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Abstract

Virtual Reality Learning Environments (VRLES) refer to computer-generated scenarios that
offer great potential for providing learning content. However, VRLEs can also pose challenges to
learners regarding visual complexity, integration of different presentation formats, and choosing
adequate learning behavior. As a result, such VRLE-related challenges can lead to reduced
learning outcomes.

The focus of this thesis was to examine different support approaches (external and internal)
and their effects on cognitive learning processes and learning outcomes. Within this, the
Extended Model of Immersive Learning in VR (EMIL VR) was developed to describe the
underlying learning processes and relevant influencing factors on learning outcomes. The
postulated EMIL VR was examined in the present thesis based on three empirical studies
comparing different support approaches with a control group while learning in VR.

In the first study, the VRLE contained annotations as external support and was compared to
a VRLE without annotations. This support approach aimed to reduce visual search and foster
mapping of information across different presentation formats. Intrinsic motivation moderated
the beneficial effect of annotations on the overall learning outcome.

In the second study, an elaboration prompt functioned as internal support and activated
learners to process learning content on a deeper level. The control group did not receive
the activating prompt before entering the VRLE. The study included different measurement
approaches of learning outcomes: functional and structural. Prompting had beneficial effects
on the functional learning outcome (knowledge level). Moreover, learners with low structural
prior knowledge also experienced beneficial effects from prompting.

In the third study, external and internal support approaches were combined to investigate
possible synergic effects of adequate sequencing and prompting. Each support approach had
different effects on the learning subprocesses. Specifically, prompting supported deep learning
while adequate sequencing eased superficial processing of the learning content. Thus, no
synergic effects were found when combining both support approaches.

Throughout the present thesis, empirical findings will be discussed based on the postulated
EMIL VR framework, and additional influencing factors will be critically reflected. All findings
of the three studies underline the necessity of supporting learners in VRLEs. Considering the

experimental results, theoretical, methodological, and practical implementations are provided.
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Zusammenfassung

Virtual-Reality-Lernumgebungen (VRLESs) bezeichnen computergenerierte Szenarien, die ein
grofles Potenzial fiir die Vermittlung von Lerninhalten aufweisen. Die Darstellung der Lern-
inhalte in VRLESs geht jedoch mit potenziellen Herausforderungen fiir die Lernenden einher:
hohe visuelle Komplexitat, Integration verschiedener Présentationsformate sowie die Wahl
des geeigneten Lernverhaltens. Diese Herausforderungen in VRLEs kénnen den Lernerfolg
beeintrachtigen. Der Schwerpunkt dieser Arbeit lag auf der experimentellen Untersuchung
verschiedener Unterstiitzungsansétze (extern und intern) und ihren Auswirkungen auf kognitive
Lernprozesse sowie den Lernerfolg. Zur Beschreibung der zugrunde liegenden Lernprozesse
und relevanten Einflussfaktoren wurde das Erweiterte Modell des immersiven Lernens in
VR (Eztended Model of Immersive Learning in VR; EMIL VR), entwickelt. Das postulierte
Modell, EMIL VR, wurde anhand von drei empirischen Studien gepriift, die unterschiedliche
Unterstiitzungsansétze beim Lernen in VR mit einer Kontrollgruppe verglichen:

In der ersten Studie wurde die VRLE mit Annotationen als externe Unterstiitzung versehen
und mit einer VRLE ohne Annotationen verglichen. Dieser Unterstiitzungsansatz zielte darauf
ab, die visuelle Suche zu reduzieren und die Zuordnung von Informationen iiber verschiedene
Préasentationsformate hinweg zu erleichtern. Intrinsische Motivation moderierte den positiven
Effekt der Annotationen auf den Gesamtlernerfolg.

In der zweiten Studie erhielten die Lernenden einen Elaborationsprompt, welcher eine Form
der internen Unterstiitzung darstellte. Der Elaborationsprompt sollte Lernende dazu anregen,
den Lerninhalt tiefer zu verarbeiten. Die Kontrollgruppe erhielt vor Beginn der VRLE keine
solche aktivierende Komponente. Die Studie umfasste verschiedene Messanséitze, um den
Lernerfolg zu erfassen: funktional und strukturell. Der Elaborationsprompt wirkte sich positiv
auf den funktionalen Lernerfolg auf der Wissensebene aus. Bei Lernenden mit geringem
strukturellen Vorwissen wirkte sich der Elaborationsprompt ebenfalls positiv aus.

In der dritten Studie wurden externe und interne Unterstiitzungsansitze kombiniert, um
die Synergieeffekte von addquater Sequenzierung und Hinzufiigen des Elaborationsprompts
zu untersuchen. Jeder Unterstiitzungsansatz zeigte unterschiedliche Auswirkungen auf die
Teilprozesse beim Lernen. Der Elaborationsprompt forderte das semantische Verarbeiten der
Lerninhalte, wihrend addquate Sequenzierung die oberflichliche Verarbeitung der Lerninhalte
erleichterte. Bei der Kombination beider Unterstiitzungsansétze konnte kein Synergieeffekt
festgestellt werden.

Die empirischen Befunde werden auf der Basis des Rahmenmodells EMIL VR diskutiert und
zusétzliche Einflussfaktoren kritisch reflektiert. Die Ergebnisse aller drei Studien unterstreichen
die Notwendigkeit der Unterstiitzung von Lernenden in VRLESs. Basierend auf den empirischen

Ergebnissen werden theoretische, methodische und praktische Implikationen abgeleitet.
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Part 1.

Introduction, theoretical background,
related work, and research aims






1. Introduction

An increasing research interest in Virtual Reality Learning Environments (VRLES) has become
apparent in recent years (Makransky & Petersen, 2021). VRLEs are characterized as 3D
computer simulations that are interactive, multisensory, and provide an opportunity for situated
learning in many fields (Baceviciute, Mottelson, Terkildsen, & Makransky, 2020). Learners
describe their experiences with VRLEs as joyful and motivating (Makransky, Andreasen,
Baceviciute, & Mayer, 2020), which speaks to the potential of VRLESs as contemporary learning
environments that can be implemented within universities (Miller, Castillo, Medoff, & Hardy,
2021). Despite the theoretical promise that learning in VR holds, empirical studies examining
the potential of these learning environments show heterogeneous effects (Wu, Yu, & Gu, 2020).
While some studies have found beneficial effects of learning in VR, others have documented
superficial processing of learning content and lower learning outcomes compared to conventional
learning material (Makransky et al., 2020; Parong & Mayer, 2020).

Adding to this, prior research has identified different challenges that can arise from learning
in VR, such as high visual complexity (Ragan et al., 2015; Mulders, Buchner, & Kerres, 2020),
lack of adequate learning behavior (Hu-Au & Okita, 2021; Makransky et al., 2020; Huang, Luo,
Yang, Lu, & Chen, 2020), as well as inadequate strategies and potential overload while learning
(Makransky & Petersen, 2021; Mayer, 2020). To overcome these learning barriers, different
approaches aimed at supporting learners in VR have been examined and have found that some
support approaches are more effective in VR than in conventional settings (Klingenberg et al.,
2020). This implies that support approaches cannot simply be transferred from conventional
settings to VR (Meyer, Omdahl, & Makransky, 2019). However, until now, the question of
how to effectively support learning in VR remains unanswered. In addition, no empirically
investigated frameworks exist to date for describing underlying cognitive processes and relevant
influencing factors of successful learning outcomes in VR.

To address these research gaps, the aim of the present thesis was to develop a theoretical
framework for learning in VR with a specific focus on different support approaches and their
consequences for underlying cognitive learning processes: the Extended Model for Immersive
Learning in VR (EMIL VR). Additionally, this model considers the interplay of support
approaches and learner’s characteristics.

Following the recommendation of Jenkins (1979), the present thesis focused on four specific
factors that can impact underlying cognitive learning processes. These factors included the
learning setting (F'1), learning material (F2), learner’s characteristics (F3), and assessment of
learning outcomes (F4). Based on the deduced challenges of learning in VR, different support

approaches were defined based on prominent theories and prior findings. External support



1. Introduction

approaches related to the learning material (F2) as well as internal support approaches related
to the learning setting and the active role of learners (F1) were systematically manipulated.
Relevant learner’s characteristics (F3) were additionally examined, as well as their impact on
the effectiveness of the different support approaches. Moreover, different approaches to assess
learning outcomes (F4) were included to gain deeper insights into the underlying subprocesses
that take place while learning in VR. The results of the empirical studies are critically reflected
on and discussed based on the postulated theoretical EMIL VR framework. In conclusion,
theoretical, methodological, and practical implications are outlined, important limitations are

described, and recommendations for future research are provided.



2. Theoretical background and related work

Learning content can be presented and combined in VR in many ways. To understand
the potential of VR as a learning environment, an in-depth overview will first be provided
(Section 2.1). Based on the described characteristics of VRLEs, a model for learning in VR,
which is based on previous empirical findings, will be comprehensively discussed. Next, the need
for learning support within VR will be emphasized and explained in line with prior research
findings (Section 2.2). The importance of the four critical factors, namely the learning setting
(F1), learning material (F2), learner’s characteristics (F3), and assessment of learning outcomes
(F4) will be discussed to systematically investigate different support approaches for learning
in VR (Section 2.3). To understand the fundamental mechanisms of how different support
approaches work, the underlying cognitive learning processes will be outlined (Section 2.4).
Subsequently, different support approaches will be analyzed based on previous empirical and
theoretical findings. To this end, external support through the design of the VRLE as well
as internal support through the activation of appropriate learner behavior will be the focus
(Sections 2.5 and 2.6). In particular, it is shown that learner characteristics play an important
role in the extent to which support approaches can have a positive effect on learning outcomes
(Section 2.7). To gather comprehensive insights into the impact of support in VR, it is important
that learning outcomes are considered and measured in a differentiated manner. Thus, the
measurement of learning outcomes will be examined from two perspectives: functional and
structural (Section 2.8). The advantage of using a multi-method approach will thereby become
transparent. At the end of this chapter, the guiding questions of the thesis will be presented,
and the overarching theoretical framework model (EMIL VR) will be built up step by step and
linked to the leading questions (Chapter 3).

2.1. Virtual reality learning environments

To understand what makes learning in VR special and which challenges learners face, the

nature of VRLEs and the resulting learning setting are described in the following section.

2.1.1. Defining virtual reality environments

Virtual Reality (VR) has been defined in many ways throughout the literature due to disciplines
emphasizing different characteristics of VR. To date, a standardized approach regarding what
can and cannot be considered VR is lacking (Kardong-Edgren, Farra, Alinier, & Young, 2019).
For example, VR was defined by Pan and Hamilton (2018) as a computer-generated world.



2. Theoretical background and related work

This definition has been criticized as not being specific enough and as not being clearly
distinguishable from other concepts, such as augmented reality (Slater, 2018; Kardong-Edgren et
al., 2019). Thus, to capture the uniqueness of VR, it must be understood not only as a computer-
generated virtual environment, but also as an environment that perceptually surrounds learners
to immerse them in the virtual world (Slater, 2018). When the VR environment is accessed
through a head-mounted display with the simulation being presented in a stereoscopic way, this
is termed immersive VR (Kardong-Edgren et al., 2019). This type of VR stands in contrast to
low- or non-immersive settings, where learners interact with a 3D desktop simulation (Kardong-
Edgren et al., 2019; Merchant, Goetz, Cifuentes, Keeney-Kennicutt, & Davis, 2014). When
learning in VR, learners perceive and interact with the learning content in a virtual world.
The following definition of VRLEs by Baceviciute, Mottelson, Terkildsen, & Makransky (2020),
highlights their differentiated nature:

‘IVR is...]Ja computer-mediated simulation that is three-dimensional, multisensory,
and interactive so that the user’s experience is ‘as if inhabiting and acting within

an external environment’ (Baceviciute et al., 2020, p. 37).

This definition is employed in the present thesis for several reasons. First, it acknowledges
that learners can perceive the VRLE, and consequently, the included learning content, through
different sensory channels. It also emphasizes the importance of the active role of the learner
and highlights the subjective perception of the learner.

When referring to immersive VR, two basic concepts can be differentiated: immersion
and presence (Mayer, 2020; Makransky & Petersen, 2021). The concept of immersion refers
to technological and objective factors of VR. Such factors can include, for example, the
technological provision of the learning environment via a certain medium or specific hardware.
Depending on the technical setup and the chosen simulation, different degrees of freedom are
available. Moreover, depending on the available degrees of freedom, learners can interact with
their surroundings and move in the virtual world (Mayer, 2020; Babu, Krishna, Unnikrishnan,
& Bhavani, 2018). In contrast, the concept of presence refers to the subjectively experienced
state of immersion and is described as the feeling of ‘being there’ (Riva, Davide, & IJsselsteijn,
2003, p. 3) during learning in VR (Mayer, 2020). Both concepts, immersion and presence, have
the power to substantially impact learning processes (Makransky & Petersen, 2021).

2.1.2. Specific qualities of virtual reality learning environments

The nature of VRLEs offer the opportunity to present learning material in a contemporary and
motivational way (Makransky et al., 2020). However, this can also lead to different challenges
and potential barriers to learning (Ragan et al., 2015; Mulders et al., 2020; Hu-Au & Okita,
2021; Huang et al., 2020). To investigate the potential of VRLESs, the learning content should
be selected in a way that learners can benefit from experiencing it in an immersive manner
(Radianti, Majchrzak, Fromm, & Wohlgenannt, 2020). The situated setting, inducing presence,
is described as being beneficial for learning outcomes (Makransky, Lilleholt, & Aaby, 2017).



2.1. Virtual reality learning environments

For instance, Thorsteinsson and Page (2008) outlined the fact that learners can constructively
perceive the learning environment. By exploring the VRLE, learners might investigate relevant
questions and experience learning problems from a new perspective (Y. L. Chen, 2016).

Furthermore, VRLEs can be used to create situated and realistic learning environments
for the observation of scientific content (Hedberg & Alexander, 1994). Possible barriers to
observing these processes in real laboratories include limited time and financial resources.
Some processes take place at the micro-level and therefore cannot be observed in conventional
laboratories, as these are invisible to the human eye (Radianti et al., 2020; Miller et al., 2021).
For instance, one study of Bell and Fogler (1995) used a VRLE to display chemical reactions in
an engineering course. Similarly, in their study, Parong and Mayer (2020) provided insights into
the human body and learners could perceive different cells in the blood vessel in an immersive
way.

It is also possible to perceive new technology before even building the real prototype and to
interact with it in a VRLE (Onyesolu & Eze, 2011). Abstract technical concepts or interactions
with robots can be displayed flexibly in VRLEs, allowing learners to interact and familiarize
themselves with new technologies in a cost-effective and safety-ensuring way (Hu-Au & Okita,
2021). For instance, learners might observe an operating robot in its specific environment
(Vogt, Babel, Hock, Baumann, & Seufert, 2021b, 2021a). Thus, the configuration, moving
trajectory, and interaction pattern of a service robot allows learners to perceive the topic of
robotics in an immersive way and might thereby enable learners to understand basic concepts
more intuitively as they are present in a situated setting (Makransky & Petersen, 2021).

In VRLES, different sensory channels are used to convey information depending on the chosen
presentation format. In general, global distinctions for presenting learning material can be
made: First, the codality of the presentation format can be described (Paivio, 1990). This
refers to the code used to present the learning content. Here, one can distinguish between
verbal code (narrations or printed words) and non-verbal or pictorial code (VR animations or
pictures). Second, the modality used to convey information can differ in that information can
be presented in a visual or auditory format (Moreno & Mayer, 2007).

Analyzing prior findings, one can conclude that the content, as well as the provided pre-
sentation format for learning in VR, need to be chosen carefully (Wu et al., 2020; Makransky
& Petersen, 2021). This is consistent with the idea that different forms of presentation such
as pictorial or verbal representations are more appropriate for displaying certain contents
(Schnotz & Bannert, 2003). Most VRLEs are dominated by visual, pictorial representations
that illustrate the learning content. But what makes pictorial representations particularly
attractive? Pictures are dually coded which results in advantages for storing and retrieving
pictorial information (Paivio, 1986). However, previous literature has described that learning
materials with animations can overload learners as they must simultaneously keep informa-
tion active in their working memory (de Koning, Tabbers, Rikers, & Paas, 2010). Hence,
animations are described to violate the apprehension principle. This principle states that ‘the
structure and content of the external representation should be readily and accurately perceived

and comprehend’ (Tversky, Morrison, & Betrancourt, 2002, p. 255). Animations are often too
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complex or too fast to be accurately perceived. Similar effects could occur when learning with
VR animation (Makransky & Petersen, 2021). Here, learners would be challenged to process
a lot of information at a given time. This overload in combination with little control over
the learning environment can lead to suboptimal elaboration processes (Lowe, 2003; Tversky,
Heiser, Mackenzie, Lozano, & Morrison, 2008; Tversky et al., 2002). As a result, learners are
unable to adequately process the information and thus fail to build a mental model (de Koning,
Tabbers, Rikers, & Paas, 2009). Here, the chosen presentation formats displayed in VR might
be crucial to avoid overload and to support learners to process the content deeply.

In addition, verbal components such as labels or narratives can also be integrated. Using
these different sources of information might trigger the multimedia effect when learning in VR
(Mayer, 2014). It is assumed that learning with different presentation formats, such as texts
and pictures, leads to higher learning outcomes than learning with a solely textual presentation
of the same learning content (Paivio, 1990; Mayer, 2014).

For instance, when presenting new technology such as a new service robot, the VRLE might
include realistic animations of the robot, while additional more abstract information might be
provided as narration (modality principle; Mayer, 2014). In this setting, learners can observe
the functionality of the robot from different perspectives and might see the robot’s moving
trajectory and how it performs its task (Vogt, Babel, et al., 2021b). Abstract information
provided in the narration can be mapped to the displayed information in the VR animation.

In contrast, when learning more abstract scientific content, such as chemical reactions, the
VRLE should be designed differently. VRLESs offer the possibility to display both micro as well
as macro phenomena (Radianti et al., 2020). This idea of changing flexibly between different
levels of learning content is also reflected in the elaboration theory developed by Reigeluth and
Stein (1983). This theory posits that different approaches can be employed to gain further
insights into a given topic: from general-to-detailed. This means that learners must first learn
about a global perspective followed by a specific epitome, or in other words, a local aspect of
the topic (Reigeluth & Stein, 1983). This switching between micro and macro levels can be
easily implemented in a VRLE.

To sum up, VRLESs offer great potential to present learning material in a contemporary way
and offer new approaches to learn at universities. However, learners face specific challenges
while learning in VR that might impact learning outcomes (Ragan et al., 2015; Mulders et al.,
2020; Hu-Au & Okita, 2021; Huang et al., 2020). As a result, many findings related to VRLEs
have been published throughout the past years, which are discussed in detail in the following

section.

2.2. Empirical findings on learning in virtual reality

Although VR environments are sometimes described as a new technology, their history dates
back to the 1970’s (Mazuryk & Gervautz, 1996). Back then, VR environments were used in
the context of flight or military simulations. Older publications analyzing the potential of VR

environments in the learning context outlined that the technical implementation of learning
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content was not sufficiently developed, which resulted in poor instructional design of VRLESs
(Riva et al., 2003; C. J. Chen, Toh, & Ismail, 2005). The review of Di Natale, Repetto, Riva,
and Villani (2020) criticized the methodological weaknesses of some studies. For example, such
studies often included a lack of randomization, small sample sizes, unbalanced samples, and
non-validated measurement instruments. Furthermore, it was postulated that learning in VR
was not a promising approach for all topics (Moreno & Mayer, 2004).

Throughout the past few years, the number of publications investigating learning in VR has
rapidly increased (Makransky & Petersen, 2021). Taking a closer look at previous findings, many
studies compared immersive VRLEs with non-immersive computer-simulated or conventional
learning settings, such as learning with a worksheet, PowerPoint slides, videos, or other
conventional learning material (Parong & Mayer, 2018; Howard & Lee, 2019; Klingenberg et al.,
2020; Webster, 2016). To summarize these studies, Wu et al. (2020) conducted a meta-analysis
including 35 studies. They found a small overall beneficial effect of VRLEs compared to other
media. However, they outlined that many of the included studies found no or even detrimental
effects of learning in immersive VR. Based on these findings, caution regarding the potential of
VRLEs as effective learning environments appears warranted.

For instance, Webster (2016) documented that learning in VR resulted in higher learning
outcomes compared to learning in a desktop simulation. In contrast, Parong and Mayer (2018)
found that learning in VR distracted learners cognitively and thus resulted in a lower learning
outcome compared to a non-immersive desktop environment.

A preliminary framework to outline and understand the heterogeneous findings from media
comparison studies was thereby developed and is entitled the Cognitive Affective Model of
Immersive Learning (CAMIL) by Makransky and Petersen (2021). This model will be described

in the next subsection.

2.2.1. Cognitive Affective Model of Immersive Learning

The Cognitive Affective Model of Immersive Learning (CAMIL) proposed by Makransky and
Petersen (2021) presents an overview of important factors for learning in VR (see Figure 2.1).
In CAMIL, different influencing factors and their relations to certain learning outcomes are
described. As for influencing factors, technological factors, affordances of immersive VR,
and cognitive-affective factors are included. Moreover, their impact on learning outcomes is
described using specific paths connecting the input to the output factors. On the left side of
the model, three technological factors are included: immersion, representational fidelity, and
further control factors.

The technological factors impact presence and agency, which constitute the level of controlling
actions in VR (Makransky & Petersen, 2021). These two factors represent the affordances of
immersive VRLEs. The included affordances have an impact on the six cognitive and affective
influencing factors outlined in this model: interest, motivation, self-efficacy, embodiment,
cognitive load, and self-regulation. As outcome variables, factual knowledge, conceptual
knowledge, procedural knowledge, and transfer of learning are included.

In their research, Makransky and Petersen (2021) describe previous findings from media
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comparison studies for each included path. For instance, a positive effect of immersion on
presence is described (Johnson-Glenberg, 2019). Moreover, higher presence is posited to go
along with higher intrinsic motivation, and higher intrinsic motivation is thought to be linked
to improved learning outcomes (Harackiewicz, Smith, & Priniski, 2016; Dev, 1997). In contrast,
higher presence might also be linked to higher cognitive load, and in turn, hampering effects
on learning outcomes might occur (Mayer, 2020).

Additionally, several important assumptions for learning in VR are postulated. For instance,
one main assumption of CAMIL is that evidence from research investigating conventional,
non-immersive learning environments can be transferred to immersive learning in VR. It is
also suggested that media for presenting learning content might interact with how the learning
material is presented and potential support approaches.

Although, CAMIL offers important insights into relevant factors for learning in VR, many
questions surrounding this topic remain unanswered. For instance, CAMIL does not include any
information about the specific underlying cognitive learning processes or how the presentation
format might interact with other relevant factors, such as motivation.

The empirical base for developing CAMIL included media comparison studies. When a new
learning medium gains attention, the first question is always whether it has a universal advantage
over traditional learning media (R. E. Clark, 1983). This is also reflected in the research tradition
on VR in recent years. However, media comparison studies are typically viewed in a critical
light, especially due to central problems regarding the guaranteed comparability of different
media (R. E. Clark, 1983). This critical view on findings of media comparison studies in the
context of VRLEs simultaneously highlights the weaknesses of media comparison studies.

For instance, Parong and Mayer (2020) used a VRLE that contained continuous VR-
animations in combination with spoken narration, whereas the presented non-immersive desktop
environment simply displayed PowerPoint slides with written text. Thus, this study incorpo-
rates a major problem of media comparison studies: different characteristics of the used media
might bias the overall conclusion that one media is more efficient than the other (R. E. Clark,

1983). Furthermore, media as well as instructional settings including different approaches to
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supporting learners might impact learning outcomes, and interactions between these factors
are possible (Parong & Mayer, 2020; Makransky & Petersen, 2021).

Taken together, to explore the potential of VRLESs, the focus should be less on media
comparisons and more on the medium of VR itself. Central questions to this end include: What
are the specific challenges that may stem from this kind of learning environment? How can
learners be supported to successfully master these challenges? These questions will be discussed

in the following sections.

2.2.2. Challenges while learning in virtual reality

One important characteristic of VRLEs is the size of the visual field where learning content can
be displayed. In conventional settings, space where learning content is presented is more obvious
and limited to PowerPoint slides, the book or computer being used (Makransky et al., 2020).
Consequently, the size of the visual field of view might challenge learners to select relevant
information (Ragan et al., 2015; Mulders et al., 2020). Through this, additional resources might
be consumed in order to locate relevant information (Makransky, Terkildsen, & Mayer, 2019).
When VRLEs display the learning content in such a way that it switches between micro and
macro levels, this might additionally pose challenges for learners regarding how they should
guide their attention. In this case, learners must once again select the relevant information,
or its presentation in VR, as the virtual world changes perspective. In specific terms, this
means that each time they zoom in or out, they must reorient themselves, which may involve
navigating through the VRLE (Vogt, Albus, & Seufert, 2021). Furthermore, as a realistic
VRLE might contain elements that are necessary to present the learning content in a situated
way, but do not convey learning content, these might distract learners from processing the
learning content (Howard & Lee, 2019). In a conventional setting it is more obvious for learners
where the learning content is presented and what the surrounding elements are (Howard &
Lee, 2019). Hence, learners are particularly challenged to guide their attention to important
elements in VRLEs (Albus, Vogt, & Seufert, 2021).

Moreover, when VRLEs are implemented in a constructivist way where learners can explore
the virtual world, guiding attention might be challenging and learners might explore the
environment in a superficial manner (Mayer, 2004). As a result, VRLEs can reduce learner’s
focus on the learning content and the resources provided to deeply process the learning content
(Howard & Lee, 2019). One study published by Mayer (2004) showed that learning with
simulations can have harmful effects when the behavioral or exploratory activity replaces
learner’s efforts to engage deeply with the learning content. Hence, learning behavior can be
extended by additional qualities, and pre-existing learning behavior from conventional settings
need to be specifically adapted to the learning settings in VRLEs.

Once learners have mastered the challenge of locating the relevant information, additional
challenges in the learning process may follow. Previous research has found that VRLEs often
use a combination of static images or VR animation and verbal elements to convey knowledge.
However, using different presentation formats might pose challenges for the learners in terms of

being able to connect information between these different formats (Vogt, Klepsch, Baetge, &
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Seufert, 2020; D. Gentner, 1983).

Learners must first process the individual presentation formats and understand their content
before they can recognize potential content overlaps between individual formats. This is not only
a matter of recognizing certain elements and perceiving them as belonging together (element-
to-elememt mapping), but can also involve parallels at the process level (relation-to-relation
mapping), which require a deeper understanding of the learning content (Diaz & Ioannou, 2019;
D. Gentner, 1983). This can be particularly challenging for learners in VRLESs that are not
self-paced. Thus, to overcome superficial processing of the learning content presented in VR,

learners might need to be supported.

2.2.3. Fostering deep learning in virtual reality

Presenting learning content in VR does guarantee deep processing of the provided content
(Vogt, Babel, et al., 2021b; Wu et al., 2020). Surface level processing while learning with
interactive technology can be contrasted with deep level processing. Diaz and Ioannou (2019)
describe superficial processing as simple recall or memorization without further engaging
into the learning processes. In contrast, deep level processing of the learning content also
involves the deduction of meaning of the presented content, self-monitoring, and a commitment
to learning (Biggs, 1989). This commitment involves gaining a deeper understanding and
critically reflecting on the learning content. In the context of learning, Diaz and Ioannou (2019)

characterize the term deep learning as follows:

‘Deep learning is also about developing habits to consistently think and reflect,
approach new phenomena in thoughtful ways, and see new phenomena from different

perspectives in everyday life’ (Diaz & lToannou, 2019, p. 16).

According to this definition, learning content must be processed semantically in order to
categorize the learning process as deep learning!.

To overcome the challenge of surface level processing while learning in VR, previous stud-
ies have investigated different support approaches. As a basic distinction of these support
approaches, one can distinguish between external support approaches and internal support
approaches. External support approaches refer to the specific design of the learning environment
and the presentation formats used to convey the learning content (Jenkins, 1979). Internal
support approaches incorporate certain elements into the learning environment that stimulate
the active role of the learner and trigger learners to show appropriate learning behavior (Jenkins,
1979).

One external support approach constitutes adding information directly related to the learning
content prior to the start of the learning unit. This approach is called pre-training (Mayer,

2017). By adding this information, learners can reactivate prior knowledge and have a brief

'The term deep learning is used by different disciplines. For example, in computer science, the term deep
learning refers to a special method of information processing and a subfield of machine learning. In machine
learning, deep learning refers to deep neural networks that are used to analyze large data sets. The present
thesis refers to deep learning in the context of educational psychology and therefore does not deal with deep
learning in the context of neural networks.

12



2.3. Relevant factors for fostering learning in virtual reality learning environments

preview of what to learn (Vogt, Babel, et al., 2021b; Meyer et al., 2019). For instance, the study
of Meyer et al. (2019) found a beneficial effect of pre-training on different levels of the learning
outcome, indicating that pre-training might help learners to cope with the requirements of the
VRLE. It should, however, be noted that within this study, the VR learners were compared to
learners with videos. When learning with videos, the beneficial effect of pre-training was not
found (Meyer et al., 2019).

Another global approach to support learners in VR is to use internal support approaches
that trigger learners to adequately adapt their learning behavior. For instance, Klingenberg
et al. (2020) added elements in a VRLE to trigger generative learning strategies. They found
beneficial effects of this support approach on learning outcomes. Furthermore, Parong and
Mayer (2020) used summary prompts after each learning session in VR and found such prompts
to support learning in VR.

From these findings, it can be concluded that promising, preliminary approaches exist to
support learners in VR. The approaches described thus far suggest that there is a need for
further research in this area. For example, the use of pre-training is a rather content-bound
approach. Here, the domain-specific prior knowledge that can help learners to better understand
the learning content in VR must be individually evaluated. Moreover, when using summary
prompts, learners are required to interrupt their learning unit to take notes. Thus, the question
arises of whether other promising approaches might exist that do not contain such problems.

To answer this question, the underlying learning processes must be comprehensively under-
stood. For instance, CAMIL describes certain influencing factors on learning outcomes and
thus describes the impact of input on output variables. However, it does not focus on the
underlying cognitive learning processes and thus does not deliver insights into the consequences
of different support approaches on the cognitive subprocesses while learning. Furthermore,
it does not become apparent whether these support approaches directly address the specific
challenges the learners face while learning in VR. In the following section, methods through
which these underlying cognitive processes and potential influencing factors can be investigated

in a sophisticated and rigorous manner are discussed.

2.3. Relevant factors for fostering learning in virtual reality learning

environments

To develop a better understanding of how to overcome challenges while learning in VR by
support approaches, the related underlying cognitive learning processes require further research.
As recommended by Jenkins (1979) four factors should be considered when conducting memory
experiments to investigate processes such as learning. These factors are translated into the
learning context and can be seen in Figure 2.2.

Jenkins (1979) explained that experimental findings are highly context-sensitive. Accord-
ingly, these influencing factors should either be kept as constant as possible or systematically
manipulated (Roediger, 2008).

The first factor described by Jenkins (1979) constitutes the chosen learning setting (F1). To
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Figure 2.2.: Adapted version of the Tetrahedral Model of Memory Experiments by Jenkins
(1979)

this end, the underlying cognitive learning processes are thought to depend on the specific
context and the provided instructions. Additionally, the scope of actions available for learners
might impact the learning processes, as learners show different behavior depending on the
provided boundary conditions. Furthermore, they might apply suitable strategies that depend
on the learning setting. Both, learning behavior and learning strategies can be described as
internal factors that impact learning processes. This factor can be classified as an internal
support approach. In the context of the present thesis, immersive VRLESs were chosen as
learning settings.

The second factor focuses on the provided learning material (F2) in more detail. The chosen
presentation formats for the learning content, for example, combining text and pictures or VR
animations, as well as sequencing these formats, are posited to impact the underlying cognitive
learning processes. This factor can be characterized as an external factor influencing learning
processes and thus external support approaches are related to this factor.

As the design and the chosen presentation formats of the VRLE have an impact on the
underlying cognitive learning processes and the resources that learners need to invest to process
the given learning content, the design needs to be chosen carefully. One important issue that
should be considered is that the presentation format should match the chosen content, and
through this, increase computational efficiency (Larkin & Simon, 1987; Hegarty, 2011). The
concept of computational efficacy describes the fact that two different presentation formats
containing the same learning content do not involve the same expenditure of cognitive resources
to process the relevant information (Larkin & Simon, 1987). Thus, depending on the content, it

may be more efficient to choose a visual or textual presentation format (Johnson-Laird, 1983).
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Several key factors influencing computational efficiency exist: the structure of the learning
content presented, search and recognition patterns, and integration of new information into the
previous knowledge network (Larkin & Simon, 1987).

The third relevant factor presented by Jenkins (1979) represents the critical learner’s charac-
teristics (F3). The importance of this factor for learning has been outlined by many researchers
(Park, Miinzer, Seufert, & Briinken, 2016). As the underlying cognitive learning processes do
not only depend on the chosen setting and learning material, but also on characteristics of
the learners, such characteristics should also examined in this context. This is especially true
as whether different presentation formats foster deep learning processes depends on learner’s
characteristics. In the context of learning, prior knowledge is described to have a profound
impact on underlying cognitive learning processes as well as on resulting learning outcomes
(Vogt et al., 2020; Seufert, 2019). Furthermore, verbal or spatial abilities might explain a
substantial amount of variance in learning performance (Lee & Wong, 2014; Schipolowski,
Wilhelm, & Schroeders, 2014).

The fourth factor described by Jenkins (1979) refers to how to measure learning outcomes
(F4). To this end, several approaches can be used to measure learning outcomes. Depending
on the chosen measurement approach, different effects of support approaches can be expected.
Additionally, the chosen measurement impacts the extent to which one gains insights into
underlying cognitive learning process. When measuring learning outcomes, one might focus
on performance measurements or on the configuration of the resulting mental model (Bloom,
1956; Trumpower & Vanapalli, 2016). In line with this idea, the fourth factor recommended by
Jenkins (1979) is the chosen assessment of the learning outcome.

To summarize, relevant factors that should be taken into account when examining cognitive
processes have now been outlined. The central element in Jenkins’ (1979) Problem Pyramid, the

underlying cognitive learning processes themselves, will now be deepened in the next section.

2.4. Underlying cognitive learning processes

Based on the work of Makransky and Petersen (2021), it is assumed that basic learning processes
investigated by use of conventional learning materials can be transferred to the context of
learning in VR. In connection to this, important aspects of pre-existing models and theories
describing cognitive learning processes are outlined in the following section. Based on these
cognitive learning processes, the specific challenges of learning in VRLEs can be characterized

in more detail, and promising support approaches can be deduced.

2.4.1. Cognitive Theory of Multimedia Learning

To describe such underlying cognitive processes, the Cognitive Theory of Multimedia Learning
(CTML) proposed by Mayer (2005) is often used. This theory describes the perception, selection,
organization, and integration of learning content in one mental model (see Figure 2.3).

The model assumes three different memory systems: sensory, working, and long-term memory.

Two different channels are available, one for processing pictures, and one for processing words.
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Figure 2.3.: Simplified version of the Cognitive Theory of Multimedia Learning (Mayer, 2020,
p. 40)

When pictures are processed, they are dually coded (Paivio, 1990). This is based on the fact
that pictures are automatically translated into verbal code and are therefore processed in both
channels, resulting in advantages regarding the storage and retrieval of pictorial information.

After perceiving information via eyes or ears, the information is then temporarily stored in
the sensory memory. Before the information is further processed and organized in the working
memory, only the relevant information is selected as the capacity of the working memory is
limited (Baddeley, 1992). This limitation is a decisive factor for the extent to which a coherent
mental model can result: Learners need to have sufficient resources to process all relevant
information. From processing and organizing the learning content two separate models are
constructed: one for pictures and one for verbal information. In the end, both verbal and
pictorial models are integrated into one mental model under consideration of prior knowledge.
Thus, the CTML describes learning as an active process where learners need to engage and not
simply passively perceive the learning content (Mayer, 2005).

Although the CTML included some details related to cognitive learning processes, important
factors were not considered. As a result, the CTML was extended by (Moreno & Mayer,
2007) to the Cognitive-Affective Theory of Learning with Media (CATLM), which adds further
influencing factors such as motivation and self-regulation. These factors might have an impact
on selecting and organizing information while learning, and may also influence the integration
of new information into the mental model. Hence, affective or motivational factors might
moderate or mediate the underlying cognitive learning processes (Moreno & Mayer, 2007;
Leutner, 2014).

2.4.2. Integrated Model of Text and Picture Comprehension

In contrast to the CTML, the Integrated Model of Text and Picture Comprehension (IMTPC)
postulated by Schnotz and Bannert (2003) incorporates more information about the integration
process for textual or verbal and pictorial information. In this model, the different processes
that are necessary for the cognitive processing of textual and pictorial representations are
described in detail. For the construction of a mental model, the steps of selection, organization,

mapping of analogous structures, and, if necessary, the parsing of symbolic structures are
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described (see Figure 2.4).
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Figure 2.4.: Simplified version of the Integrated Model of Text and Picture Comprehension
(Schnotz & Bannert, 2003, p. 145)

This model assumes separate branches for textual and pictorial information. Information is
processed by two basic mechanisms: task-oriented top-down processing that is highly dependent
on pre-existing cognitive schemata (Ullmann, 1984), and bottom-up processing that is closely
related to the presentation of the information. Both processes have the function of selecting
and organizing information. Textual and pictorial representations must first be processed
superficially or sub-semantically. This results in an internal text surface representation or an
internal visual image (Schnotz & Bannert, 2003). After this, when enough cognitive resources are
available, semantic processing of the internal representations takes place (Baddeley, 1992; Mayer,
Mathias, & Wetzell, 2002). Here, the IMTPC outlines the importance of the code of information.
Pictorial information is analog and can therefore be directly integrated after thematic selection
into its analog counterpart, the mental model. In contrast, textual information, which is
classified as symbolic, needs to be translated or parsed before being integrated into the mental
model (Schnotz & Bannert, 2003). The semantic processing of the internal text surface results
in a propositional representation. This propositional representation no longer contains the
exact syntax of the former external representation, but rather includes premises with a certain
predicate-argument form (Johnson-Laird, 1981). To include this information into the mental
model, parsing the symbolic code is necessary. Hence, an additional effortful process is required
to include textual information into the mental model. Based on cognitive schemata, a continuous
process of model construction and model inspection is assumed (Schnotz & Bannert, 2003).
Thus, both, the mental model and the propositional representation influence each other. The
IMTPC thereby disagrees with the assumed one-to-one mapping process for the integration of
textual and pictorial described in the CTML (Mayer, 2005; Schnotz & Bannert, 2003). Based on
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the processes described, one could assume that using pictorial representation would be superior
in general. However, this is not the case: For instance, pictures are suitable for representing
inferences, while texts are suitable for representing abstract details (Johnson-Laird, 1981). As
previously outlined, this aspect of the choice of learning material is also discussed concerning
the concept of computational efficiency (Simon, 1978). Assuming that a pictorial and a textual
representation are equivalent from an informational perspective, the effort to process the given
information more deeply can differ significantly (Hegarty, 2011). This depends not only on the
used analog or symbolic code of the representation, but also on how well certain patterns or
inferences can be recognized, or to what extent control strategies for the search for relevant
information are needed (Larkin & Simon, 1987). Thus, when two representations display the
same content in a way that can be accessed with the same effort and at the same time, the
computational efficiency for both representations is assumed to be equivalent (Larkin & Simon,
1987; Simon, 1978).

