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Ontology-Based Map Modelling and Processing for Autonomous Vehicles

by Haonan QIU

Autonomous Driving (AD) systems use digital maps as a virtual sensor to antici-
pate the road ahead and make decisions. The evolution of digital maps has posed a
range of challenges to the current mapping ecosystem. First, different standards and
formats make maps lack interoperability. Second, the regular update and increasing
size of the maps data make it largely impossible to store and process a complete de-
tailed map in a navigation system of a car. Finally, errors introduced in any step of
map creation may cause unavailability of AD functions. Currently, there are sepa-
rate software components trying to solve each challenge, however, the integration
and maintenance of these components is a difficult task due to the challenges of
the maps’ evolution. This thesis investigates an ontology-based approach with the
goal of shifting from map data-oriented functional design to knowledge-centered
ontology design. Thus, we contribute a knowledge-spatial architecture with an em-
bedded quality assurance mechanism to achieve efficient dynamic map provision
with quality assurance, providing flexible query answering.

Our first contribution is two levels of ontological abstraction to solve the map
data integration problem. The developed low-level ontologies represent the specific
map data formats. A single high-level ontology is designed with the prerequisites
and requirements of a self-driving vehicle in mind resulting in a light(er) weight
generic map ontology. Mapping rules are designed to unify low-level map ontolo-
gies to the generic map ontology. As our second contribution, we develop and
implement an efficient dynamic map update strategy to provide continuous road
knowledge ahead. To achieve efficient map updates, we design a spatial-sliding
window on top of the light(er) weight generic map ontology and process map data
streams via reasoning based on a pre-fetching mechanism. To ensure map data qual-
ity and preventing AD mode degradation, we conduct our third contribution which
is the design of a workflow to detect and fix the map data violation including se-
mantic enrichment, violation detection, and violation handling. To facility violation
detection, we develop a Map Quality Violation Ontology and a set of constraint
rules. Violation handling is realized based on a real-world map data error.

To evaluate the proposed methods, we rely on empirical evaluations as well as
on the development of concrete use cases. The attained results provide evidence
that an ontology-based approach enables effective map integration and processing
with ensured data quality. This allows engineers to focus more on developing AD
functions on the knowledge level rather than on data processing and integration.
The proposed two-level ontology development methodology shades the light for
ontology practitioners to build ontologies in situations where the data is dynamic,
and the computation resources are limited.
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Chapter 1

Introduction

Almost every vehicle on the market now comes with driver assistance systems such
as anti-lock braking (ABS) and electronic stability control systems (ESC) [71]. High-
class cars are equipped with a variety of advanced driver assistance systems (ADAS)
features for added safety such as emergency brake assist (EBA). According to statisti-
cal results, although such technologies have contributed to a decrease in the number
of fatal incidents, more than 90% of accidents have been caused by human mistakes
or fatigue [64, 39]. As a result, reducing the number of human-caused accidents by
implementing the next generation of ADAS for vehicles, also known as automated
driving systems (ADS), is critical for the European Union.

Automated driving requires an intelligent control system consisting of high-
performance sensors and robotic technologies. The requirements for a technical sys-
tem must reflect the capabilities humans need to drive a car. Through several major
recent advances in many different technological areas, such as sensing systems and
computational power, the autonomous vehicle is now on the verge of becoming a re-
ality [110]. The autonomous car relies on a multitude of sensors, for example, radar
(radio detection and ranging), ultrasonic sensors, cameras, LiDAR (light detection
and ranging) as well as Global Navigation Satellite Systems (GNSS) [184] and its in-
telligent fusion. Therefore, it can prevent and anticipate critical driving situations,
achieving response times and viewing capabilities that go far beyond humans.

Despite its sensing capabilities, the autonomous vehicle may encounter haz-
ardous driving circumstances that may be avoided only through foresight that ex-
tends beyond the car’s sensor range. To address such situations and to ensure hu-
man safety and trust in the technical systems, the autonomous vehicles also rely on
an additional “virtual” sensor for their driving task, the so-called High Definition
Map (HD Map) [155, 114, 175, 95, 182]. This map provides detailed and critical in-
formation to the autonomous vehicles regarding their current surrounding traffic
situation and environment. The provided information is highly accurate and geo-
referenced up to the sub-meter level of precision. Current standard navigation map
data, on the other hand, only reaches a localisation accuracy of a few meters. As a
result, the HD map may be seen as a highly precise virtual 3D representation of the
real world [95]. That way, autonomous vehicles can compare their sensor readings
with a virtual reference, facilitating the driving task. Almost all players in the area
of highly automated driving, e.g., Google, HERE, TomTom, Baidu, BMW, or Toyota,
rely on HD maps to further improve the driving capabilities of their autonomous
vehicles.

Recently, collective efforts have been made towards standardising HD maps,
such as the Geographic Data File (GDF) 5.1 at the international level [97] or the Nav-
igation Data Standard (NDS) and the ADASIS protocol V3 at industrial level [? ].
There are also national efforts for developing HD map standards, such as the China
Industry Innovation Alliance for the Intelligent and Connected Vehicles (CAICV).
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However, as of now, there is no single, authoritative format or standard for HD
maps [114]. As a result, map data integration poses major challenges in practice for
providing autonomous driving functions.

Compared to conventional digital navigation maps such as Standard Definition
(SD) maps, HD maps are extremely detailed, including a large amount of highly pre-
cise information. As a result, HD maps need more regular updates than SD maps to
maintain the map’s content. Additionally, HD maps need a substantial increase in
processing capacity and computing resources. This effectively eliminates the possi-
bility of storing a complete, detailed map inside a vehicle’s navigation system. Due
to the regular updates and storage limitations associated with digital map data, the
existing map processing for digital map data is in many ways inadequate for HD
Maps.

Making HD maps is a complex process where data collected from various sensors
goes through data fusion, data processing, layer abstraction, and format converting
based on selected map formats. As a result, it is very challenging to create an error-
free HD map [8]. According to a study carried out by the European Commission
(EC) on the integrity and reliability of HD maps, the map data are obtained from
multiple sources of varying trustworthiness [65]. As the HD market continues to
expand, inconsistent approaches using potentially poor data may increase the risk of
hazardous events occurring on the road network. Therefore, map quality checking
is required for autonomous driving functions.

1.1 Research Challenges

Autonomous vehicles, as an important future transportation means, now require
new approaches to address the challenges mentioned earlier that had not been re-
quired before. Therefore, i) new methodologies have to be developed so that the
driving functions are supported by a generic map representation independent of any
specific map format. This includes ii) a constant map request and process strategy
based on a vehicle route. To ensure the availability of autonomous driving func-
tions, iii) data quality checking and handling errors is an additional key aspect, as
addressed in this thesis.

Challenge 1: Representing a generic and unified map model for autonomous driv-
ing functions.
HD maps are provided in different logical models and formats with respect to dif-
ferent map providers. Current implementations of map data processing, however,
are tightly coupled to the underlying raw data formats and specific map models.
Applications and protocols developed based on one specific map cannot be easily
extended to handle other maps, which results in poor extensibility. Therefore, a so-
lution that is able to easily integrate various map data sources into a generic and
unified map model which can be easily accessed by high-level driving functions is
required.

Challenge 2: Efficient map processing for autonomous driving functions.
Autonomous driving systems need HD maps to provide adequate information for
providing vehicle localisation, planning, and guidance functions. HD maps are
highly detailed at the centimetre level, which requires frequent updates. Addition-
ally, HD maps contain big amounts of data and high demand for computation re-
sources. The available computation resources of embedded devices in the vehicle,
however, is limited. This makes the HD map process for answering autonomous
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driving functions in time an especially challenging task, considering frequent up-
dates and computational resource constraints. As a result, a method for effectively
processing dynamic map data is required to address autonomous driving tasks in
real-time.

Challenge 3: Ensuring map data quality for autonomous driving functions.
The autonomous driving functions rely on the quality of map data. It, however,
continuously proves to be very difficult to produce error-free maps. This is due to
the high complexity of the real world and its dynamic nature, as well as quality
management complexities when combining and matching large datasets from vari-
ous sources. Currently, there is no standard procedure for assessing HD map data
quality. Often the quality requirements are encoded in unstructured formats, e.g.,
plain text, which is not machine-readable. Therefore, a mechanism to ensure map
data quality using knowledge in a machine-readable form should be part of the map
process for providing autonomous driving functions.

1.2 Research Questions & Contribution

Following the discussion in the previous sections, the following research questions
are defined.

RQ1: Can an ontology-based approach solve the map data integration
problem and provide a generic and unified map model?

In order to answer this research question, an ontology-based data integration
approach, in particular, Global as View (GAV) architecture proposed by Wache et
al. [172] is used for integrating different low-level maps into a generic high-level
map model. To meet the need for data integration, ontologies are used for repre-
senting the different map specific low-level ontologies and the generic high-level
map ontology, and rules are used to process the low-level map ontologies as well as
transferring them to the generic high-level map ontology.

Contribution: An ontology-based approach to semantically integrate various map
formats is proposed. A practical methodology for building the generic high-level
ontologies and low-level ontologies is presented. Based on this methodology, we
build the generic HLM (high-level map) ontology and two low-level ontologies – the
LNDS ontology using the NDS map format and the LHERE ontology based on the
HERE HD Live Map format. A categorisation of the types of rules that are needed
for knowledge abstraction and spatial reasoning is described. By using the pro-
posed approach, semantic integration over different map formats using a generic
map model is resolved.

RQ2: Can an ontology-based approach perform efficient knowledge pro-
cessing and spatial reasoning while the knowledge base is continuously
changing?

To respond to this question, spatial sliding windows and parallel knowledge pro-
cessing with layered datastores are used. The vehicle spatial window is operated on
the high-level datastore, responsible for prefetching future map tiles and determin-
ing expired map objects based on the received GPS position and available high-level
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map knowledge. The prefetching decision made by the high-level datastore triggers
parallel low-to-high map knowledge processes running in the low-level datastores.
Subsequently, the high-level datastore is incrementally updated via newly generated
high-level map knowledge.

Contribution: A knowledge-spatial architecture realised in a practical solution for
dynamic map processing is outlined. The knowledge dimension is responsible for
the parallel knowledge abstraction process from the format-specific and detailed
low-level ontologies to the generic high-level ontology. The spatial dimension is
orthogonal to the knowledge dimension and correlates facts that are true within a
certain space and time at the high-level ontology. It describes the continuous spa-
tial reasoning process with respect to the updated vehicle position and dynamic
road environmental knowledge. We adopt the notion of a spatial window with a
fixed width or region in terms of geographic elements shifting (sliding) over a path
line. Within the spatial window, the prefetching mechanism incrementally updates
the high-level ontology to ensure sufficient road knowledge ahead. The proposed
approach is evaluated over a developed JAVA prototype SmartMap, and the result
shows that efficient knowledge processing and spatial reasoning over dynamic data
is achieved. Additionally, we provide a discussion about two alternative deploy-
ment choices over the proposed knowledge-spatial architecture, namely, client de-
ployment and client-server deployment.

RQ3: Can an ontology-based approach be utilised to ensure map data
quality for road knowledge consistency?

For addressing this question, an ontology describing map quality violations is
developed. Together with developed constraint rules, the occurrence of map data
violation can be captured, providing necessary information to locate the trouble-
some data. With the graph-like spatial relationships among map objects, RDF graph
aggregation and decomposition are applied to handle detected violations.

Contribution: We present a workflow for ensuring map data quality based on OWL
2 RL ontologies [87] and Datalog rules [75]. A Map Quality Violation (MQV) ontol-
ogy and a set of constraint rules for violation detection are developed to record the
occurrence of map data violations. We demonstrate violation handling strategies via
violation tolerance and resolution. The performance of violation detection and the
correctness of violation resolution is evaluated over the developed SmartMap appli-
cation. By using the proposed approach, map data quality is ensured.

1.3 Publications

The work presented in this thesis has already been published as conference or demo
articles. The publications building this thesis are outlined as follows:

1. Haonan Qiu, Adel Ayara, and Birte Glimm. A knowledge-Spatial Architecture
for Processing Dynamic Maps in Automated Driving. In Proceedings of the ISWC
2020 Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-
located with 19th International Semantic Web Conference (ISWC 2020)

2. Haonan Qiu, Adel Ayara, and Birte Glimm. Ontology-Based Processing of Dy-
namic Maps in Automated Driving. In 12th International Joint Conference on
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Knowledge Discovery, Knowledge Engineering and Knowledge Management
(KEOD 2020), volume 2. (Best Paper Award, acceptance rate: 21%)).

3. Haonan Qiu, Adel Ayara, and Birte Glimm. A Knowledge Architecture Layer for
Map Data in Autonomous Vehicles. In 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2020. (Best Pa-
per Nominated, among some 570 conference papers, 40 papers are nominated)

4. Haonan Qiu, Adel Ayara, and Birte Glimm. Ontology-Based Map Data Qual-
ity Assurance. In The Semantic Web — 18th International Conference, ESWC
2021,Virtual Event, June 6-10, 2021, Proceedings, volume 12731 of Lecture Notes
in Computer Science, pages 73–89. Springer, 2021. (Acceptance rate: 25%).

1.4 Thesis Structure

The thesis is structured in seven chapters, outlined as follows.

• Chapter 1 - Introduction prefaces the thesis covering the main research problem
and challenges, motivation for the conducted work, research questions, and
scientific contributions that address the research questions.

• Chapter 2 - Background and Preliminaries introduces the key concepts required to
understand the work of this thesis. Initially, we provide additional background
on the different levels of automation specified for autonomous vehicles. Next,
we provide insights into HD maps. Finally, the preliminaries of knowledge
representation technologies are described.

• Chapter 3 - Related Work examines current state-of-the-art approaches to pro-
vide the reader with a better comprehension of the work conducted in this
thesis. First, ontology-based data integration approaches are investigated, fol-
lowed by existing generic road environmental and map specific ontologies.
Next, works regarding the ontology-based approach for reasoning and deci-
sion making are described. Finally, existing methods for spatial data quality
are described.

• Chapter 4 - Two-level Map Ontologies describes an ontology-based approach for
integrating low-level heterogeneous map data to a high-level generic map model
and outlines a practical methodology to build the two-level ontologies.

• Chapter 5 - Dynamic Map Processing presents the utilisation of the developed
two-level map ontologies and rules to process the map continuously for au-
tonomous vehicles via incremental updates combined with a spatial sliding
window. The deployment choices of the proposed solution are also discussed
in this chapter.

• Chapter 6 - Map Quality Assurance describes a workflow using ontologies and
rules to ensure map data quality; and also presents the rule template for viola-
tion detection and the violation tolerance based on RDF graph characteristics.

• Chapter 7 - Conclusion and Outlook finalises this thesis with a summary of the
results and contributions to the problem of map modelling and processing for
autonomous vehicles. The limitations of the presented approach are discussed,
and an outlook on a possible direction for future research is provided.
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Chapter 2

Background and Preliminaries

This chapter outlines the background of the work and the preliminaries of applied
technologies conducted in this thesis. First, we introduce the different levels of au-
tomation as keyed by the German Association of the Automotive industry in Sec-
tion 2.1. Secondly, we provide an insight into HD maps in Section 2.2 including
a description of general HD map models. The comparison between two HD maps
used in this thesis - an NDS map and a HERE HD Live Map is highlighted in this sec-
tion, and a brief explanation of other Advanced Driver Assistance Systems (ADAS)
related terms such as electronic Horizon. Map quality related background is pro-
vided at the end of this section. Finally, knowledge representation technologies to
represent ontologies and reasoning, e.g., RDF, OWL, Datalog, SPARQL are described
in Section 2.3.

2.1 Specification of Automation Levels

The Surface Vehicle Recommended Practice from the Society of Automotive Engi-
neers (SAE) International provides a taxonomy describing the full range of driving
automation levels for on-road motor vehicles [158]. It includes the terms and func-
tional definitions for the advanced levels of driving automation. Figure 2.1 briefly
summarises the levels of automation ranging from Level 0 (no automation) to Level
5 (full automation). At level 0, the drivers have to perform all the common driv-
ing tasks themselves. Whereas, at level 5, vehicles can complete an entire hand-off,
driverless journey under any condition. The driver becomes a pure passenger, as
neither driving ability nor a driving licence is required to use the vehicle. This level
of automation creates opportunities for passengers who are unable to operate a ve-
hicle independently (blind, disabled and older people). True level 5 automation,
however, has not been reached until now (2021). Even Google’s Waymo division,
often considered as one of the most advanced researching groups in the field of self-
driving cars, did not yet reach that point. Although Waymo’s fully autonomous taxi
service was opened to the public in October 2020 in a 50-square-mile area in Phoenix,
the cars currently still have remotes that oversee the task of sending high-level in-
structions to help the vehicles react in complicated situations [110].

At level 1 (driver assistance), the systems provide adaptive cruise control, lane
keeping, and emergency brake assistance to help with driving fatigue. These sys-
tems assist drivers and require the driver to control and keep a constant eye on
the traffic. At level 2 (partial automation), the systems perform more complex ma-
noeuvres. Several assistance systems are often combined to independently perform
individual driving manoeuvres, such as braking automatically, accelerating and tak-
ing over the steering. The driver can hand over control of the vehicle during these
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FIGURE 2.1: Overview of driving automation levels from Cavazza
et al. (2019) adopted from SAE (2016).

manoeuvres, but must remain alert and be able to intervene at any time if some-
thing does not function as intended. Current vehicle models are often categorised as
level 2. Examples of level 2 autonomous capabilities are Tesla Autopilot, Volvo Pilot
Assist, Audi Traffic Jam Assist.

While level 2 is all about assistance systems, at level 3 (conditional automation),
the car can drive autonomously under certain conditions (e.g., on highways). This
includes the car’s sensory equipment to work correctly and the road conditions
ahead on the vehicle’s track to be well known. In this case, the human driver does
not have to be constantly supervising the car and the surrounding traffic. Instead,
the car has to inform him when it identifies that safe driving conditions cannot be
guaranteed any more. Then the driver is required to step in and take over the con-
trol of the wheel within seconds. In contrast to level 3, where the driver must take
over the wheel again, level 4 (high automation) vehicles can complete entire jour-
neys without human interaction. Google’s Waymo division, ride-sharing companies
like Uber and the car manufacturers, have reached or are currently aiming at the au-
tomation level 4. The driverless trucks by Einride also fall under this category since
they do not have a cockpit, and a remote driver can engage and steer the truck from
miles away.

To ensure the safety of automated driving, the onboard sensors of the vehicle
(e.g., cameras, ultrasonic sensors, radar, and Lidar) may not be sufficient to detect
all conceivable driving circumstances. There may be otherwise risky or unpleasant
driving situations that may only be avoided adequately with foresight outside the
sensor range of the car.

2.2 HD Maps

To address these issues, the autonomous vehicles also rely on an additional “vir-
tual” sensor for their driving task, the so-called high-definition (HD) maps [155, 114].



2.2. HD Maps 9

This map provides detailed and critical information to the autonomous vehicles re-
garding their current surrounding traffic situation and environment. The provided
information is highly accurate and geo-referenced up to the sub-meter level of pre-
cision. Current standard navigation map data (SD maps), on the other hand, only
reaches a localisation accuracy of a few meters. As a result, the HD map may be
seen as a highly precise virtual 3D representation of the real world [95]. That way,
autonomous vehicles can compare their sensor readings with a virtual reference, fa-
cilitating the driving task.

2.2.1 HD Map Model

Ulbrich et al. (2017) proposed the functional system architecture of an automated
driving system where HD maps are tightly associated with localisation functional-
ity, interacting with the perception model and ultimately supporting the planning
and control model (see Figure 2.2). The different levels of automated driving tasks
require that the world is modelled at different levels of detail. In this figure, the
terms Road Level relate to the road network topology, Lane Level to the semantic rela-
tionships among lanes and Feature Level to the metric properties used for localisation
within a lane. Both HD maps and the vehicle’s position are input to the perception
module for world modelling, from which the planning and control module deduce
actions and plans. Currently, GPS is one of the most widely used Global Navigation
Satellite Systems (GNSS) for vehicle positioning, which consists of navigation satel-
lites as radio signal sources, and a GPS receiver in the vehicle to receive the satellite
signals.

FIGURE 2.2: Functional system architecture of an automated driving
system adopted from [167]

An HD map road model is used for strategic planning (navigation). It is mod-
elled using an ordered sequence of shape points describing the geometry of a poly-
line that represents the course of a road [28]. Each road section has its start and
end nodes, which belong to the intersection at the start and end of the road. When
using shape points to define curved road geometry, an increase in the density of in-
termediate points can achieve better accuracy but requires storing a large volume of
information.

The lane model is used for perception and tactical planning (guidance) consid-
ering the current road and traffic conditions. Lane models mainly include geometry
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models, lane attributes and lane connectivity. The lane geometry model largely de-
termines the accuracy, storage efficiency, and usability of the lane model [82], which
covers the geometric structures of all lanes such as lane centre line, lane bound-
aries, and road markings and the underlying 3D road structure such as slope and
overpass. Furthermore, it should be efficient for online calculations of coordinates,
curvature, elevation, heading and distance. The lane attributes describe the lane
type, road furniture and parking. Traffic regulations and relevant information may
be embedded in the lane attributes, such as a lane type that may implicitly indicate
the default speed limit. The lane connectivity describes the connection of the lanes or
lane groups, which can be defined simply as a pair of predecessors and successors.
Figure 2.3 shows the lane group connectivity using the lane connector IDs.

FIGURE 2.3: Example of lane group connectivity.

Navigation Data Standard and HERE HD Live Map

The Navigation Data Standard (NDS) is an HD map format developed by carmak-
ers, mapping companies, research institutions, and universities [26, 134, 132]. The
standard has been developed for size-efficient storage with performance requests on
embedded devices. The HERE HD Live Map (HDLM), developed by the HERE com-
pany, is a cloud-based service to support connected ADAS and highly automated
driving solutions provided by HERE. Although both maps are HD maps with com-
monalities at the high level in terms of the conceptual model, there are differences at
the low level in the underlying logical and physical models regarding implementa-
tion.

Commonalities
At the conceptual level, NDS and HDLM share commonalities in the underlying
models. The map data is partitioned into adjacent tiles. They form approximately
rectangular territorial sections. The magnification level determines the edge length of
a tile. Nodes within a map tile represent a point location on the surface of the Earth by
a pair of longitude (y-coordinate) and latitude (x-coordinate) coordinates. Links rep-
resent a stretch of road between two nodes and are characterised by a line segment
(corresponding to a straight section of the road) or a curve having a shape that is
generally described by intermediate points called shape points along the link. Shape
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points are represented by x-y coordinates as nodes, but shape points do not serve
the purpose of connecting links, as do nodes. While link and road are synonyms,
roads have the same meaning as in everyday language use, whereas links have at-
tributes such as travel direction and types, such as highways. The shape points are
ordered concerning the travel direction. The geometry of Lanes is described by shape
points too. Lanes are connected via lane connectors. Each lane is represented by two
lane boundaries with lane marking types (solid/dashed, single/double, etc.). Finally,
lanes are organised into lane groups with link references. Table 2.1 summarises the
commonalities between the models underlying the two map formats considering the
topology, geometry, and attributes. Shape points, tiling and lane-road references are
other aspects of shared commonalities.

TABLE 2.1: The commonality between NDS and HERE Live Map

Category Content Description

Road Model
Road topology It is a link and node network that models

intersection-to-intersection connectivity.
Road Geometry A directed polyline connecting two nodes with

optional intermediate shape points.
Road attributes They describe the link type, driving conditions,

travel direction, speed limit etc.

Lane Model
Lane Topology It is formed based on the lane connectors.
Lane Geometry A polyline with as a sequence of shape points rep-

resenting a lane centre line. A lane is bounded
with two-lane boundaries.

Lane attributes They describe the lane type, the lane number, the
lane travel direction etc.

Other
Shape point Each shape point has a coordinate with latitude

and longitude values.
Tiling A geographical partition of map data.
Lane-Road Reference It provides references and range information be-

tween lanes and roads.

Differences
At the low level, however, there exists differences between NDS and HDLM in terms
of road model, lane model and formats.

Road Model: In NDS, if a link crosses tiles, then it is represented as several road
geometry lines (see Figure 2.4 (a)). Otherwise, the link is called base link. The reason is
that the NDS provides self-contained data per tile, whereas, in HDLM, there is only
the notion of the link (see Figure 2.4 (b)). Consequently, HDLM does not provide
data in a tile-based self-contained fashion.

Lane Model: The way lanes are represented is one of the most significant differences
between NDS and HDLM. Table 2.2 highlights the main differences between the
two map formats. In general, lane connectivity is modelled with a lane connector.
For NDS, each lane has a unique source lane connector and destination connector.
Lane connection is formed by finding a lane whose source lane connector is equal
to its destination lane connection. NDS assigns source and destination connectors
in travel direction; the connectivity aligns with the travel direction (see Figure 2.5
(a)). However, lane connectivity is modelled differently in the HERE HD Live Map.
First, each lane group has a unique start and end lane group connector. The lane
connectivity can be formed based on lane group connectivity. Second of all, the
connectivity of lane groups and lanes has to consider the travel direction. That is to
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FIGURE 2.4: The difference between the road representation of NDS
and HDLM.

say if the travel direction is forward, then the orientation of the lane group is from
start connector to end connector (see Figure 2.5 (b)). However, if the travel direction
is backward, then the orientation of the lane group is from the end connector to the
start connector (see Figure 2.5 (c)). The travel direction also affects the adjacent lane
modelling.

TABLE 2.2: Lane model comparison of NDS and HERE HD Live Map

NDS HERE Live Map
Travel direction No impact on lane model inter-

pretation
Has impact on lane model inter-
pretation

Lane connectivity Lane connector source and des-
tination

Lane group connector, lane con-
nector

Left/right lane Right to left, index 0 is the right
most lane

Left to right, index 0 is the left
most lane

Lane geometry lane centre line Lane Group Reference Geome-
try, lane geometry

Lane boundary Parallel elements, sequential ele-
ments

Marking Element

Left/right lane
boundary Based on the lane number Left/right lane boundary num-

ber
Lane type Normal lane, entry lane, exit

lane
Unknow, regular, drivable
shoulder

For NDS, the numbering of lanes starts from right to left, and the rightmost lane
is always the lane with the index of 0 (see Figure 2.5 (a)). For HDLM, however,
the numbering of lanes starts from left to right regarding the lane orientation, and
the interpretation of the rightmost lane depends on the lane travel direction. If the
travel direction is forward, then the lane with the index of 0 is the left-most lane (see
Figure 2.5 (b)). Otherwise, the lane with index 0 is the rightmost lane (see Figure 2.5
(c)).

Format: NDS uses SQLite as a file format and database engine. The data is stored in
relational database tables with Binary Large Objects (BLOB) columns and is divided
into building blocks as logical components; however, geographical partitioning by
tiles is simultaneously applied. Its formal data description language is called Rela-
tional DataScript (RDS). Each building block addresses specific functional aspects.
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FIGURE 2.5: The difference between the lane model of NDS and
HERE HD Live Map.

The HDLM is designed for providing a content service for AD applications [85, 123].
The schema for the HDLM map data model and the map data itself is published as
files using the Protocol Buffer (ProtoBuf) data format. The data is composed of tiled
map layers logically structured into Road Model and Lane Model.

TABLE 2.3: Format Comparison of NDS and HERE Live Map

NDS HERE Live Map
Version 2.5.4 3.0
Purpose Size-efficient storage with per-

formance requests on embedded
Navigation systems

A content service providing infor-
mation and services for AD appli-
cations.

Designed for Embedded devices Cloud
Storage format BLOB ProtoBuf
Schema format Relational DataScript ProtoBuf
Logical storage
components Building blocks Layers

Structure Routing Building Block, Lane
Building Block

Road Model, Lane Model

Tools SQLite, Zserio HERE Content Platform APIs
Language C++, Java, Python Java, Scala

2.2.2 HD Maps with Advanced Driver Assistance Systems

Apart from HD maps, various other technical terminology have been used in the
domain of map-based ADAS, such as the electronic Horizon (eHorizon) [35, 34] and
the ADAS Horizon [147, 148]. All of those terms are often used synonymously. This
makes it especially difficult to differentiate sharply between their conceptual em-
phasis. The key common component in all those systems is a map data source, fa-
cilitating the general driving task. This could be a normal navigation map designed
for human drivers or HD maps specifically created for autonomous vehicles. The
typical navigation map is also referred to as SD (Standard Definition) map. The elec-
tronic Horizon (eHorizon) and the ADAS Horizon are two different terms referring
to the same general technical concept. The eHorizon emphasises the extraction and
preparation of relevant traffic data out of a digital map specifically for the vehicle’s
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current route. This map data is further enhanced through the readings of the ve-
hicles’ onboard sensor, e.g., its current location and driving speed. The HD map
can be used as such a map data source. The eHorizon is designed for providing the
specific traffic information to a driver, and it cannot assume a route would be given
beforehand. Instead, it utilises a so-called Most Probable Path (MPP) calculation to
anticipate the most likely driving path [34, 148]. This is in contrast to autonomous
vehicles, which always requires a given specific navigation route to perform their
driving task.

The Local Dynamic Map (LDM) is an ADAS standardised by the European Telecom-
munications Standards Institute (ETSI) [63]. Unlike the eHorzion approach, which
enhances the car’s navigation data through additional onboard sensor readings,
LDM enhances the data through direct ad hoc communication between the vehi-
cles, allowing them to share information about the current traffic situation, such as
their location, speed, and driving direction. LDM classifies traffic objects into four
layers based on their degree of timely relevance: i) permanent static data, such as
map data provided by a map supplier; ii) transient static data, such as speed limits;
iii) transient dynamic data, such as weather conditions and traffic information; and
iv) highly dynamic data, such as the speed and driving direction of surrounding ve-
hicles. The data contained in layer iv) is not stored in the HD map as it has a very
short time relevance and is only relevant for the specific vehicle. As a result, it is
stored locally in the vehicles, thus the name of Local Dynamic Map.

2.2.3 HD Map Quality

HD maps are safety-critical features in self-driving vehicles that combine data from
multiple sources to precisely locate the car’s position. Creating an error-free HD
map is very challenging because the map environment is complex and dynamic, and
assuring the quality of large datasets from many sources is a complex task. There
are many reasons for poor data quality. They can be broadly classified into data
entry, data processing, data integration, data conversion and data age (loss of reli-
ability/relevance over time) [65]. Typical faults are distinguished between a fault
in the map topology (structure), geometry and attributes. Topological faults are re-
lated to the map object connectivity. Geometric faults are related to the shape or the
geographic placement of these map entities. We next briefly explain each fault with
some examples.

Topological Fault

The correct representation of road network and lane connectivity in the map is es-
sential for optimal path planning. For example, a missing connection between a road
may cause the path planner to choose a sub-optimal path. In turn, a connection be-
tween two roads in the navigation map that does not exist in reality may result in an
impossible path. In this case, the driver may be misled by the navigation assistant
and cause hazardous driving situations.

Geometric Fault

In the Geographic Information System (GIS) domain, absolute and relative accuracy
are distinguished [32]. The former describes the accuracy of the geographic feature
for a global reference coordinate system, whilst the latter describes accuracy relative
to other features. Roads and lanes with low relative accuracy result in poor shape
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definition. For example, the curve warning related ADAS is directly affected by the
low relative accuracy of the road. In case of low absolute and high relative accuracy
(road offset), the map-matching algorithm may not choose the right road candidate,
especially in dense road network areas.

Attribute Fault

The speed limit can be displayed to the driver in an over-speed prevention (OSP)
system or used to set the vehicle’s curse speed in contextual ACC applications. The
map stores the speed limit as an attribute for each road. This attribute originated
from direct surveys or is inferred based on the road class, the number of lanes and
the area (inside or outside built-up area). Smart cameras are nowadays capable of
detecting speed signs in real-time, however, the challenge resides in determining
whether the detected sign applies to the vehicle. Speed limits indicated by traffic
signs may be dedicated to one particular lane (e.g., for a motorway exit), to a class of
vehicles (e.g., trucks, vehicles towing caravans, buses) or to special weather condi-
tions. Inappropriate estimation of the speed limit by the car would bother the driver
and decrease the perceived vehicle’s quality.

In navigation maps, roads are assumed to be drivable in both directions unless
a dedicated attribute is associated with the road. Similarly, attributes are defined
to establish some traffic restrictions (e.g., trucks, pedestrians and maximum height).
The planner uses the attributes to exclude wrong-way roads and roads that do not
comply with the vehicle type. Faults in these attributes may cause the path planner
to ask the driver to take a forbidden route. This may have severe consequences,
especially for large good vehicles that cannot manoeuvre easily.

