
Institut für Organisation und Management von Informationssystemen

An Automation-based Approach for Reproducible
Evaluations of Distributed DBMS on Elastic

Infrastructures

Dissertation

zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

der Universität Ulm

vorgelegt von

Daniel Seybold
aus Crailsheim

2020

This thesis has been written by Daniel Seybold in partial fulfilment of the requirements for a doctoral degree
of the faculty of Engineering, Computer Science and Psychology at Ulm University. It has been submitted on
June 30, 2020.

Amtierender Dekan: Prof. Dr.-Ing. Maurits Ortmanns

Erstgutachter: Prof. Dr.-Ing. Dr. h.c. Stefan Wesner
Zweitgutachter: Prof. Dr.-Ing. Samuel Kounev
Tag der Promotion: 08.03.2021

Contact

Daniel Seybold
mail: daniel.seybold@uni-ulm.de
www: https://www.uni-ulm.de/in/omi/institut/persons/daniel-seybold/

Institute of Information Resource Management
Faculty of Engineering, Computer Sciences and Psychology
University of Ulm
Albert-Einstein-Allee 43
89081 Ulm, Germany

Typesetting

This document was set by the author using the X ELATEX typsetting system, the Meta font family, and the Latin
Modern font family. My sincere apologies to those people whose names are not typeset correctly due to
limitations of the fonts.

Layout

Many thanks to Jörg Domaschka for sharing the template for this thesis.

©2020 Daniel Seybold

daniel.seybold@uni-ulm.de
https://www.uni-ulm.de/in/omi/institut/persons/daniel-seybold/

Abstract

Driven by the data-intensive applications of the Web, Big Data and Internet of Things, Database Management
Systems (DBMSs) and their operation have significantly changed over the last decade. Besides relational
DBMSs, manifold NoSQL and NewSQL DBMSs evolved, promising a set of non-functional features that are
key requirements for each data-intensive application: high performance, horizontal scalability, elasticity and
high-availability. In order to take full advantage of these non-functional features, the operation of DBMSs is
moving towards elastic infrastructures such as the cloud. Cloud computing enables scalability and elastic-
ity on the resource level. Therefore, the storage backend of data-intensive applications is commonly imple-
mented by distributed DBMSs operated on cloud resources.

But the sheer number of heterogeneous DBMSs, cloud resource offers and the resulting number of combi-
nations make the selection and operation of DBMSs a very challenging task. Therefore, supportive analyses
of the non-functional DBMS features are essential. But the analyses design and execution is a complex pro-
cess that involves detailed domain knowledge of multiple domains. First, the multitude of DBMSs technolo-
gies with their respective runtime parameters need to be considered. Secondly, the tremendous number of
resource offers including their volatile characteristics need to be taken into account. Thirdly, the application-
specific workload has to be created by suitable DBMS benchmarks. While supportive DBMS benchmarks only
focus on DBMS performance, the evaluation design and execution for advanced non-functional features such
as scalability, elasticity and availability becomes even more challenging.

This thesis enables the holistic evaluation of distributed DBMS on elastic infrastructures by defining a
supportive methodology that determines the domain-specific impact factors for designing comprehensive
DBMS evaluations and establishes a set of evaluation principles to ensure significant results. Moreover, re-
producible evaluation processes for the non-functional features performance, scalability, elasticity and avail-
ability are established. Based on these concepts results the novel DBMS evaluation framework Mowgli. It
supports the design and automated execution of performance and scalability evaluation processes. There-
fore, Mowgli manages cloud resources, DBMS deployment, workload execution and result processing based
on evaluation scenarios, which expose configurable domain-specific parameters. Mowgli follows the estab-
lished evaluation principles with a dedicated focus on the automated and reproducible evaluation execution.
Mowgli is extended with the Kaa framework that automates the DBMS elasticity evaluation process by en-
abling DBMS and workload adaptations. The King Louie framework builds upon these features and enables
availability evaluations by providing an extensive failure injection framework.

The extensive automation capabilities of Mowgli, Kaa and King Louie ensure reproducible DBMSs evalua-
tions on elastic infrastructures. This enables comparable and novel insights in the non-functional features
of distributed DBMSs. Moreover, the automation capabilities facilitate the determination of the the elastic
resource impact on the non-functional DBMS features.

In conclusion, this thesis provides a novel DBMS evaluation framework based on the Mowgli, Kaa and King
Louie frameworks, enabling comprehensive DBMS evaluations on elastic infrastructures with a dedicated
focus on advanced non-functional features as well as automated and reproducible evaluation processes.

iii

Zusammenfassung

Angetrieben durch die datenintensiven Anwendungen des Web, Big Data und Internet der Dinge, haben sich
die Datenbankmanagementsysteme (DBMS) und ihr Betrieb in den letzten zehn Jahren erheblich verändert.
Neben relationalen DBMS haben sich vielfältige NoSQL- und NewSQL-DBMS entwickelt, welche die Kernanfor-
derungen von datenintensiven Anwendungen versprechen: Performanz, horizontale Skalierbarkeit, Elastizität
und Hochverfügbarkeit. Umdiese nicht-funktionalen Eigenschaften voll auszunutzen, werden elastische Infra-
strukturen wie Cloud Computing für den Betrieb von DBMS herangezogen, um Skalierbarkeit und Elastizität
auch auf der Ressourcenebene zu ermöglichen. Daher werden moderne Speicherdienste datenintensiver An-
wendungen durch verteilte DBMS implementiert, die auf Cloud-Ressourcen betrieben werden.

Doch die bloße Anzahl heterogener DBMS, Cloud-Ressourcenangebote und die daraus resultierenden Kom-
binationenmachen die Auswahl und den Betrieb von DBMS zu einer komplexen Herausforderung. Daher sind
unterstützende Analysen der nicht-funktionalen DBMS-Eigenschaften unerlässlich. Jedoch sind Design und
Ausführung solcher Analysen komplexe Prozesse, die mehrschichtiges Domänenwissen erfordern. Zunächst
müssen die DBMS mit ihren Laufzeitparametern betrachtet werden. Weiter muss die enorme Anzahl von Res-
sourcenangeboten mit ihren flüchtigen Eigenschaften berücksichtigt werden. Abschließend muss die Anwen-
dungslast durch geeignete DBMS-Benchmarks erzeugt werden. Bestehende DBMS-Benchmarks unterstützen
hierbei nur die Erzeugung der Anwendungslast. Zudem zielen sie primär auf die DBMS-Performanz ab, wäh-
rend die Analyse von Skalierbarkeit, Elastizität und Verfügbarkeit außen vor bleibt.

Diese Thesis ermöglicht die ganzheitliche Analyse von DBMS auf elastischen Infrastrukturen durch die De-
finition einer unterstützenden Methodik. Diese bestimmt die domänenspezifischen Einflussfaktoren für das
Design umfassender DBMS-Analysen und definiert Evaluationsprinzipien um signifikante Ergebnisse zu ge-
währleisten. Zudem werden reproduzierbare Analyseprozesse für die nicht-funktionalen Eigenschaften Per-
formanz, Skalierbarkeit, Elastizität und Verfügbarkeit definiert. Basierend auf dieser Methodik, wird das neu-
artige DBMS-Evaluations-Framework Mowgli bereitgestellt, das den Evaluationsprozess für Performanz und
Skalierbarkeit automatisiert. Mowgli verwaltet Cloud-Ressourcen, DBMS-Bereitstellung, Lasterzeugung und
die Ergebnisverarbeitung auf Basis von konfigurierbaren Evaluationsszenarien. Mowgli folgt den Evaluati-
onsprinzipien mit Fokus auf automatisierte und reproduzierbare Evaluationen. Mowgli wird durch das Kaa
Framework erweitert, das den Elastizitätsbewertungsprozess automatisiert, indem es DBMS- und Lastanpas-
sungen automatisiert. Das King Louie Framework baut auf diesen Merkmalen auf und ermöglicht die DBMS-
Verfügbarkeitsbewertung, indem es ein umfangreiches Fehlerinjektions-Framework bereitstellt

Mowglis umfangreiche Automatisierungskonzepte sowie die Erweiterungen Kaa und King Louie gewährlei-
sten reproduzierbare DBMS-Evaluationen auf elastischen Infrastrukturen, die neuartige und vergleichbare
Ergebnisse der nicht-funktionalen DBMS-Eigenschaften ermöglichen. Darüber hinaus erleichtern sie die Be-
stimmung des Einflusses elastischer Ressourcen auf die nicht-funktionalen DBMS-Eigenschaften.

Zusammenfassend stellt diese Thesis ein neuartiges DBMS-Evaluations-Framework vor, das ganzheitliche
DBMS-Evaluationen auf elastischen Infrastrukturen ermöglicht, mit einem speziellen Fokus auf fortgeschrit-
tene nicht-funktionale Merkmale sowie automatisierte und reproduzierbare Evaluationsprozesse.

v

Acknowledgements

The time as a doctoral researcher has become one of the most challenging, but also most exciting parts of
my life. In this time, I was able to meet a lot of inspiring people that have contributed to this thesis in their
own way. I am truly thankful to all of these people. Especially, I want to thank my supervisor Stefan Wesner
for offering me the position as doctoral researcher, introducing me to the research field of cloud computing,
guiding me through the whole journey of his thesis and numerous research projects while always giving me
enough freedom to develop own ideas. Many thanks also to my second thesis reviewer Samuel Kounev and
for the inspiring discussions on performance engineering.

I want to thank all of my colleagues I have met over the time at the OMI. It was a great experience to de-
velop new research ideas together, working on projects, writing proposals but also all additional activities
from coffee breaks to barbecues, hiking and skiing trips. Many of you not only were great colleagues but
also became friends. In particular, I want to thank Christopher Hauser for being such a great office mate and
a friend for over five years. I want to thank my former colleague Frank Griesinger for the cooperation in dif-
ferent European research projects, including several memorable project travels. I want to thank Volker Foth,
Florian Held, Diana Denk for dispersing table soccer matches during the lunch breaks. Thanks also to Daniel
Baur for the numerous discussions on cloud orchestration and how to get things done in projects. I want
to thank Mark Leznik for the inspiring discussions on how machine learning can be applied for my field of
research. I want to thank Simon Volpert for all the technical support at any time and for always introducing a
brand new technology. A special thanks goes to my colleague Jörg Domaschka who encouragedme to pursue
this journey in the first place. Moreover, I want to thank Jörg for his guidance, patience, critical but always
constructive feedback on research ideas and continuous support throughout my thesis, even when he was
already overloaded with his own work.

I also want to thank all the people from all over world that I have met on conferences and project around
the world. You have enriched my life research- and cultural-wise.

I also want to thank all of my friends in Ulm and Crailsheim for many dispersing adventures during the time
of my thesis that helped to free my mind and gather focus for new research activities.

Finally, I want to thank my whole family and especially my parents Petra and Friedrich for their continuous
and unsolicited support overmywhole life, without you I would have nevermade it to this point. And of course
I want to thank my girlfriend Juliane Eder for her love, support and for encouraging me to start this journey
despite the knowledge that this means many days apart from each other. Without all of you, I would never
have been able to write this thesis.

vii

List of Publications

This cumulative dissertation is a consolidated report of the research results obtained during the author’s
doctoral studies. The detailed results have been published in the following peer-reviewed publications that
are included in Part II of this thesis. In addition, supplemental data sets and software artefacts have been
published.

Core Publications

Journal Publications

[core1] Somnath Mazumdar, Daniel Seybold, Kyriakos Kritikos, and Yiannis Verginadis. “A survey on data
storage and placement methodologies for Cloud-Big Data ecosystem”. In: Journal of Big Data 6.1
(Feb. 2019), p. 15. issn: 2196-1115. doi: 10.1186/s40537-019-0178-3.

Conference Publications

[core2] Daniel Baur,Daniel Seybold, FrankGriesinger, Athanasios Tsitsipas, Christopher BHauser, and Jörg
Domaschka. “Cloud orchestration features: Are tools fit for purpose?” In: Utility and Cloud Comput-
ing (UCC), 2015 IEEE/ACM 8th International Conference on. IEEE. 2015, pp. 95–101. doi: 10.1109/
UCC.2015.25.

[core3] Daniel Seybold and Jörg Domaschka. “Is Distributed Database Evaluation Cloud-Ready?” In: Eu-
ropean Conference on Advances in Databases and Information Systems (ADBIS) - New Trends in
Databases and Information Systems (Short Papers). Cham: Springer International Publishing, 2017,
pp. 100–108. isbn: 978-3-319-67162-8. doi: 10.1007/978-3-319-67162-8_12.

[core4] Daniel Seybold, Christopher B. Hauser, Simon Volpert, and Jörg Domaschka. “Gibbon: An Avail-
ability Evaluation Framework for Distributed Databases”. In: On the Move to Meaningful Internet
Systems. OTM 2017 Conferences. Cham: Springer International Publishing, 2017, pp. 31–49. isbn:
978-3-319-69459-7. doi: 10.1007/978-3-319-69459-7_3.

[core5] Daniel Seybold, Moritz Keppler, Daniel Gründler, and Jörg Domaschka. “Mowgli: Finding Your Way
in the DBMS Jungle”. In: Proceedings of the 2019 ACM/SPEC International Conference on Perfor-
mance Engineering. ICPE ’19. Mumbai, India: ACM, 2019, pp. 321–332. isbn: 978-1-4503-6239-9.
doi: 10.1145/3297663.3310303.

[core6] Daniel Seybold, Simon Volpert, Stefan Wesner, André Bauer, Nikolas Herbst, and Jörg Domaschka.
“Kaa: Evaluating Elasticity of Cloud-Hosted DBMS”. In: 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). Dec. 2019, pp. 54–61. doi: 10.1109/CloudCom.
2019.00020.

ix

https://doi.org/10.1186/s40537-019-0178-3
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1007/978-3-319-67162-8_12
https://doi.org/10.1007/978-3-319-69459-7_3
https://doi.org/10.1145/3297663.3310303
https://doi.org/10.1109/CloudCom.2019.00020
https://doi.org/10.1109/CloudCom.2019.00020

x

[core7] Daniel Seybold, StefanWesner, and Jörg Domaschka. “King Louie: Reproducible Availability Bench-
marking of Cloud-hosted DBMS”. In: 35th ACM/SIGAPP Symposium on Applied Computing (SAC
’20), March 30-April 3, 2020, Brno, Czech Republic. Apr. 2020, pp. 144–153.doi: 10.1145/3341105.
3373968.

Workshop Publications

[core8] Daniel Seybold, Nicolas Wagner, Benjamin Erb, and Jörg Domaschka. “Is Elasticity of Scalable
Databases a Myth?” In: 2016 IEEE International Conference on Big Data (Big Data). Dec. 2016,
pp. 2827–2836. doi: 10.1109/BigData.2016.7840931.

[core9] Daniel Seybold. “Towards a Framework for Orchestrated Distributed Database Evaluation in the
Cloud”. In: Proceedings of the 18th Doctoral Symposium of the 18th International Middleware Con-
ference. Middleware ’17. Las Vegas, Nevada: ACM, 2017, pp. 13–14. isbn: 978-1-4503-5199-7. doi:
10.1145/3152688.3152693.

[core10] Daniel Seybold, Christopher B. Hauser, Georg Eisenhart, Simon Volpert, and Jörg Domaschka. “The
Impact of the Storage Tier: A Baseline Performance Analysis of Containerized DBMS”. In: Euro-Par
2018: Parallel Processing Workshops. Cham: Springer International Publishing, 2018, pp. 93–105.
isbn: 978-3-030-10549-5. doi: 10.1007/978-3-030-10549-5_8.

[core11] Jörg Domaschka and Daniel Seybold. “Towards Understanding the Performance of Distributed
Database Management Systems in Volatile Environments”. In: Symposium on Software Perfor-
mance. Vol. 39. Gesellschaft für Informatik. 2019, pp. 11–13. url: https://pi.informatik.uni-
siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Domaschka.pdf.

Software Artefacts & Data Sets

[data1] Daniel Seybold and Jörg Domaschka. Mowgli: DBMS Elasticity Evaluation Data Sets. Zenodo. Aug.
2019. doi: 10.5281/zenodo.3362279.

[data2] Daniel Seyboldand JörgDomaschka.Mowgli: DBMS Performance & Scalability Evaluation Data Sets.
Zenodo. Oct. 2019. doi: 10.5281/zenodo.3518786.

[data3] Daniel Seybold and Jörg Domaschka. Mowgli: Finding Your Way in the DBMS Jungle. Version 0.1.
Zenodo. July 2019. doi: 10.5281/zenodo.3341512.

[data4] Daniel Seybold, StefanWesner, and Jörg Domaschka.King Louie: DBMS Availability Evaluation Data
Sets. Sept. 2019. doi: 10.5281/zenodo.3459604.

[data5] Daniel Seybold and Jörg Domaschka. Cloud-hosted DBMS Performance, Scalability and Availability
Evaluation Data. June 2020. doi: 10.5281/zenodo.3901428.

[data6] Daniel Seybold, Christopher B. Hauser, Georg Eisenhart, Simon Volpert, and Jörg Domaschka. Per-
formance Results of a Containerized MongoDB DBMS. June 2020. doi: 10.5281/zenodo.3894855.

https://doi.org/10.1145/3341105.3373968
https://doi.org/10.1145/3341105.3373968
https://doi.org/10.1109/BigData.2016.7840931
https://doi.org/10.1145/3152688.3152693
https://doi.org/10.1007/978-3-030-10549-5_8
https://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Domaschka.pdf
https://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Domaschka.pdf
https://doi.org/10.5281/zenodo.3362279
https://doi.org/10.5281/zenodo.3518786
https://doi.org/10.5281/zenodo.3341512
https://doi.org/10.5281/zenodo.3459604
https://doi.org/10.5281/zenodo.3901428
https://doi.org/10.5281/zenodo.3894855

xi

Additional Publications

During the author’s doctoral studies, he has been involved in the following additional publications that par-
tially influenced this dissertation:

Journal Publications

[add1] Frank Griesinger et al. “BPaaS in Multi-cloud Environments - The CloudSocket Approach”. In: Euro-
pean Space Projects: Developments, Implementations and Impacts in a Changing World - Volume
1: EPS Porto 2017, INSTICC. SciTePress, 2017, pp. 50–74. isbn: 978-989-758-311-7. doi: 10.5220/
0007901700500074.

[add2] Achilleas P. Achilleos et al. “The cloud application modelling and execution language”. In: Journal
of Cloud Computing 8.1 (Dec. 2019), p. 20. issn: 2192-113X. doi: 10.1186/s13677-019-0138-7.

[add3] Kyriakos Kritikos, Chrysostomos Zeginis, Joaquin Iranzo, Roman Sosa Gonzalez, Daniel Seybold,
Frank Griesinger, and Jörg Domaschka. “Multi-cloud provisioning of business processes”. In: Jour-
nal of Cloud Computing 8.1 (Nov. 2019), p. 18. issn: 2192-113X. doi: 10.1186/s13677-019-0143-
x.

Conference Publications

[add4] Daniel Seybold, Jörg Domaschka, Alessandro Rossini, Christopher B Hauser, Frank Griesinger, and
Athanasios Tsitsipas. “Experiences of models run-time with EMF and CDO”. In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering. SLE 2016. ACM.
Amsterdam, Netherlands, 2016, pp. 46–56. doi: 10.1145/2997364.2997380.

[add5] Jörg Domaschka, Frank Griesinger, Daniel Seybold, and Stefan Wesner. “A Cloud-driven View on
Business Process as a Service”. In: CLOSER. INSTICC. SciTePress, 2017, pp. 739–746. isbn: 978-
989-758-243-1. doi: 10.5220/0006393107670774.

[add6] Kyriakos Kritikos, Chrysostomos Zeginis, Frank Griesinger, Daniel Seybold, and Jörg Domaschka.
“A cross-layer bpaas adaptation framework”. In: 2017 IEEE 5th International Conference on Future
Internet of Things and Cloud (FiCloud). IEEE. 2017, pp. 241–248. doi: 10.1109/FiCloud.2017.12.

[add7] Daniel Baur, Daniel Seybold, Frank Griesinger, Hynek Masata, and Jörg Domaschka. “A provider-
agnostic approach tomulti-cloud orchestration using a constraint language”. In: Proceedings of the
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE. 2018, pp. 173–
182. doi: 10.1109/CCGRID.2018.00032.

[add8] Mark Leznik, Simon Volpert, Frank Griesinger, Daniel Seybold, and Jörg Domaschka. “Done yet? A
critical introspective of the cloud management toolbox”. In: 2018 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC). IEEE. 2018, pp. 1–8. doi: 10.1109/ICE.2018.
8436348.

https://doi.org/10.5220/0007901700500074
https://doi.org/10.5220/0007901700500074
https://doi.org/10.1186/s13677-019-0138-7
https://doi.org/10.1186/s13677-019-0143-x
https://doi.org/10.1186/s13677-019-0143-x
https://doi.org/10.1145/2997364.2997380
https://doi.org/10.5220/0006393107670774
https://doi.org/10.1109/FiCloud.2017.12
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/ICE.2018.8436348
https://doi.org/10.1109/ICE.2018.8436348

xii

Workshop Publications

[add9] Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger. “Cloudiator: a cross-cloud,
multi-tenant deployment and runtime engine”. In: 9th Symposium and Summer School on Service-
Oriented Computing. 2015. url: https://domino.research.ibm.com/library/cyberdig.nsf/
papers/656B934403848E8A85257F1D00695A63/$File/rc25564.pdf.

[add10] Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur. “Axe: A novel approach for
generic, flexible, and comprehensive monitoring and adaptation of cross-cloud applications”. In:
European Conference on Service-Oriented and Cloud Computing. Springer. 2015, pp. 184–196. isbn:
978-3-319-33313-7. doi: 10.1007/978-3-319-33313-7_14.

[add11] Frank Griesinger, Daniel Seybold, Jörg Domaschka, Kyriakos Kritikos, and Robert Woitsch. “A DMN-
Based Approach for Dynamic Deployment Modelling of Cloud Applications”. In: European Con-
ference on Service-Oriented and Cloud Computing. Springer. 2016, pp. 104–111. isbn: 978-3-319-
72125-5. doi: 10.1007/978-3-319-72125-5_8.

[add12] Daniel Seybold, Robert Woitsch, Jörg Domaschka, and Stefan Wesner. “BPaaS Execution in Cloud-
Socket”. In: Advances in Service-Oriented and Cloud Computing (ESOCC 2016) (2018), pp. 292–293.
url: https://link.springer.com/content/pdf/bbm%3A978-3-319-72125-5%2F1.pdf.

https://domino.research.ibm.com/library/cyberdig.nsf/papers/656B934403848E8A85257F1D00695A63/$File/rc25564.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/papers/656B934403848E8A85257F1D00695A63/$File/rc25564.pdf
https://doi.org/10.1007/978-3-319-33313-7_14
https://doi.org/10.1007/978-3-319-72125-5_8
https://link.springer.com/content/pdf/bbm%3A978-3-319-72125-5%2F1.pdf

Table of Contents

Table of Contents xv

List of Figures xvii

List of Tables xix

List of Listings xxi

I Thesis 1

1 Introduction 3
1.1 Problem Statement 4
1.2 Research Objectives 8
1.3 Research Contributions 9
1.4 Thesis Outline 10

2 Background 11
2.1 Elastic Infrastructures 11

2.1.1 Virtualization 11
2.1.2 Cloud Computing 12
2.1.3 Fog and Edge Computing 13
2.1.4 Application Orchestration on Elastic infrastructures 14

2.2 Distributed DBMS 14
2.2.1 Data Models 14
2.2.2 Data Distribution Techniques 16
2.2.3 Non-Functional Features 19
2.2.4 Boundaries: CAP and PACELC 20

2.3 Operational Models of Distributed DBMS 21
2.4 Summary 23

3 Related Work 25
3.1 Terminology 25
3.2 DBMS Benchmarking 26

3.2.1 OLTP 27
3.2.2 OLAP 28
3.2.3 HTAP 28

xiii

xiv Table of Contents

3.3 Elastic Infrastructure Benchmarks 28
3.3.1 Cloud Benchmarks 29
3.3.2 Edge and Fog Benchmarks 29

3.4 Advanced Evaluation Frameworks 30
3.5 Summary 30

4 Methodological DBMS Evaluation 33
4.1 Evaluation Impact Factors 34
4.2 Cross-Domain Evaluation Principles 38
4.3 Evaluation Design 40

4.3.1 Performance Evaluation Design 41
4.3.2 Scalability Evaluation Design 42
4.3.3 Elasticity Evaluation Design 43
4.3.4 Availability Evaluation Design 44

4.4 Summary 48

5 Methods for the Automated Evaluation of Non-functional DBMS Features 49
5.1 DBMS Evaluation Templates 49

5.1.1 Deployment Template 51
5.1.2 Workload Template 52
5.1.3 Adaptation Templates 54
5.1.4 Implementation 55

5.2 Mowgli Framework 55
5.2.1 Automation Concepts 56
5.2.2 Framework Architecture 56
5.2.3 Implementation 58

5.3 Mowgli for Higher-Level Evaluation Objectives 58
5.3.1 Elasticity: Kaa Framework 58
5.3.2 Availability: King Louie Framework 60

5.4 Evaluation Data Collection 61
5.5 Summary 63

6 Validation 65
6.1 Case Studies 65

6.1.1 CS1 - Performance Impact of Elastic Resources 65
6.1.2 CS2 - Performance and Scalability 67
6.1.3 CS3 - Elasticity 68
6.1.4 CS4 - Availability 68
6.1.5 Case Study Discussion 69

6.2 Support for Evaluation Principles 70
6.3 Reflections on Evaluating distributed DBMS on Elastic Infrastructures 72
6.4 Summary 74

Table of Contents xv

7 Conclusion and Future Work 75
7.1 Contribution 76
7.2 Future Research 77

Acronyms 79

Bibliography 81

II Publications 101

8 [core1] A survey on data storage and placement methodologies for Cloud-Big Data ecosystem 103

9 [core2] Cloud orchestration features: Are tools fit for purpose? 141

10 [core3] Is Distributed Database Evaluation Cloud-Ready? 149

11 [core4] Gibbon: An Availability Evaluation Framework for Distributed Databases 159

12 [core5] Mowgli: Finding Your Way in the DBMS Jungle 179

13 [core6] Kaa: Evaluating Elasticity of Cloud-Hosted DBMS 193

14 [core7] King Louie: Reproducible Availability Benchmarking of Cloud-hosted DBMS 203

15 [core8] Is elasticity of scalable databases a Myth? 215

16 [core9] Towards a Framework for Orchestrated Distributed Database Evaluation in the Cloud 227

17 [core10] The Impact of the Storage Tier: A Baseline Performance Analysis of Containerized DBMS 231

18 [core11] Towards Understanding the Performance of Distributed DatabaseManagement Systems in
Volatile Environments 245

List of Figures

1.1 Determining the DBMS operational model on elastic infrastructures 5
1.2 Thesis scope — reproducible evaluation design and execution for higher-level objectives 7

2.1 Data distribution techniques overview 16
2.2 DBMS operational models on cloud, edge and fog resources 21

3.1 Related research concepts 32

4.1 Evaluation impact factors 34
4.2 DBMS impact factors 35
4.3 Resource impact factors 37
4.4 Workload impact factors 37
4.5 Performance evaluation process 41
4.6 Scalability evaluation process 44
4.7 Elasticity evaluation process 46
4.8 Availability evaluation process 47

5.1 Mowgli architecture 57
5.2 Kaa and King Louie framework architecture 59

xvii

List of Tables

4.1 Performance evaluation tasks 42
4.2 Scalability evaluation tasks 43
4.3 Elasticity evaluation tasks 45
4.4 Availability evaluation tasks 47

6.1 Case study metrics 66

xix

List of Listings

5.1 Evaluation scenario template 50
5.2 Exemplary evaluation API 50
5.3 Cloud deployment template 51
5.4 Workload template YCSB 53
5.5 Elasticity Template 54
5.6 Resource failure template 55

xxi

Part I

Thesis

1

Chapter 1

Introduction

Information Technology (IT) has undergone significant advances within the last two decades, especially when
it comes to processing and storing of data. The adoptions of large-scale web applications has resulted in a
constantly growing number of users. These users, in turn, produce a growing amount of data that needs to be
stored and processed. Consequently, the predicted compound annual growth rate of the data management
market is over 10% per year [162]. Moreover, its revenue will increase from $89 billion in 2017 to over $140
billion in 2022 [162]. According to 451 Research, this growth is mainly driven by two key technologies of the
data management market: distributed data processing frameworks and distributed Database Management
Systems (DBMSs) [162]. This thesis focuses on distributed DBMS technologies that are the storage backend
of many data processing frameworks.

Emerging application domains, such as the Internet of Things (IoT) and Big Data, further increase the
amount of data, resulting in a strong need in DBMSs which ensure high throughput and low latency request
processing, independent of the data size. Moreover, these data-intensive application domains impose new
challenges to DBMS: (geo-) distributed data storage, variety of data, dynamic workload patterns and the need
for high-available data [127].

Traditionally, the DBMS landscape has been shaped by Relational Database Management Systems
(RDBMSs), which used to be the common solution to persist data since the 1970s. Yet, already in mid of
the 2000s the end of their predominance has been predicted [22, 27]. This prediction has become true over
the last decade. The DBMS landscape moved towards application-specific data models and distributed ar-
chitectures to address the requirements of the emerging data-intensive application domains. Driven by new
DBMS technologies such as Amazon’s Dynamo [25], Google’s Big Table [30] or Facebook’s Cassandra [42],
a new class of DBMSs has been established, the NoSQL DBMSs [51]. NoSQL DBMSs are characterized by
providing flexible, non-relational data models and building upon a shared-nothing architecture that eases
a distributed architecture, including replication and sharding mechanisms [51, 59]. By the end of 2019, the
number of existing NoSQL DBMS has grown to over 2201.

With the widespread adoption of distributed NoSQL DBMSs [47], in 2012 the DBMS landscape has been ex-
tended with a further class of distributed DBMSs, the NewSQL DBMSs [72]. NewSQL seek to provide the same
shared-nothing architecture, sharding and replication mechanisms as NoSQL DBMSs while still maintaining
the relational data model and strict consistency guarantees for transactions [137] as RDBMS. By the end of
2019, the number of established NewSQL DBMSs has grown to over 201.

NoSQL and NewSQL DBMSs promise a set of non-functional features that are key requirements for each
data-intensive application domain: highperformance in termsof low latency andhigh throughput request pro-
cessing [9, 105] as well as horizontal scalability to be able to deal with growing workloads and data sizes [40,

1http://nosql-database.org/

3

http://nosql-database.org/

4 Chapter 1 Introduction

46], elasticity to copewith workload fluctuations at runtime [46] and high-availability to overcome failures [33,
41].

In order to fully benefit from these non-functional features, the operation of distributedDBMSshas to evolve
and move towards elastic resources that provide scalability and elasticity also on the resource level [105,
127]. Elastic infrastructures have become a formative topic in both academia and industry with the opening
of the first commercial cloud service by Amazon Web Servicess (AWSs)2. Nowadays, the number of cloud
resource offers has already grown to over 20,000 in the public cloud provider market3, not including the
manifold private cloud resources. Themain advantage of elastic infrastructures is the delivery of the necessary
mechanisms to enable scalability on the resource level by providing virtually unlimited resources in an elastic
manner [56]. In consequence, elastic resources have become the preferred resources to operate distributed
DBMSs [211]. In this context, Gartner predicts that until 2022, 75% of the DBMSs will be operated in the
cloud [193].

1.1 Problem Statement

The introduced advantages of the DBMS and resource domain offer extensive technical possibilities to tackle
the challenges of modern data-intensive applications. But these advantages also bring a new set of chal-
lenges regarding the selection and operation of DBMSs. In particular, cloud computing and distributed DBMS
have driven the disappearance of the ’one size fits all’ strategy, where single node RDBMS operated on ded-
icated hardware appliances have been the predominant solution for most applications [22]. Nowadays, a
system architect needs to thoroughly analyse a plethora of modern DBMS and elastic resource offers in the
process of selecting and operating the optimal data storage backend [89].

The focus of such analyses also depends on the industry grade of the application. On the one hand, green-
field applications require the selection of the optimal elastic resource and DBMS combination from all offers,
fulfilling the application-driven functional and non-functional features. On the other hand, there are enter-
prise applications that are building upon existing data structures. If these applications move towards elastic
infrastructures, there is the need to evaluatemodernDBMS technologies that provide the requireddatamodel,
identify the optimal elastic resources and refine the DBMS runtime configurations to ensure the efficiency of
the non-functional DBMS features on elastic infrastructures.

In consequence, the determination of the DBMS operational model for data-intensive applications has be-
come considerably more extensive and challenging [105, 107, 211]. Within this thesis, we follow established
definitions of the DBMS operational model as the combination of the DBMS, its runtime configuration and
the applied elastic resources [105, 107, 211]. In consequence, the operational model of distributed DBMSs on
elastic infrastructures needs to be determined from RDBMS, NoSQL DBMS, NewSQL DBMS offers [127] and
heterogeneous elastic resource offers [89, 107]. The runtime configurations comprise heterogeneous DBMS-
and distribution-specific options [86, 150].

To highlight these challenges, Figure 1.1 depicts an exemplary decision process to determine the DBMS
operational model for a data-intensive application. The decision process consists of three analytical steps: (i)
functional feature evaluation; (ii) non-functional feature evaluation and (iii) operational model selection.

2https://www.computerworlduk.com/galleries/cloud-computing/
aws-12-defining-moments-for-the-cloud-giant-3636947/

3https://cloudharmony.com/

https://www.computerworlduk.com/galleries/cloud-computing/aws-12-defining-moments-for-the-cloud-giant-3636947/
https://www.computerworlduk.com/galleries/cloud-computing/aws-12-defining-moments-for-the-cloud-giant-3636947/
https://cloudharmony.com/

1.1 Problem Statement 5

DBMS
operational
model

functional
feature

evaluation

start decision
process

non-functional feature
evaluation

performance scalability elasticity availability

operational model selection

system architect

elastic
resource

offers

DBMS
offers

evaluation
design &
execution

evaluation
results

new DBMS or elastic resource offers

new DBMS versions, changing workload patterns, varying resource performance, evolving application requirements

performance engineerrequirements engineer

evaluation objectives
higher-level objectives

Figure 1.1: Determining the DBMS operational model on elastic infrastructures

Functional feature evaluation First, the functional feature evaluation is carried out by the requirements engi-
neer with the goal to determine a set of eligible DBMS and elastic resource offers. Therefore, the application-
specific functional requirements are compared with the functional features of the DBMS and elastic resource
offers. The step is carried out with the objective to reduce the number of potentially suitable DBMS and elastic
resource offers. Depending on the industry grade of the considered DBMSs, this step is supported by DBMS-
specific documentations, industrial experience reports and academic decision guidelines [51, 54, 150, 203]
providing comparative studies of the functional features and qualitative recommendations.

Non-functional feature evaluation Secondly, the non-functional feature evaluation is a continuous process
that is carried out by the performance engineer, analysing the non-functional DBMS features for a set of
selected DBMSs in experiment-driven scenarios. Based on the eligible DBMS technologies and their non-
functional features, the performance engineer needs to consider multiple evaluation objectives in this step
as depicted in Figure 1.1. For DBMSs in general, performance is the most important non-functional feature [9].
Yet, data-intensive applications drive the need to evaluate higher-level non-functional features of distributed
DBMS that go beyond performance. Horizontal scalability enables a distributed DBMS to handle arbitrary
workload sizes by operating the DBMS cluster accordingly, exploiting the ”unlimited” capacity of elastic re-
sources [46, 105]. By building upon horizontal scalability, elasticity is a required prerequisite non-functional
DBMS feature to cope with sudden workload fluctuations by adapting the DBMS cluster at runtime without
service disruption where elastic resources provide the elasticity on the resource level [46, 105]. Besides the
advantages of elastic resources, they come with a higher risk of resource failures [38, 132]. In consequence,

6 Chapter 1 Introduction

DBMS availability is becoming an important non-functional feature for operating distributed DBMSs on elastic
infrastructures [98]. Especially, as the availability of a distribution storage system is always a trade-off be-
tween consistency and partition tolerance as defined by the CAP theorem [15]. In consequence, the scope of
the evaluation objectives that need to be considered by the performance engineer has significantly increased.

In order to evaluate these evaluation objectives, realistic workloads are required that reflect the character-
istics of the target application domain. The requirements of Web, Big Data and IoT applications are leading
to a growing number of DBMS benchmarks that enable the emulation of different workload types such as
Online Transaction Processing (OLTP) [40, 82, 146], Online Analytical Processing (OLAP) [67, 111] and Hybrid
Transaction-Analytical Processing (HTAP) [149].

In consequence, the comprehensive design and execution of DBMS evaluations includes the DBMS, elastic
resource and workload domain. Hence, the performance engineer requires detailed domain knowledge for
each of these domains.

Operationalmodel selection Thirdly, the results of the non-functional feature evaluation represent the input
for the system architect who needs to select the optimal DBMS operational model. Therefore, the quantified
evaluation results of the non-functional evaluation step and optional business requirements are included in
this decision to determine the DBMS operational model. However, the revision of the selected operational
model may become necessary due to the rapidly evolving IT landscape. The revision of the DBMS operational
model can be initiated by various events as depicted in Figure 1.1. Events such as new DBMSs and elastic
resource offers appearing on the market require the execution of both decision steps. More frequent events
such as the release of new DBMS versions, changing DBMS workload patterns, varying elastic resource per-
formance or evolving application requirements demand for the continuous execution of the non-functional
feature evaluation to ensure the consistent efficiency of the operational model.

Challenges of non-functional feature evaluations Each step within the decision process comes with its own
challenges, but the non-functional feature evaluation represents the most frequently executed steps as de-
picted in Figure 1.1. Its continuous characteristic [6] increases its importance when new DBMSs and elastic
resource offers appear on the market, new DBMS versions are released, elastic resource providers revise their
offers [190] and their resource performance changes [44, 135]. Therefore, this thesis focuses on the challenges
of the evaluation design, evaluation execution and higher-level objectives which concern the performance en-
gineer who evaluates the non-functional features of DBMSs on elastic infrastructures as depicted in Figure 1.2.
In this regard, a particular focus lies on the domain-specific challenges of the involved DBMS, elastic resource
and workload domains.

The DBMS domain requires knowledge in the DBMS technologies and their runtime configuration options.
Especially distributed DBMS provide heterogeneous runtime configurations as the CAP theorem restricts a
distributed DBMS to only provide two out of the three properties consistency, availability and tolerance to
(network) partitions. The evolvement of distributed DBMSs has shown that these constraints are not binary
decisions, but there is a wide range of trade-offs [65]. Consequently, distributed DBMSs differ significantly in
their architectures anddistributionmechanisms, which results in in a heterogeneous set of distribution config-
urations. These configurations offer a wide range of possibilities to optimize towards consistency, availability
and partition tolerance [150, 165]. While these runtime configurations have a direct impact on the efficiency
of the non-functional features, their impact degree is hard to quantify.

1.1 Problem Statement 7

RDBMS
NoSQL

NewSQL

OLTP

HTAP

OLAP

Cloud

Edge Fog

performance

scalability

elasticity

availability

DBMS
domain

elastic resource
domain

workload
domain

Non-functional
feature evaluation

evaluation
design

evaluation
execution

higher-level
objectives

Figure 1.2: Thesis scope — reproducible evaluation design and execution for higher-level objectives

The elastic resource domain requires the consideration of a multitude of resource providers with hetero-
geneous resource types [114, 158] and varying runtime characteristics [44, 135, 101, 169]. Consequently, the
applied elastic resources and their volatile runtime characteristics have a significant impact on the results of
the non-functional feature evaluation [103]. While covering the extent of available resource types is challeng-
ing, analysing the impact of resource variances is an even more complex task [100, 148].

The workload domain requires knowledge in emulating realistic workloads that reflect the characteristics
of the targeted application domain. For this purpose, the performance engineer can refer to a multitude of
DBMS benchmarks [40, 82, 99, 154, 149, 146]. Yet, current DBMS benchmarks only consider the workload
domain as dynamic, while assuming the DBMS and resource domain (i.e. the DBMS operational model) as
static. This fact limits the design and execution of comprehensive evaluations as well as the evaluation of
higher-level evaluation objectives.

In particular, a performance engineer requires extensive domain knowledge of all involved domains to de-
sign and execute the required non-functional feature evaluations. Yet, there is no tool support that realizes a
comprehensive evaluationmethodology by considering the domain-specific properties of the elastic resource
domain, DBMS domain and workload domain. Similarly, the evaluation of higher-level non-functional DBMS
features such as scalability, elasticity or availability requires concepts that go beyond the sole performance
evaluation concepts of current DBMS benchmarks.

The evaluation of higher-level non-functional DBMS features demands for the execution of large-scale ex-
periments that include runtime adaptations on DBMS and elastic resource level. While such capabilities can
be provided by Cloud Orchestration Tools (COTs) [157, 207], they are not adopted for DBMS evaluations and
performance engineers need to manually conduct and execute such experiments without supportive tools.
This leads to unnecessarily complex, time consuming and error prone evaluation executions due to missing
evaluation automation.

Furthermore, the missing support for evaluation automation limits the evaluation reproducibility that are
key requirements in cloud service benchmarking [148, 201]. That is especially the case as only reproducibility
enables users to keep up with the constantly evolving domains and allows the analysis of elastic resource
characteristics. Yet, existing evaluations barely address the reproducibility of evaluation on elastic infrastruc-
tures [201].

8 Chapter 1 Introduction

1.2 Research Objectives

This thesis addresses the identified limitations of current state-of-the-art approaches for evaluating the non-
functional features of distributed DBMS on elastic infrastructures, by pursuing two overarching Research
Objectives (ROs), each accompanied by specific Research Questions (RQs). Within this thesis, each of these
RQs is answered to achieve the respective ROs.

Establishing a comprehensive DBMS evaluation methodology that enables the reproducible evaluation of
high-level non-functional DBMS features (scalability, elasticity, availability) by explicitly considering elastic
resource characteristics.

We address the first objective by answering the following challenges divided into the following four RQs.

RQ-A.1: What are relevant impact factors of the distributed DBMS, elastic resource and workload domain
that need to be considered in a comprehensive evaluation methodology?

RQ-A.2: Which evaluation principles of the DBMS and elastic resource domains need to be adopted by a
comprehensive DBMS evaluation methodology?

RQ-A.3: What are significant metrics to evaluate higher-level non-functional DBMS features scalability, elas-
ticity, availability?

RQ-A.4: What are the required tasks that define the non-functional, feature-specific evaluation process and
enable the measurement of higher-level metrics resulting from RQ-A.3?

Research Objective B (RO-B): Providing the technical evaluation methods that enable the automated and
reproducible execution of the comprehensive evaluation methodology established in Research Objective A.

We address the second objective by building upon the results of RO-A and answering the resulting challenges
that are divided into the following four dedicated RQs.

RQ-B.1: How should comprehensive DBMS evaluations be specified to enable the automated executionwhile
ensuring reproducibility and portability?

RQ-B.2: What technical concepts are required to enable the evaluation automation across the elastic re-
source, DBMS and workload domain, ensuring reproducibility and portability?

RQ-B.3: Which adaptation concepts are required by supportive evaluation methods to enable the evaluation
of the higher-level non-functional features elasticity and availability?

RQ-B.4: How can the automationmethods ensure significant results and reduce the efforts in the knowledge
discovery of the non-functional DBMS features?

1.3 Research Contributions 9

1.3 Research Contributions

Based on the two overarching research objectives and the accompanying research questions, this section
summarizes the two core contributions of this thesis. Both contributions address the respective research
questions as part of research objective A and B. All contributions build upon each other, resulting in the set
of novel and highly integrated DBMS evaluation frameworks Mowgli, Kaa and King Louie. In particular, contri-
bution I presents the results to establish the comprehensive DBMS evaluation methodology; contribution II
builds upon these results and presents the novel methods for the automated performance, scalability, elastic-
ity and availability evaluation of distributed DBMS, resulting in the Mowgli, Kaa and King Louie frameworks.

