
Ulm University
Faculty of Engineering Sciences, Computer Science and Psychology

Institute of Communications Engineering

Combining Neural Networks with
Knowledge for Spoken Dialogue Systems

A doctoral thesis jointly supervised with Southeast University (China) and submitted
in fulfilment of the requirements for the academic degree of

Doctor of Natural Sciences
Dr. rer. nat.

By

Waheed Ahmed

born in Sukkur(Pakistan)

2022

Acting Dean: Prof. Dr. Anke Huckauf

Supervisors: Prof. Dr. Dr.-Ing. Wolfgang Minker
Prof. Guilin Qi

Examiners: Prof. Dr.-Ing. Stefan Wesner
Prof. Xinyu Dai
Prof. Zhiqiang Gao
Prof. Deyu Zhou
Prof. Weiwei Wu

Examination date June 9, 2022

Combining Neural Networks with Knowledge for Spoken Dialogue Systems
学校代码: 10286

分 类 号: 000

密 级: 公开

U D C: 000

学 号: 169938

博士学位论文博士学位论文博士学位论文博士学位论文

布
罗

将神经网络与知识相结合，用于口语

对话系统
研究生姓名: 布罗

导 师 姓 名: 漆桂林 教授

申请学位类别 计算机科学博士 学位授予单位 东南大学

一级学科名称 计算机科学与技术 论文答辩日期 2022年 6月 9日

二级学科名称 计算机应用技术 学位授予日期

答辩委员会主席 戴新宇教授 评 阅 人 盲审

2022-07-01

Combining Neural Networks with Knowledge for Spoken Dialogue

Systems

A Dissertation Submitted to

Southeast University

For the Academic Degree of Doctor of Engineering

By

Waheed Ahmed

Supervised By

Prof. Guilin Qi
Prof. Wolfgang Minker

School of Computer Science and Engineering
Southeast University

June 2022

Parts of this dissertation have already been published in the following articles:

[1] Abro, Waheed Ahmed, Annalena Aicher, Niklas Rach, Stefan Ultes, Wolfgang Minker, and
Guilin Qi. ”Natural Language Understanding for Argumentative Dialogue Systems in the Opin-
ion Building Domain.” Knowledge-Based Systems 242 (2022): 108318.

[2] Abro,WaheedAhmed, GuilinQi, MuhammadAamir, and Zafar Ali. ”Joint Intent Detection and
Slot Filling using Weighted Finite State Transducer and BERT.” Applied Intelligence (2022):
1-15.

[3] Abro, Waheed Ahmed, Guilin Qi, Zafar Ali, Yansong Feng, and Muhammad Aamir. ”Multi-
turn intent determination and slot fillingwith neural networks and regular expressions.” Knowledge-
Based Systems 208 (2020): 106428.

[4] Abro, Waheed Ahmed, Guilin Qi, Huan Gao, Muhammad Asif Khan, and Zafar Ali. ”Multi-
turn intent determination for goal-oriented dialogue systems.” In 2019 international joint con-
ference on neural networks (IJCNN), pp. 1-8. IEEE, 2019.

5

东南大学学位论文独创性声明

本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知，除了文中特别加以标注和致谢的地方外，论文中不包含其他人已经发表或撰写过

的研究成果，也不包含为获得东南大学或其它教育机构的学位或证书而使用过的材料。与我

一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

研究生签名： 日期： 2022-06-24

东南大学学位论文使用授权声明

东南大学、中国科学技术信息研究所、国家图书馆、《中国学术期刊（光盘版）》电子杂

志社有限公司、万方数据电子出版社、北京万方数据股份有限公司有权保留本人所送交学位

论文的复印件和电子文档，可以采用影印、缩印或其他复制手段保存论文。本人电子文档的

内容和纸质论文的内容相一致。除在保密期内的保密论文外，允许论文被查阅和借阅，可以

公布（包括以电子信息形式刊登）论文的全部内容或中、英文摘要等部分内容。论文的公布

（包括以电子信息形式刊登）授权东南大学研究生院办理。

研究生签名： 导师签名： 日期： 2022-06-24

摘要

自然语言理解、口语对话系统、深度神经网络、正则表达式、人机交互

口语对话系统旨在与用户交流并帮助他们使用自然语言。例如，面向任务的对话系统旨

在帮助用户完成特定任务，例如预订航班、导航到特定目的地或寻找餐厅。通常，传统的对

话系统是高度手工制作的，具有复杂的逻辑和少量的规则。这些系统由四个部分组成：自然

语言理解 (NLU)、对话状态跟踪 (DST)、对话管理器 (DM)和自然语言生成 (NLG)。尽管自然
语言理解和对话学习取得了进步，但这些系统在新领域的鲁棒性和可扩展性方面仍存在着问

题。NLU模块是使用领域特定的规则构建的，因此很难扩展到新的域。由此，诸如深度神经
网络的统计模型已经被提出并用于 NLU任务。然而，这些深度神经网络模型依赖于大量的标
记数据，而我们通常只能够得到有限的标记数据。在小型训练数据中，它们无法对测试数据

进行泛化，因为它们容易捕获虚假特征，而不是获取到重要的领域语义特征。此外，在许多

应用中，获取高质量的标记数据是一项成本高昂且耗时的操作。

在本论文中，我们研究了将神经网络与符号规则知识相结合的不同方法，以此来解决口

语对话系统中现有 NLU模块的局限性，以减少对标记训练数据的需求，并提高对新领域的泛
化和可扩展性。本论文的贡献如下：

1. 本文的第一个贡献，是提出了一个自然语言理解 (NLU)框架，用于信息寻求和意见构
建领域的论证对话系统。我们采用预训练的语言模型，即来自 Transformers的双向编码器表
示 (BERT)，用于具有少量域内训练数据的论证对话领域。我们所提出的模型，针对两个 NLU
任务对 BERT进行了微调，即：意图分类和论证相似性任务。意图分类识别一个论证过程中
的意图或用户移动过程，论证相似性任务用于检查用户话语与所呈现论证的关系。实验结果

表明，我们提出的方法在不同数据集上的意图分类和论证相似性任务，对比基线模型，具有

明显的优势。此外，结果表明该模型对于来自训练期间未见过的主题和不同语言能力的数据

具有高而稳定的性能。

2.本文第二个贡献通过加权有限状态传感器 (WFST)增强了对类 BERT架构的微调，以
减少对大量监督数据的需求。WFST-BERT 模型利用预训练的 BERT 架构来生成用户句子的
上下文表示，并通过将正则表达式 (RE) 规则转换为可训练的加权有限状态转换器来利用它
们。然后，BERT表示与WFST被结合起来，并使用梯度下降算法在监督数据上对它们同时
进行训练。实验结果表明，当可用的训练样本有限或没有可用的训练样本时，WFST-BERT可
以产生不错的预测。

3.本文第三个贡献介绍了一种基于神经网络的多任务学习模型，该模型使用上下文信息
进行多轮意图检测和槽填充任务。我们采用记忆网络对用户对话中的多轮信息进行建模和优

化。该模型从预训练的语言模型中提取上下文词特征，并分别采用 CNN和 RNN结构来分别
预测用户意图和标记相应的槽。此外，该模型集成了正则表达式以编码领域知识，并且以端

到端可训练的方式调节神经网络输出。

Doctoral Dissertation

我们在公开可用的单轮数据集（如 ATIS、SNIPS、Banking）和多轮数据集（如 Key-Value
Retrieval、Frames）上评估了我们提出的方法。实验结果表明，本文所提出的模型在有限训练
数据的场景、以及完整训练数据的场景中，均优于基线方法。

关键词：

2

Abstract

Spoken dialogue systems are designed to communicate with users and help them using natural
language. Task-oriented dialogue systems, for example, are designed to help users achieve specific
tasks, such as booking a flight, navigating to a particular destination, or finding a restaurant. Typi-
cally, conventional dialogue systems are highly handcrafted, with complex logic and few rules. These
systems are composed of four components: natural language understanding (NLU), dialogue state
tracking (DST), dialogue manager (DM), and natural language generation (NLG). Despite advance-
ments in natural language understanding and dialogue learning, these systems continue to confront
significant problems in terms of robustness and scalability to new domains. The NLU module is built
using domain-specific rules, making it difficult to expand to new domains. As a result, statistical
models such as deep neural networks have been proposed for NLU tasks. However, these deep neural
networks models rely on large amounts of labeled data, whereas we often have limited labeled data.
In small training data, they fail to generalize over test data as they are prone to capture fake features
rather than semantically significant domain features. Additionally, in many applications, obtaining
high-quality labelled data is a highly costly and time-consuming operation.

In this thesis, we address the limitations of the existing NLU module of the spoken dialogue
system by examining various methods for combining neural networks with symbolic rules knowledge
to reduce the need for labeled training data, and for improving generalization and scalability to new
domains. Contributions of this dissertation are following:

1. Our first contribution introduces a natural language understanding (NLU) framework for argu-
mentative dialogue systems in the information-seeking and opinion building domain. We em-
ploy a pre-trained language model, namely Bidirectional Encoder Representations from Trans-
formers (BERT) for argumentation domains having small in-domain training data. The pro-
posed model fine-tuned BERT for two NLU tasks, namely: intent classification and argument
similarity tasks. Intent classification identifies intent or user move in an argument and argu-
ment similarity task check the relation of user utterance with the presented arguments. The
experimental results show a clear advantage of our proposed approach over the baselines for
the intent classification and argument similarity tasks on different datasets. Moreover, the out-
comes indicate a high and stable performance of the model for data from topics unseen during
training and different language proficiency.

2. The second contribution augments the fine-tuning of BERT-like architecture with weighted
finite-state transducer (WFST) to reduce the need for massive supervised data. The WFST-
BERT model utilizes pre-trained BERT architecture to generate contextual representations of
user sentences and leverage regular expressions (REs) rules by converting them into the train-
able weighted finite-state transducer. BERT representation is then combined with WFST and

3

Doctoral Dissertation

trained simultaneously on supervised data using a gradient descent algorithm. The experimen-
tal results show that WFST-BERT can generate decent predictions when limited or no training
examples are available.

3. The third contribution introduces a multi-task learning model based on neural networks with
contextual information for multi-turn intent detection and slot filling tasks. We employ the
memory network to model and optimize the multi-turn information in user conversation. The
model extracts the contextual word features from the pre-trained language model and employs
CNN and RNN structures for predicting user intent and tagging corresponding slots respec-
tively. Furthermore, the model integrates regular expressions (REs) to encode domain knowl-
edge and regulate neural network output in an end-to-end trainable manner.

We evaluated our proposed methods on publicly available single-turn datasets such as ATIS,
SNIPS, Banking and multi-turn datasets namely Key-Value Retrieval and Frames. The empirical re-
sults demonstrate that the proposed models outperform baseline methods in both limited data settings
and full data settings.

Keywords: Natural Language Understanding, Spoken Dialogue System, Deep Neural Networks,
Regular Expressions, Human–Computer Interaction

4

Table of Contents

Abstract . 3

第一章 Introduction . 3
1.1 Background and Motivation . 4
1.2 Problem Definition and Statement . 5

1.2.1 Intent Detection . 5
1.2.2 Slot Filling . 5
1.2.3 Sentence Similarity . 5

1.3 Research Objectives and Contributions . 5
1.3.1 Research Objectives . 6
1.3.2 Thesis Contributions . 6

1.4 Dissertation Organization . 8

第二章 Background and Literature Review . 11
2.1 Task-Oriented Dialogue Systems . 11
2.2 Natural Language Understanding . 12

2.2.1 Recurrent Neural Network . 12
2.2.2 Long Short Term Memory . 13
2.2.3 Gated Recurrent Unit . 14
2.2.4 Convolutional Neural Networks . 15
2.2.5 Bidirectional Encoder Representations from Transformers (BERT) 16

2.3 Related Work on Natural Language Understanding tasks 17
2.3.1 Intent classification . 17
2.3.2 Slot filling . 18
2.3.3 Joint Tasks . 18
2.3.4 Pre-trained Language Models . 19
2.3.5 Sentence Similarity . 20

2.4 Combining neural network with Knowledge . 20
2.4.1 Regular Expressions . 20
2.4.2 Finite State Transducer (FST) . 21
2.4.3 Weighted Finite State Transducer (WFST) 21
2.4.4 Related Work on Combination of Neural Networks with Knowledge 22

第三章 Natural Language Understanding for Argumentative Dialogue Systems 25
3.1 Introduction . 25

5

Doctoral Dissertation

3.2 Existing Argumentative Dialogue Systems . 27
3.3 Natural Language Understanding Framework . 27

3.3.1 BEA: An Application Scenario . 28
3.3.2 Intent Classifier Model . 31
3.3.3 Argument Similarity Model . 33

3.4 Data Collection . 35
3.5 Experimental Setup . 36

3.5.1 Training Setup . 38
3.5.2 Evaluation Metrics . 38
3.5.3 Sequential Training . 38

3.6 Evaluation and Results . 40
3.6.1 Evaluation–Intent classification . 40
3.6.2 Evaluation–Argument Similarity . 42
3.6.3 Evaluation- Complete Pipeline . 44
3.6.4 Impact of hyper-parameters . 45
3.6.5 Ablation Study . 45

3.7 Discussion and Summary . 47

第四章 Single turn Intent Detection and Slot Filling . 49
4.1 Introduction . 49
4.2 Model Architecture . 50

4.2.1 Weighted Finite State Transducer (WFST) 51
4.2.2 BERT . 52
4.2.3 WFST-BERT . 54
4.2.4 Joint Optimization . 55

4.3 Experiments . 55
4.3.1 Datasets . 55
4.3.2 Evaluation Metrics . 55
4.3.3 Training Setting . 56
4.3.4 Baseline Models . 56

4.4 Evaluation and Results . 57
4.4.1 Limited Data Training . 58
4.4.2 Full Data Training . 59
4.4.3 Impact of hyper-parameters . 61
4.4.4 Ablation Analysis . 61

4.5 Conclusion . 62

第五章 Multi-Turn Intent Detection and Slot Filling with Neural Networks and Regular
Expressions . 65

6

TABLE OF CONTENTS

5.1 Introduction . 65
5.2 Model Architecture . 67

5.2.1 Memory Network Encoder . 67
5.2.2 Intent detection and Slot Filling Module . 69
5.2.3 Joint Optimization . 72

5.3 Experiments . 73
5.3.1 The Dataset . 73
5.3.2 Creation of Regular Expressions . 76
5.3.3 Training Settings . 76
5.3.4 Baseline Methods . 77

5.4 Results and Discussion . 79
5.4.1 Learning from Limited Training Data . 81
5.4.2 Learning from Full Training Data . 82
5.4.3 Effect of hyper-parameters . 83

5.5 Summary . 84

第六章 Conclusion and Future Work . 87
6.1 Contribution 1: Natural language understanding framework for argumentative dia-

logue systems . 87
6.2 Contribution 2: The WFST-BERT Model for Joint Intent Detection and Slot Filling . 88
6.3 Contribution 3: Multi-turn Intent Detection and Slot Filling with neural networks and

regular expressions . 88
6.4 Future Work . 88

参考文献 . 91

第七章 About the Author . 103

7

Doctoral Dissertation

8

List of Figures

1.1 The flow of the dissertation. 8

2.1 Architecture of a spoken dialogue system. 11

2.2 Basic structure unfolded recurrent neural network. 13

2.3 Basic structure of LSTM memory cell. This figure is referred from our paper [3].
Reprinted with permission from Elsevier. 14

2.4 Basic structure of GRU cell. 15

2.5 A dilated convolution with dilation factor d = 1,2,4 and filter width = 3. This figure
is taken from our paper [3]. Reprinted with permission from Elsevier. 16

3.1 Architecture of a spoken argumentative dialogue system. First published in our pa-
per [1]. Reprinted with permission from Elsevier. 27

3.2 An illustration of argument similarity and intent classifier model. Argument similarity
model generates sentence representations Sa, Sb by applying inner attention on BERT
encoder and BiLSTM encoder, respectively. Intent classifier model obtains sentence
representation u by BERT+BiLSTM encoder. The final representation is produced by
concatenating sentence representation u and s and passing through a fully-connected
layer. The figure is taken from our paper [1] with permission from Elsevier. 32

3.3 Performance comparison of the intent classifier on the User study dataset with re-
spect to the number of training examples per intent. Plot referred from our paper [1].
Reprinted with permission from Elsevier. 42

3.4 Performance comparison of the intent classifier on the Banking77 dataset with re-
spect to the number of training examples per intent. Plot referred from our paper [1].
Reprinted with permission from Elsevier. 42

3.5 Effect of learning rate on model performance for intent classification and argument
similarity tasks on User study data set. Plot adopted from our paper [1]. Reprinted
with permission from Elsevier. 46

3.6 Effect of batch size on model performance for intent classification and argument sim-
ilarity tasks on User study data set. Plot taken from our paper [1]. Reprinted with
permission from Elsevier. 46

3.7 Effect of hidden size on model performance for intent classification and argument
similarity tasks on User study data set. Plot referred from our paper [1]. Reprinted
with permission from Elsevier. 46

9

Doctoral Dissertation

4.1 Illustration of example utterance contains intent and slot annotation using IOB format.
This figure is referred from our paper [2].) . 50

4.2 Illustration of WFST module for generating vector representation of intent and slots.
The handwritten REs are converted into unweighted FST. The feed-forward layers
is used to generate final representation from the state vectors of WFST containing
REs matching information. Illustration adopted from our paper [2]. Reprinted with
permission from Springer. 51

4.3 Illustration of the BERT model for joint intent detection and slot filling. This figure
is taken from our paper [2] with permission from Springer 53

4.4 Illustration of the proposed WFST-BERT model for joint intent detection and slot
filling. This figure is referred from our paper [2].) 54

4.5 Limited data training results for intent classification task. Plot referred from our pa-
per [2]. 59

4.6 Limited data training results for slot filling task. Plot taken from our paper [2].
Reprinted with permission from Springer . 59

4.7 Impact of learning rate. Plot referred from our paper [2]. 61
4.8 Impact of tensor decomposition rank r. Plot adopted from our paper [2]. 61

5.1 Architecture of the proposed model for multi-turn intent detection and slot filling. A
dialogue context vector and current utterance is shared by RNN and CNN network.
REs are integrated with RNN and CNN to predict user intent and slot labels. First
published in our paper [3]. 67

5.2 Slot RE examples with word-level labels assigned to the matched phrase. This figure
is referred from our paper [3]. Reprinted with permission from Elsevier. 70

5.3 Intent RE examples with the sentence-level label assigned to the matched utterance.
This figure is taken from our paper [3]. Reprinted with permission from Elsevier. . . 71

5.4 Learning from limited training data results on Frames dataset for slot filling task. Plot
adopted from our paper [3]. 78

5.5 Learning from limited training data results on KVRET dataset for slot filling task.
Plot taken from our paper [3]. 78

5.6 Learning from limited training data results onKVRET dataset for intent determination
task. Plot referred from our paper [3]. 78

5.7 Effect of learning rate. Plot taken from our paper [3] with permission from Elsevier. . 84
5.8 Effect of batch size. Plot adopted from our paper [3]. 84
5.9 Effect of dropout ratio. Plot referred from our paper [3]. Reprinted with permission

from Elsevier. 84

10

List of Tables

2.1 A regular expression for detecting the intent “flight” and associated slots label of the
matched sentence. Here ‘$’ denotes a wildcard pattern that matches any single word,
‘∗’ asterisk represents the Kleene star operator, and ‘|’ is the OR operator. This table
is taken from our paper [2] with kind permission from Springer. 21

3.1 Available speech acts and their corresponding user and system action. The table is
taken from our paper [1]. Reprinted with permission from Elsevier. 29

3.2 Train and test examples statistics for each speech act of user study dataset. Table
taken from our paper [1] with permission from Elsevier. 37

3.3 Example utterances with annotated labels from user study dataset. The table referred
from our paper [1]. Reprinted with permission from Elsevier. 37

3.4 Intent classifier performance comparison onUsers Study and Banking77 datasets with
the different number of training examples i.e., 10-shot (10 training examples per in-
tent), 30-shot (30 training examples per intent), and full training data. Performance is
reported in accuracy scores × 100. First published in our paper [1]. Reprinted with
permission from Elsevier. 41

3.5 Argument similarity model performance comparison on User Study and STS datasets.
SBERT-STSb-base, SBERT-STSb-large, and ArgSim models are trained on the STS-
B dataset. Performance on user study is reported in the accuracy scores × 100, and
performance on STS is reported in SPEARMAN × 100. Table referred from our
paper [1]. Reprinted with permission from Elsevier. 44

3.6 Complete pipeline performance of the proposed framework on native speakers and
Non-native speakers datasets. Table taken from our paper [1]. Reprinted with per-
mission from Elsevier. 45

3.7 Evaluation results of intent classifier ablation on the Users Study and Banking77
datasets for 10-shot, 20-shot, 30-shot, and full training data setups. The table referred
from our paper [1]. Reprinted with permission from Elsevier. 47

3.8 Evaluation results of argument similarity model ablation on User Study and STSB
datasets. Table referred from our paper [1]. Reprinted with permission from Elsevier. 47

4.1 Basic statistics of datasets. 56

4.2 The proposedWFST-BERTmodel performance comparison against the baselinemeth-
ods on limited training data setup. Taken from our paper [2] 58

11

Doctoral Dissertation

4.3 The proposedWFST-BERTmodel performance comparison against the baselinemeth-
ods on full training data setup. Table adopted from our paper [2] with permission from
Springer. 60

4.4 Evaluation results ofWFST-BERTmodel ablation onATIS&SNIPS datasets. Adopted
from our paper [2] . 62

4.5 Independent training evaluation results ofWFST-BERTmodel on intent detection and
slot filling tasks. Table referred from our paper [2]. Reprinted with permission from
Springer. 62

5.1 Example dialogues fromKVRET and Frames dataset. Example taken from our paper [3] 75
5.2 Basic Statistics of Datasets. First Published in our paper [3]. 75
5.3 Hyper-parameters of experiments. Hyper-parameters setup, first published in our pa-

per [3]. 77
5.4 Learning from limited training data results for the proposed Neural Network with-

out Regular expression (NN) and Neural Network with Regular expression (NN-RE)
models against baseline methods. Table adopted from our paper [3] with permission
from Elsevier. 80

5.5 Learning from full training data results for multi-turn intent detection and slot filling.
Table is referred from our paper [3]. Reprinted with permission from Elsevier. 82

12

Acknowledgment

All glory be to Almighty Allah, the Most Merciful, Who rewards us with His
love, mercy, and assistance, which enabled me to complete my studies. I want
to express my heartfelt appreciation to Professor Guilin Qi, my advisor. Being
his PhD student has been a privilege. Prof. Guilin Qi mentored me tremen-
dously both academically and in life. Mentally and academically, he has been
tremendously helpful, never shying away from critical criticism or patting my
back when good results are achieved. I am grateful for his time, thoughts, and
support in helping to make my PhD experience productive. I consider myself
immensely fortunate to have him as my advisor.

I also want to thank my co-advisor, Professor Wolfgang Minker, who has
always been a supporting, encouraging, and caring mentor. His enthusiasm,
encouragement, and faith in me throughout have been extremely helpful. He
was always accessible to answer my queries, upbeat and generous with his time
and knowledge. He was constantly aware of where to go for solutions to problems
while guiding me to the appropriate source, theory, and perspective.

I want to express my gratitude to the Chinese Government, the China Schol-
arship Council in Beijing, and Southeast University in China for providing the
necessary learning environment and financial support to accomplish my aim. A
special thanks to Southeast University’s Knowledge Engineering Lab for their
unwavering support and affection during our journey. I would say it produced
meaningful results. Throughout my pursuit of this degree, I had the opportu-
nity to work with some of the brightest and most sincere brains and world-class
scholars. Additionally, I am grateful to the DAAD-STIBET for providing a
research grant and an appropriate work environment throughout my time at
ULM University in Germany.

To my proofreaders, Prof. Guilin Qi, Dr Muhammad Aamir, and Dr Zafar
Ali, I would like to express my gratitude for tolerating my jargon and going over
each line. Your comments have improved the readability of this thesis.

I want to express my heartfelt gratitude to my dear friends Muhammad
Aamir, Zafar Ali, Muhammad Musa, Asif Dadra, and my beloved wife for their
unending support and encouragement. I’d want to express my gratitude to all of
my lab mates, particularly Hua Yuncheng, Bi Sheng, Wu Tongtong, Hu Peng,
and Gao Huan, for looking after me during my stay in China. Additionally,
I would like to thank Niklas Rach, Annalenna Aicher, Matthias Kraus, Denis
Dresvyanskiy, and a large number of others for the fantastic interchange of re-
search experiences and ideas that occurred during my time at ULM in Germany.

Finally, and maybe most importantly, I want to express my gratitude to my
parents, wife, and siblings for their reassuring and unwavering love. I owe you
a debt far greater than words or scripts can convey. This thesis is dedicated to
them.

1

Doctoral Dissertation

2

第一章 Introduction

Spoken dialogue systems also called conversational agents or virtual personal assistants are be-
coming more prevalent in our personal and professional lives. These systems communicate with users
in natural language to assist them in solving particular tasks or to entertain them. The two basic cat-
egories of dialogue systems are chit-chat systems and goal-oriented dialogue systems. The chit-chat
systems [5-10] communicate with users on a wide range of topics. On these systems, users don’t have
any specific goal to accomplish, and the main purpose of the conversation is to have casual chat, pro-
vide mental support, and entertain the users. The system first requires to understand the user utterance
correctly, and then respond to the user with meaningful responses. On the other hand, goal-oriented
dialogue systems [11-15] assist users to complete specific goals like send an email, find a restaurant
or navigate to a particular location. Goal-oriented dialogue systems process the user request, identify
the user need, ask for any required detail, and respond to the user with related information. These sys-
tems usually interact with external knowledge sources and take multiple dialogue turns to facilitate
user needs.

Chit-chat dialogue systems are divided into three subcategories: rule-based systems, IR-based
systems, and generation-based systems. Chit-chat dialogue systems are divided into three subcate-
gories: rule-based systems, information retrieval systems, and generation-based systems. The rule-
based systems utilize pre-defined rules such as if-else conditions or statistical classifiers to evaluate
user input. After identifying the particular rule for user input, relevant action is performed. The most
famous rule-based system in the history are ELIZA1 [16], PARRY2 [17], Cleverbot3 , Alice4. The
ELIZA system searches for keywords in the user utterance. If the keyword is found the particular
rule is applied to transform the user utterance into appropriate response. If the keyword is not found,
the system responds to the user with a generic response. The IR-based systems exploit information
retrieval [18-21] techniques. Given a user utterance, the IR-based system selects response to the user
from training corpus based on two criteria: The dialogue history of current input is similar to the dia-
logue history of candidate response and candidate response is semantically similar to the current input
dialogue history. Various ranking schemes such as TF-IDF, page-rank or personalization techniques
can be ensembled to form a ranking function and select the highest ranked response for responding
users. The Generation-based systems [22, 23] generate response token by token instead of select-
ing whole response from training corpus. These systems leverage statistical sequence-to-sequence
models for producing coherent and meaningful output sequences for given input utterance.

On the other hand, Goal-oriented dialogue systems are usually composed of a chain of five mod-

1https://en.wikipedia.org/wiki/ELIZA
2https://en.wikipedia.org/wiki/PARRY
3https://en.wikipedia.org/wiki/Cleverbot
4https://en.wikipedia.org/wiki/Artificial_Linguistic_Internet_Computer_Entity

3

https://en.wikipedia.org/wiki/ELIZA
https://en.wikipedia.org/wiki/PARRY
https://en.wikipedia.org/wiki/Cleverbot
https://en.wikipedia.org/wiki/Artificial_Linguistic_Internet_Computer_Entity

Doctoral Dissertation

ules: speech recognition, natural language understanding, dialogue manager, natural language gen-
eration and speech synthesis. The user utterances are passed through automatic speech recognition
(ASR) which converts speech into a text format. Next, the natural language understanding (NLU)
module processes text from the lexical and syntactic levels, an intent recognition takes place, and
potentially additional information is analyzed. The output of the NLU component is passed to the
dialogue manager which tracks the dialogue state, retrieves information from the external database if
necessary, and generates a dialogue act. The dialogue act is utilized by the natural language gener-
ation module to produce a response to the user. In this thesis, we will focus on the natural language
understanding module.

1.1 Background and Motivation

In recent years, significant progress has been made on natural language understanding tasks such
as intent detection, slot filling, and sentence similarity utilizing deep neural networks that learn the
robust hidden representation from the training data. However, these models’ predicted performance
is highly dependent on a large amount of labeled data. They fail to generalize over test data when
the training data set is limited, as they are prone to capture fictitious features rather than semantically
meaningful domain information. Furthermore, these models operate on the vector representation
of words as they replace words with their vector embedding. Therefore, it is difficult to interpret
prediction results generated by these models and it is also hard to incorporate domain knowledge for
guiding model output. Moreover, in many applications collecting high-quality labeled data is a very
expensive and time taking process, which hinders applying recent neural network methods.