2.3 Knowledge Representation

Knowledge representation (KR), as an area of artificial intelligence (AI), combines
the multidisciplinary fields of ontologies to define and structure things, logic to for-
mulate logical inference and knowledge and computation to allow computer sys-
tems to perform intelligent tasks [170]. Description logics (DLs) are a family of for-
mal knowledge representation languages, which are the core of the representation
language of the Semantic Web [19]. Datalog as a rule language originated from de-
ductive databases [9], but nowadays, it is also used as a rule language in Semantic
Web applications [151, 75]. The following sections explain aspects of the Semantic
Web technologies and Datalog rules.

2.3.1 RDF and RDFS

The Resource Description Framework (RDF) is a generic data model for interchang-
ing data on the Web recommended by the World Wide Web Consortium (W3C).1

In RDF, data is represented as triples consisting of subjects, predicates, and objects,
which can be combined to directed graphs composed of vertices representing sub-
jects and objects and edges representing predicates. Formally, an RDF triple is de-
fined as follows:

Definition 2.3.1 (RDF Triple [15]). Let I, L, and B be pairwise disjoint infinite sets of
IRIs, literals, and blank nodes, respectively. A tuple (s, p, o) ∈ I ∪ B× I× (I ∪ L∪ B)
is called an RDF triple, where s is the subject, p is the predicate, and o is the object.

1https://www.w3.org/RDF/
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Definition 2.3.2 (RDF Graph [46]). An RDF graph G is a finite set of RDF triples and
induces a set of vertices V = {s | (s, p, o) ∈ G} ∪ {o | (s, p, o) ∈ G}.

An example RDF graph representing the relationship between a lane and a shape
is shown in Figure 2.6. The resource lnds:lane_155 is of type lane. This is repre-
sented by the rdf:type property which connects, in this case, two resources, i.e.,
lnds:lane_155 acting as a subject and the lnds:Lane acting as an object. Simi-
larly, the resource lnds:pos_155_0 is declared as type lnds:ShapePoint through the
rdf:type property. In addition, this RDF graph represents that the lnds:lane_155
has shape point lnds:pos_155_0.

FIGURE 2.6: Example of an RDF graph representing the relationship
between a lane and a shape point.

RDF can be serialized in different formats, such as RDF/XML2, Turtle3, RDFa4

or JSON-LD.5 Every serialisation has its pros and cons, depending on the use case.
Throughout this document, the Turtle notation is used because it favours the read-
ability of RDF documents.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
@prefix lnds:<http :// www.bmw -carit.de/Foresight/Map/Ontologies/Low/NDS#>

lnds:lane _155 rdf:type lnds:Lane;
lnds:hasShapePoint lnds:pos _155_0.

lnds:pos _155_0 rdf:type lnds:ShapePoint.

LISTING 2.1: Turtle serialisation of the RDF graph in Figure 2.6.

RDF has its limitations that it can not describe taxonomies of classes and proper-
ties. RDFS (RDF Schema) is an extension of the RDF vocabulary which provides the
extra expressiveness [81]. It extends RDF by adding constructs such as rdfs:Class ,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range to mention the
most important ones.

2.3.2 Ontologies and the Web Ontology Language

Ontologies serve as the backbone of the Semantic Web. A number of definitions of
the term ontology exist within computer science. A widely used one is given by
Studer et al. [160], where an ontology is defined as “a formal, explicit specification
of a shared conceptualisation.” It specifies a vocabulary used to describe a specific
domain and a set of assumptions regarding the intended meaning of the words con-
tained in it [80]. Typically, an ontology should capture a shared understanding of

2https://www.w3.org/TR/rdf-syntax-grammar/
3https://www.w3.org/TR/turtle/
4https://www.w3.org/TR/rdfa-syntax/
5https://www.w3.org/TR/json-ld/
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a domain of interest and provide a machine interpretable formalisation [165, 98].
Hence, an ontology enables one to share and reuse knowledge across heterogeneous
applications.

Ontologies are based on Description Logics (DLs) which is a formal language for
knowledge representation [19]. A DL enables to model Concepts, Roles and Indi-
viduals. Concepts, also called classes, can be seen as sets of objects. Roles represent
binary relations between individuals. Objects correspond to individuals. Typically,
a DL knowledge base comprises the T(erminological)Box and the A(ssertional)Box.
The TBox consists of a set of assertions on concepts and roles, while the ABox con-
sists of assertions about individuals using the terms of the TBox. Note that DLs
are under Open World Assumption (OWA), meaning that if something cannot be
proven to be true, then it is not automatically assumed false.

DLs provide the semantics for the Web Ontology Language (OWL). The first
working drafts of OWL were published in 2002, known as OWL 1, which became
a formal W3C recommendation in 2004. Later in 2009, OWL 2 was released and
became a W3C standard. In 2012, the specification of OWL 2 was issued [141]. The
semantics of OWL 2 can be found in [171]. OWL 1 DL corresponds to the description
logic SHOIN (D), while OWL 2 DL corresponds to description logic SROIQ(D)
with some restrictions placed on ontology structures. For instance, in OWL 2 DL,
number restrictions cannot be used with transitive properties [171]. OWL 1 and
OWL 2 both have a number of profiles. As stated by Horrocks et al. [89], a profile
of OWL 2 “is a trimmed down version of OWL 2 that trades some expressive power
for the efficiency of reasoning”. For OWL 1, there are three profiles, namely OWL
Lite, OWL DL and OWL Full, while OWL DL is broadly used. The tractable profiles
of OWL 2 include OWL 2 QL, OWL 2 EL, OWL 2 RL.

OWL 2 EL is ideal for reasoning over large TBoxes, while OWL 2 QL is suitable
for query rewriting techniques [89]. OWL 2 RL profile corresponds to a naive in-
tersection between the description logic SROIQ and Datalog and is very closely
related to so-called Description Logic Programs (DLP) [78]. OWL 2 RL allows stan-
dard inference types to be implemented with polynomial-time algorithms using
rule-based reasoning engines in a relatively straightforward way.

2.3.3 Datalog

Rules can be used to axiomatise the semantics of a particular Web ontology lan-
guage, e.g., OWL 2 RL, via a static set of rules or, using Datalog rules, users can
create custom rule sets. In order to define Datalog rules, we fix countable, disjoint
sets of constants and variables. A term is a constant or a variable. An atom has the
form p(t1, . . . , tk), where p is a k-ary predicate and each ti, 1 ≤ i ≤ k, is a term. We
focus on unary and binary atoms only (i.e., 1 ≤ k ≤ 2), which correspond to classes
and properties of the ontology, respectively. An atom is ground if it does not contain
variables. A fact is a ground atom and a dataset is a finite set of facts, e.g., as defined
in an ontology. A Datalog rule is a logical implication of the form

H1, . . . , Hj ← B1, . . . , Bk, (2.1)

where each Hi, 1 ≤ i ≤ j, is a head atom, and each Bl , 1 ≤ l ≤ k, is a body atom. A
negative body atom has two forms: i) NOT Bi where 1 ≤ i ≤ k; ii) NOT EXISTS v1, . . . ,
vj IN (B1, . . . , Bi), where v1, . . . , vj are variables appear in (B1, . . . , Bi) with 1 ≤ i ≤ k.
An aggregate is a function that takes a multiset of values as input and returns a single
value as output. An aggregate atom has the form AGGREGATE(B1, . . . , Bi ON x1, . . . , xj
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BIND f1(e1) AS r1 . . . BIND fn(en) AS rn), where 1 ≤ i ≤ k, j ≥ 0, n ≥ 0, and x1, . . . , xj
are variables that appears in B1, . . . , Bi. For 1 ≤ v ≤ n, every fv is an aggregate func-
tion (e.g, MIN or MAX), every ev is an expression containing variables from B1, . . . , Bi,
and every rv is a variable that does not appear in B1, . . . , Bi. Aggregation is an exten-
sion of standard Datalog.

A rule r is safe if variables that appear in the head or in a negative body atom
also appear in a positive body atom. A Datalog program is a finite set of safe rules.
If all body atoms of a rule are true, the consequences (head) of the rule are true.
The main computational problem in Datalog systems is answering queries over the
facts that logically follow from the explicitly stated facts and a Datalog program.
As contrary to DLs, the semantics of Datalog is under Closed World Assumption
(CWA) meaning the only facts are those that the rules can imply. The process (and
the result) of computing and storing all facts implied by a dataset and a Datalog
program is called materialisation. The rules in a Datalog program can be stated in
any order. Furthermore, the Datalog program is guaranteed to terminate with finite
data. Datalog is P-complete for data complexity; that is to say, entailment can be
computed in polynomial time with respect to the size of the input facts [77]. The
reasoning of Datalog without negation and aggregation is monotonic, that is to say,
that new facts can only produce additional knowledge. Datalog with negation [103]
or aggregation, however, exploit nonmonotonic reasoning, meaning new facts will
sometimes invalidate previously derived knowledge.

Additionally, stratification is required for a Datalog program with negation or
aggregation to ensure that the semantics are well-defined [131, 66], which may be
verified using a dependency graph. The dependency graph Gp of a Datalog program
P is a directed graph that consists of nodes for each predicate in P; directed edges
from node q to node p, if there is a rule with q in the head and p in the body [156].
An edge is negative, if p occurs in a negated or aggregate atom; otherwise, the edge
is positive. A program is called hierarchic, if Gp does not contain cycles, otherwise
it is called recursive. A program is called stratified, if cycles in the Gp only consist
of positive edges [77]. As an example, consider a stratified and recursive program
shown in Example 2.2 in which the cycle consists of only a positive edge in the
dependency graph (see Figure 2.7). While Example in 2.3 demonstrates a recursive
program that cannot be stratified due to the presence of a dependency graph cycle
with negative edges (see Figure 2.8).

goodPath(x, y)← path(x, y), NOT trafficJam(y).
goodPath(x, z)← goodPath(x, y), goodPath(y, z).

(2.2)

path trafficJam

goodPath

−+

+

FIGURE 2.7: Dependency graph for stratified program.
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hasLeft(x, y)← hasNeighbouringLane(x, y), NOT hasRight(x, y).
hasRight(x, y)← hasNeighbouringLane(x, y), NOT hasLeft(x, y).

(2.3)

hasLeft hasRight

hasNeighbouringLane

−

−

+ +

FIGURE 2.8: Dependency graph for non-stratified program.

2.3.4 SPARQL

SPARQL is a query language for RDF. A SPARQL query is syntactically represented
by a block consisting of a query form (ASK, SELECT, CONSTRUCT or DESCRIBE), zero
or more dataset clauses (FROM and FROM NAMED), a WHERE clause, and possibly solu-
tion modifiers (e.g., DISTINCT). The WHERE clause provides a graph pattern to match
against the RDF dataset constructed from the dataset clauses.

The core idea of SPARQL is querying over simple graph patterns [166]. As ex-
plained by Seaborne and Prud’hommeaux [154], “Most forms of SPARQL queries
contain a set of triple patterns called a basic graph pattern. Triple patterns are like
RDF triples except that each subject, predicate and object may be a variable. A basic
graph pattern matches a subgraph of the RDF data when RDF terms from that sub-
graph may be substituted for the variables.” Hence, SPARQL query answering is
generally about query pattern matching. Listing 2.2 shows an example of the use of
SPARQL to query the lane type of which the current location is on and the travelled
distance and remaining distance of a vehicle in that lane.

prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
prefix high: <http :// www.bmw -carit.de/Foresight/Map/Ontologies/High#>

SELECT ?laneType ?td ?rd
WHERE {

?cl rdf:type high:CurrentLocation;
high:isOnLane ?lane;
high:travelledDistance ?td;
high:remainingDistance ?rd.

?lane rdf:type ?laneType.
}

LISTING 2.2: Example of a SPARQL query.

While some SPARQL features can be expressed in Datalog as shown in Table 2.4,
others, such as OPTIONAL, subqueries, LIMIT, OFFSET, or ORDER BY are some SPARQL
features that cannot. Additionally, although some SPARQL queries can be stated in
Datalog, the semantics are different because Datalog assumes set semantics while
SPARQL assumes multiset semantics.
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TABLE 2.4: The correspondence between SPARQL and Datalog [12].

SPARQL Datalog
Basic Graph Patterns Conjunctions of atoms
Path expressions Recursive rules
Union Conjunction of several rules
Minus and Not Exists Stratified negation
Filter Filter
Bind Bind
Aggregates Stratified aggregates

2.3.5 Triple Store

“Triple Store” is the common name given to a database management system for RDF
Data. The common techniques used in triple stores are storage, indexing, join process-
ing and query processing. Data storage refers to how data are represented in memory.
For example, a triple table is used to store an RDF graph as a single ternary relation,
while the vertical partitioning approach [5] uses a binary relation for each property
whose tuples encode subject–object pairs for that property. Indexing enables effi-
cient lookup operations on RDF graphs such as triple indexes, entity-based indexes
and property-based indexes. Natural joins are necessary for translating the query
into “physical operators” that implement algorithms for efficient evaluation. Query
processing concerns the features supported by SPARQL engines such as property
paths. We refer the interested reader to the survey presented in [11], where a com-
prehensive review of triple stores with related techniques are provided.

Additionally, triple stores can manage background knowledge, which is typi-
cally represented using an OWL 2 Ontology and may be complemented with SWRL
[88] and Datalog. The background knowledge allows a triple store to answer queries
with enriched results with inferred knowledge. Materialisation is a commonly used
for answering queries over a Datalog program and a dataset (e.g., GraphDB [76]
and Oracle’s RDF store [140]). It is beneficial in situations where the performance of
query answering is critical, because the consequence of the program and the dataset
are precomputed and explicitly stored. Queries can then be evaluated without any
further reference to the program.

RDFox is an in-memory triple store that supports Datalog reasoning [135]. The
RDF graph is stored as a six-column triple table implemented as a linked list, which
stores identifiers for subject, predicate and object for each triple, as well as three
pointers in the list to the next triple with the same subject, predicate and object. The
in-memory indexes [130] support efficient parallel updates, which is the key for fast
materialisation. RDFox also supports incremental reasoning, meaning that changes
to the input data do not require recomputing the materialisation from scratch. The
incremental reasoning is suitable in scenarios where the input data changes fre-
quently.
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Chapter 3

Related Work

This chapter outlines the state-of-the-art for the work conducted in this thesis. Rele-
vant approaches related to the research problem as well as to the research questions
are investigated. Section 3.1 examines approaches related to semantic data integra-
tion and ontologies for road environmental modelling and maps. Next, in Section 3.2
we review existing works using ontology-based approaches for reasoning and deci-
sion making. Finally, a review of the current approaches for spatial data quality is
carried out in Section 3.3.

3.1 Map Data Integration

Studies of ontology-based data integration approaches have been conducted and
applied in multi-disciplinary engineering environments (MDEE), where a key chal-
lenge consists of obtaining a common view of the heterogeneous data sources [59].
To answer our research question R1, we first present the related work of Ontology-
Based Data Integration (OBDI), then we analyse the existing ontologies related to
the generic road environmental model and specific maps.

3.1.1 Ontology-Based Data Integration

Ontology-Based Data Integration (OBDI) is one of the most common techniques for
semantic data integration since ontologies provide a semantic representation of the
domain [47, 41, 37, 45]. In general, the OBDI approach comprises three components:
i) the ontology for representing the knowledge about the domain; ii) the data source
which typically contains the data of the domain; iii) the mappings between the two
components [47]. Cruz et al. [45] discuss different views of the use of ontologies for
semantic data integration: i) Single ontology approach. All sources are directly re-
lated to a shared global ontology; ii) Multiple ontology approach. Each data source is
described by its local ontology separately; iii) Hybrid ontology approach. A combi-
nation of the single ontology approach for describing each data source in the domain
with mappings to a shared ontology.

Global-as-View (GAV) was proposed by Ekaputra et al. [58] as an additional
OBDI approach. The central concept of the GAV approach lies in the global on-
tology definition, which is similar to the hybrid OBDI. GAV OBDI, however, does
not require re-development of existing local ontologies due to inter-ontology trans-
formation definitions between the local and global ontologies. The advantages of
this approach is, as pointed by Ekaputra et al. [58], that data sources can be easily
added with moderate effort (i.e., mappings between the local ontology represent-
ing the new data source and the global ontology). Additionally, more complex rela-
tions beyond ontology representation capabilities are possible for defining mappings
[107]. Dubinin et al. [52] utilized GAV OBDI for integrating information across data
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sources in the automation domain. For instance mappings, they defined that two or
more objects in different ontologies are considered the same if certain property val-
ues of these instances are the same. This method is referred to as property value match-
ing. For the local ontologies to the global ontology transformation, they introduce
the eSWRL transformation language as an extension of SWRL [88] for RDF-to-RDF
transformation using a Prolog reasoner.

Ekaputra et al. [59] studied the use of Semantic Web technologies to support
data change management within MDEE, where data changes in one engineering
discipline need to be validated and propagated to other disciplines. GAV OBDI
was used to represent the heterogeneous data as local and global ontologies and
developed both local and global ontologies independently of each other. SPARQL
CONSTRUCT queries were used to transform, validate and propagate changes between
local ontologies and the global ontology. The Extract, Load, and Transform (ELT)
method is used to convert data represented in spreadsheets into the developed local
ontologies. All data are stored using an in-memory store, and accessed via custom
APIs from software applications.

Imran and Young [96] demonstrate the potential of formal reference ontologies
to support interoperability. Compared to the previously mentioned two approaches,
they used a Common Logic-based Knowledge Frame Language framework (KFL) to
define concepts in a multi-layered ontology instead of RDF and OWL. They argue
that KFL is more expressive and has more powerful reasoning capabilities than OWL
and SWRL rules. The ontology transformation, however, is achieved via arbitrary
code.

Lin and Harding [113] used ontologies to support collaboration of engineers in-
volved in a manufacturing system engineering process. GAV OBDI is used to de-
velop independent local ontologies and map them to the global ontology. The map-
ping between local ontologies and the global ontology is done via RDF property
mapping where classes, properties and instances of different ontologies are linked
via RDF properties, e.g., owl:sameAs, rdfs:subClassOf, rdfs:subPropertyOf, and
owl:equivalentClass. The transformation is also done via arbitrary transformation
code.

Table 3.1 summarises the overall technology options used in OBDI approaches,
including the mentioned approaches above. The investigated approaches have shown
the feasibility of using GAV OBDI to solve the integration problem. We notice, how-
ever, some limitations and drawbacks. First, the development of the local ontologies
and the global ontology is isolated in their work. There is no general methodology
for guiding the development process of building the local ontologies and the global
ontology. Second, we noted that the mentioned approaches were applied for static
input data. However, it is not the case in the autonomous driving domain, as the in-
put data is dynamic during run time. Additionally, the local ontologies enrichment
and RDF data aggregation from local ontologies to the global ontology are not con-
sidered during the transformation. Therefore, a novel approach for integrating map
data to provide a generic map model for autonomous vehicles has to be developed.

3.1.2 The High-level Road Environment Model

Generic road environment modelling has been studied both in the Intelligent Trans-
portation Systems (ITS) community [102] and automotive domains [100]. We present
the related work based on these two categories.
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TABLE 3.1: Technical realization of OBDI adopted from [58]

OBDI Element Technical Options
Language Framework RDF, OWL2, Topic Maps, Common Logic (CL)
Data Acquistion ETL, ELT, OBDA, Manual
Mapping RDF Property, URI/GUID Matching, Property Value Matching
Transformation SILK, SPARQL Construct, Code, Reasoner/Rule Engine
Data Storage Triplestore, In-memoery/file-based, RDBMS, Others
Data Access SPARQL Endpoints, Custom APIs, Custom GUIs,

Stream Data Engine

In the ITS community, one of the early works that used ontologies to model the
road network was done by Lorenz et al. [118], where the Ontology for Transporta-
tion Networks (OTN) was presented. The OTN contains a road network model, the
set of road segments between the road junctions, attributes such as driving direc-
tion, the number of lanes etc. However, the OTN ontology has not been updated
since 2005, the date it has been published. The km4City ontology [27] and iCity on-
tology [126] are both parts of projects related to smart cities, where the transportation
network is modelled. The presented transportation network ontologies are based on
the OTN ontology.

In automotive domains, the road environment model act as a generic abstraction
layer for autonomous driving functions [153]. Hummel et al. [94] proposed a road
network ontology for vehicle situation understanding. The proposed ontology in-
troduces the concepts of road networks (roads, lanes, dividers, road markings and
junctions) and are used to complement vision sensors and digital maps to retrieve
relevant information about intersections.

The representation of road intersection networks through ontologies was intro-
duced by Regele [145]. It was used to solve the traffic coordination problem of
autonomous vehicles. The approach uses a hierarchical world model and distin-
guishes between a low-level model containing detailed geometry data and a high-
level model for driving functions at the high level. The proposed abstracted traffic
model consists of a graph-like network of connected lanes, with vehicles and objects
attached to specific positions on the lane.

To build a knowledge base for smart vehicles and implement different types of
ADAS, Zhao et al. [180] proposed three ontologies: a map ontology, a control ontol-
ogy and a car ontology. The map ontology is used to describe road networks such
as road, intersection, lane, and traffic light information, etc. The control ontology is
used to represent driving actions and paths of autonomous vehicles. The car ontol-
ogy describes the types of vehicles and devices installed in a car.

To facilitate the automatic use case generation for the automated vehicle in high-
way scenario, a highway ontology was proposed in the work of [42]. The ontology
involves four main concepts: RoadPart, RoadWay, Zone and Equipment. Concepts
related to lanes such as MainLane, EntranceLane and ExitLane are defined under
Roadway.

We value the existing road environmental models as a good domain knowledge
input for our work. The presented models provide background knowledge of the
road-level model, however, the detailed lane-level information is missing, which is
particularly required to support autonomous driving functions. We considered this
limitation and proposed an ontology to represent the generic high-level road model.
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3.1.3 The Low-level HD Map Model

As for low-level map models, there are existing works representing fundamental
geospatial data in an ontology and the specific map-related ontologies. A geospa-
tial ontology was created in the work of [21] from geographic data stored in spatial
databases, focusing on representing geographic location and geometry. The ontol-
ogy contains geometric concepts such as longitude and latitude coordinates, point,
line, and polygon.

The Open Geospatial Consortium (OGC) has defined the GeoSPARQL standard [138]
to represent and query geospatial data in the Semantic Web. This standard defines a
small topological ontology in RDFS/OWL to represent geospatial data, which uses
three top-level classes to represent spatial objects’ features and geometries. A geo-
graphic query language is also proposed to support queries related to geometries of
the spatial objects, e.g., the calculation of distance between two spatial objects.

OpenStreetMap (OSM) is a collaborative project for creating and distributing free
geographic data about the world [2]. In this project, maps are stored in OSM files,
which consist of elements and tags. Elements like node, way etc., represent geo-
graphic entities like buildings, roads etc. Characteristics of these elements are rep-
resented using tags like street-type, speed-limit, amenities etc. An ontology called
OSMonto [43] is proposed to model the hierarchy of OSM tags in order to enable the
integration of OpenStreetMap into the Semantic Web. A rule-based framework for
creating instance data from OSM was proposed by Eiter et al. [56], where Datalog
rules are used to extract instance data from an OSM database.

Local Dynamic Map (LDM) is used in cooperative ITS systems. Eiter et al. [57]
proposed a Local Dynamic Map (LDM) ontology for integrating data from other re-
lated domains like weather. The LDM ontology contains classes such as GeoFeature
for representing the GIS aspects of the LDM including point of interests (POIs) and
the road networks, Geometry for geometrical representation of features. OWL2 QL
[38] is used to represent the LDM ontology for ontology-based data access (OBDA)
[150] combined with the OWLGRES 0.1 reasoner [159].

The existing ontologies do not contain HD map-related information, particularly
lane models and the relationship between roads and lanes. Nevertheless, the pre-
sented ontologies were a source of valuable inputs for designing the low-level HD
map ontologies in this thesis.

3.2 Ontology-Based Approaches for Reasoning and Decision
Making

A knowledge-enabled robot programming paradigm is used in robotics to sepa-
rate knowledge from the program and modularise it into small broadly applicable
chunks [25], such as there is an upcoming exit, current lane is the left most lane, change
lanes to the right, etc. For example, the program would ask: How should the vehicle
reach the exit lane? A reasoning mechanism would then collect the relevant knowl-
edge units and combine them in order to propose the appropriate steps. The advan-
tage of knowledge-based approaches to robot programming is that these knowledge
pieces apply to many applications and can dramatically accelerate the realization of
new robot applications [139].

One of the keys to the success of knowledge-based approaches in autonomous
robotics is the use of ontologies as enabler to help the robot to understand and reason
about its environment when executing tasks. There are nine functional capabilities
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that every autonomous robot should exhibit [108]: recognition and categorization, de-
cision making and choice, perception and situation assessment, prediction and monitoring,
problem-solving and planning, reasoning and belief maintenance, execution and action, in-
teraction and communication, remembering, reflection, and learning.

Reasoning essentially allows a robot to expand its knowledge state, drawing con-
clusions from other beliefs or assumptions the robot already maintains. This requires
the existence of a representation of beliefs and the relationships among them. A com-
mon formalism used to encode such knowledge is first-order logic (FOL). Ontologies
are often written in languages based on less expressive formalisms than FOL (e.g.,
DLs) in order to reduce the computational cost of inference. These formalisms al-
low the use of different sorts of reasoning, such as: deductive or inductive. Note
that reasoning is not only relevant to infer new beliefs (monotonic) but also to de-
cide whether to hold existing ones (belief maintenance, non-monotonic). Such be-
lief maintenance is essential for dynamic environments in which the situation may
change. We refer the interested reader to the surveys done by Gayathri and Uma
[72] and Olivares-Alarcos et al. [139] for an in-depth understanding.

In this section, we first describe the state of the art concerning ontology-based
reasoning and decision making in the autonomous vehicle domain. Then, we review
the current status and limitations of streaming reasoning.

3.2.1 Ontology-based Approaches for Autonomous Vehicles

Ontology-based approaches have been applied to enable autonomous vehicles’ situ-
ation awareness and decision makings. We are particularly interested in the interac-
tion between the road environment model and decision making via reasoning and
the treatment of environmental dynamics. Most of the approaches used ontology
to model and understand the road networks from the point of view of the subject
vehicle. Later, logic axioms or rules are used to understand and reason over the
interaction between the road environmental and dynamic entities.

One of the first works exploiting DL for road network modelling was done by
Hummel et al. [94]. They developed a Road Network Knowledge Base interpreting
data from onboard vehicle sensors. The TBox describes general knowledge about
road networks. At the same time, the ABox captures partial information about a
particular road or intersection acquired from a video camera, a digital map and po-
sitioning devices. The reasoning is achieved over the knowledge base via logic ax-
ioms. Their studies argue that deductive reasoning, which is monotonic, should be
combined with non-monotonic reasoning to deal with real-world scene interpreta-
tion.

Hülsen et al. have proposed an ontology to describe traffic intersection situa-
tions for ADAS [93]. Combined with traffic rules, infrastructure elements like roads,
lanes, traffic lights etc., are modelled in this ontology. Logic axioms in the TBox and
rules are used for infrastructure reasoning, inferring relations and concept mem-
berships and primarily deriving logical conflicts in driving paths and right-of-way
dependencies. A real-time implementation of the proposed approach in simulated
environments was successfully performed [92], in which the RacerPro reasoner [83]
was used to perform reasoning tasks. The ontology was represented using DL, and
the rules are modelled using the RacerPro rule language (based on SWRL syntax).

Inspired by the previous works, Armand et al. [16] also presented an ontology-
based approach for providing context awareness to driving assistant systems such
that the vehicle can perform human-like reasoning about the driving environment
using the information perceived through map data and sensors. The developed
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ontology considered the static entities (e.g., entities in the map data) and the dy-
namic entities (e.g., mobile entities perceived in real-time during driving). They
used SWRL rules which allow defining complex and expressive rules because they
argue that basic DL axioms are not expressive enough and only enables the defi-
nition of basic class equivalences. The Pellet reasoner was used for inferences and
reasoning is carried out at every 0.5 s. Care was taken to keep the ontology simple
with a reasonable amount of rules for short reasoning times.

Morignot and Nashashibi [128] proposed an ontology-based approach to relax
traffic regulation for autonomous vehicle assistance. The proposed ontology repre-
sents the vehicle, the road infrastructure and the traffic regulations. The rules are
used to encode the traffic relation relaxation behaviour of a vehicle in a situation
where crossing a solid lane marking is necessary, for example, to avoid being stuck
in a deadlock behind an illegally parked vehicle. The approach demonstrated how
the SWRL rules with the Pellet reasoner could be used for decision making. The
experiment is carried out, however, over static data.

Buechel et al. [33] present a modular framework of ontology-based traffic scene
modelling with decision-making rules derived from traffic regulations. The ontol-
ogy of the road network contains the lane network (lateral and longitudinal relation-
ship) modelling, as well as the relationships between lanes and lane markings. The
ontology is formalised in OWL 2 DL which corresponds to the DL SROIQ(D), the
Pellet reasoner is used to infer knowledge from logic axioms and rules encoded in
SWRL. The performance of the proposed approach, however, is not provided.

The approach proposed by Zhao et al. [181], however, is different from the other
mentioned approaches as the sensor data is treated as RDF streams. With the de-
veloped ontologies (e.g., a map ontology, a control ontology and a car ontology)
and rules, a knowledge base was created to decide the driving strategy for an au-
tonomous car at intersections. The RDF streams are processed continuously using
the C-SPARQL query engine, and the rules are modelled using SWRL.

So far, the presented approach has relied on static map data. That is to say, the
map does not change in the knowledge base during the proposed scenario. The ap-
proach proposed by Suryawanshi et al. [164], however, was conducted over dynamic
map data. In addition, they proposed layered ontologies to separate the underlying
map data structures from the represented knowledge for modelling SD map data
used in vehicles, which we took as an inspiration for this thesis.

Asmar et al. [60] propose a knowledge-enabled framework for robots’ situational
awareness to support autonomous logistics vehicles operating in automobile manu-
facturing plants. The framework comprises an OWL 2 ontology representing robot
observations, and a set of behaviour rules written in Prolog [30], and a reasoner im-
plemented using SWI-Prolog [3]. Their knowledge base (KB) contains time-invariant
instances and time-variant instances. In particular, time-variant instances are char-
acterised by a timestamp. The KB is updated every minute, the observations and
inferences are stored over a time window for smooth decision making.

Table 3.2 provides an overview of the examined methods used in existing ap-
proaches that represent the vehicle environment using ontologies and rules to pro-
vide an explicit and implicit specification of vehicle context information. The major-
ity of the existing approaches used OWL and SWRL with the Pellet reasoner. Among
these, some considered applications with a knowledge base updated at run-time.
The reasoning, however, is performed from scratch whenever the data is changed.
We considered this limitation and proposed using incremental and non-monotonic
reasoning supported by RDFox [135] for dealing with changing data.
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TABLE 3.2: Technology realization of ontology-based approach for
Autonomous Vehicles

Technical aspect Technical options Related work

Ontology Language OWL DL Hummel et al. [94], Hülsen et al. [93], Morig-
not and Nashashibi [128],Armand et al. [16]

OWL 2 DL Buechel et al. [33], El Asmar et al.
[60],Kohlhaas et al. [105],Zhao et al. [181]

Rule Language
RacePro rule Hülsen et al. [93]
SWRL Morignot and Nashashibi [128],Armand

et al. [16],Buechel et al. [33],Zhao et al. [181],
Suryawanshi et al. [164]

Prolog El Asmar et al. [60]

Reasoner
RacerPro Hülsen et al. [93]
Pellet Morignot and Nashashibi [128],Armand

et al. [16],Buechel et al. [33], Zhao et al. [181],
Suryawanshi et al. [164]

SWI-Prolog related El Asmar et al. [60]

3.2.2 Reasoning Over Dynamic Data

Autonomous driving functions operate over dynamic and big volume data. Cur-
rently, streaming reasoning has been studied to infer knowledge over frequently
changing data.

Stream reasoning [50] emerged in the last few years as a new research area that
focuses on the adoption of semantic reasoning techniques for highly dynamic data.
A data stream is defined as a collection of time-annotated items that are arranged
according to a set of temporal parameters. RDF stream is referred as a stream where
items are represented according to RDF [23].

