 𝑛 = 4 and there are
currently four primaries. All other threads which are not part of the current
round have no special name. These other threads may freely start and run in
parallel, but only up to the point where they want to perform their first criti-
cal action. At this point, they are blocked and have to wait until they become
primary. Once they have become primary, they may be allowed by the sched-
uler to perform their critical action(s), the details of which will be explained
in more detail in the following Section 6.1.2.

One of the core implications of the idea of introducing scheduling rounds Waiting for Required
Inputis so important we prefer to specifically lay it out here for the sake of complete-

ness: Should any of the chosen 𝑛 primaries for a scheduling round not yet

1 But even in this case, designing a highly performant scheduler which generalizes well across
different programs might still be difficult, of course.

2 We will later also show a solution to deterministically assign IDs to subthreads spawned by
other threads during runtime
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be present at a replica, this replica has to wait until all these 𝑛 requests have
been received, before permitting those threads to perform critical actions (in
some algorithm-specific predetermined order). It is this waiting which makes
or breaks our deterministic scheduling. Optimizations to this scheme are pos-
sible under certain circumstances, and will be introduced in Section 8.3.

For example, if we let 𝑛 = 2, each replica will start with threads 𝑡0 andA Simple Scheduling
Example 𝑡1 as primaries in their very first scheduling round. If a replica has not yet

received either thread, the deterministic scheduler in this replica will block
any thread trying to perform a critical action (while others can run freely in
parallel), wait until both 𝑡0 and 𝑡1 have been delivered at this replica, and then
allow only those two threads to take critical actions in a predetermined order.

6.1.2 Steps

Let us also briefly look at how exactly critical actions can be assigned to threads
within scheduling rounds. Whenever a new scheduling round is started, the
scheduler has a known number of 𝑛 primaries. Each of these has become pri-
mary because it requested to perform a critical action at some prior point in
time. After deciding the set of primaries for the current scheduling round, the
next decision our scheduler has to make is the order and number of critical
actions our primaries are allowed to perform within our round.

During a thread’s lifetime, it can switch from being blocked and waiting toSteps and Total
Orders being granted a critical action and resuming multiple times before finally ter-

minating, resembling a somewhat philosophical journey through our system.
Therefore, we call the concept of a primary being granted a critical action a step,
and say a primary is consuming a step when it is unblocked by the scheduling
algorithm to perform its requested critical action. We also sometimes simply
call the overall order of steps within a round the total order, abbreviated as
TO, which can be somewhat confusing when compared to the total order of
all incoming requests in a replica; however, this generally works well within
the context of talking about schedulers and scheduling decisions.

To better distinguish the two, we will start calling the ordered list of allNotation
threads in the system Θ or simply allThreads as a variable in code.
The primaries, i.e., the currently chosen list of threads permitted to perform
critical actions in the current scheduling round, are either simply called pri-
maries, or denoted by Θ𝑝𝑟𝑖𝑚. When denoting threads with their IDs, we will
use 𝑡𝑖𝑑, where 𝑖𝑑 is an incrementing number representing the thread’s position
in the consensus-dictated total order of all incoming requests.
Similarly, to distinguish several mutexes in a system, we will note them down
as 𝑚𝑖𝑑, where 𝑖𝑑 is again simply a unique number per mutex.
To denote the total order of stepswithin rounds, we introduce the following no-
tation: Squared brackets including a comma-separated list of numbers, where
each entry in the list denotes a step for the thread with the corresponding po-
sition in Θ𝑝𝑟𝑖𝑚. Steps can then be consumed by the corresponding threads in
the order they appear in this list.

To illustrate our notation with an example: If we are in the 42nd schedul-Notation Example
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ing round of a scheduler instance, rounds currently have 𝑛 = 3 threads, the
threads chosen for the next round are 𝑡18, 𝑡19, and 𝑡21, and we design our
scheduler so that it permits each thread to perform exactly one critical action
per round, in ascending order of their thread-IDs, we say Scheduling round
#42 has three primaries, Θ𝑝𝑟𝑖𝑚 = [𝑡18, 𝑡19, 𝑡21], and the total order is [0,
1, 2]. If we were to grant each primary two steps in a round-robin fashion,
we might say the total order is [0, 1, 2, 0, 1, 2].

Lastly, let us have a look at total and causal orders of critical actions. If we ob- Total vs. Causal
Ordering of Actionsserve closer how critical actions such as acquisitioningmutexes are performed,

then we notice that in non-deterministic systems, threads first request this ac-
tion, before they can actually perform the action. This is because when trying
to acquire amutex, threadsmay not immediately get it in case themutex is cur-
rently held by another thread. Only once the mutex is free can the requesting
thread actually be granted access, thereby performing its previously requested
action. With a deterministic scheduler, we add a third step—the assignment—
in between requesting and performing the action. An assignment happens at a
specific, deterministic point in (logical) time within a scheduling round, and
ensures that from the viewpoint of a mutex, the assigned order will be ob-
served when threads actually acquire it. This can be achieved by a per-mutex
wait queue inwhichwe enqueue threads that have requested andbeen assigned
this mutex, but can not yet acquire it because it is held by another thread. As
we have shown previously ([5]), it is sufficient to observe a total order of assign-
ments to ensure determinism in our system model. The total order in which
threads perform actions across multiple mutexes can slightly differ between
replicas (always guaranteeing at least the same causal ordering of actions, how-
ever), but since the assignments were totally ordered, from the viewpoint of a
single mutex the order of acquiring threads will be total.

We can construct a simple example to illustrate this: Let us assume we have Ordering Example
three primaries, Θ𝑝𝑟𝑖𝑚 = [𝑡1, 𝑡2, 𝑡3] as well as two mutexes 𝑚1 and
𝑚2. In order to fulfill their client requests, 𝑡1 and 𝑡2 both need to acquire
𝑚1 during their execution, while 𝑡3 requires 𝑚2. For all replicas, we assume
that our deterministic scheduling solution constructs a scheduling round with
these three threads as primaries, and a total order of steps of the form [0, 1,
2]. We assume that in a replica A, all three threads are present and waiting,
because all have requested their respective mutexes when the scheduler starts
the scheduling round. The scheduler will, according to the total order, allow 𝑡1
to consume its step, which will immediately unblock 𝑡1 and let it fully acquire
𝑚1. We can imagine the total order now to look like this: [1, 2]. Next,
the scheduler in replica A will let 𝑡2 consume its step, which will attempt to
assign 𝑚1 to 𝑡2. Unfortunately, 𝑡1 is still holding 𝑚1, so 𝑡2 is put into the per-
mutex wait queue of 𝑚1, to signify that it will be guaranteed to be the very
next thread that may acquire this mutex as soon as 𝑡1 releases it. The total
order now has only the step for 𝑡3 left:[2]. 𝑡3 consumes its step, and since
𝑚2 is not currently held by anyone, it can immediately acquire it. After an
unspecified amount of time, 𝑡1 finishes executing within the critical section
guarded by 𝑚1, releases this mutex, and since 𝑡2 is found in its wait queue,
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𝑡2 is immediately unblocked and made the owner of the mutex. Now let us
assume that in another replica 𝐵, the same initial operations are performed:
𝑡1 consumes its step and immediately acquires 𝑚1. Now, however, since 𝐵 just
so happens to have considerably more potent hardware than 𝐴, 𝑡1 manages to
finish the few instructions within the critical section guarded by 𝑚1 in parallel
to the scheduler doing its scheduling. Therefore, when 𝑡2 is unblocked, 𝑚1
has, by chance, already been released by 𝑡1, so 𝑡2 can immediately acquire 𝑚1.
Afterwards, 𝑡3 acquires 𝑚2 as usual.

In this example, the global total order of mutex acquisitions differs between
replicas A and B: In A, the mutexes are acquired in the order 𝑚1 → 𝑚2 → 𝑚1,
while in B, the total order of acquisitions is 𝑚1 → 𝑚1 → 𝑚2. However, the
causal ordering of mutex acquisitions is preserved, and, from the viewpoint of
the individual mutexes as well as from the viewpoint of the threads acquiring
them, the order of acquisitions is identical between replicas. If the application
is implemented correctly (i.e., the two mutexes 𝑚1 and 𝑚2 are guarding dif-
ferent shared data), the two executions will be deterministic, i.e., produce the
same resulting state.

Note how our envisioned deterministic scheduling solution does not need
to control exact timing of thread execution. Simply ensuring the order of crit-
ical action assignments guarantees deterministic execution within our system
model.

6.2 concerning performance

At this point, we might want to make time for a short reminder of what we are
building up to, i.e., why we are doing all of this in the first place: Our current
goal is to introduce parallelism to state-machine replicated systems, in order
to increase their performance during runtime. Generally speaking, to utilize
current multiprocessor hardware best, we would like to maximize parallelism,
while ensuring deterministic execution. Hence, in this section, we will take a
brief look at the problems our currently envisioned scheduling solution might
face when maximizing parallelism, so as to sensitize ourselves to the aspects
we should focus on when optimizing performance. In other words, we need
to know which problems our scheduler might face or even introduce into the
system, in order to minimize their overall impact on performance.

6.2.1 Round-Filling Delays

It seems quite obvious at first glance that in order to increase parallelism, weMaximizing
Primaries would like to increase the size of our rounds as much as possible. Allow-

ing more primaries into each scheduling round increases the likelihood that
among these many primaries, multiple different types of requests are repre-
sented, with each type requiring a different set of mutexes. Generally speak-
ing, the more diverse the set of mutexes that can be assigned and ultimately
acquired during a scheduling round, the larger the chance we achieve high
parallelism during the execution within that round.
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However, , as we increase the number of primaries, we increase the chance Waiting for Input and
Stallingwehave towait until the required number of threads have arrived at our replica,

by virtue of clientsmaking requests to our system. This ismost easily explained
by a simple example: Let us imagine we only have clients that are sending
synchronous requests to our SMR-system, meaning that the next request will
only be sent once an answer to the previous request has been received. In that
case, at any point in time, the maximum number of requests that can be in
the system is equal to the number of clients that are currently connected and
actively sending requests. If we design our scheduler to maximize parallelism
by setting the number of primaries high, then as soon as we set the number of
primaries higher than the number of currently active clients, the system will
stall indefinitely and can not proceed without further input. An easy example
would be one currently active client and a system with 𝑛 ≥ 2 primaries per
round. The first request by this client will be delivered to our replicas, a thread
will be spawned in each replica to fulfill the request, and as long as this thread
does not request any critical actions, it can start executing. However, as soon
as a critical action is required, our scheduler will block the thread and attempt
to start a new scheduling round. As we have learned in Section 6.1.1, however,
we can not start the round until at least 𝑛 threads have arrived in the system,
which will never happen because there are less than 𝑛 clients and no new re-
quests are generated until the old requests are answered. Hence, we are stalled
indefinitely if we do not introduce further mechanisms like artificial request
creation, or until enough new clients connect and send requests to our system.
Even in cases where clients send asynchronous requests (i.e., they send out
new requests without first waiting for replies to old ones), the system can be
frequently delayed depending on the rate with which clients are sending out
requests and the size of the scheduling rounds we choose in our scheduling
solution.

This problem is a fundamental drawback of all round-based deterministic
schedulers which allow for 𝑛 > 1 primaries, and we will demonstrate and
visualize this effect in Section 8.1.1. We shall keep these delays caused by filling
scheduling rounds, or Round-Filling Delays (RFDs for short), in mind as we
look for solutions that can mitigate this problem.

6.2.2 Unbalanced Execution Times

A scheduling round ends as soon as all primaries are either terminated or
blocked on a critical operation that is no longer part of the current round;
e.g., when the scheduler allows one step for each primary, but threads need
more than one critical action to complete their execution.

However, if a primary executes some long-running operationwhile all other Delayed Round
Endingsprimaries in the current round are already terminated or waiting for their next

critical operation, the round ending will be delayed. This in turn delays the
start of the next round, where currently blocked threads could proceed, thus
reducing concurrency overall. We call this effect Unbalanced Execution Times,
or UEBs for short. UEBs can have a significant effect on performance, since
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they can reduce parallelism considerably. We demonstrate and visualize this
effect in Section 8.1.2.

This effect is not only observable at the end of rounds, but also when theDelayed Critical
Actions scheduler assigns multiple critical actions to each primary in a single round:

A thread may already be waiting for its next critical operation, whereas others
who come before in the total order are still executing and have not yet con-
sumed their steps, thereby delaying the first thread. Hence, UEBs can increase
the latency experienced by clients, as their requests have to wait for other long-
running threads.

6.2.3 Lock Congestion

One obvious cause for limited concurrency is when primaries have towait for a
mutex because another thread has not yet released it. In this case the achieved
parallelism of the round is reduced—in the worst case to almost sequential
execution. However, this problem is mostly inherent to the application’s logic
and cannot easily be solved by the execution environment.

6.3 dynamicity

With a strong understanding of our notation, of how a round-based determin-
istic scheduling solution could operate, and of the most common problems a
scheduler faces or introduces when trying to maximize parallelism, we can in-
troduce the central idea that distinguishes our scheduling solution from previ-
ous work and enables us to employ effective countermeasures to some of these
problems.

To introduce this idea, let us first take a closer look at some commonali-Fixed Configuration
Schedulers ties between the previously presented related works in the field of determin-

istic scheduling (cf. Section 3.3). At first glance, they look rather diverse in
their approaches and results. However, when examining them more closely,
we can come to the following realization: Once a system using one of these
approaches has been initialized, the configuration of its deterministic sched-
uler, e.g., the number of primaries per round or the number and order of steps
within rounds, among other parameters, is fixed, and stays that way during the
entire runtime of the system.

We stress this fact because as Domaschka et al. have shown in 2008, theApplication-Specific
Performance previously presented deterministic scheduling strategies perform very differ-

ently depending on the application profile of the program being executed, i.e.,
the type of service being provided by the system [38]. By application profile,
we mean the distinct patterns of critical actions and calculations threads need
to perform in order to execute the service, and the collection of different such
patterns for various tasks in the application. As an example, if the service pro-
vides a simple CRUD3-based data storage system, clients will use these four
different request types to interact with the system, and each thread handling

3 Create, Read, Update, and Delete
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a request of a certain type will have different patterns of locking and unlock-
ing mutexes in between calculations or memory accesses. We will revisit the
claims of application-specific performance behavior in a later chapter, with
benchmarks suited to our needs, but for understanding the core ideas of our
envisioned deterministic scheduling solution it is sufficient to remember that
fixed configuration scheduling can only achieve optimal performance for a
very narrow set of applications—namely, the ones it has been tuned for.

When presenting RFDs and UEBs like this, followed by the thoughts about Dynamicity
fixed-configuration scheduling solutions, it seems rather plausible that a cer-
tain level of dynamicity, i.e., reconfigurability of the scheduler during runtime,
might help with mitigating these problems. If our scheduler had the ability to
change the number of primaries of scheduling rounds, it could react to sudden
changes in the rate of incoming requests in order to avoid RFDs. An ability
to cleverly select the next primaries from Θ and the capability to change the
total order of steps might be able to mitigate UEBs. We should therefore inves-
tigate possibilities to add dynamicity to deterministic scheduling, and research
its potential effects on system performance.
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7
In this chapter, we are going to present our Unified Deterministic Scheduling
Algorithm (UDS), which improves on related work in several ways and allows
for finely-tuned performance adjustments thanks to its ability to reconfigure
itself during runtime. We will use pseudocode and the previously introduced
notation to detail the ideas and inner workings of our scheduler, and after-
wards compare it to existing scheduling solutions. Finally, in Chapter 8 we
will lay out several strategies we pursued when trying to create implementa-
tions of the algorithm, as well as evaluation results obtained while vetting it
for correctness and to discover potential performance improvements.

Some passages of this chapter are partially based on our published paper on
UDS [5], and it is important to note here that the algorithm itself was not devel-
oped solely by the author of this thesis, but in teamwork by the authors of said
paper. The main contributions to this topic by the thesis author are the imple-
mentation and evaluation efforts detailed later, alongside several bug fixes and
some optimizations to the UDS algorithm. The algorithm as presented in the
following sections already includes several bug fixes compared to the originally
published version from 2016. The differences will be detailed in Chapter 8.

7.1 the core uds algorithm

As specified in our system model, incoming requests arrive in the same order Scheduler State
in each replica, and this order is used to identify all requests. On arrival of
a new request, a new thread is started and appended at the end of the totally
ordered list of all threads Θ. This new thread will take care of processing only
this single request. Our system contains the primary threads Θ𝑝𝑟𝑖𝑚 and a set
of mutexes, each with its own queue of threads waiting for this particular mu-
tex to become available. Primaries are the only threads permitted to perform
critical actions.

The state 𝑆 of our scheduler is defined by:

1 Θ := [] # ordered list of threads
2 Θ𝑝𝑟𝑖𝑚 := [] # ordered list of primaries
3 round := 0 # round number (0 = no round yet)
4 highestThreadNo := -1 # threads already seen
5 progress := false # did we make progress this round

Of course, as previously motivated, UDS is a round-based scheduler. At the
beginning of each round r, Θ𝑝𝑟𝑖𝑚 needs to be deterministically defined. To
achieve this, UDS uses the first n(r) threads from Θ fulfilling a deterministic
predicate prim(r,Θ), which allows us to filter out inappropriate threads for
r. In the easiest case and if not specified otherwise, for all further discussions
the predicate is simply always true. Other definitions are discussed in Sec-
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tion 7.2. If there are less than n(r) threads in the system, the round cannot
start until enough new threads are created due to new requests being deliv-
ered. Should UDS be used in debugging scenarios, n(r) has to be limited by
the number of all available threads.

To start a new round, the following function is used. Note that all opera-Starting New Rounds
tions following in this section are assumed to run mutually exclusive, i.e., only
one thread is actively executing them at any time, thereby protecting state 𝑆
from corruption due to e.g., illegal concurrent access. This can be achieved
in actual implementations by encapsulating all following scheduler code with
its own schedulerLock, which has to be acquired by threads wanting to
execute these methods. Threads relinquish control of the schedulerLock
by using wait/signal primitives to block themselves and obey the order
defined by UDS’ scheduling methods, which is what the calls to waitFor()
signify in the following code listings. Waiting threads can be then be woken
up at these points by other threads signalling them using the given conditions
in the pertaining initial waitFor() call of the original thread.

6 startRound() := { # called to start a new round
7 r := ++round
8 Θ𝑝𝑟𝑖𝑚 := []
9 reconfig(r, progress) # reconfigure for next round

10 progress := false
11 for(n := 0, i := 0; true; i++) {
12 waitFor(exists Θ[i]) # delay (!)
13 if(!Θ[i].terminated && prim(r,Θ[i])) {
14 Θ[i].primary := true
15 Θ𝑝𝑟𝑖𝑚.append(Θ[i])
16 if(++n ≥ n(r)) # found enough threads
17 break
18 }
19 }
20 if(highestThreadNo < i) {
21 highestThreadNo := i
22 }
23 }

Within the loop in startRound(), the currently executing thread first
waits until enough threads are present in Θ, so the list of primaries can be
filled. Only once enough threads are present in the system can the round truly
start.

For each round, a total order has to be defined, which specifies the orderDefining Total Orders
in which threads may perform critical actions they request. This order may
change for each round, but once defined for a round, it stays fixed for this
round1. steps(r,𝜃𝑖) is used to denote the definition of the number and or-
der of possible critical operations thread 𝜃𝑖 may take within round r. This
number can differ from thread to thread, but is again immutable once defined
for a round. For example, a total order of the form [0,0,1,0,1] defines

1 We will extend this requirement later on to accommodate for explicit thread creation



7.1 the core uds algorithm 49

both the order in which critical actions can be performed, and the number of
steps per thread, which is three for Θ𝑝𝑟𝑖𝑚[0] and two for Θ𝑝𝑟𝑖𝑚[1]. high-
estThreadNo is computed here to be used for explicit thread creation, as will
be explained soon.

When a primary thread wants to perform a critical action, it has to wait Waiting for Turns
for its turn first. To be more precise, this waiting is achieved via one of UDS’
central mechanisms, waitForTurn, which blocks a thread

• when other primaries are prior within the total order of the current
round,

• when the current thread has already exhausted its steps of the current
total order, or

• before any critical action if it is not yet primary.

As this operation is part of the configuration space of UDS, we postpone its
possible definitions to Section 7.2. The operation sets a variable finished
per thread to true if this thread has reached the round’s end.

Mutex acquisition can either mean immediate locking in case the mutex Acquiring and
Releasing Mutexesis free, or assignment of the thread to the per-mutex wait queue, in case the

mutex is not available at the moment. Unlocking releases the mutex or passes
it directly to the next thread within the queue if present.

24 Mutex::lock(m) := { # lock mutex m
25 waitForTurn() # obey the total order
26 𝜃 := currentThread
27 if(m.owner ≠ nil) { # mutex occupied
28 m.enqueue(𝜃)
29 𝜃.enqueued := m
30 checkForEndOfRound()
31 waitFor(m.owner == 𝜃 || 𝜃.enqueued == nil)
32 if(m.owner ≠ 𝜃)
33 lock(m) # repeat
34 } else { # mutex free
35 m.owner := 𝜃
36 }
37 progress := true
38 }

39 Mutex::unlock(m) := { # unlock mutex m
40 next := m.dequeueFirst()
41 m.owner := next
42 if(next ≠ nil) {
43 next.enqueued := nil # signal
44 }
45 }

Note that if the application’s high-level mutex API is used correctly (a re-
quirement in our system model), a lock() can be followed by either another
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lock(), or has to be followed by the pertaining unlock(), the latter of which
is therefore also naturally only ever executed within the current round, i.e., by
primaries.

In order to terminate, a thread also has to become primary first. Otherwise,Thread Termination
termination could introduce indeterminism as it could happen either while
the thread is primary or while it is non-primary, depending on the progress of
this thread in different replicas. This could, for example, change the determin-
istic selection of threads for the next round between replicas (which naturally
always excludes terminated threads). If a thread terminates, it is marked ac-
cordingly and its future turns in the total order need to be skipped by removing
potentially remaining steps of this thread (cf. Line 54).

46 Thread::terminate := { # self-termination
47 if(round == 0) {
48 startRound() # bootstrap
49 }
50 progress := true
51 𝜃 := currentThread
52 waitFor(𝜃.primary)
53 𝜃.terminated := true
54 removeFromOrder(𝜃)
55 checkForEndOfRound()
56 𝜃.stop()
57 }

Removing a thread from the current total order of steps is simple, as long
as we remember to signal the next thread in line to wake up and consume its
step.

58 removeFromOrder(𝜃) := {
59 totalOrder.removeAll(Θ𝑝𝑟𝑖𝑚.getIndexOf(𝜃))
60 if(totalOrder.length > 0) {
61 Θ𝑝𝑟𝑖𝑚[totalOrder[0]].waitingForTurn := false
62 }
63 }

Since explicit thread creation also modifies Θ, it is relevant to determinismExplicit Thread
Creation and necessarily a critical operation. The newly created thread can immedi-

ately start executing, but may not yet acquire mutexes. As Θ is totally ordered,
the new thread has to somehow be enqueued within this order in a determin-
istic fashion. This is where we can use the previously computed highest-
ThreadNo from Line 21, which signifies the highest index of the thread in Θ
which is guaranteed to be deterministically known by all replicas. Since all
threads up to Θ[highestThreadNo] are deterministically known, we can
define the configurable deterministic function threadPosition() to insert
a newly created thread. A further design decision is whether we let the newly
created thread immediately run as primary or not. The method newAsPri-
mary() can decide this. Both functions’ possible configurations are discussed
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in Section 7.2. For now, we can simply assume that new threads are inserted be-
hind the last current primary, and that they do not immediately gain primary
status themselves.

64 createThread := { # explicit thread creation
65 waitForTurn() # obey the total order
66 𝜃𝑛𝑒𝑤 := new thread
67 Θ.insertAt(𝜃𝑛𝑒𝑤, threadPosition(round))
68 highestThreadNo++
69 𝜃𝑛𝑒𝑤.primary := newAsPrimary()
70 }

Once there are no runnable threads left in Θ𝑝𝑟𝑖𝑚, the current round ends. Ending a Round
A primary thread is considered not runnable if

• it is suspended because it has already consumed its allotted number of
critical actions within the total order of r,

• it can not acquire its desiredmutex because that is still locked by another
thread, or

• it has already terminated.

Once a round ends, some primaries may still be enqueued in per-mutex wait
queues. Enqueued primaries are simply dequeued and have to attempt to ac-
quire their mutexes again (cf. Line 33). checkForEndOfRound() tests for
the all of these conditions, and in case a round has ended, performs the re-
quired clean-up operations before starting a new round.

71 checkForEndOfRound := { # detect end of a round
72 if(|Θ𝑝𝑟𝑖𝑚| < n(r)
73 return # not at end of round
74 foreach(𝜃 ∈ Θ𝑝𝑟𝑖𝑚) {
75 if( 𝜃.enqueued == nil &&
76 !𝜃.terminated &&
77 !𝜃.finished &&
78 !𝜃.waitingForTurn ) {
79 return # not at end of round
80 }
81 }
82 # end of round detected
83 foreach(𝜃 ∈ Θ𝑝𝑟𝑖𝑚) {
84 𝜃.primary := false
85 𝜃.finished := false
86 𝜃.waitingForTurn := false
87 if(𝜃.enqueued ≠ nil) {
88 𝜃.enqueued.remove(𝜃)
89 𝜃.enqueued := nil
90 }
91 }
92 Θ𝑝𝑟𝑖𝑚 := []
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93 startRound()
94 }

When beginning a new round, we include the opportunity for determinis-
tic reconfiguration with another configurable function reconfig() Line 9.
Within this function, new configurations for n(r+1) and prim(r+1, 𝜃)
can be defined for r+1. The same applies for the definition of the total order,
steps(r+1, 𝜃).

Note that if the application is deadlock-free, UDSwill not introduce any newDeadlocks &
Livelocks deadlocks2, because UDS simply follows a schedule any other regular sched-

uler could have followed as well by chance. However, it is possible for UDS to
introduce livelocks, e.g., when repeatedly selecting primaries which immedi-
ately terminate their round because they can not currently acquire their mu-
texes. To avoid this, prim() and/or reconfig() can be modified, e.g., to
increase n(r+1) if previous primaries did not make progress (hence the ini-
tial introduction of the pertaining variable in Line 5).

7.2 uds design space

UDS embraces the idea of reconfigurability during runtime. In the previous
subsection, we have detailed the basic algorithm, while hinting at several ways
to adapt UDS to one’s own needs.

The design space of UDS consists mainly of the different possible imple-
mentations of prim(r, 𝜃), n(r), and waitForTurn(), which defines the
total order, as well as steps(r, 𝜃), threadPosition(), and newAsPri-
mary().

In a minimal version of prim(r, 𝜃), it simply always returns true:

95 prim(r,𝜃) := { # define primaries
96 return true
97 }

However, especially when n(r)=1, it could make sense to select primaries
that are able to immediately acquire their desired mutex, e.g., because it is
currently available. Otherwise, the round would be over immediately, and we
have wasted scheduling time for nothing.

Wehave already introduced the idea that the number of primaries per roundPrimaries and
Performance can be highly influential on the performance of the system. Usually, the larger

n(r), the more threads can run concurrently and hopefully in parallel on a
multicore system. Having too many primaries, however, increases the risk
of round-filling delays. In the worst case, RFDs can cause a system to stall
completely at Line 12. The mitigation of this problem will be a core topic of a
later part of this thesis (cf. Part IV).

In extreme cases, UEBs can also cause a system to stall indefinitely. If, for
example, a request thread would spawn a new long-running thread, e.g., act-

2 See also the brief discussion on this in Section 8.2.
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ing as a daemon, this threadwould get inserted into Θ and could at some point
be selected as a primary if prim() allows it. However, if this daemon thread
is meant to only execute in the background without ever performing a critical
action, once a round with this thread starts it would never end. A way to miti-
gate this problem is to force long-running or daemon-threads to periodically
yield() as follows, permitting the current round to end.

98 yield() := { # no-op for scheduling
99 waitForTurn() # obey the total order

100 }

The mode of operation of the atomic broadcast protocol responsible for or- Batching and UDS
dering requests can be another influence on the design ofUDS. Inmany practi-
cal systems nowadays ordering is decided on in batches, i.e., multiple ordered
requests are delivered to the execution pipeline at once whenever an ordering
decision has been agreed upon. If the scheduler knows the size of a delivered
batch and has deterministically seen the first request of a batch, it knows the
rest of the requests of that batch and can deduce that all other replicas will
have seen the entire batch, too. This would allow for n(r) to be temporarily
increased without incurring RFDs.

Let us finally review the creation of total orders of steps for new rounds. We
will be giving a few examples of common possible configurations, but note that
the possibilities to create configurations tailored to specific applications are
manifold. First, data structures for the total order and number of primaries
are required.

101 totalOrder := []
102 N := 0

Next, the following stub of reconfig() serves as a demonstration of how
different configurations of UDS could be implemented to imitate PDS orMAT.

103 reconfig(r, prog) := { # reconfigure for a new round
104 N := 2 # as an example
105 totalOrder := [0,1] # PDS-1
106 totalOrder := [0, 1, 0, 1] # PDS-2
107
108 N : = 1 # as an example
109 totalOrder := [0, 0, 0, 0, ...] # MAT
110
111 if(prog == false) {
112 # increase N compared to last round
113 # or make sure other threads are used
114 # by reconfiguring prim()
115 }
116 }

Since we simply set 𝑁 here, a trivial version of n(r) could be:
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117 n(r) := { # number of primaries
118 return N;
119 }

A core missing piece of the puzzle is the functionality within waitFor-WaitForTurn()
Turn(), which forces threads to obey the designated total order and acts as
themainmechanism guaranteeing determinism. The following listing shows a
possible implementation which enforces total orders by allowing threads that
have become primary to remove steps from the current total order one after
another:

120 waitForTurn() := { # enforce total order
121 if(round == 0) {
122 progress := true
123 startRound() # bootstrap
124 }
125 𝜃 := currentThread
126 while(true) {
127 waitFor(𝜃.primary)
128 i := Θ𝑝𝑟𝑖𝑚.getIndexOf(𝜃);
129 if(!totalOrder.contains(i)) {
130 # no more steps
131 𝜃.finished := true
132 checkForEndOfRound()
133 waitFor(𝜃.finished = false)
134 } elsif(𝜃 == Θ𝑝𝑟𝑖𝑚[totalOrder[0]]) {
135 # next in the order
136 totalOrder.removeFirst();
137 if( totalOrder.length > 0 ) {
138 # Wake up next
139 Θ𝑝𝑟𝑖𝑚[totalOrder[0]].waitingForTurn := false
140 }
141 break
142 } else {
143 # waiting for being first in the order
144 𝜃.waitingForTurn := true
145 checkForEndOfRound()
146 waitFor(𝜃.waitingForTurn == false)
147 }
148 }
149 }

Note that these examples for reconfig() and n() are merely demonstra-
tions, in this case of configurations that would cause UDS to mimic PDS-1,
PDS-2, or MAT. However, the number and total order of steps can be finely
tuned to specific needs of the application being replicated. In other words,
if threads executing requests of a particular application happen to always ad-
here to a fixed pattern of locking and unlocking the same mutexes, it would
be a good idea to adapt reconfig() to provide the exact number of steps
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needed for a thread to finish within one round, instead of keeping threads in
the system for multiple rounds. In addition, if, in this example, multiple types
of requests were to exist, where one request type requires far longer execution
times than others, it might be a good idea to make sure these requests end up
in the same rounds so as to avoid UEBs. Further, UDS can be tuned to opti-
mize for different goals, i.e., response latency, throughput, execution resource
efficiency, etc.

For explicit thread creation and its configuration options threadPosi- Placing Explicitly
Created Threadstion() and newAsPrimary(), the following would be a simple example for

inserting the new thread as non-primary into Θ, just behind the last thread
deterministically seen by the scheduler:

150 threadPosition := { # where to place new thread
151 return highestThreadNo
152 }

153 newAsPrimary := { # new thread as primary
154 return false
155 }

Additional options would be to place new threads behind the last primary
of the current round, or to put it in front of all threads, depending on the
desired execution characteristics of the system. For example, in systems with
live request processing for clients, i.e., with continuous input during runtime,
it might be preferable to process old requests firsts.

Whendecidingwhether to immediately promote created threads to primary Primary Status of
Explicitly Created
Threads

status, it is important to consider the configuration of reconfig(), i.e., the
method generating new total orders of steps. If generated total orders can also
include steps for new threads, they can be made primary immediately. Other-
wise, this would not have any benefit. Note that the functions threadPosi-
tion() and newAsPrimary() may or may not depend on round numbers.
They could even deterministically change in a sense that they behave differ-
ently for every other thread creation.

Most of the reconfiguration decisions made by the scheduler need to be
deterministic. Since all threads but one (the last one closing the round) are
suspended at the beginning of a new round, this thread can safely access the
complete scheduler state 𝑆 using e.g., reconfig() (cf. Line 9). Hence, when-
ever we would like to dynamically adapt UDS to changing system conditions
during runtime, as in upcoming chapters, we can safely use reconfig() to
do so.