In comparison, rule-based models built using hand-crafted rules such as regular expressions do
not require labeled training data and frequently achieve a reasonable level of prediction accuracy.
Regular expressions (REs) are widely utilized in a variety of applications, including pattern match-
ing [24], entity recognition [25], and information extraction [26]. These models can be used in sit-
uations where there are few or no training samples available. However, RE-based systems do not
benefit from labeled data when available and generalize poorly on a large dataset containing a lot of
synonyms and variations.

To summarize, rule-based models are simple to comprehend; they allow for the addition of new
rules or the modification of current ones. They do not require labeled training data and provide a
mechanism to encode domain knowledge. On the other hand, neural networks require a large amount
of training data and are notoriously difficult to interpret. Additionally, it is challenging to infuse
domain knowledge into models to lead them toward capturing desired patterns. Therefore, we want
to combine the benefits of both neural networks and rule-based models.

4

第一章 INTRODUCTION

1.2 Problem Definition and Statement

In this thesis, we are investigating the combination of neural networks with external knowledge
for the natural language understanding module of goal-oriented dialogue systems. The natural lan-
guage understanding module first recognizes the intent of the user from the user utterance, the task
often known as intent detection. The further tasks of the NLU module extract useful additional se-
mantic information from the user’s utterance such as tagging slots corresponding to a semantic frame
(slot filling), identifying which sentence the user refers to (sentence similarity).

1.2.1 Intent Detection

Intent detection is often treated as a sentence classification task where we learn the mapping of
a sequence of words w = (w1, w2, · · · , wn) to a corresponding intent label c from the pre-defined set
of intent labels, formulated as follows:

ĉ = argmax
c

P (c|w) (1.1)

1.2.2 Slot Filling

Slot filling is considered as a sequence labeling task where we learn the mapping of a sequence
of words w = (w1, w2, · · · , wn) to a corresponding output sequence y = (y1, y2,…, yn), formulated
as follows:

ŷ = argmax
y

p(y|w) (1.2)

Where yi is the slot label of the word wi.

1.2.3 Sentence Similarity

For the sentence similarity task, we find the most similar sentence v ∈ V from the set of given
sentences V for given an input sentence u. The input sentences are converted into their vector rep-
resentations i.e. sentence embeddings. Afterward, the cosine similarity can be used to compare sen-
tences or rank the sentences with respect to a given input sentence. The cosine similarity between
two sentence embeddings u and v is calculated as given in Eq. 1.3,

Sim(u, v) =
u · v

∥ u ∥ × ∥ v ∥
(1.3)

1.3 Research Objectives and Contributions

.

5

Doctoral Dissertation

1.3.1 Research Objectives

This thesis aims to investigate how to combine neural networks with external knowledge for
spoken dialogue systems. Neural networks obtain strong generalization capabilities on natural lan-
guage understanding tasks such as intent detection, slot filling, and sentence similarity tasks by
learning robust word and sentence vector representation. On the other hand, rule-based systems
like regular expressions which are the most representative form of symbolic rules allow experts to
express external domain knowledge. The knowledge could be encoded in the form of clue words
for particular intent or slot labels in RE surface form. For example, the RE rule can be written as
“(show)(temperature|weather?)”which detects the weather intent, also encodes the clue words
“show temperature”and“show weather”for intent weather. Neural networks may need hundreds
of training examples to learn these rules. Moreover, symbolic rules can be easily updated, added, or
removed from the systems to support new domains and tasks. Furthermore, RE-based systems do not
need labeled training data to generate the results. However, RE-based systems rely on domain experts
to carefully write a set of REs, which often have high precision but low recall.

The problem we want to address in this thesis is how to combine neural networks with external
knowledge for NLU tasks to take advantage of both neural networks and rule-based systems and
reduce the need for large amounts of labeled data. The main objectives of this research are listed as
follows: The main objectives of this research are listed as follows:

1. To investigate neural network models deal with NLU tasks and models that leverage domain
knowledge contained in symbolic rules to improve their performance, particularly in settings
with limited training data.

2. To propose a natural language understanding (NLU) framework for argumentative dialogue
systems in the information-seeking and opinion building domain by employing a pre-trained
language model to mitigate the problem of small in-domain training data.

3. To develop a WFST-BERT model for intent detection and slot filling, which augments the fine-
tuning of BERT-like architecture with weighted finite-state transducer (WFST) to reduce the
need for a large amount of supervised data.

4. To propose a multi-task learning model using neural networks with contextual information and
integrate it with REs to encode domain knowledge and handle cases with limited amounts of
labeled data in an end-to-end trainable manner for multi-turn language understanding tasks.

1.3.2 Thesis Contributions

To accomplish the aforementioned objectives, this dissertation makes the following core contri-
butions.
Contribution 1: Analysis of the existing state-of-the-art methods about NLU tasks, and com-
bining neural networks with knowledge. We present background information and relevant work on

6

第一章 INTRODUCTION

approaches to natural language understanding that address intent detection, slot filling, and sentence
similarity problems. We comprehensively review both classic techniques and more advanced deep
neural models for natural language understanding tasks. Additionally, we discuss known methods for
combining deep neural networks with predefined rules.

Contribution 2: Natural language understanding framework for argumentative dialogue sys-
tems. We introduce a natural language understanding (NLU) framework for argumentative dialogue
systems in the information-seeking and opinion-building domain. The proposed framework consists
of two sub-models, namely intent classifier and argument similarity. The intent classifier model stacks
BiLSTM with attention mechanism on top of pre-trained BERT model and fine-tunes the model for
recognizing the user intent, whereas the argument similarity model employs BERT+BiLSTM for iden-
tifying system arguments the user refers to in his or her natural language utterances. The model is
evaluated in an argumentative dialogue system that allows the user to inform him-/herself about a
controversial topic and build his/her opinion towards the topic. In order to evaluate the proposed ap-
proach, we collect user utterances for the interaction with the respective system and label them with
intent and reference argument in an extensive online study. The data collection includes multiple top-
ics and two different user types (native speakers from the UK and non-native speakers from China).
The evaluation indicates a clear advantage of the utilized techniques over baseline approaches on
several datasets, as well as the robustness of the proposed approach against new topics and different
language proficiency as well as the cultural background of the user. Furthermore, results show that
our intent classifier model outperforms baseline models in few-shot setups (i.e., with 10, 20, or 30
labeled examples per intent) and full data setup.

Contribution 3: The WFST-BERT Model for Joint Intent Detection and Slot Filling. This
work proposes a WFST-BERT model which augments the fine-tuning of BERT-like architecture with
weighted finite-state transducer (WFST) to lessen the need for massive supervised data. The WFST-
BERT employs regular expressions (REs) rules to encode domain knowledge and pre-trained BERT
model to generate contextual representations of user sentences. In particular, the model converts REs
into the trainable weighted finite-state transducer, which can generate decent predictions when lim-
ited or no training examples are available. Moreover, BERT contextual representation is combined
with WFST and trained simultaneously on supervised data using a gradient descent algorithm. The
experimental results on the ATIS dataset show that the F1-Score of the WFST-BERT improved by
around 1.8%, 1.3% for intent detection and 0.9%, 0.7% for slot filling tasks as compared to its coun-
terparts models in limited data settings. Further, in full data settings, the proposed model generates
better recall and F1-score than state-of-the-art models.

Contribution 4: Multi-turn Intent Detection and Slot Filling with neural networks and regular
expressions.

Existing models for multi-turn NLU employ memory networks to encode dialogue context,
which is used by neural networks for determining user intent and associated slots. However, these
methods rely on a large amount of labeled data, whereas we often have limited labeled data. To ad-
dress this problem, we propose a multi-task learning model based on neural networks and REs, to

7

Doctoral Dissertation

Chapter 1

Introduction

Chapter 2

Background

Chapter 3

NLU Framework for
Argumentative Dialogue System

Chapter 4

WFST-BERT Model for
Single-turn ID & SF

Chapter 5

Multi-turn ID & SF using
Neural networks and Regular

Expressions

Chapter 6

Conclusion & Future
Work

图 1.1: The flow of the dissertation.

jointly perform intent detection and slot filling tasks. The proposed model integrates neural networks
with REs to encode domain knowledge and handle cases with a limited amount of labeled data in
an end-to-end trainable manner. More specifically, the model employs a pre-trained BERT model
to obtain contextual word representations of user utterances. These representations are utilized by
a memory network to encode multi-turn information which is shared by the tasks. Furthermore, the
convolutional neural network (CNN) and the recurrent neural network (RNN) are applied to contex-
tual word representations and dialogue context for intent detection and slot filling tasks, respectively.
These neural networks are then combined with REs which encode domain knowledge about a particu-
lar intent or slot value. Finally, the two neural networks are trained simultaneously by minimizing the
joint loss. Extensive experiments on Key-Value Retrieval and Frames datasets show that the proposed
model outperforms baseline methods in both tasks while requiring modest human effort.

1.4 Dissertation Organization

This dissertation is divided into six chapters that describe each of the critical tasks and contribu-
tions as presented in Figure. 1.1.

Chapter 1 discusses the research motivation, problem definition, thesis statement, research ob-
jectives, contributions of this research, and organization of the dissertation.

8

第一章 INTRODUCTION

Chapter 2 provides fundamental concepts such as neural network models, regular expressions,
and weighted finite-state transducers that will be used throughout this dissertation. Additionally,
we review the state-of-the-art research on natural language understanding problems and methods for
combining neural networks with symbolic knowledge.

Chapter 3 introduces a natural language understanding (NLU) framework for argumentative
dialogue systems in the information-seeking and opinion-building domain. The proposed framework
fine-tunes the pre-trained BERT model for intent detection and argument similarity tasks.

Chapter 4 presents a novel WFST-BERT model which augments the fine-tuning of BERT-like
architecture with weighted finite-state transducer (WFST) to reduce the need for massive supervised
data.

Chapter 5 introduces a multi-task learning model based on neural networks with contextual
information for multi-turn intent detection and slot filling tasks. Furthermore, the model integrates
REs to encode domain knowledge and regulate neural network output.

Chapter 6 concludes the dissertation with a summary of our main contributions and insights
derived from this research. Furthermore, the chapter provides future research avenues on natural
language understanding models.

9

Doctoral Dissertation

10

第二章 Background and Literature Review

This chapter provides thorough background information on the dissertation’s key approaches.
It summarizes state of the art on two topics: natural language understanding models such as RNN,
CNN, and SEQ2SEQ models and methods for combining neural networks with Knowledge. The ar-
chitecture of a task-oriented dialogue system is discussed in Section 2.1. The Section 2.2 explains
natural language understanding tasks and subsequent subsections provide their solutions with neural
networks such as recurrent neural networks, convolutional neural networks and BERT architecture.
The following Section 2.3 refers to earlier work on natural language understanding tasks, specifically
intent detection, slot filling, and sentence similarity. Finally, Section 2.4 introduces regular expres-
sions, finite-state transducers, and weighted finite transducers, followed by an overview of previous
work integrating neural networks and knowledge. The present chapter includes content previously
published in our papers [1-3].

2.1 Task-Oriented Dialogue Systems

As shown in Fig. 2.1, the architecture of a spoken task-oriented dialogue system is composed
of a chain of five modules: speech recognition, natural language understanding, dialogue manager,
natural language generation and speech synthesis. The speech recognition module transcribes the
user speech into natural language text by exploiting automatic speech recognition (ASR) methods.
The text input is passed to the natural language understanding module, which usually performs in-
tent detection, slot filling, and/or sentence similarity tasks. The information obtained from the NLU
module is utilized by the dialogue state tracking module to maintain the distribution over all possible
dialogue states. The dialogue state is normally expressed with a set of goal slots and probability distri-
butions of possible candidate values for every slot. Based on the dialogue state, dialogue management
produces a dialogue act and retrieves information from external knowledge bases (if required). The
dialogue act contains a speech act such as inform, request and information presented by slots and val-

Speech Recognition Natural Language
Understanding

Dialogue ManagementNatural Language GenerationSpeech Synthesis

User

Dialogue State Tracking

图 2.1: Architecture of a spoken dialogue system.

11

Doctoral Dissertation

ues. The dialogue action is given as input to the natural language generation (NLG) module, which
generates the natural language formatted response. Finally, speech synthesis converts text to speech
and responds to the user. In this thesis, we focus on the natural language understanding module of
spoken dialogue systems and review popular NLU methods in the following sections.

2.2 Natural Language Understanding

The natural language understanding (NLU) module is one of the main components of spoken
dialogue systems. The NLU module extracts the semantic representations from natural language
sentences. Intent detection, slot filling, and sentence similarity are key tasks in the NLUmodule. The
intent detection task [27-29] is normally framed as a sentence classification task. Given an input,
the task is to classify the intent label from the pre-defined set of intent candidates. Earlier systems
have applied traditional methods such as SVM [30] and more advanced systems have used deep
learning models such as recurrent neural networks [28, 29], convolutional neural networks [31-33],
and pre-trained sentence encoders [34, 35]. Slot filling [36, 37] is frequently viewed as a sequence
labeling problem in which semantic elements are extracted from utterances. Slots can be thought of as
variables in an utterance filled from the input text by determining their semantic value. Conditional
random fields[38], hidden markov model [39], and recurrent neural networks [37, 40-42] are all
prominent methods for slot filling. On the other hand, the sentence similarity task identifies the most
similar sentence from the candidate sentences for an input utterance. The recent models for sentence
similarity apply pre-trained language models [43-46], convolutional neural networks[47, 48], and
recurrent neural networks [49-51]. In the following subsections, we provide review of neural models
that are used in our proposed model architectures.

2.2.1 Recurrent Neural Network

Recurrent neural networks (RNNs) are a type of neural network that use feedback connections
to store information. RNNs are extremely strong architectures that are capable of capturing long-
range dependencies through the use of time-connection feedback [52]. As depicted in Figure 2.2, the
RNNs use the output of previous hidden states t− 1 as input to the current time step t. Therefore, the
information presented in the hidden state at time step t is the summarized information of the sequence
up to time t. The non-linear activation function such as hyperbolic tangent or sigmoid is applied to
the weighted sum of previous hidden states and input vectors as given in Equation 2.1.

ht = f(Wxt + Uht−1 + b) (2.1)

where f represents a non-linear activation function, W and U are the learnable weight matrices for
input vector and hidden states, respectively and b is the bias vector. During RNN training, both W

and U weight matrices are jointly learned by minimizing a standard loss function.

12

第二章 BACKGROUND AND LITERATURE REVIEW

xt-1

ht-1

yt-1

W

V

xt

ht

yt

U

W

V

xt

ht

yt

W

V

xt+1

ht+1

yt+1

V
Unfold

U UU

W

U

图 2.2: Basic structure unfolded recurrent neural network.

2.2.2 Long Short Term Memory

The standard RNNs suffer from two problems namely vanishing gradient and exploding gradient
[53]. In the vanishing gradient, the gradient becomes smaller at every backpropagation step and
eventually becomes zero at the end. While in gradient exploding, the gradient becomes too large after
backpropagation over time. To address RNNs’ vanishing gradient and exploding gradient challenges,
long short-term memory (LSTM) [54] and gated recurrent unit (GRU) [55] were developed. LSTMs
are similar to RNNs except that memory cells substitute the hidden layer updates. The fundamental
concept behind LSTMs is to add different gates to control the flow of information after each time step.
The typical LSTM architecture has three gates; input gate, forget gate, and output gate. The input gate
specifies the amount of information that should be retained during the current step. The forget gate
determines how much information about past states should be maintained and how much should be
forgotten. The output gate specifies the amount of information that should be transmitted to the next
step from the present output. Figure 2.3, illustrates the basic structure of the LSTMmemory cell used
in the model. Formally, the memory cell update process in the LSTM network is defined as follows:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct),

(2.2)

where σ and ⊙ denote sigmoid function and element-wise multiplication respectively. At time
step t, there is an input gate it, a forget gate ft, an output gate ot, a cell state ct, a candidate cell state
c̃t, and a hidden state ht. The learnable parameters for input gate are [Wi, Ui, bi]. The parameters
for forget gate and update gate are [Wf , Uf , bf], [Wo, Uo, bo], respectively. The candidate cell state
parameters are represented by [Wc, Uc, bc]. During LSTM training all parameters are learned jointly.

13

Doctoral Dissertation

Xt

ftForget Gate

Ct

OtitInput Gate

XtXt

Output Gate

ht

Xt

图 2.3: Basic structure of LSTMmemory cell. This figure is referred from our paper [3]. Reprinted with permission
from Elsevier.

2.2.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [55] can be thought of as a simpler version of the Long Short-
Term Memory (LSTM), with the same goal of capturing long-term dependencies and resolving the
vanishing and exploding gradient difficulties. In contrast to LSTM, GRU is based on two gates,
the update gate and the reset gate, as illustrated in Figure 2.4. The update gate specifies how much
information about previous states should be maintained. The reset gate determines whether the prior
cell state is retained or reset with the new cell state. The gates in the GRU network are computed
informally as follows:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)
(2.3)

where zt, rt represents update and reset gate at time t, respectively and σ denotes sigmoid acti-
vation function. The parameters for update areWz, Uz and parameters for reset gate areWr, Ur. The
candidate activation h̃t is calculated by regular recurrent unit, while final activation is the interpolation
of candidate activation h̃t and previous activation ht−1 as given in Equation 2.4.

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zth̃t

(2.4)

14

第二章 BACKGROUND AND LITERATURE REVIEW

ht

zt
rtReset Gate

Xt

ht-1

Update Gate

ht

Xt

ht-1

Xt

ht-1

-1

ht-1

图 2.4: Basic structure of GRU cell.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are type of neural networks originally designed for
computer vision tasks [56-60] have shown impressive results on natural language understanding tasks
[31, 61-63]. CNNs use convolutional filters which are applied on top of words representations for
incorporating local word context. The 1-dimensional convolution operation convolves a filterW over
the window of m words in the input sequence to produce a feature map. For instance, the feature pi
is generated by applying filterW to the window of words [xi, · · · , xi:i+m−1] as:

pi = f(W · xi:i+m−1 + b),

xi:i+m−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+m−1,
(2.5)

where b is a bias,⊕ is the vector concatenation operator, and f represents a non-linear activation
function.

Traditional convolutional models incorporate local word context information into word repre-
sentation, where the filter width specifies the local context size used. In order to increase effective
context size, several convolutional layers are stacked in a hierarchical structure. However, this setting
can incorporate context size linear to the entire depth of the network, therefore makes it harder for
tasks that require longer history. To overcome such problems, dilated convolutions are employed that
can capture large context by skipping the number of nearby words in subsequent convolutional passes.
In particular, a dilated convolution, also known as atrous convolution is a convolution operation in
which the receptive field of the network grows exponentially with linear parameter accretion [64, 65].
Besides, to enlarge the receptive field, dilation convolution inserts zeros between filter weights in the
standard convolutional filter. For instance, the generic dilated convolution for dilations 1, 2 and 4 is
shown in Figure 2.5.

The dilated convolution operator of filterWp and dilation factor d applied to m-gram xi+m.d with

15

Doctoral Dissertation

图 2.5: A dilated convolution with dilation factor d = 1,2,4 and filter width = 3. This figure is taken from our
paper [3]. Reprinted with permission from Elsevier.

output pi is defined as:

pi = f(Wp · xi+m.d + b),

xi+m.d = xi ⊕ xi+1.d ⊕ · · · ⊕ xi+m.d,
(2.6)

where⊕ is the vector concatenation operator, d is the dilation factor, b is the bias, and f is the activation
function. The hyperbolic tangent (tanh) is normally used as the non-linear activation function. When
the size of the dilation factor is 1, it’s equivalent to a regular convolution. Using larger dilation
incorporates wider context into the representation of an input token pi.

2.2.5 Bidirectional Encoder Representations from Transformers (BERT)

The BERT architecture is composed of multiple bi-directional Transformer [66] encoder layers.
Each transformer encoder has a multi-head self-attention mechanism and feed-forward networks sub-
layers with residual connections. For every word in the user utterance, each head of the self-attention
layer computes query, key, and value vectors of dimension d. The model then calculates the dot
product of the query with each key, divide all by

√
dk followed by the softmax function as given in

equation 2.7. The output of each head is concatenated and passed through a linear layer to produce
the final weighted representation of the utterance as given in equation 2.8:

Att(Q,K, V) = softmax(
QKT

√
dk

)V. (2.7)

Where Q, K, V are the query, key, and values matrices.

MultiHead(Q,K, V) = Concat(hd1, hd2, · · · , hdn)WO

hdi = Att(QWQ
i KWK

i VW V
i).

(2.8)

WhereWQ
i ,WK

i ,W V
i andWO are parameter matrices.

16

第二章 BACKGROUND AND LITERATURE REVIEW

BERT Utterance Representation

The utterance representations from the BERT encoder are generated as follows: The utterances
are tokenized through WordPiece [67] tokenizer that splits the utterance into tokens. Each token
representation is obtained by adding its token, position, and segment embeddings. Further, for each
utterance special [CLS] classification token is added at the start of the utterance. Similarly, a special
[SEP] separator token is added at the end of each utterance. The BERT encoder then calculates the
utterance representation i.e., vector representation for each token denoted as in equation 5.1:

Hn
t = BERT (x[CLS], x1, · · · , xt, x[SEP]) (2.9)

where Hn
t = (hn

[CLS], h
n
1 , · · · , hn

t , h
n
[SEP]), ht denotes the contextual vector representation of token t,

and n represents the number of encoder layer. The last layer hidden stateH12
t of every token is given

as input to fully connected layers for detecting user intent and corresponding slots.
Up to now, all essential background information for training neural network models for NLU

tasks has been provided. The next section reviews state-of-the-art NLU methods.

2.3 Related Work on Natural Language Understanding tasks

Deep learning models such as CNNs and RNNs have been extensively adopted in a wide range
of NLU tasks, including intent detection [27-29, 68, 69], slot filling [36, 37, 40], and sentence simi-
larity [45, 46, 49, 50]. In the following subsection, we describe some typical works on intent classifi-
cation, slot-filling, sentence similarity tasks. The discussion of related work on intent classification,
slot-filling, sentence similarity is previously published on our papers [1-3].

2.3.1 Intent classification

Previous works on intent classification use deep learning models such as convolutional neural
networks [31, 32] and recurrent neural networks [4, 70] to encode sentence into the fixed-sized vec-
tor representation. A classifier is then applied on top of this representation to classify user intent.
To generate features from unlabeled data, deep belief networks (DBNs) [68] have been employed.
SVM then uses these features to complete the classification task. While deep belief networks have
demonstrated impressive feature extraction capabilities for classification tasks, training them has been
computationally expensive due to the difficulty of parallelizing DBN training across computers for
large datasets. To tackle the scalability issue of DBNs, Deng and Yu have proposed a deep con-
vex network (DCN) [71] which is convex optimization based on batch mode instead of stochastic;
therefore it can be parallelized across multiple machines. DCN has proven to be better than DBN in
terms of both the accuracy and training scalability of the model. In this connection, Tur et al. [27]
have used DCNs for semantic utterance classification and achieved higher accuracy than baseline
boosting-based classifier. Recently, RNNs architectures have shown excellent performance on the
intent detection task, they take each word of a sentence and use a series of hidden units to tempo-
rally model an entire sentence [28, 29]. Furthermore, Lin and Xu [72] proposed SofterMax and deep

17

Doctoral Dissertation

novelty detection (SMDN), a post-processing method for detecting unknown intent via pre-trained
deep neural network classifiers. On the other hand, Howard and Cambria [73] discussed the impor-
tance of the intention-awareness in the human-centric environment where the intentions of actors’are
integrated into the surrounding environment. Intention-aware (IA) based systems lessen the informa-
tional burden on humans without degrading effectiveness. In this connection, Liu and Zhang [74]
have proposed a method called WebIA, which infers human intentions through web queries. The We-
bIA method establishes an active knowledge database for robots to perform context-specific intention
awareness.

Furthermore, Goo et al. [41] proposed a slot-gated mechanism that leverages the intent context
vector for modeling slot-intent relationships to improve semantic frame results. Recently, capsule-
based architectures have produced excellent results for the intent detection task, these models aggre-
gate word-level features to predict sentences using dynamic routing-by-agreement [75-77]. On the
contrary, Bunk et al. [78] proposed DIET (Dual Intent and Entity Transformer) model, which ob-
tains dense features from pre-trained word embedding models such as BERT [43], ConveRT [35],
and combine these with sparse word features. These features are then used by 2-layer transformer
for detecting user intent. In this connection, Casanueva et al. [34] proposed dual sentence encoders
and employed pre-trained Universal Sentence Encoder (USE) [51] and Conversational Representa-
tions from Transformers (ConveRT) [35] for predicting user intent. Furthermore, Minaee et al. [79]
provides a detailed survey of the pre-trained models for text classification. The survey presents a
quantitative analysis of deep learning models performance on text classification benchmarks. Re-
cently, attention based deep neural models [80-82] produce state-of-the-art results on sentiment and
emotions intensities classification tasks.

2.3.2 Slot filling

The slot filling is often considered as the sequence labeling task. The RNN architecture and its
variants LSTM and GRU perform well for sequence labeling tasks [37, 40]. In this direction, Mes-
nil et al. [37] proposed RNNs models to produce slot tags sequentially by reading words one by one
and efficiently modeling temporal dependencies. The RNN-based model significantly outperforms
CRF models on the ATIS benchmark. However, architecture can produce number of slots equivalent
to words in the sentence. To tackle this problem, encoder-decoder architecture was proposed which
utilizes one RNN to encode input and another RNN to decode output [40]. The encoder-decoder ar-
chitecture allows systems to match semantic tags and input words of different lengths without aligning
input and output.

2.3.3 Joint Tasks

The joint models for intent detection and slot filling were shown to improve the performance
of both tasks. In [83] authors modeled domain identification, intent prediction, and slot filling via a
single joint RNN model. The RNN reads the sequence of words and sequentially produces slots tags.

18

第二章 BACKGROUND AND LITERATURE REVIEW

The final state of RNN was used for domain detection and intent prediction. The joint model was
shown to reduce the overall frame error rate. Liu and Lane [40] further proposed the RNN encoder-
decoder model for jointly modeling both tasks. First, hidden states information from slot filling RNN
is consolidated, and then the attention model is used to generate its intent. Moreover, Goo et al. [41]
proposed a slot-gated mechanism, which introduces an additional gate in LSTM that leverages the
intent context vector for modeling slot-intent relationships to improve slot filling performance. Re-
cently, the hierarchical multi-task model [84] was proposed which captures contextual and spatial
information of the sentence using CNNs and RNNs. The representations generated through CNNs
and RNNs are utilized by the joint model to predict intent and slots.

Moreover, models encoding contextual information from dialogue history have shown higher
generalization ability [85-88]. For instance, Chen et al. [85] have used RNNs to encode user and
system previous utterances and store them in memory. These memory embeddings are then matched
with a current utterance vector using cosine similarity to obtain attention distribution over dialogue
history. These attention distributions are then aggregated with memory embeddings to incorporate
information from history. Bapna et al. [86] further extended the memory network by adding a session
encoder to embed the context in chronological order. Encoding contextual information in sequential
order results in a reduction of frame error rate. In the same direction, Su et al. [87] introduced a
time-aware attention mechanism to pay more attention to recent utterances of dialogue by decaying
attention weights over time. On the other hand, Kim et al. [88] employed two separate memories
for the encoding system and user utterances differently depending on the speaker. Dual Memory
Networks obtained significant performance improvement over the state-of-the-art contextual slot tag-
ging models. Recently, Firdaus et al. [84] proposed a hierarchical convolutional neural network and
hierarchical convolutional recurrent neural network for jointly modeling of intent detection and slot
filling tasks. The related work on joint models for intent detection and slot filling first appeared in
our papers [2, 3].

2.3.4 Pre-trained Language Models

The pre-trained language models such as ELMo [89], ULMFiT [90], GPT [91], BERT [43],
XLNet [44], and more recently UNILM [92], MT-DNN [93], and ERNIE [94] trained on large unla-
beled corpora are dominating in natural language understanding leaderboards such as GLUE [95] and
SuperGLUE [96]. The ELMo [89] model learns deep contextualize word representation by training
two-layer bidirectional LSTM with language modeling objective on the large text. The downstream
model combines representations from all BiLSTM outputs using downstream task-specific weights.
On the contrary, GPT [91] model adopted a discriminative fine-tuning approach when it is applied on
downstream tasks. For every task, the task-specific layer is added on top of the pre-trained model and
the whole model is fine-tuned with labeled data. In the same direction, ULMFiT [90] model employed
discriminative fine-tuning with triangular learning rates. The ULMFiT uses gradual unfreezing of
pre-trained parameters to retain the previous information and obtains state-of-the-art results for text

19

Doctoral Dissertation

classification tasks. An extensive study of the pre-trained models for text classification was done by
Minaee et al. [97]. The study provides a quantitative analysis of the performance of different deep
learning models for text classification on popular benchmarks. On the other hand, Peters et al. [98]
explored how to adapt pre-trained models for down streaming tasks. They focused on feature extrac-
tion and fine-tuning of pre-trained model adaptation methods and performs experiments on diverse
NLP tasks. Peters et al. [98] concluded that fine-tuning and feature extraction approaches have com-
parable performance in most cases and their relative performance depends on the similarity between
the pre-training and the target tasks. In this thesis, we extract contextual representations of the words
from the pre-trained BERT model which are utilized by the RNN and CNN network for determining
user intent and associated slots. The related work on pre-trained language models was based on our
paper [3].