Contribution I To address RQ-A.1, a set of comprehensive analyses is carried to identify the relevant
technology- and evaluation-specific impact factors [core11]. These analyses comprise the latest advances in
the DBMS [core1], elastic resource [core10] and DBMS workload domain [core3]. The identified impact factors
build the foundation for the methodological DBMS evaluation on elastic infrastructures. The contributions
to RQ-A.2 extend this methodology by analysing evaluation principles of the separate research areas DBMS
benchmarking and elastic infrastructure benchmarking. The results are applied to specify a cross-domain set
of evaluation principles for evaluating DBMS on elastic infrastructures. In addition, these principles are ex-
tendedwith the principles orchestration and automation [core2, core9, core3] to enable the higher-level DBMS
evaluation objectives scalability, elasticity and availability . The comprehensive DBMS evaluation methodol-
ogy is completed by the results that address RQ-A.3 and RQ-A.4 in defining a set of objective-specific evalua-
tion processes. Each evaluation process is defined by the required evaluation tasks and significant metrics.
In consequence, four comprehensive evaluation processes are defined: performance [core10, core5], scala-
bility [core5], elasticity [core8, core6] and availability [core4, core7].

Contribution II In the context of RO-B, RQ-B.1 is approached by defining a domain-specific evaluationmodel
that comprises all relevant DBMS, elastic resource and workload properties as a unified Evaluation Scenario
Template (EST) [core5]. An EST comprises a set of mandatory sub-templates and additional objective-specific
adaptation templates to enable the specification of elasticity [core6] and availability [core7] evaluation sce-
narios. ESTs provide the foundation of automated DBMS evaluations and consequently, they represent the
input to the evaluation automation methods that are required to address RQ-B.2 and RQ-B.3. To address RQ-
B.2, this thesis provides the novel DBMS evaluation framework Mowgli [core5, data3] that fully automates
the DBMS evaluation on elastic infrastructures for the evaluation objectives performance and scalability. By
building upon Mowgli’s automation capabilities, RQ-B.3 is approached by the frameworks Kaa [core6] and
King Louie [core7]. Kaa enables the automated elasticity evaluation based on DBMS and workload adapta-
tions during the evaluation runtime [core6]. King Louie enables the availability evaluation under considera-
tion of elastic resource failures on different levels [core7]. Besides evaluation automation, Mowgli, Kaa and
King Louie enable the reproducibility of the evaluation scenarios by ensuring the deterministic execution of
the evaluation process. In order to approach RQ-B.4, Mowgli, Kaa and King Louie provide extensive data
sets for each evaluation objective. These data sets contain raw performance metrics, processed higher-level
objective-specific metrics and comprehensive metadata to enable advanced post-processing [data6, data2,
data1, data4, data5]. The validation of Mowgli, Kaa and King Louie is based on industry-driven case studies
that comprise 310 objective-specific evaluation scenarios with 1426 resulting data sets.

10 Chapter 1 Introduction

1.4 Thesis Outline

The remainder of this cumulative doctoral thesis is structured into two parts.

Part I summarizes and conflates the findings of the accompanying publications as follows:

Chapter 2 introduces the technical foundations of this thesis to provide a common understanding on elas-
tic infrastructures, distributed DBMS and emerging operation models of distributed DBMS.

Chapter 3 presents and discusses related work on DBMS benchmarking, elastic infrastructure benchmarking
and advanced evaluation frameworks. Moreover, an overview of related approaches for application orches-
tration on elastic infrastructures is provided.

Chapter 4 presents the approach to address RO-A by defining a novel DBMS evaluationmethodology. It builds
upon three concepts: (i) the identification of technology- and evaluation-specific evaluation impact factors
of the DBMS, resource and workload domain; (ii) DBMS and elastic infrastructure benchmarking principles
that are combined into a set of cross-domain evaluation principles for evaluating distributed DBMS on elastic
infrastructures and (iii) the comprehensive design of objective-specific evaluation processes.

Chapter 5 pursues RO-B by implementing novel evaluation methods that build upon the established eval-
uation methodology of RO-A. These evaluation methods comprise a domain-specific language that enables
the specification of comprehensive and reproducible ESTs. These ESTs represent the input for the novel DBMS
evaluation framework Mowgli that fully automates the DBMS evaluation of elastic infrastructure for the objec-
tives performance and scalability. The Kaa framework extends Mowgli with DBMS and workload adaptations
at runtime to enable the automated elasticity evaluation of distributed DBMSs. The King Louie framework
builds upon these frameworks and enables the DBMS availability evaluation in the context of elastic resource
failures. These integrated frameworks provide comprehensive evaluation data sets that comprise higher-level
objective-specific metrics and supportive metadata.

Chapter 6 validates the introduced frameworks by a series of objective-specific case studies in an industrial
context. Moreover, the frameworks are validated against established cross-domain evaluation principles.

Chapter 7 summarizes the thesis with a conclusion and provides an outlook into future research directions in
evaluating and operating distributed DBMSs on elastic infrastructures.

Part II contains the publications associated with this thesis in Chapter 8—18.

Chapter 2

Background

This chapter introduces the fundamental technical concepts onwhich the thesis is based on. It covers the con-
cepts of elastic infrastructures, distributed DBMSs and operational models of distributed DBMSs on elastic
infrastructures.

2.1 Elastic Infrastructures

Over the last decades, the provisioning of compute and storage resources has tremendously changed bymov-
ing from static physical resources to elastic and virtualized resources. Since the beginning of the cloud com-
puting era in 2005 [38], resources are offered in service based manner. Moreover, resources are distributed
on different levels, connected via the network. Recently, the cloud computing paradigm gets extended by
the subsequent paradigms edge [178] and fog computing [125, 147]. Consequently, elastic resources have
a significant impact on the operation of modern Web, Big Data and IoT applications as these applications
emphasize distributed architectures and the dynamic adaptation of the application topologies to cope with
varying workloads. Consequently, these resources are not only applied for stateless applications, but also for
stateful applications such as distributed DBMSs [105].

A key concept of these elastic resource paradigms is the usage of virtualization technologies [56, 125]. In the
following, first the background on virtualization technologies is introduced, before describing the cloud, edge
and fog computing paradigm in detail. The operation of distributed DBMS on these elastic infrastructures is
presented in the subsequent Section 2.3.

2.1.1 Virtualization

Virtualisation enables the abstraction of logical resources from the underlying physical resources. This al-
lows the sharing of resources amongst multiple tenants by providing multiple logical resource entities that
are mapped to the underlying physical resources. In the era of elastic infrastructures, it is distinguished
between two virtualization concepts for compute resources, Hardware Virtualization (HWV) and Operating
System Virtualization (OSV) [139].

For HWV, resource entities are termed Virtual Machines (VMs) and manged by a hypervisor that allocates
the resources and handles the operating state. Hypervisors are classified into two categories. The type-1 hy-
pervisors such as Xen [19] operate directly on the top of the host’s hardware while type-2 hypervisors such
as KVM [26] operate on top of the host’s OS [2]. These hypervisors provide standalone VMs that are indepen-
dent and isolated from the host system. This enables the operation of Windows-based VMs on top of Linux

11

12 Chapter 2 Background

based hosts and vice versa. The resulting trade-offs are that the VMencapsulates a full Operating System (OS)
and the VM images are accordingly large in disk size. Besides, the emulation of the virtual hardware device
introduces additional levels of abstraction and potential overhead [118].

OSV provides a more lightweight level of abstraction in terms of virtualization and isolation compared to
HWV. OSV uses operating system features to create lightweight isolated environments, commonly known
as containers. Container engines, such as the established Docker engine1, allocate compute and storage re-
sources. Besides, they provide access to container-specific networking services. Therefore, containers run
on the same shared operating system kernel of the underlying host and multiple processes can be run within
one container. By sharing the host kernel and operating system libraries, advantages of containers are re-
duced container image sizes compared to VM images as well as faster start-up times compared to VMs [142].
The strongest advantage of OSV is the lower performance overhead compared to HWV. On the other hand
container provide weaker resource isolation capabilities compared to VMs [139].

As both virtualization concepts are established technologies, a multitude of comparative studies investi-
gate into the performance overhead, isolation capabilities and operational aspects of multiple HWV andOSV
offers [118, 139, 185, 152]. These studies primarily focus on using containers only for stateless applications
while stateful applications are operated on physical or VM-based resources.

2.1.2 Cloud Computing

With the beginning of the cloud computing era in 2005 [38], cloud computing has become an important re-
search topic and it has been adopted for operating large-scale enterprise applications [164].

Cloud service models are classified into four deployment models [56]: a private cloud is operated and used
within a single organization, enabling full control over the physical and virtual resources; a public cloud is
operated by an organization that offers the cloud services to public customers together with provider-specific
resources and usage constraints; a community cloud is provisioned for an exclusive user group and operated
by organizations that have shared concerns (e.g. research institutes); a hybrid cloud is a composition of at
least two clouds of different deployment models that remain unique entities but enabling service and data
portability via standardized technologies.

According to the National Institute of Standards and Technology (NIST) definition of cloud computing [56],
cloud services share five common characteristics: on-demand self-service enables users to acquire cloud ser-
vices directly without requiring human interaction; broad network access defines that cloud services are ac-
cessible over the network; resource pooling defines that cloud resources are pooled to enable multi-tenancy
by assigning different physical and virtual resources dynamically according to the tenant demands; rapid
elasticity enables the dynamically provisioning and releasing of cloud resources while the resource capabili-
ties often appear ’virtually’ unlimited to the user; measured service defines that cloud resource usage can be
monitored, controlled, and reported, in order to provide transparency for the provider and the user.

Cloud providers offer heterogenous services, from compute resources to software-based services. There-
fore, cloud services are classified into the three general cloud servicemodels Infrastructure as a Service (IaaS),
Plattform as a Service (PaaS) and SaaS [56]. Moreover, more fine-grained classifications of cloud service mod-
els have been established [87]. In the following, a brief overview of IaaS, PaaS, Software as a Service (SaaS)
and additional cloud service models is provided.

1https://www.docker.com

https://www.docker.com

2.1 Elastic Infrastructures 13

IaaS IaaS clouds provide compute, storage, and network resources to run arbitrary software. While mod-
ern IaaS clouds can provide physical and virtual resources to the users, virtualized resources are the common
approach to increase the physical resource utilization and the number of parallel users. Hereby, VMs and con-
tainers are the common resource entities. The location of IaaS resources can be classified into geographical
locations (regions), data centres inside a region (availability zones), racks inside a data centre and physical
hosts inside a rack.

PaaS PaaS provides a ready-to-use application runtime environment to the user, supporting a provider-
specific set of programming languages, libraries, services, and tools. With the adoption of cloud computing,
the heterogeneity of additional services offered by PaaS providers has increased substantially, nowadays
also comprising services such as data processing frameworks, message queues, file systems or storage sys-
tems. PaaS clouds are often operated on top of IaaS resources and in consequence, the same geographical
locations can be applied to PaaS as to IaaS.

SaaS SaaS provides complete applications to the user that are accessible via client devices, i.e. thin client
interfaces or programmatic Application Programming Interfaces (APIs). SaaS offers the lowest level of user
control, as SaaS services typically only provide a limited set of application-specific configuration options.
SaaS offers are often built upon IaaS or PaaS resources.

DBaaS The continuous evolvement of cloud computing is creating a variety of additional service models
that are classified between IaaS, PaaS and SaaS [60, 87]. One of the noteworthy results of these evolve-
ments is the trend to provide DBMSs as cloud services, resulting in the cloud service model Database as a
Service (DBaaS) [87, 105]. While the concept of DBaaS has already been introduced before the cloud era
in 2002 [18], its adoption has tremendously increased with the cloud computing evolvement. The DBaaS
concept defines that the service provider is responsible for managing the DBMS and its required computa-
tional and storage resources while the DBMS is accessible to the user by DBMS-specific client interfaces.
Consequently, cloud resources have become the preferred resources to operate DBaaS, as their advantages
on-demand resource allocation, elasticity and ’virtually’ unlimited resources are required to provide service
guarantees to the customers [105].

2.1.3 Fog and Edge Computing

The previously introduced benefits of cloud computing and their service models are the preferred option for
operating enterprise Web and Big Data applications. Recent IoT applications also have the demand for oper-
ating them closer to the user. This paradigm is commonly known as edge [140] or fog computing [64, 175] and
it is an extension to the cloud computing paradigm.

As these paradigms are still in their early stages, their definitions are still evolving and it depends on the
source, whether fog computing is either the same as edge computing [140] or it is the consolidation of cloud
and edge resources [141]. In this thesis, we follow the latter definition and consider fog computing as the
consolidation of cloud and edge computing [147]. Future advances of these paradigms might revise this defi-
nition. Moreover, we distinguish cloud resources and edge resources, where cloud resources always remain

14 Chapter 2 Background

in a cloud data centre, while edge resources always remain outside a cloud data centre. Similar to cloud
resources, virtualization is also a key concept of edge resources [178].

According to NIST [175], fog computing services are classified in the same traditional service models as
cloud computing (IaaS, PaaS, SaaS) and their deployment models are also identical, i.e. public, private,
hybrid and community (cf. Section 2.1.2).

Yet, there are also distinctions from cloud computing [175, 147, 141]: geographical distribution as resources
and service deployments are more widely distributed compared to the more centralized cloud data centre
deployments; heterogeneity as resources are more diverse in terms of computational and storage power;
dynamic as changes in the resource and service topology are a key concept of fog computing. Consequently,
fog computing applications need to be able to exploit these dynamics and in return, they need to cope with
more frequent resource outages and service interruptions [147].

2.1.4 Application Orchestration on Elastic infrastructures

The introduced elastic infrastructures raise the need for supportive tools that orchestrate distributed applica-
tions on elastic infrastructures. Resulting requirements of such tools are discussed in [core2]. They comprise
features such as the support of multiple resource provider APIs to enablemulti-cloud support; the support for
cloud Domain Specific Languages (DSLs) [163] such as e.g. TOSCA [95] or CAMEL[add2]; and themanagement
of the full application lifecycle including resource allocations, the deployment of the application components
and runtime adaptations.

In this context numerous COTs have been established over the recent decade that focus on dedicated as-
pects of the aforementioned characteristics. Scientific approaches are represented by OpenTosca [79], Robo-
conf [120], Apache Brooklyn [130], the Orchestrator Conversation framework [184] and Cloudiator[add9, add7].
As these COTs focus on VM-based resources, container-based orchestrators including Borg, Omega and Ku-
bernetes are presented by [123, 129]. Further COTs are discussed in [157, 191, 207].

2.2 Distributed DBMS

This section summarizes the recent advances of DBMS technologies with the focus on distributed DBMSs.
Therefore, first the different data models are introduced, secondly the distribution techniques are described
and thirdly, the non-functional features of distributed DBMSs are presented. Finally, the boundaries of dis-
tributed DBMSs are discussed.

2.2.1 Data Models

The evolvement of the distributed DBMSs leads to an increasing heterogeneity in DBMS data models. The
data models of modern DBMS are classified into three top-level categories, ordered by their appearance on
the DBMS landscape: relational, NoSQL and NewSQL [51, 86, 165, core1]

Relational The relational data model was established in the 1970s [3] and stores data as tuples forming an
ordered set of attributes; which can be extended to extract more meaningful information. A relation forms

2.2 Distributed DBMS 15

a table and tables are defined as a static, normalized data schema. RDBMS provide the standardized SQL
interface [1] as generic data definition, manipulation and query language for relational data.

NoSQL Starting in the late 2000s, the NoSQL data model evolved as a superclass for different data models,
such as key-value, document-oriented, column-oriented and graph-based [51, 86, 165]. Recently, the NoSQL
data models have been extended with the time series [151, 145] andmulti-model data models [198]. Common
characteristics of the NoSQL data models are the adoption of flexible data models that can be schemaless
and the fact that data may need to be interpreted at the application level. Consequently, there is no common
query interface such as SQL for the relational data model but DBMS-specific interfaces with heterogenous
query capabilities. Yet, these schemaless data models ease the distribution of data and thus they are the
preferred data models for distributed DBMS. Hereafter, the NoSQL data models are briefly introduced.

The key-value datamodel relates to the hash tables of programming languages. The data records are tuples
consisting of key-value pairs. While the key uniquely identifies an entry, the value is an arbitrary chunk of data.
Operations are usually limited to simple CRUD (Create, Read, Update, Delete) operations.

The document datamodel extends the key-value data model by defining a structure on the values in certain
formats, such as XML or JSON. These values are termed documents, but usually without fixed schema defini-
tions. Compared to key-value stores, the document datamodel allows for more complex queries as document
properties can be used for indexing and querying.

The column-oriented data model stores data by columns rather than by rows. It enables both storing large
amounts of data in bulk and efficiently querying over very large structured data sets. A column-oriented data
model does not rely on a fixed schema. It provides nestable, map-like structures for data items which improve
flexibility over fixed schema [30].

The graph data model builds upon graph structures, usually including elements like nodes and edges, for
data modelling. Nodes are often used for the main data entities, while edges between nodes are used to
describe relationships between entities. Querying is typically executed by traversing the graph. Due to the
direct connections between records, the graph data model does not facilitate distributed DBMS in contrast to
the other NoSQL data models.

The time-series data model typically builds upon existing relational or NoSQL data models (preferably key-
value or column-oriented), and adds a dedicated time-series data model on top [151, 145]. The time-series
data model consists of data points which comprise a time stamp, an associated numeric value and customiz-
able metadata. Query interfaces for the time-series data model typically offer analytical queries, covering
statistical functions and aggregations.

The multi-model data model addresses the problem of polyglot persistence [70] which signifies that each
of the NoSQL data models addresses a specific use case, including data model or even DBMS-specific query
interface. Hence,multi-modelNoSQLDBMSs combinedifferent datamodels into a singleDBMSwhile building
upon one storage backend to improve flexibility, e.g. providing the document and graph data model via a
unified query interface [198].

NewSQL As conventional RDBMSs provide limited data partitioning support, in the beginning of the 2010s,
the NewSQL data model emerged [47, 72]. NewSQL DBMSs [47, 72] aim at addressing these limitations by
building upon the relational data model but emphasizing a distributed architecture and supporting data dis-
tribution. Therefore, NewSQL DBMSs build upon the relational data model but mitigate relational features in

16 Chapter 2 Background

data distribution
techniques

architecture

sharding

durability

replication

consistency
model

single
master-slave
multi-master

range
hash
hyperspace

disk persistence
in-memory persistence

hybrid persistence

scope

data access

synchronization

strict consistency

eventual consistency

area

Figure 2.1: Data distribution techniques overview

favour of easing data partitioning [86]. In consequence, NewSQL DBMSs either extend RDBMSs with distribu-
tion mechanisms or they are built from scratch [137]. The NewSQL data model provides some functionalities
of the relational data model, such as relations, transactions and the SQL query language. Yet, costly SQL
operations such as joins might not be supported.

2.2.2 Data Distribution Techniques

The evolution towards distributed DBMS builds upon multiple data distribution techniques that can be clas-
sified into the high-level categories architecture, sharding, durability, replication and consistency model as
depicted in Figure 2.1. For each of these categories a variety of concepts have been established which con-
sequently lead to a heterogenous set of distributed DBMS technologies. In the following paragraphs, these
concepts are introduced to provide the data distribution background that is necessary to understand the con-
cepts of evaluation distributed DBMS on elastic infrastructures.

Architecture The hardware architecture of DBMS is classified into three types [59]: a shared memory DBMS
runs on a single resource that consists of a collection of cores and shares a common main memory and disk
system; a shared disk DBMS runs on disk clusters, where a collection of CPUs with private main memories
share a common disk system; and a shared nothing DBMS does not share main memory nor disk while the
DBMS instances are connected through the network. This thesis focuses onDBMSs that build upon the shared
nothing architecture [5] as this architecture type is the preferred option for modern distributed DBMS [30, 42,
59].

A distributed DBMS provides a logical DBMS instance to the interacting services, where the internal DBMS
instances are distributed across multiple resource entities and connected by the network. A single DBMS

2.2 Distributed DBMS 17

instance as part of the DBMS topology is termed DBMS node, while the overall distributed DBMS is termed
DBMS cluster. Consequently, a DBMS cluster comprises n ∈ {1..n} DBMS nodes where each DBMS node is
operated on a dedicated resource node. While the DBMS cluster sizemay change over runtime, these changes
should ideally be transparent for the consuming services [51, 137].

The architecture of distributed DBMS is categorized into three general distribution models [70, 150]. A
single DBMS comprises only one DBMS node and handles all read and write requests. The master-slave
DBMS distribution comprises one DBMS node that represents the designated master and n ∈ {1..n} DBMS
nodes that act as slave nodes. Hereby, the master node handles all write and read requests as well as the
synchronization of the slave nodes. Optionally, slave nodes can be configured to process read requests. In a
multi-master DBMS, all DBMS nodes are equal, i.e. all DBMS nodes are processing write and read requests
within the DBMS cluster.

Sharding Data sharding2 is a core concept of distributed DBMSs to distribute data and requests across all
DBMS nodes within a DBMS cluster. Therefore, the data is split into shards that are distributed across all
DBMS nodes. Depending on the sharding concept, its usage requires the manual execution by the Database
Administrator (DBA) or can be implemented in an automated manner by the respective DBMS. Three general
sharding concepts exist: range-sharding, hash-sharding and hyperspace-sharding.

In the range-sharding approach, data items are grouped according to the continous intervals of prede-
fined shard keys, such as the range of a unique identifier. While this approach favours scan operations, data
hotspots or unbalanced shards may occur over runtime, requiring a manual revision of the shard key and
consequently costly redistribution of the data across the DBMS nodes.

Hash-sharding applies a hashing function to the shard key of the data items in order to distribute them
across the existing DBMS nodes. It is further classified into simple-hashing and consistent-hashing [14].
Simple-hashing uses a static hashing function such as modulo hashing that is applied to the shard key of the
data items. An exemplary simple-hashing function can be based on the number of DBMS nodes in the DBMS
cluster, e.g. hosting DBMS node = shard key modulo number of DBMS nodes. While this approach en-
ables the automated sharding of data items and efficient local data lookups [25], it requires the redistribution
of all data items if the DBMS cluster size changes. While the data redistribution can be executed automatically
by the distributed DBMS, it is an expensive operation.

The consistent-hashing approach considers the scope of a hash function asmulti-dimensional formswhere
the DBMS node identifier and the data item identifiers are randomly hashed to its positions inside the DBMS
cluster [14, 25]. If a new DBMS node is added to the DBMS cluster and is hashed at position p, the old shard
corresponding to its immediate successor is split into two new adjacent shards between p.predecessor and p,
as well as p and p.successor. Consequently, consistent-hashing does not require a manual update of the the
hash function and enables the automated redistribution of the data if the DBMS cluster size changes, while
only a fraction of the data needs to be redistributed. Yet, the consistent-hashing does not favour data locality
and joining/leaving DBMS nodes impose a high load on the neighboured DBMS nodes within the ring[165].

Hyperspace-sharding extends the consistent-hashing approach which only considers a single attribute of
a data item, e.g. the primary key. Therefore, hyperspace-sharding includes multiple data attributes for the
mapping of data items to DBMS nodes [76]. This results in a so-called hyperspace where the hosting DBMS
node is identified by hashing each data attribute value along its corresponding dimension. While hyperspace-

2Sharding is also called data partitioning in the context of distributed DBMSs

18 Chapter 2 Background

sharding favours complex read operations, the hyperspace will grow exponentially with the number of data
attributes. Even as first approaches to derive hyperspace-sharding function exist [97], hyperspace-sharding
functions are typically application specific and require the manual definition by the DBA. Furthermore, a
central coordinator service is required to assign the hyperspace parts to the respective DBMS nodes.

Durability Durability defines the DBMS persistence mechanisms regarding write and update operations. It
is a crucial mechanism to address temporary DBMS node failures in case of power or network outages. For
instance, if an operation is acknowledged before data is persisted, the DBMS node processing the request
might fail before writing the item and data may get lost.

Therefore, durability comprises three persistence models: disk persistence, in-memory persistence and
hybrid persistence [98, 165]. Disk persistence enforces that the data item is written to disk on all DBMS nodes
before acknowledging the operation to the client. The in-memory persistence approach acknowledges write
and update operationswhen the data item is available inmemory on all DBMSnodes. Therefore it is a suitable
approach for managing transient information that is needed for a limited time. Hybrid persistence first keep
data items in-memory and persist them after someDBMS-specific conditions have been satisfied. Distributed
DBMSs offer a variety of configuration options to specify the moment to acknowledge the operation to the
client, e.g. after storing the data item in-memory or on disk of n DBMS nodes. Hence, DBMSs implementing
the hybrid persistence allow configurations from disk persistence over custom persistence configuration (e.g.
applying disk persistence for n DBMS nodes and in-memory persistence for m DBMS nodes) to in-memory
persistence. To increase durability in case of DBMS node failures for the hybrid persistence model, additional
established techniques such as write ahead logging [10] might be implemented by the respective DBMS. The
hybrid-persistence model is applied by most NoSQL DBMS [150, 165].

Replication In the context of distributed DBMSs, replication defines that multiple physical copies of the
same logical data item exist within a DBMS cluster. According to Wiesmann et al. [17], the primary conceptual
decisions for using replication are (i) which of the physical data itemsmay be accessed by clients and (ii) how
to synchronize the remaining replicas after a modifying operation has been carried out. The first decision
(i) closely relates to the architecture of distributed DBMS (cf. Section 2.2.2) as a master-slave architecture
typically applies single-master replication [16], where a single replica represents the primary copy of the data.
Only this copy can be modified by client operations while read operations might be allowed on the remaining
replicas. A multi-master architecture enables write and read operations on all replicas and potential conflicts
need to be resolved by the DBMS [98].

The second decision (ii) relates to synchronization of the replicas which is classified into synchronous and
asynchronous replication [16, 17]. Synchronous replication ensures that the operation is executed before the
client receives a response, while asynchronous replication executes the synchronization independently from
the client response.

An additional replication aspect as defined by Domaschka et al. [98] is the replication scope. It is classified
into full and partial replication. Full replication means that each DBMS node stores a full copy of the entire
database. In partial replication, each data item may only be stored on a subset of all DBMS nodes. Conse-
quently, the replication factor is smaller than the DBMS cluster size. This is a capability also closely relates to
sharding (cf. Section 2.2.2). If sharding is used without replication, there is no tolerance against DBMS node
failures. On the other hand, using replication without sharding means that all data is available on all DBMS

2.2 Distributed DBMS 19

nodes. If sharding and replication are used in parallel, each DBMS node might contain only a subset of all
data items [25].

Furthermore, modern distributed DBMS might apply different replication areas to enable geographically
distributed DBMS clusters [80, 109]. Yet, these replications concepts are highly DBMS-specific.

Consistency Model By applying the sharding and replication concepts in distributed DBMS, the need for
data consistency guarantees increases but also becomes more challenging. The view on data consistency is
classified into the data-centric consistency on the DBMS provider side and the client-centric consistency on
the client side [28]. The DBMS provider considers the DBMS-internal state of the (distributed) data. The client
considers the DBMS as a black box and relies on a set of promised consistency guarantees that could be part
of a Service Level Agreement (SLA).

With the rise of distributed DBMSs, consistency paradigms have evolved as well. Regarding the data-
centric consistency, strong consistency concepts have been established such as strong consistency in ACID
paradigm [4] that guarantees atomicity, consistency, isolation and durability for each request. On the contrary,
eventual consistency guarantees [37] have been implemented as in the BASE paradigm: basically available,
soft state, eventually consistent [31]. In general, RDBMSs and NewSQL DBMSs apply the strong consistency
while NoSQL DBMS build upon the eventual consistency concepts. However, these consistency concepts only
reflect two general and contrary consistency paradigms, while there are more fine-grained consistency model
classifications [83, 93].

With respect to the client-centric consistency models, relational DBMS implement the conventional con-
cepts of monotonic read consistency, read your writes consistency, monotonic write consistency or write fol-
lows read consistency [28, 37]. However, NoSQL DBMS implement heterogenous and highly customizable
client-centric consistency models that do not explicitly guarantee the properties of the aforementioned con-
sistency models. Yet, experimental results show that these consistency models can be partially fulfilled by
NoSQL DBMS [48, 61].

2.2.3 Non-Functional Features

The feature set of DBMSs is classified into functional features, such as query interfaces or security mecha-
nisms [86], and non-functional features such as performance [9]. As this thesis focuses on the non-functional
features, we omit further details on functional features and refer to existing literature [51, 54, 150, 203].

The presented distribution concepts of modern distributed DBMSs enable a set of key non-functional fea-
tures that are required in the context of Web, Big Data and IoT applications [86, 98, 150, 165]. This section
provides a general definition of these non-functional features.

Performance Performance is typically referred to as one of the most important non-functional features of a
DBMS [9]. Performance directly relates to the processing of requests and on a high level it is classified into
write and read performance.

Scalability Scalability addresses the general ability to process changing workload intensities. A scalability
definition for distributed DBMS is provided by Agrawal et al. [46], defining the terms scale-up, scale-down,
scale-out and scale-in. Scale-up and scale-down represent the vertically scaling concept that is implemented

20 Chapter 2 Background

by adapting the resources of a single DBMS node. The actions scale-out (i.e. adding DBMS nodes to a DBMS
cluster) and scale-in (i.e. removing DBMS nodes from a DBMS cluster) represent the concepts of the hori-
zontal scaling concept. Consequently, to implement horizontal scaling, a distributed DBMS is required. As
vertically scaling actions require a restart of the DBMS in order to adapt to the updated resources, these ac-
tions implicitly cause a downtime of the DBMS. Horizontal scaling actions can be executed at runtime without
a downtime, if the DBMS supports elasticity.

Elasticity Elasticity is tightly coupled to scalability as horizontal scalability is a strict requirement to enable
elasticity in the context of distributed DBMSs. While scalability targets the general ability to process arbitrary
workload sizes, elasticity targets the ability to cope with sudden workload fluctuations at runtime, i.e. “the
ability to deal with load variations by adding more resources during high load or consolidating the tenants to
fewer nodes when the load decreases, all in a live system without service disruption, is therefore critical for
these systems.” [46].

Availability For computing systems, availability is defined as the degree towhich a system is operational and
accessible when required for use [7]. Besides reliability (themeasure of the continuity of correct service” [21]),
availability is the main pillar of many fault-tolerant implementations [98]. The availability of the DBMS can be
affectedby two conditions: (i) A highnumber of requests issued concurrently by clients, overloading theDBMS
so that the requests of clients cannot be handled at all or are handled with an unacceptable latency > ∆t.
(ii) Resource failures occur that impact network connectivity or the compute/storage resources the DBMS is
hosted on [98].

Consistency As there are numerous consistency models, their implementation in the respective DBMS are
very heterogenous. Consequently, the resulting quality of the consistency guarantees depends on the DBMS-
specific implementation, additional runtime configurations and external impact factors such as the workload
intensity or failures [93]. Therefore, even if the consistency guarantees of a specific consistency model are
expected, there is a risk of (temporal) inconsistencies such as stale data on the client side or the violation of
the request execution order on data side [48, 93].

2.2.4 Boundaries: CAP and PACELC

The quality of the introduced non-functional features is dependent on the applied distribution techniques (cf.
Section 2.2.2) but it is also limited by the following theorems, CAP [15] and PACLEC [62].

In 2000, the renowned CAP theorem has been defined [15]. It imposes the constraint that a distributed
storage system can only provide two out of three properties: consistency (C), availability (A) and partition
tolerance (P) [15]. Consequently, the CAP theorem enables the theoretical classification of distributed DBMSs
into CA, CP or CP favouring systems. Yet, the evolvement of distributed DBMSs and elastic infrastructures
hosting these DBMSs led to revisiting the CAP theorem in 2012 and refining the statement that providing two
out of the three CAP properties is not a binary decision [65].

In 20103, the PACELC classification of distributed DBMSs has been defined [62]. The PACLEC explicitly
considers the impact on latency and consistency during the normal operation and in case of failures leading to

3http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

2.3 Operational Models of Distributed DBMS 21

compute

HW virtualization
OS

virtualization

container VM

OS OS OS

HW virtualization

VM

OS virtualization

container

OS

HDD HDD NVME

OS

OS
virtualization

cloud domain edge domain

fog domain

bare-metal container-based VM-based VM-container-based bare metal/container-based

container

HDDstorage remote storage SSD NVME miscellaneous

Figure 2.2: DBMS operational models on cloud, edge and fog resources

partitions. This results in the definition that in case of a partition, there is an availability-consistency trade-off.
In normal operation, there is a latency-consistency trade-off. Thus, it extends the CAP classification with two
possible choices in case partitions and two for normal operation. However, many distributed DBMSs cannot
be assigned exclusively to one single PACELC classification and the specific PACLEC classification PC/EL is
hard to assign to any distributed DBMSs [150].

As distributed DBMSs implement a variety of heterogenous distribution concepts to cater for a broad range
of use cases [98, 150], the CAP theorem and PACLEC provide conceptual classifications of their consistency,
availability and partition tolerance. Yet, these classifications do not provide any estimation on the quality
of the presented non-functional features. Moreover, the heterogenous distribution techniques even increase
the challenge of quantifying the quality of the non-functional DBMS features.

2.3 Operational Models of Distributed DBMS

In order to fully exploit the advances of distributed DBMSs such as horizontal scalability and elasticity, similar
concepts are required on the resource level. As elastic resources provide these concepts (cf. Section 2.1), the
operational models of distributed DBMSs have changed from dedicated bare-metal deployments to manifold
deployments on virtualized resources. Figure 2.2 depicts a non-exhaustive set of commonoperationalmodels
for distributed DBMSs on elastic infrastructures.

The compute resources of the cloud domain range from dedicated bare-metal resources, container-based
resources, VM-based resources to a combination of VM- and container-based resources [199]. And in the
context of the overarching fog domain, edge resources provide an additional set of heterogenous resources
that can be applied for distributed DBMSs [209]. Apart from compute resources, the storage backends are

22 Chapter 2 Background

of major importance for DBMSs and the variety of offered storage backends ranges from dedicated Hard Disk
Drive (HDD), Solid State Drive (SSD) and Non-Volatile Memory Express (NVME) devices to remote storage. In
consequence, we define the DBMS operational model as follows:

Definition D.1 (DBMS operational model). The DBMS operational model is defined as the DBMS, its runtime
configuration and the applied elastic resources. In consequence, the operational model of distributed DBMSs
on elastic infrastructures needs to be determined from RDBMS, NoSQL DBMS, NewSQL DBMS and elastic re-
source offers. The runtime configurations comprise heterogeneous DBMS- and distribution-specific options.

With the flexibility offered by these manifold operational models, there comes a number of challenges that
need to be addressed to operate distributed DBMSs on elastic infrastructures. Starting from the placement
of the virtual resource onto the physical resources [117, 138] over selecting the best matching resource based
on application requirements [158, add7] to determining the required number of instances and runtime con-
figuration to satisfy the application requirements [159, 177]. While these challenges hold for stateless and
stateful applications, there are numerous additional challenges that need to be considered for distributed
DBMSs specifically.

Already the initial resource selection for distributedDBMSbecomes amore important decision compared to
stateless applications. Stateless applications can be easily migrated to new resource types but the migration
of a distributed DBMS is way more costly in terms of time and temporary service degradation [168]. Moreover,
the selection of the storage backend is of crucial importance for distributed DBMSs [107, 169, 205].

As elastic resources build upon shared resources, the impact of resource interferences caused by other
applications running on the same physical resources4 needs to be considered when selecting the DBMS op-
erational model [44, 136], especially as container- and VM-based resources vary in their provided resource
isolation capabilities [139].

These resource-specific challenges are extended with the heterogeneity of distributed DBMS technologies
and the corresponding runtime configurations (cf. Section 2.2.2). As these decisions are dependent on each
other [89], the selection of an optimal DBMS operational model requires the correlation of the resource char-
acteristic, the distributed DBMS and its runtime configurations.

In consequence, already the following basic operational model decision becomes a challenging task:
”Does DBMS A provide better performance if operated with 3 nodes at resource provider X on resource

V M_medium or if operated with 5 nodes at resource provider Y on resource V M_SMALL?”
While the exemplary question only focuses on the objective performance and omits several DBMS- and

resource-specific characteristics, it already requires dedicated elastic resources and DBMS domain knowl-
edge to address this question. Yet, even with the required domain knowledge, it is not possible to provide
a well-grounded answer without supportive decision-making tools in the form of benchmarks. There are sup-
portive benchmarks with the dedicated focus either on elastic resources (cf. Section 3.3) or distributed DBMS
(cf. Section 3.2). But these benchmarks do not provide a unified approach by combining the resource and
DBMS domain and consequently, they hinder the correlation of resource characteristics with the DBMS and
its runtime configuration. Therefore, this thesis contributes in providing a unified DBMS evaluation approach
across the resource and DBMS domain.

4Also called the Noisy Neighbour effect.

2.4 Summary 23

2.4 Summary

This chapter presented the technical fundamentals of the elastic infrastructure domains cloud, edge and fog.
It summarized the respective virtualization concepts, resource characteristics, service models and orchestra-
tion concepts. These infrastructures build thebase for operatingmoderndistributedDBMSs. Furthermore, the
technical background on distributed DBMS was introduced, covering the relational, NoSQL and NewSQL data
models; distributed DBMS architectures and key distribution techniques such as sharding, durability, replica-
tion and consistency models. These techniques enable the non-functional features performance, scalability,
elasticity, availability and consistency that are key requirements of data-intensive applications. Therefore, an
established definition of each non-functional feature was provided, including the discussion of their bound-
aries within the CAP and PACELC theorem. These technical concepts from the basis for the methodological
DBMS evaluation that is presented in Chapter 4. In order to combine elastic resources with distributed DBMSs
into their operational model, common operational models of distributed DBMS were presented for the cloud,
edge and fog domain; including relevant resource characteristics that need to be considered. In conclusion,
the challenges in the selection of a concrete DBMS operational model were discussed, including elastic re-
source and distributed DBMS characteristics as well as their interdependencies. In Chapter 5, we use these
concepts to provide comprehensive evaluation methods that enable the automated evaluation of distributed
DBMS on elastic infrastructures by explicitly considering DBMS and resource characteristics.

Chapter 3

Related Work

This chapter summarizes relatedwork onDBMSand elastic infrastructure benchmarking that is part of the con-
tributing publications of this thesis [core1] included in chap 8, [core2] included in Chapter 9, [core3] included
in Chapter 10, [core4] included in Chapter 11, [core5] included in Chapter 12, [core6] included in Chapter 13,
[core7] included in Chapter 14, [core8] included in Chapter 15, [core9] included in Chapter 16, [core10] included
in Chapter 17 and [core11] included in Chapter 18.

This thesis provides novel concepts for evaluating the non-functional features of distributed DBMS on elas-
tic infrastructures. Therefore, we discuss related DBMS benchmarks and elastic infrastructure benchmarks in
following sections. In particular, Section 3.1 defines an evaluation terminology, Section 3.2 presents estab-
lished DBMS benchmarks with the focus on distributed DBMS and Section 3.3 presents elastic infrastructure
benchmarks. In Section 3.4, advanced evaluation approaches are discussed that target the evaluation of non-
functional features apart from performance. Section 3.5 summarizes the related approaches in scope of this
thesis by discussing overlapping and limiting aspects.

3.1 Terminology

The evaluation of DBMSs and elastic resources is a widely discussed research topic and in consequence, a
diverse set of terms for the involved systems and tools have been established [9, 94, 100, 148, 201, 189, 190].
This thesis builds upon the DBMS operational model definition (cf. Section 2.3) and applies the following
terminology:

Definition D.2 (Workload). The workload defines the lowest common denominator in the non-functional fea-
tures evaluation toolbox and it is required to measure the non-functional features of an operational model.
Therefore, a workload emulates application-specific load patterns as realistically as possible.

Definition D.3 (Benchmark). The workload is generated by a benchmark that adds additional features such
as the metric reporting, metric processing and the coordinated execution of multiple workloads. A benchmark
can provide different workload types.

Definition D.4 (Evaluation framework). An evaluation framework represents an advanced concept for evalu-
ating the non-functional features as it orchestrates the DBMS operational model and n benchmark instances.
Therefore, an evaluation framework supports the evaluation automation to a certain degree, ranging from the
allocation of elastic resources over the deployment of the DBMS operational model to adaptations during the
evaluation execution.

25

26 Chapter 3 Related Work

Definition D.5 (Evaluatuation objective). An evaluation objectives defines, which non-functional feature is to
be evaluated. The standard evaluation objective for DBMSs is performance.

Definition D.6 (Higher-level evaluatuation objective). Ahigher-level evaluation objectives builds upon the per-
formance objective by incorporating additional DBMS and runtime aspects. Higher-level evaluation objectives
are scalability, elasticity, availability and consistency.

3.2 DBMS Benchmarking

DBMSs are a key component of each data-intensive application domain. Consequently, numerous DBMS
benchmarks have been established over the last decades to evaluate the non-functional features of DBMSs
and represent a foundation of this thesis. Hereafter, we focus on DBMS benchmarks of the Web, Big Data
and IoT domain, renowned Transaction Processing Performance Council (TPC) benchmarks that have been
presented before the cloud era [119]. These DBMS benchmarks focus on the evaluation objective perfor-
mance under consideration of various workload types. We classify the workload types intoOnline Transaction
Processing (OLTP), Online Analytical Processing (OLAP) and Hybrid Transaction-Analytical Processing (HTAP).
There aremore fine-grained anddiverse classifications for DBMSworkloads. For instance, thework of Friedrich
et al. [99] considers workloads for NoSQL DBMS as OLTP while others define that OLTP is only applicable for
RDBMS [107], considering NoSQL workloads as a separate category.

The specification of workloads is either based on trace-based application data or synthetic data, which is
modelled after real-world load patterns and generated by a set of workload-specific constraints [148]. Syn-
thetic workloads provide more customization options which decrease the possibility that evaluation targets
are optimized for a specific workload type at design time. Yet, synthetic workloads also include potential ran-
domness, as workload constraints may build upon probabilistic decisions, e.g. determining the distribution
key of the zipfian distribution [11]. Trace-based workloads are more significant as they are created from real
application data and enable the deterministic execution. But they provide only limited customization options
and the evaluation targets can be optimized at design time for well-known trace-based workloads.

An additional workload concept represents the workload generation model that is classified into closed,
open and partially open [24]. The closed model defines that new requests are only issued after all current
ones have been processed, i.e. following a sequential order. Its implementation is rather simple builds upon
a static thread pool to issue the requests [148]. To support fluctuating workloads, an open or at least partly-
open workload generation model is required [148]. The open workload model issues the request by following
probability distributions and individual requests are completely decoupled. Yet, the implementation of this
approach bears some challenges such as the need for a dynamic thread pool to scale fast enough and not
to disturb the scheduling process and it requires thorough monitoring [148]. The partly-open addresses the
challenges of the closed workload model by issuing requests either on a probabilistic distributions or on a
sequential order. Yet, its implementation requires precise scheduling and it is hard to determine how long a
scheduled thread will be busy [148], Moreover, it might overload either the workload generation instance or
the target DBMS [148].

Within this thesis we build upon these workload concepts and their generating benchmarks to enable the
evaluation of higher-level evaluation objectives by considering the volatility of elastic infrastructures. There-
fore we provide in the following sections an overview of established benchmarks classified by their workload

3.2 DBMS Benchmarking 27

type. It is noteworthy that this thesis focuses on OLTP and partially HTAP workloads, while its methodology is
independent of a specific workload type or benchmark.

3.2.1 OLTP

OLTP workloads represent the typical operational requests of each application domain. Consequently, OLTP
workloads comprise independent, short and repetitive request patterns based on arbitrary data sizes [13].
The TPC benchmark provides standardized OLTP workloads for different application domains, such as the
TPC-C [45] workload for the e-commerce context or the TPC-E [122] workload for financial context. The TPC
council only provides the workload specification, whereas the implementation of the benchmark as workload
generator is the responsibility of the user. The synthetic TPCworkloads compute not only the raw performance
metrics but also more significant performance metrics such as efficiency. Yet, these workloads target only
RDBMS, distributed NoSQL and NewSQL DBMS are not explicitly considered in their specification.

The BigBench [85] benchmark builds upon the TPC-DS [214] workload specification, focusing the Big Data
context based on synthetic data. By now, it is incorporated by the TPC and released as the TPCX-BB [206].
BigBench also focuses on the relational data model with extensions for Big Data tools that offer an SQL inter-
face on top of file systems, such as Apache Hive1. BigBench provides DBMS performance metrics as well a
composed metrics that target Big Data processing frameworks [92].

The OLTP-Bench [82] comprises 15 workload classes of different workload types for RDBMS, including trace-
based and synthetic workloads. These workloads cover the Web, financial and e-commerce context. OLTP-
Bench provides the common performance metrics and composed metrics by correlating system metrics with
performancemetrics. Apart from that, this benchmarks provides support in adapting the workload intensities
at runtime and advanced metric processing.