The first generation of continuous query answering systems for RDF data streams
mainly focus on stream processing. Thus, they are often called RDF Stream Process-
ing (RSP) engines [161]. A time-based window is placed on top of a continuous data
stream because the data stream has no defined ending. A continuous SPARQL query
is registered once, and continuously delivers responses as the streaming data flows
through the window. As such, these RSP engines can filter and query a continuous
flow of RDF data and can provide real-time answers. The most well-known exam-
ples of RSP engines are C-SPARQL [24] and CQELS-QL [109], but others also exist,
such as EP-SPARQL [13] and SPARQLstream [36]. These engines verify a SPARQL
query graph pattern against an input graph with different semantics and are de-
signed for different use cases. Other solutions, e.g., Sparkwave [106] and INSTANS
[149], use extensions of the RETE algorithm [69] for pattern matching. StreamRule
[73] is a two-layered approach, combining stream processing with rule-based non-
monotonic Answer Set Programming (ASP) to enable reasoning over data streams.
However, this approach does not support the integration of background knowledge
when handling the data streams.

Stream reasoning is most applied in the domain where data streams are time-
based. Insights are extracted for the data streams within a time range. In contrast,
HD maps used for autonomous driving functions are spatial data and knowledge is
derived within a spatial range (e.g., distance). Furthermore, time-based data expires
only when it becomes old in the system. Spatial data streams, however, may expire
because of the change of an object’s location. For example, a road object may be
expired because it is far behind the location of the subject vehicle. Second, the rea-
soning capabilities of existing approaches are limited to RDFS as shown in Table 3.3.
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Negation, which is an important construct for reasoning is still expensive [125], and
updating the knowledge base is not supported [24].

TABLE 3.3: Reasoning support in state-of-the-art RDF Stream Pro-
cessing (RSP) engines

Background Knowledge Reasoning Capabilities
C-SPARQL Yes RDFS
EP-SPARQL Yes RDFS (in Prolog)
CQELS Yes None
SPARQL Stream Yes None
Sparkwave Yes RDFS subset
INSTANS No None
StreamRule No ASP

We considered all the mentioned limitations of current stream reasoning ap-
proaches and looked into other reasoning techniques for an alternative. The clos-
est to the stream reasoning idea is incremental reasoning [50]. Therefore, a novel
approach using incremental reasoning can be considered to provide reasoning and
decision making support for autonomous driving functions in order to address RQ2.

3.3 Quality assurance for Spatial Data

In this section, we give an overview of the studies and the usage of ontology-based
approaches for checking spatial data quality.

Furber and Hepp [70] propose a general representation of data quality constraints.
Eine et al. [55] argue that an ontology-based approach can improve data quality in
information systems, and several approaches for supporting data quality measure-
ments exist in use cases such as sensor networks [62].

The consistency of spatial data can be validated using spatial integrity constraints
[169]. Such constraints categorise the spatial relations into metrical (e.g., distance
and direction) and topological relations (e.g., overlapping or disjoint). Furthermore,
Mäs [122] has investigated reasoning algorithms for checking the internal consis-
tency of a set of spatial semantic integrity constraints. Bravo and Rodriguez [31]
formalise a set of spatial integrity constraints and study the satisfiability of these
constraints.

One of the existing software applications for spatial data quality evaluation is the
1Validate service provided by 1Spatial [146]. It validates spatial data against differ-
ent kinds of standard rules including, geometric, polygon and network. Another
software is ArcGIS Data Reviewer developed by a GIS software company called
ESRI [14]. It allows for feature integrity checks, spatial relationship checks, and at-
tribute checks.

Spatial data quality can be assessed with ontology-based approaches. Mostafavi
et al. [129] propose an ontology-based approach for quality assessment of spatial
databases. The ontology is encoded in Prolog, and queries are used to determine the
existence of inconsistencies. Wang et al. [174] investigate the feasibility of applying
rule-based spatial data quality checks over mobile data using the Semantic Web Rule
Language (SWRL). The authors show that the system can warn the data collector if
any inconsistent data is gathered in the field. Yilmaz et al. [178] created an on-
tology associated with spatial concepts from the Open Geospatial Consortium and
rules implemented as GeoSPARQL queries for detecting inconsistencies. Yilmaz et
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al. also developed the Spatial Data Quality Ontology together with SWRL rules for
performing quality assessment [179]. Huang et al. [90] investigate the feasibility of
combining ontologies and semantic constraints modelled in the Shapes Constraint
Language (SHACL) for ensuring the semantic correctness of geospatial data from
different levels of detail. A number of RDF stores also support geospatial queries
and integrity constraints, e.g., Stardog,1 Virtuoso,2 and GraphDB.3

The existing ontology-based approaches, however, focus on general spatial data.
Map-related concepts and relationships, such as the relationships among coordinate
points, lanes, and roads, are not studied. While SHACL is designed for RDF valida-
tion, by checking nodes w.r.t. class axioms or paths w.r.t. property axioms, it cannot
describe complex (spatial) relationship constraints, which is crucial for map data. Al-
though SHACL provides validation reports, it does not provide a mechanism (e.g.,
vocabulary) for fixing errors, while we aim at supporting violation detection and
handling in a closed loop. Therefore, a novel approach for addressing map data
quality with respect to spatial knowledge is needed as defined by RQ3.

1https://www.stardog.com/
2https://virtuoso.openlinksw.com/
3https://graphdb.ontotext.com/
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Chapter 4

Two-level Map Ontologies

High-definition (HD) maps provide detailed lane-level information to support vehi-
cle perception and localisation [79]. Based on the functional system architecture of an
automated driving system by Ulbrich et al. [167], HD maps with localisation func-
tionality provide inputs to the perception module for world modelling and even-
tually support the decision making of the planning and control module. Almost
all players in the area of highly automated driving, e.g., Google, HERE, TomTom,
Baidu, BMW, or Toyota, rely on HD maps to further improve the driving capabilities
of their autonomous vehicles. Recently, collective efforts have been made towards
standardising HD maps, such as Geographic Data File (GDF) 5.1 at the international
level [97] or Navigation Data Standard (NDS) and the ADASIS protocol V3 at in-
dustrial level [134]. However, heterogeneous map data poses major challenges for
integration in practice. Figure 4.1 shows two HD maps with different logical map
models.

(A) NDS building blocks [133] (B) HERE HD Live Map [85]

FIGURE 4.1: Two HD maps with different logical map models.

Problem statement. In this chapter, we investigate the integration problem among
different map formats. The following research question is investigated:

RQ1: Can an ontology-based approach solve the map data integration
problem and provide a generic and unified map model?

Proposed solution. We tackle the problem of map data integration and devise
an ontology-based approach that allows for integrating different low-level map data
formats into a generic high-level map model. To meet the need for map data inte-
gration, we adopt the Global as View (GAV) architecture proposed by Wache et al.
[172] with ontologies and rules (see Figure 4.2). We propose a practical methodol-
ogy to develop two-level ontologies and associated rules. The methodology is used
to build map specific low-level ontologies, the generic high-level map ontology and
the transformation from low-level map ontologies to the unified high-level map on-
tology. Finally, we evaluate the methodology via three use cases.
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FIGURE 4.2: Ontology-Based Map Data Integration Global-as-View
(GAV): Black arrows represent rule-based transformation, the red ar-
row indicates SPARQL query access from an application layer to the

high-level ontology.

Particularly, we present the following contributions in response to RQ1:

• A practical methodology for building the generic high-level ontologies and
low-level ontologies.

• A categorisation of the types of rules that are needed for knowledge abstrac-
tion and spatial reasoning.

• The generic high-level map (HLM) ontology.

• The low-level map specific ontologies: LNDS ontology based on NDS map
format and LHERE ontology based on HERE HD Live Map.

• Use case evaluations showing the applicability and benefits of two-level on-
tologies.

The remainder of this chapter is structured as follows. Section 4.1 outlines the
methodology used for developing the two-level ontologies. The development of
the HLM ontology following the proposed methodology is presented in Section 4.2.
Section 4.3 and Section 4.4 describe the development of the two low-level map on-
tologies, namely LNDS and LHERE. In Section 4.5, we highlight the instance trans-
formation from the low-level ontologies to the HLM ontology. Section 4.6 shows
the evaluation of the resulted HLM ontology based on three use cases. Finally, the
concluding remarks for this chapter are presented in Section 4.7.

4.1 Methodology

This section presents a methodology for creating the low-level ontologies, the high-
level ontology and the transformation from low-level ontologies to the high-level
ontology (see Figure 4.3). This methodology is composed of four steps:
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FIGURE 4.3: The methodology of creating the high-level ontology
and the low-level ontologies.

1. Create the high-level ontology following a top-down approach:

• analyse the high-level ontology requirements and produce the high-level
ontology requirement specification document (ORSD);

• develop a draft version of the high-level ontology.

2. Create the low-level ontologies following a bottom-up approach:

• based on the high-level ORSD, analyse the specific low-level ontology
formats and derive low-level ORSDs;

• develop a draft version of each low-level ontology;

• populate each low-level ontology using corresponding data source.

3. Transform the low-level ontologies to the high-level ontology:

• define the mapping for transforming each low-level ontology to the high-
level ontology;

• revise and improve the drafts of the high-level ontology and the devel-
oped low-level ontologies.

4. Output the developed ontologies and related rules:

• finalize the high-level ontology and the low-level ontologies;

• modularise the rules based on the ontology type and inference purpose.

4.1.1 Top-down Approach

For the top-down approach, we propose the use of METHONTOLOGY [116], one
of the most widely used ontology engineering methodologies [6]. It emphasises the
reuse of existing domain and upper-level ontologies and proposes to use formali-
sation purposes, a set of intermediate representations that can later be transformed
automatically into different formal languages. Therefore this methodology is suit-
able for developing ontologies at the knowledge level. Moreover, it considers the
main activities identified by the IEEE software development process [4] and other
knowledge engineering methodologies.

Different groups have used METHONTOLOGY to build ontologies in different
knowledge domains, such as Chemistry [117], Science [152], Knowledge Manage-
ment, e-Commerce, etc. [68]. Other methodologies, like DILIGENT [144] and NeOn
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[162], were considered before starting the construction of the high-level map on-
tology. However, the characteristics of such methodologies, like the emphasis on
decentralised engineering, did not fit our scenario well.

METHONTOLOGY is composed by seven stages: Specification, Knowledge Ac-
quisition, Conceptualisation, Integration, Implementation, Evaluation, and Documentation
(see Figure 4.4). The overall process involved two domain experts from BMW. The
main output of the Specification stage is the high-level ORSD written in natural lan-
guage followed by the guidelines proposed by Suárez-Figueroa et al. [163]. Impor-
tantly, this high-level ORSD serves as a guiding document for the development of
low-level ontologies.

FIGURE 4.4: Ontology development process inspired by the
METHONTOLOGY lifecycle [44].

4.1.2 Bottom-up Approach

Besides a top-down approach, another option for developing an ontology without
starting from a blank state is to use bottom-up approaches. Bottom-up approaches
reuse existing data, information, or knowledge and develop an ontology from these
non-ontological resources. Practically, it means that the bottom-up approach takes
some non-ontological material and converts it into an ontology with some manual
pre- and/or post-processing.

For the bottom-up approach, we adapted the methodology proposed by Uschold
et al. [168] to model low-level ontologies. The methodology identifies a five-stage
process for ontology creation:

1. Definition of purpose and scope. In this stage, with the guidance of the high-
level ORSD, the low-level ontologies’ domain, purpose of the ontology, and
ontology scope are captured in the ORSD.

2. Capture the domain knowledge. The process requires cooperation between
the ontology engineer and the domain experts. Furthermore, investigation and
analysis of existing ontologies (if any) are required. If no ontologies exist, the
domain knowledge is typically extracted from documents and data schema.

3. Develop the ontology. Develop the ontologies by focusing on the concepts
and relationships needed for the high-level ontology. Rules are used to pro-
cess low-level knowledge and derive implicit knowledge. Consider best prac-
tices for developing ontologies concerning reuse, documentation and naming
conventions.

4. Populate the ontology using the data sources. Existing data sources are used
to populate the low-level ontology via mapping between the data schema with
the low-level ontology TBox.
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5. Evaluate the ontology. Evaluate the applicability of the ontology with compe-
tency questions.

4.1.3 Ontology Design Patterns and Rules

Ontology design patterns (ODPs) are reusable modelling building blocks provid-
ing solutions to recurrent domain modelling problems [29]. ODPs are an important
means to improve the quality of an ontology design as they represent best practices
in ontology modelling frequently used by ontology developers. In the work of this
thesis, we are interested in finding suitable ODPs in the category of Content ODP
which solves the modelling issues regarding ontology content [84].

We exhaustively use rules for knowledge processing and reasoning. There are
three main tasks designated to rules, namely, Semantic Enrichment, Low-to-high knowl-
edge process and Reasoning (see Figure 4.5). Semantic Enrichment is a process of deriv-
ing primitive attributes and relationships among instances of a low-level ontology
by rules. The rules used in this step enrich instances with one-step inferences, and
their results serve as the input for the Low-to-high knowledge process. The Low-to-
high knowledge process refers to the transfer of the low-level map ontology to the
generic high-level ontology. The rules used in this step transfers the enriched low-
level ontology to the high-level ontology based on defined mappings. Reasoning
refers to the process of inferring the implicit knowledge using a set of rules com-
bined with the high-level ontology.

FIGURE 4.5: Rule-based knowledge process and reasoning.

4.1.4 Nomenclature

Graffoo (short for Graphical Framework for OWL Ontologies) is used for OWL ori-
ented graph representation [67]. There are two kinds of graphical elements, i.e.,
blocks (or nodes) and arcs. Rectangles with solid borders represent classes. Individu-
als are presented with pink circles with a solid black border. Arcs are represented by
black lines with a solid arrow at the end (see Figure 4.6). Falco et al. [67] compared
Graffoo with the Manchester Syntax, Protégé and E/R in terms of usability accord-
ing to SUS (System Usability Scale) [111] showing that Graffoo has the highest SUS
score.

According to Noy and McGuinness [137], it is beneficial to define the naming
conventions for the ontology modelling and strictly adhere to them. The conven-
tions for developed ontologies are defined as follows:

• When entities are mentioned within text, typewriter is used;

• CamelCase is used for concepts and instances names, such as concept RoadPart;

• Concepts names and domain specific instance names start with an upper case;
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FIGURE 4.6: The graphical elements of Graffoo [67].

• Instance names start with a lower case initial letter;

• Class names are used in the singular ;

• Property names are CamelCase with a lower case initial letter, e.g., hasLane.

Table 4.1 lists all the prefixes used in the thesis. For the high-level map ontol-
ogy, all entities are prefixed with high. For low-level map specific ontologies, the
prefix is constructed from http://www.bmw-carit.de/Foresight/Map/Ontologies/
Low/ and the map name. For example, the prefix of the NDS ontology is http:
//www.bmw-carit.de/Foresight/Map/Ontologies/Low/NDS#.

TABLE 4.1: Prefixes used in ontologies

Prefix URI

high http://www.bmw-carit.de/Foresight/Map/Ontologies/High#
lnds http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/NDS#
lhere http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/HERE#
lsd http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/SD#

4.1.5 Documentation

Providing a user-friendly view of vocabularies for non-experts is crucial for inte-
grating Semantic Web technologies [143]. It facilitates the contribution of domain
experts during the development process. In addition, it helps other interested par-
ties for easy use of the ontology in later phases as well. There exist different tools for
documentation generation. The Live OWL Documentation Environment (LODE) is
an online service that automatically generates a human-readable description of an
OWL ontology (or, more generally, an RDF vocabulary), considering both ontologi-
cal axioms and annotations and ordering these with the appearance and functional-
ity of a W3C Recommendations document [142].

4.2 High-level Map Ontology

In this section, we represent the high-level map (HLM) Ontology. This ontology
models the high-level generic map concepts and relations, representing real-world
entities like road parts, lanes, lane boundaries, etc. The HLM ontology needs to
provide a generic view over different map formats. At the moment, there are three

http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/NDS#
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/NDS#
http://www.bmw-carit.de/Foresight/Map/Ontologies/High#
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/NDS#
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/HERE#
http://www.bmw-carit.de/Foresight/Map/Ontologies/Low/SD#
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low-level maps: an SD map based on the Advanced Driver Assistance System Inter-
face Specification (ADASIS) protocol V2, an HD map based on NDS standard and
another HD map from HDLM (see Figure 4.7). An ontology-based representation of
the high-level map model permits the following improvements:

• flexible schema refinement and heterogeneous data linking and integration;

• using the semantic technology stack (e.g., rules and queries) to enhance the
mapping process and facilitate the decision-making process;

• detecting knowledge inconsistency by connecting to other domains of knowl-
edge that already has semantic representations, e.g., the Vehicle Ontology 1

and the SSN (Semantic Sensor Network) Ontology 2 to name just a few.

FIGURE 4.7: The high-level map ontology is a generic representation
of different low-level map ontologies.

In the following, we describe the process of following METHONTOLOGY for
creating the HLM ontology.

4.2.1 Specification

In the stage of specification, domain analysis and knowledge acquisition are carried
out. The requirements of the overall HLM ontology needs to be clarified. The main
output at this step is HLM ORSD (see Table 4.2). It was written in natural language
followed by the guidelines proposed by Suárez-Figueroa et al. [163]. In general, the
purpose of the HLM ontology is : i) to represent the generic road knowledge for
the AD (Autonomous Driving) vehicles, ii) to provide road environmental context
for location-awareness and lane change via spatial reasoning, and iii) to support
continuous dynamic map processes along a route. The details of purpose ii) and iii)
are further discussed in Chapter 5.

1https://enterpriseintegrationlab.github.io/icity/Vehicle/doc/index-en.html
2https://www.w3.org/TR/vocab-ssn/
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HLM Ontology Requirements Specification Document
1. Purpose

The purpose of the high-level map (HLM) ontology are i) to represent the generic road knowledge for the AD
vehicles, ii) to provide location-awareness and decision making (e.g., lane change) via spatial reasoning, and iii)
to support continuous dynamic map process.

2. Scope
The ontology has to cover a set of core concepts in terms of generic map knowledge, vehicle location awareness,
lane change notification and dynamic map processing:
Map
-Road part: represents a part of a road described by geometry points and attributes
-Lane: represents a part of a road that is designated to be used by a single line of vehicles.
-Lane divider: represents the borderline of the lane that is determined by a visible lane marking.
-Point: represents a geo-point with latitude and longitude.

Location awareness
-Vehicle: represents a real-world vehicle concept.
-Current location: represents a place where a vehicle is located at a time. It can be specified by a GPS position.
-Current position: represents the coordinate of the current location of a vehicle.
-Current lane: represents the lane where the vehicle is localised at a time.
-Current road part: represents the road part where the vehicle is localised at a time.
Planning
-Route: represents a list of road parts (lanes) including start and destination points.
-Change lane activity: represents an activity of lateral lane change with the guidance.
Dynamic map processing
-Spatial window: represents a fixed width or region in terms of a geographic element shift (slide) over a path line.

3. Implementation Language
OWL RL, Datalog and SPARQL

4. Intended End-Users
User 1. Map companies who want to exchange map data
User 2. Navigation systems that need to integrate heterogeneous map data.
User 3. Connected vehicles that want to share their maps.
User 4. Collaboration between private map companies and open map data communities such as OpenStreetMap
[2].

5. Intended Uses
Use 1. Provide the road and lane information to the users
Use 2. Enable location-awareness of a moving object in a dynamic environment;
Use 3. Support path planning of a moving object in a dynamic environment

6. Ontology Requirements
a. Non-Functional Requirements

NFR 1. The ontology must follow the naming conventions;
NFR 2. The ontology must re-use existing ontologies wherever possible.

b. Functional Requirements: Groups of Competency Questions
CQG1. Lane CQG2. Road Part

CQ1. What are the predecessors/successors of a lane?
CQ2. What are the points representing the geometry of
a lane?
CQ3. What is the latitude and longitude of a point?
CQ4. What is the left/right lane divider of a lane?
CQ5. What are the left/right lanes of a lane?
CQ6. What are the neighbouring lanes of a lane?
CQ7. What is the type of lane?
CQ8. What is the length of a lane?
CQ9. Is the lane diver open to the left/right?

CQ1. What are the predecessors/successors of a road
part?
CQ2. What is the type of road part?
CQ3. What are the points representing geometry of a
road part?
CQ4. What is the length of a road?

CQG3. Location awareness CQG4. Route planning and dynamic processing

CQ1. What is the position of the current location?
CQ2. What is the current lane?
CQ3. What is the travelled/remaining distance in the
current lane?
CQ4. What is the current road part?
CQ5. What is the travelled/remaining distance in the
current road part?

CQ1. Is there a route?
CQ2. What are the route segments?
CQ3. Does the vehicle need to change lanes based on
the route and the foresight parameter?
CQ4. What are the forward and backward parameters
of a spatial window?
CQ5. Does the vehicle need to pre-fetch map data
based on the route and forward parameter of the spa-
tial window?
CQ6. Does the vehicle need to delete expired map ob-
jects (road parts, lanes and points) based on the spatial
window?

7. Pre-Glossary of Terms
a. Terms from Competency Questions

Lane, Predecessor, Successor, Point, Latitude, Longitude, Lane Divider, Left, Right, Neighbouring, Lane Type,
Length, Open-to-left, open-to-right, Road Part, Road Part Type, Road Part Length, Current Location(Position,
Lane, Road Part), Travel Distance, Remaining Distance, Route, Route Segment, Change Lane Activity, Foresight
Parameter, Spatial Window, Pre-fetch, Expired

TABLE 4.2: HLM Ontology Requirements Specification Document
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4.2.2 Knowledge Acquisition

The knowledge necessary for building the HLM ontology has been acquired in three
steps: i) analyse the low-level map formats and extract common and generic high-
level of interest in the map and AD functions, ii) discussions with domain experts
for deciding how to model generic classes, individuals, and properties exploited
to support reasoning to provide the AD functions; iii) search for existing reusable
ontologies describing the road environment.

TABLE 4.3: The low-level SD and HD map formats information re-
sources.

Map Type Document Description
SD ADASIS v2 Protocol [53] a specification to describe the road

geometry with its related attributes
ahead of a vehicle based on the ve-
hicle’s position and a digital map
(ADAS Horizon).

HD Navigation Data Standard (NDS)
Format Specification [132]

the specification of Navigation Data
Standard (NDS), a standardized
physical storage format for nav-
igation systems. This document
describes the general concepts and
structure of the database format.

HERE HD Live Map (HDLM) Devel-
oper Guide [85]

describes the logical data model and
publication format of the HERE HD
Live Map Content service containing
Logical Data Model and publication
format for HD Live Map data.

In the first step, we collect information resources regarding the domain of in-
terest. The primary unstructured information resources concerning low-level maps
are the SD ADASIS v2 Protocol, the HD NDS (Navigation Data Standard) Format
Specification and the HDLM (HERE HD Live Map) Developer Guide (see Table 4.3).
We also performed a qualitative comparison between NDS and HDLM in terms of
commonalities and differences described in Section 2.2.1.

The second step consisted of defining the proper entities, enabling the road knowl-
edge’s reasoning at a high level. Based on the discussions with domain experts, the
static and dynamic aspects of road knowledge require careful consideration. Static
knowledge such as roads and lanes is related to the map. Dynamic knowledge is
related to vehicle location awareness, lane change planning and map processing
(preloading and deletion). Hence, we define two main modules: Static Road Knowl-
edge and Dynamic Vehicle Knowledge as following:

• The static road environment refers to the road entity that does not change during
a scenario. This includes geo-spatially stationary elements, such as the road
network, the type of road (lane) and geometry shapes.

• The dynamic vehicle environment opposed to the static road environment, and it
refers to the part of a scenario that changes during the time frame of a scenario.
The dynamic environment in our work refers to the change of the vehicle po-
sition and the road knowledge update. The road knowledge update is caused
by dynamic map processing, which consists of prefetching and deleting map
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data. The basic idea behind prefetching is to predict which map tiles the vehi-
cle may wish to use “next” or “soon”, and request them from the map database
ahead of time [99].

For the third step, we analysed some existing works to represent the semantics of
the road environment employing ontologies [94, 145, 92, 181, 17, 164], which benefit
our understanding of the domain knowledge. However, existing works present the
following drawbacks: i) the ontology covers road or lanes typologies, but not the
geometries or lane dividers; ii) the location awareness based on the position of the
vehicle and lane change activities are not considered; iii) continuous map processing
(preloading and deletion) has not been studied.

4.2.3 Conceptualisation

As proposed in the METHONTOLOGY [116], in the activity of Conceptualisation, the
domain knowledge is conceptualised into a model that describes the ontology re-
quirements in terms of the domain vocabulary identified in the Specification activity
(see Section 4.2.1). It is worth mentioning that there is no single correct way to model
the domain of interest. There are always alternative designing choices [137].

HLM Ontology Overview

Figure 4.8 shows the overall design of the HLM ontology. In general, the ontol-
ogy covers the Static Road Knowledge and Dynamic Vehicle Knowledge. The static road
knowledge contains generic concepts, relationships, and properties of map represen-
tations, which are independent of the specific low-level map formats. The dynamic
vehicle knowledge includes dynamic concepts, relationships, and entities related to
the continuously updated vehicle position. The spatial reasoning in the context of
dynamic vehicle knowledge is described in detail in Chapter 5.

Static Road Knowledge The high:RoadPart class represents a part of a road. The
instances of high:RoadPart in sibling relationship are linked to each other via the
object property high:hasSibling. The longitude relationship of high:RoadPart in-
stances is represented via the transitive object property high:hasNext. high:Lane
represents a part of a road that is designated to be used by a single line of vehi-
cles. The instances from the classes high:RoadPart and high:Lane are linked via
object property high:hasLane. Furthermore, the subclasses of high:RoadPart and
high:Lane are shown in Figure 4.9. The generic lateral relationships among the in-
stances of high:Lane are described via the object property high:hasNeighbouringLane,
and the longitudinal relationship is described via the object propertyhigh:hasNextLane.
The high:LaneDivider class models the lane boundary of high:Lane instances with
traversal attributes represented by the high:openToLeft and high:openToRight data
properties. The geometry of high:RoadPart and high:Lane is described by the in-
stances of the high:Point class. The data properties high:x and high:y of high:Point
represent latitude and longitude respectively. The class high:Route consists of a list
of high:RoadPart instances or high:Lane instances via the object properties high:has-
RoadPartRouteSegment or high:hasLaneRouteSegment, respectively.

Dynamic Vehicle Knowledge Vehicles are represented by instances of the class
icity-vehicle:Vehicle reused from the Vehicle Ontology which specifies concepts
related to vehicles such as brand, model, and type [101]. Each icity-vehicle:Vehicle
instance is linked to a set of instances from high:Position via the object prop-
erty high:hasTracePosition. high:Position instances are described by the data



4.2. High-level Map Ontology 41

F
IG

U
R

E
4.8:

O
verview

ofthe
H

LM
ontology.



42 Chapter 4. Two-level Map Ontologies

FIGURE 4.9: The subclasses of high:RoadPart and high:Lane.

properties high:x, high:y and high:timestamp. The current position of the ve-
hicle is modelled as an instance of the class high:CurrentPosition, a subclass of
high:Position. The class high:CurrentLocation represents the current location of
a car. It is linked to the instance from the class high:CurrentPosition via the object
property high:hasPosition. The class high:CurrentRoadPart is modelled as the
subclass of high:RoadPart. Similarly, the class high:CurrentLane is modelled as
the subclass of high:Lane. Importantly, the class high:SpatialWindow represents
the spatial sliding window concept. Each instance of high:SpatialWindow links
to an instance of high:SpatialWindowParameter described by the data property
high:forwardParameterValue and high:backParameterValue. The class high:Change-
LaneActivity describes the lateral lane change activity. It is connected to the class
high:CurrentLocation via object property high:hasLocation. The participant of
an instance of high:ChangeLaneActivity is described by an instance of the class
icity-vehicle:Vehicle via object property high:hasParticipant.

Rules

Rules play a key role in spatial reasoning and decision making. The main challenges
for rule modelling using HLM are to derive spatial relations for spatial reasoning
and capture decision-making algorithms (in rules). Based on the challenges, we
classify rules into (1) spatial and (2) algorithmic rules, and we describe them using
sub-categories, examples and more formal rule patterns below. In the formal pat-
terns, we use (possibly with subscripts) C for classes, op for object properties, and dp
for data properties of the ontology over which the rules are to be executed. The de-
tails of the utilisation of rules are described in Chapter 5 Dynamic Map Processing.

(1) Spatial Rules These rules infer important road environmental knowledge for
vehicle navigation [72]. We further subdivide them into bounding rules, topological
rules and distance rules.

(a) Bounding rules infer the boundaries of an area or the range of a line, such as a
start/end point or the left or right-most lane. Aggregation functions (e.g., MIN or
MAX) can be used to identify an individual with a minimal or maximal bounding
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value. As a concrete example, consider:

LeftMostLane(z)← Lane(p),
AGGREGATE(hasIdx(p, idx)
ON p BIND MAX(idx) AS m),
Lane(z), hasIdx(z, m).

More generally, such rules have the form

C2(z)←C1(x), AGGREGATE(dp1(x, v) ON x
BIND MAX(v) AS m), C1(z), dp1(z, m).

Such rules might also use (stratified) negation to identify individuals without some
properties:

EndLane(x)← Lane(x), NOT EXISTS y IN
(Lane(y), hasNext(x, y))

More generally, such rules have the form

C2(x)← C1(x), NOT EXISTS y IN (C1(y), op1(x, y)).

(b) Topological rules refer to topological relations, more specifically, lateral (left/right)
and longitudinal (predecessor/successor) relations. Reachability can naturally be
expressed using recursive rules.

hasLeft(x, y)← hasDirectLeft(x, y)
hasLeft(x, z)← hasDirectLeft(x, y), hasLeft(y, z).

More generally, such rules have the form

op1(x, y)← op2(x, y)
op1(x, z)← op2(x, y), op1(y, z)

(c) Distance rules refer to the spatial arrangement of objects, such as the distance to
the point of interest. There are two types of distance relations: coordinate distance and
length distance.

Coordinate distance rules indicate the distance between two points using coordinates.
An auxiliary concept (CoordinateDistance) represents the ternary relation that con-
nects the source point to the target point via two object properties hasSource and
hasTarget and the calculated distance value via the data property distance:

CoordinateDistance(d), hasSource(d, s),
hasTarget(d, t), distance(d, z)←
Point(s), x(s, xs), y(s, ys),
Point(t), x(t, xt), y(t, yt),
BIND(sqrt((xs − xt)2 + (ys − yt)2) AS z),
BIND(SKOLEM("d", s, t) AS d).

More generally, such rules have the following form, where A represents the auxiliary
concept:

A(d), hasSource(d, s),
hasTarget(d, t), distance(d, z)←
C1(s), x(s, xs), y(s, ys),
C1(t), x(t, xt), y(t, yt),
BIND(sqrt((xs − xt)2 + (ys − yt)2) AS z),
BIND(SKOLEM("d", s, t) AS d).
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Length distance rules are similar to coordinate distance rules, but the distance is calcu-
lated by aggregating the length of intermediate path elements between two points.
As a concrete example consider:

LengthDistance(d), hasSource(d, s),
hasTarget(d, t), distance(d, z)←
Lane(s), length(s, v),
AGGREGATE(hasNext(s, p), hasNext(p, t)),
length(p, l) ON s BIND SUM(l) AS u),
BIND((v + u) AS z),
BIND(SKOLEM(" f", s, t) AS d).

More generally, such rules have the form

A(d), hasSource(d, s),
hasTarget(d, t), distance(d, z)←
C1(s), length(s, v),
AGGREGATE(op1(s, p), op1(p, t)),
length(p, l) ON s BIND SUM(l) AS u),
BIND((v + u) AS z),
BIND(SKOLEM(" f", s, t) AS d).

(2) Algorithmic Rules These rules are used for decision making and vehicle mo-
tion planning, e.g., determining the road’s characteristic change points (e.g., speed
limit), the most probable path a vehicle will take, providing lane-change notifica-
tions and prefetching map tiles. The rules are modelled as a combination of rules of
a different type, possibly requiring a specific rule order.

(a) Change-point rules refer to the rules that detect whether any attribute-value change
points will occur on the road ahead of the vehicles, such as a change of the speed
limit, slope etc., for the vehicles to make manoeuvre decisions. The change point
is the point where the ahead attribute value starts to change. In order to capture
the key notions of “ahead” and “starting”, we use the property chain of hasNext ◦
hasImmediatePrevious. Figure 4.10 shows an example where the current road part is
rp1, and it connects to all roads ahead with the property hasNext. The speed limit
change points are on rp2 (80 kmh→ 90 kmh) and rp6 (90 kmh→ 80 kmh) along the
path. For rp2, it connects to rp1 via hasNext, in particular, hasImmediateNext. Hence,
it is the road part ahead of rp1. Moreover, it connects to rp1 via hasImmediatePrevi-
ous, and rp2’s speed limit is different from rp1’s. Hence, it is the starting point of the
change. The reasoning for rp6 as a change point is applied in similar fashion.