7.3 comparison to static schedulers

As we have seen, UDS is significantly more flexible than previous scheduling Mimicking Previous
Worksolutions. We will round off our introduction of UDS by briefly comparing it
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to the related work to show potential weak points in UDS besides its consider-
able strengths. One of the strong points of UDS is of course its configurability,
which we demonstrate in the following comparisons by specifying UDS con-
figurations that imitate the behavior of the previously published scheduling
solutions found in related work Section 3.3.

7.3.1 MAT

In MAT [71], the number of primaries always equals one: n(r)∶= 1. This pri-Emulating MAT
mary is allowed to take an arbitrary number of steps, and thus the round lasts
as long as this thread can run. The total order is trivial, giving the single thread
an unlimited number of steps. prim(r, 𝜃) excludes threads currently wait-
ing for an unavailable mutex. With this configuration, UDS emulates MAT,
i.e., the causal order of mutex locking would be identical.

However, in contrast to UDS, MAT was designed from the beginning to
work with reentrant locks, nested invocations and condition variables, i.e.,
wait andnotify operations in Java. While reentrant locks could easily be im-
plemented by wrapping lock() and unlock() and maintaining lock coun-
ters, UDS in its presented form can not currently deal with nested invocations
and condition variables. As the integration of responses to these invocations
would require coordination between replicas, we would leave the domain of
fully deterministic systems with nested invocations. We have therefore not
continued development of UDS in this regard, although some preliminary
work required for making UDS fit for nested invocations has been completed
and will have to be presented in future work.

In the Aspectix Deterministic Scheduler Suite (ADETS) developed by
Hauck et al. in the years prior to the beginning of this thesis, MAT was
included in a version capable of thread creation during runtime, which it was
incapable of supporting in its original version. ADETS-MAT allows thread
creation by inserting the new thread as non-primary after the position of the
last known thread in Θ, which resembles the code in Lines 150 ff. [38].

7.3.2 PDS-1 and PDS-2

PDS introduced the notion of scheduling rounds used in UDS. It has a config-Emulating PDS
urable, but fixed number of primaries for each round once the system starts,
and the predicate prim() will simply always return true.

PDS comes in two flavors named PDS-1 and PDS-2 [17], later renamed to
simple PDS and PDS [19]3. The difference between PDS-1 and PDS-2 is the
number of critical actions each thread may perform per round, so it is identi-
cal to UDS’ total order of steps created each round. PDS-2 uses a round-robin
scheme when assigning two critical actions to each thread. This is easily emu-

3 We will mostly continue using PDS-1 and PDS-2 in this thesis due to the nice overlap of these
names with our concept of steps.
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lated byUDS; in fact, in the code shown above, we have included the respective
orders required to make UDS behave like PDS.

With PDS, threads can explicitly create new threads, which is a critical op-
eration. New threads start as non-primary, and are inserted into the list of all
threads directly after the last primary.

Note that in their first paper on PDS, the authors claimed that more than
two steps would potentially lead to race conditions. With UDS we show that
an arbitrary number of steps is possible.

7.3.3 Kendo

Kendo [68] resides between the application and the operating system, and has Kendo as a Special
Casebeen designed to ease the testing and debugging of concurrent stand-alone

applications. It therefore does not support implicit thread creation for incom-
ing requests during runtime, i.e., it can not support interactive or continuous
input, as mentioned before.

In Kendo, Θ𝑝𝑟𝑖𝑚 ∶= Θ and prim() is defined as in Line 95, so simply put,
all threads are primary. In addition, the application runs in a single round
which never ends, except when it bugs itself into a deadlock or terminates ex-
ecution. Each thread maintains an individual logical clock counting arbitrary
but deterministic events. In an implementation, this could be realized by us-
ing certain CPU instruction counters, or at the very least by counting mutex
acquisitions. Mutex acquisition order is based on these logical clocks in the
sense that acquisitions have to occur with increasing clock values, where ties
are broken by thread IDs. Threads may perform critical actions when all ac-
quisitions with a lower clock count have happened, which in practice means a
thread has to wait until it has the lowest clock count among all threads. There-
fore, waitForTurn() is very different to the one presented earlier:

156 waitForTurnKendo() := { # Enforce total order
157 if(round == 0)
158 startRound() # Bootstrap
159 𝜃 := currentThread
160 waitFor(𝜃.clock = minOfAllClocks())
161 }

Note that in addition to this, multiple other places in the algorithm would
have be changed to accommodate logical clock counters.

If we recall a paragraph from Section 6.1.2 on total vs. causal ordering, UDS
does not necessarily enforce total ordering of mutex acquisitions across repli-
cas. Rather, mutex assignments are totally ordered, which results in a causal
ordering of the actual acquisitions. Kendo does not adhere to this idea. Any
thread wanting to lock() a mutex has to wait for the corresponding un-
lock() of this mutex, all while keeping its logical clock up to date. Then, it
has to compete for the mutex by using its clock value, which is both resource-
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consuming and the reason why UDS can only imitate Kendo, but will not al-
ways lead to the exact same causal ordering of lock acquisitions.

We have hinted earlier that Kendo does not support replicated state ma-Kendo & SMR
chine systems, as well as explicit thread creation during runtime. Using our
developed notation and sense for how deterministic scheduling works, we can
now explain this in greater detail. Since all threads in Kendo are primary, any
newly created thread, regardless of whether it is created explicitly (by a thread
running a request) or implicitly (in response to a newly delivered request) is
also part of Θ𝑝𝑟𝑖𝑚, and it has to be inserted into Kendo’s total order. Since
Kendo has no notion of scheduling rounds, there are no easily discernible de-
terministic points in time in which we could decide on the exact location in
the total order, i.e., the clock value of the new thread. Additionally, if we sim-
ply assume that input to Kendo is delivered in a deterministic way, the thread
handling this input by starting new request threads has to have the lowest clock
value in order to perform this critical operation. In other words, in order to
accept input, the receiving thread inside the system blocks all other threads
from making progress when it has the lowest clock value while waiting for in-
put. We could try to mitigate this problem by adding a large fixed number to
the clock value of the input thread whenever new input arrives, but we can
never be sure how large this value should be when we want to be certain that
other threads don’t starve, while also not preventing the system from being
capable of accepting new input.

It is, however, possible to create a configuration similar to Kendo, in which a
round would end after a previously defined number of critical actions or when
all threads have terminated. At this point, new threads could be added to the
system.

7.3.4 CoreDet

The CoreDet authors discuss several strategies for achieving determinism:Emulating CoreDET’s
Scheduler DMP-O, DMP-B and DMP-BP (Deterministic shared memory multiprocessing

withOwnership tracking, StoreBuffering, andPartialBuffering, respectively4).
For each of their three implemented parallelism approaches, different critical
actions are defined down to single read and write operations to memory or
thread creation and mutex locking. Each strategy employs the same determin-
istic scheduler which lets threads run in parallel for a quantum of instructions
as long as no communication between threads is attempted, followed by a
serial phase in which all threads’ operations are ordered sequentially. Both
phases together constitute one scheduling round. CoreDet deterministically
defines the length of its parallel phase by counting instructions utilizing their
modified compiler, and each thread is allowed to either run for exactly the
allotted number of instructions or until an instruction is reached that needs
to communicate with other threads. Afterwards, the serial phase starts, in

4 The paper also mentions DMP-TM (Transactional Memory), but does not expand on it due
to several difficulties with implementing the approach, but UDS cannot be easily compared to
transactional memory systems anyway
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which all threads work on their critical operations sequentially, before the
next round starts with its parallel phase. The authors of CoreDet tested two
versions of their scheduler, modifying the length of the serial phase. In the
first version, only the very next mutex release in each thread is completed
before the next round starts, while in the second version each thread runs
until the entirety of its remaining instruction budget (its quantum) that has
not been used in the parallel phase is used up.

Provided we let UDS handle the same critical actions as defined by the
respective strategy, and assuming that threads always reach a critical action
within their allotted number of instructions, we can imitate this scheduler us-
ing a UDS configuration with the following parameters: Θ𝑝𝑟𝑖𝑚 ∶= Θ and
prim() is defined as in Line 95. In other words, while UDS can not count
instructions by utilizing compile-time code inserts, we can assume that sched-
uled threads will either perform a critical action at some point and that the
parallel phase then looks very similar to CoreDet’s PDS-1-like scheduling, or
that threads simply run in parallel and finish without attempting a critical ac-
tion anyway. Since threads can only run in parallel until their first critical
operation, and afterwards all critical operations are sequentialized, this is the
same outcome as UDS with a round-robin total order with ascending thread
IDs, giving each thread exactly one critical action per round. Explicit thread
creation is a critical action and new threads are appended to the thread list as
non-primaries.

Note that CoreDet is an example of a platform with completely different
critical operations thanwe used in our systemmodel so far, whichmay include
even multiple instructions and sub-operations. Additionally, it is noteworthy
that CoreDet needs to treat an unlock() as critical operation so that a mutex
will not be passed to another thread inside a single round, which can introduce
indeterminism without per-mutex wait-queues as introduced by UDS.

7.3.5 DThreads

DThreads similarly switches between parallel and serial phases per scheduling Emulating DThread’s
Schedulerround, and the UDS configuration for DThreads is the same as for CoreDet.

Communication between threads (i.e., making visible the changes performed
during the parallel phase) may only occur during the serial phase, strictly con-
trolled by a token guaranteeing a globally observable total order. This is equiv-
alent to UDS’ total order with steps for each thread, where each thread gets
one step per round. Critical actions in DThreads are mutex lock() and un-
lock(), as well as thread creation and termination.

7.3.6 Parrot

As described in Section 3.3, Parrot is intended primarily for development and Emulating Parrot’s
Schedulerdebugging scenarios and argues that purely focusing on determinism is not

desirable for testing multithreaded software. Therefore, it gives developers the
opportunity to add performance hints to their code, which optimize execution
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in a trade-off against determinism. UDS can not deterministically emulate ex-
ecutions utilizing these performance hints, but the basic deterministic execu-
tions enforced by Parrot for unoptimized code is simply achieved by config-
uring UDS for round-robin scheduling akin to PDS-1, CoreDet or DThreads.
Newly created threads are inserted at the end of the current primaries.

7.3.7 Comparison

In this section, we have shown UDS to be capable of emulating or imitating
numerous scheduling algorithms and execution platforms for fully, weakly de-
terministic systems. Table 7.1 summarizes the important configuration param-
eters for each discussed algorithm at a glance.

The configuration space of UDS is much larger than the space of any of theUDS Configuration
Space existing algorithms as apparent by the different possible implementations of

prim(r, 𝜃), n(r), waitForTurn(), steps(r, 𝜃), threadPosition,
and newAsPrimary(). Additionally, CoreDet and DThreads cannot benefit
from the distinction between total and causal ordering we explained in Sec-
tion 6.1.2, as they have to consider an unlock() as critical operation because
of missing per-mutex wait-queues. On the other hand, these platforms can
achieve strong determinism, whereas UDS is primarily focused on weak de-
terminism.

Most importantly, however, UDS allows for deterministic adaptation to cur-
rent system conditions during runtime, since its configuration can be changed
fromone round to the next, whereas all previous algorithms use the same static
configuration after startup.
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Emulated Scheduler

Parameter MAT PDS Kendo CoreDet DThreads Parrot

n(r) 1 𝑁 All Threads All Threads All Threads All Threads
prim(r, 𝜃) 𝜃’s next Mutex avail. True True True True True

No. of Rounds ∞ ∞ 1 ∞ ∞ ∞
steps(r, 𝜃) ∞ 1 or 2 ∞ 1 1 1

Total Order N.A. Logical Clock and Thread ID
Thread Creation Non-Primary Primary Non-Primary Primary
Thread Position highestThreadNo Behind Primaries End of Primaries Behind Primaries End of Primaries

Table 7.1. UDS Configurations required to emulate existing scheduling algorithms or deterministic execution platforms
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8
After the definition and publishing of the core UDS algorithm in pseudocode,
our next contribution was the undertaking of actually implementing and test-
ing UDS. Given the huge configuration space of UDS and potentially hidden
edge-cases and logical bugs in the algorithm itself, we opted to first simulate
UDS using an event-based simulation framework. This allowed us to easily see
schedules produced by UDS under different configurations, to get a feeling for
UDS’ mode of operation when implemented, and to identify possible logical
errors. Afterwards, we implemented UDS in Java and tested it against simu-
lated workloads, which further deepened our understanding of the algorithm
and allowed us to further correct its behavior in certain scenarios. Finally,
we embedded our UDS implementation into a modern SMR framework to
perform end-to-end tests, using UDS for one of its main intended use cases:
Deterministic runtime-reconfiguration for performance and efficiency opti-
mizations of SMR systems. The following sections briefly describe how each
of the steps mentioned above were completed, while presenting any results
obtained during this phase of our research.

8.1 event-based simulation

Whenever the temporal characteristics of a complex system have to be ana- Motivation
lyzed under varying conditions and configurations, an event-based simulation
can be a helpful tool to understand the system’s inner workings. We imple-
mented UDS in the event-based simulation tool DESMO-J1 with the help of
two student assistants.

The primary goal of implementing this simulated system was to find out Goals and Features
how UDS behaves—i.e., which schedules it produces and whether it is bug-
free and stable—under different configurations and load scenarios (i.e., re-
quest distributions), and to gauge the effects of different UDS schedules on
system performance as measured by request latencies and overall throughput.
Given that the goal was to get a clearer picture of how the UDS algorithm be-
haves in a real system, the simulation was set up to imitate the scheduling of
threads on real CPU cores, using a simple preempting time-slice based system
scheduler assigning processes to free CPU cores in a round-robin fashion, on
top of which UDS can deterministically assign critical actions to threads us-
ing predetermined total orders. Additionally, accompanying Python scripts
using matplotlib2 were developed to visualize the simulation results in several
plots of different types (e.g., time series plots showing individual request life-
cycles, latencies per request, CPU core load per time-slice, among others). We
named this simulation framework with its collection evaluation and visualiza-
tion scripts UDS-SIM.

1 http://desmoj.sourceforge.net/home.html
2 https://matplotlib.org/stable/api/pyplot_summary.html

https://matplotlib.org/stable/api/pyplot_summary.html
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Runtime dynamicity, i.e., reconfiguration ofUDS as discussed in Section 7.2,Capabilities
was not yet a part of UDS-SIM. However, reconfigurations between several
distinct, shorter simulation runs while keeping the same overall system setup
still allowed us to examine the impact a dynamically reconfigurable scheduler
can have. In order to observe the effects different UDS configurations have un-
der various application profiles, UDS-SIMwas given the capability to generate
multiple different requests with respective pre-specified sequences of locking
and unlocking of mutexes supplied via configuration files. Additionally, it is
possible to specify the probabilities and distributions of the different requests
being generated, altogether providing a powerful and comprehensive way to
simulate a wide variety of application behaviors and observe UDS’ scheduling
decisions under numerous conditions.

In the following paragraphs, we show themost relevant insights gained from
UDS-SIM, in respect to some of the research questions stated in the beginning
of the thesis. For each example, a short selection of a few of the important sim-
ulation configuration parameters required to achieve the presented results will
be shown. The full configuration file format with explanatory comments on
each available configuration option, as well as class diagrams of the simulator,
can be found in the appendix (cf., Part VI).

8.1.1 Demonstrating Round-filling Delays

Thanks to UDS-SIM, it is easy to directly show the impact RFDs can haveRFDs
on request latencies in case the system currently experiences low load, e.g.,
because not many clients are currently connected or actively sending requests.

The following configuration is just one example where RFDs can be clearly
observed3:

1 # high primaries and low request rate → RFDs
2 # set up UDS; steps are irrelevant for this demo
3 NUM_PRIMARIES = 8
4 TOTAL_ORDER_SCHEDULING = ROUND_ROBIN
5
6 # request generator supplying 1 request every 20ms
7 NUM_REQUEST_AT_START = 1
8 GENERATOR_TYPE = NORMAL
9 GENERATOR_DISTRIBUTION = UNIFORM

10 GENERATOR_DISTRIBUTION_PARAMETERS = 20.0; 20.0; -1.0
11 GENERATOR_BATCH = 1
12
13 # simple request; quickly locks and unlocks a mutex,
14 # before performing a short calculation

3 Please note that due to the simulation project’s early roots from the first months of our research,
there is an unfortunate terminological overlap between steps as understood byUDS and steps as
used in the simulator for specifying request actions. In UDS, a step is a conceptual token that is
consumed by a primary from the current round’s total order whenever a critical action is taken.
In the simulator, a request step can also be a non-critical action like performing a calculation
without accessing mutexes.
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15 GENERALIZED_REQUEST = REQUEST_A
16 REQUEST_A_PROBABILITY = 1.0
17 REQUEST_A_VISUAL_NAME = ReqA
18 REQUEST_A_STEPS = 2
19 REQUEST_A_LOCK = 1, -1; 0.0
20 REQUEST_A_DISTRIBUTION = UNIFORM; UNIFORM
21 REQUEST_A_PARAMETERS = 4.0, 4.0; 12.0, 12.0

Running this simulation and visualizing its logged traces yields a time-series
plot as seen in Figure 8.1 (where only the first few threads are shown for im-
proved clarity of the figure), and a plot of latency per thread as shown in Fig-
ure 8.2.
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Figure 8.1. Time Series plot of thread-lifecycle for demonstrating RFDs, with UDS configured
to n()=8. White circles depict the initial start of a thread, a red line signifies a thread is blocked
and waiting, a right-pointing triangle marks the locking of a mutex (with the number above it
showing the pertaining mutex ID), a left-pointing triangle stands for a mutex unlock, black
lines show that a thread is executing, and black circles signify thread termination. The large
vertical gray lines show round boundaries, with round numbers shown towards the bottom of
the graph.

Looking at Figure 8.1, we can see how a round r can only start once n(r)=8
requests have arrived in the system. For example, round 0 starts at precisely
themoment 8th request is received, blocking the execution of all previously ar-
rived threads for significant amounts of time. The same is true for subsequent
rounds.

It is noteworthy, however, that RFDs impact latency variability and not Impact of RFDs
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Figure 8.2. Latency per thread, i.e., time between thread start and thread termination, in a
RFD-setting with UDS configured to n()=8, demonstrating the significant impact of RFDs on
latency variability. The dotted line is only included to help with easier recognition of the request
pattern.

throughput, since they occur only in low-load scenarios. In a user-facing sys-
tem, for example, clients would notice highly variable latencies depending on
their luck, i.e., which exact position their request happens to occupy in a round.
This can clearly be seen in Figure 8.2.

Simply changing the UDS configuration to n()=1 mitigates RFDs com-Mitigation Strategies
against RFDs pletely. With all remaining configuration options identical to the previous sim-

ulation, the results are vastly different, as shown in Figure 8.3 and Figure 8.4.
In both figures for the configuration with 1 primary, we can see that the

outcome is now optimal for this specific case, i.e., under this low-load scenario.
All requests experience the same shortest possible latency given the specific
request profile used in this simulation. Throughput stays the same, limited by
the configured generation rate of the request generator.

8.1.2 Demonstrating Unbalanced Execution Times

Recall that UEBs occur when there are multiple types of requests in an appli-UEBs
cation, and the differences between required execution times to fulfill these
requests differs significantly. Then, schedules which lump together short- and
long-running threads into a single round will negatively affect performance
due to prolonging rounds unnecessarily. However, reasoning about this on
paper is different from actually seeing it happening in a real, albeit simulated,
system. It is easy to demonstrate UEBs in UDS-SIM, and Figure 8.5 shows the
results of a run with the following simulation configuration:

1 # requests of different lengths and 2+ primaries → UEBs
2 # 2 primaries, 1 step; suffices to demonstrate UEBs
3 NUM_PRIMARIES = 2
4 NUM_ROUNDSTEPS = 1
5 TOTAL_ORDER_SCHEDULING = ROUND_ROBIN
6
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Figure 8.3. Time Series plot of thread-lifecycle for demonstrating mitigation against RFDs by
configuring UDS to n()=1. Legend identical to Figure 8.1
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7 # generate a batch of 2 requests every 15ms
8 NUM_REQUEST_AT_START = 2
9 GENERATOR_TYPE = NORMAL

10 GENERATOR_DISTRIBUTION = UNIFORM
11 GENERATOR_DISTRIBUTION_PARAMETERS = 15.0; 15.0; -1.0
12 GENERATOR_BATCH = 2
13
14 # define 2 requests
15 GENERALIZED_REQUEST = REQUEST_A; REQUEST_B
16
17 # short request A; quickly locks and unlocks a mutex,
18 # before performing a short calculation
19 REQUEST_A_PROBABILITY = 0.75
20 REQUEST_A_VISUAL_NAME = ReqA
21 REQUEST_A_STEPS = 2
22 REQUEST_A_LOCK = 1, -1; 0.0
23 REQUEST_A_DISTRIBUTION = UNIFORM; UNIFORM
24 REQUEST_A_PARAMETERS = 4.0, 4.0; 9.0, 9.0
25
26 # request B: lock, unlock, longer calculation
27 REQUEST_B_PROBABILITY = 0.25
28 REQUEST_B_VISUAL_NAME = ReqB
29 REQUEST_B_STEPS = 2
30 REQUEST_B_LOCK = 2, -2; 0.0
31 REQUEST_B_DISTRIBUTION = UNIFORM; UNIFORM
32 REQUEST_B_PARAMETERS = 4.0, 4.0; 20.0, 20.0

We can immediately see unused CPU time before the beginning of roundAnalyzing UEBs
r2, where both new threads have to wait until the long-running thread t2
finishes. A more intelligent schedule in this case could —theoretically— re-
configure UDS to n(1)=1 and modify prim(1,𝜃) so that it looks through 𝜃
and prefers to pick shorter-running threads when primaries are configured to
1. In that case, only t3 would be picked for r1, which would finish over 10ms
earlier than without reconfiguration. At the point in time when this r1 ends,
the two new threads t4 and t5 would have arrived in the system, so that 𝜃
= [t2,t4,t5]. Since we now have two threads of type B in the system (t2
and t4), we could reconfigure again to n(2)=2, and select both long-running
threads for r2. Afterwards, we would have enough threads of type A in the
system to safely increase primaries to 4 or even 5, parallelizing all of these ex-
ecutions.

However, it is of utmost importance to note that all the above is far more dif-Mitigation
Difficulties for UEBs ficult to determine and decide than the mitigation strategy for RFDs, which

can work by simply setting n()=1 when a low-load phase is detected some-
how. Looking at a simulation trace afterwards and speculating about optimal
schedules with the power of hindsight and global knowledge of the system is
of course completely unfair when compared with the knowledge an optimiza-
tion agent has at its disposal during runtime. Solving the hard problem of
deterministically detecting and reacting to certain conditions in the system to
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Figure 8.5. A demonstration of how UEBs can affect a system negatively if schedules aren’t
optimized perfectly. Legend identical to Figure 8.1

intelligently reconfigure UDS is one of the primary goals of this thesis and will
be further discussed in upcoming chapters.

For now, however, the simulations we were able to run and visualize using
UDS-SIM helped us understand how UDS produces schedules under differ-
ent configurations, and gave us inklings of how future strategies of optimizing
these schedules could look.

8.1.3 Investigating Performance Effects

These carefully crafted demonstrations ofmicro-optimizations in very specific Motivation
environments, where requests always take exactly the same time and incoming
request rates are uniform, only show a part of the picture, however. In addi-
tion to understanding how UDS affects systems on a micro-level, we wanted
to know how UDS’ configuration parameters generally affect overall system
performance, specifically throughput and request latency distribution, when
measured over longer periods of time and with more realistic request distribu-
tions and load variations.

For this purpose, we included automatic thread generation strategies with
UDS-SIM, which attempt to find the maximum supported throughput before
latency spikes, given a UDS configuration and predefined request profiles. In
this subsection, a short selection of simulation runs, demonstrating the pro-
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found effects a simpleUDS parameter can have on the performance of systems,
will be shown.

Among all the adjustable parameters in the UDS design space, the num-Primaries as a
Primary Driver of

Performance
ber of primaries per round may be the one with the biggest singular impact
on performance, especially in high load scenarios and on systems with many
CPU cores. This is conceptually rather easy to understand, since more pri-
maries means an overall greater chance for parallelism within a round. The
drawbacks of setting primaries too high when there is not enough load on
a system were already shown in previous sections (cf. RFDs), but so far no
empiric justification for high primary counts under high load were presented.
Consider therefore the following simulation setup, where we specify a system
with 8 CPU cores to have some headroom for parallelization, and show what
happens to maximum throughput when scaling primaries from 1 through 20.

1 # change between runs, starting from 1 through to 20
2 NUM_PRIMARIES = 1
3 # 8 cores to allow for nicely parallelized execution
4 NUM_PROCESSORS = 8
5
6 TOTAL_ORDER_SCHEDULING = ROUND_ROBIN
7
8 # automate thread generation; other params irrelevant
9 GENERATOR_TYPE = MAXTESTING3

10
11 # three types of request
12 GENERALIZED_REQUEST = REQUEST_A; REQUEST_B; REQUEST_C
13
14 # Request A
15 REQUEST_A_PROBABILITY = 0.4
16 REQUEST_A_VISUAL_NAME = ReqA
17 REQUEST_A_STEPS = 2
18 REQUEST_A_LOCK = 1, -1; 0.0
19 REQUEST_A_DISTRIBUTION = NORMAL; NORMAL
20 REQUEST_A_PARAMETERS = 5.0, 2.0; 10.0, 3.0
21
22 # Request B
23 REQUEST_B_PROBABILITY = 0.3
24 REQUEST_B_VISUAL_NAME = ReqB
25 REQUEST_B_STEPS = 2
26 REQUEST_B_LOCK = 0.0; 2, -2
27 REQUEST_B_DISTRIBUTION = NORMAL; NORMAL
28 REQUEST_B_PARAMETERS = 10.0, 2.0; 3.0, 2.0
29
30 # Request C
31 REQUEST_C_PROBABILITY = 0.3
32 REQUEST_C_VISUAL_NAME = ReqC
33 REQUEST_C_STEPS = 3
34 REQUEST_C_LOCK = 3, -3; 0.0; 1, -1
35 REQUEST_C_DISTRIBUTION = NORMAL; NORMAL; NORMAL
36 REQUEST_C_PARAMETERS = 10.0, 4.0; 5.0, 2.0; 4.0, 1.0
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Three request types are specified, to simulate what the profile of a small ap-
plication exposing different actions to clients might look like. Each request
type has at least one critical action (locking a distinct mutex), and takes dif-
ferent amounts of time to simulate calculations in between. REQUEST_C ad-
ditionally has a second critical action where it locks the mutex REQUEST_A
requires at the beginning of its executions to interweave requests a little more
than without any mutually required locks.

The request generator is set up to use one of the automatic strategies of find- Simulation Setup
ing a viable maximum throughput. It does this by progressively raising the
throughput across a number of simulation episodes, where in each episode sev-
eral thousand threads are generated, while measuring the averages and stan-
dard deviations of observed request latencies per episode. Once request la-
tencies begin spiking upwards, it terminates the attempts to raise throughput,
and looking back through previous episodes tries to find an episode where
throughput was high while latencies had not yet spiked. In detail, it does this
by calculating an internal score for each episode, using the simple formula,
where throughput is the number of requests per second calculated over the en-
tire episode, and latencies are all individual request latencies logged during the
episode4:

𝑠𝑐𝑜𝑟𝑒 = ( 1
mean(𝑙𝑎𝑡𝑒𝑛𝑐𝑖𝑒𝑠) + 1

sd(𝑙𝑎𝑡𝑒𝑛𝑐𝑖𝑒𝑠)) ∗ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡2 (8.1)

Starting UDS-SIM with this configuration will run an automatic process of
finding the maximum supported throughput rate in requests per second for
the given simulation parameters. One such run (for 8 primaries, i.e., with
NUM_PRIMARIES = 8) is shown in Figure 8.6.

Every second episode (for better readability) is labeled with its ID.The error
bars show the standard deviation of the latency for this episode, andwe can see
that at a certain point, after raising throughput enough, latencies spike quite
dramatically. The chosen maximum sustainable throughput rate is marked in
red, while the other episodes of this simulation run are not specially colored.

After running 20 of these simulation runs, incrementing NUM_PRIMARIES Results
from 1 through 20 from run to run, the resulting data can be plotted in a sum-
mary graph as seen in Figure 8.7.

The important takeaways from these plots, aswell as from several other simi- Takeaways
lar simulations with different settings—which are not shown here— are i) scal-
ing primaries up and down can significantly affect system throughput given
the right circumstances, ii) setting primaries very high incurs large deviations
in the average request completion latencies, and iii) a generally sound sweet
spot for n(), both providing high throughput and acceptable latency variation
during high system loads, can usually be expected at or around the number
of CPU cores the system has available. For example, in this setting, n()=8,

4 This formula is not special in anyway, andwas simply landed on after some experimentation. As
long as the formula is identical between simulation runs with different primary configurations,
however, the exact formula does notmatter all thatmuch for the purposes of this demonstration
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i.e., the same number as there are CPU cores in the simulated system, pro-
vides throughput numbers in the upper quartile of all observed values, while
keeping latencies manageable at an average of around 50ms, which is roughly
similar to the median of observed latencies and approximately 2.6 to 3.3 times
the length of a generated request’s minimal execution time (as dictated by the
simulation configuration).

Optimal sweet spots for performance are of course highly dependent on the Discussion
actual purpose of a system. Some interactive systems prefer predictable, low
latencies and can sacrifice throughput, while batch-processing systems might
prefer the highest achievable throughput without worrying about latencies.
Regardless of a system’s specific performance goals, these experiments have
shown that just changing a single UDS parameter can have tangible effects on
a system’s behavior.

Similar to these previously shown runs with primaries, a multitude of simu- Classifying Parameter
Impactlations were performed in addition to these few shown here. Additionally, dur-

ing this time in our research, efforts to implement UDS in a real SMR-system
were underway and first results of real-world benchmark runs started to accu-
mulate. These efforts will be expanded on in the following chapters. With this
gathered data and experience, roughly gauging the possible impacts off differ-
ent system andUDS parameters on general behavior became possible. Putting
these results from UDS-SIM experiments and first real benchmarks together
yielded first estimates of some parameter effects on the most general system
metrics. These estimates are summarized in Table 8.1.

Impact on Metric

Parameter Throughput Latency Parallelism

n(r) medium high high
steps(r, 𝜃) little medium medium

Total Order little medium high

# of CPU Cores high little high
Application Profile medium high high

Table 8.1. Rough estimates of how much the most important UDS parameters and system vari-
ables affect general metrics of system behavior, partially based on experiences won by running
UDS-SIM experiments.

These results are to be taken with a grain of salt, however, as they are non-
quantitative, and were merely meant to guide us in our further research effort,
e.g., to decide which parameters to focus on first when utilizing UDS’ dynam-
icity to improve system adaptability and performance. They are provided here
merely to supply readers of this thesis with a similar intuition for how UDS
can generally affect systems.
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8.2 algorithm bug fixes

While implementing UDS for UDS-SIM and in an actual SMR-setting, during
many trials, errors, and focused bug hunting sessions, a few substantial bugs
originally published in the algorithm in our 2016 paper [5] were found and
subsequently fixed. As part of the proper documentation of our research, as
well as a short lessons-learned for demonstrating the pitfalls onemay encounter
when designing a scheduling algorithm for deterministic multithreading, we
briefly list these bugs and how they were fixed in this section.

For referencing and keeping track of different versions of UDS, we startedUDS Versioning
numbering its versions as it developed over the years. Our first published ver-
sion from 2016 had the version number 1.1, as it was an iteration of an earlier
internal version 1.05. The following subsections will list the subsequent ver-
sions of UDS alongside the fixes we made in each version, until the current
version of UDS, 1.2.3, as it was presented in this thesis, is reached.

8.2.1 Overzealously Ending Rounds

One of the first major bugs we fixed early on was located in checkForEnd-Problem Description
OfRound(), in the list of conditions to determine whether a round has ended.
In our original version, we only checked whether a thread is enqueued in a
mutex-queue, is terminated or has used all of its steps in the current round, as
shown in the following short snippet:

74 foreach(𝜃 ∈ Θ𝑝𝑟𝑖𝑚) {
75 if( 𝜃.enqueued == nil &&
76 !𝜃.terminated &&
77 !𝜃.finished) {
78 return # not at end of round
79 }
80 }
81 # end of round detected

However, it seems quite obvious in hindsight that additionally a check forMitigation
whether a thread is currently waiting for its turn is required as well, as seen be-
low or in the current version of the algorithm in Line 78. Consider Line 144 in
the current version of waitForTurn(), where threads are blocked if they are
primary, but can not yet consume a step because they are not yet first in line in
the current round’s total order. This, of course, is quite a common occurrence,
and meant that without the fix as shown below, rounds frequently ended even
though threads that could have made progress in the current round were still
available. These two lines, modifying the waitingForTurn-condition for a
thread, were the first necessary modification for this fix. Secondly, the respec-
tive check was added to checkForEndOfRound():

5 Between 1.0 and 1.1, mainly the structure and presentation of the algorithm changed, without
significant modifications to the logic of the algorithm itself.
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74 foreach(𝜃 ∈ Θ𝑝𝑟𝑖𝑚) {
75 if( 𝜃.enqueued == nil &&
76 !𝜃.terminated &&
77 !𝜃.finished &&
78 !𝜃.waitingForTurn ) {
79 return # not at end of round
80 }
81 }
82 # end of round detected

These changes brought UDS to version 1.2.