The widely adopted Yahoo Cloud Serving Benchmark (YCSB) [40] targets the performance evaluation of a
variety of NoSQL and RDBMS. To enable the support for a wide range of data models, it builds upon simple
Cread, Read, Update, Delete (CRUD) and scan requests. In addition, it provides a predefined set of work-
loads with a variety of workload- and DBMS-specific configuration options. Its modular architecture favours
extensibility and it has been extended by the YCSB++ [57], YCSB-T [96] and the GeoYCSB [197].

YCSB++ [57] adds the evaluation of data consistency with the focus on staleness. Moreover, it extends the
basic requests with support for transactional and more complex request types. It focuses only on the column-
oriented data model. Moreover, it adds support for the distributed execution of multiple YCSB++ instances.

The YCSB+T [96] extends the YCSBwith transactional workloads that enrich the performancemeasurements
and add consistency-centric evaluation. Therefore, it measures the transactional overhead and potential vio-
lations of the requests ordering.

GeoYCSB [197] extends YCSBwith the support for geospatial data. Therefore, it integrates new components
to its architecture and extends the supported workload classes with geospatial workloads for different NoSQL
DBMSs.

TheBGbenchmark [77, 161] also builds upon YCSB, focussing on the evaluation objectives performance and
consistency. Therefore, the BG benchmark enables requests that reflect the workload of a real social media
platform. Moreover, it enables to support not only themeasurement of performance, but also the specification
and validation of performance and consistency SLAs that need to be fulfilled by the target DBMS.

1https://hive.apache.org/

https://hive.apache.org/

28 Chapter 3 Related Work

Additional OLTP workloads for NoSQL DBMS are summarized in [99, 154], also including dedicated work-
loads for graph-based NoSQL DBMS. As graph-based DBMS do not necessarily provide a distributed architec-
ture (cf. Section 2.2.1), we omit the discussion of these benchmarks in this section. Yet, the results of this
thesis can also be applied for graph-based DBMS with the respective workloads.

3.2.2 OLAP

OLAP workloads target the decision support and focus on consolidated data rather than single requests.
In this regard, the data size is significantly larger than for OLTP workloads. The requests are read heavy
with mostly ad hoc and complex requests, accessing millions of records and performing joins and aggrega-
tions [13].

The TPC provides a set of OLAP workload specifications with the latest version of the TPC-H workload [186].
This workload specification simulates the industry-driven decision support based on a high volume of data
and complex requests. It measures the performance with the TPC-H specific composite metric query-per-hour.
While the workload specification targets the relational data model, there are implementations for NoSQL
DBMS [67, 111].

An OLAP workload implementation with the focus on NoSQL DBMS is provided by SSB+ [111]. It extends the
established OLAP star schema benchmark (SSB) [36] with the support for two NoSQL DBMS. Therefore, the
required data is generated in DBMS-specific formats and it supports the distribution of the data to ensure the
scalability of the workload itself compared to the original SSB.

3.2.3 HTAP

HTAP workloads represent the latest workload category by combining OLTP and OLAP characteristics into the
HTAP workload class [71, 144]. While OLTP and OLAP workloads are typically handled by separate data man-
agement systems, HTAP workloads define OLAP requests over operational data, while defining OLTP requests
on the same data. In consequence, HTAPworkloads enable to address the research challenge to which degree
are OLAP operations decreasing the OLTP Performance and vice versa [12].

A first approach towards HTAP benchmarks is presented by CH-benCHmark [52] that combines the execu-
tion of OLTP workload TPC-C [45] and the OLAP workload TPC-H [186]. A similar approach is pursued by HTAP-
Bench [149], also building upon the TPC-C and TPC-H workloads. Moreover, a unified metric for HTAP systems
is defined that considers the execution of constantly increasing OLAP requests in correlation to the impact on
OLTP performance.

Additional approaches for the combination of OLTP and OLAP workloads are presented by [29, 49, 63, 50].
Yet, these approaches are focusing solely on the relational data model and consequently only on RDBMS and
NewSQL DBMS, while NoSQL DBMS also claim to be a suitable alternative for HTAP processing [195].

3.3 Elastic Infrastructure Benchmarks

With the evolvement of elastic infrastructures cloud, edge and fog, the need for elastic resource benchmarks
increases. Consequently, a number of elastic infrastructure benchmarks have been established over the last
decade, enabling the comparative evaluation of existing resource offers. As elastic resources represent a

3.3 Elastic Infrastructure Benchmarks 29

crucial part of the DBMSoperationalmodel (cf. Section 2.3), the concepts of elastic infrastructure benchmarks
are a foundation of this thesis.

3.3.1 Cloud Benchmarks

Already web applications led to a new set of benchmarks that focuses on the evaluation of distributed appli-
cations such as the RuBiS benchmark [20] or SPECWeb2. Yet, the characteristics of cloud computing, such as
shared resources or fluctuating workloads, demands for new resource-centric benchmark approaches in the
late 2000s [32, 34].

As one of the first cloud resource benchmarks, Cloudstone [32] enables the evaluation of multiple cloud
resourcesbyproviding adistributedwebapplication for its benchmark. Itmeasuresperformanceandprovides
a composed cost metric. The Cloudstone benchmark stresses the need for automation to enable large-scale
evaluations in the cloud. Therefore, it provides a first toolset to automate the evaluation on the AWS Elastic
Compute Cloud (EC2).

A similar approach is presented by the CloudCmp benchmark [43], enabling the comparison of different
public and private cloud providers based on performance and costs. Therefore, CloudCmp provides a set
of web applications, comprising a storage-intensive one, a compute-intensive one and a latency-sensitive
application. The scope of CloudCmp considers all kinds of IaaS resources, i.e. compute, storage and network.

The Rain benchmark [39] provides an extensive set of open, closed and partly open workloads [24] for
cloud-hosted web applications. It benchmark targets a dedicated exemplary web application, but can also
be applied for generic distributed applications. Yet, it does not consider elastic resource characteristics nor
does it provide any support to automate the evaluation on elastic resources.

Benchmarks with explicit focus on performance and additional aspects, such as the provisioning times of
VM types of different cloud providers are presented by [110, 131, 182, 183, 189] and the SPEC Cloud® IaaS
benchmark3. These benchmarks comprise workloads of different cloud application types such as web, high
performance computing or financial applications.

The applied applications in such benchmarks are often represented by a 3-tier web application or micro-
service applications such as TeaStore [192] and they are operated on a set of elastic resources.

Approaches that focus not only on VM-based resources but also on container-based resources are provided
by [115, 118, 155, 139]. These benchmarks evaluate the performance overhead of VM-based applications in
relation to container-based applications under consideration of compute and storage intensive workloads.
Besides performance, resource isolation is an important evaluation objective for container-based applica-
tions. This evaluation objective is addressed by multiple approaches [139, 181, 124], comparing the resource
isolation capabilities of VMs with containers, partially focusing on container-based DBMS.

3.3.2 Edge and Fog Benchmarks

Even as the Edge and Fog resource offers are in an early stage, first resource- and application-centric bench-
marks have been established.

The FogExplorer [171] considers infrastructure and application design options for operating IoT applications
on fog resources. Thus, the focus relies on the simulation of operational model parameters such as resource

2https://www.spec.org/web2009/
3https://www.spec.org/cloud_iaas2018/

https://www.spec.org/web2009/
https://www.spec.org/cloud_iaas2018/

30 Chapter 3 Related Work

capacity, locality or number of instances [172]. As the approach is purely simulation-based, it does not support
the evaluation of real applications on fog resources.

The DeFog[200] benchmark addresses the comparative performance evaluation of applications that are
deployed on cloud and edge resources. Therefore, it proposes a standardized methodology with a set of
significant metrics. DeFog comprises a set representative fog workloads with workload-specific metrics.

3.4 Advanced Evaluation Frameworks

Besides the performance-centric DBMS and infrastructure benchmarks, there are approaches that address
the evaluation of higher-level evaluation objectives as scalability, elasticity or availability.

BenchFoundry [146] provides a DBMS benchmark for trace-basedworkloads. Apart from that, it defines and
implements a set of additional features that go beyond the capabilities of sole DBMS benchmarks. These
features comprise a DSL to specify workloads, post-processing capabilities to enhance the analysis of raw
performance results and the support for distributed workload execution. However, the focus of BenchFoundry
is the workload execution while the DBMS operational model is not in its scope.

The DBMS evaluation framework presented by Klems et al. [69, 88] focuses on the objective DBMS scala-
bility on elastic infrastructures by considering DBMS-specific consistency mechanisms. in line with our ap-
proach, the framework of Klems et al. [69] emphasizes automation by orchestrating the resource allocation
and DBMS deployment. Yet, this framework does not focus on the characteristics of elastic resource charac-
teristics nor does it support runtime adaptations to evaluate the objectives elasticity and availability.

The Bungee framework [116] addresses the elasticity evaluation of auto-scalers for cloud-hosted applica-
tions. In particular, it evaluates elasticity in the context of accuracy of auto-scaling frameworks. While such
auto-scaling frameworks can be applied for distributed DBMS, their evaluation target is not the evaluation of
the DBMS-specific elasticity capabilities. Yet, these capabilities need to be throurougly evaluated to apply
auto-scaling for distributed DBMS [165].

A DBMS-centric elasticity evaluation framework is presented by [55] that enacts DBMS adaptations at run-
time to measure the performance development during scale-out/-in adaptations at runtime, i.e. elastic scal-
ing. While the framework automates these elastic scaling actions, it does not automate the full evaluation
process nor does it consider the characteristics of elastic resources.

With respect to DBMS availability, a first approach is presented by Gao et al. [170] that analyses existing
DBMS bugs regarding failure recovery mechanisms. Yet, the study focuses only on the DBMS layer and does
not consider potential failures of elastic resources nor their impact on the availability of the DBMS cluster.

The Gremlin approach [133] presents a failure injection framework for evaluating the availability of micro-
services. Hereby, a failure model describes the potential failures on the network level and injects them into a
running system, analysing the latency impact on the client side. Yet, Gremlin only considers stateless appli-
cations network failures, without focusing on stateful services and resource failures.

3.5 Summary

This chapter summarized related benchmarking approaches for DBMSs and elastic infrastructures.
Regarding DBMS benchmarking, numerous benchmarks were presented that target the evaluation of

DBMSs for dedicated data models, i.e. relational, NoSQL or NewSQL. These benchmarks offer a variety of

3.5 Summary 31

OLTP, HTAP and OLAP workloads that range from synthetic to trace-based workloads. They target the evalu-
ation objective performance by assuming a given DBMS operational model and consequently their method-
ology only comprises the workload domain, excluding DBMS runtime parameters and elastic resources as
depicted in Figure 3.1. In consequence, these benchmarks provide the foundation for higher-level evaluation
objectives such as scalability, elasticity or availability, but do not provide a methodical approach for their
evaluation nor do they consider the characteristics of elastic resources.

Elastic infrastructure benchmarks target the performance of elastic resources by assuming dynamic oper-
ational models. This results in the explicit consideration of elastic resource characteristics, such as virtual-
ization technologies, resource interferences or different storage backends. In this context, numerous bench-
markswith customworkloadswere presented. These benchmarks either target a dedicated elastic resource or
exemplary 3-tier web applications. As elastic infrastructure benchmarks focus on evaluating the performance
of dedicated resources or the overall application performance, evaluating the dedicated performance of dis-
tributed DBMS under the consideration of elastic infrastructure characteristics is not in their scope. Moreover,
the orchestration of elastic resources to evaluate higher-level non-functional features such as scalability and
elasticity is not considered by the presented elastic infrastructure benchmarks.

The focus of both benchmarking areas relies on the evaluation objective performance and consequently,
they provide comprehensive performance evaluation methodologies. Yet, higher-level evaluation objectives
are not in the scope of the presented benchmarks even if some benchmarks outline scalability and elasticity
methodologies. Yet, these methodologies are not explicitly supported by the respective benchmarks nor do
these methodologies address the characteristics of elastic infrastructures.

There is a small number of advanced evaluation frameworks that target the isolated evaluation of higher-
level evaluation objectives by providing required orchestration capabilities on resource or application level.
But these frameworks address only the evaluation of a single higher-level evaluation objective and their focus
either lies solely on the resource level or on stateless applications.

In order to address the shortcomings of the presented approaches, we argue that a novel methodology
for evaluating distributed DBMS on elastic infrastructures is required that addresses the shortcomings of the
presented benchmarking approaches: (i) the consolidation of the orthogonal DBMS and elastic infrastructure
benchmarking concepts; (ii) support for higher-level evaluation objectives; (iii) explicit consideration of the
DBMS operational model.

In order to address these challenges, this thesis builds upon three pillars: the presented research areas
of DBMS and elastic infrastructure benchmarking, and the orchestration of distributed applications (cf. Sec-
tion 2.1.4) as depicted in Figure 3.1. We argue that performance evaluation methodologies of the orthogonal
DBMS and elastic resource benchmarking areas need to be consolidated and extended to enable comprehen-
sive DBMS evaluations on elastic infrastructures as depicted in Figure 3.1. The required methodology needs
to be extended with DBMS distribution characteristics to enable the direct correlation with these distribution
characteristics and elastic resource characteristics. Besides, resource and application orchestration concepts
need to be included in this methodology to enable runtime adaptations that are a crucial requirement for the
higher-level DBMS evaluation objectives scalability, elasticity and availability. The methodological contribu-
tions to address these challenges are presented in Chapter 4. Chapter 5 presents novel evaluation methods
that build upon these concepts and enable multi-objective DBMS evaluations for distributed DBMS on elastic
infrastructures, including supportive methods to automate the full evaluation process.

32 Chapter 3 Related Work

RDBMS

NoSQL

NewSQL

OLTP

HTAP

OLAP cloud

custom
workloads

artificial
applications

DBMS benchmarking infrastructure benchmarking

scalability

elasticity

availability

DBMS
performance

resource orchestration

application orchestration

application orchestration

infrastructure
performance

orchestration
concepts

performance

DBMS

resource
characteristics

evaluation
automation

methodological DBMS Evaluation

DBMS
characteristics

runtime
adaptation

fog

edge

Figure 3.1: Related research concepts

Chapter 4

Methodological DBMS Evaluation

This chapter summarizes selected findings of the publications [core1] included in chap 8, [core2] included
in Chapter 9, [core3] included in Chapter 10, [core4] included in Chapter 11, [core5] included in Chapter 12,
[core6] included in Chapter 13, [core7] included in Chapter 14, [core8] included in Chapter 15, [core9] included
in Chapter 16, [core10] included in Chapter 17 and [core11] included in Chapter 18 that contribute to the novel
evaluation methodology for distributed DBMSs on elastic infrastructures. In particular, these publications
address the first research objective:

RO-A: Establishing a comprehensive DBMS evaluationmethodology that enables the reproducible evaluation
of high-level non-functional DBMS features (scalability, elasticity, availability) by explicitly considering
elastic resource characteristics.

Based on the identified shortcomings of related DBMS and elastic infrastructure benchmarks presented in
Chapter 3, we provide a comprehensive evaluation methodology for evaluating distributed DBMSs on elastic
infrastructures. In particular, the following shortcomings are addressed.

Separated Evaluation Domains DBMS and elastic infrastructure benchmarks are evolving in orthogonal direc-
tions. DBMS benchmarks primarily focus on the evaluation objective performance under the consider-
ation of manifold workload models while assuming a static DBMS operational model. Elastic infras-
tructure benchmarks focus on resource characteristics by applying resource-driven workloads on entire
distributed applications without considering the characteristics of distributed DBMS.

Separated Evaluation Principles Besides the manifold benchmarks of the DBMS and elastic infrastructure
domains, an extensive number of evaluation guidelines have been established that define the key prin-
ciples for significant DBMS [9, 94, 180, 190] and elastic infrastructure [68, 100, 148, 201] evaluations.
While these principles are dedicated to the DBMSor elastic infrastructure domains and partially overlap,
a cross-domain view on these principles is missing.

High-level Evaluation Objectives The advances of distributed DBMSs and elastic infrastructures enable non-
functional features that go beyond performance, i.e. scalability, elasticity and availability. In conse-
quence, such high-level non-functional features need to be addressed as evaluation objectives. Yet,
existing benchmarks mainly focus on performance and only a small set of evaluation frameworks target
high-level evaluation objectives. Those which do so, consider only a limited subset of these high-level
evaluation objectives and their primarily focus lies on stateless applications.

33

34 Chapter 4 Methodological DBMS Evaluation

DBMS evaluation objective

workload impact factorsresource impact factorsDBMS impact factors

Figure 4.1: Evaluation impact factors

The findings that address these limitations and establish a comprehensive DBMS evaluation methodology
are presented in the following: Section 4.1 derives the domain-specific impact factors that need to be con-
sidered for comprehensive DBMS evaluations on elastic infrastructure. Section 4.2 aligns DBMS and elastic
infrastructure benchmarking principles, and Section 4.3 defines the fine-grained evaluation process for the
evaluation objectives performance, scalability, elasticity and availability.

4.1 Evaluation Impact Factors

In general, large software systems offer an extensive number of configurable parameters which can have di-
rect impact on the non-functional features [74, 121, 126] (cf. Section 2.2.3). In the context of DBMSs operated
on elastic infrastructures, the plethora of configuration options are a result of the continuously evolving elas-
tic infrastructure and DBMS domains. As these configuration options need to be considered in the DBMS
operational model and consequently in the evaluation of the non-functional DBMS features, they are referred
to as DBMS and resource impact factors in this thesis. Besides, the specification of the application-specific
workload adds a third impact factor category that needs to be considered for comprehensive DBMS evalua-
tions. In order to define a comprehensive evaluation methodology, the findings of this section address the
following research question:

RQ-A.1 What are relevant impact factors of the distributed DBMS, elastic resource and workload domain that
need to be considered in a comprehensive evaluation methodology?

The identified impact factors are classified into three main categories that need to be considered when de-
signing DBMS evaluations for elastic infrastructures as depicted in Figure 4.1.

Each of these impact factor categories is further classified into their domain-specific impact factors.
Thus, it is distinguished between technology-specific impact factors and evaluation-specific impact factors.
Technology-specific impact factors are predefined by the considered technologies for designing the evalua-
tion, e.g. the DBMS datamodel [86] or the elastic resource types [114], but also external events that cannot be
specified during the evaluation design, such as resource variations [44] or resource failures [132]. Evaluation-
specific impact factors offer a configurable but technology-specific range of configuration options that need
to be considered in the evaluation design.

While we address the evaluation of non-functional DBMS features on elastic infrastructures, studies that
evaluate the functional features of DBMS [51, 54, 86, 150, 165, 203] and elastic resources [58, 73, 108, 134, 176,

4.1 Evaluation Impact Factors 35

DBMS impact factors

cluster
size

sharding

factor

consistency
model

range hash

replication

strong eventual area

data
model

RDBMS

relational NoSQL …

client-side
consistency

architecture

master-
slave

mult-
master

DBMS evaluation objective

evaluation-specific

technology-specific
NewSQL column …

Figure 4.2: DBMS impact factors

add7] are not in the scope of this thesis. But these studies contribute with their results to our classification
of technology-specific the impact factors.

The resulting classification represents a systematic overview on general domain-specific impact factors
that need to be mapped to concrete domain technologies during the evaluation design. While this classi-
fication represents the current state-of-the-art of impact factors, all three domains are constantly evolving
and the classification might require extensions with future resource types, DBMS concepts or workload types.
Hereafter, we present the key technology- and evaluation-specific impact factors for each domain.

DBMS Impact Factors The DBMS impact factors are guided by the data distribution techniques (cf. Sec-
tion 2.2.2), resulting in the classification data model, consistency model, architecture, sharding techniques
and replication [core1, core11] as shown in Figure 4.2.

The data model represents a technology-specific impact factors and its selection is a central decision in
the DBMS selection process [203]. Consequently, the number of DBMS technologies for designing the non-
functional feature evaluation is limited by the eligible data models.

This also applies for the consistencymodel where distributed DBMSs implement heterogenous consistency
models, resulting in a multitude of technology-specific impact factors. Depending on the DBMS and the con-
sistency model, there are DBMS-specific client consistency settings that offer a range of evaluation-specific
configurations.

The supported architectures are DBMS-specific but the actual cluster size represents an evaluation-specific
impact factor. For distributed DBMS architectures, sharding and replication are DBMS-specific impact fac-
tors that offer a set of evaluation-specific configuration options. For instance, range- and hash-based shard-
ing strategies, and for replication, a configurable replication factor and replication area for cluster- or geo-
replication.

36 Chapter 4 Methodological DBMS Evaluation

Elastic Resource Impact Factors The elastic resource impact factors are guided by the concepts of elastic
infrastructures (cf. Section 2.1). The impact factors are classified into provider type, virtualization type, oper-
ating system, resource capacity, locality and interference [core10, core5, core11] as depicted in Figure 4.3.

The provider type represents a technology-specific impact factor that narrows down the eligible resource
providers for the evaluation design. For each resource provider, the impact factors virtualization type, re-
source capacity and locality comprise a set of evaluation-specific impact factors that offer a provider-specific
range of configuration options. The virtualization type is distinguished into bare metal, hardware virtualiza-
tion (HW) and operating system (OS) virtualization. The impact factor resource capacity is distinguished into
the evaluation-specific impact factors compute, i.e. number of cores and memory size, storage, i.e. storage
type and capacity, and network, i.e. network bandwidth. It is noteworthy that identical resource capacities
do not necessarily result in identical resource performance if the resources are virtualized. This is because
the underlying hardware can be different even within the same resource provider.

The locality impact factor defines the locality of the resources to operate the distributedDBMSand is further
classified into cloud, edge and fog. The cloud locality is distinguished into the evaluation-specific impact
factors server, rack, zone and region. Regarding the edge and fog locality, there has not yet been a common
classification for location entitles established (cf. Section 2.1.3).

The interference impact factor represents technology-specific impact factors that are dependent on the se-
lected resource provider. In consequence, they are not directly configurable during the evaluation design, but
need to be considered as impact factor. The interference impact factors are classified into noisy neighbour
and failure probability as typical impact factors on elastic infrastructures [139, 132]. The noisy neighbour
impact factor represents runtime variations in the resource performance which are caused by additional ser-
vices operating on the same underlying resources. If the resource placement is configurable, e.g. in a private
cloud with access to the resource scheduling mechanisms, the noisy neighbour impact factor becomes an
evaluation-specific impact factor. The failure probability represents the probability that compute, network or
storage resources might fail.

Workload Impact Factors The workload impact factors are derived from established DBMS benchmarks (cf.
Section 3.2). The resulting workload impact factors are depicted in Figure 4.4 where the technology-specific
workload type represents the major impact factors in the evaluation design as it decisive for realistic evalua-
tions. As the workload type depends on the applied benchmark technology, it is classified into OLTP, HTAP
and OLAP. A further technology-specific impact factor represents the workload generation model (cf. Sec-
tion 3.2) that defines the temporal development of the workload intensity over the evaluation runtime. The
workload generation model is dependent on the applied benchmark and classified into open, partially open
and closed workload generation [24].

Evaluation-specific impact factors represent the data distribution and request characteristics [core6]. The
data characteristics are distinguished into the evaluation-specific impact factors data set size, i.e. the num-
ber of records for the evaluation, and record size, i.e. the size of a single records. Both impact factors are
dependent on the selected benchmark technology. The request characteristics are distinguished into request
distribution, i.e. the composition of different request types within the workload; the intensity, i.e. the num-
ber of parallel requests executed by the benchmark; and the variance, i.e. constant or fluctuating workload
intensities over the evaluation runtime [core6]. These impact factors are a evaluation-specific and their con-
figuration range is dependent on the applied benchmark. In addition, the workload generation represents a
technology-specific impact factor that is dependent on applied benchmark technology (cf. Section 3.2).

4.1 Evaluation Impact Factors 37

resource impact factors

interference
virtualization

type

noisy
neighbour

failure
probability

bare
metal

OSVHWV

DBMS evaluation objective

resource
capacity

compute storage network

locality

cloud edge fog

evaluation-specific

technology-specific

provider type

private public hybrid

server rack zone region
configurable
placement

provider
placement

operating
system

Figure 4.3: Resource impact factors

workload impact factors

data
distribution

data
set size

workload type

OLTP HTAP OLAP record
size

request
characteristics

request
distribution

intensity variance

DBMS evaluation objective

evaluation-specific

technology-specific

workload generation
model

open
partially

open
closed generation

synthetic
trace-
based

Figure 4.4: Workload impact factors

38 Chapter 4 Methodological DBMS Evaluation

4.2 Cross-Domain Evaluation Principles

The methodological evaluation of DBMSs and elastic infrastructures is supported by numerous domain-
specific evaluation guidelines that are part of DBMS benchmarks (cf. Section 3.2) and elastic infrastructure
benchmarks (cf. Section 3.3). These guidelines define key Evaluation Principles (EPs) for implementingmean-
ingful evaluation methods. While these EPs are established for their respective domain, a cross-domain view
that considers DBMS and elastic infrastructure principles in a coherent context is missing. Therefore, this
section addresses the following research question:

RQ-A.2 Which evaluation principles of the DBMS elastic resource domains need to be adopted by a compre-
hensive DBMS evaluation methodology?

Established DBMS evaluation principles [9, 94, 146, 180, 190] and elastic infrastructure evaluation princi-
ples [68, 100, 148, 201] are refined for evaluating distributed DBMS on elastic infrastructures [core2, core3,
core9, core5]. Moreover, this cross-domain view is extended with the novel evaluation principles automation
and orchestration. Both are of fundamental importance for enabling higher-level evaluation objectives [core3,
core5]. Hereafter, the resulting eight cross-domain evaluation principles are presented.

EP1: Usability The usability of supportive evaluation methods is a general principle of both domains [9, 94,
68, 100] to enable the adoption of the respectivemethod. Complexmethods donot only hinder their adoption,
but also limit their credibility if its control is not exposed transparently. In consequence, expressive interfaces
are needed that enable human- but also machine-based interaction in a simple and intelligible manner.

EP2: Extensibility As both domains are continuously evolving and new technologies of the respective do-
mains [9, 94, 100, 148, 180] appear frequently on the market, an extensible method ensures to keep track
with these evolvements by considering new resource providers, resource offers, new DBMS technologies in-
cluding their runtime configurations and future workload types. Moreover, prospective evolvements of these
domains might require extensions to support additional evaluation objectives.

EP3: Significance The EP significance combines the statistical analysis of the results in a mathematical
context and their expressiveness in the context of DBMS evaluations.

Significant evaluation methods apply relevant and realistic domain technologies [9, 94, 100, 148]. In
consequence, they need to support realistic DBMS workload types for a wide range of DBMS technologies,
evaluation-specific configuration and the usage of eligible elastic resource offers.

Furthermore, as the extent of evaluation-specific impact factors depends on the application-specific eval-
uation design, analytical methods are required to ensure the significance of the evaluation results. These
methods need to collect not only the evaluationmetrics but also evaluation-specific metadata such as the ap-
plied resources and DBMS configurations [core5], DBMS utilizationmetrics and system utilizationmetrics [94,
148, 180] to enable cross-relations between evaluation metrics and evaluation-specific metadata. Therefore,
the resulting data sets need to be provided in machine-interpretable formats [190] to ease the usage of ad-
vanced post processing methods to analyse cross-relations and increase the significance of the obtained

4.2 Cross-Domain Evaluation Principles 39

results [201]. Apart from that, we argue that evaluation methods for higher-level evaluation objectives includ-
ing runtime adaptation, i.e. elasticity and availability, need to provide fine-grained execution traces of the
adaptation actions to ensure significant evaluation results [core4, core6].

EP4: Reproducibility The reproducibility is continuous principle for DBMS [9, 94, 146] and elastic infrastruc-
ture evaluations [68, 100, 148, 201] with the overarching goal of reproducible evaluation results for identical
evaluation conditions. Therefore, reproducible evaluation results are achieved by the following key concepts
that enable a reproducible evaluation execution: (i) providing the complete set of technical configurations that
have been applied to obtain the results; (ii) providing supportive software-based tooling that encapsulates
the technical configurations and enforces the identical evaluation execution.

The rapidly evolving resource offers and underlying technologies of the elastic infrastructure domain chal-
lenge the reproducibility of identical evaluation results as obtained evaluation results can be outdated rather
quickly, even if the resource offers do not change. For instance, if provider X offers V M_SMALL with 2
cores and 4GB, and the underlying CPU of the physical server is updated from the 2015 Intel Broadwell to
the 2018 Coffee Lake, this might not be visible to the customer. Moreover, distributed DBMSs can build upon
non-deterministic implementations that can affect the evaluation results [160]. In consequence, reproducible
evaluation results may not be identical for identical evaluation conditions and can diverge.

Therefore, a move from reproducible evaluation results towards reproducible evaluation execution by pro-
viding supportive software-based methods has already been emphasized in 2006 [23], arguing that the exact
reproduction of evaluation results is rarely possible, and typically unnecessary. This aspect becomes even
more important in the context of elastic infrastructure and their characteristics of shared resources [100]. Pa-
padopoulos et al. [201] take up the concepts of Feitelson et al. [23] and define the provisioning of software-
based methods and comprehensive data sets as a key concept for enabling reproducibility of evaluations on
elastic infrastructures.

Thus, in the context of evaluating distributed DBMSs on elastic infrastructures, we define the EP repro-
ducibility as the reproducible evaluation execution that requires the comprehensive experiment specification
along with the methods to ensure the deterministic evaluation execution. These concepts enable the con-
trol of technology- and evaluation-specific impact factors and ensure the transparent disclosure of what is
measured and how it is obtained.

EP5: Abstraction The elastic resource, DBMS and workload domain add domain-specific technologies and
increase the technical complexity for designing and executing evaluations. Therefore, a reasonable level
of abstraction is required to allow the evaluation execution for a multitude of domain-specific technologies
within one evaluation method [core3, 190]. We argue that this abstraction is required for the evaluation de-
sign and experiment execution [core5]. Regarding the evaluation design, the concept of cloud modelling lan-
guages [add2] needsbe applied to provide theDBMSoperationalmodel as abstract deploymentmodel [core5]
alongwith aworkloadmodel. For the experiment execution, if possible, technical details of each domain need
to be abstracted by the usage of supportive COTs [core2, core9]. For instance, the abstraction of elastic re-
source provider interfaces can be abstracted to ease the access to multiple elastic resource providers [add7].
Regarding the workload domain, benchmarks can abstract multiple workload types by providing a uniform
interface [82].

40 Chapter 4 Methodological DBMS Evaluation

EP6: Portability The portability principle builds upon the abstraction principle and enables transferable
DBMSevaluations across different domainsby replacingdedicateddomain-specific parameters [9, 68]. There-
fore, we define that portability needs to be enabled on evaluation design and experiment execution level. The
experiment specification needs to allow the exchange of domain-specific parameters, such as the resource
provider, the resource offer, the DBMS technology or the workload type, and the experiment executions needs
still be supported by the evaluationmethod [core9, core5]. Consequently, portability enables the comparative
evaluation for technology-specific and evaluation-specific impact factors.

EP7: Automation Automation is a key concept for operating services on elastic infrastructures as it improves
the reliability of a system by limiting human errors in repetitive and technically complex tasks [202]. In con-
sequence, it is also a mandatory principle for evaluating evaluating cloud services [189] which is adopted for
the evaluation of elastic resources by automating the elastic resource allocation tasks [106, 90].

Yet, the evaluation of distributed DBMS on elastic infrastructures comprises a multitude of additional in-
terdependent tasks for each domain, such as allocating the deploying and configuring the DBMS cluster, de-
ploying the benchmark and executing the workload, and processing the evaluation objective metrics. Thus,
we argue that their manual execution is technically extremely complex, time consuming and error prone due
to the required domain knowledge and the domain-specific technologies [core9, core5]. In consequence, a
supportive automation method is required that executes these tasks transparently for the performance en-
gineer. Hence, we argute that the implementation of the automation principle is of crucial importance to
increase reproducibility (EP4) and portability (EP6) by ensuring the deterministic experiment execution for
varying domain-specific parameters [core5].

EP8: Orchestration Orchestration extends the automation principle and represents a key principle to enable
the evaluation of the higher-level evaluation objectives elasticity and availability, which require the time- and
event-based coordination of evaluation tasks at evaluation runtime [core3, core9]. These tasks comprise
actions such as scaling the DBMS cluster based on predefined triggers [core8, core6] for evaluating elasticity
or injecting failures ondifferent levels to evaluate availability [core4, core7]. Moreover, workloadorchestration
is emphasized by [94, 148, 190] to enable partly open and open workload models [24, 148], enabling the
emulation of realistic workload patterns.

Therefore, we emphasize that orchestration is a key principle for the methodological DBMS evaluation to
enable the holistic automation of higher-level evolution objectives [core5, core6, core7]. Besides, as orches-
tration ensures the transparent execution of each evaluation task it increases the significance (EP3) of the
results and the reproducibility (EP4) of their execution by providing comprehensive execution traces [core6].

4.3 Evaluation Design

By building upon the identified impact factors and the cross-domain evaluation principles, we specify the
evaluation design space for the evaluation objectives performance, scalability, elasticity and availability. In
this context, the following research questions are addressed:

RQ-A.3 What are significant metrics to evaluate the higher-level non-functional DBMS features scalability,
elasticity, availability?

4.3 Evaluation Design 41

evaluation
finished

process
evaluation
objective

allocate
resources

start
evaluation

deploy &
configure

DBMS cluster

select &
configure

benchmark

execute
workload

release
resources

monitor resources & DBMS

ET_2.1ET_1 ET_3

ET_2.2

ET_4 ET_5 ET_6

Figure 4.5: Performance evaluation process

RQ-A.4 RQ-A.4: What are the required tasks that define the non-functional, feature-specific evaluationprocess
and enable the measurement of higher-level metrics resulting from RQ-A.3?

The evaluationdesign for each evaluation objective is definedby a set of quantifiable and evaluationobjective-
specific metrics. These metrics are measured by an objective-specific evaluation process that defines all re-
quired tasks under consideration of the domain specific impact factors defined in Section 4.1.

4.3.1 Performance Evaluation Design

The evaluation objective performance represents the primary evaluation objective for DBMS evaluations [9]
and provides the foundation for the higher-level evaluation objectives scalability, elasticity and availabil-
ity [core3]. In consequence, its evaluation design in terms of evaluation process and metrics has been well
established over the last decades [9, 180] and we build upon these established concepts by extending them
to enable reproducible and automated evaluations on elastic resources.

4.3.1.1 Metrics

The DBMS performance metrics are throughput and latency [9]. These metrics are measured from the client’s
perspective during theworkload execution. Throughput represents the number of requests that are processed
per time unit. Latency is measured per request and represents the round trip time for one request. Depend-
ing on the selected benchmark, these metrics are reported in configurable time intervals and as aggregated
functions over the entire evaluation runtime.

4.3.1.2 Evaluation Process

We define the comprehensive performance evaluation process for distributed DBMS on elastic infrastructures
as depicted in Figure 4.5 with the evaluation tasks Evaluation Tasks (ETs) described in Table 4.1 [core5]. Apart
from the workload execution, this process explicitly considers the resource-specific and DBMS-specific tasks
to provide a comprehensive evaluation design.

42 Chapter 4 Methodological DBMS Evaluation

Table 4.1: Performance evaluation tasks

ET Description

1
Selecting and allocating eligible resource by considering the resource impact factors. Each pro-
cess execution allocates a new set of resources to ensure fair evaluations by avoiding cached
data of previous iterations on the OS and DBMS level [180].

2 .1
Deploying and configuring the DBMS cluster on the allocated resources under consideration of
applicable DBMS impact factors.

2.2
Deploying and configuring a monitoring service to collect resource and DBMS utilization over the
evaluation runtime. This task enables the identification bottlenecks and increases the signifi-
cance of the results.

3
Applying an application-specific benchmark and configuring the desired workload. As there are
numerous DBMS benchmarks [core3, 154], their selection and configuration represents a central
task to ensure meaningful results [94, 180].

4 Executing the specified workload via the benchmark to measure the performance metrics.

5 Releasing the allocated resources after the workload execution is finished.

6
Processing the performance objective by analysing the performance metrics in conjunction with
the collected monitoring data and the applicable impact factors.

4.3.2 Scalability Evaluation Design

The scalability evaluation design builds upon the performance design and extends its scope by considering
varying resource capacities and DBMS cluster sizes to evaluate the vertical and horizontal scalability capabil-
ities (cf. Section 2.2.3) in the context of application-specific workloads. It is noteworthy that an evaluation-
specific configuration, such as resource capacityX or DBMScluster sizeY , is applied over an entire scalability
process execution and and they are not adapted at evaluation runtime as depicted in Figure 4.6.

4.3.2.1 Scalability Metrics

The scalability metric scalability factor builds upon the performance metrics and denotes the improvement in
latency and throughput by correlating different resource capacities (i.e. vertical scalability) or DBMS cluster
sizes (horizontal scalability) [40]. Accordingly, good horizontal scalability is indicated by a constant latency
as well as throughput increasing proportionally with the cluster sizes for a specified workload if the workload
is high enough to saturate the DBMS cluster [40]. Ideally, not only the cluster size, but all available resources
and DBMS runtime configurations need to be considered. Yet, the scalability factor exclusively measures the
performance difference between two independent cluster sizes and it does not consider the transition phase
from cluster size CS_N to cluster size CS_N + 1 or CS_N − 1 as this is part of the elasticity design (cf.
Section 4.3.3).

4.3 Evaluation Design 43

4.3.2.2 Evaluation Process

The derived scalability evaluation process is depicted in Figure 4.6. It extends the performance evaluation
process by adding the iterative task ET_6 to correlate different resources andDBMS cluster sizes for evaluating
the vertical and horizontal scalability capabilities [core8, core5]. The ETs are described in Table 4.2.

Table 4.2: Scalability evaluation tasks

ET Description

1
Selecting and allocating eligible resource by considering the resource impact factors. Each pro-
cess execution allocates a new set of resources to ensure fair evaluations by avoiding cached
data of previous iterations on the OS and DBMS level [180].

2.1
Deploying and configuring the DBMS cluster on the allocated resources under consideration of
applicable DBMS impact factors.

2.2
Deploying and configuring a monitoring service to collect resource and DBMS utilization over the
evaluation runtime. This task enables the identification bottlenecks and increases the signifi-
cance of the results.

3
Applying an application-specific benchmark and configuring the desired workload. In order to
ensure a sufficient workload intensities to saturate even large DBMS clusters, the scalability of
the workload itself is mandatory and multiple workload instances might be required.

4 Executing the specified workload via the benchmark to measure the performance metrics.

5 Releasing the allocated resources after the workload execution is finished.

6
Scale the resource capacities/DBMS cluster size and execute next scalability iteration with a new
resource and DBMS cluster deployment.

7
Processing the scalability objective by correlating the performance metrics with the applied
resource/DBMS cluster sizes to calculate the scalability factor. Besides, the monitoring data is
analysed to identify bottlenecks and to increase significance.

4.3.3 Elasticity Evaluation Design

The elasticity evaluation design builds upon the (horizontal) scalability design as horizontal scalability and
consequently a distributed DBMS architecture are the mandatory requirements to provide elasticity. In con-
trast to scalability, DBMS elasticity represents the ability to cope with fluctuating workloads at runtime by
adapting the DBMS cluster size accordingly [40, 46]. Consequently, the adaptation of the DBMS cluster at
evaluation runtime is a mandatory task in the elasticity evaluation design. The adaptation of the workload
represents an optional task that is required to emulate fluctuating workloads. The DBMS and workload adap-
tations can be defined by time or monitoring data based triggers [core6].

Moreover, considering the DBMS utilization is an important aspect in the elasticity evaluation design to
design significant evaluations, including realistic adaptation triggers [core8, core6]. If the DBMS utilization

44 Chapter 4 Methodological DBMS Evaluation

evaluation
finished

process
evaluation
objective

allocate
resources

start
evaluation

deploy &
configure

DBMS cluster

select &
configure

benchmark

execute
workload

release
resources

scale resources/
cluster size

monitor resources & DBMS

ET_2.1ET_1 ET_3

ET_2.2

ET_4 ET_5 ET_7

ET_6

Figure 4.6: Scalability evaluation process

states are not known beforehand, the performance of the initial DBMS cluster, its monitoring data and the
applied workload intensity need to be correlated to determine DBMS-specific utilization states in a calibra-
tion phase. This calibration phase comprises multiple iterations of the performance evaluation process with
varying workload intensities [core8, core6].

As a result, each elasticity evaluation comprises at least three phases: (i) an initial phasewith a predefined
DBMSoperationalmodel and apredefinedworkload; (ii) an elastic scalephase, executing aDBMSadaptation;
(iii) a stabilization phase after the adaptation is finished [core6]. Additional phases are workload adaptation
phases or additional elastic scale phases.

Elasticity Metrics While elasticity metrics are a widely discussed aspect in cloud computing research [174],
we focus specifically on elasticity metrics of DBMS. DBMS elasticity metrics are proposed by [53, 75] that
calculate a dimensionlessmetric by considering only a subset of the elasticity evaluation design space [core6].
We build upon the descriptive elastic speedup metric defined by Cooper et al. [40] and extend it by defining
the quantifiable elasticity metrics provisioning time, data distribution impact and data distribution time that
need to be measured during the elastic scale-out/-in task [core6].

Evaluation Process We define the elasticity evaluation process as depicted in Figure 4.7. It comprises the
required tasks that need to be executed to measure established elasticity metrics [53, 75, core6]. Executing
solely the required tasks enables the elasticity evaluation based on a constant workload intensity. Includ-
ing the optional tasks enables the elasticity evaluation under fluctuating workloads [core6]. The dedicated
elasticity evaluation tasks are described in Table 4.3.

4.3.4 Availability Evaluation Design

The availability of distributed storage systems can be affected by amultitude of software- or hardware-related
events [98, 41]. In this thesis, we evaluates the availability of distributedDBMSsunder consideration of elastic
resource failures [core4, core7]. Therefore, the availability evaluation design builds upon chaos engineering
concepts [128] and applies the failure injection as a key concept for evaluatingDBMSavailability [core4, core7].
Due to different virtualization levels of elastic infrastructures, a fine-grained failure model is required to cover

4.3 Evaluation Design 45

Table 4.3: Elasticity evaluation tasks

ET Opt. Description

1
Selecting and allocating eligible resource by considering the resource impact factors.
Each process execution allocates a new set of resources to ensure fair evaluations by
avoiding cached data of previous iterations on the OS and DBMS level [180].

2.1
Deploying and configuring the DBMS cluster on the allocated resources under considera-
tion of applicable DBMS impact factors.

2.2
Deploying and configuring a monitoring service to collect resource and DBMS utilization
over the evaluation runtime. This task enables the identification bottlenecks and in-
creases the significance of the results.

2.3 X
If fluctuating workloads are specified, an additional monitoring service is deployed to
monitor the workload execution over the evaluation runtime

3

Applying an application-specific benchmark and configuring the desired workload. In or-
der to enable the (optional) workload adaptation in the subsequent task ET_5 without ad-
ditional orchestration services, the selected benchmark needs to support partially open
or open workload model [24, 148].

4 Executing the specified workload via the benchmark tomeasure the performancemetrics.

5
Adapting the DBMS cluster by processing the specified adaptation triggers. The trigger
processing uses predefined thresholds and the combination of time, system and DBMS
monitoring data.

6 X
Adapting the workload intensity by processing the workload adaptation triggers, using
time or workload monitoring data.

7
Releasing the allocated resources after the workload execution and all adaptation tasks
are finished.

8
Determining the dedicated elasticity phases and processing the elasticity objective by
taking into account the performance metrics for each identified phase, the applied adap-
tations, and the collected monitoring data.

physical and virtual resource failures [core4]. In consequence, a key task of the availability evaluation is the
injection of resources and DBMS failures on different levels. Apart from that, we also consider failure injection
on the DBMS level as additional failure type [core7].

To provide a comprehensive availability evaluation design, failure-dependent recovery tasks represent an
additional key design concept [core4, core7]. Including the recovery task ensures realistic evaluations by
incorporating the performance impact of the recovery task on the DBMS cluster [core7]. As a result, the avail-
ability evaluation comprises at least four phases: (i) a healthy phase with a predefined DBMS cluster; (ii) a
unhealthy phase in which a failure has been injected; (iii) a recovery phase in which the recovery task is exe-
cuted (iv) a recovered phase after the recovery task is finished [core7]. In addition, an availability evaluation

46 Chapter 4 Methodological DBMS Evaluation

evaluation
finished

process
evaluation
objective

allocate
resources

start
evaluation

deploy &
configure

DBMS cluster

select &
configure

benchmark

execute
workload

release
resources

monitor resources & DBMS

ET_2.1ET_1 ET_3 ET_4 ET_7 ET_8

ET_6

adapt DBMS
cluster

monitor workload

adapt workload

ET_2.2

ET_2.3

required

optional

ET_5

iterative

Figure 4.7: Elasticity evaluation process

can comprise multiple failure injections and consequently multiple unhealthy and recovery phases [core7].