Another important aspect of the IMTPC involves potential shortcuts: sub-semantically
processed textual learning content might be translated and integrated directly into the mental
model without semantically processing this information and building a propositional repre-
sentation (Schnotz & Bannert, 2003). As a consequence, certain concepts might be classified
as closely related based on the superficially processed syntax, but learners would not be able
to deduce correct cause-and-effect chains between the different concepts (Vogt, Babel, et al.,
2021b).

After providing detailed insight into the underlying cognitive learning processes, we can go
back to the question of how to support learners in VRLEs and can have a look at the different

factors proposed by Jenkins (1979) that might impact the underlying processes.

2.5. Designing appropriate learning material

Based on Jenkins (1979), the specific design of the chosen learning material (F2) might
substantially affect the underlying cognitive learning processes. Depending on the chosen
presentation format, different design approaches are available, and learners might be supported
by different design features. The effect of the specific design and the chosen presentation format
has been classified as an external support approach to ease learning in VR.

VRLES can be visually complex, as they display an extended field of view (Ragan et al., 2015;
Mulders et al., 2020). Thus, learners might need guidance to process the relevant information
(Ozcelik, Arslan-Ari, & Cagiltay, 2010). This is particularly the case when the VRLE switches
between micro and macro levels. For instance, by using guiding elements such as signals, the
probability of processing relevant information is increased (Mason, Pluchino, & Tornatora,
2013). Consequently, learners might have more time to focus on the relevant information.
Furthermore, learners would theoretically have more cognitive resources left, as unnecessary
search processes would be reduced (de Koning, Tabbers, Rikers, & Paas, 2007).

After having selected the relevant information, this information must be organized and again

prioritized (Mayer, 2014). When only the relevant information is selected, this might also ease
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the process of organizing new information, as this should be more consistent and coherent when
only task-relevant information is included (Schnotz & Bannert, 2003). Again, lower cognitive
strain while processing the learning content might emerge when learners are supported in
the selection processes in the consecutive process of organizing learning content (R. C. Clark,
Nguyen, & Sweller, 2011).

To foster the integration of information, different support approaches can be selected (Vogt,
Albus, & Seufert, 2021; Vogt, Babel, et al., 2021a, 2021b). It may prove beneficial to provide
learners with help on the surface to retrieve relevant information. Consequently, learners could
also experience beneficial effects on their subsequent cognitive processing, as only relevant
information is organized and integrated (Mayer, 2014). On the contrary, it may be necessary to
support learners with integrating corresponding elements into the mental model, especially if
they stem from different presentation formats (D. Gentner, 1983; van der Meij & de Jong, 2006).
Depending on the support approach used to select relevant information, finding corresponding
information in the different representations might become easier, and thereby support both
mapping corresponding elements and relations (D. Gentner, 1983). Through this, the inclusion
of new information into the pre-existing knowledge network might be eased (Jonassen & Henning,
1999). Before adding supportive elements into the VRLE, however, specific characteristics
should be considered and potential challenges defined in order to choose a support approach

that also helps with the critical underlying cognitive learning processes.

2.5.1. Adding annotations in virtual reality

Using a VRLE with zooming in and out on micro and macro level might create visual complexity
that challenges learners. Thus, adding highlights or signals to guide the learners’ visual attention
is a promising approach to foster learning processes (Mautone & Mayer, 2001; de Koning
et al., 2007). These signals incorporate two different functions: reducing unnecessary visual
search and guiding attention to relevant content (de Koning et al., 2007; Ozcelik et al., 2010).
Previous studies using multimedia learning environments have outlined the beneficial effects
of signaling on learning outcomes (van Gog, 2014; Alpizar, Adesope, & Wong, 2020). For
instance, medium beneficial effects with the size of d = 0.31 were reported for signals using
color contrast (Alpizar et al., 2020). Heterogenous effect sizes were reported to depend on
different moderators such as prior knowledge or level of signaling. However, when simply
guiding attention, learners are still challenged to connect certain components from micro and
macro levels or to map information from narration and VR animation. As a result, learners
might not be able to recognize and map the presented concepts in the learning environment.
Extending simple visual signals to labels or annotations that guide attention and help to map
different representations in the learning material may thereby be even more effective (McTigue,
2009; Vogt, Albus, & Seufert, 2021). Previous studies described a positive effect of annotation
on learning outcomes when inserted in pictorial representations (McTigue, 2009). Annotations
fostered learning scientific concepts: Learners with annotated pictures showed higher knowledge
at the comprehension level than learners who learned with non-annotated pictures. Moreover,

Mayer and Gallini (1990) found positive effects of annotated pictures in learning processes
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and substeps. Therefore, including textual annotations into the VRLEs might extend the
benefits of using simple superficial signals to guide attention. For instance, when the pictorial
VR animation is combined with an auditive narration, learners might assign the annotated
pictorial representation with the terms described in the narration (Mayer, Steinhoff, Bower,
& Mars, 1995). This enables learners to map corresponding elements in the learning content
between different representations (D. Gentner, 1983) and may facilitate the integration of the
new information of the different representational formats into the mental model. Additionally,
annotations repeat the terms of the narration and might therefore foster learning of basic
definitions (Vogt, Albus, & Seufert, 2021). In particular, learning outcomes on the recall level
might be increased when using annotations, as simple repetition is most effective for learning
facts (Boers, Warren, Grimshaw, & Siyanova-Chanturia, 2017).

To sum up, annotations can be expected to reduce visual search, guide attention, help
to integrate and map information, and support simple recall due to redundant terms in the
learning environments (Vogt, Albus, & Seufert, 2021). Specifically, in visually and perceptually
demanding VRLESs that display abstract concepts, these annotations might be a valid approach
to support learners to process and integrate learning content and to build a coherent mental

model.

2.5.2. Sequencing textual and pictorial representations

Research suggests that the simultaneous presentation of pictorial and textual formats is
beneficial for learners (multimedia principle; Mayer, 2014)— particularly when related concepts
are presented closely together, both spatially and temporally (continuity principle; Mayer,
2014). Then, both textual and pictorial information is active at the same time in the working
memory. However, presenting both representations simultaneously is only beneficial when
pictorial and textual information can be mapped. In other words: the information included
in the different representations needs to include corresponding or complementary information
(Schnotz & Bannert, 2003). Although presenting pictorial and textual information might be
beneficial when considering certain boundary conditions, this might also go along with cognitive,
visual, or perceptual overload (Makransky & Petersen, 2021). As learners must process all
information simultaneously, this might result in superficial processing (Baddeley, 1992; Mayer et
al., 2002). One method to avoid a potential overload is to sequence the learning material (Eitel
& Scheiter, 2014). Furthermore, pictorial presentations might contain different information
that cannot be presented with a textual representation and vice versa. For instance, pictures
or VR animations can serve as structuring elements for the construction of a mental model
(Ainsworth, 2006; Schnotz & Bannert, 2003). Previous findings indicate that when presenting
pictorial information first, learners experience increased fixation time on such representations
(Mason et al., 2013). Thus, it can be assumed that the information presented in the picture
was more deeply processed (Mason, Pluchino, & Tornatora, 2016; Mayer, 2010). Specifically,
presenting pictorial information was linked with a positive effect on the integration of the
learning content, as well as a higher learning outcome on the transfer level (Mason et al.,

2013). This effect was additionally strengthened when learners were previously shown an expert
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example (Eye Movement Modeling Examples) of image viewing (Mason et al., 2013; van Gog,
2014). When presenting pictorial representations before textual representations, learners can
build a scaffold of the topic and add further details in the learning process. However, only 19
of 42 studies reviewed by Eitel and Scheiter (2014) described beneficial effects of presenting
pictorial representations before textual representations. Eitel and Scheiter (2014) describe
further characteristics of the learning material that can impact whether presenting pictorial
representations may be followed by textual representations. Based on findings of Arndt, Schiiler,
and Scheiter (2019), additional consideration of the specificity of the used learning content in
the respective representation is needed. They additionally explained that presenting a brief
pictorial overview, followed by a more specific textual representation can increase learning
outcomes (Arndt et al., 2019).

The aforementioned logic can be transferred to the content of VR using the example of
exploring the learning content in the virtual world with VR animation. Within this, learners
might be provided with a brief overview of the topic and a scaffold of certain components.
After this, learners could add further information based on textual information such as a
narration without being in the virtual world. Particularly, when presenting learning content
that includes new technology, learning can be eased by first providing a brief overview. For
instance, displaying a new service robot in the VRLE might allow learners to observe its
functionality on a more general level where they might observe different functions of their
moving trajectory. Afterwards, more details about the underlying control circuits and related
concepts could be provided in a narration. When textual details are described prior to learners
having seen the robot in a VR animation, this might consume additional resources, as they
might build an analog representation while listening to the text. When presenting pictorial
information first, learners might build a brief scaffold based on the VR animation and fill in
further details based on the narration.

However, while designing the learning environment appropriately and supporting learners
by adding annotations or adequate sequencing might ease learning processes and increase
computational efficiency, this does not guarantee learning success. As outlined in the CTML,
the learners need to be actively participating while learning, and affective or motivational
factors might moderate the underlying cognitive learning processes (Moreno, 2006). This is also
reflected in the factor learning setting (F1; Jenkins, 1979). Following this line of reason, the
active role of the learners and potential consequences on learning outcomes will be discussed in

the next section.

2.6. Active role of learners

Learners need to actively engage in order to select, organize, and integrate the learning content.
Fiorella and Mayer (2015) describe different generative learning activities that learners might
foster to process learning material. These activities and instructions are also reflected in the
factor learning setting (F1) of Jenkins (1979). Many different approaches to stimulate learners

to actively engage in learning exist. For instance, learners might make sense of the learning
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content by comparing the new information with their prior knowledge or self-explanation of the
content (Bisra, Liu, Nesbit, Salimi, & Winne, 2018). Here, one challenge constitutes adapting
the different learning activities to the respective learning context (Fiorella & Mayer, 2015).
However, exhibiting appropriate learning behavior can be challenging for learners. Hence,
strategic activators can be implemented into the learning environment to foster adequate
learning behavior and, in turn, to increase learning outcomes (Azevedo, Taub, & Mudrick,
2017).

2.6.1. Activating learners by cognitive prompts

Fiorella and Mayer (2015) describe different learning activities that can be useful for fostering
learning and deep processing of learning content. These so-called generative learning strategies
might be triggered by certain activators in the learning session. One approach to help trigger
generative learning strategies and thus adequate learning behavior is to use prompts (Kamarainen
et al., 2018). Prompts can be characterized as instructional retrieval and/or performance aids
(Bannert & Reimann, 2011). Prompts indicate to learners which learning strategies should be
used and/or when the use of a specific strategy will result in efficient support of the learning
process (Berthold, Niickles, & Renkl, 2007; Thillmann, Kunsting, Wirth, & Leutner, 2009).
Thus, prompts can also be described as strategic activators (N. Gentner & Seufert, 2020;
Reigeluth & Stein, 1983). As for most learners, VRLEs constitute a new learning setting, they
might additionally be challenged to show adequate learning behavior in these environments
(Hu-Au & Okita, 2021; Makransky et al., 2020; Huang et al., 2020). Furthermore, learning
environments that offer higher degrees of freedom induce more autonomy where learners are
required to regulate themselves to choose learning-related activities (Makransky et al., 2020).
Depending on the requirements of the learning setting, prompts might stimulate very different
learning-related processes (Schumacher & Ifenthaler, 2021).

For example, deeper processing of the learning content can be stimulated to avoid superficial
processing of the learning content. These kinds of prompts are also called elaboration prompts,
e.g., ‘Please refer examples from your own life, which illustrate the learning material, are
consistent with it, or stand in conflict with it’ (Endres, Carpenter, Martin, & Renkl, 2017,
p. 15). In addition, there are other levels on which the learner can be supported. For example, the
learning process can be monitored and reflected by metacognition, e.g., ‘Think about it: Is your
current learning effective?’ (Daumiller & Dresel, 2019, p. 43). Thus, individual metacognitive
strategies can be selected to improve the overall learning performance. Furthermore, strategies
on the motivational level can also be applied, e.g., ‘How great is your motivation for the current
learning and how could you possibly increase it?’ (Daumiller & Dresel, 2019, p. 44). Particularly,
when learners do not spontaneously show adequate learning behavior, prompts might foster the
use of efficient strategies and thereby increase learning outcomes (Bannert & Reimann, 2011).
Additionally, the use of different types of prompts might result in synergic effects (Wischgoll,
2016). Related to the question of what to prompt is the question of when to prompt (Thillmann
et al., 2009). Previous findings describe the beneficial effects of prompting directly integrated

into the learning session. However, an interaction between time of prompting and strategy use
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was also reported (Thillmann et al., 2009). Consequently, the optimal time to prompt is also
context-sensitive and might cause additional load (de Bruin, Roelle, Carpenter, & Baars, 2020).

One major challenge for learning in VR is to overcome superficial processing and exploring the
technical setting provided in the VRLEs (Hu-Au & Okita, 2021). Using prompts to stimulate
the elaboration of the learning content is thus a particularly promising approach to increase
learning outcomes in this context. However, presenting the prompts while learners are in the
VRLE might impose additional load and might interfere with processing the learning content
(Klepsch, Schmitz, & Seufert, 2017). Additionally, including prompts might reduce the presence
and this might reduce learning outcomes (Makransky et al., 2017). In line with the pre-training
principle (Mayer, 2014), beneficial effects might also occur because learners have access to
relevant information beforehand. In the case of pre-training, this relevant information contains
content that is directly related to the learning content (Meyer et al., 2019). In contrast, the
prompt does not include learning content. In VRLESs, learners might lack efficient strategies
for learning in VR (Huang et al., 2020). Including an elaboration prompt into the instruction
before learning in VR might therefore be particularly beneficial as learners will then be prepared
to show the respective learning behavior when they enter the VRLE (Vogt, Babel, et al., 2021b).
This elaboration prompt might include making sense of the given learning content by thinking
of everyday examples related to the topic (Berthold et al., 2007). Furthermore, searching
for connections between the presented facts and concepts might foster the integration of the
information into a complex knowledge network.

Another approach is to use self- or peer-explanation (Bisra et al., 2018). Within this, learners
are required to process the learning content in a way that facilitates a coherent understanding
of the topic. This includes, for example, translating the content into their own words (Diaz &
Ioannou, 2019). Learners can then differentiate different aspects, connect concepts, and transfer
the learning content to other contexts. Prompts are described as being especially effective when
including such explanatory components (Berthold, Eysink, & Renkl, 2008). The incorporation
of these strategies in an elaboration prompt might therefore stimulate deep learning in VR,
as these might activate learners to engage in learning (Vogt, Babel, et al., 2021b). However,
whether or not these support approaches are beneficial also depends on the learners and their
characteristics, as some learners are already highly motivated and thus spontaneously show
effective learning behavior (Vogt, Albus, & Seufert, 2021).

So far, two of the four factors of Jenkins (1979) and their consequences on the underlying
cognitive learning processes have been described. One important factor that might also impact
the impact of the chosen design and the activation of learners on learning outcomes is the
learners themselves (F3). This important factor is also included in the model of Jenkins (1979)

and will be outlined in the following section.

2.7. Influence of learner’s characteristics

As one of the four important factors for conducting memory experiments, the consideration of

learner’s characteristics (F3) is mentioned by Jenkins (1979). Thus, to analyze the potential
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beneficial effects of support approaches, learner’s characteristics must also be considered. There
are several characteristics that differ substantially between learners (Dérrenbéacher & Perels,
2016; Seufert, 2019). All models and theories presented thus far in the present thesis (i.e.,
the CATML, the CTML, the CAMIL, and the IMTPC), included certain aspects that hint
at the importance of learner’s characteristics and their relation to the underlying cognitive
learning processes. The CATML assumes that motivation might impact all steps of processing
the learning content from a cognitive perspective (Moreno & Mayer, 2007). The CTML as
and the IMTPC describe prior knowledge to influence underlying cognitive learning processes
(Mayer, 2005; Schnotz & Bannert, 2003). Potential aptitude-treatment interactions are well-
established and have already been described by Snow (1989). Here, occurring interactions
between the chosen instructional design and learner’s aptitudes are considered to cause different
learning outcomes. The aptitude and the treatment factor might interact in different ways:
Aptitudes might function as an enhancer but might also as a compensator (Mayer & Sims, 1994).
Additionally, certain support approaches might interfere with the given aptitudes of learners
(Kalyuga, 2009), and the active role of the learners might be related to their characteristics
(Taub, Azevedo, Bouchet, & Khosravifar, 2014). When learners are interested in a certain topic,
they might already be activated and intrinsically motivated, and thereby may not benefit from
an additional activation or guidance (Vogt, Albus, & Seufert, 2021). Based on the presented
theories and models, as well as previous findings, two important learner characteristics are

focused on in the present thesis: intrinsic motivation and prior knowledge.

2.7.1. Intrinsic motivation

Intrinsic motivation is described as

‘the desire or intention to learn certain contents or skills’ (Schiefele, 1996, p. 50,

translated)

In the learning context, this would mean, for example, that the learner deals with the
topic from their own initiative (Rheinberg, 2006). This concept is contrasted with extrinsic
motivation, which describes taking action only because a certain positive effect or external
reward is expected (Krapp, 1999).

A learner with high intrinsic motivation tends to persist longer on learning tasks and to
engage more in learning as a consequence of having more available resources (Ryan & Deci,
2000a; Lepper, Corpus, & Iyengar, 2005). Motivated learners show better self-regulation while
learning (Ryan & Deci, 2000b), tend select more appropriate learning behavior, and show more
efficient visual search patterns (Miranda & Palmer, 2013). Hence, intrinsic motivation is an
important success factor for learning in VR.

Makransky and Petersen (2021) described that intrinsic motivation might be triggered by
high fidelity and the level of presence within the VLRE, and may thereby lead to increased
learning performance. While some learners might be challenged by the high perceptual load of

this setting, intrinsically motivated learners have the necessary resources to succeed. Hence,
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learners with low intrinsic motivation might benefit from additional guidance, while this
may be less necessarily for learners who already have high intrinsic motivation (Vogt, Albus,
& Seufert, 2021). For instance, learners with high intrinsic motivation might have a more
efficient visual search, and intrinsic motivation might therefore determine how successful the
learning process is (Miranda & Palmer, 2013). Additionally, intrinsically motivated learners
can provide more cognitive resources for organizing and integrating information and thus,
higher learning outcomes can be expected (Diaz & Ioannou, 2019). Taken together, moderation
effects of intrinsic motivation are theoretically plausible and should be considered when adding

annotations in learning material (Vogt, Albus, & Seufert, 2021).

2.7.2. Prior knowledge

In the CTML and IMTPC, the importance and potential benefits of prior knowledge for
developing a mental model are described (Mayer, 2005; Schnotz & Bannert, 2003). However,
prior knowledge can have different effects (Kalyuga, 2009). In learning environments that are
not optimally designed, learners with high prior knowledge can compensate for this and still
achieve good learning performance (Richter, Scheiter, & Eitel, 2018). In contrast, learners with
low prior knowledge are more dependent on assistance and a design conducive to learning to
achieve good results (Richter et al., 2018). However, to use a support approach, learners might
need a certain amount of prior knowledge (Seufert, 2003). In contrast, for learners with high
prior knowledge, there may be interference between the help and previously existing knowledge
or strategies, and this may result in detrimental effects on performance (Kalyuga, 2009). The
expertise-reversal effect describes these interferences of support with strategies of learners, and
in turn, with higher prior knowledge. This implies that help that is offered should always stem
from the consideration of the learner’s prior knowledge (Vogt et al., 2020). When considering
the potential influence of learner’s characteristics (e.g., prior knowledge) on the learning process
in VR, little research exists to date. Thus, potential effects of support approaches are deduced
from prior publications with conventional learning materials.

Transferring these findings to the context of VRLESs, the effect of prior knowledge can be
expected to become apparent for different aspects. Learners with low prior knowledge might
lack the experience to differentiate between relevant and irrelevant information in the VRLE
(Vogt, Babel, et al., 2021b). As a result, these learners might benefit from signaling (van Gog,
2014). Learners with higher prior knowledge, on the other hand, can be biased by signals
highlighting information that is irrelevant to them, which they had already integrated into
their previously existing mental model and should therefore rather focus on further unknown
details (Richter & Scheiter, 2019). Learners with low prior knowledge have difficulty recognizing
corresponding elements in the learning environment and linking them (Richter et al., 2018;
Folker, Ritter, & Sichelschmidt, 2005). Here, elaboration prompts might activate learners to
search for potential connections (Endres et al., 2017). Furthermore, adequate sequencing might
help learners with low prior knowledge, as these learners lack a brief scaffold of the learning
content in their mental model (Eitel & Scheiter, 2014; Ainsworth, 2006). Consequently, prior
knowledge might impact the effect of different support approaches and should therefore be
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considered as an important moderator, or at least as a covariate, within VR studies.

2.7.3. Further characteristics of learners

In general, other characteristics of learners than the ones outlined in the previous sections
might also impact learning in VR (Lee & Wong, 2008). For example, one clear influencing
characteristic constitutes spatial ability (Lee & Wong, 2014). Here, different effects are
conceivable: In terms of the ability-as-enhancer hypothesis, learners with high spatial ability
might particularly benefit from representation in VR as they have enough remaining cognitive
capacity to deeply process learning content and form a coherent mental model (Huk, 2006; Mayer
& Sims, 1994). Furthermore, it is conceivable that spatial ability acts in line with the ability-
as-compensator hypothesis. Learners with very low spatial ability could benefit particularly
from the situated three-dimensional representation in VR since these are directly shown the
content in a corresponding spatial configuration and thus do not have to mentally construct it
themselves (Huk, 2006; Mayer & Sims, 1994). However, the importance of spatial ability for
learning success also depends on the chosen learning content. When spatial configuration play
only a minor role in the chosen learning content, a large effect of spatial ability on learning
success is not necessarily to be expected. In this case, other abilities should be investigated for
their potential influence on learning outcomes.

Lee and Wong (2014), for example, describes that learners with low spatial ability showed
higher learning outcomes in a non-immersive VRLE compared to a conventional learning setting,
while these differences were not found for learners with high spatial abilities. In general, spatial
ability is assumed to be a primary cognitive factor in learning, which is especially evident in
computer-based learning environments (Huk, 2006). Depending on the level of spatial ability,
learners benefit from interactive animations or simulations (Hoffler & Leutner, 2011). This is
attributed to the fact that spatial ability influences the extent to which relevant information is
extracted from animations. Furthermore, spatial ability is assumed to influence the extent to
which learners can reconstruct the learning content later on. In addition, the integration of the
information into the existing knowledge network might depend on spatial ability (Lee & Wong,
2014).

When using VR animations in combination with narrations or short textual labels, verbal
ability might also have an impact on learning outcomes (Wallen, Plass, & Briinken, 2005).
Verbal ability is thought to be related to general crystallized ability and thus might have a
significant impact on learning (Cattell & Horn, 1978; Hakstian & Cattell, 1978; Winn, 1982;
Kolloffel, 2012). However, although closely related to knowledge, the construct of verbal ability
is still distinguishable (Schipolowski et al., 2014). Furthermore, verbal ability is related to
working memory capacity and thus learners with high verbal abilities might have more resources
to process the learning material (Conway, Kane, & Engle, 2003). In line with the ability-as-
enhancer hypothesis, learners with higher verbal ability might perform better and might also
experience advantages when answering post-test questions (Wallen et al., 2005). Furthermore,
when they are asked to rate concepts for connectedness, they might do so by deducing potential

relations between words (Schipolowski et al., 2014). Therefore, when investigating learning in
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VR, verbal ability should additionally be considered as a covariate.
So far, three of the four factors of Jenkins (1979) were described in detail. Hence, the fourth

factor, the assessment of learning outcome, will be described in more detail in the next section.

2.8. Assessment of learning outcomes

Before investigating different methods to measure learning outcomes, it is first important
to understand what the result of successful learning is. After learning successfully, learners
should be able to recall important definitions, understand the consequences of manipulating
one component onto another, and apply the learning content flexibly to other contexts (Bloom,
1956). Hence, learners build a coherent mental model by integrating the new information
into their pre-existing knowledge network (Schnotz & Bannert, 2003). To be able to further
differentiate whether deep learning occurred or whether learners did not have sufficient resources
to process the content semantically, the concept mental model must first be further defined

and characterized.

2.8.1. Nature of mental models

A variety of definitions and properties of mental models are described in the literature. For
example, Craik (1943) describes the term mental model as a small-scale model that reflects
an external reality. This model allows one to anticipate situations based on past events or
to test various hypotheses. Such mental models can enable learners to be more competent
in responding confidently and efficiently to situations that arise (Johnson-Laird, 1981; Craik,
1943). In addition to this basic functionality of mental models, a consensus about the analogical
nature of mental models can be described (Johnson-Laird, 1996). While these definitions allow
us to draw conclusions about the basis of future actions, they do not provide any information
about the nature of the mental models themselves, nor do they describe the different stages
of mental model development. Rouse and Morris (1986) elucidated this in more detail by
classifying mental models as a special form of knowledge. Here, expert knowledge is contrasted
with general knowledge or superficial understanding of the subject matter. In contrast, White
and Frederiksen (1986) described mental models from a different perspective. Here, mental
models are viewed as structures intrinsic to knowledge. These structures allow an additional
differentiation of different types of knowledge: declarative, procedural, and a control structure
(White & Frederiksen, 1986). Fittingly, the description of mental models by Kraiger, Ford,
and Salas (1993) also referred to the structure of the mental model itself: Here mental models
are described as the context and organization of the information contained and previously
processed. Thus, the focus of this definition is the understanding of a mental model as a
knowledge network. It is emphasized that new and old knowledge must be connected to form a
coherent mental model (Kraiger et al., 1993). Based on these definitions, in the present thesis,

the term mental model is understood and characterized as follows:
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Learners build a knowledge network based on the processed information presented
in the learning environment. In this process, old and new information is linked
and ideally stored in a coherent and comprehensive overall model in the long-term
memory. Based on this model, learners can define basic concepts, correctly infer
relationships and causalities between concepts, and transfer what they have learned

to new contexts and apply it to other problems.

From the previous sections, the underlying cognitive learning processes that need to be
managed successfully to build a coherent mental model have become apparent. But what
happens when the learners do not fully succeed in deeply processing the learning content? To
gain further insights, the next section highlights different developmental stages of mental

models.

2.8.2. Stages of development of mental models

Based on Mayer et al. (2002) different stages of mental model development can be differentiated:
The component and the causal mental model. They postulated that only when learners face all
challenges while learning successfully, can causalities between different concepts be deduced.
Otherwise, the component and the causal mental model do not simultaneously build on each
other due to the insufficient resources of the learner. This results in a more basic mental model:
the component model. This basic mental model is reduced to a more local understanding of the
concepts (Mayer et al., 2002). In this component model, the individual concepts are understood
as a unit. This unit is labeled with a term. In addition, the contained concept is defined by
certain properties or states. For example, based on such a component model, a learner can
define the term service robot and also reflect facts about its degree of automation. However,
complex comparisons with other types of robots or deductions for consequences, for example in
the development of such a robot, are not possible based on the component model. To be able to
describe the causal relationships in a topic and to derive more complex consequences, a causal
mental model is required. Although an intuitive understanding suggests that the component
model is created first and then extended, Mayer et al. (2002) assumes that the construction of
both models, component and causal, occurs simultaneously. In the next section, measurement
of different substages of processing the learning content are described as well as how different

stages of mental model development might be deduced.

2.8.3. Measuring mental models

Based on the presented theoretical assumptions, two aspects of mental models can be dis-
tinguished: the functional aspect that is related to learning performance, and the structural
aspect that reflects connections between concepts in the developed mental model. To better
understand the functionality of the mental model, one can distinguish between different levels
of learning outcomes that reflect whether the learning content was processed subsemantically
or semantically. Furthermore, the structural assessments of the included knowledge network

might deliver further information regarding how sophisticated the mental model is. Although
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learners might not be able to build a correct mental model including causal relations between
the entities, they might at least have a brief scaffold of concepts that are more or less related.
These different perspectives on results from successful learning are related to different cognitive

subprocesses.

Taxonomy of Bloom

To build a causal mental model, the relevant learning content needs to be selected, organized,
and integrated. Hence, learners first process the learning content syntactically or superficially.
This level of processing reflects learning outcomes on the knowledge level (Bloom, 1956).
Learners can define basic concepts by repeating the given definitions and facts of the learning
content. On this level, they do not need to understand the concepts, as simple recall of
information is sufficient to answer knowledge questions. When processing the learning content
semantically, learners can deduce potential connections between the different concepts and
conclude consequences of manipulating different components. Furthermore, they can contrast
two concepts, although this comparison was not explicitly included in the learning material.
This implies that learners have developed a brief causal mental model that allows for the
deduction of basic connections including directed relations between concepts. This is referred
to as a learning outcome on the comprehension level (Bloom, 1956). However, on this level,
learners are not able to understand more global connections between the concepts, and thus,
although having processed the learning content semantically, they lack the flexibility to apply
the new concepts to different tasks and settings. Some aspects of the comprehension levels
might already be explained based on propositional networks which are still not analog and thus,
the included information must be translated before being integrated into the mental model
(Schnotz & Bannert, 2003).

To apply the learning content or to answer questions on the application level, learners need
to process the content semantically and integrate the new information into the analog mental
model. This enables learners to deduce more global relations between concepts, including
correct cause and effect chains with more than two concepts. An analog and coherent mental

model is thereby needed to apply and transfer the learning content to new contexts or problems.

Structural assessment of knowledge

As the taxonomy of Bloom (1956) is a functional performance measure of the mental model, it
states little about the underlying knowledge structure. However, as pointed out by Kraiger et
al. (1993), the underlying knowledge structure of mental models is also an important indicator
of the extent to which a complex mental model has been formed. One method to uncover such
immanent structures of the mental model is the so-called Structural Assessment of Knowledge
(SAK). This is a psychometric scaling method based on graph theory and has already been
applied in the context of learning. An important assumption is that declarative knowledge is
relational (Kraiger et al., 1993). Thus, individual concepts should not be considered in isolation

from one another. This structural approach aims to display information about mapping in
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a complex knowledge network (Davis, Curtis, & Tschetter, 2003). Using this approach, it
is possible to measure the extent to which specific concepts have been integrated into the
knowledge network during learning, as well as how the corresponding mental model evolves.
Thus, another facet of learning is mapped here: understanding similarities and relationships
between concepts, definitions, or processes (Davis et al., 2003). Specifically, the SAK method
involves the pairwise comparison of different concepts (Trumpower & Vanapalli, 2016). In each
case, the connectedness of two concepts is rated. To be able to conclude about the development
of the mental model, a pre-measurement is always compared with a post-measurement (for

further details see Appendix A).

Using a multi-method approach

Using a multi-method approach by combining the functional and structural measurement
approach offers the opportunity to analyze the developmental level, and thus, the quality of
the resulting mental model in detail (Vogt, Babel, et al., 2021b; Makransky, Borre-Gude, &
Mayer, 2019). Furthermore, this multi-method approach allows conclusions to be drawn about
the relationships between the functional approaches to measuring learning outcomes and the

structural perspective.
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3. Research aims of the present thesis

The present thesis aims to gain further insights into the underlying cognitive learning processes
while learning in VR. So far, no systematic findings are available regarding how different support
approaches for learning in VR influence underlying cognitive learning processes. Additionally,
this thesis reflects on possible interactions between learner’s characteristics and the chosen
support approaches. To clarify the different levels of learning outcomes and the different stages
of mental model development, a multi-method approach is applied. This constitutes a unique
feature of the present thesis. Although previous research in the learning context has considered
functional and structural approaches respectively, such approaches have yet to be combined or
contrasted in detail. Therefore, the present thesis does not only contribute to exploring the
learning setting in VRLES, but also to providing information into the development of mental
models by use of a multi-method approach to investigate learning outcomes. Furthermore, this
thesis contributes to the research field by developing a theoretical model (EMIL VR) which
is based on prior theoretical and empirical findings and illustrates the underlying cognitive

learning processes involved in immersive VR.

3.1. Extended Model of Immersive Learning in Virtual Reality

As a theoretical framework for this dissertation, the Extended Model of Immersive Learning
in Virtual Reality (EMIL VR) is postulated. EMIL VR is built on previous theoretical and
empirical findings and is therefore rather comprehensive and complex. Thus, each component
will be described in detail and the model will be built up section by section. The existing

research gap and the resulting research questions are provided in the context of EMIL VR.

3.1.1. Cognitive processes while learning in virtual reality

The underlying cognitive learning processes constitute the core of EMIL VR (see Figure 3.1).
In line with the CTML (Mayer, 2005) and the IMTPC (Schnotz & Bannert, 2003), different
cognitive subprocesses are included. Learning content is first selected for the presentation
formats in the VRLE. In the next step, the information is organized in the working memory
and processed semantically. In the end, new information is integrated into the mental model.
The processing is assumed to depend on the chosen presentation format: The analog nature
of pictures allows for the inclusion of information more directly into the mental model, while
symbolic, textual information needs to be parsed before the integration (Schnotz & Bannert,
2003). Another important aspect of the included cognitive learning processes is the shortcut

between the internal, text surface representation and the mental model (Schnotz & Bannert,
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3. Research aims of the present thesis
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Figure 3.1.: Underlying cognitive learning processes while learning in virtual reality included
in Extended Model of Immersive Learning in Virtual Reality

2003). As previously outlined, in VRLESs, learners might lack appropriate learning behavior.
This might lead to superficial processing and thus the triggering of this shortcut (Vogt, Babel,
et al., 2021b). Furthermore, it is assumed that different developmental stages of the mental
model can be distinguished. In line with the distinction of Mayer et al. (2002), causal and
component mental models are included as two potential stages of mental model development.
Superficially processed learning content should rather lead to the formation of a component
mental model. For deducing the correct cause and effect chain between the different concepts,

semantic processing would be necessary.

3.1.2. External and internal support approaches for learning in virtual reality

As the next element, EMIL VR contains different support approaches that might substantially
impact the underlying cognitive learning processes (see Figure 3.2).

The two support approaches are distinguished as being external and internal, respectively.
As previously discussed, external support is related to the learning material that was postulated
as being an important factor by Jenkins (1979; F2). Hence, this support approach refers to
the specific design of the learning content and the chosen presentation formats. Depending on
the chosen formats, as well as the combination of these formats, different underlying cognitive
processes are triggered. Based on previous theories and empirical findings, two external support
approaches were chosen to overcome potential challenges while learning in VR:

The first external support approach constitutes adding annotations. Annotations can
be expected to support learners in finding relevant information in the VRLE and to help
learners integrate information in the mental model. The second external support approach

focuses on reducing strain to build a mental model. By adequate sequencing of the learning
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3.1. Extended Model of Immersive Learning in Virtual Reality
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Figure 3.2.: Internal and external support approaches included in Extended Model of Immersive
Learning in Virtual Reality

material, learners should have enough cognitive resources to process displayed learning content
semantically. Consequently, they should be able to build a coherent mental model. By providing
a brief pictorial overview, followed by a more specific text, learners may be additionally supported
to build a causal mental model. These two support approaches in particular were selected as
they seemed to be especially promising in overcoming potential barriers while learning in VR.
Nevertheless, there are more external support approaches that also hold promise for supporting
learning in VR. Such additional external support approaches are not yet included in EMIL VR.
However, in line with this, the notion that EMIL VR should be further extended is indicated

by the inclusion of an empty box in the external support box (see Figure 3.2).

As previously emphasized, learners can experience challenges in exhibiting adequate learning
behavior in VRLEs. This is especially true as for most learners, such learning environments
are rather unfamiliar. As highlighted by Jenkins (1979), in the factor learning setting (F1),
specific instructions that are provided prior to learning can substantially impact cognitive
learning processes. Thus, learners can be expected to engage in adequate learning behavior
and to semantically process learning content. To this end, activating learners by utilizing
prompts is one promising internal support approach. Depending on the chosen prompt, learners
might be supported in different cognitive subprocesses. A major challenge in this regard,
however, constitutes the deep processing of learning content. Hence, using elaboration prompts
that trigger the deep processing of learning content is a promising approach to overcome
superficial processing. In line with this, the internal support approach of prompting was thereby
implemented into the present dissertation, while at the same time, it is theoretically reasonable

that further internal support approaches can be added to EMIL VR in the future.
As the first leading question of this thesis, the impact of the chosen support approaches on

learning outcomes was considered.
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3. Research aims of the present thesis

Q1 Are there positive effects of the chosen support approaches for learning in VR?

As the present thesis focused on the different subprocesses while learning in VR, the first
main research question was additionally extended to ask which level this potentially beneficial

effect of the chosen support approach becomes apparent on.

Q2 On which subprocess do the positive effects of the chosen support approach

become apparent?

As previously discussed, characteristics of learners play an important role in VR learning.
Thus, as recommended by Jenkins (1979), this factor was additionally included in EMIL VR.

3.1.3. Critical learner’s characteristics for learning in virtual reality

Based on previous models and empirical findings, two presumably important learner’s char-
acteristics are focused on in this thesis. Specifically, EMIL VR contains the two important

learner characteristics of intrinsic motivation and prior knowledge (see Figure 3.3).
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Figure 3.3.: Learner’s characteristics included in Extended Model of Immersive Learning in
Virtual Reality

As previously discussed, learners face the challenge of selecting relevant information in
VRLEs. One characteristic that influences learner’s subprocesses while learning is intrinsic
motivation. Highly intrinsically motivated learners are better at selecting relevant information
in the environment (Miranda & Palmer, 2013). Using certain support approaches, such as
annotations, might interact with the intrinsic motivation of learners. Both adding annotations
and high intrinsic motivation influence the same subprocess while learning: selecting the relevant
information in the VLRE (Vogt, Albus, & Seufert, 2021). This interaction should consequently
be considered when investigating the beneficial effect of adding annotation in the VRLE.

Furthermore, one important characteristic of learners is prior knowledge. In conventional
learning environments as well as in VRLES, the way that learners select information as well as

the subsequent processing might be substantially influenced by their prior knowledge. Learners
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3.1. Extended Model of Immersive Learning in Virtual Reality

with higher prior knowledge tend to guide their attention to relevant information in the
learning environment (Vogt, Albus, & Seufert, 2021; Miranda & Palmer, 2013). Hence, the
challenge of selecting important aspects of the VRLE might induce strain for learners with
low prior knowledge (Ragan et al., 2015; Mulders et al., 2020; Richter et al., 2018). Further
information processing, such as organization in the working memory and integration into the
mental model is also reliant on prior knowledge (Schnotz & Bannert, 2003; Mayer, 2005).
Furthermore, whether a support approach for learning in VR is successful can additionally be
impacted by prior knowledge. An interplay between support approaches and prior knowledge
is thereby theoretically reasonable. Aside from these two exemplary learner’s characteristics,
other promising characteristics can be included in future research. This is again indicated by
including an empty box (see Figure 3.3). Based on this component of EMIL VR, the following

research question was investigated in this thesis:

Q3 Do learner’s characteristics influence the effect of the chosen support approaches

on learning outcomes?

3.1.4. Assessing learning outcomes after learning in virtual reality

As a final element, EMIL VR describes different perspectives on learning outcomes (see Fig-
ure 3.4). As recommended by Jenkins (1979), different approaches to assess learning outcomes
(F4) and mental model development should be considered to clarify the underlying cognitive
learning processes.