FIGURE 4.10: Illustration of the speed change points.
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In general, the change-point detection for a road path rp1, . . . , rpn and a given a
road part rpj, where 1 < j ≤ n consists of two steps:

1. identify the road parts R ahead where the attribute-value change point appears
via the property chain hasNext ◦ hasImmediatePrevious;

2. calculate the distance d from rpj to ri ∈ R:

(a) if ri is rpj’s immediate next road part, then d = dremaining

(b) otherwise, d = dremaining + ∑i−1
k=j+1 lengthrpk .

As a concrete example, consider the following rules. Note that the Topological
rules and Distance rules pattern defined in the previous section are reused.

(1) hasSpeedLimitChangeAt(cp, x1)←
CurrentRoadPart(cp),
hasNext(cp, x1), hasImmediatePrevious(x1, x2),
speedLimit(x1, s1), speedLimit(x2, s2),
FILTER(s1 6= s22).

(2a) distanceToChangePoint(cp, d)←
hasSpeedLimitChangeAt(cp, x1), hasImmediateNext(cp, x1),
remaingingDistance(cp, d).

(2b) distanceToChangePoint(cp, d)←
hasSpeedLimitChangeAt(cp, x1), hasNext(cp, x1),
remaingingDistance(r), LengthDistance(l), hasSource(l, cp),
hasTarget(l, x1), distance(l, z),
BIND((r + z) AS d).

More generally, such rules have the form

(1) hasChangeAt(c, p)←
C1(c), hasNext(c, n), hasImmediatePrevious(n, p),
dp1(n, a1)), dp1(p, a2),
FILTER(a1 6= a2).

(2a) distanceToChange(c, d)←
hasChangeAt(c, p), hasImmediateNext(c, p),
distance(c, d).

(2b) distanceToChange(c, d)←
hasChangeAt(c, p), hasNext(c, p), distance(c, r),
LengthDistance(l), hasSource(l, c),
hasTarget(l, p), distance(l, z),
BIND((r + z) AS d).

(b) Path rules refer to a set of rules that iteratively find a path satisfying a set of condi-
tions. A “path” may comprise at least a portion of one or more road parts or lanes. It
represents a trajectory that may be taken by a vehicle through the road network, such
as the most probable path (MPP) at the road level in ADAS horizon [1]. Figure 4.11
shows the path searching process. The process starts with certain map objects, such
as the current road part, then adds the immediate next object satisfying condition 1
to the path. Otherwise, the process checks condition 2, if necessary, until condition
n. Based on the newly added path part, the process continues further until no map
object is found. The iterative building process mainly takes advantage of recursive
rule structures, and there is a set of recursive rules for each condition.
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FIGURE 4.11: Illustration of the path finding process.

As a concrete example, consider the following rules (partial) for finding the MPP.

isPartOfMpp(cp, m)←
MPP(m), CurrentRoadPart(cp)

isPartOfMpp(rp1, m)←
isPartOfMpp(rp, m), hasImmediateNext(rp, rp1),
isPlannedRoadPart(rp1, v), FILTER(v = >).

...
isPartOfMpp(rp1, m)←

isPartOfMpp(rp, m), hasImmediateNext(rp, rp1),
isPlannedRoadPart(rp1, v1), isMaxProbabilityRoadpart(rp1, v2),
FILTER(v1 6= >∧ v2 = >).

More generally, such rules have the following form considering the conditions of cdi,
where 2 ≤ i ≤ n

isPartOfPath(c, p)←
Path(p), C1(c).

isPartOfPath(rp1, p)←
isPartOfPath(rp, p), hasImmediateNext(rp, rp1),
cd1(rp1, v), FILTER(v = >).

isPartOfPath(rp1, p)←
isPartOfPath(rp, p), hasImmediateNext(rp, rp1),
cdi−1(rp1, vi−1), cdi(rp1, vi),
FILTER(vi−1 6= >∧ vi = >).

4.2.4 Integration

In this section, we first describe the related ontologies for the HLM ontology design.
Then we present the identified ODPs that can be applied to the modelling of the
HLM ontology.
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Related Ontologies

According to the HLM ORSD, three areas have been identified where existing on-
tologies may be used. These areas are static road information, dynamic vehicle en-
vironment and vehicle information. After reviewing possible ontologies, some of
them are selected for reuse and described next.

• The Core Ontology [164] is used for specifying a standard (road-level) map
model. The namespace and naming convention of the core ontology is changed
and adapted to follow the best practice of ontology development. For exam-
ple, core:CURRENT_LOCATION is changed to high:CurrentLocation to follow
CamelCase naming convention.

• The Vehicle Ontology [101] specifies concepts related to vehicles such as brand,
model, and type. The concept of icity-vehicle:Vehicle is reused in our on-
tology, which serves as the bridging concept between two ontologies, namely
the HLM ontology and the Vehicle ontology.

Reusing Ontology Design Patterns

Hereby, we discuss the existing ODPs and how they are applied to support the mod-
elling of the HLM ontology. However, in some cases, we renamed some properties
upon the need for applied domain knowledge. Sequence ODP3 represents the “path”
is employed to model the directed connectivity of road parts (lanes). For example,
the successors of a road part are connected via high:hasNext, and the predecessors
are connected via high:hasPrevious. For modelling the route, we used Trajectory
ODP4 and Sequence ODP to represent a route with a start point and an end point
which are connected by a sequence of road parts or lanes. Figure 4.12 illustrates a
vehicle’s route formed by road parts, and Figure 4.13 shows the corresponding RDF
graph of the example route.

FIGURE 4.12: An example of a vehicle route.

We used the N–Ary Relation ODP5 to model the distance between two points. Fig-
ure 4.14 shows an example of the distance relationship between the current position

3http://ontologydesignpatterns.org/wiki/Submissions:Sequence
4http://ontologydesignpatterns.org/wiki/Submissions:Trajectory
5http://ontologydesignpatterns.org/wiki/Submissions:N-Ary_Relation_Pattern_(OWL_2)

 http://ontologydesignpatterns.org/wiki/Submissions:N-Ary_Relation_Pattern_(OWL_2)
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FIGURE 4.13: An RDF graph representation of the route.

of the vehicle and a point on the road. Clearly, we need to qualify the distance rela-
tionship with a value. Hence, we introduce a class called high:CoordinateDistance
whose instance is connected to the instance of class high:CurrentPosition and an
instance of high:Point via the high:hasSource and high:hasTarget object proper-
ties respectively, and the distance is captured via the data property high:distance
(see Figure 4.15).

FIGURE 4.14: An example of the coordinate distance between the
vehicle’s position and a point on the road.

The parameters are modelled using Parameter ODP6. The foresight parameter is
modelled as the class high:ForesightParameterwith data property high:foresight-
ParameterValue. The forward and backward parameters of the spatial window
is modelled as data properties high:forwardParameterValue and high:backward-
ParameterValue of class high:SpatialWindowParameter. The classes high:Foresight-
Parameter and high:SpatialWindowParameter are subclasses of high:Parameter.

6http://ontologydesignpatterns.org/wiki/Submissions:Parameter
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FIGURE 4.15: An RDF graph representing the coordinate distance
between the current position and a point on the road.

4.2.5 Summary of Ontology Characteristics

Table 4.4 reports the summary of characteristics for the HLM ontology. The reused
ontologies and ODPs are included in the design process of the ontology.

TABLE 4.4: Summary of the HLM Ontology Characteristics

Name HLM ontology
Size 31 classes, 35 object properties, 20 data properties, 3 individuals,

209 axioms
DL Expressivity ALEHI (D)
Reused Ontologies Core, Vehicle Ontology
Reused ODP Trajectory, N-nary, Parameter, Sequence
Naming Conventions CamelCase notation
Methodology METHONTOLOGY [116]

4.3 Low-level LNDS Ontology

In this section, we describe the modelling process of the LNDS ontology following
the bottom-up approach (see Section 4.1.2). The LNDS ontology is built based on
the NDS specification considering the HLM ORSD (see Section 4.2.1). To the best
of our knowledge, there is no previous work on this since NDS is a relatively new
standard, and it is not a public resource.

4.3.1 Purpose and Scope

The purpose of the LNDS ontology is to provide a semantic representation of the
NDS format and populate the HLM ontology by knowledge transferring rules. Ta-
ble 4.5 provides the requirements’ specification of the LNDS ontology.

4.3.2 Capture

The capture of the domain of interest, i.e., the NDS format, is achieved in two ways.
First, we used the text document and data visualisation tools to investigate the
domain of interest. The text document we used is the NDS Format Specification
2.5.4 that comprises 1114 pages. This document contains terminological definitions,
which represent a major source for studying the domain of interest. The visual-
isation tools we used are the NDS map data viewer and the SQLLite-based data
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LNDS Ontology Requirements Specification Document
1. Purpose

The purpose of the low-level NDS map ontology is to provide a semantic representation of the NDS standard and
sufficient information to populate the HLM ontology.

2. Scope
The ontology has to cover a set of core concepts from routing building blocks (e.g., links, shape points), and lane
building block (e.g., lanes, lane boundaries) :

-Link: represents a directed polyline connecting two nodes with optional intermediate shape points. Both nodes
are located in the same tile.
-Road Geometry Line: represents a course of a road using a sequence of shape points describing a polyline.
-Shape Point: represents a geo-point with latitude and longitude providing a generalized road centreline geome-
try.
-Lane Group: represents a set of one or more lanes.
-Lane: A lane is a part of a road that is designated to be used by a single line of vehicles. The place at which lanes
begin or end is called a lane connector.
-Lane boundary: represents the borderline of the lane that is determined by a visible lane marking.

3. Implementation Language
OWL RL, Datalog and SPARQL

4. Intended End-Users
User 1. Map companies want to exchange map data based on the NDS standard.
User 2. Navigation systems that need to integrate heterogeneous NDS map data with the other domain of knowl-
edge, e.g., weather or sensor data.
User 3. Connected vehicles that want to share their NDS maps.

5. Intended Uses
Use 1. Provide semantic representation of NDS data to the users.
Use 2. Support refinement of map data via spatial reasoning.
Use 3. Facilitate Validation process of map data using spatial relationships.

6. Ontology Requirements
a. Non-Functional Requirements

NFR 1. The ontology must follow the naming conventions;
NFR 2. The ontology must re-use existing ontologies wherever possible.

b. Functional Requirements: Groups of Competency Questions
CQG1. Lane CQG2. Feature

CQ1. What are the lanes/lane boundaries in a lane
group?
CQ2. What are the start/end lane point?
CQ3. What is the index/type/length of a lane?
CQ4. What is the direct successor of a lane?
CQ5. What are the shape points of a lane?
CQ6. What is the latitude and longitude of a point?
CQ7. What is the left/right lane boundary of a lane?
CQ8. What are the parallel elements of a lane bound-
ary?
CQ9. What are the sequential elements of a parallel el-
ement?
CQ10. What is the type of a sequential element?

CQ1. What are the features to which a lane group
refers?
CQ2. What is the start/end point of a feature?
CQ3. What is the type of feature?
CQ4. What is the travel direction of a feature?
CQ5. What are the points representing the geometry of
a feature?
CQ6. What is the length of a feature?
CQ7. Is the feature controlled access?
CQ8. Is the feature a motorway/urban street?

7. Pre-Glossary of Terms
a. Terms from Competency Questions

Lane Group, Lane, Direct Successor, Shape Point, Latitude, Longitude, Lane Boundary, Parallel Element, Sequen-
tial Element, Left, Right, Lane Type, Length, Feature, Length, Travel Direction, Controlled Access, Motor Way,
Urban

TABLE 4.5: LNDS Ontology Requirements Specification Document
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inspector for exploring the NDS map database. Second, a domain expert with deep
knowledge in the utility of maps in vehicles supported the process of capturing the
knowledge of the domain.

4.3.3 Development

A low-level ontology, LNDS, representing the NDS format with core concepts is pro-
vided in this section. The namespace we used for this ontology is lnds. We first
provide an overview of LNDS, and then we present the ODPs used during the de-
velopment process. At last, we show the utilisation of the rule patterns for semantic
enrichment.

Ontology Overview

In this section, we describe the main classes of the LNDS ontology (see Figure 4.16).

FIGURE 4.16: The low-level NDS map ontology.

lnds:LaneGroup represents the lane group concept and its properties. It provides
context for associated lanes with lane boundaries and lanes with features. All lanes
and lane boundaries in a lane group have the same lane group ID. The lane group
ID is modelled via the data property lnds:laneGroupId.
lnds:Lane represents the lane concept and is the core element of the ontology. The
class lnds:LaneConnector is connected to the lnds:Lane to describe the connectivity
of lanes via lnds:hasSourceLaneConnector and lnds:hasDestLaneConnector object
properties. The length of each instance of lnds:Lane is described via the data prop-
erty lnds:length. The geometry of lnds:Lane instances is modelled using a set of
instances of lnds:ShapePoint via the lnds:hasShapePoint object property.
lnds:LaneConnectivityElementType represents the different lane types. Lane types
are modelled as instances of lnds:LaneConnectivityElementTyp. lnds:Normal-
Lane, for example, is declared as an instance of this class to represent normal lane
type.
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lnds:LaneBoundary represents the lane boundary concept in LNDS. An instance of
lnds:LaneBoundary is described by instances of lnds:ParallelElement via the ob-
ject property lnds:contains. An instance of lnds:ParallelElement is modelled us-
ing instances from lnds:SequentialElement via the object property lnds:consistsOf.
lnds:SequentialElementType represents the different sequential element types. The
declared instances of lnds:SequentialElementType are used to describe different
sequential element types. For example, lnds:SingleSolidLine is declared as an
instance to describe the single solid line type.
lnds:FeatureReference represents the feature reference in LNDS. It describes the ref-
erence between lnds:LaneGroup and lnds:Feature via the object property lnds:has
FeatureReference.
lnds:Feature represents the feature concept in LNDS. The instance of lnds:Feature
is described by lnds:Direction via the object property lnds:hasTravelDirection.
The instance of lnds:Feature has a length value described by the lnds:length data
property. An lnds:Feature instance may be a controlled access road described
via the lnds:isControlledAccess data property. The geometry of lnds:Feature
is modelled using instances of lnds:ShapePoint via the lnds:hasShapePoint object
property. The lnds:isMotorway data property indicates whether the feature is part
of a motorway. The lnds:isUrban data property indicates whether the feature is
located in an urban environment.
lnds:Direction represents the travel direction concept in LNDS. Travel directions are
modelled as instances of lnds:Direction. For example, lnds:PositiveDirection
indicates that the direction is from the start point to the endpoint.
lnds:Link models the base link concept in LNDS. A base link is a link that does not
cross several tiles. The class lnds:Link is modelled as a subclass of lnds:Feature.
lnds:RoadGeoLine models the road geometry line concept in LNDS. It is a subclass
of lnds:Feature.
lnds:ShapePoint models the shape point concept in LNDS. Each point has an x-y
coordinate. This is defined via the data properties lnds:x and lnds:y.

Ontology Design Patterns

We analyse existing ODPs that can be applied to the modelling of LNDS. A pattern
to be included is the Sequence ODP. The objective is to model the sequence of map
objects, such as the sequential elements of a parallel element in a lane boundary. The
Constituency ODP7 is a pattern of interest in the LNDS domain as well. In LNDS, a
parallel element in a lane boundary consists of several sequential elements. There-
fore, we use the Constituency ODP to model the constituents of map objects, such as
the relationship between sequential elements and parallel elements. Moreover, the
N–Ary ODP is used to model the reference mechanism in LNDS, such as lane groups
with a feature reference.

Rule Patterns

The purpose of using rule patterns is to enrich the semantic of the data via rules. We
use Primitive Rules to form the fundamental relationships among entities of LNDS
ontology. These rules enrich instances with one-step inferences, and their results

7http://ontologydesignpatterns.org/wiki/Submissions:Constituency
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serve as input for all other rules. Primitive rules use the identifiers to infer the rela-
tionships or attributes, and are divided into primitive relationship rules and primitive
attribute rules.

(a) Primitive relationship rules infer relationships between individuals. For a concrete
example consider:

hasLane(x, y)← LaneGroup(x), laneGroupId(x, i), , Lane(y), laneGroupId(y, i).

More generally, such rules have the form

op(x, y)← C1(x), dp(x, z), C2(y), dp(y, z)

(b) Primitive attribute rules infer an attribute of an individual. For a concrete example
consider:

speed(x, v)← Node(x), hasIdx(x, i), speedVal(y, v), hasIdx(y, i).

More generally, such rules have the form

dp(x, v)← C(x), dp1(x, z), dp2(y, v), dp1(y, z).

In addition, Spatial Rule patterns described in Section 4.2.3 are used to infer topolog-
ical relationships and distance relationships for lnds:Lane and lnds:Feature.

4.3.4 The Ontology Population

In NDS, tiles represent a unit for storing data in the database. The features are
compactly encoded in RDS (Relational DataScript) and stored as the BLOBs (Binary
Large Objects). We use SQLite, and Zserio8 generated Python NDS APIs to extract
data from the NDS database and construct RDF triples based on the LNDS ontology.
String concatenation is used to generate triples instead of existing RDF APIs writ-
ten in Java or Python for deployment environment independence. Table 4.6 shows
an excerpt of the mapping between the ontology and the NDS schema. Figure 4.17
shows the RDF graph of a lane instance with related relationships.

TABLE 4.6: Mapping NDS schema with LNDS properties. The at-
tributes of NDS schema are mapped to the concepts and properties of

the LNDS ontology.

Attribute from NDS DB Concept Property

laneGroupId lnds:LaneGroup lnds:laneGroupId
laneConnectivityElements[index] lnds:Lane lnds:laneIndex
sourceLaneConnecorId lnds:LaneConnector lnds:hasSourceLaneConnector
. . . . . . . . .
linkId lnds:Link lnds:linkId
roadGeoLineId lnds:RoadGeoLine lnds:roadGeoLine_id
latitude lnds:ShapePoint lnds:x
longtitude lnds:ShapePoint lnds:y
tileId lnds:Tile lnds:tileId

4.3.5 Summary of Ontology Characteristics

Table 4.7 reports the summary of characteristics for the LNDS ontology. The reuse
of ODPs is included in the design process of the ontology.

8https://github.com/ndsev/zserio
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FIGURE 4.17: A RDF graph representation of a lane instance with
related relationships.

TABLE 4.7: Summary of the LNDS Ontology Characteristics

Name LNDS ontology
size 32 classes, 33 object properties, 23 data properties, 32 individuals,

275 axioms
DL Expressivity ALEHI (D)
Reuse ODP Sequence, Constituency, N-nary
Naming Conventions CamelCase notation
Methodology Uschold and Gruninger [168]
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4.3.6 Evaluation

In this section, we present the evaluation of the LNDS ontology. First, we present
the experimental results of building the LNDS ontology. Second, we evaluate the
LNDS ontology’s adequacy for the use cases of lane identification.

FIGURE 4.18: The low-level NDS map knowledge process

Performance
Figure 4.18 shows the knowledge process of the low-level NDS map, which consists
of two steps: i) LNDS ABox Generation; ii) Semantic Enrichment. The LNDS ABox
generation is described in Section 4.3.4. For the semantic enrichment process, we
developed an application called SmartMapApp using the RDFox 4.0.0 triple store and
incorporated the process into the application. All evaluations were performed on a
64-bit Ubuntu virtual machine with 4 Intel(R) Core(TM) i7-6820HQ CPUs @ 2.70GHz
with 15 GB memory.

Table 4.8 shows the computation time for the ABox Generation and the Semantic
Enrichment stage, respectively, the number of generated triples, and the total num-
ber of triples after enrichment. The average ABox generation time is 1.96 s, and the
average semantic enrichment time is 1.47 s. In general, the more data a tile has,
the longer it takes to generate ABoxes and enrich semantics. The average number
of triples generated is 137,209, while the average number of triples after semantic
enrichment is 296,832, almost twice as many.

TABLE 4.8: The low-level NDS map process performance.

Time (s) #Triple
ABox Generation Semantic Enrichment Generated Enriched

5034 1.3 0.145 28,714 60,042
5059 1.2 0.166 32,730 67,590
5021 1.1 0.196 38,515 79,694
5035 2.6 0.694 82,811 171,574
5056 1.4 0.506 62,744 129,558
5057 2.6 1.834 184,995 389,020
5032 1.9 1.478 154,529 322,284
5033 2.4 1.958 199,550 420,490
5062 2.7 3.613 284,908 596,946
5020 2.3 4.092 302,596 731,124
AVG 1.96 1.4682 137,209 296,832

Lane Identification
Listing 4.1 shows the nested SPARQL query for retrieving the relevant informa-
tion about a lane based on a GPS position with latitude and longitude coordinate.
First, the inner query identifies the lane where the given position is located. This is
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achieved by calculating the distance between the given position with all lane shape
points, then retrieve the lane whose shape point has the minimum distance to the
given position. Second, based on the result of the inner query, the outer query
retrieves the related lane knowledge inferred by rules, such as the left/right lane
boundary and the successor lane.

SELECT ?fe ?lgId ?laneIdx ?lane ?laneType ?length ?succrLane
?llb ?openToMiddleSide ?openToCurbSide

WHERE{
?lane lnds:hasLaneConnElemType ?laneType;lnds:laneGroupId ?lgId;

lnds:hasLeftLaneBoundary ?llb; lnds:hasRightLaneBoundary ?rlb;
lnds:index ?laneIdx; lnds:length ?length;
lnds:hasDirectSuccrLane ?succrLane;
lnds:hasFeature ?fe.

?llb lnds:contains ?ple.
...
lnds:openToMiddleSide ?openToMiddleSide.
lnds:openToCurbSide ?openToCurbSide.
{SELECT ?lane
WHERE {

?lane a lnds:Lane;lnds:hasShapePoint ?sp.
?sp lnds:x ?x; lnds:y ?y.
BIND(sqrt ((48.251881 -?x)*(48.251881 -?x)+
(11.532547 -?y)*(11.532547 -?y)) AS ?distance ).

} ORDER BY ?distance LIMIT 1
}

LISTING 4.1: SPARQL query for retrieving LNDS lane information
using a given position (48.251881 11.532547).

The retrieved lane information based on a position coordinate in SmartMapApp
is shown in Figure 4.19a. The corresponding map visualisation is depicted in Fig-
ure 4.19b with the travel direction from top to down.

(A) The LNDS lane information based on a po-
sition with coordinate 48.251881,11.532547.

(B) Visualisation of a position with coordinate
48.251881,11.532547. (Imagery ©2022 Google)

FIGURE 4.19: Lane identification result.

4.4 Low-level LHERE Ontology

In this section, we present the LHERE ontology based on the provided HDLM map
format document. The modelling process follows the bottom-up approach described
in Section 4.1.2. To the best of our knowledge, there is no previous work on this topic
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since HDLM is a relatively new map format, and it is privately owned by the HERE
company.

4.4.1 Purpose and Scope

The purpose of the LHERE ontology is to provide a semantic representation of HDLM
and populate the HLM ABox with sufficient information by knowledge transferring
rules. Table 4.9 provides the detailed requirement specification of the LHERE ontol-
ogy.

LHERE Ontology Requirements Specification Document
1. Purpose

The purpose of the low-level HERE map ontology is to provide a semantic representation of the HLDM and
sufficient information to populate the HLM ontology.

2. Scope
The ontology has to cover a set of core concepts from the TopologyGeometryLayer (e.g., links, shape points), the
RoutingAttributeLayer (e.g., link type), the LaneTopologyLayer (e.g., lane connectivity), the LaneGeometryLayer,
the LaneAttributeLayer (e.g., lane and lane boundary type), the LaneRoadReferenceLayer :
-Link: represents a directed polyline connecting two nodes with optional intermediate shape points.
-Shape Point: represents a geo-point with latitude and longitude providing generalized road centreline geometry.
-Lane Group: represents a set of one or more lanes, which begin and end at a consistent location across the road.
The place at which lanes begin or end is called a lane group connector.
-Lane: represents a part of a road that is designated to be used by a single line of vehicles.
-Lane boundary: represents the borderline of the lane that is determined by a visible lane marking.

3. Implementation Language
OWL RL, Datalog and SPARQL

4. Intended End-Users
User 1. Map companies want to exchange map data based on HLDM.
User 2. Autonomous driving systems need to integrate HLDM data with other domain of knowledge, e.g.,
weather or sensor data.
User 3. Smart City systems where HLDM is used for urban planning and management.

5. Intended Uses
Use 1. provide a semantic representation of HLDM to the users.
Use 2. integrate with other domains of data.
Use 3. refinement of the map model via graph representation.

6. Ontology Requirements
a. Non-Functional Requirements

NFR 1. The ontology must follow the naming conventions;
NFR 2. The ontology must re-use existing ontologies wherever possible.

b. Functional Requirements: Groups of Competency Questions
CQG1. Lane CQG2. Link

CQ1. what are the lanes/lane boundaries in a lane
group?
CQ2. what are the start/end lane point?
CQ3. what is the index/type/length of a lane?
CQ4. what is the direct successor of a lane?
CQ5. what are the shape points of a lane?
CQ6. what is the latitude and longitude of a point?
CQ7. what is the left/right lane boundary of a lane?
CQ8. what are the elements of a lane boundary?
CQ9. what is the type of an element?

CQ1. what are the links a lane group refers to?
CQ2. what are the start/end point of a link?
CQ3. what is the type of a link?
CQ4. what is the travel direction of a link?
CQ5. what are the points representing the geometry of
a link?
CQ6. what is the length of a link?
CQ7. is the link controlled access?
CQ8. is the link a motorway/urban street?

7. Pre-Glossary of Terms
a. Terms from Competency Questions

Lane Group, Lane, Direct Successor, Shape Point, Latitude, Longitude, Lane Boundary, Element, Left, Right, Lane
Type, Length, Link, Length, Travel Direction, Controlled Access, MotorWay, Urban

TABLE 4.9: LHERE Ontology Requirements Specification Document

4.4.2 Capture

The capturing of the domain of interest, i.e., HDLM, consists of two steps. First,
we used the text document, visualisation tool, and data inspector to investigate the
domain of interest. The text document we used is the HDLM Developer Guide doc-
ument that comprises 170 pages. This document contains terminological definitions,
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which represent a major source for studying the domain of interest. The visualisa-
tion tools we used are HDLM Map Viewer and map data catalog inspector. Second,
a domain expert supported the process of capturing the knowledge of the domain.

4.4.3 Development

A low-level ontology LHERE representing HDLM map with core concepts is pro-
vided in this work; the namespace lhere is used for this ontology. We first provide an
overview of LHERE and present the ODPs used during the development process.
At last, we show the utilisation of the rule patterns for semantic enrichment.

Ontology Overview

In this section, we describe the main classes of the LHERE ontology (see Figure 4.20).

FIGURE 4.20: The low-level LHERE ontology representing the
HDLM map.

lhere:LaneGroup represents the lane group concept and its properties. It provides
context for associated lanes with lane boundaries and lanes with links. All lanes and
lane boundaries in a lane group have the same lane group ID. The lane group ID
is modelled via the data property lhere:laneGroupId. The lane group connectivity
is modelled via lhere:hasStartLGConnectorRef and lhere:hasEndLGConnectorRef
object properties linking to the class lhere:LaneGroupConnectorReference.
lhere:LaneGroupConnectorReference represents the association between lane group
connector and the located tile ID. It links to lhere:LaneGroupConnector via the ob-
ject property lhere:refersToLGConnector and to the located tile ID via the data
property lhere:refTileId. The length of each instance of lhere:LaneGroup is de-
scribed via the data property lhere:length.
lhere:Lane represents the lane concept and is the core element of the ontology. The
data properties lhere:endLaneConnNum and lhere:endLaneConnNum are used to model
the lane connectivity based the lane group connectivity. The geometry of lhere:Lane
instances is modelled using a set of instances of lhere:ShapePoint via the lhere:has-
ShapePoint object property. An instance of lhere:Lane is described by instances of
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lhere:LaneParametricAttribution via the lhere:hasParaAttirbution object prop-
erty. Each instance of lhere:LaneParametricAttribution is described by an in-
stance of lhere:LaneType via the object property lhere:hasLaneType.
lhere:LaneBoundary represents the lane boundary concept. Its instance is described
by instances of lhere:LaneBoundaryParametricAttribution via the lhere:hasPara-
Attribution object property. lhere:LaneBoundaryParametricAttribution is fur-
ther described by the class lhere:LaneBoundaryMarkingElement. Each instance of
lhere:LaneBoundaryMarkingElement is described by an instance of lhere:Lane-
BoundaryMarkingElementStyle via the property lhere:hasStyle.
lhere:ParametricAttribution models the parametric attribute with a defined range
in a direction. This is modelled via connecting to the class lhere:Direction through
the lhere:directionOfTravel object property and to the class lhere:Range through
the lhere:appliesToRange object property. The specific feature attributions such as
lhere:LinkParametricAttribution is modelled as the subclass of lhere:Parametric-
Attribution.
lhere:Link represents the link concept. Each instance of lhere:Link is described
by two instances of the lhere:Node class. The geometry of lhere:Link instances is
modelled using a set of instances of lhere:ShapePoint via the lhere:hasShapePoint
object property. Each instance of lhere:Link has a length value described by the
lhere:length data property. The attribute of an instance of lhere:Link is described
by lhere:LinkParametricAttribution via lhere:hasParaAttribution. Each in-
stance of lhere:LinkParametricAttribution is described by the data properties
lhere:isControlledAccess and lhere:isAutomobiles.
lhere:Direction represents the travel direction concept. Travel directions are mod-
elled as instances of lhere:Direction. For example, lhere:Forward is an instance
of lhere:Direction, and it indicates that the direction is from the start point to the
endpoint. Another instance is lhere:Backward indicating that the direction is from
the endpoint to the start point.
lhere:ShapePoint models the shape point concept. Each point has an x-y coordinate.
This is defined via the data properties lhere:x and lhere:y.

Ontology Design Patterns

We analyse existing ODPs that can be applied to the modelling of LHERE. The Se-
quence ODP is used to model the sequence of map objects, such as the sequence of
lane groups and links. In LHERE, a reference mechanism is widely used to model
attribute reference. Therefore, we use the N–Nary ODP to model the map objects
attribute references, such as the parametric attribute references.

Rule Patterns

Similar to LNDS ontology, rules are also used for the Semantic Enrichment. We use
Primitive Rules described in Section 4.3.3 to infer the fundamental relationships among
entities of lhere:LaneGroup, lhere:Lane and lhere:LaneBoundary as well as their
descriptive attribute relationships. Spatial Rule described in Section 4.2.3 are used to
infer topological relationships and distance relationships for lhere:Lane and lhere:Link.

4.4.4 The Ontology Population

HDLM is a cloud-based web service that enables access to continuously updated
map data [85]. The data is composed of tiled map layers containing information
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such as the topology, geometry, and attributes of roads and lanes. The data is stored
in a series of map catalogs that correspond to geographic regions. We use the pro-
vided Java map API to extract map data and construct RDF triples based on the
LHERE ontology. Similar to LNDS, the triple are created based on string concate-
nation instead of existing RDF APIs. Because existing RDF APIs are based on Java
or Python, however, we aim for deployment environment independence. Table 4.6
shows an excerpt of the mapping between the ontology and the HDLM data schema.

TABLE 4.10: Mapping schema of the HDLM map with LHERE prop-
erties. The attributes in the HDLM are mapped to the concepts and

properties of the LHERE ontology.

Attribute from HERE catalog Concept Property
lane_group_id lhere:LaneGroup lhere:LaneGroupId
start_lane_group_connector_ref lhere:Lane-

GroupConnector-
Reference

lhere:hasStart-
LGConnectorRef

lanes[index] lhere:Lane lhere:index
start_lane_connector_number - lhere:startLaneConnNum
... ... ...

link_id lhere:Link lhere:linkId
link_length_meters - lhere:length
here_tile_id lhere:Tile lhere:tileId

4.4.5 Summary of Ontology Characteristics

Table 4.11 reports the summary of characteristics for the LHERE ontology. The
reused of ODPs is included in the design process of the ontology.

TABLE 4.11: Summary of the LHERE Ontology Characteristics

Name LHERE ontology
size 32 classes, 32 object properties, 26 data properties, 10 individuals,

213 axioms
DL Expressivity ALEHI (D)
Reused ODP Sequence, N-nary
Naming Conventions CamelCase notation
Methodology Uschold and Gruninger [168]

4.4.6 Evaluation

In this section, we present the evaluation of the LHERE ontology. First, we present
the experimental results of building LHERE ontology. Second, we evaluate the
LHERE ontology’s adequacy based on the use case of lane identification.