Metrics Similar to elasticity, distributed system and cloud research proposes different availability met-
rics [174]. But as these do not explicitly focus on the distributed DBMS, we build upon the performance
metrics in relation to the different availability evaluation phases, and define a novel set of DBMS availability
metrics [core4, core7]. These metrics enable the quantification of the DBMS availability in case of DBMS and
elastic resource failures. The resulting metrics are the performance impact, accessibility and request error
rate that can be applied for each availability evaluation phase [core4, core7].

Evaluation Process In order to measure the defined availability metrics, we define comprehensive avail-
ability evaluation process [core4, core7] that is depicted in Figure 4.8. The key concept of the availability
evaluation process is the failure injection during the workload execution to emulate the unhealthy phase. In
addition, the optional execution of failure- and DBMS-dependent recovery tasks enables the emulation of the
recovery phase to reach the recovered phase. The tasks are described in the following Table 4.4:

4.3 Evaluation Design 47

Table 4.4: Availability evaluation tasks

ET Opt. Description

1
Selecting and allocating eligible resource by considering the resource impact factors. Each
process execution allocates a new set of resources to ensure fair evaluations by avoiding
cached data of previous iterations on the OS and DBMS level [180].

2
Deploying and configuring the DBMS cluster on the allocated resources under considera-
tion of applicable DBMS impact factors.

2.1
Deploying and configuring a monitoring service to collect resource and DBMS utilization
over the evaluation runtime. This task enables the identification bottlenecks and in-
creases the significance of the results.

3
Selecting an application-specific benchmark and configuring the desired workload. The
benchmark needs to provide fine-grained performance metrics over the evaluation run-
time to enable the processing of the phase-specific availability metrics

4 Executing the specified workload via the benchmark to measure the performancemetrics.

5
Injecting a predefined failure on DBMS or elastic resource level to trigger the transition of
the DBMS cluster into the unhealthy phase.

6 X
Executing a predefined recovery action that is dependent on the injected failure and the
applied DBMS

7
Rereleasing the allocated resources after the workload execution and the recovery execu-
tion are finished

8
Determining the dedicated availability phases and processing the availability objective by
taking into account the performance metrics for each identified phase, injected failures,
executed recovery actions, and the collected monitoring data.

evaluation
finished

process
evaluation
objective

allocate
resources

start
evaluation

deploy &
configure

DBMS cluster

select &
configure

benchmark

execute
workload

release
resources

monitor resources & DBMS

ET_2.1ET_1 ET_3 ET_4 ET_7 ET_8

inject
failure

ET_2.2

required

optional

ET_5

recovery

ET_6

iterative

Figure 4.8: Availability evaluation process

48 Chapter 4 Methodological DBMS Evaluation

4.4 Summary

This chapter presented the findings that contributed in addressing RO-A by defining a comprehensive evalu-
ation methodology for distributed DBMSs on elastic infrastructures. This methodology was built upon three
key concepts. First, the identification of the domain-specific impact factors that needed to be considered
for designing DBMS evaluations. Furthermore, the resulting impact factors were classified into technology-
specific and evaluation-specific impact factors. Secondly, the DBMS and elastic infrastructure evaluation
principles were reviewed and extended to establish cross-domain evaluation principles for the evaluation of
distributed DBMS on elastic infrastructures. Thirdly, the evaluation design space for performance, scalability,
elasticity and availability was defined. Each evaluation objective design comprised the relevant metrics and
a comprehensive evaluation process with dedicated evaluation tasks.

The resulting evaluation methodology provided comprehensive concepts for designing and executing
DBMS evaluation on elastic infrastructures. Yet, it was still demanding for extensive domain-knowledge and
technical expertise in the DBMS, elastic infrastructure and workload domain. Furthermore, the sheer num-
ber of DBMS operational models that are considerable evaluation targets makes the manual execution of the
respective evaluation processes basically impossible. In consequence, novel technological methods are re-
quired that are able to consider the identified impact factors, follow the cross-domain evaluation principles
and implement the design of the respective evaluation objective. In the Chapter 5, we present the novel DBMS
evaluation framework Mowgli that adopts the presented methodology and provides the technical methods to
automate the full evaluation process for each evaluation objective.

Chapter 5

Methods for the Automated Evaluation of
Non-functional DBMS Features

This chapter builds upon the established evaluation methodology of Chapter 4 and summarizes selected
findings of the publications [core2] included in Chapter 9, [core5] included in Chapter 12, [core6] included
in Chapter 13, [core7] included in Chapter 14, and [core10] included in Chapter 17 that present the resulting
technical methods for addressing the second research objective:

RO-B: Providing the technical evaluationmethods that enable the automated execution of the comprehensive
evaluation methodology established in Research Objective A.

This chapter is structured into four sections, which address the accompanying research questions RQ-B.1 -
RQ-B.4. Section 5.1 presents the findings on the specification of comprehensive DBMS evaluations. Building
upon these specifications, Section 5.2 presents Mowgli, the novel DBMS evaluation automation framework
for the evaluation objectives performance and scalability. Section 5.3 summarizes the evaluation frameworks
Kaa and King Louie that enable the automated evaluation of the higher-level evaluation objectives elasticity
and availability. Section 5.4 presents the scope of the evaluation data sets that can be generated with these
novel evaluation methods before Section 5.5 summarizes this chapter.

5.1 DBMS Evaluation Templates

The comprehensive evaluation of distributed DBMS on elastic infrastructures requires the consideration of
the overarching DBMS, elastic resource and workload impact domains that comprise a multitude of domain-
specific impact factors (cf. Section 4.1). In consequence, the following research question is addressed to
enable the automated evaluation execution:

RQ-B.1: How should comprehensive DBMS evaluations be specified to enable the automated execution while
ensuring reproducibility and portability?

In order to address this research question, we follow the concepts of DSLs such as CAMEL [add2] and encap-
sulate all domain-specific properties in a unified Evaluation Scenario Template (EST) [core5]. An EST provides
a predefined structure with relevant domain-specific properties to define comprehensive evaluations. An

49

50 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

EST represents an abstract specification, which requires concrete domain-specific parameters to be provided.
Therefore, each EST defines the evaluation-specific impact factors as configurable parameters in a declarative
manner. This enables the abstraction principle (EP5) (cf. Section 4.2) by separating the technical execution
from the declarative description of the evaluation.

As an EST includes all evaluation-specific parameters, it enables the reproducibility (EP4) (cf. Section 4.2)
of conducted evaluations for adopters [core5]. Besides, reference ESTs can be provided in community-driven
or enterprise-specific EST repositories.

Each EST is divided into multiple sub-templates, depicted as simplified JavaScript Object Notation (JSON)
examples in Listing 5.1. The deploymentTemplate and workloadTemplate are mandatory sub-templates
across all evaluation objectives and enable the specification of performance and scalability ESTs [core5]. The
adaptationTemplate is required for the evaluation objectives elasticity and availability (cf. Section 4.3)
and is further classified into elasticitySpec templates [core6] and failureSpec templates [core7]. Each
sub-template represents an independent and reusable template entity to ensure the portability principle
(EP 6) across different evaluation objectives. In consequence, an EST is designed by composing a set of
sub-templates and applying domain-specific parameters.

The target evaluation objective determines the required sub-templates. An exemplary evaluation API that
exposes objective-specific interfaces is shown in Listing 5.2. Depending on the evaluation objective, the
specified EST in combination with additional metadata, such as an identifier and the number of iterations, is
required to carry out an evaluation.

In the following, each sub-template is briefly introduced with respect to its domain-specific properties.

"EST": {
"deploymentTemplate": {

// required for the objectives: performance, scalability, elasticity, availability
...

},
"workloadTemplate": {

// required for the objectives: performance, scalability, elasticity, availability
...

},
"adaptationTemplate": {

// required for the objectives: elasticity, availability
...

}
}

Listing 5.1: Evaluation scenario template

"evaluation_API": {
"objective/performance":{

"post": {
"id" :"PERFORMANCE_EVALUATION_ID",
"iterations": 10,
"EST" :{PERFORMANCE_EST}

}
},

5.1 DBMS Evaluation Templates 51

"objective/scalability":{
"post": {

"id" :"SCALABILITY_EVALUATION_ID",
"iterations": 10,
"EST" :{SCALABILITY_EST}

}
},
"objective/elasticity":{

"post": {
"id" :"ELASTICITY_EVALUATION_ID",
"iterations": 10,
"EST" :{ELASTICITY_EST}

}
},
"objective/availability":{

"post": {
"id" :"AVAILABILITY_EVALUATION_ID",
"iterations": 10,
"EST" :{AVAILABILITY_EST}

}
}

}

Listing 5.2: Exemplary evaluation API

5.1.1 Deployment Template

The deployment template exposes evaluation-specific parameters to deploy a DBMS cluster on elastic re-
sources, i.e. the desired resource configurations, the DBMSand its runtime parameters. An exemplary deploy-
ment template for the deployment of distributed DBMS on cloud resources is depicted in Listing 5.3. The de-
ployment template is separated into the target DBMS technology and version and a set of DBMS components.
The DBMS components are classified into the data processing components SEED and DATA, and the optional
MANAGEMENT component. This concept enables the specification of common distributed DBMS topologies as
shown in [core5]. Each component is associated with a resource entity that contains the evaluation-specific
resource parameters (cf. Section 4.1). For VM-based cloud deployments, the resource entity follows the
concept of a cloud provider agnostic model [add7] by defining the abstract properties idCloud, idImage,
idHardware and idLocation. The provided parameters need to match provider-specific identifiers such as
the EC2 identifiers for specific VM types or they need to be interpretable by supportive evaluation frame-
works. Additional resource entities are defined for container-based deployments [core10]. Moreover, a set
of evaluation-specific DBMS parameters has to be provided, defining common distributed DBMS properties
replicationFactor and nodeConfiguration. In addition, a set of DBMS-specific parameters can be ap-
plied via the customConfiguration property.

"dbmsCluster": {
"type": "CASSANDRA",
"version" :"3.11.2",

52 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

"databaseComponent": [
{

"type": "SEED",
"instances": 3,
"resource": {

"idCloud": CLOUD_ID,
"idImage": IMAGE_ID,
"idHardware": HARDWARE_ID,
"idLocation": LOCATION_ID

},
"replicationFactor": {

"envName": "REPLICATIONFACTOR",
"envValue": 3

},
"nodeConfiguration": {

"dataMemory": {
"envName": "DATAMEMORY",
"envValue": 1500

},
"indexMemory": {

"envName": "INDEXMEMORY",
"envValue": 500

}
},
"customConfiguration": [

{
"envName": "SHARDING_STRATEGY",
"envValue": "org.apache.cassandra.dht.Murmur3Partitioner"

}
],

}
]

}

Listing 5.3: Cloud deployment template

5.1.2 Workload Template

The workload template exposes relevant properties to specify an application-specific workload. The extent
of the exposed properties are benchmark-specific as our approach does not provide an abstraction on dif-
ferent benchmarks. In consequence, different workload types such as YCSB or TPC-C workloads result in
different workload templates [core5]. In consequence, the properties of a workload template need to be de-
fined manually for different benchmarks. The following Listing 5.4 shows a simplified workload template for
a YCSB workload. The dbmsEndpoints entity represents a common entity across every workload template
and is required to establish the connection between the deployed DBMS cluster and the workload execu-
tion during the evaluation execution. The additional entities measurementConfig, workloadConfig and

5.1 DBMS Evaluation Templates 53

databaseConfig are YCSB-specific and need to be provided to ensure a comprehensive and reproducible
workload description [core5]. In consequence, workloadTemplates enable reusable workload specifications.
Additional workloadTemplate examples of TPC-C and a time-series workloads are available online1.

"YCSBWorkload": {
"dbmsEndpoints": [

{
"ip" :"192.168.2.1",
"port" :9042

}
],
"measurementConfig": {

"interval": 10
},
"workloadConfig": {

"workloadClass": "com.yahoo.ycsb.workloads.CoreWorkload",
"maxExecutionTime": 1800,
"threadCount": 16,
"recordCount": 4000000,
"operations": 10000000,
"fieldCount": 10,
"fieldLength": 500,
"requestdistribution": "UNIFORM",
"readProportion": 0.5,
"updateProportion": 0.5,
"insertProportion": 0

},
"databaseConfig": {

"databaseBinding": "CASSANDRA2",
"endpointParameterName": "hosts",
"tableParameterName": "cassandra.keyspace",
"tableName": "ycsb",
"configPorperties": [

{
"name": "cassandra.writeconsistencylevel",
"value": "ONE"

}
]

}
}

Listing 5.4: Workload template YCSB

1https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started/tree/master/examples

https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started/tree/master/examples

54 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

5.1.3 Adaptation Templates

The adaptation templates comprise the required properties to design ESTs for the elasticity and availability ob-
jective. Therefore, they are classified into the elasticity-specific elasticitySpec and the availability-specific
failureSpec adaptation templates which are described below.

Elasticity Templates As defined in the elasticity evaluation process in Section 4.3, it requires the spec-
ification of DBMS adaptations at evaluation runtime with optional workload adaptation. Therefore, the
elasticitySpec needs to expose the respective properties to specify comprehensive and reproducible
DBMS and workload adaptations. The resulting elasticity template [core6] follows the concept of sophisti-
cated adaptation models for cloud applications such as the Scalability Rule Language (SRL) [102, 113]. Yet,
in contrast to these advanced approaches that address the adaptation over the full application lifecycle,
we focus on on the relevant parameters to enable dedicated elasticity evaluations [core6]. An exemplary
elasticitySpec template is depicted in Listing 5.5 that can includen elastic adaptation entities. Each elastic
adaptation can target the DBMS or the workload, depending on the adaptationTarget. The elasticity adap-
tation defines a set of scalingType and scalingTrigger entities [core6]. While the example in Listing 5.5
contains a time-based scalingTrigger, the elasticitySpec also supports composed scalingTrigger
based on system and DBMS metrics [core6].

"elasticitySpec": [
{
"adaptationTarget" :"DBMS",
"nodeType" :"DATA",
"scalingType": "OUT",
"scalingTrigger": {

"scalingType" :"TIME",
"scalingDate" :"600s"

},
{
// a second elasticity adaptation

}
]

Listing 5.5: Elasticity Template

Availability Templates The key concept of the availability evaluation process defined in Section 4.3 is the fail-
ure injection in conjunction with optional recovery actions. In consequence, the availability template needs
to enable the speciation of these concepts. The resulting template defines the failureSpec depicted in
Listing 5.6, which enables to specify n failure injections associated with optional recovery actions [core7]. It
allows the timing of the failure injection in terms of the evaluation runtime via failureTiming. The specia-
tion of different failure levels is enabled via the failureType, such as VM, availability zone or region, and
their severity. Besides, optional recovery actions are specified via recoveryType with an associated recov-
eryTiming entity. The resulting availability ESTs enable the specification of comprehensive and reproducible
DBMS availability evaluations in the context of elastic resource failures [core7].

5.2 Mowgli Framework 55

"failureSpec":[
{
"failureTiming": "600s"
"failureType": "VM",
"severity": "permanent"
"failureRecovery": true,
"recoveryTiming": "900s",
"recoveryType": "ADD-NODE"

},
{
// a second failure to be injected

}
]

Listing 5.6: Resource failure template

5.1.4 Implementation

The ESTs are implemented as JSON documents as JSON is widely adopted in cloud DSLs [84]. We apply the
Swagger framework2 for implementing the ESTs Swagger builds upon the OpenAPI specification [213] and
supports code generation for multiple programming languages. Yet, the concept of ESTs is not limited to any
technology and other common DSL technologies such as the Eclipse Modelling Framework (EMF)3 could also
be used.

Exemplary ESTs that have been defined within this thesis are available in a public repository1 and in the
resulting data sets [data2, data1, data4].

5.2 Mowgli Framework

By building upon the previously introduced concept of ESTs that ensure the comprehensive speciation of the
relevant domain-specific parameters, the following research question needs to be addressed to enable the
automated evaluation execution:

RQ-B.2: What technical concepts are required to enable the evaluation automation across the elastic resource,
DBMS and workload domain, ensuring reproducibility and portability?

In order to address this research question, we provide the novel evaluation framework Mowgli. Mowgli fully
automates the evaluation execution of distributed DBMS on elastic infrastructures based on the provided
ESTs while ensuring reproducibility and portability [core5]. The Mowgli framework supports the evaluation
objectives performance and scalability by implementing the reference evaluation processes defined in Sec-
tion 4.3. Hereafter, we summarize the key automation concepts of Mowgli and provide an overview of its
technical architecture.

2https://swagger.io/
3https://www.eclipse.org/modeling/emf/

https://swagger.io/
https://www.eclipse.org/modeling/emf/

56 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

5.2.1 Automation Concepts

In order to automate the full evaluation process, the Mowgli framework applies the following key automation
concepts:

Technology Catalogues Mowgli defines the concept of domain-specific technology catalogues that enable
the mapping of the provided EST parameters to concrete technical implementations. Therefore, Mowgli con-
tains three domain-specific catalogues: the resource catalogue enables the mapping to provider-specific re-
source offers, the DBMS catalogue contains the DBMS-specific deployment and configuration scripts and
the workload catalogue contains the technical benchmark implementations to execute the specified work-
load [core5]. Each catalogue represents a software component with a dedicated API. This ensures the inde-
pendent extensibility of each catalogue with additional technologies.

Process Automation ESTs only provide the required parameters for the evaluation execution and do not
expose any configurations that affect the evaluation process flow. This ensure the deterministic evaluation
execution by preventing the modification of the objective-specific evaluation process. In return, the Mowgli
framework implements internally the process for each objective-specific evaluation and exposes only rele-
vant configurations such as the number of evaluation iterations. Following this concept, Mowgli enables
reproducible evaluations by guarantees the deterministic evaluation process for each iteration. Therefore,
each evaluation task is implemented in reusable software artefacts within the Mowgli framework. Their exe-
cution is automated by applying a lightweight workflow engine to orchestrate the execution of the dedicated
evaluation tasks.

Deployment Automation Logical tasks with an evaluation process can be composed by a varying number
of technical tasks. Specifically, the recurring allocation of resources (ET1) and the deployment of the DBMS
cluster (ET2) comprise numerous internal provider- and DBMS-specific tasks. To abstract these technology-
specific steps and ease their automation, Mowgli applies a COT [core2] to automate these steps. Therefore, a
COT is selected that enables the multi-cloud resource management, provides advanced application lifecycle
handling [112] and supports the automated discovery of cloud resources [add7] to enable dynamic resource
catalogues.

Objective Processing In order to enable significant evaluations, Mowgli provides an extensive set of addi-
tional metadata besides the raw benchmark metrics. The additional metadata comprises system- and DBMS-
specific monitoring data which is automatically prepared in visual and machine-readable formats. Moreover,
the applied resources, DBMS and workload parameters, are provided in machine-readable formats to enable
the postprocessing by external data analytics tools. Mowgli’s internal data analytics capabilities enable the
automated processing of the performance and scalability metrics [core5], also shown in the accompanying
data sets [data2]

5.2.2 Framework Architecture

The resulting framework architecture of Mowgli is depicted in Figure 5.1 and comprises six loosely coupled
software components that interact via REST-based APIs.

5.2 Mowgli Framework 57

ev
al

ua
tio

n
AP

I

Workload
Catalogue

evaluation scenario process

metadata
collectorobjective

processor

DBMS
Catalogue

data flow control flow

COT

measurement
collector

EST:
{…}

Evaluation Orchestrator

Runtime
Monitor

Workload-API

performance scalability

Cloud Resource
Catalogue

Figure 5.1: Mowgli architecture

The EvaluationOrchestrator represents the central componentwithin the framework that provides the Evalu-
ation API for submitting the specified performance and scalability ESTs. Therefore, it provides a programmatic
Representational State Transfer (REST) interface and basic web interface. The submitted EST is processed to
an executable Evaluation Scenario Process (ESP) by mapping the specified EST parameters to the technical
implementations via theWorkload Catalogue, DBMS Catalogue and the Cloud Resource Catalogue. TheWork-
load Catalogue and DBMS Catalogue are independent components that provide the required workload and
DBMS lifecycle actions in script-based formats. The Cloud Resource Catalogue is provided by the multi-cloud
COT [add9, add7] which enables the automated resource discovery for multiple cloud providers. The Evalua-
tion Orchestrator executes the ESP by applying the internal workflow engine to automate the execution of the
process-specific tasks. Thus, the Evaluation Orchestrator invokes the COT to allocate the required resources
as the COT abstracts the provider-specific APIs into a generic resource API [add7]. In addition, the COT is also
invoked to deploy the specified DBMSby executing the DBMS-specific lifecycle actions. TheWorkload-API rep-
resents an independent component that is invoked by the Evaluation Orchestrator to execute the specified
workload. It provides a basic abstraction layer over the supported benchmarks by providing a unified API that
extends the benchmark-specific parameters with the Mowgli-specific parameters such as the dynamic DBMS
endpoints or network types to use. The Workload-API bundles the required benchmark implementations.
Mowgli supports the automated deployment of the Workload-API via the COT or the usage of self-deployed
Workload-API instances. In consequence, according to the specified number of workload instances in the EST,
Mowgli orchestrates the required number of Workload-API instances to create the specified workload. The
Runtime Monitor stores the monitoring data, execution traces and additional metadata for each evaluation
in as time-series data. The Evaluation Orchestrator follows established cloud monitoring and orchestration
concepts [add10] and enables the dynamic monitoring orchestration during each evaluation execution. The
resulting benchmarkmetrics, system and DBMSmonitoring data and additional resourcemetadata are joined
by theMeasurement Collector and theMeta-data Collector. Subsequently, the Objective Processor computes
the evaluation objective according to the EST, i.e. performance and scalability. The objective specific results

58 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

are provided in machine interpretable formats for advanced post processing and in visual formats for the
explorative analysis [data2].

5.2.3 Implementation

TheMowgli framework components are implemented as Java-based REST services by building upon the Swag-
ger toolkit2. In addition, python-based software components are applied for the objective processor.

Within Mowgli, the COT is implemented by Cloudiator [add9, add7] that enables multi-cloud resource man-
agement, provides advanced application lifecycle handling [112] and supports the automated discovery of
cloud resources [add7]. Mowgli is not limited to Cloudiator and additional COTs [157, 207] can be integrated
to increase the orchestration capabilities or extend the scope of resource offers. The Runtime Monitor is im-
plemented by building upon the time-series DBMS InfluxDB4.

The Mowgli framework is available open source under the Apache 2 licence5. A first version of Mowgli has
been released in 2019 [data3] and in its current version, Mowgli supports eight NoSQL and NewSQL DBMS6,
three workload types based on the YCSB [40], a DBMS-specific TPC-C7 and a time-series benchmark8. Each
component of the Mowgli framework is provided as a Docker container and the framework is deployable via
an accompanying Docker Compose file9.

5.3 Mowgli for Higher-Level Evaluation Objectives

While Mowgli provides a novel method for the automated performance and scalability evaluation of dis-
tributed DBMS on elastic infrastructures, the following research question needs to be addressed for higher-
level evaluation objectives:

RQ-B.3: Which adaptation concepts are required by supportive evaluation methods to enable the evaluation
of the higher-level non-functional features elasticity and availability?

We address this research question by building upon the concepts of the Mowgli framework and extend them
with novel evaluation methods for higher-level evaluation objectives, namely Kaa [core6] for the elasticity
objective and King Louie [core7] for the availability objective. The resulting evaluationmethods are presented
below, including their integration into the Mowgli framework as depicted in Figure 5.2.

5.3.1 Elasticity: Kaa Framework

The Kaa framework [core6] builds Mowgli and enables the automation of the elasticity evaluation process
defined in Section 4.3 under the consideration of DBMS and optional workload adaptations at evaluation
runtime. The Kaa framework is integrated into Mowgli and its advances are highlighted in blue in Figure 5.2.

4https://www.influxdata.com/
5https://omi-gitlab.e-technik.uni-ulm.de/mowgli
6https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started/tree/master/features
7https://github.com/cockroachdb/loadgen
8https://github.com/timescale/tsbs
9https://omi-gitlab.e-technik.uni-ulm.de/mowgli/docker

https://www.influxdata.com/
https://omi-gitlab.e-technik.uni-ulm.de/mowgli
https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started/tree/master/features
https://github.com/cockroachdb/loadgen
https://github.com/timescale/tsbs
https://omi-gitlab.e-technik.uni-ulm.de/mowgli/docker

5.3 Mowgli for Higher-Level Evaluation Objectives 59

Workload
Catalogue

DBMS
Catalogue

data flow control flow

COT

EST:
{…}

Cloud Resource
Catalogue

Evaluation Orchestrator

Runtime
Monitor

performance scalability

evaluation scenario process

elasticity availability

Failure
Catalogue

Adaptation
Catalogue

measurement
collector

metadata
collectorobjective

processor

ev
al

ua
tio

n
AP

I

availability (King Louie)

elasticity (Kaa)

Workload-API

Figure 5.2: Kaa and King Louie framework architecture

The Evaluation-API is extended to enable the submission of elasticity ESTs. The Evaluation Orchestrator is ex-
tended with the corresponding elasticity ESP. The Adaptation Catalogue implements the required catalogue
that enables the mapping of the DBMS and workload adaptations in the EST to the respective technical invo-
cations for the execution of the elasticity ESP. The Workload-API is extended to report the workload progress
which is required to enable progress-based adaptations [core6]. Within the elasticity process, the data of the
runtime monitor and the workload progress reported by the Workload-API are consciously evaluated against
the defined DBMS and workload adaptation triggers in the EST. The Meta-data Collector automatically com-
putes the duration of each DBMS adaptation and processes the phase-specific times such as resource pro-
visioning time or data distribution time. They are required to process the elasticity metrics [core6] via the
Objective Processor. These advances enable the following key automation concepts for the elasticity evalua-
tion of distributed DBMS on elastic resources:

DBMS Adaptation Kaa supports the automation of time-based and metric-based DBMS adaptations via the
Evaluation Orchestrator which processes the specified elasticitySpec of the EST. For time-based adap-
tations, predefined timestamps of the EST are used as a trigger. Time-based adaptations enable isolated
elasticity evaluations for dedicated workload configurations, while emphasizing reproducibility. The automa-
tion of the metric-based adaptations is executed by continuously evaluating the data of the Runtime Monitor
against the metric-based thresholds of the EST. Metric-based adaptations enable more realistic evaluation
scenarios, but their specification requires a thorough understanding of the DBMS utilization in order to apply
reasonable adaptation thresholds [core6]. The execution of the DBMS adaptations, i.e. scale-out or scale-in,
are carried out via the adaptation interface of the applied COT. For a scale-out, the COT allocates new resources
and executes the respective DBMS lifecycle actions that are predefined in the DBMS catalogue. For a scale-in,
the COT executes the required lifecycle actions to remove the DBMS node from the cluster and releases the
associated resources.

60 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

Workload Adaptation The automation of workload adaptation follows the concept of the DBMS adaptations
where the Evaluation Orchestrator processes the optional workload adaptations in the elasticitySpec. Kaa
supports time-based, progress-based and metric-based workload adaptations [core6]. The Evaluation Or-
chestrator invokes the adaptations via the Workload-API. A distinction is made between benchmarks that
implement an open or partially open workload model and those benchmarks which implement a closed work-
load model [24, 148]. While the former benchmarks allow the adjustment of the workload at runtime directly
via the Workload-API, the latter prevent the direct adjustment of the workload at runtime. The orchestration
capabilities of Kaa address this limitation, as additional Workload-API instances can be used to schedule
fluctuating workloads. For instance, this enables the emulation of a partially open workload model for the
YCSB [40] which implements a closed workload model.

Implementation Kaa builds upon the technological stack of Mowgli (cf. Section 5.2.3). The adaptation
triggers are implemented by mapping the specified scalingTrigger of the elasticity templates to InfluxDB-
specific queries. For this, Kaa uses the InfluxQL query language of InfluxDB10. The DBMS adaptations are
implemented by building upon the scaling interfaces of Cloudiator [add10, add6]. The Kaa framework is inte-
grated into the Mowgli framework and publicly available5

5.3.2 Availability: King Louie Framework

The DBMS availability evaluation is enabled by the King Louie framework which builds upon Mowgli and Kaa.
It automates the availability evaluation process defined in Section 4.3 and enables the availability evalua-
tion under consideration of elastic resource failures on different levels [core4]. Therefore, King Louie extends
Mowgli as depicted in Figure 5.2 with the advances highlighted in red. The Evaluation-API is extended to
support availability ESTs and accordingly the Evaluation Orchestrator is extended with Availability ESP, im-
plementing the reference availability evaluation process. The Failure Catalogue contains the technical invo-
cations that need to be executed for the specified failure injections and (optional) recovery actions of the pro-
vided EST. The extension of the Meta-data Collector enables the automated determination of the DBMS clus-
ter states within an availability evaluation execution: healthy, unhealthy, recovering and recovered [core7].
These phases are provided to the extended Objective Processor to process the availability metrics. Building
upon these extensions, King Louie automates the following technical concepts that are essential to evaluate
DBMS availability:

Failure Injection The failure injection capabilities of King Louie enable the emulation of realistic failures
of elastic resources across different levels [core4]. Therefore, King Louie exploits the resource management
capabilities of the applied COT or it can apply dedicated failure injection frameworks [133]. The Evaluation
Orchestrator processes the failureSpec of the EST and maps the specified failures to the required resource
management invocations via the COT interface. This enables the injection of different failure types such as the
(temporary) stopping or deletion of a single resource instance, but also the injection of failures on availability
zone or region level which will affect multiple resource instances. In addition, custom failure types can be
added as scripts to the Failure Catalogue and their execution is enabled by the Evaluation Orchestrator.

10https://docs.influxdata.com/influxdb/v1.8/query_language/

https://docs.influxdata.com/influxdb/v1.8/query_language/

5.4 Evaluation Data Collection 61

Failure Recovery The execution of failure recovery actions represents an optional step in the implementa-
tion of the availability evaluation process that enables the availability metric processing of the recovering and
recovered phase. The failure recovery steps depend on the specified failures and execute the required invoca-
tions to restore the preceding healthy cluster state. In consequence, for temporary failures, these invocations
target existing resources and DBMS instances while for permanent failures, the steps comprise the allocation
of new resources and the deployment of new DBMS nodes like in the elastic scale-out process during the
elasticity evaluation. Depending on the DBMS, the execution of additional recovery lifecycle actions might
be required which need to be specified in the DBMS Catalogue.

Implementation King Louie builds upon the technological stack of Mowgli (cf. Section 5.2.3) and Kaa (cf.
Section 5.3.1). The applied failure injection framework is an own Java-based implementation with additional
technical details presented in [core4, core7]. It exploits the resource management capabilities of Cloudiator
to inject failures on the resource level and applies direct SSH connections to inject failures on the OS and
DBMS levels. The recovery action implementation builds upon the elastic scaling capabilities provided by
Kaa with the extension for executing additional DBMS-specific lifecycle actions. The King Louie framework is
integrated into the Mowgli framework and publicly available5.

5.4 Evaluation Data Collection

Mowgli [core5], Kaa [core6] and King Louie [core7] provide the automation methods for the evaluation ob-
jectives performance, scalability, elasticity and availability. In addition to the automation of the respective
evaluation processes, the following research question is addressed to ensure significant results and facilitate
the knowledge discovery:

RQ-B.4: How can the automation methods ensure significant results and reduce the efforts in the knowledge
discovery of the non-functional DBMS features?

Mowgli, Kaa and King Louie address this research question by providing the results as comprehensive evalua-
tion data sets which contain four types of data: (i) benchmark-specific metrics, (ii) system and DBMSmonitor-
ing data, (iii) execution logs and (iv) evaluation metadata. These data sets enable exploratory and confirma-
tory data analysis approaches [148]. In the common process of making use of evaluation results as defined
by Bermbach et al. [148], Mowgli, Kaa and King Louie automate the evaluation execution, data collection and
storage as well as pre-processing of the evaluation results. The advanced result analysis based on sophisti-
cated statistical [167, 187, 196] and machine learning [153, 208, 210] methods is out of scope of this thesis.
Yet, the generated data sets of Mowgli provide valuable input for further offline processing steps based such
methods, Moreover, Mowgli’s modular architecture is prepared to integrate suchmethods to extendMowgli’s
online analysis capabilities.

All data sets are provided in a file-based manner to facilitate their usage for data analytics methods. To fol-
low the reproducibility principle [201], a performanceand scalability data set [data2] createdbyMowgli [core5],
an elasticity data set [data1] created by Kaa [core6] and an availability data set [data4] created by King
Louie [core7] are published as open access data sets as examples. The characteristics of the four data types
of each evaluation data set are summarized in the following:

62 Chapter 5 Methods for the Automated Evaluation of Non-functional DBMS Features

Benchmark-specific Metrics Each data set contains the benchmark-specific metrics, such as throughput
and latency measured by the YCSB or transaction rate measured by the TPC-C benchmark. The format of the
metrics is dependent on the benchmark and can be an aggregated value or a time series over the evaluation
runtime. In addition, the metrics are aggregated based on configurable statistical methods. The resulting
data is provided in machine-readable formats as input for advanced data analytics methods and in visual
formats to enable quick high-level insights for the performance engineer.

Monitoring Data The monitoring data is collected from the RuntimeMonitor and pre-processed by theMeta-
data Collector (cf. Figure 5.2) as time series over the evaluation runtime. The data is provided in machine-
readable and visual formats. The monitoring data comprises resource utilization data such as CPU usage,
memory usage, I/O usage and network traffic of the resources hosting the DBMS cluster and Workload-API
instances. In addition, DBMS-specific monitoring data is provided. The monitoring data increases the signifi-
cance of the results as it enables the identification of resource bottlenecks (on the virtualization level) for the
DBMS cluster and eases the verification that the Workload-API instances are not a bottleneck.

Execution Logs The execution logs are generated by theMeta-data Collector and stored inmachine-readable
formats that map the respective evaluation process steps (cf. Section 4.3) to timestamps of the respective
evaluation runtime. In consequence, the execution logs increase the significance by ensuring full trans-
parency of the automation process. Moreover, the execution logs enable the processing of additional metrics
such as the provider-specific resource provisioning time or the DBMS deployment time. For the higher-level
evaluation objectives elasticity and availability, the execution logs contain the timestamps for all executed
adaptation steps, as these are required for processing the higher-level evaluation objective metrics (cf. Sec-
tion 4.3).

EvaluationMetadata In addition to the resulting evaluation data, each data set containsmetadata to ensure
the reproducibility of the evaluations. Therefore, the applied EST is included and additional resource-specific
metadata. Yet, the underlying physical infrastructure or even the capacity of the resource types can change
over time [201]. Thus, the extent of the resource-specific metadata is dependent on the resource provider.
For instance, for public cloud providers such as AWS, Mowgli only provides metadata for the virtual resources
and it is unable to provide any metadata for the physical resources. For private clouds Mowgli offers the capa-
bilities to extend the metadata with physical resource details if the cloud infrastructure provides appropriate
interfaces.

DataSet Based on these data sets, Mowgli enables the processing of the evaluation objectives performance,
scalability, elasticity and availability and ensures the reproducibility of the evaluation as all relevant technical
details are included. The significance of the results is supported by underpinning the provided benchmark
metrics with additional monitoring data and resource-specific metadata. The knowledge discovery is sup-
ported by pre-processing the benchmark-specific metrics and the monitoring data, and providing them in
visual formats for initial analysis while all evaluation data is provided in machine-readable formats for ad-
vanced data analytics methods.

5.5 Summary 63

5.5 Summary

This chapter presented the findings that contributed to achieveRO-Bbybuilding upon the establishedmethod-
ological DBMS evaluation concepts of Chapter 4. The findings provide novel methods for DBMS evaluations
on elastic infrastructures: first, a comprehensive specification for DBMS evaluations was defined as DBMS
Evaluation Scenario Templates (ESTs). ESTs expose the evaluation-specific impact factors as configurable
parameters. Each template comprises objective-specific sub-templates for the DBMS deployment, workload
execution and runtime adaptations. The specified ESTs serve as input to the novel DBMS evaluation frame-
work Mowgli that fully automates the performance and scalability evaluation processes. Therefore, it builds
upon a modular architecture and applies the following key automation concepts: technology catalogues as
domain-specific abstraction, evaluation process automation, deployment automation and objective process-
ing. Mowgli has been enriched with the Kaa framework that enables the DBMS elasticity objective by the key
concepts of DBMS and workload adaptations at evaluation runtime. In order to enable the availability eval-
uation of DBMS with the focus on elastic resource failures, Mowgli has been further enriched with the King
Louie framework that applies the key concepts of automated failure injection and failure recovery. For each
evaluation objective, Mowgli provides a comprehensive data set that contains the objective-specific metrics
and monitoring data, execution logs and metadata in pre-processed machine readable and visual formats.

These novel DBMS evaluation methods have been applied in several realistic case studies and in the fol-
lowing Chapter 6, the results are discussed and validated against the cross-domain evaluation principles.

Chapter 6

Validation

This chapter summarizes the validation of Mowgli including Kaa and King Louie with respect their capabilities
for evaluating distributed DBMSs on elastic infrastructures. The feature set of Mowgli, Kaa and King Louie is
validated against their applicability for realistic use cases, the support for evaluating higher-level evaluation
objectives and the compliance with the established evaluation principles (cf. Section 4.2). Therefore, we
apply a case study driven and a feature driven validation. First, in Section 6.1 the applicability for evaluating
distributed DBMSs on elastic infrastructures is validated by four industry-driven case studies. These address
the DBMS performance impact of elastic resources [core10], a comparative performance and scalability study
across different DBMS technologies, cloud providers and cloud resources [core5], a DBMS elasticity study
under consideration of different workload intensities [core6] and a DBMS availability evaluation in case of
resource failures [core7]. Secondly, Mowgli’s feature set is evaluated against the established cross-domain
evaluation principles [core5, core6, core7] in Section 6.2. Section 6.3 discusses the lessons learned on the
evaluation of distributed DBMSs on elastic infrastructures and Section 6.4 summarizes this chapter.

6.1 Case Studies

Mowgli’s applicability for driving the decision process to determine the DBMS operationmodel is validated by
multiple industry-driven case studies. These case studies are based on real problem statements regarding the
DBMS operational model on elastic infrastructures that have been identified within the Cloud2Go research
project in collaboration with Daimler TSS and within the European research project Melodic1. An overview
on the extent of each Case Study (CS) is provided in Table 6.1. Each case study targets different evaluation
objectives and in consequence, verifiesMowgli’s applicability for the considered evaluation objectives perfor-
mance, scalability, elasticity and availability. In addition, Table 6.1 provides in row miscellaneous a summary
of additional smaller scale case studies that have been carried out in the respective projects. These case
studies are not discussed in detail as their results are reflected by the large scale case studies CS1 — CS4. In
the following, CS1 — CS4 are summarized based on the identified evaluation scenarios, the target evaluation
objective, and the resulting lessons learned of the respective case study.

6.1.1 CS1 - Performance Impact of Elastic Resources

The case study is centred around the general research challenge of identifying the optimal elastic resource
type for the target application by considering the trade-off between virtualization overhead and operational

1https://melodic.cloud/

65

https://melodic.cloud/

66 Chapter 6 Validation

Table 6.1: Case study metrics

ID Evaluation Objective Scenarios Repetitions Data Sets

CS1 DBMS performance impact of elastic resources [data6] 10 10 100
CS2 DBMS performance & scalability on elastic re-

sources [data2]
102 5 610

CS3 DBMS elasticity on elastic infrastructure [data1] 64 5 320
CS4 DBMS availability under elastic resource fail-

ures [data4]
16 10 160

Misc. project-specific DBMS performance, scalability and
availability evaluations [data5]

118 1-5 236

Total Performance impact of elastic resources, DBMS perfor-
mance, DBMS scalability, DBMS elasticity, DBMS avail-
ability

310 N/A 1426

benefits [139]. This general challenge is substantiated for DBMSs by analysing the performance impact of
different virtualization technologies and storage configurations [core10]. This case study has been carried
out using an early implementation of Mowgli [core10] and its methodology and technical components have
been integrated into Mowgli in the meantime.

Evaluation Scenarios Within this case study, the elastic resource types container, VM and the combination
VM with container represent the evaluation-specific resource impact factors. Besides, for container-based
resources, we distinguished between the host file system and the container-internal file system as storage
location. All resources are specified with identical resource capacities and they are deployed in a private
cloud based on OpenStack. The applied DBMS technology is MongoDB2 in a single node deployment and
the applied benchmark is the YCSB for creating a read-heavy and write-heavy workload. As a result, the case
study comprises ten evaluation scenarios and each scenario is specified with ten executions [data6], which
are automated by the framework3.

Evaluation Objective The evaluation objective is performance under consideration of the applied resource
types. Therefore, the performance metrics throughput and latency are related with the applied resource type
and workload. The results provide a comparative analysis of the performance overhead in relation to the
resource type.

Lessons Learned The results show that the usage of VM-based resources comes with a significant perfor-
mance overhead compared to container resources. For container-based resources, the usage of the container-
internal filesystem causes significant performance overhead for write-heavy workloads. This confirms the
findings of existing studies which analyse the performance overhead of different virtualization technologies

2https://www.mongodb.com/de
3https://github.com/omi-uulm/Containerized-DBMS-Evaluation

https://www.mongodb.com/de
https://github.com/omi-uulm/Containerized-DBMS-Evaluation

6.1 Case Studies 67

for stateless applications [118, 139]. A further insight shows that the usage of container resources on top of
VMs causes a tolerable performance overhead of 6% compared to the operational advantages enabled by
containers.

6.1.2 CS2 - Performance and Scalability

The second case study [core5] validates Mowgli by addressing the overarching research challenge of selecting
the optimal elastic resource provider, resource type and DBMS runtime configurations [89, 158] in the context
of cloud-hosted DBMSs [core5]. Therefore, the case study evaluates the performance and scalability in the
context of different cloud providers, storage resources and DBMS runtime configurations.

Evaluation Scenarios The considered resource providers within this case study are a private OpenStack
cloud and the public AWS EC2 cloud. The applied resource types are VMs of identical resource capacities.
The evaluation-specific resource impact factor is the storage type, i.e. SSD and remote storage backends.
The deployed DBMS technologies are Apache Cassandra4 and Couchbase5. The evaluation-specific DBMS
impact factors are the cluster size that ranges from 3 - 5 - 7 - 9 nodes and the DBMS-specific client side write
consistency which ranges from low to high. The applied benchmark is the YCSB for creating a write-heavy
workload. As a result, this case study comprises 102 evaluation scenarios and each evaluation scenario is
executed five times by Mowgli [data2].

Evaluation Objective There are three evaluation objectives of this case study. First, the DBMS-specific per-
formance impact of varyingwrite consistencies; secondly, the performance impact of identical resource capac-
ities offered by different cloud providers and the impact of different storage backends; thirdly, a comparative
performance and scalability analysis across the applied DBMSs.

Lessons Learned The performance results show that the impact of the applied write consistency strongly
depends on the DBMS technology. While for Apache Cassandra stronger consistency settings cause a tol-
erable performance decrease, for Couchbase the performance decreases by 90% when comparing the low-
est and highest write consistency settings. The direct performance comparison between Apache Cassandra
and Couchbase shows that Couchbase achieves a higher performance for the weak write consistency while
Apache Cassandra achieves better performance for strong write consistency settings. With respect to scalabil-
ity objective, the results show that both DBMSs provide scalability with increasing cluster sizes but limiting
factors can be the underlying resources such as the remote storage backend or the saturation of the workload.
In consequence, large cluster sizes may cause negative scalability due to increasing synchronization opera-
tions. The dependable identification of such limiting factors requires comprehensive evaluation scenarios
considering the relevant evaluation-specific impact factors and their repeated execution which is enabled by
Mowgli [core5].

4http://cassandra.apache.org/
5https://www.couchbase.com/

http://cassandra.apache.org/
https://www.couchbase.com/

68 Chapter 6 Validation

6.1.3 CS3 - Elasticity

The third case study addresses the general research challenge of horizontally scaling resources and applica-
tion at runtime [173, 166] in the dedicated context of distributed DBMSs on cloud resources [core6]. Therefore,
the validation of Kaa [core6] by building upon Mowgli focuses on the objective elasticity under the consider-
ation of different workload intensities and workload types.