8.2.2 A Ghastly Deadlock

The next bug was a little more subtle 6 and devious. To understand it, first Problem Description
consider the following version of waitForTurn() as found in UDS up until
and including version 1.2:

120 waitForTurn() := { # enforce total order
121 if( round = 0 ) startRound() # bootstrap
122 𝜃 := currentThread
123 waitFor( 𝜃.primary ) # wait until primary
124 i := Θ𝑝𝑟𝑖𝑚.getIndexOf(𝜃);
125 if( !totalOrder.contains(i) ) {
126 # No more steps
127 𝜃.finished := true
128 checkForEndOfRound()
129 waitFor( 𝜃.finished = false )
130 waitForTurn() # Repeat
131 } else { # wait until first in total order
132 𝜃.waitingForTurn := true
133 waitFor( 𝜃 = Θ𝑝𝑟𝑖𝑚[totalOrder[0]] )
134 𝜃.waitingForTurn := false
135 totalOrder.removeFirst();
136 }
137 }

In this version, a thread checking whether it can perform a critical action
waits until it becomes primary, then checks whether it has any steps left in the
total order (Line 125), and if it does, waits until it is the first in the total order
(Line 133) before finally continuing with its action. This works fine for many
possible total orders and application profiles. However, assume we have a to-
tal order in a round-robin fashion, with at least two primaries t0 and t1, and
at least two steps per primary, e.g., [0, 1, 0, 1, 0, 1]. Assume further
that the first primary t0 executes a request which demands the subsequent
nested locking of three mutexes m0, m1, and m2 before unlocking them in re-

6 To give proper credit, it was initially noticed by Philipp Butz, a student assistant tasked with
implementing UDS in both UDS-SIM and in a later master’s thesis.
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verse order and terminating. The second primary t1 simply requires mutex
m0 before unlocking it and terminating. When t0 has consumed its first step
and performed its critical action (= locking mutex m0, which it was granted
immediately as m0 had no owner at the time), it woke up t1 in this process
(cf. Line 135), which had been waiting for its step to be at the head of the total
order. Therefore, t1 now proceeds with its own attempt to lock m0. This puts
it into m0’s wait-queue and t1 gets blocked while waiting for this mutex to be-
come free (Line 31). The total order in this example now reads [0, 1, 0,
1].

After this, t0 wants to proceed with its next critical action, which is to lock
m1. It re-enters waitForTurn(), and since once again it has a step at the
head of the total order, it can proceed with locking m1, which again succeeds.
Now, the total order reads [1, 0, 1]. t1 is still blocked while waiting for
m0, since this mutex is being held by t0. t0 now wants to perform its third
critical action, which is to lock m2, so it re-enters waitForTurn(), sees that
it has more steps left in the current round, and then gets blocked at Line 133
while waiting for its next step to rise to the head of the total order. At this point,
both primaries are blocked in a classic deadlock introduced by the scheduling
algorithm, waiting forever for conditions that will never occur.

To fix this problem, waitForTurn() was rewritten to separate the twoMitigation
cases of i) a thread being first in the total order and ii) a thread waiting for it
to become first. Before a thread may wait for the latter, however, it performs a
checkForEndOfRound() after setting its own status to 𝜃.waitingForTurn
= true, but before actually blocking. This way, the end of a round in which
no further actions can be taken is detected and prevented.

120 waitForTurn() := { # enforce total order
121 if( round = 0 ) startRound() # bootstrap
122 𝜃 := currentThread
123 while(true) {
124 waitFor( 𝜃.primary )
125 i := Θ𝑝𝑟𝑖𝑚.getIndexOf(𝜃);
126 if( !totalOrder.contains(i) ) {
127 # no more steps
128 𝜃.finished := true
129 checkForEndOfRound()
130 waitFor( 𝜃.finished = false )
131 } elsif( 𝜃 = Θ𝑝𝑟𝑖𝑚[totalOrder[0]] ) {
132 # next in the order
133 totalOrder.removeFirst();
134 if( totalOrder.length > 0 ) {
135 # Wake up next
136 Θ𝑝𝑟𝑖𝑚[totalOrder[0]].waitingForTurn := false
137 }
138 break
139 } else {
140 # waiting for being first in the order
141 𝜃.waitingForTurn := true
142 checkForEndOfRound()
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143 waitFor( 𝜃.waitingForTurn = false )
144 }
145 }
146 }

8.2.3 Fixing a Deadlock, Creating a Livelock

However, this was not yet the end of this bug. After these modifications to Problem Description
UDS, it was quickly noticed that it was still possible for the primaries of the
next round to request the same currently blocked mutexes, which would en-
queue them again, and depending on the total order of the next round also
recreate the problem of the previous round, immediately ending the next
round. This process can repeat forever, effectively livelocking the system,
preventing it from making progress.

A possible fix for this bug introduced the new state variable progress, Mitigation Strategies
which recorded whether any significant progress in the current round was
made since it started. If a round ends while this variable is still false, a livelock
can then in theory be prevented by changing scheduler parameters, such as in-
creasing the number of primaries for subsequent rounds or mutating the total
order. The exact locations where progress was introduced are not explicitly
listed here and can simply be found in the current version of the algorithm as
presented in Section 7.1.

It is questionable, however, whether the introduction of the progress vari- Deadlocks &
Livelocks, Againable is a permanent fix for the problem of livelocks. We have not yet conducted

in-depth research on the possibility that dead-/livelocks may be a conceptual
problem introduced by configurable deterministic scheduling, as opposed to
a one-time bug that we managed to fix. In other words, since UDS and other
deterministic schedulers introduce complicated patterns of wait-Conditions
unrelated to the execution of actual application logic, it is theoretically pos-
sible that among the myriad of combinations of possible application profiles
and number of primaries and total orders, a special case exists, which results
in dead-/livelocks in deterministically scheduled systems, regardless of the ac-
tual implementation of the scheduler. This could be worth investigating, e.g.,
by utilizing model-checking tools for parallel systems like the 𝑇𝐿𝐴+ ecosys-
tem [57], but was not within the scope of this thesis.

After the fixes for these two related deadlock and livelock bugs, UDS was
now at version 1.2.1.

Shortly thereafter, aminor bugwith the newly introduced progress handling
was found, which is too small to explicitly list here. It also was quickly fixed,
and the UDS version bumped to 1.2.2.

8.2.4 Prematurely Ending Rounds, Again

Another small but interesting bug (byway of remaining undetected despite the Problem Description
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earlier scrutiny of checkForEndOfRound()), affecting round endings once
more, was found a short while later.
checkForEndOfRound() in UDS 1.2.2 looked like this:

71 checkForEndOfRound := { # detect end of a round
72 foreach( 𝜃 ∈ Θ𝑝𝑟𝑖𝑚 ) {
73 if( 𝜃.enqueued = nil &&
74 !𝜃.terminated &&
75 !𝜃.finished &&
76 !𝜃.waitingForTurn ) {
77 return # not at end of round
78 }
79 }
80 # end of round detected
81 ... # perform round ending stuff

The problem occurs when this function is called while there are not yet all
the primaries for the current round present in the system, which can happen
in numerous ways while a round is starting and threads are being added to
Θ𝑝𝑟𝑖𝑚. In case all the primaries that have been added to the round so far are
waiting on some condition, a round ending could be detected before all n(r)
primaries for this round are present in the system.

The fix was consists of adding a short check at the start of checkForEnd-Mitigation
OfRound():

71 checkForEndOfRound := { # detect end of a round
72 if( |Θ𝑝𝑟𝑖𝑚| < n(r) )
73 return # not at end of round
74 foreach( 𝜃 ∈ Θ𝑝𝑟𝑖𝑚 ) {
75 if( 𝜃.enqueued = nil &&
76 !𝜃.terminated &&
77 !𝜃.finished &&
78 !𝜃.waitingForTurn ) {
79 return # not at end of round
80 }
81 }
82 # end of round detected
83 ... # perform round ending stuff

8.2.5 Bootstrapping UDS

The last bug fix bringing UDS to its current version 1.2.3 was located inProblem Description
Thread::terminate(). In UDS 1.2.2, it read as follows:

46 Thread::terminate := { # self-termination
47 progress := true
48 𝜃 := currentThread
49 waitFor( 𝜃.primary )
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50 𝜃.terminated := true
51 removeFromOrder( 𝜃 );
52 checkForEndOfRound()
53 𝜃.stop()
54 }

If a system has only ever seen threads which use no critical action, threads
will run into Thread::terminate, but UDS has never been bootstrapped
with a first round. Therefore, no thread exists which determines primaries,
meaning that as long as no thread requests a critical action and thereby starts
the first round, all other threads will forever be blocked during termination,
on waitFor(𝜃.primary).

An easy fix is to simply let the very first thread that tries to terminate itself Mitigation
bootstrap UDS:

46 Thread::terminate := { # self-termination
47 if( round = 0 ) {
48 startRound() # bootstrap
49 }
50 progress := true
51 𝜃 := currentThread
52 waitFor( 𝜃.primary )
53 𝜃.terminated := true
54 removeFromOrder( 𝜃 );
55 checkForEndOfRound()
56 𝜃.stop()
57 }

This concludes the journey through the lessons learned while developing
UDS in the earlier phases of our research.

8.3 jump-starting rounds

A potential optimization opportunity was realized when we took a closer look Optimization for
Starting Roundsat how threads consume steps for performing critical actions. In earlier para-

graphs, we stated that a round could only start once all primaries for this round
are present in the system. This is not entirely wrong, but a bit too strict in its
formulation. Consider the fact that threads arrive in a well-defined total or-
der, delivered by the GCS of the system, meaning that if we have filled a round
partially, e.g., to half its primaries, and all threads are present in order, the first
threads can actually start consuming their steps early. This holds true as long
as the condition is met that all threads prior to the thread currently wanting
to consume its step are present and have been added to the primaries in order.

We implemented this optimization in our version of UDS that was used for
all future evaluations in this thesis, which will sometimes explain less notice-
able effects of RFDs for certain request types where wewould otherwise expect
the full impact of RFDs.
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8.4 conclusion

In this chapter, we presented our contributions towards the first concrete im-
plementations of the abstract UDS algorithm. First, we created a full-fledged
event-based simulation of UDS, called UDS-SIM. This simulation framework
made it possible for the first time to explore UDS in an experimental way.
Thanks to a comprehensive array of configuration options, possibilities within
UDS-SIM were vast and allowed us to gather first crucial data on UDS’ inner
workings.

The main results of these experiments were

• firstly, a significantly improved understanding of the impacts of UDS’
configuration parameters on system metrics such as throughput or la-
tency, and

• secondly, the discovery and fixing of some more or less severe logical
bugs in the algorithm itself.

With this phase of research, we therefore laid valuable foundations for our
subsequent research into the best ways to utilize UDS’ dynamicity when imple-
mented and embedded into an actual SMR system. The following chapters will
dive into this research, showing how UDS can be used outside of simulations
to attain tangible, valuable optimizations in real-world systems.
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PROBLEM STATEMENT

9
This chapter completes the shift from reporting on foundational knowledge
about UDS and deterministically scheduled fault-tolerant systems, to results
obtained during our PhD while we researched how to optimize these systems.

9.1 resource efficiency as a goal

So far, in previous chapters, the focus of our discussions lay nonchalantly on
things like overall throughput or average request latencies, but of course there
are a multitude of other goals a system be optimized for, as touched upon
in Chapter 4.

Therefore, the first fundamental question that has to be answeredwhen opti- Optimization Goal
mizing any system, is what exactly the optimization approach should improve.
Good next questions would be how to select, design, and measure appropriate
metrics pertaining to the chosen optimization goal(s), in order have any idea
whether deployed optimization techniques actually improved the system.

The question of which optimization goals should be focused on highly
depends on circumstances and requirements of one’s particular situation,
of course. During discussions with peers and inside our research group,
it became apparent that for the next phase of our research, in addition to
the UDS-related performance improvements already foreshadowed by the
UDS-SIM results, there was also significant potential for optimizing resource-
efficiency in certain SMR-based systems. Specifically, it was surmised that in
certain scenarios like cloud-based SMR deployments, where vertical scaling
of resources, e.g., CPU cores, is possible, scaling these resources during run-
time coupled with parallelism using our deterministic scheduler could have
beneficial impact on resource usage.

Picking this resource efficiency as a goal prompted a series of efforts
aimed at improving the footprint of fault-tolerant systems based on the SMR
paradigm, both in terms hardware resource usage, and consequently also
regarding the incurred monetary costs of running such a system. Not only
would UDS play a role in this endeavor, but other techniques come into play
as well, which will briefly be introduced in the following sections. Similarly to
the prior presentation of UDS itself, most of the results and approaches pre-
sented here have also been peer-reviewed and published in 2018 [3], further
validating them.

9.1.1 The Problem with Scaling SMR Systems

First, let us look at the actual problem we are trying to solve when optimizing Problem Statement
SMR systems for resource efficiency. The main disadvantage SMR faces when
compared to other fault tolerance approaches is the amount of hardware it re-
quires in order to function. Recall that a typical SMR system able to tolerate
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𝑓 faults requires at least 𝑁 = 2𝑓 + 1 replicas for CFT, and 𝑁 = 3𝑓 + 1 repli-
cas for BFT, which can be reduced to 2𝑓 + 1 after recent work in this field
(cf., Section 10.1.2). But even assuming advanced techniques, a minimum of
2𝑓 + 1 replicas have to be provided, which adds significantly to overall system
cost. Of course this high initial cost buys the ability to tolerate Byzantine faults,
which few other techniques can claim for themselves. Nevertheless, it would
greatly help SMR’s cause and adoption rate in the wild if further resource effi-
ciency gains could be realized.

Consider therefore what happens when the replicated service is faced withScaling BFT SMR
Systems highly variable load (e.g., a fluctuating number of client requests). In non-

replicated systems, scaling in/out is a common technique, especially in cloud
environments. Cloud providers usually provide special automated scaling
mechanisms1, which scales out instances during high stress phases, and will
scale in if system load drops again. Unfortunately, such horizontal scaling
techniques do not work for SMR systems, as every replica has to process each
request. Hence, additional replicas will not increase but usually rather de-
crease throughput as the protocols for ordering incoming requests will create
significantly more overhead for each additional replica. For example, most
variants of the popular PBFT protocol [26] require 𝑂(𝑁2) messages with 𝑁
replicas.

Consequently, it is common practice to dimension CPU power, memory,
and storage for replicated systems based on the expected worst-case peak load.
However, with highly variable load, this approach frequently results in under-
utilization of these provisioned resources, resulting in unnecessary costs and
energy consumption. On the flip side, under-provisioning thesemachines will
result in poor or insufficient service performance in peak load situations.

9.1.2 Vertical Scaling to the Rescue

Another approach, in this area of research first explored—to the best of ourFITCH
knowledge—by Cogo et al. [29], is to instead vertically scale replicas, i.e., add
or remove computing resources like CPU cores and memory, depending on
the current system load. In the common Pay-as-you-go cloud model, where
only utilized resources have to be paid, this approach can save significant costs.
Compared to previous research, our solution aims at further refining this ap-
proach via the addition of deterministic multithreading, thanks to our UDS
algorithm.

The main goal of this phase of our research can therefore be summarized as
follows: Maximize throughput of an SMR system in high-load situations while
also minimizing total costs, particularly during low-load periods, by way of
vertically scaling replicas. Since we conducted this research under the mantle
of a DFG project called OptSCORE, we christened the architecture developed
for achieving this goal after this project.

1 see https://aws.amazon.com/ec2/autoscaling/ as an example

https://aws.amazon.com/ec2/autoscaling/
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9.2 optscore approach

In the OptSCORE architecture, we deployed our first real implementation of Proposed Architecture
UDS version 1.2.3. The significant effects UDS’ dynamicity can have on sys-
tem performance have already been teased, but a detailed analysis of sched-
uler reconfiguration to further enhance performance was not yet a part of this
particular research effort, and will be presented in the final part of our the-
sis. Therefore, for all future discussions on resource efficiency in this part, we
statically set UDS to use 4 primaries and 1 step per scheduling round, which
provided a good middle ground between providing high performance during
high system load, and minimal effects from RFDs during low load phases.

9.2.1 Architecture

Fig. 9.1 illustrates the components of our OptSCORE architecture and their
interactions, located within each replica.

HypervisorHypervisorHypervisor

GCS

UDS

Service

Reconfiguration
Monitor

Replica

Client

Figure 9.1. The envisioned OptSCORE architecture for vertically scaling SMR systems during
runtime.

First, client requests arrive and will be totally ordered by the Group Com-
munication System (GCS). These ordered requests are then handled by the
deterministic scheduler (UDS) while being executed by the service implemen-
tation. Finally, responses are sent back to the clients.

During this process, the Reconfiguration Monitor (RM) observes several Reconfiguration
Processparameters like the CPU utilization of the host system and the utilization of

queues inside the GCS. As soon as those parameters reach specific thresholds,
the RM can either request additional computing resources from the hypervi-
sor or release them. Note that as long as system resources do not affect deter-
minism, which they generally shouldn’t for normal hardware and applications,
there is no need to specially handle reconfiguration decisions regarding these
resources. This seemingly petty detail will come back to haunt us in later chap-
ters, where we would perhaps like the RM to also mandate a reconfiguration
of UDS, in order to always guarantee perfect utilization of the currently provi-
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sioned resources. This requires determinism, both in detecting andmeasuring
changes, as well as broadcasting or a similar means of distribution of reconfig-
uration decisions to all replicas. We will revisit this problem in Part IV, as this
was not yet a part of the system setup for this phase of our research. Also note
that scaling happens automatically due to decisions by the RM and does not
have to be initiated by a user.

With this architecture, system resources can in theory scale dynamically
with load and lay the groundwork for cost-efficient SMR installations. In the
next chapter, we briefly discuss related work in this area and how we imple-
mented our evaluation platform while working towards this goal, before we
finally present and discuss our evaluation results on resource efficiency opti-
mization.
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After the problem statement and before we dive into our implementation and
evaluation details, let us take a brief look at how exactly resources like CPU
cores can be scaled during runtime, and at the related prior work regarding
SMR efficiency optimizations.

10.1 background and related work

10.1.1 System Support for Vertical Scaling

Vertical scaling is the adaptation of resources either during runtime or offline, Background on
Vertical Scalingand can be achieved in multiple ways. For our purposes, we focus on vertical

scaling in virtualized environments, i.e., scaling of resources using virtual ma-
chines (VMs). Theoretically, hot-plugging hardware would be possible nowa-
days, but is of course neither widely employed nor easily automatable. Scaling
virtual resources can either be performed during runtime by the hypervisor
managing the underlying hardware, or by preparing a new VM with more
resources and migrating state from the current VM. In some controlled en-
vironments (i.e., private cloud setups), the first method could allow for live
vertical scaling. However, current public cloud providers usually do not (yet)
make the necessary functionality accessible to their customers, and thus sup-
port only the second method. The following paragraphs will primarily discuss
details on the first approach, as it is the one we envisioned as part of our solu-
tion.

Scaling resources during runtime in virtualized systems is currently not Vertical Scaling
Supportfully supported by all hypervisors and guest operating systems. The Linux ker-

nel for instance has been able to plug and unplug CPUs at runtime, as well as to
attach or detach RAM modules, for many years now. However, Linux-based
hypervisors, like KVM or XEN, are to some extent not able to create new vir-
tual processors andRAMmodules after a virtualmachine has been started. On
the other hand, hypervisors can distinguish between available and assigned re-
sources. By over provisioning the available resources from the beginning, the
actual resources can be dynamically assigned to the respective guests. Adding
and removing CPUs can be easily done by switching on and off virtual CPUs
in the device file systems. While adding virtual RAM also causes no major
difficulties, removing RAM sometimes requires collaborative techniques for
giving back unused RAM, e.g., memory ballooning. Table 10.1 shows the min-
imum version of hypervisors supporting vertical scaling of CPUs and RAM as
of 2022. The following discussions are the result of work within our research
group, with J. Köstler in particular providing much of the original data gather-
ing in 2018 [3], which was augmented by our own research while vetting this
data for inclusion in this thesis.



88 vertically scaling smr systems

CPU RAM

Hypervisor Add Remove Add Remove

KVM/QEMU QEMU 1.5 QEMU 2.7 QEMU 2.1 QEMU 2.4
XEN XEN 2.0 XEN 3.0

ESX/ESXi ESX/ESXi 4.0 Not supported
Hyper-V Not supported Hyper-V 2016

Table 10.1. Hypervisor Support for Vertical Scaling.

In QEMU, the maximum assignable number of cores and amount of RAM
must be specified before the machine boots. The same applies to the XEN,
which supports those operations since its early versions. VMware’s hypervi-
sors integrated hot-plugging of virtual CPUs and hot-adding RAM resources
with ESX/ESXi 4.0. However, as this feature is disabled by default, it needs
to be activated explicitly for each machine. Hot-removal of RAM is still not
supported, even in newer versions of the hypervisor. Microsoft’s Hyper-V on
the other hand supports both adding and removing of RAM resources in re-
cent releases, but is still not able to hot-plug virtual CPUs as of 2022, even if
there are a number of runtime options that allow to increase and decrease the
utilization of the logical host CPUs.

Table 10.2 shows the support for dynamically adding and removing process-
ing resources in guest operating systems. For x86-based CPUs, Linux systems
integrated these features into the Linux kernel during the development of the
Kernel version 2.6, whereas Microsoft added support for hot-plugging RAM
into their server operating system family with Windows Server 2003 and for
hot-plugging CPUs with Windows Server 2008.

Scaling Support

Guest OS CPU RAM

Linux Kernel Version 2.6.13 Kernel Version 2.6.15
Windows Windows Server 2008 Data Center

Windows Server 2012 Standard
Windows Server 2012 Data Center
and above

Windows Server 2003
and above

Table 10.2. Guest Operating System Support for Vertical Scaling

If the requirements of the hypervisor and the guest operating system are
met, vertical scaling can be implemented in private cloud environments.

Regarding publically available offerings, some cloud providers are alreadyVertical Scaling
Availability starting to offer vertical scaling services1, even though major cloud providers

1 see for example https://docs.ionos.com/cloud/compute-engine/virtual-servers/
virtual-servers, which allows the addition of cores and RAM during runtime, but no
removal

https://docs.ionos.com/cloud/compute-engine/virtual-servers/virtual-servers
https://docs.ionos.com/cloud/compute-engine/virtual-servers/virtual-servers


10.1 background and related work 89

like Amazon, Google or Microsoft do not. Thus, vertical scaling in public
clouds results in convoluted replacement strategies of VMs during runtime,
or entails downtimes, as old virtual machines are shut down and new resized
ones reusing their virtual disks are started.

In summary, vertically scaling CPU cores and RAM during runtime is pos-
sible in private cloud environments, but not yet fully supported in popular
public cloud offerings. However, we expect these features to become increas-
ingly available in coming years.

10.1.2 Related Work

We only briefly list directly related research in this section, glossing over a
larger body of research that works on, e.g., enabling multithreading in SMR
systems, as this topic can be argued to only peripherally relate to themain goal
of researching the effects of vertically scaling SMR systems. In a later chapter,
we will make up for this omission by then introducing this body of work, at a
position where its connection to our efforts is clearer (cf., Section 14.1).

Vertical scaling for SMR

Optimizing SMR systemswith vertical scaling seems to have only been studied
by very few other researchers so far. FITCH [29] also attempts to optimize an
SMR system with vertical scaling (alongside other approaches). It achieves
scaling by replacing replicas with new ones having altered configurations or
using different hardware resources. However, the necessary reconfiguration
and synchronization processes result in some non-negligible overhead. We
are currently not aware of any other SMR system that allows vertical scaling
of resources at runtime.

Other Approaches for Resource Efficiency

There are numerous approaches trying to minimize the replication costs by Orthogonal
Approachesreducing the number of replicas in the system. Through the separation of the

agreement part of the protocol which orders the requests and the actual re-
quest execution, the number of replicas needed for the potentially more costly
request execution can be lowered to 2𝑓 + 1 [83]. With newer approaches, the
number of replicas, including those needed for ordering requests, can gener-
ally be reduced to 2𝑓 + 1. This is either achieved by trusted subsystems [22,
30, 52, 78] or by setting 𝑓 replicas during normal case operation into a passive
mode where they neither order nor execute any requests [35, 37]. This can save
costs of up to a quarter of the total cost of operations.

Yet another approach is to specifically optimize certain types of application Own Work
for Byzantine SMR settings. We have collaborated on such an approach, called
SmartStream, in [6], and other examples include [69], or [48].

It is important to note that our optimization approach is orthogonal to all
of these mentioned approaches, since it targets each individual replica instead
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of the entire group. Hence, these approaches could further benefit from our
solution and vice versa. A combination of our approach with those from prior
work is left to future research.

10.2 implementation

To evaluate the approach sketched in the OptSCORE architecture, we imple-Prototype Goals and
Approach mented a prototype system to run evaluation tests in a consistent and repro-

ducible way. Since this was meant as a first step for evaluating whether the ap-
proach works, we did not yet include automatic scaling in the test framework
and instead explicitly scaled CPU cores during different test runs, according to
pre-determined configuration files created for specifically testing various use
cases (cf. the evaluation in Section 10.3).

For measurements, we chose to utilize micro-benchmarks, since i) it is a
well-known and frequently used approach to validate early prototypes or spe-
cial systems, and ii) to avoid occlusion of our solution’s effects by possible
effects introduced by (mis-)configuring a real-life distributed application. In
the same vein, since our goal was to optimize the normal case, we do not in-
clude tests with replica failures and therefore also disabled checkpointing in
the GCS.

As described in Section 10.1.2, vertical scaling of resources at runtime is
difficult to achieve with current virtualization solutions. Therefore, we im-
plemented a system which demonstrates our claims by scaling CPU cores
using the Linux kernel, by editing the files found in /sys/devices/sys-
tem/cpu/.

10.2.1 Replication Framework

Our replication framework and all future work is based on the popular Java-BFT-SMaRt
based BFT-SMaRt library [25], which conceptually is divided into two parts:
The GCS part, which orders incoming requests and utilizes multiple cores rea-
sonably well already, and the application logic part, which hands control over
to the user of the library sequentially in a single delivery thread. The user is
given batches of ordered requests, which are then simply executed one after
another.

Based on previous extensions of BFT-SMaRt kindly provided by Eduardo
E. P. Alchieri, we modified the second part of the library so that each ordered
request is processed by an individual thread, to adhere to our system model
as presented in Section 3.4. This means that, e.g., for a batch of 10 ordered
requests, 10 independent threads would be started, where each thread is re-
sponsible for the processing of one request and for sending back a reply to the
client.
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10.2.2 Deterministic Multithreading

Since parallel request processing would introduce indeterminism, we imple- UDS Version and
Integrationmented UDS version 1.2.3 in Java, then integrated it with BFT-SMaRt’s re-

quest execution, such that UDS controls the individual request processing
threads taken from a standard JDK cached thread pool. The number of ex-
isting threads can therefore fluctuate during runtime and is managed by the
thread pool, while the number of active threads at any given time is controlled
by UDS, which might wake threads up or put them to sleep in order to wait
for their turn.

10.2.3 Linux Core Scaling

Bywriting either 1 or 0 to /sys/devices/system/cpu/cpu𝑁/online in Scaling CPU Cores
Linux, CPU𝑁 can be taken on- or offline during runtime. Taking a core offline
effectively makes it inaccessible to the OS scheduler, and processes, interrupts,
and timers are migrated away from this core to remaining ones. Enabling a
core makes it visible to the OS scheduler, so that threads can be assigned to
the core again. This rather closely emulates what vertical core scaling of VMs
via a hypervisor would look like, and is used for the following evaluations.

Since core (de-)activation is done by merely writing to files, we imple-
mented this functionality in Java so that it can be controlled during runtime
of an application from inside the JVM, gathering all parts necessary for vertical
scaling tests in a single JVM environment.

10.3 evaluation and results

To evaluate our main research questions we performed measurements on a Evaluation Procedure
BFT-SMaRt setup with 𝑁 = 4, 𝑓 = 1 in BFT mode. During the measure-
ments, up to 8 different client machines connected to the cluster, each spawn-
ing several client instances, which were ramped up to server saturation over
the course of test cases (cf. Subsection 10.3.1). The replica machines each
sported 2 dual-socketed 16-core AMD EPYC 7281 CPUs, 128 GB DDR4 RAM,
and were all connected via a single Gigabit switch.

The client machines consisted of a mix of physical quad-core Xeon E3-1220
machines and quad-core VMs running on Xeon E3-1230. Clients were con-
nected to the replicas via the same Gigabit switch. Due to our chosen evalu-
ation workloads and methodology, the Gigabit link never represented a bot-
tleneck during the measurements. All machines were running Ubuntu 16.04
LTS with Linux Kernel v4.4 and Java version 1.8.0_162. We used our mod-
ified BFT-SMaRt version, which was forked from commit 6892ab38 of ver-
sion v1.1-beta2. Thesemodifications did not, however, include any changes
to the entire GCS part of the library. We added modifications to a custom
ServiceReplica implementation, receiving threads after the Delivery-

2 As found on GitHub at https://bft-smart.github.io/library/

https://bft-smart.github.io/library/
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Thread delivers batches of requests to the business logic. BFT-SMaRt was
configured to use a batch size of 400 and in- and out-queues of size 500k each.

10.3.1 Methodology

Using our modified BFT-SMaRt library, we implemented an application with
a distinct application profile, capable of handling 5 different types of requests
(also called workload in the following discussion):

NOOP: Does no computation and immediately returns once delivered by the
GCS. We used it to test the overhead of deterministic scheduling.

C250: Returns after a computation of 250𝜇𝑠.

C1000: Returns after 1𝑚𝑠 of computation.

L32250U: Performs a computation for 250𝜇𝑠, but guards this with one out
of 32 randomly selected mutexes (locking before computation and un-
locking afterwards). The maximum number of concurrently executing
requests is thus 32. This imitates a workload requiring exclusive access
to a fraction of shared data.

𝐿1𝑈1𝐶250𝐿1𝑈1: Also runs for 250𝜇𝑠, but quickly locks and unlocks a single
mutex before and after processing. This imitates accessing shared state
before and after request processing, as it is often found in real applica-
tions.

The first three application profiles are used to show scheduling overheadApplication Profiles
and general behavior of the system under normal uncontended load. The last
two request types represent real applications, which could access shared state
by guarding it through the use of locking. The L32250U workload with its 32
locks (twice asmany as themaximumnumber of cores tested and shown in the
results) is used to show the effects of an application that is highly parallelizable,
while the 𝐿1𝑈1𝐶250𝐿1𝑈1 workload shows how much overhead is introduced
by fast locking and unlocking of a single, highly contended lock.

A configuration of a benchmark run on the evaluation system mainly con-Configuring
Benchmarks sists of the parameters for i) the number of active CPU cores, ii) sequential

vs. parallel execution and iii) one of the five workloads. We did not consider
workloads with mixed request types (as expected in real-world applications)
in order to cleanly separate the effects that are meant to be shown by each
particular workload.

For each benchmarking configuration, we performed separate evaluation
runs, which each start with a low number of clients and continuously ramp
up to high load. Load is ramped up by continually adding new clients, where
each client, once connected, constantly sends synchronous requests until the
entire test has finished. Thus, at the end of a test run, hundreds of clients will
be putting the replicas under stress. Increasing the number of clients took
place in cycles In each cycle we spawned new client instances, then let the
entire cluster stabilize for 15s, and finally started a measurement phase of 30s,
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in which response times were logged at the clients for every request. From
this data, we calculated overall throughput (req/s) and average response times,
before continuing with the next cycle and adding new clients.

Each run is then represented as one line in the following graphs, with each Plotting Results
line consisting of multiple data points — one for each client count per run.
The graphs plot throughput (x-axis) against response time (y-axis). As soon
as the cluster starts to approach its throughput limit, throughput will no longer
increase while response time spikes rapidly, due to queued requests piling up.
The maximum sustainable peak throughput for a given configuration is where
throughput is highest without latency yet spiking.

The following sections will present and discuss the results gathered from
performing a total of over 600 of these benchmark runs over a course of several
weeks.

10.3.2 Single-threaded Execution

In our first experiment, we established a baseline by scaling the number of Baseline Results
cores in our prototype system without multithreaded request execution. We
then compare all five workloads (see Figure 10.1), to see how BFT-SMaRt and
the evaluation application perform without any modifications. In the graphs,
the legend shows the configuration of each evaluation run.