2.3.5 Sentence Similarity

For the textual similarity task, Skip-Thoughts [49] model was proposed which extends the
word2vec [99] skip-gram approach from the word-level to sentence-level. The Skip-Thoughts model
employs encoder-decoder architecture to learn the vector representation of the sentences. Similarly,
FastSent [100] was proposed which replaced the RNN encoder with word embedding summation of
the skip-thoughts model. In contrast, InferSent [50] model utilizes supervised data of the Stanford
Natural Language Inference (SNLI) dataset to train a siamese BiLSTM network with max-pooling
over the output. The InferSent model outperforms unsupervised methods like Skip-Thoughts. The
Universal Sentence Encoder (USE) [51] model extends the InferSent model by training transformer
architecture and augmenting unsupervised learning with supervised training objectives.

In parallel, pre-trained models such as ELMo [89], GPT [91], BERT [43], XLNet [44],
ERNIE [94], and MT-DNN [93] trained on large unsupervised corpora, shown significant improve-
ment for intent classification, semantic textual similarity, and various natural language understanding
tasks [95]. Such pre-trained models allow the downstream task model to be fine-tuned without train-
ing from scratch. Furthermore, fine-tuning of pre-trained models produced state-of-the-art results for
text classification [90, 101] and textual similarity [45, 46]. Inspired by the recent works, we have em-
ployed these pre-trained models for the natural language understanding of the arguments. The related
work on textual similarity was first published in our paper [1].

2.4 Combining neural network with Knowledge

This section and the subsequent section include content previously published in our paper [2].

2.4.1 Regular Expressions

Regular Expressions (REs) are extremely strong techniques for describing text patterns and are
frequently used for pattern matching, entity recognition, information extraction, and sentence classi-

20

第二章 BACKGROUND AND LITERATURE REVIEW

表 2.1: A regular expression for detecting the intent “flight” and associated slots label of the matched sentence.
Here ‘$’ denotes a wildcard pattern that matches any single word, ‘∗’ asterisk represents the Kleene star operator,
and ‘|’ is the OR operator. This table is taken from our paper [2] with kind permission from Springer.

Intent flight
Slots [O O O B-from_city O B-to_city O]
RE $ * (flight | go | fly) from $ to $ $ *
Matched
Text

<BOS> i want to fly from Baltimore to Dallas <EOS>

FST

fication [24, 25, 102]. REs enable experts to inject domain knowledge into deep neural models and
regulate them to comply with desired patterns [3]. REs can be employed at the sentence level and/or
word level. At the sentence level, REs scan the user input for key phrases and return the user’s specific
purpose to the matched sentence. At the word level, REs find word sequences in user text and assign
matched word-level RE tags. Table 2.1 demonstrates the example of RE matching a sentence asking
for intent “flight” and identifying the slots B-from_city and B-to_city as Baltimore and Dallas, re-
spectively. We write n REs R = {r1, r2, · · · , rn}, each RE has sentence-level label l and word-level
m labels {s1, · · · , sm}.

2.4.2 Finite State Transducer (FST)

A finite-state transducer (FST) is a type of finite automata (FA) that consists of a finite number of
states, an input label, and an output label. The finite-state acceptor (FSA) is the most frequently seen
automaton, which accepts or rejects input sequences based on whether the FSA has a path from the
beginning to the final state. The FST inherits the properties of the FSA, but in addition to returning the
accepted or rejected value, it returns the output symbol sequence. The FST can be seen as a directed
graph, its vertices represent states and edges represent input/output pair (labeled transitions). The
FST transits from one state to another state by reading the input alphabet and producing an output
label. An FA can be constructed for each RE using Thompson’s construction algorithm [103], which
first converts RE into Non-deterministic finite automata (NFA) and from NFA to deterministic finite
automata (DFA). Automation is called DFA if it has deterministic transitions which means given input
on the current state there is a unique next state.

2.4.3 Weighted Finite State Transducer (WFST)

A weighted finite-state transducer (WFST) extends an unweighted finite-state transducer by as-
signing weights to each transition. A WFST is a 6-tuple T = (Σ,∆, Q, T, λ, ρ) where

• Σ is a finite non-empty set of input alphabets.

21

Doctoral Dissertation

• ∆ is a finite non-empty set of output labels.

• Q is a finite non-empty set of states.

• T ∈ R|Σ|×|Q|×|Q| is the weighted transition tensor. T (x, qa, qb) is the weight of transiting from
state qa ∈ Q to state qb ∈ Q on receiving input x ∈ Σ.

• λ ∈ R|Q| is the weight vector of initial states.

• ρ ∈ R|Q| is the weight vector of final states after reading all input.

Let p = (q1, · · · , qn+1) be a path from the initial state q1 to the final state qn+1 after consuming
sequence x where qn is the n− th state, score of the path p is defined as follow:

S(T , x) = λ[q1] ·

(
n∏
t

T [xt, qt, qt+1]

)
· ρ[qn+1] (2.10)

The maximum score from all accepting paths π(x) starting from initial state q1 and reaching the
final state qf after consuming input x is calculated by using the Viterbi [104] algorithm as follow:

S(T , x) = max
p∈π(x)

λ ·

(
n∏
t

T [xt]

)
· ρ (2.11)

The Viterbi algorithm returns accepting path and output labels with maximum score. The
Weighted Finite-State Acceptor (WFSA) [105, 106] can be viewed as a special case of WFST and
can also be represented similarly by omitting output labels.

2.4.4 Related Work on Combination of Neural Networks with Knowledge

The combination of neural networks with pre-defined rules has been an active research topic
[102, 107, 108]. In this connection, Hu et al. [107] used first-order logic rules to adjust the output
probability of a neural network and then train the student network from the rule-regularized teacher
network. Alashkar et al. [108] trained a neural network from examples and knowledge base rules by
minimizing a joint loss of examples-based and rules-based network. Similarly, Awasthi et al. [109]
injected rules into the neural network via multitask training that jointly denoises rules using latent
coverage variables. Furthermore, Xu et al. [110] incorporated symbolic knowledge in the neural net-
works via semantic loss function that constraints neural networks output to comply with rules. Li
and Srikumar [111] introduced declarative knowledge as first-order logic rules into neural networks
by constraining the output logits or guide the network using attention scores. On the other hand,
Waqas et al. [112] combined hand-crafted features obtained from local binary pattern network with
features generated by a neural network for tuberculosis analysis. Similarly, Luo et al. [102], incorpo-
rated knowledge of regular expressions into the training of a neural network as an input feature, as an
attention guide, and as a regularization of neural network output. In contrast, Rule-Guided Embed-
ding (RUGE) [113] was proposed that inject soft logic rules into learned knowledge graphs (KGs)
embeddings.

22

第二章 BACKGROUND AND LITERATURE REVIEW

On the other hand, Zhou et al. [114] proposed a model that leverages commonsense knowledge
using a knowledge graph in neural dialogue systems. The model retrieves knowledge graphs for
each user utterance and then encodes the graphs with an attention mechanism to augment the seman-
tic information and thus supports a better understanding of utterances. Similarly, Guan et al. [115]
have proposed the neural-based model that utilizes commonsense knowledge by multi-source atten-
tion to generate the story ending for a given story context. Recently, Young et al. [116] augmented
the Seq2Seq framework with audio features of the user message for neural conversation generation
and outperformed the audio-free models. The latent intention dialogue model (LIDM) [117] was pro-
posed that employs a discrete latent variable to learn the complex distribution of dialogue intentions.
The latent variables represent the dialogue intentions, based on which a dialogue agent generates ap-
propriate responses. The LIDM model was trained using supervised using reinforcement learning
manners. Likewise, Xu et al. [118] proposed a hierarchical encoder-decoder that exploited a discrete
latent variable to learn dialogue intentions. The model augments latent intention inferred from the
user utterance and trained end-to-end manner under unsupervised, semi-supervised, or reinforcement
learning. In contrast, Jiang et al. [106] converted REs rules into trainable neural networks for the
text classification task. Zhang et al. [25] leveraged REs to generate weak labels for entity mentions
from unsupervised data and these weak labels are predicted by deep learning models during training.
Locascio et al. [119] proposed the LSTM model to generate regular expressions from the natural lan-
guage specifications of REs. On the other hand, Zhang et al. [25] employed regular expressions for
generating weak labels of the entity mentions from unlabeled data and then trained a neural network
to predict those RE-generated weak labels.

The above discussion of related work on the combination of neural networks with knowledge
was published in our papers [2, 3].

23

Doctoral Dissertation

24

第三章 Natural Language Understanding for Argumentative Dialogue Systems

3.1 Introduction

In the following natural language understanding is discussed with respect to Argumentative Di-
alogue Systems. The following chapter elaborates the work that has been conducted within the scope
of a joint PhD program between Southeast University and Ulm University, Germany and has been
published in Knowledge-Based Systems Journal [1].

The vast amount of often contradicting information in online sources has raised the need for
technologies and applications that assist humans in processing and evaluating them. While recent
developments in the field of argument mining [120] provided the tools to automatically retrieve and
structure such information from various sources, the resulting data structures are still large and not
necessarily intuitive to humans. Argumentative dialogue systems and conversational agents on the
other hand can process these structures [121, 122] and provide a natural and intuitive interface to
the data. However, the capabilities of such systems are limited by their ability to understand and
process user responses to the presented arguments, especially if they are presented bymeans of natural
language.

Within this chapter we introduce a natural language understanding (NLU) approach for the infor-
mation seeking and opinion building scenario discussed above that extracts the required information
from the user input:

a) Direct user commands to the system (for example end discussion, provide more information)

b) System arguments referenced in the user utterance,

c) User sentiment on the referenced system arguments.

In order to do so, we first recognize the general user intent, i.e. the type of utterance or speech
act. In a second step, we use semantic similarity measures to identify the argument that the utterance
refers to (if this is required).

Natural language understanding in the argumentation domain in general is quite challeng-
ing [123] which can be attributed to the complexity of the domain and the comparatively small amount
of conversational training data [124]. Consequently, NLU components in argumentative systems of-
ten suffer from small and/or domain-specific training data that hinders the generalization capability.

One main challenge is to design an NLU component that works in low-data scenarios where
only several examples available per system-specific intent (i.e., so-called few-shot learning setups).
Recently language models, such as Bidirectional Encoder Representations from Transformers (BERT
) [43] trained on large-scale unlabeled corpora have achieved state-of-the-art performance on natural
language processing tasks after fine-tuning. These large-scale pre-trained language models generate

25

Doctoral Dissertation

contextualized word embeddings and also encodes transferable linguistic features such as parts of
speech and syntactic chunks [125].

Considering the benefits of the pre-trained language models, we have utilized the BERT model
for the herein discussed NLU approach. More precisely, we have fine-tuned BERT for two NLU
tasks, namely intent classification and argument similarity. The proposed intent classifier model stack
Bidirectional-LSTM (BiLSTM) with an attention mechanism on top of pre-trained BERT model and
fine-tune the whole model. However, fine-tuning BERT on a small dataset may result in overfitting
which leads to performance degradation. Therefore, the proposed intent classifier combines sen-
tence representation from the argument similarity model with the representation of BERT+ BiLSTM
to improve intent classification performance on a small dataset and few-shot setups. The argument
similarity model uses a large supervised Semantic Textual Similarity (STS) [126] benchmark dataset
for training and produce high-quality sentence representation. The argument similarity model com-
bines word features from the BERT layer and the BiLSTM layer to produce high-quality sentence
representations which can be compared using cosine similarity. We test the presented approach in
the argumentative dialogue system BEA [127] that assists the user in building an opinion on a spe-
cific topic by providing incremental information and tracking the preference of the user towards it.
In order to train and evaluate the proposed model, we collect user utterances labeled with intent and
referenced arguments for the interaction with the BEA system for three different topics in an exten-
sive user study. Apart from testing our model in the BEA system, we evaluate the proposed intent
classifier and argument similarity models on the publicly available Banking77 and STS benchmark
datasets. The results are used to evaluate our approach in four different categories:

a) We compare intent classifier and argument similarity models separately to baseline approaches
on the User Study, Banking77, and STS benchmark datasets to test the robustness of the pro-
posed model on different domains.

b) We look at a few-shot intent classification scenario where only 10, 20, or 30 training examples
for each intent are sampled from full training data to test model performance in absence of
sizeable training data.

c) We train and evaluate the complete pipeline (intent classifier and argument similarity) on sepa-
rate topics of the User Study dataset to assess the robustness of the model against topic changes.

d) We collect a separate test data set from non-native speakers with a different cultural background
(Chinese students) in order to test the robustness of the proposed model against different levels
of language proficiency and cultural diversity.

The experimental results show a clear advantage of our proposed approach over the baselines for
the intent classification and argument similarity tasks on different datasets. Moreover, the outcomes
indicate a high and stable performance of the model for data from topics unseen during training and
different language proficiency.

26

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

图 3.1: Architecture of a spoken argumentative dialogue system. First published in our paper [1]. Reprinted with
permission from Elsevier.

3.2 Existing Argumentative Dialogue Systems

A variety of different argumentative dialogue systems have been introduced in the past years. In
[128] a dialogue system to enable a computer to engage its users in debate on a controversial issue
was introduced. In [127] the BEA system is proposed which is an argumentative dialogue system that
helps a user to form his or her opinion on a certain topic by providing arguments in a spoken dialogue.
Rach et al. [121] proposed EVA System to discuss controversial topics with the users. Hunter [129]
discusses formal models of dialogues involving arguments and counterarguments of user models, and
strategies, for automated persuasion system (APS). Ma et al. [130] provides a review of empathetic
dialogue systems that respond to users in an empathetic way.

On the other hand, argumentative systems that include natural language input like the IBM De-
bater1 aremainly focused on the exchange of arguments in competitive setups like debates, discussions
or persuasion [124, 131-133]. For instance, Rosenfeld and Kraus [134] proposed a methodology for
persuading people through argumentative dialogues to invoke an attitude and behavior change. In
contrast, we look at a cooperative setup and focus explicitly on the exchange of information and
opinions about the arguments presented by the system rather than a recognition of user arguments.
Discussion on existing argumentative dialogue systems was first published in our paper [1].

3.3 Natural Language Understanding Framework

As shown in Fig. 3.1, the architecture of a spoken human-computer dialogue system is composed
of a chain of five modules: speech recognition, natural language understanding, dialogue manager,
natural language generation and speech synthesis. In the following, we will focus on the second
module, the Natural Language Understanding. It processes text from the lexical and syntactic levels,
converting it into dialogue action at the discourse level. Therefore in general an intent recognition
takes place and potential additional information is analyzed. In our setup, the identified user intents
are referred to as speech acts, which are determined by the used dialogue model. In order to under-
stand and process the user utterance correctly, what the user wants (intent classification) and which

1https://www.research.ibm.com/artificial-intelligence/project-debater/

27

https://www.research.ibm.com/artificial-intelligence/project-debater/

Doctoral Dissertation

argument the user refers to (argument similarity) have to be identified. Thus, the herein presented
NLU framework consists of two components, an intent classifier model and an argument similarity
model. The user intent might consist of direct commands to the system (like “End the conversation”)
but can also include expressed opinions, sentiments, or preferences towards arguments presented by
the system. Given a successful recognition of the user intent, the referred content of the latter has to
be identified. This is accomplished by comparing the user utterance to the known arguments by the
means of semantic similarity measures. Further details of both NLU models, as well as the dialogue
system utilized throughout this work are given in the following sections.

3.3.1 BEA: An Application Scenario

The herein described NLU framework is tailored to be integrated in the argumentative dialogue
system BEA introduced by Aicher et al. [127] which conditions the tasks the NLU addresses. There-
fore, a short overview is given over BEA’s dialogue model and framework. BEA incrementally
presents arguments on a controversial topic, allows users to express preferences towards and be-
tween these arguments and utilizes the responses to model and monitor the user opinion in view of
the discussed topic throughout the interaction. The goal of BEA is to engage the users into an intuitive
and natural dialogue allowing them to explore different arguments with diverging stance and various
subtopics. In contrast to competitive systems BEA does not pursue a persuasive approach but tries to
provide pro and con aspects on a controversial topic to help the user to build a balanced opinion.
In order to navigate through a large amount of arguments and divide the discussed information in
reasonable and logically consistent parts, the system utilizes an argument structure based on the ar-
gument annotation scheme introduced by Stab et al. [135]. This scheme was originally introduced
for annotating argumentative discourse structures and relations in persuasive essays and meets our
purpose to offer the user a fair chance to decide unprejudiced which side (pro/con) to prefer or reject.
According to Stab et al. an argument consists of several argument components (major claim, claim
and premise) and two relations (support and attack) between them. Usually a single major claim for-
mulates the overall topic of the debate, representing the root node in the tree graph structure. Thus, it
is the only component without target. Likewise to Aicher et al. [127] in the following we use sample
debate from theDebatabase of the idebate.org2 website with themajor claimMarriage is an outdated
institution.
Claims are allegations which formulate a certain opinion targeting themajor claim but still need to be
justified by further arguments, premises respectively. Hence, a claim (parent node) is either supported
or attacked by at least one other premise (child node). For the remainder of this work, we refer to a
single node, i.e., an argument component in the structure as argument.
We only focus on non-cyclic graphs, meaning that each premise only targets one other component,
leading to a strictly hierarchical structure. Furthermore, the annotation scheme distinguishes two di-

2https://idebate.org/debatabase (last accessed 16 September 2021).
Material reproduced from www.iedebate.org with the permission of the International Debating Education Association. Copyright
© 2005 International Debate Education Association. All Rights Reserved.

28

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

表 3.1: Available speech acts and their corresponding user and system action. The table is taken from our paper [1].
Reprinted with permission from Elsevier.

Speech Act User Action System Action
stance Request for the current overall stance

of the user.
WBAGs are used to calculate and re-
turns current user stance on the over-
all topic.

exit Request to end the interaction with
the system.

System terminates interaction with
complimentary closing.

level-up Request to return to the previous ar-
gument (parent).

Changes the current state and
switches to the corresponding parent
node (one level up).

why(argument) Request for further information on an
argument.

Provides information about the cur-
rent argument by introducing all of
its child nodes.

prefer(argument) States preference towards the refer-
enced argument over all its siblings.

Calculates new stance according to
the preference model and updates
tree.

reject(argument) Rejects an argument. The argument and all its correspond-
ing child nodes are rejected, thus, a
new stance is calculated according to
the preference model and the tree is
updated.

rected relations a premise can have towards a claim (support and attack). Between sibling nodes,
there exists no explicit relation.
Due to the generality of the annotation scheme, the system is not restricted to certain data and gen-
erally every argument structure that can be mapped into the applied scheme can be processed by the
system.
In the interaction, BEA introduces sibling arguments related to the same parent argument in the tree
simultaneously. In particular all available argument components attacking or supporting the parent
node are introduced. Thus, the user is able to express preferences3 between the siblings or navigate to
another sub-structure depending on his/her interest. If a user expresses a preference, it is crucial the
system can identify the user intent and the sibling which is preferred. This expressed preference is
incorporated into a calculation that determines the user’s overall opinion on the topic of the discussion
and is updated in real-time during the interaction.

The interaction is divided in turns such that each user action (’move’) is followed by a system

3For ease of reading, ’preferences’ here denotes both a negative (rejecting) and positive (approving/preferring) attitude towards an
argument.

29

Doctoral Dissertation

response and vice versa. The six different user moves the user is able to choose from and the
corresponding system actions are shown in Table 3.1. These moves are equivalent to the intents that
have to be recognized by the NLU.
Three moves (prefer, reject, and why) refer to a specific argument and require the NLU to identify
this argument. Whereas prefer, reject allow the user to express his or her opinion towards the
argument, the why move can be used to ask the system for further information on the argument.
Thus, the selected argument the why move refers to, becomes the parent node and its attacking and
supporting children are displayed. Since BEA introduces only siblings related to one parent node at
the same time, the list of siblings serves as the list of possible reference arguments for the NLU.
In addition to that, the user is able to request the calculated opinion (weight) on an argument (stance).
To calculate the user stance the system uses the preference statements and determines the respective
stance by utilizing weighted bipolar argumentation graphs (wBAGs) [136]. Therefore the weights
are iteratively determined following the tree structure and updated after every preference statement.
The user can navigate through the tree, by using the why move to descend and the level up move to
ascend. The latter takes him/her back to the previous argument. The conversation with BEA can be
terminated by the user at any time by performing the exit move.
The natural language generation of the system is based on the original textual representation of the
argument components. As discussed in [127] the annotated sentences were slightly modified to form
a stand-alone utterance which serves as a template for the respective system response. Additionally,
a list of natural language representations for each type of move was defined. During the generation
of the utterances, the explicit formulation and introductory phrase is chosen from this list randomly.
E.g. regarding the why move the relation (support or attack) of the presented children is clearly
stressed by specific formulations, such as This claim is supported by the argument that... and A
contrary indication is the fact that....

In the following, an exemplary dialogue, taken from [127] is shown to demonstrate the targeted
user system interaction. The presented arguments are taken from a sample debate from theDebatabase
of the idebate.org4 website.

In claim5 ”Marriage undermines same-sex couples and single parent families as legitimate ways
of raising children.”, which is addressed by the user with a why move.

System: ”This claim is supported by the argument that marriage is seen as the best way to raise children
(C1). Another argument in favor is the existence of marriage is essentially saying that same-sex
couples and single parents are less able of raising children than heterosexual couples (C2). A
contrary indication is the fact that the idea that the existence of marriage undermines other
methods of raising children is ridiculous (C3).”

4https://idebate.org/debatabase (last accessed 09 January 2018).
Material reproduced from www.iedebate.org with the permission of the International Debating Education Association. Copyright
© 2005 International Debate Education Association. All Rights Reserved.

5For the sake of simplicity we define this argument as the major claim of this subdialogue.

30

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

User: ”I do not believe that this is the best way to raise children.”

System: ”It is interesting that you rejected this claim (C1).”

In order to realize this dialogue the system has to fullfill two tasks. First, the intent of the user has
to be identified (rejection) and second, it has to determine which of the three claims the user wants
to reject (”marriage is seen as the best way to raise children”). Therefore, the intent classification
model addresses the first problem, introduced in Subsection 3.3.2. The second part represents the
argument similarity model described in Subsection 3.3.3. Both taken together form the complete
system pipeline.

3.3.2 Intent Classifier Model

The architecture of the proposed intent classifiermodel is depicted in Fig. 4.5. Themodel consists
of two main components namely: BERT Transformer Encoder and BiLSTM classifier. Further details
of these components are given in the following subsections.

BERT Transformer Encoder

The BERT model computes user utterance representation by splitting the utterance into a list
of tokens and then combines token, position, and segment embeddings for producing a fixed-length
vector. Moreover, the special classification [CLS] token is added at the start of each utterance. Simi-
larly, special [SEP] token is inserted at the end of each sentence as a final token. The BERT encoder
then computes the user utterance representations i.e. hidden states for each token xt as shown in
equation 5.1.

Hn
t = BERT (x[CLS], x1, .., xt, x[SEP]) (3.1)

where Hn
t = (hn

[CLS], h
n
1 , .., h

n
t , h

n
[SEP]), n denotes number of BERT encoder layer, and ht is the

contextual representation of token t. The final hidden state HN
t (N = 12), of each token is passed to

a task-specific LSTM layer.

Bidirectional-LSTM on BERT

The Long short-term memory (LSTM) [54] is a powerful architecture capable of capturing long-
range dependencies via time-connection feedback. Our proposed model stacks a Bidirectional-LSTM
(BiLSTM) on top of the final BERT encoder layer. The forward LSTM and a backward LSTM of
BiLSTM read in the final hidden states of all the words HN

t (N = 12), produced by BERT in two
opposite directions and generates output sequences

−→
ht and

←−
ht . The two outputs are then concatenated

to access both past and future context for a given word as given in equation 3.2.

−→
ht =

−−−−→
LSTM(HN

1 , ..., HN
t)

←−
ht =

←−−−−
LSTM(HN

1 , ..., HN
t)

ht = [
−→
ht ,
←−
ht]

(3.2)

31

Doctoral Dissertation

图 3.2: An illustration of argument similarity and intent classifier model. Argument similarity model generates
sentence representations Sa, Sb by applying inner attention on BERT encoder and BiLSTM encoder, respectively.
Intent classifier model obtains sentence representation u by BERT+BiLSTM encoder. The final representation is
produced by concatenating sentence representation u and s and passing through a fully-connected layer. The figure
is taken from our paper [1] with permission from Elsevier.

32

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

where ht is the representation of the given word obtained by concatenating the forward hidden
state

−→
ht and backward hidden state

←−
ht .

Inner-Attention

To encode the variable-length sentence into a fixed-sized vector representation, we employ an at-
tention mechanism. The attention mechanism is used to give more focus on the important information
of the sentence. The attention mechanism is applied to the whole hidden states H = (h1, h2, ..., ht)

of BiLSTM to generate vector representation of the sentence. As suggested in [137], we use multiple
attention views to focus on a different part of the sentence. The attention mechanism is defined as
follows:

uw = W2(tanh(W1H
⊺ + b1) + b2

α = softmax(uw)

u = Hα⊺

(3.3)

where W1 ∈ Rdw×2d and W2 ∈ Rr×dw are the trainable weight metrics; b1 ∈ Rdw and b2 ∈ Rr

are the trainable bias, here r is the number of attention heads, d represents the number of hidden
units of LSTM, dw is the size of vector parameters we can set arbitrarily. The softmax function is
applied along the second dimension of its input, which ensures computed weights sum up to 1. We
then compute the weighted average of context vectors r by multiplying the attention matrix α and
LSTM hidden states H to generate the sentence representation u. The final representation u along
with sentence representation s obtained from the argument similarity model is given as input to a fully
connected layer for predicting the corresponding user intent (speech act).

ŷ = softmax(W [u, s] + b) (3.4)

where softmax(zi) = ezi∑
k ezk

,W ∈ Rd×|I| and b ∈ R|I| are the weights and bias of the fully connected
layer respectively, s is the sentence representation as defined in Eq 3.8, and I denotes the user intent
vocabulary. Furthermore, the model minimizes the cross-entropy loss between true user intent and
predicted user intent ŷ.

L = −
l∑

i=1

yilog(ŷi) (3.5)

where i is the number of intents while yi is actual user intent and ŷi is predicted user intent.

3.3.3 Argument Similarity Model

The argument similarity model operates on the contextual word features obtained from the BERT
model and word features with common sense knowledge obtained from training BiLSTM on top of
ConceptNet Numberbatch [138]. At a high level, our model consists of two parts: BERT Encoder
and BiLSTM.

33

Doctoral Dissertation

In the first part, each word of the sentence is passed through BERT encoder layers and output
vectors are given as input to the inner-attention layer. Attention mechanism provides summation
vectors which are dotted with BERT output vectors to generate a sentence vector. This yields

Ha = BERT (x[CLS], x1, .., xt, x[SEP])

uwa = Wa2tanh(Wa1Ha + ba1) + ba2

αa = softmax(uwa)

Sa = Haα
⊺
a

(3.6)

where Wa1 ∈ Rdw×d and Wa2 ∈ Rr×dw are the weight metrics; ba1 ∈ Rdw and ba2 ∈ Rr are
the bias, where r is the number of attention heads, d represents the size of BERT output vectors. We
compute weighted average of context vectors r by multiplying the attention matrix αa and BERT
output vectors Ha to generate the sentence representations1a.

In the second part, each sentence is passed through the ConceptNet Numberbatch embedding
layer to obtain a semantic vector for each word. ConceptNet Numberbatch embedding combines
embeddings from word2vec [139], GloVe [140], and structured knowledge from ConceptNet [141],
which provide common sense knowledge along with surrounding word context. These word em-
beddings are given as an input to the BiLSTM layer for modeling the temporal relationship between
word embeddings. Then, the model utilizes an attention mechanism on the hidden states of BiLSTM
to generate a vector representation of the sentence.