Evaluation Scenarios The evaluation scenario builds upon VM-based resources provided by a private Open-
Stack cloud infrastructure with identical resource capacities. The evaluated DBMS technologies are Apache
Cassandra and Couchbase, deployed as three node clusters. The YCSB is selected as the benchmark for cre-
ating write-heavy and read-heavy workloads with the evaluation-specific workload intensities low, optimal
and overload. In order to determine the DBMS-specific workload intensities, an additional calibration phase
is executed. The evaluation-specific adaptation action is an elastic scale-out, adding one additional DBMS
node including the required resources based on a time-based trigger. The resulting case study comprises 32
evaluation scenarios for the calibration phase and 32 elasticity evaluation scenarios where each scenario is
executed five times [data1].

Evaluation Objective The evaluation objectives target the DBMS-specific elasticity under consideration of
varying workload intensities and the comparative elasticity analysis across the two DBMSs. Therefore, par-
ticular focus relies on the elasticity metrics provisioning time, data distribution impact and data distribution
time.

Lessons Learned The results show that Apache Cassandra and Couchbase provide the expected elasticity
capabilities for all workload intensities of the read-heavy workloads, i.e. increasing the performance after
the elastic scale-out is finished. Moreover, Apache Cassandra does not show a significant data distribution
impact while Couchbase shows a significant data distribution impact. Regarding the write-heavy workload,
bothDBMSs showunexpected elasticity behaviours as for all workload intensities the data distribution impact
is severe, which results in a constant performance decrease during the elastic scale-out. These results show
that DBMS adaptations need to consider a multitude of impact factors to specify efficient DBMS adaptation
rules [core6].

6.1.4 CS4 - Availability

The fourth case study addresses the general impact of elastic resource failures [132, 133] in the dedicated
scope of cloud-hosted DBMSs. Therefore, King Louie [core7] by building upon Mowgli is validated by a case
study with the focus on the DBMS availability in case of cloud resource failures for different cluster sizes.

Evaluation Scenarios The evaluation scenario consists of VM-based resources with static resource capaci-
ties deployed at a private OpenStack-based cloud. The applied DBMSs are Apache Cassandra and Couchbase
with the evaluation-specific impact factor cluster sizes of three and seven nodes. The YCSB is applied to cre-
ate a write-heavy and read-heavy workload of low and high intensity. The failure specification is defined as
a single failure injection on VM level in combination with a subsequent recovery action to restore the initial

6.1 Case Studies 69

cluster size of the respective evaluation scenario. In consequence, the case study comprises 16 evaluation
scenarios with ten executions per evaluation scenario [data4].

Evaluation Objective The evaluation objective is availability under consideration of resource failures with
dedicated focus on the performance impact during the healthy, unhealthy, recovering and recovered phase.
Therefore, availability is analysed in a DBMS-specific and in a comparative context.

Lessons Learned The results show novel and unexpected insights into the availability capabilities of Apache
Cassandra and Couchbase. The ten executions of each evaluation scenario result in different but reoccurring
performance patterns for the respective scenarios. None of the DBMSs is able to overcome a VM resource
failure without a downtime at client-side. The duration of the downtime is highly dependent on the DBMS,
the cluster size and the applied workload. The downtimes for Apache Cassandra range from 10 to 240 sec-
onds. Couchbase is unable to overcome resource failures in the 3-node cluster and for the 7-node cluster the
downtimes range from 30 to 175 seconds. These insights build the foundation for further case studies to con-
solidate the availability capabilities of distributed DBMSs and to derive efficient failure mitigation strategies.

6.1.5 Case Study Discussion

Mowgli’s applicability for evaluating the non-functional features of distributed DBMSs on elastic infrastruc-
tures is verified by the performed case studies, which comprise evaluation objectives that reach beyond ba-
sic performance evaluations and target higher-level evaluation objectives as summarized in Table 6.1. The
310 evaluation scenarios addresses the evaluation challenges of current and upcoming DBMS operational
models [127, 211] and Mowgli enables their specification and automated execution. The specified evaluation
scenarios comprise a multitude of technology-specific and evaluation-specific impact factors.

Across all case studies, the applied technology-specific impact factors comprise three DBMSs that imple-
ment different architectures and consistency models, two cloud providers with different virtualization and
resource types.

The evaluation-specific impact factors comprise six DBMS cluster sizes, ten DBMS client-consistency con-
figurations, three replication factors, three compute capacities, three storage capacities, three workload dis-
tributions and eight workload intensities. In addition to these case studies, further project-specific case stud-
ies [data5] have been specified and performed in cooperationwith Daimler TSS andwithin theMelodic project.
These studies comprise an additional private cloud provider, six additional DBMSs and additional workloads
based on the TPC-C benchmark. It is noteworthy that this list of technology- and evaluation-specific impact
factors reflects only a small excerpt of the supported impact factors of Mowgli.

Performing the required evaluation executions to create the 1426 evaluation data sets further verify
Mowgli’s automation capabilities and the resulting data sets enable the in-depth analysis of the objective-
specific results. Moreover, Mowgli facilitates the quantification of the impact of elastic resource [core10,
core5] and enables novel insights into the higher-level non-functional features of distributed DBMS [core6,
core5].

70 Chapter 6 Validation

6.2 Support for Evaluation Principles

This section summarizes the support for the established cross-domain evaluation principles (cf. Section 4.2)
of Mowgli [core5], Kaa [core6] and King Louie [core7]. Therefore, we present their compliance for each princi-
ple and discuss limitations. In the following discussion, we refer to the Mowgli as the integrated framework
comprising Mowgli, Kaa and King Louie.

EP1: Usability Mowgli eases its usage via a comprehensive REST interface, which is based on the OpenAPI
specification. OpenAPI facilitates the specification of meaningful REST APIs by providing tool support for
designing, building, documenting and consuming the respective APIs. Thus, Mowgli provides a detailed doc-
umentation of its REST interface and its usage, including the basic web interface. Yet, a certain level of DBMS
evaluation knowledge is essential to specify the required ESTs and Mowgli does not provide a sophisticated
web interface for editing ESTs or visualizing the evaluation results. Moreover, advanced approaches such as
chatbots [212] for guiding unexperienced users through the evaluation specification and execution are not
part of Mowgli.

EP2: Extensibility The extensibility of Mowgli has been confirmed by the frameworks Kaa [core6] and King
Louie [core7] which extend the framework and its feature set. Moreover, Mowgli’s micro-service architecture
and the concept of the technology catalogues offer convenient extension points for integrating new technolo-
gies or extending existing framework features. However, the efforts in extendingMowgli are dependent on the
affected components. For instance, adding a new DBMS will only require the implementation of five lifecycle
scripts, an update of the EST specification and the execution of the respective code generation tools. On the
contrary, the extension or replacement of the COT Cloudiator to enablemore extensive container orchestration
capabilities [207], will require more effort as multiple software components of Mowgli will be affected.

EP3: Significance Mowgli’s significance regarding the supported evaluation scenarios and evaluation ob-
jectives is verified by its acceptance at established cloud and performance engineering conferences [core5,
core6, core7]. Besides, Mowgli’s significance is also confirmed in an industrial context through the coopera-
tion with Daimler TSS where it is applied for addressing industry-driven challenges in selecting and operating
distributed DBMSs. Moreover, Mowgli has been included in the internal services of Daimler TSS6 and within
the European research project Melodic7 [204]. While Mowgli is able to cover realistic operational models
of distributed DBMS, the significance of the applied workloads are dependent on the selected benchmarks.
Currently, Mowgli supports synthetic benchmarks and the integration of trace-based benchmarks such as
BenchFoundry [146] would improve the significance of the supported evaluation scenarios.

The significance of the obtained results are verified by comparing them against established DBMS evalua-
tion results if applicable. Moreover, the significance of the results is underpinned by comprehensive evalua-
tion data sets [data2, data1, data4] that provide additional evaluation-specific metadata.

6https://www.uni-ulm.de/in/fakultaet/in-detailseiten/news-detail/article/
neues-analyse-tool-fuer-datenbankmanagementsysteme-mowgli-weist-den-weg-im-datenbanken-dschungel/

7https://melodic.cloud/

https://www.uni-ulm.de/in/fakultaet/in-detailseiten/news-detail/article/neues-analyse-tool-fuer-datenbankmanagementsysteme-mowgli-weist-den-weg-im-datenbanken-dschungel/
https://www.uni-ulm.de/in/fakultaet/in-detailseiten/news-detail/article/neues-analyse-tool-fuer-datenbankmanagementsysteme-mowgli-weist-den-weg-im-datenbanken-dschungel/
https://melodic.cloud/

6.2 Support for Evaluation Principles 71

EP4: Reproducibility While recent findings show that the reproducibility principle finds little adoption in
evaluations of the DBMS domain [190] and elastic infrastructure domain [201], Mowgli supports this princi-
ple as follows. The validation of reproducibility principle builds upon the received ACM Reusable Badge8,
which was awarded to the Mowgli framework [core5] within the artefact evaluation track of the International
Conference on Performance Engineering9. As Kaa and King Louie build upon Mowgli and apply the same
reproducibility methods, the following aspects also apply to them.

The reproducibility is verified for both aspects of the reproducibility principle, i.e. a complete technical
description of the evaluation and the deterministic evaluation execution. First, Mowgli provides the full tech-
nical description of the applied evaluation setup, comprising the applied DBMS, resource and workload pa-
rameters as ESTs that enable the reproduction of the performed evaluation scenarios. Secondly, the Mowgli
framework provides the technical methods to ensure the deterministic execution of the ESTs. Moreover, the
results of the artefact evaluation track also confirm that comparable evaluation results have been obtained
by the artefact evaluators. Yet, it is noteworthy that Mowgli only ensures the reproducible specification of
the evaluations scenarios and their deterministic execution. The obtained results represent a snapshot that
is dependent on a number of volatile and time dependent impact factors such as performance variations on
the resource level [44, 135], compaction and replication processes on the DBMS level [150, 179] or statistical
randomness of synthetic benchmarks on the workload level [146]. While Mowgli can not control these impact
factors, it provides the requiredmethods to reproduce the results inmultiple versions to quantify the resulting
variance of such volatile impact factors.

EP5: Abstraction Mowgli’s abstraction capabilities are validated on evaluation design and evaluation ex-
ecution level. Regarding the evaluation design, the ESTs have confirmed their abstraction capabilities by
enabling the specification of realistic case studies while providing an appropriate level of abstraction for the
DBMS, resource and workload domain. Moreover, the ESTs have proven their abstraction capabilities by sup-
porting the reproducibility of the evaluations.

The abstraction capabilities for the evaluation execution are verified based on applied domain-specific
technologies within the case studies. These comprise multiple cloud providers, resource types, DBMS tech-
nologies and benchmarks. While Mowgli enables a high-level abstraction for the resource provisioning and
DBMSdeployment by applying the provider-agnostic COT Cloudiator [add9, add7] with the DBMSand resource
catalogues [core5]. It only provides a basic abstraction for the workload domain. In particular, Mowgli relies
on the abstraction capabilities of the integrated benchmarks such as the YCSB and abstracts the communica-
tion parameters across all benchmarks.

EP6: Portability The performed case studies confirm that Mowgli enables the evaluation portability across
multiple domains, i.e. CS2 [core5] performs a comparative evaluation across multiple DBMS and resource
domain parameters, CS3 [core6] and CS4 [core7] apply a comparative study by applying the objective-specific
adaptation actions across different DBMSs. The portability of each evaluation scenario is achieved by adapt-
ing the respective domain-specific parameters or replacing the objective-specific sub-templates. For instance,
changing the target DBMS only requires the adjustment of a few EST parameters. Yet, the portability is depen-
dant on the abstraction capabilities providedbyMowgli’s components. For instance, if the applied benchmark

8https://www.acm.org/publications/policies/artifact-review-badging
9https://icpe2019.spec.org/tracks-and-submissions/artifact-evaluation-track.html

https://www.acm.org/publications/policies/artifact-review-badging
https://icpe2019.spec.org/tracks-and-submissions/artifact-evaluation-track.html

72 Chapter 6 Validation

does not abstract multiple DBMSs, the portability of the respective EST is limited by the supported DBMSs of
the benchmark.

EP7: Automation Mowgli’s automation capabilities are verified throughout the case studies where Mowgli
is able to automate all tasks of the 310 evaluation scenarios. In particular, Mowgli automates the allocation
of elastic resources, the deployment of the DBMS cluster, deployment of the monitoring services, workload
execution and processing of the objective-specific metrics. The automation capabilities for the resource allo-
cation and the DBMS deployment are dependent on Cloudiator [add9, add7]. As the landscape of COTs has
evolved during this thesis [157, 207], novel COTs such as Kubernetes [129] or DC/OS10 provide additional au-
tomation capabilities for container-based resources that go beyond the means of Cloudiator. Mowgli already
provides the means to incorporate these COTs on a conceptual level and only technical effort is required to
implement these extensions. Besides, fog and edge automation frameworks have started to evolve during
this thesis [156]. In the context of these advances, Mowgli is able to provide comprehensive automation ca-
pabilities for cloud resources but requires extensions regarding container-based resources as well as for the
fog and edge resource domain. Yet, Mowgli’s extensibility and the multi-cloud concepts can be applied to
ease the incorporation of fog and edge concepts. Besides, the automated evaluation objective processing
offers possibilities for enhancements such as advanced data processing frameworks [143] or visualization
methods [148].

EP8: Orchestration In extension to Mowgli’s automation capabilities, its orchestration capabilities are veri-
fied by the performed case studies CS3 and CS4 that require the orchestration of evaluation tasks at runtime
such as adapting the DBMS cluster (CS3/CS4) or injecting resource failures (CS4). Moreover, these orches-
tration events are integrated into the metadata collection to enable the automated processing of higher-level
evaluation metrics. While the applied runtime adaptations prove their applicability to enable the evaluation
of the higher-level objectives elasticity and availability, these runtime adaptation offer extension points for
advanced orchestration concepts. For instance, the elasticity objective can be enhanced by extending its
adaptation capabilities with sophisticated DBMS auto-scaling approaches of the DBMS [81, 91] and cloud
context [104, 188]. Regarding failure injection, continuative methods such as jepsen11 or the ChaosToolkit12

can advance Mowgli orchestration capabilities in the scope of availability objective.

6.3 Reflections on Evaluating distributed DBMS on Elastic Infrastructures

Throughout the development, implementation, and evaluation of the concepts and the resulting software
framework presented within this thesis, novel insight and experiences in the process of evaluating the non-
functional features of distributed DBMSs operated on elastic infrastructures have been established. The in-
sights are described in the respective case studies CS1 — CS4 and they are based on addressing the chal-
lenges of elastic resource, distributed DBMS and DBMS workload domain, resulting in a overarching method-
ology and the integrated evaluation frameworks Mowgli, Kaa and King Louie. These frameworks provide ex-
tensive automation and orchestration capabilities that enable novel insights in the non-functional features of

10https://dcos.io/
11https://github.com/jepsen-io/jepsen
12https://chaostoolkit.org/

https://dcos.io/
https://github.com/jepsen-io/jepsen
https://chaostoolkit.org/

6.3 Reflections on Evaluating distributed DBMS on Elastic Infrastructures 73

distributed DBMS by considering a multitude of resource, DBMS and workload parameters, and processing
the objective-specific metrics. The experiences we gained throughout these performed case studies, verify
that Mowgli is a valuable and powerful tool to support the performance engineer in designing and executing
comprehensive evaluations in realistic environments. Yet, the experiences also show some boundaries of
Mowgli, Kaa and King Louie with respective to the evaluation objective support, elastic resource support and
evaluation data processing methods. These boundaries are discussed in the following paragraphs.

Evaluation Objective Support While Mowgli has proven its evaluation capabilities for the evaluation objec-
tives performance, scalability, elasticity and availability as integrated framework, it does not address addi-
tional higher-level evaluation objectives such as DBMS consistency [78, 93] or the operational costs for DBMS
on elastic infrastructures [35, 66], which are also of importance to determine the DBMS operational model.
As Mowgli provides a modular and extensible architecture, its extension towards additional evaluation objec-
tives it methodologically and technically feasible.

Elastic Resource Support With respect to the supported technologies, Mowgli has proven to support het-
erogenous DBMS, different elastic providers and multiple elastic resource types. Yet, in its current state,
Mowgli does not support the latest advances in elastic resource infrastructures such as Kubernetes [129] nor
does it support the heterogenous infrastructures of the still evolving edge and fog providers [194]. As these
resource offers are not widely adopted for operating distributed DBMSs yet, Mowgli’s resource orchestration
capabilities need to be extended to support elastic resources to the full extent for future operational models
of distributed DBMSs. These extensions can be built upon the existing multi-cloud concepts of Mowgli.

Data Processing: Variance Analysis Regarding the result variance analysis, the evaluation methodology
needs to adequately deal with the volatility within the elastic resource domain (resource interferences, time-
dependent performance variations), DBMS domain (DBMS-specific compaction and synchronization pro-
cesses) and workload domain (statistical randomness in synthetic workloads). Consequently, evaluations
need to be repeated multiple times and statistical methods need to be applied to increase the significance
of the results. Mowgli’s automation capabilities allow any number of evaluation repetitions. Based on the
resulting data sets, it provides the basic statistical functions such asmean, standard deviation or percentiles
for each evaluation-specific metric. By providing these basic statistical functions, Mowgli already super-
sedes common approaches in cloud service benchmarking [201]. However, Mowgli does currently not provide
advanced statistical methods such as confidence intervals or Analysis of Variance (ANOVA) [8]. Extending
Mowgli’s data processing capabilities with such statistical methods is already technically possible. These
methods can be applied to support the performance engineer in determining the required number of repeti-
tions, identifying a robust statistical function for aggregating multiple data sets and increasing the statistical
significance of the evaluation results.

Data Processing: Data Correlation Regarding the evaluation data correlation, the extensive number of
domain-specific parameters within an EST makes the direct correlation between dedicated domain-specific
input parameters and the resulting objective-specific metrics a challenging task. Mowgli allows the speci-
fication of a multitude of domain-specific parameters in the evaluation design and execution process and it
provides the resulting data sets in human andmachine readable formats to support the performance engineer.

74 Chapter 6 Validation

Yet, the identification of relevant EST parameters and their correlation with the evaluation results are subject
to the performance engineer’s domain knowledge. Thus, the performance engineer would benefit from the
automated processing of advanced data correlation functions such as the Pearson correlation coefficient or
machine learning approaches such as Rafiki [153]. In order to apply such approaches Mowgli’s modular ar-
chitecture provides the suitable interfaces to extend it with such approaches and automate their execution
within the evaluation process.

WhileMowgli partially addresses advanceddata analytic concepts such as variance analysis and evaluation
data correlation, Mowgli’s holistic evaluation automation concepts enable such concepts in the first place for
distributed DBMS on elastic infrastructures as these concepts require an extensive number of evaluation data.
Mowgli’s reproducibility and automation capabilities enable the generation of such extensive evaluation data
for distributed DBMSs on elastic infrastructures. In order to support these concepts to in an integrated way
in Mowgli, Mowgli’s data processing capabilities can to be extended and it already provides the required
interfaces to integrate the outlined data analytic methods.

6.4 Summary

This chapter summarized the validation results of Mowgli, Kaa and King Louie. The validation follows a two-
fold approach: first, Mowgli applicability for evaluating distributed DBMS on elastic infrastructure was vali-
dated based on four industry-driven case studies that target the evaluation objectives performance, scalabil-
ity, elasticity and availability. The case studies comprised 310 different evaluation scenarios, resulting in 1426
data sets that confirmed Mowgli’s significance and its automation capabilities. Moreover, Mowgli provided
novel insights into the performance impact of elastic infrastructure, the performance impact of DBMS-specific
consistency configurations, DBMS elasticity under different workload patterns and the DBMS availability in
case of elastic resource failures. Secondly, a qualitative validation was carried out by comparing Mowgli’s ca-
pabilities against the cross-domain principles established in Chapter 4.2. The results confirmed that Mowgli
follows the cross-domain evaluation principles with a dedicated focus on reproducibility, portability and au-
tomation. Yet, the validation also showed that extensions are required to provide these principles for the
recent elastic resource domains of the edge and fog domain. Finally, the overall experiences in evaluating
distributed DBMSs on elastic infrastructures with Mowgli were reflected and limiting aspects regarding the
statistical data processing capabilities of Mowgli were discussed.

Chapter 7

Conclusion and Future Work

Started with web applications and intensified by Big Data as well as Internet of Things (IoT) applications, the
need tomanagemassive and continuously growing amounts of data has become a key challenge for dataman-
agement systems. In consequence, the Database Management System (DBMS) landscape has significantly
evolved over the last decade and the established relational DBMSs are extended with distributed NoSQL and
NewSQL DBMSs. These DBMS technologies promise to address the data management needs of modern data-
intensive applications by ensuring high performance and providing the higher-level non-functional features
(horizontal) scalability, elasticity and high-availability.

In parallel to the evolvement of DBMS technologies, their operational model also advances towards the
usage of elastic resources such as the cloud or even edge and fog resources. These elastic resources enable
virtually unlimited scalability on the resource level in an elasticmanner. As NoSQL andNewSQL DBMS empha-
size a distributed and shared-nothing architecture, theymake the elastic resources the preferable operational
model to enable scalability and elasticity also on the resource level. In consequence, a DBMS operational
model for data-intensive applications builds upon elastic resources, a distributed DBMS and its application-
specific runtime configuration.

While these advances of the DBMS and elastic resource domains offer promising capabilities to address
the datamanagement needs of data-intensive applications, the heterogeneity and extent in DBMS and elastic
resource offers lead to an inherent complex decision process in identifying an operational model that ensures
high performance, horizontal scalability, elasticity and high availability. Especially, as both domains are in-
terdependent, they need to be considered in its entirety to avoid suboptimal decisions.

In consequence, this decision process needs to be supported by the evaluation of eligible DBMS opera-
tional models based on realistic workloads. There are numerous, established benchmarks to emulate real-
istic workloads for the DBMS and for the elastic resource domains. But these approaches come with the
following limitations that hinder the comprehensive evaluation of distributed DBMSs on elastic infrastruc-
tures: (i) existing evaluation approaches only focus on their respective domain and do not consider the entire
DBMS operational model; (ii) DBMS evaluation methodologies are missing that go beyond performance and
address higher-level non-functional DBMS features such as scalability, elasticity and availability; (iii) holistic
evaluation automation methods are required to cope with the multitude of considerable DBMS operational
models.

This thesis addresses these limitations by defining a methodological approach for evaluating distributed
DBMS on elastic infrastructures for the non-functional DBMS features performance, scalability, elasticity and
availability. Further, we provide an advanced set of evaluation methods that build upon the established
methodology, resulting in the novel DBMS evaluation framework Mowgli that fully automates the evaluation
process.

75

76 Chapter 7 Conclusion and Future Work

7.1 Contribution

The Mowgli framework is the result of the two overarching research objectives addressed in this thesis: es-
tablishing methodological concepts for evaluation distributed DBMS on elastic infrastructures (RO-A) as pre-
sented in Chapter 4 and implementing novel methods for the automated evaluation of distributed DBMS on
elastic infrastructures (RO-B) as presented in Chapter 5.

Methodological Concepts The first methodological contribution carries out an analysis of the relevant
domain-specific impact factors that need to be considered for specifying and executing significant DBMS
evaluations. The impact factors are classified into technology- and evaluation-specific impact factors of the
DBMS, elastic resources and workload domain. The resulting unified view on domain-specific impact factors
represents the foundation for establishing the methodological evaluation concepts.

Secondly, a set of eight cross-domain evaluation principles is established that are essential for advanced
evaluation methods. These principles unify and extend established evaluation principles of the DBMS and
elastic resource domains and pave the path for higher-level DBMS evaluation objectives. The resulting evalu-
ation principles emphasize automation, reproducibility and portability as key principles to address the char-
acteristics of the continuously evolving elastic resource and DBMS domains.

The third methodological contribution defines the comprehensive evaluation design for the evaluation ob-
jectives performance, scalability, elasticity and availability. For each evaluation objective, the design space
is defined by the objective-specific metrics and the comprehensive evaluation process with its dedicated
evaluation tasks. It is noteworthy that the evaluation design comprises a novel set of DBMS elasticity and
availability metrics.

Evaluation Methods Based on the developed methodological DBMS evaluation concepts, this thesis pro-
vides the novel DBMS evaluation framework Mowgli that fully automates the DBMS evaluation on elastic in-
frastructures for the evaluation objectives performance and scalability. To enable the evaluation automation,
Mowgli follows the concept of the comprehensive evaluation design and provides objective-specific Evalua-
tion Scenario Templates (ESTs). An EST defines the required DBMS, elastic resource and workload properties
and exposes the relevant domain-specific impact factors as configurable parameters. The ESTs represent the
input for the Mowgli framework and enable the automated evaluation execution, including the resource allo-
cation, DBMS deployment, workload execution and evaluation objective processing.

In order to allow the evaluation of higher-level evaluation objectives, Mowgli is enriched with the Kaa frame-
work that enables and automates the DBMS elasticity evaluation. Therefore, Kaa provides support for DBMS
adaptations at evaluation runtime which comprise the elastic scale-out and scale-in of the DBMS cluster.
Moreover, Kaa supports the workload adaptation at evaluation runtime to emulate fluctuating workload pat-
terns. Based on the higher-level elasticity metrics, Kaa is able to process them automatically by correlating
basic performance metrics and additional meta-data.

The King Louie framework represents the second advancement of Mowgli and enables the automated DBMS

7.2 Future Research 77

availability evaluation in the context of elastic resource failures. Therefore, King Louie provides a comprehen-
sive resource failure injection framework and allows DBMS-specific recovery actions. Moreover, the devel-
oped availability metrics are automatically processed by the King Louie framework.

Validation The integrated frameworks Mowgli, Kaa and King Louie are validated based on a two-fold ap-
proach as presented in Chapter 6. First, Mowgli’s applicability for realistic evaluation scenarios is validated
based on a series of industry-driven case studies that target the evaluation objectives performance, scalabil-
ity, elasticity and availability. The resulting 310 evaluation scenarios verify Mowgli’s significance for evaluat-
ing cloud-hosted DBMS. Yet, to fully support the latest elastic resource types of the edge and fog domain, the
design concepts and automation methods of Mowgli require extensions to cover these resource domains to
their full extent. Secondly, Mowgli is validated against the established cross-domain evaluation principles.
The results verify that Mowgli follows the established principles while emphasizing reproducibility, portability
and automation for all evaluation objectives.

7.2 Future Research

Selecting the optimal DBMS operational model for data-intensive applications is a complex andmanifold pro-
cess that requires a methodological approach as presented in this thesis. The Mowgli framework provides a
first method to support this decision process but also reveals some limitations that are discussed through-
out the document. Therefore, we briefly summarize these limitations and point out future research that is
envisioned to address these limitations. We classify these future research directions into evaluation design,
evaluation automation and evaluation analytics.

Evaluation Design While the concepts of ESTs provides the model-based abstraction for designing evalua-
tion scenarios, we envision that ESTs can be enhancedwith sophisticated cloudmodelling concepts to enable
a higher level of abstraction and in consequence an even further reduction of the required domain knowledge.
Moreover, extending ESTs with established cloud modelling concepts will enable the specification compre-
hensive performance models to define fine-grained service-level objectives for the target DBMS operational
model.

Evaluation Automation In order to support the full scope of elastic resources, Mowgli’s automation and
orchestration capabilities need be extended to support the recent advances of edge and fog resources, en-
abling the DBMS evaluations of wide area DBMS deployments. Following this approach would also enable
the evaluation of latency-specific failure scenarios in geo-replicated DBMS deployments.

Apart from that, Mowgli does not consider costs as evaluation objective. Yet, itsmodular architecture allows
the seamless extension of the framework to measure the operational costs of the applied elastic resources
and consider them as additional evaluation objective. With such an extension, Mowgli could be applied
addressing complex capacity planning problems as well as for the direct comparison of self-hosted DBMS
and established Database as a Service (DBaaS) providers.

78 Chapter 7 Conclusion and Future Work

Evaluation Analytics While Mowgli already provides basic data processing capabilities to automatically pro-
cess the evaluation objective metrics, we see great potential in applying more sophisticated data analytic
methods to process the resulting data sets. This would allow to identify parametric dependencies between
the DBMS, resource and workload domain. At the same time, automatically deriving DBMS adaptation strate-
gies for diverse workload patterns could be enabled. Moreover, first data analytic methods building upon
Mowgli are already under development that enable the prediction of evaluation results by applying machine
learning. Based on these future research directions, Mowgli could pave the path for a generic performance
model of distributed DBMS on elastic infrastructures.

Acronyms

ANOVA Analysis of Variance

API Application Programming Interface

AWS Amazon Web Services

COT Cloud Orchestration Tool

CRUD Cread, Read, Update, Delete

DBA Database Administrator

DBaaS Database as a Service

DBMS Database Management System

DSL Domain Specific Language

EC2 Elastic Compute Cloud

EMF Eclipse Modelling Framework

ESP Evaluation Scenario Process

EST Evaluation Scenario Template

EP Evaluation Principle

ET Evaluation Task

HDD Hard Disk Drive

HTAP Hybrid Transaction-Analytical Processing

HWV Hardware Virtualization

IaaS Infrastructure as a Service

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

NIST National Institute of Standards and Technology

79

80 Chapter 7 Conclusion and Future Work

NVME Non-Volatile Memory Express

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OS Operating System

OSV Operating System Virtualization

PaaS Plattform as a Service

RDBMS Relational Database Management System

REST Representational State Transfer

RO Research Objective

RQ Research Question

SaaS Software as a Service

SLA Service Level Agreement

SRL Scalability Rule Language

SSD Solid State Drive

TPC Transaction Processing Performance Council

VM Virtual Machine

YCSB Yahoo Cloud Serving Benchmark

Bibliography

[1] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English Query Language”. In:
Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and
Control. SIGFIDET ’74. Ann Arbor, Michigan: Association for Computing Machinery, 1974, pp. 249–
264. isbn: 9781450374156. doi: 10.1145/800296.811515.

[2] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable Third Generation
Architectures”. In: Commun. ACM 17.7 (July 1974), pp. 412–421. issn: 0001-0782. doi: 10.1145/
361011.361073.

[3] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Commun. ACM 26.1 (Jan.
1983), pp. 64–69. issn: 0001-0782. doi: 10.1145/357980.358007.

[4] Theo Haerder and Andreas Reuter. “Principles of Transaction-Oriented Database Recovery”. In: ACM
Comput. Surv. 15.4 (Dec. 1983), pp. 287–317. issn: 0360-0300. doi: 10.1145/289.291.

[5] Michael Stonebraker. “The case for shared nothing”. In: IEEE Database Eng. Bull. 9.1 (1986), pp. 4–
9. url: https://dsf.berkeley.edu/papers/hpts85-nothing.pdf.

[6] Jim Gray. “A View of Database System Performance Measures”. In: SIGMETRICS Perform. Eval. Rev.
15.1 (May 1987), pp. 3–4. issn: 0163-5999. doi: 10.1145/29904.29905.

[7] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane Radatz,
Mary Yee, Hugh Porteous and Fredrick Springsteel. IEEE Standard Computer Dictionary: Compilation
of IEEE Standard Computer Glossaries. IEEE Press, 1991. isbn: 1559370793.

[8] Raj Jain. The art of computer systems performance analysis - techniques for experimental design,
measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991, pp. I–XXVII,
1–685. isbn: 978-0-471-50336-1.

[9] Jim Gray. Benchmark Handbook: For Database and Transaction Processing Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1992. isbn: 1558601597.

[10] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh and Peter Schwarz. “ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Log-
ging”. In: ACM Trans. Database Syst. 17.1 (Mar. 1992), pp. 94–162. issn: 0362-5915. doi: 10.1145/
128765.128770.

[11] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski and Peter J. Weinberger. “Quickly
Generating Billion-Record Synthetic Databases”. In: Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference onManagement of Data. SIGMOD ’94. Minneapolis, Minnesota, USA: Association
for Computing Machinery, 1994, pp. 243–252. isbn: 0897916395. doi: 10.1145/191839.191886.

[12] Clark D French. “’One size fits all’ database architectures do not work for DSS”. In: ACM SIGMOD
Record. Vol. 24. 2. ACM. 1995, pp. 449–450. doi: 10.1145/223784.223871.

81

https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/357980.358007
https://doi.org/10.1145/289.291
https://dsf.berkeley.edu/papers/hpts85-nothing.pdf
https://doi.org/10.1145/29904.29905
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/191839.191886
https://doi.org/10.1145/223784.223871

82 Bibliography

[13] Surajit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehousing and OLAP Technology”.
In: SIGMOD Rec. 26.1 (Mar. 1997), pp. 65–74. issn: 0163-5808. doi: 10.1145/248603.248616.

[14] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine and Daniel Lewin. “Con-
sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web”. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting. STOC ’97. El Paso, Texas, USA: Association for Computing Machinery, 1997, pp. 654–663.
isbn: 0897918886. doi: 10.1145/258533.258660.

[15] “Towards Robust Distributed Systems (Abstract)”. In: Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing. PODC ’00. Portland, Oregon, USA: Association
for Computing Machinery, 2000, p. 7. isbn: 1581131836. doi: 10.1145/343477.343502.

[16] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme and Gustavo Alonso. “Data-
base replication techniques: A three parameter classification”. In: Proceedings 19th IEEE Sym-
posium on Reliable Distributed Systems SRDS-2000. IEEE. 2000, pp. 206–215. doi: 10 . 1109 /
RELDI.2000.885408.

[17] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme and Gustavo Alonso. “Un-
derstanding replication in databases and distributed systems”. In: Proceedings 20th IEEE Interna-
tional Conference on Distributed Computing Systems. IEEE. 2000, pp. 464–474. doi: 10 . 1109 /
ICDCS.2000.840959.

[18] Hakan Hacigumus, Bala Iyer and Sharad Mehrotra. “Providing database as a service”. In: Proceed-
ings 18th International Conference on Data Engineering. IEEE. 2002, pp. 29–38. doi: 10.1109/
ICDE.2002.994695.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt and Andrew Warfield. “Xen and the Art of Virtualization”. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles. SOSP ’03. Bolton Landing, NY, USA: Association
for Computing Machinery, 2003, pp. 164–177. isbn: 1581137575. doi: 10.1145/945445.945462.

[20] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite andWilly Zwaenepoel. “Per-
formance comparison of middleware architectures for generating dynamic web content”. In: ACM/I-
FIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Pro-
cessing. Springer. 2003, pp. 242–261. doi: 10.1007/3-540-44892-6_13.

[21] Algirdas Avizienis, J-C Laprie, Brian Randell and Carl Landwehr. “Basic concepts and taxonomy of
dependable and secure computing”. In: IEEE transactions on dependable and secure computing 1.1
(2004), pp. 11–33. doi: 10.1109/TDSC.2004.2.

[22] M. Stonebraker and U. Cetintemel. “’One size fits all’: an idea whose time has come and gone”. In:
21st International Conference on Data Engineering (ICDE’05). 2005, pp. 2–11. doi: 10.1109/ICDE.
2005.1.

[23] Dror G Feitelson. Experimental computer science: The need for a cultural change. Tech. rep. School
of Computer Science and Engineering, The Hebrew University of Jerusalem, 2006. url: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1883&rep=rep1&type=pdf.

https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/RELDI.2000.885408
https://doi.org/10.1109/RELDI.2000.885408
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1109/ICDE.2002.994695
https://doi.org/10.1109/ICDE.2002.994695
https://doi.org/10.1145/945445.945462
https://doi.org/10.1007/3-540-44892-6_13
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1883&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1883&rep=rep1&type=pdf

83

[24] Bianca Schroeder, AdamWierman andMor Harchol-Balter. “Open versus Closed: A Cautionary Tale”.
In: Proceedings of the 3rd Conference on Networked Systems Design & Implementation - Volume 3.
NSDI’06. San Jose, CA: USENIX Association, 2006, p. 18. url: https://static.usenix.org/
events/nsdi06/tech/full_papers/schroeder/schroeder.pdf.

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-
man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels. “Dynamo:
Amazon’s Highly Available Key-Value Store”. In: Proceedings of Twenty-First ACM SIGOPS Sym-
posium on Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA: Association
for Computing Machinery, 2007, pp. 205–220. isbn: 9781595935915. doi: 10 . 1145 / 1294261 .
1294281.

[26] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin and Anthony Liguori. “KVM: the Linux Virtual Machine
Monitor”. In: In Proceedings of the 2007 Ottawa Linux Symposium (OLS’-07. 2007. url: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.423.3470&rep=rep1&type=pdf.

[27] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem and
Pat Helland. “The End of an Architectural Era: (It’s Time for a Complete Rewrite)”. In: Proceedings
of the 33rd International Conference on Very Large Data Bases. VLDB ’07. Vienna, Austria: VLDB
Endowment, 2007, pp. 1150–1160. isbn: 9781595936493. doi: 10.1145/3226595.3226637.

[28] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and paradigms.
Prentice-Hall, 2007.

[29] Anja Bog, Jens Kruger and Jan Schaffner. “A composite benchmark for online transaction processing
and operational reporting”. In: 2008 IEEE Symposium on Advanced Management of Information for
Globalized Enterprises (AMIGE). IEEE. 2008, pp. 1–5. doi: 10.1109/AMIGE.2008.ECP.30.

[30] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes and Robert E Gruber. “Bigtable: A distributed storage system for
structured data”. In: ACM Transactions on Computer Systems (TOCS) 26.2 (2008), p. 4. doi: 10 .
1145/1365815.1365816.

[31] Dan Pritchett. “Base: An acid alternative”. In:Queue 6.3 (2008), pp. 48–55. doi: 10.1145/1394127.
1394128.

[32] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert Wong, Arthur
Klepchukov, Sheetal Patil, Armando Fox and David Patterson. “Cloudstone: Multi-platform, multi-
language benchmark and measurement tools for web 2.0”. In: Proc. of CCA. Vol. 8. 2008, p. 228.
url: https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.
pdf.

[33] Ming Zhong, Kai Shen and Joel Seiferas. “Replication Degree Customization for High Availability”.
In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008.
Eurosys ’08. Glasgow, Scotland UK: Association for Computing Machinery, 2008, pp. 55–68. isbn:
9781605580135. doi: 10.1145/1352592.1352599.

[34] Carsten Binnig, Donald Kossmann, Tim Kraska and Simon Loesing. “How is the Weather Tomorrow?
Towards a Benchmark for the Cloud”. In: Proceedings of the Second International Workshop on Test-
ingDatabase Systems. DBTest ’09. Providence, Rhode Island: Association for ComputingMachinery,
2009. isbn: 9781605587066. doi: 10.1145/1594156.1594168.

https://static.usenix.org/events/nsdi06/tech/full_papers/schroeder/schroeder.pdf
https://static.usenix.org/events/nsdi06/tech/full_papers/schroeder/schroeder.pdf
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.423.3470&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.423.3470&rep=rep1&type=pdf
https://doi.org/10.1145/3226595.3226637
https://doi.org/10.1109/AMIGE.2008.ECP.30
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1394127.1394128
https://doi.org/10.1145/1394127.1394128
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://doi.org/10.1145/1352592.1352599
https://doi.org/10.1145/1594156.1594168

84 Bibliography

[35] Daniela Florescu and Donald Kossmann. “Rethinking Cost and Performance of Database Systems”.
In: SIGMOD Rec. 38.1 (June 2009), pp. 43–48. issn: 0163-5808. doi: 10.1145/1558334.1558339.

[36] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen and Stephen Revilak. “The star schema benchmark
and augmented fact table indexing”. In: Technology Conference on Performance Evaluation and
Benchmarking. Springer. 2009, pp. 237–252. doi: 10.1007/978-3-642-10424-4_17.

[37] Werner Vogels. “Eventually Consistent”. In: Commun. ACM 52.1 (Jan. 2009), pp. 40–44. issn: 0001-
0782. doi: 10.1145/1435417.1435432.

[38] Michael Armbrust et al. “A View of Cloud Computing”. In: Commun. ACM 53.4 (Apr. 2010), pp. 50–
58. issn: 0001-0782. doi: 10.1145/1721654.1721672.

[39] AaronBeitch, Brandon Liu, Timothy Yung, ReanGriffith, Armando Fox andDavid A. Patterson. Rain: A
Workload Generation Toolkit for Cloud Computing Applications. Tech. rep. UCB/EECS-2010-14. EECS
Department, University of California, Berkeley, Feb. 2010. url: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2010/EECS-2010-14.html.

[40] Brian F. Cooper, AdamSilberstein, Erwin Tam, Raghu Ramakrishnan and Russell Sears. “Benchmark-
ing Cloud Serving Systems with YCSB”. In: Proceedings of the 1st ACM Symposium on Cloud Com-
puting. SoCC ’10. Indianapolis, Indiana, USA: Association for Computing Machinery, 2010, pp. 143–
154. isbn: 9781450300360. doi: 10.1145/1807128.1807152.

[41] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso,
Carrie Grimes and Sean Quinlan. “Availability in Globally Distributed Storage Systems”. In: OSDI’10
(2010), pp. 61–74.

[42] Avinash Lakshman and PrashantMalik. “Cassandra: a decentralized structured storage system”. In:
ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40. doi: 10.1145/1773912.1773922.

[43] Ang Li, Xiaowei Yang, Srikanth Kandula and Ming Zhang. “CloudCmp: Comparing Public Cloud Pro-
viders”. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. IMC ’10.
Melbourne, Australia: Association for ComputingMachinery, 2010, pp. 1–14. isbn: 9781450304832.
doi: 10.1145/1879141.1879143.

[44] Jörg Schad, Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. “Runtime Measurements in the Cloud: Ob-
serving, Analyzing, and Reducing Variance”. In: Proc. VLDB Endow. 3.1–2 (Sept. 2010), pp. 460–471.
issn: 2150-8097. doi: 10.14778/1920841.1920902.

[45] TPC Benchmark ™C. Version 5.11. Transaction Processing Performance Council (TPC). 2010. url:
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[46] Divyakant Agrawal, Amr El Abbadi, Sudipto Das and Aaron J Elmore. “Database scalability, elasti-
city, and autonomy in the cloud”. In: International Conference on Database Systems for Advanced
Applications. Springer. Springer Berlin Heidelberg, 2011, pp. 2–15. doi: 10.1007/978- 3- 642-
20149-3_2.

[47] Matthew Aslett. How will the database incumbents respond to NoSQL and NewSQL. Tech. rep. 451
Research, 2011. url: https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/
aslett-newsql.pdf.

https://doi.org/10.1145/1558334.1558339
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1721654.1721672
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.14778/1920841.1920902
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://doi.org/10.1007/978-3-642-20149-3_2
https://doi.org/10.1007/978-3-642-20149-3_2
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/aslett-newsql.pdf
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/aslett-newsql.pdf

85

[48] David Bermbach and Stefan Tai. “Eventual Consistency: How Soon is Eventual? An Evaluation of
AmazonS3’s Consistency Behavior”. In: Proceedings of the 6thWorkshop onMiddleware for Service
Oriented Computing. MW4SOC ’11. Lisbon, Portugal: Association for Computing Machinery, 2011.
isbn: 9781450310673. doi: 10.1145/2093185.2093186.

[49] Anja Bog, Hasso Plattner and Alexander Zeier. “A mixed transaction processing and operational
reporting benchmark”. In: Information Systems Frontiers 13.3 (2011), pp. 321–335. doi: 10.1007/
s10796-010-9283-8.

[50] Anja Bog, Kai Sachs and Alexander Zeier. “Benchmarking Database Design for Mixed OLTP and
OLAP Workloads”. In: Proceedings of the 2nd ACM/SPEC International Conference on Performance
Engineering. ICPE ’11. Karlsruhe, Germany: Association for Computing Machinery, 2011, pp. 417–
418. isbn: 9781450305198. doi: 10.1145/1958746.1958806.

[51] Rick Cattell. “Scalable SQL and NoSQL data stores”. In: Acm Sigmod Record 39.4 (2011), pp. 12–27.
doi: 10.1145/1978915.1978919.

[52] RichardCole et al. “TheMixedWorkloadCH-benCHmark”. In:Proceedings of the Fourth International
Workshop on Testing Database Systems. DBTest ’11. Athens, Greece: ACM, 2011, 8:1–8:6. isbn: 978-
1-4503-0655-3. doi: 10.1145/1988842.1988850.