Performance

Figure 4.21 shows the knowledge process of the HDLM map, which consists of
two steps: i) LHERE ABox generation; ii) Semantic Enrichment. We extended the
SmartMapApp application to work with LHERE ontology.

Table 4.12 shows the computation time of the ABox generation and semantic en-
richment stage, respectively, and the number of triples generated and the total num-
ber of triples after enrichment. The average ABox generation time is 0.1378 s, and
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FIGURE 4.21: The low-level HDLM map knowledge process.

the average semantic enrichment time is 0.809 s, 0.9 s in total. In general, the more
data one tile contains, the more time is needed for ABox generation and semantic
enrichment. The average number of triples generated is 89,656, which is the input
triple number of semantic enrichment. The average number of triples after semantic
enrichment is 219,001, almost 2.5 times the size of the input triples.

TABLE 4.12: The low-level HDLM map process performance.

Time (s) #Triple
ABox Generation Semantic Enrichment Generated Enriched

2874 0.024 0.061 13,644 31,765
2899 0.037 0.221 15,303 37,060
2861 0.02 1.556 21,129 48,953
2875 0.056 0.14 50,642 120,261
2896 0.101 0.302 39,651 96,198
2897 0.201 0.286 106,930 263,865
2872 0.089 1.571 87,537 214,613
2873 0.157 1.845 121,597 297,660
2902 0.468 0.532 223,636 551,243
2860 0.234 1.572 216,491 528,392
AVG 0.1387 0.809 89,656 219,001

Lane Identification
The SPARQL query we used for LHERE lane identification is shown in Listing 4.2
with nested queries. We also used the same given position (48.251881,11.532547)
for lane identification. The result shown in Figure 4.22 is similar to the LNDS lane
identification presented in Figure 4.19. This indicates the semantic commonalities
between LHERE and LNDS.

SELECT ?laneGroup ?lgId ?laneIdx ?lane
?laneType ?length ?succrLane ?llb ?rlb

WHERE{
?laneGroup lhere:hasLane ?lane.
?lane lhere:hasLaneType ?laneType;

lhere:laneGroupId ?lgId;
lhere:index ?laneIdx;
lhere:length ?length;
lhere:hasDirectSuccrLane ?succrLane.
...

OPTIONAL {?lane lhere:hasLeftLaneBoundary ?llb. ...}
OPTIONAL {?lane lhere:hasRightLaneBoundary ?rlb. ...}

{SELECT ?lane
WHERE {
?lane a lhere:Lane;lhere:hasShapePoint ?sp.
?sp lhere:x ?x; lhere:y ?y.
BIND(sqrt ((48.251881 -?x)*(48.251881 , -?x)+
(11.532547 -?y)*(11.532547 -?y)) AS ?distance ).
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} ORDER BY ?distance LIMIT 1
}

}

LISTING 4.2: SPARQL query for retrieving LHERE lane information
using a given position (48.251881 11.532547).

(A) The LHERE lane information of a position
with coordinate 48.251881,11.532547.

(B) Visualisation of a position with coordinate
48.251881,11.532547. (Imagery ©2022 Google)

FIGURE 4.22: Lane identification result.

4.5 The Low-to-high Transformation

In this section, we explain the rule-based RDF graph transformation from the low-
level map ontologies O1 (e.g., LNDS and LHERE) to the HLM ontology O2. We
use rules to create a new individual in the O2 based on one or more individuals in
O1. SKOLEM functions and string manipulations are used to dynamically generate
named (not anonymous) individuals [157]. We distinguish two different RDF graph
transformations: simple (1:1) and complex (n:1) transformations. The transformation
comprises two steps:

1. Transferring the instances of classes with data property values inO1 to theO2;

2. Inferring the object properties of the new instances in the O2 based on the
corresponding newly created instances’ object properties in the O1.

4.5.1 Simple Transformation

Simple transformation rules create, for each individual of a certain type in a O1 , a
new individual of a certain type in the O2. The data property values are assigned
during the individual creation process. The temporary object property hasLow is
used to mark the correspondence between the individual in O1 and O2 such that
object properties can be inferred between newly created individuals in the O2. For a
concrete example, the rules below, which create an individual of RoadPart inO2 from
the individual of Link inO1 with the value of data property length. The individual of
Point in O2 with associated data properties is created in similar fashion.

RoadPart(r), length(r, l), hasLow(r, k)←
Link(k), length(k, l), BIND(SKOLEM("rp", k) AS r).

Point(p), x(p, x), y(p, y), hasLow(p, sp)←
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ShapePoint(sp), x(sp, x), y(sp, y), BIND(SKOLEM("p", sp) AS p).

The rule below infers the object property hasPoint between the individuals of RoadPart
and Point in O2 from the object property hasShapePoint in O1.

hasPoint(r, p)←
RoadPart(r), hasLow(r, k), Point(p), hasLow(p, sp), hasShapePoint(k, sp).

More generally, simple transformation rules have the following form, where hl stands
for hasLow, C1, dp1 and op1 are from a O1 and C2, C3, dp2 and op2 are from the O2.

C2(n), dp2(n, v), hl(n, x)←
C1(x), dp1(x, v), BIND(SKOLEM("c", x) AS n).

op2(n, v)←
C2(n), hl(n, m), C3(v), hl(v, u), op1(m, u).

4.5.2 Complex Transformation

Complex transformation rules create a new individual in O2 based on several indi-
viduals in the O1, hence, perform an aggregation process. As a concrete example,
consider the rule below, which creates a new individual of Lane in O2 and assigns
data property value laneNum in O2.

Lane(l), laneNum(l, n), hasLow(l, l1), hasLow(l, l2),←
Lane(l1), Lane(l2), laneNum(l1, n), laneNum(l2, n),
hasConn(l1, c), hasConn(l2, c), BIND(SKOLEM("l", c) AS l).

The data property laneNum is 1:1 value transfer. There is also a need for aggregated
value transfer, such as the length of a new individual of Lane in O2.

length(l, y)←
Lane(l), hasLow(l, k),
AGGREGATION(length(k, n), BIND(SUM(n) AS y).

More generally, complex transformation rules have the form

C2(w), dp2(w, v), hl(w, x), hl(w, y)←
C1(x), C1(y), dp1(x, v), dp1(y, v),
op1(x, z), op1(y, z), BIND(SKOLEM("c", z) AS w).

dp2(x, v)←
C2(x), hl(x, k),
AGGREGATION(dp1(k, n), BIND(SUM(n) AS v).

The object properties between individuals created in complex transformation are
inferred using the same rule pattern as illustrated in simple transformation (see Sec-
tion 4.5.1).

Let us consider an example of lane aggregation from LNDS to HLM (see Fig-
ure 4.23). LaneGroup1 and LaneGroup2 both contain two lanes, and the same side of
lanes in each lane group is contiguous and longitudinally connected. For instance,
Lane22 is the contiguous successor lane of Lane12, and they are longitudinally con-
nected. The difference of LaneGroup1 and LaneGroup2 is that Lane12 has a guardrail
as lane boundary, while Lane22 does not. In this case, human beings perceive Lane12
and Lane22 as one lane regardless of the presence of guardrails. We followed the
human perception for our modelling by applying the aggregation rules, reducing
the amount of data. After the complex transformation, Lane12 and Lane22 are aggre-
gated into the high-level entity Lane2 and Lane11 and Lane21 into Lane2.
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FIGURE 4.23: Aggregation of low-level lanes into high-level lanes.

The aggregation process is as following: First, the instances of lnds:Lane in
LNDS that will be aggregated are assigned with a value generated from the iden-
tified properties such as tile ID, the number of lanes, the feature ID, the feature type,
the travel direction, the lane index, and the lane type (see Listing 4.3).

lnds:laneValue [?l, ?v]:-
lnds:LaneGroup [?lg], lnds:hasLane [?lg ,?l], lnds:tileId [?lg, ?tileId],
lnds:numLane [?lg , ?numLane], lnds:hasFeatureReference [?lg , ?fr],
lnds:refersTo [?fr ,?f], lnds:directionRefValue [?fr ,?dv],
lnds:featureId [?f,?fid], lnds:featureTypeValue [?f,?ftv],
lnds:index[?l,?idx], lnds:laneTypeValue [?l,?ltv],
BIND(CONCAT(STR(? tileId),STR(? numLane),STR(?fid),
STR(?ftv),STR(?dv),STR(?idx),STR(?ltv)) AS ?v).

LISTING 4.3: Lane value generation for aggregation.

Second, for all the instances of lnds:Lanewith the same value of lnds:laneValue,
the rules generate one instance of high:Lane and assign values to data property
high:laneNum and high:length of newly created instances (see Listing 4.4). We omit
the value generation of data property lnds:LBValue for lnds:LaneBoudnary here,
since it is achieved similarly as the data property lnds:laneValue of lnds:Lane.

high:Lane[?h], high:laneNum [?h,?idx],
high:hasLow [?h,?l1], high:hasLow [?h,?l2]:-
lnds:Lane[?l1], lnds:laneValue [?l1, ?v],lnds:index[?l1,?idx],
lnds:hasLeftLB [?l1,?lb1],lnds:hasRightLB [?l1,?lb2],
lnds:LBValue [?lb1, ?v1], lnds:LBValue [?lb2, ?v2],
lnds:Lane[?l2], lnds:laneValue [?l2, ?v],lnds:index[?l2,?idx],
lnds:hasLeftLB [?l2,?lb11], lnds:hasRightLB [?l2,?lb22],
lnds:LBValue [?lb11, ?v1], lnds:LBValue [?lb22, ?v2],
BIND(SKOLEM (" highLane", ?v) AS ?z),
BIND(IRI(CONCAT ("http ://.../ Map/Ontologies/High#", str(?z))) AS ?h).

high:length [?h, ?d]:-
high:Lane[?h], high:hasLow [?h, ?l],
AGGREGATE(lnds:length [?l,?len] BIND(SUM(?len) AS ?d).

LISTING 4.4: Aggregate the lanes with the same lane value.
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4.6 Evaluation

In this section, three representative use cases supported by two-level map ontolo-
gies are presented. The use cases show how the ontology and rules can achieve the
following advantages:

• the interoperability of a semantic representation of the map. Logical inconsis-
tency can be detected using rules by combining the high-level map ontology
with sensor observations (see Section 4.6.1);

• reducing data size via layered abstraction. The number of map objects can be
reduced, in particular, the number of lanes and lane boundaries in highways
by the two-level knowledge abstraction (see Section 4.6.2);

• providing a unified view over different map formats. By lane aggregation, two
different map formats, namely NDS and HDLM, result in a unified high-level
lane representation (see Section 4.6.3).

4.6.1 Use Case: Inconsistency Detection with Sensor Observations

Fusing the data from vehicle sensors and the map can help to form a consistent en-
vironmental view of the surroundings of the vehicle. The AD system reasons on the
generated environmental model to decide which actions are appropriate for specific
driving situations. This use case shows that the proposed high-level ontology en-
ables us to detect logical inconsistencies by reasoning on the environmental model
based on the vehicle sensor data and the map. We illustrate this by a false emergency
break scenario, which might result from mislocalisation of the car’s position due to,
for example, noisy or non-available sensor data.

As shown in Figure 4.24, the vehicle E is driving in Lane2 following vehicle C2,
and vehicle C1 is driving in Lane1. Due to the non-availability of some sensor data, E
(in grey) is mislocalised in Lane1 instead of Lane2. The object tracking system (OTS)
of E provides a list of positions of tracked objects (C1 and C2) around E. The provided
positions are relative to the position of E as E is the origin of the vehicle coordinate
system. Because E is mislocalised in Lane1 and the calculated distance of E to C1 is
less than the distance threshold of the autonomous emergency braking system (e.g.,
80 m), the braking system of E would initiate partial braking to reduce the speed and
give the driver valuable time to react in order to avoid a collision with C1 “in front”,
although, in reality, E is driving in Lane2 with a safe distance to C2.

This false emergency break could be avoided by creating an ontology for sensor
data fused with the HLM ontology as shown in Figure 4.24. The isInRightFrontOf,
isInFrontOf and isIn relations are derived from sensor data and represent, respec-
tively, that: i) C1 is in the right front lane of E; ii) C2 is in front of E on the same
lane; iii) E is localised in Lane1. According to the map, the lane (Lane1) where E is
localised is the rightmost lane. This contradicts the derived knowledge of isInRight-
FrontOf, which means that a car is in the right front lane of E because it is impossible
to have a lane at the right-hand side of the rightmost lane. Listing 4.5 shows the rule
classifying this inconsistent knowledge as a fault.

4.6.2 Use Case: Lane Aggregation for LNDS

Figure 4.25 shows the result of the aggregation rules over map data covering 63.75 km2

in Germany, considering motorway and urban scenarios. The number of high-level
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FIGURE 4.24: Illustration of the environmental model of the ego ve-
hicle based on the raw data provided by the Object Tracking System
(OTS). The main relations of this model are isInFOf (isInFrontOf), isIn-
RFOf (isInRightFrontOf), isIn, hasDRLane (hasDirectRightLane) and isA

high:Fault[? fault] :-
icity -vehicle:Vehicle [?v1], high:isIn[?v1, ?lane],
high:RightMostLane [?lane],
icity -vehicle:Vehicle [?v2], high:isInRightFrontOf [?v2 , ?v1],
BIND(SKOLEM("fault", ?v1, ?v2 , ?lane) AS ?z),
BIND(IRI(CONCAT("http ://.../ Map/Ontologies/High#", str(?z))) AS ?fault)

.

LISTING 4.5: The rule for fault detection
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Lane entities decreases after the aggregation process in both scenarios. For motor-
ways, the reduction rate of the Lane and LaneBoundary entities can reach 50%, which
helps decrease the amount of stored data and increases processing efficiency. In the
urban scenario, the ratio is less visible due to the complex nature of the topology
and geometry of the roads inside the city.
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FIGURE 4.25: Aggregation over lanes and lane boundaries in motor-
way and urban scenarios

4.6.3 Use Case: Unified Lane View for LNDS and LHERE

The high-level HLM ontology can provide a unified view over different map for-
mats via ontology transformation. This use case shows that the lanes in the HLM
ontology which are resulted from different low-level map ontologies have the sim-
ilar semantics. Figure 4.26a shows the Federal Highway A99 in Germany partially
in reality. The lanes covering this part of the road are modelled differently in a NDS
map (see Figure 4.26b) and a HDLM map (see Figure 4.26c).

(A) The reality of a part of
Federal Highway A99 in Ger-

many.

(B) The lanes in a LNDS (blue)
aggregated in a lane in HLM

(yellow).

(C) The lanes in a LHERE
(green) aggregated in a lane in

HLM (yellow).

FIGURE 4.26: An example of lane aggregation over LNDS and
LHERE resulted in a united lane view in HLM.

The presented road is covered with five lane groups in the NDS map, and the
lane with index 1 are illustrated as blue arrow lines. After lane aggregation, the
lanes represented in the LNDS ontology are aggregated into one single high-level
lane laneA1 (yellow line) in the HLM ontology with length 2008 m. As for the HDLM
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map, the same road is covered with seven lane groups and the lanes represented in
the LHERE ontology is aggregated into a high-level lane laneB1 (yellow line) with
length 2388 m. The 380 m length difference from laneA1 is caused by the fact that
HDLM models the lane groups at the tile border differently from NDS. However, the
part of the laneB1 within the map tile has the same length as laneA1, which shows that
the HLM ontology provides the generic lane representation over the LNDS ontology
and the LHERE ontology. The detailed information about lane groups with the lane
of the index 1 for both maps are presented in Table 4.13. For detailed RDF graph
representations of related lanes in LNDS and LHERE respectively see Section A.1
in the Appendix. For the commonality and differences between NDS and HDLM,
please refer to Section 2.2.1.

TABLE 4.13: Lane information in NDS and HDLM with Lane Group
(LG) ID, number of Lanes (#Lane), the lane index, and the lane length.

(A) Lane information in NDS

LG ID #lane index length (m)
122 5 1 131
155 5 1 520
24 5 1 519
25 5 1 518
23 5 1 320
Total 2008

(B) Lane information in HDLM with last four digits
LG ID

LG ID #lane index length (m)
8959 5 1 511
8365 5 1 520
9400 5 1 519
7428 5 1 354
7154 5 1 133
8922 5 1 33
0374 5 1 318
Total 2388

4.7 Concluding Remarks

In this chapter, we investigated the development and advantages of two-level map
ontologies for Autonomous Driving scenarios. To this end, a practical methodology
for building the unified high-level ontology and for specific low-level ontologies
is presented. This methodology combines a top-down approach and a bottom-up
approach. The top-down approach is based on METHONTOLOGY, and the bottom-
up approach is adapted from Uschold et al. We present concrete practices being
applied in this kind of setting. Additionally, relevant ontology design patterns are
presented, as well as derived rule patterns for knowledge processing and spatial
reasoning. Furthermore, the generic road representation is investigated, and two
main map formats in the HD map area are researched, i.e., the NDS map and the
HERE Live HD map (HDLM). We have applied the proposed methodology to build
the high-level map ontology HLM and two low-level map ontologies.

Firstly, the HLM ontology has been semantically described. The ontology covers
static road knowledge and dynamic vehicle information. The generic concepts and
spatial relationships of roads and lanes are modelled in this ontology. This permits
to provide a common representation of the road knowledge over different types of
map data in various formats.

Second, we developed two low-level map ontologies, namely LNDS and LHERE,
converging NDS and HDLM maps, respectively. The LNDS ontology provides the
main concepts and relationships for capturing the NDS format to support the knowl-
edge abstraction process and eventually populate the HLM ontology. The LHERE
ontology is developed similarly. We evaluated both ontologies in terms of ABox
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generation and semantic enrichment stage performance and showed that both on-
tologies can answer real-world queries, such as lane identification.

Finally, we evaluated the two-level ontology approach by three use cases. The
first use case demonstrated the interoperability with other domains of knowledge
by combining the HLM ontology with sensor observations to detect logical incon-
sistencies using rules. The second use case shows the ability to reduce data size via
levelled abstraction by the example of lane aggregation. The last use case shows
the ability to provide a unified high-level road view over different low-level map
formats, namely LNDS and LHERE.

To conclude, we demonstrate the benefits of the two-level ontological maps mod-
els and rule-based knowledge processing: 1) interoperability of a semantic repre-
sentation of map; 2) reducing data size via layered abstraction, and 3) the unified
view over different map formats via integration. The flexible schema representation
and query language are additional advantages that we observed in the proposed
approach.
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Chapter 5

Dynamic Map Processing

HD maps are used for AD systems as a virtual sensor to anticipate the road ahead,
understand and navigate the vehicles’ environment and make decisions [124]. Due
to their high precision and high dynamic information content about the traffic sit-
uations, the HD maps get outdated after a short period and therefore profits from
regular updates. Furthermore, HD maps are extremely detailed and require signif-
icantly more processing power and computational resources than SD maps. It is
largely impossible to store a completely detailed map within a vehicle’s navigation
system. Hence, the navigation system needs to constantly process and update the
map data while the car is progressing along a route, and care has to be taken to
provide any relevant information in due time. The characteristics of HD maps re-
quire a novel approach that allows for a light-weighted generic representation of the
road environment to support vehicle decision-making and a continuous map pro-
cess mechanism to provide sufficient road knowledge ahead. In order to meet this
need, we propose using two-level map ontologies and rules with a spatial-sliding
window to perform incremental spatial reasoning while map data is continuously
requested and processed.

Problem statement. In this chapter, we investigate the problem of efficient spa-
tial reasoning while the input map data is changing. This chapter addresses the
second level in the general proposed contributions presented in this thesis, i.e., an ef-
ficient dynamic map process strategy to provide continuous road knowledge ahead.

The following research question is investigated in this chapter:

RQ2: Can an ontology-based approach perform efficient knowledge pro-
cessing and spatial reasoning while the knowledge base is continuously
changing?

Proposed solution. We tackle the problem of incremental knowledge process-
ing and spatial reasoning by applying an ontology-based approach. The map data
are requested and processed by applying the two-level map ontologies described in
the previous chapter. Spatial sliding window and two levels of datastores are used to
achieve efficient knowledge processing and spatial reasoning. The low-level data-
stores are dedicated to the low-to-high map knowledge process and provide high-
level map knowledge to the high-level datastore. The spatial and decision rules
are embedded in the high-level datastore and utilise the available high-level map
knowledge. Furthermore, the vehicle spatial window is operated on the high-level
datastore, responsible for prefetching future map tiles and determining expired map
objects.

The contributions of this chapter are outlined as follows:
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• A knowledge-spatial architecture realised in a practical solution for dynamic
map processing.

• The utilisation of a spatial-sliding window concept for continuous knowledge
processing in terms of prefetching and deletion.

• An empirical evaluation of the approach for scalability in a highway scenario
within our prototype called SmartMapApp.

• A discussion about two alternative deployment choices, namely, client deploy-
ment and client-server deployment.

The rest of this chapter is structured as follows. In Section 5.1, the context and
requirements of the motivating scenario are described. The core contributions, i.e.,
the ontology-based approach and its implementation are presented in Section 5.2
and Section 5.3. In Section 5.4, the empirical results demonstrate the feasibility of
the proposed approach, and two deployment choices are discussed in Section 5.5.
Finally, concluding remarks for this chapter are presented in Section 5.6.

5.1 Motivation

Figure 5.1 illustrates the motivating scenario where a vehicle is progressing along a
route and is monitoring the situation. First, based on the received GPS position and
the road environmental knowledge, it localises itself in a lane and stores it as the
current lane. Subsequently, it understands the environmental knowledge around
the current lane. For instance, it knows that the current lane is the left-most lane
and derives that it cannot change the lane to the left. Further, based on the lane-road
relation, it also knows that the road is a highway, and there are ramps (exit/entry)
along the way.

FIGURE 5.1: A vehicle progressing along a route with situation
awareness.

As the vehicle progresses, it needs to change lanes to the right to exit the highway
at some point in time according to the route. Since the vehicle is equipped with
a limited range of foresight, it will proactively request more map data to ensure
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sufficient road knowledge ahead periodically and remove the long past (expired)
road knowledge.

As illustrated in the above scenario, the key for proactive actions is that the ve-
hicle can understand the situation concerning time or space and predicate the fu-
ture status [20]. This is known as situation awareness, as defined in the work of
Endsley [61]. It is a major function before decision-making and the lateral/longi-
tudinal motion control of the vehicle. To achieve situation awareness, it is neces-
sary for the vehicle to understand the Spatio-temporal relationship between itself
and the perceived road entities in the context provided by HD maps. The ontology-
based approach for autonomous vehicle situation awareness using maps has already
been studied [17, 181]. However, less work has been done towards using HD maps
and the vehicle position to provide road environmental context for vehicle situation
awareness.

5.2 Design

In this section, we first describe the conceptual architecture and the related frame-
work. Then we illustrate the design of ontological modules of location awareness,
lane change and continuous map processing.

5.2.1 Conceptual Architecture

With the aim of providing efficient situation awareness and continuous map pro-
cessing, we design the knowledge-spatial architecture illustrated in Figure 5.2. The
proposed architecture is extensible and able to accommodate additional components
for accessing other types of data sources. In the following, the two-dimension of the
architecture are described.

The knowledge dimension (vertical axis) illustrates a knowledge abstraction pro-
cess from the format-specific and detailed low-level ontologies to the generic high-
level ontology. The horizontal (time) axis represents road knowledge acquisition
events, triggering the knowledge abstraction process via spatial reasoning. Spatial
reasoning considers updated vehicle motion events determined in the knowledge
abstraction process and searches for spatial patterns to derive the relevant conse-
quences of what is happening on the road. Different low-level ontologies (e.g., LNDS
and LHERE) for the various map formats can be used to populate the high-level on-
tology (e.g., HLM ontology). Application-oriented queries (e.g., AD functions), thus,
can be posed over the high-level ontology, resulting in a flexible architecture for re-
alising high-level driving functions using different map formats.

The spatial dimension is orthogonal to the knowledge dimension and correlates
facts that are true within a certain space and time at the high-level ontology. It de-
scribes the continuous spatial reasoning process regarding the updated vehicle po-
sition and dynamic road environmental knowledge. In this dimension, the vehicle
can perform situation awareness and decision-making. We adopt the notion of a
spatial window with a fixed width or region in terms of geographic elements shifting
(sliding) over a path line. Within the spatial window, the prefetching mechanism
incrementally updates the high-level ontology to ensure sufficient road knowledge
ahead. Inspired by Mokbel et al. [127], we use the notion of spatial expiration depend-
ing on the spatial location of a moving object, e.g., the ego vehicle, and stored data
expires only when the object leaves the spatial window.
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FIGURE 5.2: Overview of the knowledge-spatial conceptual architec-
ture.

Inspired by the work of Armand et al. [17], we design the workflow for using
the HLM ontology described in Section 4.2 and a set of rules for vehicle situation
awareness and decision-making in Figure 5.3. The low-level map ontologies and the
vehicle position constitute the perception of the vehicle, whose meaning needs to
be understood by situation awareness. Since the vehicle position is Spatio-temporal
data describing when and where the vehicle is driving, the current situation of the
vehicle can be derived by location awareness rules for each received position via
non-monotonic reasoning. Consequently, various decisions can be made based on
the newly derived current location using decision rules, such as lane change and
prefetching map tiles.

Situation awareness is based on the HLM ontology (TBox and ABox) and rules.
The TBox and situational rules consist of a conceptual description of the road enti-
ties in a situation. The TBox and rules are permanent. The Abox is the high-level
abstraction of the low-level perception. The ABox is the changing part of the HLM
ontology, which forms the dynamic vehicle environment, and it is maintained by the
reasoner. The dynamics of the HLM ABox is caused by two factors:

• Vehicle position. The vehicle position is received each one second, the deduced
current situation of the vehicle is updated accordingly by non-monotonic rea-
soning. This means that the current situation is a temporary conclusion drawn
by the reasoner and will be retracted based on the future received position.

• Spatial sliding window. The road knowledge of the vehicle is updated with
future road knowledge, and the expired map objects are deleted based on the
spatial sliding window of the vehicle. The process of update road knowledge
is achieved by incremental reasoning.
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FIGURE 5.3: The exploitation of the HLM ontology for vehicle situa-
tion awareness.

5.2.2 Location Awareness

In a nutshell, location awareness is the process of determining the vehicle’s location
on a given map. It is done through map matching using the received GPS position,
a Spatio-temporal event happening at a particular time and place. The spatial as-
pect of the position can be used to match the corresponding position of the road
(lane). With the map knowledge, the type of localised lane (e.g., left/righ most lane
or middle lane) where the vehicle is in can be inferred to facilitate the decision mak-
ing. The time aspect of the position provides temporal information to infer temporal
knowledge of the car, such as the current and previous lanes of the vehicle.

First, we describe the ontology module of location awareness, and then we illus-
trate the spatial and temporal aspects of location awareness in detail. The algorithm
and rules are presented at last.

Ontology Module

Figure 5.4 shows the relevant classes and properties of the HLM ontology regard-
ing the location-awareness module. It focuses on capturing the notion of “cur-
rent” location, which is represented by the class high:CurrentLocation. The in-
stance of high:CurrentLocation is predefined and will not change over the time.
However, the instances of the classes high:CurrentPosition, high:CurrentLane,
high:PreviousCurrentLane and high:CurrentRoardPart are dynamic and inferred
for each newly added instance of high:Position. The data property high:timestamp
of high:Position is used to infer the instance of high:CurrentPosition. The class
high:CurrentLane is defined as a subclass of high:Lane. With the defined subclasses
of high:Lane, the specific type of lane can be inferred, such as high:LeftMostLane.
Similar class reasoning applies to high:CurrentRoadPart as well.

Localisation

The vehicle must localise itself at both lane level and road level for each received
GPS position. Localisation on road level is required for function activation, e.g., if
the function is limited to a certain set of roads, such as highways, to determine the
route from the current position to the desired destination. Map matching algorithms
at the road level are actively studied for vehicle localisation [91]. The research was
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FIGURE 5.4: Vehicle location awareness modelling based on the vehi-
cle position and map knowledge.

done by Lou et al. [119], who proposed a Spatio-temporal matching algorithm that
considers the spatio and temporal factors to improve the accuracy and efficiency of
map matching at the road level.

As for lane-level localisation, however, the temporal aspect is not yet studied.
Our work adopts a map-based lane localisation approach using GPS position, con-
sidering the spatio and temporal factors. The spatial aspect is used to find the closest
lane shape point in the HD map using GPS coordinates. The temporal aspect is used
to narrow down the search scope of the shape points by identifying the possible cur-
rent lanes. Before we describe the lane localisation in detail, let’s consider the notion
of GPS trajectory.

Definition 5.2.1 (GPS Trajectory [119]). A GPS Trajectory is a sequence of GPS points
T = {p1, p2, . . . , pn}. Each GPS point pi ∈ T is represented as a tuple pi(xi, yi, ti) (xi
and yi are the x and y coordinates of the GPS point, and ti denotes the timestamp).

Figure 5.5 shows an example of a vehicle GPS trajectory. The timestamp t of the GPS
point p provide temporal aspect to infer the “current” status of the vehicle. Hence,
we define current position as:

Definition 5.2.2 (Current Position). A current position cp of the vehicle for a vehicle
trajectory T = {p1, p2, . . . , pn} at any time is the point pi ∈ T with maximum ti
value.

Based on the current position, the current lane can be identified by comparing the
distances between the current position and all other lane shape points.

Definition 5.2.3 (Current Lane). The current lane for current position cp is the lane
l with the closest point c such that c = arg min∀ci∈l dis(ci, cp), where dis(ci, cp) is the
distance between cp and any point ci on l. Figure 5.6 shows an example of identified
current lane l1 where the closest point c is located.

Possible Current Lanes

The temporal aspect of the received GPS point can be used to refine the search scope
of current lanes to reduce the amount of distance calculation. To achieve this goal,
we rely on the spatial relationship (e.g., neighbouring and successor relationships)
associated with previously identified current lanes to infer possible current lanes.
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FIGURE 5.5: Vehicle position with coordinate and timestamp.

FIGURE 5.6: Vehicle lane localisation is based on the vehicle position
and the lane shape points.
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Depending on whether the vehicle has entered the next part lanes on the road, two
cases are identified. The first case is when the current vehicle position is still located
on the same part of the lanes for the previous lane. The second case is when the
vehicle has crossed the previous lane, and entered the next part of lanes on the road.
It must be noted the premise of the approach is that vehicles will progress ahead on
the road as time does.

Figure 5.7 illustrate the first case where the vehicle’s current position is possi-
bly located in the same lane as the previous position did. In this case, the possible
current lanes are the previously identified lane l and its neighbouring lanes nl. We
use the hasNeighbouringLane relationship to retrieve nl and infer l and nl as possible
current lanes. Figure 5.8 shows the second case where the vehicle’s current position
is possibly located in the next part of lanes on the road. That is, to day, the possible
current lanes are the immediate next lane l of the previous identified lane pl and the
neighbouring lanes nl of that immediate next lanel. We use hasDirectNextLane rela-
tionship to retrieve l and the combination of hasDirectNextLane◦hasNeighbouringLane
relationship to retrieve nl, and infer l and pl as possible current lanes.

FIGURE 5.7: Possible current lanes are the previous current lane and
its neighbouring lanes.

FIGURE 5.8: Possible current lanes are the direct next lane and related
neighbouring lanes.
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Algorithm and Rules

The specific algorithm of location awareness in terms of current lane identification is
shown in Figure 5.9. The algorithm starts by receiving a GPS point, and calculating
the distance between the received GPS point and all the points of lanes. Then the
current lane is identified by selecting the lane having a point with minimum distance
to the received GPS point. For any further GPS point, the possible current lanes are
derived based on the previously identified current lane. It follows that the current
lane is identified based on the minimum distance between the points of the possible
current lanes and the received GPS point. The algorithm is continuous as long as the
vehicle receives a GPS point. We then describe how the rules are used to model the
algorithm starting from the second received GPS point onwards.

FIGURE 5.9: Current lane identification algorithm. Key steps are
marked with numbers.

(1) Receive a GPS Point. A INSERT SPARQL query is used to add a position instance
with the x-y coordinate values and timestamp as an explicit fact for each received
GPS point. The timestamp value is assigned by using the NOW function, which returns
the date-time value of the current moment (see Listing 5.1). As time goes by, all the
inserted GPS points form a historical vehicle trajectory. To find the current position
in the trajectory, we use AGGREGATION with MAX function to infer the position with the
maximum timestamp value as the current position (see Listing 5.2).