−→
Hb =

−−−−→
LSTM(x1, .., xt)

←−
Hb =

←−−−−
LSTM(x1, .., xt)

Hb = [
−→
Hb,
←−
Hb]

uwb = Wb2tanh(Wb1Hb + bb1) + bb2

αb = softmax(uwb)

Sb = Hbα
⊺
b

(3.7)

where Hb represents all hidden states of BiLSTM; Wb1 ∈ Rdw×2d and Wb2 ∈ Rr×dw are the
weight metrics; bb1 ∈ Rdw and bb2 ∈ Rr are the bias, d represents the number of hidden units of
LSTM, r is the number of attention heads. The weighted sum of hidden state based on attention score
weights αb are used to generate final representation sb. The outputs of two components are added
together and passed through the fully-connected layer to generate final sentence embedding as shown
in Fig. 4.5 and given in equation 3.8.

s = W (sa + sb) + b (3.8)

whereW and b are the weight matrix and bias for a fully-connected layer.
In order to produce semantically meaningful sentence embeddings, we train the argument simi-

laritymodel on the STS benchmark dataset. Themodel takes sentence-pair as input. For each sentence

34

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

of sentence-pair, the model calculates sentence embedding with the BERT encoder part and BiLSTM
part. The sentence embeddings generated by each part are added together and passed through a fully
connected layer. The final embeddings of two sentences are compared using cosine similarity. The
model minimizes the mean squared error between the predicted cosine similarity score and the la-
beled similarity score. We choose the STS dataset for training the model as it fits best for argument
similarity task of determining the similarity between two sentences. At inference time, the model
generates vector representations for user utterance and possible arguments. Cosine distance between
these vectors is then calculated and closest argument vector to a user utterance vector is identified as
a reference argument.

3.4 Data Collection

In order to evaluate our NLU framework, we collected natural language utterances labeled with
intent and (if needed) reference argument in an online survey. To this end, participants were asked
to paraphrase possible (pre-defined) user utterances occurring in the interaction with BEA. After em-
phasizing to formulate all answers in their own words and showing four examples, the survey was
conducted by showing three random arguments to the participants and asking them to reformulate
different requests for each speech act. In case of prefer, reject, and why it was clearly specified which
argument the subjects should refer to. To reduce a potential bias the formulation of the instruction
was altered for each speech act and participant. For instance, an instruction was: “Please formulate
that you agree with the argument, that ’nuclear weapons had become a source of extreme risk’6”. To
ensure the quality and validate the answers, copy-pasting and skipping answers were not allowed.
Furthermore, we required at least five words in each response, which referred to an argument. To
make sure that all participants were paying attention to the instructions, a control question was added
which asked the user to precisely repeat a sentence. The data collection was divided into two parts
with separate user groups: In the first part, we conducted an anonymous survey via clickworker7 with
200 native English speakers from the UK to collect data for training and testing. In the second part,
the group of participants consisted of 15 Chinese Master and Ph.D. students, to test whether there is a
measurable effect if the interaction is conducted with non-native speakers. As we aim to evaluate our
framework especially with regard to cross-domain applicability, we generated samples on three dif-
ferent topics. Two out of three arguments were taken from an annotated debate on the topicMarriage
is an outdated institution from theDebatabase of the idebate.org8 website [142]. The other remaining
argument was sampled from the IBM corpus on claim and evidence detection [143] for one of the two
topics All nations have a right to nuclear weapons and The sale of violent video games to minors. The
data collection resulted in 1616 valid user responses for the first group and 143 responses from the
second group.

6Copyright IBM 2014. Released under CC-BY-SA.
7https://marketplace.clickworker.com (last accessed 06 May 2020)
8https://idebate.org/debatabase (last accessed 09 January 2018)

35

Doctoral Dissertation

3.5 Experimental Setup

In this section, we define the experimental setup for evaluating the proposed NLU approach. We
evaluate the proposed model with respect to four different categories: The first one evaluates intent
classification and argument similarity models separately against suitable baselines on different dataset
described below:

User-Study: In Section 3.4, we have discussed the data collection of the User Study dataset. For
the experiments, we divided the dataset into train and test sets. We train the intent classifier model on
the two topics i.e., All nations have a right to nuclear weapons and The sale of violent video games
to minors. The model is then evaluated on a large test set concerned with marriage is an outdated
institution. We adopt this train and test data split to get an estimate of the model’s robustness against
topic changes. The statistics of train and test samples for each speech act are given in table 3.2 and
table 3.3 provides a sample example of each speech act.

BANKING77: The dataset of Coope et al. [144], dubbed BANKING77, is composed of 13,083
customer service queries annotated with 77 intents. The dataset is divided into train and test sets. The
test set contains 3080 examples and the full training set contains 10003 examples.

STS benchmark (STSb): The STS benchmark [126] dataset is a popular dataset for training and
evaluating textual similarity task. It comprises 8628 sentence pairs from three categories captions,
news, and forums. The dataset is divided into train-set (5749), valid-set (1500), and test-set(1379).
We train the argument similarity model on the STSb training set and evaluate its performance on
the user study dataset and STSb test dataset by computing cosine-similarity between the sentence
embeddings. Furthermore, the user study test dataset comprises 2028 sentence pairs for 501 user
utterances. For the user study dataset at prediction time, the model generates vector representations
for user utterance and possible arguments. Cosine distance between these vectors is then calculated
and closest argument vector to a user utterance vector is identified as a reference argument.

In the second evaluation category, we look at a few-shot intent classification scenario where only
10, 20, or 30 training examples are sampled for each intent from full training data to get an estimate
of the model’s performance when small training data is available. It is noteworthy that our argument
similarity model is trained on STSb and doesn’t require task-specific training data whereas the intent
classifier model needs task-specific training data to learn the required system-specific intents. Due to
this reason, we check few-shot setups for the intent classification task where few task-specific training
data is available.

In the third evaluation category, we train and evaluate the complete pipeline (intent classifier and
argument similarity) on separate topics of the user study dataset to assess the robustness of the model
against topic changes.

The fourth evaluation category compares the results achieved with utterances from native speak-
ers against results achieved with utterances from non-native speakers with a different cultural back-
ground to get an estimate of the model’s sensitivity towards language proficiency.

36

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

表 3.2: Train and test examples statistics for each speech act of user study dataset. Table taken from our paper [1]
with permission from Elsevier.

Speech
Act

Train Test
(UK)

Test
(China)

Exit 72 73 16
Level-up 72 73 16
Stance 71 74 15
Why 189 203 32
Prefer 79 305 33
Reject 110 304 31

表 3.3: Example utterances with annotated labels from user study dataset. The table referred from our paper [1].
Reprinted with permission from Elsevier.

Utterance Label
What is my stance right now? stance move
I would like to finish. exit move
Please return to the previous argument. level up move
Please tell me more why marriage promotes better way to raise child. why move
I think marriage is good way to raise children prefer move
I reject argument about marriage is an unreasonable expectation reject move

37

Doctoral Dissertation

3.5.1 Training Setup

For the intent classification, we employ the Bert-Base model9 with 12 Transformer layers, 768
hidden states, and 12 self-attention heads. The size of the hidden units in uni-direction LSTM is 512
and the number of attention head r is 5. Furthermore, we use Adam optimizer with default values of
β1 = 0.9 and β2 = 0.99, and a learning rate of 1e− 4 and 2e− 5 for training the BiLSTM and fine-
tuning whole model respectively. Each update is computed through a batch size of 8 or 16 training
examples and the number of epochs per batch are 32, 25, 16, and 8 epochs for 10-shot, 20-shot, 30-
shot, and full-data settings, respectively. We apply the dropout as a regularization technique for our
model to avoid over-fitting. We set the dropout rate as 0.1 for all dropout layers. We employ the
transformers [145] library to train our intent model.

For training argument similarity, we used Adam optimizer with a learning rate of 2e − 5 and a
batch size of 16 training samples. Furthermore, the model uses the pre-computed 300-dimensional
word embeddings ConceptNet Numberbatch. The number of hidden units in uni-direction LSTM is
512 and the number of attention heads is 5. The model is trained for 8 epochs.

3.5.2 Evaluation Metrics

The evaluationmetric used for intent classification is the accuracymetric. For the argument simi-
larity task on the user study dataset, the model performance is measured by the accuracy of identifying
user reference arguments. As suggested in [146], we use Spearman correlation for the semantic tex-
tual similarity (STS) task. The Spearman’s rank correlation is computed between the cosine-similarity
of sentence embeddings and gold labels for the STS dataset.

Accuracy: Accuracy calculates the number of intent/argument correctly predicted by the model
for all intent/argument test samples, as given in the following equation.

Accuracy =
#true_positives+ #true_negatives

#true_positives+ #false_positives+ #true_negatives+ #false_negatives
(3.9)

3.5.3 Sequential Training

The proposed approach consists of two sub-models namely: intent classification and argument
similarity. We trained these models in a sequential manner. We first train the argument similarity
model on the STS benchmark dataset. The detailed training steps are presented in algorithm 3.1. After
training the argument similarity model, its weights are fixed. The sentence representation obtained
from the argument similarity model is then given as input to a fully connected layer of intent classifier
model. The proposed approach then trains the intent classifier model; its training is divided into two
stages. In the first stage, we freeze the BERT encoder parameters and only train the task-specific
BiLSTMand fully connected layer for four epochs. In the second stage, we unfreeze all BERT encoder
parameters and fine-tune all parameters of BERT encoder as well as BiLSTM, and fully connected

9https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

38

https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

layer in an end-to-endmanner. We adopt this training strategy to train themodel with different learning
rates for different epochs that helps the model to retrain the pre-trained knowledge of the BERT and
avoid catastrophic forgetting of this knowledge during fine-tuning [90, 147]. Detail training steps are
presented in algorithm 3.2.

算法 3.1 Training procedure of argument similarity model. Adopted from our paper [1].
Input: Training data D = {xn, yn}Nn=1

1 Load pre-trained BERT model parameters θ1

2 Load pre-trained ConceptNet Embedding

3 Initialize BiLSTM parameters θ2
4 for each epoch do
5 Sample mini-batch (x, y) ⊂ D

6 Construct argument similarity model with Eq 3.8

7 Train argument similarity model with a learning rate of 2e− 5

8 Update parameters θ1, θ2
Output: Model parameters

算法 3.2 Training procedure of intent classifier model. Adopted from our paper [1].
Input: Training data D = {xn, yn}Nn=1

1 Load pre-train BERT parameters θ3

2 Initialize BiLSTM parameters θ4

3 Freeze parameters θ3

4 for each epoch do
5 Sample mini-batch (x, y) ⊂ D

6 Construct intent classifier model with Eq 3.4

7 Train intent classifier model with a learning rate of 1e− 4

8 Update parameters θ4
9 Unfreeze parameters θ3 for each epoch do
10 Sample mini-batch (x, y) ⊂ D

11 Load trained intent classifier model

12 Continue train intent classifier model with a learning rate of 2e− 5

13 Update parameters θ3, θ4
Output: Model parameters

39

Doctoral Dissertation

3.6 Evaluation and Results

3.6.1 Evaluation–Intent classification

We compare the performance of the proposed intent classifier model against the following base-
line methods.

1. Embedding Classifier: The embedding intent classifier model from Rasa10 NLU inspired by
StarSpace [148], counts distinct words of the training data and provides these word token counts
as input features to the intent classifier. We trained this model using the Rasa framework for
300 epochs.

2. Logistic Regression with BERT (LR + BERT): The model uses features obtained from the pre-
trained Bert model. The BERT model processes the user utterances and the final hidden state
of the [CLS] token of each utterance is passed as features to the logistic regression model. The
model is then trained on these extracted features to predict the user intent.

3. Dual Intent and Entity Transformer (DIET) Classifier: TheDIET [78] model is multi-task archi-
tecture for intent classification and entity recognition. The model obtains dense features from
pre-trained word embedding models. These features are then used by 2 layer transformer with
relative position attention. The BERT-base model is employed for producing dense features.
The model is trained using the Rasa framework for 100 epochs.

4. BERT Classifier: In the pre-trained BERT model [43], we add a fully-connected layer on top
of the last encoder layer [CLS] token for classifying user intent. The model is fine-tuned for 8
epochs with a batch size of 16 and a learning rate of 2e− 5.

5. DistilBERT Classifier: The DistilBERTmodel [149] utilizes knowledge distillation during pre-
training to reduce the size of the BERT model. We added one fully-connected layer on top of
the final encoder [CLS] token for predicting user intent. The model is fine-tuned using Adam
optimizer with a learning rate of 2e− 5 and a batch size of 16 for 8 epochs.

6. RoBERTa Classifier: The RoBERTa model [150] optimizes the BERT pre-training approach
by employing dynamic masking, large mini-batches, and a larger byte-level byte-pair encoding
(BPE) for training the robust model. The fully connected layer is applied on top of [CLS]
token of the final encoder layer for predicting user intent. The model is fine-tuned with Adam
optimizer using a learning rate of 2e− 5 and a batch size of 16 for 8 epochs.

10https://rasa.com/

40

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

表 3.4: Intent classifier performance comparison on Users Study and Banking77 datasets with the different number
of training examples i.e., 10-shot (10 training examples per intent), 30-shot (30 training examples per intent), and
full training data. Performance is reported in accuracy scores × 100. First published in our paper [1]. Reprinted
with permission from Elsevier.

User Study Banking77
Model 10-shot 20-shot 30-shot Full 10-shot 20-shot 30-shot Full

Embedding 58.9 67.5 70.3 73.1 59.0 72.2 74.8 86.2
LR+BERT 55.9 68.9 75.1 76.3 56.2 69.0 75.1 86.9
DIET 51.3 69.4 75.6 82.3 55.8 76.4 82.6 90.3
DistilBERT 65.9 80.9 83.4 88.2 79.1 85.5 88.1 92.9
BERT-tuned 71.5 82.1 85.1 89.3 82.0 86.7 88.5 93.2
RoBERTa Classifier 63.5 82.0 85.0 89.3 76.5 87.4 88.6 93.2
Albert Classifier 63.6 83.4 85.2 89.2 75.9 86.5 88.2 92.3
BERT+BiLSTM +ArgSim 74.6 85.0 87.3 89.7 83.5 88.1 90.2 93.9

7. Albert Classifier: The Albert model [151] improves the BERT model by incorporating fac-
torized embedding parameterization and cross-layer parameter sharing techniques. The fully-
connected layer is placed on top of the last encoder layer. The model is fine-tuned using a
learning rate of 2e− 5 with the Adam optimizer for 8 epochs.

Intent classification results are presented in Table 3.4 (statistically significant with p < 0.05).
The results demonstrate that the embedding classifier performs poorly in 30-shot and full data against
all baseline approaches because it utilized merely the word counts and does not consider pre-trained
language model information. In contrast, LR + BERT model obtained better results than the embed-
ding classifier, because it extracts features from the pre-trained language model for predicting user
intent. Furthermore, the DIET classifier employed 2 Transformer encoder layers to learn the contex-
tualized sentence representation and outperformed the former models. The only case where the DIET
classifier performs poorly than the embedding classifier is the 10-shot case. The reason behind this is
the lack of training data as the pre-trained languagemodel employed by the DIETmodel requires more
training data to generalize well. Besides, DistilBERT, BERT, RoBERTa and Albert models achieved
superior results than the DIET classifier, because these models employ 6, 12, and 12 Transformer en-
coder layers respectively, as compared to 2 Transformer encoder layers used by the DIET classifier,
therefore, these models provide better and robust utterance representation. We observe the marginal
differences in the performance of the BERT, Albert and RoBERTa classifiers. Furthermore, Albert
and RoBERTa classifier perform better than DistilBERT in most cases. The only setup where Dis-
tilBERT performs better than Albert and RoBERTa is a 10-shot setup. This indicates that RoBERTa
requires a large amount of data to generalize well. Nevertheless, our proposed model outperforms all
baseline methods and performance increases by approximately 16%, 13%, and 7% better accuracy
score compared to embedding classifier, LR + BERT, and DIET classifier, respectively on the full

41

Doctoral Dissertation

10 20 30 200
Number of training_examples per intent

50

55

60

65

70

75

80

85

90
A

cc
ur

ac
y

Embedding
LR+BERT
DIET
DistilBERT
BERT
BERT+BiLSTM+ArgSim

图 3.3: Performance comparison of the intent clas-
sifier on the User study dataset with respect to the
number of training examples per intent. Plot re-
ferred from our paper [1]. Reprinted with permis-
sion from Elsevier.

10 20 30 200
Number of training_examples per intent

55

60

65

70

75

80

85

90

95

A
cc

ur
ac

y

embedding
LR+BERT
DIET
DistilBERT
BERT
BERT+BiLSTM+ArgSim

图 3.4: Performance comparison of the intent clas-
sifier on the Banking77 dataset with respect to the
number of training examples per intent. Plot re-
ferred from our paper [1]. Reprinted with permis-
sion from Elsevier.

data setup of the user study dataset. Furthermore, the improvement over embedding classifier, LR
+ BERT, and DIET classifier are 7.7%, 7%, and 3.7% on the full data setup of Banking77 dataset.
This is because the proposed BERT+BiLSTM+ArgSim model fine-tuned the BERT model to obtain
contextual utterance representation for predicting user intent. Additionally, we observe that stacking
BiLSTM on top of the BERT model and concatenating sentence representation from the argument
similarity model provides better results than stacking just a single fully-connected layer.

From Fig. 3.3 and Fig. 3.4, we can observe that in the few-shot scenario i.e., 10-shot, 20-shot, and
30-shot; our BERT + BiLSTM+ArgSim model performance gains are more prominent over baselines
models. The improvement gains of our model over the state-of-the-arts DistilBERT, RoBERTa, and
BERT classifier models are almost 9%, 11%, and 3% for the user study dataset and 4%, 7%, and 1.5%
for the Banking77 dataset in a 10-shot setup (10 samples per intent). Similarly, we see the proposed
model significantly outperforms all model in the 20-shot and 30-shot setup on both datasets. Overall,
our model has a clear advantage over other methods in all setups, and more prominently in few-
shot setups. Furthermore, the proposed model is statistically significant as compared to Embedding,
LR+BERT, DIET, DistilBERT, RoBERTa, and BERTmodels with p-value of 1e−05, 2e−05, 0.0019,
0.023, 0.044, and 0.049 respectively, on user study dataset.

3.6.2 Evaluation–Argument Similarity

We evaluate the performance of the proposed argument similarity model for identifying the ref-
erence argument task and also validate our model performance for the common semantic textual simi-
larity task. We perform experiments on user study and semantic textual similarity benchmark dataset.
We compared the results against the following baseline methods.

1. Average of glove embeddings;

2. Average of ConceptNet Numberbatch embeddings;

42

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

3. Mean of last layer tokens representations of BERT;

4. InferSent model [50] is trained on a natural language inference dataset using the siamese BiL-
STM network structure with max-pooling over the output.

5. Universal Sentence Encoder [51] is a strong sentence-level embedding model trained using
transformer architecture and multiple objectives.

6. Sentence-BERT model [45] a state-of-the-art sentence embedding model is trained using a
siamese network structure over BERT.

7. Sentence-RoBERTa model [45] SRoBERTa fine-tunes the RoBERTa pre-trained model to pro-
duce robust sentence embeddings which can be compared using cosine similarity. We fine-tune
the RoBERTa network on the STSB dataset with Adam optimizer using a learning rate of 2e−5.
We report experiments using the mean pooling strategy.

8. Sentence-XLM-Align model fine-tunes cross-lingual language models word alignment (XLM-
Align) pre-trained model [152] to generate useful sentence embeddings. We fine-tune the pre-
trained XLM-Align model on the STSB dataset using Adam optimizer with a learning rate of
2e− 5. The mean pooling strategy is applied to produce fixed-sized sentence embeddings.

9. Albert model [151] improves the BERT model by incorporating factorized embedding param-
eterization and cross-layer parameter sharing techniques. The model is fine-tuned on the STSB
dataset using a learning rate of 2e− 5 with the Adam optimizer. The results are reported using
the mean pooling strategy.

Table 3.5 presents the results corresponding to the argument similarity task. The results generated
by our model significantly outperform InferSent, SXLM-Align, and SBERT by achieving approxi-
mately 4%, 2%, and 2% better accuracy on the user study dataset, respectively. The SXLM-Align
model produces worse results than SBERT and SRoBERTa on both the user study dataset and STSB
dataset. On the other hand, the SRoBERTa model performs slightly better than the SBERT model on
both datasets. Albert model performs better on STSB datasets but produces average results on the
user study dataset. Also, USE performs better than InferSent and SBERT on the user study dataset,
as it is pre-trained on question answering data in addition to NLI data, which is related to the classi-
fication task. Our model performance matches the performance of the state-of-the-art USE model on
the user study dataset. Furthermore, the mean of last layer tokens representations of BERT embed-
dings, average glove embeddings, and an average of ConceptNetNumberbatch embeddings perform
poorly on the STSB dataset. However, for the user study dataset, these methods produced better re-
sults than the supervised InferSent model trained using the siamese structure on NLI data. The reason
behind this is that for identifying the reference argument task, we calculate the cosine-similarity be-
tween candidate arguments and current utterance, and the closest argument to the current utterance
embedding is selected as a reference argument. This allows two-sentence embeddings to have high

43

Doctoral Dissertation

表 3.5: Argument similarity model performance comparison on User Study and STS datasets. SBERT-STSb-base,
SBERT-STSb-large, and ArgSim models are trained on the STS-B dataset. Performance on user study is reported
in the accuracy scores × 100, and performance on STS is reported in SPEARMAN × 100. Table referred from our
paper [1]. Reprinted with permission from Elsevier.

Model User Study STSB
Accuracy SPEARMAN

Avg. GloVe 93.2 61.5
Avg. ConceptNet 94.0 65.1
Avg. BERT 93.2 47.2
InferSent - Glove 90.2 75.8
USE 95.2 78.2
SBERT-STSb-base 94.0 84.6
SBERT-STSb-large 94.0 84.4
SRoBERTa-STSb-base 94.4 84.8
SXLM-Align-STSb-base 93.8 80.5
Albert-STSb-base 94.1 79.7
ArgSim (Ours work) 95.2 85.1

and low similarity on certain dimensions and still correctly identify a reference argument. In contrast,
the STS task is a regression task, which estimates the similarities between two-sentence embeddings
by cosine-similarity and treats all dimensions equally. This indicates average word embeddings are
infeasible for the STS task. Nonetheless, our model trained on the STS benchmark yields better sen-
tence representation for argument similarity task and STS task as it combines contextualized word
representation with common sense knowledge obtained from ConceptNet Numberbatch embeddings.

3.6.3 Evaluation- Complete Pipeline

We evaluate the performance of the complete pipeline consists of intent classification and argu-
ment similarity modules for native English speakers and non-native English speakers. The perfor-
mance of intent classification and argument similarity module is measured in F1 score and accuracy,
respectively. The complete pipeline performance is measured in an accuracy matrix. The overall
accuracy of the complete pipeline is the percentage of utterances where the pipeline correctly predicts
both intents and presented arguments. The model is trained on the native speakers dataset and eval-
uated on native and non-native speakers test-set. The statistics of train and test samples are given in
table 3.2. The results are shown in table 3.6. We can observe from the results that both intent classifier
and argument similarity models perform better on the native speaker dataset. The respective improve-
ments are around 1% and 5% for intent classifier and argument similarity models. However, we do
not observe a significant difference in accuracy between native speakers and non-native speakers on
the complete pipeline. Overall, this proves that the proposed framework is robust to the different

44

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

表 3.6: Complete pipeline performance of the proposed framework on native speakers and Non-native speakers
datasets. Table taken from our paper [1]. Reprinted with permission from Elsevier.

Model Intent F1 Sim Acc. Overall Acc.
Native Speakers 89.8 95.2 87.7
Non-native Speakers 88.8 89.7 87.3

language proficiency of the users.

3.6.4 Impact of hyper-parameters

The learning rate, batch size, and hidden size are the most important hyper-parameters of the
proposed model. The model performance is analyzed concerning these parameters. We choose learn-
ing rate from [0.001, 0.0001, 1e− 5, 2e− 5, 5e− 5]. In Fig. 3.5 we can see that the learning rate has a
significant impact on model performance for both intent classification and argument similarity tasks.
Furthermore, we observe that the proposed model performs poorly on learning rates of 0.001 and
0.0001, which shows that the model fails to converge on high learning rates. In most cases, a lower
learning rate produces better results. Especially when the learning rate is 2e− 05 model achieves the
highest accuracy on the user study dataset for both tasks. Furthermore, we choose a batch size from a
range of [4, 8, 6, 32, 64, 128]. Fig. 3.6 reveals that change in batch size has less impact on model per-
formance for argument similarity task and full data setup of intent classification. The model produces
a higher accuracy on batch sizes of 16 and 32 for the full data setup of intent classification. How-
ever, batch size has a significant impact on model performance for the 10-shot intent classification
setup. The model performance increases with a small batch size of 4 and 8. Especially when batch
size is 8, the model achieves the highest accuracy of 74.6%. As the value of batch size increases,
the number of mini-batches decreases, and model performance decreases. We explore the following
values h = [4, 8, 6, 32, 64, 128] for hidden dimensions of LSTM. From Fig. 3.7 we can observe that
the performance of the model does not change significantly for different sizes of hidden dimensions
of LSTM. Results suggest that the proposed model is robust to hidden dimensions of LSTM for intent
classification and argument similarity tasks. Furthermore, a lower learning rate and smaller batch size
yield better results especially for the 10-shot intent classification setup.

3.6.5 Ablation Study

To demonstrate the effectiveness of different aspects of the intent classifier model, we conduct an
ablation study on the two datasets. The results are shown in table 3.7. It shows that adding BiLSTM
and SimBERT representation improves the performance of the plain fine-tuned BERTmodel. Adding
BiLSTM provides performance improvement of 1.3%, 1.1%, 0.6%, and 0.2% for 10-shot, 20-shot,
30-shot, and full-data respectively on user study dataset, and 0.6%, 0.7%, 0.7%, and 0.2% improve-
ment on the Banking77 dataset. Furthermore, adding representation from the argument similarity

45

Doctoral Dissertation

0.001 0.0001 1e-05 2e-05 5e-05
learning rate

60

70

80

90

A
cc

ur
ac

y

Arg_Similarity
full-data Intent Classify
10-shot_Intent Classify

图 3.5: Effect of learning rate on model perfor-
mance for intent classification and argument simi-
larity tasks onUser study data set. Plot adopted from
our paper [1]. Reprinted with permission from El-
sevier.

4 8 16 32 64 128
batch size

50

60

70

80

90

A
cc

ur
ac

y Arg_Similarity
full-data Intent Classify
10-shot_Intent Classify

图 3.6: Effect of batch size on model perfor-
mance for intent classification and argument simi-
larity tasks on User study data set. Plot taken from
our paper [1]. Reprinted with permission from El-
sevier.

64 128 256 512 1024
hidden size

75

80

85

90

95

A
cc

ur
ac

y Arg_Similarity
full-data Intent Classify
10-shot_Intent Classify

图 3.7: Effect of hidden size on model perfor-
mance for intent classification and argument simi-
larity tasks onUser study data set. Plot referred from
our paper [1]. Reprinted with permission from El-
sevier.

model further improves the performance of the proposed model, especially in the 10-shot, 20-shot,
and 30-shot scenarios, and corresponding improvements on the user study dataset are 1.8%, 1.8%,
and 1.6% respectively. The overall performance gains over BERT-tuned are 3.1%, 2.9%, 2.2%, and
0.4% respectively for the user study dataset, and 1.5%, 1.4%, 1.2% and, 0.7% improvement for the
Banking77 dataset.

We start the ablation of the argument similarity (ArgSim) model by removing different com-
ponents in our model to get an understanding of their importance. We first remove the BERT part
(-BERT) and then remove the BiLSTM part (-BiLSTM). Table 3.8 shows the ablation results on the
user study and STS dataset. From the results, we observe that the BERT part plays a significant role in
model performance, and removing the BERT part decreases the model performance by around 2% in
terms of accuracy on the user study dataset and 14.1% in terms of spearman correlation on the STSB

46

第三章 NATURAL LANGUAGE UNDERSTANDING FOR ARGUMENTATIVE DIALOGUE SYSTEMS

表 3.7: Evaluation results of intent classifier ablation on the Users Study and Banking77 datasets for 10-shot, 20-
shot, 30-shot, and full training data setups. The table referred from our paper [1]. Reprinted with permission from
Elsevier.

User Study Banking77
Model 10-shot 20-shot 30-shot Full-data 10-shot 20-shot 30-shot Full-data
BERT-tuned 71.5 82.1 85.1 89.3 82.0 86.7 88.5 93.2
BERT+BiLSTM 72.8 83.2 85.7 89.5 82.6 87.4 89.2 93.4
BERT+BiLSTM
+ ArgSim

74.6 85.0 87.3 89.7 83.5 88.1 90.2 93.9

表 3.8: Evaluation results of argument similarity model ablation on User Study and STSB datasets. Table referred
from our paper [1]. Reprinted with permission from Elsevier.