With the NOOP workload, adding cores shows increasing performance up
to a certain point, which is mainly achieved due to the internal concurrency
in the group communication system part of the library we did not modify. In
our case, BFT-SMaRt saturates at 4 active CPU cores. Adding more cores after
that does not lead to better performance, but instead causes throughput to
slightly fall off again. This is due in part to some quirks of the architecture
of AMD EPYC CPUs, especially the first-gen ones we used in our evaluation
systems. EPYC CPUs consist of a Multi-Chip Module made up of so-called
CCX, which in turn consist of 4 cores with their own respective L3 caches.
Communication between CCX incurs a latency penalty, so thread migration
between cores on different CCX noticeably impacts performance. For more
details, see [91]. This effect could be counteracted to some extent by manually
pinning threads to cores. We did not attempt this, because it would mean that
our results only generalize to systemswhereDevOps Engineers responsible for
running such a resource-optimized BFT installation perform this additional,
highly system dependent and tedious manual step, whereas we wanted our
results to generalize well to all kinds of systems.

All other workloads use requests that perform somework on the replicas. In
the three cases with a 250𝜇𝑠 workload (C250, L32250U, 𝐿1𝑈1𝐶250𝐿1𝑈1), the
sequential execution of workloads leads to a performance increase if we scale
to 4 cores, but does not see any improvement for more cores. This is because
request execution was still forced to be sequential, so only one core at a time
was used, which gets saturated at about 4000 req/s (i.e., themaximumnumber
per second possible for this type of request thanks to the 250𝜇𝑠 calculation in
each request), while all other internal tasks, e.g., for request ordering inside



94 vertically scaling smr systems

𝐿1𝑈1𝐶250𝐿1𝑈1

L32250U

C1000

C250

NOOP

2 3 4 5

0

20k

40k

60k

0

1000

2000

3000

4000

0

250

500

750

1000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

Average response time (ms)

Av
er
ag
et
hr
ou

gh
pu

t(
re
q/
s)

# of active cores

1 core 2 cores 4 cores 8 cores 16 cores

Vertical Scaling: Single-threaded Baselines

Figure 10.1. Performance of different workloads with vertical CPU scaling and single-threaded
request execution
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BFT-SMaRt, can benefit from the additional cores. For the C1000 workload,
the behavior looks similar, but even more pronounced.

Furthermore, we can observe that sometimes an increase in the number of
clients does not increase throughput, but causes latency to spike a bit. Since
this was repeatable, we assumed this to be a systematic occurrence within our
system setup, especially with few active cores, but did not further investigate
the effect, since it does not significantly affect our evaluation results and claims.

Lastly, we also performed measurements for 32 cores, but did not add the
results of these runs to any of our graphs, as they happen to be always worse
than 16 cores. This can also be explained by the architecture of the EPYCCPUs
inside the replicas: Not only does communication between a CCX incur a
performance penalty, but thread migration between two sockets exacerbates
this effect. Since we did not use thread-pinning, the results of tests with more
than 16 cores would add nothing of value to our discussion and only hinder
the readability of plots.

The observed data so far serves to confirm results of prior work, i.e. that Limited Effects in
Single-Threaded
Systems

depending on the workload, vertical scaling of CPU cores has limited effect
on traditional SMR systems which execute requests sequentially. Addition-
ally, they established a baseline for comparisons in the following evaluations.
Figure 10.2 and Figure 10.3 include such a reference as a line displaying the
single-threaded performance with four cores, as the best overall best configu-
ration for sequential execution (according to Figure 10.1).

10.3.3 Deterministic Multithreaded Execution

Improved utilization ofmultiple cores can be achieved with deterministic mul- Benefits of
Multithreadingtithreading, as discussed before. However, the introduction of a deterministic

scheduler to a system inevitably leads to an unknown performance overhead.
Therefore, we investigated the impact of this overhead for our UDS imple-
mentation in the next series of measurements. We used the NOOP workload
and the compute-only workloads C250 and C1000 to compare the optimisti-
cally achievable upper bound (if no lock contention were present) to single-
threaded execution.

The results shown in Figure 10.2 demonstrate that for NOOP requests (which
do not benefit from parallel execution) the system suffers a performance loss
of about 60%, depending on the number of cores. This loss is due to the in-
herent overhead of added thread scheduling and implementation details of
the UDS scheduler; we have improved our UDS implementation since these
benchmarks were run, so that today, these measurements would be shifted by
a few percentage points. Nonetheless, it should be obvious that for systems
in which requests cause only negligible system load, parallel execution with a
deterministic scheduler is not useful.

This picture changes drastically for other workloads. For both the C250 Scheduling Overhead
vs. Application Loadand C1000 workloads, we achieve substantial speedups of over four times the

baseline measurements, with enough cores active. Also, when comparing the
multithreaded run with 4 cores directly to the 4-core single-threaded baseline,
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speedups of over two times can be observed. These results therefore clearly
validate the claim that the system scales well in terms of throughput if we in-
crease the number of CPU cores, as long as requests perform some work on
the replicas.

Therefore, provided an application demands sufficient execution resources
in terms of CPU utilization, parallelization using deterministic scheduling can
net great performance gains, even with the added scheduling overhead fac-
tored in. In other words, scheduling overhead can quickly become negligible
with real workloads.

10.3.4 Towards Realistic Workloads
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These results so far indicate that using vertical scaling and a multithreadedFinal Experiments
deterministic scheduler can be a valid approach, but the considered workloads
produced no coordination overhead in the scheduler due to conflicting re-
quests. In the final experimentwe therefore consideredmore realistic use cases
with workloads that use locking to protect state modifications.

Themeasurements in Fig 10.3 show that the benefits of havingmultiple cores
are less than in the lock-free experiments in Figure 10.2, but that throughput
still scales well with the number of cores. In this figure, since it is slightly larger
and less crowded than the previous plots, we also included the standard devi-
ations of the averaged request response times per load level as numbers next
to each measurement, in order to give an even clearer picture of the system’s
stable behavior under different loads.

For the L32250Uworkload, the 2-core multithreaded configuration already
achieves performance on par with the 4-core single-threaded measurements.
Increasing the number of cores yields further significant improvements, with
up to about 7440 req/s for 16 cores and multithreading compared to 3875 req/s
with sequential execution.

The 𝐿1𝑈1𝐶250𝐿1𝑈1 workload with the single global lock is an attempt to
show an unfavorable case for UDS, because a total order of all lock operations
must be guaranteed and the single available lock results in sequentialization of
requests. Nevertheless, our system still achieves a peak throughput of around
4700 req/s with 8 cores (4103 req/s with 4 cores) compared to about 3840 req/s
for the single-threaded case on 4 cores.

10.3.5 Cost-Saving with Dynamic Vertical Scaling

Based on these measurements and to underline the savings potential of our
scaling approach we calculated the following cost estimates based on a typical
daily usage scenario of an SMR service deployed to a future cloud provider
with vertical scaling capabilities.

For this, we take our throughput measurements for workload L32250UCost-Savings
Calculations (see Figure 10.3) as a basis and combine it with a typical daily load pattern

shown in Figure 10.4 as the light gray area, as it could be experienced by a user-
facing service. We calculated the maximum throughput for each full hour and
determined the Amazon EC2 compute instance required to cope with this
throughput if we tolerate a maximum average response time of 3ms (dark
gray area in Figure 10.4). The available EC2 instances, their capabilities and
costs, as well as the highest sustainable throughput per configuration (based
on the L32250U measurements with an average response time of max 3ms)
are shown in Table 10.3, with current pricing information taken from [84].

Assuming a very conservative reconfiguration interval of 60 minutes the
daily costs of a dynamically scaled solution are $10.08 per replica, whereas the
total costs of one replica without dynamic scaling (light orange area in Fig-
ure 10.4) would come in at $23.04. It is assumed without loss of generality that
our solution introduces negligible reconfiguration overhead, which is there-
fore not further considered here.
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Even with this very coarse-grained reconfiguration interval, we achieve an Discussion
impressive theoretical savings potential of over 56%, just in this example alone.
This number will clearly vary with different workloads and daily load patterns,
but could be further optimized significantly, e.g., by reducing the reconfigura-
tion interval to minutes or even seconds.
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Figure 10.4. Workload Pattern (light gray) and the required Amazon EC2 instances to satisfy
hourly peak load, scaled (red) vs. unscaled (light orange)

Instance Type # of vCPUs RAM Hourly rate Maximum theoretical throughput

m4.large 2 8 $0.12 per Hour 3400 req/s
m4.xlarge 4 16 $0.24 per Hour 4800 req/s

m4.2xlarge 8 32 $0.48 per Hour 6700 req/s
m4.4xlarge 16 64 $0.96 per Hour 7350 req/s

Table 10.3. Amazon EC2 Pricing (Frankfurt region), as of 2022.





SUMMARY

11
In this chapter, we introduced our contributions towards improving the hard-
ware resource efficiency of state machine-replicated systems by way of vertical
scaling, which can allow operators of such systems to substantially reduce their
costs when running SMR services.

To this end, our proposed OptSCORE architecture fills a gap in existing
SMR systems by addressing the problem of expensive hardware resource costs
in the face of highly variable system load. Themain novel contributions of this Contributions
part of our research are as follows:

• We provided a systematic analysis of approaches for vertical scaling and
their applicability in public and private cloud infrastructures.

• We presented an architecture for generically supporting dynamic verti-
cal scalingwhen combinedwith deterministicallymultithreaded service
execution in SMR systems.

• We experimentally evaluated the OptSCORE techniques with micro-
benchmarks modeled after typical patterns of application behavior.

• We presented an illustrative cost analysis modeled after common real
world daily workloads to demonstrate the potential dramatic cost-
savings our approach allows for, without compromising performance.

Future work in this area would have to integrate the currentOptSCOREpro- Future Work
totype with an automatic scaling solution capable of making sensible scaling
decisions during runtime. Therefore, an approach aimed at automatic self-
optimization in this manner, albeit in a slightly different system setting, was
our next main research goal and will be presented in the following part of this
thesis.
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REQUIREMENTS AND APPROACHES

12
With two of the main contributions of this thesis—our reconfigurable sched-
uler as well as resource efficiency optimization for SMR systems—out of the
way, it is time to look at the remaining major contributions in our efforts to-
wards improving the runtime-performance of SMR systems.

As a short reminder, the principal idea is to utilize UDS’ capability to dy-
Motivation & Goals

namically change configurations during runtime, so as to benefit from its pre-
liminarily demonstrated effects on metrics like throughput and request laten-
cies. Somehow intelligently reconfiguring UDS could therefore improve sys-
tem performance in reaction to changes in system behavior. This part of the
thesis will validate and further research these ideas. Changes in system behav-
ior can be something as common as a sudden variation in system load due to
fewer or less active clients (or the opposite), or they can be induced by, e.g., de-
ployment of a new application, with a different application profile, to the SMR
cluster. A deliberate reconfiguration of parameters in other parts of the SMR
framework or simply a failure in some subcomponent which affects perfor-
mance otherwise can be additional reasons for runtime-variability in an SMR
deployment.

This idea of utilizing our reconfigurable scheduler seems rather simple on Detecting Changes
the face of it, yet comes with a few unexpected issues, some of which had the
ungainly habit of quickly devolving into devilishly tricky problems to solve
during the course of our PhD. In the description and evaluation of our previ-
ous optimization for resource efficiency, we have skirted one of themain issues
of optimizing SMR systems: The question of how to actually detect changes in
our system, how to do so deterministically, and how to distribute reconfigura-
tion decisions of some optimizer component (e.g., the Reconfiguration Moni-
tor of our OptSCORE Architecture from Section 9.2.1) to all replicas. An addi-
tional level of difficulty comes from the fact that we would like to retain Byzan-
tine fault tolerance throughout this endeavor, which means that not only does
anymeasurement of system characteristics have to happen deterministically, it
also has to be resilient against Byzantine disturbances, be they of malicious or
non-malicious nature. Lastly, the actual reconfiguration decisions themselves
have to be derived, preferably in an intelligent manner, so that they actually
improve the system. Depending on the optimization goals we choose and the
number of parameters we allow the reconfiguration component to adjust, this
is no easy task, either.

We had to overcome all of these challenges in pursuance of our primary
goal of optimizing BFT state machine-replicated systems, and will present our
solutions to these problems, as well as evaluations of their respective imple-
mentations, in the following chapters. For a better overview, the next sections
will briefly introduce each problem and summarize background knowledge
where needed, in order to aid with gaining an initial understanding of our mo-
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tivations and approaches. More detailed information will then be provided in
each of the following chapters.

12.1 deterministic metrics

First, in order to have a basis for our reconfiguration decisions, we require aApproach
deterministicallymeasurablemetric. This task alone presents some challenges,
namely:

• In a replicated state machine, how can we measure performance met-
rics like throughput or request latency, which by their very nature de-
pend on exact measurements of wall-clock time (requests per second,
end-to-end response time latency of X ms)? As all replicas operate au-
tonomously, can have a different hardware and software bases, desyn-
chronized clocks, and different network latency compared to other repli-
cas, each replica perceives time and its related characteristics rather dif-
ferently.

• In a Byzantine system setting, how canwe be certain thatmalicious or er-
roneous participants in the cluster can not influence the measurements
on which we want to base our reconfiguration decisions? This precludes
solutions based on a centralized measuring component, e.g., in a mas-
ter replica, since this could inject Byzantinemeasurements and unhinge
the basis of our optimization decisions.

Also, some measurable metrics, e.g., processing time per request, may vary
greatly between replicas, whereas others are supposed to be at least similar, e.g.
request arrival rate. To successfully reconfigure our system, we need to choose
a suitable metric once the issues mentioned above have been solved.

To this end, in Chapter 13, a novel approach for deterministically measuring
system metrics in BFT SMR systems will be introduced.

12.2 deterministic reconfiguration

After solving the problemof deterministicmeasurements in a distributed, BFTEnsuring
Determinism During

Reconfigurations
scenario, we have to make sure our system is actually reconfigurable during
runtime, i.e., that reconfiguration of system parameters does not introduce
indeterminism or otherwise break the system.

For this requirement, we can rely on our favorite novel scheduling solution,
UDS, which allows for deterministic adaptation of its parameters in between
scheduling rounds. Similar to the evaluation prototypes used in Chapter 10,
we simply have to make sure that after receiving the measurements of our cho-
sen metric(s), all other components responsible for choosing and applying
new configurations are deterministic as well. We achieve this mostly by intel-
ligently putting this logic within threads that get scheduled by UDS itself, or,
for matters which require coordination between replicas, by totally ordering
these via the GCS. Some more details on this will be described in Chapter 14,
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but for the most part, the brief description above actually captures the gist of
our solutions to deterministic reconfiguration quite well.

For additional systemparameters, such as the number of replicas, howmany
Byzantine faults we would like to be able to tolerate, or other system-internal
configurations like queue or batch sizes within the SMR library used for pro-
totype implementations, we have to defer to related work and future research.
We do so, however, without loss of generality of many of our developed ap-
proaches.

12.3 self-optimization

Providing a system with deterministic metrics and ensuring reconfigurations Reconfiguration
Decisionsduring runtime doth not a self-optimizing system make, of course. The heavy

lifting of actually deciding new configurations for the system will have to be
performed by a further component, which has to have knowledge about the
possible effects of all parameters under its control. Thismay sound simple, but
is in fact utterly complicated, because (i) there are a great many parameters in
a BFT SMR system that can be manipulated, (ii) each parameter has different
effects on the system, and worst of all, (iii) some parameters could possibly
affect the effectiveness or (even the effects themselves) of other parameters.

To illustrate this with an example, consider an SMR system based on ver- Parameter Space
tically scalable virtual machines, where each replica may be scaled from 1
through 16 vCPU cores1. Assume further that this system runs a working
implementation of our proposed optimization approaches, i.e., can determin-
istically measure metrics yielding estimators for current system behavior and
status of the system’s environment, schedules threads with UDS to gain deter-
ministic multithreading, and an optimizer component attempts to optimize
the system using only the following parameters: UDS primaries, UDS steps
per round, UDS total order, and number of CPU cores via vertical scaling.
While the first three of these parameters could be technically infinite, assume
that in this example they stay within realistic boundaries. Therefore, let UDS
primaries be scaled up and downwithin 𝑛 ∈ [1, 16], steps be limited towithin
[1, 3] and the kinds of possible total orders be round-robin, all-at-once
(so, e.g., [0,0,0,1,1,1,2,2,2,...]), or random. Note that especially the way total
orders are determined is a parameter which can possibly lead to an explosion
of combinations by itself, if we were to assume a separate optimizer compo-
nent capable of somehow determining optimal schedules for a given set of
application requests (e.g., by learning likely locking patterns and optimizing
the order for maximum parallelization and a minimum number of required
rounds). Regardless of this last fact, assume that the optimizer component’s
task is to achieve the maximum possible request throughput while keeping
request latencies low.

With only these 4 parameters as specified in the example, we have already
established a space of 16 ∗ 4 ∗ 3 ∗ 16 = 3072 possible configurations to

1 Which is not all that many nowadays, considering that on AWS’ EC2 platform, for example,
machines with up to 448 vCPUs may be rented on-demand.
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choose from. Of course not all of these combinations would make sense (16
primaries, five steps and one vCPU would come to mind, for example), but
even after eliminating some obviously inane configurations, we could still be
left with hundreds, if not thousands of potentially useful combinations. Next,
the optimizer would have to find a strategy to map these combinations, or at
least a subset of the most commonly used ones (which also have to be some-
how determined first), to the currently observed system status, which either
requires knowledge about the effects of parameters on system behavior, or a
complete map of all possible combinations to a set of commonly observed cir-
cumstances.

Measuring the effects of all combinations of these parameters is a task thatApproaches
could feasibly be achieved, if one had the time and resources to run thousands
of tests with a well-defined set of application profiles, specifically created with
the target application that is to be replicated in mind. For some systems, this
effort might be warranted, but one of the subgoals of our research was also to
make SMR more accessible, in order to promote its usage. Requiring devel-
opers to run days worth of tests for their application to run optimally would
certainly be counterproductive to the general adoption of SMR.

Another approach, then, could be the inference of some generally applicable
rules regarding the effects of these parameters, i.e., to determinewhether some
settings almost always result in a certain effect. An example of this would be
the aforementioned effect of primaries on throughput and latencies, i.e., our
suspicion that a higher number of primaries should generally result in higher
throughput—given enough requests to promptly start scheduling rounds—,
whereas latencies might also quickly rise in case we choose to many primaries
for the current request rate. Based on inferred general rules like this, it would
be possible to build optimizers which turn only those few knobs for which the
effects are well-known. Just so, Chapter 14 will present our first version of a
self-optimizing SMR system based on a simple rule-based algorithm, which
can already achieve rather decent performance improvements. However, as
we will also see in that chapter, even just validating the results for adjusting a
single parameter can be a daunting and time-consuming task.

The next idea for tackling this problem was born on the grounds of cur-
rently much discussed applications of Reinforcement Learning (RL) all over
the world, where agents are trained to perform a multitude of complex tasks—
including the skillful and fine-grained controlling of complicated systems.
Our problem of controlling parameters of a live system to reach desired out-
comes was seen as a good fit to RL’s strengths, which leads directly to the last
efforts undertaken in the scope of this thesis.

12.4 reinforcement learning

Before we simply dive into our work on this subject, we have to admit theParadigms
rather substantial shift in context that comes with introducing a completely
new optimization paradigm, which is itself currently a hot topic of research
and by no means just a ready-made tool to simply apply to problems. There-
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fore, this section will briefly introduce the most general terms and concepts
behind Reinforcement Learning and further motivate our reasons for picking
this technique, in addition to the general introduction back in Chapter 4.

12.4.1 The Three Paradigms

Generally speaking, Machine Learning (ML), both as a field of research with Basic Introduction to
MLan overabundance of published work, and as a concrete tool used in a myriad

of applications and devices of our daily lives, is an entire class of paradigms
based on the central idea that some machine or algorithm is fed with data,
and that through the magic of mathematics, this algorithm can adapt itself so
as to extract useful information from this data. ML is commonly subdivided
into three major categories:

supervised learning Input data is pre-labelled, e.g., by humans, and
certain relationships within the data (e.g., categories) are learned by the
machine being trained, so that it can later apply learned labels to new
data without further need for anyone to pre-label it.

unsupervised learning Similar to supervised learning, but without
the pre-labeling step, i.e., the algorithm is given data with the goal
of discovering hidden patterns or relationships within it. The idea is
that unsupervised learning can detect classes or patterns within new
or unknown, large, and multidimensional datasets on its own, e.g., for
classification purposes, which humans might not have had the ability
to analyze manually without the machine supporting them.

reinforcement learning A paradigm that is quite different from the
other two, where the machine is interacting with some sort of environ-
ment (even if only simulated) through actions, in order to learn optimal
strategies for controlling this environment. “Optimal” has to be defined
by rewarding or punishing themachine for good or undesirable actions,
respectively.

Given these rather broad definitions, it already becomes a little clearer how Interest in RL
RL could be an interesting choice for our particular research problems: Our
system constitutes a live environment, and we want an optimizer component
to decide good reconfiguration actions that improve the system’s performance
during runtime. It would of course also be possible to model and abstract
our problem differently, e.g., by collecting a vast amount of data from evalua-
tion runs with a multitude of different configurations and application profiles
which could then be used with (un-)supervised learning approaches to dis-
cover patterns within this data. In a way, this would be similar to our approach
of inferring rules between parameters and system behavior, as suggested in the
previous section and our rule-based optimization approach inChapter 14, only
that the deductions are performed by training ML models instead of humans.

However, this would require substantial amounts of initial work to gather Feasibility of
Alternative
Approaches
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sound data about a preferably very large set of diverse application profiles,
with as many configuration parameter combinations as possible—which re-
alistically itself can already take months of time, all before any training or op-
timization has taken place. Of course this is still an entirely feasible approach
and a promising avenue of research that could be pursued. Since our premise
was to equip SMR systems with a generalizable solution to self-optimize them-
selves in the face of possibly unforeseen changes in the environment, however,
we looked towards RL as a likely better fit for our needs. Additionally, RLCurrent RL

Applications is currently being seen as a possible solution to optimizing complex and un-
predictable systems (e.g., [95], [51], [66], [74], [79], [67]). After handling our
Byzantine fault-tolerant setup using multiple interconnected machines and
distributed consensus algorithmswith configurable and deterministicallymul-
tithreaded parallel execution of requests, we were convinced that its complex-
ity was a good enough reason to favor an RL approach for our next contribu-
tion.

12.4.2 Preliminary Background Information on Reinforcement Learning

Having decided to take a closer look at RL as a tool to achieve our research
goals, we needed to determine how exactly RL works, and what the require-
ments for using RL are. A brief summary of these investigations is given
here, and a more detailed description of RL’s background and our resulting
approach will be provided in Chapter 15.

To begin with and put as simply as possible, Reinforcement Learning em-RL Basics
ploys a so-called agent, which interacts with an environment through actions.
This is, in its most basic form, what a Markov Decision Process (MDP) mod-
els, if one’s particular problem can be regarded as such [104]. When a system
is modeled as an MDP, it consists of a set of states 𝑆 and a set of actions 𝐴.
Choosing an action 𝑎 ∈ 𝐴 when the system is in state 𝑠 ∈ 𝑆, will transition to
a new state 𝑠′ ∈ 𝑆 with a given probability 𝑃𝑎(𝑠, 𝑠′). Additionally, after this
transition to 𝑠′, a reward 𝑅𝑎(𝑠, 𝑠′) is specified, which signals how “desirable”
or “good” the chosen action 𝑎 in state 𝑠 was, depending on the semantics of
the modeled problem. Therefore, the environment transitions from state to
state under certain probabilities when given actions.

Since time is thereby advanced in discrete steps, transitioning fromone stateTerminology
to the next in an environment is usually called taking a step in RL2. With RL,
the most common goal is to train an agent to influence the environment with
its actions so that rewards are overall maximized over time. Hence, the train-
ing process utilizes the rewards received after each transition from 𝑠 to 𝑠′, and
feeds them back to the agent, so it can judge its actions and learn an optimal

2 There is potential for a bit of confusion here, as we now have actions and stepswithin the context
of RL, in addition to critical actions and steps as introduced in our discourse about UDS. We
strive to simply separate these terms for the reader in the remainder of this thesis by stressing
the proper context where necessary.
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policy 𝜋(𝑠) for maximizing accumulated rewards over time3. In complex sys-
tems, the agent is usually not aware of the entire environment during this pro-
cess, i.e., it is only fed an observation of the environment’s current status after
each step. Figure 12.1 shows this training loop in its basic form. In Chapter 15
we will see a slightly expanded version of this diagram, illustrating how the
agent can be represented by a deep neural network (DNN, cf., [44]).

(learn) a

[observation]

Pa(s, s
′)

State s

State s′

(observe s′)
Ra(s, s

′)

Figure 12.1. The basic training loop in a Reinforcement Learning setup. After an agent has been
fully trained, the sending of rewards and learning can cease, and the agent will produce actions
according to its learned policy when given observations.

With this basic idea of Reinforcement Learning in our minds, we can al- Initial Problem
Statementready identify some problems that need to be solved in order to employ RL

for optimization of our system. First of all, it would be best to model our
environment according to the rules outlined above, i.e., transform our sys-
tem so that it (i) can progress in discrete time steps, (ii) can receive actions
which reconfigure its parameters, (iii) provides a sensible observation of itself
after each step, and finally (iv) has a component judging the transitions for
providing a reward. Additionally, we would need to find, implement, and
employ a preferably rather well-researched RL technique for learning opti-
mal policies within this setup, so as to train agents that can optimize the sys-
tem to some degree. As will be explained later, our choice fell on Deep Q-
Learning (DQL) as a technique, which employs neural networks called Deep
Q-Networks (DQN) to approximate the otherwise prohibitively large map-
pings between actions and expected rewards that complex environments often
yield (cf., Section 15.2). This invited some unexpected difficulties, such as sud-
denly having to care for several dozens of virtual neurons, which sometimes
can be as stubbornopinionated as real children and just simply refuse to learn
what we would so much like them to learn. Afterwards, a phase would follow
in which agents are trained, fine-tuned, and evaluated, to find, or rather, create
an agent that achieves adequate results (i.e., which can optimize our system in
the face of variable load and application profiles). Finally, we would require a
way to transfer this trained agent to a live system, where it could play the part
of our optimizer component.

The challenges we had to overcome during this part of our research were
substantial, not least due to the fact that we were almost completely unfamiliar
with applyingML techniques to real problems, let alonewith handling the finer

3 An agent is seen as the entire entity influencing the environment, e.g., including actuators or
supporting libraries, while the policy is purely the strategy or logic within the agent responsible
for choosing actions
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intricacies of implementing and handling a Reinforcement Learning setup,
when we started with this approach. Nonetheless, we managed to progress
significantly on this roughly outlined roadmap of problems that would need
to be solved, and will summarize our efforts on attempting to create a neural
network-based, generalized solution for self-optimizing systems with greater
complexity in Chapter 15.
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To solve the issue of requiring a deterministic measurement as a basis for re-
configuration, we proposed a new deterministic Byzantine fault-tolerant dis-
tributed clock mechanism, which guarantees deterministic time intervals for
all participants. These time intervals can then in turn be used for measuring
performance to some degree of accuracy. The rest of this section will present
our novel mechanism, called Byzantine Time Intervals, or ByTI for short.

The algorithm itself was initially co-developed and co-analyzed by our re-
search group as a team, with Prof. Hauck supplying the initial analysis of the
algorithm’s behavior under different failure cases, while later implementation,
bug fixing, analysis, and evaluation tasks were then contributed by the thesis
author.

13.1 related work

In principle, there are two approaches to arrive at deterministic decisions in Fundamental
Approacheseach replica. First, we could individually measure and then distribute values

among all machines, agreeing on a value, similar to how atomic multicast pro-
tocols are already used to agree on a total order of messages in SMR. The sec-
ond way would deterministically measure a metric in each replica, based on
some notion of identical time in each participant.

Measure & Broadcast

For individual measurements that are broadcast to all replicas, we would need
away to deterministically select which values out of all receivedmeasurements
are valid, and then implement a deterministic fusion function creating a final
value to be used in each replica. The distribution process has to define a de-
terministic point in time when adaptation starts, e.g., the last message sent for
distributing one of the values.

Surprisingly, only little related work can be found regarding this topic. To Distributing
Measurementsthe best of our knowledge, the only similar, published mechanism can be

found in a master’s thesis titled ByTAM [107], and is based on dissemination
of observed values via the consensus protocol. This approach was then fur-
ther advanced in a second master’s thesis [103], where the author allowed sen-
sors to operate in different faultmodes—namely non-replicated, crash tolerant
or Byzantine tolerant. If all replicated sensors perform measurements on the
same metric, replicas can filter potentially faulty readings. In ByTAM for in-
stance, all sensors broadcast their readings to all other replicas. Each of them
waits for ⌈(𝑁 + 𝑓 )/2⌉ sensor readings of different replicas before it deletes the
𝑓 highest and lowest values and uses a deterministic function to build a mean
value from the remaining readings. However, the authors aim at a general
purpose monitoring system that uses SMR for replicating the measurement
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components, instead of equipping an existing SMR system with monitoring
capabilities.

Additionally, there is no guarantee that the results are timely, i.e. it is notTimeliness
known whether the values sensors sent were read in roughly the same time
frame or were potentially scattered over a larger period of time, and are there-
fore hardly comparable. For example, since replicas wait for a quorum of sen-
sor readings, at least one of them could (maybe maliciously) arrive consider-
ably later than the others, up to the maximum delay allowed by the employed
consensus protocol, whichwouldmean decisions aremade on potentially stale
sensor values. Detailed research about the accuracy anddecision delay or time-
liness of such an approach does not seem to exist yet.

Deterministic Measurements

For localized deterministicmeasurements in each replica, a deterministic timeLocal Time Intervals
interval that each replica can use tomeasure is required, in order to, e.g., count
arriving requestswithin that interval. Thedetermination of such time intervals
would have to happen based on some form of communication and consensus
between the replicas. With this approach, the measurement itself would be
deterministic, but the time base may not exactly reflect wall-clock time. Fur-
ther, this solution would no longer require a fusion process (i.e., discarding of
potentially bad values), as every replica simply measures its own values within
the given deterministic time frame, which are guaranteed to be identical be-
tween participants as long as the correctmetrics are chosen. A good and useful
example for such a metric would be request counts per interval, which could
directly be used to closely estimate current actual request arrival rates.

ByTI uses periodic messages sent by each replica to all other replicas toApproach
establish such deterministic time intervals, so it falls into this category. In
this regard, it is similar to mechanisms like watermarks in stream processing,
e.g. [11], and Byzantine clock synchronization algorithms, e.g. [33]. However,
these ideas are not meant for defining deterministic time intervals for mea-
surements. Therefore, to the best of our knowledge, there is no previous work
with this approach as yet.

13.2 defining the algorithm

We first describe our algorithm to create deterministic Byzantine time inter-
vals, which create reliable and deterministic virtual timelines in each replica.
Each virtual timeline is defined by a sequence of messages in the totally-
orderedmessages arriving at each replica, and each correct replica will identify
the same sequences, called ByTI.

Assumptions

Weassume that each replica sends clock tickmessages—in the following calledModel
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ticks for short—to each other replica with a constant rate 𝑅. The delay between
two sequential ticks by the same node is thus 𝑇 ∶= 1/𝑅. Malicious repli-
cas may not send ticks at all, or use arbitrary and dynamically changing rates.
With the latter, malicious replicas may try to distort the construction of ByTIs
in correct replicas. Ticks are sent to all replicas via the same atomic multicast
which is also used by the SMR system for ordering requests, thus also having
a totally ordered sequence number in the total order, as any regular request
would have. As clock ticks are inserted into the total order of all arriving mes-
sages, each replica sees all clock ticks in the same order and appearance with
respect to other messages. Further, tick-messages are authenticated and only
considered when originating from a valid sender. Since the messages orig-
inate from replicas participating in the consensus protocol, and since most
modern consensus protocols already inherently check message authenticity,
this requirement is usually fulfilled by default.

Algorithm

The goal of the following algorithm is to determine a ByTI with a length close
to 𝑚 ∗ 𝑇, with 𝑚 > 0 being an integral configuration parameter. First, the
algorithm maintains a set of variables:

1 firstNo := 0 # first message in ByTI
2 lastNo := undef # last message in ByTI
3 replicaTicks := [0,0,0,..] # tick counts per replica
4 goodReplicas := 0 # with exactly m ticks
5 badReplicas := 0 # with more than m ticks

replicaTicks is an array storing the received number of ticks per replica,
where each position in the array is accessed by the replica ID, which is sup-
posed to run from 0 to N-1. With each incoming tick message msg from
replica msg.sender, the following algorithm is executed:

6 process( msg ) {
7 ticks := ++replicaTicks[msg.sender]
8 imprecise := false
9 # received exactly m ticks from this replica?