[53] Thibault Dory, Boris Mejı�as, PV Roy and Nam-Luc Tran. “Measuring elasticity for cloud databases”.
In: Proceedings of the The Second International Conference on Cloud Computing, GRIDs, and
Virtualization. Citeseer. 2011, pp. 37–48. url: https : / / www . info . ucl . ac . be / ~pvr /
CC2011elasticityCRfinal.pdf.

[54] Robin Hecht and Stefan Jablonski. “NoSQL Evaluation: A Use Case Oriented Survey”. In: Proceed-
ings of the 2011 International Conference on Cloud and Service Computing. CSC ’11. USA: IEEE Com-
puter Society, 2011, pp. 336–341. isbn: 9781457716355. doi: 10.1109/CSC.2011.6138544.

[55] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios Tsoumakos and Nec-
tarios Koziris. “On the Elasticity of NoSQL Databases over Cloud Management Platforms”. In: Pro-
ceedings of the 20th ACM International Conference on Information and Knowledge Management.
CIKM ’11. Glasgow, Scotland, UK: Association for ComputingMachinery, 2011, pp. 2385–2388. isbn:
9781450307178. doi: 10.1145/2063576.2063973.

[56] Peter Mell, Tim Grance et al. The NIST definition of cloud computing. Tech. rep. 2011. doi: 10.6028/
NIST.SP.800-145.

[57] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth Gibson, Adam
Fuchs and Billie Rinaldi. “YCSB++: Benchmarking and Performance Debugging Advanced Features
in Scalable Table Stores”. In: Proceedings of the 2nd ACM Symposium on Cloud Computing. SOCC
’11. Cascais, Portugal: Association for Computing Machinery, 2011. isbn: 9781450309769. doi: 10.
1145/2038916.2038925.

[58] Zia ur Rehman, Farookh K Hussain and Omar K Hussain. “Towards multi-criteria cloud service selec-
tion”. In: 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquit-
ous Computing. IEEE. 2011, pp. 44–48. doi: 10.1109/IMIS.2011.99.

https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1007/s10796-010-9283-8
https://doi.org/10.1007/s10796-010-9283-8
https://doi.org/10.1145/1958746.1958806
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1988842.1988850
https://www.info.ucl.ac.be/~pvr/CC2011elasticityCRfinal.pdf
https://www.info.ucl.ac.be/~pvr/CC2011elasticityCRfinal.pdf
https://doi.org/10.1109/CSC.2011.6138544
https://doi.org/10.1145/2063576.2063973
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1145/2038916.2038925
https://doi.org/10.1145/2038916.2038925
https://doi.org/10.1109/IMIS.2011.99

86 Bibliography

[59] Michael Stonebraker and Rick Cattell. “10 Rules for Scalable Performance in “simple Operation”
Datastores”. In: Commun. ACM 54.6 (June 2011), pp. 72–80. issn: 0001-0782. doi: 10 . 1145 /
1953122.1953144.

[60] Steve Strauch, Oliver Kopp, Frank Leymann and Tobias Unger. “A taxonomy for cloud data host-
ing solutions”. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE. 2011, pp. 577–584. doi: 10.1109/DASC.2011.106.

[61] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee and Anna Liu. “Data Consistency Properties and
the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective.” In: CIDR. Vol. 11. 2011,
pp. 134–143. url: http://www.echronos.systems/publications/nicta_full_text/4341.
pdf.

[62] Daniel Abadi. “Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story”. In: Computer 45.2 (2012), pp. 37–42. doi: 10.1109/MC.2012.33.

[63] Anja Bog, Kai Sachs and Hasso Plattner. “Interactive Performance Monitoring of a Composite OLTP
and OLAP Workload”. In: Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’12. Scottsdale, Arizona, USA: Association for Computing Machinery,
2012, pp. 645–648. isbn: 9781450312479. doi: 10.1145/2213836.2213921.

[64] Flavio Bonomi, Rodolfo Milito, Jiang Zhu and Sateesh Addepalli. “Fog Computing and Its Role in
the Internet of Things”. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing.MCC ’12. Helsinki, Finland: Association for ComputingMachinery, 2012, pp. 13–16. isbn:
9781450315197. doi: 10.1145/2342509.2342513.

[65] Eric Brewer. “CAP twelve years later: How the” rules” have changed”. In: Computer 45.2 (2012),
pp. 23–29. doi: 10.1109/MC.2012.37.

[66] Avrilia Floratou, Jignesh M. Patel, Willis Lang and Alan Halverson. “When Free Is Not Really Free:
What Does It Cost to Run a Database Workload in the Cloud?” In: Topics in Performance Evaluation,
Measurement and Characterization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 163–
179. isbn: 978-3-642-32627-1. doi: 10.1007/978-3-642-32627-1_12.

[67] Avrilia Floratou, Nikhil Teletia, David J. DeWitt, Jignesh M. Patel and Donghui Zhang. “Can the Ele-
phants Handle the NoSQLOnslaught?” In: Proc. VLDB Endow. 5.12 (Aug. 2012), pp. 1712–1723. issn:
2150-8097. doi: 10.14778/2367502.2367511.

[68] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl and Cafer Tosun.
“Benchmarking in the cloud: What it should, can, and cannot be”. In: Technology Conference on
Performance Evaluation and Benchmarking. Springer. 2012, pp. 173–188. doi: 10.1007/978-3-
642-36727-4_12.

[69] Markus Klems, David Bermbach and Rene Weinert. “A runtime quality measurement framework
for cloud database service systems”. In: 2012 Eighth International Conference on the Quality of
Information and Communications Technology. IEEE. 2012, pp. 38–46. doi: 10.1109/QUATIC.2012.
17.

[70] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. 1st. Addison-Wesley Professional, 2012. isbn: 0321826620.

https://doi.org/10.1145/1953122.1953144
https://doi.org/10.1145/1953122.1953144
https://doi.org/10.1109/DASC.2011.106
http://www.echronos.systems/publications/nicta_full_text/4341.pdf
http://www.echronos.systems/publications/nicta_full_text/4341.pdf
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/2213836.2213921
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1007/978-3-642-32627-1_12
https://doi.org/10.14778/2367502.2367511
https://doi.org/10.1007/978-3-642-36727-4_12
https://doi.org/10.1007/978-3-642-36727-4_12
https://doi.org/10.1109/QUATIC.2012.17
https://doi.org/10.1109/QUATIC.2012.17

87

[71] Michael Stonebraker. “New Opportunities for New SQL”. In: Commun. ACM 55.11 (Nov. 2012),
pp. 10–11. issn: 0001-0782. doi: 10.1145/2366316.2366319.

[72] Michael Stonebraker. Newsql: An alternative to nosql and old sql for new oltp apps. Blog@CACM.
2012. url: https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-
to-nosql-and-old-sql-for-new-oltp-apps/comments?page=1 (visited on 03/04/2020).

[73] Smitha Sundareswaran, Anna Squicciarini and Dan Lin. “A brokerage-based approach for cloud
service selection”. In: 2012 IEEE Fifth International Conference on Cloud Computing. IEEE. 2012,
pp. 558–565. doi: 10.1109/CLOUD.2012.119.

[74] Dennis Westermann, Jens Happe, Rouven Krebs and Roozbeh Farahbod. “Automated Inference of
Goal-Oriented Performance Prediction Functions”. In: Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE 2012. Essen, Germany: Association
for Computing Machinery, 2012, pp. 190–199. isbn: 9781450312042. doi: 10 . 1145 / 2351676 .
2351703.

[75] Rodrigo F Almeida, Flávio RC Sousa, Sérgio Lifschitz and Javam CMachado. “On definingmetrics for
elasticity of cloud databases.” In: SBBD (Short Papers). 2013, pp. 12–1. url: https://sbbd2013.
cin.ufpe.br/Proceedings/artigos/pdfs/sbbd_shp_12.pdf.

[76] Sérgio Almeida, João Leitão and Luı�s Rodrigues. “ChainReaction: A Causal+ Consistent Datastore
Based on Chain Replication”. In: Proceedings of the 8th ACM European Conference on Computer
Systems. EuroSys ’13. Prague, Czech Republic: Association for Computing Machinery, 2013, pp. 85–
98. isbn: 9781450319942. doi: 10.1145/2465351.2465361.

[77] Sumita Barahmand and Shahram Ghandeharizadeh. “BG: A Benchmark to Evaluate Interactive So-
cial Networking Actions.” In: 6th Biennial Conference on Innovative Data Systems (CIDR). 2013. url:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.9222&rep=rep1&
type=pdf.

[78] DavidBermbach and Jörn Kuhlenkamp. “Consistency in distributed storage systems”. In:Networked
Systems. Springer, 2013, pp. 175–189. doi: 10.1007/978-3-642-40148-0_13.

[79] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann, Alexander Nowak and
Sebastian Wagner. “OpenTOSCA–a runtime for TOSCA-based cloud applications”. In: International
Conference on Service-Oriented Computing. Springer. 2013, pp. 692–695. doi: 10.1007/978-3-
642-45005-1_62.

[80] James C. Corbett et al. “Spanner: Google’s Globally Distributed Database”. In: ACM Trans. Comput.
Syst. 31.3 (Aug. 2013). issn: 0734-2071. doi: 10.1145/2491245.

[81] Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo, José Pereira and Ricardo
Vilaça. “MeT: Workload Aware Elasticity for NoSQL”. In: Proceedings of the 8th ACM European Con-
ference on Computer Systems. EuroSys ’13. Prague, Czech Republic: Association for Computing Ma-
chinery, 2013, pp. 183–196. isbn: 9781450319942. doi: 10.1145/2465351.2465370.

[82] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino and Philippe Cudre-Mauroux. “OLTP-Bench: An
Extensible Testbed for Benchmarking Relational Databases”. In: Proc. VLDB Endow. 7.4 (Dec. 2013),
pp. 277–288. issn: 2150-8097. doi: 10.14778/2732240.2732246.

https://doi.org/10.1145/2366316.2366319
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/comments?page=1
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/comments?page=1
https://doi.org/10.1109/CLOUD.2012.119
https://doi.org/10.1145/2351676.2351703
https://doi.org/10.1145/2351676.2351703
https://sbbd2013.cin.ufpe.br/Proceedings/artigos/pdfs/sbbd_shp_12.pdf
https://sbbd2013.cin.ufpe.br/Proceedings/artigos/pdfs/sbbd_shp_12.pdf
https://doi.org/10.1145/2465351.2465361
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.9222&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.9222&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2465351.2465370
https://doi.org/10.14778/2732240.2732246

88 Bibliography

[83] Jörg Domaschka. “A comprehensive approach to transparent and flexible replication of Java ser-
vices and applications”. PhD thesis. Universität Ulm. Fakultät für Ingenieurwissenschaften und In-
formatik, 2013. doi: 10.18725/OPARU-2485.

[84] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and Arnor Solberg. “Managing Multi-
Cloud Systems with CloudMF”. In: Proceedings of the Second Nordic Symposium on Cloud Comput-
ing & Internet Technologies. NordiCloud ’13. Oslo, Norway: Association for Computing Machinery,
2013, pp. 38–45. isbn: 9781450323079. doi: 10.1145/2513534.2513542.

[85] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte and Hans-
Arno Jacobsen. “BigBench: Towards an Industry Standard Benchmark for Big Data Analytics”. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD
’13. New York, New York, USA: Association for Computing Machinery, 2013, pp. 1197–1208. isbn:
9781450320375. doi: 10.1145/2463676.2463712.

[86] KatarinaGrolinger,Wilson A. Higashino, Abhinav Tiwari andMiriamAMCapretz. “Datamanagement
in cloud environments: NoSQL andNewSQL data stores”. In: Journal of Cloud Computing: Advances,
Systems and Applications 2.1 (2013), p. 22. issn: 2192-113X. doi: 10.1186/2192-113X-2-22.

[87] S. Kächele, C. Spann, F. J. Hauck and J. Domaschka. “Beyond IaaS and PaaS: An Extended Cloud Tax-
onomy for Computation, Storage and Networking”. In: 2013 IEEE/ACM 6th International Conference
on Utility and Cloud Computing. 2013, pp. 75–82. doi: 10.1109/UCC.2013.28.

[88] Markus Klems and Hoàng Anh Lê. “Position Paper: Cloud System Deployment and Performance
Evaluation Tools for Distributed Databases”. In: Proceedings of the 2013 International Workshop
on Hot Topics in Cloud Services. HotTopiCS ’13. Prague, Czech Republic: Association for Computing
Machinery, 2013, pp. 63–70. isbn: 9781450320511. doi: 10.1145/2462307.2462322.

[89] Harold Lim, Yuzhang Han and Shivnath Babu. “How to Fit when No One Size Fits”. In: 6th Biennial
Conference on Innovative Data Systems Research (CIDR ’13). Vol. 4. 2013. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.360.298&rep=rep1&type=pdf.

[90] M. Silva,M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu andD. d. Silva. “CloudBench: Experiment Automation
for Cloud Environments”. In: 2013 IEEE International Conference on Cloud Engineering (IC2E). 2013,
pp. 302–311. doi: 10.1109/IC2E.2013.33.

[91] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas and N. Koziris. “Automated, Elastic Re-
source Provisioning for NoSQL Clusters Using TIRAMOLA”. In: 2013 13th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing. May 2013, pp. 34–41. doi: 10.1109/CCGrid.2013.
45.

[92] Chaitanya Baru, Milind Bhandarkar, Carlo Curino, Manuel Danisch, Michael Frank, Bhaskar Gowda,
Hans-Arno Jacobsen, Huang Jie, Dileep Kumar, Raghunath Nambiar et al. “Discussion of BigBench:
a proposed industry standard performance benchmark for big data”. In: Technology Conference on
Performance Evaluation and Benchmarking. Springer. 2014, pp. 44–63. doi: 10.1007/978-3-319-
15350-6_4.

[93] David Bermbach. “Benchmarking Eventually Consistent Distributed Storage Systems”. PhD thesis.
2014. 183 pp. isbn: 978-3-7315-0186-2. doi: 10.5445/KSP/1000039389.

https://doi.org/10.18725/OPARU-2485
https://doi.org/10.1145/2513534.2513542
https://doi.org/10.1145/2463676.2463712
https://doi.org/10.1186/2192-113X-2-22
https://doi.org/10.1109/UCC.2013.28
https://doi.org/10.1145/2462307.2462322
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.298&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.298&rep=rep1&type=pdf
https://doi.org/10.1109/IC2E.2013.33
https://doi.org/10.1109/CCGrid.2013.45
https://doi.org/10.1109/CCGrid.2013.45
https://doi.org/10.1007/978-3-319-15350-6_4
https://doi.org/10.1007/978-3-319-15350-6_4
https://doi.org/10.5445/KSP/1000039389

89

[94] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Sherif Sakr and Raghunath Nambiar. “Towards an
extensible middleware for database benchmarking”. In: Technology Conference on Performance
Evaluation and Benchmarking. Springer. 2014, pp. 82–96. doi: 10.1007/978-3-319-15350-6_6.

[95] Tobias Binz, Uwe Breitenbücher, Oliver Kopp and Frank Leymann. “TOSCA: portable automated
deployment and management of cloud applications”. In: Advanced Web Services. Springer, 2014,
pp. 527–549. doi: 10.1007/978-1-4614-7535-4_22.

[96] Akon Dey, Alan Fekete, Raghunath Nambiar and Uwe Röhm. “YCSB+T: Benchmarking web-scale
transactional databases”. In: 2014 IEEE 30th International Conference on Data Engineering Work-
shops. IEEE. 2014, pp. 223–230. doi: 10.1109/ICDEW.2014.6818330.

[97] Nuno Diegues, Muhammet Orazov, João Paiva, Luı�s Rodrigues and Paolo Romano. “Optimizing Hy-
perspace Hashing via Analytical Modelling and Adaptation”. In: SIGAPP Appl. Comput. Rev. 14.2
(June 2014), pp. 23–35. issn: 1559-6915. doi: 10.1145/2656864.2656866.

[98] Jörg Domaschka, Christopher B. Hauser and Benjamin Erb. “Reliability and Availability Properties
of Distributed Database Systems”. In: Proceedings of the 2014 IEEE 18th International Enterprise
Distributed Object Computing Conference. EDOC ’14. USA: IEEE Computer Society, 2014, pp. 226–
233. isbn: 9781479954704. doi: 10.1109/EDOC.2014.38.

[99] Steffen Friedrich,WolframWingerath, Felix Gessert andNorbert Ritter. “NosqlOLTPbenchmarking: A
survey”. In: Informatik 2014. Bonn: Gesellschaft für Informatik e.V., 2014, pp. 693–704. url: https:
//pdfs.semanticscholar.org/3d48/1573dec74303b00ac86a5e276eab67a1f0ab.pdf.

[100] Alexandru Iosup, RaduProdanandDick Epema. “Iaas cloudbenchmarking: approaches, challenges,
and experience”. In: Cloud Computing for Data-Intensive Applications. Springer, 2014, pp. 83–104.
doi: 10.1007/978-1-4939-1905-5_4.

[101] Rouven Krebs, Christof Momm and Samuel Kounev. “Metrics and techniques for quantifying per-
formance isolation in cloud environments”. In: Science of Computer Programming 90 (2014). Spe-
cial Issue on Component-Based Software Engineering and Software Architecture, pp. 116–134. issn:
0167-6423. doi: https://doi.org/10.1016/j.scico.2013.08.003.

[102] K. Kritikos, J. Domaschka and A. Rossini. “SRL: A Scalability Rule Language for Multi-cloud Environ-
ments”. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science.
Dec. 2014, pp. 1–9. doi: 10.1109/CloudCom.2014.170.

[103] Jörn Kuhlenkamp, Markus Klems and Oliver Röss. “Benchmarking Scalability and Elasticity of Dis-
tributed Database Systems”. In: Proc. VLDB Endow. 7.12 (Aug. 2014), pp. 1219–1230. issn: 2150-
8097. doi: 10.14778/2732977.2732995.

[104] Tania Lorido-Botran, Jose Miguel-Alonso and Jose A Lozano. “A review of auto-scaling techniques
for elastic applications in cloud environments”. In: Journal of grid computing 12.4 (2014), pp. 559–
592. doi: 10.1007/s10723-014-9314-7.

[105] Sherif Sakr. “Cloud-hosted databases: technologies, challenges and opportunities”. In: Cluster
Computing 17.2 (2014), pp. 487–502. issn: 1573-7543. doi: 10.1007/s10586-013-0290-7.

[106] J. Scheuner, P. Leitner, J. Cito and H. Gall. “Cloud Work Bench – Infrastructure-as-Code Based Cloud
Benchmarking”. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and
Science. 2014, pp. 246–253. doi: 10.1109/CloudCom.2014.98.

https://doi.org/10.1007/978-3-319-15350-6_6
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1109/ICDEW.2014.6818330
https://doi.org/10.1145/2656864.2656866
https://doi.org/10.1109/EDOC.2014.38
https://pdfs.semanticscholar.org/3d48/1573dec74303b00ac86a5e276eab67a1f0ab.pdf
https://pdfs.semanticscholar.org/3d48/1573dec74303b00ac86a5e276eab67a1f0ab.pdf
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/https://doi.org/10.1016/j.scico.2013.08.003
https://doi.org/10.1109/CloudCom.2014.170
https://doi.org/10.14778/2732977.2732995
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10586-013-0290-7
https://doi.org/10.1109/CloudCom.2014.98

90 Bibliography

[107] Michael Stonebraker, Andrew Pavlo, Rebecca Taft and Michael L Brodie. “Enterprise database ap-
plications and the cloud: A difficult road ahead”. In: 2014 IEEE International Conference on Cloud
Engineering. IEEE. 2014, pp. 1–6. doi: 10.1109/IC2E.2014.97.

[108] Le Sun, Hai Dong, Farookh Khadeer Hussain, Omar Khadeer Hussain and Elizabeth Chang. “Cloud
service selection: State-of-the-art and future research directions”. In: Journal of Network and Com-
puter Applications 45 (2014), pp. 134–150. doi: 10.1016/j.jnca.2014.07.019.

[109] Alexander Thomson, ThaddeusDiamond, Shu-ChunWeng, Kun Ren, Philip Shao andDaniel J. Abadi.
“Fast Distributed Transactions and Strongly Consistent Replication for OLTP Database Systems”. In:
ACM Trans. Database Syst. 39.2 (May 2014). issn: 0362-5915. doi: 10.1145/2556685.

[110] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai and Adam Barker. “Cloud benchmarking
for performance”. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and
Science. IEEE. 2014, pp. 535–540. doi: 10.1109/CloudCom.2014.28.

[111] Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste and Ronan Tournier. “Benchmark
for OLAP on NoSQL Technologies”. In: 9th IEEE International Conference on Research Challenges in
Information Science (IEEE RCIS 2015). Athens, Greece, May 2015, pp. 480–485. url: https://hal.
archives-ouvertes.fr/hal-01375413.

[112] Jörg Domaschka, Frank Griesinger, Daniel Baur and Alessandro Rossini. “Beyond Mere Application
Structure Thoughts on the Future of Cloud Orchestration Tools”. In: Procedia Computer Science 68
(2015). 1st International Conference on Cloud Forward: From Distributed to Complete Computing,
pp. 151–162. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.09.231.

[113] Jörg Domaschka, Kyriakos Kritikos and Alessandro Rossini. “Towards aGeneric Language for Scalab-
ility Rules”. In: Advances in Service-Oriented and Cloud Computing. Ed. by Guadalupe Ortiz and
Cuong Tran. Cham: Springer International Publishing, 2015, pp. 206–220. isbn: 978-3-319-14886-
1.

[114] Eugene Eberbach and Alex Reuter. “Toward El Dorado for Cloud Computing: Lightweight VMs, Con-
tainers, Meta-Containers and Oracles”. In: Proceedings of the 2015 European Conference on Soft-
ware Architecture Workshops. ECSAW ’15. Dubrovnik, Cavtat, Croatia: Association for Computing
Machinery, 2015. isbn: 9781450333931. doi: 10.1145/2797433.2797446.

[115] Wes Felter, Alexandre Ferreira, Ram Rajamony and Juan Rubio. “An updated performance compar-
ison of virtual machines and linux containers”. In: 2015 IEEE international symposium on perform-
ance analysis of systems and software (ISPASS). IEEE. 2015, pp. 171–172. doi: 10.1109/ISPASS.
2015.7095802.

[116] Nikolas Roman Herbst, Samuel Kounev, Andreas Weber and Henning Groenda. “BUNGEE: an elasti-
city benchmark for self-adaptive IaaS cloud environments”. In: Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE. 2015,
pp. 46–56. doi: 10.1109/SEAMS.2015.23.

[117] Zoltán Ádám Mann. “Allocation of Virtual Machines in Cloud Data Centers—A Survey of Problem
Models and Optimization Algorithms”. In: ACM Comput. Surv. 48.1 (Aug. 2015). issn: 0360-0300.
doi: 10.1145/2797211. url: https://doi.org/10.1145/2797211.

https://doi.org/10.1109/IC2E.2014.97
https://doi.org/10.1016/j.jnca.2014.07.019
https://doi.org/10.1145/2556685
https://doi.org/10.1109/CloudCom.2014.28
https://hal.archives-ouvertes.fr/hal-01375413
https://hal.archives-ouvertes.fr/hal-01375413
https://doi.org/https://doi.org/10.1016/j.procs.2015.09.231
https://doi.org/10.1145/2797433.2797446
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/SEAMS.2015.23
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211

91

[118] Roberto Morabito, Jimmy Kjällman and Miika Komu. “Hypervisors vs. lightweight virtualization: a
performance comparison”. In: 2015 IEEE International Conference on Cloud Engineering. IEEE. 2015,
pp. 386–393. doi: 10.1109/IC2E.2015.74.

[119] Raghunath Nambiar and Meikel Poess. “Reinventing the TPC: from traditional to big data to inter-
net of things”. In: Technology Conference on Performance Evaluation and Benchmarking. Springer.
2015, pp. 1–7. doi: 10.1007/978-3-319-31409-9_1.

[120] Linh Manh Pham, Alain Tchana, Didier Donsez, Noel De Palma, Vincent Zurczak and Pierre-Yves
Gibello. “Roboconf: a hybrid cloud orchestrator to deploy complex applications”. In: 2015 IEEE 8th
International Conference onCloudComputing. IEEE. 2015, pp. 365–372.doi: 10.1109/CLOUD.2015.
56.

[121] Norbert Siegmund, Alexander Grebhahn, Sven Apel and Christian Kästner. “Performance-Influence
Models for Highly Configurable Systems”. In: Proceedings of the 2015 10th Joint Meeting on Found-
ations of Software Engineering. ESEC/FSE 2015. Bergamo, Italy: Association for Computing Ma-
chinery, 2015, pp. 284–294. isbn: 9781450336758. doi: 10.1145/2786805.2786845.

[122] TPC Benchmark ™E. Version 1.14.0. Transaction Processing Performance Council (TPC). 2015. url:
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-e_v1.14.0.pdf.

[123] Abhishek Verma, Luis Pedrosa,Madhukar Korupolu, DavidOppenheimer, Eric Tune and JohnWilkes.
“Large-Scale Cluster Management at Google with Borg”. In: Proceedings of the Tenth European Con-
ference on Computer Systems. EuroSys ’15. Bordeaux, France: Association for ComputingMachinery,
2015. isbn: 9781450332385. doi: 10.1145/2741948.2741964.

[124] Miguel G Xavier, Israel C De Oliveira, Fabio D Rossi, Robson D Dos Passos, Kassiano J Matteussi
and César AF De Rose. “A performance isolation analysis of disk-intensive workloads on container-
based clouds”. In: 2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE. 2015, pp. 253–260. doi: 10.1109/PDP.2015.67.

[125] Shanhe Yi, Zijiang Hao, Zhengrui Qin and Qun Li. “Fog computing: Platform and applications”. In:
2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE. 2015,
pp. 73–78. doi: 10.1109/HotWeb.2015.22.

[126] Y. Zhang, J. Guo, E. Blais and K. Czarnecki. “Performance Prediction of Configurable Software Sys-
tems by Fourier Learning (T)”. In: 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 2015, pp. 365–373. doi: 10.1109/ASE.2015.15.

[127] Daniel Abadi et al. “TheBeckmanReport onDatabase Research”. In:Commun. ACM 59.2 (Jan. 2016),
pp. 92–99. issn: 0001-0782. doi: 10.1145/2845915. url: https://doi.org/10.1145/2845915.

[128] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds and C. Rosenthal. “Chaos
Engineering”. In: IEEE Software 33.03 (May 2016), pp. 35–41. issn: 1937-4194. doi: 10.1109/MS.
2016.60.

[129] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer and John Wilkes. “Borg, Omega, and
Kubernetes”. In: Queue 14.1 (Jan. 2016), pp. 70–93. issn: 1542-7730. doi: 10 . 1145 / 2898442 .
2898444.

https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1007/978-3-319-31409-9_1
https://doi.org/10.1109/CLOUD.2015.56
https://doi.org/10.1109/CLOUD.2015.56
https://doi.org/10.1145/2786805.2786845
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-e_v1.14.0.pdf
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1109/PDP.2015.67
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/ASE.2015.15
https://doi.org/10.1145/2845915
https://doi.org/10.1145/2845915
https://doi.org/10.1109/MS.2016.60
https://doi.org/10.1109/MS.2016.60
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444

92 Bibliography

[130] Jose Carrasco, Javier Cubo, Francisco Durán and Ernesto Pimentel. “Bidimensional cross-cloudman-
agement with TOSCA andBrooklyn”. In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE. 2016, pp. 951–955. doi: 10.1109/CLOUD.2016.0143.

[131] Ryan Chard, Kyle Chard, Bryan Ng, Kris Bubendorfer, Alex Rodriguez, Ravi Madduri and Ian Foster.
“An automated tool profiling service for the cloud”. In: 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid). IEEE. 2016, pp. 223–232. doi: 10.1109/
CCGrid.2016.57.

[132] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D. Satria, Jeffry
Adityatama and Kurnia J. Eliazar. “Why Does the Cloud Stop Computing? Lessons from Hundreds of
Service Outages”. In: Proceedings of the Seventh ACM Symposium on Cloud Computing. SoCC ’16.
Santa Clara, CA, USA: Association for Computing Machinery, 2016, pp. 1–16. isbn: 9781450345255.
doi: 10.1145/2987550.2987583. url: https://doi.org/10.1145/2987550.2987583.

[133] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K Reiter and Vyas Sekar. “Gremlin:
Systematic resilience testing of microservices”. In: 2016 IEEE 36th International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE. 2016, pp. 57–66. doi: 10.1109/ICDCS.2016.11.

[134] Kyriakos Kritikos, Kostas Magoutis and Dimitris Plexousakis. “Towards knowledge-based assisted
IaaS selection”. In: 2016 IEEE International Conference on CloudComputing Technology andScience
(CloudCom). IEEE. 2016, pp. 431–439. doi: 10.1109/CloudCom.2016.0073.

[135] Philipp Leitner and Jürgen Cito. “Patterns in the Chaos—A Study of Performance Variation and Pre-
dictability in Public IaaS Clouds”. In: ACM Trans. Internet Technol. 16.3 (Apr. 2016). issn: 1533-5399.
doi: 10.1145/2885497. url: https://doi.org/10.1145/2885497.

[136] Asraa Abdulrazak Ali Mardan and Kenji Kono. “Containers or hypervisors: Which is better for data-
base consolidation?” In: 2016 IEEE international conference on cloud computing technology and
science (CloudCom). IEEE. 2016, pp. 564–571. doi: 10.1109/CloudCom.2016.0098.

[137] Andrew Pavlo and Matthew Aslett. “What’s really new with NewSQL?” In: ACM Sigmod Record 45.2
(2016), pp. 45–55. doi: 10.1145/3003665.3003674.

[138] Ilia Pietri and Rizos Sakellariou. “Mapping Virtual Machines onto Physical Machines in Cloud Com-
puting: A Survey”. In: ACM Comput. Surv. 49.3 (Oct. 2016). issn: 0360-0300. doi: 10 . 1145 /
2983575.

[139] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy and Y. C. Tay. “Containers and Virtual
Machines at Scale: A Comparative Study”. In: Proceedings of the 17th International Middleware
Conference. Middleware ’16. Trento, Italy: Association for Computing Machinery, 2016. isbn:
9781450343008. doi: 10.1145/2988336.2988337.

[140] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li and Lanyu Xu. “Edge computing: Vision and chal-
lenges”. In: IEEE Internet of Things Journal 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.
2579198.

[141] Weisong Shi and Schahram Dustdar. “The promise of edge computing”. In: Computer 49.5 (2016),
pp. 78–81. doi: 10.1109/MC.2016.145.

https://doi.org/10.1109/CLOUD.2016.0143
https://doi.org/10.1109/CCGrid.2016.57
https://doi.org/10.1109/CCGrid.2016.57
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/CloudCom.2016.0073
https://doi.org/10.1145/2885497
https://doi.org/10.1145/2885497
https://doi.org/10.1109/CloudCom.2016.0098
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/2983575
https://doi.org/10.1145/2983575
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2016.145

93

[142] Bruno Xavier, Tiago Ferreto and Luis Jersak. “Time provisioning evaluation of KVM, Docker and unik-
ernels in a cloud platform”. In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid). IEEE. 2016, pp. 277–280. doi: 10.1109/CCGrid.2016.86.

[143] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Processing”. In: Commun. ACM
59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782. doi: 10.1145/2934664.

[144] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic and Anastasia Ailamaki. “The Case For
Heterogeneous HTAP”. In: CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. 2017. url: http://cidrdb.org/
cidr2017/papers/p21-appuswamy-cidr17.pdf.

[145] Andreas Bader, Oliver Kopp and Michael Falkenthal. “Survey and Comparison of Open Source Time
Series Databases”. In: Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Work-
shopband. Bonn: Gesellschaft für Informatik e.V., 2017, pp. 249–268. url: https://dl.gi.de/
handle/20.500.12116/922.

[146] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Arunmoezhi Ramachandran, Alan Fekete and Stefan
Tai. “BenchFoundry: a benchmarking framework for cloud storage services”. In: International Con-
ference on Service-Oriented Computing. Springer. 2017, pp. 314–330. doi: 10.1007/978-3-319-
69035-3_22.

[147] David Bermbach, Frank Pallas, David Garcı�a Pérez, Pierluigi Plebani, Maya Anderson, Ronen Kat
and Stefan Tai. “A research perspective on Fog computing”. In: International Conference on Service-
Oriented Computing. Springer. 2017, pp. 198–210. doi: 10.1007/978-3-319-91764-1_16.

[148] David Bermbach, Erik Wittern and Stefan Tai. Cloud service benchmarking. Springer, 2017. doi: 10.
1007/978-3-319-55483-9.

[149] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira and Rui Oliveira. “HTAPBench: Hybrid Trans-
actional and Analytical Processing Benchmark”. In: Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering. ICPE ’17. L’Aquila, Italy: Association for Computing
Machinery, 2017, pp. 293–304. isbn: 9781450344043. doi: 10.1145/3030207.3030228.

[150] Felix Gessert,WolframWingerath, Steffen Friedrich andNorbert Ritter. “NoSQLDatabase Systems: A
Survey and Decision Guidance”. In: Comput. Sci. 32.3–4 (July 2017), pp. 353–365. issn: 1865-2034.
doi: 10.1007/s00450-016-0334-3.

[151] Søren Kejser Jensen, Torben Bach Pedersen and Christian Thomsen. “Time Series Management Sys-
tems: A Survey”. In: IEEE Transactions on Knowledge and Data Engineering 29.11 (2017), pp. 2581–
2600. doi: 10.1109/TKDE.2017.2740932.

[152] Z. Li, M. Kihl, Q. Lu and J. A. Andersson. “Performance Overhead Comparison between Hypervisor
and Container Based Virtualization”. In: 2017 IEEE 31st International Conference on Advanced In-
formation Networking and Applications (AINA). 2017, pp. 955–962. doi: 10.1109/AINA.2017.79.

https://doi.org/10.1109/CCGrid.2016.86
https://doi.org/10.1145/2934664
http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf
https://dl.gi.de/handle/20.500.12116/922
https://dl.gi.de/handle/20.500.12116/922
https://doi.org/10.1007/978-3-319-69035-3_22
https://doi.org/10.1007/978-3-319-69035-3_22
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1007/978-3-319-55483-9
https://doi.org/10.1007/978-3-319-55483-9
https://doi.org/10.1145/3030207.3030228
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1109/AINA.2017.79

94 Bibliography

[153] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang Gerlach, Travis Har-
rison, Folker Meyer, Ananth Grama, Saurabh Bagchi and Somali Chaterji. “Rafiki: A Middleware for
Parameter Tuning of NoSQL Datastores for Dynamic Metagenomics Workloads”. In: Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. Middleware ’17. Las Vegas, Nevada: Associ-
ation for Computing Machinery, 2017, pp. 28–40. isbn: 9781450347204. doi: 10.1145/3135974.
3135991.

[154] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique and Wouter Joosen. “On the State of NoSQL
Benchmarks”. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion. ICPE ’17 Companion. L’Aquila, Italy: Association for ComputingMachinery,
2017, pp. 107–112. isbn: 9781450348997. doi: 10.1145/3053600.3053622.

[155] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis, Amit Warke, Dean Hildebrand, Mohamed Mo-
hamed, NagapramodMandagere,Wenji Li, Raju Rangaswami andMing Zhao. “In search of the ideal
storage configuration for Docker containers”. In: 2017 IEEE 2nd International Workshops on Found-
ations and Applications of Self* Systems (FAS* W). IEEE. 2017, pp. 199–206. doi: 10.1109/FAS-
W.2017.148.

[156] K. Velasquez, D. P. Abreu, D. Gonçalves, L. Bittencourt, M. Curado, E. Monteiro and E. Madeira.
“Service Orchestration in Fog Environments”. In: 2017 IEEE 5th International Conference on Future
Internet of Things and Cloud (FiCloud). Aug. 2017, pp. 329–336. doi: 10.1109/FiCloud.2017.49.

[157] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng and Rajiv Ranjan. “A
Taxonomy and Survey of Cloud Resource Orchestration Techniques”. In: ACM Comput. Surv. 50.2
(May 2017). issn: 0360-0300. doi: 10.1145/3054177.

[158] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith and Randy H. Katz. “Se-
lecting the Best VM across Multiple Public Clouds: A Data-Driven PerformanceModeling Approach”.
In: Proceedings of the 2017 Symposium on Cloud Computing. SoCC ’17. Santa Clara, California: As-
sociation for Computing Machinery, 2017, pp. 452–465. isbn: 9781450350280. doi: 10 . 1145 /
3127479.3131614.

[159] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song
and Yingchun Yang. “BestConfig: Tapping the Performance Potential of Systems via Automatic Con-
figuration Tuning”. In: Proceedings of the 2017 Symposium on Cloud Computing. SoCC ’17. Santa
Clara, California: Association for Computing Machinery, 2017, pp. 338–350. isbn: 9781450350280.
doi: 10.1145/3127479.3128605.

[160] Daniel J. Abadi and Jose M. Faleiro. “An Overview of Deterministic Database Systems”. In: Commun.
ACM 61.9 (Aug. 2018), pp. 78–88. issn: 0001-0782. doi: 10.1145/3181853.

[161] Yazeed Alabdulkarim, Sumita Barahmand and Shahram Ghandeharizadeh. “BG: a scalable bench-
mark for interactive social networking actions”. In: Future Generation Computer Systems 85 (2018),
pp. 29–38. doi: 10.1016/j.future.2018.02.031.

[162] Matt Aslett and Greg Zwakman. Total Data market projected to reach $146bn by 2022. 451 Research.
2018. url: https://go.451research.com/2018-04-Total-Data-market-projected-146bn-
by-2022.html (visited on 30/11/2019).

https://doi.org/10.1145/3135974.3135991
https://doi.org/10.1145/3135974.3135991
https://doi.org/10.1145/3053600.3053622
https://doi.org/10.1109/FAS-W.2017.148
https://doi.org/10.1109/FAS-W.2017.148
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1145/3054177
https://doi.org/10.1145/3127479.3131614
https://doi.org/10.1145/3127479.3131614
https://doi.org/10.1145/3127479.3128605
https://doi.org/10.1145/3181853
https://doi.org/10.1016/j.future.2018.02.031
https://go.451research.com/2018-04-Total-Data-market-projected-146bn-by-2022.html
https://go.451research.com/2018-04-Total-Data-market-projected-146bn-by-2022.html

95

[163] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini, Arnor Solberg, Manuel
Wimmer, Gerti Kappel and Frank Leymann. “A Systematic Review of Cloud Modeling Languages”.
In: ACM Comput. Surv. 51.1 (Feb. 2018). issn: 0360-0300. doi: 10.1145/3150227.

[164] Rajkumar Buyya et al. “A Manifesto for Future Generation Cloud Computing: Research Directions for
the Next Decade”. In: ACM Comput. Surv. 51.5 (Nov. 2018). doi: 10.1145/3241737. url: https:
//doi.org/10.1145/3241737.

[165] Ali Davoudian, Liu Chen and Mengchi Liu. “A Survey on NoSQL Stores”. In: ACM Comput. Surv. 51.2
(Apr. 2018). issn: 0360-0300. doi: 10.1145/3158661.

[166] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and P. Merle. “Elasticity in Cloud Computing: State of the Art
and Research Challenges”. In: IEEE Transactions on Services Computing 11.2 (Mar. 2018), pp. 430–
447. issn: 2372-0204. doi: 10.1109/TSC.2017.2711009.

[167] S. Eismann, J. Walter, J. von Kistowski and S. Kounev. “Modeling of Parametric Dependencies for
Performance Prediction of Component-Based Software Systems at Run-Time”. In: 2018 IEEE Interna-
tional Conference on Software Architecture (ICSA). Apr. 2018, pp. 135–13509. doi: 10.1109/ICSA.
2018.00023.

[168] Martyn Ellison, Radu Calinescu and Richard F. Paige. “Evaluating cloud database migration options
using workload models”. In: Journal of Cloud Computing 7.1 (2018), p. 6. issn: 2192-113X. doi: 10.
1186/s13677-018-0108-5.

[169] Michael Galloway, Gabriel Loewen, Jeffrey Robinson and Susan Vrbsky. “Performance of Virtual Ma-
chines Using Diskfull and Diskless Compute Nodes”. In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD). IEEE. 2018, pp. 740–745. doi: 10.1109/CLOUD.2018.00101.

[170] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang, Li Zhou and
Yongming Wu. “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018. Lake Buena Vista,
FL, USA: Association for Computing Machinery, 2018, pp. 539–550. isbn: 9781450355735. doi: 10.
1145/3236024.3236030.

[171] Jonathan Hasenburg, Sebastian Werner and David Bermbach. “FogExplorer”. In: Proceedings of the
19th International Middleware Conference (Posters). Middleware ’18. Rennes, France: Association
for Computing Machinery, 2018, pp. 1–2. isbn: 9781450361095. doi: 10.1145/3284014.3284015.

[172] Jonathan Hasenburg, Sebastian Werner and David Bermbach. “Supporting the Evaluation of Fog-
Based IoT Applications During the Design Phase”. In: Proceedings of the 5th Workshop on Middle-
ware and Applications for the Internet of Things. M4IoT’18. Rennes, France: Association for Comput-
ing Machinery, 2018, pp. 1–6. isbn: 9781450361187. doi: 10.1145/3286719.3286720.

[173] Nikolas Roman Herbst. “Methods and Benchmarks for Auto-Scaling Mechanisms in Elastic Cloud
Environments”. PhD thesis. Universität Würzburg, 2018. url: https://opus.bibliothek.uni-
wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/16431/file/Herbst_
Nikolas_Dissertation.pdf.

https://doi.org/10.1145/3150227
https://doi.org/10.1145/3241737
https://doi.org/10.1145/3241737
https://doi.org/10.1145/3241737
https://doi.org/10.1145/3158661
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1109/ICSA.2018.00023
https://doi.org/10.1109/ICSA.2018.00023
https://doi.org/10.1186/s13677-018-0108-5
https://doi.org/10.1186/s13677-018-0108-5
https://doi.org/10.1109/CLOUD.2018.00101
https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1145/3284014.3284015
https://doi.org/10.1145/3286719.3286720
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/16431/file/Herbst_Nikolas_Dissertation.pdf
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/16431/file/Herbst_Nikolas_Dissertation.pdf
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/16431/file/Herbst_Nikolas_Dissertation.pdf

96 Bibliography

[174] Nikolas Herbst et al. “Quantifying Cloud Performance and Dependability: Taxonomy, Metric Design,
and Emerging Challenges”. In:ACMTrans.Model. Perform. Eval. Comput. Syst. 3.4 (Aug. 2018). issn:
2376-3639. doi: 10.1145/3236332.

[175] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S Goren and Charif Mah-
moudi. Fog computing conceptual model. Tech. rep. National Institute of Standards and Technology
(NIST), 2018. doi: 10.6028/NIST.SP.500-325.

[176] Kyriakos Kritikos and Geir Horn. “IaaS Service Selection Revisited”. In: European Conference on
Service-Oriented and Cloud Computing. Springer. 2018, pp. 170–184. doi: 10.1007/978-3-319-
99819-0_13.

[177] Veronika Lesch, André Bauer, Nikolas Herbst and Samuel Kounev. “FOX: Cost-Awareness for Auto-
nomic Resource Management in Public Clouds”. In: Proceedings of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering. ICPE ’18. Berlin, Germany: Association for Comput-
ing Machinery, 2018, pp. 4–15. isbn: 9781450350952. doi: 10.1145/3184407.3184415.

[178] Charif Mahmoudi, Fabrice Mourlin and Abdella Battou. “Formal definition of edge computing: An
emphasis on mobile cloud and IoT composition”. In: 2018 Third International Conference on Fog
and Mobile Edge Computing (FMEC). IEEE. 2018, pp. 34–42. doi: 10.1109/FMEC.2018.8364042.

[179] A. Papaioannou and K. Magoutis. “Replica-Group Leadership Change as a Performance Enhancing
Mechanism in NoSQL Data Stores”. In: 2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS). 2018, pp. 1448–1453. doi: 10.1109/ICDCS.2018.00147.

[180] Mark Raasveldt, Pedro Holanda, Tim Gubner and Hannes Mühleisen. “Fair Benchmarking Con-
sidered Difficult: Common Pitfalls In Database Performance Testing”. In: Proceedings of the Work-
shop on Testing Database Systems. DBTest’18. Houston, TX, USA: Association for Computing Ma-
chinery, 2018. isbn: 9781450358262. doi: 10.1145/3209950.3209955.