Model User Study STSB
Accuracy SPEARMAN

- BERT 93.2 71.0
- BiLSTM 94.0 84.0
ArgSim 95.2 85.1

dataset. Next, we show that the BiLSTM part is also an important contributor to model performance,
and removing the BiLSTM part decreases the model performance by around 1.2% in terms of accu-
racy on user study dataset and 1.1% in terms of spearman correlation on the STSB dataset. These
results indicate both BERT and LSTM parts are important for the argument similarity model.

3.7 Discussion and Summary

Throughout this chapter, we introduced an NLU approach for argumentative dialogue systems in
the domain of information seeking and opinion building. Our approach detects arguments addressed
by the user within his or her utterance and distinguishes between multiple intents including user pref-
erences towards the respective arguments. Our approach was applied and tested in an actual argu-
mentative dialogue system on data collected in an extensive user study. Additionally, we evaluated
the proposed intent classifier and argument similarity models on the Banking77 and STS benchmark
datasets. Throughout the evaluation, we assessed the performance of the NLU components against
state-of-the-art baselines on different datasets, the robustness of the proposed approach against new
topics, and the robustness of the approach against different language proficiency and cultural diver-
sity. Besides, the performance of the intent classifier model is assessed in full data and few-shot
setups. Our results show a clear advantage of our model against baselines approaches for intent clas-
sification in both full data and few-shot setups. Furthermore, results show the superior accuracy of

47

Doctoral Dissertation

the proposed model against baselines models for argument similarity tasks as well as the accuracy of
87.7% in complete pipeline testing. Moreover, no significant difference between utterances from UK
users and Chinese users was detected. The results indicate that our model has to be trained only once
for each system in order to learn the required system-specific intents but does not require pre-training
for new topics or user groups which ensures high flexibility of the respective system.

48

第四章 Single turn Intent Detection and Slot Filling

4.1 Introduction

In this chapter, we present a neural model for single turn intent detection and slot filling as
introduced in our publication [2].

Task-oriented dialogue systems interact with users via natural language to perform specific tasks,
such as send an email, find a restaurant, or navigate to a particular location. The natural language
understanding (NLU) module is the main component of these systems. The NLU module extracts
the semantic representations from natural language sentences. Intent detection and slot filling are
key tasks in the NLU module [153]. Intent detection is framed as a sentence classification task that
classifies the intent of the user. Slot filling is viewed as a sequence tagging task, it tags the slots related
to semantic frames. For example, “show me the flights from dallas to san francisco” as depicted in
Fig. 1. In the example, the user’s intent is to find a flight,“dallas’’is origin city slot value and“san
francisco” is the destination city slot value. The words which do not belong to any slot are assigned
the null “O” label. The dialogue manager utilizes results generated by intent detection and slot filling
tasks to provide a response to the user.

Deep neural models have achieved impressive performance for intent detection and slot fill-
ing tasks [40, 41, 77, 154]. These models can learn the robust word and sentence representations
from training data. However, training of these models requires a large number of labeled examples.
Therefore, scaling neural networkmodels to support new intent and slots is a challenging and resource-
intensive process [34, 155]. The pre-trained languagemodels trained on large-scale unlabeled corpora
such as Bidirectional Encoder Representations from Transformers (BERT) [43], robustly optimized
BERT [156] have reduced the bottleneck of scarce in-domain data. However, directly applying the
BERT model to intent detection and slot filling may be sub-optimal. Fine-tuning BERT still needs a
sufficient number of training examples as it expects the adaptation to a full large model [157]. Fur-
thermore, fine-tuning BERT on small in-domain data may result in overfitting. In Contrast, rule-based
models build on handcrafted rules like regular expressions do not need labeled data and often obtain
decent prediction accuracy. Regular expressions (REs) are widely used for tasks like pattern match-
ing [24], entity recognition [25], and information extraction [26]. These models can be utilized when
limited or no training examples are available. However, RE-based systems do not benefit from la-
beled data when available and generalize poorly on a large dataset containing a lot of synonyms and
variations.

Combining the advantages of rule-based systems and neural networks is an active research topic.
One line of research is to incorporate task-specific knowledge into the neural networks by imposing
soft constraints on neural network output using posterior regularization [107, 158], and byminimizing
a joint loss of multi-task model [108, 109], or by injecting symbolic knowledge via semantic loss

49

Doctoral Dissertation

Please book me a trip to New York from Toronto

O O O O O O B-dest I-dest O B-origin

Show me the flights from dallas to san francisco

O O O O O I-destOB-originSlot

Intent Flight

Word

B-dest

图 4.1: Illustration of example utterance contains intent and slot annotation using IOB format. This figure is referred
from our paper [2].)

function [110]. Another line of research is to employ regular expressions for encoding knowledge at
different levels inside neural networks [102], or by directly converting regular expressions into neural
networks [106]. Although these models reduce the need for large training data, these models fail to
produce state-of-the-art results in both limited data and rich data scenarios.

Based on the above intuitions, this work propose a WFST-BERT model, which integrates WFST
with BERT for joint intent detection and slot filling tasks. The WFST-BERT combines the strength of
large-scale pre-trainedmodels and rule-basedmodels. TheWFST encodes domain knowledge into the
model by converting RE rules into the trainable neural model. Furthermore, the model leverage pre-
trained BERT for incorporating contextual information. The WFST-BERT trained simultaneously
on labeled data using a gradient descent algorithm to improve model prediction performance over
the original RE. Furthermore, our experiments find that the proposed model produces significant
improvements in both a limited data setting and a full-data setting.

Our key contributions of this work are given as follows:

• We propose a WFST-BERT model for intent detection and slot filling, which reduces the need
for large labeled data by generating robust utterance representation through a pre-trained lan-
guage model and encoding domain knowledge using finite automata.

• We show that the proposed model has a clear advantage in both a few-shot setup and a full-data
setup.

• We perform extensive experiments on the ATIS and SNIPS datasets and compare the results of
WFST-BERT against state-of-the-art counterparts using precision, recall, and F1 score evalua-
tion metrics.

4.2 Model Architecture

The illustration of WFST-BERT architecture is given in Fig. 4.4. The WFST-BERT architec-
ture consists of 2 main modules, the WFST module that encodes domain knowledge into the system,
and the pre-trained BERT module which incorporates contextual information into the model. The
model receives the user sentence as an input, which is passed through the FST layer and BERT trans-
former layers. The sentence representation s1 containing information ofmatched REs is obtained from
WFST. Furthermore, contextualize sentence representation s2 is generated from the BERT module.

50

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

flight from dallas to san francisco

S1 S2 S3 S4 S5 S7

Input

FST

WFST

flight/ O from/ O dallas/ B-from-city to/ O san/ B-dst-city
S6

francisco/ I-dst-city

Feed
Forward

Feed
Forward

flight-Intent

Prediction

O O B-fr
om

-ci
ty

O B-d
st-

cit
y

I-d
st-

cit
y

图 4.2: Illustration of WFST module for generating vector representation of intent and slots. The handwritten REs
are converted into unweighted FST. The feed-forward layers is used to generate final representation from the state
vectors of WFST containing REs matching information. Illustration adopted from our paper [2]. Reprinted with
permission from Springer.

Our method combines s1 and s2 sentence representations to produce a final sentence representation
that predicts user intent and slot labels. The detailed working process of theWFST and BERTmodules
is provided in the subsequent subsections.

4.2.1 Weighted Finite State Transducer (WFST)

From REs to Trainable WFST

As discussed in section 2.4.2, An FA can be constructed for each RE using Thompson’s construc-
tion algorithm [103]. For every RE there exists a unique DFA with the minimum number of states.
The REs are first converted into NFAs and then the subset construction algorithm [159] is applied to
them for obtaining DFAs. Furthermore, the model obtains minimize DFA by running the minimiza-
tion algorithm [160]. Specifically, our method starts by writing a set of REs R = {r1, r2, · · · , rn}.
Each RE corresponds to some intent class and slot label at the sentence and word level, respectively.
In particular, each RE ri is converted into unweighted FST with Qi states, initial state q0, and final
state qn. The FST is turned into WFST by assigning 0/1 weights at each transition, initial state, and
final state. T (x, qa, qb) is 1 if WFST transits from state qa ∈ Q to state qb ∈ Q on receiving input
x ∈ Σ and 0 otherwise. λ(qa) = 1 if qa is initial state 0 otherwise. Similarly ρ(qa) = 1 if qa is final
state. We combine these individual WFSTs into a single WFST having total states Q =

∑
i Qi and

multiple start and end states. We then run this WFST on sentence x to get REs matching results. The
feed-forward layers are applied to matching results to produce intent and slots representations. The
complete procedure is illustrated in Fig. 4.2.

51

Doctoral Dissertation

Let ht ∈ R|Q| be the score vector after reading t words of input sentence x. The Viterbi score
that uses the max-product semiring can be formulated using a recurrent form, as follows:

h0 = λ,

ht = ht−1.T [xt],

S(T , x) = hN · ρ
(4.1)

where λ and ρ are the initial and final weights ofWFST respectively. Moreover, T ∈ R|Σ|×|Q|×|Q|

is the weighted transition tensor.
As suggested in [106], we decompose T into three matrices ER ∈ R|Σ|×r, D1 ∈ R|Q|×r, D2 ∈

R|Q|×r for reducing the number of parameters where r is any arbitrary number. The recurrent form of
ht in Eq. 4.1 can be written as follows:

c = (ht−1 ·D1)⊙ xt

ht = c ·DT
2

(4.2)

where ⊙ represents element-wise product. Now WFST is parameterized by θ =

(ER, D1, D2, λ, ρ).

Prediction of Intent and Slots via WFST

To predict intent class and slots label, we runWFST on sentence x that returns the output vectors
ht and final output vector hN containing information of all matching REs. The feed-forward layer is
applied to the final output vector hN to generate intent representation.

IFA = (W FA
in (hN · ρ) + bFA

in) (4.3)

whereW FA
in ∈ Rd×|Q| represents the weight matrix, bFA

in ∈ R|I| are the represents the bias vector, and
d denotes dimension of intent representation vector.

To detect the tag sequence y for the input word sequence x, we apply another feed-forward layer
on all output vectors ht and defined as follow:

yFA
t = (W FA

slotht + bFA
slot) (4.4)

where ht denotes output vector of word xt,W FA
slot is the weight matrix, and bFA

slot is the bias vector.

4.2.2 BERT

The BERT architecture for joint intent detection and slot filling is depicted in Fig. 4.3. It com-
poses of two parts bidirectional Transformer encoder and the Intent & Slot prediction part. Details of
these parts are provided in subsequent subsections.

52

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

Transformer Encoder Layer 1

Transformer Encoder Layer 2

Transformer Encoder Layer 12

Atis-flight

flight from dallas to san francisco[CLS]

I-dst-cityB-dst-cityOB-from-cityO O

图 4.3: Illustration of the BERT model for joint intent detection and slot filling. This figure is taken from our
paper [2] with permission from Springer

BERT Utterance Representation

The BERT encoder calculates the utterance representation i.e., vector representation for each
token denoted as in equation 4.5:

Hn
t = BERT (x[CLS], x1, · · · , xt, x[SEP]) (4.5)

where Hn
t = (hn

[CLS], h
n
1 , · · · , hn

t , h
n
[SEP]), ht denotes the contextual vector representation of token t,

and n represents the number of encoder layer. The last layer hidden stateH12
t of every token is given

as input to fully connected layers for detecting user intent and corresponding slots.

Intent Detection and Slot Filling via BERT

To predict intent class, we apply a fully-connected layer on the first special token h[CLS] of final
hidden state H12

t , which is represented as follow:

IB = WB
inh[CLS] + bBin (4.6)

For the slot filling task, we feed all other tokens h1, · · · , ht of final hidden stateH12
t into another fully

connected layer to generate slot representation.

yBt = WB
slotht + bBslot (4.7)

where ht represents hidden state of first sub token of word xt, WB
slot denotes the weight matrix, and

bBslot is the bias vector.

53

Doctoral Dissertation

Transformer Encoder Layer 1

Transformer Encoder Layer 2

Transformer Encoder Layer 12

[CLS] X1 X2 X4 x5X3X1 X2 X4 x5X3

S1 S2 S3 S4 S5

x1/O x1/B-fro
m-city

x4/B-dst-city

x3/O

Intent

WFST BERT

Intent

WFST - BERT

Intent

Slot Label Prediction

O B-fro
m-city

O B-dst-city

I-dst-city

Atis-flight

图 4.4: Illustration of the proposed WFST-BERT model for joint intent detection and slot filling. This figure is
referred from our paper [2].)

4.2.3 WFST-BERT

Fig. 4.4 shows the structure of the proposed WFST-BERT model in detail. First, the model
applies WFST on sentence x to generates intent representation IFA. Besides, the model finetunes the
BERT model for generating intent representation IB from [CLS] of the last hidden layer. We then
concatenate the intent representation fromWFST containing information of matching REs and intent
representation from BERT containing contextual information. The linear layer is applied to this final
representation followed by the softmax activation function for producing intent labels.

Î = softmax(Win(I
FA ⊕ IB) + bin) (4.8)

where softmax(zi) = ezi∑
k ezk

, Win ∈ R2d×|I| represents weight matrix of fully connected layer, b ∈
R|I| is the bias vector, ⊕ denotes the vector concatenation operator, and I represents the user intent
vocabulary.

Similarly, for the slot filling task, we obtain yFA
t fromWFST and yBt fromBERT last task-specific

layer. We concatenate these word-level representations and passed through the fully connected layer.
The IOB slot labels are produced by applying a softmax layer on top of the word level outputs yt.

ŷt = softmax(Wslot(y
FA
t ⊕ yBt) + bslot) (4.9)

54

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

HereWslot and bslot denote weights and bias of fully connected layer.

4.2.4 Joint Optimization

For joint training of both intent detection and slot filling tasks the objective function is formulated
as:

P(yin, yslot|x)

= P(yin|x1, · · · , xt)
T∏
t=1

P(yslott |x1, · · · , xt)
(4.10)

where P(yin, yslot|x) is the conditional probability of detecting intent of user and corresponding slots
for given input x. Furthermore, we use the cross-entropy loss for intent detection (Lin) and slot filling
(Lslot) tasks defined as follows:

Lin = −
I∑

i=1

yiinlog(ŷ
i
in)

Lslot = −
∑
t

S∑
s

yst log(ŷt
s)

L = Lin + Lslot,

(4.11)

where I , S represent the number of intent and slot labels, and yin, ynt are the ground truth of intent
and slot labels, respectively. The model minimizes the joint loss which is the sum of both individual
losses.

4.3 Experiments

4.3.1 Datasets

We perform experiments on two datasets: ATIS [161] and SNIPS [162] datasets which are com-
monly used for NLU tasks like intent detection and slot filling. The ATIS dataset contains information
regarding flight reservation requests. We used the ATIS data format as in [40], [163]. The training
dataset consists of 4978 utterances and the test set consists of 893 utterances. The number of dis-
tinct intent labels is 18 and the number of slots labels is 127. The SNIPS dataset contains queries
to voice assistants asking for commonly used tasks like playing music, booking restaurants, queries
regarding weather. The SNIPS training dataset contains 13084 utterances and the test set contains
700 utterances. The number of distinct intent labels is 7 and the number of slot labels is 72.

4.3.2 Evaluation Metrics

To evaluate the results of the proposed model, We have utilized the most commonly used eval-
uation metrics such as precision, recall, and F1 score.

55

Doctoral Dissertation

表 4.1: Basic statistics of datasets.

ATIS SNIPS
Training Samples 4978 13084
Validation Samples 500 700
Test Samples 893 700
intent type 18 7
Slot types 127 72

Precision (P): Precision calculates the number of intent/slots predicted by the model as positive
are actually positive, as given in the following equation.

Precision =
#true_positives

#true_positives+ #false_positives
(4.12)

Recall (R): Recall calculates the number of actual positive intent/slots the model capture through
labeling as positive.

Recall =
#true_positives

#true_positives+ #false_negatives
(4.13)

F1 Score (F1): F1 Score computes the harmonic mean of precision and recall, defined as follows:

F1 = 2× Precision×Recall

Precision+Recall
(4.14)

4.3.3 Training Setting

Our model utilizes pre-trained Bert-Base model1 which has 12 Transformer encoder layers, 768
hidden states, and 12 self-attention heads. The BERT is pre-trained on Books Corpus [164] and
English Wikipedia. The Adam optimizer [165] is employed to optimize the training loss using a fixed
learning rate of 5e − 5. The sentence maximum length is set to 50. Furthermore, we trained the
model using a mini-batch size of 32 training examples. Number of iterations per mini-batch is 128.
To avoid gradient exploding, gradient clipping is used and the maximum norm is set to 5. The tensor
decomposition rank r is set to 200.

4.3.4 Baseline Models

We compare the model performance against the following baseline models.

• Attention-based Encoder-Decoder (Att-ED): The Att-ED model [40] employs bidirectional
RNN to embed user sentences into vector space. The model then employs another uni-
directional RNN for predicting the slot label. Additionally model utilizes an attention mech-
anism to exploits information from different parts of user sentences for predicting slot labels.

1https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

56

https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

As suggested by the authors we used 128 units in LSTM. To avoid overfitting, the dropout rate
of 0.5 is used. We used the online available code2.

• SlotGated-NLU: The model [41] employs bidirectional RNN-LSTM with an attention mecha-
nism to predict the intent of the user. The weighted sum of BiLSTM hidden states is utilized for
tagging slot labels. The model learns slot-intent relationships by employing an intent context
vector as the additional gate in LSTM. The hidden unit in the LSTM cell is configured to 64.
We utilized online available code3 given by the authors.

• Capsule-NLU: The model [76] is based on capsule neural networks, it performs intent detection
and slot filling by making use of a dynamic routing schema. It employs capsule neural networks
to model the hierarchical relationship between words, slots, and intents of user utterances. We
utilized the code provided by the authors 4.

• Stack-Propagation: The Stack-Propagation model [166] employs a shared self-attentive en-
coder to exploit shared knowledge between two tasks. The intent-detection decoder and slot
filling decoder are used to perform intent detection and slot tagging. The model utilizes the in-
tent detection output as input to the slot filling module to improve the slot filling performance.
We have used the code provided by the authors5.

• RE-NN: The RE-enhanced Neural Networks [102] employ bi-directional RNN-LSTM to en-
code user utterances. Furthermore, the model utilizes RE matching results in an RNN-LSTM
as additional input features, to guide attention, or tune the output logits.

• JointBERT: The Joint BERT model [167] fine-tune the BERT model for joint intent detection
and slot filling. The special [CLS] token of the last hidden layer is used for intent detection
and all other tokens are passed to a fully connected network with softmax activation for slot
tagging. The model is tuned using Adam optimizer for 10 epochs. The fixed learning rate of
2e− 5 is used for optimizing training loss.

• FA-RNN: The FA-RNN model [106] convert RE into FA and then the MLP layer is applied
to matched RE rules for converting the representation to label logits. The model is trained on
labeled data via Adam optimizer using a learning rate of 0.001 for 128 epochs. We have used
the online available code 6.

4.4 Evaluation and Results

2https://github.com/HadoopIt/rnn-nlu
3https://github.com/MiuLab/SlotGated-SLU
4https://github.com/czhang99/Capsule-NLU
5https://github.com/LeePleased/StackPropagation-SLU
6https://github.com/jeffchy/RE2RNN

57

Doctoral Dissertation

表 4.2: The proposedWFST-BERTmodel performance comparison against the baseline methods on limited training
data setup. Taken from our paper [2]

Dataset Model Intent Slot
P R F1 P R F1

ATIS Att-ED [40] 88.94 88.17 88.52 92.48 91.94 92.34
SlotGated-NLU [41] 89.03 88.73 88.89 92.85 92.39 92.63
Capsule-NLU [76] 89.35 89.14 89.22 93.78 93.31 93.26
Joint-BERT [167] 89.67 91.48 90.49 93.42 94.50 93.81

Stack-Propagation [166] 92.64 91.25 90.95 93.30 94.09 93.69
RE-NN [102] 89.12 91.26 89.95 93.13 94.45 93.62

FA-RNN [106] 90.44 91.39 90.85 - - -
WFST-BERT 90.94 92.23 91.76 93.35 95.77 94.48

SNIPS Att-ED [40] 92.96 93.04 92.75 60.35 67.39 63.68
SlotGated-NLU [41] 93.26 93.59 93.38 61.09 69.21 64.90
Capsule-NLU [76] 93.86 93.55 93.66 66.75 74.46 70.39
Joint-BERT [167] 96.78 96.73 96.75 87.64 91.17 89.37

Stack-Propagation [166] 96.57 96.54 96.51 89.49 89.94 89.71
RE-NN [102] 95.13 95.48 95.30 80.74 82.45 81.58

FA-RNN [106] 95.26 95.71 95.48 - - -
WFST-BERT 96.95 97.28 97.12 89.45 90.82 90.15

In this section, we assess the WFST-BERT model concerning two different evaluation scenarios:
The first evaluation category assesses model performance in a limited data scenario. In this case, we
conduct experiments on a limited data setting (Section 4.4.1), that utilizes 10% of the training data. In
the second scenario, we perform experiments on complete training data (Section 4.4.2). Furthermore,
the proposed model results are compared against state-of-the-art baseline models. The two different
setups are used to find an estimation of the model performance on different amounts of training data.

4.4.1 Limited Data Training

Table 4.2 presents the results of a limited data training in which the model is trained on 10%
labeled data of ATIS and SNIPS datasets. It can be viewed from the results that WFST-BERT outper-
forms all the baseline models for both intent detection and slot filling tasks. These results from two
datasets reveal that the WFST-BERT model performs effectively in limited training data and reduces
the burden of having a high amount of training data. Furthermore, it can be seen in Fig. 4.5, 4.6 that
RE-NN and FA-RNN models achieved superior results than Att-ED, SlotGated-NLU, and Capsule-
NLU models. The reason behind the superior performance is their ability to incorporate external
knowledge in form of RE rules which is not present in Att-ED, SlotGated-NLU, and Capsule-NLU

58

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

20 30 40 50 60 70 80 90 100
Number of epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

In
te

nt
 F

1

Att-ED
SlotGated-NLU
Capsule-NLU
JointBERT
RE-NN
FA-RNN
WFST-BERT

图 4.5: Limited data training results for intent classifica-
tion task. Plot referred from our paper [2].

20 30 40 50 60 70 80 90 100
Number of epochs

84

86

88

90

92

94

Sl
ot

 F
1

Att-ED
SlotGated-NLU
Capsule-NLU
JointBERT
RE-NN
WFST-BERT

图 4.6: Limited data training results for slot filling task.
Plot taken from our paper [2]. Reprinted with permission
from Springer

models. Furthermore, the JointBERT model performs better than RE-NN on the intent detection task
as it utilizes the contextualized word representation which lacks in the RE-NN model. The Stack-
Propagation model also produced better results SlotGated-NLU, and Capsule-NLU models as it em-
ployed a self-attention mechanism to capture the contextual information of each word. However, the
proposedWFST-BERTmodel improved intent detection task by 1.27% and 0.9% in terms of F1 score
as compared to JointBERT and FA-RNN models, respectively on ATIS dataset. On SNIPS dataset
WFST-BERT model improved intent detection task by almost 0.4% and 1.6% in terms of F1 score as
compared to JointBERT and FA-RNN models, respectively. This is because the WFST-BERT model
incorporates external knowledge using RE rules and exploits contextualized language representation
by finetuning the BERT model. Moreover, WFST-BERT jointly trains both tasks to improve their
performance. The WFST-BERT outperforms the state-of-the-art RE-NN and JointBERT model on
both ATIS and SNIPS datasets on the slot filling task.

4.4.2 Full Data Training

Table 4.3 presents results on the full training data for intent detection and slot filling tasks on
ATIS and SNIPS datasets. It can be observed that SlotGated-NLU produces superior results com-
pared to the Att-ED model, its significance is attributed to its ability to learn slot-intent relations
with slot gate mechanism and improve global optimization of the joint model. Capsule-NLU beats
SlotGated-NLU by encapsulating the relationships between words, slots, and intents with dynamic
routing-by-agreement schema. Results on two datasets shows that RE-NN and FA-RNN models ob-
tain superior performance than former baseline models by incorporating the external knowledge via
RE rules. The JointBERT model produces second superior performance and better generalization ca-
pability as it is pre-trained on large- scale English corpus. Nevertheless, the WFST-BERT produces
state-of-the-art results by injecting domain knowledge using RE rules and exploiting contextualized
word representation through a pre-trained BERT model. The WFST-BERT outperforms the best re-
sult by 0.55%, 1.07% F1-score for intent detection and slot filling task, respectively on ATIS dataset.

59

Doctoral Dissertation

表 4.3: The proposed WFST-BERT model performance comparison against the baseline methods on full training
data setup. Table adopted from our paper [2] with permission from Springer.

Dataset Model Intent Slot
P R F1±std P R F1±std

ATIS Att-ED [40] 91.64 91.06 91.18 93.96 94.63 94.25
SlotGated-NLU [41] 93.47 93.25 93.36 94.48 95.13 94.83
Capsule-NLU [76] 96.12 94.21 95.02 95.06 95.42 95.28

Stack-Propagation [166] 97.35 96.51 96.82 95.78 95.93 95.85
Joint-BERT [167] 96.92 97.76 97.57 95.27 97.33 96.14

RE-NN [102] 95.52 97.59 96.54 94.74 95.86 95.35
FA-RNN [106] 95.47 97.44 96.32 - - -
WFST-BERT 97.62 98.36 98.12 95.58 98.12 97.21

SNIPS Att-ED [40] 96.78 96.67 96.72 89.24 86.45 87.81
SlotGated-NLU [41] 97.28 97.39 97.28 90.83 86.95 88.85
Capsule-NLU [76] 97.52 97.41 97.38 92.45 91.19 91.81

Stack-Propagation [166] 98.01 98.05 98.00 94.78 93.65 94.21
Joint-BERT [167] 98.11 98.03 98.06 95.84 96.59 96.21

RE-NN [102] 97.69 97.57 97.62 94.03 91.86 92.93
FA-RNN [106] 97.51 97.44 97.48 - - -
WFST-BERT 98.51 98.24 98.35 96.82 96.68 96.75

60

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

Furthermore, on SNIPS dataset WFST-BERT obtains an improvement of 0.31% and 0.54% F1-score
for intent detection and slot filling task, respectively.

4.4.3 Impact of hyper-parameters

The learning rate α and tensor decomposition rank r are important hyper-parameters of
the model. We analyze the model performance with regard to these parameters. he ran-
dom search [168] approach is employed for finding hyper-parameters randomly from the
subset of hyper-parameters. We choose learning rate to optimize the model from range
[0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.001, 0.002, 0.01]. We can see from Fig. 4.7 that a learn-
ing rate of 0.00005 produces the best F1-score for both intent detection and slot filling tasks. Further-
more, results show that the model performance decreases on high learning rates of 0.01, 0.002, 0.001
as the model fails to converge. On the contrary, the proposed model takes more time to con-
verge on small a learning rate of 0.00001. Moreover, we choose tensor decomposition rank r from
[50, 100, 150, 200, 300]. The tensor decomposition not only helps in reducing the number of param-
eters of WFST but also improves overall model performance. It is evident from Fig. 4.8 when rank
size is increased, the model performance also increases. The model produces the best results when
setting the value of r to 150.

1e-05 2e-05 5e-05 0.0001 0.0002 0.001 0.002 0.01
learning rate

82.5

85.0

87.5

90.0

92.5

95.0

97.5

F1
-S

co
re

Intent Detection
Slot Filling

图 4.7: Impact of learning rate. Plot referred from our
paper [2].

50 100 150 200 300
Rank r value

95

96

97

98

F1
-S

co
re

Intent Detection
Slot Filling

图 4.8: Impact of tensor decomposition rank r. Plot
adopted from our paper [2].

4.4.4 Ablation Analysis

We conducted an ablation study to show the effectiveness of different aspects of theWFST-BERT
model. We start the ablation by removing different components in the WFST-BERT model, we first
remove the BERT part (-BERT) and then remove the WFST part (-WFST). Table 4.4 summaries ab-
lation results on ATIS and SNIPS dataset. We can observe from the results that the BERT plays a
major role in model performance. Removing the BERT encoder from the model decreases its perfor-
mance by 1.8% in terms of F1 score for intent detection task and almost 3% F1 score for slot filling
task on ATIS dataset. On SNIPS dataset removing BERT encoder from the model decreases intent

61

Doctoral Dissertation

表 4.4: Evaluation results of WFST-BERT model ablation on ATIS & SNIPS datasets. Adopted from our paper [2]

Dataset Model Intent F1 Slot F1
ATIS - BERT (WFST only) 96.34 94.22

- WFST (BERT only) 97.65 96.16
WFST+BERT 98.12 97.21

SNIPS - BERT (WFST only) 96.72 93.17
- WFST (BERT only) 98.00 95.65
WFST+BERT 98.35 96.75

表 4.5: Independent training evaluation results of WFST-BERT model on intent detection and slot filling tasks.
Table referred from our paper [2]. Reprinted with permission from Springer.