In this thesis, two general approaches were included: one functional approach assessing the
learning outcome as a performance test and one structural approach assessing mental model
structure by the pairwise rating of connectedness between concepts. The functional, differen-
tiated performance measurement is based on Bloom’s taxonomy (Bloom, 1956): knowledge,
comprehension, and application. The three levels of Bloom (1956) are included depending on
the processing of the learning material. The knowledge level is related to surface representations,
while comprehension and application are related to semantically processed information. Some
aspects of questions on the comprehension and application level might be answered based on
the network including propositional representations (Schnotz & Bannert, 2003; Diaz & Ioannou,
2019; Bloom, 1956). To answer other parts of the questions on these levels, the integration
of the new information into the analog mental model is needed (Schnotz & Bannert, 2003;
Diaz & Ioannou, 2019; Bloom, 1956). The structural approach captured structural accuracy of
pairwise ratings of concepts for their connectedness compared to expert rating via the Structural
Assessment of Knowledge. Depending on the processing level, learners can correctly classify
concepts and answer questions on the performance test. The resulting structural accuracy is
related to the semantically processed information as well as the surface representation. As both
application and structural accuracy are related to a more global knowledge network, these two
criteria are assumed to be positively related.

Based on this, the question about the potential relation of the two aforementioned approaches

of assessing learning outcomes arises:
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3. Research aims of the present thesis

Q4 How are the different approaches to measuring learning outcomes related to

each other?

The postulated EMIL VR was systematically tested in three empirical studies. The effects
of different support approaches depending on learner characteristics on different subprocesses

while learning in VR were particularly focused on in these studies.
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4. Overview of the three included studies

Within the theoretical background of this thesis, specific challenges while learning in VR
were outlined. Based on this, different support approaches to overcome potential barriers to
learning in VR were investigated in three empirical studies (see Figure 4.1). Stemming from the
recommendations of Jenkins (1979), four important factors including the learning setting (F1),
learning material (F2), learner’s characteristics (F3), and assessment of learning outcomes (F4)
were considered and included in the developed EMIL VR. Two external support approaches
related to the specific design of the VRLE (F2), and one internal support approach related to
the learner’s active role and thus the learning setting (F1) were examined.

The first challenge discussed in this thesis was that VRLEs can be visually complex, and
thus, the selection and integration of relevant information might be challenging (Makransky
& Petersen, 2021). This challenge is related to the chosen learning material (F2) and the
specific design of the VRLE. As a first external support approach, annotations (textual labels)
were examined in Study 1 (see Figure 4.1). These annotations might support learners in
selecting relevant information more efficiently and thereby help learners to map corresponding
information.

Furthermore, given that for most learners VRLESs constitute a new learning setting, they may
lack adequate learning behavior (Goodwin, Wiltshire, & Fiore, 2015). This challenge is related
to the learning setting (F1) as well as the provided interaction activities to show respective
learning behavior. As an internal support approach, and the second support approach chosen
in this thesis, the active role of learners while learning was addressed. By using an elaboration
prompt, learners were activated to engage in the learning process and to deeply process the
learning content in Study 2 (Berthold et al., 2008; Vogt, Babel, et al., 2021b).

Moreover, visual complexity and presenting many details of the learning content simulta-
neously can lead to a high cognitive and perceptual load, which might result in less learning
or superficial processing. As a consequence, learners may fail to develop a coherent mental
model (Mayer et al., 2002). To overcome this barrier, Study 3 used a combination of external
and internal support approaches (see Figure 4.1). As the second external support approach,
adequate sequencing of the different presentation formats to present learning content was
utilized in Study 3. By using sequenced material, this overload should be avoided. Adequate
sequencing of pictorial and textual formats can be expected to support learners to build a
coherent mental model (Eitel & Scheiter, 2014; Endres et al., 2017). As an internal support
approach, an elaboration prompt was chosen to stimulate semantic processing. This in-depth
elaboration also goes along with deducing connections between the different concepts and is

thus assumed to be dependent on the pre-existing knowledge structure. Thus, combining both
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4. Overview of the three included studies

approaches (internal and external) by adequate sequencing and prompting might result in a
synergic effect.

As previously outlined, the underlying cognitive learning processes are dependent on learner’s
characteristics (F3). Thus, in the present thesis, important influencing factors were selected
and examined based on previous theories and findings as well as their potential moderating
effect on learning outcomes and underlying cognitive learning processes (Moreno & Mayer,
2007; Mayer, 2005; Schnotz & Bannert, 2003).

Potential moderation effects are examined in form of aptitude-treatment interactions. Both
functional measurements related to learning performance and a structural approach to learning
more about the configuration of the mental model are utilized and contrasted.

In the following a short summary, repeating the main theoretical aspects for each study,
is included. The full version of the three peer reviewed journal articles can be found in

Appendix A.
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4. Overview of the three included studies

4.1. Study 1 - Learning in Virtual Reality: Bridging the Motivation
Gap by Adding Annotations

4.1.1. Theoretical background

Learning complex or abstract scientific content can pose challenges for learners to process,
select, and integrate relevant information. This is particularly true as such content is often
not intuitive to understand and cannot be easily connected to knowledge from everyday life
(Rapp, 2005). VRLESs offer the possibility to display micro and macro phenomena that would
be not observable in a real laboratory setting (Potkonjak et al., 2016). As VRLEs impose
a rather high visual load on the learners, adding certain elements might support learners to
select relevant information and to map corresponding elements (Richter, Scheiter, & Eitel,
2016; van der Meij & de Jong, 2006). One approach to support learners is to include textual
annotations into the VRLE. These annotations should support learners in connection to their
signaling nature: Annotations might foster just-in-time processing of important elements of
the VRLE by guiding attention and reducing unnecessary visual load (Richter et al., 2018;
McTigue, 2009). Furthermore, annotations labeling the pictorial representation in the VRLE
might ease the element-to-element mapping of textual and pictorial information, as these are
presented just-in-place and therefore follow the recommendation to consider spatial contiguity
when designing learning environments (Mayer, 2014; D. Gentner, Rattermann, & Forbus, 1993).
In addition, annotations might repeat important terms and thereby foster learning, particularly
on the knowledge level. However, learner’s aptitudes or states while learning might have a
substantial impact on learning outcomes. Particularly, intrinsic motivation might lead to a
more efficient visual search pattern in the VRLE and may thus increase learning outcomes.
To elucidate cognitive learning processes, different levels of learning outcomes were considered
(Bloom, 1956). As the importance of aptitude-treatment interactions has been found in previous
studies, we investigated the interplay of adding annotations as a treatment factor and learner’s

intrinsic motivation as an aptitude factor in this study.

4.1.2. Research questions and hypotheses

In this study, we focused on two research questions:
RQ1 Do annotations have a positive impact on learning outcomes?

In detail, we expected a beneficial effect of annotations compared to no annotations in the
VRLE on all three levels of learning outcomes (knowledge, comprehension, and application; Hla).
Based on the repetitive function of annotations, we expected the largest positive effect of
annotations on the knowledge level (H1b).

In our second research question, we considered an aptitude-treatment interaction:

RQ2 Does learner’s intrinsic motivation moderate the beneficial effect of annotations

on learning outcomes?
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4.1. Study 1 - Learning in Virtual Reality

We expected that intrinsic motivation to moderate the relationship between the treatment
factor annotations and learning outcomes in the VRLE (H2).
4.1.3. Method and results

We tested N = 61 participants (34.43% male) with average age of 23.73 (SDgge = 6.00) in our
between-subject VR study. The procedure is displayed in Figure 4.2.

Virtual Reality Learning Environment

‘))) annotations

Pre-questionnaires
general instruction: VR equipment

S oy B o

performance test & post-questionnaires

Figure 4.2.: Procedure of Study 1

Our participants were randomly assigned to one of the two different experimental conditions:
they saw the VRLE with (n = 33) or without annotations (n = 28). As a dependent
variable, we measured learning outcomes in a differentiated manner by distinguishing knowledge,
comprehension, and application level (Bloom, 1956). In addition, learner’s intrinsic motivation
was assessed (Lepper et al., 2005; Harter, 1981). Based on theoretical considerations we
measured and included prior knowledge as a control variable.

The expected beneficial effect of adding annotations into the VRLE on all levels of learning
outcomes was not supported by the findings (Hla). However, based on the descriptive means
of the two groups, the largest differences were found on the knowledge level, but as this result
was not significant, the findings were not in line with our expectations (H1b). Considering
the aptitude-treatment-interaction, we found that intrinsic motivation moderated the effect of
adding annotations on learning outcomes. Further, follow-up analysis revealed that learners
with intrinsic motivation of -0.7 or fewer points below the overall mean in particular showed

beneficial effects of adding annotations on learning outcomes.

4.1.4. Discussion

In the first study, we uncovered the importance of considering learner’s intrinsic motivation

to deduce the effectiveness of design elements such as textual annotations to ease cognitive
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4. Overview of the three included studies

processing of the learning content in a VRLE. Our results imply that learners are either
intrinsically motivated or need to be supported by adding annotations to learn successfully in
the VRLE. Different kinds of annotations or a different amount of annotations might further
increase this beneficial effect. Furthermore, the displayed annotations might be extended
and thus might support relation-to-relation mapping. This would provide further support to
integrate the learning content. We focused on intrinsic motivation as an aptitude factor, however
further learner’s aptitudes might also explain a substantial amount of variance. Different types
of VRLEs might be used to further investigate whether our results are transferable to VRLESs

with more interaction possibilities.

46



4.2. Study 2 - Prompting in-depth learning in immersive virtual reality

4.2. Study 2 - Prompting in-depth learning in immersive virtual
reality: Impact of an elaboration prompt on developing a

mental model

4.2.1. Theoretical background

To present new technology, VRLESs offer great potential. However, using interactive VRLEs
might lead to simply interacting with the environment without processing the presented learning
content (Diaz & Ioannou, 2019). For instance, Mayer (2004) outlined that learners tend to
explore a simulation instead of engaging in a learning process. Similar limitations of learning
were reported when learning in a VR laboratory (Hu-Au & Okita, 2021). Thus, learners might
need to be supported to show suitable learning behavior. One approach to stimulate learners
to process the presented information semantically is to use an elaboration prompt (Endres
et al., 2017). This elaboration prompt is an explicit hint for learners to process the meaning
of the provided content and search for potential connections. Additionally, when including
an explanatory component, this stimulates learners to translate the given learning content
into their own words (Berthold et al., 2008). Hence, deep processing should be fostered by
this prompt. Learner’s characteristics might have a substantial impact on the effectiveness of
prompting on learning outcomes (Roelle & Berthold, 2013). Thus, prior knowledge and verbal
ability were both considered for their potential influence. To better understand the resulting
mental model, two approaches were used to measure learning outcomes: one functional and one
structural. The functional approach differentiates the levels of knowledge, comprehension, and
applications (Bloom, 1956). The structural approach was based on the Structural Assessment
of Knowledge to deduce the undirected connectedness of different concepts (Trumpower &
Vanapalli, 2016).

4.2.2. Research questions and hypotheses

In this study, we focused on three research questions:
RQ1 Does prompting have a beneficial effect on functional learning outcomes?

In detail, a beneficial effect of prompting on all levels of functional learning outcome was
expected (H1la). Due to the nature of the elaboration prompt, higher levels were assumed to
show a larger beneficial effect (H1b).

In our second research question, the impact of prompting on structural learning outcome

was issued:
RQ2 Does prompting have a beneficial effect on structural accuracy?

Prompting was expected to have a beneficial effect on post accuracy (H2).
In the last research question, the relationship of structural and functional measurement

approaches was considered:
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4. Overview of the three included studies
RQ3 Are structural accuracy and the application level of learning outcome related?

A positive relation between both measurements was expected (H3).

4.2.3. Method and results

We tested N = 64 participants (30 % male) with average age of 24.05 (SDyg. = 6.05) in our
between-subject VR study. The procedure is displayed in Figure 4.3.
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Figure 4.3.: Procedure of Study 2 (Vogt, Babel, et al., 2021b, p.7)

Our participants were randomly assigned to one of the two different experimental conditions:
the learners in the experimental group received an elaboration prompt before entering the
VRLE. This prompt pointed out that the VRLE contains information about a service robot
and important concepts of robotics. Learners were particularly encouraged to connect the
provided information and to prepare for a peer explanation after the learning unit. In contrast,
the control groups were merely instructed that the VR unit was about to start and that
they will see a robot. As a dependent variable, we measured functional learning outcomes by
distinguishing knowledge, comprehension, and application level (Bloom, 1956). Additionally,
structural accuracy was assessed before and after learning. Based on theoretical considerations,
we also measured prior knowledge.

The expected beneficial effect of prompting before entering the VRLE was not found for all
levels of learning outcomes (Hla). Solely a beneficial effect of prompting on the knowledge level
was found. Consequently, the higher levels of learning outcomes did not benefit from prompting
(H1b). Structural accuracy was increased by prompting when considering the pre-accuracy

(H2). Application level and post structural accuracy were positively related (H3).

4.2.4. Discussion

In the second study, the importance of using a multi-method approach to investigate the
internal support approach of prompting in virtual reality learning was discussed. The functional

approach showed a positive effect of prompting on knowledge level and thus, superficial
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4.2. Study 2 - Prompting in-depth learning in immersive virtual reality

processing was stimulated. Based on the structural accuracy of the mental model after learning,
prompting stimulated the processing of learning content not only superficially. Moreover, a
positive relationship was found between the functional application level and the structural
accuracy of the mental model. This finding suggests that there may be further sublevels of
mental model development and that shortcuts may be very important in processing learning
content in VR. Future studies might combine further measurement approaches to gain insights

into the mental model development.
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4. Overview of the three included studies

4.3. Study 3 - Immersive virtual reality or auditory text first? Effects
of adequate sequencing and prompting on learning outcome

4.3.1. Theoretical background

To overcome superficial processing while learning in VR, different support approaches are
available. Learners experience the challenge of processing the learning content in VR deeply, as
their cognitive capacity is limited and they can only perceive and process a certain amount
of information per time (Mulders et al., 2020). Particularly, when learning with animations,
which is not self-paced, this might challenge learners to process all provided information (Lowe,
2003). One approach to overcome this challenge is to reduce the information provided per time.
This can be done by splitting up the learning material. For instance, the VR animation could
be displayed before further details are provided as a narration. Thus, learners might have more
capacity to process the provided learning content. However, this goes along with the question
of which sequencing order should be used. Presenting a VR animation as a brief overview that
is followed by a more specific narration is the preferable sequencing order based on previous
findings (Eitel & Scheiter, 2014; Arndt et al., 2019). However, sequencing the material might
challenge learners to integrate the information of different presentation formats (Mayer, 2014).
Providing an elaboration prompt might support learners to connect and integrate the presented
content (Endres et al., 2017). Hence, combining both support approaches, adequate sequencing
and prompting, might result in beneficial effects and might overcome the challenge of insufficient

cognitive resources.

4.3.2. Research questions and hypotheses

In this study, we focused on the following research questions:

RQ1 Does adequate sequencing have a beneficial effect on functional learning out-

comes”?

In detail, presenting VR animation first followed by the narration was expected to increase
learning outcomes (H1). Additionally, the main effect of prompting using the sequenced learning

material was examined:
RQ2 Does prompting have a beneficial effect on functional learning outcomes?

The elaboration prompt was assumed to increase learning outcomes on all levels (H2a).
Additionally, the largest beneficial effect was expected on the highest level of learning outcomes
(application; H2b).

As both support approaches were combined, the third research question was:
RQ3 Is there a synergic effect of both support approaches on learning outcome?

In detail, the highest learning outcome was expected in the group with VR animation and

prompting compared to all other groups (H3).
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4.3. Study 3 - Immersive virtual reality or auditory text first?

4.3.3. Method and results

We tested N = 81 participants (37 % male) with average age of 26.08 (SDgge = 6.71) in our
2x2 between-subject VR study. The procedure is displayed in Figure 4.4.
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Figure 4.4.: Procedure of Study 3

The learners were randomly assigned to one of the four experimental groups of our 2x2
between-subject design study: with or without prompt and VR animation or narration first. In
the prompt group, learners received the elaboration prompt before the learning content was
presented. Depending on the sequencing condition, the VR animation or the narration was pre-
sented first. The learning outcome was measured by distinguishing knowledge, comprehension,
and application level (Bloom, 1956). Critical characteristics of learners such as prior knowledge
and verbal ability were assessed.

Sequencing had a beneficial effect on learning outcomes on the knowledge level (H1). The
expected beneficial effect of prompting before entering the VRLE was not found for all levels
of learning outcome (H2a). Nevertheless, a beneficial effect of prompting was found on
the application level (H2b). No synergic effect of adequate sequencing and prompting was
found (H3).

4.3.4. Discussion

In the third study, the importance of supporting learners while learning in VR was outlined. The
two support approaches, adequate sequencing and prompting supported learning outcomes on
different levels. While adequate sequencing helped learners to develop a brief understanding of
the topic, prompting fostered semantic processing of the learning content. As the beneficial effect
of the two support approaches unfolds on different levels, no synergic effect was found. Future
studies might compare further combinations of integrated and sequenced learning material to
uncover potential synergic effects with prompting. Furthermore, different external and internal

support approaches might be combined to uncover the potential of these combinations.
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5. Discussion

After presenting the theoretical framework of this thesis by postulating EMIL VR and reporting
the empirical results, in the following section, the main findings will be summarized and
discussed. First, the results of the three studies are contrasted concerning the postulated
leading questions (Study 1 — Vogt, Albus, & Seufert, 2021; Study 2 — Vogt, Babel, et al., 2021b;
Study 3 — Vogt, Babel, et al., 2021a). Then, each support approach is discussed and EMIL
VR is critically reflected on the empirical findings. Implications for theory, methodology, and
practice are provided along with limitations and recommendations for future research on how

to better support learners while learning in VR.

5.1. Main findings of the present thesis

In this thesis, the potential of VRLEs was outlined and specific challenges were derived regarding
the characteristics of VRLEs. Based on these challenges, different support approaches (two
external and one internal) were systematically investigated in terms of their potential for
fostering deep learning in VR.

The first leading question focused on whether the chosen support approaches were beneficial
for learning outcomes (Q1). To this end, both external and internal support approaches
were found to have beneficial effects on learning outcomes. Hence, learners were successfully
supported by adding the supportive elements (Vogt, Albus, & Seufert, 2021; Vogt, Babel, et
al., 2021a, 2021b). However, not all approaches supported the learners to process the content
deeply or semantically, and not all learners were supported in the same way (Vogt, Albus, &
Seufert, 2021; Vogt, Babel, et al., 2021a).

As a differentiated measurement of the learning outcome was used in all three studies, and
in Study 2, a multi-method approach to measure learning outcomes was used, the second
leading question asked: Which level of learning outcomes was affected by the chosen support
approach (Q2)? The results of Study 1 showed that only low intrinsically motivated learners
benefited from adding annotations (external support) to process the learning content. Based
on additional analysis (see Appendix B) the largest effect of adding annotations for learners
with low intrinsic motivation was found on the comprehension level. In Study 2, the chosen
elaboration prompt (internal supported learners to process the learning content superficially
but did not stimulate semantic processing. Hence, the support approaches of both studies had
limited effects as they did not foster learning on the application level.

In Study 3, two support approaches were combined: adequate sequencing (external) and

the inclusion of an elaboration prompt (internal). Combining both support approaches was
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expected to lead to synergic effects. However, the chosen support approaches were found to
have beneficial effects on a different level of the learning outcome and thus, synergic effects
were not observed. In contrast to Study 2, the results of Study 3 showed a beneficial effect of
prompting on higher levels of the learning outcome. Based on the results from Study 2, which
found that the beneficial effect of the prompt was limited on the knowledge level, the learning
material was sequenced to conduct Study 3. In this study, the beneficial effect of prompting
was found regarding semantic and deep processing of learning content (Vogt, Babel, et al.,
2021a).

Reflecting on the results of Study 1, not all learners were supported by the addition of
annotations in the same way. Potential moderating effects of learner’s characteristics on the
effectiveness of the chosen support approaches on learning outcomes were considered in the third
leading question (Q3). Particularly, learners that scored substantially below the mean of the
intrinsic motivation scale experienced a beneficial effect of adding annotations on the learning
outcome. The importance of learner’s characteristics was also reflected by the findings of Study
2. In this study, the beneficial effects of prompting on structural accuracy also depended on
the initial levels of structural accuracy. Here, an expertise reversal effect was found for learners
with high structural prior knowledge on structural accuracy after learning. Thus, both intrinsic
motivation and prior knowledge had a significant impact on whether learners were supported,
and additionally, to what extent learning was fostered.

By using a multi-method approach, the present findings shed light on the question of how
different approaches used to assess learning outcomes are related (Q4). This question was
investigated in Study 2. Here, a positive relationship between the learning outcome on the
application level and structural accuracy after learning was found. This is a particularly
interesting effect, as prompting only supported the learning outcome at the knowledge level,
but no effects were found at the application level. Nevertheless, beneficial effects were found at
the structural accuracy level, which were positively related to the application level, but not to
the knowledge level. To better understand this complex pattern of findings, the results of the

three studies are again examined using the postulated theoretical framework, EMIL VR.

5.1.1. External support approach for selecting and integrating learning content in
virtual reality

The first support approach analyzed in this thesis involved adding annotations into the VRLE.
Reflecting on the effect of annotations using EMIL VR, the findings from Study 1 were limited,
as no overall main effect for annotations was discovered (Vogt, Albus, & Seufert, 2021). The
findings suggest that only learners with lower intrinsic motivation experienced a beneficial
effect from adding annotations. This superficial guidance of attention is particularly helpful for
such learners, as intrinsic motivation is also a crucial factor for adequate attention guidance in
the learning environment. Hence, learners had either an effective visual search pattern because
they were intrinsically motivated, or they had additional help from annotations to optimize
guidance of their attention (Miranda & Palmer, 2013; Vogt, Albus, & Seufert, 2021). This
beneficial effect was found for the overall learning outcome (Vogt, Albus, & Seufert, 2021).
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5. Discussion

When looking at the other results, this beneficial effect was limited, as bridging the motivation
gap by adding annotations was not found for the application level (see additional analysis in
Appendix B). Helping learners to guide their attention thereby does not necessarily guarantee
deep processing or a flexible mental model. By directing attention, more processing time
might be spent on relevant concepts. However, this does not guarantee that this information
is processed semantically in a way that learners are able to apply the new information to
another context and thus to answer questions on the application level (van Gog, 2014; Bloom,
1956). The annotations emphasized the central concepts of the learning content. They also
repeated the content of the narration as a single word. Taken together, as annotations did not
incorporate additional detail related to the learning content, information equivalency could be
ensured (Noyes & Garland, 2008).

In the context of further research related to the present thesis, one study (additional Study
1; see Appendix B) examined the signaling effect by including color-coding of corresponding
elements in a low immersive VRLE (Vogt, Albus, Montag, et al., 2021). In this study,
color-coding eased the mapping of different presentation formats and directed attention to
corresponding elements (see Figure 5.1). This study found a positive effect of color-coding on
learning outcomes. In specific, as a result of color-coding, when controlling for prior knowledge,
a beneficial effect was found on learning on the application level (Vogt, Albus, Montag, et al.,
2021).

This is in line with previous findings (Richter et al., 2018; Vogt et al., 2020). Hence,
although both support approaches (annotations and color-coding), were related to the same
cognitive subprocesses, they fostered learning on different levels. Comparing the results of both
approaches and incorporating a signaling nature, while the effect of annotations was limited on
the lower levels of the learning outcome, the beneficial effects of color-coding were on the highest
level of the learning outcome (see Appendix B). This finding was in line with previous results
in that, when outlining corresponding elements, the mapping and integration of information is
eased (D. Gentner, 1983; Fries, Son, Givvin, & Stigler, 2021). In contrast, annotations contain
single words that repeat the content presented in the narration. This may encourage learners to
process the learning content superficially and build a limited understanding of different relations
between the concepts to answer questions on the comprehension level (Weinstein, Acee, & Jung,
2011). In this respect, although color-coding is less helpful as it points out connections between
the presentation formats and directs attention but does not present any content (Renkl, 2005;
Berthold & Renkl, 2009), it nonetheless showed beneficial effects on deeper processing, as the
learning outcome on the application level was increased. However, this corroborated previous
findings that outlined the beneficial effects of color-coding on the integration of different
presentation formats (Folker et al., 2005). Furthermore, as annotations repeated the learning
content, the support might shift to the knowledge level, as simply repeating content does not
foster deep and semantic processing to build correct causal connections between the different
concepts in the global knowledge network (Weinstein et al., 2011). While in the additional
study with color-coding a main effect was found, in Study 1, only some learners were supported

by the annotations.
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Reflecting on the present results and the limited effect of annotations found in previous
studies, several influencing factors can be considered in terms of their effectiveness in connection
with adding annotations. Some studies show significantly larger effect sizes when stronger
salience differences were present between the different groups (Faul, Erdfelder, Buchner, &
Lang, 2009). Additionally, other variations of these annotations are conceivable (de Koning et
al., 2010) and the number of labels used could be examined for answering the question of what
kind of annotations are most helpful and which amount of annotations is best (McTigue, 2009;
Vogt, Albus, & Seufert, 2021). Furthermore, different spatial placements could have replicated
the design principle contiguity principle in VR (Ploetzner & Lowe, 2012; Mayer, 2014).

Additionally, the annotations could have been designed differently. In the learning environ-
ment, words were simply inserted without boxes or frames. On the one hand, this allowed the
learners to still see the pictorial presentation formats, on the other hand, the annotations were
not as salient as they would have been if they had also stood out from the environment in terms
of color or illumination (de Koning et al., 2010). It was assumed that annotations also support
the processing and therefore, the integration of the different presentation formats (Vogt, Albus,
& Seufert, 2021; D. Gentner & Markman, 1997; Mayer, 2014). In addition, combining the
external support approaches, i.e., adding annotations and color-coding, could support learners
and improve learning outcomes at all levels. Further improvement of learning outcomes could
be achieved by combining different external support approaches. Annotations and color-coding
could be used to support the learners in certain parts of the learning material. Hence, future
research might apply these results to systematically manipulate the annotations to deduce the
relations between their characteristics and benefits on different levels of learning outcomes.

The lack of a main effect of annotations in Study 1 could also be due to limited test power.
Descriptively, there was a tendency for higher learning outcomes in learning with annotations
compared to the control group. However, the effect size in the present study is small, it therefore
cannot be considered significant from an inferential statistics perspective (Faul et al., 2009).
Nevertheless, this study outlined the importance of the active role of the learners: Learners
who were either stimulated by external support or were intrinsically motivated to process the
content deeply fared better in terms of learning outcomes. As a consequence of these findings,
an important question constitutes whether this active role of learning can be promoted by

using internal support approaches.

5.1.2. Prompting deep learning in virtual reality learning environments

In contrast to the external support approaches of adding annotations or color-coding, the
elaboration prompt constituted an internal support approach related to learning behavior
(Bannert & Mengelkamp, 2008). Based on previous findings, the chosen elaboration prompt
aimed to trigger learners to process the learning content semantically (Berthold et al., 2008).
In Study 2, a multi-method approach including both functional and structural approaches
to measuring learning outcomes were combined. Reflecting on the results of Study 2 on the
functional learning outcome, semantic processing was limited in both the prompt group and the

control group. Hence, despite activating learners to process the learning content deeply, mostly
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superficial processing occurred. Nevertheless, the prompt showed beneficial effects on the
knowledge level and a supportive effect was thereby found for processing the learning content
sub-semantically. Looking at the effect of the prompt on the structural learning outcome,
an interaction of elaboration prompt and pre-accuracy on structural accuracy after learning
became apparent. This reflects that both the quality of their pre-existing knowledge network

and the elaboration prompt influenced structural accuracy after learning.

Based on both functional and structural approaches to measuring learning outcomes, our
findings allow deeper insights into the developmental process of the mental model while learning
in a VRLE. The elaboration prompt enabled learners to increase their learning outcomes
on the knowledge level and improved the structural accuracy. Therefore, we can assume
that developing mental models occurs by building simple and undirected relationships as one
additional developmental stage (Vogt, Babel, et al., 2021b). In the model of Mayer et al.
(2002), two stages of mental model development were described: the component and the causal
mental model. The component model entails a more local understanding of the concepts and
their potential stages, while the causal model includes a complex knowledge structure with
meaningful connections between the concepts. The present findings suggest a further substage,
as learners build also connections between several of the included concepts (Vogt, Babel, et al.,
2021b). However, they were not able to deduce correct causalities of these connections or to
correctly connect all included concepts. As previously outlined, the development of a causal
model requires sufficient resources and stimulation while learning (Mayer et al., 2002). In the
present VR study, learners successfully built a brief component model that was extended by
undirected connections but was unable to develop a more global and correct causal model (Vogt,
Babel, et al., 2021b). By more closely examining the IMTPC, further details of the underlying
cognitive learning processes in the VRLE can be deduced (Schnotz & Bannert, 2003). One
important process for building a mental model with high structural accuracy is described as
the shortcut in the IMTPC for including sub-semantic processed information into the mental
model (Vogt, Babel, et al., 2021b). Our VRLE, in combination with the elaboration prompt,
appeared to trigger processing via this shortcut. To develop meaningful relations between the
different entities, additional semantic processing of the learning content is required (Schnotz &
Bannert, 2003). Adding prompts enabled the learners to store the unspecific relations into the
mental model but did not support the development of correct meaningful relations that would
allow for answering comprehension and application (Vogt, Babel, et al., 2021b). Based on these
findings, further research is necessary to better understand how to support deep learning in
VRLESs.

Further activating approaches, such as prompts, have also been described in prior research to
support learners with their learning behavior (Fiorella & Mayer, 2015). In the present thesis,
the selected elaboration prompt was a rather minimal approach that could be further extended.
For instance, prompting while learning has been described as being very efficient (Thillmann
et al., 2009). In this thesis, the learning units were relatively short and it was assumed that
the learners were already challenged by processing the learning content (Vogt, Babel, et al.,

2021b). Hence, in the included studies, the prompt was provided before entering the VRLE.
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However, including further prompts into the learning unit might support learners in processing
the learning content more deeply (Thillmann et al., 2009).

As previously outlined, further types of prompts can be used to support the self-regulated
learning process (Ifenthaler, 2012; Niickles, Hiibner, & Renkl, 2009). In the present thesis,
a highly pragmatic approach to prompt learners to process the learning content deeply was
chosen. As this prompt can be applied flexibly and without the high cost or investing much
time, it can be described as particularly economical, especially given that a significant positive
effect on learning outcomes was already found using a small intervention.

Next to cognitive prompts, metacognitive prompts and motivational prompts are also
important (Schumacher & Ifenthaler, 2021). Meta-cognitive prompts support learners by
stimulating monitoring processes for learning (Berthold et al., 2007). For example, Pieger
and Bannert (2018) used such metacognitive prompts in a hypermedia environment. They
found a positive effect of these prompts on learning behavior. Furthermore, a positive effect
of metacognitive prompts on learning outcomes was identified in previous studies (Bannert,
Sonnenberg, Mengelkamp, & Pieger, 2015; Daumiller & Dresel, 2019). Therefore, the use of
meta-cognitive prompts seems promising in the context of VRLEs. Previous findings suggest
that a combination of cognitive and metacognitive prompts can have a positive impact on
learning outcomes (Berthold et al., 2007). This could be investigated in future studies in the
context of VRLEs.

In addition, the importance of motivational processes was demonstrated by the findings
presented in this thesis (Vogt, Albus, & Seufert, 2021). However, not all learners are intrinsically
motivated to learn each topic. As a consequence, learners’ motivation might be stimulated by
adding supportive elements (Daumiller & Dresel, 2019). In literature, the use of motivational
prompts is described as conducive to learning (Schumacher & Ifenthaler, 2021). Motivational
prompts support learning by emphasizing goals or by stimulating the regulation of their
motivation (Schumacher & Ifenthaler, 2021). Again, combinations with other prompt types or

other support approaches are conceivable (Daumiller & Dresel, 2019).

5.1.3. Combining internal and external support for learning in virtual reality

In Study 3, both internal (prompting) and external (adequate sequencing) support approaches
were combined (see Figure 5.2). As an internal support approach, the elaboration prompt
developed for Study 2 was included in Study 3. While Study 2 presented the learning content
simultaneously, in Study 3, the learning material was sequenced to overcome the limited effect
of prompting on learning outcomes. This limited effect of prompting might have occurred
due to insufficient cognitive resources to process the content deeply and to build a causal
mental model (Mayer et al., 2002). To overcome this assumed cognitive overload, sequencing
the learning material can be used as a strategy to reduce the information that needs to be
processed simultaneously (Van Merrienboer & Sweller, 2005). Hence, the learners should have
more resources to process each of the given presentation formats and should be able to prepare
for later deep processing of the content (Johnson, Reisslein, & Reisslein, 2014).

As this finding is very well researched, it was not replicated in the present thesis. By
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sequencing the learning material, the question of which presentation sequence would be more
helpful for learners arose. Based on many findings and theoretical assumptions from multimedia
learning with text and pictures, presenting the pictorial VR animation first, followed by the
more specific textual presentation format, was assumed to be the adequate order to present
the sequenced learning material (Arndt et al., 2019). When learning with adequate sequenced
learning material, learners can build a brief scaffold based on the analog, pictorial information
and add further symbolic details in the process (Eitel & Scheiter, 2014; Vogt, Babel, et al.,
2021a; Arndt et al., 2019). Despite this strong evidence of presenting a brief pictorial overview
first, based on other publications, presenting the pictorial presentation format after the more
specific textual learning content might serve as an opportunity to repeat the learning content
(Mayer, Bove, Bryman, Mars, & Tapangco, 1996). Additionally, by displaying the VR animation
after the more specific text, learners can perceive a specific example and have the opportunity
to apply the concepts of the learning content (Brunyé, Taylor, & Rapp, 2008). However, as
prior theories and findings support that the adequate presentation order when sequencing is to
present the pictorial presentation format first, this was referred to as adequate sequencing.

Despite the question of adequate sequencing order, sequencing learning material involves a
further challenge. Although it was assumed that learners might have more cognitive resources
to process the learning content, this might decrease the integration of the learning content
from different presentation formats, when these are not presented simultaneously (temporal
contiguity effect; Mayer & Fiorella, 2014). Previous findings outlined the benefits of presenting
narration and pictures or animations simultaneously (Mayer & Anderson, 1991). In contrast,
Arndt et al. (2019) could not replicate these findings and found no differences between the
sequenced and the simultaneous presentation for the integration of the different presentation
formats. They explained their finding by the fact that simple material was used that did not
challenge the working memory capacity of the learners (Arndt et al., 2019). Consequently,
when using more complex learning material, learners might need additional support to connect
the different presentation formats and the learning content presented in the sequenced learning
unit (Richter et al., 2016). In line with this idea, the elaboration prompt in combination with
the adequate sequencing was assumed to have synergic effects on learning outcomes (Vogt,
Babel, et al., 2021a). Building a mental model includes correct causal connections between
the different concepts in the knowledge network. By processing further details and by mental
model inspection, the resulting mental model can be further developed (Schnotz & Bannert,
2003). Hence, it is plausible that helping learners to build a brief scaffold based on an analog
presentation format first that is refined by additional textual detail, can support learners.
Adding an elaboration prompt might additionally activate the process of building a mental
model. In contradiction to this expectation, the results of Study 3 did not reveal this synergic
effect. To discuss this finding, the different effects of prompting and sequencing are added in
EMIL VR (see Figure 5.2).
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5. Discussion

In line with the marked subprocesses in Figure 5.2, the beneficial effect of adequate sequencing
was found to foster superficial learning, while prompting supported learners to deeply process the
learning content. Thus, as different subprocesses were stimulated by the external and internal
support approaches, no synergic effect was found. The beneficial effect of the elaboration prompt
on the learning outcome found in Study 3 is particularly interesting because in this study, unlike
Study 2, the stimulation of deeper processing of the learning material was successful. Although
the learning content in both studies was similar, the technical setup of the two studies was
different due to pragmatic reasons. As this might cause bias, the integrated and the sequenced
conditions cannot be used to conduct inferential analyses. Nevertheless, based on the present
findings in the context of previous research, it can be assumed that the reduction of cognitive
or perceptual load through adequate sequencing of the learning material made it possible for
learners to process the learning content more deeply. As a consequence, the learners in Study 3
were able to answer questions on the application level more successfully due to the additional
stimulation from the prompt. In the future, this assumption should be investigated in more
detail. For instance, using a differentiated measurement of cognitive load including extraneous,
germane, and intrinsic cognitive load might allow for additional insights into how the support
approaches affect the available cognitive resources while learning (Klepsch et al., 2017; Sweller,
2011).

So far, we have focused on internal and external support approaches and their effects on
learning outcomes. As outlined by Jenkins (1979) and supported by the findings of this thesis,
the learner’s characteristics should be considered in more detail when discussing the results.

This is focused on in the next section.

5.1.4. Learner’s characteristics and learning content

All three studies dealt with a complex interplay of many factors: the chosen support approach
(internal or external), learner’s characteristics, and the chosen assessment of learning outcome
to uncover effects on the underlying cognitive learning processes.. As simultaneously considering
these factors can lead to many potential interactions, each study focused on a select few as
well as their consequences on learning outcomes.

In the present thesis, the findings support the assumption, that learner’s characteristics might
moderate or impact different support approaches (Vogt, Albus, & Seufert, 2021; Vogt, Babel,
et al., 2021b). Two important characteristics were focused on, namely intrinsic motivation and
prior knowledge. As expected from previous findings and theories, prior knowledge is crucial for
learning outcomes and should be considered as a moderator or at least be included as a covariate
to control for related variance (Tobias, 1994). The importance of intrinsic motivation on early
processing of learning content was highlighted from the present results, and a beneficial effect
of support was additionally found for learners with low motivation (Vogt, Albus, & Seufert,
2021). Moreover, the importance of prior knowledge, based on the assessment of structural
accuracy, was found to be important for the supportive effect of prompting (Vogt, Babel, et
al., 2021b). Prior knowledge was included for investigating all related research questions as a

covariate. According to the present findings, the importance of including prior knowledge at
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least as a covariate is emphasized (Vogt, Albus, & Seufert, 2021; Vogt, Babel, et al., 2021a,
2021Db).

Furthermore, as the learning content about robotics conveyed learning content via textual
presentation formats, the verbal ability was included as a covariate. In line with the basic
assumption that learning is related to general cognitive abilities, verbal ability was found to
be related to learning in VR (Pieger & Bannert, 2018). This variable should especially be
considered when using learning material with written or spoken text (Schroeder, 2011).

As VRLEs offer the opportunity to display learning content including the spatial configuration
of the included object, the learner’s characteristics are likely to play an important role for
learning in VR. Previous research on learning with animations uncovered heterogeneous effects
of the impact of spatial ability on learning outcomes. While Mayer and Sims (1994), Huk
(2006), and Lee and Wong (2014) assume the importance of spatial ability for learning with
animations, Hoffler and Leutner (2011) state that spatial ability does not necessarily play
a major role in learning with animations. Therefore, spatial ability was investigated in the
present research using a study that relied on the same learning material as Study 1. Here,
principles of seawater desalination were presented including micro-processes such as chemical
reactions. We found no significant effect of spatial ability on the learning outcome when using
this learning material (Albus et al., 2021). Based on this result, it can be concluded that spatial
abilities do not necessarily have an impact on learning outcomes in VR. Instead, only if the
spatial component plays a central role in the chosen learning content will the spatial ability
of the learners be an important factor influencing learning outcomes. For such content, the
learners’ spatial ability would be an important influencing factor for learning outcomes. The
chosen learning material about seawater desalination (Study 1) as well as the learning material
about robotics (Study 2 & 3) did not include spatial configurations that were substantial for
understanding the presented concepts in the VRLE.