INSERT { ?position a high:Position ;
high:timeStamp ?timeStamp ;
high:x "+lat+";
high:y "+lon+". }

WHERE {
BIND(xsd:dateTime(NOW ()) AS ?timeStamp)
BIND(IRI(CONCAT ("http ://.../ High#position", ?timeStamp )) AS ?position)

}

LISTING 5.1: SPARQL query to insert vehicle position.

CurrentPosition [?pos1]:-
AGGREGATE(timeStamp [?pos , ?ts] BIND MAX(?ts) AS ?mts),
timeStamp [?pos1, ?mts].

LISTING 5.2: Current poisiton inference.
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(2) Possible current lanes. To find the possible current lane, we first identify the pre-
vious current lane where the vehicle is on. This is achieved by identifying the lane
with the maximum timestamp value, which is similar to how the current position is
determined. Subsequently, then the possible current lanes can be inferred based on
that identified previous, current lane (see Listing 5.3).

PreviousCurrentLane [?l1]:-
AGGREGATE(laneTimeStamp [?l, ?ts] BIND MAX(?ts) AS ?mts),
laneTimeStamp [?l1, ?mts].

hasPossibleCurrentLane [?l,?l],hasPossibleCurrentLane [?l,?nbl]:-
PreviousCurrentLane [?l], hasNeighbourLane [?l, ?nbl].

hasPossibleCurrentLane [?l,?dnl],hasPossibleCurrentLane [?l,?nbl]:-
PreviousCurrentLane [?l], hasDirectNextLane [?l, ?dnl],
hasNeighbourLane [?dnl , ?nbl].

LISTING 5.3: Possible current lanes inferences based on identified
previous current lane.

(3) Distance calculation. The distance between the current position and all points
associated with the identified possible current lanes are calculated (see Listing 5.4).

CoordinateDistance [?cd], hasSource [?cd ,?n],
hasTarget [?cd ,?o], distance [?cd ,?d]:-
hasPossibleCurrentLane [?l,?m], hasPoint [?m,?o], x[?o,?x], y[?o,?y],
CurrentPosition [?n], x[?n,?cx], x[?n,?cy],
BIND(sqrt ((?x-?cx)*(?x-?cx)+(?y-?cy)*(?y-?cy)) AS ?d),
SKOLEM ("cd",?n,?o, ?d, ?cd).

LISTING 5.4: Distance cacluation.

(4) Minimum distance inference. The minimum distance is inferred using AGGREGATION
with MIN based on a set of distances calculated in the previous step (see Listing 5.5).

MinCoordinateDistance [?cd1]:-
AGGREGATE(distance [?cd ,?d] BIND MIN(?d) AS ?md),
distance [?cd1,?md].

LISTING 5.5: Minimum disntacne inference.

(5) Current lane identification. The current lane is inferred based on the identified
minimum distance. Note that the timestamp value of the current position is added to
the current lane such that it can be used for the upcoming, current lane identification
process using the next received GPS point (see Listing 5.6).

CurrentLane [?l]:-
MinCoordinateDistance [?cd], hasTarget [?cd ,?pos], hasPoint [?l,?pos].

laneTimeStamp [?l,?ts]:-
CurrentLane [?l], CurrentPosition [?pos], timeStamp [?pos ,?ts].

LISTING 5.6: Current lane inference and timestamp association

Datalog program containing nonmonotonic rules (e.g., negation and aggrega-
tion) must guarantee stratification to provide well-defined semantics and thus reach
a fixpoint. The predicate dependency can determine if a Datalog program is stratifi-
able. The program is stratifiable if the predicate graph has no directed cycles with a
negative edge. This is not the case for the rules presented in Listings 5.3, 5.4, 5.5 and
5.6 as the rules cannot be stratified due to a negative predicate dependency cycle
(see Figure 5.10).
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distance (Listing 5.4)

hasPossibleCurrentLane (Listing 5.3)

MinCoordinateDistance (Listing 5.5) CurrentLane (Listing 5.6)

laneTimeStamp (Listing 5.6)
-(+)

+

+

-(+)
+

+

PreviousCurrentLane (Listing 5.3)

FIGURE 5.10: The predicate dependency graph with a negative de-
pendency cycle, excluding the irrelevant predicates. The arrow shows
the dependence between the head predicate and body predicate of the

rule. Positive (negative) dependencies are labelled by + (–).

To break the negative dependency cycle, the rule of inferring the laneTimeStamp
relationship in Listing 5.6 is changed to a SPARQL INSERT query (see Listing 5.7).

INSERT { ?l :laneTimeStamp ?ts. }
WHERE {

?l a :CurrentLane. ?pos1 a :CurrentPosition; :timeStamp ?ts. }

LISTING 5.7: SPARQL query for adding timestamp to current lane.

Rules and Queries Execution Sequence

Since there are dependencies between SPARQL INSERT queries and the rule evalua-
tion, the execution sequence of the queries and rules affects the computed result. The
current lane identification implementation involves four major steps: (1) SPARQL
INSERT a GPS point; (2) the incremental updates starting from the CurrentPosition
inference; (3) SPARQL INSERT laneTimeStamp to the identified CurrentLane in-
stance; (4) the incremental updates starting from the PreviousCurrentLane infer-
ence. Figure 5.11 shows the execution sequence, and details of each step are ex-
plained as follows:

(1) SPARQL INSERT a GPS point with a coordinate and a timestamp.

(2) The incremental updates are triggered by the insertion, and the instance of
CurrentPosition is determined by nonmonotonic reasoning.That is, there is
only one instance inferred as CurrentPosition at any one time, and all pre-
vious CurrentPosition derivations are retracted. Thus, the number of dis-
tance calculations required after CurrentPosition derivation for CurrentLane
inference is limited to the number of points in the possible current lanes. The
derivation retraction applies to any other rules that are dependent on the deriva-
tion of CurrentPosition.

(3) Once the rule evaluation in step (2) reaches a fixpoint, a INSERT query is exe-
cuted to add a lane timestamp to the derived instance of, CurrentLane prepar-
ing for the next received GPS point.

(4) Following that, incremental updates are triggered once again, and nonmono-
tonic reasoning derives the new instance of PreviousCurrentLane. As with
the inserted GPS points, nonmonotonic reasoning guarantees one derivation
of PreviousCurrentLane over stored laneTimeStamp data. Although the new
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(1) SPARQL INSERT
GPS point (Listing 5.1)

Rule Set

distance (Listing 5.4)

PreviousCurrentLane (Listing 5.3)

hasPossibleCurrentLane (Listing 5.3)

CurrentPosition (Listing 5.2)

MinCoordinateDistance (Listing 5.5)

CurrentLane (Listing 5.6)

laneTimeStamp (Listing 5.6)

(2) incremental update
(nonmonotonic reasoning)

(3) SPARQL INSERT
laneTimeStamp (Listing 5.7)

(4) incremental update
(nonmonotonic reasoning)

FIGURE 5.11: The execution sequence of the rule set and the SPARQL
INSERT query implementing the current lane identification algo-

rithm are shown in Figure 5.9.

derivation of PreviousCurrentLane triggers the inference chain, the current
rule evaluation cycle’s derivations of MinCoordinateDistance and CurrentLane
remain unchanged, because the next GPS point is not received yet. This rep-
resents the fact that the vehicle’s current state changes only when a new GPS
point is received. As a result, once the next GPS point is received and inserted
in step (1), the entire rule evaluation cycle starts again.

In general, the current lane identification process involves two types of facts:
(1) explicit facts such as GPS points and lane timestamps that accumulates in the
data over time; and (2) implicit facts such as the instances of CurrentPosition,
MinCoordinateDistance and CurrentLane, that are derived by the rule evaluation
is part of the incremental maintenance via nonmonotonic reasoning.

5.2.3 Lane Change Activity

In general, a lane change is defined as a driving manoeuvre that shifts a vehicle
from one lane to another where both lanes have the same travel direction. AD sys-
tems need to, first, understand the situation and recognize the necessity to change
lanes. Afterwards, the lane change manoeuvres have to be planned to reach the
navigation goal. Lane change has gained increasing attention in the AD field in the
last year [176, 173, 115]. Ontology-based automated vehicle guidance focusing on
road situations has gained increasing attention in the last years [74, 22, 42, 112]. In
this thesis, we show the utilization of a generic high-level map (HLM) ontology and
rules to achieve lane change functionality with selected use cases.

Consider the two scenarios shown in Figure 5.12 in which a vehicle is driving on
a highway. In both cases, there is a lane (green) that is part of the route that is not
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longitudinally reachable by the current lane of the vehicle. We refer to such lanes as
the target lanes. To reach the target lanes, the vehicle must perform a certain number
of lateral lane changes. In such situations, the AD system generates a lane change
notification if the remaining distance reaches a threshold (e.g., 3 km). Subsequently,
a corresponding left or right lane change plan is generated.

(A) Lane Lane3 is not longitudinally reach-
able. (B) Lane5 is not longitudinally reachable.

FIGURE 5.12: Scenarios for a lane change.

In this section, we begin by describing the ontology module of lane change activ-
ity. Then we illustrate the lane change detection and lane change guidance and the
related algorithm and rules, respectively.

Ontology Module

Figure 5.13 shows the relevant classes and properties from the HLM ontology re-
garding the lane change activity module. The modelling of lane change activity is
inspired from the Activity Ontology developed in the work of Abdalla et al. [7].

The main class is high:ChangeLaneActivity in Lane Change Guidance Box (see
Figure 5.13). It describes the occurrence of lateral lane change activity at some
point in time and place. This is designed by the data property high:timeStamp
and linking to class high:CurrentLocation via property high:hasLocation. The
start lane of the planned lane activity is modelled by connecting the instance of
high:ChangeLaneActivity to the instance of high:CurrentLane via the property
high:fromLane and the destination lane is modelled by connecting the instance of
high:ChangeLaneActivity to the instance of high:Lane via the property high:toLane.
The high:ChangeLaneActivity is further divided into high:ChangeLaneLeft and
high:ChangeLaneRight. The data properties high:changeToRightNumOfLane and
high:changeToLeftNumOfLane specifies the required number of lane changes to the
right and the left respectively.

The detection of lane change is modelled in the Lane Change Detection Box. The
connection between high:CurrentLocation and high:RouteSegment via the object
property high:hasNotLongReachable describes the longitudinal non-reachable rela-
tionship between the current location and some part of the route. The final target
lane, based on the route, is modelled via the object property high:hasTargetLane.

Lane Change Detection

Since vehicles travel longitudinally in a single lane and move laterally when chang-
ing lanes, we classify the lane relations into two categories, namely lateral and longi-
tudinal relations. With these two types of relations, we can represent a graph-based
environmental model using lanes.
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FIGURE 5.13: Lane change modelling based on the vehicle position
and map knowledge

Figure 5.14 shows the graph representation of the scenarios mentioned above. In
both cases, there is no relationship hasNextLane between the current lane and the tar-
get lane. A combination of relationship of hasNeighbouringLane ◦ hasNextLane, how-
ever, between those lanes exists. For example, in scenario A, there is no hasNextLane
relationship between Lane2 and Lane3. But, a combination of relationships of has-
NeighbouringLane ◦ hasNextLane between Lane2 and Lane3 exists. This pattern applies
to scenario B as well. In fact, this pattern of spatial relationships can generally detect
longitudinally unreachable lanes due to the transitivity of hasNeighbouringLane and
hasNextLane .

(A) Exit lane Lane3 is part of the route. (B) Lane5 is part of the route.

FIGURE 5.14: Lane network graph representation for the lane change
scenarios illustrated in Figure 5.12.

Algorithm 1 summarises the steps used for identifying the necessity of a lane
change situation. First, it identifies the part of the route li that is not longitudinally
reachable from the current lane via the hasNextLane relation. Second, it checks if li
is reachable via the property combination hasNextLane ◦ hasNeighbouringLane with
intermediate lane l, and marks l as the lateral destination and li as the final target
lane. Third, it calculates the distance from the vehicle’s current position to the start
point of the target lane as dis. Lastly, it compares dis with the foresight parameter
f p. If dis is smaller than f p, then a change lane activity is generated and the current
lane c is marked as from-lane of cla, and l as to-lane of cla. Listing 5.8 shows the
corresponding rules.

#line 1-2
hasNotLongReachable [?c, ?rs]:-
Route[? route], CurrentLocation [?c], isOnLane [?c,?cl]
NOT EXISTS ?rs IN (hasRouteSegment [?route , ?rs], hasNextLane [?cl, ?rs]).
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input : c: current location, cl: current lane, cp: current position,
f p: forsight parameter,
R = l1 . . . ln: a route with a list of lanes, n > 0

output: cla: change lane activity
1 if ∃ li ∈ R, s.t. @ hasNextLane(cl,li) then
2 hasNotLongReachable(c,li);

3 if ∃ l s.t. hasNeighbouringLane(cl,l) ∧ hasNextLane(l,li) ∧
hasNotLongReachable(cl,li) then

4 hasTargetLane(c,li);
5 hasLateralDestLane(c,l);

6 dis = distance (cp, spli ), where spli is the start point of li.
7 if dis < f p then
8 cla=ChangeLaneActivity(cp);
9 fromLane(cla,c);

10 toLane(cla,l) ;

Algorithm 1: Lane change detection.

#line 3-5
hasTargetLane [?c, ?rs], hasLateralDestLane [?c,?nbl]:-
hasNotLongReachable [?c, ?rs], isOnLane [?c,?cl],
hasNeighbourLane [?cl ,?nbl], hasNextLane [?nbl , ?rs].

#line 6
distToTargetLane [?c,?d]:-
CurrentLocation [?c],isOnLane [?c,?cl],
hasPosition [?c,?cp], hasTargetLane [?c, ?rs],
x[?cp ,?cpx],y[?cp ,?cpy], length [?cl ,?l],
hasNeighbourLane [?cl ,?nbl], hasNextLane [?nbl , ?rs],
AGGREGATE(hasNextLane [?nbl ,?sl1], hasNextLane [?sl1,?rs],
length [?sl1, ?l] ON ?nbl BIND SUM(?l) AS ?d2),
remainingDistance [?c,?d1], BIND ((?d1+?d2) AS ?d) .

#line 7-10
ChangeLaneActivity [?cla],fromLane [?cla ,?cl], toLane [?cla ,?nbl]:-
CurrentLocation [?c],isOnLane [?c,?cl],hasPosition [?c,?cp],
hasTargetLane [?c, ?rs],hasLateralDestLane [?c,?nbl],
hasForesightParameter [?c,fp], foresightParameterValue[fp ,?v],
distToTargetLane [?c,?d], FILTER (?d<?v), SKOLEM ("cla",?cp , AS ?cla).

LISTING 5.8: Lane change detection rules

Lane Change Guidance

Once a lane change situation is detected, a vehicle needs to decide a sequence of
lanes to follow along their route. In particular, the vehicle needs to know whether
it should perform a left-lane-change or right-lane-change manoeuvre. Hence, we
use the hasLeftLane and hasRightLane properties, which are fine-grained lateral re-
lationships of, hasNeighbouringLane to derive the lateral lane-change manoeuvres.
hasLeftLane is a sup-property of hasDirectLeftLane with transitivity. The same design
applies to hasRightLane and hasDirectRightLane.
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input : c: current location
output: d:direction, n:change lane number.

1 if ∃ cla s.t. ChangeLaneActivity(cla) ∧ hasLocation (cla,c) then
2 if ∃ f ,t s.t. fromLane(cla, f ) ∧ toLane(cla,t) then
3 if hasDirectRightLane( f , t) then
4 d= right; n = 1;

5 if hasRightLane( f , Ly) ∧ hasRightLane(Ly, t) then
6 d= right; n = |Ly| + 1;

7 if hasDirectLeftLane( f , t) then
8 d= left; n = 1;

9 if hasLeftLane( f , Ly) ∧ hasLeftLane(Ly, t) then
10 d= left; n = |Ly| + 1;

Algorithm 2: Lane change guidance.

Not only the vehicle needs to know whether it should change to the left or the
right, but also the number of lanes it should change. This can be achieved by count-
ing the hasDirectLeftLane or hasDirectRightLane relations between the current lane
and the target lateral lane. For example, the expected lane change guidance for the
scenario shown in Figure 5.15 is i) from lane2, change one lane right to Lane1; ii)
continue driving to Lane3.

FIGURE 5.15: Right lane change guidance.

Algorithm 2 describes the procedures to generate the manoeuvre guidance. First,
if there is a lane change activity cla in the current location c, then find the starting
(from) lane f and the destination (to) lane t (line 1-2). Based on the properties of
hasDirectRightLane and hasRightLane, calculate the number of lanes in between f and
t (line 3-6). The calculation procedure for the number of lanes to the left side is
achieved similarly (line 7-10). Listing 5.9 shows the corresponding rules for lines 1-6
in Algorithm 2.

#line 3-4
changeToRightNumOfLane [?cla , 1]:-
ChangeActivity [?cla],hasLocation [?cla ,?c], CurrentLocation [?c],
fromLane [?cla ,?f], toLane [?cla ,?t], hasDirectRightLane [?f,?t].
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#line 5-6
changeToRightNumOfLane [?cla , ?n]:-
ChangeActivity [?cla],hasLocation [?cla ,?c], CurrentLocation [?c],
fromLane [?cla ,?f], toLane [?cla.?t],
AGGREGATE(hasRightLane [?f, ?u],
hasRightLane [?u, ?t] ON ?f BIND COUNT(DISTINCT ?u) AS ?count),
BIND(?count + 1 AS ?n).

LISTING 5.9: Right lane change guidance rules

5.2.4 Continuous Map Processing

For an autonomous vehicle to navigate safely and ensure its passengers’ comfort and
safety, the navigation system needs to constantly request map data while the vehicle
is progressing along a route. With the volume and velocity of map data streams, it
becomes infeasible to store and process all incoming information. Hence, only some
portion of knowledge is stored in memory for a limited area.

The choice of the stored knowledge is primarily dependent on continuous spatial
queries. To achieve this goal, we exploit a spatial sliding window over the incremen-
tally updated road environmental knowledge to check if the system needs to prefetch
map data or delete expired road entities. In addition, prefetching map data for later
usage is an important aspect to improve performance for map-based AD functions.
The basic idea behind prefetching is to predict which map tiles the vehicle may wish
to use “next”, or “soon” and request only necessary ones from the map database
ahead of time.

Figure 5.16 illustrates an example of the mechanism described above with three
snapshots. In each snapshot, the vehicle’s external and internal worlds are pre-
sented. In snapshot 1, the vehicle initializes with some low-level map data, which
results in a high-level road view. As soon as the car moves, it triggers a prefetching
query with a spatial window whose forward parameter is set to 5 km. In snapshot
2, the system pre-loads a new map tile. Consequently, the high-level road view is
extended with the new spatial knowledge. In snapshot 3, while the system incre-
mentally updates its road environmental knowledge, it also continuously checks if
any road parts are “out of window” based on the backward parameter (e.g., 3 km)
of the spatial window. The road parts which are not “inside” the spatial window is
deleted. We describe the spatial sliding window and the prefetching strategy in the
following part of this section in detail.

Spatial Sliding Window

In our approach, we employ a spatial window policy, where the spatial window de-
fines an area according to some spatial properties (e.g., distance) with respect to a
reference object. We use spatial rules, namely topological and distance rules, to per-
formance spatial reasoning. The spatial window is relevant to the vehicle’s current
location with the forward and backward parameters (see Figure 5.17). Figure 5.18
gives two snapshots of the vehicle environment at location L1 and L2. rp1 — rp5
represent road parts. At location L1, continuous spatial queries are evaluated over
rp1 — rp3 as they are inside the spatial window. At location L2, however, r1 — r2
is out of the spatial window, which means they are expired. rp3 is a still valid ob-
ject, and rp4 is the new object inside the spatial window. Thus, continuous spatial
queries would be evaluated over rp3 and rp4.
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FIGURE 5.16: Snapshots of a vehicle processing along a route and
prefetching map tiles.

FIGURE 5.17: An example of a route path on map tiles.

FIGURE 5.18: Spatial sliding window snapshots.
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Ontology Module

Figure 5.19 shows the ontology module of the spatial sliding window from HLM. It
is modelled as a class high:SpatialWindow linked to the class high:SpatialWindow-
Parameter via object property high:hasSWParameter. The class high:SpatialWindow-
Parameter is described by two data properties high:forwardParameterValue and
high:backwardParameterValue. The design of modelling the parameter as a class
allows us to specify different types of sliding window parameters. For example, the
highway sliding window could have a bigger region than the city sliding window
because the density of map objects in a highway is less than the density of map
objects in a city.

FIGURE 5.19: Ontology module of the spatial window.

We define the high:hasOutsideObject object property to identify map objects
that are invalid for the spatial window by comparing the distance between the vehi-
cle’s position to the previous map objects. If the distance is bigger than the backward
parameter, then the map object is considered as “outside” map object. Otherwise, it
is considered as an “inside” map object described by high:hasInsideObject ob-
ject property. The high:forwardParameterValue is used for prefetching map tiles
to ensure sufficient range of map knowledge for the vehicle planning activities,
which is explained in the following part of this section. Listing 5.10 shows an exam-
ple inferring high:hasInsideObject and high:hasOutsideObject relations between
high:RoadPart and high:SpatialWindow, respectively.

hasOutsideObject [?s,?r] :-
CurrentRoadPart [?cr ,], hasPrevious [?cr ,?r],
Roadpart [?r], distanceToVehicle [?r,?d],
currentLocation [?c], hasSpatialWindow [?c,?s],
SpatialWindow [?s],hasSWparameter [?s,?p],
backwardParameterValue [?p, ?b], FILTER (?d>?b).

hasInsideObject [?s,?r] :-
SpatialWindow [?s], CurrentRoadPart [?cr ,], hasPrevious [?cr ,?r],
NOT EXISTS ?r IN (Roadpart [?r], hasOutsideObject [?s,?r]) .

LISTING 5.10: Rules defining map objects that are inside the spatial
window and outside the spatial window

Prefetching Map Tiles

Prefetching map data includes receiving information on a route, including an ori-
gin, a destination, and a set of paths connecting the origin and the designation [99].
It is done by selecting minimum map tiles along a route that satisfy the forward
parameter of the spatial sliding window and a threshold value.
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Figure 5.20 shows a concrete example of a designed route based on prefetching.
The route is constituted by road parts rp1 — rpn. Each road part is described by
its length and tile ID. For example, rp1 has length 1963 m, and it is located in a tile
5062. At this state, only map tile 5062 is loaded for the vehicle, and the remaining
distance of the vehicle in rp1 is 1937 m. To provide adequate road knowledge ahead,
the vehicle needs to prefetch a minimum of future tiles based on the route. In this
scenario, prefetching tiles 5059 and 5057 associated with rp2 and rp3 respectively
can satisfy the condition as the difference between the remaining distance and for-
ward parameter (e.g.,5 km) is within a threshold (100 m). Other tiles associated with
the remaining road parts of the route are not needed at the current location of the
vehicle, i.e., tile 5033 for rpn−1 and tile 5032 for rpn.

FIGURE 5.20: An example of prefetching map tiles based on a route.

The summation of the remaining distance of the vehicle in rp1 and the length of
rp2 and rp3 is 4999 m, and the difference between the summation and the forward
parameter is 1 m, which is within the threshold 100 m. Hence, prefetching the tiles
associated with rp2 and rp3 is adequate. For rpn−1, the summation is 6114 m, and
the difference between the summation and the forward parameter is 114 m, which
is bigger than the threshold of 100 m. Hence, rpn−1 is not prefetched by the vehicle.

Algorithm 3 illustrates the process of retrieving the needed tile IDs. It starts by,
for each i, where c < i ≤ n, calculating the summation diss of the lengths of the
current lane rpc’s successors rpk, where (c + 1) ≤ k ≤ i (Line 1-2). Then it computes
the total distance dis by adding the remaining distance dre of the vehicle in rpc and
to diss (Line 3). At last, by comparing dis and the threshold t, it returns tile IDs
associated with road parts rpk satisfying the condition (Line 4-5). Listing 5.11 shows
the corresponding SPARQL query. Line 2 is modelled using a SPARQL nested query,
performing aggregation using GROUP BY and SUM. Line 4 is modelled using FILTER
with ABS function.

SELECT ?tileId
WHERE {

?rp_ a :CurrentRoadPart.
?rp_ :hasNext ?rp1_2.
?rp1_2 :hasNext ?rp2_2.
#line 2
{ SELECT ?rp2_2 (SUM(? length) AS ?inBwtbLength)

WHERE {
?rp a :CurrentRoadPart.
?rp :hasNext ?rp1.
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input : R={rpn:n > 1}: a route with road parts,
rpc ∈ R: current road part, dre: remaining distance in rpc,
f : forward parameter, t: threshold

output: T: a set of tile IDs
1 for c < i ≤ n do
2 diss = ∑i

k=c+1 lengthrpk ;
3 dis = dre + diss ;
4 if |dis− f | ≤ t then
5 T = tileID(rpk) ;

Algorithm 3: Prefetching the tile IDs.

?rp1 :hasNext ?rp2_2.
?rp1 :length ?length.

}
GROUP BY ?rp2_2
}
?curreLoct :remDisOfRoadPart ?remainingDis.
#line 3

BIND ((? remainingDis + ?inBwtbLength) AS ?distance)
:spatialWindow :forwardParameterValue ?val.
#line 4
FILTER(ABS(?distance -?val) < 100)
#line 5
?rp1_2 :isLocatedIn ?tileId.

}

LISTING 5.11: A SPARQL query for prefetching map data tiles.

5.3 Implementation

With the objective of providing efficient knowledge processing and spatial reason-
ing, we realised the conceptual architecture described in Section 5.2 with decoupled
two-level datastore structure using parallel processes shown in Figure 5.21.

High Level The high-level datastore is dedicated to continuously providing location-
based decision-making functions based on the vehicle’s positions via reasoning us-
ing Datalog rules and SPARQL queries. The workflow operated on this level is
shown in Figure 5.22. It starts by receiving a route and a vehicle position. Imme-
diately after, the current lane is identified, as well as the needed change for a lane
change situation. Based on the defined spatial sliding window, process 1 determines
which tiles are required to be prefetched and executes parallel knowledge abstrac-
tion processes for each tile in background threads that operate simultaneously. Pro-
cess 2 determines which high-level road knowledge needs to be deleted. The future
tile IDs are retrieved via SPARQL SELECT and data deletion is achieved via SPARQL
DELETE.

Low Level Based on the number of returned future tile IDs, the application triggers
parallel low-to-high map knowledge process tasks at the low level. Each task pro-
cesses one map tile, and it is executed on one datastore. The tasks are running in
the background to prevent interfering with the functions executed on the high-level
datastore. The workflow for each task operated in this level is shown in Figure 5.23.
Once the application receives a tile ID, it imports the corresponding low-level map
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FIGURE 5.21: Implementation of the knowledge-spatial architecture.

FIGURE 5.22: The method of location-based decision making with
update road environment along a route with two parallel processes.
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ontology to the datastore. The low-to-high knowledge abstraction starts immedi-
ately with defined processing rules. Afterwards, the produced ABox is inserted into
the high-level datastore, incrementally updating the high-level view. At last, the
datastore is cleared for future use.

FIGURE 5.23: The workflow of each low-to-high knowledge process.

The low-to-high knowledge process rules are encoded in SPARQL to ensure suf-
ficient computational resources for Datalog reasoning in the high-level datastore.
This is because the low-to-high knowledge process is computation-intensive due to
the amount of data and rules involved. If the rules are encoded in Datalog, the low-
level datastores will compete with the high-level store for computation resources
and slow down its reasoning. The correspondence between the Datalog rules and
SPARQL queries are presented in Appendix A.3. Parallel processing is achieved
with multi-threads and datastore connection pooling. To ensure concurrency, one
thread is executed upon exactly one distinct connection from the configured connec-
tion pool.

5.4 Evaluation

With the objective of evaluating the efficient reasoning ability and explainability of
the proposed approach, we conduct the evaluation based on a vehicle’s trace along
the A92 highway in Germany using the developed SmartMapApp Java application.
Figure 5.24 shows the simulation trace of a vehicle along a given route across ten
tiles. The data we used are NDS maps converted into RDF triples based on the
developed LNDS TBox. Each tile is also referred to as one LNDS ABox. All evalua-
tions were performed on a 64-bit Ubuntu virtual machine with 4 Intel(R) Core(TM)
i7-6820HQ CPUs @ 2.70GHz with 15 GB memory. We recorded the computation
time after doing a warm-up run by executing the tasks three times sequentially.



94 Chapter 5. Dynamic Map Processing

FIGURE 5.24: The vehicle trace ©OpenStreet Map.

5.4.1 Low-to-high Knowledge Process

We report the processing time for each tile using one datastore. The result is shown
in Figure 5.25. The figure shows, for each tile, the number of low-level triples (green
bar), the resulting number of high-level triples (blue bar), the time for transferring
triples from the low-level to the high-level ontology (low2high process time, dia-
monds), and the time for extending the high-level road environmental view (dot).
The computation time for both phases increases regarding the data size. The aver-
age processing time for each tile is 1.4s. In addition, as the number of tiles increases,
the average processing time increases as well, which delays the update of the HLM
ABox and interferes with high-level decision making.

FIGURE 5.25: The low-to-high processing time

With the objective to investigate the performance relationship between the speedup
and the number of datastores used in parallel, we did a preliminary test using eight
tiles for several datastores ranging from 1 to 8. The result is shown in Figure 5.26.
The maximum speedup is achieved when using four datastores. From the number
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of 5 to 8 datastores, the speedup is decreasing. This indicates the overhead of par-
allel datastore execution. A more thorough evaluation is required to find out the
correlation between the number of datastores and tiles.

FIGURE 5.26: The speedup measurement of using 1 to 8 datastores
simultaneously.

Figure 5.27 shows the low-to-high knowledge processing of 4 tiles using one
datastore and four datastores. It took 6 s to finish the task for one datastore, and
only then the HLM ABox was updated. However, with four datastores running par-
allel for each tile in the background, the HLM ABox was updated immediately after
each low-to-high process was finished. The overall processing time is approximately
equal to the time needed to process the biggest tile (259,842 triples) among the four
tiles, about 3 s. This shows the ability of our approach to reducing the knowledge
processing time for several tiles, which benefits the map initialisation phase and the
prefetching phase.

FIGURE 5.27: The comparison between Low-to-high knowledge pro-
cessing for four tiles running in 1 datastore and four datastores in

parallel.
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5.4.2 Vehicle Location Awareness

We first evaluate the ability of the ontology module and rules described in Sec-
tion 5.2.2 to provide location awareness based on the vehicle position. Then we
present the performance of the current lane identification. Listing 5.12 shows the
SPARQL query used for retrieving the context information of the vehicle position.
Based on the current position, the SPARQL queries the types of the lane and road
part and length of the lane. Figure 5.28 shows an example of the obtained query
result based on the position of the vehicle. The result shows the localised lane, the
current lane, which is classified as the left-most lane and regular driving lane. Based
on the relationship between lane and road part, the road part as current road part
and its type as motorway were inferred.

SELECT ?laneType ?length ?roadType
WHERE {

?p a high:CurrentPosition.
?p high:isOnLane ?lane.
?lane a ?laneType; high:length ?length.

?rp a high:RoadPart; high:hasLane ?lane; a ?roadType.
}

LISTING 5.12: SPARQL query for location awareness

FIGURE 5.28: Vehicle location awareness at position 48.28721361,
11.56128117 (Imagery ©2022 Google).

We evaluated the performance along a trace and highlighted the first ten posi-
tions. The experiment is done for four initialisation cases with the number of tiles
ranging from 1 to 4 to investigate the impact of data size on the initialisation and
the current lane identification of the first vehicle position. Table 5.1 provides the
computation time required for different numbers of tiles. The more tiles are used for
initialisation, the more triples are transferred to the HLM ABox. The computation
time for identifying the current lane for the first vehicle position also increases. Be-
cause the distances between every geometric point and the vehicle position have to
be computed to find the minimum one, such that the associated lane is identified.
However, the number of tiles used for initialisation was not affected by the average



5.4. Evaluation 97

computation time needed for the other positions. This is the result of the optimi-
sation of limiting the search scope for the remaining positions to the neighbouring
lanes of the previously identified lane. In addition, the number of tiles had no effect
on the initialisation time, which profited significantly from parallel processing.

TABLE 5.1: Performance for initialisation with 1-4 tiles.