Dataset Model Intent F1 Slot F1
ATIS WFST+BERT (Intent detection only) 97.53 -

WFST+BERT (Slot filling only) - 96.58
WFST+BERT 98.12 97.21

SNIPS WFST+BERT (Intent detection only) 98.18 -
WFST+BERT (Slot filling only) - 96.27
WFST+BERT 98.35 96.75

detection performance by 1.63% and performance drop on slot filling task is 3.5% F1 score. Next, we
demonstrate that the WFST part also contributes significantly to model performance. Removing the
WFST part decreases the model performance by around 0.5% F1 score for intent detection and 1.1%
F1 score for slot filling. On the SNIPS dataset, removing the WFST decreases performance of the
model by 0.35% and 1.1% F1 score for intent detection and slot filling task, respectively. These re-
sults reveal that both WFST and BERT parts are important for the WFST-BERT model. Furthermore,
we report ablation results on task level in Table 4.5. From the table we can see that the joint training of
the model improves the performance of each intent detection and slot filling tasks on both ATIS and
SNIPS datasets. On the ATIS dataset joint training of Intent detection and slot filling improves the
performance of slot filling tasks by 0.63%. Similarly, on the SNIPS dataset slot filling performance
improved by almost 0.5%.

4.5 Conclusion

In this chapter, we proposed a novel WFST-BERT model that combines a BERT architecture
with WFST. The WFST-BERT employs REs rules to encode domain knowledge and converts them
into the trainable weighted finite-state transducer. Furthermore, the model utilizes the language rep-
resentation power of BERT to generate contextual representations and improve the generalization

62

第四章 SINGLE TURN INTENT DETECTION AND SLOT FILLING

capability. BERT representation is combined with WFST and trained simultaneously on supervised
data using a gradient descent algorithm. Throughout the evaluation, we evaluate the performance of
the WFST-BERT with baselines models on the ATIS dataset. Additionally, the performance of the
WFST-BERT is assessed in limited data and full data setups. Our experiment results on intent detec-
tion and slot filling tasks show that the proposed model outperforms baselines neural approaches in
both limited data and full data setups. Moreover, the WFST-BERT requires fewer training examples
to learn user intents and associated slots.

63

Doctoral Dissertation

64

第五章 Multi-Turn Intent Detection and Slot Filling with Neural Networks
and Regular Expressions

5.1 Introduction

Content in this chapter first appeared in our publication [3].

Goal-oriented dialogue systems help users to solve a given task using natural language, such as
finding a particular location, booking a ticket, or sending amessage. Natural Language Understanding
(NLU) module is a critical component of such systems, which converts the user utterance into a task-
specific semantic representation. The main tasks of NLU are intent detection and slot filling [153].
intent detection predicts the user intent, and slot filling fills the set of arguments or slots corresponding
to a semantic frame. For instance, “Please book a trip to New York fromMannheim”. In this example,
the intent of the user is to book a trip, “New York” and “Mannheim” fills the associated destination
and origin city slot, respectively. Other words not corresponding to slots are tagged with the null label
“O”. The results from intent detection and slot filling are then used by the dialogue manager to form
a query for the back-end and respond to the user accordingly.

Some prior studies [37, 40, 41, 65, 83] have focused on single-turn NLU in which the system
receives only one utterance at a time and predicts user intent and slot labels. However, goal-oriented
dialogue systems require both user and system to take multiple turns of back-and-forth interactions
to accomplish a specific user goal. In multi-turn NLU, the user, as well as the system can refer to
the entities of previous dialogue turn, resulting in contextual ambiguity [169]. For example, “all
three” in an utterance can represent a number of activities, days, or tickets, generating ambiguity in
understanding the semantics behind.

To overcome this problem, incorporating prior dialogue history has shown effective results in re-
solving such ambiguities of the utterances [85-87]. For instance, Chen et al. [85] employed a memory
network to incorporate prior dialogue turns. In contrast, research studies [86, 87] exploited the tem-
poral order of the utterances to encode dialogue history in chronological order. The aforementioned
methods generate promising results when there is a large amount of labeled data. Unfortunately, such
labeled data is not always available. On the other hand, large-scale pre-trained language models,
such as BERT (Bidirectional Encoder Representations from Transformers) [43] and XLNet [44] have
achieved the state of the art performance on NLU tasks after simple fine-tuning. For instance, BERT
is pre-trained with the transformer encoder on the large-scale unlabeled text and encodes the context
of words from both forward and backward directions. As a result, the pre-trained BERT model can be
then fine-tuned with comparatively small and task-specific training data on downstream tasks such as
text classification [90]. Therefore, these large scale pre-trained language models have supported the
improvement of language understanding tasks, even in the absence of sizeable data sets. Furthermore,

65

Doctoral Dissertation

regular expressions that are based on the hand-crafted rules, do not require training data to generate
output [25].

Regular expressions (REs) are widely used for information extraction, named entity recognition,
sentence classification, and slot tagging tasks [24, 25]. REs consists of human-defined rules which
are concise, tunable, and do not require much training data to generate. Due to the vast diversity
in the user utterances, it is impossible to create a RE to identify particular slots and sentences with
perfect accuracy. Therefore, instead of abandoning REs in favor of neural network approaches for
sentence classification and slot tagging tasks, we can combine REs with neural networks. REs can
complement the neural networks and can regulate the output of neural networks, especially in the
absence of enough training data. More importantly, REs provide a mechanism for domain experts to
encode domain knowledge and guide neural network models to capture desired patterns. REs can be
applied at sentence-level and token-level. At the sentence-level, REs can be applied to search for key
phrases in user utterance for particular user intent. At the token-level, REs can be employed to detect
word sequence in user utterance and assign word-level RE label.

In light of the above intuition, we presents a Neural Network with Regular Expression (NN-RE)
model, which exploits the expressive power of regular expressions along with the robustness of neural
networks to predict user intents and slots labels. Furthermore, the correlation between intent detec-
tion and slot filling tasks makes them suitable for multi-task learning. The proposed model obtains
contextual word representations of current utterances from the pre-trained BERT model. These rep-
resentations along with dialogue context are utilized by dilated CNN to capture local features with a
wider context for intent detection. At the same time, the model employs RNN to model the tempo-
ral relationship between word representations for slot filling task. More specifically, the model first
employs a memory network to encode a dialogue context. The dialogue context vector is then shared
by CNN and RNN for optimizing the objectives of slot filling and intent detection simultaneously via
joint learning. Finally, regular expressions are utilized to complement CNN and RNN by encoding
domain knowledge and handling cases with a limited amount of labeled data.

The main contributions of this study are summarized as follows:

• We propose a model that exploits the domain knowledge encoded in regular expressions to
improve the performance of neural networks, especially in limited training data setting.

• We present a multi-task architecture that extracts the contextual word features from the pre-
trained language model and employs CNN and RNN structures for modeling intent detection
and slot filling tasks, simultaneously.

• We conducted extensive experiments on two real-world datasets, and evaluated the results of
the proposed model against baseline competitors in terms of precision, recall, and F1 score
metrics.

Our model differs from the above-mentioned works as we propose a multi-task model employ-
ing dilated CNN for capturing local features and RNN for modeling temporal relationships for intent

66

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

History
Utterances {xi}

BERT
Embedding

CNNmem ai

mi

Weighted
Sum

h

Current
Utterance

Utterance
Encoder

CNNinp

Memory
Encoder

H

u

Intent RE

CNN Dense

Dense

Dense +
Softmax

User Intent

RNN

Dense

Dense +
Softmax

Slot Labels

Slot RE

Dense

Attention Distribution

o
c

BERT
Embedding

图 5.1: Architecture of the proposed model for multi-turn intent detection and slot filling. A dialogue context vector
and current utterance is shared by RNN and CNN network. REs are integrated with RNN and CNN to predict user
intent and slot labels. First published in our paper [3].

detection and slot filling tasks, respectively. Furthermore, the proposed model uses CNN for encod-
ing a dialogue context instead of RNN, which is computationally expensive because the next output
depends on the previous time step. The dialogue context representation is shared between the tasks.
Moreover, the proposed model leverages REs to encode domain knowledge about a particular intent
or slot value into the training of the model.

5.2 Model Architecture

The proposedmodel architecture is depicted in Fig. 5.1. Themodel is divided into twomainmod-
ules, namely: memory network encoder (Section 5.2.1), and intent detection and slot-filling module
(Section 5.2.2). The memory network encoder module generates a vector representation of the dia-
logue history, which is later fed into the input of intent detection and slot-filling tasks. The intent
detection and slot-filling tasks module use dilated CNN and RNN to determine user intent and extract
associated slots of given utterance simultaneously, and it employs regular expression to complement
neural networks.

5.2.1 Memory Network Encoder

In this section, we discuss how to generate a dialogue context vector from the prior dialogue
turns. The proposed model encodes previous user and system utterances into vector space, and stores
these vectors in the memory. Similarly, a current utterance is also encoded into a vector space, which
is then compared with memory vectors for encoding knowledge using cosine attention. Further details
of the memory network encoder working process are given in the following subsections.

Contextual Word Representation from BERT

To extract contextual word representations of user utterances, our model employs the pre-trained
BERT [43] model, which has 12 transformers [66] encoders, 768 hidden states, and 12 self-attention

67

Doctoral Dissertation

heads. TheBERTmodel is pre-trained on large-scale unlabeled text with training objectives ofmasked
language modeling and the next sentence prediction. The BERT encoder computes the user utterance
representation, i.e., hidden states for each token xt as shown in equation 5.1:

Hn
t = BERT (x[CLS], x1, .., xt, x[SEP]) (5.1)

where Hn
t = (hn

[CLS], h
n
1 , .., h

n
t , h

n
[SEP]), n denotes number of BERT encoder layer, and ht is the con-

textual representations of token t. For every word in the utterance, we obtain the word representations
by summing the hidden states of last 4 layersHt = H9

t +H10
t +H11

t +H12
t as suggested by Devlin et.

al. [43]. The contextual representations of each token are passed to CNN and LSTM layers to predict
the corresponding user intent and slot labels. It is noteworthy that WordPiece tokenizer split tokens
into sub tokens. For instance, ‘quickest’split into two tokens ‘quick’, and ’##est’. To tackle
this problem in the slot filling task, we use the first sub-token representation of a word as input to the
RNN model.

Utterance Encoder

The utterance encoder uses a convolutional neural network (CNN) to encode current utterance
c consists of n words: c = w1, w2, .., wn, into continuous space with dimension d. The current
utterance is passed through BERT embedding layer to extract fixed sized features. Furthermore, we
apply a 1-dimensional convolution on top of these features. Next, max pooling operation on each
filter is performed to obtain a fixed length output d. The representation of current utterance u can be
defined as:

c = BERT (c),

u = CNNinp(c),
(5.2)

where CNNinp represents 1-dimensional convolution followed by max pooling operation for input
utterance.

The 1-dimensional convolution operation convolves a filterW over the window of m words in
the input sequence to produce a feature map. For instance, we generate feature pi by applying filter
W to the window of words [xi, ..., xi:i+m−1] as:

pi = f(W · xi:i+m−1 + b),

xi:i+m−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+m−1,
(5.3)

where b is a bias, ⊕ is the vector concatenation operator, and f represents non-linear activation
function. We apply this filter to all locations of the current utterance c, producing feature maps:
p = [p1, p2, · · ·, pn−m+1]. The model then applies max-pooling operation to extract the maximum
value from each feature map into a single fixed d-dimension vector: u = max(p).

68

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

Memory Encoder

To store and incorporate dialogue history, the model takes previous dialogue turns i.e.,
x1, x2, .., xi, passes them through the BERT layer to obtain the word-level features for each turn.
These features are given as input to CNN for generating memory vectorsm1,m2, ..,mi . Each mem-
ory vector possess same dimension d as the current utterance, as shown in equation 5.4.

xi = BERT (xi),

mi = CNNmem(xi).
(5.4)

The primary aim is to store previous turns knowledge into memory for future usage. To retrieve
information from the memory, attention mechanism is applied to selectively pay attention to a specific
history utterance. To do so, the model computes attention distribution ai over the memory vectors
m1,m2, ...,mi by taking the cosine similarity between each memory vectormi and current utterance
representation u followed by the softmax activation as shown in equation 5.5.

ai = softmax(uTmi), (5.5)

where softmax(zm) =
ezm∑
k ezk

.
To accumulate knowledge from history, the history vector h is obtained by taking the weighted

sum over the memory vectorsmi by the attention distribution ai as presented in equation 5.6.

h =
∑
i

aimi (5.6)

Finally, the history vector h and current utterance u are added to generate dialogue context vector o,

o = (h+ u). (5.7)

The dialogue context vector o is then passed to the intent detection and slot-filling module discussed
in the following section.

5.2.2 Intent detection and Slot Filling Module

For both intent detection and slot-filling tasks, the model leverages the dialogue context. More
specifically, the model concatenates dialogue context vector o with user utterance representation ob-
tained from the BERT embedding layer c; this input is then shared by both tasks. The intent detection
is usually framed as a sentence classification problem; therefore, we use a convolutional neural net-
work. Convolutional neural networks are designed to produce local and position-invariant features,
and they capture local key-phrases in user sentences; hence perform well on sentence classification
tasks [61, 170]. On the other hand, the slot filling task is treated as a sequence labeling problem;
therefore, we use a recurrent neural network (RNN). Recurrent neural networks can model temporal
relationships, hence suitable for modeling sequential information [37, 40]. Furthermore, we employ
regular expressions to encode domain knowledge and handle cases with a limited amount of training
data.

69

Doctoral Dissertation

图 5.2: Slot RE examples with word-level labels assigned to the matched phrase. This figure is referred from our
paper [3]. Reprinted with permission from Elsevier.

Slot Filling via Recurrent Neural Network

Recurrent neural networks (RNNs) are powerful architectures capable of capturing long-range
dependencies via time-connection feedback [52]. Therefore, the proposedmodel uses a recurrent neu-
ral network (RNN) to model long-range dependencies. To overcome the vanishing gradient problem
of RNNs, long short-term memory (LSTM) was designed [54]. LSTMs are the same as RNNs except
that the hidden layer updates are replaced by memory cells. We place LSTM in forward and backward
directions and concatenate two LSTMs outputs to access both past and future information for a given
time. Input to LSTM is the dialogue context vector obtained from equation 5.7 and contextual word
representation of current utterance as defined in equation 5.8.

−→
ht =

−−−−→
LSTM(o, c,

−→
h t−1)

←−
ht =

←−−−−
LSTM(o, c,

←−
h t+1)

sr = [
−→
ht ,
←−
ht].

(5.8)

Where
−→
ht and

←−
ht are the hidden states of forward and backward passes in BLSTM, while c represents

current utterance and o demonstrates dialogue context vector. To obtain a per-class score for slot
filling, the representation sr is passed through a fully connected network.

logitslot = Wr(sr), (5.9)

where Wr is the weight matrix for a fully-connected network and logitslot is the unnormalized pre-
dictions of a model.

Regular Expressions for Slot Filling

Regular Expressions (REs) are an algebraic notation that is used to describe search patterns we
want to match. More specifically, REs search through the user sentences and return all texts which
meet its search pattern. Existing research studies have exploited the significance of REs in different
natural language processing tasks namely information extraction [26], sequence tagging [24] and
named entity recognition [25] tasks. REs are often used to extract patterns from text based on pre-
defined rules. However, REs can be combined with neural models instead of being just simple pattern
matching. REs complement the robustness of neural networks by providing control of a rule-based
system, especially in the absence of enough training data. Furthermore, REs facilitate domain experts
to encode domain knowledge about particular user intent or particular structure of slot value. The

70

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

图 5.3: Intent RE examples with the sentence-level label assigned to the matched utterance. This figure is taken
from our paper [3]. Reprinted with permission from Elsevier.

proposed model incorporates knowledge expressed by REs into the training of CNN and RNN for the
intent detection and slot filling.

For the slot filling task, we write regular expressions to match the specific structure of the slot
being extracted. In Fig. 5.2, we illustrate some examples of slot REs. In first slot RE, “or_city”
and “dst_city” represent word list of city names in the dataset. This RE matches “to New York
from Mannheim” phrase. Slot RE module then assigns the RE label to each word of the matched
phrase. The word-level labels are also converted into BIO format. For instance, B-dst_city and
I-dst_city for NewYork destination city. In the second example, slot REmatches “3 adults” phrase
of the utterance, “B-n_adults” and “I-n_adults” are the labels assigned to it.

To generate the slot REs score, a fully connected layer is applied to the REs search outcome.
The output produced by slot REs is used to amend the output of RNN, which is fed as an input to a
softmax layer for predicting IOB slot labels as defined in equation 5.10.

ŷslot = softmax(Wslot(logitslot +WregR
k)). (5.10)

Where logitslot is the logit obtained from equation 5.9 and Wreg represents a trainable weight
matrix for REs while Rk is the REs search output containing 0-1 values for each slot, which indicates
the absence or presence of at least one matched RE results in slot label k.

intent detection using Dilated CNNs

Traditional convolutional models incorporate local word context information into word represen-
tation, where the filter width specifies the local context size used. The standard CNNs can incorporate
context size linear to the entire depth of the network, therefore makes it harder for tasks that require
longer history. To overcome such problems, we use dilated convolutions that can capture large context
by skipping the number of nearby words in subsequent convolutional passes. The Dilated convolution
operator of filterWp and dilation factor d applied to m-gram xi+m.d with output pi is defined as:

pi = f(Wp · xi+m.d + b),

xi+m.d = xi ⊕ xi+1.d ⊕ · · · ⊕ xi+m.d,
(5.11)

where⊕ is the vector concatenation operator, d is the dilation factor, b is the bias, and f is the activation
function. We use hyperbolic tangent (tanh) as the non-linear activation function. We apply this filter
with an exponentially increasing dilation 1, 2, 4 and 8 to the concatenated vector of dialogue context

71

Doctoral Dissertation

o and current utterance representation c for extracting feature vectors. A max-pooling layer is then
applied to feature vectors to induce final indicative feature vector sc for intent detection as defined:

p = [p1, p2, · · ·, pn−m.d],

sc = max(p),
(5.12)

The main idea is to apply 1-dimensional convolution with dilated filters for capturing important
m-gram with the wider context. Then, apply max pooling over time to extract the most important
m-grams for determining user intent. Next, the final state sc of dilated CNN is passed through a fully
connected network to obtain per-class scores for each intent.

logitin = Wc(sc), (5.13)

whereWc is the weight matrix for the fully connected network.

Regular expressions for intent detection

For the intent detection task, we write regular expressions to search for key phrases in user ut-
terance and assign RE intent label on the basis of key phrases. In Fig. 5.3, we demonstrate some
examples of intent REs. In the first example, intent RE finds clue words i.e., “set reminder” in user
utterance and assign schedule RE label. In the second example, intent RE matches “give me direc-
tions” keywords and assign navigate RE label.

To generate an intent REs score, a fully connected layer is applied to the REs assigned labels.
The output produced by intent REs then is used to amend the output of dilated CNN which is utilized
for determining the user intent as defined follows.

ŷin = softmax(Win(logitin +WregR
k)). (5.14)

WhereWin represents a trainable weight matrix, logitin is the logit obtained from equation 5.13
and Wreg represents a trainable weight matrix for REs while Rk is the REs intent labels containing
0-1 values for each intent, which indicates the absence or presence of at least one matched RE results
in intent label k.

5.2.3 Joint Optimization

For joint optimization, we use categorical cross-entropy loss for both intent detection (Lin) and
slot filling (Lslot) tasks. The loss function for intent detection is Lin, and for slot filling is Lslot.

Lin = −
l∑

i=1

yiinlog(ŷ
i
in)

Lslot = −
∑
t

∑
n

ynt log(ŷt
n)

L = Lin + Lslot.

(5.15)

72

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

Where l is the number of intent types, t is the number of words in the utterance, n is the number
of slot labels, and yin, ynt denote the ground truth of user intent and slot label for the t-th word,
respectively. The loss value minimized by the model is the sum of both individual losses. The overall
optimization of the model is summarized in the Algorithm 5.1.

5.3 Experiments

5.3.1 The Dataset

The ATIS [161] dataset is commonly used in literature for single turn intent detection and slot
filling tasks. In this work, our problem is multi-turn NLU, thus, the ATIS dataset does not fit the
experimental setup. Hence, we considered two publicly available datasets namely Frames [171] and
Key-Value Retrieval [13] for multi-turn NLU problems. The statistics of these datasets are given in
table 5.2 and example dialogues are given in table 5.1.

Key-Value Retrieval dataset:

The Key-Value Retrieval (KVRET) dataset is composed of multi-turn dialogue between a driver
and an In-car assistant1. A dialogue between the user and assistant starts with a user sentence that
creates a dialogue domain using which the requirements of a user is achieved accordingly. This dataset
contains three intents: calendar scheduling, point-of-interest navigation, and weather information.
There are 15 slot types, each slot is stored with its value. Before using the dataset, we performed the
following preprocessing steps: 1) annotating intent from session to sentence level by copying intent
values. 2) obtaining word-level annotation by matching the slot values in the manual annotations
with the corresponding sentence. We used IOB (Inside, Outside, Beginning) tag format, which is a
common word-level annotation for slot filling tasks. Furthermore, we used 2425, 302, 304 dialogues
for training, validation, and testing respectively.

1https://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-oriented-dialogue-dataset/

73

Doctoral Dissertation

算法 5.1 Integrating RE into NN training. First Published in our paper [3].
Input: Training data (xt, U, C,R0, R1)
// xt: set of history utterances
// U: current utterances surface form
// C: current utterances word representations
// R0: expert defined regular expressions for slots
// R1: expert defined regular expressions for intent

1 Initialize neural network parameter θ
foreach ((u,c) ∈ (U,C)) do

2 o← DialogueContext(xt, c)

3 sr ← RNN (o, c)

4 sc ← DCNN (o, c)

5 logitsslot ← Dense(sr)

6 logitsin ← Dense(sc)

7 foreach (ro ∈ R0) do
8 match← re.search(ro, u)

9 SlotLabel← match

10 RESlot← Dense(SlotLabel)

11 foreach (r1 ∈ R1) do
12 match← re.search(r1, u)

13 IntentLabel← match

14 REIntent← Dense(IntentLabel)

15 slots← softmax (Dense(logitsslot, RESlot))

16 intent← softmax(Dense(logitsin, REIntent))

17 Calculate loss using Equation. 5.15

18 Update parameter θ
Output: neural network model parameter

Frames dataset:

Frames dataset2 contains hotel and travel-booking dialogues collected in Wizard-of-Oz Scheme.
It consists of 1369 multi-turn dialogues with an average of 15 turns per dialogue, for a total of 19986
turns. Each dialogue turn in the dataset is annotated with intent, slot types, and slot values. There
are 20 intents and 28 slot types. Similar to the preprocessing steps adopted in the KVRET dataset,

2https://datasets.maluuba.com/Frames

74

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

表 5.1: Example dialogues from KVRET and Frames dataset. Example taken from our paper [3]

Dataset Speaker Utterance Slots Intent
KVRET driver What is the highest temperature for

this week
weather_attribute, date weather

assistant What location do you want to know?
driver Menlo Park, please location weather
assistant On Friday in Menlo Park it will be a

high of 100f.
driver Get me directions to the nearest

shopping mall
poi_type, distance navigate

Frames user Hi im from Leon and looking to get
away

or_city inform

wizard Do you have a special destination in
mind

request

user Maybe milan dst_city inform
wizard Any specific dates in mind request
user august 18th until september 2nd str_date, end_date inform
wizard I have a trip available departing on

Aug 19 and returning on the 23rd
str_date, end_date offer

表 5.2: Basic Statistics of Datasets. First Published in our paper [3].

KVRET Frames
Training dialogues 2425 1109
Validation dialogues 302 125
Test dialogues 304 135
Total turns 12732 19986
Avg. turns per dialogue 5.25 15
intent type 3 20
Slot types 15 28

75

Doctoral Dissertation

we obtained word-level tags by matching slot value with the concerned slot type in the sentences.
Furthermore, the dataset contains a total of 11 participants dialogues, we selected two participants
(ids ’U21E41CQP’ and ’U231PNNA3’) dialogues for testing and the other nine users dialogues are
randomly divided into training (90%) and validation (10%) sets.

5.3.2 Creation of Regular Expressions

We used python re module for writing regular expressions. Our REs are written by a domain
expert. It took less than 20 hours to write all intent REs and slot REs for both datasets. We randomly
selected 10 training dialogues to create REs, and the writing process of REs is completed when REs
cover most of the cases with reasonable accuracy. After that, we used those REs throughout the
experiments. Generally, more complex REs containing multiple REs groups and alternation lead to
better precision but slightly lower coverage. Furthermore, it is much faster to apply many small
REs containing few groups and alternation instead of one large RE containing a lot of groups and
alternation[172]. Therefore, we constructed REs with few groups, and alternation details are given
below.

For the intent detection task, we created 15 distinct intent REs containing on average 3 groups
and 5 alternations for the KVRET dataset. For the Frames dataset, 25 intent REs containing 2.5 groups
on average with 3 alternations are created. To write 40 intent REs, it took around 7 hours. For the
slot filling task, we created 30 slot REs with an average 2 groups and 6 alternations for the KVRET
dataset and 35 slot REs with an average 2 groups and 4 alternations for the Frames dataset. It took us
about 12.5 hours to write 65 slot REs.

5.3.3 Training Settings

The training setup of the proposed model consists of two kinds of settings namely: full training
data setting and limited training data setting. In a full training data setting, we consider all training
data to learn contextual features. Whereas, in limited training data setting only 20% of training data
for each intent and slots are taken. Furthermore, for both settings, the proposed model is trained with
Adam optimizer [165] using the default coefficients β1 = 0.9 and β2 = 0.999 and fixed learning
rate of 0.001. Besides, each update is computed through the batch size of 64 training samples. In
addition, the number of epochs per batch is set to 150. Also, the model employed the pre-trained
Bert-Base model3 with 12 Transformer encoder layers, 768 hidden states, and 12 self-attention heads
to obtain 768 dimension contextual word embeddings. Additionally, we use the memory size of 5
to store the knowledge from the previous five turns. Moreover, to avoid over-fitting in the model
dropout is used as a regularizer. Furthermore, the rate of dropout is set to 0.5 for all dropout layers.
Table 5.3 summarizes the details of hyper-parameters related to CNN and LSTM models used in this
research study.

3https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

76

https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

表 5.3: Hyper-parameters of experiments. Hyper-parameters setup, first published in our paper [3].

Layer Hyper-parameter Size
BERT Embedding Dimension 768
CNN number of filters 768

filter size 3
LSTM hidden layer 100
DCNN number of filters 100

filter size 3
dilation rate 1,2,4,8

Dropout dropout rate 0.5
memory size 5
batch size 64
number of epochs 150
learning rate 0.001

To evaluate the results of the proposed model, We have utilized the most commonly used eval-
uation metrics such as precision, recall, and F1 score as defined in section 4.3.2.

5.3.4 Baseline Methods

To assess the performance of the proposed model, we compared the results of the model against
the following baseline methods.

1. Attention Encoder-Decoder: The model [40] encodes current utterance using bi-directional
RNN-LSTM and generates the output using another uni-directional RNN-LSTMwith attention.
The number of units in the LSTM cell is set to 100 while the dropout rate of 0.2 is applied to
avoid over-fitting. In this model, we do not provide any contextual information. We used the
online available code4.

2. Previous Turn Context: This architecture encodes previous turn and current utterance via bidi-
rectional RNN-LSTM, which is given as an input to another RNN-LSTM for predicting the
user intent and slots. The dimensions for the distributed word representations and the size of a
hidden layer of LSTM are set to 100 each.

3. Memory Network (MemNet): The model architecture [85] encodes previous dialogue history
and current utterances with attention and memory mechanisms. The dialogue context vector is
fed as an additional input to the RNN-GRU tagger for predicting the user intent and slots. We
trained this model with a memory size of 5 while the size of the hidden layer in LSTM is set to
100. We used the online available code5 provided by the authors.

4https://github.com/HadoopIt/rnn-nlu
5https://github.com/yvchen/ContextualSLU

77

Doctoral Dissertation

20 40 60 80 100 120 140
Number of epochs

40

45

50

55

60

Sl
ot

 F
1

Att-ED
PrevTurn
MemNet
SDEN
HRNN
TDA
DFFTA
JointBERT
NN
NN-RE

图 5.4: Learning from limited training
data results on Frames dataset for slot
filling task. Plot adopted from our paper [3].