10 if( ticks == m ) {
11 if( ++goodReplicas ≥ N - f ) {
12 # Preliminary interval
13 lastNo := msg.seqNo
14 }
15 }
16
17 # received a tick too many from this replica?
18 if( ticks == m + 1 ) {
19 # One more replica with too many ticks
20 goodReplicas--
21 badReplicas++
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22 imprecise := badReplicas > f
23 }
24
25 # close because m ticks from N replicas received?
26 # or close b/c regular interval is impossible?
27 if( goodReplicas == N ||
28 ( ticks == m + 1 &&
29 ( imprecise || goodReplicas ≥ N - f - 1 ))) {
30 # Decide
31 replicaTicks := [0, 0, 0, ...]
32 goodReplicas := badReplicas := 0
33 if( lastNo == undef || ticks == m + 1) {
34 # some kind of fault detected: close interval
35 # but reuse this tick in the next ByTI
36 lastNo := msg.seqNo - 1
37 replicaTicks[msg.sender] := 1
38 if( m == 1 ) {
39 goodReplicas := 1
40 }
41 }
42 decideByTI(firstNo, lastNo, imprecise)
43 firstNo := lastNo + 1
44 lastNo := undef
45 }
46 }

In otherwords, this algorithmwaits for exactly𝑚 ticks fromat least𝑁−𝑓 dif-Deciding an Interval
ferent replicas. Are these received, the interval is temporarily decided, marked
by lastNo, meaning it is finished and can be used by a reconfiguration compo-
nent to measure metrics or determine possible reconfigurations of the system
for optimizations. If there is still a chance to increase the number of nodes
who have sent exactly 𝑚 ticks, the interval will be extended. Otherwise, the
interval is simply decided, and the next one is started.

Theoretically, it can happen that the algorithm is not able to find at least 𝑁−Edge Cases
𝑓 replicas with exact 𝑚 ticks, detected by having already more than 𝑓 replicas
with more than 𝑚 ticks. In this case the interval is decided, too. However,
since the actual wall-clock time of the interval is less clear in this case, it is
marked with an additional imprecise parameter. This situation can occur
for example in case of high jitter in the message delivery timings, or when not
yet all replicas are operational—initially, after a reconfiguration or in a network
partition. It is up to the decision function whether it wants to use imprecise
intervals for measurements and further decisions or not.

In the following, we analyze how the algorithm behaves in case there are
no faults, when there are crash-only faults and in case of Byzantine faults. For
this analysis, we initially simplify a little by assuming that there is a constant
network delay for ticks. In reality, message delivery will experience jitter, and
we will discuss its consequences later.

All the shown examples—except the Byzantine shortening attack in Sec-Assumptions for
Analysis tion 13.2.3—will be for 𝑁 ∶= 4, 𝑓 ∶= 1 and 𝑚 ∶= 2, whereas our general
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considerations remain independent of concrete numbers1. In all plots, T was
set to 100𝑚𝑠. The variable 𝐵 denotes the distribution of the length of decided
ByTIs, while 𝐷 denotes the distribution of the decision delay of a ByTI.

13.2.1 Analysis: No Faults

Figure 13.1 shows an example, recorded from a real evaluation run with no
faults, and cropped to a small-time windowwith only 2 intervals visible. Ticks
are sent with some arbitrary phase shift between replicas.
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ByTI Time-Series: No Crash

Figure 13.1. Time-Series plot, zoomed into a section of a recorded benchmark run, showing
ByTI tick messages and intervals for each replica. Each dot is a received tick message from a
replica, where y-position-shift in each replica swim-lane indicates which replica a tick was re-
ceived from, analogous to the distribution of replicas along the y-axis (note that replicas also
send ticks to themselves), each vertical line represents an interesting point in time (cf., explana-
tory text in Section 13.2.1), and the points in timewhen decisions about the respective ByTIwere
made are marked with X. The differently shaded areas show fully decided intervals, exemplary
for one replica.

The algorithm can theoretically be started at an arbitrary point in time. For Starting ByTI
a general analysis we can therefore ignore the real-time axis in Figure 13.1, and
consider instead the indicated relative point in time 𝑡1 as an arbitrarily picked
starting point. The initial ByTI is first preliminarily and transparently detected
at 𝑡2 within the algorithm (cf., Line 13), but extended to 𝑡3 once the last tick
of 𝑅4 has been received, when it is decided to range from 𝑡1 to 𝑡3, as no more
ticks for this interval can be expected. Note that when starting the algorithm

1 To properly demonstrate the shortening attack in a readable plot, we will use 𝑚 ∶= 1 for this
case.
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at an arbitrary point in time, e.g., with the initial start of the system, the very
first ByTI can be expected to be shorter than 𝑚 ∗ 𝑇.

The next ByTI is then determined to range from 𝑡3 to 𝑡4. As can be seen,Example
replica 𝑅3 gives the pace for time intervals in this example. All subsequent
intervals will always be 𝑚 ∗ 𝑇 long in this fault-free case. It is interesting to
note that different phase shifts will not change this behavior, since after the
tick of some replica closes the first interval, this replica’s ticks will then also
close all following ones, as long as the initial phase shift stays roughly the same.
This also depends on the clock-drift of each replica-local hardware wall-clock,
which can be considered negligible for current consumer hardware and the
time ranges we are considering 2. If all nodes are behaving correctly, and after
removing the first, potentially shorter, interval, 𝐵 will have the following char-
acteristics: 𝐸[𝐵] ∶= 𝑚 ∗ 𝑇, 𝜎𝐵 ∶= 0. The decision time is always zero as the
last 𝑚-th message closes the interval and decides it, as can also be seen in the
example: 𝐸[𝐷] ∶= 0, 𝜎𝑆 ∶= 0.

13.2.2 Analysis: Crash Faults

Figure 13.2 shows a similar example from another recorded evaluation run, but
here replica 𝑅4 has crashed and is not sending ticks anymore.
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ByTI Time-Series: Crash-Fault

Figure 13.2. Time-Series plot, zoomed into a section of a recorded benchmark run, showing
ByTI tick messages and intervals for each replica after one replica (𝑅4) has crashed. Legend is
identical to Figure 13.1

In this case, the detection of intervals works differently. Since one partici-ByTI Under
Crash-Faults

2 Even if a replica had a dramatically drifting clock and would slowlymess up its tick rhythm, the
influence on ByTIs can be expected to be minimal, as we will see shortly, when talking about
Byzantine attackers.
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pant is missing, the algorithm detects the (𝑚 + 1)-th tick at 𝑡4, and therefore
retroactively closes the interval at 𝑡3. All detected intervals have the same cor-
rect length of 𝑚 ∗ 𝑇, because the ByTI algorithm needs only 𝑁 − 𝑓 ticks to
complete an interval.

For crashes, and after removing the first interval, which could again be
shorter after the algorithm starts, 𝐵 has the same characteristics as without
faults: 𝐸[𝐵] ∶= 𝑚𝑇 and 𝜎𝐵 ∶= 0. The decision delay depends on the distance
between the last 𝑚-th message considered for the interval and the (𝑚 + 1)-
th message that actually decides it. This distance has uniform distribution
𝒰(0, 𝑇). Thus decision characteristics are: 𝐸[𝐷] ∶= 1

2𝑇 and 𝜎𝐷 ∶= 𝑇
2√3

.

13.2.3 Analysis: Byzantine Faults

For Byzantine cases, we distinguish between two attacks (with random Byzan-
tine faults falling into one of the two categories by chance): Malicious replicas
may either try to extend or to shorten 𝐵.

Figure 13.3 shows a malicious replica 𝑅3 trying to extend the ByTI in all
replicas.
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ByTI Time-Series: Byzantine Extension

Figure 13.3. Time-Series plot of an artificially created demonstration showing ByTI tick mes-
sages and intervals for each replica if one replica (𝑅3) is trying to maliciously extend ByTIs.
Legend is identical to Figure 13.1, and red ticks are the malicious ticks inserted by 𝑅3.

As shown in the previous Section, simply omitting ticks would not help 𝑅3, Possible Attacks
since this would be functionally equivalent to a crash-fault and the interval
lengths would be unaffected. Following a more sophisticated approach, 𝑅3
would send its 𝑚-th message shortly before the (𝑚 + 1)-th message from a
benign replica is delivered. This 𝑚-th tick by 𝑅3 counts towards the current
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interval, thereby extending it, because the algorithm tries to wait for exactly 𝑚
messages from as many replicas as possible.

After the first extension, however, the malicious replica cannot extend anyIneffectiveness of
Lengthening Attacks further ByTIs: In Figure 13.3, we assume a previous, correctly closed ByTI up

to 𝑡1 had the regular length 𝑚∗𝑇, at which point 𝑅4 decides to try its extension
attack. The expected length of the interval starting at 𝑡1 would normally reach
until 𝑡2, which the attacker is able to extend to 𝑡3. However, another delay
of 𝑅3’s 𝑚-th message would simply result in a ByTI of normal length 𝑚 ∗ 𝑇.
Even worse, if the attacker happens to come too close to the next (𝑚 + 1)-th
tick message of a benign replica (in our case 𝑅0 near 𝑡4), its messages may
be delivered after this tick. In this case, the ByTI would be closed with the
last regular 𝑚-th message. 𝑅3 could conceivably try to shorten the interval
starting from 𝑡3—an attack we will look at in the next paragraph—, but this
would simply cancel out the previous extension attack’s effects. Therefore, we
can reason that an attacker cannot effectively extend ByTI lengths, except for
one negligible interval during the entire runtime of the system: 𝐸[𝐵] ∶= 𝑚𝑇
and 𝜎𝐵 ∶= 0. Decisions are once again instant, since in this attack, the delayed
𝑚-th tick is similar to a correct 𝑚-th tick and therefore closes the interval:
𝐸[𝐷] ∶= 0, 𝜎𝑆 ∶= 0.

Unfortunately, despite the robustness of our algorithm against the previousShortening Attacks
cases, a Byzantine replica can constantly shorten intervals. To achieve this, it
initially sends its 𝑚 tick messages within a shorter period than usual and then
waits until 𝑁 − 𝑓 − 1 other replicas have sent exactly 𝑚 ticks each. Then, the
attacker sends its (𝑚 + 1)-th tick, thus immediately closing the ByTI at the
time of the last 𝑚-th message arrival. Figure 13.4 shows this malicious attack
for shortening ByTIs. For this example, to improve readability and keep the
plot within the bounds of the page, 𝑚 is set to 𝑚 ∶= 1, contrary to the previous
examples.

The shaded areas in 𝑅0’s swim lane with timestamps 𝑡2 through 𝑡7 show the
intervals after the attack, whereas the shading in 𝑅1’s lane and the timestamps
with subscript 𝑒 show what the expected outcome would be without an attack.

To set up the attack, 𝑅3 initially sends its 𝑚 regular ticks before all otherExample of
Shortening Attack replicas, so its tick-count in thereplicaTicks-array is preparedwith𝑚 (first

red tick in interval [𝑡1, 𝑡2] in Figure 13.4). Then it waits until 𝑁 − 𝑓 − 1
other replicas, in our example 𝑅0 and 𝑅1, have sent their 𝑚-th tick before
immediately sending its (𝑚 + 1)-th tick. This results in the interval being
closed retroactively at 𝑡2 instead of the originally expected 𝑡2𝑒, shortening it
considerably. All subsequent, shortened intervals work the same way. Note
that the pattern of shortened ByTIs repeats after just 3 intervals. We further
can see in the example that the three ByTIs [𝑡2, 𝑡3], [𝑡3, 𝑡4], and [𝑡4, 𝑡5] have
a total length of 2 ∗ 𝑇, as 𝑅1 is used to open and close the whole sequence.

For a generalized analysis, we define 𝑃𝑖 as the phase shift of 𝑅𝑖 to 𝑅1 in
terms of how much later 𝑅𝑖 sends its ticks compared to 𝑅1. All 𝑃𝑖 are inde-
pendently and identically distributed random variables with a uniform distri-
bution 𝒰(0, 𝑇). Without loss of generality, we assume an 𝑅1 tick closed the
previous interval. The length of the next ByTI in case of a shortening attack is
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ByTI Time-Series: Byzantine Shortening

Figure 13.4. Time-Series plot of an artificially created demonstration showing ByTI tick mes-
sages and intervals for all replicas and 𝑚 =∶ 1. One replica (𝑅4) is trying tomaliciously shorten
ByTIs. Legend is identical to Figure 13.1, and red ticks are the malicious ticks inserted by 𝑅4.

then defined as 𝐵 ∶= (𝑚 − 1) ∗ 𝑇 + 𝑚𝑎𝑥(𝑃𝑖) for all 𝑃𝑖 of the 𝑁 − 𝑓 correct
replicas3, as the attacker pushes 𝑅1’s 𝑚-th tick to the next ByTI but needs the
𝑚-th tick from all other correct nodes. This results in the following density
function, expectation and standard deviation for 𝐵:

𝑓𝐵(𝑥) ∶=

⎧{{{
⎨{{{⎩

0 if 𝑥 < 0
𝑁−𝑓 −1
𝑇𝑁−𝑓 −1 𝑥𝑁−𝑓 −2 if 0 ≤ 𝑥 < 𝑇

0 if 𝑥 ≥ 𝑇

𝐸[𝐵] ∶= (𝑚 − 1
𝑁 − 𝑓 )𝑇

𝜎𝐵 ∶= 𝑇√𝑁 − 𝑓 − 1
𝑁 − 𝑓 + 1 − (𝑁 − 𝑓 − 1

𝑁 − 𝑓 )
2

A sequence of 𝑁 − 𝑓 ByTIs under shortening attack therefore has a length
𝑆 with an expectation value of 𝐸[𝑆] ∶= (𝑁 − 𝑓 ) ∗ 𝑚 ∗ 𝑇 − 𝑇. Even more
interestingly, the standard deviation can be computed as 𝜎𝑆 ∶= 0 as the phase
shifts absorb each other.

3 Note that 𝑃1 is zero and not considered
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For 𝑁 = 4 and 𝑓 = 1 this results in the effect of a shortening attacker on
a ByTI length to be expected as (1 − 1

3∗𝑚)𝑚 ∗ 𝑇. The interval is 1
3𝑚 shorter

than expected, so in our example, with 𝑚 ∶= 1, this would shorten ByTI by
approx. 33%. Increasing 𝑚 therefore mitigates the effects: With 𝑚 ∶= 3 the
expected length an attacker can achievewould only be 11% shorter thannormal.
Hence, by adjusting 𝑚, the maximum expectable effect of an attacker can be
configured, trading more tick messages against better ByTI accuracy in case
of Byzantine faults.

For an attacker to achievemaximum effect, it would have to send its (𝑚+1)-
th message before the 𝑚-th tick of the last correct replica. Therefore, in order
to delay decisions as far as possible, we assume the attacker sends its tick as
late as possible, which results in 𝐸[𝐷] ∶= 1

2𝑇 and 𝜎𝐷 ∶= 𝑇
2√3

.

13.2.4 Analysis: Network Delays

In real systems, messages of course do not arrive with constant network delay,Expected Effects of
Jitter and will jitter, i.e., have varying arrival times. The arrivals of ticks of the same

correct replica will therefore not occur exactly after 𝑇 time units. These effects
of jitter have the potential of extending or shortening individual ByTIs. How-
ever, averaged out over longer periods of time, one 𝑇 will still contain one
tick. Additionally, possible reordering of expected messages also influences
the algorithm, especially when it comes to deciding the interval. For example,
a delayed 𝑚-th message may not be considered because an earlier (𝑚 + 1)-th
message already closed the interval. Even worse, the 𝑚-th message will then
count as a first message for the next interval.

In practice, as we have seen in our evaluations, a very small phase shift be-
tween replicas emphasizes this behavior, whereas a more equally distributed
phase shift can tolerate more jitter. A formal model of the algorithmic behav-
ior including network jitter shall be omitted here as it has little to offer in addi-
tion to the previously shown models. Also, our evaluation in the next section
will show the stability of ByTI in a common setup with 𝑁 = 4 real replicas
connected via a normal gigabit switch.

13.2.5 Enabling View Changes

For a truly runtime-reconfigurable system, the replica group needs to be re-
configurable, too, i.e., replicas need to be able to leave and join the ensemble.
In existing BFT SMR systems, whenever the group of replicas changes, the un-
derlying atomic broadcast algorithm has to carefully participate in this change.
Since typically the ordering of messages is based on a consensus algorithm,
this changing of cluster members is called a View change, in which the View
number is incremented, and new consensus instances have to follow suit.

A simple, yet sufficient procedure for the ByTI algorithm to support such
View changes is to close the last intervals within the old viewwith imprecise
set to true, and doing the same for the first interval in the new View.
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13.3 evaluation

We implemented the ByTI algorithm as presented in the previous section, and
integrated it into our existing evaluation platform based on BFT-SMaRt. Af-
terwards, we set up experiments to measure actual interval lengths for 𝑁 = 4,
𝑓 = 1, 𝑇 = 100𝑚𝑠, and 𝑚 = {1, 3} in the fault-free and crash cases.

The results worked well and were very close to our theoretical models that Omitting Byzantine
Evaluationswe could reasonably assume our analyses to be sound, and Byzantine cases to

look similar. Therefore, we opted to not spend significant time on implement-
ing sophisticated Byzantine attackers, which would have to precisely measure
other replicas’ arriving tick intervals and system-specific network details like
delays and jitter before becoming effective.

All tests were run on a cluster of 4 replicas with Intel i7-7700 CPUs at Hardware Setup
stock clock speeds, i.e., 3.6 GHz, with 32 GB of RAM per machine, at stan-
dard JEDEC DDR4-2400 timings. An additional 4 machines with Intel Xeon
E31220 CPUs and 16 GB of RAM each were used to instantiate clients to put
load on the replicas. The clients were connected to the replicas via a regu-
lar single Gigabit switch, while the replicas were additionally connected to
each other via a second NIC and a second Gigabit switch to aid BFT-SMaRt’s
consensus protocol.

In each test a small load was generated for 45 seconds by the client ma- Methodology
chines to stress the replicas’ CPUs and the GCS during out ByTI measure-
ments. Clients connected in groups of 4, with each group sending roughly 500
requests per second to the cluster. Requests were designed to be parallelizable
and burn a small amount of CPU time. For warming up all systems before tak-
ingmeasurements, we included a 10-second pre-measurement phase in which
client machines could establish connections and fire off some initial requests
in each evaluation run.

Then, starting at 𝑡0 = 10𝑠, the first client group started sending their re-
quests, 5 seconds later the next group of 4 clients started sending requests, and
so on until after 15 seconds all 4 client groups were connected and stressing
the system with about 2000 requests per second peak load. Each group stayed
active for 30 seconds, so the first group stopped sending requests at 𝑡 = 40𝑠,
then 5 seconds later the second group disconnected, and so on, until after 45
seconds no clients were active anymore and the evaluation run was shutdown
to gather, analyze, and plot results. For the crash-fault evaluations, one replica
was deliberately crashed after 28 seconds, and the remaining time of these tests
the cluster continued operating with 3 replicas to record the behavior of our
algorithm when coping with missing ticks. As mentioned above, 𝑇 was set
to 100𝑚𝑠 in all evaluations, i.e., every replica sent out 10 evenly spaced tick
requests per second to all other replicas.
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13.3.1 Evaluation: No Faults

For our first tests, Figure 13.5 and Figure 13.6 show the distributions of ByTI
lengths for themost basic case, with 𝑚 = 1 and all replicas operating normally
during the entire test.
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ByTI Lengths: No Faults, 𝑚 = 1

Figure 13.5. Combined Violin- & Box plots, showing distribution of ByTI lengths for 𝑚 = 1
and no faults for each replica.

Due to ByTI’s automatic correction of variances, the overall mean length ofResults
intervals 𝑚𝑒𝑎𝑛(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 100.13𝑚𝑠 (identical in all replicas) is very
close to the expected interval length of 𝑇 = 100𝑚𝑠, with less than 0.2% of
deviation. The standard deviations vary between replicas, from a minimum of
𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 0.96𝑚𝑠 in replica 𝑅0 (as the leader of SMR cluster), to a
maximumof 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 3.30𝑚𝑠 in replica 𝑅3. Figure 13.5 provides a
more detailed insight of the distribution of interval length distributions across
replicas.

The vast majority of intervals are close to our expected ByTI length of
100𝑚𝑠. The few spikes in ByTI lengths in non-leader replicas happen consis-
tently throughout different evaluation runs, settings, hardware andmost other
conditions, and we could not get rid of them completely, though not for a lack
of trying. When looked at in detail, these shortened and extended intervals
always happen due to delayed consensus instances, i.e., an entire set of several
consecutive message batches being delivered with slight delays, resulting in
longer intervals immediately followed by shorter ones. The effects seem to be
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Figure 13.6. Scatter plot of all ByTIs across all replicas, with 𝑚 = 1 and no faults. Each dot
represents a closed ByTI; the individual plots show each replica’s view.
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inherent to our BFT-SMaRt-based benchmarking setup, as we have also seen
similar hiccups in other evaluations throughout the last few years.
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Figure 13.7. Combined Violin- & Box plots, showing distribution of ByTI lengths for 𝑚 = 3
and no faults for each replica.

Even though these results already show that our algorithm works forIncreasing 𝑚
our intended purpose, they can be further improved by increasing 𝑚. Fig-
ures 13.7 and 13.8 show the lengths of individual ByTIs during normal op-
eration of the cluster for 𝑚 = 3. The mean interval lengths range from
𝑚𝑒𝑎𝑛(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 300.41𝑚𝑠 in𝑅0 to𝑚𝑒𝑎𝑛(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 300.44𝑚𝑠
in 𝑅3, and are thereby even closer to our expected value of 300𝑚𝑠 on a per-
centage basis than with 𝑚 = 1. Proportionally, the standard deviation also
improved considerably, ranging from 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 1.13𝑚𝑠 in 𝑅0 to
𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 6.12𝑚𝑠 in 𝑅3.

With this example and 𝑚 = 3, a decision about reconfiguration of the sys-
tem for optimization purposes could still be reachedmultiple times per second
with good stability and timeliness of the measured values.

One drawback of our approach is the necessity of sending additional mes-Negligible Overhead
sages, putting additional stress the consensus and overall our cluster of ma-
chines. However, we argue that this increase in load is minor and acceptable:
Considering that we put the replicas under a load of about 2000 requests per
second for these tests, and with our chosen 𝑇 = 100𝑚𝑠 and 𝑁 = 4, tick re-
quests amount to about 40 additional requests per second, which represents
an added overhead of only about 2%. This overhead improves when 𝑇 is in-
creased, e.g., when reconfiguration decisions are required less often.
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Figure 13.8. Scatter plot of all ByTIs across all replicas, with 𝑚 = 3 and no faults. Each dot
represents a closed ByTI; the individual plots show each replica’s view.
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13.3.2 Evaluation: Crash Faults

As shown in our analysis in Section 13.2.2, crashing replicas should not affect
ByTIs.
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ByTI Lengths Distribution: 𝑅3 Crashing, 𝑚 = 1

Figure 13.9. Combined Violin- & Box plots, showing distribution of ByTI lengths for 𝑚 = 1
and 𝑅3 crashing after 28 seconds.

We set out to confirm this, and ran another set of evaluations with the sameConfirmation of
Resilience Against

Crashes
cluster, 𝑚 = {1, 3} and 𝑇 = 100𝑚𝑠. The results for 𝑚 = 1 can be seen
in Figure 13.9 and Figure 13.10, and are as expected.

The crash does not affect ByTI lengths, except for one negligibly short-
ened interval directly when the crash occurs. The mean of intervals lengths
is 𝑚𝑒𝑎𝑛(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 100.12𝑚𝑠 between all replicas, and standard de-
viation ranges from 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 4.24𝑚𝑠 to 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) =
5.31𝑚𝑠, ignoring 𝑅3’s data, of course.

Results of the last evaluation, for 𝑚 = 3, are shown in Figure 13.11 and Fig-
ure 13.12.

Note that due to the low variability in interval lengths, plots for 𝑚 = 3 with
crashes are zoomed in more than previous plots. The mean in this last bench-
mark is 𝑚𝑒𝑎𝑛(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 300.40𝑚𝑠 between all replicas, and standard
deviation ranges from 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) = 1.66𝑚𝑠 to 𝑠𝑑(𝐵𝑦𝑇𝐼𝐿𝑒𝑛𝑔𝑡ℎ𝑠) =
2.24𝑚𝑠, again ignoring 𝑅3’s data.
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Figure 13.10. Scatter plot of all ByTIs across all replicas, with 𝑚 = 1 and 𝑅3 crashing after 28
seconds. Each dot represents a closed ByTI; the individual plots show each replica’s view.
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Figure 13.11. Scatter plot of all ByTIs across all replicas, with 𝑚 = 3 and 𝑅3 crashing after 28
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Figure 13.12. Combined Violin- & Box plots, showing distribution of ByTI lengths for 𝑚 = 3
and 𝑅3 crashing after 28 seconds.

13.4 summary

In this chapter, we defined, analyzed, implemented, and evaluated Byzantine
Time Intervals, or ByTI for short, a mechanism for creating deterministic log-
ical time intervals in replicated state machines. ByTI guarantees that each
replica will see identical time intervals, and can therefore conduct determin-
istic measurements, e.g., by counting certain events per time interval to ap-
proximate current rates of this event. Note that these time intervals are not
necessarily (or likely) equal to wall-clock time, although our analysis and eval-
uation has shown they are similar enough to enable sufficiently precise mea-
surements for many purposes. ByTIs require replicas to send periodic clock
tick messages that help to identify the interval borders, but do not need to
carry any further information. No additional communication or message ex-
change is necessary between replicas, and no complicated decisions to handle
malicious or crashed replicas are needed.

Unlike previous work, ByTI comes with a formal model, showing how close
the ByTI length corresponds to the expected ideal length under different fail-
ure models. Message delivery and processing adds additional jitter that we
have not modelled in detail, but our evaluation with a real system shows that
jitter tends to smooth out when averaging intervals over time, even under high
load.
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Building Byzantine attackerswhich try to achievemaximumdisruption—in
our case extension and shortening attacks—was not attempted yet and has to
be left to future work. However, we anticipate that the achievable effects in real
systems are considerably smaller than those predicted by the mathematical
models, because an attacker will have to take caution not to edge too close to
the limits of tick intervals due to network and processing jitter, lest they risk
failing with their attack.

Finally, as the original purpose of this endeavor was the creation of a deter-Discussion
ministic metric, in order to measure certain current system characteristic on
the basis of which reconfiguration decisions could be made, we still have to
choose at least one actual metric for our upcoming optimization efforts. Re-
call that our goal is the reconfiguration of certain UDS parameters in response
to, e.g., the current load on the system, as hinted at in Section 8.1. For example,
back in the UDS-SIM evaluations, we saw that the impact of RFDs4 depends
highly on the current load on the system, i.e., how many requests are arriving
per time unit. In other words, we would like to measure request arrival rate,
for which we now have a tool at the ready. By simply counting the number of
requests that arrived within a ByTI and dividing by 𝑇, each replica will deter-
ministically obtain the same approximated current request arrival rate, which
in turn can be used to decide whether any actions against RFDs should be
taken (e.g., adjusting the number of primary threads per round).

With reaching this milestone, we have fulfilled all the requirements for
building systems that reconfigure themselves during runtime to reach certain
optimization goals.

4 As a short reminder, since we have not used this term in a while: Round-filling Delays, i.e.,
a common problem of round-based schedulers, capable of affecting their performance under
certain circumstances.
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14
In the last chapters, we have steadily built towards one primary goal, alongside
some additional contributions: Enabling SMR systems with multithreading
based on deterministic scheduling to self-optimize during runtime. To briefly

Goal

recap the main idea in one sentence, we would like to utilize the dynamicity
of our novel deterministic scheduling solution (Chapter 7) to react to sudden
changes in the system’s behavior, e.g., to change the number of primaries per
round according to the current load on the system. The main milestones for
this endeavor were, firstly, the design and creation of UDS, capable of recon-
figuration during runtime, and secondly, an inventive Byzantine fault-tolerant
mechanism for establishing a deterministic common time-basis among a set
of replicated state machines.

This chapter will build on these two achievements to research, build, and Outline
evaluate a first version of our scheduling-based optimization approach, al-
ready capable of semi-autonomously improving performance of SMR systems.
We also managed to successfully publish parts of this discourse in [4]. As with
previous contributions, we have re-plotted the evaluation graphs of these peer-
reviewed results for a more uniform presentation within this thesis, but they
are still based on the original data gathered back then.

14.1 related work

Before we dive into how we designed, implemented, and evaluated our ap-
proach, this section will briefly lay out and introduce additional related work
which has not yet been presented in this thesis, but is closely related to our
efforts. For example, we have so far omitted an entire class of approaches for
parallelizing SMR—justifiable only by the didactic structure of this work—,
which are currently also being hotly pursued by research groups invested in
this problem of optimizing SMR.

As discussed before, the current standard model for executing requests in Request-Level vs.
Lock-Levelreplicated state machine is sequential—even nowadays—as is evident when

looking at publically available frameworks for building such systems. A sub-
stantial amount of research on concurrent execution for SMR exists, aimed at
parallelizing request execution and thus enabling the utilization of multiple
processors. Previously, we have introduced related work focused on employ-
ing deterministic schedulers to enable this concurrency (cf., Section 7.3). Yet
there is a second class of approaches which schedules requests not on a level of
critical actions, but on a request-level, i.e., either parallelizing entire requests
or executing them sequentially if they can not be safely processed concurrently.
We call these two different classes of request-level and lock-level1.

1 Technically speaking, according to our previously established terminology it should be called
Critical Action-level, which somehow doesn’t roll off the tongue quite as easily. We therefore
accept this slight inaccuracy in favor of the other definition’s pulchritude.
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Solutions achieving concurrency on the basis of deterministic multithread-
ing have already been presented in detail in Section 3.3.

14.1.1 Request-level Scheduling Approaches

Schneider [72] already suggested executing independent requests concur-Approach
rently, whereas conflicting requests are executed under mutual exclusion.
Two requests are considered conflicting if the order of their execution is rele-
vant for achieving deterministic results, hence the granularity of parallelism
is per-request. Since a system cannot predict potential conflicts from the in-
voked request alone, request-level approaches need a-priori knowledge about
the behavior of request execution, e.g., information about causality dependen-
cies explicitly provided by developers. For this classification into dependent
and non-dependent requests, various concepts have been proposed.

The simplest one is the concept of readonly request, which never alter shared
application state. CBASE introduces an additional parallelization phase be-
tween the usual agreement and execution phases for this purpose [56]. In this
phase, a parallelizer takes the ordered requests and decides which can be exe-
cuted in parallel, before workers finally execute them. For the parallelization
decision the parallelizer depends on application-specific information that has
to be provided to the platform by the application developers.

Alchieri et al. [12] similarly introduce the notion of classes of requests, andLate Scheduling
Classification demonstrate that separation of requests by type and allowing replicas to exe-

cute parts of the overall workload in parallel can yield significant performance
improvements. Additionally, they present a reconfiguration scheme with
which replicas can change the number of executing parallel threads on the
fly. Later, these authors also gave a comprehensive overview on most request-
level approaches in [13]. In this work, they distinguish pipelined, late, early,
and static scheduling. Pipelining (used for example in the implementation of
ZooKeeper [47]) allowsmultiple concurrent threads that each handle a part of
each request, similar to pipelining in instruction execution in processors. Late
scheduling deploys a deterministic scheduler in each replica that according
to known dependencies deterministically assigns requests to executor threads
(i.e., an implementation of Schneider’s idea [72]). Early scheduling does the
same but relies on a client-side classifier, which still requires a scheduler in
the replica but reduces its overhead (e.g., [14]). Most recently, Batista et al. in-
troduced their latest refinement of this early scheduling approach with several
improvements over the 2018 version [20]. Finally, static scheduling only has
a client-side classifier which selects one of a defined set of executor threads in
each replica (e.g., PSMR [63] and its later optimization opt-PSMR [64]). The
replica obeys this classification, and additionally the authors propose using
entirely parallel request streams, each of them running their own consensus
instance.

All of these solutions share the disadvantage that their classification de-Fundamental
Drawbacks pends on application-specific knowledge and must be done explicitly inside

the replicated service or the clients, which adds additional complexity to the
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development of such services, and to the potential adaptation of existing ser-
vices looking to benefit from performant SMR deployment. Using this fact,
a further classification of optimization approaches is possible, which distin-
guishes whether a solution requires prior knowledge about the application
or not. Only the latter can be called application-agnostic approaches. Most
request-level scheduling solutions do not fall into this category.

As an approach which would not technically require prior knowledge, Eve Speculative
Approachesfollows a more speculative concept [54]. In Eve, a mixer component separates

the incoming requests into batches whose contents are unlikely to interfere.
These batches are then executed in parallel. However, instead of first agreeing
on an order, Eve checks whether safety requirements have been violated after
the actual execution. This requires a roll-back mechanism and falls back to
sequential execution of the conflicting request if a violation occurs. While
this technically sounds like Eve has no prior knowledge about an application,
the mixer component can only do its magic if it is specifically implemented
for an application, where it is a developer’s task to impart knowledge about
the application’s potential request dependencies to the mixer implementation.
We leave judgment of whether Eve truly is an application-agnostic approach
to the reader.

Another central problem with request-level scheduling is that it is based on
potential conflicts, while actual conflicts may not occur during runtime, e.g.,
due to conditional branching in the code. Even worse, some services may con-
sist entirely of conflicting requests. As an example, imagine that all requests
have to log their invocation into a log file or data structure, which is a shared
resource that for some reason can not be concurrently accessed. In this case,
all approaches presented above would have to entirely serialize their execu-
tion, while lock-level approaches can easily parallelize at least most parts of
this service.