1 tile 2 tiles 3 tiles 4 tiles
#Triples 137,451 154,706 244,296 274,962
Initialisation time 3074ms 3119ms 3133ms 3398ms
1st Position 621ms 738ms 860ms 970ms
Other positions avg 17ms 11ms 15ms 17ms

5.4.3 Lane Change Evaluation

We evaluate the lane change decision in a real-world scenario. The rules described
in Section 5.2.3 are applied to detect the lane change event while the vehicle is pro-
gressing along a road. Benefiting from the explainability of rules, the explanation of
the lane decision making is provided. Moreover, the manoeuvre steps are generated
using SPARQL queries to guide the vehicle in performing a lane change. Figure 5.29
shows a lane change scenario where the vehicle needs to change lanes to exit the
highway. The expected manoeuvre is to change one lane to the right, and continue
driving to the exit lane. Figure 5.30 shows the RDF graph of the state where the
lane change is detected on the road, including the static road knowledge (e.g., lane
topological relationships) and the dynamic vehicle knowledge (e.g., current posi-
tion/lane).

FIGURE 5.29: Visualisation of lane change evaluation at 48.28721361,
11.56128117 (Imagery ©2022 Google). Green lines with the arrow are

the lane change manoeuvre sequence.

The inferred result (green arrow) based on the state of road and vehicle knowl-
edge and the lane change decision rules are shown in Figure 5.31. Based on the given
route, the target lane and the distance to it are inferred. Because the distance to the
target lane is 75.33 m, which is less than the lane change foresight parameter (200 m),
this triggered a new instance of high:ChangeActivity. For the lane change guid-
ance, the value of high:changeToRightNumOfLane is inferred as 1. Because changing
one lane to the right enables the vehicle to reach the target lane. Figure 5.32 shows
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FIGURE 5.30: RDF graph of the snapshot of the vehicle’s road knowl-
edge and when the lane change is needed. Solid lines with arrows
represent the fact, dashed lines with arrow are inferred knowledge

using rules.

the simulation result for the above described lane change scenario. The manoeuvre
steps are retrieved using a SPARQL query (see Listing 5.13) and the explanation is
generated with the detailed decision making steps.

SELECT ?tlane ?n ?rl ?tlane
WHERE {

?cp a high:CurrentPosition; high:isNeedChangeLane true;
high:distToTargetLane ?dis.
?cl a high:CurrentLane;

high:changeToRightNumOfLane ?n;
high:hasRighLane ?rl;
high:hasTargetLane ?tlane.

?rl high:hasNextLane ?tlane.
}

LISTING 5.13: Lane change identification rules

5.4.4 Continuous Map Processing Evaluation

We evaluated continuous map processing using the route with the objective of inves-
tigating the reasoning performance in the high-level ontology. Figure 5.33 shows the
route with segments located in different tiles. Each route segment has the informa-
tion about its length, associated tile ID and its direct successor. Table 5.2 shows the
triple representation of this route, where the tile ID is described by the data property
high:partitionId.

We report the result with an excerpt of a simulation result shown in Figure 5.34.
The left vertical axis shows execution time. The execution time (line) is under 50
ms on average. The deletion time (area) is almost as low as the execution time. The
right vertical axis shows the time for deletion (area) and the background pre-loading
process (orange bar). At positions 11, 18 and 29, the prefetching process is triggered.
The number of triples loaded at position 18 was the biggest (176,191) and caused the
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FIGURE 5.31: The inferred result (green property) after applying lane
change decision rules in the RDF knowledge shown in Figure 5.30.
The vertical green dashed lines represent the hasNeibouringLane re-
lation, the horizontal ones represent the hasDirectNext relation. We

omitted some classes and properties in this figure for simplicity.

FIGURE 5.32: The developed SmartMapApp simulation detects the
lane change and provides manoeuvre steps explanation for decision

making.
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FIGURE 5.33: The vehicle route is constituted by a sequence of route
segments marked in arrow.

TABLE 5.2: Triple of the route

Subject Property Object
high:route rdf:type high:Route
high:route high:hasRoadPartRouteSegment high:rp5455506216
high:route high:hasRoadPartRouteSegment high:rp5455505904
high:rp5455506216 high:hasDirectRouteSegment high:rp5455505904
. . . . . . . . .
high:route high:hasRoadPartRouteSegment high:rp5455502109
high:rp5455506216 rdf:type high:RoadPart
high:rp5455506216 high:length 1963.62
high:rp5455506216 high:partitionId 545555062
high:rp5455505904 rdf:type high:RoadPart
high:rp5455505904 high:length 1566.32
high:rp5455505904 high:partitionId 545555059
. . . . . . . . .
high:rp5455502109 rdf:type high:RoadPart
high:rp5455502109 high:length 2010.98
high:rp5455502109 high:partitionId 545555021
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longest processing time (1653 ms). This resulted in a peak of the execution time (104
ms). The number of triplets loaded at position 11 is 72,109, which is less than half
of the data loaded at position 18. This is the reason the pre-loading time (479 ms) is
also less than half of what is required at position 18, which also had less impact on
the execution time. The same reason applies to position 29. Figure 5.35 shows the
size change of the HLM ABox along with the trace corresponding to data loading
and deletion events.

FIGURE 5.34: Spatial reasoning process time.

FIGURE 5.35: The size change of the HLM ABox along the trace.

5.5 Solution Deployment Discussion

As for the deployment of the proposed architecture, we discuss two alternatives. The
first option is to deploy the entire two-level datastores on the client-side (vehicle)
(see Figure 5.36). We refer to this option as client deployment. The second option is
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to partition (federated) the two-level datastores, and deploy the high-level datastore
on the client-side, and deploy the group of low-level datastores on the server (cloud)
side (see Figure 5.37). We refer to this option as client-server deployment. The main
difference between these two approaches arises from the deployment of the Low-to-
high processor component and the related technical realizations.
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FIGURE 5.36: The client deployment.
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FIGURE 5.37: The client-server deployment.

The Low-to-high processor component is responsible for producing the HLM
ABox which is the input of the High-level knowledge base component. If the Low-to-
high processor component is deployed on the client-side, then the data transmitted
via cellular network between the client and server is tile BLOBs. If the Low-to-high
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processor component is deployed on the server-side, the transmitted data between
the client and server is the HLM ABox in RDF.

5.5.1 Client Deployment

We provide the memory consumption for client-side deployment in Table 5.3. The
overall estimated memory consumption of the required components written in C++
is about 250 MB. We use one datastore for the High-level knowledge base compo-
nent and four datastores for the Low-to-high processor component. The time for
generating LNDS Abox using Python parser is 1.75 s on average. The time for pro-
ducing HLM Abox is 1468 ms on average. The overall time used to produce one tile
of the HLM ABox in one datastore is 3,218 ms on average (see Table 5.4). Since the
Low-to-high processor is running in the background, the reasoning process in the
High-level knowledge base component is not affected.

TABLE 5.3: Memory for client-side deployment.

Parameter Value Description
memory 250 MB C++ application
level of datastores 2 low and high
#datastore 5 1 high-level datastore, 4 low-level datastores

TABLE 5.4: Time for HLM ABox preparation of one tile on average.

Parameter Value Description
one tile file size 145 KB BLOB
preparation of HLM ABox 3,218 ms LNDS ABox (1750 ms)

+ HLM ABox (1468 ms)

5.5.2 Client-Server Deployment

In contrast to client deployment, client-server deployment deploys the Low-to-high
processor in the server side. This results in much lower memory consumption in the
client side (see Table 5.5). This is not a surprise, as it is the result of federated deploy-
ment. The memory consumption only comes from the High-level knowledge base
using one datastore. According to the memory estimation of the client approach, we
estimate that one datastore takes about 50 MB by dividing 250 MB to 5 (#datastore).
Since the Low-to-high processor is deployed on the server, the output of this com-
ponent, an HLM ABox, will be sent to the High-level knowledge base component in
the client side. We provide the time related for preparing the HLM ABox in the client
side in Table 5.6. The size of one HLM ABox after compression is 166 KB on average.
Assuming a data transmission over 4G LTE network is 100 megabits per second, the
transmission time is 16 ms. Together with decompression time, the overall estimated
time for one tile HLM ABox preparation is about 334 ms on average.

5.6 Conclusion

In this chapter, we investigated the ontology-based approach for dynamic map pro-
cessing. We addressed the problem of efficient knowledge processing and spatial
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TABLE 5.5: Memory estimation of the client side for the client-server
deployment.

Parameter Value Description
memory ∼50 MB application
level of datastores 1 high
#datastore 1 1 high-level datastore

TABLE 5.6: Average time for receiving an HLM ABox of one tile in
the client side for the client-server deployment.

Parameter Value Description
sending one tile file size 166 KB compressed
preparation of HLM Abox 334 ms Receiving 16 ms

+decompressing (318 ms)

reasoning by applying the proposed knowledge-spatial architecture. The knowl-
edge dimension illustrates a knowledge abstraction process from the format-specific
and detailed low-level ontologies to the generic high-level ontology. The spatial di-
mension describes the continuous spatial reasoning process regarding the updated
vehicle position and dynamic road environmental knowledge. We used the spatial
sliding window and incremental reasoning to perform efficient knowledge update
and complex inference.

We reviewed the three aspects of vehicle’s situation awareness based on road
environmental knowledge, namely location awareness, lane change and continu-
ous map processing. For every aspect, an ontological module and a set of rules
are defined to provide context information and facilitate the decision-making pro-
cess. To realise the knowledge-spatial architecture, we developed a prototype with
decoupled two-level datastores in order to provide fast rule evaluation and query
answering in the high-level datastore while several low-level datastores running in
the background to provide adequate high-level knowledge.

We empirically evaluated the developed prototype using an NDS map to pro-
vide a high-level map view. The result shows that the ontology-based approach
with rules can efficiently process knowledge and perform spatial reasoning. The ex-
plainability and flexibility of using rules are some of these advantages we observe
in the proposed approach.

We proposed two deployment choices for the designed solution, namely, a client
and a client-server deployment. For the client deployment, the low-to-high proces-
sor is deployed on the client. For the client-server approach, however, the low-to-
high processor is deployed on the server. The estimated memory consumption and
the time for data transmission are presented. Both approaches are feasible for in-car
usage.

5.6.1 Remark

Both streaming reasoning and incremental reasoning are designed to derive knowl-
edge from frequently changing data. However, stream reasoning operates over time-
based data, while maps contain spatial data. That is to say, and streaming reasoning
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techniques cannot be directly applied to processing maps without major modifica-
tion. Additionally, streaming reasoning is a very young topic of research, and cur-
rently supports only primitive reasoning with limited stability [125]. Therefore, in-
cremental reasoning and spatial slide window were applied in this thesis and proved
to be applicable for processing dynamic maps.

However, we see potential usage of combining streaming reasoning for time-
based sensor data with incremental reasoning over maps containing spatial data.
For example, the knowledge of the speed can be derived from the vehicle speed
sensor data. With the road environmental knowledge derived from maps, more
tactical vehicle driving makeovers can be provided.

Additionally, we observe that ontologies and rules help to set the focus more on
the analyses and design of autonomous functions on the knowledge level rather than
on map data understanding and implementing various map processing components
for similar maps. An example that illustrates the advantage of using ontologies and
rules are provided in Appendix A.2.
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Chapter 6

Map Quality Assurance

High definition (HD) maps are an essential component in autonomous vehicles.
Making HD maps is not only a challenge because of the sheer amount of data that
needs to be captured and stored, but also because of the intrinsic accuracy require-
ments. According to a study carried out by the European Commission (EC) on the in-
tegrity and reliability of HD maps, the map data are obtained from multiple sources
of varying trustworthiness [65]. As the HD market continues to expand, inconsistent
approaches using potentially poor data may increase the risk of hazardous events
occurring on the road network. In our work, we identified a data error in a com-
mercially available HD map which caused degradation of the autonomous driving
(AD) mode and a driver take-over request. The error is shown in Figure 6.1. The
figure on the left-hand side shows the normal state of the road and the AD mode
is on, whereas, the figure on the right-hand side shows the road gap caused by the
map data error and the AD mode is off.

Usually, a take-over request is conducted for safety reasons when the AD sys-
tem is approaching its limits due to, for example, weather conditions. In general,
a take-over request is a complex and risky process and should be avoided as much
as possible. In case of map errors, the request is not even related to system limits.
Therefore, the goal of our work is to use ontologies and reasoning to find map errors
and provide spatial context for fixing map errors to extend the AD function’s avail-
ability. Ensuring (general) data quality with an ontology-based approach has been
well-studied recently [49, 86, 48]. Yilmaz et al. [178, 179] have even demonstrated
the feasibility of using ontological methods for spatial data quality evaluation. The
latter work does not, however, consider the HD map-specific concepts such as lane-
level geometry and the resulting challenges, and neither are the challenges and pos-
sibilities of handling violations considered.

FIGURE 6.1: Snapshots of a normal driving scenario without map er-
rors and active AD mode (left-hand side) and an error scenario (right-
hand side) with deactivated AD mode and a driver take-over request

due to a gap in the road model
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Problem statement. In this chapter, we investigate the problem of HD map qual-
ity assurance. This chapter addresses the third level in the general proposed contri-
butions presented in this thesis, i.e., ensuring map data quality with ontologies and
rules. Particularly, the research question addressed in this chapter is as follows:

RQ3: Can an ontology-based approach be utilized to ensure map data
quality for road knowledge consistency?

Proposed solution. In this chapter, we tackle the problem of map quality assur-
ance by applying an ontology-based approach. The Map Quality Violation (MQV)
ontology and a set of constraint rules are used for violation detection. The MQV
ontology is used for describing the violation. Constraint rules are used to model the
constraints and generate the instances of the violation. Violation handling strategies
consider the aspects of tolerance and resolution. The violation tolerance is achieved
via RDF graph aggregation and violation resolution is achieved via RDF graph de-
composition.

The contributions of this chapter are outlined as follows:

– We present a workflow for ensuring map data quality based on OWL 2 RL
ontologies [87] and Datalog rules [9].

– We develop the Map Quality Violation (MQV) ontology and a set of constraint
rules for violation detection.

– We demonstrate violation handling strategies via violation tolerance and reso-
lution.

– We evaluate the performance of violation detection and the correctness of vio-
lation resolution using RDFox [135] and realistic map data.

The remainder of this chapter is structured as follows. Section 6.1 describes the
design of map quality assurance focusing on the MQV ontology and constraint rules,
the violation handling strategies is presented in Section 6.2. In Section 6.3, the eval-
uation result is described which is followed by a discussion in Section 6.4. Finally,
concluding remarks for this chapter are presented in Section 6.5.

6.1 Design

In this section, we first introduce the workflow of ontology-based map quality as-
surance. Then we present the development of the MQV ontology and the constraint
rules, which are used along the workflow.

6.1.1 The Workflow

In this section, we present the workflow of ensuring map data quality consisting
of: (i) semantic enrichment, (ii) violation detection and (iii) violation handling (see
Figure 6.2).

The semantic enrichment process in map data quality assurance focuses on de-
riving concepts and relationships needed for violation detection using the input
data. For example, the bounding concepts on the lane group level as well as their
successor relationships are needed to model the full coverage checking described in
Section 6.1.3. The same design principle is applied to lane boundary full coverage
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checking as well. Subsequently, the violation detection operates on the enrichment
data via the MQV ontology and the constraint rules. The detected violations are
treated based on their severity levels. Currently, critical errors are defined as those
conditions that cause the crash of a component or a malfunction. For example, a
tile not containing a highway is considered as a critical error. Other severity levels
are related to map data completeness and consistency, which are less severe than
the critical ones. If a critical error is detected, then the AD mode will be turned off,
otherwise errors may be considered to be fixed with violation handling.

FIGURE 6.2: Workflow diagram of ensuring map data quality

6.1.2 MQV Ontology

In this section, we describe the modelling process of the MQV ontology following
the bottom-up approach (see Section 4.1.2). The specific design decisions to cover
the map quality are reported, such as an overview of the ontology structure with
major classes and its properties. Next, ontologies and ODPs that are reused in MQV
are discussed. To the best of our best knowledge, no previous research has been
done in the area of HD maps due to the fact that it is a relatively new technology.

Purpose and Scope

The purpose of the MQV ontology is to enable a reasoner to detect HD map data
violations and further provide context information of a violation to guide the re-
pair process. Table 6.1 provides the detailed requirement’s specification of the MQV
ontology.

Capture

The capture of the domain of interest, i.e., Map Quality Violation, is achieved in
two steps. First, we analyse the Map Quality Check List provided by BMW in the
domain of spatial data quality [51]. The Map Quality Check List contains 20 items
with detailed description of each checking item, such as the goal, priority, test steps
and expected behaviours. Topology consistency, geometry precision and attribute accu-
racy are the three main quality parameters considered for modelling [51]. The Spatial
Data Quality Ontology developed by Yilmaz et al. [179] provides the structure of on-
tological domain knowledge for modelling map quality violations. Second, domain
experts with deep knowledge in HD map data support the process of capturing the
knowledge of the domain by providing necessary documents and explaining the
requirements.
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TABLE 6.1: MQV Ontology Requirements Specification Document

MQV Ontology Requirements Specification Document
1. Purpose

The purpose of the MQV ontology is to enable a reasoner to detect HD map data errors, and further provides
context information for a violation to guide the repair process.

2. Scope
The ontology has to cover a set of core concepts and relations describing HD map quality based on the provided
Quality Check List :
-Violation: represents the occurrence of map data violations.
-Quality parameter: represent the map data quality-related parameters, such as topology, geometry and attributes.
-Threshold: represents accepted criteria threshold, such as the distance between two geometry points.
-Severity: represents the level of impact of a map data error on the vehicle. There are four different levels:
low, medium, high and critical.
-Map Object : represents the map object affected by the errors and those which are resolved after repairing.

3. Implementation Language
OWL RL, Datalog

4. Intended End-Users
User 1. Map providers who want to perform map data qaulity assurance.
User 2. Navigation systems that need to detect map data errors.

5. Intended Uses
Use 1. provide semantic representation of map data violations.
Use 2. provide context information for rule-based map data repair.
Use 3. integrate map quality assurance into the map industry ecosystem using semantic web toolchains.

6. Ontology Requirements
a. Non-Functional Requirements

NFR 1. The ontology must follow the naming conventions;
NFR 2. The ontology must re-use existing ontologies whenever possible.

b. Functional Requirements: Competency Questions
CQ1. what is the quality parameter types of the violation?
CQ2. what error types are related to the violation?
CQ3. Is the violation a link/lane/lane group/lane boundary violation?
CQ4. what is the severity level of the violation?
CQ5. what is the reason of the violation?
CQ6. what are the affected/resolved map objects of the violation?
CQ7. what is the accepted threshold for the violation?

7. Pre-Glossary of Terms
Violation, Quality Parameter, Violation Type, Severity Level, Affected, Resolved, Reason, Threshold, Map object
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FIGURE 6.3: Classes and properties in the MQV ontology.

Development

An ontology, MQV, describing the map quality violations is detailed in this work.
The namespace we used is mqv. We first provide an overview of the MQV ontology,
then we present the ODPs used during the development process.

Ontology Overview
In this section, we describe the main classes of the MQV ontology (see Figure 6.3).
mqv:Violation represents the occurrence of map quality violations and is the core
element of the MQV ontology. It is further divided into four subclasses depending
on the map object type, such as mqv:LinkViolation. The reason behind the occur-
rence of a violation is described via the data property mqv:hasReason connecting to
mqv:Violation.
mqv:QualityParameter expresses the quality parameter class in MQV. It describes
the specific quality parameter associated with a violation via the object property
mqv:hasQualityParameter. With the objective to describe a specific quality param-
eter of a violation, we model mqv:Topology, mqv:Geometry and mqv:Attribute as
the subclasses of mqv:QualityParameter. Each type of the parameter can be further
specified, describing more fine-grained classes. The advantage of modelling the pa-
rameters as classes is that they can be extended to more fine-grained classes. For
instance, the class mqv:Topology can have a subclass mqv:Coverage to describe the
coverage, and a subclass mqv:Selfloop to describe road network self-loops.
mqv:ViolationType represents the violation types in MQV. The objective is to de-
scribe the type of violations via the property mqv:hasViolationType. The unique-
ness, cardinality and missing elements are the specific violation types under our
concern. They are modelled as the sub-classes of mqv:ViolationType.
mqv:Threshold depicts the concept of the accepted threshold. It is connected to the
class mqv:Violation via the object property mqv:acceptedThreshold. The specific
threshold value is modelled by the data property mqv:thresholdValue connecting
to mqv:Violation.
mqv:Severity expresses the severity class in MQV ontology. It describes the im-
pact level that a map data error has on the AD related functions. The specific levels
are represented as the individuals of mqv:Severity which are mqv:Low, mqv:Medium,
mqv:High and mqv:Critical. The mqv:Severity class is not an enumeration of in-
dividuals (closed class) [171], as the class is intended to be extended with more in-
dividuals. If it is modelled as a closed class, it stipulates that mqv:Low, mqv:Medium,
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mqv:High and mqv:Critical are the only individuals of the class mqv:Severity and
any additionally added individual of mqv:Severity is inferred as equal to one of the
existing four individuals.
mqv:MapObject describes the map object affected by the violations. It is defined
by connecting to mqv:Violation via the object property mqv:hasAffectedObject.
For the map data repair process, it is required to annotate the repaired map ob-
jects. This is done by the object property mqv:hasResolvedObject connecting to
mqv:MapObject. The integration of specific map ontologies such as LNDS and LHERE
can be achieved by defining the subclass relationship via rdfs:subClassOf between
the classes in the low-level map ontologies and mqv:MapObject.

Listing 6.1 shows an example of a violation encoded in Turtle syntax. The triples
state that mqv:v1 is an instance of the class mqv:LaneGroupViolation and it has the
violation type mqv:uniqueness. The quality parameter associated to it is mqv:attribute.
The affected objects are lnds:LaneGroup1 and lnds:LaneGroup2. The severity level
of mqv:v1 is mqv:high, and the violation reason is “same lane group ID”.

mqv:v1 a mqv:LaneGroupViolation;
mqv:hasViolationType mqv:uniqueness;
mqv:hasQualityParameter mqv:attribute;
mqv:hasAffectedObject lnds:LaneGroup1, lnds:LaneGroup 2;
mqv:hasSevertiyLevel mqv:high;
mqv:hasViolationReason " Same lane group ID".

LISTING 6.1: An example of a violation encoded in Turtle

Ontology Design Patterns
We analyse existing ODPs that can be applied to the modelling of the MQV ontology.
The Parameter ODP is used to model the accepted thread value for the violation. The
advantage of modelling the threshold as a class is that it provides the extensibility to
further define a more specific threshold class, such as mqv:MinimumThreshold with
specific value range restriction. The Class as a Property Value ODP as featured in
[136] is adopted to model the values of the violation type and the quality parameter.
This pattern suits the scenario when an existing subsumption class hierarchy is to be
reused as a terminology or as a controlled vocabulary to annotate certain elements of
other concepts in an ontology. For example, the mqv:Violation class can be further
specified using the subclasses of QualityParameter and ViolationType.

Summary of Ontology Characteristics

Table 6.2 reports a summary of the characteristics of MQV ontology. The reuse of
ODPs is included in the design process of the ontology.

TABLE 6.2: Summary of the MQV Ontology Characteristics

Name MQV ontology
size 23 classes, 6 object properties, 2 data properties, 10 individuals,

86 axioms
DL Expressivity ALEO (D)
Reuse ODP Parameter, Classe As Property Value
Naming Conventions CamelCase notation
Methodology Uschold and Gruninger [168]
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6.1.3 Constraint Rules

In this section, we outline the design of Constraint rules used for the HD map data
validation. The design of violation rules is inspired from the work of Kharlamov
et al. [104] where they used constraint rules for industrial use cases.

In our work, the constraint rules are aimed at identifying map data errors. Based
on the map data error types, the rules are classified into (1) topology, (2) geometry, and
(3) attribute checking rules. Before describing the details of each rule type, we first
introduce Violation Recording Rule Templates (VRRTs), which provide the patterns for
modelling constraint violation detection rules. Table 6.3 shows OWL axioms used to
capture the map data quality requirements together with their corresponding Data-
log Constraint Atoms (DCA). Note that for Literal Value Restriction, the Datalog Con-
strain Atoms can be written as C(x), dp(x, y), FILTER(y = {>,⊥}) when the data
type for the literal is boolean.

TABLE 6.3: Constraint axioms as Datalog Constraint Atoms (DCA).
We use C for classes, op for object, dp for data, and p for object or data

properties.

OWL Axiom Datalog Constraint Atom (DCA)

Existential Quantification C(x), NOT EXISTS y IN (C(y), p(x, y))
Individual Value Restriction C(x), NOT op(x, individual)
Literal Value Restriction C(x), NOT dp(x, literal)
HasKey C(x), dp(x, z), C(y), dp(y, z), FILTER(x 6= y)
Min (<)/Max (>) C(x), AGGREGATE(p(x, v) ON x BIND count(v) AS n),
Cardinality Restriction FILTER(n ./ max), ./∈ {>,<}

The occurrence of the constraint violation is recorded using freshly generated
instances of Violation as shown in the following VRRTs template:

Violation(v), hasAffectedObject(v, x), hasReason(v, "r")←
<DCA>, BIND(SKOLEM("d", x) AS v).

The body of the rule template is formed via a DCA with an atom using SKOLEM
and BIND functions. When the DCA is satisfied, the SKOLEM function generates an
instance based on the identified error object x which is assigned to a variable v
via the BIND function. The head of the rule template uses the classes and prop-
erties defined in MQV ontology. It asserts the newly generated v as an instance
of the class Violation, and links it to the affected object x via the object property
hasAffectObject. The reason of the violation denoted as string r is assigned to v
via the data property hasReason.

Let’s consider a concrete example of the minimum cardinality constraint of lane
shape points using the above template. The rule below identifies all the lanes whose
shape points are less than 2. The DCA corresponds to Min Cardinality Restriction
stated in Table 6.3.

Violation(v), hasAffectedObject(v, l), hasReason(v, "MinCardinalityError")←
Lane(l), AGGREGATE(hasPoint(l, p) ON l BIND count(p) AS n),
FILTER(n < 2), BIND(SKOLEM("d", l) AS v).
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Topology Checking Rules

Topology checking rules are designed to check the spatial relationships of map ob-
jects. A comprehensive formal categorization of binary topological relations be-
tween regions, lines, and points has been developed by Egenhofer and Herring [54].
In this work, we model full coverage constraints, checking if a set of other map ob-
jects fully covers a given map object. For example, Figure 6.4 shows the full coverage
constraint between a link and several lane groups. To describe such constraints, we
first introduce some basic notations.

FIGURE 6.4: An example illustrating full coverage constraints be-
tween a link (road) and several lane groups. (a) Example of a real-
world road; (b) the road is fully covered by lane groups; (c) the road
is covered by lane groups that are overlapping with each other; (d)
the road is not completely covered by lane groups as there are gaps

between them.

Definition 6.1.1. A line (segment) pq is defined by its start point p and its end point q,
where p 6= q. A (base) line pq is fully covered by a sequence of lines u1v1 . . . unvn if
p = u1, q = vn, and vi = ui+1 for each 1 ≤ i < n, where ui 6= vi. We say that there is
a gap at the start if p < u1, a gap at the end if vn < q, a gap in the middle if vi < ui+1 for
some 1 ≤ i < n, and there is an overlapping if vi > ui+1 for some 1 ≤ i < n.

Algorithm 4 presents pseudo-code for checking the full coverage. Given a base-
line pq and a sequence of line segments L without self-loops, the algorithm first
identifies the start and end segment in L (lines 2–3) using the bounding rules. The
algorithm checks if there is a gap at the start or end w.r.t. the baseline (lines 4–7).
At last, it iterates through the given line segments, and for each segment, it gets the
direct next line segment (line 9) through the topology rules, checking for any gaps
in the middle (lines 8–10) or any overlapping (lines 11–12).

According to the NDS specification, a link (road) needs to be fully covered by a
set of lane groups. We use the following rules to illustrate how Algorithm 4 is im-
plemented. The rules, where we abbreviate hasAffectedObject as hao to check the full
coverage of a link are as follows:

Violation(v), hao(v, f ), hao(v, lg), hasReason(v, "GapAtStart")←
Feature( f ), FeatureRef( f r), refersTo( f r, f ),
hasFeatureRef(lg, f r), StartLaneGroup(lg), hasRange(lg, r),
startPosition(r, sp), FILTER(sp > 0),
BIND(SKOLEM("td", f , lg) AS v).

Violation(v), hao(v, f ), hao(v, lg), hasReason(v, "GapAtEnd")←
Feature( f ), numShapeAttrPoint( f , t), FeatureRef( f r), refersTo( f r, f ),
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input : pq: a base line, L = {u1v1, . . . , unvn}: a set of line segments
output: Lg, Lo: sets of line segments causing gaps and overlappings, resp.

1 Lg = Lo = ∅;
2 usvs = GETSTARTSEGMENT(L) ; // apply bounding rules
3 ueve = GETENDSEGMENT(L) ; // apply bounding rules
4 if us > p then
5 Lg = Lg ∪ {usve} ; // gap at the start

6 if ve < q then
7 Lg = Lg ∪ {ueve} ; // gap at the end

8 for i = 1 . . . n− 1 do
9 uv = GETDIRECTNEXT(uivi) ; // apply topology rules

10 if vi < u then
11 Lg = Lg ∪ {uivi, uv} ; // gap in the middle

12 else if vi > u then
13 Lo = Lo ∪ {uivi, uv} ; // overlapping

Algorithm 4: Check full coverage

hasFeatureRef(lg, f r), EndLaneGroup(lg), hasRange(lg, r),
endPosition(r, ep), FILTER(ep < t),
BIND(SKOLEM("d", f , lg) AS v).

Violation(v), hao(v, f ), hao(v, lg1), hao(v, lg2), hasReason(v, "GapInTheMiddle")←
LaneGroup(lg1), LaneGroup(lg2), hasDirectNextLG(lg1, lg2),
hasRange(lg1, r1), hasRange(lg2, r2), endPosition(r1, ep),
startPosition(r2, sp), FILTER(ep < sp),
BIND(SKOLEM("d", f , lg1, lg2) AS v).

Violation(v), hao(v, f ), hao(v, lg1), hao(v, lg2), hasReason(v, "Overlapping")←
LaneGroup(lg1), LaneGroup(lg2), hasDirectNextLG(lg1, lg2),
hasRange(lg1, r1), hasRange(lg2, r2), endPosition(r1, ep),
startPosition(r2, sp), FILTER(ep > sp),
BIND(SKOLEM("d", f , lg1, lg2) AS v).

Geometry Checking Rules

Geometry checking rules are designed to check the geometric representation of the
links (lanes). The link (lane) model uses an ordered sequence of shape points de-
scribing the geometry of a polyline that represents a link (lane). We further subdi-
vide geometry checking rules into cardinality and geometric accuracy checking rules.
Cardinality checking rules use the minimum or maximum cardinality restrictions
in VRRTs. Geometric accuracy is checked via the coordinate proximity using dis-
tance thresholds [51] to account for different levels of accuracy and precision [183]
in the collected map data. Figure 6.5 illustrates a case in which the radius distance
of geometric points in two connected lanes should be less than a threshold value, for
e.g. 0.5 m. If the radius distance is bigger than an accepted threshold, a violation is
generated.

The following rule illustrates the case where a radius distance threshold of the
geometric points in two connected lanes is checked.
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FIGURE 6.5: An example of lane geometric accuracy with a threshold

Violation(v), hao(v, up), hao(v, vq), hasReason(v, "GeometryError")←
Lane(p), Lane(q), hasDirectNext(p, q), endPoint(p, up), startPoint(q, vq),
CoordinateDistance(c), hasSource(c, q), hasTarget(c, p), distance(c, d),
Threshold(t), thresholdValue(t, vt), FILTER(d > vt),
BIND(SKOLEM("d", up, vq) AS v).

Attribute Accuracy Checking Rules

In order to check if the recorded attributes of the map data representing real-world
entities are correct and consistent, we used a set of accuracy checking rules. The
attributes could be feature classifications, text information for feature names, or de-
scriptions, which ought to be consistent with each other. For example, if a road is
classified as a motorway, it should also have a controlled-access designed for high-
speed vehicular traffic. Controlled-access is modelled as a data property with a
Boolean value. Hence, the corresponding violation detection rule can be modelled
using a literal value restriction in the VRRT. The concrete rule is modelled as follows:

Violation(v), hao(v, f ), hasReason(v, "AttributeError")←
Tile(t), hasFeature(t, f ), Motorway( f ),
isControlledAccess( f , c), FILTER(c = ⊥),
BIND(SKOLEM("d", p, n, q) AS v).