In addition to the chosen learning content, other factors have been described in the literature
that can influence the effect of spatial skills on learning outcomes. For instance, in CAMIL a
beneficial effect of agency on learning outcomes has been described, Merchant et al. (2014),
however, did not uncover this beneficial effect for all learners. In their study, only learners with
high spatial ability were found to benefit from high control and experienced beneficial effects
on learning outcomes. Thus, spatial ability appears to be an important factor and should
be examined in future studies. Here, the importance of the recommended factors by Jenkins
(1979) becomes apparent. In this case, learning content and the level of control in the VRLE
might be systematically manipulated to gain further insights into the underlying processes that
cause this interaction and the effects on learning outcomes. So far, three of the four factors of
Jenkins (1979) have been reflected and discussed based on the main findings of this thesis. The

last factor, the assessment of learning outcomes (F4) will be addressed in the next section.

5.1.5. Assessing learning outcomes

To assess learning outcomes, two approaches were chosen: one functional and one structural.

Although a multi-method approach was used to gain further insights into the developed mental
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model, further approaches might be considered and might advance the field of research on

learning in VR as well as the effectiveness of different support approaches.

Based on the results of Study 2, different developmental states should not necessarily be
assumed as a dichotomy between the component model and the causal model as described by
Mayer et al. (2002). Rather, there seem to be further gradations of the development process.
Consequently, future research using multi-method approaches to measure mental models and

learning outcomes might lend more information into this developmental process.

Furthermore, the functional approach to measure learning outcomes could be extended. The
taxonomy of Bloom (1956) was used to differentiate between the knowledge, comprehension, and
application level. The taxonomy was revised and further developed by Anderson and Krathwohl
(2001). They extended the initial taxonomy that focused on cognitive processing of the learning
content with additional dimensions by including metacognitive, procedural, conceptual, and
factual learning outcomes. As the aim of the present thesis was to elucidate the cognitive
learning processes, factual knowledge was focused on and levels of processing were differentiated
based on the assumptions of the original taxonomy of Bloom (1956). Nevertheless, VR, offers
great potential to train and learn procedures or complex tasks (Makransky, Borre-Gude, &
Mayer, 2019). VRLEs could be used, for example, to achieve learning goals beyond knowledge
transfer, such as procedural knowledge or the training of very specific procedures and activities
(Goodyear & Retalis, 2010; Makransky, Borre-Gude, & Mayer, 2019). This form of learning
could also be well represented in VRLEs and drive knowledge transfer in a broader sense in
many application areas (Makransky, Borre-Gude, & Mayer, 2019). For instance, when learning
about chemical reactions, learners might learn basic concepts and more abstract principles
combined with procedural learning content such as conducting a certain procedure in the lab.
Both learning goals might be accomplished by using VRLEs. One additional advantage is that
in VR, the spatial configuration of the learning content might ease the understanding of the
relatedness of the concepts. In conventional settings, learners would be challenged to imagine
these configurations and deduce the relations (Huk, 2006). However, measuring mental models
and learning outcomes occurred by using the textual format. The structural approach intended
to broaden insights into the development of the mental model, as the resulting mental model
was described by the relatedness of two concepts. This approach involves a certain spatial
component but still does not match the complexity of a 3D knowledge network. Future research
might thereby focus on developing different measurement approaches to examine the mental
model in a different way that is more similar to the used VRLE and allows for the measurement
of the mental model in a more sophisticated way. Research indicates that different approaches
to investigate the nature of the relations between the concepts exist (Trumpower & Vanapalli,
2016, e.g.). However, these are often very effortful as they are based on a qualitative analysis of
the descriptions about relationships in the learning topic by the learner (Eckert, 2000). Again,
these approaches are based on verbal information and learners need to translate their mental
model to describe and not depict it. First approaches exist to use depictive representations to
uncover the nature of the mental model as a drawn scaffold (Butcher, 2006). These might be

extended to VR and enable learners to depict their mental model more intuitively.
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5.1.6. Implications of the present thesis

In this thesis, EMIL VR was postulated as a theoretical framework model. This model is the
first model to combine the four factors according to Jenkins (1979; learning setting, learning
material, learner’s characteristics, and assessment of learning outcomes) to systematically

describe underlying cognitive learning processes in VRLEs.

Reflecting on the findings of the present thesis, promising internal and external support
approaches have been included in EMIL VR. Firstly, the importance of considering the interplay
of learner’s characteristics and the support approach for investigating the learning outcome in
VR was outlined. Next, additional developmental stages of mental models were deduced based
on the included findings. EMIL VR was also extended in the course of discussion and further
important interactions and influencing factors were highlighted. These points can be seen as a
theoretical basis for future studies and can guide research focused on systematically examining
the potential of VRLEs in the future. Adding to this, the aforementioned interactions of

different factors should also be focused on in future research.

The necessity of measuring learning outcomes in a differentiated manner was supported by
the findings of all three studies. Particularly, when addressing the question whether support
approaches stimulate semantic processing, a differentiated measurement approach should be
implemented. To measure learning outcomes and mental models in the present thesis, different
approaches were considered to gain further insight into the cognitive learning processes that
might be fostered by the chosen support approach. Both structural and functional approaches
to measure learning outcomes and mental model development are valid methods to clarify
how learning processes can be fostered. The present results imply that the functional and the
structural approach show a positive relationship. However, the fact that the structural approach
is only positively related to the application level provides more details into the development of
the model. Furthermore, the particularly relevant cognitive sub-processes can be examined more
closely based on this finding, especially when investigating the beneficial effect of prompting on
different learning outcomes. The benefit of using a multi-method approach to better understand
the underlying cognitive learning processes as well as the different stages of mental model
development was shown. This central insight can be used in future research to systematically

extend and empirically test the theoretical framework model EMIL VR.

In terms of implications for practice, the present research implies that learners generally
benefited from the selected support approaches. Here it should be emphasized that when
selecting a support approach, the learning content presented in the VR and the presentation
formats should also be considered. Based on the knowledge gained from the present thesis
about the supported cognitive sub-processes, specific support approaches can be selected. In
summary, pragmatic and economical support approaches such as the elaboration prompt or
the selection of the correct sequence of the presentation can already have beneficial effects
on learning outcomes. The used support approaches had different effects on different levels
of learning outcomes. Although this may be viewed as a limitation of the support approach,

it can also be seen as a possibility to support learners according to their chosen learning
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goal. Of course, the main goal of learning is always to develop a deeper understanding and
a causal mental model. However, this cannot be achieved in every learning unit by every
learner. Learners without prior knowledge cannot necessarily achieve this goal in a short time.
Therefore, pragmatic support could first be provided on the surface, for example, by adequate
sequencing or signaling by annotations. Then, in the following learning units, the knowledge
network could be further linked by additional prompts, and causal connections could be built
into this network. In general, previous findings have found that wrongly chosen or too much
support can also lead to negative effects. Therefore, this aspect should also be considered
in the context of VRLE (Kalyuga, 2009; Makransky & Petersen, 2021). Particular attention
should be paid to the chosen support approach to reduce additional cognitive load, which can
hinder successful deep processing. The learner’s characteristics are of particular importance
here, since the match of the support approach depends not only on the learning content, but
also, as already mentioned, on prior knowledge and intrinsic motivation.

The expertise reversal effect described in the literature was found for prompting on structural
accuracy. Learners with high structural prior knowledge seemed to suffer interference when the
elaboration prompt was added. However, this pattern was not found on the functional level
of the learning outcome or for the other support approaches. This could also be due to the
pragmatic support approaches since they were chosen sparingly and from the beginning in such
a form that they do not or hardly consume cognitive resources. Nevertheless, different variants
of VRLESs could be individually provided according to learner’s characteristics for optimal
support. For example, after a short pre-survey, different VRLE variants could be selected
according to expertise. It would also be conceivable in highly interactive VRLEs that, based on
process data, learner’s behavior could be used as an indicator of their relevant characteristics,
thus creating an individual learning path. However, this requires further development of VRLEs
in cooperation with different disciplines. In practice, it is important that teachers can also
flexibly create learning content in VR and adapt it to their target group. One approach that
seems promising here is in-situ authoring (Prouzeau, Wang, Ens, Willett, & Dwyer, 2020).
Here, teachers can create the learning environment directly in VR. These authoring tools could
then contain additional support for the teachers based on empirical findings, recommendations
for support, and proven principles for the presentation of the learning content as examples or
suggestions. In this way, the gap between research and practical application of learning in VR

could be narrowed.

5.1.7. Limitations and further recommendations for future studies

The present thesis delivered many insights into the potential of learning in VR and how
support approaches impact underlying cognitive learning processes and learning outcomes.
However, many important questions concerning learning in VR remain unanswered. In this
thesis, interaction effects of the aforementioned influencing factors were investigated based on
previous findings. Nevertheless, further combinations of these factors are possible and need to
be investigated in the future. For instance, instead of sequencing the presentation formats of

VR animation and narration as separate parts, smaller units from the learning content could
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be extracted to examine how a more complex sequencing of the learning content may impact
learning outcomes. Furthermore, the spatio-temporal configuration of the VR animation could
be manipulated, as the specific design of the presentation format might be pivotal for learning
outcomes (Ploetzner & Lowe, 2012). Additionally, further complex interactions are theoretically
reasonable. For instance, depending on the expertise level of learners, different sequencing of
material could be used. Adapting the VRLEs as well as the chosen support approaches to
the learner’s characteristics might substantially impact learning in VR. Furthermore, based
on Study 2, it was assumed that sequencing the learning material in an adequate order would
lower the cognitive load and enable learners to process the learning content deeply. Based
on previous research with conventional learning materials, many findings already exist that
support and replicate this effect (Van Merrienboer & Sweller, 2005; Pollock, Chandler, &
Sweller, 2002; Britton, Glynn, Meyer, & Penland, 1982). In the present thesis, this effect
was therefore not investigated in more detail. However, for future research in the context of
VRLES, this finding of reducing cognitive load by sequencing the learning material could be

systematically investigated with extended experiments.

Characteristics of the chosen virtual reality learning environment

As previously outlined, the chosen learning content presented in the VRLE has a substantial
impact on whether learners might benefit from the in-situ learning setting and how they can
be supported. In the present thesis, two exemplary learning units were utilized to investigate
learning in VR. However, using learning material to present learning content with a stronger
spatio-temporal dimension might offer additional insights into the potential of VRLEs and how
to foster better learning outcomes. The chosen topic might interact with the effectiveness of
the support approaches and the learner’s characteristics. Furthermore, when choosing VRLESs
to provide learning content, emotional factors might also be considered where VR could be
used display certain situations to induce strong emotions. For instance, one study used VR to
provide details related to war history. The resulting emotions when presenting this content in
a situated and more realistic way should be considered, and topics should be chosen cautiously
in order to minimize potential emotional strain (Calvert & Abadia, 2020).

One limitation of the present thesis was that rather short learning units were used. This
is in line with the tradition of multimedia research, for instance, described and conducted by
Mayer (2020) who published many empirical studies using learning units that were around
two minutes long. Using longer learning units might challenge learners in different ways. By
critically reflecting on their learning experiences and their development, they might optimize
their learning behavior through planning, monitoring, and regulating. The importance of such
monitoring processes might increase when using longer or repeated learning units in VRLESs
(Howard & Lee, 2019).

The available degrees of freedom in the VRLE might impact learning outcomes (Makransky
& Petersen, 2021). Both immersion and agency are related to the chosen setup of the VRLE
and the possibilities to interact with the learning content (Makransky & Petersen, 2021). The

interactivity of the VRLEs could be further extended and the effects of agency and immersion
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on learning outcome might be further investigated.

Another promising possibility to learn more about how to support learners in VRLEs is the
evaluation of process data or learning analytics. These approaches might offer further insights
into the underlying cognitive learning processes (Christopoulos, Pellas, & Laakso, 2020). In this
way, the effects of the different support approaches could be explored in more detail. However,
initial approaches in this direction point to a need for further research to assign the process
data to the corresponding learning processes (Schumacher & Ifenthaler, 2021).

Depending on the chosen learning content and setting presented in VR, the problem of
motion sickness might arise. In the present thesis, the included simulations did not impose
a fast-changing environment. However, displaying fast-moving VR animation might induce
motion sickness (Kim, Park, Choi, & Choe, 2018). This factor should therefore be carefully
considered when selecting VR content, as systematic testing of motion sickness involves ethical
challenges. In addition to motion sickness, learners might suffer from visual strain imposed by
the stereoscopic presentation of learning content (Moreau, 2013). In the context of learning in
VR, visual strain might decrease learning outcomes. Here, future research might answer the
question of how long learning units in VR should last and how long breaks between two VR

sessions should be.

Long-term effects of learning in virtual reality

A major barrier for deep learning in VR is the novelty of this learning setting and a lack of
adequate learning behavior. However, when using VRLESs regularly, this influencing factor
might decrease in importance while other factors might become more relevant. Repeated
learning in VR might reduce the potential novelty effect and might have an impact on the
motivating character of VRLEs (Howard & Lee, 2019). With increased familiarization, the
use of the technology might be eased, but the learners might need additional activation or
motivation. Thus, the long-term effects of using VRLEs as a common tool while studying must
be addressed in future research, as this thesis does not provide insights into long-term effects.

Moreover, in the included studies, the learning outcome and the mental model development
were measured directly after learning. Learners therefore had little time to consolidate the
learning content and to connect it to their prior knowledge network within their long-term
memory (Kiihl, Navratil, & Miinzer, 2018). Previous findings have outlined that consolidation
of new information might need time (Arndt, Schueler, & Scheiter, 2015). Based on this, further,
follow-up measurements of the learning outcome and mental model development provide the
opportunity to investigate how sustainable learning in VR was. Incorporating VRLEs into a
regular university curriculum would allow for follow-up studies and open promising opportunities
to study VRLESs in a more realistic setting than in the present thesis.

When using VRLEs regularly, the support approaches might be extended to encompass
special training aimed at deeply processing the learning content. For conventional learning
material, coherence formation training is effective and can substantially increase learning
outcomes (Kombartzky, Ploetzner, Schlag, & Metz, 2010; Seufert, 2019). This training could

be adapted to learning in VRLEs with a special focus on learning with VR, animation and
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narrations. Promising learning strategies could be taught and trained to achieve beneficial
long-term effects on learning in VR (Kiihl, Scheiter, Gerjets, & Gemballa, 2011; Kombartzky et
al., 2010). In addition to training, cognitive learning strategies such as metacognitive monitoring
of learning in VR might be important (Hasselhorn & Gold, 2017).

Further technical, as well as organizational issues, might need to be overcome before im-
plementing VRLES regularly in the everyday university setting (Bricken, 1991). Particularly,
group settings and collaborative settings need to be further explored (Hwang & Hu, 2013).
Depending on the used devices, overlapping tracking spaces might cause interference in group
settings. Furthermore, cooperative settings while learning in VR need to be explored and

optimized in future studies.

Extending statistical analyses

Including VRLEs in the university context would allow for the use of different statistical
approaches to analyze research findings as a result of larger sample sizes and available long-term
effects. The included power analysis in this thesis was based on findings from conventional
learning settings and the effect sizes were only briefly estimated. From the present findings,
more precise a priori power analyses for the different support approaches in VR are now
available, and thus, statistical power can be better managed in future studies. In general,
higher sample sizes would allow for more complex analysis of the potential interplay of the
different factors. With the addition of a larger sample size, a more complex multi-level analysis
could be conducted including different mediators and moderators or mediated moderations or
moderated mediations (Zitzmann & Helm, 2021). Additionally, when using long-term data,
autoregression models such as crossed lagged panel models would allow for further insights into
the development of expertise or motivation during the course (Krull, Wilbert, & Hennemann,
2018). Furthermore, collecting process data over a long time might shed further light on
challenges while learning and possibilities to adapt the VRLEs (Christopoulos et al., 2020).
Collecting more data might offer the opportunity to choose different statistical approaches such
as Bayesian hypothesis-testing (Wagenmakers et al., 2018). One advantage of this approach
is that prior findings can be included in the analysis to overcome the limitations of simply
dichotomous testing of hypotheses based on p-values (Wagenmakers et al., 2018). Using the
available data, different models can be contrasted with the central influencing factors and their
differences can be quantified (Rouder, 2014).
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5.2. Conclusion

The primary aim of the present thesis was to outline the potential of VRLESs as a contemporary
learning environment for universities. Within this, the questions of what makes learning in VR
special and what specific challenges learners might face while learning in VR were explored. By
using the theoretical framework EMIL VR, different support approaches were systematically
examined under the consideration of learner’s characteristics. As the learning outcome was
measured in a differentiated manner, and in one study, using a multi-method approach, the
present research also shed light on the associated underlying cognitive learning processes as
well as mental model development. All chosen support approaches increased learning outcomes
in different ways and on different levels. To this end, even pragmatic and initially quite basic
support approaches, such as the elaboration prompt, were found to have a significant positive
effect on learning outcomes. In summary, the present findings imply that the key to success
is to choose support approaches that are related to challenging subprocesses while learning
in VR. Strategic activations, as well as appropriate design of the VRLESs, are pragmatic and
effective ways to foster learning in VR. Adding to this, the importance of considering learner’s
characteristics was also emphasized by the present findings. In terms of future research, the
theoretical framework, EMIL VR, could be extended and more global support approaches
could be included to support learners in VR in the long term. Important factors such as
cognitive or perceptual load need to be investigated. Combining VRLEs with further scientific
advancements such as artificial intelligence might extend the benefits of learning in VR. Future
research might also develop adaptive VRLEs that provide different versions of VR to support
individual learners on their learning paths. This could open a new way to perceive, process,
and integrate complex learning content and might thus reshape the learning culture at the

university in a unique way.
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One challenge while learning scientific concepts is to select relevant information and
to integrate different representations of the learning content into one coherent mental
model. Virtual reality learning environments (VRLESs) offer new possibilities to support
learners and foster learning processes. Whether learning in VR is successful, however,
depends to a large extent on the design of the VRLE and the learners themselves.
Hence, adding supportive elements in VRLES, such as annotations, might facilitate
the learning process by guiding attention and supporting the selection of relevant
information. Additionally, the mapping of pictorial and verbal information is eased by these
annotations. The beneficial effect of annotations is highly dependent on learners’ intrinsic
motivation as intrinsic motivation while learning also affects the information selection and
visual search patterns. In our experimental study (N = 61), we compared two conditions:
learning in a VRLE with or without annotations. We measured the learning outcome
on three different levels (knowledge, comprehension, and application). Additionally, we
investigated intrinsic motivation as a moderator for the effect of annotations on learning
outcome. We found no significant main effect of annotations on learning outcome. The
moderating effect of intrinsic motivation for annotations on the overall learning outcome
was significant. Our results imply that learners are either intrinsically motivated or need
additional support by annotations as these support the selection of relevant information
in the VRLE and therefore enable them to learn successfully. Which type or quantity of
annotations supports learning processes best needs to be explored in future research.

Keywords: virtual reality, signaling, intrinsic motivation, multiple representations in multimedia learning,
coherence formation, mental models

INTRODUCTION

Many different approaches to designing learning environments and supporting learners exist.
Particularly, for science, often abstract representations of the learning content (e.g., in textbooks)
challenges the learners to process, translate, and include concepts into their mental model (Rapp,
2007). As learning scientific concepts is per se challenging, the learners need to be supported
by an appropriate presentation of the learning content. Demonstrations are such an appropriate
form, which allows learners to explore scientific processes, such as chemical reactions. However,
demonstrations cannot be used in all cases. Some processes might occur on a micro level and may
not be observable (Zacharia, 2007; Akgayir et al., 2016). Some demonstrations are not applicable
to a university setting because they need a complex technical setup, are too dangerous, or too
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expensive (e.g., Wilkerson-Jerde et al., 2015). In this case, new
technologies, such as virtual reality (VR), can open the way to
advanced education in different scientific domains (Potkonjak
et al.,, 2016; Wu et al., 2020).

Using VR or 3D simulations to design learning environments
offers the possibility to display a contextualized setting, but
additionally provide the opportunity to analyze learning content
in a different way (Fowler, 2015; Parong and Mayer, 2018;
Radianti et al., 2020). These learning environments offer great
opportunities for experimental learning and are described to
be motivating, increase liking and engagement compared to
conventional settings (Makransky et al., 2019; Di Natale et al.,
2020; Klingenberg et al., 2020; Radianti et al., 2020). For example,
invisible content can be made visible, and sensitive structures
can be composed and decomposed flexibly. Furthermore, micro
or macro phenomena, such as chemical reactions can be made
visual in virtual reality learning environments (VRLEs) that
cannot be observed in the physical world (Schott and Marshall,
2018; Han, 2020; Wu et al.,, 2020). Furthermore, potential risks
can be overcome (Radianti et al.,, 2020). In contrast to virtual
3D animations, learners can immerse themselves in the VRLE.
By immersion and the novelty effect of the VRLEs, learning
processes might be additionally stimulated (Wu et al., 2020).

One challenge remains while learning science in a VRLE:
Learners are usually confronted with different, multiple
representations, such as text and pictures. The stereoscopic
view of the VRLE impacts their perception and therefore
might influence their cognitive learning processes (e.g., Paes
et al., 2017). Mostly, next to the pre-dominant visual, pictorial
presentation of the learning content, often auditory texts or
short verbal labels or annotations are included (Mikropoulos
and Natsis, 2011). All these different representations have to
be understood and integrated into a coherent whole. For this
integrative process of coherence formation, it is necessary to
process the learning content deeply to identify and understand
the relevant concepts and to integrate them (i.e., Bloom, 1956;
Schnotz and Bannert, 2003). A common approach to facilitating
such a deep-learning is to include highlights or signals to
indicate relevant components of the learning content (Richter
et al, 2016). Furthermore, the learners can be supported in
finding corresponding elements (Gentner et al, 1993). For
instance, adding annotations into the pictorial representation
might help to connect corresponding information and highlight
important aspects of the learning content (McTigue, 2009).
Therefore, annotations might support and activate the learners,
induce deeper cognitive learning processes, and foster coherence
formation (Mayer et al., 1995).

Based on instructional design research, we know that these
effects depend on the learner and their aptitudes (Seufert,
2003). Adding, for example, annotations might support learners
with lower prior knowledge, and might cause interference for
learners with high prior knowledge (Kalyuga, 2009). Hence,
learners aptitude and state need to be considered. Factors such
as intrinsic motivation might also have a substantial impact
on invested resources, as well as on the cognitive processing
of the learning material (Moreno and Mayer, 2007; Baranes
et al., 2014; Eseryel et al, 2014; Miranda and Palmer, 2014).

Motivated learners show efficient visual search patterns which
help them to learn successfully. Hence, annotations support
learners with low motivation as they induce a more effective
visual search pattern and consequently learning outcome is
expected to be increased (Eseryel et al, 2014; Miranda and
Palmer, 2014).

Recent studies compared VRLEs to other learning settings
(e.g., Parong and Mayer, 2018; Makransky et al., 2019) and
corroborate that VRLEs could be used for learning. However,
these previous approaches and publications have not considered
how VRLEs should be designed in order to support learning
and the necessary cognitive processes. Most notably, they have
not taken into account for whom VRLE should be designed
in which way, particularly depending on learners’ motivational
state. Overall, the question of how a VRLEs needs to be
designed to foster deep processing of the learning content, and
how to support coherence formation depending on learners’
motivational state, has not been answered yet. Therefore, the
aim of the present study was to investigate the effect of
annotations and their interaction with intrinsic motivation in
VRLE on learning.

THEORETICAL BACKGROUND

The beneficial effects of annotations, the learners’ intrinsic
motivation, and the interplay of these factors will be addressed.
To answer the question of how VRLEs should be designed
for complex scientific content to foster learning and coherence
formation, it is worth having a closer look at the relevant
models that describe cognitive processes underlying learning
with multiple representations.

Cognitive Processes While Learning With
Multiple Representations in Virtual Reality

One theory to describe learning processes is the Cognitive Theory
of Multimedia Learning (CTML; Mayer, 2014). One assumption
of this theory is that information is processed via two different
channels (auditory and visual). It states that information is coded
in two memory systems: the visual and the verbal system. This
idea is based on the dual-code theory proposed by Paivio (1990).
Thus, it is assumed that two separate mental models are built
from these two information sources. At the end of the learning
process, these two different mental models are integrated into
one coherent mental model. This happens under consideration of
the individual prior knowledge stored in the long-term memory
(Mayer, 2014). Another assumption is that working memory
only has a limited capacity to process information. This goes
along with the finding that working memory overload can occur
when too much information has to be processed at the same
time (Baddeley, 1992). Furthermore, the CTML assumes that
processing information is an active process, including selecting,
organizing, and integrating information. This reflects the active
role of the learner and emphasizes that the learner has to invest
certain resources to learn successfully.

To better understand the integration process of verbal and
pictorial information into the mental model, the Integrated Model
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of Text and Picture Comprehension (IMTPC) delivers more
insights (Schnotz and Bannert, 2003). The descriptive branch
describes the processing of verbal and textual information, and
the depictive branch describes the processing of pictures.

Verbal information is first processed sub-semantically, which
results in an internal representation based on the text surface.
This enables learners to simply process the information without
a deeper understanding and allows them to recall simple
definitions or facts. Based on this superficially processed
information further semantic processing takes place and results
in a propositional representation or network. At this level, a
learner would be able to understand the concepts. If learners need
to mentally operate on the information and to apply it in other
contexts, this propositional representation has to be translated
into an analog representation, the mental model (Schnotz and
Bannert, 2003). With this last step, learners switch from the
descriptive to the depictive branch.

In contrast to this multi-level processing of textual
representations, pictures are processed more directly via
the depictive branch hence this branch is particularly important
for learning in VRLEs. First, by perceptually processing
a picture, the information is selected based on cognitive
schemata. To semantically process this information, a picture
comprehension process takes place by mapping visuospatial
and semantic relations (Gentner et al, 1993; Schnotz and
Bannert, 2003). Unlike the information processing in the
descriptive branch, no additional translation of the processed
information is needed to integrate the information because
the created internal mental representation already has
the same analog structure as the mental model (Schnotz
and Bannert, 2003). Learners can also “read” and extract
propositions from this mental model (i.e., they can again
switch branches), in this case from the depictive to the
descriptive side. Thus, there is an interplay between the
descriptive and the depictive branch, and text and picture
information can be integrated and mapped onto each other.
However, neither the IMTPC nor the CTML describes in
detail how this mapping and integration process takes place.
Based on theories on learning with analogies or learning
with multiple representations, these mapping processes can be
distinguished into element-to-element and relation-to-relation
mapping processes (Gentner et al., 1993; Seufert et al., 2007).
Whereas element-to-element mapping processes enable the
learner to connect the learning content on a superficial and
syntactic level, relation-to-relation mapping processes refer to
finding similarities on the semantic level (Seufert et al., 2007).
Therefore, relational mapping provides support for developing
a global understanding of the content, whereas element-based
mapping supports connecting different components on a rather
superficial level.

To deduce the different levels of processing, Bloom’s (1956)
taxonomy is often used to measure learning outcome in a
differentiated manner. Questions aiming at the first level, the
knowledge level, refer to the recognition or recall of facts, terms,
or basic concepts without necessarily understanding what they
mean. Hence, this reflects the superficial and sub-semantic
processing of learning content. The next level, the comprehension

level, involves semantic processing of the learning content. It
refers to concepts or relational structures of single facts and
can be derived when learners are for example, organizing them,
describing them in summary form, or explaining the main
ideas in their own words. For example, local relationships
between the individual components can already be derived or
concepts can be contrasted at this level. The next level of
Bloom’s taxonomy already assumes that a correct and coherent
mental model has been formed. At the application level, learners
can for example, further decompose the learning content into
components and determine how different parts interact with each
other. Furthermore, learned basic principles can be transferred to
other use cases.

Based on these models, and particularly based on the
assumption of IMTPC that pictures can be processed more
directly, VRLEs seem to be a very promising approach to
displaying complex scientific content. VRLEs are visual worlds
consisting of mostly pictorial representations, thus, they support
learners more directly in building a coherent mental model. Even
content that is invisible in the real world can be drafted in the
VRLE and can be used as a scaffold for constructing a mental
model. When a brief scaffold based on a pictorial representation
is constructed, adding further details to the mental model
through the descriptive branch is a more simple and efficient way
to construct a coherent mental model than vice versa (Schiiler
et al,, 2015). The IMTPC implies that the process of building a
coherent mental model out of textual and pictorial information
is not a simple one, and consumes cognitive resources of the
learners (Schnotz and Bannert, 2003). Therefore, the question
arises as to how learners can be supported by the design of the
learning environment to foster coherent formation processes,
especially in VRLEs.

Fostering Learning With Multiple

Representations in Virtual Reality

In VR, the content is mainly displayed visually and the learners
are confronted with highly salient visual or pictorial information.
This perceptually demanding setting might lead to just-in-time
processing, and learners might not be able to select and organize
relevant information into a coherent mental model (Renkl and
Scheiter, 2017). Therefore, an adequate design of the VRLE is one
crucial precondition for learning success.

Two different approaches to support learners by the chosen
design could be used: One approach would be to guide learners’
attention to relevant aspects in the pictorial representation by
displaying visual cues. Cueing refers to guiding attention by non-
content means such as coloring or arrows (e.g., Mautone and
Mayer, 2001; De Koning et al., 2007). However, this approach
would guide learners’ attention but would not provide additional
support to map the auditory text to the given animation.
Another approach is to use textual annotations to support both,
selecting and integrating relevant information (Mayer et al.,
1995). For example, the positive effect of annotating pictorial
representations in learning scientific content was described
by McTigue (2009). Learners with the additional textual
annotation that labeled important components in the pictorial

Frontiers in Psychology | www.frontiersin.org

March 2021 | Volume 12 | Article 645032



Vogt et al

Learning in Virtual Reality

representation had significantly higher comprehension scores
compared to controls without such annotations. Moreover,
Mayer and Gallini (1990) found positive effects of annotations
if these referred to parts and steps of scientific concepts.
Considering their function, inserted annotations could be an
effective mean to support learning processes in VRLEs. The
three functions of annotations in the present study derive from
the following facts: Annotations are salient, provided just-in-
time, exactly at the place where they are needed, and repeat
relevant information.

First, annotations function as signal as they are salient and
appear just-in-time. Based on their salience, Mayer et al. (1995)
states that “annotated illustrations can serve as a signal that help
readers select relevant words and images” (p.40). Such signals
guide attention toward certain aspects of the learning content
and reduce unnecessary visual search and thus improve learning
outcome (Richter et al., 2016). Hence, when learning in VRLEs,
annotations can be used to emphasize certain components of the
VR animation. The effect of signaling in this environment could
be additionally strengthened when these annotations appear
simultaneously to the corresponding narration, just-in time when
learners should listen to the auditory text and combine this with
the corresponding visual entity in the VR animation.

The second function is that annotations support mapping
and integration processes, as they do not only appear just-in-
time but also just-in-place (Gentner et al., 1993; Mayer, 2014).
Based on this spatial contiguity, annotations signalize which
aspects need to be mapped and integrated (Mayer and Fiorella,
2014). Learners attention is drawn to the auditory text, the
corresponding visual entity and a verbal label for this entity.
Thus, the mapping process is eased as learners do not need to
invest cognitive resources to find the corresponding elements
(Mayer et al., 1995).

The third function is repetition. The textual annotation
repeats crucial terms of the auditory text and is also redundant
to the pictorial entity of the VR animation. Thus, based on the
redundancy principle one might assume that such a repetition
is irrelevant and learners could be distracted or extraneously
overloaded (Kalyuga and Sweller, 2014; Mayer and Fiorella,
2014). However, as annotations usually do not display the same
words as the narration but were only short labels, they can
function as coherent information which adds to understanding
(coherence principle; Mayer, 2005). Additionally, it is described
that particularly learners with low prior knowledge benefit
from redundant information (Adesope and Nesbit, 2012). This
repetition of important aspects leads to higher learning outcome
on the knowledge level (Paivio, 1990).

To sum up, the positive effect of short textual annotations
on the learning process has already been explored in classical
multimedia settings. Prior findings indicate that performance
improvement can be found for recall of conceptual information
[see also Boers et al. (2017)] and on higher levels of learning
outcome, such as transfer or comprehension tests (McTigue,
2009; Mason et al., 2013). However, so far there have been no
empirical studies examining the effects of annotations in a VRLE.

Despite the fact that the design of learning environments
might support learners to process the information more

effectively, there is one additional factor that might moderate
these supporting effects, namely the learner him- or herself.

Individual Requirements for Learning
Success in a Virtual Reality Learning

Environment

Aptitude-treatment interaction describes that while designing
treatments for learners, one needs to consider their aptitudes.
One important aptitude is prior knowledge. Depending
on learners prior knowledge, their performance is either
enhanced by additional help or they are able to compensate
for requirements of the given learning setting without
additional help (e.g., Seufert, 2003). Therefore, learners’
prior knowledge has often been taken into account when
analyzing the impact of supporting conditions. However, as
the effects of prior knowledge are well-researched, we want to
address motivation as an additional important factor of the
learner, which might be especially relevant in VRLEs. Based
on the assumptions of the CTML, further development of
the model reflects the importance of affective processes of
learning: The Cognitive Affective Theory of Learning with Media
(CATLM; Moreno and Mayer, 2007) postulates that cognitive
processes are influenced by affective states, for instance by
motivation. Hence, learning performance might be moderated
by motivational states.

Researchers agree that learners who are motivated are more
likely to persist on their task, and are more willing to engage and
to expend effort for the required task completion (Di Serio et al.,
2013). Some previous findings have suggested that using VRLE
fosters learners’ intrinsic motivation when these materials are
compared to conventional learning materials, such as textbooks
(Wu et al,, 2020). Intrinsic motivation refers to doing something
(e.g., learning) because it is inherently interesting, or the learner
perceives the process as enjoyable. It is described as fostering
learning and results in high-quality learning, as well as fostering
creative processes (Ryan and Deci, 2000). Even for short learning
tasks, intrinsic motivation is crucial for learning successfully (e.g.,
Fransson, 1977).

In a game-based virtual learning environment, Eseryel et al.
(2014) uncovered an interaction effect of design and intrinsic
motivation on learning by complex problem-solving. To explain
this complex interaction of cognitive and motivational factors,
underlying visual information processing needs to be considered.
Previous studies imply that a higher intrinsic motivation goes
along with a more efficient visual search pattern of the given
task (Baranes et al., 2014; Miranda and Palmer, 2014). Hence,
selection of relevant information is more efficient. As VRLEs
are highly visually demanding, efficient visual search patterns
are crucial for learning success. Therefore, particularly intrinsic
motivation might have an impact on early information processes
while learning and may have an impact on further cognitive
processing of the learning content. Thus, being intrinsically
motivated might have the same supportive effect on learning
as annotations, namely an improved or eased visual search
and a deepened learning process. Hence, the question arises as
to whether both approaches—annotations as a design feature
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and motivation as a learner feature—might compensate for
each other.

Present Study

We aimed to gain further insights into how to design
VRLEs for learning scientific concepts by using multiple
representations appropriately. We investigated whether adding
textual annotations has a positive effect on different levels of
learning outcome (knowledge, comprehension, and application)
while considering learners’ aptitudes. Annotations, due to their
two supportive functions (signaling and mapping), aimed to
facilitate the construction of a coherent mental model.

Based on our postulated assumptions, we raise the following
research questions:

(Q1) Do annotations have a positive impact on learning
outcome? Previous studies showed beneficial effects of adding
annotations on different levels of learning outcome (e.g., Mayer
and Gallini, 1990; McTigue, 2009; Mason et al., 2013). Due
to their signaling nature, annotations are expected to support
the learner on a superficial level because they facilitate visual
search and guide attention (McTigue, 2009; Ozcelik et al,
2010). Additionally, the annotations used in the present study
are assumed to facilitate element-to-element mapping processes
because they did not include additional information about
processes or relations of the learning content. They simply
labeled the visually displayed learning content with one or
two words. Therefore, the used annotations simply repeated
certain aspects and highlight connections between the textual
label and the visual entity (Seufert et al., 2007). Both functions
of annotations are expected to have a significant impact on
learning outcome on the knowledge level (Mayer and Gallini,
1990; Boers et al., 2017). Based on the taxonomy of Bloom (1956),
the different levels of learning outcome are characterized as
hierarchical. Hence, the chosen annotations might also increase
the learning outcome on a higher level, but not as much as on
the knowledge level (Broadbent, 2017). Based on these discussed
underlying cognitive processes, our expectations are as follows:

We hypothesize a significant and beneficial effect of
annotations compared to no annotations in the VRLE
considering the three levels of learning outcome: knowledge,
comprehension and application (Hla). The largest positive
effect of annotations on learning outcome is expected for
knowledge (H1b).

Additionally, the intrinsic motivation in combination with the
design of the VRLE might be crucial for learning successfully
(Reynolds and Weiner, 2003; Moreno and Mayer, 2007).
Therefore, our second research question is (Q2): Does intrinsic
motivation moderate the beneficial effect of annotations on
learning outcomes? As outlined earlier, intrinsic motivation and
annotations are both expected to have a beneficial effect on
learning outcome. Hence, these two factors might interact in a
compensatory way: When learners are motivated, their visual
search patterns are efficient and they learn successfully. Adding
annotations might build a bridge for a motivational gap and
induce a more effective visual pattern for less motivated learners,
which should be reflected in an increase of the learning outcome.

We hypothesize that intrinsic motivation significantly
moderates the relationship between the treatment factor
annotations and learning outcome in the VRLE (H2).

MATERIALS AND METHODS
A Priori Power Analysis

To estimate the necessary sample size, we performed an a priori
power analysis. As no previous study investigated signaling in
VRLE, we refer to a study that described signaling in a dynamic,
system-paced animation for learning biology [De Koning et al.,
2010; £(V) = 0.35]. Based on the meta-analysis of Richter et al.
(2016) this study reported rather large effect size (Cohen, 1988).
Therefore, we performed our power analysis more conservative
[A(V) = 0.31; & =0.05; power = 0.95]. The needed sample size
with the chosen effect size was N = 60 (G*Power 3.1.9.4.; Faul
etal., 2009).

Participants and Design

Our 67 participants were mainly university students in
psychology as they were recruited as a part of an undergraduate
course in psychology. Due to technical problems, we excluded 6
participants from further analysis. The remaining 61 participants
(34.43% male) were aged between 19 and 52 years (Mgge =
23.73; SDgge = 6.00). About 60% of the participants had at
least once been in contact with VR in the past. We applied a
between-subject design using a VR app and randomly assigned
the participants to one of the two different design options: with
(n = 33) or without annotations (n = 28). As a dependent
variable, learning outcome was measured on three different
levels: knowledge, comprehension, and application. In addition,
learners” prior knowledge and the moderating effect of intrinsic
motivation were assessed.

Materials and Measures

In a short demographic questionnaire, participants were asked for
their gender, age, educational level, their field of studies, and any
prior experiences with VR glasses and applications.

Together with a domain-expert, we developed a pre-test
for prior knowledge that aimed to measure domain-specific
knowledge in science, with a special focus on relevant biological
and chemical topics for seawater desalination. The test consisted
of six open questions (e.g., “What is electrodialysis?”) and one
closed question (allocation of different particles to particle types),
with a maximum score of 20 points. Participants had to complete
this knowledge pre-test prior to the learning unit.