It is important to note that some of these presented solutions are orthogonal Orthogonality
to ours in the sense that combining UDS, an application-agnostic, lock-level–
based deterministic scheduler, with prior knowledge about requests akin to
classes of requests, could potentially allow it to reach even better scheduling
decisions and to further increase its achieved concurrency.

14.1.2 Other Approaches

Storyboard [53] attempts to predict the order of lock acquisitions and releases Storyboard as a
Hybrid Approachfor each request based on application information. Only requests with interfer-

ing locks need to be executed in a specific order, whereas other requests can
be executed in parallel. These predictions are performed by an aptly named
predictor component, which is implemented alongside the deployed service
and supplied with information about its common locking patterns. Therefore,
Storyboard represents an interesting combination when classified according
to our established notions, making it a lock-level but not entirely application-
agnostic approach, with similarities to Eve and its need for a carefully designed
mixer component to achieve the best outcomes. In cases of mispredictions,
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conflicts can be resolved by the replicas, which introduces additional commu-
nication overhead, but does not require any rollback mechanisms.

Finally, in COP [21], short for consensus-oriented parallelization, requestsParallel Consensus
Instances are organized as atomic jobs, so that one thread executes all operations inside

the task pipeline instead of multiple different threads being responsible for the
particular tasks of the replicated service. Every thread contains one (batch of)
request(s), so that multiple requests/batches can be processed in parallel. As
the requests need to be executed in a total order, the order is enforced before
requests are forwarded to the service implementation.

14.1.3 Null Requests Against RFDs

In order to mitigate round-filling delays, Basile et al. suggested inserting addi-Approach
tional null requests into the streamof requests to all replicas [19]. Null requests
do not execute anything and terminate immediately, but are scheduled like any
other request. Therefore, scheduling rounds are filled quickly, and RFD effects
should vanish.

The rate of null requests gives an upper bound on how long a round-filling
delay can become. In general, for a given number of primaries 𝑝 and a desired
maximum round-filling delay 𝑑, the frequency of null requests should be (𝑝−
1)/𝑑. For example, with eight primaries and a null request every 10ms, a single
application request thread needs to wait for at most 7more threads to show up,
whichwill happen after atmost 70ms if no other ordinary requests arrive in the
meantime. Or, solved for the required rate of requests, in case of 8 primaries
and a maximum acceptable request latency of 5ms, we would need 1400 null
requests per second to ensure that no requestwill ever get stuck in an otherwise
empty scheduling round for too long.

In our opinion, however, it is neither resource-efficient nor energy-saving toOverhead
push this many requests through the group communication system (GCS) be-
tween replicas, simply for the sake ofminimizing one particular problemof de-
terministic round-based schedulers. Even worse, null requests would only be
necessary in low-load situations, whereas in high-load situations they would
compete with actual requests and reduce concurrency due to UEBs.

To improve on this last point, replicas could inject null requests in an adap-
tive way: During high load, no null requests are created, whereas with low
load, a reasonable number of null requests are issued as described above. This
requires some means to measure the current load and an algorithm choos-
ing the null request rate. Nevertheless, the system would still have to con-
stantly complete numerous consensus instances per second especially during
low load, just so that any potentially arriving application requests do not ex-
perience high RFD-induced latency before the system can adaptively pick up
the pace. This would still consume unnecessary computing resources, even
though adaptive null request insertion based on current load measurements
would reduce this load significantly.

We briefly investigated the possibility of deterministically inserting nullIndeterminism
requests locally in each replica, i.e., generating and inserting null requests
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into the thread list directly within replicas, thereby avoiding the large network
overhead of the previous suggestions. Unfortunately, such a solution fails
because it would be impossible to know exactly how many null requests have
to be added (and where exactly in Θ2 we would add them) in order to finish
rounds, since we have no reliable prior knowledge about how many critical
actions threads will take, meaning they can unpredictably “spill over” into
next rounds.

Therefore, we finally finish the discussion of related work and ideas at this
point, and continue presenting our generalizable optimization approaches.

14.2 system design

To optimize SMR systems during runtime, we require a set of components
fulfilling different tasks for the greater whole, akin to our previously presented
OptSCORE Architecture (Section 9.2.1),

• An SMR framework upon which we can base the implementations of
our research ideas

• A flexible deterministic scheduling algorithm

• Deterministic metric(s) in each replica, on which to base reconfigura-
tion decisions on

• Some kind of preferably smart entity capable of deciding new reconfig-
urations in reaction to changes in the monitored metric(s)

We will briefly explain each individual part of the system in the following
paragraphs.

SMR Framework

As with our previous work, our research prototype is based on BFT-SMaRt, BFT-SMaRt as a
Basiswhich we augmented with implementations of the components mentioned

above. Using BFT-SMaRt allowed us to extend a strong and stable framework
instead of additionally having to develop a working, SMR system, which can
be an epic journey in and of itself [36]. We left the BFT-SMaRt code base-
forked from https://github.com/bft-smart/library in version v1.2 with its
included group communication system untouched, and extend it by adding
our own classes, implementing our components, which start their work after
BFT-SMaRt’s DeliveryThread delivers decided consensus instances containing
ordered requests (batches).

In order to demonstrate that our approach enables high-performance
Byzantine fault-tolerant applications, we performed all later evaluations with
BFT-SMaRt in BFT mode. As BFT is the more demanding failure model, our
results should be similarly applicable to systems covering CFT.

2 Using the notation introduced in Section 7.1

https://github.com/bft-smart/library
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Parallel Request Handling

To enable concurrent execution, each request delivered to the business logicSystem Execution
Model of our application after being ordered by BFT-SMaRt is handled by its own

thread. We added a layer which takes batches of decided requests from BFT-
SMaRt, spawns a new request thread per individual request in the batch, and
then hands off these threads to our implementation of UDS. Every thread exe-
cutes the logic of exactly one request, after which a response is sent to the client
and the thread conceptually terminates. In our implementation, we use thread
pooling courtesy of the standard JDK Executor Framework to reuse the actual
underlying system threads. According to our system model (cf. Section 3.4),
the application logic has to ensure proper protection of all its shared data re-
gions through the proper use of mutexes. It is not within the scope of our solu-
tion to analyze application code to enforce this or automatically translate non-
conforming applications to our model. However, previous work exists which
could automate this step, in theory [92]. Applications should also be designed
and implemented in a way that conforms to well-known and tested standards
for mutex-based multithreaded programming, and we assume that any appli-
cation is correct in this regard, i.e., runs without race conditions, deadlocks
and livelocks.

Reconfigurable Deterministic Scheduling

The background behind UDS has been extensively presented in this thesis.
Since the configurable parameter space is so large, we tried to reduce this first
basic self-optimizing system to the most effective parameter(s), and remem-
bering Table 8.1, we had already collected the most common UDS parameters
and their estimated effect on system performance. Therefore, our initial re-
search with this prototype focused on modifying the primary count of UDS
during runtime. As we will see, this already yielded encouraging results.

Deterministic Measurements

We base reconfigurations on the request arrival rate, as a simple yet rather
effective estimator for the current load on the system. To deterministically
measure this rate, each replica participates in our ByTI protocol as specified
in Chapter 13. A replica first counts the number of requests arriving within a
ByTI, after which it can deterministically calculate the current request arrival
rate using the known (configured) length of a ByTI, e.g., 100𝑚𝑠.

The resulting request arrival rate can be used as an estimation of how many
clients are currently actively sending requests to the system, i.e., of the system’s
current load.

Load rate estimates are calculated in an extra thread, which is deterministi-Staying Deterministic
cally inserted into the order of all threads. The automatic scaling component,
deciding new configurations based on the value determined in the previous
step, is executed next in the same thread. These computations are protected
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by a dedicated lock to avoid race conditions. All of these measures ensure that
each replica not only computes the same arrival rate value but also comes to
the same reconfiguration decision for the same next UDS round.

Lastly, a brief remark about the overhead our setup incurs: Aswementioned Overhead Estimation
before in Section 13.3, with ByTI set to 𝑇 = 100𝑚𝑠 and 𝑁 = 4 replicas, we are
looking at 40 additional request messages per second that have to be ordered
and processed by the cluster. Compared to total throughput rates achieved by
BFT-SMaRt based systems, this can be considered negligible. Ultimately, un-
like solutions based on speculation, such as Storyboard [53], or systems based
on following established schedules, like LSA [18], our additional ByTI ticks do
not increase in number when throughput or lock frequency is rising, so that
overhead always remains at a fixed, predictable, and low level. We consider
this an advantage of our solution.

14.3 deterministic self-optimization algorithm

This section introduces our deterministic optimization algorithm, which de-
cides reconfigurations of UDS primary thread counts during runtime, using
the previously described arrival rate metric as its only input.

At its core, the reconfiguration problem revolves around ensuring that the Fundamental
Algorithm Ideanumber of primaries does not exceed the number of outstanding requests in

low load scenarios (to avoid round-filling delays), whereas during load peaks
primaries should be high (to better utilize multiprocessors). The following
algorithm attempts to cast this rule into a mold in such a way that the result-
ing reconfigurations improve performance. We call this entire approach “rule-
based self-optimization”.

The following algorithm attempts to establish values which represent the
last known best performance level supported by a UDS configuration with a
certain number of primaries. We took to calling these values borders, since
they are conceptually borders within the map of achieved performances be-
tween different configurations.

Let 𝑝 be the current number of primaries, 𝑝𝑚𝑎𝑥 the highest configurable Algorithm
Specificationnumber of primaries, 𝑟 the number of requests reported for the last ByTI, and

𝑟𝑚𝑎𝑥[] an array of the highest observed 𝑟 for each possible 𝑝. However, 𝑟𝑚𝑎𝑥[]
is not updated for the first 𝑟 arriving after adapting 𝑝 in order to avoid over-
shoot effects. Initially, 𝑝 ∶= 1 and ∀𝑖 ∈ {1..𝑝𝑚𝑎𝑥} ∶ 𝑟𝑚𝑎𝑥[𝑖] = 0.

The algorithm maintains a border value 𝑏 on which the placing of several
virtual borders is based, defining which 𝑝 is appropriate for the currently esti-
mated load: If 𝑟 ∈ [ 𝑖

2𝑏, 𝑖+1
2 𝑏) then 𝑝 ∶= 𝑖 + 1.

Simply put, if 𝑟 ∈ [0, 𝑏) then 𝑝 ∶= 1, if 𝑟 ∈ [𝑏, 3
2𝑏) then 𝑝 ∶= 2,

and so on. The scaling decisions are now simple: 𝑝 will be adapted to
𝑝 ∶= 𝑚𝑖𝑛{𝑚𝑎𝑥{1, ⌈2𝑟

𝑏 ⌉}, 𝑝𝑚𝑎𝑥}. Note that these rule-based decisions rely on
the assumption that throughput scales linearly with the number of primaries.

As 𝑏 is initially unknown and may vary depending on the executed requests
it is estimated and dynamically updated during runtime. First, 𝑏 is initialized
to a value higher than any expected 𝑟, so that the decision formula will always
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yield 𝑝 = 1 in the beginning. Then, the algorithm tries to adjust 𝑏 in a way
that scaling of 𝑝 is optimal for the current application load:

If during a defined period of time 𝑡𝑚 (measured by counting the number of
reported measurement periods),

• 𝑝 stayed constant AND

• 𝑝 < 𝑝𝑚𝑎𝑥 AND

• for each reported 𝑟 the condition 𝑟 > ℎ ⋅ 𝑟𝑚𝑎𝑥[𝑝] holds for a threshold
value ℎ < 1 we introduce for this purpose, AND

• 𝑟𝑚𝑎𝑥[𝑝] did not change,

then we assume we run on 𝑝’s maximum capacity and should try the next
higher 𝑝 to see whether we can improve performance. This is achieved by
adapting 𝑏 to 𝑏 ∶= ℎ ⋅ 𝑟𝑚𝑎𝑥[𝑝]2

𝑝 .
In other words, we set 𝑏 so that ℎ ⋅ 𝑟𝑚𝑎𝑥[𝑝] is the new virtual scaling border

between the current 𝑝 and 𝑝 + 1. Then, 𝑝 is reconfigured according to the
formula for scaling 𝑝, as presented above.

A problem now exists in the fact that 𝑏 can currently only ever be decreased
by this algorithm. Therefore, we also introduce an “aging factor”: If, after a
number of measurement periods 𝑡𝑎, no reconfiguration was decided, we age
𝑏 and reset all maximum-counters: 𝑏 ∶= 1

ℎ𝑏 and ∀𝑖 ∈ {1..𝑝𝑚𝑎𝑥} ∶ 𝑟𝑚𝑎𝑥[𝑖] =
ℎ⋅𝑟𝑚𝑎𝑥[𝑖]. This ensures that the algorithmdoes not end upwith a permanently
low 𝑏, but instead is constantly forced to adapt to the current situation.

Finally, to give a rough idea of the magnitudes of these values: After some
initial experimentation, we chose the values ℎ ∶= 0.9, 𝑡𝑚 ∶= 7, and 𝑡𝑎 ∶= 15
for the evaluations in Section 14.4.

This concludes the introduction of all the required parts for a simple self-
optimizing SMR setup, and segues into the presentation of our evaluation re-
sults obtained with the prototype implementation of this system.

14.4 evaluation and discussion

14.4.1 System Setup

To evaluate our reconfiguration-based approach, we set up the same 4 ma-
chines used for the previous measurements in the context of ByTI as repli-
cas, each running an Intel i7-7700 with 8 logical processors at stock speed (3.6
GHz), and 32 GB RAM at standard JEDEC DDR4-2400 timings. Additionally,
our trusty 4 PCs with Intel Xeon E3-1220 with 4 logical cores at stock speeds
of 3.1 GHz and 16 GB of DDR4-2400 RAM were again used to spawn clients.

An additionalmachine identical to the 4 replicas was used to coordinate testEvaluation Setup
case runs, e.g., to start replicas, set up directories, start and instruct client ma-
chines, and to gather logged results for each test run. On all of these machines
we installed Ubuntu 18.04 and Java 11.0.3 to run our customized SMR frame-
work. Allmachineswere connected via oneGigabit switch. The 4 replicaswere
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additionally connected to their own Gigabit switch on secondary network in-
terfaces for intra-cluster communication.

In all evaluation runs, BFT-SMaRt was configured with BFT mode enabled,
batchtimeout set to -1 to force fast batch decisions, maxbatchsize set to
400, and both in- and outQueueSize set to 500000. State transfer and disk
logging was disabled so as not to interfere with benchmarking. All other BFT-
SMaRt configuration parameters were kept at the defaults found in its public
v1.2 release.

14.4.2 Evaluation Requests

A demonstration of our approach in comparison to other solutions is difficult Ensuring
Comparabilityin two regards: (i) A first advantage—easier development of applications due

to the lack of required pre-classification of requests (cf., Section 14.1.1)—is not
easily quantifiable and measurable, and (ii) most publications improving the
performance of SMR applications use custom workloads and code to specifi-
cally demonstrate their claims. We decided to use a similar approach, where
all variables can be controlled. At the same time however, we wanted to keep
our evaluation highly generalizable, i.e., close to what real world applications
would behave like.

Therefore, we designed three different evaluation request types (shortly ex- Flexible Approach
plained in more detail), each emulating their own application profile. Each
request type executes a fixed series of commands in order, where possible com-
mands are:

• Lock𝑖: Execute lock of a specific mutex 𝑚𝑖

• Unlock𝑖: Execute unlock of a specific mutex 𝑚𝑖

• Calculate𝑥: Simulate the execution of business logic by fully loading a
CPU core for a duration 𝑥 in microseconds

Concatenating abbreviations of these commands yields a simple nota- Notation
tion of the execution a replica performs for each request type. For exam-
ple, 𝐿0𝐶250𝑈0𝐿1𝑈1 means a replica locks the mutex 𝑚0, simulates load for
0.25ms, unlocks the same mutex, quickly locks and unlocks mutex 𝑚1, and
then terminates the execution of this request. Responses do not contain any
data.

Request arriving in the system originate from multiple synchronous clients, Synchronous Clients
i.e., each client sends a request to our SMR cluster, waits for a response, and
only then sends the next request. We chose this approach for our evaluations
because it promotes the effect of RFDs, without compromising the general-
ity of our contributions and their underlying concepts. In other words, asyn-
chronous clients would of course be supported just as well as synchronous
clients, and would just as clearly show effects of RFDs if clients are sending
requests with low rates, but showing these effects would be more convoluted
than simply activating or deactivating certain clients.
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Request types

We used the following three request types to (i) imitate common real-world
application behavior and (ii) specifically illustrate both the benefits and draw-
backs of our approach. All three request types intend to show specific exe-
cution patterns replicated applications such as sophisticated key-value (KV)
stores could be expected to perform:

𝐶250𝐿0𝐶50𝑈0𝐿1𝑈1: Calculate for 0.25ms, lock mutex 𝑚0 and calculate for
0.05ms, unlock mutex 𝑚0 and do a bookkeeping operation, e.g., incre-
menting a global request counter protected by mutex 𝑚1. We assume
the latter costs virtually no time and has to be done by all three request
types. This request imitates a short, fully parallelizable precalculation
followed by an update to a shared data structure, e.g., a cryptographic
signature check before modification of a value in a KV-store.

𝐿0𝐶250𝑈0𝐿1𝑈1: Lock mutex 0, calculate for 0.25ms, unlock mutex 𝑚0 and
do bookkeeping. This simulates a highly congested mutex in a heavily
used central data structure, e.g., the insertion of a new key-value pair
into a tree-based KV-store, which triggers a costly rebalancing opera-
tion. This type of request is a demonstration of executions that can not
be properly parallelized.

𝐿1𝑈1𝐶500𝐿1𝑈1: Lock and unlock the bookkeeping mutex 𝑚1, calculate for
0.5ms concurrently, then do bookkeeping. This imitates a computa-
tion which needs short access to shared data (in this case the book-
keeping variable), to then perform a parallelizable longer calculation
such as the computation of statistics on the current KV-store status.
With its considerably longer calculation, this also has the potential to
demonstrate the Unbalanced Execution Time-problem within schedul-
ing rounds (cf., Section 6.2),

14.4.3 Evaluation Workload

In our following evaluationmethodology, aworkload is a set of instructions forMethodology
our clientmachines, specifying exactly howmany client instances to create and
when to activate or deactivate which client instance. An active client instance
sends one of the presented evaluation requests synchronously, i.e. sends a new
request whenever the answer to the previous one was received. A deactivated
client stays connected to the replica cluster, but does not send any requests,
enabling fine-grained control over how many clients are active during certain
times of a test run, and which kinds of clients we instantiate, i.e. the type of
requests they send.

We designed a dedicated workload—shown in Figure 14.1—to simulate real-2-Peak Workload
world usage of a service, during which it may experience short usage spikes
as well as phases of low load and intermittent phases of average usage. The
workload runs for 300 seconds in total, first fluctuating between 1-9 clients in
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Figure 14.1. Two-peak workload with low- and high-load phases.

a low load phase, followed by a small spikewith up to 30 clients putting average
stress on the system. After a short lull period with 1 client, a fast ramp up to
60 clients simulates a load spike3. The end of the workload sees usage slowly
subsiding again. For each client we can choose the type of requests being sent.

Using this workload, we can test how well a system responds to sudden
throughput changes and how fast it can adapt itself to new conditions.

14.4.4 UDS Reconfiguration Effects

In Section Section 8.1, we argued that different deterministic scheduler con- Confirming the
Hypothesisfigurations should significantly affect performance. To confirm this in a real

system, as opposed to simulations based on a severely limited abstraction of
one, we ran several fixed configurations of UDS with our workload, measured
performance in terms of throughput and request latency, and compared the
results against a baseline with single-threaded execution.

Figure 14.2 shows one of these tests, with all clients sending 𝐿1𝑈1𝐶500𝐿1𝑈1
requests, following the load profile defined by the workload. We measured
throughput for a range of primary configurations, with 2 fixed critical opera-
tions per primary per scheduling round. The plot shows the overall through-
put observed in one replica plotted against the elapsed real time of the evalu-
ation workload. Configurations with more than 7 primaries were tested, but
the results of these measurements were similar to the ones with 7 primaries.
Therefore, we omitted them from the following discussion to maintain read-
ability in the plots.

We can see several effects in Figure 14.2:

3 Note that due to the relatively long computation periods of the previously presented request
types, these few clients suffice to load the cores of the replicas to demonstrate load spikes and
resulting scheduling effects.
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Figure 14.2. Influence of UDS on performance for 𝐿1𝑈1𝐶500𝐿1𝑈1 requests compared to
single-threaded execution. Automatic scaling was not activated, i.e., UDS was set to a fixed
number of primaries (from 1 through 7, always with 2 steps/round) for each run.
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• UDS with 1 primary is comparable to single-threading to the point
where these setups are more or less indistinguishable.

• Since 𝐿1𝑈1𝐶500𝐿1𝑈1 can run highly parallelized, the more primaries
are configured the higher the throughput (see peaks).

• Due to RFDs, in low-load phases of the workload, throughput drasti-
cally declines with more primaries.

In our setting, ByTI are still sent every 100𝑚𝑠, creating threads performing
the ByTI logic, which are also scheduled by UDS. Therefore, the system never
stalls forever, but still experiences extremely high latencies during low load for
configurations with many primaries.

These results clearly demonstrate the validity of our claimed need for an
adaptive scaling solution, which in this case would be based on scaling pri-
maries.

14.4.5 Simple Automatic Reconfiguration

To this end, we implemented the simple automatic reconfiguration algorithm
introduced in Section 14.3, which scales primaries depending on the currently
estimated request arrival rate.

The two main purposes of the algorithm are

• to detect sudden drops in the arrival rate, which indicates few outstand-
ing requests and a possibly impending stall due to RFDs. UDS should
then immediately be reconfigured to fewer primaries in order to avoid
this, and

• to detect rising arrival rates, which indicates an increase in system load.
Here, UDS can be configured with more primaries the more requests
are detected, in order to improve multicore utilization.

The following subsections show the results of evaluations for all three re- How to Read the Plots
quest types and a workload with a combination of all of those requests, com-
paring static configurations of UDS against our automatic scaling algorithm.
For improved readability, we only show the extremes of static configurations
with 1 (blue dotted line) and 7 primaries (gray dashed line) in comparison to
our automatic approach (orange solid line). Further, the graphs also show the
number of primaries decided by our algorithmover time as a light-gray dashed
and dotted line, referencing the axis on the right side of the figures.

Evaluation: 𝐿1𝑈1𝐶500𝐿1𝑈1

Figure 14.3 shows the results for our evaluation-workloadwith requests of type
𝐿1𝑈1𝐶500𝐿1𝑈1 (the same as used for Figure 14.2). Comparing the perfor-
mance of different solutions in the displayed plots, showing throughput vs.
time, should be relatively intuitive. Still, consider that conceptually, the area
under each colored curve, i.e., its integral, represents the number of requests
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Figure 14.3. Automatic scaling compared to fixed configurations for 𝐿1𝑈1𝐶500𝐿1𝑈1.

that were successfully finished in a given time period. Therefore, it can be
roughly said that the larger this overall area, the overall better the approach,
simplifying intuitive comparisons between the measured approaches. Auto-
matic scaling performs better than fixed configurations in most cases, on high
load keeping upwith the previously best 7-primary configuration. During low-
load phases, automatic scaling uses low primary numbers and achieves similar
performance compared to a static 1-primary configuration, whereas the static
7-primary configuration stalls.

Our proof-of-concept scaling algorithm continuously tries to find a reason-Scaling Algorithm
Behavior able configuration without prior knowledge about the application. This can

lead to oscillations between configurations, as seen e.g. between seconds 150-
160. Most of the time, however, the algorithm still outperforms the static con-
figuration, while seamlessly scaling up to higher loads even during fast spikes
such as in second 210 or 220 of theworkload. Overall, the scaling algorithm sig-
nificantly outperforms any static configuration averaged over the entire work-
load for this particular request type.
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Figure 14.4. Automatic scaling compared to fixed scheduler configurations for
𝐿0𝐶250𝑈0𝐿1𝑈1.

Evaluation: 𝐿0𝐶250𝑈0𝐿1𝑈1

Figure 14.4 shows the results when all clients want to execute 𝐿0𝐶250𝑈0𝐿1𝑈1,
which has a single highly-contended lock and thereby effectively bottlenecks
any parallelization efforts. Generally, the performance is good in most phases,
closely trailing and during certain loads surpassing the 7-primary configura-
tion, while only occasionally experiencing performance drops due to oscilla-
tions or suboptimal scaling decisions. This demonstrates the viability of our
solution as a drop-in replacement for static schedulers, evenwhen prior knowl-
edge about the application would normally dictate the usage of a fixed config-
uration. Of course a further benefit of choosing a dynamic solution would
be additional upgradeability and flexibility, should other execution patterns
appear with later updates of the replicated application.

Evaluation: 𝐶250𝐿0𝐶50𝑈0𝐿1𝑈1

Finishing the evaluations of each individual request type, Figure 14.5 presents
the results for 𝐶250𝐿0𝐶50𝑈0𝐿1𝑈1. This stresses our algorithm again, as the
first 250µs of computation is fully parallelized by UDS independent of its
configuration. Automatic scaling displays only minor overhead compared
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to static configurations during all phases of the workload. These results thus
show once again that our solution can be a viable replacement for a fixed
configuration scheduler, gaining flexibility without significant drawbacks.

Evaluation: Mixed Requests

Finally, as discussed in, e.g., Section 6.2, additional scheduling problems suchMitigating RFDs vs
UEBs as UEBs can occur when requests of different types are present in the same

application. However, for mitigating UEBs, we would expect configuration
parameters other than the number of primaries (e.g., steps or modified total
orders) to be better choices. Even so, we still observe the apparent effectiveness
of our solution for a workload using a mix of all three presented request types
in C14.6, although further performance increases with algorithms capable of
adjusting different UDS parameters will still have to be tested in future work.

Once again, during the biggest load peaks, our algorithm manages to sur-
pass the safe 1-primary configuration by over 80%, and during low-load phases
it can easily maintain its lead over a 7-primary configuration.
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Figure 14.6. Automatic scaling compared to fixed scheduler configurations for mixed clients
sending a mix of all 3 request types.

14.5 summary

In this chapter, we have presented our rule-based, i.e., based on inferred rules
about the behavior of UDS, approach to optimizing BFT SMR systems with
deterministicmultithreading. After presenting several pages of relatedwork in
addition to the ones presented in previous chapters of the thesis, we introduced
our system design and the prototype algorithm created for demonstrating our
approach. The evaluations clearly validate our research efforts and show that
this idea can work rather well for a variety of different applications.

It is important to note, however, that the simple scaling algorithm intro- Discussion
duced in this chapter is only meant as a proof-of-concept for demonstrating
the effectiveness of our general automatic scaling and reconfiguration ap-
proach, and not meant to be a final solution in this regard. In fact, the algo-
rithm is still rather rudimentary, of course: It scales only primaries without
modifying e.g. the number or order of critical operations per round or any
other parameters. Further, its decisions are solely based on the periodically
estimated request arrival rate. It also does not use any prior knowledge about
the application and can not learn patterns from repeated observations of cer-
tain request types. Yet, even this simple algorithm achieves roughly the same
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performance of previous static schedulers in the worst cases, and significantly
outperforms them in the best cases.

This contribution to the state of the art of optimizing SMR systems with
deterministic multithreading warrants further research into more intelligent
optimization algorithms. With our last few chapters coming up, wewill shortly
present our final contribution to the field in this regard, where we attempted
to employ more advanced methods to reconfigure the system.
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Our prototype implementation of a self-optimizing system based on a simple
algorithm, as presented in the previous chapter, is certainly a valid demon-
stration of the effectiveness of our general approach, but is unfortunately also
limited in its scope byway of only focusing on a single configuration parameter
and a single metric on which it bases its decisions. It would be easy to find ap-
plications as counter-examples where this rule-based approach would quickly
reach its limits. For example, imagine critical infrastructure in a resource-
constrained environment, which would like to utilize SMR as a technique for
guaranteeing availability and reliability, such as, e.g., IoT edge nodes control-
ling smart traffic guidance solutions in a smart-city context1. In such a setting,
the goal might not be maximum performance, i.e., higher throughput, but
maybe rather energy efficiency, predictable latencies or thread prioritization
for critical requests.

These goals would be difficult to reach with only adjusting single parame- Realizing the
Potentialters, like the number of primaries per round. Quite to the contrary, they could

require multiple and more involved adjustments, e.g., intelligent scheduling
orders within rounds, giving each thread the exact number of steps it needs,
or the switching between different implementations of the prim()-predicate
to prioritize certain threads or to minimize UEBs. True self-optimization to-
wards arbitrary goals and withmultiple parameters in themix would therefore
require different strategies.

We previously introduced and partially motivated the approach of training
an intelligent agentwith the help of Reinforcement Learning, seeing as this was
our chosen approach for trying to achieve more complex self-optimization.
This chapter will detail additional background knowledge regarding RL, in-
troduce our chosen approach for implementing a specific RL strategy known
as Deep Q-Learning, present the problems we faced during this phase of our
research, and finally show the limited and preliminary results alongside a dis-
cussion about their significance and remaining future work we identified.

15.1 reinforcement learning background

Partially introduced in Section 12.4, the very basics of Reinforcement Learning
should already be in our minds. Still, to follow the research we conducted us-
ing this technique, further explanations are in order. Seeing as ML, and lately
particularly RL, have enjoyed their status as hot topics of global computer sci-
ence research for decades now, the amount of publications and related work
available in these fields is staggering, as are the depths one can dive to on any
particular topic within these research fields. The main goal of our research
was not to contribute to the state-of-the-art in RL, but to utilize it as a tool for

1 Similar scenarios are actively being researched, for example in the EU research project SORRIR,
which we also contributed to during our PhD (cf., [2], [7], [1])
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reaching our own research goals aimed at optimizing deterministically sched-
uled SMR systems. Therefore, we will try to keep the amount of background
information on these topics to the required minimum and only provide the
necessary details for understanding our motivations and efforts.

To gain and overview of our implemented solution, let us start by taking
a closer look at the differences between available RL methods, and why our
choice finally fell on DQL.

15.1.1 Terminology and Basics

Section 12.4 briefly introduced the terms environment, agent, action, policy and
step. The differences between existing RL approaches can only be appreciated
after the introduction of a few additional terms.

Firstly, the confusingly termed model can have two meanings in the contextML vs. RL Models
ofML andRL. For supervised and unsupervisedMLmethods,model describes
the resulting algorithm or neural network the training phase yields, i.e., the
mathematical model the ML method has produced after it has been fed with
all of the training data. Thismodel can then be used to perform the work it has
been trained for by feeding it with new, actual data from the world. Current
examples for this would be the recognition of faces to unlock smartphones or
detection of skin cancer in patients ([85], [43]).

However, in the context of RL, a model ties back to the definition of MDPsModel-Free vs.
Model-Based as introduced before in Section 12.4. Here, the model denotes the information

a fully specified MDP provides about future expected rewards and states. RL
methods can then be classified as either model-based or model-free, depending
on whether they use this information or not. For example, if an environment,
such as e.g., a simple board game, has a well-defined set of states 𝑆 in addition
to known probabilities 𝑃𝑎(𝑠, 𝑠′) and rewards 𝑅𝑎(𝑠, 𝑠′) for all possible transi-
tions, then an agent can for a current 𝑠 always ask the environment for predic-
tions about possible next states 𝑠′ and associated rewards. An RL algorithm
utilizing these predictions, i.e., this model of the environment, is model-based.

Conversely, RL methods that learn from interacting with the environment
without relying on its predictions is called model-free. These methods are well
suited for many real-world control problems, in which predicting information
about future states is difficult or even impossible. One example of such a com-
plex live system which is not fully modeled mathematically is the subject of
this thesis.

Secondly, a further categorization of RL methods algorithms depends onOn- vs. Off-Policy
which strategy the agent follows to choose its actions during training. Con-
sider again that an agent is trying to maximize rewards by finding a policy
through interaction with an environment. Therefore, conceptually, it has to
have two policies: One for choosing actions during training, and the actual
target policy which is meant to be learned. RL algorithms which use one and
the same policy for both of these tasks are called on-policy algorithms, whereas
techniques that use a separate policy for exploration during training are known
as off-policy [77]. As for policies themselves, the policy which always chooses



15.2 deep q-learning 153

the best action (according to current knowledge), i.e., the action yielding max-
imal future accumulated reward, is called the greedy policy. The importance
of these distinctions becomes apparent when imagining an agent which has
not yet extensively explored its environment, i.e., which does not know about
many of the possible state transitions. If the algorithm learns on-policy, it is
possible for the agent to get stuck in a local minimum, where it always picks
known actions to greedily maximize reward, without further exploring the en-
vironment even though there could be greater rewards hidden in as yet un-
known states.