6.2 Violation Handling

Violations are handled based on the severity level. If a critical violation is detected
during the map pre-loading phase, the autonomous driving mode is switched off
and the control is handed over to a driver in the corresponding region. For non-
critical violations, we rely on violation tolerance and violation resolution strategies con-
sidering the spatial relations. Violation tolerance is feasible because errors in the
low-level (raw) data do not necessarily affect the decision taken at the knowledge
(human-perceivable) level in intelligent systems [177]. In cases where the violations
cannot be tolerated, spatial knowledge, e.g., topological and geometric relations, can
be used to resolve violations [121, 10]. These strategies allow us to support the au-
tonomous driving applications, even in the presence of low-level data errors.

To achieve knowledge level consistency, we apply graph aggregation [120] for
violation tolerance and the graph decomposition [18] for violation resolution. Essen-
tially, these strategies take advantage of graph structure similarity, which is captured
by the notion of isomorphisms :

Definition 6.2.1 (RDF Graph Isomorphism [46]). Let G1 and G2 be RDF graphs with
V1 and V2 as the induced vertices of G1 and G2, respectively. We say that G1 and
G2 are isomorphic, if there is a bijection µ : V1 → V2 such that µ(b) ∈ B for each
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FIGURE 6.6: A violation-free example of RDF graph aggregation over
lanes

b ∈ V1 ∩ B, µ(`) ∈ L for each ` ∈ V1 ∩ L, µ(v) ∈ I for each v ∈ V1 ∩ I, and, for each
triple (s, p, o) ∈ G1, (µ(s), p, µ(o)) ∈ G2. We call such µ an isomorphism between G1
and G2.

Based on isomorphism, we introduce graph aggregation and its use for violation
tolerance. Apart from its use in violation tolerance, graph aggregation is helpful in
itself to obtain a higher-level view of the map data, with a focus on the details that
are important for autonomous driving.

Definition 6.2.2 (RDF Graph Aggregation). Let G1, G2, and G be RDF graphs with
vertices V1, V2, and V, respectively, such that G1 is isomorphic to G2 witness by the
isomorphism µ. A (partial) function α : V1 ∪ V2 → V is an abstraction function w.r.t.
G1, G2, and G if, for each v ∈ V, there are nodes v1 ∈ V1 and v2 ∈ V2 such that
µ(v1) = v2 and α(v1) = α(v2) = v. If an abstraction function w.r.t. G1, G2, and G
exists, we call G an aggregation graph of G1 and G2.

We generalise the notion of an abstraction graph to a set of pairwise isomorphic
graphs G1, . . . , Gn in a natural way.

Figure 6.6 shows an example where we apply graph aggregation over the lanes of
two lane groups with ID 1 and 2. We abbreviate lane as l, laneGroup as lg, and link as lk,
e.g., l11 stands for lane11. Subfigure (a) shows a map visualisation, while (b) shows
the corresponding graph representation, and the aggregation is shown in the upper
part. Note that the mapping with a dotted line shows the isomorphism between
graph A and graph B (we omit the mapping for identical values such as a mapping
from true in graph A to true in graph B). The dashed lines show the abstraction func-
tion, where we again omit the identical value mappings. The abstraction function
only maps the lanes (l11 in graph A and l21 in graph B) as well as the lane index and
the direction attribute. The lane aggregation aligns with the human perception of
l11 and l21 as one continuous lane.

6.2.1 Violation Tolerance.

Figure 6.7 shows an example with a violation, which consists of a duplicate lane
group ID. More precisely, lg1 and lg2 both have ID 1 in the map data. As a result,
the map data is parsed as containing just one lane group (with ID 1), which also
causes l11 and l21 to be considered equal as they both have ID 1 and belong to the
lane group with ID 1. Hence, we get identical RDF graphs for l11 (graph A) and
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FIGURE 6.7: An example of lane aggregation with lane group ID
uniqueness violation

l21 (graph B), which is a special case of RDF graph isomorphism. Applying the ab-
straction function (as in Figure 6, dashed line) results, however, in the same (correct)
aggregation graph (graph C) as for the violation-free scenario shown in Figure 6.6.
Hence, the RDF graph aggregation can tolerate some data errors.

6.2.2 Violation Resolution

We illustrate how violations can be resolved (in particular, lane ambiguity) using
graph decomposition.

Definition 6.2.3 (RDF Graph Decomposition). The RDF decomposition of an RDF
graph G is a collection of edge-disjoint, isomorphic subgraphs G1, . . . , Gn of G such
that every edge of G belongs to exactly one Gi, 1 ≤ i ≤ n. We denote such a decom-
position of G as Ĝ = {G1, G2, . . . , Gn}.

Figure 6.8 shows an example of lane ambiguity also caused by a lane group ID
duplication. Subfigure (a) shows a normal map visualisation of lg1 and lg2 located in
separate roads. Subfigure (b) shows the graph representation resulting from the du-
plicate ID of lg1 and lg2 which causes l11 and l21 to merge into one lane instance hav-
ing both lanes’ spatial relationships, such as associated points, links and successor
lanes. Based on the graph structure of the ambiguous graph, there exists a mapping
between subgraphs A and B, which indicates the application of RDF decomposition.
Hence, we apply RDF graph decomposition to fix the topology and distance mea-
surements to restore it’s geometry. Figure 6.9 shows the concrete steps: (1) violation
detection, (2) topology correction, and (3) assignment of geometric points.

In Step 1, a topology violation is detected if a lane group is associated with two
disconnected links. This is modelled by checking the existence of a connection be-
tween links associated to a lane group using an existential qualification in a VRRT,
and an instance of LaneViolation is generated having topology (an instance of class
Topology) as its QualityParameter. The concrete rule is as follows:

LaneViolation(v), hao(v, l), hao(v, f1), hao(v, f2), hasQualityParameter(v, topology)←
LaneGroup(lg), hasLane(lg, l), isOn(lg, f1), isOn(lg, f2),
FILTER( f1 6= f2), NOT hasDirectConnection( f1, f2),
BIND(SKOLEM("d", l) AS v).



6.2. Violation Handling 119

FIGURE 6.8: An example of lane ambiguity caused by lane group ID
duplication.

FIGURE 6.9: Lane ambiguity violation resolution steps

In Step 2, the topology correction is achieved via the graph decomposition and
relationship establishment. The original graph of l11/21 can be decomposed into
isomorphic subgraphs A and B. Two new lane instances (nl1 and nl2) are generated
with the correct topological relationships.

NewLane(l), hasFeature(n, f ), hasDirectNext(l, n), hasOriginalLane(l, m)←
LaneViolation(v), hasQualityParameter(v, topology), hao(v, m),
hasLane(lg1, m), isOn(lg1, f ), LaneGrp(lg2), hasLane(lg2, n),
isOn(lg2, f ), hasDirectNext(m, n), index(m, i),
BIND(SKOLEM("d", f , i) AS l)

In Step 3, the geometric shape point assignment is achieved via a point grouping
strategy, which compares the distance from each shape point of the lane to the first
and last shape point of the lane associated links. The shape points are then grouped
if the difference between the calculated distance and the links’ length is within a
threshold, e.g., 10 m.

hasPossibleLanePoint( f , p)←
LaneViolation(v), hasQualityParameter(v, topology), hao(v, l), hasShapePoint(l, p),
hasFeature(l, f ), length( f , n), hasFirstShapePoint( f , u), hasLastShapePoint( f , o),
CoordinateDistance(d1), hasSource(d1, p), hasTarget(d1, u), distance(d1, t1),
CoordinateDistance(d2), hasSource(d2, p), hasTarget(d2, o), distance(d2, t2),
FILTER(ABS((t1 + t2)− n) < 10).

While assigning the point groups to correct new lanes, geometric point grouping
is verified by comparing the number of points in each group to the total number of
points of the original lane to prevent wrong point group assignments.

hasShapePoint(n, p)←
NewLane(n), hasOriginalLane(n, l), numPoints(l, u), hasFeature(n, f ),
hasPossibleLanePoint( f , p), numPossibleLanePoints( f , m), FILTER(m < u).



120 Chapter 6. Map Quality Assurance

6.3 Evaluation

In this section, We first show the performance of semantic enrichment and violation
detection and then we evaluate the correctness of violation handling.

6.3.1 Violation Detection

We used 16 adjacent real map tiles along the Federal Motorway 92 (Bundesautobahn
92) in Germany for violation detection evaluation. The evaluation was performed on
a 64-bit Ubuntu virtual machine with 8 Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
running at 33MHz with 15 GB memory. We first show the performance of semantic
enrichment and violation detection and then we evaluate the correctness of viola-
tion handling. The recorded the computation time after doing a warm-up run by
executing the tasks 3 times sequentially.

The result of the violation detection is summarised in Figure 6.10. In general, the
computation time for total violation checking increases with respect to the data size.
The average number of input triples is 117, 733 and the average execution time of
violation detection is 132 ms. With the objective to investigate what type of violation
checking rules cost more time, we divided the time measurements into three parts
according to the rule types, namely topology, geometry and attribute. As shown
in the Table 6.4, the geometry checking rules take up to 50.47% of the total violation
detection time, whereas, topology checking rules take 32.77% and attribute checking
rules take 16.77%. This is because of the nature of the HD maps, which use a large
number of shape points to describe the shapes of lanes and roads.

FIGURE 6.10: Performance of violation detection over real map data;
the left-hand side scale shows the execution time for the violation
detection (column) in milliseconds. The time for topology, geometry
and attribute checking rules are shown as segments of each column.
The number of input triples is shown as a line using the scale on the

right-hand side.

6.3.2 Violation Handling

We consider the use case of lane group ID uniqueness violations to evaluate violation
handling strategies. We show the result of the violation tolerance over an error on a
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TABLE 6.4: Number of rules used for violation detection

Rule Type #Rule AVG Time(%)
Topology Checking 10 32.77
Geometry Checking 14 50.47
Attribute Checking 13 16.77

highway consisting of several lane groups, and violation resolution over an error on
two lanes groups on separated roads.

Violation Tolerance

The error in Figure 6.1 occurred in the map data containing a highway in Germany.
Part of this highway is represented by five continuous lane groups with the same
number of lanes. Two of the lane groups have the same ID, which caused the degra-
dation of the autonomous driving mode. Figure 6.11a shows the ground truth of the
data. The dots represent the sequence of shape points for the lane with index 3 in
each lane group. For example, the red dots represent the shape points of the lane
with index 3 in lane group 252. The effect of duplicated lane group ID 251 in 252 is
shown in Figure 6.11b where the existence of lane group 251 is represented by lane
group 252.

(A) Ground truth. (B) Dirty data where lane group 251 is 252.

FIGURE 6.11: Violation tolerance of lane group ID duplication. The
shape points of the lanes with index 3 are visualized in dots.

We applied graph aggregation over both the ground truth and dirty data. The
lane aggregation results agree on both inputs (see Table 6.5). Figure 6.12 shows the
test results from the SmartMap application where the lane group ID duplication vio-
lation is detected and resolved in the successor lanes of the current lane.

TABLE 6.5: The violation tolerance over a lane using graph aggrega-
tion on ground truth and dirty data

lane length
(m)

#points successor link

ground truth BE9D6 2034 54 563E 02
dirty data BE9D6 2034 54 563E 02

According to the combination nCk = n!
k!(n−k)! , where n is the number of lane

groups, and k is the number of lane groups involved in ID duplication, there are
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FIGURE 6.12: Violation tolerance tested in SmartMap based on the
dirty data in Figure 6.11b

10 ID duplication combinations in total when n = 5 and k = 2. The lane aggrega-
tion, over the other 9 dirty data cases, all resulted in the same result. The conducted
tests show that the lane group ID issue can be solved.

Violation Resolution

We evaluated the resolution strategy over two lane groups containing only one lane
allocated to different links. Figure 6.13a shows the ground truth of the lanes in lane
group 1116 and 1191 with their associated links. The effect of lane group ID 1116

(A) Ground truth (B) Dirty data where lane group 1191 is 1116.

FIGURE 6.13: The shape points of the lanes with index 0 are visual-
ized in dots.

duplication is visualized in Figure 6.13b. As the figure shows, the duplicated ID of
1116 caused an ambiguity of the lane, namely, the very same lane in lane group 1116
has two different map representations.

After applying the graph decomposition over the dirty data using rules (see Sec-
tion 6.2.2), the relationship was restored with the newly generated lane instances
lnds:l68747 and lnds:l68748 shown in Figure 6.14. Table 6.6 summarises the ground
truth, dirty data and resolved violation result of lane group ID 1116 duplication. The
identical values of the ground truth (Row 1 and Row 2) and the resolved violation
(Row 4 and Row 5) show that the RDF graph decomposition using spatial relations
can resolve violations caused by lane group ID duplication.
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FIGURE 6.14: The RDF graph representation of a resolved violation
with two newly generated lanes associated with the correct proper-

ties.

TABLE 6.6: The resolution of a lane violation using graph decompo-
sition

lane length (m) #points successor link

ground truth
1116_0 358 14 1117_0 199
1191_0 314 5 1118_0 197

dirty data 1116_0 314, 358 19 1117_0, 1188_0 199, 197

resolved violation
68747 358 14 1117_0 199
68748 314 5 1188_0 197
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6.4 Discussion

Overall, the results demonstrate that our approach can improve the map data qual-
ity, resulting in an improved error-tolerance of AD systems. On the one hand, the
performance of the violation detection allows the deployment of the proposed so-
lution using client-server approach described in previous chapter (see Section 5.5.2)
to check the map data before sending it to the car or client only approach (see Sec-
tion 5.5.1) in case of loss of connectivity with the back-end. On the other hand, the
evaluation of the violation handling strategies has shown that we could avoid the
deactivation of the AD mode by detecting the error and correcting the map data in
both cases of the lane group error.

As we reported, the results are promising. There are limitations of our violation
handling approach, which can be extended in the future. First, our strategy applies
only to the lane groups with similar structure (e.g. the same number of lanes). This
is because graph aggregation and decomposition are based on pattern matching,
namely finding similar graphs. Second, for the lane groups containing more than
one lane, the topological relationships (e.g. links, successors) can be repaired using
the RDF graph decomposition but not the relationships between shape points and
each lane in a lane group. To repair the associations between shape points and cor-
responding lanes in one lane group, the in-depth distance patterns between shape
points needs to be studied based on statistical analysis.

6.5 Conclusion

In this chapter, we investigated the applicability of an ontology-based approach for
ensuring map data quality. We proposed a workflow considering semantic enrich-
ment, violation detection and violation handling. Semantic enrichment is described
in Chapter 4 which provides the needed spatial knowledge for violation detection
and handling. To achieve the violation detection, we reviewed the provided HD
Map Quality Check List in the context of spatial data quality and defined a Map
Quality Violation Ontology. We identified the key OWL axioms to capture the map
data integrity constraints. Since those constraints cannot be captured by OWL 2
RL, we modelled them using Datalog rules, providing the correspondence between
the Datalog constraint atoms and OWL axioms. The violation handling strategies
focused on the error caused by lane group ID duplication. We presented violation
tolerance using graph aggregation and violation resolution using graph decomposi-
tion. The set of Datalog rules are utilised to model the violation handling strategies.

We evaluated the performance of violation detection and identified that geom-
etry checking rules take the majority of the time due to the number of geometry
checking rules and shape points involved. We tested the correctness of violation
handling over two scenarios where lane group ID duplication occurs. In the first sce-
nario, the lane group ID duplication occurred in two lane groups on the same road.
The RDF graph aggregation was applied on the ground truth and dirty data, and the
aggregated results agree on both inputs. For the second scenario, the lane group ID
duplication occurred in two lane groups containing one lane on two separate roads.
The result shows that the violation can be resolved by graph decomposition.

The overall results shows that our approach can successfully check the quality
of the map data and suggests that violation handling is even feasible on-the-fly us-
ing client deployment (see Section 5.5.1), avoiding the autonomous driving mode’s
deactivation. Moreover, we observe some advantages of using an ontology-based
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approach for map data quality assurance. Since the RDF graph representation of the
map data naturally aligns with the road (lane) network model which is the under-
lying model of all HD maps. This provides the advantage of using existing graph
techniques for map data analysis and for deriving new knowledge. The extensibility
and flexibility of using an ontology and rules to model constraints eases the process
of constraint development, and with the fixed vocabularies used in constraints, an
automatic violation rule generation can be achieved.
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Chapter 7

Conclusion and Outlook

In this thesis, we investigate the problem of the map modelling and processing for
autonomous vehicles. In order to solve this problem, we propose an ontology-based
approach focusing on map data integration and processing considering data qual-
ity assurance. The ontology-based approach enables a shift from map data-oriented
functional design to knowledge-centered ontology design. The discussion of the
research challenges, the research questions, as well as the contributions, are pre-
sented in Chapter 1. Necessary background concepts are examined in Chapter 2.
An overview of state-of-the-art approaches related to the main problem addressed
in this thesis is presented in Chapter 3. Then, the subsequent three core chapters
of the thesis describe and evaluate the proposed ontology-based approach for map
data integration, processing and quality assurance. Finally, in this chapter, the thesis
is concluded by revisiting the research question.

To this end, the achieved results are examined in Section 7.1 and some learned
lessons are highlighted in Section 7.2. Section 7.3 provides possible avenues for fu-
ture work.

7.1 Revisiting the Research Question

In order to conduct the work of this thesis, the research problem is divided into
three research questions. The objective of the first research question is to investigate
whether an ontology-based approach is capable of providing a generic map model
ontology using different map formats for autonomous driving functions:

RQ1: Can an ontology-based approach solve the map data integration
problem and provide a generic and unified map model?

This research question is addressed in Chapter 4. We interpret the ontologies
as a key part for map data integration. Thus, we adopt the Global as View (GAV)
principle–an ontology-based data integration approach for integrating different low-
level map data formats into a generic high-level map model. We propose a novel
methodology that combines a top-down approach and a bottom-up approach for
building the unified high-level ontology and the specific low-level ontologies itera-
tively with respect to fulfilling ontology development requirements. The method-
ology is applied for the construction of the two-level map ontologies. First, the
high-level map ontology HLM covers static road knowledge and dynamic vehicle
information. The generic concepts and spatial relationships of roads and lanes are
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modelled in this ontology. This permits to provide a common representation of the
road knowledge over different types of map data in various formats. Second, the
low-level map ontologies, here LNDS and LHERE, covers NDS and HERE Live HD
maps, respectively. The LNDS ontology provides the main concepts and relation-
ships for capturing the NDS format to support the knowledge abstraction process
and eventually populate the HLM ontology. The LHERE ontology is developed
similarly. The simple transformation rules and complex transformations rules are
used for transferring the LNDS ontology and the LHERE ontology to the HLM on-
tology respectively. Finally, we evaluate the methodology via three use cases. The
results demonstrate that the two-level ontological maps and rule-based knowledge
processing is capable of providing: 1) semantic integration among different maps; 2)
reducing data size via layered abstraction, and 3) a generic map view over different
map formats for autonomous vehicles. The flexible schema representation and query
language are additional advantages that we observed in the proposed approach.

RQ2: Can an ontology-based approach perform efficient knowledge pro-
cessing and spatial reasoning while the knowledge base is continuously
changing?

In Chapter 5 this research question is positively answered by demonstrating
that the ontology-based approach is capable of providing adequate road knowledge
around the vehicle for answering autonomous driving functions (e.g., lane change
guidance) while it’s progressing along a route. We proposed a knowledge-spatial
architecture to achieve the efficiency requirement. The knowledge dimension illus-
trates a knowledge abstraction process from the format-specific and detailed low-
level ontologies to the generic high-level ontology. The spatial dimension describes
the continuous spatial reasoning process with respect to the updated vehicle posi-
tion and dynamic road environmental knowledge. We used a spatial sliding window
and incremental reasoning to perform efficient knowledge updates and complex in-
ferencing. To realize the knowledge-spatial architecture, we developed a prototype
with decoupled two-level datastores in order to provide fast rule evaluation and
query answering in the high-level datastore while several low-level datastores run-
ning in the background provide the needed high-level map knowledge ahead of the
vehicle. The prototype is evaluated by using an NDS map to provide a high-level
map view. The result shows that the ontology-based approach with rules can effi-
ciently process knowledge and perform spatial reasoning. The explainability and
flexibility of using rules are some of the advantages we observe in the proposed
approach. Finally, we proposed two deployment choices of the designed solution,
namely, a client and a client-server deployment. The related technical feature anal-
ysis such as memory consumption and data transmission time is presented. Both
approaches are feasible for in-car usage. A concrete decision can then be made based
on the specific requirements of the considered use cases.

RQ3: Can an ontology-based approach be utilized to ensure map data
quality for road knowledge consistency?
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In Chapter 6, this research question is addressed by proposing a workflow for
detecting and fixing map data errors using ontologies and rules. The workflow con-
sists of three stages, namely semantic enrichment, violation detection and violation
handling. Semantic enrichment provides the needed spatial knowledge for violation
detection and handling. The violation detection relies on the developed Map Qual-
ity Violation (MQV) ontology and a set of map data constraint rules. We identified
the key OWL axioms to capture the map data integrity constraints. Since those con-
straints cannot be captured by OWL 2 RL, we modelled them using Datalog rules,
providing the correspondence between the Datalog constraint atoms and OWL ax-
ioms. The violation handling strategies focused on the error caused by lane group
ID duplication. We presented violation tolerance using graph aggregation and vio-
lation resolution using graph decomposition. The evaluation of the proposed ap-
proach focused on the performance of violation detection and the correctness of
violation handling. The observed results indicate that the proposed approach can
successfully check the quality of the map data and suggests that violation handling
is even feasible on-the-fly using client deployment (see Section 5.5.1), avoiding the
autonomous driving mode’s deactivation. The extensibility and flexibility of using
an ontology and rules to model constraints eases the process of constraint develop-
ment, and with the fixed vocabularies used in constraints, an automatic violation
rule generation can be achieved.

7.2 Lesson Learned

The adoption of semantic technologies in autonomous driving applications is still
facing the challenge of bridging the gap between vehicles and semantics disciplines.
We observe that, heretofore, the impact made by semantic technologies in vehicles is
limited for industrial usage. Established productive autonomous driving solutions
use traditional data-oriented approaches for the optimization of route planning, task
planning, and manipulation problems. Through the work presented in this thesis,
we pave the way for a productive application of semantic technologies to enhance
the development of autonomous driving functions. For example, the ability to easily
integrate various map formats for driving function realizations has always been a re-
quested feature reported by engineers working on vehicle foresight. Human drivers
understand the digital maps based on the real-world road. To enable the vehicle to
have such cognition of the road, knowledge, and reasoning are required. Overall,
we have observed the following practical findings from our study:

1. An ontology-based approach allows engineers to focus more on the analyses
and design of autonomous functions on the knowledge level rather than on
map data understanding and implementing various map processing compo-
nents for similar maps.

2. Reasoning based on a rule-engine and an ontology has been applied in various
scenarios. In the light of having a well-functioning and scalable autonomous
driving scenario, using RDF triples, Datalog rules and SPARQL queries turn
out to be a valid choice.

3. Rules need to be created and maintained in a modulated and decoupled fash-
ion. The low-level semantic enrichment, low-to-high knowledge process, and
the high-level spatial reasoning rules should be decoupled from each other,
but aligned as modular components which can be extended or replaced, if,
e.g., other or new map transformations are desired.
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4. The RDF graph representation of the map data naturally aligns with the road
(lane) network model, which is the underlying model of all HD maps. This
provides the advantage of using existing graph techniques for map data anal-
ysis, using derived new spatial knowledge.

7.3 Outlook

In the development of this thesis, we focus on semantically representing the map
standard NDS and the specific commercial HERE Live HD map and integrating
them into the generic high-level map ontology. However, we are aware there ex-
ists a multitude of map formats that are available for autonomous driving systems.
Nevertheless, the methodology presented in Chapter 4 for modelling the low-level
ontologies and related transformation can be easily applied to other map formats in
the domain.

Typically, there exists a need for combining sensor data and digital maps for ve-
hicle perception, planning and control functions. To jointly use the different sources
of data, the semantic meaning needs to be extracted and combined considering the
application scenario. Thus, we envision to combine streaming reasoning for time-
based sensor data with incremental reasoning over map data. For example, the lane
change guidance can be refined based on the vehicle speed sensor data and the map
data such that, more tactical vehicle driving manoeuvre with speed adjustments can
be provided.

Furthermore, before the prototype goes to the production process, there are sev-
eral important steps that need to be conducted. First, safety critical applications in
cars need to have deterministic timing behaviour. The developed SmartMap proto-
type can be evaluated further for determinism and real-time performance. Second,
the prototype has to become much more mature and improve from the scientific
driven prototype to a stable solution. Finally, an infrastructure for rule management,
in particular, for rule maintenance and reuse, needs to be provided as well.
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Appendix

A.1 RDF Graph Representation of Lanes

In the following the RDF graph representations for the use case of the lane unified
view (see Section 4.6.3) are presented. Figure A.1 shows the RDF graph represen-
tation of the aggregated high-level lane laneA1 over LNDS instances. The instance
high:LaneA1 has type high:Lane, data property high:index with value 1 and data
property high:length with value 2008. Figure A.2 shows the corresponding RDF
graph representation of the aggregated high-level lane laneB1 over LHERE instances.
Similar to high:LaneA1, high:LaneB1 is also an instance of the class high:Lane and
has data property high:index with value 1 and data property high:length with
value 2388. This shows that the high-level HLM ontology can unify and provide a
generic lane representation using different low-level map ontologies.

FIGURE A.1: The RDF graph representation of LNDS lane aggrega-
tion. The box with lane group ID contains the graph related to the

aggregatable lane. We omitted the properties in the graph.
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A.2 Example of Imperative and Declarative Programs

Imperative programming requires developers to define step by step how code should
be executed. For example, algorithm 5 shows the typical steps used to output con-
nected lanes using sort-merge algorithm. It is executed at the map data structure
level. In other words, the algorithm need to be re-implemented for every map for-
mats whose schema is different from each other.

input : R: a list containing lane destination connection ID,
S: a list containing lane source connection ID

output: C: list of the pair of two connected lanes
1 if R and S are not sorted then
2 sort R and S;

3 i← 1; j← 1;
4 while i ≤ |R| ∧ j ≤ |S| do
5 if R[i] = S[j] then
6 C ← add(R[i], S[j])

7 else if R[i] > S[j] then
8 j← j + 1

9 else if R[i] < S[j] then
10 i← i + 1

Algorithm 5: Sort-merge algorithm used for lane connectivity.

With knowledge-based programming, the rules and ontologies are used to in-
fer the desired knowledge instead of focusing on processing map data step-wise
depending on specific map formats. For instance, one single rule can achieve the
same goal as the Algorithm 5 does (see Listing A.1), without understand how map
data is structured. Notably, the rule directly reflects the human reasoning process of
lane connectivity as if one lane’s destination ID is equal to another lane’s source ID, then
there are in the successor relationship. Rule-based programming may also axiomatise
recursive qualities like lane reachability with only two rules (see Listing A.2), but im-
perative programming is more complicated to achieve. Hence, knowledge-enabled
programming can help to separate knowledge from the data processing, and enable
programmers to write high-level functions.

hasDirectNextLane [?r,?s]:-
Lane[?r], hasDestination [?r,?id],
Lane[?s], hasSource [?s,?id].

LISTING A.1: Lane connectivity rule

hasNextLane [?r,?s]:- hasDirectNextLane [?r,?s].

hasNextLane [?r,?z]:- hasDirectNextLane [?r,?s], hasNextLane [?s,?z].

LISTING A.2: Lane reachability rules

A.3 Correspondence of Datalog Rules and SPARQL Queries

Datalog rules are translated into SPARQL queries to ensure the efficiency of parallel
processing due to the evaluation mechanism of the underlying data store. That is



134 Appendix A. Appendix

rule evaluations in different data stores compete for computation resources while
the SPARQL queries are evaluated independently. However, there is no one-to-one
correspondence between Datalog rules and SPARQL queries. For example, the re-
cursion can be expressed in Datalog but not in SPARQL; the OPTIONAL of SPARQL
can not be expressed in Datalog (see Section 2.3.4 for details).

A.3.1 Primitive Attribute Rules

(1) Primitive relationship rules infer relationships between individuals.

Datalog: op(x, y)← C1(x), dp(x, z), C2(y), dp(y, z).

SPARQL: INSERT {?x :op ?y}
WHERE { ?x a :C1; :dp ?z.?y a :C2; :dp ?z.}

(2) Primitive attribute rules infer an attribute of an individual.

Datalog: dp2(x, v)← C(x), dp1(x, z), dp2(y, v), dp1(y, z).

SPARQL: INSERT {?x :dp2 ?v}
WHERE {?x a :C; :dp1 ?z. ?y :dp2 ?v; :?dp1 ?z.}

A.3.2 Transfer Rules

(1) Simple rules create, for each individual of a certain type in one ontology, a new
individual of a certain type in another ontology.

Datalog: C2(n), op2(n, u), dp2(n, v)←
C1(x), op1(x, u), dp1(x, v), BIND(SKOLEM("c", x) AS n).

SPARQL: INSERT {?n a :C2; :op2 ?u; :dp2 ?v}
WHERE {?x a :C1; :op1 ?u; :dp1 ?v.

BIND(SKOLEM("c",?x) AS ?n)
}

(2) Complex rules create a new individual in one ontology based on several individ-
uals in another ontology.

Datalog: C2(w)← C1(x), op1(x, z), dp1(x, v),
C1(y), op1(y, z), dp1(y, v), BIND(SKOLEM("c", x, y) AS w).

SPARQL: INSERT {?w a :C2.}
WHERE {?x a :C1; :op1 ?z; :dp1 ?v.

?y a :C1; :op1 ?z; :dp1 ?v.
BIND(SKOLEM("c",?x,?y) AS ?w)
}
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A.3.3 Spatial Rules

(1) Bounding rules infer the boundaries of an area or the range of a line, such as a
start/end point or the left or right-most lane. Aggregation functions (e.g., MIN or MAX)
can be used to identify an individual with a minimal or maximal bounding value.

Datalog: C2(z)← C1(x), AGGREGATE(dp1(x, v) ON x
BIND MAX(v) AS m), C1(z), dp1(z, m).

SPARQL: INSERT {?x a :C2.}
WHERE {?x a :C1; :dp1 ?v.}
ORDER BY DESC(?v) LIMIT 1

Such rules might also use (stratified) negation to identify individuals without
some properties:

Datalog: C2(x)← C1(x), NOT EXISTS y IN (C1(y), op1(x, y)).

SPARQL: INSERT {?x a :C2.}
WHERE {?x a :C1.

FILTER NOT EXISTS {?y a :C1. ?x :op1 ?y}
}

(2) Topological rules refer to topological relations, more specifically, lateral (left-
/right) and longitudinal (predecessor/successor) relations. Reachability can natu-
rally be expressed using recursive rules.

Datalog: op1(x, y)← op2(x, y)
op1(x, z)← op2(x, y), op1(y, z)

SPARQL: No corresponding SPARQL recursive queries.

(3) Distance rules refer to the spatial arrangement of objects, such as the distance to
a point of interest.

Coordinate distance rules indicate the distance between two points using coordinates:
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Datalog: A(d), hasSource(d, s), hasTarget(d, t), distance(d, z)←
C1(s), x(s, xs), y(s, ys), C1(t), x(t, xt), y(t, yt),
BIND(sqrt((xs − xt)2 + (ys − yt)2) AS z),
BIND(SKOLEM("d", s, t) AS d).

SPARQL: INSERT {?d a :A; :hasSource ?s;
:hasTarget ?t; :distance ?z.

}
WHERE { ?s a :C1; :x ?xs;:y ?ys.

?t a :C1; :x ?xt;:y ?yt.
BIND(sqrt((?xs-?xt)*(?xs-?xt)

+(?ys-?yt)*(?ys-?yt)) AS ?z)
BIND(SKOLEM("d",?s,?t) AS ?d)

}

Length distance rules refer to the spatial arrangement of objects, such as the distance
to a point of interest.

Datalog: A(d), hasSource(d, s), hasTarget(d, t), distance(d, z)←
C1(s), length(s, v),
AGGREGATE(op1(s, p), op1(p, t)), length(p, l) ON s
BIND SUM(l) AS u), BIND((v + u) AS z),
BIND(SKOLEM(" f", s, t) AS d).

SPARQL: INSERT {?d a :A; :hasSource ?s;
:hasTarget ?t; :distance ?z.

}
WHERE {?s a :C1; :length ?v.

{
SELECT ?s (SUM(?l) AS ?u)
WHERE{?s :op1 ?p. ?p :op1 ?t. ?p :length ?l
} GROUP BY ?s

}
BIND ((?v+?u) AS ?z)
BIND(SKOLEM("f", ?s,?t) AS ?d)

}
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