20 40 60 80 100 120 140
Number of epochs

45

50

55

60

65

Sl
ot

 F
1

Att-ED
PrevTurn
MemNet
SDEN
HRNN
TDA
DFFTA
JointBERT
NN
NN-RE

图 5.5: Learning from limited training
data results on KVRET dataset for slot
filling task. Plot taken from our paper [3].

20 40 60 80 100 120 140
Number of epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

In
te

nt
 F

1

Att-ED
PrevTurn
MemNet
SDEN
HRNN
TDA
DFFTA
JointBERT
NN
NN-RE

图 5.6: Learning from limited training
data results on KVRET dataset for intent
determination task. Plot referred from our paper [3].

4. Sequential Dialogue Encoder Network (SDEN): This model [86] encodes the previous history
intomemory vectors using bidirectional RNN-GRU. The number of units in BiGRU is set to 128
(64 each direction), while the 128-dimensional context vector is produced by a feed-forward
layer from the concatenated vector of memory vector and current utterance. These context
vectors are combined using another bidirectional RNN-GRU to represent dialogue context en-
coding used by tagger architecture for intent detection and sequence tagging. We trained the
SDEN model with a memory size of 5. We have utilized MemNet code6 after making the nec-
essary modifications.

5. Hierarchical Recurrent Neural networks (HRRN): The model architecture [169], encodes sys-
tem dialogue acts instead of the system utterance for producing dialogue context. It employs
hierarchical RNN for encoding dialogue context obtained by summarizing the content of the
dialogue act and the user utterance vector. This representation is then used by bidirectional
RNN-LSTM for slot tagging. The size of the hidden layer in LSTM is set to 100.

6https://github.com/yvchen/ContextualSLU

78

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

6. Time-Decay Attention (TDA): The Time Decay Attention model [87], encodes dialogue his-
tory into the memory using bidirectional RNN-LSTM. The model uses a time-decay attention
mechanism to pay more attention to recent utterances of dialogue by decaying attention weights
over time. This representation is used by RNN-LSTM as additional input for sequence tagging.
We trained the model with a history length of 5. The size of the hidden layer in LSTM is set to
128. We utilized the online available code7 provided by the authors.

7. Decay-Function-Free Time-Aware Attention (DFFTA): The model [173] takes the current ut-
terance as input and fed into bidirectional RNN-LSTM to obtain the current utterance summary.
To summarize the dialogue context, the model uses the time difference between history utter-
ance and current utterance. The model automatically learns the time-decay function of the
history by introducing a trainable distance vector to pay more attention to important history
utterances based on distance with current utterance. The dialogue context summary is fed as an
additional input into RNN-LSTM for sequence tagging. We trained the model with a history
length of 5. The size of the hidden layer in LSTM is set to 128. We used the code8 provided by
the authors.

8. BERT for Joint Intent Classification and Slot Filling (Joint BERT): The model [167] fine-tunes
the pre-trained BERT model to jointly perform intent classification and slot filling tasks. The
model utilizes the hidden states of the first [CLS] token for predicting user intent. For slot
filling, the model feeds the final hidden states of all other tokens to the softmax layer to classify
the slot labels. To make results comparable with other models, the length of history is set to
be 5. The dialogue history utterances are sum together to form a dialogue context vector. The
dialogue context vector is concatenated with the last hidden states of the current utterance. The
model is fine-tuned with Adam optimizer using a learning rate of 5e−5 and a batch size of 128
as suggested by authors.

5.4 Results and Discussion

Our experiments aim to investigate, whether REs can improve the learning ability of neural net-
works when we have limited training data. To answer this question, we have performed experiments
on a limited training data setting (Section 5.4.1), which considers only 20% of the training data. We
also investigated, whether REs are still helpful when we have enough training data. For this question,
we have conducted experiments on a full training data setting (Section 5.4.2), which considers com-
plete training data. Furthermore, this section compares the results of the proposed model against the
results generated by state-of-the-art baseline models on Frames and key-value retrieval datasets.

7https://github.com/MiuLab/Time-Decay-SLU
8https://github.com/jgkimi/Decay-Function-Free-Time-Aware

79

Doctoral Dissertation

表 5.4: Learning from limited training data results for the proposed Neural Network without Regular expression
(NN) and Neural Network with Regular expression (NN-RE) models against baseline methods. Table adopted from
our paper [3] with permission from Elsevier.

Dataset Model Context Intent Slot
P R F1 P Re F1

KVRET Att-ED [40] None 86.74 85.41 86.07 66.51 55.91 60.73
PrevTurn PrevTurn 87.06 86.56 86.80 60.84 62.33 61.58

MemNet [85] history 89.62 86.71 88.10 60.39 67.43 63.13
SDEN [86] history 88.44 87.39 87.91 67.13 68.67 62.27

HRNN [169] dialogue acts 87.26 86.73 86.99 61.08 62.56 61.86
TDA [87] history 89.63 86.82 88.15 61.41 67.75 63.45

DFFTA [173] history 89.67 87.16 88.34 60.87 68.05 63.74
JointBERT [167] history 90.14 89.47 90.13 68.82 63.58 65.81

NN history 90.72 89.94 90.51 68.19 62.74 65.16
NN-RE history 92.83 91.44 92.16 70.61 64.37 67.23

Frames Att-ED [40] None 74.36 69.86 72.04 58.31 49.23 53.34
PrevTurn PrevTurn 75.80 72.77 74.25 54.31 58.06 55.65

MemNet [85] history 76.29 73.72 74.54 60.12 54.23 57.00
SDEN [86] history 77.87 74.72 76.27 56.87 59.32 58.05

HRNN [169] dialogue acts 77.80 75.29 76.53 57.12 59.65 58.36
TDA [87] history 78.29 76.63 77.10 60.15 56.86 58.41

DFFTA [173] history 78.71 77.14 77.89 60.37 57.15 58.67
JointBERT [167] history 79.51 78.91 79.37 60.91 58.72 59.64

NN history 80.25 79.05 79.82 60.73 58.37 59.28
NN-RE history 82.26 79.74 81.17 62.85 57.64 60.13

80

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

5.4.1 Learning from Limited Training Data

Limited training data setting results are presented in Table 5.4. From the table, it can be observed
that contextual models work better than the model with no context i.e Att-ED, or model with just
previous turn context i.e. PrevTurn. Furthermore, results reveal that dialogue context is essential for
multi-turn intent detection and slot filling tasks, giving an improvement of 4% and 5% F1 respectively
on the KVRET dataset, and 7% and 6% improvement on the Frames dataset.

Furthermore, it can be observed in Fig. 5.4 and Table 5.4 that DFFTA and TDAmodels achieved
superior results on both KVRET and Frames dataset. Because, these models can pay more attention to
important history utterance by automatically decaying weights over time and manually decay weights
over time, respectively. While on the Frames dataset HRNN produces superior results in comparison
to SDEN andMemNet, as it utilizes dialogue context vector efficiently by initializing the hidden states
of RNN tagger from it, while the dialogue act vector is fed as an additional input to RNN. In contrast,
SDEN andMemNet use dialogue context to initialize the hidden state of RNN or as an additional input
to RNN tagger. Furthermore, jointBERT achieved superior results thanMemNet, SDEN, DFFTA, and
TDAmodels as it leverages contextual word information using a pre-trained BERT model as opposed
to static word embedding used by former models. However, NN-RE outperforms jointBERT in both
precision and F1 score metrics, as the model lack domain information about slot types and particular
patterns it may contain. On the contrary, the NN-RE model provides additional information about the
slot type and its value, which boosts the performance of the slot filling task.

The results in Fig. 5.5 reveals that HRNN produces worse results than SDEN and MemNet on
KVRET datasets, as dialogue acts information is limited in the KVRET dataset, and the dialogue
context vector is too weak. Besides, Fig. 5.6 shows that the MemNet model achieved superior results
on the intent detection task as it utilizes a single RNN tagger for jointly generating intent and slot
information. Furthermore, the DFFTA model produced the superior on the intent detection task as it
applies the sentence-level attention mechanism by leveraging the trainable distance vector to exploit
the temporal information of the dialogue context. However, our proposed multi-task NNmodel based
on RNN and dilated CNN significantly improved the performance of the intent detection task by
almost 1% in terms of F1 score without degrading slot filling performance. The reason behind the
improvement is that dilated CNN enables our model to capture the most important ngram with a
wider context instead of a sequential RNN model. Additionally, if we look at the results of NN, it
shows that the NNmodel learns task-specific features in an effective manner which, boosts the overall
performance of the model.

Furthermore, the proposed NN-RE model provides a substantial boost on the F1 score of both
intent detection and slot filling tasks over both KVRET and Frames datasets. The reason behind NN-
RE model superior performance is that slot REs, and intent REs encode domain information about
slot types and intent type in the utterance, respectively. This additional information helps the neural
network to generalize better on smaller training data. We also observe that REs have less impact on
results performance when there are large training data, it is not surprising as knowledge encoded in

81

Doctoral Dissertation

REs can be captured by exploiting a large amount of training data.

表 5.5: Learning from full training data results for multi-turn intent detection and slot filling. Table is referred from
our paper [3]. Reprinted with permission from Elsevier.

Dataset Model Context Intent Slot
P R F1 P R F1

KVRET Att-ED [40] None 92.86 91.76 92.31 70.25 76.63 73.30
PrevTurn PrevTurn 94.58 93.62 94.10 70.60 78.03 74.13

MemNet [85] history 98.01 98.01 98.01 71.53 78.27 74.75
SDEN [86] history 97.83 98.18 97.99 71.31 78.09 74.54

HRNN [169] dialogue acts 97.69 98.01 97.84 70.99 78.04 74.35
TDA [87] history 98.04 98.10 98.09 72.04 77.93 74.87

DFFTA [173] history 98.18 98.18 98.16 72.19 78.21 75.14
JointBERT [167] history 98.20 98.24 98.22 73.24 79.06 76.32

NN history 98.22 98.45 98.31 73.18 78.75 76.06
NN-RE history 98.50 98.46 98.48 74.32 79.18 76.91

Frames Att-ED [40] None 92.95 72.14 81.23 66.94 67.33 67.13
PrevTurn PrevTurn 88.35 87.14 87.74 67.51 71.49 69.44

MemNet [85] history 91.88 92.43 92.15 69.45 72.31 70.85
SDEN [86] history 92.98 91.61 92.29 70.70 71.98 71.33

HRNN [169] dialogue acts 93.25 91.79 92.51 71.82 71.23 71.42
TDA [87] history 92.45 92.36 92.56 70.64 72.34 71.58

DFFTA [173] history 92.52 92.48 92.67 70.72 72.47 71.71
JointBERT [167] history 93.96 92.10 93.31 71.16 73.42 72.51

NN history 93.60 92.27 93.06 70.38 73.59 71.94
NN-RE history 95.32 92.95 94.17 74.23 73.15 73.53

5.4.2 Learning from Full Training Data

The Full training data setting results are presented in Table 5.5. The results reveal that atten-
tion Encoder-Decoder performs poorly on both datasets against all baseline competitors, as it lacks in
exploiting contextual information. Similarly, the Previous Turn context model generated the second
poorest results, because the model merely considers previous turn context, ignoring the full dialogue
information and therefore fail to determine the user intent and utterance slots. On the other hand,
MemNet, SDEN, HRNN, TDA, DFFTA, NN models have exploited the full dialogue context; there-
fore, they perform better than the former models.

Results on two datasets reveal that the MemNet model produced superior results on the KVRET
dataset as it utilizes dialogue context more effectively by concatenating it with LSTM input during

82

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

each time step. In contrast, the SDEN model achieved superior results on the Frames dataset because
initial states of the LSTM tagger of SDEN are generated from dialogue context, which allowed the
tagger to better handle noise in the dialogue context. Comparing the results on two datasets indicate
that SDEN worked better than MemNet when dialogue length grew.

Moreover, the HRNN model produces superior results on the Frames dataset and inferior results
on the KVRET dataset; as it uses system dialogue acts to generate dialogue context which is par-
tially available in the KVRET dataset. Furthermore, the DFFTA and TDA model achieved superior
results on both datasets as compared to other contextual models, as these models exploit the temporal
information of dialogue history. The results indicate that DFFTA performs better than TDA as it au-
tomatically learns flexible and optimal time-decay function by using distance embeddings instead of
utilizingmanual time decay used by the TDAmodel. Besides, the JointBERTmodel produces superior
results than DFFTA and TDA models because it exploits the pre-trained language model trained on
large-scale English corpora. However, it is evident from the results that the proposed NN-RE model
significantly outperformed all baseline competitors, as it leverages contextual word embedding from
BERT model which is utilized in task-specific CNN and RNN networks to learn local and temporal
features while leveraging the shared dialogue context information for intent detection and slot fill-
ing tasks. Furthermore, our model exploits domain knowledge encoded through regular expressions,
hence further improving the F1 score on both tasks.

5.4.3 Effect of hyper-parameters

Table 5.3 shows the hyper-parameters setting used in this research. The most important hyper-
parameters of the proposed model are learning rate, batch size, dropout, hidden layers, and dilation
factor. We analyzed the performance of our model concerning these parameters. We use the ran-
dom search [168] method to search hyper-parameters randomly from a specified subset of hyper-
parameters. The learning rate for optimizing the model was chosen log-uniformly from 0.00005 to 1.
In Fig. 5.7, we can observe that the model performs poorly on a learning rate of 1, which indicates
that the model is unable to converge on a high learning rate. In contrast, using a too-small learning
rate of 0.00005, the model takes more time to converge. On the KVRET dataset, the performance
of the model increases steadily, especially on smaller learning rates of 0.001 and 0.005, and obtains
F1 scores greater than 67 and 92 on the slot filling and intent detection, respectively. To choose an
adequate learning rate, we apply a fine search scheme and find that our model generates the most
significant results when configured on a learning rate of 0.001. Furthermore, we select batch sizes
ranging from 2 to 1000. Fig. 5.8 reveals that in limited training data set, the model obtained the
best performance with smaller batch sizes such as 32, and 64. Whereas, the learning efficiency of
our model decreased for the larger batch sizes i.e., 128, 256, 512. When batch size is set to 64, our
model achieves the best F1 score on both datasets. That is close to 60 and 81 for slot filling and intent
detection on the Frames dataset, while the model achieved an F1 score 67 and 92 for slot filling and
intent detection respectively on the KVRET dataset. Therefore, we chose batch size 64 for the limited

83

Doctoral Dissertation

5e-05 2e-05 0.001 0.005 0.01 1
learning rate

50

60

70

80

90
F1

 S
co

re

Intent F1-KVRET
Intent F1-frames
Slot F1-KVRET
Slot F1-frames

图 5.7: Effect of learning rate. Plot taken from our pa-
per [3] with permission from Elsevier.

16 32 64 128 256
batch size

50

60

70

80

90

F1
 S

co
re

Intent F1-KVRET
Intent F1-frames
Slot F1-KVRET
Slot F1-frames

图 5.8: Effect of batch size. Plot adopted from our pa-
per [3].

0.2 0.3 0.4 0.5 0.6 0.7 0.8
dropout ratio

55

60

65

70

75

80

85

90

F1
 S

co
re Intent F1-KVRET

Intent F1-frames
Slot F1-KVRET
Slot F1-frames

图 5.9: Effect of dropout ratio. Plot referred from our
paper [3]. Reprinted with permission from Elsevier.

training data and full training data setting. Furthermore, we analyze the effect of the dropout layer
depicted in Fig. 5.9. We observed a significant improvement for both intent detection and slot filling
tasks when dropout is between 0.4 and 0.6. When dropout is greater than 0.6 model pays focus to
the regular expression output and overlooks neural network output; therefore, it does not generalize
well. For dilated convolution, the most important factor is the kernel size k and dilated factor d; we
empirically found that k = 3 and d = 4 provide a sufficiently large receptive field for intent detection
task. We also observed that the full training data was far less sensitive to hyper-parameters choice
than the limited training data.

5.5 Summary

In this chapter, we have proposed a model that combines the expressive power of REs with the
generalization ability of the neural network for multi-turn intent detection and slot filling tasks. The
proposed multi-task model obtained contextual word representations of user utterances from the pre-
trained BERT model. These representations were used by memory networks to encode dialogue con-
text which is shared by the tasks. Furthermore, dilated CNN and RNN networks have been employed

84

第五章 MULTI-TURN INTENT DETECTION AND SLOT FILLING WITH NEURAL NETWORKS AND REGULAR
EXPRESSIONS

on top of contextual word representations and dialogue context vector to learn task-specific features
for intent detection and slot filling tasks. These neural networks have been combined with REs to
encode domain knowledge about intent and slot values. Experiments on two real-world datasets
demonstrate that the combination improves the performance of the model in both the full training
data and limited training data setting. We showed that encoding domain knowledge into neural net-
work training significantly improved the performance of neural networks. The encouraging results
indicate that the proposed model can be used for improving other applications of text classification
and sequence labeling.

85

Doctoral Dissertation

86

第六章 Conclusion and Future Work

In this thesis, we have presented various methods for combining neural networks with knowl-
edge. First, we pointed to recent development of spoken dialogue systems, especially the advance-
ment of the NLU component for better understanding user requests. We discussed the challenges in
existing spoken dialogue systems based on neural networks and rule based systems. To effectively
address these challenges, we proposed solutions for combining neural knowledge with knowledge
and evaluated them on real world datasets for a single turn and multi-turn dialogue system. In this
last chapter, we provide conclusions with a brief summary of some achievements and present some
possible future works.

6.1 Contribution 1: Natural language understanding framework for
argumentative dialogue systems

The first contribution of the dissertation introduces the NLU model for argumentative dialogue
systems in the domain of information seeking and opinion building described in chapter 3. We pre-
sented how we can detect user arguments within his or her utterance and distinguish between mul-
tiple intents including user preferences towards the respective arguments by multi task model. The
proposed framework consists of two sub-models, namely intent classifier and argument similarity.
Intent classifier model stack BiLSTM with attention mechanism on top of pre-trained BERT model
and fine-tune the model for recognizing the user intent, whereas argument similarity model employs
BERT+BiLSTM for identifying system arguments the user refers to in his or her natural language ut-
terances. Our proposed model was applied and tested in an actual argumentative dialogue system on
data collected in an extensive user study. We showed the proposed NLU model obtained state-of-the-
art performance against baselines models on different datasets. We also demonstrated the robustness
of the proposed approach against new topics, and the robustness of the approach against different
language proficiency and cultural diversity.

Additionally, we demonstrated the superiority of our intent classifier model over baseline tech-
niques in both few-shot and complete data setups. Furthermore, results show the better accuracy of
the proposed model against baselines models for argument similarity tasks as well as the accuracy of
87.7% in complete pipeline testing. Moreover, no significant difference between utterances from UK
users and Chinese users was detected. We showed that our model has to be trained only once for each
system in order to learn the required system specific intents but does not require pretraining for new
topics or user groups which ensures high flexibility of the respective system.

87

Doctoral Dissertation

6.2 Contribution 2: The WFST-BERT Model for Joint Intent Detection and
Slot Filling

Another main goal of this research was to reduce the need for massive labeled data. Therefore, In
chapter 4, we proposed a novel WFST-BERT model that combines a BERT architecture with WFST
for single-turn conversations. The WFST-BERT employs REs rules to encode domain knowledge
and converts them into the trainable weighted finite-state transducer. Furthermore, the model utilizes
the language representation power of BERT to generate contextual representations and improve the
generalization capability. BERT representation is combined with WFST and trained simultaneously
on supervised data using a gradient descent algorithm. Throughout the evaluation, we evaluate the
performance of theWFST-BERTwith baselines models on the ATIS and SNIPS dataset. Additionally,
the performance of the WFST-BERT is assessed in limited data and full data setups. Our experiment
results on intent detection and slot filling tasks show that the proposed model outperforms baselines
neural approaches in both limited data and full data setups. Moreover, the WFST-BERT requires
fewer training examples to learn user intents and associated slots.

6.3 Contribution 3: Multi-turn Intent Detection and Slot Filling with neural
networks and regular expressions

The final contribution of this dissertation was to develop the multi-turn model with limited la-
beled data. So in Chapter 5, we presented a multi-task model for multi-turn intent determination and
slot filling tasks that combines the expressive capacity of REs with the generalization capabilities
of the neural network. The proposed multi-task model used the pre-trained BERT model to obtain
contextual word representations of user utterances. Memory networks used these representations to
encode the context of the shared conversation between tasks. Furthermore, dilated CNN and RNN
networks have been employed on top of contextual word representations and dialogue context vector
to learn task specific features for intent determination and slot filling tasks. These neural networks
have been combined with REs to encode domain knowledge about intent and slot values. Experi-
ments on two real world datasets demonstrate that the combination improves the performance of the
model in both the full training data and limited training data setting. We showed that encoding domain
knowledge into neural network training significantly improved the performance of neural networks.
The encouraging results indicate that the proposedmodel can be used for improving other applications
of text classification and sequence labelling.

6.4 Future Work

Our future work on the NLU model for argumentative dialogue systems will be focused on three
separate aspects. First, we aim to integrate the herein presented NLU model into the argumentative
dialogue system BEA and investigate in an extensive user study in real time its performance and

88

第六章 CONCLUSION AND FUTURE WORK

robustness. Second, we want to explore different confirmation strategies in the dialogue management
in order to further improve the recognition rate of the complete system. Third, we will extend the
capacities of the NLU to allow the user to introduce new arguments which will be learned by the
system during the discussion.

Concerning the contribution of WFST-BERT, We intend to develop the WFST-BERT model to
include other capabilities such as belief tracking and response generating. A regular expression could
be used to track the state of the chat and create an appropriate answer. Additionally, we intend to gen-
eralize our framework to produce regular expressions from training data automatically. Another area
of future research relevant is the interpretability of weighted transducers-BERTmodels by converting
trained models back to regular expressions.

In a multi-turn approach, different memory-augmented networks or hierarchical neural structures
can be utilized to store multi-turn knowledge. In multi-domain, we expect to further improve few-shot
learning or zero-shot performance by writing regular expressions for different domains.

89

Doctoral Dissertation

90

参考文献

[1] Abro W A, Aicher A, Rach N, et al. Natural language understanding for argumentative dialogue systems
in the opinion building domain[J]. Knowledge-Based Systems, 2022: 108318.

[2] AbroWA, Qi G, Aamir M, et al. Joint intent detection and slot filling using weighted finite state transducer
and BERT[J]. Applied Intelligence, 2022: 1-15.

[3] Abro W A, Qi G, Ali Z, et al. Multi-turn intent determination and slot filling with neural networks and
regular expressions[J]. Knowledge-Based Systems, 2020, 208: 106428.

[4] Abro W A, Qi G, Gao H, et al. Multi-turn intent determination for goal-oriented dialogue systems[C]. in:
2019 International Joint Conference on Neural Networks (IJCNN). 2019: 1-8.

[5] Shang L, Lu Z, Li H. Neural Responding Machine for Short-Text Conversation[C]. in: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Beijing, China: Association for
Computational Linguistics, 2015: 1577-1586.

[6] Sordoni A, Galley M, Auli M, et al. A Neural Network Approach to Context-Sensitive Generation of Con-
versational Responses[C]. in: Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Denver, Colorado: Associa-
tion for Computational Linguistics, 2015: 196-205.

[7] Li J, MonroeW, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[C]. in: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, 2016: 1192-1202.

[8] Serban I V, Sordoni A, Bengio Y, et al. Building End-to-End Dialogue Systems Using Generative Hi-
erarchical Neural Network Models[C]. in: AAAI’16: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. Phoenix, Arizona: AAAI Press, 2016: 3776-3783.

[9] Serban I V, Sordoni A, Lowe R, et al. A Hierarchical Latent Variable Encoder-Decoder Model for Gener-
ating Dialogues[C]. in: AAAI’17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence. San Francisco, California, USA: AAAI Press, 2017: 3295-3301.

[10] Li J, Monroe W, Shi T, et al. Adversarial Learning for Neural Dialogue Generation[C]. in: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, 2017: 2157-2169.

[11] Raux A, Langner B, Bohus D, et al. Let’s Go Public! Taking a spoken dialog system to the real world[C].
in: Ninth European conference on speech communication and technology. 2005.

[12] Williams J D, Young S. Partially observable Markov decision processes for spoken dialog systems[J].
Computer Speech & Language, 2007, 21(2): 393-422.

[13] Eric M, Krishnan L, Charette F, et al. Key-Value Retrieval Networks for Task-Oriented Dialogue[C]. in:
Jokinen K, Stede M, DeVault D, et al. Proceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, Saarbrücken, Germany, August 15-17, 2017. Association for Computational Linguistics, 2017:
37-49.

91

Doctoral Dissertation

[14] Madotto A, Wu C S, Fung P. Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End
Task-Oriented Dialog Systems[C]. in: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational
Linguistics, 2018: 1468-1478.

[15] Qin L, Xu X, Che W, et al. Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Di-
alog[C]. in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, 2020: 6344-6354.

[16] Weizenbaum J. ELIZA—a computer program for the study of natural language communication between
man and machine[J]. Communications of the ACM, 1966, 9(1): 36-45.

[17] Parkinson R C, Colby KM, Faught W S. Conversational language comprehension using integrated pattern-
matching and parsing[J]. Artificial Intelligence, 1977, 9(2): 111-134.

[18] Jafarpour S, Burges C J, Ritter A. Filter, rank, and transfer the knowledge: Learning to chat[J]. Advances
in Ranking, 2010, 10(2329-9290): 17.

[19] Yan R, Song Y,Wu H. Learning to respond with deep neural networks for retrieval-based human-computer
conversation system[C]. in: Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 2016: 55-64.

[20] Yan Z, Duan N, Bao J, et al. Docchat: An information retrieval approach for chatbot engines using unstruc-
tured documents[C]. in: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2016: 516-525.

[21] Chinnakotla M K, Agrawal P. Lessons from building a large-scale commercial IR-based chatbot for an
emerging market[C]. in: The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 2018: 1361-1362.

[22] Chiang D. Hierarchical Phrase-Based Translation[J]. Computational Linguistics, 2007, 33(2): 201-228.

[23] Ritter A, Cherry C, Dolan W B. Data-Driven Response Generation in Social Media[C]. in: Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.:
Association for Computational Linguistics, 2011: 583-593.

[24] Chang A X, Manning C D. TokensRegex: Defining cascaded regular expressions over tokens[J]. Tech.
Rep. CSTR 2014-02, 2014.

[25] Zhang S, He L, Vucetic S, et al. Regular Expression Guided Entity Mention Mining from Noisy Web
Data[C]. in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics, 2018: 1991-2000.

[26] Li Y, Krishnamurthy R, Raghavan S, et al. Regular Expression Learning for Information Extraction[C].
in: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Honolulu,
Hawaii: Association for Computational Linguistics, 2008: 21-30.

[27] Tur G, Deng L, Hakkani-Tür D, et al. Towards deeper understanding: Deep convex networks for seman-
tic utterance classification[C]. in: International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). 2012: 5045-5048.

[28] Ravuri S V, Stolcke A. Recurrent neural network and LSTMmodels for lexical utterance classification.[C].
in: INTERSPEECH. ISCA, 2015: 135-139.

92

参考文献

[29] Ravuri S, Stolcke A. A comparative study of recurrent neural network models for lexical domain classifi-
cation[C]. in: International Conference on Acoustics, Speech, and Signal Processing. 2016: 6075-6079.

[30] Haffner P, Tur G, Wright J H. Optimizing SVMs for complex call classification[C]. in: International Con-
ference on Acoustics, Speech, and Signal Processing: vol. 1. 2003: I-I.

[31] Kim Y. Convolutional Neural Networks for Sentence Classification[C]. in: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014: 1746-1751.

[32] Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification[C]. in: Advances
in neural information processing systems. 2015: 649-657.

[33] Chen Y N, Hakkani-Tür D, He X. Zero-shot learning of intent embeddings for expansion by convolu-
tional deep structured semantic models[C]. in: International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2016: 6045-6049.

[34] Casanueva I, Temčinas T, Gerz D, et al. Efficient Intent Detection with Dual Sentence Encoders[C]. in:
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI. Online: Asso-
ciation for Computational Linguistics, 2020: 38-45.

[35] Henderson M, Casanueva I, Mrkšić N, et al. ConveRT: Efficient and Accurate Conversational Representa-
tions from Transformers[C]. in: Findings of the Association for Computational Linguistics: EMNLP 2020.
Online: Association for Computational Linguistics, 2020: 2161-2174.

[36] Yao K, Zweig G, Hwang M Y, et al. Recurrent neural networks for language understanding.[C]. in:
INTERSPEECH. 2013: 2524-2528.

[37] Mesnil G, Dauphin Y, Yao K, et al. Using recurrent neural networks for slot filling in spoken language
understanding[J]. IEEE/ACMTransactions on Audio, Speech, and Language Processing, 2015, 23(3): 530-
539.