Furthermore, when training RL agents, there are some common terms we Terminology
will be using for describing how the training is performed. Among these, the
first is a training episode, which is a collection of steps the agent takes in the
environment, until either a maximum configured number of steps has been
reached or a terminal state is encountered. For many problems, such specific
terminal states—e.g., the final winning move in a board game—exist and can
therefore be reached by an agent during training. Whenever a terminal state
is reached, the environment is reset back to an initial state, and the agent can
again start interacting with a fresh environment. Environments are also usu-
ally reset after a fixed maximum number of steps to encourage re-exploration
of initial conditions and avoid infinite interaction in environments that allow
loops. Performing an entire training run means letting an agent run for many
episodes, during which it gathers experience about the environment and in
the best case learns to interact with it in an optimal way.

Lastly, while training an agent, values for all of these parameters (and de- Hyperparameters
pending on the specific RL method used, many additional ones) have to be
chosen for each training run, and can have great impact on the efficacy of the
training. The parameters used to adjust the training procedure of an agent are
called hyperparameters, and the process of finding optimal hyperparameters
for best training results is commonly known as hyperparameter tuning or also
as hyperparameter optimization, and Section 15.4.1 will discuss our process of
finding good hyperparameters for our problem.

15.2 deep q-learning

Recall the basic definitions of agents from Chapter 12, which says that agents
follow a policy 𝜋 to accumulate rewards, and the goal of an RL algorithm is to
find a policy maximizing these accumulated rewards over time.

A formalized representation of this notion is commonly given as the maxi-
mization of the state-value function

𝑚𝑎𝑥𝜋 𝑉𝜋(𝑠) where 𝑉𝜋(𝑠) = 𝔼 ⎡⎢
⎣

∞
∑
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠⎤⎥
⎦

In this notation, 𝑉𝜋(𝑠) is the function calculating the expected return, i.e., Value-Function
value, when starting from a state 𝑠0 and picking actions following policy 𝜋.
𝛾 is the discount factor which discounts future rewards 𝑟, i.e., adjusts how far
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into the future the agent should plan. With a high gamma (e.g., 0.99), the
agent might prioritize picking actions which give lower rewards now, because
of the prospect of setting up the environment to give larger rewards in the
future. In other words, this function represents how desirable a given state is
when following a learned policy from this state.

Given a policy, future expected rewards can be defined recursively, whichBellman Equation
yields the following equation named after Richard Bellman [87]:

𝑉𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑
𝑠′

𝑃(𝑠′ | 𝑠, 𝜋(𝑠))𝑉𝜋(𝑠′)

where 𝑅(𝑠, 𝜋(𝑠)) is the mean of the probabilistic reward the agent receives
when transitioning from 𝑠 to 𝑠′ thanks to action 𝑎, which is chosen by 𝜋(𝑠).
𝑃(𝑠′ | 𝑠, 𝜋(𝑠)) is the probability of transitioning to 𝑠′ under 𝜋, as defined by
the MDP (cf., Chapter 12).

15.2.1 Q-Learning

Since so far we have not mapped this abstract meaning of policies to concreteState-Action Value
Function actions our agent could take, it is useful to define the reward that is expected

when taking an action 𝑎 from a state 𝑠 and then following policy 𝜋, which is
called the state-action value function:

𝑄𝜋(𝑠, 𝑎) = 𝔼 ⎡⎢
⎣

∞
∑
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎⎤⎥
⎦

We can again recursively define these so called Q-values ([80], [76]):Q-Values

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑎′

𝜋(𝑎′ | 𝑠′)𝑄𝜋(𝑠′, 𝑎′)

In other words, Q-values signify the expected, 𝛾-discounted reward for
choosing 𝑎 in 𝑠 and then following 𝜋.

A well-known and successful RL-technique is Q-Learning, which estimates
Q-values by starting from an initial, randomized guess and then iteratively
updates its Q-values during each step 𝑖 it takes in the environment using the
following update rule:

𝑄𝑖(𝑠′, 𝑎′) = (1 − 𝛼)𝑄𝑖−1(𝑠, 𝑎) + 𝛼𝑟𝑖 + 𝛼𝛾(𝑚𝑎𝑥
𝑏

𝑄𝑖(𝑠″, 𝑏))

Here, 𝛼 is a learning factor, commonly called learning rate, which governsUpdate Rule for
Q-Values how rapidly Q-values changes with each step, and 𝛼𝛾(𝑚𝑎𝑥

𝑏
𝑄𝑖(𝑠″, 𝑏)) is the

weighted and discounted expected maximum reward from the next state 𝑠″

for possible actions 𝑏. By exploration of the environment, an agent can update
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and thereby learn these Q-values directly. In [80], the authors describe that Q-
values are assumed to be saved using a look-up table which associatesQ-values
with all possible combinations of states 𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴. This finally
gives an agent a concrete tool for determining an optimal policy, because the
optimal policy from a given state 𝑠 is always the one maximizing future Q-
values—which are known after thorough exploration and can be looked up in
the table. From our previous definitions, it should be clear that Q-Learning is
a model-free method, because it does not depend on any predictions from the
environment to learn Q-values and arrive at an optimal policy.

15.2.2 Deep Neural Networks for Function Approximation

However, for sufficiently complex environments with large or even infinite Exploding Q-Tables
state and action spaces, the look-up table would become prohibitively large
or would require infinite storage. To apply Q-Learning to problems of this
sort, we would need a way to approximate the function 𝑄(𝑠, 𝑎) mapping
state-action pairs to Q-values. Approximating this function can nowadays
be achieved by employing Deep neural networks (DNN), which are neural
networks composed of multiple layers of neurons [44]. Figure 15.1 shows this
training loop, which we already saw in its basic form in Section 12.4, but this
time with a neural net inside the agent trying to approximate 𝑄(𝑠, 𝑎).

π(s, a)DQN
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s)

action
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(learn) a

[observation]

Pa(s, s
′)

State s

State s′

(observe s′)
Ra(s, s

′)

Figure 15.1. The training loop in a Q-Learning setup where the 𝑄(𝑠, 𝑎) is approximated by a
deep neural network. The learning step updates network weights, i.e., the activation levels for
each individual neuron in the network, based on how far off its predicted Q-value was from the
actually received reward from the environment.

The exact theory behind employing DNN for Q-Value estimation shall be
outside the scope of this chapter and thesis; instead we will only briefly intro-
duce the most important terms here. For an overview on DNN in general, we
recommend [62], and readers interested in more details are directed to [66],
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which introduced Deep Q-Networks (DQN) as a method for building neural
networks capable of approximating Q-values.

DQN introducedmainly twonew techniques that alleviate some of the prob-DQN Novelties
lems earlier, similar, approaches experienced. We briefly mention these so as
to introduce the terms we will later see in our discussions about hyperparam-
eters. The first new technique, experience replay, aims at smoothing out the
learning process over the entire state space, as opposed to localized updates
due to an agent currently exploring a subspace of the state space. To illustrate
what this means, imagine for example an agent navigating through a 2D game
world, and the current action maximizing future rewards is to move north-
east. Then, all collected observations will be from the north-eastern part of
the game world, biasing the training results. The solution by Mnih et al. was
to introduce a replay buffer into which state transitions are cached, and during
the training, i.e., the updating of neural network weights to approximate the
Q-function, random mini-batches of previous experiences are taken from the
replay buffer and used to apply Q-learning updates. This is also supposed to
mimic how biological neural networks (i.e., brains) also learn from old expe-
riences even while making new ones.

The second technique is the utilization of two distinct DQ-networks 𝑄 and
�̂�, also called target network, which is periodically cloned from 𝑄 to improve
the stability of the learning algorithm. Further details on this can be found
in [66].

Important for this discussion is that these two techniques introduce addi-Additional DQN
Hyperparameters tional hyperparameters with which the training of agents can be influenced.

For one, the size of the replay buffer, as well as the size of the mini-batches
drawn from it in each training step, can be configured. Additionally, the pa-
rameter 𝑝𝑒𝑟𝑖𝑜𝑑𝜏 governs how often �̂� is cloned from 𝑄. Later refinements
of this latter technique also introduced 𝜏 to signify how the weights of 𝑄 are
copied to �̂�, where 𝜏 = 1 signifies direct cloning of 𝑄’s values, and 0 < 𝜏 < 1
describes more gradual soft updates of the weights every 𝑝𝑒𝑟𝑖𝑜𝑑𝜏 steps.

Lastly, to emphasize exploration especially in the beginning of a training
run, the actions yielded by the training policy—learned by the network 𝑄—
are occasionally overridden with random actions. The probability of choosing
a random action is governed by 𝜀. Experience shows that for many problems,
starting with 𝜀 ≲ 1 at the beginning of the training, and then decaying 𝜀 over
time within a configured number of training steps to an ending value 𝜀𝑒𝑛𝑑 ≳ 0
yields good training results.

This introduction of background knowledge suffices for the remaining dis-
cussions in this thesis and provides us with all the necessary vocabulary to
understand the upcoming presentation of our implementation considerations
and evaluations.

15.3 creating the environment

For our system to be usable as an environment in which RL agents can beRequirements
trained, a few functional requirements have to be met:
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• All interactions between the environment and the agent happen in dis-
crete time steps. Therefore, our prototype implementation used for re-
searching and evaluating our previous contributions has to be reigned
in and transformed so that it progresses in well-defined, discrete time
units.

• The environment needs to be able to receive actions from the agent, has
to understand and apply these actions as reconfigurations to its parame-
ters, and then transition to a sensible next state using this applied action.

• After a transition, the environment has to provide both a meaningful
observation of its new state and a reward signifying how good the newly
reached state, influenced by the action of the agent, is.

• Since we would like to deploy trained agents within a BFT SMR setup,
provided observations have to be deterministically derived from the sys-
tem.

When actually implementing an RL setup nowadays, an additional non-
functional requirement surfaces: The vastmajority of up-to-date libraries with
sufficient documentation and support are written in Python. Since our proto-
type was so far entirely based on BFT-SMaRt, and we implemented all of our
additional functionality, including UDS, in Java, this gap had to be bridged,
too.

We spent considerable time and effort implementing a setup for utilizing RL
as a state-of-the-art optimization technique in a Java-based, deterministically
multithreaded system. Since we consider the fulfillment of all of these require-
ments a part of our research contribution, this section will briefly describe the
final resulting architecture.

15.3.1 Discrete Time

To introduce discrete time steps into a system like ours, which is meant to Transforming the
Environmentreceive client requests and at any time has tens, if not hundreds of parallel

threads running to handle network communication, consensus, and request
execution, we first cut down the complexity of the system considerably. Since
our research was focused on the execution stage of SMR systems, i.e., on paral-
lelizing request execution strictly after they have been ordered by the system’s
GCS, we could safely separate these two conceptually disjoint components
apart. In practice, this meant that we isolated the execution stage of the SMR
setup, which begins where BFT-SMaRt’s consensus module provides a stream
of totally ordered and batched threads. The remaining collection of classes
consist mainly of (i) a thread acting as a mock-up for BFT-SMaRt’s delivery
thread, which usually supplies ordered threads as received from the system’s
clients, (ii) and our implementation of UDS. This also had the considerable
benefit that we could test our execution stage locally on one system, without
distributing multiple machines across a network, as long as we did not break
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determinism and paid attention that re-integration with the rest of the system
was still possible later on.

Within this shrunken down core of our system, we had to identify a way
to introduce global barriers at which all threads could wait once a step had
completed, and resume once an action had been received from the agent. The
primary purpose of UDS is to introduce determinism into thread’s accesses
to shared data by selectively blocking threads so that their critical actions are
ordered (cf., Chapter 7). Hence, all threads affecting determinism are already
controlled byUDSby default, whichmeant that any global barriers would have
to be introduced within UDS.

Two possibilities existed for blocking all threads at deterministic points inIntroducing Discrete
Time time within our system: In between scheduling rounds and whenever a ByTI

has been decided. We implemented both of these options using a Java Con-
dition object called stepCondition, where threads starting a new round
via startRound() (cf., Line 6 in Chapter 7) call stepCondition.await()
once a step is finished, and thereby block themselves until they are woken up
by a call from a different thread to stepCondition.signal() on this same
Condition object. Later, we trained agents using both of these system setups,
the results of which will be discussed in Section 15.5.

15.3.2 Actions

Without yet having explained how an agentwould transmit actions to ourUDSReceiving New
Configurations environment, let us assume that incoming actions arrive via a method call to

receivedAction(int action) within our Java-based UDS implementa-
tion. In order to apply this action and transition to a new state, we utilized
UDS’ reconfigure() method in startRound() (Line 9), which allows
for deterministic reconfiguration of UDS or other system parameters2. The
main design decision here was to have a separate thread wait for incoming ac-
tions from the agent, which then acquires the lock of the Condition object at
which the thread currently trying to start a new round within UDS is blocked
(because of calling stepCondition.await()) and finally signal()s this
waiting thread. This requires a mapping from the actions chosen by the agent
to reconfigurations that can be applied to the system’s parameters, which is
rather trivial for easier parameters such as the number of primaries for the next
round. For more complicated decisions, specialized translation logic could be
implemented but was not yet needed for our evaluations.

15.3.3 Observations and Rewards

After the environment has received the action, it can run freely until the nextObtaining
Observations and

Rewards
call to stepCondition.await() occurs, either because the next round is
starting or because a ByTI has been decided. During the execution, we mea-

2 As long as these updates to other parameters also happen under the protection of the internal
lock used within UDS to protect its state.
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sure and log deterministicmetrics about the environment which are then sum-
marized and provided to the agent. Depending on the version of the envi-
ronment, these observations contain different metrics, such as the number of
terminated threads in the last round or ByTI, the number of rounds finished
during a ByTI or the currently estimated throughput calculated similarly to
the one in Chapter 14. The full specification of observations can be found
in Appendix 2.

Additionally, for training purposes a few extra non-deterministic metrics
(such as the CPU time utilized vs. the lengths of rounds, or request latencies)
weremeasured, which together with the observation could be used to calculate
the reward for a given step. This indeterminism is acceptable during training
as long as only the reward calculation is affected by it, since the finished DQN
representing our policy will only receive observations from our runtime envi-
ronment when deployed to a live system.

15.3.4 Bridging the Language Barrier

At this point, our environment was more or less ready for use within an RL
setting. As mentioned before, however, the only realistic options for imple-
menting a custom DQN-based RL agent require the use of Python. We will
detail this implementation in the following section, but can already present
our final architecture for connecting our Java-based environment to the DQN
implemented in a Python framework here.

On the Java side, we implemented an encapsulating class running in its own Architecture
thread, which opens a blocking ZeroMQ socket3 on which the environment
waits for actions and replies with observations. The Python environment simi-
larly utilizes a ZeroMQ socket, on which it waits for observations, determines
an action and sends it out via the socket. Thereby, both environments move
forward in lockstep.

Figure 15.2 shows an abstract overview of this architecture, including the
sequence of steps that takes place in each training loop. To follow this diagram,
one can simply start anywhere in the loop (e.g., the moment an agent sends an
action to the Java-based environment using the øMQ socket), and then follow
the sequence of arrows through the logic of the application.

15.4 implementing the dqn approach

As mentioned before, all the currently well-maintained, popular, and well- Framework Choice
documented libraries for working with custom ML problems are exclusively
written in Python, with only few and comparably badly documented alterna-
tives in other languages available. The twomost popular choices for using gen-
eral ML approaches implementing or implementing custom ones are Google’s
TensorFlow4 and Facebook’s PyTorch5. Both are open source frameworks capa-

3 https://zeromq.org/
4 https://www.tensorflow.org/
5 https://pytorch.org/

https://zeromq.org/
https://www.tensorflow.org/
https://pytorch.org/
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train_agent.py

UdsTfEnv.step(action)

trainAgent(reward, observation)

UdsTfEnv.py

ØMQ.send(action)

ØMQ.recv()

UdsRLEnv.java

ØMQ.recv()

UDS.setNextAction(action)

stepCondition.signal()

[action] UDS.java

StepCondition.await()

reconfigure(action)

// run step...

calculateReward()

getObservation()

ØMQ.send(reward, observation)

[reward,

observation]

Python Java

Figure 15.2. The main architecture which transparently hides the Java-based environment from
our Python-basedRL framework, enabling our training loop via øMQcommunication between
the two. Also shown is how the Java environment supports discrete time steps by waiting on
stepCondition and receiving notifications via stepCondition.signal().
Arrows show the temporal sequence and which logical action follows the next. The dashed
arrow signifies an indirect wake-up call to the currently scheduling UDS-Thread waiting on
the stepCondition. The observations are encoded in JSON format and transmitted via øMQ
sockets.

ble of utilizing current hardware to accelerate ML algorithms, and the choice
of the correct framework comes down to preference for most projects. For
Reinforcement Learning in particular, however, TensorFlow provides better
support by providing a framework for agent-based learning and the use of
DQ-networks. Hence, our choice for implementing a DQN RL-Agent fell on
TensorFlow, with the additional tf-agents-library providing RL specific ab-
stractions.

We already introduced our overall architecture in Figure 15.2. Within it,
we can see that the parts of our setup based on TensorFlow consist mainly of
a training script and a custom UdsTfEnvironment, which hides the øMQ-
based communication link to the Java environment.

15.4.1 Hyperparameters

A training run is primarily specified by the hyperparameters for the Python
environment and metadata for the Java environment, describing for example
the way in which threads are generated to simulate load on the system. The
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training script receives all hyperparameters for a training run via command
line when starting up.

Since success with training neural networks such as DQN is highly depen- Motivation
dent on the proper selection of values for their hyperparameters, finding suit-
able approaches for tuning these parameters—also often called hyperparame-
ter optimization [93] can be viewed as an entire research area of its own [82].
Since we implemented a custom RL environment for a niche field where, to
the best of our knowledge, no prior experience exists about the best hyper-
parameters apart from general recommendations derived from similar prob-
lems, we had to first establish a baseline. For understanding what we mean
by this, consider that we were concurrently designing, implementing, testing,
and optimizing the entire framework during this process, meaning there were
multiple moving parts at all times. Numerous training runs with early proto-
types were plagued by abysmal performance (i.e., resulting agents were utterly
unable to learn usable policies), which was not always easily attributable to a
single cause. In order to remove doubt about the hyperparameters being re-
sponsible for these initial problems, we set out to finding a baseline of hyper-
parameters that was likely to lead to successful training with the approximate
network and observation sizes and shapes we were using in our environment.
In other words, we attempted to find a collection or range of values for each
individual hyperparameter that would work for our general problem.

Since hyperparameter tuning has been researched for many years, there are Approach &
Methodologynumerous proper methods for selecting the best hyperparameters for a novel

ML problem. However, since these are once again optimization approaches,
they always rely on the existence of a well-defined objective function, i.e., goal,
as well as metrics that can rank resulting parameter combinations (cf., Chap-
ter 4). Given that this was our very first experience with RL, and we had to
constantly learn newmethods ourselves, update the framework, and fine-tune
our approaches during this part of our research, we utilized one of the old-
est optimization techniques in existence: Manual tuning and exploration of
parameters and effects, also sometimes cheekily called grad-student descent
(GSD) [82]. However, we still conducted this part of our research properly and
documented the intermediate results and the baseline values we thusly settled
on for our subsequent efforts. For gauging the goodness of hyperparameters,
we created a training run setup with significantly reduced complexity, espe-
cially in terms of unpredictable randomness, by only feeding the system with
one type of request with an easily parallelizable application profile, and at pre-
defined levels of request rates that did not jump around too erratically. Using
this setup, we proceeded by adjusting the value of a single hyperparameter
during a cohort of multiple training runs, and comparing all results gathered
within these adjustments of one hyperparameter. The best values for a par-
ticular hyperparameter were then chosen by picking the top runs from this
cohort, where a good run was determined by looking at the learned policy of
the agent in detail using time-series plots of its actions vs. the current load on
the system. We then used our domain knowledge to identify sensible policies,
i.e., those that most likely maximized throughput and minimized latencies. In
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less general terms, the single action our agents were allowed to perform was
used to adjust UDS primaries from between 1 through 8, and following our ex-
periences from Chapter 14, we chose those runs as the best ones where chosen
primary counts were close to the number of currently active clients. Figure 15.3
shows one single episode from towards the end of one such training runwhere
the training worked acceptably well, and which was in this case used to de-
termine that more episodes, i.e., longer training runs, can be beneficial to an
agent’s performance.
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Figure 15.3. Example episode from hyperparameter optimization runs. The black line shows the
number of currently active clients, the red dashed line displays the actions chosen by the agent.//
numEpisodes=600, episodeSteps=400, 𝛼=1×10−3, a (64,32) neural net (cf., Table 15.1 for
an explanation), replayBufferSize=60000, and miniBatchSize=10

This specific measurement used the version of our environment which re-Example
turned an observation after every round. In the figure, the currently active
number of clients synchronously sending requests is shown in black, and in
red we plotted the agent’s decisions about how many primaries a next round
should have after receiving observations containing details about the last three
rounds. We can see that overall, the behavior of the agent is rather similar in
nature to the behavior of the rule-based algorithmwe developed in Chapter 14.
The agent frequently tries to reconfigure itself to find out whether a change of
primaries positively affects performance, and in case it does, it permanently
switches to a higher number of primaries. Conversely, if performance rapidly
drops, it goes back to one primary as the safe base configuration. One major
difference in the behavior of this agent when compared to our rule-based al-
gorithm is that the agent tends to prefer larger steps when testing new primary
configurations, and that sometimes it oscillates around the currently optimal
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number of primaries instead of settling on the optimal value and exploring
from there.

Table 15.1 presents all hyperparameters our final implementation uses, the Determined
Hyperparametersranges we tested for these hyperparameters, and the range or collection of val-

ues we settled on for further refining our system setup. For some hyperparam-
eters we did not explicitly test values systematically ourselves, but used values
recommended by peers, both within the faculty and on the Web. These values
are marked with “—” in the middle column.

Hyperparameter Tested Range [steps] Final Value(s)

numEpisodes (e) 10 - 600 [10] 400-600
episodeSteps (s) 10 - 1000 [10] 400-500

initialSteps 10 - 1000 [10] s
replayBufferSize 10 - 20000 [10] (e × s) ÷ 2†

miniBatchSize 1 - 50 [10] 5 - 10
DQNLayers (1-100) & (16-100,8-64) [7]¶ (32,20) - (64,32)

𝛼 1×10−1 - 1×10−4 [10] 3×10−3 - 1×10−3

𝛾 — 0.95
𝜏 — 0.5

𝑝𝑒𝑟𝑖𝑜𝑑𝜏 — 50
𝜀 — 0.99 → 0.1∗

lossFunction — Huber loss [46]
optimizer — Adam [55]

activationFn — ReLU [41]

Table 15.1. Hyperparameter ranges we manually tested, and the baseline values we settled on
for our further research. For each hyperparameter testing range, the value in parentheses spec-
ifies the number of tests in this range we performed, with values for these tests being roughly
uniformly distributed between the range limits. Parameters which we did not extensively (or
at all) test ourselves are marked with —.
† After discussion with a colleague the size of the replay buffer was set to half the total steps
taken during the entire training run.
¶ (𝑙1, 𝑙2, … , 𝑙𝑖) stands for 𝑖 hidden fully connected (“dense”) layers in the DQN, with 𝑙𝑖 neu-
rons on each layer.
∗ 𝜀 was set to decay from 0.99 to 0.1 within numEpisodes/3 episodes.
The lossFunction, optimizer and activationFunction are listed for completeness’
sake, were chosen after researching popular state-of-the-art practices in RL and discussions
with a colleague, and do not need to be further explained here.

15.4.2 Calculating Rewards

Wequickly learned that the rewards our environment receives each step greatly Influence of Rewards
on Resultsinfluence whether training runs produce agents with sensible policies. Intu-

itively, thismakes perfect sense, as after all rewards are the only way to commu-
nicate to the agentwhether it is learning a desired policy or not. Themain ques-
tion then is how to best calculate a reward for each step. This problem might
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sound simple at first, and for some optimization problems it is. For example,
most games usually inherently contain some sort of score or counter, and re-
wards can simply be related to increasing score counters. In other problems,
such as controlling robots, usually the reward is given when a robot moves in
the correct direction or manages to stay upright.

Regarding our optimization problems, we specified better performance of
the system as our goal, which we can measure mainly via throughput rates.
Therefore, setting rewards for our system might seem like a simple task: Re-
ward an agent for each step which achieved high throughput. However, this
does come with immediate difficulties, as throughput rates are dependent on
both an agent’s action and the current overall system load. Put differently,
if there are no clients active at the moment, then we would experience low
throughput rates simply because there are no requests to put through our sys-
tem, but we should not punish our agent for this.

Therefore, we have to incorporate some degree of domain knowledge intoDomain Knowledge
vs. Straightforward

Rewards
our reward calculations, where we endow the formula which yields results for
each step with knowledge about the system’s behavior under certain circum-
stances. This is fine in general, but quickly devolves into fine-tuning evenmore
parameters in an equation of ever-increasing complexity, where at the end, in-
stead of calculating rewards we could just as well have built an algorithm simi-
lar to our rule-based approach in Chapter 14. Finding a good balance between
these two extremes was potentially the greatest problem we faced during our
final research efforts, and unfortunately it is one we have not solved in finality.

By this, we mean that regardless of the rewards we used to educate our
agents, the only ones that remotely worked were those that incorporated a
great deal of domain knowledge, which we ourselves gained by way of expe-
riencing and interacting with our system for years. Conversely, and to our
great chagrin, all approaches which tried to utilize simpler rewards failed, in
the sense that agents never seemed to learn sensible policies.

To improve our reward calculations, we tried to consult related work, andReward Shaping
found that the process of deriving a way rewards are best calculated is also
called reward shaping ([99], [42]). However, reward shaping is focused more
on how existing, already working rewards can be optimized to improve learn-
ing times. To understand this, consider that one central problem RL agents
face when exploring an environment is often the temporal disconnect between
current rewards and long-term rewards gained in the future, which are still ul-
timately based on correctly chosen actions at the current time. This temporal
delay between the agent choosing an action and later receiving a reward ul-
timately rooted in this earlier action has been called reward horizon in prior
literature [99]. The theory behind RL says that given enough time with the
environment, and with the help of techniques like experience replay, agents
can eventually learn optimal policies even in environments with large reward
horizons. One deciding factor of how fast agents can figure out an optimal
policy in complex environments, however, is the size of reward horizon. In
other words, in environments with short delays between actions and pertain-
ing rewards rooted in these prior actions, agents would require less training
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time, i.e., steps in the environment, before becoming adept at optimizing the
problem at hand. Our problem, unfortunately, was at this stage not yet how
to improve training times or fine-tune the system, but how to get agents to
learn proper policies from sensible rewards at all, since even with hundreds of
thousands of steps in our environment agents did overall not learn satisfactory
policies.

In the remainder of this chapter, we will therefore briefly summarize the
results we didmanage to extract from ourmany attempted agent training runs,
and present future work we identified.

15.5 preliminary evaluations

Let us quickly remind ourselves of the original research goal of this chapter: Goal Recap
We were to demonstrate the suitability of RL as an optimization approach by
showing the performance of a self-optimizing system prototype under differ-
ent loads and application profiles. Our previous, rule-based approach, while
working admirably given its simplicity, had the drawback of only being capa-
ble of adjusting one single parameter—UDS primaries—, based on a single
metric. To directly see whether our RL-based approach could be superior to
the rule-based approach, we wanted to set up a comparison where we use the
exact same request types and similar workloads as the one used in the evalua-
tions of Chapter 146. We first aimed at training an agent to perform at least as
well as the rule-based algorithm in configuring primaries, and had some initial
success with this endeavor, as has already been shown in Figure 15.3. In order
for agents to produce deterministic reconfiguration decisions outside the train-
ing environment, when they are replicated among the state machines of the
SMR setup, we ensured that TensorFlow as our framework of choice supports
this determinism by setting special variables before starting an agent [109].

Afterwards, our plan was to allow the agent to not only modify UDS pri- Planned Approach
maries, but also the number of steps each primary thread would get per
scheduling round, in an attempt to demonstrate that RL-based optimization
can control multiple parameters and learn from more metrics than just sim-
ply the estimated throughput. Coupled with application profiles that demand
multiple critical actions, such as our previously introduced 𝐿1𝑈1𝐶500𝐿1𝑈1
or 𝐶250𝐿0𝐶50𝑈0𝐿1𝑈1, we expected improved performance if a system could
grant both required steps to such requests within one single scheduling round,
instead of having to delay them to the next round.

To set this experiment up, we first implemented a random load generator
which produces workload patterns that are very similar to the ones of our 2-
peak workload seen in the previous chapter. Then we increased the agent’s
action space, so it could decide between 1-8 primaries and 1-2 steps, i.e., 16
actions in total, when combined. We proceeded with executing hundreds of
training runs over the course of several months, tuning parameters within our

6 We say similar workloads because using our exact 2-peak workload from the previous chapter
could easily lead to overfitting, i.e., an agent learning the load pattern and predicting it perfectly,
while actually being inept in real systems with different loads
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previously established guiding limits, and constantly trying out variations of
reward calculations.

Most reward calculations we trained with were based on variations of theReward Calculation
Example formula

𝑟𝑡 = normalize(Ω𝑡) × (1 − normalize(mean(𝛿)𝑡)) × 𝜑

, where Ω stands for throughput and 𝛿 signifies the latencies of threads ex-
ecuted in the last step. Simply put, we attempted to calculate a score using
achieved throughput and the inverse of average latencies experienced by these
threads. 𝜑 was used to slightly scale rewards in size to observe possible ef-
fects on training. Ω was calculated using terminated threads during the last
step, and wall-clock measurements of the duration a step took. In the case
of the environment that was based on ByTI-based stepping, this amounted
to the same calculation as the one used in Chapter 14. For the round-based
stepped environment, we primarily used domain knowledge-driven rewards,
such as the squared difference between configured primaries and currently
active clients. Normalization of values was performed by first observingNormalization of

Values the range of values that can be expected after several thousand steps in a spe-
cific training run, then manually configuring the lower and upper limits of
the basic normalization formula normalize(𝑥) = (𝑥 − lowerLimit) ÷
(upperLimit−lowerLimit), and re-running the training run to its end. To
understand why normalization of reward (and also observed) values is usually
donewhen trainingDQ-networks, one needs to understand that common loss
functions—including Huber loss used in our training—calculate the distance
between expected Q-values and actual Q-values for the purposes of adjusting
network weights by usually squaring these values, to approach correct values
faster when estimates are off by a large margin. This, however, also means that
when non-normalized values are fed directly from the environment into the
equations governing neural network training, large numbers tend to lead to
diverging behavior due to this inherent squaring7. Normalizing reward and
observation values helps with avoiding this problem. To test whether this ap-
plied to our case, too, we tried feeding non-normalized values to the agent
during some training runs, with no discernible success or difference to the
other runs, except for abnormally large loss values we observed during train-
ing using TensorBoard8 plots.

Partially successful training runs were obtained using rewards incorporat-Example Policies
ing domain knowledge. For example, when we explicitly punished agents for
configuringmore primaries than therewere currently active clients, in order to
avoid RFDs, e.g., by subtracting a high fixed value from the reward whenever
this happened or by adjusting the reward negatively by the squared distance be-
tween clients and primaries, some successes were achieved. However, agents
never seemed to be able to fully learn this by themselves just using throughput

7 It is to be noted that not only loss is affected by this, but the actual process of applying weight
updates to the neural networks has many pitfalls too. This is explained excellently in [97].

8 https://www.tensorflow.org/tensorboard

https://www.tensorflow.org/tensorboard
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rates, even though thosewere of course noticeably affected byRFDs during our
training runs, as manual inspection of countless training episodes proved.

One example of how agents were only partially successful while learning
from rewards calculated purely from throughput and latencies can be seen
in Figure 15.4.
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Figure 15.4. Example episode from training runs trying to teach step scaling. The black line
shows the number of currently active clients, the red solid line displays the agent-chosen
primary configuration, the dashed line shows the chosen steps, and the blue line is refer-
encing the second axis, showing the number of threads that terminated in the last step in
our ByTI-stepped environment.// numEpisodes=200, episodeSteps=500, 𝛼=2×10−3,DQN
layers=(32,20) (cf., Table 15.1 for details), replayBufferSize=25000, and miniBatch-
Size=5

In this plot, we can observe that the agent failed to learn to properly scale
primaries to avoid RFDs, and its additional control over steps did not lead to
better performance, either. The only minor success that can be claimed here is
that the agent seems to have understood the value of reconfigurations and at
least partially tries to adhere to the best practices for primary scaling. As can
be seen from step 220 to 250, however, instead of scaling up steps to two, which
would have led to better performance, the agent actually decided to scale steps
down to 1, yielding worse performance than was observed in the beginning
of the episode between steps 0 and 75, even though there were fewer active
clients and configured primaries in this period.