To test the effect of annotations in VRLE, the pre-existing
German version of the application for smartphones of MOZAIK
education (Seawater desalination) was used (mozaWeb3D,
2018). In the respective learning unit, the desalination process
for obtaining drinking water from seawater was shown. A
special focus was put on different extraction methods and
on general information about seawater and its characteristics.
The participants saw visualizations of the learning content
through a stereoscopic video in VR. Additional information
and explanations were offered auditorially. The used application
did not allow the learner to interact with and control the
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VRLE. The information displayed through the annotations in ~ Procedure
one of the two experimental conditions did not include further = The study took place in a realistic learning setting as part
details, but rather simply emphasized certain important aspects ~ of the psychology course at the university. To ensure good
of the learning content. The annotations were placed nearby the ~ data quality without disruption due to technical problems,
graphical representation to which they referred to (see Figure 1,  the study was conducted in a standardized individual testing
mozaWeb3D, 2018). The application was run on smartphones  session with a trained investigator. At the beginning, participants
that were combined with the VR glass ZEISS VR One Plus. were informed about the procedure of the study and signed
Furthermore, we developed a post-test for measuring the an informed consent. All participants started the study by
learning outcomes, which consisted of 13 questions on the three ~ completing the demographic questionnaire and the prior
levels of Bloom (1956); knowledge, comprehension, application.  knowledge task via an online survey tool (unipark), which took
To measure the learning outcome on knowledge level, six  about 15min. Afterwards, in an individual learning session,
questions were developed including three open and three learners received a pair of headphones and virtual-reality
single choice questions (e.g., “Which process for seawater  glasses. The participants watched the VR learning unit about
desalination is particularly environmentally friendly?”). For the = seawater desalination, which lasted about 8 min, and was started
comprehension level, four open questions were included (e.g., by the researcher either with the annotations on or off, to
“Explain why seawater cannot be drunk in large quantities”) and  prevent technical problems. After finishing the VR learning
for application we developed three open questions (e.g., “Which  unit, the participants filled out a post-test online questionnaire
everyday object functions similarly to reverse osmosis?”). In the  including the test of learning outcome and intrinsic motivation
present study, the questions of the post-test aimed to examine  while learning, which took around 15min. At the end of the
different aspects of the learning content. Different questions  questionnaire, participants were able to leave feedback about the
referred to different concepts and processes. Hence, we expected  learning unit and their subjective experience in VR.
no high internal consistency of the different questions. To ensure
that learning outcome was measured in a rigorous way, we RESULTS
conducted two independent ratings based on a clear evaluation
scheme. To analyze the inter-rater reliability, we used the Pearson ~ Descriptive Results
product moment correlation coefficient, which revealed a very =~ Learners’ domain-specific prior knowledge was rather low in
high consistency between the two ratings (r = 0.92, p < 0.001,  both experimental conditions (see Table1). The extent of
CI = 0.86-0.96).
Intrinsic Motivation was measured by self-report with the
respective subscale of the questionnaire of Lepper et al. (2005),

TABLE 1 | Means and standard deviations of the different experimental conditions.

which was based on the original questionnaire of Harter With annotations  Without annotations
(1981). It consisted of three subscales: challenge, curiosity, and n=28 n=233
independent mastery. To ensure sufficient quality translation and M (SD) M (SD)
re-translation has been performed and was compared to the

original version. Items were slightly adapted to fit the VR learning  Prior knowledge (%) 23.85 (14.50) 24.45 (14.49)
context. The internal consistency of the intrinsic motivation scale  Intrinsic motivation (max = 15) 8.94 (1.60) 8.76 (1.64)

was sufficient (@ = 0.81; CI = 0.74-0.89). Learning outcome (%)

To gain further insights into the subjective VR experience, Overall 64.07 (14.87) 57.20 (23.07)
the participants were asked to comment their impressions and Knowledge 61.29 (19.00) 53.74 (23.43)
on their well-being during the VR learning session at the end of Comprehension 64.20 (24.00) 58.80 (28.60)
the study. Application 70.33 (34.33) 62.67 (31.00)

electrically charged , electrically charged .
resin bea in beads

N

counterions & counterions &

mozaik3D

mozaik3D

FIGURE 1 | Virtual reality learning material with (left) and without (right) annotations.
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intrinsic motivation can be classified as moderate for both
groups. The learning outcome was on a medium to a high level,
both overall and on the three levels knowledge, comprehension,
and application.

No differences between the groups in their preconditions
could be found (F < 1, p > 0.203). Multivariate normal
distribution was assumed for the relevant variables for each
experimental subgroup (p > 0.100). Variances were homogenous
based on the Bartlett’s-test (p > 0.060). For calculation,
experimental groups were dummy coded and continuous
variables were mean centered. Data preparation and analysis
were performed using R 3.5.1.

Effects of Annotations on Learning
Outcome

To test our first hypothesis, we analyzed learning outcome based
on three of Bloom’s (1956) levels. We expected a significant
difference between the two experimental groups on all three
levels. Analyzing the descriptive pattern of the learning outcome
differentiated on the three levels of knowledge, comprehension,
and application, we found the expected pattern of our first
hypothesis (H1la) on a descriptive level (see Figure2). The
learners who learned with annotations outperformed the learners
who learned without annotation.

Despite the descriptive patterns the MANOVA did not
reveal the expected significant effect of annotations on learning
outcome when subcategorized into knowledge, comprehension,
and application (Hla; F < 1, p = 0.534 n;umal = 0.037; see
Table 2).

Concerning the question of which level of learning processes
can be supported best, we compared the effect sizes for the
three subcategories, even though none of them were significant
(Cohen, 1988). As expected in our hypothesis (H1b), we found
the largest effect size for knowledge n;artial = 0.031, which can
be classified as a small effect (see Table 2). For comprehension
and application, we found smaller effect sizes. Even though
the descriptive pattern was in line with our expectations, as
the experimental groups did not differ significantly in learning
outcome (H1a), this hypothesis was not supported by the data.

Effects of Annotations on Learning
Outcome Depending on Learners’ Intrinsic

Motivation

In our second hypothesis, we expected intrinsic motivation
to moderate the relationship between the treatment factor
annotations and learning outcome. To test this hypothesis, a
hierarchical multiple regression analysis was conducted using the
mean centered values. In the first step, we included annotations
as the treatment factor in the analysis. Additionally, we included
intrinsic motivation as the aptitude factor. As theoretically

TABLE 2 | Results of the ANOVA depending on the level of learning outcome.

F(1, 59) P Wartiat
Knowledge 1.86 0.177 0.031
Comprehension 0.65 0.425 0.011
Application 0.83 0.366 0.014

100

80

60

40

learning outcome in %

20

MW annotations
no annotations

knowledge

comprehension

FIGURE 2 | Means and standard deviations of the learning outcome on the three levels knowledge, comprehension and application of the two conditions.

application
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relevant predictor, we included prior knowledge as a control
variable but not as an additional moderator, as this was not
the focus of the research question. The first model explained
Rﬁdj = 35.89 % of variance in the learning outcome [F(3, 57)

TABLE 3 | Multiple regression model including prior knowledge, intrinsic
motivation, and overall learning outcome.

Variable Estimate  Standard error  t-value p-value
Model 1

Intercept —0.45 0.42 —-1.10 0.276
Annotations 1.00 0.62 1.62 0.110
Prior knowledge 0.51 0.1 469  <0.001***
Intrinsic motivation 0.53 0.20 2.73 0.008
Model 2

Intercept —0.42 0.39 —1.06 0.295
Annotations 1.01 0.59 1.78 0.090
Prior knowledge 0.47 0.1 4.57 <0.001***
Intrinsic motivation 0.97 0.25 3.90 <0.001"*
Motivation*Annotations —0.98 0.37 —2.65 0.011*

***p < 0.001, *p < 0.05. Model 1: R, = 0.36 Fig,57) = 12.20, p < 0.001; Model 2: R,
=042, Fla 56 = 11.86, p < 0.001.

= 1220, p < 0.001***, see Table3]. In a second step, we
added the aptitude-treatment interaction including annotation
and intrinsic motivation to the first model. The second model
explained R? 4= 41.99% of variance [F(4, 56) = 11.86, f* = 0.72].
Thus, the interaction accounted for a significant proportion of
the variance in the learning outcome (ARidj =6.10, p = 0.011%,
see Table 3).

As expected, prior knowledge had a significant effect on
learning outcome (8 = 0.47, SE=0.11, p < 0.001). The treatment
factor had no significant effect on overall learning outcome (8
= 101, SE = 0.59, p < 0.090) while the aptitude factor intrinsic
motivation had a significant effect (8 = 0.97, SE = 0.25, p
< 0.001***). We found a significant interaction of annotations
and the learners’ intrinsic motivation (8 = —0.98, SE = 0.37,
p = 0.011%). We displayed the moderating effect of intrinsic
motivation on learning outcome in Figure 3. To make our result
more accessible, we displayed hypothetical groups of learners
depending on their intrinsic motivation and experimental group.
As recommended by Cohen et al. (2013), we divided learners into
three hypothetical groups based on their intrinsic motivation: low
(M—1 SD = —1.61), at the mean (M = 0), and high (M +1 SD
= 1.61; see Figure 3). In the control group in which learners
had no support by annotations, learners with high intrinsic
motivation outperformed those with lower intrinsic motivation.
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FIGURE 3 | Learning outcome dependent on learners’ intrinsic motivation (“low:” one standard deviation below the mean, “medium:” at the mean, and “high” one

standard deviation above the mean) and experimental condition.
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For learners in the conditions with annotations, no substantial
effect of intrinsic motivation on the learning outcome was found.

Furthermore, we used the Johnson-Neyman technique
(Johnson and Fay, 1950) to determine the exact values of learners’
intrinsic motivation, for which the conclusion of significant
difference between the experimental groups on the learning
outcome can be assumed (see Figure 4). For learners with —0.73
or fewer points on the intrinsic motivation score below the
mean, the treatment factors annotations had a significant effect
on learning success (p < 0.01). Hence, learners need either be
intrinsically motivated or need annotations to learn successfully.

Virtual Reality Experience While Learning

The participants were asked to comment on the experiment
and their subjective impressions in the VRLE. Overall, the
participants perceived the VRLE as helpful. The design and
explanation were explicitly commended as appealing by 23%
of the participants. Additionally, 13% of the participants
highlighted that their comprehension of the learning content
was fostered by the annotations. Around 30% raised concerns
about VR and technical issues because the appropriate equipment
is needed to gain high-quality output. Furthermore, some
participants (15%) mentioned visual strain while being in VR.

DISCUSSION

While learning complex scientific concepts, learners are usually
challenged by integrating multiple representations. This is also
the case in a VRLE, where different representations of the

learning content, such as pictorial or textual representations,
can be displayed. In the present study, we analyzed whether
annotations could support these processes and whether these
effects depend on learners’ motivation.

Using Annotations to Foster Learning

Processes in Virtual Reality

The first hypothesis addressed the effect of annotations on
the learning outcome. To gain further insight regarding which
cognitive processes are supported best by annotations, we
analyzed the effects differentially for the three levels of Bloom
(1956): knowledge, comprehension, and application. First, we
aimed to answer the question of whether the presence of
annotations had a positive effect on the learning outcome on all
three levels (Hla). This expectation was not supported by the
data. As we predicted in the second part of the first hypothesis,
the largest descriptive beneficial effect of annotations was on the
knowledge level.

With the merely descriptive, but non-significant, effects, we
are in line with previous studies (e.g., Boers et al, 2017).
Some previous findings nevertheless described a significant
positive effect of annotations on knowledge or recall, but found
no effects on higher processing levels, or did not consider
them (Mayer and Gallini, 1990; Boers et al., 2017). Other
previous findings outline that annotations mainly support deeper
cognitive learning processes and learning outcome on the higher
levels of comprehension or application (McTigue, 2009; Mason
et al., 2013). Taking a closer look at these different results, the
question of whether annotations are helpful, and on which level
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FIGURE 4 | Johnson-Neyman interval for intrinsic motivation moderating the relationship between the treatment factor annotations and learning outcome.
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of learning outcome does this beneficial effect occur, depends
on the information displayed by the annotation and on the
composition of the different representations in the learning
material. In the present study, the added annotations were rather
simple labels, including one or two words naming relevant
components of the learning context. As the labels were placed
nearby the corresponding visual information, it also indicated
that the corresponding elements could be mapped. However,
with this focus on elements, it is plausible that the largest effects
have been observed on the knowledge level.

Despite the fact that adding these types of annotations to the
VRLE in our present study resulted in a rather small, and not
significant, beneficial effect on learning outcome, we carefully
outline their impact on the underlying cognitive processes. The
positive effects of annotations are assumed to be due to their
two functions: signaling and help for element mapping (Gentner
etal., 1993; Mayer et al., 1995). The degree to which signaling has
a beneficial effect is highly dependent on the visual requirements
of the learning material. To uncover a substantial and beneficial
effect of annotations, the learning material or environment
needs to be sufficiently visually complex (Richter et al., 2016).
In the present study, the VRLE consisted of many simplified
depictions of the technical or chemical processes. Therefore, the
visual display of the learning content was rather a schematic or
abstract representation of the learning content. Using abstract
representation reduces the unnecessary load while learning, and
is hence beneficial (Butcher, 2006). However, this simplification
lowers visual requirements, and this might results in lacking the
beneficial effects of signaling because they are no longer needed
(Richter etal., 2016). As we did not vary the degree of abstraction
in our present study, no further assumptions about its influence
can be made. Our power analysis was based on a study which
also used signaling in a system paced dynamic environment.
However, in this study the effect of signaling might be increased
as luminance differences were included and by this the effect size
of signaling might be enlarged (De Koning et al., 2010).

As outlined earlier, annotations are not per se limited to the
element layer, but might be extended to foster the relation-
to-relation mapping by displaying further information, such as
information about related or similar processes of the learning
content. Using annotations with relational information might
enlarge the positive effect of annotations on the semantic
processing and the integration of information into a coherent
mental model, and might enlarge the effect on comprehension
and application in the learning outcome (Schnotz and Bannert,
2003).

Additionally, in our first hypothesis, we did not consider
the learners’ aptitudes and states while learning. As learning is
an active and resource-consuming process, learners’ aptitudes,
such as prior knowledge, and the learner’s motivational state are
crucial for learning success.

Impact of Annotations and Motivation on
Learning Outcome

In our second hypothesis, we analyzed the complex interplay of
annotations and intrinsic motivation when controlling for prior
knowledge. Learners™ prior knowledge as a control variable had
the expected large impact, and thus our study is in line with many

other studies on expertise-related design effects (Seufert, 2003;
Kalyuga, 2009). However, one of the most interesting results
of this study is that we found a significant interaction between
learners” intrinsic motivation and the presence of annotations.
Whereas, learners in the group without annotations differed in
their learning outcome depending on their intrinsic motivation,
learners in the experimental group with annotations did not show
significant differences in their learning outcome depending on
their intrinsic motivation. As both factors (intrinsic motivation
and signaling through annotations) are described in the literature
to have an activating character and a beneficial effect on learning
outcomes, our results are in line with these previous findings
(Lepper et al., 2005; Richter et al., 2016).

In conclusion, learners are either intrinsically motivated,
which results in a higher learning outcome compared to less
motivated learners, or they are supported by guiding elements,
such as annotations, which reduce visual search while learning.
As reflected by the CTML and the CATLM, the learner has an
active role while learning (Mayer, 2005; Moreno and Mayer,
2007). Based on the literature, one can assume that when the
learner is intrinsically motivated, this goes along with a higher
investment of cognitive resources, and this might lead to a
higher learning outcome (e.g., Song et al., 2016). As outlined
earlier, high intrinsic motivation goes along with more efficient
search patterns (e.g., Baranes et al., 2014), and hence learners
can compensate for the lack of annotations. Said another way,
when less motivated learners received annotations, this also had
a beneficial effect on learning, presumably by guiding attention
and reducing visual search.

The findings of the present study imply that using annotations
in a VRLE has a beneficial effect on the learning outcome,
and might bridge the motivation gap by fostering learners
who are not intrinsically motivated. But, of course, one could
ask why the annotations did not work as an enhancer for
motivated students, which would have resulted in even higher
scores (i.e, a synergetic effect). In our study, the visual
requirements of the VRLE were assumed to be rather low.
A twofold activation, leading to “double” investment, seems
to have not been necessary. Therefore, a synergetic effect of
intrinsic motivation and annotations was neither expected nor
found. However, this might be questionable because learners
did not reach the maximum of learning outcome in neither
of the two activating conditions. Like an illusion of knowing
(Avhustiuk et al., 2018), learners might have had the (false)
impression that they reached their maximum, and invested
sufficient resources. So, one might ask what would have been
necessary to activate learners incrementally. Nevertheless, the
importance of considering the learners’ aptitudes and their
current state while learning when analyzing the effects of VRLE
was underlined by the present findings.

Strength and Weaknesses and

Recommendations for Future Studies

As the results of the present study indicate, an activating effect
of annotations or increased intrinsic motivation on the learner,
the underlying mechanisms and cognitive processes need to be
further explored. In our present study, the main focus was to
uncover the effect of adding annotation and interaction with
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intrinsic motivation while learning. Moreover, further cognitive
mechanisms might be crucial and need to be taken into account.
For instance, to uncover the perceived cognitive demands,
which are posed by the VRLE, future studies should include a
differentiated measurement of cognitive load. Such a measure
could help to gain further insight into the distribution of the
learners’ cognitive resources with regard to intrinsic, extraneous,
and germane loading aspects (Klepsch et al., 2017). On the
one hand, this would lead to further insights into whether
or not additional annotations increase the cognitive demands,
particularly the extraneous cognitive load. On the other hand,
annotations or motivation might be activating and increase
the invested resources of the learner while learning, which
would be reflected by germane cognitive load. Additionally,
collecting process data via eye-tracking or pupillometry might
enable deeper insight into the attention guiding effects of
annotations and their effects on visual search, as well as the
visual requirements of the learning material. Furthermore, the
visual search pattern of the integration of information of multiple
representations while learning might be investigated by this
additional data.

In the present study, we focused on measuring intrinsic
motivation. Further aspects of motivation might also be explored
in future studies. In our study, motivation has only been
treated as a state variable. Motivational traits, for example, goal
orientation, might also have a substantial impact on the learning
outcome and need to be researched in the field of VRLE (Wolters
et al., 1996; Eccles and Wigfield, 2002).

Despite the fact that we found a positive and compensating
effect of annotations in VRLEs, the effect might be highly
dependent on the concrete design of the learning material,
learning content as well as the chosen VRLE. VRLEs range from
non-immersive 3D computer simulations to immersive VR with
6 degrees of freedom. Especially in an applied setting such as
university courses, the use of simple VR headset like we used
in our study would be easier to implement compared to high
fidelity VR headsets. However, future studies might investigate
the beneficial effects of annotations with other VRLEs. One
limitation of this study is that we used a VRLE that neither allows
the learners to choose their own perspective nor allows them to
interact with the virtual environment. Hence, the field of view
was determined. This goes along with the beneficial effect that
the challenge of guiding attention in the VRLE does not have to
be faced. Therefore, only attentional processes in the field of view
need to be considered. When learners are able to choose their
own perspective in VR, this leads to additional challenges for the
design of VRLEs, and makes it necessary to monitor the learners
by using process data during their VR learning session.

The positive effect of annotations for learners with low
motivation can therefore not be generalized for all kinds’ of
VRLEs, as the interactivity in the VR might have an impact
on learning outcome. Interaction in VRLEs might also have
a beneficial effect on motivational processes, but might cause
additional task load or cognitive load, and therefore might be
distracting. Hence, further studies are required to gain insights
into the potential of VRLEs under consideration of cognitive
processes and motivational aspects. Additionally, the setting
of the VRLE needs to be considered. In our study, learners

used the VRLE in a controlled setting. As uncovered in the
pilot study, learners are rather challenged by the handling of
the unfamiliar VR-application, and therefore the researcher
had to assist with the technical setup. In line with this idea,
participants raised many concerns about technical problems in
their subjective feedback. Therefore, the question can be raised
whether using this kind of learning environment is possible in
real-life settings, such as university courses or classroom where
the implementation of individual support would be challenging
(Checa and Bustillo, 2020). One approach to this challenge would
be to train the learners to interact successfully with the technical
equipment, and to foster their handling skills in general. This
would enhance their ease of use and would foster their technical
skills, which could be necessary for future work settings.

CONCLUSION

New possibilities to teach scientific concepts in VRLEs come
along with the challenge to choose an appropriate design.
An adequately designed VRLE supports learners in integrating
the learning content into a coherent mental model. For
concrete visualization and implementation, learners’ aptitudes,
for instance, prior knowledge and intrinsic motivation while
learning, need to be considered. A lack of intrinsic motivation
may be bridged by adding supportive elements, such as
annotations. Whereas, highly intrinsically motivated learners
seem to successfully face the challenge of integrating information
in the mental model, learners who lack intrinsic motivation need
to be supported. Future research should focus on uncovering
further details about motivational and cognitive processes while
learning in VRLEs. Particularly, motivational and cognitive
processes, in combination with elements guiding attention
and supporting coherence formation, may be essential. One
future challenge is to uncover the possibilities of VRLEs
and to deduce certain design recommendations and principles
for VRLEs.
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Immersive virtual reality learning environments (VRLEs) have great potential but they do not
guarantee effective or in-depth learning. Activating learners by including prompts, has been re-
ported to increase learning in VR. Based on their promising effects in conventional settings,
elaboration prompts should increase learning outcomes by activating learners to explain the
learning content in their own words or to contrast it to prior knowledge. In our study, we
investigated the effect of an elaboration prompt before entering the VRLE on learning robotics.
Our between-subject study (prompt vs. no prompt) included N = 64 participants. We applied a
multi-method approach (functional and structural) to measure mental models. We used a
differentiated learning outcome measurement (knowledge, comprehension, and application) as a
functional measurement. By using the structural assessment of knowledge technique, we deduce
the structural accuracy of the developed mental model. We found an increase by the elaboration
prompt on knowledge level but not on comprehension or application level. The interplay of pre-
accuracy and prompt had a significant impact on structural accuracy after learning. Application
level and structural accuracy after learning were positively correlated. Our multi-method
approach delivered insights on different aspects of the developed mental model when prompt-
ing before entering the VRLE. For future research, further approaches to explore in-depth learning
in VRLEs are recommended.

1. Introduction

Learning scientific content or technical concepts is often abstract, not intuitive or easy to access. Using virtual reality learning
environments (VRLESs) is one promising approach to depict technical concepts for higher education learning (Wu, Yu, & Gu, 2020).
Virtual reality (VR) is defined as *a computer-mediated simulation that is three-dimensional, multisensory, and interactive, so that the user’s

experience is ‘as if" inhabiting and acting within

an external environment’ (Burbules, 2006, p. 37). For instance, VRLEs have been used to

create situated and realistic learning environments where learners can experience micro or macro phenomena otherwise hard or
impossible to include in an everyday university setting (Radianti, Majchrzak, Fromm, & Wohlgenannt, 2020; Calvert & Abadia, 2020).
When learning with simulations in VR, this allows learners to experience the learning content in a multisensory way. Particularly, by
using immersive VR, including a head-mounted display with a stereoscopic view, the VRLE is experienced from the inside and offers
the possibility to fully immerse oneself into the learning environment (Cummings & Bailenson, 2016).
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Many previous studies aimed to explore the potential of VRLEs and thus compared learning in immersive VR with desktop VR or
conventional learning material (Howard & Lee, 2020; Klingenberg et al., 2020; Parong & Mayer, 2020). Heterogeneous effects were
reported: The meta-analysis of Wu et al. (2020) summarized 35 studies investigating the effects of immersive VR. The overall effect
indicated that learning in immersive VR was more effective than other learning settings. However, they reported that 34% of the
studies showed no or even adverse effects. For instance, Makransky, Andreasen, Baceviciute, and Mayer (2020) described the bene-
ficial effects of learning in immersive VR on liking but not on learning outcome. Moreover, Parong and Mayer (2020) describe that
learning with powerpoint slides was more effective than learning in immersive VR. In addition, Baceviciute, Mottelson, Terkildsen, &
Makransky (2020), describe that reading in VR led to a higher retention than listening to an auditory text. Based on prior findings, one
can conclude that there are many influencing factors for learning successfully in VR: the learning content and its presentation, the
instructional design, and the learners’ prior knowledge and abilities.

Hence, VRLEs do not per se guarantee successful learning. Therefore, the question arises how to support learners to turn the po-
tential of VRLEs into an actual in-depth learning approach. Generally, there are two possible ways for such an approach: on the one
hand, learners might be supported by providing relevant information as pre-training before learning, i.e. the support specifies what to
learn (Meyer, Omdahl, & Makransky, 2019). On the other hand, learners might be supported on a strategic level, i.e. the support
specifies how to learn. Parong and Mayer (2018) investigated one approach of strategic support: They asked learners to summarize the
learning content after each VR learning session, which resulted in a beneficial effect on learning outcome. However, summary prompts
means that learners must have an additional workstation and may have to switch back and forth between immersive VR (which takes a
larger space to interact) and their desk. Depending on the implementation and the given learning situation, this can be an organi-
zational challenge and rather costly.

Therefore, we aimed to investigate an approach that includes the advantages of both approaches by including an elaboration
prompt, before entering the immersive VRLE. Thus, we offer strategic support, which can be easily generalized to different learning
contexts and environments, but which is nevertheless provided beforehand not to interrupt the learning process in the VRLE. But, what
is an elaboration prompt? In general, prompts aim to activate and stimulate learners either on a meta-cognitive or cognitive level to
foster related learning processes (Bannert & Reimann, 2012; Gentner & Seufert, 2020). More precisely, cognitive prompts can be used to
activate cognitive learning processes in a targeted manner. This can then result in a more in-depth elaboration of the learning content.
As this is what we are aiming to, we use cognitive prompts that particularly foster in-depth elaboration of the learning content. These
prompts are also referred to as elaboration prompts (e.g. Endres, Carpenter, Matrin, & Renkl, 2017; Loibl & Leuders, 2019; further
details see 3.3).

We used a multi-method approach to explore the positive effects of our elaboration prompt on learning. Particularly, we inves-
tigated the prompt’s effect on the development of a mental model containing abstract technological concepts. On the one hand, our
focus was on learners’ performance or more precisely on the extent to which learners are able to answer questions on different levels of
learning outcome (knowledge, comprehension, application; Bloom, 1956). This can be described as a functional approach to measure
mental models. Furthermore, we measured which knowledge structure was given before and after the learning unit. By using the
structural assessment of knowledge technique, we determined learners’ structural accuracy compared with the respective counterpart,
based on expert ratings (Trumpower & Vanapalli, 2016; for further details see appendix A). Furthermore, as the development of a
mental model also depends on learners’ aptitudes, we also considered these in our study.

2. Mental models and learning in virtual reality

To display the learning content in VR, different information sources are often combined (e.g. Parong & Mayer, 2018). The
beneficial effect of combining pictorial and textual components (multimedia effect) has been well researched and established when
learning with conventional material (Mayer, 2009). Therefore, using multiple and different representations might also be promising in
VRLEs. When learning successfully, this information is built up to an accurate, coherent mental model (Mayer, 2014; Scheiter, Schiiler,
& Eitel, 2017). On the one hand, VRLEs offer substantial learning opportunities because learners are able to choose their preferred
position to process the textual and pictorial representations. Furthermore, learners are able to explore the learning content by
interacting with the given objects in the virtual world. On the other hand, this might result in simply watching the learning material
superficially. Hence, to understand potential challenges while learning in VR, the underlying cognitive processes need to be
considered.

The Cognitive Theory of Multimedia Learning (CTML) by Mayer (2014) offers insight into the perception, processing, and integration
of learning content. This theory describes processing depending on different codes (text or picture) or different modalities (visual or
auditory; Paivio, 1990). If learning content is presented in different codes, this goes along with processing via both channels and the
probability of successful memory retrieval is increased (Paivio, 1990). For instance, while learning in VR, spoken text, animations, or
pictures of the learning content are combined to trigger this beneficial effect (e.g., Parong & Mayer, 2018; Radianti et al., 2020). While
processing the learning content, first, two separate models, the verbal and the pictorial model, are built from the different information
sources (Mayer, 2014). At the end of the learning process, these two mental models are integrated into one coherent mental model.
While processing both verbal and pictorial information building one coherent mental model is the main goal. Johnson-Laird (1981)
described mental models as internal models of the world which are analog in nature and are set up based on perception and information
processing. Based on these developed mental models, learners are able to answer questions on different skill levels.

To understand the integration process of texts and pictures into the mental model, the Integrated Model of Text and Picture
Comprehension (IMTPC) provides more details (Schnotz & Bannert, 2003). Because pictures are analog in nature, no additional
translation process is required after processing the information semantically to include them into their analog counterpart, the mental
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model (Schnotz, Bockheler, & Grzondziel, 1999). In line with other text comprehension models (e.g. Newmeyer, 1996) the IMTPC
describes an additional translation process when including verbal information (written or spoken) into the mental model. After
processing sub-semantically, an internal representation results based on the given text syntax. When verbal information is then
semantically processed, this results in propositional representations (Schnotz & Bannert, 2003). To include these propositional rep-
resentations into the analog mental model, these need to be translated. Hence, there is a fundamental distinction between proposi-
tional representations and mental models. Propositional representations are described as strings of symbols with an arbitrary syntactic
structure while mental models are analog in nature (Johnson-Laird, 1981). Furthermore, the IMTPC describes a possible shortcut
between the internal text surface representation and the mental model. Hence, it assumes this superficially processed textual infor-
mation can also be stored and integrated into the mental model without being further processed semantically (Schnotz & Bannert,
2003).

2.1. Measuring mental models

To answer the question of how to measure a mental model, these need to be first characterized in more detail. As outlined earlier,
mental models represent an external world’s internal model (Johnson-Laird, 1981). Although there is a basic consensus about mental
models’ analog nature, different definitions emphasize the mental model’s more specific characteristics (Hong & O’Neil, 1992). For
instance, Rouse and Morris (1986) described mental models as a specific type of knowledge in the respective field of interest in contrast
to a more general view of knowledge. White and Frederiksen (1990) defined mental models as knowledge structures that incorporate
different types of knowledge: declarative, procedural, and a control structure. Another definition described the term mental model to
be connected with the organization and structure of the processed knowledge (Kraiger, Ford, & Salas, 1993). Hence, based on these
mental models, certain functions of concepts can be deduced and future events anticipated (Rouse & Morris, 1986). Consequently,
when learning in VR different aspects of the concept mental model can be used as indicators for learning success. The mental model’s
resulting structure represents a more abstract part of the mental model, giving information about relationships and distances between
the included concepts without relying on direction or describing concrete consequences. When measuring mental models by a
multi-method approach, this might uncover different aspects of mental models: On the one hand different levels of information
processing of declarative knowledge (semantic or sub-semantic) might be measured by a functional approach. On the other hand, the
resulting mental model’s configuration or organization structure including distances and relationships between different concepts
might be uncovered using a structural approach (Kraiger et al., 1993).

Therefore, both functional and structural approaches were chosen to assess the quality of learners’ mental models in our study. To
measure mental models’ functional aspects, performance tests with questions differentiating sub-sematic and semantic processing are
used. Bloom'’s (1956) first level (knowledge) reflects sub-semantic processing and thus learners’ performance on simple recall of terms
or definitions. In contrast, higher levels (comprehension and application) require semantic processing (Bloom, 1956). To answer
comprehension questions, learners must predict the effect of manipulating one component onto another. For application, a more global
understanding is necessary. Different components, their relating cause-and-effect chains, and their connection to already stored
knowledge must be correctly combined and applied to answer these questions. Using this taxonomy leads to insights into the
connection of the concepts on a functional level but does not deliver insights into the structure of the mental model itself.

To analyze the mental models’ structure, the structural assessment of knowledge technique (SAK; Kraiger et al., 1993) can be used.
SAK is a summative assessment to investigate the resulting knowledge network’s accuracy and it’s undirected connections and distance
between included concepts (Jonassen, 1995). The SAK and the resulting structural accuracy are specified based on the rating of pairs of
concepts for their undirected connectedness (Trumpower & Vanapalli, 2016). These ratings can be compared to experts’ knowledge
networks and accuracy can be deduced (Acton, Johnson, & Goldsmith, 1994). For instance, the expert might rate the relationship
between the concepts actuator technology and sensor technology as with a 2, standing for a rather weak relationship and a high distance
between these concepts. When participants rate these concepts to be strongly related in contrast to those of the experts, this is reflected
in a low accuracy score (for further details see appendix A). This technique has been successfully used in the field of learning science to
examine the structure of the resulting mental model (Trumpower & Vanapalli, 2016; Wouters, van der Spek, & van Oostendorp, 2011).

2.2. Fostering in-depth learning processes by using prompts

The theory of generative learning activities described by Fiorella and Mayer (2016) refers to an active learning process, including
making sense of the learning content by integrating new information into the pre-existing mental model. Prompts can support
generative learning activities, for instance, when they ask learners to learn by summarizing (e.g. Parong & Mayer, 2018). Prompts are
described as strategy activators because they support specific cognitive strategies (Reigeluth, 1983; Bannert & Reimann, 2012). Hence,
they increase learning outcomes and support the development of a mental model (Bannert & Reimann, 2012; Berthold, Eysink, &
Renkl, 2009; Berthold, Niickles, & Renkl, 2007). Additionally, prompts might enable learners to transfer what they have learned to
new contexts.

Studies have described different realizations of prompts in the learning context. For instance, learners were asked to take notes,
think of examples of their everyday life, or conduct short summaries (e.g., Bannert & Reimann, 2012; Parong & Mayer, 2018; Endres
et al., 2017). All these prompts aim to foster in-depth in contrast to superficial and non-semantic learning processes and they activate
the elaboration of the learning content. Therefore, these are also named elaboration prompts. In one study, learners were activated to
connect and compare relevant concepts of the learning content. Learners in the elaboration prompt group outperformed the learners in
the control group (Endres et al., 2017). Including explanatory components, which activate the learners to process the content deeply
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and rephrase the relevant concepts in their own words, is particularly effective (Berthold et al., 2009; for further details see 3.3).

Few studies have examined the effects of prompting in VRLEs. In this context, learners were encouraged to interact with a VRLE in
which learning content was repeated and important concepts were outlined by the prompts (Kamarainen et al., 2018), or learners were
asked to interrupt the VR experience to write short summaries (Parong & Mayer, 2018). The beneficial effects of these prompts on
learning outcome were described and uncovered in simple recall and higher learning outcomes. These prompts have in common that
they were included in the learning unit and require specific adaption to the respective learning unit. Reflecting on these findings, one
promising and very flexible approach to activate learners is to use elaboration prompts, including an explanatory component before
entering the VRLE. As outlined before, when adding the elaboration prompt into the instruction, these do not have to be adapted to the
specific VR learning content and do not interrupt the learning process and are very flexible to implement.

Our study investigated this beneficial effect of using an elaboration prompt before entering the immersive VRLE. To provide in-
sights into the resulting mental model, we used the aforementioned functional and structural approaches: learning outcome measures
on different levels and structural accuracy measured by SAK. Furthermore, we considered specific aptitudes of the learners to control
their impact on developing a mental model. Pre-existing prior knowledge influenced the mental model’s development and learning
outcome (e.g., learning outcome based on Blooms’ taxonomy: Seufert, 2019; Lehmann & Seufert, 2018, and structural: Riemer &
Schrader, 2016; Trumpower & Vanapalli, 2016). Therefore, prior knowledge might impact the beneficial effect of the prompt.
Furthermore, learners’ abilities, namely verbal ability, was described as crucial for the verbalization of the developed mental model:
The influence of verbal ability on different learning outcome levels (knowledge, comprehension, and application) is well proven
(Wallen, Plass, & Briinken, 2005). As verbal ability has been described to impact accuracy scores significantly, we also considered this
aptitude in relation to our structural approach to measuring mental models (Jonassen, 1995).

2.3. Present study

While learning in VR, learners are challenged by processing and integrating all relevant information in one coherent mental model.
Therefore, we implemented an elaboration prompt to foster the semantic processing of the learning content (Bannert & Reimann,
2012; Endres et al., 2017). Hence, we expected the elaboration prompt to particularly impact the learning outcome’s higher levels
because these reflect semantic processing. Our expectations were as follows:

- We hypothesized that a significantly higher learning outcome would be observed for the group with prompt than in the group
without prompt for all three levels of Bloom (1956; knowledge, comprehension, application; Hla). Additionally, we expected the
elaboration prompt to cause a larger beneficial effect on the higher learning outcomes, namely, comprehension and application,
compared to the knowledge level (H1b).

Furthermore, we investigated whether the elaboration prompt had beneficial effects on the structural accuracy of the resulting
mental model (Kraiger et al., 1993; Trumpower & Vanapalli, 2016). As building connections is highly dependent of the level and
sophistication of pre-existing knowledge networks, we assume that the beneficial effect of prompting on the post-accuracy score
depends on the pre-accuracy score (Kraiger et al., 1993; Scheiter et al., 2017; Trumpower & Vanapalli, 2016). Hence, we expect the
following effect:

- We hypothesized that the elaboration prompt’s beneficial effect on structural post-accuracy of learners’ mental model depends on
the pre-accuracy (H2).

Previous findings outlined, that for both, high structural accuracy and answering questions on the application level require a more
global understanding of the connectedness of the different components, compared to the knowledge and comprehension level, these
two measurements are expected to be related (Bloom, 1956; Davis, Curtis, & Tschetter, 2003; Kraiger et al., 1993; Trumpower &
Vanapalli, 2016). For instance, Goldsmith, Johnson, and Acton (1991) described a positive relationship between structural accuracy
and learning outcome. Thus, based on theoretical assumptions and prior findings we assume as follows:

- We hypothesized a significant positive correlation between the mental model’s accuracy and learning outcome based on the
application level (H3).

To gain further insights into the processes while learning in VR, we investigate as an aditional exploratory research question, how
the elaboration prompt affects learners’ distribution of attention in the VRLE. To quantify the learners’ attention, we explored the time
the robot was focussed in the learners’ field of view. As our analysis was based on a very brief measurement of attention based on head-
tracking data, no specific hypothesis was postulated.

3. Material and method

3.1. A priori power analysis

To determine the necessary sample size, an a priori power analysis was performed. To estimate the effect size, we based our analysis
on the study of Endres et al. (2017). They uncovered a large beneficial effect of an elaboration prompt on higher learning outcomes (d
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= 0.62). Based on our power analysis (d = 0.62; a = 0.05; power = .80), the necessary sample size was N = 66 (G*Power 3.1.9.4; Faul,
Erdfelder, Buchner, & Lang, 2009).

3.2. Participants and design

In this study, we tested an initial sample of N = 67 participants. We had to exclude three participants due to technical problems. The
remaining 64 participants were mainly university students studying psychology. The majority of the participants were female (70%)
and ranged from 18 to 48 years of age (Mage = 24.05; SDage = 6.05). The design of our immersive VR-study was a between-subject
design: Participants were randomly assigned to one of the two experimental conditions based on a computer-generated randomiza-
tion list (RandList 1.2; Ellwanger & Luedtke, 2001) with (n = 31) or without (n = 33) an elaboration prompt. As dependent variables,
we measured the learning outcome on the three levels: knowledge, comprehension, and application. Additionally, accuracy scores
based on the mental model structure were measured by the SAK, both before and after learning. As covariates, we considered learners’
aptitudes, namely, their prior knowledge (functional and structural) and verbal ability. For further exploration of the VR learning
experience, we assessed learners’ perceived presence in VR and attention distribution. Our analysis was based on head-tracking data.
This brief measurement of attention was used to gain insights into attention distribution and interaction with the VRLE.