[38] Raymond C, Riccardi G. Generative and discriminative algorithms for spoken language understanding[C].
in: INTERSPEECH. 2007.

[39] Nguyen N, Guo Y. Comparisons of sequence labeling algorithms and extensions[C]. in: Proceedings of the
24th international conference on Machine learning. 2007: 681-688.

[40] Liu B, Lane I. Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Fill-
ing[C]. in: INTERSPEECH 2016. 2016: 685-689.

[41] Goo C W, Gao G, Hsu Y K, et al. Slot-Gated Modeling for Joint Slot Filling and Intent Prediction[C].
in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana:
Association for Computational Linguistics, 2018: 753-757.

[42] Wang Y, Shen Y, Jin H. A Bi-Model Based RNN Semantic Frame Parsing Model for Intent Detection and
Slot Filling[C]. in: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, 2018: 309-314.

[43] Devlin J, Chang MW, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding[C]. in: Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186.

93

Doctoral Dissertation

[44] Yang Z, Dai Z, Yang Y, et al. Xlnet: Generalized autoregressive pretraining for language understanding[C].
in: Advances in neural information processing systems. 2019: 5753-5763.

[45] Reimers N, Gurevych I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks[C]. in:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, 2019: 3982-3992.

[46] Wang B, Kuo C J. SBERT-WK: A Sentence Embedding Method by Dissecting BERT-Based Word Mod-
els[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 2146-2157.

[47] He H, Gimpel K, Lin J. Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Net-
works[C]. in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, 2015: 1576-1586.

[48] Zheng T, Gao Y,Wang F, et al. Detection of medical text semantic similarity based on convolutional neural
network[J]. BMC medical informatics and decision making, 2019, 19(1): 1-11.

[49] Kiros R, Zhu Y, Salakhutdinov R R, et al. Skip-Thought Vectors[C]. in: Cortes C, Lawrence N, Lee D, et al.
Advances in Neural Information Processing Systems: vol. 28. Curran Associates, Inc., 2015: 3294-3302.

[50] Conneau A, Kiela D, Schwenk H, et al. Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data[C]. in: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017:
670-680.

[51] Cer D, Yang Y, Kong S y, et al. Universal Sentence Encoder for English[C]. in: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Brussels,
Belgium: Association for Computational Linguistics, 2018: 169-174.

[52] Elman J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.

[53] Bengio Y, Simard P, Frasconi P. Learning Long-Term Dependencies with Gradient Descent is Difficult[J].
IEEE Transaction on Neural Network, 1994, 5(2): 157-166.

[54] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

[55] Chung J, Gulcehre C, Cho K, et al. Empirical evaluation of gated recurrent neural networks on sequence
modeling[C]. in: NIPS 2014 Workshop on Deep Learning. 2014.

[56] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].
Proceedings of the IEEE, 1998, 86(11): 2278-2324.

[57] Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Net-
works[C]. in: Pereira F, Burges C J C, Bottou L, et al. Advances in Neural Information Processing Systems:
vol. 25. Curran Associates, Inc., 2012.

[58] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. ArXiv preprint
arXiv:1512.03385, 2015.

[59] Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]. in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[60] Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]. in:
Proceedings of the 36th International Conference on Machine Learning. 2019: 6105-6114.

94

参考文献

[61] Bai S, Kolter J Z, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling.[J]. CoRR, 2018, abs/1803.01271.

[62] Kalchbrenner N, Grefenstette E, BlunsomP. AConvolutional Neural Network forModelling Sentences[C].
in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2014: 655-665.

[63] Zhang X, Zhao J, LeCun Y. Character-level Convolutional Networks for Text Classification[C]. in: Cortes
C, Lawrence N, Lee D, et al. Advances in Neural Information Processing Systems: vol. 28. Curran Asso-
ciates, Inc., 2015.

[64] Strubell E, Verga P, Belanger D, et al. Fast and Accurate Entity Recognition with Iterated Dilated Convolu-
tions[C]. in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics, 2017: 2670-2680.

[65] Gupta A, Hewitt J, Kirchhoff K. Simple, Fast, Accurate Intent Classification and Slot Labeling for Goal-
Oriented Dialogue Systems[C]. in: Proceedings of the 20th Annual SIGdial Meeting on Discourse and
Dialogue. Stockholm, Sweden: Association for Computational Linguistics, 2019: 46-55.

[66] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. in: Advances in neural information
processing systems. 2017: 5998-6008.

[67] Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation[J]. ArXiv preprint arXiv:1609.08144, 2016.

[68] Sarikaya R, Hinton G E, Ramabhadran B. Deep belief nets for natural language call-routing[C]. in:
International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2011: 5680-5683.

[69] Zhang Z, Luo L. Hate Speech Detection: A Solved Problem? The Challenging Case of Long Tail on Twit-
ter[J]. Semantic Web, 2018, 10: 925-945.

[70] Ravuri S, Stolcke A. Recurrent neural network and LSTM models for lexical utterance classification[C].
in: Sixteenth Annual Conference of the International Speech Communication Association. 2015.

[71] Deng L, Yu D. Deep convex net: A scalable architecture for speech pattern classification[C]. in:
INTERSPEECH. 2011: 2285-2288.

[72] Lin T E, Xu H. A post-processing method for detecting unknown intent of dialogue system via pre-trained
deep neural network classifier[J]. Knowledge-Based Systems, 2019, 186: 104979.

[73] Howard N, Cambria E. Intention awareness: improving upon situation awareness in human-centric envi-
ronments[J]. Human-centric Computing and Information Sciences, 2013, 3(1): 1-17.

[74] Liu R, Zhang X, Webb J, et al. Context-specific intention awareness through web query in robotic caregiv-
ing[C]. in: 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015: 1962-1967.

[75] Xia C, Zhang C, Yan X, et al. Zero-shot User Intent Detection via Capsule Neural Networks[C]. in:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, 2018: 3090-3099.

[76] Zhang C, Li Y, Du N, et al. Joint Slot Filling and Intent Detection via Capsule Neural Networks[C]. in:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, 2019: 5259-5267.

[77] Obuchowski A, Lew M. Transformer-Capsule Model for Intent Detection[J]. Proceedings of the AAAI
Conference on Artificial Intelligence, 2020, 34(10): 13885-13886.

95

Doctoral Dissertation

[78] Bunk T, Varshneya D, Vlasov V, et al. DIET: Lightweight Language Understanding for Dialogue Sys-
tems[J]. CoRR, 2020, abs/2004.09936.

[79] Minaee S, Kalchbrenner N, Cambria E, et al. Deep Learning–Based Text Classification: A Comprehensive
Review[J]. ACM Computing Surveys, 2021, 54(3).

[80] AkhtarM S, Ekbal A, Cambria E. How Intense Are You? Predicting Intensities of Emotions and Sentiments
using Stacked Ensemble[J]. IEEE Computational Intelligence Magazine, 2020, 15(1): 64-75.

[81] Basiri M E, Nemati S, Abdar M, et al. ABCDM: An Attention-based Bidirectional CNN-RNNDeepModel
for sentiment analysis[J]. Future Generation Computer Systems, 2021, 115: 279-294.

[82] Cambria E, Li Y, Xing F Z, et al. SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for
Sentiment Analysis[M]. in: Proceedings of the 29th ACM International Conference on Information &;
Knowledge Management. New York, NY, USA: Association for Computing Machinery, 2020: 105-114.

[83] Hakkani-Tür D, Tür G, Celikyilmaz A, et al. Multi-Domain Joint Semantic Frame Parsing Using Bi-
Directional RNN-LSTM[C]. in: INTERSPEECH. 2016: 715-719.

[84] Firdaus M, Kumar A, Ekbal A, et al. A Multi-Task Hierarchical Approach for Intent Detection and Slot
Filling[J]. Knowledge-Based Systems, 2019, 183: 104846.

[85] Chen Y N, Hakkani-Tür D, Tür G, et al. End-to-End Memory Networks with Knowledge Carryover for
Multi-Turn Spoken Language Understanding.[C]. in: INTERSPEECH. 2016: 3245-3249.

[86] BapnaA, Tür G, Hakkani-Tür D, et al. Sequential Dialogue ContextModeling for Spoken LanguageUnder-
standing[C]. in: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. Saarbrücken,
Germany: Association for Computational Linguistics, 2017: 103-114.

[87] Su S Y, Yuan P C, Chen Y N. How Time Matters: Learning Time-Decay Attention for Contextual Spoken
Language Understanding in Dialogues[C]. in: Proceedings of the 2018 Conference of the North American
Chapter of theAssociation for Computational Linguistics: HumanLanguage Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics, 2018: 2133-2142.

[88] Kim Y B, Lee S, Sarikaya R. Speaker-sensitive dual memory networks for multi-turn slot tagging[J]. 2017
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2017: 541-546.

[89] PetersME, NeumannM, IyyerM, et al. Deep contextualized word representations[C]. in: Proc. of NAACL.
2018.

[90] Howard J, Ruder S. Universal Language Model Fine-tuning for Text Classification[C]. in: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Melbourne, Australia: Association for Computational Linguistics, 2018: 328-339.

[91] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-
training (2018)[J]. URL https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/language-
unsupervised/language_ understanding_paper. pdf, 2018.

[92] Dong L, Yang N, Wang W, et al. Unified language model pre-training for natural language understanding
and generation[C]. in: Advances in Neural Information Processing Systems. 2019: 13063-13075.

[93] Liu X, He P, Chen W, et al. Multi-Task Deep Neural Networks for Natural Language Understanding[C].
in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, 2019: 4487-4496.

96

参考文献

[94] Sun Y, Wang S, Li Y, et al. Ernie: Enhanced representation through knowledge integration[J]. ArXiv
preprint arXiv:1904.09223, 2019.

[95] Wang A, Singh A, Michael J, et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding[C]. in: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Brussels, Belgium: Association for Computational Linguistics,
2018: 353-355.

[96] Wang A, Pruksachatkun Y, Nangia N, et al. Superglue: A stickier benchmark for general-purpose language
understanding systems[C]. in: Advances in Neural Information Processing Systems. 2019: 3266-3280.

[97] Minaee S, Kalchbrenner N, Cambria E, et al. Deep learning based text classification: A comprehensive
review[J]. ArXiv preprint arXiv:2004.03705, 2020.

[98] Peters M E, Ruder S, Smith N A. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse
Tasks[C]. in: Proceedings of the 4th Workshop on Representation Learning for NLP, RepL4NLP@ACL
2019, Florence, Italy, August 2, 2019. Association for Computational Linguistics, 2019: 7-14.

[99] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and their Com-
positionality[C]. in: Burges C J C, Bottou L, Welling M, et al. Advances in Neural Information Processing
Systems: vol. 26. Curran Associates, Inc., 2013: 3111-3119.

[100] Hill F, Cho K, Korhonen A. Learning Distributed Representations of Sentences from Unlabelled Data[C].
in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. San Diego, California: Association for Computational
Linguistics, 2016: 1367-1377.

[101] Sun C, Qiu X, Xu Y, et al. How to fine-tune bert for text classification?[C]. in: China National Conference
on Chinese Computational Linguistics. 2019: 194-206.

[102] Luo B, Feng Y, Wang Z, et al. Marrying Up Regular Expressions with Neural Networks: A Case Study for
Spoken Language Understanding[C]. in: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational
Linguistics, 2018: 2083-2093.

[103] Thompson K. Programming Techniques: Regular Expression Search Algorithm[J]. Commun. ACM, 1968,
11(6): 419-422.

[104] Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J].
IEEE transactions on Information Theory, 1967, 13(2): 260-269.

[105] Schwartz R, Thomson S, Smith N A. Bridging CNNs, RNNs, and Weighted Finite-State Machines[C]. in:
Proceedings of the 56th AnnualMeeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics, 2018: 295-305.

[106] Jiang C, Zhao Y, Chu S, et al. Cold-Start and Interpretability: Turning Regular Expressions into Trainable
Recurrent Neural Networks[C]. in: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational Linguistics, 2020: 3193-3207.

[107] Hu Z, Ma X, Liu Z, et al. Harnessing Deep Neural Networks with Logic Rules[C]. in: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, 2016: 2410-2420.

97

Doctoral Dissertation

[108] Alashkar T, Jiang S,Wang S, et al. Examples-Rules Guided Deep Neural Network for Makeup Recommen-
dation[C]. in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco,
California, USA, 2017: 941-947.

[109] Awasthi A, Ghosh S, Goyal R, et al. Learning from Rules Generalizing Labeled Exemplars[C]. in:
International Conference on Learning Representations. 2020.

[110] Xu J, Zhang Z, Friedman T, et al. A Semantic Loss Function for Deep Learning with Symbolic Knowl-
edge[C]. in: Proceedings of the 35th International Conference on Machine Learning: vol. 80. PMLR, 2018:
5502-5511.

[111] Li T, Srikumar V. Augmenting Neural Networks with First-order Logic[C]. in: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, 2019: 292-302.

[112] WaqasM, Khan Z, Anjum S, et al. Lung-Wise Tuberculosis Analysis and Automatic CT Report Generation
with Hybrid Feature and Ensemble Learning.[C]. in: CLEF (Working Notes). 2020.

[113] Guo S, Wang Q, Wang L, et al. Knowledge Graph Embedding with Iterative Guidance from Soft Rules[C].
in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018: 4816-4823.

[114] Zhou H, Young T, Huang M, et al. Commonsense Knowledge Aware Conversation Generation with Graph
Attention[C]. in: Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stock-
holm, Sweden: AAAI Press, 2018: 4623-4629.

[115] Guan J, Wang Y, Huang M. Story ending generation with incremental encoding and commonsense knowl-
edge[C]. in: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence: vol. 33. 2019:
6473-6480.

[116] Young T, Pandelea V, Poria S, et al. Dialogue systems with audio context[J]. Neurocomputing, 2020, 388:
102-109.

[117] Wen T H, Miao Y, Blunsom P, et al. Latent Intention Dialogue Models[C]. in: ICML’17: Proceedings of
the 34th International Conference on Machine Learning - Volume 70. Sydney, NSW, Australia: JMLR.org,
2017: 3732-3741.

[118] Xu H, Peng H, Xie H, et al. End-to-End latent-variable task-oriented dialogue system with exact log-
likelihood optimization[J]. World Wide Web, 2020, 23(3): 1989-2002.

[119] Locascio N, Narasimhan K, DeLeon E, et al. Neural Generation of Regular Expressions from Natural
Language with Minimal Domain Knowledge[C]. in: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin, Texas: Association for Computational Linguistics, 2016:
1918-1923.

[120] Lawrence J, Reed C. Argument mining: A survey[J]. Computational Linguistics, 2020, 45(4): 765-818.

[121] Rach N, Weber K, Pragst L, et al. EVA: a multimodal argumentative dialogue system[C]. in: Proceedings
of the 20th ACM International Conference on Multimodal Interaction. 2018: 551-552.

[122] Sakai K, Higashinaka R, Yoshikawa Y, et al. Hierarchical Argumentation Structure for Persuasive Argu-
mentative Dialogue Generation[J]. IEICE TRANSACTIONS on Information and Systems, 2020, 103(2):
424-434.

[123] Hunter A, Chalaguine L, Czernuszenko T, et al. Towards computational persuasion via natural language
argumentation dialogues[C]. in: Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz). 2019: 18-33.

98

参考文献

[124] Shigehalli P R. Natural language understanding in argumentative dialogue systems[J]., 2020.

[125] Liu N F, Gardner M, Belinkov Y, et al. Linguistic Knowledge and Transferability of Contextual Repre-
sentations[C]. in: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Min-
neapolis, Minnesota: Association for Computational Linguistics, 2019: 1073-1094.

[126] Cer D, Diab M, Agirre E, et al. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Crosslingual Focused Evaluation[C]. in: Proceedings of the 11th InternationalWorkshop on Semantic Eval-
uation (SemEval-2017). Vancouver, Canada: Association for Computational Linguistics, 2017: 1-14.

[127] Aicher A, Rach N, Minker W, et al. Opinion Building based on the Argumentative Dialogue System
BEA[C]. in: Proceedings of the 10th International Workshop on Spoken Dialog Systems Technology
(IWSDS 2019). Siracusa (Sicily, Italy), 2019.

[128] Yuan T, Moore D, Grierson A. A Human-Computer Dialogue System for Educational Debate: A Compu-
tational Dialectics Approach[J]. Int. J. Artif. Intell. Ed., 2008, 18(1): 3-26.

[129] Hunter A. Towards a framework for computational persuasion with applications in behaviour change[J].
Argument & Computation, 2018, 9(1): 15-40.

[130] Ma Y, Nguyen K L, Xing F Z, et al. A survey on empathetic dialogue systems[J]. Information Fusion,
2020, 64: 50-70.

[131] Rakshit G, Bowden K K, Reed L, et al. Debbie, the debate bot of the future[G]. in: Advanced Social
Interaction with Agents. Springer, 2019: 45-52.

[132] Le D T, Nguyen C T, Nguyen K A. Dave the debater: a retrieval-based and generative argumentative
dialogue agent[C]. in: Proceedings of the 5th Workshop on Argument Mining. 2018: 121-130.

[133] Higashinaka R, Sakai K, Sugiyama H, et al. Argumentative dialogue system based on argumentation struc-
tures[C]. in: Proceedings of the 21st Workshop on the Semantics and Pragmatics of Dialogue. 2017: 154-
155.

[134] Rosenfeld A, Kraus S. Strategical argumentative agent for human persuasion[C]. in: Proceedings of the
Twenty-second European Conference on Artificial Intelligence. 2016: 320-328.

[135] Stab C, Gurevych I. Annotating Argument Components and Relations in Persuasive Essays[C]. in:
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical
Papers. Dublin, Ireland: Dublin City University, 2014: 1501-1510.

[136] Amgoud L, Ben-Naim J. Weighted Bipolar Argumentation Graphs: Axioms and Semantics[C]. in: IJCAI’
18: Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden:
AAAI Press, 2018: 5194-5198.

[137] Lin Z, Feng M, dos Santos C N, et al. A Structured Self-Attentive Sentence Embedding[C]. in: 5th Inter-
national Conference on Learning Representations, ICLR. 2017.

[138] Speer R, Chin J, Havasi C. Conceptnet 5.5: An open multilingual graph of general knowledge[C]. in:
Thirty-First AAAI Conference on Artificial Intelligence. 2017: 4444-4451.

[139] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. ArXiv
preprint arXiv:1301.3781, 2013.

99

Doctoral Dissertation

[140] Pennington J, Socher R, Manning C. GloVe: Global Vectors for Word Representation[C]. in: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, 2014: 1532-1543.

[141] Speer R, Havasi C. Representing General Relational Knowledge in ConceptNet 5[C]. in: Proceedings of
the Eighth International Conference on Language Resources and Evaluation (LREC’12). Istanbul, Turkey:
European Language Resources Association (ELRA), 2012: 3679-3686.

[142] Rach N, Langhammer S,MinkerW, et al. Utilizing argument mining techniques for argumentative dialogue
systems[C]. in: 9th International Workshop on Spoken Dialogue System Technology. 2019: 131-142.

[143] Aharoni E, Polnarov A, Lavee T, et al. A Benchmark Dataset for Automatic Detection of Claims and Evi-
dence in the Context of Controversial Topics[C]. in: Proceedings of the First Workshop on Argumentation
Mining. Baltimore, Maryland: Association for Computational Linguistics, 2014: 64-68.

[144] Coope S, Farghly T, Gerz D, et al. Span-ConveRT: Few-shot Span Extraction for Dialog with Pretrained
Conversational Representations[C]. in: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguistics, 2020: 107-121.

[145] Wolf T, Debut L, Sanh V, et al. Transformers: State-of-the-Art Natural Language Processing[C]. in:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online: Association for Computational Linguistics, 2020: 38-45.

[146] Reimers N, Beyer P, Gurevych I. Task-Oriented Intrinsic Evaluation of Semantic Textual Similarity[C]. in:
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 87-96.

[147] Wang R, Su H, Wang C, et al. To tune or not to tune? how about the best of both worlds?[J]. ArXiv preprint
arXiv:1907.05338, 2019.

[148] Wu LY, Fisch A, Chopra S, et al. Starspace: Embed all the things![C]. in: Thirty-Second AAAI Conference
on Artificial Intelligence. 2018.

[149] Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter[J]. ArXiv preprint arXiv:1910.01108, 2019.

[150] Liu Y, Ott M, Goyal N, et al. Roberta: A robustly optimized bert pretraining approach[J]. ArXiv preprint
arXiv:1907.11692, 2019.

[151] Lan Z, Chen M, Goodman S, et al. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations[J]. ArXiv, 2020, abs/1909.11942.

[152] Chi Z, Dong L, Zheng B, et al. Improving Pretrained Cross-Lingual Language Models via Self-Labeled
Word Alignment[C]. in: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Online: Association for Computational Linguistics, 2021: 3418-3430.

[153] Tur G, De Mori R. Spoken language understanding: Systems for extracting semantic information from
speech[M]. John Wiley & Sons, 2011.

[154] E H, Niu P, Chen Z, et al. A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot
Filling[C]. in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, 2019: 5467-5471.

100

参考文献

[155] Wen T H, Vandyke D, Mrkšić N, et al. A Network-based End-to-End Trainable Task-oriented Dialogue
System[C]. in: Proceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers. Valencia, Spain: Association for Computational Linguistics,
2017: 438-449.

[156] Liu Y, Ott M, Goyal N, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach[J]. ArXiv,
2019, abs/1907.11692.

[157] AraseY, Tsujii J. Transfer Fine-Tuning: ABERTCase Study[C]. in: Proceedings of the 2019Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics,
2019: 5393-5404.

[158] Li X L, Rush A. Posterior Control of Blackbox Generation[C]. in: Proceedings of the 58th Annual Meeting
of theAssociation for Computational Linguistics. Online: Association for Computational Linguistics, 2020:
2731-2743.

[159] Rabin M O, Scott D. Finite automata and their decision problems[J]. IBM journal of research and devel-
opment, 1959, 3(2): 114-125.

[160] Hopcroft J. An n log n algorithm for minimizing states in a finite automaton[G]. in: Theory of machines
and computations. Elsevier, 1971: 189-196.

[161] Hemphill C T, Godfrey J J, DoddingtonGR. TheATIS spoken language systems pilot corpus[C]. in: Speech
and Natural Language: Proceedings of aWorkshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990.
1990: 24-27.

[162] Coucke A, Saade A, Ball A, et al. Snips voice platform: an embedded spoken language understanding
system for private-by-design voice interfaces[J]. ArXiv preprint arXiv:1805.10190, 2018.

[163] Mesnil G, Dauphin Y, Yao K, et al. Using Recurrent Neural Networks for Slot Filling in Spoken Language
Understanding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3):
530-539.

[164] Zhu Y, Kiros R, Zemel R S, et al. Aligning Books and Movies: Towards Story-Like Visual Explanations
by Watching Movies and Reading Books.[C]. in: ICCV. IEEE Computer Society, 2015: 19-27.

[165] Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. CoRR, 2014, abs/1412.6980.

[166] Qin L, Che W, Li Y, et al. A Stack-Propagation Framework with Token-Level Intent Detection for Spoken
Language Understanding[C]. in: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference onNatural Language Processing (EMNLP-
IJCNLP). 2019: 2078-2087.

[167] Chen Q, Zhuo Z, Wang W. BERT for Joint Intent Classification and Slot Filling[J]. CoRR, 2019,
abs/1902.10909.

[168] Bergstra J, Bengio Y. Random search for hyper-parameter optimization[J]. Journal of machine learning
research, 2012, 13(Feb): 281-305.

[169] Gupta R, Rastogi A, Hakkani D Z. An Efficient Approach to Encoding Context for Spoken Language
Understanding[C]. in: INTERSPEECH. 2018: 3469-3473.

[170] Jacovi A, Sar Shalom O, Goldberg Y. Understanding Convolutional Neural Networks for Text Classifica-
tion[C]. in: Proceedings of the 2018 EMNLPWorkshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Brussels, Belgium: Association for Computational Linguistics, 2018: 56-65.

101

Doctoral Dissertation

[171] El Asri L, Schulz H, Sharma S, et al. Frames: a corpus for adding memory to goal-oriented dialogue sys-
tems[C]. in: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. Saarbrücken,
Germany: Association for Computational Linguistics, 2017: 207-219.

[172] Friedl J E. Mastering regular expressions[M]. ” O’Reilly Media, Inc.”, 2006.

[173] Kim J, Lee J H. Decay-Function-Free Time-Aware Attention to Context and Speaker Indicator for Spoken
Language Understanding[C]. in: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 3718-3726.

102

Curriculum Vitae

Waheed Ahmed
Waheed Ahmed pursued his Doctoral degree from the School of Computer Science and Engineering, South‑
east University, China and from the Institute of Communications Engineering of Ulm University, Germany.
He has completed his Masters from FAST‑National University of Computer and Emerging Sciences, Karachi,
Pakistan. His research interest includes Language Understanding of Dialogue Systems, Natural Language
Processing, Machine learning, and Computer Vision. During his PhD he has worked on various methods for
combining neural networks with symbolic rules knowledge to reduce the need for labeled training data, and
for improving generalization and scalability to new domains.

Education
Southeast University Nanjing, China
PHD COMPUTER SCiENCE 2016 ‑ 2022
• Advisor: Prof. Guilin Qi
UlmUniversity Ulm, Germany
PHD COMPUTER SCiENCE 2019 ‑ 2022
• Advisor: Prof. Wolfgang Minker
National University of Computer & Emerging Sciences karachi, Pakistan
MS COMPUTER SCiENCE 2013 ‑ 2016
• Advisor: Dr. Syed Tahir Qasim

Mehran University of Engineering and Technology Jamshoro, Pakistan
BE COMPUTER SYSTEM 2004–2008
• Thesis advisor: Engr. Syed Naveed Ahmed Jaffari

Professional Experience
2022‑

Present Assistant Professor., National University of Computer & Emerging Sciences, karachi, Pakistan

2011‑2016 SENIOR SOFTWARE ENGINEER., Xolva, Information technology services, Karachi
Research and Develop High quality, low cost software solution.,

2010‑2011 JUNIOR SOFTWARE DEVELOPER., Apace Technologies, Karachi
Application Developer.,

	Abstract
	Introduction
	Background and Motivation
	Problem Definition and Statement
	Intent Detection
	Slot Filling
	Sentence Similarity

	Research Objectives and Contributions
	Research Objectives
	Thesis Contributions

	Dissertation Organization

	Background and Literature Review
	Task-Oriented Dialogue Systems
	Natural Language Understanding
	Recurrent Neural Network
	Long Short Term Memory
	Gated Recurrent Unit
	Convolutional Neural Networks
	Bidirectional Encoder Representations from Transformers (BERT)

	Related Work on Natural Language Understanding tasks
	Intent classification
	Slot filling
	Joint Tasks
	Pre-trained Language Models
	Sentence Similarity

	Combining neural network with Knowledge
	Regular Expressions
	Finite State Transducer (FST)
	Weighted Finite State Transducer (WFST)
	Related Work on Combination of Neural Networks with Knowledge

	Natural Language Understanding for Argumentative Dialogue Systems
	Introduction
	Existing Argumentative Dialogue Systems
	Natural Language Understanding Framework
	BEA: An Application Scenario
	Intent Classifier Model
	Argument Similarity Model

	Data Collection
	Experimental Setup
	Training Setup
	Evaluation Metrics
	Sequential Training

	Evaluation and Results
	Evaluation – Intent classification
	Evaluation – Argument Similarity
	Evaluation- Complete Pipeline
	Impact of hyper-parameters
	Ablation Study

	Discussion and Summary

	Single turn Intent Detection and Slot Filling
	Introduction
	Model Architecture
	Weighted Finite State Transducer (WFST)
	BERT
	WFST-BERT
	Joint Optimization

	Experiments
	Datasets
	Evaluation Metrics
	Training Setting
	Baseline Models

	Evaluation and Results
	Limited Data Training
	Full Data Training
	Impact of hyper-parameters
	Ablation Analysis

	Conclusion

	Multi-Turn Intent Detection and Slot Filling with Neural Networks and Regular Expressions
	Introduction
	Model Architecture
	Memory Network Encoder
	Intent detection and Slot Filling Module
	Joint Optimization

	Experiments
	The Dataset
	Creation of Regular Expressions
	Training Settings
	Baseline Methods

	Results and Discussion
	Learning from Limited Training Data
	Learning from Full Training Data
	Effect of hyper-parameters

	Summary

	Conclusion and Future Work
	Contribution 1: Natural language understanding framework for argumentative dialogue systems
	Contribution 2: The WFST-BERT Model for Joint Intent Detection and Slot Filling
	Contribution 3: Multi-turn Intent Detection and Slot Filling with neural networks and regular expressions
	Future Work

	参考文献
	About the Author