Another modification we had some training successes with was the punish- Effects of Reward
Decayment of long periods of inactivity, i.e., many rounds of non-changing config-

urations. To this end, we introduced a counter signifying how many rounds
ago the last change to the UDS configuration parameters took place, and sub-
tracted this number from the final reward value, weighted by an additional
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parameter. This often led to desirable behavior like the periodic discovery at-
tempts seen in Figure 15.3.
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Figure 15.5. Example episode showing how agents react to decaying reward punishing inactivity.
The black line shows the number of currently active clients, the red solid line displays the agent-
chosen primary configuration, the dashed line shows the chosen steps, and the blue line is ref-
erencing the second axis, showing the number of threads that terminated in the last step in our
ByTI-stepped environment. Additionally, reward is drawn in orange.// numEpisodes=200,
episodeSteps=500, 𝛼=2×10−3,DQN layers=(50,25) (cf., Table 15.1 for details), replay-
BufferSize=35000, and miniBatchSize=10

A last example shall display how agents also often managed to find uniqueExample
but ultimately unusable policies whenever we tuned parameters in the system
For this, consider Figure 15.5. In this plot, we can see that the agent learned to
avoid the decaying reward punishments by constantly alternating UDS steps,
which counted as a configuration change in this instance. However, at the
same time, it did not learn to properly scale primaries or deduce the relation-
ship between its actions (i.e., primaries and steps) and throughput, despite the
large negative rewards dispensed for achieving abysmal performance during
low load phases.

It is evident from looking at these examples that using such agents in a fullTime Constraints
system environment and pitting them against our rule-based algorithm from
before would not lead to any improvements regarding the performance of the
system. An unfortunate and harsh truth is that overall, training these agents
and tuning our RL setup did not lead to any of the major breakthroughs as we
had hoped, and in the end timewas a deciding factor which led us to stop these
measurements and focus on writing up our results instead. One main reason
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for this was that especially the later training runs in our ByTI-stepped environ-
ment, which were meant to produce agents that could be directly plugged into
a real system for comparison to the rule-based approach, took upwards of 4
hours each on our available hardware. Even with stopping training runs early
due to insights gained during the training, e.g., by using TensorBoard plots of
loss values and chosen action distributions, we still could not complete more
than 3-6 training runs per day, which ultimately was not enough to optimize
the training process to a point where it produced sensible policies.

Therefore, in the following discussion, wewill briefly summarize those parts
of our research that still contribute to the state-of-the-art, and identify several
key aspects of future work with which this approach should be pursued in the
coming months and years.

15.6 discussion

The final research goals tackled by this chapter were to investigate ways to real-
ize a fully self-optimizing SMR system, by first researching themost promising
approaches, choosing a method, and then implementing and evaluating this
method in a prototypical system. We achieved most of these goals and con-
tributed to this field of research by laying fundamental groundwork required
for building self-optimizing deterministic systems.

First, our research into various optimization methods led us to classifying
approaches and discarding those that would not fit our use case and proto-
types. We motivated our process and how we settled on RL as our chosen
approach in Chapter 4, Chapter 12, and finally also in the beginning of this
chapter where we further explained how RL and specifically DQL work and fit
our circumstances.

Afterwards, we solved multiple problems regarding the construction of a Contributions
workingmeasurement setup for training RL agents within the context of deter-
ministically multithreaded systems. The main contribution here is a finalized
and fully working training framework, taking care not only of interfacing Ten-
sorFlow as the underlying RL library with our BFT-SMaRt-based system pro-
totype, but also of the entire measurement and analysis workflow required for
researching such systems. A central TestCoordinator component within
our architecture is capable of reading detailed training run specifications from
a specialized SQLite database, which includes all information required to re-
run a single training run over and over again in the pursuit of scientific repro-
ducibility. Creating training run specifications and saving them in the men-
tioned central database happens via an intuitive command line tool which fu-
ture researches can easily use to continue our research or reproduce our cur-
rent results.

Finally, using our entire measurement setup, we performed multiple hun- Resulting Platform
dred training runs spread over thousands of hours of work to tune, fix, and
build the system, and afterwards to measure and train agents capable of opti-
mizing our prototype. During this process, we identified several usable ranges
of training hyperparameters as presented in Table 15.1, which can be used as
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a stable baseline for training agents as long as the surrounding system param-
eters do not change significantly. While we did not ourselves achieve great
success regarding the training of intelligent agents capable of exploiting their
learned system knowledge to optimize performance, we have still finished im-
portant groundwork for any future researchers trying to finalize RL-based,
fully self-optimizing systems.

The future work we identified in this regard could therefore focus mainlyFuture Work
on utilizing this platform to further tune the training process in order to pro-
duce capable agents. Furthermore, these trained agents would then have to
be plugged into our full, distributed system setup with several replicated ma-
chines, in order to live-test their performance under real conditions. From the
data we have gathered so far, it is our conviction that this approachwould even-
tually yield agents that can take in all the metrics that can be deterministically
measured during runtime and produce intelligent reconfiguration decisions
maximizing throughput and minimizing request latency.

These results represent the final contributions of our thesis and the conclu-
sion of the last of our originally specified research goals as presented in Chap-
ter 5. In the upcoming final chapter of this part we will provide a brief sum-
mary of our comprehensive work on performance optimizations for determin-
istically multithreaded SMR systems.
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The previous four chapters contained in-depth discussions of our efforts to-
wards optimizing the performance of fault-tolerant, SMR-based, determinis-
tically scheduled systems. We will now briefly recap the main contributions
in this last chapter, before ending the thesis with a last part providing a larger
summary and an outlook on this interesting field of research.

The overarching main goal that led us through this part of our research was
to determineways of utilizing the reconfigurability ofUDS in order to improve
the overall performance of SMR systems. We initially looked at general opti-
mization approaches for complex systems, which we presented in Chapter 4,
and identified two approaches that we would try to utilize in our further work,
as detailed in Chapter 12. Afterwards, we identified several problems that
needed solving before we could apply our chosen optimization approaches to
our systems.

ByTI

One of the major problems in this regard were missing methods for determin- Creation of Prototype
Systemistically measuring metrics in BFT SMR contexts. We tackled this problem by

developing a novel distributed clocking mechanism capable of providing such
metrics to SMR replicas even in the face of failures and adversaries. Consid-
erable efforts were then poured into building a fully working prototype of an
SMR setup incorporating this novel clocking mechanism. The resulting sys-
tem prototype was used to provide evaluations of this solution. The algorithm
behind our mechanism, an analysis of its behavior, as well as the evaluation
results were presented in Chapter 13.

Rule-Based Optimization

The system prototype also served as the basis for our further research, which Optimization
Algorithm &
Measurements

looked into exploiting knowledge we had gathered about the behavior of such
systems during our previous years of working with them. In particular, we set
out to designing an optimization algorithm that was based on inferred rules
we uncovered regarding the relationship between the performance of systems
scheduled with UDS and the number of primaries that were configured dur-
ing particular circumstances, such as low and high load phases (cf., Chapter 8).
After specifying this algorithm, we implemented and integrated it into our pro-
totype platform, and performed thorough evaluations, all of whichwe detailed
in Chapter 14. The results demonstrated in a live system prototype that

• UDS reconfigurations during runtime can have significant impacts on
performance,
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• our solution can be a drop-in replacement for existing platforms uti-
lizing deterministic scheduling, adding flexibility without any apparent
drawbacks, and finally

• that even with a simple self-optimizing algorithm based on one metric
and adjusting one parameter, considerably improved system behavior
can be achieved [4].

These results encouraged us to proceed with our plan to further intro-
duce dynamicity to our system and attempt to pave the way towards fully
self-optimizing systems.

RL Agent-Based Optimization

To this end, in our final research endeavors, we dove into the considerableObtaining Required
Background
Knowledge

body of work surrounding Reinforcement Learning methods, in order to im-
plement an agent capable of recognizing by itself the correct metrics and ac-
tions required to improve system performance for a wide variety of applica-
tions and setups.

The first problems we faced in this regard were centered around implement-Summarized
Contributions ing an RL-based training setup using our prototype system, since the latter was

not initially prepared to progress in discrete time steps. After solving this prob-
lem and integrating the Python-based RL-framework TensorFlow with our
Java-based environment, now capable of stepping through individual rounds
or ByTI in sequence, we put considerable effort towards finding a reliable set
of hyperparameters in the large space of possible tunings for DQN-based RL
approaches. This was followed by months of modifications to the overall pro-
totype, tweaking observed environment metrics and especially reward calcu-
lations in the pursuit of sensibly looking policies our agents were to learn.
Chapter 15 introduced the required background knowledge for following us
through this process, and presented our work and all of our findings, includ-
ing our preliminary evaluation results using examples from the training runs
we performed. Our main contributions lie in the novel application of RL to
this specific optimization problem, for which we laid solid foundations and
provided future researchers with an entire framework capable of training RL
agents by interacting with a real deterministically multithreaded environment.
Finally, we identified the most promising avenues for future work in this area
of research.

This summary concludes the presentation of our contributions and finishes
the discussion of the research goals we initially set out to accomplish (cf., Chap-
ter 5).

In the next and final part of this thesis, we are left with providing an overall
summary of our entire body of work we finished during our PhD, and close
with an outlook and our opinions about the state of this area of research.
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In this final chapter, we will briefly summarize the contributions of our the-
sis, interspersed with short recaps of how we approached each problem and
achieved our research goals as set out in the first part of the thesis (cf., Chap-
ter 5).

17.1 summary

Let us first recall the main goal of this thesis, as formulated in the beginning, Main Goal Recap
which read as follows:

main goal Utilizing deterministic multithreading, investigate approaches
that can enable state machine-replicated fault-tolerant systems to self-
optimize themselves during runtime, while requiring minimal input
fromdevelopers or operators. Research themost promising approaches,
using—where possible—prototype implementations, measurements,
evaluations, and comparisons to similar existing solutions.

Using this main goal, we defined several specific research goals, which will
be compared to our contributions in the following sections. However, before
we introduced the definition of this main goal and its sub-goals, the initial
chapters of our thesis introduced each of the terms mentioned in both the
thesis title and the goals.

17.1.1 Foundational Knowledge, Related Work, and Background

In Chapter 2, the foundational ideas and terminology of fault-tolerant dis- FT Background
Knowledgetributed systems were detailed, and we learned about SMR as a concept that

would follow us through the entirety of our work. To illustrate our introduc-
tory explanations and give a pedagogically interesting first overview of the
most common approaches to achieve FT, we built up an imaginary system
from scratch, starting with a completely fragile system 𝑣0 all the way up to
distributed, replicated system 𝑣5, capable of tolerating even Byzantine faults.

In the subsequent Chapter 3, these foundations were expanded by our in- Deterministic
Scheduling
Background
Knowledge

troduction to deterministic multithreading as a tool for parallelizing the exe-
cution of SMR systems without sacrificing determinism. The goal of this is to
boost their performance, naturally, but came with a few new terms and con-
cepts we also introduced to the reader. In addition, since this thesis is mainly
situated at the intersection between the fields of deterministic multithreading
and optimization, we started detailing first related work in the former field.
This also frequently mentioned certain drawbacks this related work has in
terms of its flexibility, and started teasing UDS, i.e., our first contribution in
this thesis.
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Finishing the foundational part, we followed this by a short overview overOptimization
Approaches the rather large field of optimization approaches in Chapter 4. Here, we also

introduced the concepts of metrics and optimization goals, in addition to out-
lining our process of choosing the two main optimization approaches we pur-
sued in this thesis alongside a short discussion of each approach.

Thereafter, the fifth and last chapter of the first part used the established
terminology from the previous chapters to define our research goals, the first
of which we have reiterated above.

17.1.2 UDS

In order to enable SMR systems to self-optimize during runtime, we surmisedSpecification and
Implementation of

UDS
that among other requirements, a flexible scheduling algorithm could allow
for the necessary flexibility in the execution stage of such systems to react
to sudden changes in their environment. This had also been shown in previ-
ous work (cf., [38]) and was the basic motivation for our first research efforts.
Building on prior work that was underway when we joined the research group
of Prof. Hauck, we contributed to the first published deterministic schedul-
ing algorithm that could be reconfigured during runtime [5]. This conceptual
algorithm, called the Unified Deterministic Scheduler, then had to be imple-
mented, tested, bug fixed and optimized in order to be usable for our further
research. Therefore, our next efforts were aimed at investigating UDS’ behav-
ior in an event-based simulation framework, which led to the first insights
about its potential to optimize system performance by utilizing its reconfig-
urability. These steps taken together accomplished in full our first research
goal as presented in Section 5.1.1.

17.1.3 Efficiency Optimization

While implementing UDS in a system prototype on the basis of the BFT-Resource Efficiency
Results SMaRt framework, we noticed through discussions within our research group

that deterministically multithreaded SMR systems presented a unique op-
portunity to vertically scale underlying hardware, which would otherwise
(without parallelized execution) a relatively meaningless endeavor. Therefore,
we decided to test our first actual UDS implementation by using it to enable
parallelization in an SMR system, but without yet exploiting its dynamicity.
We followed through with thorough measurements in Chapter 10, showing
that vertically scaling SMR systems is not only possible but can unlock sig-
nificant cost savings in the right environments, i.e., in cloud settings where
automated hot-plugging of hardware resources is possible [3]. Our second
research goal as defined in Section 5.1.2 was thereby achieved, too.
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17.1.4 Performance Optimization

For our third and last research goal, we identified three additional sub-goals
which were to be met in order to accomplish true self-optimization for multi-
threaded SMR systems (cf., Chapter 12).

The first of these sub-goals aimed at finding a solution to provide determin- ByTI
istic measurements in a BFT setting, on the basis of which reconfiguration
decisions could be reached during runtime. To this end, we introduced Byzan-
tine Time Intervals, a novel mechanism for establishing a common time basis
in BFT SMR systems, which is largely unaffected by failures and attacks and
can be used to observe such metrics as request arrival rates or throughput by
counting threads within each ByTI.

The second research sub-goal tied back to the first of our initially chosen op- Rule-Based
Self-Optimizationtimization methods, and stated that a proof-of-concept system should be built

with which all prior hypotheses about UDS’ performance boosting reconfig-
uration effects and the usefulness of ByTI could be tested. We implemented
such a system and equipped with a simple algorithm that exploited our do-
main knowledge about performance effects of the UDS parameter specifying
the number of primary threads per scheduling round. This was followed by de-
tailed evaluations using multiple request types emulating several common ap-
plication profiles, which followed a workload pattern similar to what an SMR
system could experience during daily load cycles. Our results showed that
self-governing performance optimization by way of reconfiguring determinis-
tic scheduling during runtime is entirely feasible for SMR systems and yields
significantly improved performance under many realistic conditions [4].

Finally, the last of our sub-goals required to complete our thirdmain goal in Self-Optimization
based on RL agentsthe context of performance self-optimization had us consider advanced opti-

mization approaches, which led to us choosing Reinforcement Learning as the
method with which we were to prove a more generalizable self-optimization
solution possible. We approached this problem by first researching the state-
of-the-art in RL methods, followed by an implementation of a DQN approach
using TensorFlow. Problems encountered during these efforts were numerous
and are detailed in Chapter 15, but were largely overcome. In the end, we pro-
duced a fully working RL training environment for training DQN-based RL-
agents and teaching them the art of optimizing multithreaded systems. The
envisioned final result, i.e., a functioning self-optimizing system prototype
utilizing a trained RL-agent to choose reconfiguration actions, was not fully
achieved in the end. This was mainly due to a persistent set of problems re-
lating to the learned policies of our agents, but our contribution can still be
considered substantial even towards this last goal. The training platform for
creating RL agents in this specialized field of research is an important mile-
stone towards the eventual adoption of this advanced optimization technique
for SMR systems.

Therefore, we fully accomplished two of the three sub-goals of the third and
finalmain research goal, with an enormous percentage of work also completed
relating to the last sub-goal.
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Overall, we consider our research contributions towards the overarching
main goal of the thesis substantial and significant, and hope that this thesis
managed to convey not only our ideas and how we scientifically approached
the problems that presented themselves, but also successfully captured our
general fascination with these research topics and the significance of our con-
tributions towards this area of research.

17.2 future work

Before shortly closing with an outlook and personal opinions about the topics
discussed in our work, we would like to give a short overview of future work
and interesting open research questions we encountered during our studies.

Open Questions in Deterministic Multithreading

UDS brought the field of deterministically scheduled systems forward a major
step, but of course there are still many improvements that could be made not
only to the algorithm itself, but also to the general state of this field of research.
Let us start by listing a few open areas in which UDS itself could be further
improved.

First, although we consider UDS quite mature and well-tested by now, hav-Model-Checking UDS
ing scheduledmillions uponmillions of threads using a wide variety of request
profiles and workload patterns, the fact of the matter is that UDS has not yet
been thoroughly model-checked using, e.g., tools like TLA+ [57]. We briefly
mentioned this while introducing UDS, but can spend a few more words on
this topic here. A completely model-checked algorithm would certainly instill
even more trust in the underlying scheduling logic of UDS, but the effort re-
quired to fully model UDS in a language such as TLA+ is probably beyond
what a single researcher could achieve without spending several months, or
maybe even years, just on this problem alone. We confidently say this be-
cause (i) we had a closer brush with this topic during the early years of our
PhD, when we discussed the possibility of fully model-checking UDS, espe-
cially after we found and fixed the bugs detailed in Section 8.2, and (ii) be-
cause researches within our research group have direct experience withmodel-
checking similarly complex algorithms due to spending years on the problem
of verifying a single consensus algorithm for BFT SMR systems. Nonetheless,
in the context of interesting future work, this could still be a worthy endeavor,
especially if UDS should be used in critical systems.

Second, there are some features missing from the current version of UDSMore Features for
UDS that have been planned for a long time but have never been fully refactored

into UDS as it is today. One such feature is the support for wait/signal op-
erations (cf., [96]) for threads scheduled by UDS. ADETS-MAT supports this
feature, and preliminary work has been done within our research group that
theoretically prepares UDS for this, as well, but so far we have not had the time
or resources to pursue this further. A second feature would handle deadlock
detection in scheduled threads. This also ties back tomodel-checking the core
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logic of UDS, because as we briefly mentioned in Section 8.2, we can also not
yet be completely sure whether UDS itself might possibly introduce dead- or
livelocks given sufficiently complicated requested locking patterns.

And finally, circling back to the topic of optimization, there are of course Optimized Schedules
Utilizing Prior
Knowledge

additional approaches utilizing UDS’ dynamicity that we have not had the
opportunity to pursue. One example of this could be the incorporation of
prior knowledge about application request locking patterns, similar to how
Storyboard optimizes schedules based on such information [53]. If we had
additional knowledge about locking patterns, optimization algorithms aimed
at solving optimal scheduling problems could try to find the best UDS total
orders for achieving special goals like computational resource efficiency or
simpler ones like low request latencies. In this case, however, the approach
changes from a pessimistic one, i.e., a fully deterministic system, to an opti-
mistic one, where systems need to communicate with each other in case a pre-
dictionwas wrong and needs to be rolled back. Nonetheless, depending on the
quality of the prior knowledge about locking patterns, the performance ben-
efits would likely outweigh the additional overhead introduced by occasional
rollbacks and by the extra scheduling optimizer component.

Future Efficiency Optimization Goals

While our prototypical implementation and analysis of operating systems and Prototype
Implementation for
Vertical Scaling

virtualization solutions supporting vertical scaling during runtime is a big step
towards systems capable of saving immense operating costs, we have of course
not yet implemented a readily usable framework bringing this vision into real-
ity. The next step regarding this topic could therefore aim at building a work-
ing prototype that demonstrates our results in an actual live system, scaling
hardware up and down while load on the system changes. This could be espe-
cially useful for cloud providers looking to utilize the unique FT guarantees
that SMR could offer their clients.

In addition, as we mentioned briefly in Section 10.1.2, our approach is Combination with
Previous Workorthogonal to most, if not all the other existing efficiency optimization ap-

proaches from previous work, and is thusly primed for combination with any
of these solutions (such as utilizing trusted subsystems to reduce the number
of replicas required for BFT).

Further Optimizing Performance Optimizations

Of course a wide array of options presents itself also in regard to further re-
searching self-optimizing SMR systems.

Similar in nature to the orthogonality of our efficiency optimization ap- Combination with
Orthogonal Solutionsproach, our general lock level-based parallelization readily lends itself to com-

bination with many of the request-level approaches presented in Section 14.1.1.
Equipping, for example, Eve ([54]) with multiple independent UDS instances
each executing a batch could introduce additional parallelism to the system
without adding any additional uncertainty.
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Moving towards ByTI as a mechanism that enables deterministic measure-Expanding on the
Concept of ByTI ments, there is some work left after our analysis in Chapter 13, to truly vet the

core ByTI algorithm and make sure that there are no hidden logical errors,
similar to what we discussed above regarding UDS and model-checking ap-
proaches. In addition, so far we have only counted threads within one ByTI
to estimate throughput or request arrival rates. It would be interesting to see
how far this concept could be driven, i.e., whether the detailed counting of in-
dividual locks taken within a ByTI can provide further insight that could be
used by an optimizer component.

This perfectly segues into the remaining work that is to be done regardingIntelligent Optimizer
Components the actual component in our system that decides on reconfigurations in order

to optimize the system. We have only properly demonstrated a simple opti-
mization algorithm, and could not fully finish the generalized approach using
RL agents. Future work could therefore either continue trying to train agents
based on our training framework, or it could try to take another optimization
approach altogether.

17.3 outlook

After over one hundred and seventy pages of discussions about our concrete
scientific goals, fact-based approaches, and solutions to specific problems, we
would like to finish the thesis with a few opinions on the current state-of-the-
art in the field of deterministically multithreaded systems and hopefully leave
the reader with a content feeling after reaching the end of this work.

While the field of state machine-replicated systems has a relatively active,SMR as a Standard
Approach albeit small, research community behind it, we feel that the topic has not yet

reached the widespread attention it deserves in a world where every other day
a new story breaks about failures in systems costing our society time, money,
or in extreme cases sometimes even lives. SMR can be a wonderful technique
to securing systems against a wider variety of faults and even attacks, even
though it comes at high resource and development costs. The research shown
in this work has hopefully contributed significantly to the efforts of making
sure that the performance of SMR systems is not too far off of regular, non-
replicated systems. However, no amount of performance optimization takesBetter Framework

Support away the fact that there are currently no publically usable, stable, tested, and
ideally open-source SMR libraries except for BFT-SMaRt, i.e., the one research
library everyone in this field tends to use if they are not building their own
research prototypes. We would therefore love to see greater public attention
on this interesting topic and the inevitable influx of developers that would try
to improve these current shortcomings of the field of SMR.

As one of our final remarks, we would also briefly like to comment onValidity of All
Approaches request- vs lock-level optimization and the apparent rift in the research com-

munity between the groups following those two approaches. Even though the
groups behind each of these approaches are—after all—trying to achieve the
same goal, i.e., better performance and usability of SMR systems to promote
their widespread usage, a lack of regard for other solutions and ideas can some-
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times be clearly felt. This becomes especially apparent when reading papers in
the context of SMR—even survey papers meant to give a broad overview over
the field—about optimization approaches based on multithreading, which
tend to completely ignore the existence of an entire class of approaches that
exists next to their own ones. If we couldwish for better collaboration between
these groups in the spirit of scientific progress and innovation, we would.

To summarize our contributions in a few last, long sentences, we have con- Final Summary of
Contributionstributed to the introduction of a novel, runtime-reconfigurable deterministic

scheduling algorithm, which we implemented, tested, and integrated into a
fully working SMR system prototype. This was followed by the demonstration
of significant cost savings potentials in virtualized SMR systems, that could be
unlocked by combining deterministic multithreading with vertically scalable
hardware resources. Finally, we significantly furthered the capabilities of SMR
systems to self-optimize in regard to performance by introducing a determin-
istic BFT metric on which reconfiguration decisions can be based during run-
time, which we used to implement two separate optimization approaches to
demonstrate (i) considerable performance upsides for a variety of application
profiles and (ii) the viability of RL as generalizable method for equipping SMR
systems with intelligence that can handle multiple configuration parameters
and optimization goals.

With our truly final words, we would like to express our gratitude for the
opportunity to pursue a PhD in the context of these interesting topics, and
hope that this thesis was able to inspire its readers with at least a tiny amount
of love for this rather niche field of research.
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1 full configuration file format

1 # UDS Model
2 # Simulation time
3 TIME_UNTIL_MODEL_STOPS = 100000
4 GLOBAL_SEED = 19884212691337420
5
6 # Number of primaries in one round
7 NUM_PRIMARIES = 4
8 NUM_PROCESSORS = 2
9

10 # Number of steps per round per primary
11 NUM_ROUNDSTEPS = 2
12
13 # Defining the order of the steps in the total order (supported:

ROUND_ROBIN, ALL_AT_ONCE, RANDOM)
14 # ROUND_ROBIN: [1,2,3,4,1,2,3,4,...]
15 # ALL_AT_ONCE: [1,1,2,2,3,3,4,4,...]
16 # RANDOM: (as the name implies)
17 TOTAL_ORDER_SCHEDULING = ROUND_ROBIN
18
19 # System scheduler
20 # Time a thread has on a core until it has to yield
21 PROCESSOR_RUN_TIME = 5
22 # Timeunit of the simulation
23 SYSTEM_TIME_UNIT = MILLISECONDS
24
25 # Generator
26 # Number of initial threads at the beginning of the simulation
27 NUM_REQUEST_AT_START = 1
28 # Threads generated after the initial threads
29 NUM_REQUEST_AFTER_START = 249
30 # Choose the generator: NORMAL (using the definitions given here

to generate request),
31 # or MAXTESTING[1|2|3] (automatically trying to find the maximum

of requests per second the system can handle)
32 GENERATOR_TYPE = NORMAL
33 # Distribution can be EXP, NORMAL or UNIFORM (not used by

MAXTESTING generators)
34 GENERATOR_DISTRIBUTION = NORMAL
35 # Parameters for thread generation distribution, e.g., mean and

standard deviation for normal distributions
36 # 3 parameters required (if the distribution only needs 2, the

first 2 are picked; the last can be set to -1.0)
37 GENERATOR_DISTRIBUTION_PARAMETERS = 10.0; 2.0; -1.0
38 # Size of request batches generated by the thread generator
39 GENERATOR_BATCH = 3
40
41 # Requests
42 # Nameprefix of the requests (used for mapping the following

parameters to each request type)
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43 GENERALIZED_REQUEST = REQUEST_A; REQUEST_B
44
45 # Probability that a request of the given type is generated in

the ThreadGenerator (must sum up to 1)
46 #[Nameprefix]_PROBABILITY = X
47 # Name shown in the traces and debug outputs
48 #[Nameprefix]_VISUAL_NAME = ReqA
49 # Number of critical actions the request is using
50 #[Nameprefix]_STEPS = 2
51 # ID of the mutexes the request needs (use ";" as separation and

0.0 if no lock is needed; 0.1 for IO)
52 # Mutex IDs have to be full Integers (e.g. 1.0, 2.0, 19.0)
53 # Each lock has to appear two times: positive will lock,

negative will unlock.
54 # The unlock can be in another step. Multiple unlocks can be in

one step, but one lock at most.
55 # The hold time based on the distribution will be used after the

first lock in the list
56 # or at the end if there is no lock (after all unlocks)
57 #[Nameprefix]_LOCK = X; Y; -Y, -X
58 # Distribution type of the steps
59 # (time the process is simulating work per step; UNIFORM and

NORMAL is supported; ";" as separator)
60 #[Nameprefix]_DISTRIBUTION = NORMAL; UNIFORM
61 # Parameters of the distribution of the given steps
62 # (";" as separator of the steps and "," as separator of the

parameters within a step)
63 #[Nameprefix]_PARAMETERS = 5.0, 1.0; 8.0, 2.0
64
65
66 # Request A
67 REQUEST_A_PROBABILITY = 0.6
68 REQUEST_A_VISUAL_NAME = ReqA
69 REQUEST_A_STEPS = 4
70 REQUEST_A_LOCK = 0; 1; 2, -2, -1; 0
71 REQUEST_A_DISTRIBUTION = NORMAL; NORMAL; NORMAL; NORMAL
72 REQUEST_A_PARAMETERS = 9.0, 1.0; 8.0, 1.0; 7.0, 0.3; 9.0, 0.8
73
74 # Request B
75 REQUEST_B_PROBABILITY = 0.4
76 REQUEST_B_VISUAL_NAME = ReqB
77 REQUEST_B_STEPS = 3
78 REQUEST_B_LOCK = 0; 2, -2; 0
79 REQUEST_B_DISTRIBUTION = NORMAL; UNIFORM; NORMAL
80 REQUEST_B_PARAMETERS = 8.0, 2.0; 7.5, 9.8; 6.0, 4.0
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2 json-formatted observations

The following listing shows a full example of one observation as it was sent by
the Java Environment in the version that is stepped using ByTI. Note that (i)
all values except the reward are normalized in the Python environment before
being given to the agent, and (ii) the avgActiveClients values are included
for logging anddebugging purposes, but are not in fact given to the agent, since
they constitute indeterministic knowledge.

1 {
2 "reward":0.090183673469387761,
3 "observation":[
4 {
5 "schedulerId":"UDScheduler #0",
6 "threadsTerminated":489,
7 "roundsFinished":99,
8 "totalStepsConsumed":724,
9 "estimatedThroughPutPerSec":4890.0,

10 "confPrim":5,
11 "confSteps":2,
12 "avgActiveClients":6.0,
13 "roundsSinceLastConfigChange":275
14 },
15 {
16 "schedulerId":"UDScheduler #0",
17 "threadsTerminated":489,
18 "roundsFinished":99,
19 "totalStepsConsumed":723,
20 "estimatedThroughPutPerSec":4890.0,
21 "confPrim":5,
22 "confSteps":2,
23 "avgActiveClients":6.0,
24 "roundsSinceLastConfigChange":175
25 },
26 {
27 "schedulerId":"UDScheduler #0",
28 "threadsTerminated":368,
29 "roundsFinished":75,
30 "totalStepsConsumed":542,
31 "estimatedThroughPutPerSec":3680.0,
32 "confPrim":5,
33 "confSteps":2,
34 "avgActiveClients":6.0,
35 "roundsSinceLastConfigChange":75
36 }
37 ]
38 }
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The observations in the environment using scheduling rounds as time steps
looked different, and can be seen in the following listing. These observations
included information about several previous rounds, including the type and
number of threads seen in different data structures in the environment. Re-
quest types were encoded using numbers from [0.2, 0.4, 0.6, 0.8],
where for example ByTI-requests were signified by 0.2. Note that once again,
indeterministic values like previousRoundCPUTimeUsedNswere not given
to the agent and values were usually normalized, too.

1 {
2 "reward":1.0,
3 "observation":[
4 {
5 "scheduler":"UDScheduler #0",
6 "previousRoundPrimaries":[
7 0.8,
8 0.8,
9 0.8,

10 0.8,
11 0.8
12 ],
13 "previousRoundStepsTaken":[
14 2,
15 2,
16 2,
17 2,
18 2
19 ],
20 "previousRoundRoundsSeen":[
21 1,
22 1,
23 1,
24 1,
25 1
26 ],
27 "threadsInSystem":[
28 0.8,
29 0.8,
30 0.8,
31 0.8,
32 0.8,
33 0.8
34 ],
35 "round":54,
36 "previousRoundDurationNs":1483076,
37 "previousRoundCPUTimeUsedNs":1351579,
38 "previousRoundActiveSODLClients":5,
39 "estimatedClients":5,
40 "roundsSinceLastConfigChange":0,
41 "currentConfig":{
42 "primaryNumber":5,
43 "steps":2,
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44 "maxThreads":16,
45 "deterministic":true
46 }
47 },
48 {
49 "scheduler":"UDScheduler #0",
50 "previousRoundPrimaries":[
51 0.8,
52 0.8,
53 0.8,
54 0.8,
55 0.8
56 ],
57 "previousRoundStepsTaken":[
58 2,
59 2,
60 2,
61 2,
62 2
63 ],
64 "previousRoundRoundsSeen":[
65 1,
66 1,
67 1,
68 1,
69 1
70 ],
71 "threadsInSystem":[
72 0.8,
73 0.8,
74 0.8,
75 0.8,
76 0.8,
77 0.8
78 ],
79 "round":53,
80 "previousRoundDurationNs":1786962,
81 "previousRoundCPUTimeUsedNs":1373420,
82 "previousRoundActiveSODLClients":5,
83 "estimatedClients":5,
84 "roundsSinceLastConfigChange":0,
85 "currentConfig":{
86 "primaryNumber":5,
87 "steps":2,
88 "maxThreads":16,
89 "deterministic":true
90 }
91 },
92 {
93 "scheduler":"UDScheduler #0",
94 "previousRoundPrimaries":[
95 0.8,
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96 0.8,
97 0.8,
98 0.8,
99 0.8

100 ],
101 "previousRoundStepsTaken":[
102 2,
103 2,
104 2,
105 2,
106 2
107 ],
108 "previousRoundRoundsSeen":[
109 1,
110 1,
111 1,
112 1,
113 1
114 ],
115 "threadsInSystem":[
116 0.8,
117 0.8,
118 0.8,
119 0.8,
120 0.8,
121 0.8
122 ],
123 "round":52,
124 "previousRoundDurationNs":1893872,
125 "previousRoundCPUTimeUsedNs":1481881,
126 "previousRoundActiveSODLClients":5,
127 "estimatedClients":5,
128 "roundsSinceLastConfigChange":0,
129 "currentConfig":{
130 "primaryNumber":5,
131 "steps":2,
132 "maxThreads":16,
133 "deterministic":true
134 }
135 }
136 ]
137 }
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