[181] Kim-Thomas Rehmann and Enno Folkerts. “Performance of Containerized Database Management
Systems”. In: Proceedings of the Workshop on Testing Database Systems. DBTest’18. Houston, TX,
USA: Association for Computing Machinery, 2018. isbn: 9781450358262. doi: 10.1145/3209950.
3209953.

[182] Joel Scheuner and Philipp Leitner. “A Cloud Benchmark Suite Combining Micro and Applications
Benchmarks”. In: Companion of the 2018 ACM/SPEC International Conference on Performance En-
gineering. ICPE ’18. Berlin, Germany: Association for Computing Machinery, 2018, pp. 161–166.
isbn: 9781450356299. doi: 10.1145/3185768.3186286.

[183] Joel Scheuner and Philipp Leitner. “Estimating cloud application performance based on micro-
benchmark profiling”. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).
IEEE. 2018, pp. 90–97. doi: 10.1109/CLOUD.2018.00019.

[184] Merlijn Sebrechts, Gregory Van Seghbroeck, Tim Wauters, Bruno Volckaert and Filip De Turck. “Or-
chestrator conversation: Distributed management of cloud applications”. In: International Journal
of Network Management 28.6 (2018), e2036. doi: 10.1002/nem.2036.

https://doi.org/10.1145/3236332
https://doi.org/10.6028/NIST.SP.500-325
https://doi.org/10.1007/978-3-319-99819-0_13
https://doi.org/10.1007/978-3-319-99819-0_13
https://doi.org/10.1145/3184407.3184415
https://doi.org/10.1109/FMEC.2018.8364042
https://doi.org/10.1109/ICDCS.2018.00147
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/3209950.3209953
https://doi.org/10.1145/3209950.3209953
https://doi.org/10.1145/3185768.3186286
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1002/nem.2036

97

[185] Selome Kostentinos Tesfatsion, Cristian Klein and Johan Tordsson. “Virtualization Techniques Com-
pared: Performance, Resource, and Power Usage Overheads in Clouds”. In: Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering. ICPE ’18. Berlin, Germany: Associ-
ation for Computing Machinery, 2018, pp. 145–156. isbn: 9781450350952. doi: 10.1145/3184407.
3184414.

[186] TPC Benchmark ™H. Version 2.18.0. Transaction Processing Performance Council (TPC). 2018. url:
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf.

[187] A. Bauer, S. Eismann, J. Grohmann, N. Herbst and S. Kounev. “Systematic Search for Optimal Re-
source Configurations of Distributed Applications”. In: 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W). June 2019, pp. 120–125. doi: 10.1109/
FAS-W.2019.00040.

[188] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin and S. Kounev. “Chameleon: A Hybrid, Proactive Auto-
Scaling Mechanism on a Level-Playing Field”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 30.4 (Apr. 2019), pp. 800–813. issn: 2161-9883. doi: 10.1109/TPDS.2018.2870389.

[189] Antonia Bertolino, GuglielmoDeAngelis,Micael Gallego, Boni Garcı�a, FranciscoGortázar, Francesca
Lonetti and Eda Marchetti. “A Systematic Review on Cloud Testing”. In: ACM Comput. Surv. 52.5
(Sept. 2019). issn: 0360-0300. doi: 10.1145/3331447.

[190] Lexi Brent and Alan Fekete. “A Versatile Framework for Painless Benchmarking of DatabaseManage-
ment Systems”. In: Databases Theory and Applications. Cham: Springer International Publishing,
2019, pp. 45–56. isbn: 978-3-030-12079-5. doi: 10.1007/978-3-030-12079-5_4.

[191] Emiliano Casalicchio. “Container Orchestration: A Survey”. In: Systems Modeling: Methodologies
and Tools. Springer, 2019, pp. 221–235. doi: 10.1007/978-3-319-92378-9_14.

[192] S. Eismann, J. Kistowski, J. Grohmann, A. Bauer, N. Schmitt and S. Kounev. “TeaStore - A Micro-
Service Reference Application”. In: 2019 IEEE 4th International Workshops on Foundations and Ap-
plications of Self* Systems (FAS*W). June 2019, pp. 263–264. doi: 10.1109/FAS-W.2019.00073.

[193] Donald Feinberg, Merv Adrian and Adam Ronthal. “The Future of the DBMS Market Is Cloud”. In:
Gartner, Inc. June (2019), pp. 1–14. url: https://pages.awscloud.com/Gartner-The-Future-
of-the-DBMS-Market-Is-Cloud.html.

[194] Cheol-Ho Hong and Blesson Varghese. “Resource Management in Fog/Edge Computing: A Survey
on Architectures, Infrastructure, and Algorithms”. In: ACM Comput. Surv. 52.5 (Sept. 2019). issn:
0360-0300. doi: 10.1145/3326066.

[195] MurtadhaAI Hubail, Ali Alsuliman,Michael Blow,Michael Carey, Dmitry Lychagin, IanMaxon and Till
Westmann. “Couchbase Analytics: NoETL for Scalable NoSQL Data Analysis”. In: Proc. VLDB Endow.
12.12 (Aug. 2019), pp. 2275–2286. issn: 2150-8097. doi: 10.14778/3352063.3352143.

[196] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim and Woonhak Kang. “APOLLO: Automatic Detection
and Diagnosis of Performance Regressions in Database Systems”. In: Proc. VLDB Endow. 13.1 (Sept.
2019), pp. 57–70. issn: 2150-8097. doi: 10.14778/3357377.3357382.

[197] S. Kim and Y. S. Kanwar. “GeoYCSB: A Benchmark Framework for the Performance and Scalability
Evaluation of NoSQL Databases for Geospatial Workloads”. In: 2019 IEEE International Conference
on Big Data (Big Data). 2019, pp. 3666–3675. doi: 10.1109/BigData47090.2019.9005570.

https://doi.org/10.1145/3184407.3184414
https://doi.org/10.1145/3184407.3184414
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.1109/FAS-W.2019.00040
https://doi.org/10.1109/FAS-W.2019.00040
https://doi.org/10.1109/TPDS.2018.2870389
https://doi.org/10.1145/3331447
https://doi.org/10.1007/978-3-030-12079-5_4
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1109/FAS-W.2019.00073
https://pages.awscloud.com/Gartner-The-Future-of-the-DBMS-Market-Is-Cloud.html
https://pages.awscloud.com/Gartner-The-Future-of-the-DBMS-Market-Is-Cloud.html
https://doi.org/10.1145/3326066
https://doi.org/10.14778/3352063.3352143
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1109/BigData47090.2019.9005570

98 Bibliography

[198] Jiaheng Lu and Irena Holubová. “Multi-Model Databases: A New Journey to Handle the Variety of
Data”. In: ACM Comput. Surv. 52.3 (June 2019). issn: 0360-0300. doi: 10.1145/3323214.

[199] Ilias Mavridis and Helen Karatza. “Combining containers and virtual machines to enhance isolation
and extend functionality on cloud computing”. In: Future Generation Computer Systems 94 (2019),
pp. 674–696. doi: 10.1016/j.future.2018.12.035.

[200] Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal de Lara and Blesson Varghese. “DeFog: Fog
Computing Benchmarks”. In: SEC ’19 (2019), pp. 47–58. doi: 10.1145/3318216.3363299.

[201] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A. Ali-eldin, C. Abad, J. N.
Amaral, P. T�ma and A. Iosup. “Methodological Principles for Reproducible Performance Evaluation
in Cloud Computing”. In: IEEE Transactions on Software Engineering (2019), pp. 1–1. issn: 0098-
5589. doi: 10.1109/TSE.2019.2927908.

[202] Pini Reznik, Michelle Gienow and Jamie Dobson. Cloud Native Patterns - Practical Patterns for Innov-
ation. Sebastopol, California: O’Reilly Media, Incorporated, 2019. isbn: 978-1-492-04890-9.

[203] Noa Roy-Hubara, Peretz Shoval and Arnon Sturm. “A Method for Database Model Selection”. In: En-
terprise, Business-Process and Information Systems Modeling. Cham: Springer International Pub-
lishing, 2019, pp. 261–275. isbn: 978-3-030-20618-5. doi: 10.1007/978-3-030-20618-5_18.

[204] Daniel Seybold, Volker Foth, Feroz Zahid, Pawel Skrzypek, Marcin Prusinski and Jörg Domaschka.
D4.6 Data Processing Layer. 2019. url: http://melodic.cloud/deliverables/D4.6%20Data%
20Processing%20Layer.pdf.

[205] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stonebraker, David DeWitt,
Marco Serafini, Ashraf Aboulnaga and Tim Kraska. “Choosing a Cloud DBMS: Architectures and
Tradeoffs”. In: Proc. VLDB Endow. 12.12 (Aug. 2019), pp. 2170–2182. issn: 2150-8097. doi: 10 .
14778/3352063.3352133.

[206] TPC Express Big Bench (TPCx-BB). Version 1.3.1. Transaction Processing Performance Council (TPC).
2019. url: http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.3.1.
pdf.

[207] Eddy Truyen, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse and Wouter Joosen. “A Com-
prehensive Feature Comparison Study of Open-Source Container Orchestration Frameworks”. In:
Applied Sciences 9.5 (2019). issn: 2076-3417. doi: 10.3390/app9050931.

[208] W. Xiong, K. Yang and H. Dai. “Improving NoSQL’s Performance Metrics via Machine Learning”. In:
2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). Sept. 2019, pp. 90–
95. doi: 10.1109/CBD.2019.00026.

[209] Yang Yang, Qiang Cao and Hong Jiang. “EdgeDB: An Efficient Time-Series Database for Edge Com-
puting”. In: IEEE Access 7 (2019), pp. 142295–142307. doi: 10.1109/ACCESS.2019.2943876.

[210] Y. Zhu and J. Liu. “ClassyTune: A Performance Auto-Tuner for Systems in the Cloud”. In: IEEE Trans-
actions on Cloud Computing (2019). issn: 2372-0018. doi: 10.1109/TCC.2019.2936567.

[211] Daniel Abadi et al. “The Seattle Report on Database Research”. In: SIGMOD Rec. 48.4 (Feb. 2020),
pp. 44–53. issn: 0163-5808. doi: 10.1145/3385658.3385668.

https://doi.org/10.1145/3323214
https://doi.org/10.1016/j.future.2018.12.035
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1007/978-3-030-20618-5_18
http://melodic.cloud/deliverables/D4.6%20Data%20Processing%20Layer.pdf
http://melodic.cloud/deliverables/D4.6%20Data%20Processing%20Layer.pdf
https://doi.org/10.14778/3352063.3352133
https://doi.org/10.14778/3352063.3352133
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.3.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.3.1.pdf
https://doi.org/10.3390/app9050931
https://doi.org/10.1109/CBD.2019.00026
https://doi.org/10.1109/ACCESS.2019.2943876
https://doi.org/10.1109/TCC.2019.2936567
https://doi.org/10.1145/3385658.3385668

99

[212] Dušan Okanovi�, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn and
Fabian Beck. “Can a Chatbot Support Software Engineers with Load Testing? Approach and Exper-
iences”. In: Proceedings of the 2020 ACM/SPEC International Conference on Performance Engin-
eering. ICPE ’20. Edmonton, Canada: Association for Computing Machinery, 2020. doi: 10.1145/
3358960.3375792.

[213] OpenAPI Specification. Version 3.0.3. OpenAPI Initiative. 2020. url: http://spec.openapis.org/
oas/v3.0.3.

[214] TPC Benchmark™DS. Version 2.13.0. Transaction Processing Performance Council (TPC). 2020. url:
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf.

https://doi.org/10.1145/3358960.3375792
https://doi.org/10.1145/3358960.3375792
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf

Part II

Publications

101

Chapter 8

[core1] A survey on data storage and placement
methodologies for Cloud-Big Data ecosystem

This article is published as follows:

Somnath Mazumdar, Daniel Seybold, Kyriakos Kritikos, and Yiannis Verginadis. ”A survey on data storage
and placement methodologies for Cloud-Big Data ecosystem” in Journal of Big Data, 6.1, Feb. 2019, p. 15,
issn 2196-1115, DOI: https://doi.org/10.1186/s40537-019-0178-3.

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

103

https://doi.org/10.1186/s40537-019-0178-3
http://creativecommons.org/licenses/by/4.0/

A survey on data storage and placement
methodologies for Cloud‑Big Data ecosystem
Somnath Mazumdar1  , Daniel Seybold2, Kyriakos Kritikos3*  and Yiannis Verginadis4

Introduction
Over the time, the type of applications has evolved from batch, compute or memory
intensive applications to streaming or even interactive applications. As a result, appli-
cations are getting more complex and become long-running. Such applications might
require frequent-access to multiple distributed data sources. During application deploy-
ment and provisioning, the user can face various issues such as (i) where to effectively
place both the data and the computation; (ii) how to achieve required objectives while
reducing the overall application running cost. Data could be generated from various
sources, including a multitude of devices over IoT environments that can generate a
huge amount of data, while the applications are running. An application can further pro-
duce a large amount of data. In general, data of such size is usually referred to as Big
Data. In general, Big Data is characterised by five properties [1, 2]. These are volume,
velocity (means rapid update and propagation of data), variety (means different kinds of

Abstract 

Currently, the data to be explored and exploited by computing systems increases at
an exponential rate. The massive amount of data or so-called “Big Data” put pressure
on existing technologies for providing scalable, fast and efficient support. Recent
applications and the current user support from multi-domain computing, assisted in
migrating from data-centric to knowledge-centric computing. However, it remains a
challenge to optimally store and place or migrate such huge data sets across data cent-
ers (DCs). In particular, due to the frequent change of application and DC behaviour
(i.e., resources or latencies), data access or usage patterns need to be analyzed as well.
Primarily, the main objective is to find a better data storage location that improves the
overall data placement cost as well as the application performance (such as through-
put). In this survey paper, we are providing a state of the art overview of Cloud-centric
Big Data placement together with the data storage methodologies. It is an attempt to
highlight the actual correlation between these two in terms of better supporting Big
Data management. Our focus is on management aspects which are seen under the
prism of non-functional properties. In the end, the readers can appreciate the deep
analysis of respective technologies related to the management of Big Data and be
guided towards their selection in the context of satisfying their non-functional applica-
tion requirements. Furthermore, challenges are supplied highlighting the current gaps
in Big Data management marking down the way it needs to evolve in the near future.

Keywords:  Big Data, Cloud, Data models, Data storage, Placement

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

SURVEY PAPER

Mazumdar et al. J Big Data (2019) 6:15
https://doi.org/10.1186/s40537-019-0178-3

*Correspondence:
kritikos@ics.forth.gr
3 ICS-FORTH, Heraklion, Crete,
Greece
Full list of author information
is available at the end of the
article

Page 2 of 37Mazumdar et al. J Big Data (2019) 6:15

data parts), veracity (related to the trustworthiness, authenticity and protection (degree)
of the data) and value (the main added-value and the importance of the data to the busi-
ness). A large set of different data types generated from various sources can hold enor-
mous information (in the form of relationships [3], system access logs, and also as the
quality of services (QoSs)). Such knowledge can be critical for improving both products
and services. Thus, to retrieve the underlying knowledge from such big sized data sets an
efficient data processing ecosystem and knowledge filtering methodologies are needed.

In general, Cloud-based technology offers different solutions over different levels of
abstractions to build and dynamically provision user applications. The Cloud offers suit-
able frameworks for the clustering of Big Data as well as efficiently distributed data-
bases for their storage and placement. However, the native Cloud facilities have a lack
of guidance on how to combine and integrate services in terms of holistic frameworks
which could enable users to properly manage both their applications and the data. While
there exist some promising efforts that fit well under the term Big Data-as-a-service
(BDaaS), most of them still lack adequate support for: data-privacy [4–6], query optimi-
sation [7], robust data analytics [8] and data-related service level objective management
for increased (Big Data) application quality [9]. Currently, the application placement and
management over multi or cross-Clouds is being researched. However, the additional
dimension of Big Data management does raise significantly the complexity of finding
adequate and realistic solutions.

The primary goal of this survey is to present the current state-of-affairs in Cloud com-
puting with respect to the Big Data management (mainly storage and placement) from
the application’s administration point-of-view. To this end, we have thoroughly reviewed
the proposed solutions based on the placement and storage of Big Data through the
use of a carefully designed set of criteria. Such criteria were devised under the prism of
non-functional properties. This was performed in an attempt to unveil those solutions
which can be deemed suitable for the better management of different kinds of applica-
tions (while taking into consideration non-functional aspects). In the end, the prospec-
tive readers (such as Big Data application owners, DevOps) can be guided towards the
selection of those solutions in each Big Data management lifecycle phase (focused in this
article) that satisfy in a better way their non-functional application requirements. The
analysis finally concludes with the identification of certain gaps. Based on the latter, a set
of challenges for the two Big Data management phases covered as well as for Big Data
management as a whole are supplied towards assisting in the evolution of respective
solutions and paving the way for the actual directions that the research should follow.

Based on the above analysis, it is clear that this article aims at providing guidance to
potential adopters concerning the most appropriate solution for both placing and stor-
ing Big Data (according to the distinctive requirements of the application domain). To
this end, our work can be considered as complementary to other relevant surveys that
attempt to review Big Data technologies. In particular, the past surveys have focused
on the deployment of data-intensive applications in the Cloud [10], on assessing vari-
ous database management tools for storing Big Data [11], on evaluating the technologies
developed for Big Data applications [12], on Cloud-centric distributed database manage-
ment systems (primarily on NoSQL storage models) [13], on design principles for in-
memory Big Data management and processing [14] and on research challenges related

Page 3 of 37Mazumdar et al. J Big Data (2019) 6:15

to Big Data in the Cloud ecosystem [15]. However, the primary focus of these surveys
is mainly on functional aspects examined under the prism of analysing different dimen-
sions and technology types related to Big Data. Further, there is no clear discussion on
management aspects in the context of the whole Big Data management lifecycle as usu-
ally the focus seems to be merely on the Big Data storage phase. Interestingly, our survey
deeply analyses those phases in the Big Data management lifecycle that are the most
crucial in the context of satisfying application non-functional requirements.

The remaining part of this manuscript is structured as follows: "Data lifecycle manage-
ment (DLM)" section explicates how data modelling can be performed, analyses various
data management lifecycle models and comes up with an ideal one which is presented
along with the proper architecture to support it. Next, "Methodology" section attempts
to explain this survey’s main methodology. "Non-functional data management features"
section details the main non-functional features of focus in this article. Based on these
features, the review of Big Data storage systems and distributed file systems are supplied
in "Data storage systems" section. Similarly, the review of state-of-the-art data place-
ment techniques is performed in "Data placement techniques" section. Next, "Lessons
learned and future research directions" section presents relevant lessons learned as well
as certain directions for future research work and finally "Concluding remarks" section
concludes the survey paper.

Data lifecycle management (DLM)
Data lifecycle models

There exist two types of data lifecycle models focusing on either general data or Big Data
management. The generic data management lifecycles usually cover activities such as
generation, collection (curation), storage, publishing, discovery, processing and analysis
of data [16].

In general, Big Data lifecycle models primarily comprises activities (such as data col-
lection, data loading, data processing, data analysis and data visualisation [17, 18]). It is
worth to note that apart from the data visualisation, they do share many identical activi-
ties with the generic ones. However, such models do not mention the value of data.

To counter this, the NIST reference model [19] suggests four data management
phases: collection, preparation, analysis and action, where the action phase is related to
using synthesised knowledge to create value (represents analytics and visualisation of
knowledge). Furthermore, focusing more on the data value, OECD [20] has proposed
a data value cycle model comprising six phases: datafication and data collection, Big
Data, data analytics, knowledge base, decision making and valued-added for growth and
well-being. The model forms an iterative, closed feedback loop where results from Big
Data analytics are fed back to the respective database. Later, the work in [21] exposed
the main drawbacks of OECD and proposed a new reference model that adds two addi-
tional components, the business intelligence (BI) system and the environment, into the
OECD model. The data interaction and analysis formulates a short closed loop in the
model. A greater loop is also endorsed via the BI’s iterative interaction and observation
of its environment. Finally, it is claimed that the management of Big Data for value crea-
tion is also linked to the BI management. In this way, Big Data management is related

Page 4 of 37Mazumdar et al. J Big Data (2019) 6:15

directly to the activities of data integration, analysis, interaction and effectuation along
with the successful management of the emergent knowledge via data intelligence.

Data modelling

The data needs to be described in an appropriate form prior to any kind of usage.
The information used for the data description is termed as metadata (i.e., data about
data) [22–24]. The use of metadata enriches data management so that it can properly
support and improve any data management activity. Two major issues related to meta-
data management are:

•	 How should metadata be described (or characterised)? The description of a metadata
schema which can be exploited to efficiently place a certain Big Data application in
multiple Clouds by respecting both user constraints and requirements. Such a meta-
data schema has been proposed partially in [25] or completely in [26].

•	 How should metadata be efficiently managed and stored for better retrieval and
exploitation? The design of appropriate languages [27, 28] that focus on the descrip-
tion of how Big Data applications and data should be placed and migrated across dif-
ferent multiple Cloud resources.

For a better description of metadata, the authors in [22] identify available Cloud services
and analyse some of their main characteristics following a tree-structured taxonomy.
Another relevant effort is the DICE project [25] that focuses on the quality-driven devel-
opment of Big Data applications. It offers a UML profile along with the appropriate tools
that may assist software designers to reason about the reliability, safety and efficiency of
data-intensive applications. Specifically, it has introduced a metamodel for describing
certain aspects of Big Data-intensive applications.

Most of these efforts do not offer a direct support for expressing significant aspects
of Big Data, such as data origin, location, volume, transfer rates or even aspects of the
operations that transfer data between Cloud resources. One effort that tries to cover the
requirements for a proper and complete metadata description is the Melodic metadata
schema [26]. This schema refers to a taxonomy of concepts, properties and relationships
that can be exploited for supporting Big Data management as well as application deploy-
ment reasoning. The schema is clustered into three parts: (i) one focusing on specifying
Cloud service requirements and capabilities to support application deployment reason-
ing; (ii) another focusing on defining Big Data features and constraints to support Big
Data management; (iii) a final one concentrating on supplying Big Data security-related
concepts to drive the data access control.

With respect to the second direction of work, although several languages are cur-
rently used for capturing application placement and reconfiguration requirements (e.g.,
TOSCA [27]), a lack of distinct support for describing placement and management
requirements for Big Data can be observed. However, if such languages are extended
through the possible use of a metadata schema, then they could be able to achieve this
purpose. This has been performed in [26], where a classical, state-of-the-art Cloud
description language called CAMEL [29] has been extended to enable the description of
Big Data placement and management requirements by following a feature-model-based

Page 5 of 37Mazumdar et al. J Big Data (2019) 6:15

approach where requirements are expressed as features or attributes that are annotated
via elements from the metadata schema.

Data lifecycle management systems

Traditional data lifecycle management systems (DLMSs) focus more on the way data is
managed and not on how they are processed. In particular, the actual main services that
they offer are data storage planning (and provisioning) and data placement (and execu-
tion support) via efficient data management policies. On the other hand, it seems that
data processing is covered by other tools or systems as it is regarded as application-spe-
cific. Traditionally in Cloud, Big Data processing is offered as a separate service, while
the resource management is usually handled by other tools, such as Apache Mesos or
YARN. Figure 1 depicts the architecture of a system that completely addresses the data
management lifecycle, as inscribed in the previous sub-section. This system comprises
six primary components.

•	 Metadata management takes care of maintaining information which concerns both
the static and dynamic characteristics of data. It is the cornerstone for enabling effi-
cient data management.

•	 Data placement encapsulates the main methods for efficient data placement and data
replication while satisfying user requirements.

•	 Data storage is responsible for proper (transactional) storage and efficient data
retrieval support.

•	 Data ingestion enables importing and exporting the data over the respective system.
•	 Big Data processing supports the efficient and clustered processing of Big Data by

executing the main logic of the user application(s).
•	 Resource management is responsible for the proper and efficient management of

computational resources.

In this article, our focus is mainly on the Data storage and Data placement parts of
the above architecture. Our rationale is that the integration of such parts (or Big Data
lifecycle management phases) covers the core of a DLMS. An application’s data access
workflow in the Cloud is presented in Fig. 2. As a first step, the application checks the
availability of the input data. In general, the data needs to be known by the system to
optimally handle it. It maps to two main cases: (i) data already exist and have been regis-
tered; (ii) data do not exist and must be registered. In the latter case, metadata is needed

Data Processing

Metadata Management

Data
Placement

Data
Storage

R
esource

M
anagem

ent

Data Ingestion

Fig. 1  A high-level block diagram of a Big Data management system

Page 6 of 37Mazumdar et al. J Big Data (2019) 6:15

to register the data into the system (thus mapping to the data-registration process). Dur-
ing the data modelling (see "Data modelling" sub-section), the metadata are maintained
via a data catalogue (i.e., a special realisation of Metadata management component).
Such an approach can guarantee the efficient maintenance of application data through-
out the application’s lifecycle by both knowing and dynamically altering the values of
data features (such as data type, size, location, data format, user preference, data replica
numbers, cost constraints) whenever needed. In the next phase, based on the employed
data placement methodology, the data is placed/migrated next to the application or both
the data and application code is collocated. Here, the underlying scheduler (realising
the Data placement component) acquires the up-to-date data knowledge to achieve an
efficient data placement during both the initial application deployment and its runtime.
Such an approach can restrain unnecessary data movement and reduces cost (at runt-
ime) [30–32]. Next, during the application execution, two situations may arise: (i) new
data sets are generated; (ii) data sets are transformed into another form (such as data
compression). Furthermore, temporary data may also need to be handled. Finally, once
application execution ends, the generated or transformed data needs to be stored (or
backed up) as per user instructions.

In general, a hierarchical storage management [33] could be considered as a DLMS
tool. In recent times, cognitive data management (CDM) has gained industrial sup-
port for automated data management together with high-grade efficiency. The CDM

DLMS Workflow

Start Data Registration

Submit User
Application

Pre-process Data

NO

YES

Data Modelling

Goto Data
Catalogue

Metadata
Exists

NO

YES

Data Placement/Migration

Output
(Data)

Is Placement of
Data Near Computation

Needed
(Migration)?

NO

Done?

 Migrate the data

YES

Call Resource
Scheduler

Application
Running

Failed?

Saving data for future jobs

Failure and Backup

Application/
Hardware

Failure

Fixed/Done?

Completion

Exit

Data Store

Input Datasets
(URI/URL)

Data Exists
Locally

Fig. 2  Standard workflow of application data lifecycle

Page 7 of 37Mazumdar et al. J Big Data (2019) 6:15

(e.g., Stronglink1) is generally the amalgamation of intelligent (artificial-intelligence2/
machine learning-based approach) distributed storage including resource management
together with a more sophisticated DLMS component. The CDM works on the data-
base-as-a-service (DBaaS) layer which instructs the data to be used by the scheduler
with an efficient management approach including the exploitation of the data catalogue
via data modelling.

Methodology
We have conducted a systematic literature review (SLR) on Big Data placement and
storage methods in the Cloud, following the guidelines proposed in [34]. Such an SLR
comprises three main phases: (i) SLR planning, (ii) SLR conduction and (iii) SLR report-
ing. In this section, we briefly discuss the first two phases. While the remaining part of
this manuscript focuses on the presenting the survey, the identification of the remaining
research issues and the potential challenges for current and future work.

SLR planning

This phase comprises three main steps: (i) SLR need identification, (ii) research ques-
tions identification and (iii) SLR protocol formation.

SLR need identification

Here, we are advocating to add more focus on the Big Data storage and placement phases
of the respective Big Data management lifecycle. Thus be able to confront the respective
challenges that Big Data place on them. Such phases are also the most crucial in the
attempt to satisfy the non-functional requirements of Big Data applications. The primary
focus of this survey is over storage and placement phases. It is an attempt to examine
if they are efficiently and effectively realised by current solutions and approaches. The
twofold advantage of identifying the efficient ways to manage and store Big Data are: (i)
practitioners can select the most suitable Big Data management solutions for satisfying
both their functional and non-functional needs; (ii) researchers can fully comprehend
the research area and identify the most interesting directions to follow. To this end, we
are countering both the data placement and the storage issues focusing on the Big Data
management lifecycle and Cloud computing under the prism of non-functional aspects.
In contrast to previous surveys that have concentrated mainly on the Big Data storage
issues in the context of functional aspects.

Research questions identification

This survey has the ambition to supply suitable and convincing answers to:

1.	 What are the most suitable (big) data storage technologies and how do they compete
with each other according to certain criteria related to non-functional aspects?

2.	 What are the most suitable and sophisticated (big) data placement methods that can
be followed to (optimally) place and/or migrate Big Data?

1  https​://stron​gboxd​ata.com/produ​cts/stron​glink​/.
2  https​://www.ibm.com/servi​ces/artif​icial​-intel​ligen​ce.

Page 8 of 37Mazumdar et al. J Big Data (2019) 6:15

SLR protocol formation

It is a composite step related to the identification of (i) (data) sources—here we have pri-
marily consulted the Web of Science and Scopus, and (ii) the actual terms for querying
these (data) sources—here, we focus on population, intervention and outcome as men-
tioned in [34]. It is worth to note that such data sources supply nice structured searching
capabilities which enabled us to better pose the respective query terms. The population
mainly concerns target user groups in the research area or certain application domains.
The intervention means the specific method employed to address a certain issue (used
terms include: methodology, method, algorithm, approach, survey and study). Lastly, the
outcome relates to the final result of the application of the respective approach (such
as management, placement, positioning, allocation, storage). Based on these terms, the
abstract query concretised in the context of the two data sources can be seen in Table 1.

SLR conduction

Systematic literature review conduction includes the following steps: (i) study selection
criteria; (ii) quality assessment criteria; (iii) study selection procedure. All these steps are
analysed in the following three paragraphs.

Study selection

The study selection was performed via a certain set of inclusion and exclusion criteria.
The inclusion criteria included the following:

•	 Peer-reviewed articles.
•	 Latest articles only (last 8 years).
•	 In case of equivalent studies, only the one published in the highest rated journal

or conference is selected to sustain only a high-quality set of articles on which the
review is conducted.

•	 Articles which supply methodologies, methods or approaches for Big Data manage-
ment.

•	 Articles which study or propose Big Data storage management systems or databases.
•	 Articles which propose Big Data placement methodologies or algorithms.

While the exclusion criteria were the following:

•	 Inaccessible articles.
•	 Articles in a different language than English.
•	 Short papers, posters or other kinds of small in contribution articles.
•	 Articles which deal with the management of data in general and do not focus on Big

Data.

Table 1  Search query

(Big Data) AND (METHODOLOGY OR METHOD OR ALGORITHM OR APPROACH OR SURVEY OR STUDY)

AND (MANAGEMENT OR PLACEMENT OR POSITION OR ALLOCATION OR STORAGE) WITH TIME SPAN:2010–2018

Page 9 of 37Mazumdar et al. J Big Data (2019) 6:15

•	 Articles that focus on studying or proposing normal database management systems.
•	 Articles that focus on studying or proposing normal file management systems.
•	 Articles that focus on the supply of Big Data processing techniques or algorithms. As

the focus in this article is mainly on how to manage the data and not how to process
them to achieve a certain result.

Quality assessment criteria

Apart from the above criteria, quality assessment criteria were also employed to enable
prioritising the review as well as possibly excluding some articles not reaching certain
quality standards. In the context of this work, the following criteria were considered:

•	 Presentation of the article is clear and there is no great effort needed to comprehend
it.

•	 Any kind of validation is offered especially in the context of the proposal of certain
algorithms, methods, systems or databases.

•	 The advancement over the state-of-the-art is clarified as well as the main limitations
of the proposed work.

•	 The objectives of the study are well covered by the approach that is being employed.

Study selection procedure

It has been decided to employ two surveyors for each main article topic which were
given a different portion of the respective reviewing work depending on their expertise.
In each topic, the selection results of one author were assessed by the other one. In case
of disagreement, a respective discussion was conducted. If this discussion was not hav-
ing a positive outcome, the respective decision was delegated to the principal author
which has been unanimously selected by all authors from the very beginning.

Non‑functional data management features
For effective Big Data management, current data management systems (DMSs), includ-
ing distributed file systems (DFSs) and distributed database management systems
(DDBMSs) need to provide a set of non-functional features to cater the storage, manage-
ment and access of the continuously growing data. This section introduces a classifica-
tion of the non-functional features (see Fig. 3) of DMSs in the Big Data domain extracted
from [10, 13, 35–37].

Non-functional
Requirements

ConsistencyElasticityScalabilityPerformance Availability Big Data
Processing

Fig. 3  Non-functional features of data management systems

Page 10 of 37Mazumdar et al. J Big Data (2019) 6:15

Figure 3 provides an overview of the relevant non-functional features while the follow-
ing subsections attempt to analyse each of them.

Performance

Performance is typically referred to as one of the most important non-functional fea-
tures. It directly relates to the execution of requests by the DMSs [38, 39]. Typical per-
formance metrics are throughput and latency.

Scalability

Scalability focuses on the general ability to process arbitrary workloads. A definition of
scalability for distributed systems in general and with respect to DDBMSs is provided
by Agrawal et al. [40], where the terms scale-up, scale-down, scale-out and scale-in are
defined focusing on the management of growing workloads. Vertical as well as horizon-
tal scaling techniques are applied to distributed DBMSs and can also be applied to DFSs.
Vertical scaling applies by adding more computing resources to a single node. While
horizontal scaling applies by adding nodes to a cluster (or in general to the instances of a
certain application component).

Elasticity

Elasticity is tightly coupled to the horizontal scaling and helps to overcome the sudden
workload fluctuations by scaling the respective cluster without any downtime. Agrawal
et al. [40] formally define it by focusing on DDBMSs as follows “Elasticity, i.e. the ability
to deal with load variations by adding more resources during high load or consolidating
the tenants to fewer nodes when the load decreases, all in a live system without service
disruption, is therefore critical for these systems”. While elasticity has become a common
feature for DDBMSs, it is still in an early stage for DFSs [41].

Availability

The availability tier builds upon the scalability and elasticity as these tiers are exploited
to handle request fluctuations [42]. Availability represents the degree to which a system
is operational and accessible when required. The availability of a DMS can be affected
by overloading at the DMS layer and/or failures at the resource layer. During overload-
ing, a high number of concurrent client requests overload the system such that these
requests are either handled with a non-acceptable latency or not handled at all. On the
other hand, a node can fail due to a resource failure (such as network outage or disk fail-
ure). An intuitive way to deal with overload is to scale-out the system. Distributed DMSs
apply data replication to handle such resource failures.

Consistency

To support high availability (HA), consistency becomes an even more important and
challenging non-functional feature. However, there is a trade-off among consistency,
availability and partitioning guarantees, inscribed by the well-known CAP theorem [43].
This means that different kinds of consistency guarantees could be offered by a DMS.
According to [44] consistency can be considered from both the client and data perspec-
tives (i.e., from the DMS administrator perspective). The client-centric consistency can

Page 11 of 37Mazumdar et al. J Big Data (2019) 6:15

be classified further into staleness and ordering [44]. Staleness defines the lagging of rep-
lica behind its master. It can be measured either in time or versions. Ordering defines
that all requests must be executed on all replicas in the same chronological order. Data-
centric consistency focuses on the synchronization processes among replicas and the
internal ordering of operations.

Big Data processing

The need of native integration of (big) data processing frameworks into the DMSs arises
along with the number of recently advanced Big Data processing frameworks, such as
Hadoop MapReduce, Apache Spark, and their specific internal data models. Hence, the
DMSs need to provide native drivers for Big Data processing frameworks which can
automate the transformation of DMS data models into the respective Big Data process-
ing framework storage models. Further, these native drivers can exploit data locality fea-
tures of the DMSs as well. Please note that such a feature is also needed based on the
respective DLMS architecture that has been presented in "Data lifecycle management
(DLM)" section as a Big Data processing framework needs to be placed on top of the
data management component.

Data storage systems
A DLMS in the Big Data domain requires both the storage and the management of het-
erogeneous data structures. Consequently, a sophisticated DLMS would need to support
a diverse set of DMSs. DMSs can be classified into file systems for storing unstructured
data and DBMSs (database management systems) for storing semi-structured and struc-
tured data. However, the variety of semi-structured and structured data requires suitable
data models (see Fig. 4) to increase the flexibility of DBMSs. Following these require-
ments, the DBMS landscape is constantly evolving and becomes more heterogeneous.3
The following sub-sections provides (i) an overview of related work on DBMS classifica-
tions; (ii) a holistic and up-to-date classification of current DBMS data models; (iii) a
qualitative analysis of selected DBMSs; (iv) a classification and analysis of relevant DFSs.

Database management systems

The classification of the different data models (see Fig. 4) for semi-structured data has
been in the focus since the last decade [37] as heterogeneous systems (such as Dynamo,
Cassandra [45] and BigTable [46]) appeared on the DBMS landscape. Consequently, the
term NoSQL evolved, which summarizes the heterogeneous data models for semi-struc-
tured data. Similar, the structured data model evolved with the NewSQL DBMSs [13,
47].

Several surveys have reviewed NoSQL and NewSQL data models over the last years
and analyze the existing DBMS with respect to their data models and the specific non-
functional features [11, 13, 35–37, 48, 49]. In addition, dedicated surveys focus explic-
itly specific data models (such as the time series data model [50, 51]) or specific DBMS
architectures (such as in-memory DBMS [14]).

3  http://nosql​-datab​ase.org/ lists over 225 DBMS for semi-structured data.

Page 12 of 37Mazumdar et al. J Big Data (2019) 6:15

Cloud-centric challenges for operating distributed DBMS are analysed by [13], con-
siders the following: horizontal scaling, handling elastic workload patterns and fault
tolerance. It also classifies nineteen DDBMSs against features, such as partitioning, rep-
lication, consistency and security.

Recent surveys on NoSQL-based systems [35, 49] derive both, the functional and the
non-functional NoSQL and NewSQL features and correlated them with distribution
mechanisms (such as sharding, replication, storage management and query process-
ing). However, the implications of Cloud resources or the challenges of Big Data applica-
tions were not considered. Another conceptual analysis of NoSQL DBMS is carried out
by [48]. It outlines many storage models (such as key-value, document, column-oriented
and graph-based) and also analyses current NoSQL implementations against persis-
tence, replication, sharding, consistency and query capability. However, recent DDBMSs
(such as time-series DBMSs or NewSQL DBMSs) are not analysed from Big Data as well
as the Cloud context. A survey on DBMS support for Big Data with the focus on data
storage models, architectures and consistency models is presented by [11]. Here, the

Database Management
Systems

Relational
Storage

Non-Relational
Storage

RDBMS
MySQL
PostgreSQL

New SQL
VoltDB
CockroachDB

Key-Value
Redis
Riak

Document

Wide-Column

Graph

Multi-Model

MongoDB
Couchbase

Cassandra
HBase

InfluxDB
Prometheus

Neo4J
JanusGraph

Time-Series

ArangoDB
OrientDB

Fig. 4  DBMS data model classification

Page 13 of 37Mazumdar et al. J Big Data (2019) 6:15

relevant DBMSs are analysed towards their suitability for Big Data applications, but the
Cloud service models and evolving DBMSs (such as time-series databases) are also not
considered.

An analysis of the challenges and opportunities for DBMSs in the Cloud is presented
by [52]. Here, the relaxed consistency guarantees (for DDBMS) and heterogeneity, as
well as the different level of Cloud resource failures are explained. Moreover, it is also
explicated that HA mechanism is needed to overcome failures. However, the HA and
horizontal scalability come with the weaker consistency model (e.g., BASE [53]) com-
pared to ACID [43].

In the following, we distil and join existing data model classifications (refer to Fig. 4)
into an up-to-date classification of the still-evolving DBMS landscape. Hereby, we select
relevant details for the DLMS of Big Data applications, while we refer the interested
reader to the presented surveys for an in-depth analysis of specific data models. Analo-
gously, we apply a qualitative analysis of currently relevant DBMS based on the general
DLMS features (see "Non-functional data management features" section), while in-depth
analysis of specific features can be found in the presented surveys. Hereby, we select two
common DBMS4 of each data model for our analysis.

Relational data models

The relational data model stores data as tuples forming an ordered set of attributes;
which can be extended to extract more meaningful information [54]. A relation forms a
table and tables are defined using a static, normalised data schema. SQL is a generic data
definition, manipulation and query language for relational data. Popular representative
DBMSs with a relational data model are MySQL and PostgreSQL.

NewSQL

The traditional relational data model provides limited data partitioning, horizontal scal-
ability and elasticity support. NewSQL DBMSs [55] aim at bridging this gap and build
upon the relational data model and SQL. However, NewSQL relaxes relational features
to enable horizontal scalability and elasticity [13]. It is worth to note that only a few
NewSQL DBMSs, such as VoltDB5 and CockroachDB,6 are built upon such architectures
with the focus on scalability and elasticity as most NewSQL DBMSs are constructed out
of existing DBMSs [47].

Key‑value

The key-value data model relates to the hash tables of programming languages. The data
records are tuples consisting of key-value pairs. While the key uniquely identifies an
entry, the value is an arbitrary chunk of data. Operations are usually limited to simple
put or get operations. Popular key-value DBMSs are Riak7 and Redis.8

4  https​://db-engin​es.com/en/ranki​ng.
5  https​://www.voltd​b.com/.
6  https​://www.cockr​oachl​abs.com/.
7  http://basho​.com/produ​cts/riak-kv/.
8  https​://redis​.io/.

Page 14 of 37Mazumdar et al. J Big Data (2019) 6:15

Document

The document data model is similar to the key-value data model. However, it defines
a structure on the values in certain formats, such as XML or JSON. These values are
referred to as documents, but usually without fixed schema definitions. Compared to
key-value stores, the document data model allows for more complex queries as docu-
ment properties can be used for indexing and querying. MongoDB9 and Couchbase10
represent the common DBMSs with a document data model.

Wide‑column

The column-oriented data model stores data by columns rather than by rows. It ena-
bles both storing large amounts of data in bulk and efficiently querying over very large
structured data sets. A column-oriented data model does not rely on a fixed schema. It
provides nestable, map-like structures for data items which improve flexibility over fixed
schema [46]. The common representatives of column-oriented DBMSs are Apache Cas-
sandra11 and Apache HBase.12

Graph

The graph data model primarily uses graph structures, usually including elements like
nodes and edges, for data modelling. Nodes are often used for the main data entities,
while edges between nodes are used to describe relationships between entities. Query-
ing is typically executed by traversing the graph. Typical graph-based DBMS are Neo4J13
and JanusGraph.14

Time‑series

The time-series data model [50] is driven by the needs of sensor storage within the
Cloud and Big Data context. The time-series DBMSs are typically built upon existing
non-relational data models (preferably key-value or column-oriented), and add a dedi-
cated time-series data model on top. The data model is built upon data points which
comprise a time stamp, an associated numeric value and a customisable set of metadata.
Time-series DBMSs offers analytical query capabilities, which cover statistical functions
and aggregations. Well-known time-series DBMSs are InfluxDB15 and Prometheus.16

Multi‑model

A multi-model address the problem of polyglot persistence [56] which signifies that each
of the existing non-relational data models addresses a specific use case. Hence, multi-
model DBMSs combine different data models into a single DBMS while build upon one
storage backend to improve flexibility (e.g., providing the document and graph data

11  http://cassa​ndra.apach​e.org/.
12  https​://hbase​.apach​e.org/.
13  https​://neo4j​.com/.
14  http://janus​graph​.org/.
15  https​://www.influ​xdata​.com/
16  https​://prome​theus​.io/.

9  https​://www.mongo​db.com/.
10  https​://www.couch​base.com/.

Page 15 of 37Mazumdar et al. J Big Data (2019) 6:15

model via a unified query interface). Common multi-model DBMSs are ArangoDB17 and
OrientDB.18

Comparison of selected DBMSs

In this section, we analyse already mentioned DBMSs in the context of Big Data appli-
cations (see Table 2). To perform this, we first analyse already mentioned DBMS (of
the previously introduced data models) with respect to their features and supported
Cloud service models. Next, we provide a qualitative analysis with respect to the non-
functional features of the DMSs (refer to "Non-functional data management features"
section). For quantitative analysis of these non-functional requirements, we refer the
interested reader to the existing work focused on DBMS evaluation frameworks [44, 57–
60] and evaluation results [42, 61, 62].

Qualitative criteria

In the Table 2, the first three columns present each DBMS and its data model, followed
by the technical features and the service models supported. The analysis only considers
the standard version of a DBMS.