3.3. Learning material and the elaboration prompt

The auditory learning unit consisted of two main topics: On the one hand, it contained details on the robot, for instance, its technical
specification; on the other hand, rather abstract content such as basic kinematic definitions were included. To foster learners’
engagement in the topic, we chose the robot as the narrator (‘Hello, I am a service robot for home use ..."). The robot described its height,
weight and the potential use of the platform on its back. Additionally, it provided more details about the general distinction between
industrial and service robots. The robot gave insights into its main function, which was cleaning the floor. It described the necessary
technical components to conduct its cleaning task. For instance, it described its sensors and safety protocols (‘First, I capture my
environment through various sensors and a camera ... ’). This explanation also included details about data processing, its fusion and its
transformation into appropriate reactions. Furthermore, the robot provided information about its general moving trajectory and its
relation to the more abstract concept of kinematic (‘I can move in a straight line, which is also described by the term ... ’). Next, the robot
provided more details about its locomotive system and the underlying control circuitry. For instance, it described the particular
controller (PID controller) and its connection to movements and driving speed. At the end of the learning unit, the robot explained
differences in local and global navigation and how this was related to its cleaning task (‘ ... in global navigation, I have a more
comprehensive environment model and try to reach my cleaning goal without driving into unnecessary dead ends ... *).

While listening to the robot, the learners saw the robot as a VR animation, allowing them to visually perceive some aspects of the
learning content (see Fig. 1). This animation contained information on the robot, its component, and its moving trajectory, and its
purpose was to stimulate the learners to elaborate on the learning content deeply. Hence, the learning unit focused on different types of
knowledge. Both, the robot’s narration and VR animation of the robot contributed to the knowledge acquisition. For instance, included
facts (e.g. height and weight of the robot) reflected the learning outcome’s knowledge level (Bloom, 1956). The distinction between
related concepts reflected the comprehension level (e.g. Which aspects are taken into account for global instead of local navigation?). The
application level included a more general understanding of different components (e.g. What happens if the distance between the current
pulses in the drive is shortened?).

The animation was a VR simulation programmed with Unity (version 2019.2.0f1). The learners were able to choose their explo-
ration perspective and move in the VR. By using the controls, they were able to interact with the surrounding environment. To get to
know the learning environment, learners had to perform a short sorting task of dishes in the kitchen environment. However, the
learners were not able to manipulate the robot. A 3D model of the humanoid robot REEM from the manufacturer PalRobotics was used
to display the virtual robot. REEM was placed in a kitchen environment and automatically entered the room. The task of the learners

Fig. 1. Virtual reality learning environment displaying the service robot.
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was to listen to the robot and observe its behavior. Because the study contained a second and separate part investigating human-robot
interaction, the robot model was slightly adapted to be slightly larger than its real counterpart (1.75 m instead of 1.6 m). In addition, a
mouth was added to the robot’s face to make it appear friendlier in the VR. The VRLE was displayed by using an HTC Vive Pro. Previous
findings outline that stereoscopic view and wide fields of view of visual displays are essential to ensure the participants feel immersed
in the VR environment (Cummings & Bailenson, 2016).

To activate learners, we included a prompt in our study before learners entered the VRLE. Prompts might trigger different cognitive
learning processes by inducting generative learning strategies (Fiorella & Mayer, 2016; Bannert, 2009). The chosen prompt was
developed based on theoretical considerations and adapted based on prompts that were used in previous publications (Bannert &
Reimann, 2012; Berthold et al., 2009; Endres et al., 2017):

>You will now get to know the robot better. You will also learn some details about robotics. Pay particular attention to concepts and terms
that are new to you and how they are related to each other. Imagine that you have to explain them to someone else who has no prior
knowledge in this field.’

The developed prompt included different elements, that aimed at stimulating the elaboration of the learning content. First, we
aimed to activate learners to recall the most important keywords and definitions with the chosen elaboration prompt. For that purpose,
we included an explanatory component (Bannert, 2009). The publication of Berthold et al. (2009) outlines the effectiveness of
including such an explanatory component into a prompt on both, procedural knowledge and conceptual understanding. Based on this
finding, we asked our learners to prepare a peer-explanation at the end of the learning unit. For the peer-explanation, learners are
required to recall the most important concepts and definitions and hence this might trigger learning outcome on the knowledge level
(Bloom, 1956). As claimed before, our aim was not simply to induce superficial learning but to stimulate in-depth processing of
learning content. Hence, we included a second aspect into the developed prompt: Learners received a hint, that the presented concepts
are also related in a meaningful way. This part of the prompt was based on the study of Endres et al. (2017). They used one elaboration
prompt to stimulate learners to think of potential connections or conflicts of the new information from the learning unit and their
pre-existing knowledge. Knowing about meaningful connections and understanding the relationships between concepts, or deduce
potential conflicts, reflects learning outcome on the comprehension level (Bloom, 1956). Hence, by including such a component into
our elaboration prompt, learners were stimulated to go beyond superficial processing and to process the learning content semantically
(Schnotz & Bannert, 2003). The third aspect of our developed prompt was that the peer-explanation does not only require rephrasing
the basic concepts but is challenging as the peer does not have any prior knowledge in the field of robotics. Hence, learners can not
simply rely on repeating the phrases of the learning unit but need to translate the learning content in their own words. This requires
processing the learning content semantically and for instance search for synonyms in their mental network of prior knowledge or
contrasting the new concepts to concepts that they already know (Schnotz & Bannert, 2003; Endres et al., 2017). This third aspect of
our elaboration prompt reflects learning outcome on the application level (Bloom, 1956). Furthermore, the fact that learners are
triggered to build meaningful connections, which requires translating and integrating the new concepts into their prior knowledge
network, should stimulate them to build a more accurate structural knowledge network (Kraiger et al., 1993; Bannert & Reimann,
2012).

3.4. Questionnaires

In a short online questionnaire, participants were asked for their gender, age, educational level, the field of study, experiences with
VR head-mounted displays and applications, prior contact with robots, and whether they own a specific type of robot. To measure
verbal ability, we used the subcategory of the basic module A (similarities) of the IST2000-R (Liepmann, Beauducel, Brocke, &
Amthauer, 2007). This test comprised 20 items (items 41-60) for which participants were instructed to mark two corresponding words
in a list of six words. The decision should have been based on an obvious generic term suitable for two words of this list only. For
instance, for the fictitious list ‘fork, butter, necklace, book, biscuit, and cigarette’ the correct answer is ‘butter and biscuit’ because both are
food products.

The pre-test questionnaire included a measurement of prior knowledge to control different domain-specific prior knowledge levels
between the experimental groups. This test aimed to measure domain-specific knowledge in science with a particular focus on relevant
technical aspects related to robotics and further questions related to robots’ use in real-life settings. The test comprised seven open
questions (e.g., ‘What is the difference between control and regulation in the field of robotics?’ or ‘Name three different types of sensors used in
the field of robotics’). To determine the rigor of the chosen questions, we determined the inter-rater reliability, which revealed a very
high consistency between the two raters (r = 0.93, CI = 0.89-0.96). To further explore the structural pre-existing mental model of
robotics’ relevant concepts, we used the SAK technique (Trumpower & Vanapalli, 2016). SAK is based on a pairwise rating of relevant
concepts for their connectedness without considering their relation’s causality or direction. For each pair of concepts, learners had to
rate the level of connectedness on a 7-point Likert scale. In the literature, many concepts ranging between 6 and 20 have been
commended (Wouters et al., 2011). Based on these expert ratings, we selected the following 6 relevant concepts of robotics: 0: PID
controller, 1: transition, 2: kinematics, 3: actuator technology, 4: sensor technology, and 5: environment model. Thus, overall, learners
made 36 ratings (for further details see appendix A). As recommended in literature, we referred to experts to find appropriate SAK
rating concepts (Riemer & Schrader, 2016). Additionally, we ensured that rating all concepts as highly connected did not result in a
higher accuracy value by choosing the concepts respectively. Two researchers of learning and instruction that were experts at
extracting relevant concepts from learning materials were recruited to choose appropriate concepts for the given learning material.
They first analyzed the given learning content for potential concepts. Again, an expert of research on robotics and computer science
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provided feedback on the different concepts.

Furthermore, we developed a post-test for measuring learning outcomes on a functional level. The post-test comprised 12 open
questions measuring the different learning outcomes: knowledge, comprehension, and application. To measure a learning outcome on
the knowledge level, 4 recall questions were developed (e.g., ‘Which term is appropriate to describe that the robot is heading straight toward
you?’). For the comprehension level, 4 questions were included (e.g., ‘What can a service robot do in contrast to an industrial robot?"), and
for application, we developed 4 questions (e.g., ‘What happens if the distance between the current pulses in the actuator is shortened?’).
Again, we determined the inter-rater reliability, which revealed a very high consistency between the two raters (r = 0.88, CI = 0.81-
0.93).

As we used a head-mounted display enabling the learners to perceive the VRLE in 3 D and stereoscopic, we claimed our VRLE to be
immersive. Hence, we included a manipulation check on how real the participants experienced the VR and their subjective presence.
We used the Technology Usage Inventory (TUI) developed by Kothgassner et al. (2012). The scale comprised four items rated on a
7-point Likert scale (e.g., ‘Through the virtual simulation, I had the feeling of really experiencing the situation.”). Internal consistency was
high, with Cronbach’s a = 0.84 (CI = 0.82-0.85).

3.5. Procedure

This study started with an online questionnaire, which included demographic questions and assessed learners’ verbal ability. The
questionnaire was filled in at home by the participants before the testing session. At the beginning of the testing session, which was
conducted in a laboratory at the university, each participant was informed of the study’s procedure and signed an informed consent
form before participating. The participants were informed that their data was handled confidentially and that they could withdraw
their data or participation at any point in the study without having any disadvantage. Afterward, the participants filled out the pre-test
questionnaire, namely, questions to assess their prior knowledge and the structure of their pre-existing mental model (SAK). This step
was followed by a brief introduction to the VR equipment. Depending on the experimental condition, the participant received the
elaboration prompt (see Fig. 2). To ensure that the participants understood and remembered the elaboration prompt, they had to
repeat it in their own words shortly. After this, a short exploration phase in the VRLE was included. The participants conducted a short
introduction task including sorting dishes to know the virtual world better as recommended in literature (e.g. Wu et al., 2020). This
lasted about 2 min. Then the learning unit started as the robot entered the kitchen. After the learning unit, the participants filled in the
post-test questionnaire, including the learning performance test, the post rating for the SAK, and the subjective rating or presence.
Overall, the duration of the study was 2 hours. An additional part of investigating human-robot interaction was conducted after the
described study and used one of the 2 hours.

3.6. Data preparation

All questionnaires were presented by using the online survey tool Unipark. Data preparation was performed by using R 3.5.1 and
RStudio 1.1.463. To analyze the effect of the elaboration prompt, the two experimental groups were dummy coded (0 = without, 1 =
with prompt), and for calculating models, variables were z-transformed when necessary. We measured the learners’ SAK before (pre)
and after (post) the learning session. To determine the accuracy of ratings, four experts rated the relatedness of the concepts. The
average similarity score between individual experts’ models was very high (0.91; Acton et al., 1994; Wouters et al., 2011). To analyze
the accuracy values, we used the software Jpathfinder and python code to prepare the data. The averaged relatedness ratings of the
experts (median) provided the reference standard. The software Jpathfinder and its scaling algorithm were used to derive similarity
measures of structural knowledge quality by comparing the expert network to the learners’ individual network. The learners’ accuracy
scores, ranging from 0 to 1, were calculated based on the calculations. Higher values reflected a higher accuracy of the network than
the expert network (for further details see appendix A). To explore the data quality of the accuracy ratings, these were analyzed for
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Fig. 2. Procedure for both experimental groups, displaying researcher (R) and learner (L).



A. Vogt et al. Computers & Education 171 (2021) 104235

fixed patterns and outliers. One participant was excluded because the SAK ratings were an outlier.
4. Results
4.1. Descriptive results

Learners’ domain-specific prior knowledge was on a medium level in both experimental conditions (Table 1). The learning outcome
was on a medium level, both overall and on the knowledge and comprehension level. The learning outcome values for application were
low (Table 1).

To ensure that the two experimental groups did not differ significantly in their relevant characteristics, a MANOVA was conducted
with age, prior knowledge, verbal ability, presence, and pre-accuracy for the rating of the SAK as dependent variables. No significant
differences between the groups could be found (F(5,55) = 0.69, p = .694). Moreover, the groups did not differ in their gender dis-
tribution (X?(1, N = 64) = 0.01, p > .050). As previously mentioned, learners’ prior knowledge and verbal ability play an important
role in learning outcome. Therefore, these factors were included as covariates in the analyses. Because of missing data, six cases were
excluded in these analyses when the verbal ability was included. Based on a conducted Shapiro-Wilk test, the multivariate normal
distribution can be assumed for the variables learning outcome, prior knowledge, and accuracy (pre, post) for each experimental
subgroup (p > .056), and the variances can be classified as homogenous based on Bartlett’s test (p > .367).

4.2. Effect of the prompt on learning outcome

To test our first hypothesis, we analyzed the effect of the elaboration prompt on the functional level by differentiating the learning
outcome on the knowledge, comprehension, and application level (Bloom, 1956). We expected a significantly higher learning outcome
in the prompt group than in the control group on all three levels of the learning outcome (H1a).

The prompt group’s means were higher for overall learning outcome, knowledge, and application compared to the control group, as
can be seen in Table 2. For comprehension, the group without prompt showed a descriptively higher learning outcome. To test the
prompt’s main effect on overall learning outcome, we conducted an ANCOVA including verbal ability and prior knowledge as
covariates. We found no significant effect of the elaboration prompt on overall learning outcome (F(1,55) = 0.19, p = .661).
Furthermore, to analyze the elaboration prompt effects on each of the three levels of learning outcome, we conducted a MANCOVA (F
(3,55)=1.14,p=.172, I’]Zpam'al =.059). When controlling for variance because of verbal ability and prior knowledge the results show a
significant, beneficial effect of the prompt on learning outcome on the knowledge level, only (p = .036; see Table 3). No significant
effects were found on comprehension and application level. Additionally, we expected the largest beneficial effect on the higher
learning outcome levels (comprehension and application; H1b). The descriptive pattern is already not in line with our previous
assumption because for comprehension the prompt had no positive effect. Therefore, this hypothesis is rejected.

4.3. Effect of the prompt on structural accuracy

To uncover the elaboration prompt’s effects on the structural level, we measured the structural accuracy deduced from the SAK
ratings after the learning session. In our second hypothesis, we expected that learners in the prompt group had a significantly higher
post-accuracy score than the control group after accounting for pre-accuracy. In detail, we expected that the beneficial effect of the
elaboration prompt depends on the pre-accuracy score (H2). Looking at the visualization of the post networks of the different groups,
the configuration of experts, prompt group and control group seem to differ substantially based on post-accuracy ratings. The prompt
group ratings’ indicate that more connections and closer relationships between the individual concepts were assumed than in the
expert or control group (see Fig. 3). For instance, concept 0 (PID controller) and 5 (environment model) were not connected based on
experts rating while concept 2 (kinematics) was rated as highly connected with 3 (actuator technology). In contrast, learners in the
control group rated the concepts 0 and 5 to be closer connected compared to 2 and 3. This results in lower post-accuracy ratings
compared to the learners in the prompt group who rated 2 and 3 as closer connected compared to 0 and 5. To be able to interpret these
differences, we calculated accuracy scores for each experimental group before and after learning in VR (see appendix A).

The accuracy means compared to the experts’ ratings were in both groups higher after the learning unit than the baseline mea-
surement (see Table 4). Descriptively, the highest post-accuracy mean was found for the prompt group.

Overall, there was a significant increase from pre-to post-accuracy (£(62) = —3.31, p < .001, r = 0.79). As our research question
Table 1
Means and standard deviations of the experimental conditions.
With prompt n = 31 Without prompt n = 33
M (SD) M (SD)
Prior knowledge (%) 51.44 (12.40) 47.21 (14.01)
Verbal ability (%) 58.01 (13.07) 53.00 (15.00)
Pre-accuracy (SAK, Max = 1) 0.42 (0.12) 0.40 (0.10)
Age (years) 24.10 (6.62) 24.21 (5.29)
Male (%) 30.30 38.71
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Means and standard deviations of learning outcome depending on the experimental condition.

With prompt
M (SD)

Without prompt
M (SD)

Overall learning outcome (%)

Knowledge (%)
Comprehension (%)
Application (%)

39.93 (12.62)
66.41 (22.55)
32.39 (16.61)
21.09 (15.48)

37.54 (12.78)
58.87 (23.76)
34.54 (16.66)
19.22 (17.00)

Table 3
Results of the ANCOVA depending on the level of learning outcome.
F(1,55) P 1 partil
Knowledge
Prompt 3.42 .036* .042
Verbal ability 0.29 .296 .013
Prior knowledge 4.49 .019* .075
Comprehension
Prompt 0.03 432 .006
Verbal ability 1.42 119 .018
Prior knowledge 1.36 124 .024
Application
Prompt 0.03 436 .007
Verbal ability 8.82 .002%* 120
Prior knowledge 1.97 .083 .035
Note. **p < .01, *p < .05.
pre reference
L
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Fig. 3. Knowledge networks, before and after learning in VR contrasted to the experts’ knowledge network; from left to right with increasing

accuracy scores.

aimed at answering the question of how the effect of the prompt on post-accuracy depends on the pre-accuracy score, we chose an
ANCOVA including an interaction term as recommended by Wan (2019) for pre-accuracy and experimental condition (prompt vs. no
prompt) as well as the covariate verbal ability (see Table 5).

We found the expected significant interaction of the experimental condition and pre-accuracy on post-accuracy (F(1,52) =3.11,p =
.042, nzpﬂm-al = .056). Therefore, the effect of the elaboration prompt on post-accuracy depends on the pre-accuracy. For better un-
derstanding this interaction, we visualized the effects of pre-accuracy by dividing learners into hypothetic groups with three distinct

levels of pre-accuracy in Fig. 4.

Learners with low pre-accuracy benefit from the elaboration prompt compared to the group without prompt. For learners with
medium and high pre-accuracy, this beneficial effect was not found.

Table 4
Means and standard deviations of learning outcome depending on the experimental condition.
With prompt Without prompt
M (SD) M (SD)
Pre-accuracy 0.42 (0.12) 0.40 (0.10)
Post-accuracy 0.51 (0.13) 0.47 (0.14)
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Table 5
Results of the ANCOVA with the experimental condition, verbal ability, and pre-accuracy on post-accuracy.
F(1,52) P 7 partia
Prompt 0.77 192 .017
Verbal ability 2.05 .079 .027
Pre-accuracy 0.33 .285 .006
Prompt*pre-accuracy 3.11 .042* .056

Note. *p < .05.

4.4. Relationship of learning outcome based on performance and structural accuracy

Both dependent variables, learning outcome and SAK, aimed to measure learners’ mental models by considering different per-
spectives. In our third hypothesis, we expected a significant positive correlation of the learning outcome with the application level and
post-accuracy values (H3). In line with our expectations, application and post-accuracy showed a moderate, significant, positive
correlation (r = 0.36, p < .010; Table 6). Neither knowledge nor comprehension level showed a significant correlation with post-
accuracy scores.

4.5. Effect of the prompt on attention distribution

To gain further insights into the VR experience of the learners, we measured their perceived presence and explored their behavior
via head-tracking. The perceived presence was rather high in both groups (Mprompt = 5.52, SDprompt = 0.87, Mngprompt = 5-14, SDnoprompt
= 1.10). To ensure that learners focused on their learning task, we recorded their field of view while learning in VR. To quantify
whether the learners were distracted by the VR environment, we analyzed the time when the robot was in their field of view
completely, indicating that it was focused on by the learner. Due to technical problems, while recording the data, only videos of n = 42
learners were available. Based on the descriptive means, learners with prompt focused on the robot longer (Mg = 88%, SDgg = 18)
than the learners without prompt (M¢cg = 79%, SD¢cg = 35). This difference was not significant (t(40) = —1.2, p = .117, d = 0.32).

5. Discussion

In this study, we investigated the effects of an elaboration prompt that aimed to activate learners to process the learning content
deeply and thus semantically when learning in VR. The chosen prompt included elements to foster the elaboration of the learning
content and pointed out that the concepts should not only be considered in isolation but that the deduction of possible connections
between the concepts were also part of the learning process. Additionally, the prompt contained an explanatory component as learners
were asked to prepare a peer explanation at the end of the learning session. To examine the prompt’s effect on the resulting mental
model, we used a multi-method approach: one functional approach with a differentiated learning outcome measurement (knowledge,
comprehension, and application) and one structural approach by using the SAK technique. By this, we aimed to gain further insights
into the developmental process of mental models in VRLEs.

5.1. Impact of the elaboration prompt on the functional and structural level

In our first hypothesis, we expected a beneficial effect of the prompt on the learning outcome, particularly for the higher levels of
learning outcome: comprehension and application. In contrast to this expectation, the prompt led to beneficial effects on the
knowledge level, only. Hence, the used elaboration prompt did not foster in-depth and semantic processing. As comprehension and

06 +

0.55
* * high

X medium

05 +low

+ X

0.45 G
’ %

estimated margin means of post-accuracy

without prompt with prompt
Fig. 4. Post-accuracy depending on experimental group and pre-accuracy. Note: Pre-accuracy defined in low <mean -1 SD: n =4 withandn=15

without prompt; medium = mean + 1 SD: n = 21 with and n = 23 without prompt; high >mean + 1 SD: n = 6 with and n = 4 without prompt; the
covariate verbal ability is constant with fyerpa = 0.56.
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Table 6
Relationship between learning outcome and structural assessment of knowledge
(SAK).
SAKr P
Knowledge .19 141
Comprehension .09 .460
Application .36 .004**

Note. **p < .01.

application scores were low in both experimental groups, overall, very little semantic processing occurred. Thus, based on the present
findings, learners were unable to build meaningful connections between the different concepts and were therefore unable to predict
the consequences of manipulating one component onto another. Other studies have also described limited cognitive information
processing when learning in VRLEs (e.g. Makransky et al., 2020; Makransky, Terkildsen, & Mayer, 2019; Wu et al., 2020). Whether
VRLEs were effective learning environments depended largely on the boundary conditions such as the subject or the chosen sample
(Wu et al., 2020). In our study, the limited semantic processing might be because the learning unit included many technical and
abstract concepts. Consequently, the learners might have had insufficient resources to develop a causal mental model that would
answer the questions on these levels (Bloom, 1956; Mayer, Mathias, & Wetzell, 2002). Hence, VRLE settings do not per se guarantee
adequate semantic processing even when an elaboration prompt stimulated learners to process the content in-depth.

What about the structural level? Does the prompt enable the learners to have a basic understanding of the relationships between the
concepts? We addressed this question in our second hypothesis. As expected, we found a significant interaction of prompt and pre-
accuracy on structural accuracy after learning. Hence, learners’ structural accuracy depended on both the quality of their pre-
existing knowledge network and whether or not they received the elaboration prompt. Learners whose pre-accuracy was in the low
or medium range, benefit from the elaboration prompt. An expertise reversal effect was found for learners with higher pre-accuracy
when they were prompted. In line with prior findings, supporting learners with higher prior knowledge might interfere with their
strategies or their pre-existing knowledge network (Kalyuga, 2009).

5.2. Coherence of the functional and structural approach

In our third hypothesis, we expected a positive relationship between the application level and structural accuracy. As hypothesized,
we found a moderate positive correlation between application and structural accuracy. In line with our expectation, no significant
correlation was found for knowledge or comprehension. Answering application questions includes deducing correct causal or direc-
tional connections of the components (Bloom, 1956; Schnotz & Bannert, 2003). By contrast, it is sufficient for the structural accuracy to
recognize these concepts’ pure connectedness (Kraiger et al., 1993). Therefore, both approaches require a more global understanding
of the relevant concepts’ connection in a more or less sophisticated mental model. Although the concepts have this in concordance,
they differ significantly in the different prerequisites for the specificity of the different components’ connections. The two first hy-
potheses’ results reflected this: The elaboration prompt had beneficial effects on the knowledge level and on structural accuracy. As
outlined before, high structural accuracy after learning reflects information on the relatedness of the different concepts without
considering the details on the cause-and-effect relations. This information processing is also reflected in the IMTPC as a shortcut
between the text surface representation and the analog mental model (Schnotz & Bannert, 2003). Our findings indicate that this
shortcut was stimulated by the current learning setting and allows to deduce relations on a superficial level only. For instance, the
information presented in the same sentence might be stored as more closely related than information with a greater syntactical dis-
tance. Based on our findings, the processing of this relational information was stimulated successfully by the elaboration prompt, but
only by the shortcut because the elaboration prompt did not increase performance on higher learning outcomes and thus no semantic
processing occurred.

5.3. Limitations and recommendations for further research

This study’s results indicate a limited effect of the elaboration prompt on semantic processing of the learning content; thus, VRLEs
and the learning processes in such environments must be further explored. In our study, we used one prompt in the instruction before
entering the VRLE. As outlined earlier, different concepts of how and when to support learners by prompting exist. The chosen prompt
did simply outline the necessity to learn the concepts and their connectedness by semantic processing but did not include further
strategic support for cognitive or metacognitive strategies. For instance, to support cognitive elaboration, learners could be asked to
connect the learned concepts to their lives or think of further examples (e.g., Endres et al., 2017). However, when learning abstract
concepts combined with very low prior knowledge, finding adequate strategy activators remains a challenge. Even when learners are
motivated to use the proposed strategies, they might not have the required skills or the provided strategic activators might interfere
with their existing strategies. Further possibilities to support learners include using metacognitive prompts, which might activate and
support learners’ self-regulation processes and their metacognitive strategy use. By this, learners might be supported on semantic
processing of the learning content (Gentner & Seufert, 2020). Additionally, studies have outlined the benefits of using a combination of
cognitive and metacognitive prompts on learning outcomes (Berthold et al., 2007).
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In our VRLE, we aimed to display the robot’s natural behavior, for instance, its moving trajectory. To avoid the robot’s intimidating
effect, we implemented a security protocol that ensured a minimal distance of 1.5 m between the learner and the robot. Therefore,
learners could manipulate the surrounding objects in the room and choose their position to observe the robot individually but were not
able to directly manipulate the robot. The possibility to compose and decompose the different parts of the robot flexibly might foster a
deeper understanding of the interplay of its technical components (Kamarainen et al., 2018). Hence, direct manipulation of the robot
might be implemented in future studies.

Furthermore, future studies might gain further insight into the perceived load while learning in VR. The chosen learning content in
this study was complex and rather abstract. Thus, a high overall cognitive load could have occurred (Sweller, 2011). Although the
learners were activated to elaborate on the learning content, they might not have had the required cognitive resources. To provide
insights into the perceived cognitive load while learning, further research should consider a differentiated cognitive load measurement
(Klepsch, Schmitz, & Seufert, 2017). Additionally, the perceptual load could be considered for analyzing cognitive learning processes
in VRLEs (Huang et al., 2019).

Moreover, because the score on comprehension levels and the application level were low, the respective questions should be revised
critically. Different questions with more variance in their difficulty might offer further insights in the resulting mental model.
Furthermore, SAK is described as a valid method to gain insight into the structural components of the relevant mental models (Kraiger
et al., 1993; Trumpower & Vanapalli, 2016); nevertheless, its limitations must be considered. The process of choosing the concepts
must be discussed. These concepts have been chosen based on expert ratings, a standard method to deduce relevant concepts. However,
choosing these concepts included to some degree arbitrary decisions. Different concepts might result in different ratings and effects.
Therefore, further research might include different concepts or different subsets of concepts to investigate whether our findings are
replicable. One additional challenge using the SAK is to choose the concepts in a way that rating concepts as highly connected do not
automatically result in high accuracy values. In our study, we ensured that this effect did not bias the results as based on theoretical
consideration, developing a knowledge network reflects building a more organized and elaborated structure. Hence, learners need to
be able to differentiate what is and what is not closely connected and not just simply describe a structure that includes more con-
nections and is, therefore, more complex (Trumpower & Vanapalli, 2016, Haiyue & Yoong, 2010; Ifenthaler, Masduki, & Seel, 2011).
To assure the expert ratings were of good quality, we analyzed the consistency of the expert rating, which was very high compared to
that of other studies and more extensive than the required value (Riemer & Schrader, 2016). For structural accuracy, learners only
needed to rate the given concepts ‘passively’ and were not asked to name or verbalize the concepts. This gap between the passive
knowledge of concepts and the active retrieval of information from the mental model and the successful use has often been described.
Publications have outlined the importance of using adequate learning strategies to overcome this gap and thus this might be considered
when designing future studies (Fan, 2000).

Moreover, different approaches to investigate the structure and the developmental process of mental models might be used. For
instance, the network elaboration technique of Eckert (2000) might deliver further insights into the semantic and sub-semantic pro-
cessing of learning content. When using this technique, learners create their individual concept maps and specify the connections
between the included concepts. Extending this essential measurement of the meaningful connection, other techniques that include a
more detailed description of these meaningful connections would be used in the model of explanatory coherence approach (e.g., Read &
Marcus-Newhall, 1993). Participants are asked to describe relevant scenarios and explanatory hypotheses related to the learning
content. This enables the researcher to uncover underlying principles and gain deeper insights into learners’ mental models (Thagard,
1989). However, these methods are very effortful and require very motivated learners to be able to interpret the results.

By assessing individual learners’ aptitudes, other concepts such as motivation and the prompt’s use could be investigated (Niickles,
Roelle, Glogger-Frey, Waldeyer, & Renkl, 2020). Additionally, further cognitive abilities such as logical abilities or field-independence
might explain individual differences while learning in VRLEs. Finally, our chosen sample size was based on our a priori power analysis
following the recommendations of Faul et al. (2009). However, as our effect size was relatively small, we recommend a higher sample
size in future studies and to conduct a power analysis including a higher test power. To gain further insights into the interaction of
prompting and pre-accuracy on post-accuracy, we used three hypothetical groups. This approach involved an extreme group com-
parison and therefore contained few learners in some groups. Therefore, the described findings need to be further validated by higher
sample sizes in future studies (Preacher, Rucker, Mac Callum, & Nicewander, 2005).

5.4. Conclusion

Before learning in VR, prompting the learners to elaborate on the learning content showed beneficial effects. Although, this
manipulation of including a short elaboration prompt was a very brief intervention, it showed a substantial effect on the knowledge
level and the structural level. Hence, based on our findings, elaboration prompts are recommended for future VRLES, particularly for
learners with lower to medium prior knowledge levels. Although the chosen elaboration prompt showed beneficial effects on the recall
or knowledge level only, we outlined this level as a critical precondition for further semantic processing and a deeper understanding of
the learning content. Using the multi-method approach to measure mental model enables further deduction of details on what learners
processed semantically and how they organized this knowledge structurally. In our study, learners were not able to answer the
application questions correctly. Hence, they could not build correct meaningful connections, even when being activated by the
elaboration prompt. However, they were supported by the prompt in building a structural mental model with unspecific connections
reflected by a less sophisticated mental model. Many challenges to developing adequate instructional designs and supportive elements
for VRLEs remain for further research. This study outlines the importance of investigating the boundary conditions of learning in
VRLESs to compare their effectiveness to conventional learning settings.
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Appendix A
Structural Assessment of Knowledge

In the present study, we used a multimethod approach to investigate learning outcome and mental
models. Next to using a performance test to deduce functional aspects of learning outcome, we chose a
structural approach. To gain further insights into the underlying mechanisms of the Structural
Assessment of Knowledge technique (SAK), we present and define relevant concepts and provide

additional information about the underlying algorithms in the following.

The SAK is a psychometric scaling method based on graph theory and researchers used this
method in the context of knowledge acquisition. A basic assumption of mental models' structural
measurements that declarative knowledge is relational (Kraiger, Ford, & Salas, 1993). This means that
individual concepts are not considered in isolation but are integrated into a complex knowledge
network when the mental model has developed accordingly (Davis, Curtis, & Tschetter, 2003).
Therefore, knowledge acquisition is not completed by mere storage or semantic processing, but the
accumulated knowledge must also be organized (Kraiger et al., 1993). Hence, in this context, one can
also label mental models with terms like knowledge structure, cognitive maps or task schemata (Rouse
& Morris, 1986; Kraiger et al., 1993). Thus, mental models also provide a way to contextualize and
understand what has been learned. Furthermore, this learning content is structured and organized.
Additionally, the existing knowledge network also influences the acquisition of new knowledge to a

substantial degree (Kraiger et al., 1993).

Thus, learning involves understanding similarities and relationships between concepts, facts,
definitions, processes and procedures (Davis et al., 2003). A structural assessment of learning involves
three major steps (Wouters, van der Spek, & van Oostendorp, 2011): First, learners need to judge the
concepts' relationships. Then a cognitive structure based on these judgments needs to be derived. As
the last step, the resulting cognitive structures need to be evaluated by matching these with experts'

knowledge structures (Goldsmith & Kraiger, 2014).

To understand this judgment to deduce cognitive structures, we contrast the terms proximity
and similarity. Both terms are closely related and aim to describe the degree to which concepts of the
SAK belong to each other from a psychological perspective (Schvaneveldt, 1990). The concept
proximity refer to both, subjective and objective relationship between pairs of concepts. Therefore, to
deduce distance between pairs of concept often relatedness (proximity) values are reported
(Trumpower & Vanapalli, 2016). Higher proximity values reflect a higher rated relatedness of pairs of
items. These connections between pairs of concepts include distance estimates. The term similarity is
used to describe two different networks and to which degree they are similar. To be able to gain
further insight into the accuracy of the learners’ networks, referential networks of experts are chosen
as criteria (Wouters et al., 2011; Goldsmith & Kraiger, 2014). These are aggregated and then



compared to the individual rating of the learners. This similarity networks, or as named in the present

study accuracy values as calculated as follows:

To compare the network of the experts and the learners, these need to include the same
concepts and paired ratings. As recommended for the given data, the median ratings were computed
(Davis et al., 2003). These ratings can be graphically displayed and be briefly described. In figure A1,
three networks are displayed. Network a) represents the configuration of the expert, and therefore the
referential network. Networks b) and c) display the networks under different experimental conditions.
While learners in the experimental group with prompt rated the concepts as closely related, the
learners without prompt tend to describe a higher distance and less relatedness between them.

a) b) c)

Figure A1 Network based on the post SAK ratings: a) experts, b) experimental group (with prompt), c) control group.

The generated network is based on two parameters (Schnvaneveldt, 1990). The first parameter,
namely the Minkowski r-metric, describes how the distance between two concepts, that are not
directly linked, is computed (Kivlighan & Tibbits, 2012; Nash & Nash, 2003). This value ranges
between 1 and infinity (Filiz & Trumpower, 2014). The second relevant parameter is the q parameter,
which is limited by the number of available links between the different concepts (Nash & Nash, 2003).
Hence, its value reflects the maximum number of links in paths in which the triangle inequalities are
guaranteed to be satisfied for the resulting network (Schvaneveldt, 1990). After both parameters have
been determined, two of the concepts are now assigned for linking. This happens if an indirect path's
length is equal or longer than the length of the connection between these two concepts (Nash & Nash,
2003). This is a direct link between the number of links in the network and the values of r and g, when
these are increased, the number of links in the network decreases (Filiz & Trumpower, 2014). In their
publication, Filiz and Trumpower (2014) describe the six necessary steps starting with rating the
concepts and Pathfinder algorithm in detail. After the network has been calculated, these can be
compared to referential or expert networks. To be able to quantify the quality of the resulting network
structure, similarity scores are used as an indicator of what we defined as structural accuracy. To
deduce the similarity between two networks, the number of common links is divided by the total
number of unique links in the two networks. Hence, two identical and completely similar networks
will result in a structural accuracy score of 1. In contrast, two networks that share no common links
will result in a structural accuracy score of 0. Hence, the results reflect the proportion of all the links
in the two given networks in both networks.
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Abstract

Presenting a pictorial representation followed by
a textual representation supports learners to build
a coherent mental model. Providing an elaboration
prompt stimulates learners to process the learning
content semantically. Hence, combining both ap-
proaches might result in synergetic effects as both
foster mental model development, which could be
particularly challenging in immersive virtual environ-
ments. In our 2 x 2 between-subject design study,
we investigated the beneficial effects of adequate
sequencing of text and picture and prompting, as
well as their potential synergic effect in an immersive
virtual reality (VR) learning environment with N = 81
learners. We presented the learning content in form
of one pictorial and one textual representation and
varied their presentation sequence: pictorial followed
by textual representation or textual followed by picto-
rial representation. As the pictorial representation, we
used a VR animation displaying a service robot. As
the textual representation, we chose an auditory text
about robotics. Additionally, we varied whether or not
learners received an elaboration prompt before the
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learning unit started. We measured learning outcome
differentiated for knowledge, comprehension, and
application levels. We found beneficial effects for VR
animation followed by auditory text on the knowledge
level, only. Prompting led to a beneficial effect only
on the application level. We found no synergic effect
of adequate sequencing and prompting on learning
outcome. Hence, depending on the level of learning
outcome targeted, different support approaches are
advisable. Future research might consider the long-
term effects of adequate sequencing and prompting
or different approaches to measuring mental models.

KEYWORDS

cognitive learning processes, mental models, prompting,
sequencing, virtual reality learning environments

Practitioner notes

What is already known about this topic?

» Learning in Virtual Reality (VR) is a promising approach to present the learning
material but does not per se guarantee deep learning and the development of a
correct mental model.

 Prior findings imply that presenting pictorial representations first fosters mental
model development.

» Beneficial effects of stimulating learners by an elaboration prompt before learning
in virtual reality have been reported.

» Previous studies imply that instructional design and activation of learners might
have synergetic, beneficial effects on learning outcome.

What this paper adds

+ We investigated the effects of sequencing order (VR animation or auditory text first)
and prompting (with or without) on different levels of learning outcome.

» We found beneficial effects on the knowledge level when VR animation was pre-
sented first, while prompting fostered the application level.

» No synergetic effects of VR animation first and prompting were found as both sup-
port approaches seem to impact different levels of learning outcome.

Implications for practice and/or policy

» Depending on the level of learning outcome that should be fostered while learning
in VR, different support approaches are advisable.

» Presenting a VR animation first fosters learning of basic concepts and definitions at
the knowledge level.

» Using an elaboration prompt before learning in VR enables the learners to process
the content deeply.

» Presenting VR animations first can serve as a brief scaffold for the mental models
and additional details can be added in the further learning process.
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INTRODUCTION

Virtual Reality Learning Environments (VRLES) offer new possibilities to present multimedia
learning content. Previous publications showed a heterogeneous picture of the extent to
which VRLEs can be implemented as a deep learning approach (Makransky et al., 2020;
Parong & Mayer, 2018; Wu et al., 2020). In our study, we investigated two approaches to stim-
ulate cognitive learning processes and mental model development in VRLEs: Optimization
of the presentation sequence of pictorial and textual representations as well as activation of
learners before the learning unit by using a prompt.

To understand the potential of VRLES, they first have to be characterized. A basic dis-
tinction when referring to VRLEs is their degree of immersion (Wu et al., 2020). While some
publications describe VR as a 3D desktop simulation, others refer to immersive VR that can
be entered with the help of head-mounted displays (Wu et al., 2020). Furthermore, VRLEs
are categorized based on differing degrees of freedom: allowing simple rotational move-
ments to the possibility to walk around and chose their position in the three-dimensional
virtual world. In this study, we refer to an immersive VRLE displayed by a standalone head-
mounted display. In this VRLE learners can choose their perspective by moving their head.
In the chosen setting learners were not able to interact with the VR animation directly or
to move in the virtual world. Most VLREs use mainly pictorial representations such as pic-
tures or VR animations (e.g. Radianti et al., 2020). Furthermore, textual components can be
added. Verbal information might include short narratives, simple labels, or annotations (e.g.
Vogt et al., 2021). VRLE might have a high visual load; hence further textual details could be
presented as auditory text (e.g. Makransky et al., 2019).

In general, VRLEs are described as motivating and are thought to increase enjoyment
while learning (Makransky et al., 2020). But is learning in VR an effective deep-learning ap-
proach? Literature reviews describe heterogeneous effects of VRLEs on learning outcome
(Di Natale et al., 2020; Wu et al., 2020). Some studies describe no benefits or even nega-
tive effects of VRLEs (Makransky et al., 2020; Parong & Mayer, 2018, 2020). For instance,
Parong and Mayer (2020) found that learning with PowerPoint slides was superior to learning
in VR. Ke and Xu (2020) found that learners in the live simulation of chemistry experiments
performed better compared to learners in the VR group. In contrast, other studies outline
the beneficial effects of learning in VR. For example, Alfadil (2020) found that learners in
the VR group outperformed learners in the conventional setting when learning vocabulary.
Therefore, presenting learning content in VR does not guarantee a higher learning outcome.
This leads to the question: How can learners be supported to process the learning content
in the VRLE? For instance, Klingenberg et al. (2020) successfully used generative learning
strategies to stimulate learning in VR. Furthermore, adding pre-training supports learning in
VR (Meyer et al., 2019). Summary prompts lead to higher learning outcome, compared to
the control group when learning in VR (Parong & Mayer, 2018). Summarizing these findings,
different influencing factors need to be considered to stimulate successful learning in VR.

To understand previous findings, cognitive learning processes need to be considered.
The Cognitive Theory of Multimedia Learning (CTML; Mayer, 2014) describes the active role
of the learner as well as information selection, organization, and integration of pictorial and
verbal information via two different channels. When the learners have sufficient cognitive
resources, they can build a component and a causal mental model and are able to apply
the learning content (Mayer et al., 2002). Moreover, the Integrated Model of Text Picture
Comprehension (IMTPC) describes pictures as analog so they can be directly included into
the analog mental model (Schnotz & Bannert, 2003). In contrast, texts consisting of verbal
code need to be translated before the integration into the mental model. Additionally, the
sequence of presenting textual and pictorial code is crucial for building a coherent mental
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model (Eitel & Scheiter, 2015). Presenting general pictures followed by a more specific text
including detailed information is more effective than vice versa (Arndt et al., 2019).

Based on the underlying cognitive learning processes, different assumptions can be
made about learning in VRLEs. On the one hand, the instructional design has an impact on
whether certain cognitive learning processes are fostered (Mayer, 2014). On the other hand,
learners’ active roles and their strategies have a significant impact on learning outcome
(Bannert & Reimann, 2012). To stimulate the processing of the learning content, cognitive
prompts have been used successfully in VRLEs (Vogt et al., 2020). Cognitive prompts in-
clude different components to stimulate elaboration, and learning strategies to enable the
learners to understand and transfer the learning content (Bannert & Reimann, 2012).

The aim of the present study was to investigate whether VR animation or auditory text
should be presented first. Additionally, we explore the effect of an elaboration prompt as
well as the combination of both factors. To gain further insight into the underlying cognitive
learning processes, we used a differentiated measurement of learning outcome (knowledge,
comprehension, and application).

THEORETICAL BACKGROUND
Underlying cognitive learning processes in VRLEs

When designing VRLEs the underlying cognitive learning processes need to be consid-
ered. Mayer’s (2014) CTML describes important assumptions for designing learning mate-
rial. Two separate channels for information processing exist: textual and pictorial. Using
both channels is described as beneficial. As working memory capacity to process learning
content is limited, this needs to be considered while designing learning materials or VRLEs
(Mayer, 2014). When learners have sufficient resources to process all relevant information
they can build a coherent mental model. Based on Mayer et al. (2002), different stages
of mental model development can be distinguished. A component model, including defini-
tions or basic concepts, and a causal model, including meaningful connections between
the concepts, are built simultaneously. Based on this causal model, learners can deduce
consequences from manipulating one component onto another (Mayer et al., 2002). When
cognitive overload occurs, no causal model is built. To avoid this overload and to enable
learners to process the content deeply including causalities, the instructional design of the
VRLE needs to be adapted to these requirements.

This idea of different stages of information processing is also described in Schnotz
and Bannert's (2003) IMTPC. Depending on the codality of the learning material, different
branches of information processing are described. Both verbal and pictorial representations
are first processed sub-semantically and stored as an internal representation based on
the given text syntax or picture surface (Schnotz & Bannert, 2003). This allows learners to
answer questions at the recall or knowledge level (Bloom, 1956). To be able to understand
the meaning of different concepts as well as their connections, learning content needs to
be processed semantically. While pictures are analog in nature, they can be directly inte-
grated into the analog mental model after their semantic processing (Schnotz et al., 1999).
Verbal information needs to be first translated to be stored in the mental model (Schnotz &
Bannert, 2003). Therefore, after semantic processing of verbal information, propositional
representations are built. These are then translated and integrated into the mental model.
Only when learners process the learning content deeply they can answer questions at higher
levels (comprehension and application; Bloom, 1956).

While learning in VRLEs, learners need to process learning content semantically
and develop a concept or even a causal mental model. The combination of different
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information representations is crucial in fostering these deep-learning processes (Schnotz
& Bannert, 2003). As learners’ cognitive capacity is limited to processing a certain amount of
information simultaneously, presenting all information at once might cause a cognitive over-
load (Mayer, 2014). But what is the optimal way to present and combine learning material?
One possibility is to present pictorial and verbal parts of the learning content as a sequence.
The chosen presentation format and sequence might impact the development of a coherent
mental model substantially.

Foster deep-learning processes through adequate sequencing

To answer the question of how mental model development can be supported by combining
pictures and text, Eitel and Scheiter (2015) reviewed N = 42 studies. Most of these stud-
ies (n = 19) outline the beneficial effects of presenting pictorial parts first. When using this
sequencing order, pictures can serve as brief scaffolds, and details included in the text can
be later added into this scaffold to build a coherent mental model. Recent findings outline
the importance of not simply categorizing learning material based on presentation format
(pictures or text) but considering how specific the learning content of each representation
is. Analyzing different combinations of text or pictures first together with different specific-
ity, they concluded that presenting a brief pictorial overview followed by a more specific
text increased learning outcome (Arndt et al., 2019). Furthermore, prior findings outline the
benefits of using animations over static pictures when processes or basic mechanisms are
also relevant in the performance test (Kuhl et al., 2018). Based on previous findings, one can
conclude that when learning in a VRLE, VR animations should be presented first followed by
a more specific auditory text. Thus, learners are able to build a brief mental model based on
the animation and can refine this through adding further details (Arndt et al., 2019). So far,
no study has investigated the effect of sequencing pictorial and verbal parts of the learning
content on learning outcome using VRLEs.

However, learning is not a passive process and therefore does not only depend on the de-
sign and combination of the given learning formats (Mayer, 2014). Whether learners actually
engage in integrating the different representations and build comprehensive mental models
also depends on the learners. Therefore, the question is how to activate learners effectively.

Activating learners by prompting

One well-established possibility to activate learners, and thereby foster cognitive learning
processes, is to use prompts. Using short verbal prompts aims to support the development
of a causal mental model (Berthold et al., 2007). Cognitive prompts are characterized as
strategy activators as they foster specific cognitive strategies (Bannert & Reimann, 2012).
Different realizations of cognitive prompts were described: taking notes, thinking of eve-
ryday examples, or generating short summaries (e.g., Bannert & Reimann, 2012; Parong
& Mayer, 2018). Using these cognitive prompts aims at fostering deep elaboration of the
learning content. Therefore, they are named cognitive or elaboration prompts (Bannert &
Reimann, 2012). Additionally, explanatory components might be included in the prompt.
These trigger the learners to explain the learning content in their own words, consequently
requiring semantic processing of the given content (Berthold et al., 2009).

Prompting has been explored in the context of learning in VR, and different operation-
alizations investigated in this context. Learners were encouraged to repeat the main con-
cepts of the learning material or were prompted to produce short summaries (Kamarainen
etal., 2018; Parong & Mayer, 2018). Overall, the beneficial effects of prompts were described
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on simple recall and higher levels of learning outcomes. One possibility to implement prompts
is to include them in the instruction. One prior study included an elaboration prompt with an
explanatory component before entering the VRLE (Vogt et al., 2020). The beneficial effect of
the prompt was limited as learning only increased at the knowledge level. Vogt et al. (2020)
attribute this limited effect to missing perceptual or cognitive resources while learning in
VR with simultaneously presented pictorial and verbal information. In the present study, we
adapted the respective learning materials by sequencing to enable analysis of the interplay
between an optimized sequence and prompt. We assume that the sequenced learning ma-
terial means reduction of perceptual and cognitive load, and therefore learners should have
more resources for learning. As learners were relieved by the sequenced material, the ex-
pected positive effects of the prompt should become apparent. When the learning sequence
starts with animation, a brief scaffold of the mental model can be built, and further details
can be added from the text presented after the animation. We assume that this integration
process can be fostered by an elaboration prompt, which outlines the connection between
the different components and details (Arndt et al., 2019). Therefore, a synergetic effect of
adequate sequencing and prompting was expected.

Present study

Based on the theories described and empirical findings, adequate sequencing and prompt-
ing as well as their combination are very promising approaches to foster deep learning in
VR (Meyer et al., 2019). To date, no study has investigated the beneficial and synergetic ef-
fects of adequate sequencing and prompting in VR. This was the aim of the present study.
Both support approaches aim to enable learners to process the learning content deeply and
answer comprehension and application questions. As answering such questions requires a
causal mental model, it can be assumed that a component model is created and the knowl-
edge level is also stimulated (Mayer et al., 2002). Additionally, learners’ aptitudes such as
their domain-specific prior knowledge or their verbal ability might impact the learning out-
come. Therefore, we controlled for these variables in our study.

Our first research question explored the effect of adequate sequencing by presenting
either VR animation or auditory text first. As outlined by Eitel and Scheiter (2015), using
pictorial representation first, followed by a verbal representation is beneficial for learning
outcome. Additionally, presenting a brief pictorial overview followed by a more specific text
fostered the development of a coherent mental model (Arndt et al., 2019). Building a brief
scaffold based on pictorial information eases the organization and integration of new infor-
mation into the mental model. Hence, knowledge, as well as comprehension and applica-
tion, is expected to be promoted. Therefore, we assumed as follows:

H 1 We hypothesized a significant, beneficial effect of presenting VR animation first, fol-
lowed by a more specific text, compared to vice versa, on all levels of learning outcome.

Additionally, our second research question focused on the effect of prompting on learning
outcome. The elaboration prompt triggered deeper elaboration as well as connecting the differ-
ent concepts. Learners were activated to be able to rephrase the learning content in their own
words. To be able to comprehend and apply the learning content, learners need to know basic
definitions (Bloom, 1956). Therefore, cognitive processing, particularly the deeper elaboration
and transfer of the learning content, was expected to be fostered by the elaboration prompt.

H 2.1 We hypothesized a significant, beneficial effect of the elaboration prompt on all lev-
els of learning outcome, compared to the groups without prompt.
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H 2.2 We hypothesized the largest effect of the elaboration prompt on the highest level of
learning outcome (application).

Both adequate sequencing and prompting are expected to have beneficial effects on all
levels of learning outcome. Prompting might ease the integration of further information into
the brief scaffold that was built when presenting VR animation first. Hence, we assume a
synergetic effect of adequate sequencing and prompting.

H 3 We hypothesized a significant, beneficial, synergetic effect of both factors: adequate
sequence (presenting VR animation first) and prompting compared to the other exper-
imental condition on all levels of learning outcome.

METHOD
A priori power analysis

To conduct our a priori power analysis, we searched for suitable estimations of effect sizes
for prompting, sequencing, and their interaction effect in the context of VR learning. As
no prior VR study reported suitable effect sizes, we based our a priori power analysis on
results in conventional learning environments and thus had only a very brief estimation of
the needed sample size. We based our analysis on Eitel and Scheiter (2015; for sequence)
and Endres et al. (2017; for prompting). Both studies reported large effect sizes. No study
was found that described an appropriate effect size estimate for the interaction between
sequencing and prompting. Therefore, we performed a more conservative a priori power
analysis by using G*Power version 3.1.9.4 (Faul et al., 2009) to determine the necessary
sample size for our planned MANOVA analysis; (V) = 0.13 (medium to large effect size
based on Cohen, 1988); a = 0.05; power (1 - ) = 0.9. By this, we determined the minimum
of required participants with N = 72. However, as we were not confident, that the so far
reported effect sizes were a very precise estimation of the effect sizes required for our VR
study and also no other suitable estimation were available, we extended our sample size up
to N = 81. By this, we additionally ensured to be able to compensate for a potential drop out
due to technical problems.

Sample and study design

In the present study, we tested a sample of participants (N = 81), who were mainly psychol-
ogy students at university. The participants (37% male) were aged between 19 and 38 years
(Mage = 26.08; SDage = 6.71). We applied a 2 x 2 between-subject design using an immer-
sive VRLE. The first independent factor was the sequence of presenting learning material:
VR animation (pictorial) or auditory text (verbal) first. The second independent factor was
whether or not learners received an elaboration prompt. Participants were randomly as-
signed to one of the four experimental groups: with prompt and auditory text first (n = 20),
with prompt and VR animation first (n = 20), without prompt and auditory text first (n = 19),
or without prompt and VR animation first (n = 22). As dependent variables, we measured
learning outcome on the three levels of knowledge, comprehension, and application. For
learners’ aptitudes, prior knowledge and verbal ability were assessed.
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Learning material and support approaches

We extracted our learning unit based on the learning content used in a first-semester uni-
versity course teaching basics about robotics. The final learning material was critically re-
vised by an expert in robotics to ensure validity and feedback was given by researchers in
learning and instruction on its clarity and understandability. The learning material included
two different components: auditory text and VR animation (see Appendix). The auditory text
contained detailed information about the robot, and the concepts of robotics in general. The
VR animation presented the robot and its components (see Figure 1). Learners were able to
observe the robot in the VRLE while it conducted its service task. Including a short explora-
tory phase in the VRLE, the learning unit lasted about 8 min.

The VR environment was programmed in Unity (version 2019.2.0f1). The VRLE included a
fee-based kitchen environment and the 3D model of REEM robot generated by the manufac-
turer PalRobotics. The 3D animation of the robot was slightly altered with regard to size and
appearance in VR. We used the Oculus Go to display the VRLE. Therefore, learners were
able to choose their position in the VRLE but were not able to interact with the robot directly.

To foster processing of the learning content, an elaboration prompt was used. It was
successfully used in a prior study to increase the learning outcome (Vogt et al., 2020). The
prompt included different parts to stimulate cognitive learning processes: it outlined the
connectedness of the presented concepts and contained an explanatory component where
learners were asked to prepare a peer explanation in their own words for the learning con-
tent (see Appendix).

Questionnaires

Before testing in the laboratory, participants filled in a short online questionnaire about
their gender, age, educational level, field, prior experiences with VR glasses, and VR ap-
plications at home. Additionally, we measured verbal ability by using a subcategory of the
IST2000-R (Liepmann et al., 2007). This subcategory was the basic module A (similarities)

FIGURE 1 Virtual reality learning environment displaying the VR animation of the REEM robot
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that consisted of 20 items (item numbers 41-60). Participants were instructed to choose
two corresponding words from a list of six words. This decision should rely on an obvious
generic term that was compatible with only two words on this list. For example, out of the fic-
titious list “fork, butter, necklace, book, biscuit and cigarette’ the participants should choose
‘butter’ and ‘biscuit’ as these are both food items. Reliability of verbal ability measurement
was acceptable with Cronbach's a = 0.74 (Cly,, = 0.62—0.86).

We developed our learning questionnaires based on a first-semester lecture in robot-
ics and our questions were additionally critically reviewed by an expert in robotics. Our
pre-questionnaire, which was answered in the laboratory, included a measurement of prior
knowledge to be able to control for differences between the experimental groups. We devel-
oped a domain-specific prior knowledge test with seven open questions. For instance, the
test included basic questions about relevant technical concepts for robotics (e.g. ‘What is the
difference between control and regulation in the field of robotics?’ or ‘Name three different
types of sensors that are used in the field of robotics’). To ensure that our scoring was not
biased by the rater, we had two independent raters that scored the answers based on a de-
tailed solution scheme. The inter-rater reliability of the two independent raters was high with
r=0.93, (Clys,, = 0.89-0.96).

To measure learning outcome, we developed a post-test that consisted of twelve open
questions. We developed questions for each of the three levels of learning outcome: knowl-
edge, comprehension, application. The four knowledge or recall questions referred to basic
definitions (e.g. ‘Which term is appropriate to describe that the robot is heading straight
towards you?’). To test comprehension level, four questions were included (e.g. ‘What can
a service robot do in contrast to an industrial robot?’) and for application we developed four
questions (e.g. ‘What happens if the distance between the current pulses in the actuator is
shortened?’). Again, the answers were rated by two independent raters who showed a high
inter-rater reliability with r = 0.88 (Cl,,, = 0.81-0.93).

Learners’ psychological state of being immersed in the VRLE, also described by the
concept of presence (e.g. Slater, 1999), was measured with the respective scale of the
Technology Usage Inventory (TUI; Kothgassner et al., 2012). This scale consisted of four
items rated on a 7-point Likert scale (e.g. ‘Through the virtual simulation | had the feeling of
really experiencing the situation’). Reliability of measuring perceived immersion was accept-
able, with Cronbach's a = 0.74 (Cl,,, = 0.60-0.88).

Procedure

The study consisted of two parts. The first was an online questionnaire that was filled in at
home. The second part took place in our laboratory at the university as an individual session
for each learner. In the laboratory, the participants received a brief introduction about the
study by the researcher and signed the informed consent form. The participants were in-
formed that they could withdraw their data or end their participation at any point in the study
with no negative consequences. Then the participants filled in the online pre-questionnaire
using a laptop provided. Depending on their experimental group, learners received the
elaboration prompt. To ensure that they understood the prompt properly, they were asked
to repeat the prompt in their own words. Afterwards, the first part of the learning content
was presented: either the VR animation or the auditory text. Then, the remaining part of
the learning unit was presented. Therefore, all participants viewed the same content; only
the order of presentation was altered. Finally, participants filled out the post-questionnaire.
Overall, the study lasted about one hour.



British Journal of
10 | Educational Technology VOGT ET AL.

Data preparation

To display the online questionnaire, we used the online survey tool Unipark. For data prepa-
ration and analyses we used R 3.5.1. For our further analysis of learning test results, we
developed a rigorous solution scheme with the help of an expert in robotics. Two independ-
ent raters analyzed the answers and scored them based on a pre-defined scoring system
for each question. Percentages of correct answers were calculated for both, pre- and post-
test, for each level of learning outcome. Additionally, a weighted mean of the three learning
outcome scores was calculated to determine the percentages of overall learning outcome
for each learner. For verbal ability, the scores were calculated by using the published solu-
tion scheme of the IST2000-R and one verbal ability score was deduced for each learner.
Furthermore, we checked for outliers and whether assumptions for parametric testing were
met (normal distribution, homogeneity of variances and covariances). We based our analy-
sis on the postulated hypotheses. To ensure high power of analysis and to avoid cumulation
of alpha error, we used MANOVAs or MANCOVAs instead of multiple ANOVAs or ANCOVAs
to determine whether groups differed significantly as recommended by Field (2013). By this,
we were able to include more than one dependent variable in each analysis. Additionally,
as we used contrasts to analyze our hypotheses. Therefore, we had not to rely on the less
powerful post-hoc testing (Field, 2013).

RESULTS
Descriptive results

Learners’ domain-specific prior knowledge and verbal ability were on a medium to high level
in all four experimental conditions (Table 1). To ensure that no systematic differences be-
tween the experimental groups existed, a MANOVA including prior knowledge, verbal ability,
and immersion while learning in VR was conducted. Although, we measured presence on a
7-point Likert scale and therefore received ordinal data on perceived immersion, we perform
parametric testing with these values as this is a very common approach based on Norman
(2010). The four experimental groups did not differ significantly (F(3,74) = 2.21, p = 0.107).
Preceding the detailed analyses, based on the descriptive scores of the overall learn-
ing outcome, a trend can be described that groups with picture-first performed better
than the text-first groups. In detail, the descriptively highest learning outcomes were
found for the groups with VR animation first (with or without prompting), followed by au-
ditory text first with prompt (Table 2). The lowest overall learning outcome was achieved
in the group with auditory text first and no prompting. No clear pattern can be described
when differentiating between all three levels of learning outcome. Descriptively, without
controlling for learners’ aptitudes, learners with VR animations first achieved higher

TABLE 1 Means and standard deviations of the experimental groups

VR animation first Auditory text first
M (SD) M (SD)
With prompt Without prompt With prompt Without prompt
n=20 n=22 n=20 n=19
Prior knowledge (%) 57.46 (15.41) 58.27 (12.59) 57.91 (13.79) 62.09 (13.42)

Verbal ability (%) 54.07 (14.03) 53.06 (14.54) 61.23 (14.12) 60.09 (9.24)
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TABLE 2 Means and standard deviations of the experimental groups on all levels of learning outcome

VR animation first Auditory text first

M (SD) M (SD)

With prompt Without prompt With prompt Without prompt

n=20 n=22 n=20 n=19
Overall (%) 43.71 (11.27) 45.98 (13.14) 42.85 (10.85) 36.92 (13.49)
Knowledge (%) 67.07 (23.64) 68.25 (16.87) 61.23 (14.12) 60.09 (9.24)
Comprehension (%) 39.09 (15.09) 41.25 (25.97) 35.79 (13.05) 34.50 (16.69)
Application (%) 25.00 (12.79) 20.04 (15.55) 28.29 (11.67) 22.50 (11.89)

learning outcomes on knowledge and comprehension levels. Based on the descriptive
values, learning outcome on the application level was higher with prompt compared to
without prompt.

Impact of sequencing and prompting on learning outcome

Before conducting inferential statistical analysis, we checked for outliers and whether the re-
quired assumptions for our planned analysis were met. Based on the Shapiro-Wilk test, the
multivariate normal distribution was assumed for relevant variables for each experimental
subgroup (p > 0.060). The variances were homogenous based on Levene's test (p > 0.658).
Box's M value of 16.55 was with p = 0.646 not significant, hence the observed covariance
matrices for the dependent variables were equal across groups.

To test our hypotheses, we performed a MANCOVA (F(5,74) = 3.27, p = 0.0107%
nzpam.a, = 0.194, Table 3) including learning outcome on all three levels (knowledge, com-
prehension, and application) with contrasts for presentation sequence and prompting, as
well as their interaction. As verbal ability and prior knowledge had a significant impact on
learning outcome, we included these as covariates.

In our first hypothesis, we expected a significant impact of sequence (VR animation or
auditory text first) on all three learning outcome levels. Based on prior findings, we expected
that learning with VR animation first outperforms the group learning with auditory text first.
We found a significant, beneficial effect of learning with VR animation first, compared to au-
ditory text first, on the knowledge level only (H1; F(1,68) = 8.89, p = 0.004**, nzpam.a, =0.114;
Table 3). The sequence showed no significant effects on comprehension and application
level (pcomprehension = 0.116, Pappiication = 0.143). Therefore, learning at the knowledge level
was facilitated by presenting VR animation followed by the auditory text, only. Hence, the
first hypothesis (H1) was only supported partially by the data.

In our second hypothesis, we assumed a beneficial effect of prompting on all levels of
learning outcome. We found a significant effect of prompting on application but not for knowl-
edge and comprehension level (py,oueq0e = 0-490, Poomprenension = 0-794, Pappiication = 0-018,
H2.1). As expected, based on the contrast analysis the elaboration prompt led to a signifi-
cantly higher learning outcome on the application level and the highest relative effect size
(nzpartia/_applicaﬁon =0.080> n 2partial_knowledge =0.007 > nzpartia/_comprehension = 0'002)' Therefore,
our hypothesis (H2.2) was supported by the data.

Our third hypothesis assumed a synergetic effect of both factors: adequate sequencing
(VR animation first) and prompting (H3). This synergetic effect was not found for the three
levels of learning outcome (F(1,68) = 1.75, p > 0.190, ’72pam'a/ < 0.025). Hence, based on the
present findings, our third hypothesis (H3) was rejected.
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TABLE 3 Results of the MANCOVA with the different levels of learning outcome and simple contrasts for
sequence and prompting, with verbal ability and prior knowledge as covariates

F(1,68) P 1 partian
Knowledge
Verbal ability 8.37 0.005** 0.110
Prior Knowledge 0.07 0.792 0.001
Prompt 0.45 0.504 0.007
Sequence 8.77 0.004** 0.114
Prompt x Sequence 1.74 0.191 0.025
Comprehension
Verbal ability 0.01 0.917 <0.001
Prior Knowledge 1.65 0.203 0.024
Prompt 0.12 0.732 0.002
Sequence 2.54 0.116 0.036
Prompt x Sequence 0.58 0.447 0.009
Application
Verbal ability 0.33 0.568 0.005
Prior Knowledge 5.01 0.029* 0.069
Prompt 5.89 0.018* 0.080
Sequence 2.20 0.143 0.031
Prompt x Sequence 0.40 0.525 0.006

5 < 0.001; **p < 0.01; *p < 0.05.

DISCUSSION

It is expected that VRLEs will have a substantial impact on education (Meyer et al., 2019;
Radianti et al., 2020). However, while some previous publications outline the benefits, oth-
ers describe no or even negative effects (Makransky et al., 2020; Parong & Mayer, 2018;
Wu et al., 2020). Therefore, the question arises about how VRLEs can be implemented as
a deep-learning approach. In our study, we used two approaches to stimulate deep learn-
ing in VRLEs: We manipulated the presentation sequences (VR animation or auditory text
first) and their effect on learning outcome. Additionally, we expected an elaboration prompt
to support deep-learning processes when learning with VRLEs. Combining these two ap-
proaches (adequate sequencing and prompting) was expected to have a synergetic, benefi-
cial effect on all levels of learning outcome.

Learning outcome depending on presentation sequence of
pictorial and verbal information

The first research question addressed the effectiveness of adequate sequencing. Learners
in the group with VR animation first outperformed learners in the group with auditory text
first on the knowledge level. This beneficial effect of presenting VR animation first is in line
with the findings reported in the review of Eitel and Scheiter (2015). However, in the present
study, the beneficial effect of presenting VR animation first, was only found for the knowl-
edge level but not the transfer or application of the learning content. Therefore, learners in
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the VR animation first group performed better in defining and describing basic concepts but
had no advantage when answering comprehension or application questions.

Based on the two-stage theory of mental model construction, one can conclude that
learners with VR animation first were supported in building a mental model that can be char-
acterized as a component model (Mayer et al., 2002). When building mental models, two
models are developed simultaneously: the component model and the causal model. When
the cognitive resources of the learners are insufficient, no causal model is developed. Using
a brief pictorial representation (e.g. VR animation) might serve as a scaffold of the main
concepts and components. This scaffold seems to support learners to build the component
model only.

Having a look at the different learning outcome levels, both groups had a medium to high
correct answer rate on the knowledge level, while they scored relatively low for compre-
hension and application. This further supports the assumption that learners had insufficient
resources to process the learning content deeply and to build a causal mental model (Mayer
et al., 2002). However, learning successfully does not simply depend on learners’ resources
or the presentation sequence, but also on their active role while learning. When processing
the learning content deeply this active role is a particularly crucial pre-condition for answer-
ing questions at the comprehension or application level.

Effects of prompting on different levels of learning outcome

For our second research question, we investigated the activation of learners through an
elaboration prompt. Our results imply that the elaboration prompt used in our study sup-
ported learners to answer questions at the application level only. No significant beneficial
effect was found for knowledge or comprehension. In a prior VR study of Vogt et al. (2020),
the same learning material was presented with the VR animation and the auditory text si-
multaneously, i.e. the learning material did not include a presentation sequence of pictorial
and verbal information. In that case, the elaboration prompt fostered learning at the knowl-
edge level only. This was attributed to insufficient resources of learners to build a causal
model. Including sequenced material depending on its format enables learners to process
the learning content more deeply. The elaboration prompt successfully triggered this deeper
elaboration so that learners were able to answer application questions effectively compared
to the group without prompt.

One meta-analysis describes how elaboration prompts including an explanatory compo-
nent have higher impact on transfer or application levels than on the lower levels of learning
outcome (Bisra et al., 2018). The authors explain these finding by the fact that, to be able
to answer transfer or application questions, learners need to integrate the information from
the different representations of the learning content. Answering these questions, therefore,
requires a sophisticated mental model to be able to explain the learning content in their own
words. Consequently, depending on the questions in the post-test, learners might be more
sensitive to this explanatory component compared to answering questions about simple
definitions (Bisra et al., 2018). Therefore, the beneficial effects of the elaboration prompt
might be found at the application level only.

Synergetic effect of adequate sequence and prompting on
learning outcome

Our third research question explored a synergetic effect of both presenting VR animation
first and prompting on learning outcome. This assumption was not supported by the present
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results. We expected both supportive means to foster learning outcome at all levels as the
beneficial effects of prompting are highly dependent on prior knowledge. Depending on the
presentation sequence of auditory text and VR animation, we assumed a brief scaffold of the
learning content was built and this was more or less efficient. This scaffold can be described
as the pre-existing mental model and can therefore be defined as prior knowledge. Hence,
supportive means were assumed to show synergetic effects (Leppink et al., 2012). However,
presenting VR animation first supported learners at the knowledge level, while prompting
supported learners at the application level. Based on these findings, no synergetic effect
was found as presentation sequence and prompting supported very different cognitive sub-
processes of learning. To promote the knowledge level, superficial processing at the syntax
level of learning material is sufficient (Bloom, 1956; Schnotz & Bannert, 2003). The brief
pictorial overview through presenting the VR animation fostered this level of learning out-
come. In the IMTPC this reflects the sub-semantic processing of the given learning content
(Schnotz & Bannert, 2003). Building an internal (but not semantic) representation of the
content was fostered by presenting VR animation first. By contrast, the elaboration prompt
fostered semantic processing of the learning outcome. Based on the IMTPC, integration of
information into the mental model by processes of model inspection was triggered by the
elaboration prompt during the learning unit (Berthold et al., 2009). As the supported cogni-
tive sub-processes are substantially different and support learners on the sub-semantic or
the semantic level, the missing synergetic effect is in line with the results from the first two
research questions in this study.

Limitations and implications for future research

In the present study, we split up the learning unit depending on its format (auditory text and
VR animation). However, one could alter presentation sequence, formats, and specificity in
further combinations. Besides presenting verbal information as auditory text, the written text
could be used. For example, verbal annotations could be added to the VR animation to sup-
port learners to process information (Vogt et al., 2020).

We planned our study and the necessary sample size based on previous findings of Eitel
and Scheiter (2015; for sequence) and Endres et al. (2017; for prompting). However, we un-
covered smaller effect sizes than initially expected. Therefore, our non-significant results of
prompting and sequencing on some level of learning outcome might be also due to a lack of
statistical power (Faul et al., 2009). The effect sizes reported in our study could now be used
to calculate a priori power analysis for future VR studies.

One limitation of this study was the short duration of the learning unit. Having a look at
previous instructional design research (see Mayer, 2014), very short learning units are rather
common to investigate different instructional design research questions and their effects
on different levels of learning outcome (e.g. Mayer & Anderson, 1991). More recent VR
studies also used rather short learning units of 7 to 12 min (e.g. Albus et al., 2021; Parong
& Mayer, 2018; Vogt et al., 2021). We nevertheless would recommend that future studies
might consider investigating longer learning units to investigate even more complex learning
processes.

Furthermore, there was only very little delay between the learning session and the perfor-
mance test. Hence, learners might lack time to process the new information deeply and to
integrate new information into their mental model. This was in line with previous publications
(see Albus et al., 2021; Mayer, 2014) which asked learners to answer questions immediately
after learning and uncovered effects on different levels of learning outcome. Consequently,
missing effects on learning outcome cannot be attributed to the study design and the short
time between the learning session and the performance test. However, in future studies,
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the long-term effects of sequencing and prompting on higher learning outcomes might be
analyzed.

Using prompts before entering the VRLEs showed beneficial effects. Further guidance
through prompts either before learning in VR or while learning in VR could be implemented
(e.g. Johnson et al., 2013). With altered prompts, learners could be supported on strategic
levels, for instance by using metacognitive prompts. This could extend the beneficial effect
of the prompts used to learning outcome at all levels.

In the given VRLE, learners were able to choose their perspective and to observe the VR
animation, but they were not able to walk around or interact in VR. In future studies, addi-
tional interactive elements, further degrees of freedom and possibilities to explore the learn-
ing content in a more self-paced and active way are might be investigated (Wu et al., 2020).
In addition, we used a highly controlled setting, as only one learner was present in the lab
during our study. Future studies could investigate group settings of VR learning as well as
possible interaction between learners or teachers and learners.

We used a differentiated measurement of learning outcome. The questions developed
for comprehension and application levels were rather challenging and should be adapted
in future studies. We also found evidence that calls Bloom’s (1956) hierarchy of learning
into question. Therefore, different measurements of learning processes and outcome are
recommended. For instance, process data should be collected in future studies to inves-
tigate learning or exploration strategies, particularly in more self-paced and interactive
VRLEs.

In this study, as well as in the previous study with the same learning material, the chal-
lenge of learners’ limited cognitive resources and capacity has been mentioned. Therefore,
it is advisable to explore the cognitive load while learning. In particular, a differentiated mea-
surement including items for germane, intrinsic, and extraneous load could deliver further
insights into learners’ cognitive load, as well as their invested resources while learning. As
the active role of the learners is crucial, motivational concepts should also be considered
and explored in future work.

CONCLUSION

The present study aimed to contribute to the question of how to turn learning in VR into a
deep-learning approach. Based on the findings, depending on the level of learning outcome
targeted, different support approaches are advisable. For learning basic concepts or defini-
tions, presenting a VR animation followed by a more specific auditory text is a promising
approach. To foster deeper processing of the learning content, an elaboration prompt before
entering the VRLE is advisable, as it supports learners to build connections between the
concepts and to process the content semantically. In addition to the present findings, other
influencing factors need to be investigated to develop adequate instructional designs for
VRLEs. To gain a deeper understanding of cognitive learning processes, further underlying
processes should be measured and explored. Learners’ aptitudes should also be taken into
account. Previous findings should be replicated and further explored in other disciplines and
contexts to reach the full potential of VRLEs.
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APPENDIX

In the following, we provide further information about the learning material and the most
important concepts included in the narration and the virtual reality animation. Furthermore,
we provide more details about the different levels of learning outcome and the elaboration
prompt.

Learning unit: Auditory text

Two main topics were included in the auditory learning unit: First, it included details about
the robot, such as its technical specification; second, it included more abstract information
for instance the definition of kinematic. To encourage learners’ engagement with the topic,
the robot was the narrator (Hello, | am a service robot for home use.).

To begin, the robot described its size, weight, and transport platform at the back. It also
explained the difference between service and industrial robots. The robot explained its main
function: cleaning floors. It also described the necessary processes and the related techni-
cal components it needs for its cleaning task. In addition, the robot outlined its functionality
of certain sensors and the existing safety protocols (First, | capture my environment through
various sensors and a camera...).

Part of this explanation related to further details about data processing, its fusion, and its
translation into corresponding movements and actions of the robot. The robot described its
possible motion trajectory and went into more detail about the link to concepts of kinematics
(I can move in a straight line, which is also described by the term...).

The robot explained further details about the motion system and the underlying control
circuit. One topic, for example, was a special controller (PID controller), which influenced
the movement speed of the robot. Here, the functionality of the controller and the technical
interaction with the motion-executing components were described. Based on this informa-
tion, learners had the opportunity to learn about various processes related to robotics and to
develop a deeper understanding of the interrelationships of individual components. Another
abstract topic was introduced at the end of the learning unit: the difference between local
and global navigation. It was also explained what consequences the respective type of navi-
gation would have for the cleaning task (...in global navigation, | have a more comprehen-
sive environment model and try to reach my cleaning goal without driving into unnecessary
dead ends...).

Learning unit: Virtual reality animation

The virtual reality learning environment included an animated 3D model of the humanoid
REEM robot of the manufacturer PalRobotics. We conducted the study in cooperation with
a further study, investigating human—robot interaction. Hence, the robot model was adapted
to be slightly larger than its real counterpart (1.75 m instead of 1.6 m). Learners were able to
see the different components of the robot and its moving trajectory. Additionally, they were
observing the robot in action while executing its service task. We programmed the virtual
reality learning environment with Unity (version 2019.2.0f1). To display the virtual reality we
used the standalone head-mounted display Oculus Go. The learners were able to choose
their exploration perspective and move in the virtual reality. Hence, learners could peek
around the corner to watch the robot while performing its service task in the virtual kitchen.
They were able to look up and down to focus on different parts of the robot for instance its
face or its chassis. Additionally, learners were able to yaw to be able to focus the robot all
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the time while it was moving around. However, the learners were not able to manipulate the
robot.

Learning unit: Different levels of learning outcome

The learning unit provided information to reflect the different learning outcomes based on
the taxonomy of Bloom (1956). The robot's narration as well as the virtual reality animation
of the robot contained information such as facts about the height and weight of the robot.
This reflected the learning outcome on the knowledge level (Bloom, 1956). Furthermore,
based on the provided details, learners were able to compare different concepts and to
name their distinction (e.g. global and local navigation). A deeper understanding was stimu-
lated by providing facts and processes in both, the narration and the virtual reality animation
to enable the learners to transfer this knowledge to new problems (e.g. What happens if the
distance between the current pulses in the drive is shortened?).

Elaboration prompt

Depending on their experimental conditions, the investigator read out the elaboration prompt
before the learning unit started. To ensure, that learners understood the elaboration prompt,
they were kindly asked to repeat it out loud in their own words to the investigator. When nec-
essary the prompt was explained or repeated again. The elaboration prompt was:

You will now get to know the robot better. You will also learn some details about robotics.
Pay particular attention to concepts and terms that are new to you and how they are related
to each other. Imagine that you have to explain them to someone else who has no prior
knowledge in this field.

Using this elaboration prompt aimed at fostering deep elaboration of the learning content
by outlining potential connections between the different concepts. Hence, it stimulated cog-
nitive learning processes, and activated learners to elaborate the learning content deeply
(Bannert & Reimann, 2012). Based on prior findings, prompts are more effective when these
activate learners to repeat the learning content in their own words (Berthold et al., 2009).
Hence, the included explanatory components aimed to trigger the learners to prepare a
peer explanation. To do so, learners require to process the learning content deeply and thus
semantically (Berthold et al., 2009).
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details about the different levels of learning outcome and the elaboration prompt.
Learning unit: Auditory text

Two main topics were included in the auditory learning unit: First, it included details about the
robot, such as its technical specification; second, it included more abstract information for instance the
definition of kinematic. To encourage learners’ engagement with the topic, the robot was the narrator

(‘Hello, I am a service robot for home use.").

To begin, the robot described its size, weight, and transport platform at the back. It also
explained the difference between service and industrial robots. The robot explained its main function:
cleaning floors. It also described the necessary processes and the related technical components it needs
for its cleaning task. In addition, the robot outlined its functionality of certain sensors and the existing

safety protocols ('First, | capture my environment through various sensors and a camera...").

Part of this explanation related to further details about data processing, its fusion, and its
translation into corresponding movements and actions of the robot. The robot described its possible
motion trajectory and went into more detail about the link to concepts of kinematics ('l can move in a

straight line, which is also described by the term...").

The robot explained further details about the motion system and the underlying control circuit.
One topic, for example, was a special controller (PID controller), which influenced the movement
speed of the robot. Here, the functionality of the controller and the technical interaction with the
motion-executing components were described. Based on this information, learners had the opportunity
to learn about various processes related to robotics and to develop a deeper understanding of the
interrelationships of individual components. Another abstract topic was introduced at the end of the
learning unit: the difference between local and global navigation. It was also explained what
consequences the respective type of navigation would have for the cleaning task ('...in global
navigation, | have a more comprehensive environment model and try to reach my cleaning goal

without driving into unnecessary dead ends...").
Learning unit: Virtual reality animation

The virtual reality learning environment included an animated 3D model of the humanoid REEM
robot of the manufacturer PalRobotics. We conducted the study in cooperation with a further study,
investigating human-—robot interaction. Hence, the robot model was adapted to be slightly larger than
its real counterpart (1.75 m instead of 1.6 m). Learners were able to see the different components of

the robot and its moving trajectory. Additionally, they were observing the robot in action while



executing its service task. We programmed the virtual reality learning environment with Unity
(version 2019.2.0f1). To display the virtual reality we used the standalone head-mounted display
Oculus Go. The learners were able to choose their exploration perspective and move in the virtual
reality. Hence, learners could peek around the corner to watch the robot while performing its service
task in the virtual kitchen. They were able to look up and down to focus on different parts of the robot
for instance its face or its chassis. Additionally, learners were able to yaw to be able to focus the robot

all the time while it was moving around. However, the learners were not able to manipulate the robot.
Learning unit: Different levels of learning outcome

The learning unit provided information to reflect the different learning outcomes based on the
taxonomy of Bloom (1956). The robot's narration as well as the virtual reality animation of the robot
contained information such as facts about the height and weight of the robot. This reflected the
learning outcome on the knowledge level (Bloom, 1956). Furthermore, based on the provided details,
learners were able to compare different concepts and to name their distinction (e.g. global and local
navigation). A deeper understanding was stimulated by providing facts and processes in both, the
narration and the virtual reality animation to enable the learners to transfer this knowledge to new

problems (e.g. What happens if the distance between the current pulses in the drive is shortened?).
Elaboration prompt

Depending on their experimental conditions, the investigator read out the elaboration prompt before
the learning unit started. To ensure, that learners understood the elaboration prompt, they were kindly
asked to repeat it out loud in their own words to the investigator. When necessary the prompt was
explained or repeated again. The elaboration prompt was: 'You will now get to know the robot better.
You will also learn some details about robotics. Pay particular attention to concepts and terms that
are new to you and how they are related to each other. Imagine that you have to explain them to

someone else who has no prior knowledge in this field.'

Using this elaboration prompt aimed at fostering deep elaboration of the learning content by
outlining potential connections between the different concepts. Hence, it stimulated cognitive learning
processes, and activated learners to elaborate the learning content deeply (Bannert & Reimann, 2012).
Based on prior findings, prompts are more effective when these activate learners to repeat the learning
content in their own words (Berthold, Eysink, & Renkl, 2009). Hence, the included explanatory
components aimed to trigger the learners to prepare a peer explanation. To do so, learners require to

process the learning content deeply and thus semantically (Berthold, Eysink, & Renkl, 2009).
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Additional analysis

All studies conducted during this thesis were part of projects that focused on additional research
questions. Therefore, only some findings were published in the included journal papers. As
some further findings are related to the rational of this thesis, these are provided in more detail
in this section.

As part of the related research projects further potential influencing learner’s characteristics
were investigated. As already outlined in this thesis, different learners characteristics might
impact learning outcome. To broaden the insights into the importance of learners characteristics

and potential interactions with the given support approaches more details are provided.

Study 1 - Learning in Virtual Reality: Bridging the Motivation Gap
by Adding Annotations

The publication focussed on the analysis directly related to the postulated hypothesis (Vogt,
Albus, & Seufert, 2021). To deduce further details about the underyling cognitive learning
processes that were affected by the annotations additional explorative analysis were conducted

and the main findings of these analysis are reported.

Briding the motivation gap

In the publication, the moderating effect of intrinsic motivation on overall learning outcome
was focussed. To gain further insight into this effect, each level of learning outcome has been
explored. Compared to the knowledge and comprehension level, the application level did not
show this moderating effect (see Figure 1 and table 1). The strongest moderating effect was

found on comprehension level (see Figure 2 and table 2).

Table 1.: Linear model with moderating effect on application level

Variable Coefficient ~ SE t-value p
(Intercept) -0.10 0.16  -0.65 0.519
Group 0.23 0.23 0.98 0.33
Prior knowledge 0.13 0.04 3.23 0.002
Intrinsic motivation 0.16 0.10 1.57 0.122
Group * intrinsic motivation -0.05 0.15 -0.33 0.751
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Figure 1.: Johnson-Neyman interval displaying the missing moderating effect of intrinsic moti-
vation on application level

Table 2.: Linear model with moderating effect on comprehension level

Variable Coefficient  SE t-value p
(Intercept) -0.08 0.15  -0.53 0.597
Group 0.21 0.21 0.97 0.338
Prior knowledge 0.13 0.04 3.32  0.001
Intrinsic motivation 0.29 0.09 3.06 0.003
Group * intrinsic motivation -0.40 0.14 -2.92  0.005

Learner’s characteristics

Since working memory capacity is limited and in complex learning environments a lot of
information has to be processed simultaneously, it is plausible that learning outcome also
depends to a substantial degree on the working memory capacity of the learner (Baddeley,
1992). Furthermore, as one main feature of VRLEs is displaying the spatial configuration of the
learning content in an immersive way, and the impact of spatial ability on learning outcome can
be expected in the context of learning in VR. In line with this idea, working memory capacity
and spatial ability were examined in this project related to Study 1. In this study N = 107
learners were learning in VRLEs providing information about seawater desalination by using
VR animations, textual labels, and narration (for further details and findings of this study
see Albus et al. (2021). A positive relation between learning outcome and working memory
capacity was expected as well as a beneficial or moderating effect of spatial ability. However,
based on the reported findings in this study the importance of working memory capacity and
spatial ability was not supported empirically (Albus et al., 2021). To gain further insight

into the importance of these factors, future studies should again systematically examine the
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Figure 2.: Johnson-Neyman interval displaying the moderating effect of intrinsic motivation on
comprehension level

extent to which the potential influence of these factors also depends on the learning material or
instructional design of the VRLE.

Additional Study 1 - Supporting learners by color-coding

Short summary

One further external support approach for learning in VR was investigated (Vogt, Albus,
Montag, et al., 2021). In this study, a non-immersive virtual reality learning environment was
used. Previous findings on learning in VR imply beneficial effects of including visual cues or
highlights in the VRLE (Vogt, Albus, & Seufert, 2021; Albus, Vogt, & Seufert, 2021). When
different representations are present in the virtual reality learning environment, learning can
be supported if corresponding learning content is appropriately highlighted in textual and
pictorial representations. One approach to facilitate the mapping of corresponding elements is
color-coding (Mayer, 2014). Here, corresponding elements are marked as belonging to each
other by the same color scheme. This was intended to support different cognitive learning
processes. On the one hand, color-coding supports finding the corresponding elements and
therefore eases visual search similar to annotations (Ozcelik et al., 2010). In addition, like
annotations, it supports the integration of different information in the subsequent processing
procedures (Mayer, 2014).

In this VR study with N = 54 learners, the learning content on the topic of statics was
displayed by different presentations formats in the VRLE: Learners were able to learn about

different basic formulas related to statics on whiteboards and explore these relationships
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between different parameters directly and interactively in the VRLE. For this purpose, learners
could place different weights on beams that differed in material, diameter, or length. Each
of the four chapters included a short interactive quiz. The central learning contents of the
different chapters were then presented again on an overview board. The experimental group
was additionally supported by color-coding to map corresponding elements on the different
panels and in the graphics, as well as virtual reality animations. The control group, on the
other hand, had no such support for the assignment of the elements. The effects of color-coding
were investigated on learning outcomes. The learning outcome was measured in a differentiated
way by using the levels of Bloom (1956) knowledge, comprehension, and applications. Different
learner characteristics were examined. For instance, domain-specific prior knowledge was
accessed. A beneficial effect of color-coding compared to the control group was expected on
the overall learning outcome (H1). Based on theoretical considerations, particularly learning

on the application level was assumed to be increased (H2).

Main findings

Before conducting inferential statistics to test the postulated hypothesis, potential covariates

were considered.

learning outcome in %

20 —

[ I [ [ [ I
0 100
prior knowledge

Figure 3.: Relationship of prior knowledge and overall learning outcome

A positive relationship between learning outcome was found for prior knowledge (see Figure 3).
Thus, prior knowledge was included into the subsequent analysis for testing the hypothesis.

Analysing the effect of color-coding on the overall learning outcome, no significant effect of
color-coding was found (H1; see table 3). Considering the covariate prior knowledge, a positive

effect of color coding on the application level was found (H2), see table 4.
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Table 3.: Results of the ANCOVA including experimental group and the covariate prior knowl-
edge on overall learning outcome

Cases Sum of Squares df Mean Square F p n?
group 78.587 1 78.587  0.667 0.418 0.011
P_VT_ ges 1202.404 1 1202.404 10.205 0.002 0.162
Residuals 6126.974 52 117.826

Table 4.: Results of the ANCOVA including experimental group and the covariate prior knowl-
edge on learning outcome on the application level

2

Cases Sum of Squares df Mean Square F p n
group 1502.652 1 1502.652 4.819 0.033 0.077
P_VT_ges 1785.778 1 1785.778 5.727 0.020 0.092
Residuals 16215.092 52 311.829
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Data analysis with R

Exemplary R code for data preparation and statistical
analysis

This is exemplary code has been implemented using R-4.1.0, RStudio 1.1.463 and R Markdown.

library (ggplot2)
library (ggvis)
library (corrplot)
library (ggcorrplot)
library (psych)
library (moments)
library (DescTools)
library (lawstat)
library (pander)
library (jtools)
library (MVN)
library(interactions)
library (wesanderson)
library (heplots)
library (rstatix)

(

library (ggpubr)

Generating random data frames

dat <- data.frame(replicate (10, sample(1:100,100, rep=TRUE)))

Naming columns

names (dat) <- c('class', 'age', 'IQ', 'prior knowledge', 'motivation', 'ability', 'learn

ing outcome', 'knowledge', 'comprehension', 'application')
Add experimental groups and case numbers

a <-sample(1:4,100, rep=TRUE)
dat$group<- a

b <- seg(l, 100 , by = 1)
dat$case<- b

c <- sample(0:1,100, rep=TRUE)
dat$group.dummy<- c

Brief overview

head (dat)



kil class age IQ prior knowledge motivation ability learning outcome knowledge

## 1 81 37 45 76
## 2 28 25 46 85
## 3 42 25 14 55
## 4 85 88 83 86
## 5 46 28 23 59
## 6 99 41 35 52
## comprehension application group case
#4 1 12 14 2 1
## 2 94 93 4 2
## 3 19 43 3 3
## 4 8 91 4 4
## 5 66 60 3 5
## 6 29 77 4 6

Check matching cases and merging of data frames

match <- function(h, i) {

return (list (h[! (h %in% i)], i[! (i %in

dat 2 <- data.frame (replicate(4,sample(1:100,100,rep=TRUE)))

names (dat 2) <- c('case', 'attention',
dat 2$case<- b

head(dat_2)

LR case attention time interaction
## 1 1 6 75 9
## 2 2 23 74 34
## 3 3 98 27 37
## 4 4 28 25 28
## 5 5 30 82 99
## 6 6 93 12 11

d ges <- merge(dat,dat 2,by="case")
head (d_ges)

'time',

99 59
86 15
2 2
56 76
22 77
46 24

group.dummy

I N o N S

'interaction')

70
44
64
72
51
51

3
72
8
12
11
37



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

case class age IQ prior knowledge motivation ability learning outcome

Swod N

1 1 81 37 45 76

2 2 28 25 46 85

3 3 42 25 14 55

4 4 85 88 83 86

5 5 46 28 23 59

6 6 99 41 35 52
knowledge comprehension application group

1 3 12 14

2 72 94 93

3 8 19 43

4 12 8 91

5 11 66 60

6 37 29 77
interaction

1 9

2 34

3 37

4 28

5 99

6 11

Check data types

typeof (d_gesSgroup)

L&

[1]

"integer"

d ges$group <- as.factor (d ges$group)

99
86

2
56
22
46

59
15

2
76
77
24

70
44
64
72
51
51

group.dummy attention time

d ges$group.dummy <- as.factor (d gesSgroup.dummy)

Exploring the dataset

summary (d_ges)

1

I S R S o S

6
23
98
28
30
93

75
74
27
25
82
12



#4 case class age I0

## Min. : 1.00 Min. : 1.00 Min. : 2.00 Min. : 1.00
## 1st Qu.: 25.75 1st Qu.: 26.75 1st Qu.:27.75 1st Qu.: 25.50
## Median : 50.50 Median : 59.00 Median :50.00 Median : 53.00

## Mean : 50.50 Mean : 53.66 Mean :49.67 Mean : 52.28
## 3rd Qu.: 75.25 3rd Qu.: 78.50 3rd Qu.:73.00 3rd Qu.: 79.00
## Max. :100.00 Max . :100.00 Max. :98.00 Max. :100.00
## prior knowledge motivation ability learning outcome
## Min. : 2.00 Min. : 1.00 Min. : 1.00 Min. : 1.00

## 1st Qu.:25.75 1st Qu.: 24.50 1st Qu.:25.50 1st Qu.: 23.00
## Median :55.00 Median : 49.00 Median :58.00 Median : 51.00

## Mean :50.72 Mean : 49.73 Mean :51.14 Mean : 49.87
## 3rd Qu.:73.00 3rd Qu.: 73.50 3rd Qu.:74.00 3rd Qu.: 75.25
## Max. :99.00 Max . :100.00 Max . :99.00 Max. :100.00
#4# knowledge comprehension application group group.dummy
## Min. : 3.00 Min. : 2.0 Min. : 4.00 1:18 0:45

## 1st Qu.: 31.00 1st Qu.:22.0 1st Qu.: 30.75 2:28 1:55

## Median : 58.50 Median :47.5 Median : 53.00 3:26

## Mean : 53.99 Mean :47.0 Mean : 53.00 4:28

## 3rd Qu.: 79.50 3rd Qu.:71.0 3rd Qu.: 80.50

## Max. :100.00 Max. :97.0 Max. :100.00

## attention time interaction

## Min. : 2.00 Min. : 2.00 Min. : 1.00

## 1st Qu.: 26.00 st Qu.: 29.75 1st Qu.: 30.00
## Median : 52.00 Median : 52.50 Median : 49.00

## Mean : 52.55 Mean : 53.03 Mean : 52.04
## 3rd Qu.: 79.25 3rd Qu.: 79.25 3rd Qu.: 77.25
## Max. :100.00 Max . :100.00 Max . :100.00

boxplot (d_ges$knowledge, d gesScomprehension, d ges$application, col=c('turquoisel', 'tur
quoise2', 'turquoise3'),names=c ("application", "comprehension", "knowledge"), ylab="learnin

outcome in %"
g



learning outcome in %

plot (d ges$Slearning outcome,d ges$prior knowledge, ylab='prior knowledge in %', xlab='le
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m<-mean (d_gesS$age)
std<-sqgrt (var (d_ges$age))
hist (d _ges$age, density=20, breaks=20, prob=TRUE,
xlab="x-variable", ylim=c(0, 0.02),
main="distribution of age with normal curve over histogram")
curve (dnorm(x, mean=m, sd=std),
col="darkblue", 1lwd=2, add=TRUE, yaxt="n")

distribution of age with normal curve over histogram

Density
0.010 0.015 0.020
| | J

0.005
I

0.000
|

0 20 40 60 80 100

x-variable

skewness (d_gesSage)

## [1] 0.1268351

kurtosis (d_gesSage)

## [1] 1.958863

Plotting by group

pxl <- ggplot(data = d ges, aes(learning outcome, prior knowledge, color = group)) +
geom_point () +
scale color manual (values = c('red', 'blue', 'yellow',6 'green'))
px2 <- pxl + theme bw() + theme(panel.border = element blank(), panel.grid.major = eleme
nt blank(),
panel.grid.minor = element blank(), axis.line = element line(colour = "black"))

px2
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More versions of scatterplots using ggvis

d ges %>% ggvis(~learning outcome,~prior knowledge, fill = ~motivation) %>% layer points
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d ges $>% ggvis(~learning outcome, ~prior knowledge, size = ~motivation) %>% layer points
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d ges %$>% ggvis(~learning outcome, ~prior knowledge, stroke = ~motivation) %>% layer poin

ts ()
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Plotting to explore correlations
d cor <- subset(d ges, select=c('learning outcome', 'prior knowledge', 'motivation','IQ',"

ability'))
ggcorrplot::ggcorrplot (cor(d cor))

ability

1Q Corr
m
05
motivation
0.0

prior_knowledge

learning_outcome




corrplot::corrplot (cor(d cor))

motivation
ability

Q

learning_outcome
prior_knowledge

learning_outcome 0.8
06
prior_knowledge 0.4
0.2
motivation r 0
0.2
1Q --0.4
0.6
ability -0.8

Descriptive data

d des <- subset(d ges, select=c('group.dummy','learning outcome', 'prior knowledge', 'moti
vation', 'IQ"))

describeBy (d des,d des$Sgroup.dummy)



kil
## Descriptive statistics by group
## group: O

#4# vars n mean sd median trimmed mad min max range skew
## group.dummy* 1 45 1.00 0.00 1 1.00 0.00 1 1 0 NaN
## learning outcome 2 45 48.18 29.56 47 47.46 35.58 2 100 98 0.17
## prior knowledge 3 45 51.20 26.77 55 51.38 26.69 6 99 93 -0.21
## motivation 4 45 49.40 28.20 56 49.92 37.06 2 96 94 -0.13
## IQ 5 45 58.84 29.66 64 60.22 34.10 3 100 97 -0.35
## kurtosis se
## group.dummy* NaN 0.00

## learning outcome -1.12 4.41

## prior knowledge -1.08 3.99

## motivation -1.34 4.20

##+ I0 -1.23 4.42

# -

## group: 1

LR vars n mean sd median trimmed mad min max range skew
## group.dummy* 155 2.00 0.00 2 2.00 0.00 2 2 0 NaN
## learning outcome 2 55 51.25 30.83 53 51.56 35.58 1 100 99 -0.11
## prior knowledge 3 55 50.33 28.83 52 51.07 37.06 2 94 92 -0.23
## motivation 4 55 50.00 29.49 46 49.64 35.58 1 100 99 0.15
## IQ 5 55 46.91 28.66 46 46.82 35.58 1 99 98 0.03
#4# kurtosis se

## group.dummy* NaN 0.00

## learning outcome -1.41 4.16

## prior knowledge -1.31 3.89

## motivation -1.23 3.98

## IQ -1.27 3.86
bp <- ggplot(d des) +

aes (x = group.dummy, y = learning outcome, fill = group.dummy) +

geom boxplot () +

stat summary (fun=mean, colour="black", geom="point", shape=8, size=5) +

scale x discrete(name = "experimental group") + scale y continuous (name = "learning out
come in %") +
annotate ("text", x=1.5, y=5, size=4, label="* mean") +

ggtitle ("Boxplot and mean of learning outcome for each experimental group")

bpl <- bp + theme (panel.background = element blank(), axis.line = element line(colour =
"black"))
bpl



Boxplot and mean of learning outcome for each experimental group
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p <- ggplot (d ges, aes(x=group, y=knowledge)) +
geom violin (trim=FALSE)

#p

pl <- p + geom boxplot (width=0.1)

pl
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Detecting potential outliers

d sel <- subset(d ges, select = c('group', 'knowledge', 'comprehension', 'application', 'cas

e'))

d sel %>%

group_ by (group) %>%

mahalanobis distance (-case) %>%
filter(is.outlier == TRUE) %>%

as.data.frame ()

## [1] knowledge comprehension application case mahal.dist
## [6] is.outlier
## <0 Zeilen> (oder row.names mit Lange 0)

Checking assumptions for inferential statistics

Normal distribution can either be checked by the the Shapiro Wilk test

shapiro.test (d_ges$learning outcome)

##

## Shapiro-Wilk normality test
##

## data: d_ges$learning outcome

## W = 0.94698, p-value = 0.0005277

For p > .05 a normal distribution can be assumed



A visual inspection of the QQ-plot might deliver further insights.
#for all groups

ggnorm(d_gesS$learning outcome)

ggline (d_ges$learning outcome)

Normal Q-Q Plot

100
I

Sample Quantiles
40

Theoretical Quantiles

#for different groups
ggggplot (d_sel, "application", facet.by = "group",
ylab = "application in %", ggtheme = theme bw())
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Visual inspection of normal distribution based on the qq plot: In case of a perfect normal distribution all points are

on a straight line. In case the points form a curve instead of a straight line this is an indicator for skewness in the
data.

Testing for multivariate normal distribution is required when more variables are included in the analysis.

result <- mvn(data=d des, subset="group.dummy",mvnTest="hz")
result



## SmultivariateNormality

## SmultivariateNormality$ 0°

Rl Test HZ p value MVN
## 1 Henze-Zirkler 0.9737372 0.02988264 NO
Rl

## SmultivariateNormality$ 1°

&l Test HZ p value MVN
## 1 Henze-Zirkler 1.246329 0.0001571363 NO
##

&l

## SunivariateNormality

## SunivariateNormality$° 0"

#4# Test Variable Statistic p value Normality

## 1 Anderson-Darling learning outcome 0.4469 0.2688 YES

## 2 Anderson-Darling prior knowledge 0.7751 0.0408 NO

## 3 Anderson-Darling motivation 0.8287 0.0299 NO

## 4 Anderson-Darling 10 0.9902 0.0118 NO

##

## SunivariateNormality$ 1°

LR Test Variable Statistic p value Normality

## 1 Anderson-Darling learning outcome 1.1606 0.0045 NO

## 2 Anderson-Darling prior knowledge 1.0465 0.0087 NO

## 3 Anderson-Darling motivation 0.7212 0.0565 YES

## 4 Anderson-Darling I0 0.7321 0.0531 YES

##

##

## SDescriptives

## SDescriptives$ 0°

## n Mean Std.Dev Median Min Max 25th 75th Skew
## learning outcome 45 48.17778 29.55756 47 2 100 23 67 0.1668663
## prior knowledge 45 51.20000 26.76803 55 6 99 25 73 -0.2131473
## motivation 45 49.40000 28.20171 56 2 96 23 73 -0.1349775
## IQ 45 58.84444 29.66323 64 3 100 34 84 -0.3516555
## Kurtosis

## learning outcome -1.124425

## prior knowledge -1.084474

## motivation -1.336459

## IQ -1.234256

#4#

## S$Descriptives$ 1°

## n Mean Std.Dev Median Min Max 25th 75th Skew
## learning outcome 55 51.25455 30.83241 53 1 100 22.0 76.5 -0.11067956
## prior knowledge 55 50.32727 28.83224 52 2 94 26.5 75.0 -0.22731930
## motivation 55 50.00000 29.48634 46 1 100 25.0 75.5 0.15303607
## IQ 55 46.90909 28.66038 46 1 99 22.5 73.0 0.03153516
## Kurtosis

## learning outcome -1.407608
## prior knowledge -1.305880
## motivation -1.229407
##+ IO -1.272762

When conducting analysis with more than one dependent variable multicollinearity need to be examined.

d sel%>% cor_ test (application, knowledge)



## # A tibble: 1 x 8

#4# varl var?2 cor statistic p conf.low conf.high method
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 application knowledge -0.11 -1.10 0.276 -0.300 0.0884 Pearson

Another important assumption is the homogenity of variances.

Analysing the homogenity of variances by using the Barltett's test

bartlett.test (d ges$learning outcome,d ges$group.dummy)

#H

## Bartlett test of homogeneity of variances

Al

## data: d _ges$learning outcome and d ges$group.dummy

## Bartlett's K-squared = 0.085307, df = 1, p-value = 0.7702

Additionally, the visual inspection of residuals can deliver further insights:

Mod.aov <- aov(d ges$learning outcome~d ges$Sgroup.dummy)
plot (Mod.aov, 1)

Residuals vs Fitted
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Testing homogeneity of variance-covariance matrices with the Box's M Test

boxM (cbind (knowledge, comprehension, application) ~ group, data=d ges)



kil

## Box's M-test for Homogeneity of Covariance Matrices
Rl

## data: Y

## Chi-Sg (approx.) = 11.769, df = 18, p-value = 0.8589

Inferential testing of hypothesis

Depending on the postulated hypothesis and the results from the testing of assumptions, different statistical test
should be chosen. The most relevant statistical test related to this thesis are shown exemplary in the following.

To deduce whether two variables are significantly related the Pearson product-moment correlation can be used.

cor.test (d _ges$learning outcome,d gesSprior knowledge)

L&

## Pearson's product-moment correlation

LR

## data: d ges$learning outcome and d ges$prior knowledge

## t = 1.3394, df = 98, p-value = 0.1835

## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## -0.06402401 0.32201776

## sample estimates:

L& cor

## 0.1340802

When p < .05 a significant correlation is supported by the data.

Performing a t-test to deduce whether the groups differ significantly

t.test (d ges$Slearning outcome~d ges$group.dummy, var.equal = TRUE, alternative = "two.si
ded")

#4#

## Two Sample t-test

#4#

## data: d _ges$learning outcome by d gesSgroup.dummy

## t = -0.50573, df = 98, p-value = 0.6142

## alternative hypothesis: true difference in means between group 0 and group 1 is not e
qual to O

## 95 percent confidence interval:

## -15.149931 8.996396

## sample estimates:

## mean in group 0 mean in group 1

#4# 48.17778 51.25455

When p < .05 a significant difference between the groups is supported by the data.

In case that more than 2 experimental groups exist and significant differences should be examined on 1 dependent
variable, an ANOVA can be performed.

Modl <- aov (learning outcome~group, data=d ges)

summary (Modl)



kil Df Sum Sqg Mean Sgq F value Pr (>F)
## group 3 1934 644.8 0.703 0.553
## Residuals 96 88075 917.4

pander (Modl)

Analysis of Variance Model

Df Sum Sq Mean Sq F value Pr(>F)
group 3 1934 644.8 0.7028 0.5526
Residuals 96 88075 917.4 NA NA

Post-hoc testing to examine which group differ significantly

ph <- TukeyHSD(aov (learning outcome~group, data=d ges))

ph

## Tukey multiple comparisons of means

L&l 95% family-wise confidence level

##

## Fit: aov(formula = learning outcome ~ group, data = d_ges)
##

## Sgroup

## diff lwr upr p adj
## 2-1 8.198413 -15.72706 32.12389 0.8069636
## 3-1 3.132479 -21.15041 27.41537 0.9867061
## 4-1 11.841270 -12.08421 35.76674 0.5689647
## 3-2 -5.065934 -26.63484 16.50297 0.9273641
## 4-2 3.642857 -17.52286 24.80857 0.9694769
## 4-3 8.708791 -12.86011 30.27770 0.7171195

Additionally, further independent variables or covariates might be added and an ANCOVA might be performed

Mod2 <- aov(learning outcome~group + motivation, data=d ges)

summary (Mod?2)

L& Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1934 644.8 0.707 0.550
## motivation 1 1479 1479.5 1.623 0.206
## Residuals 95 86595 911.5

pander (Mod2)

Analysis of Variance Model

Df Sum Sq Mean Sq F value Pr(>F)
group 3 1934 644.8 0.7074 0.5499
motivation 1 1479 1479 1.623 0.2058

Residuals 95 86595 911.5 NA NA



Potential interaction effects might be added

Mod3 <- aov (learning outcome~group*motivation, data=d ges)
summary (Mod3)
## Df Sum Sg Mean Sq F value Pr (>F)
## group 3 1934 644.8 0.695 0.558
## motivation 1 1479 1479.5 1.594 0.210
## group:motivation 3 1190 396.7 0.427 0.734
## Residuals 92 85405 928.3
pander (Mod3)
Analysis of Variance Model
Df Sum Sq Mean Sq F value
group 3 1934 644.8 0.6946
motivation 1 1479 1479 1.594
group:motivation 3 1190 396.7 0.4273
Residuals 92 85405 928.3 NA
To test more specific hypothesis: contrast analysis can be used.
d ges$group <- relevel (d gesSgroup, ref="1")
modell.contrref <- Im(learning outcome ~ group, data=d ges)
summary (modell.contrref)
##
## Call:
## 1lm(formula = learning outcome ~ group, data = d_ges)
##
## Residuals:
#4# Min 1Q Median 30 Max
## -53.286 -25.754 0.069 24.157 56.556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t])
## (Intercept) 43.444 7.139 6.085 2.38e-08 **x*
## group2 8.198 9.151 0.896 0.373
## group3 3.132 9.287 0.337 0.737
## group4 11.841 9.151 1.294 0.199
#H -—-
## Signif. codes: O '#**' (0.001 '**' Q.01 '*' 0.05 '.'" 0.1 ' "' 1
##
## Residual standard error: 30.29 on 96 degrees of freedom
## Multiple R-squared: 0.02149, Adjusted R-squared: -0.009088

## F-statistic: 0.7028 on 3 and 96 DF,

pander (modell.contrref)

p-value: 0.5526

Pr(>F)
0.5577
0.21
0.7339
NA



Fitting linear model: learning_outcome ~ group

Estimate Std. Error t value Pr(>|t])

(Intercept) 43.44 7.139 6.085 2.376e-08
group?2 8.198 9.151 0.8959 0.3725
group3 3.132 9.287 0.3373 0.7366
group4 11.84 9.151 1.294 0.1988

After conducting the analysis, the results can be analyzed in more detail by additional plots for outlier detection.

#plotting residual, gq plot and leverage
plot (modell.contrref )
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Standardized residuals
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Residuals vs Leverage
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When interpreting complex interactions, a graphical inspection of the given pattern is very helpful.
d gesl$Sgroup.dummy <- as.numeric(d gesl$group.dummy)

Mod4<- 1lm(learning outcome~group.dummy+IQ + (group.dummy*IQ), data=d gesl)
pander (summary (Mod4) )

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.691 2.705 -2.474 0.01636
group.dummy 5.635 1.78 3.165 0.002489
1Q 1.065 0.3023 3.5623 0.0008482
group.dummy:lQ -0.6089 0.1978 -3.078 0.003203

Fitting linear model: learning_outcome ~ group.dummy + IQ + (group.dummy * IQ)
Observations Residual Std. Error R? Adjusted R?

61 1.222 0.1948 0.1524

SS Res <- sim slopes (Mod4, pred = group.dummy, modx = IQ, johnson neyman = TRUE)
johnson neyman (Mod4, pred = group.dummy, modx = IQ, alpha = 0.01)



## JOHNSON-NEYMAN INTERVAL

##

## When IQ is OUTSIDE the interval [7.37, 13.51], the slope of group.dummy is
## p < .01.

##

## Note: The range of observed values of IQ is [2.63, 11.43]

Johnson-Neyman plot
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pci <- ggplot(d ges, aes(x = motivation, y = learning outcome, color = group) ) +
geom_point () +
geom_smooth (formula = y ~ x, method = "1lm", alpha = .15, aes(fill = group))
pcil <- pci + theme bw() + theme(panel.border = element blank(), panel.grid.major = elem
ent blank(),
panel.grid.minor = element blank(), axis.line = element line(colour = "black"))

pcil
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Conducting a MANOVA in case more than one dependent variable is tested.

res.man <- manova (cbind(knowledge, comprehension, application)

summary (res.man)

## Df Pillai approx F num Df den Df Pr (>F)
## group 3 0.040167 0.43426 9 288 0.916
## Residuals 96

Post-hoc testing for investigating specific group differences

summary.aov (res.man)

## Response knowledge

## Df Sum Sgq Mean Sq F value Pr (>F)
## group 3 1002 334.02 0.3795 0.768
## Residuals 96 84501 880.22

##

## Response comprehension

## Df Sum Sg Mean Sq F value Pr (>F)
## group 3 173 57.56 0.0702 0.9757
## Residuals 96 78731 820.12

L&l

## Response application

#4# Df Sum Sg Mean Sq F value Pr (>F)
## group 3 1921 640.28 0.7637 0.5172

## Residuals 96 80485 838.39

~ group, d ges)



ph2 <- d sel %>%
gather (key = "variables", value = "value", application, comprehension, knowledge) $%>%
group_by (variables) %>%
games howell test(value ~ group) 3%>%
select (-estimate, -conf.low, -conf.high) # Remove details
ph2

## # A tibble: 18 x 6

il variables LY. groupl group2 p.adj p.adj.signif
#4# <chr> <chr> <chr> <chr> <dbl> <chr>
## 1 application value 1 2 0.931 ns
## 2 application value 1 3 0.665 ns
## 3 application value 1 4 0.996 ns
## 4 application value 2 3 0.932 ns
## 5 application value 2 4 0.85 ns
## 6 application value 3 4 0.553 ns
## 7 comprehension value 1 2 0.99 ns
## 8 comprehension value 1 3 0.964 ns
## 9 comprehension value 1 4 0.982 ns
## 10 comprehension value 2 3 0.998 ns
## 11 comprehension value 2 4 1 ns
## 12 comprehension value 3 4 0.999 ns
## 13 knowledge value 1 2 0.85 ns
## 14 knowledge value 1 3 0.996 ns
## 15 knowledge value 1 4 1 ns
## 16 knowledge value 2 3 0.931 ns
## 17 knowledge value 2 4 0.731 ns
## 18 knowledge value 3 4 0.984 ns
Visualizing the results of post-hoc testing.
ph2 <- ph2 %>% add xy position(x = "group")
test.label <- create test label(
description = "MANOVA", statistic.text = quote(italic("F")),
statistic = 71.83, p= "<0.0001", parameter = "4,294",
type = "expression", detailed = TRUE
)
ggboxplot (
d sel, x = "group", y = c("application", "comprehension","knowledge"),
merge = TRUE, palette = "jco"
) +
stat pvalue manual (
ph2, hide.ns = FALSE, tip.length = 0,
step.increase = 0.1, step.group.by = "variables",

color = "variables"

)
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Similar to extending the ANOVA, the MANOVA can be extended by including interactions.

res.man2 <- manova (cbind(knowledge, comprehension, application) ~ group*motivation, d ge
s)

summary (res.man?2)

## Df Pillai approx F num Df den Df Pr (>F)
## group 3 0.041001 0.42493 9 276 0.9212
## motivation 1 0.040901 1.27935 3 90 0.2863
## group:motivation 3 0.040709 0.42186 9 276 0.9229
## Residuals 92

summary.aov (res.man)

## Response knowledge :
L& Df Sum Sq Mean Sq F value Pr (>F)

## group 3 1002 334.02 0.3795 0.768
## Residuals 96 84501 880.22

##

## Response comprehension

L& Df Sum Sq Mean Sq F value Pr (>F)
## group 3 173 57.56 0.0702 0.9757
## Residuals 96 78731 820.12

##

## Response application

## Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1921 640.28 0.7637 0.5172

## Residuals 96 80485 838.39

Potential covariates can be added to conduct a MANCOVA.



res.man2 <- manova (cbind (knowledge, comprehension, application) ~ group +prior knowledg
e, d ges)

summary (res.man?2)

## Df Pillai approx F num Df den Df Pr (>F)
## group 3 0.040227 0.43038 9 285 0.9182
## prior knowledge 1 0.024353 0.77379 3 93 0.5115
## Residuals 95

summary.aov (res.man)

## Response knowledge

LAl Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1002 334.02 0.3795 0.768
## Residuals 96 84501 880.22

##

## Response comprehension

L& Df Sum Sq Mean Sq F value Pr (>F)
## group 3 173 57.56 0.0702 0.9757
## Residuals 96 78731 820.12

##

## Response application

## Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1921 640.28 0.7637 0.5172

## Residuals 96 80485 838.39

Again, interactions can be added into the MANCOVA.

res.man2 <- manova (cbind (knowledge, comprehension, application) ~ group*motivation + pri
or knowledge, d ges)

summary (res.man?2)

## Df Pillai approx F num Df den Df Pr (>F)
## group 0.041073 0.42106 9 273 0.9234
## motivation 0.040980 1.26768 3 89 0.2904
## prior knowledge 1 0.025666 0.78147 3 89 0.5074
## group:motivation 3 0.035378 0.36197 9 273 0.9522
## Residuals 91

summary.aov (res.man)



## Response knowledge

## Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1002 334.02 0.3795 0.768
## Residuals 96 84501 880.22

##

## Response comprehension

&l Df Sum Sq Mean Sq F value Pr (>F)
## group 3 173 57.56 0.0702 0.9757
## Residuals 96 78731 820.12

##

## Response application

LRl Df Sum Sqg Mean Sq F value Pr (>F)
## group 3 1921 640.28 0.7637 0.5172

## Residuals 96 80485 838.39

For more directed and more specific hypothesis, contrasts can be included in the MANOVA.

outcome <- cbind(d ges$knowledge, d ges$comprehension, d gesSapplication)

CM1 <- manova (outcome ~ group, data=d ges)

summary (CM1, intercept=TRUE)

#4 Df Pillai approx F num Df den Df Pr (>F)

## (Intercept) 1 0.91315 329.43 3 94 <2e-16 ***

## group 3 0.04017 0.43 9 288 0.916

## Residuals 96

#H ——-

## Signif. codes: O '***' (Q,001 '**' 0.01 '*' 0.05 '." 0.1 "' ' 1

summary.aov (CM1)

## Response 1 :
## Df Sum Sg Mean Sq F value Pr (>F)

## group 3 1002 334.02 0.3795 0.768
## Residuals 96 84501 880.22

##

## Response 2 :

L&l Df Sum Sq Mean Sq F value Pr (>F)
## group 3 173 57.56 0.0702 0.9757
## Residuals 96 78731 820.12

##

## Response 3 :

L&l Df Sum Sq Mean Sq F value Pr (>F)
## group 3 1921 640.28 0.7637 0.5172

## Residuals 96 80485 838.39

contrastl<- c(1, 0, 0, 0)

contrast2<- c¢(0, 1, 0, 0)

contrast3<- c(0, 0, 1, 0)

contrasts(d_ges$group) <- cbind(contrastl,contrast2,contrast3)
CM2 <- Im(outcome ~ group, data=d ges)

CM2



##
##
##
##
##
##
##
##
##
##

Call:

Im(formula = outcome ~ group, data
Coefficients:

[,11] [,2]

(Intercept) 57.1429 46.5714
groupcontrastl -0.8651 2.9841
groupcontrast?2 -7.8929 0.5000
groupcontrast3 -3.0275 -0.9560

d ges)

[,3]
58.0714
-1.9048
-6.5357

-11.1484
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