In the following, we attempt to explicate each of the technical features considered.
The DBMS architecture is classified into single, master–slave and multi-master architec-
tures [56]. The sharding strategies are analysed based on the DBMS architectures; they
can be supported manually as well as automatically in a hash- or range-based manner.
The elasticity feature relies on a distributed architecture and relates to whether a DBMS
supports adding and/or removing nodes from the cluster at runtime without a down-
time. For consistency and availability guarantees, each DBMS is analysed with respect
to its consistency (C), availability (A) and partition tolerance (P) properties within the
CAP theorem (i.e., CA, CP, AC or AP) [43]. However, it should be highlighted that we
did not consider fine-grained configuration options that might be offered for a DBMS to
vary the CAP properties. Next, the replication mechanisms are analysed in terms of both
cluster and cross-cluster replication (also known as geo-distribution). Consequently, a
DBMS supporting cross-cluster replication implicitly supports cluster replication. The
interested reader might consider [63] for more fine-grained analysis of replication mech-
anisms of DDBMSs. The Big Data adapter is analysed by evaluating native and/or third-
party drivers for Big Data processing frameworks. Finally, the DDBMSs are classified
based on their offering as community editions, enterprise commercial editions or man-
aged DBaaS. One exemplary provider is presented if the DBMS is offered as a DBaaS.

Qualitative analysis

The resulting Table 2 represents the evolving landscape of the DBMSs. The implemented
features of existing DBMSs significantly differ (except the RDBMSs) even within one
data model. The heterogeneity of analysed DBMSs is even more obvious across data
models. Further, the heterogeneous DBMS landscape offers a variety of potential DBMS
solutions for Big Data.

17  https​://www.arang​odb.com/.
18  https​://orien​tdb.com/.

Page 16 of 37Mazumdar et al. J Big Data (2019) 6:15

Ta
bl

e 
2 

Te
ch

ni
ca

l f
ea

tu
re

 a
na

ly
si

s
of

 s
el

ec
te

d
D

BM
S

D
BM

S
Ve

rs
io

n
D

at
a

m
od

el
Te

ch
ni

ca
l f

ea
tu

re
s

Se
rv

ic
e

m
od

el

A
rc

hi
te

ct
ur

e
Sh

ar
di

ng
El

as
tic

it
y

CA
P

Re
pl

ic
at

io
n

Bi
g

D
at

a
ad

ap
te

r
Co

m
m

un
it

y
En

te
rp

ri
se

D
Ba

aS

M
yS

Q
L

8.
0.

11
RD

BM
S

Si
ng

le
/m

as
te

r–
sl

av
e

M
an

ua
l

N
o

C
A

C
lu

st
er

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
ht

tp
s​:/

/C
lo

ud
​.o

ra
cl

​
e.

co
m

/
m

ys
ql

Po
st

gr
eS

Q
L

10
.4

RD
BM

S
Si

ng
le

/m
as

te
r–

sl
av

e
M

an
ua

l
N

o
C

A
C

lu
st

er
3r

d
pa

rt
y

(S
Q

L-
ba

se
d)

Ye
s

Ye
s

ht
tp

s​:/
/a

w
s.a

m
az

o​
n.

co
m

/r
ds

/p
os

tg
​

re
sq

l​/

Vo
ltD

B
8.

1.
2

N
ew

SQ
L

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

(c
om

m
er

ci
al

)
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
N

o

Co
ck

ro
ac

hD
B

2.
0.

3
N

ew
SQ

L
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
N

o

Ri
ak

2.
2.

3
Ke

y-
va

lu
e

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

A
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
N

o

Re
di

s
4.

0
Ke

y-
va

lu
e

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

A
C

C
lu

st
er

N
at

iv
e

Ye
s

Ye
s

ht
tp

s​:/
/r

ed
is

​la
bs

.
co

m
/

M
on

go
D

B
4.

0.
0

D
oc

um
en

t
M

ul
ti-

m
as

te
r

H
as

h/
ra

ng
e

Ye
s

C
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
ht

tp
s​:/

/w
w

w
.

m
on

go
​db

.c
om

/
C

lo
ud

/a
tla

s

Co
uc

hb
as

e
5.

0.
1

D
oc

um
en

t
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

N
at

iv
e

Ye
s

Ye
s

ht
tp

s​:/
/w

w
w

.c
ou

ch
​

ba
se

.c
om

/p
ro

du
​

ct
s/

C
lo

ud
​/m

an
ag

​
ed

-C
lo

ud
​

Ca
ss

an
dr

a
3.

11
.2

W
id

e-
co

lu
m

n
M

ul
ti-

m
as

te
r

H
as

h/
ra

ng
e

Ye
s

A
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s,
By

 D
at

aS
ta

x
ht

tp
s​:/

/w
w

w
.in

st
a​

cl
us

t​r.
co

m
/s

ol
ut

​
io

ns
/m

an
ag

​
ed

-a
pa

ch
​e-

ca
ss

a​
nd

ra
/

H
Ba

se
2.

0.
1

W
id

e-
co

lu
m

n
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

3r
d

pa
rt

y
Ye

s
Ye

s,
By

 C
lo

ud
er

a
N

o

N
eo

4J
3.

4.
1

G
ra

ph
M

as
te

r–
sl

av
e

N
o

Ye
s

C
A

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
ht

tp
s​:/

/w
w

w
.g

ra
ph

​
st

or
y​.

co
m

/

Ja
nu

sG
ra

ph
0.

2.
0

G
ra

ph
M

ul
ti-

m
as

te
r

M
an

ua
l

Ye
s

A
P/

C
P

C
lu

st
er

3r
d

pa
rt

y
Ye

s
N

o
N

o

Page 17 of 37Mazumdar et al. J Big Data (2019) 6:15

Ta
bl

e 
2 

(c
on

ti
nu

ed
)

D
BM

S
Ve

rs
io

n
D

at
a

m
od

el
Te

ch
ni

ca
l f

ea
tu

re
s

Se
rv

ic
e

m
od

el

A
rc

hi
te

ct
ur

e
Sh

ar
di

ng
El

as
tic

it
y

CA
P

Re
pl

ic
at

io
n

Bi
g

D
at

a
ad

ap
te

r
Co

m
m

un
it

y
En

te
rp

ri
se

D
Ba

aS

A
ra

ng
oD

B
3.

3.
11

M
ul

ti-
m

od
el

(k

ey
-v

al
ue

,
do

cu
m

en
t,

gr
ap

h)

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

C
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
N

o

O
rie

nt
D

B
3.

0.
2

M
ul

ti-
m

od
el

(k

ey
-v

al
ue

,
do

cu
m

en
t,

gr
ap

h)

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

–
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

N
at

iv
e

Ye
s

Ye
s

N
o

In
flu

xD
B

1.
5.

4
Ti

m
e-

se
rie

s
M

ul
ti-

m
as

te
r

(c
om

m
er

ci
al

)
Ra

ng
e

Ye
s

(c
om

m
er

ci
al

)
A

P/
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
Ye

s
Ye

s
ht

tp
s​:/

/c
lo

ud
​.in

flu
​

xd
at

a​.
co

m
/

Pr
om

et
he

us
2.

3
Ti

m
e-

se
rie

s
M

as
te

r–
sl

av
e

M
an

ua
l

N
o

–
C

lu
st

er
3r

d
pa

rt
y

Ye
s

Ye
s

N
o

Page 18 of 37Mazumdar et al. J Big Data (2019) 6:15

The feature analysis provides a baseline for the qualitative analysis of the non-func-
tional features. From the (horizontal) scalability point-of-view, a DBMS with a multi-
master architecture is supposed to provide scalability for write and read workloads,
while a master–slave architecture is supposed to provide read scalability. Due to the
differences between the DBMSs, the impact of elasticity requires additional qualitative
evaluations [42].

The consistency guarantees correlate to the classification in the CAP theorem. Table 2
clearly shows the heterogeneity compared to the consistency guarantees. Generally,
the single-master or master–slave architectures provide strong consistency guarantees.
Multi-master architectures cannot be exactly classified into the CAP theorem as their
consistency guarantees heavily depend on the DBMS runtime configuration [64]. Addi-
tional evaluations of the consistency for the selected DBMSs are required for strong con-
sistency (so as to ensure scalability, elasticity and availability) [44, 62].

Providing HA directly relates to the supported replication mechanisms to overcome
failures. The analysis shows that all DBMSs support cluster-level replication, while
cross-cluster replication is supported by ten out of the sixteen DBMSs. Big Data pro-
cessing relates to the technical feature of Big Data adapters. Table 2 clearly shows that
seven DBMSs provide native adapters and nine DBMS enable it via third-party adapt-
ers to support Big Data processing. The service model of all the DBMSs is either avail-
able as a self-hosted community or enterprise version. In addition, both RDBMS and six
NoSQL DBMS are offered as managed DBaaS. While the DBaaS offerings are abstract-
ing all operational aspects of the DBMS, an additional analysis might be required with
respect to their non-functional features and cost models [65].

Cloudification of DMS

Traditional on-premise DBMS offerings are still popular, but the current trend shows
that DDBMSs running in the Cloud are also well-accepted. Especially, as Big Data
imposes new challenges such as scalability, the diversity of data management or the
usage of Cloud resources, towards the massive storage of data [66]. In general, the dis-
tributed architecture of DMSs evolved their focus over exploiting the Cloud features
and catering the 5Vs of Big Data [67]. Data-as-a-service (DaaS) mostly handles the
data aggregation and management via appropriate web-services, such as RESTful APIs.
While database-as-a-service (DBaaS) offers database as a service which can include (dis-
tributed) a relational database or a non-relational one. In most of the cases, storage-as-
a-service (STaaS) includes both DaaS and the DBaaS [68]. Furthermore, BDaaS [3] is a
Cloud service (such as Hadoop-as-a-service) where traditional applications are migrated
from local installations to the Cloud. BDaaS wraps three primary services. They are
(i) IaaS (for underlying resources), (ii) STaaS (a sub-domain of platform-as-s-service
(PaaS)) for managing the data via dynamic scaling and (iii) data management (such as
data placement, replica management).

Distributed file systems

A distributed file systems (DFS) is an extended networked file system that allows mul-
tiple distributed nodes to internally share data/files without using remote call methods
or procedures [69]. A DFS offers scalability, fault-tolerance, concurrent file access and

Page 19 of 37Mazumdar et al. J Big Data (2019) 6:15

metadata support. However, the design challenges (independent of data size and stor-
age type) of a DFS are transparency, reliability, performance, scalability, and security. In
general, DFSs do not share storage access at the block level but rather work at the net-
work level. In DFSs, security relies on either access control lists (ACLs) or respectively
defined capabilities, depending on how the network is designed. DFSs can be broadly
classified into three models and respective groups (see Fig. 5). First, client–server archi-
tecture based file systems which supply a standardized view of a local file system. Sec-
ond, clustered-distributed file systems which offer multiple nodes to enable concurrent
access to the same block device. Third, symmetric file systems, where all nodes have a
complete view of the disk structure. Below, we briefly analyse each category in a separate
sub-section while we also supply some strictly open-source members for it.

Client–server model

In the client–server architecture based file system, all communications between servers
and clients are conducted via remote procedure calls. The clients maintain the status of
current operations on a remote file system. Each file server provides a standardized view
of its local file system. Here, the file read-operations are not mutually exclusive but the
write operations are. File sharing is based on mounting operations. Only the servers can
mount directories exported from other servers. Network File System (NFS) and Glus-
terFS19 are two popular open source implementations of the client–server model.

Clustered‑distributed model

Clustered-distributed based systems organize the clusters in an application-specific
manner and are ideal for DCs. The model supports a huge amount of data; the data is
stored/partitioned across several servers for parallel access. By design, this DFS model

Client-Server

File Systems

Distributed
File Systems

Clustered
Distributed

Local File
Systems

Symmetric

NFS
GlusterFS

HDFS
CephFS

Ivy
PVFS

Fig. 5  Distributed file systems classification

19  https​://docs.glust​er.org/en/lates​t/.

Page 20 of 37Mazumdar et al. J Big Data (2019) 6:15

is fault tolerant as it enables the hosting of a number of replicas. Due to the huge vol-
ume of data, data are appended instead of overwritten. In general, the DNS servers map
(commonly using round-robin fashion) access requests to the clusters for load-balancing
purposes. The Hadoop distributed file system (HDFS) and CephFS20 are two popular
implementations of such a DFS model.

Symmetric model

Symmetric is a DFS that supports a masterless architecture, where each node has the
same set of roles. It mainly resembles a peer-to-peer system. In general, the symmetric
model employs a distributed hash table approach for data distribution and replication
across systems. Such a model offers higher availability but reduced performance. Ivy [70]
and the parallel virtual file system (PVFS) [71] are examples of a symmetric DFS model.

DFS evaluation

Similar to DDBMSs, we also compare the open source implementations of DFSs according
to the same set of technical features or criteria. A summary of this comparison is depicted
in Table 3. In general, most of the file systems are distributed in nature (except NFS and
GlusterFS). However, they do exhibit some architectural differences. NFS and GlusterFS are
both developed focusing on a master–slave approach, while Ivy and PVFS are based on the
masterless model. Data partitioning (or sharding) is also supported dynamically (featured
by Ivy and PVFS) or statically via a fixed size (as in case of HDFS) by these DFSs. Elasticity
or supporting the data scaling is a very important feature for many Big Data applications
(especially hosted at Cloud). We can thus observe that except NFS all mentioned DFSs sup-
port scalability. Further, HDFS, CephFS, Ivy and PVFS are fault tolerant as well. Replication,
highly needed for not losing data, is well supported by all DFSs. However, their granularity
differs from the block to the cluster level. Finally, these DFSs also offer some form of hooks
(either native or third-party supplied) to be used with Big Data frameworks.

Table 3  Feature analysis of selected DFSs

DFS Version FileSystem Technical features

Architecture Sharding Elasticity CAP Replication Big Data
adapter

NFS 4.2 Client–
server

Fully-central-
ized

Index/range No CA Block level 3rd party

GlusterFS 4.0 Client–
server

Fully-central-
ized

Automatic Yes CA Node level Native

HDFS 3.0.1 Clustered-
distributed

Less-central-
ized

Fixed size Yes AP Block level Native

CephFS 12.2.5 Clustered-
distributed

Less-central-
ized

Index/range Yes CP Cluster-level Native/3rd
party

Ivy 0.3 Symmetric Fully-distrib-
uted

DHash Yes AP Block-level –

PVFS 2.0 Symmetric Fully-distrib-
uted

Hash Yes AP – 3rd party

20  http://docs.ceph.com/docs/mimic​/cephf​s/.

Page 21 of 37Mazumdar et al. J Big Data (2019) 6:15

Data placement techniques
In the Cloud ecosystem, traditional placement algorithms incur a high cost (including
the time) on storing and transferring data [72]. Placing data while data is partitioned and
distributed across multiple locations is a challenge [23, 73]. Runtime data migration is an
expensive affair [30–32] and the complexity increases due to the frequent change of appli-
cations as well as DCs’ behaviour (i.e., resources or latencies) [74]. Placing a large amount
of data across the Cloud is complex due to issues, such as (i) data storage and transfer cost
optimisation while maintaining data dependencies; (ii) data availability and replication; (iii)
privacy policies, such as restricted data storage based on geo-locations. Data replication can
influence consistency, while it also enhances the scalability and higher availability of data. In
general, the existing data placement strategies can be grouped based on user-imposed con-
straints, such as data access latency [75], fault tolerance [76], energy-cost awareness [77],
data dependency [78, 79] and robustness or reliability [80, 81].

Formal definition

The data placement in a distributed computing domain is an instance of NP-hard prob-
lem [82], while it can be reduced to a bin-packing problem instance. Informally, the data
placement problem can be described as follows: given a certain workflow, the current data
placement, and a particular infrastructure, find the right position(s) of data within the
infrastructure to optimise one or more certain criteria, such as the cost of the data transfer.

A formal representation of this problem as follows: suppose that there are N datasets,
represented as di (where i = 1, . . . ,N  ). Each dataset has a certain size si . Further, suppose
that there are M computational elements represented as Vj (where j = 1, . . . ,M ). Each
computational element has a certain storage capacity denoted as cj . Finally, suppose that
there is a workflow W with T tasks which are represented as tk (where k = 1, . . . ,T  ). Each
task has a certain input tk .input and output tk .output , where each maps to a set of datasets.

The main set of decision variables is cij representing the decisions (e.g., based on privacy
or legal issues) of whether a certain dataset i should be stored in a certain computational
element j. Thus, there is a need to have cij == 1 for each i and a certain j. Two hard con-
straints need to hold: (i) a dataset should be stored in one computational element which
can be represented as follows:

∑

j cij = 1 for each i. It is worth to note that this constraint
holds when no dataset replication is allowed. Otherwise, it would take the following form:
∑

j cij >= r , where r is the replication factor; (ii) the capacity of a computational element
should be sufficient for hosting the respective dataset(s) assigned to it. This is represented
as follows:

∑

i cij ∗ si <= cj for each j.
Finally, suppose that the primary aim is to reduce the total amount of data transfers for

the whole workflow. In this respect, this optimisation objective can be expressed as follows:

where m(di) (which supplies as the output a value in [1, M]) indicates the index of the
computational element that has been selected for a certain dataset. This objective adds
the amount of data transfers per each workflow task which relates to the fact that the
task will be certainly placed in a specific resource mapping to one of the required input

(1)
minimise

∑

k

∑

di ,di′
∈tk .input

(

m(di) <> m
(

di′
))

Page 22 of 37Mazumdar et al. J Big Data (2019) 6:15

datasets. Thus, during its execution, the data mapping to the rest of the input datasets
will need to be moved in order to support the respective computation needed.

Data placement methodologies

We broadly classify the proposed data placement methods into data dependency, holis-
tic task and data scheduling and graph-based methods. The methods in each category
are analysed in the following subsections.

Data dependency methods

A data-group-aware placement scheme is proposed in [83] by employing the bond
energy algorithm (BEA) [84] to transform the original data dependency matrix into a
Hadoop cluster. It exploits access patterns to find an optimal data grouping to achieve
better parallelism and workload balancing. In [85], a data placement algorithm is pro-
posed for solving the data inter-dependency issue at the VM level. Scalia [86] proposes
a Cloud storage brokerage scheme that optimises the storage cost by exploiting the real-
time data access patterns. Zhao et al. [87] proposed data placement strategies for both
initial data placement and relocation using a particle swarm optimization (PSO) algo-
rithm. For fixed data set placement, this method relies on hierarchical data correlation
and performs data re-allocation during the storage saturation. Yuan et al. [78] propose
a k-means based dataset clustering algorithm to construct a data dependency matrix
by exploiting the data dependency and the locality of computation. Later, the depend-
ency matrix is transformed by applying the BEA while items are clustered based on their
dependencies by following a recursive binary partitioning algorithm. In general, the
preservation of time locality can significantly impact caching performance while the effi-
cient re-ordering of jobs can improve the resource usage. In [79] authors propose a file
grouping policy for pre-staging data by preserving time locality and enforcing the role of
job re-ordering via extracting access patterns.

Task and data scheduling methods

In [88], the authors propose an adaptive (based on multi-objective optimization model)
data management middleware which collects system-state information and abstracts
away the complexities of multiple Cloud storage systems. For internet-of-things (IoT)
data streaming support, Lan et al. [89] proposed a data stream partitioning mechanism
by exploiting statistical feature extraction. Zhang et al. [90] propose a mixed-integer lin-
ear programming model for modelling the data placement problem. It considers both
the data access cost as well as the storage limitations of DCs. Hsu et al. [91] proposed a
Hadoop extension by adding dynamic data re-distribution (by VM profiling) before the
map phase and VM mapping for reducers based on partition size and VM availability.
Here, high capacity VMs are assigned for high workload reducers. Xu et al. [92] pro-
poses a genetic programming approach to optimise the overall number of data transfers.
However, this approach does not consider the DCs’ capacity constraints and the non-
replication constraints of data sets. In [93], a policy engine is proposed for managing
both the number of parallel streams (between origin and destination nodes) and the pri-
orities for data staging jobs in scientific workflows. The policy engine also considers data
transfers, storage allocation and network resources.

Page 23 of 37Mazumdar et al. J Big Data (2019) 6:15

The storage resource broker [23] provides seamless access to the different distrib-
uted data sources (interfacing multiple storages) via its APIs. It works as a middleware
between the multiple distributed data storages and applications. BitDew [94] offers
a programmable environment for data management via metadata exploitation. The
data scheduling (DS) service takes care of implicit data movement. Pegasus [95] pro-
vides a framework that maps complex scientific applications onto distributed resources.
It stores the newly generated data and also registers them in the metadata catalogue.
The replica location service [96] is a distributed, scalable, data management service that
maps the logical data names to target names. It supports both centralized as well as dis-
tributed resource mapping. Kosar and Livny [81] proposes a data placement that con-
sists of a scheduler, a planner and a resource broker. The resource broker is responsible
for matching resources, data identification and decisions related to data movement. The
scheduling of data placement jobs relies on the information given by the workflow man-
ager, the resource broker and the data miner. A very interesting feature of the proposed
sub-system is that it is able to support failure recovery through the application of retry
semantics.

Graph‑based data placement

Yu and Pan [72] proposes the use of sketches to construct a hyper-graph sparsifier of data
traffic to lower the data placement cost. Such sketches represent data structures that
approximate properties of a data stream. LeBeane et al. [97] proposed on-line graph-
partitioning multiple strategies to optimise data-ingress across heterogeneous clusters.
SWORD [98] handles the partitioning and placement for OLTP workloads. Here, the
workload is represented as a hypergraph and a hyper-graph compression technique is
employed to reduce the data partitioning overhead. An incremental data re-partitioning
technique is also proposed that modifies data placement in multiple steps to support
workload changes. Kayyoor et al. [99] propose how to map nodes to a subset of clus-
ters via satisfying user constraints. It minimises the query span for query workloads by
applying replica selection and data placement algorithms. The query-based workload is
represented as hyper-graphs and a hypergraph partitioning algorithm is used to process
them. Kaya et al. [100] model the workflow as a hypergraph and employ a partitioning
algorithm to reduce the computational and storage load while trying to minimise the
total amount of file transfers.

Comparative evaluation

In this section, we have carefully selected a set of criteria to evaluate the methods ana-
lysed in "Data placement methodologies" section. The curated criteria are: (i) fixed data
sets—whether the placement of data can be a priori fixed in sight of, e.g., regulations, (ii)
constraint satisfaction—which constraint solving technique is used, (iii) granularity—
what is the granularity of the resources considered, (iv) intermediate data handling—
whether intermediate data, produced by, e.g., a running workflow, can be also handled,
(v) multiple application handling—whether the data placement over multiple applica-
tions can be supported, (vi) increasing data size—whether the growth rate of data is
taken into account, (vii) replication—whether data replication is supported, (viii) optimi-
sation criteria—which optimisation criteria are exploited, (ix) additional system related

Page 24 of 37Mazumdar et al. J Big Data (2019) 6:15

information—whether additional knowledge is captured which could enable the produc-
tion of better data placement solutions. An overview of the evaluation based on these
criteria can be observed in comparison Table 4. First of all, we can clearly see that there
is no approach that covers all the criteria considered. Three approaches (Yuan et al. [78],
BitDew [94] and Kosar [81]) can be distinguished, considered also as complementary to
each other. However, only in [78] a suitable optimisation/scheduling algorithm for data
placement has been realised.

Table 4  Comparative summary of existing data placement algorithms

Approach Fixed DS Constraint
satisfaction

Granul. Interm.
DS

Mult.
appl.

Data
size

Repl. Opt.
criteria

Add.
info.

BDAP [85] Yes Meta-heu-
ristic

Fine Yes No No No Comm.
cost

No

Xu [92] No Meta-heu-
ristic

Coarse No No No No Data
transf.
number

No

Yuan [78] Yes Recursive
binary part.

Coarse Yes Yes Yes No Data
transf.
number

No

Kaya [100] No Hypergraph
part.

Coarse No No No No Data
transf.
number

No

Zhao [87] Yes Hierarchical
part. clust.
+ PSO

Fine Yes No No No Data
transf.
number

No

Wang [83] No Recursive
clust. +
ODPA

Fine No No No No Data
transf.
number

Yes

Yu [72] No Hypergraph
part.

Fine No No No No Cut
weight

Yes

Zhang [90] No Lagrance MIP
relaxation

Coarse No No No No Data
access
cost

No

Hsu [91] No – Fine No No No No Profiling-
related
metric

Yes

LeBeane [97] No Hypergraph
part.

Fine No No No No Skew fac-
tor

Yes

Lan [89] No Clustering-
based PSO
search

Fine No No No No Volatility
AMA,
hurst
distance

Yes

BitDew [94] No Fine Yes Yes No Yes Data dep.
repl.,
fault tol.

Yes

Kayoor [99] No Hypergraph
part.

Coarse No No No Yes Avg.
query
span

Yes

Kosar [81] Yes Fine Yes Yes No Yes Yes

Scalia [86] No Multi-dimen-
sional
Knapsack
problem

Fine No Yes Yes No Storage
cost

Yes

SWORD [98] Yes Graph parti-
tion

Fine No Yes Conflict-
ing
transac-
tions

Yes

Page 25 of 37Mazumdar et al. J Big Data (2019) 6:15

Considering now each criterion in isolation, we can observe in Table 4 that very few
approaches consider the existence of a fixed or semi-fixed location of data sets. Further,
such approaches seem to prescribe a fixed a-priori solution to the data placement prob-
lem which can lead to a sub-optimal solution. Especially as optimisation opportunities
are lost in sight of more flexible semi-fixed location constraints. For instance, fixing the
placement of a dataset to a certain DC might be sub-optimal in case that multiple DCs
in the same location exist.

Three main classes of data placement optimisation techniques can be observed:
(i) meta-search (like PSO)/genetic programming) to more flexibly inspect the avail-
able solution space and efficiently find a near-optimal solution; (ii) hierarchical parti-
tion algorithms (based on BEA) that attempt to group data recursively based on data
dependencies either to reduce the number or the cost of data transfers. BEA is used as
the baseline for many of these algorithms. BEA also supports dynamicity. In particu-
lar, new data sets are handled by initially encoding them in a reduced table-based form
before applying the BEA. After the initial solution is found, the modification can be done
by adding cluster/VM capacity constraints into the model. (iii) a Big Data placement
problem can also be encoded via a hypergraph. Here, nodes are data and machines while
hyper-edges attempt to connect them together. Through such modelling, traditional or
extended hypergraph partitioning techniques can be applied to find the best possible
partitions. There can be a trade-off between different parameters or metrics that should
be explored by all the data placement algorithms irrespectively of the constraint solving
technique used. However, such a trade-off is not usually explored as in most cases only
one metric is employed for optimisation.

Granularity constitutes the criterion with less versatility as most of the approaches
have selected a fine-grained approach for data-to-resource mapping, which is suitable
for the Cloud ecosystem.

The real-world applications are dynamic and can have varying load at different points
of time. Furthermore, applications can produce additional data which can be used for
next computation steps. Thus, data placement should be a continuous process to vali-
date decisions taken at different points in time. However, most approaches in data place-
ment, focus mainly on the initial positioning of Big Data and do not interfere with the
actual runtime of the applications.

There seems also to exist a dependency between this criterion and the fixed data sets
one. The majority of the proposed approaches satisfying this criterion also satisfy the
fixed data set one. This looks like a logical outcome as dynamicity is highly correlated to
the need to better handle some inherent data characteristics. Further, a large volume of
intermediate data can also have a certain gravity effect that could resemble the one con-
cerning fixed data.

The multi-application criterion is not supported at all. This can be due to the following
facts: (i) multi-application support can increase the complexity and the size of the prob-
lem; (ii) it can also impact the solution quality and solution time which can be undesir-
able especially for approaches that already supply sub-optimal solutions.

Only the approach in [78] caters for data growth via reserving additional space in
already allocated nodes based on statically specified margins. However, such an approach
is static in nature and faces two unmet challenges: the support for dynamic data growth

Page 26 of 37Mazumdar et al. J Big Data (2019) 6:15

monitoring, suitable especially in cases where data can grow fast, and dynamic storage
capacity determination, through, e.g., data growth prediction, for better supporting pro-
active data allocation. However, if we consider all dynamicity criteria together, we can
nominate the approach in [78] as the one with the highest level of dynamicity, which is
another indication of why it can be considered as prominent.

Data replication has been widely researched in the context of distributed systems but
has not been extensively employed in data placement. Thus, we do believe that there
exists a research gap here. Especially as those few approaches (such as SWORD [98],
Kosar [81], Kayoor [99], BitDew [94]) that do support replication still lack suitable
details or rely on very simple policies driven by user input.

We can observe that the minimisation of data transfer number or cost is a well-
accepted optimisation criterion. Furthermore, data partitioning related criteria, such as
skew factor and cut weight, have been mostly employed in the hypergraphs based meth-
ods. In some cases, we can also see multiple criteria to be considered which are: (i) either
reduced to an overall one; (ii) not handled through any kind of optimisation but just
considered in terms of policies that should be enforced. In overall, we are not impressed
by the performance of the state-of-the-art in this comparison criterion. So, there is a
huge room for potential improvement here.

Finally, many of the methods also consider additional input to achieve a better solu-
tion. The most common extra information that is exploited is data access patterns and
nodes (VMs or PMs) profiling to, e.g., inspect their (data) processing speed. However,
while both are important, usually only one from these two is exploited in these methods.

Lessons learned and future research directions
To conclude our survey, in this section we will discuss the issues of the current state-of-
the-art and the research gaps or opportunities related to data storage and placement.
Further, we also supply research directions towards a complete DLMS system in the Big
Data-Cloud ecosystem.

Data lifecycle management

Challenges and issues

This subsection refers to how the discussed data storage and placement challenges can
be combined and viewed from the perspective of a holistic DLMS of the future. Such
a DLMS should be able to cope with the optimal data storage and placement in a way
that considers the Big Data processing required, along with the functional and non-func-
tional variability space of the given Cloud resources at hand, in each application sce-
nario. It implies the ability to consider both private and public Clouds, offered by one
or several Cloud vendors, according to the specifics of each use cases, while making the
appropriate decisions on how the data should be stored, placed, processed and eventu-
ally managed.

Just considering the cross-Cloud application deployment for fully exploiting the ben-
efits of the Cloud paradigm hinders the important challenge of data-awareness. This
data-awareness refers to the need to support an application deployment process that
considers the locations of data sources, their volume and velocity characteristics, as well
as any security and privacy constraints applicable. Of course, from the DLM perspective,

Page 27 of 37Mazumdar et al. J Big Data (2019) 6:15

this means that there should also be a consideration of the dependencies between appli-
cation components and all data sources. This has the reasonable implication that the
components requiring frequent accesses to data artefacts, found at rest in certain data
stores, cannot be placed in a different Cloud or even in a certain physical and network
distance from the actual storage location. If such aspects are ignored then application
performance certainly degrades, as expensive data migrations may incur while legisla-
tion conformance issues might be applicable.

Future research directions

Among the most prominent research directions, we highlighted the design and imple-
mentation of a holistic DLMS, able to cope with all of the above-mentioned aspects on
the data management, while employing the appropriate strategies for benefiting from
the multi-Cloud paradigm. It is important to note that data placement in virtualized
resources is generally subjected to long-term decisions as any potential data migrations
generally incur immense costs which may be amplified by data gravity aspects that may
result in subsequent changes in the application placement. Based on this, we consider
the following aspects that should sketch the main functionality of the DLMS of the
future that is able to cope with Big Data management and processing by really taking
advantage of the abundance of resources in the Cloud computing world:

•	 Use of advanced modelling techniques that consider metadata schemas for setting
the scope of truly exploitable data modelling artefacts. It refers to managing the
modelling task in a way that covers the description of all V’s (e.g. velocity, volume,
value, variety, and veracity) in the characteristics of Big Data to be processed. The
proper and multi-dimensional data modelling will allow for an adequate description
of the data placement problem.

•	 Perform optimal data placement across multiple Cloud resources based on the data
modelling and user-defined goals, requirements and constraints.

•	 Use of efficiently distributed monitoring functionalities for observing the status of
the Big Data stored or processed and detect any migration or reconfiguration oppor-
tunities.

•	 Employ the appropriate replication, fail-over and backup techniques by considering
and exploiting at the same time the already offered functionalities by public Cloud
providers.

•	 According to such opportunities, continuously make reconfiguration and migra-
tion decisions by consistently considering the real penalty for the overall application
reconfiguration, always in sight of the user constraints, goals and requirements that
should drive the configuration of computational resources and the scheduling of
application tasks.

•	 Design and implement security policies in order to guarantee that certain regula-
tions (e.g., General Data Protection Regulation) are constantly and firmly respected
(e.g., data artefacts should not be stored or processed outside the European Union)
while at the same time the available Cloud providers’ offerings are exploited accord-
ing to the data owners’ privacy needs (e.g., exploit the data sanitization service when
migrating or just removing data from a certain Cloud provider).

Page 28 of 37Mazumdar et al. J Big Data (2019) 6:15

Data storage

In this section, we highlight the challenges for holistic data lifecycle management with
respect to both the current DBMS and DFS systems and propose future research direc-
tions to overcome such challenges.

Challenges and issues

In the recent decade, the DBMS landscape has significantly evolved with respect to the
data models and supported non-functional features, driven by Big Data and the related
requirements of Big Data applications (see "Non-functional data management features"
section). The resulting heterogeneous DBMS landscape provides a lot of new opportuni-
ties for Big Data management while it simultaneously imposes new challenges as well.
The variety of data models offers domain-specific solutions for different kinds of data
structures. Yet, the vast number of existing DBMSs per data model leads to a complex
DBMS selection process. Hereby, functional features of potential DBMSs need to be
carefully evaluated (e.g., NoSQL DBMSs do not offer a common query interface even
within the same data model). For the non-functional features, the decision process is
twofold: (i) a qualitative analysis (as carried out in "Comparison of selected DBMSs" sec-
tion) should be conducted to narrow down the potential DBMSs; (ii) quantitative evalu-
ations should be performed over the major non-functional features based on existing
evaluation frameworks.

While collecting data from many distributed and diverse data sources is a challenge [8]
modern Big Data applications are typically built upon multiple different data structures.
Consequently, current DBMSs cater for domain-specific data structures due to the vari-
ety of data models supported, (as shown in our analysis Table 2). However, exploiting
the variety of data models typically leads to the integration of multiple different DBMSs
in modern Big Data applications. Consequently, the operation of a DBMS needs to be
abstracted to ease the integration of different DBMSs into Big Data applications and
to fully exploit the required features (such as scalability or elasticity). Hereby, research
approaches in Cloud-based application orchestration can be exploited [101, 102]. While
the current DBMS landscape already moves towards the Big Data domain, the optimal
operation of large-scale or even geo-distributed DBMSs still remains a challenge as the
non-functional features significantly differ for different DBMSs (especially by using
Cloud resources [42, 61, 103]).

In general, DFS provides scalability, network transparency, fault tolerance, concurrent
data (I/O) access, and data protection [104]. It is worth noting that in Big Data domain,
the scalability must be achieved without increasing the degree of replication of stored
data (particularly for the Cloud ecosystem while combined with the private/local data
storage systems). The storage system must increase user data availability but not the
overheads. While resource sharing is a complex task and the severity can increase many-
folds while managing the Big Data. In today’s Cloud ecosystem, we lack a single/uni-
fied model that offers a single interface to connect multiple Cloud-based storage models
(such as Amazon S3 objects) and DFSs. Apart from that, the synchronization in DFS
is also a well-known issue and as the degree of data access concurrency is increasing,
synchronization could certainly be a performance bottleneck. Moreover, in some cases,

Page 29 of 37Mazumdar et al. J Big Data (2019) 6:15

it has also been observed that the performance of DFSs is low compared to the local file
systems [105, 106]. Furthermore, network transparency is also a crucial process related
to the performance, especially while handling Big Data (because now the Big Data is dis-
tributed across multiple Clouds). Although most DFSs uses transmission control proto-
col or user datagram protocol during the communication process, however, a smarter
way needs to be devised. In DFS, the fault-tolerance is achieved by lineage, checkpoint,
and replicating metadata (and data objects) [104]. While the state-less based DFSs are
having fewer overheads regarding managing the file states while reconnecting after fail-
ures, the state-full approach is also in use. For DFSs, the failure must be handled very
fast and seamlessly across the Big Data management infrastructure. On the other side,
there is no well-accepted approach to data access optimization methods. The methods
such as data locality, multi-level caches are used case by case. Finally, securing the data
in the DFS-Cloud ecosystem is a challenge due to the interconnection of so many diverse
hardware as well as software components.

Future research directions

To address the identified challenges for the data storage in Big Data lifecycle manage-
ment, novel Big Data-centric evaluations are required that ease the selection and opera-
tion of large-scale DBMS.

•	 The growing domain of hybrid transaction/analytical processing workloads needs to
be considered for the existing data models. Moreover, comparable benchmarks for
different data models need to be established [107] and qualitative evaluations need to
be performed across all data model domains as well.

•	 To select an optimal combination of a distributed DBMS and Cloud resources, eval-
uation frameworks across different DBMS, Cloud resource and workload domains
are required [108]. Such frameworks ease the DBMS selection and operation for Big
Data lifecycle management.

•	 Holistic DBMS evaluation frameworks are required to enable the qualitative analysis
across all non-functional features in a comparable manner. In order to achieve this,
frameworks need to support complex DBMS adaptation scenarios, including scaling
and failure injection.

•	 DBMS adaptation strategies need to be derived and integrated into the orchestration
frameworks to enable the automated operation (to cope with workload fluctuations)
of a distributed DBMS.

•	 Qualitative DBMS selection guidelines need to be extended with respect to opera-
tional and adaptation features of current DBMS (i.e., support for orchestration
frameworks to enable automated operation and adaptation and the integration sup-
port into Big Data frameworks).

Similar to the above research directions for DBMSs, we also mention below the research
directions for DFSs.

•	 For efficient, resource sharing among multiple Cloud service providers/compo-
nents, a single/unified interface must handle the complex issues, such as seamless

Page 30 of 37Mazumdar et al. J Big Data (2019) 6:15

workload distribution, improved data access experience and faster read-write syn-
chronizations, together with the increased level of data serialization for DFSs.

•	 We also advocate for using smarter replica-assignment policies to achieve better
workload balance and efficient storage space management.

•	 To counter the synchronization issue in DFSs, a generic solution could be to cache
the data in the client or in the local server’s side, but such an approach can become
the bottleneck for the Big Data management scenario as well. Thus, exploratory
research must be done in this direction.

•	 As the data diversity and the networks heterogeneity is increasing, an abstract
communication layer must be in place to address the issue of network transpar-
ency. Such abstraction can handle different types of communications easily and
efficiently.

•	 The standard security mechanisms are in place (such as ACLs) for data security.
However, after the Cloudification of the file system, the data become more vulner-
able due to the interconnection of diverse distributed, heterogeneous computing
components. Thus, proper security measures must be built-in features of tomorrow’s
DFSs.

Data placement

The following data placement challenges and corresponding research directions are in
line with our analysis in "Comparative evaluation" section.

Challenges and issues

Fixed data set size  We have observed data placement methods able to fix the location
of data sets based on respective (privacy) regulations, laws or user requirements. Such
requirements indicate that data placement should be restrained within a certain coun-
try, sets of countries or even continents. However, this kind of semi-fixed constraints is
handled in a rather static way by already pre-selecting the right place for such data sets.

Constraint solving  Exhaustive solution techniques are efficient to reach optimal solu-
tions but suffer from scalability issues and higher execution time (especially for medium/
big-sized problem instances). On the other hand, meta-heuristics (such as PSO) seems
more promising as they can produce near-optimal solutions faster by also achieving bet-
ter scalability. However, they need proper configuration and modelling which can be a
time-consuming task while it is not always guaranteed that near-optimal solutions can
be produced.

Granularity  Most of the evaluated methods support a fine-grained approach for dataset
placement. However, all such methods consider that resources are fixed in number. Such
assumptions are inflexible in the sight of the following issues: (i) a gradual data growth
can saturate the resources assigned to data. In fact, a whole private storage infrastructure
could be saturated for this reason; (ii) data should be flexibly (re-)partitioned to tackle the
workload variability.

Page 31 of 37Mazumdar et al. J Big Data (2019) 6:15

Multiple applications  Only three from the evaluated methods (see Table 4) can handle
multiple applications but also in a very limited fashion. Such handling is challenging,
especially when different applications are assorted with conflicting requirements. It must
also be dynamic due to the changes brought by application execution as well as other fac-
tors (e.g., application requirement and Cloud infrastructure changes).

Data growth  Data sets can grow over time. Only one method [78] in the previous analy-
sis is able to handle the data size change. It employs a threshold-based approach to check
when data needs to be moved or when resources are adequate for storing the data to also
handle their growth. However, no detailed explanation is supplied concerning how the
threshold is computed.

Data replication  It is usually challenging to find the best possible trade-off between cost
and replication degree to enable cost-effective data replication.

Optimisation criteria  Data transfer and replication management is a complex pro-
cess [109] due to the completely distributed nature of the Cloud ecosystem. It further gets
complicated due to the unequal data access speed. Data transfer number or cost is a well-
accepted criterion for optimising data placement. However, it can be also quite restric-
tive. First, as there can be cases where both of these two metrics need to be considered.
For instance, suppose that we need to place two datasets, initially situated in one VM,
to other VMs as this VM will become soon unavailable. If we just consider the transfer
number, this can lead to the situation where the movement is performed in an arbitrary
way even migrating data to another DC while there is certainly a place in the current one.
In the opposite direction, there can be cases where cost could be minimised but this could
lead to increasing the number of transfers which could impact application performance.
Second, data placement has been mainly seen in an isolated manner without examining
user requirements. However, it can greatly affect application performance and cost.

Additional information  Apart from extracting data access patterns and node profiles,
we believe that more information is needed for a better data placement solution.

Future research directions

•	 Fixed data set size: To guarantee the true, optimal satisfaction of the user require-
ments and optimisation objectives, we suggest the use of semi-fixed constraints in
a more suitable and flexible manner as a respective non-static part of the location-
aware optimisation problem to be solved.

•	 Constraint solving: We propose the use of hybrid approaches (i.e., combining exhaus-
tive and meta-search heuristic techniques) so as to rapidly get (within an accept-
able and practically employable execution time) optimal or near-optimal results in
a scalable fashion. For instance, constraint programming could be combined with
local search. The first could be used to find a good initial solution, while the latter
could be used for neighbourhood search to find a better result. In addition, it might
be possible that a different and more scalable modelling of the optimisation problem
could enable to run standard exhaustive solution techniques even with medium-

Page 32 of 37Mazumdar et al. J Big Data (2019) 6:15

sized problem instances. Finally, solution learning from history could be adopted to
fix parts of the optimisation problem and thus substantially reduce the solution space
to be examined.

•	 Granularity: There is a need for dynamic approaches for data placement which do
take into account the workload fluctuation and the data growth to both partition
data as well as optimally place them in a set of resources with a size that is dynami-
cally identified.

•	 Multiple applications: To handle applications conflicting requirements and the dyna-
micity of context (e.g., change of infrastructure, application requirements), different
techniques to solve the (combined) optimisation problem are required. First, soft con-
straints could be used to solve this problem, even if it is over-constrained (e.g., pro-
ducing a solution that violates the least number of these preferences). Next, we could
prioritise the applications and/or their tasks. Third, distributed solving techniques
could be used to produce application-specific optimisation problems of reduced
complexity. This would require a transformation of the overall problem into sub-prob-
lems which retains as much as possible the main constraints and requirements of each
relevant application. Finally, complementary to these distributed solving techniques,
the measure of replication could also be employed. By using such a measure, we ena-
ble each application to operate over its own copy of the data originally shared. This
could actually enable to have complete independence of applications which would
then allow us to solve data placement individually for each of these applications.

•	 Data growth: There is a need to employ a more sophisticated approach which exploits
the data (execution) history as well as data size prediction and data (type) similar-
ity techniques to solve the data growth issue. Similarity can be learned by know-
ing the context of data (e.g., by assuming the same context has been employed for
similar data over time by multiple users), while statistical methods can predict the
data growth. Such an approach can also be used for new data sets for which no prior
knowledge exists (known as the cold-start problem).

•	 Data replication: For data replication, we suggest to dynamically compute the replica-
tion degree by considering the application size, data size, data access pattern, data
growth rate, user requirements, and the capabilities of Cloud services. Such a solution
could also rely on a weight calculation method for the determination of the relative
importance of each of these factors.

•	 Optimisation criteria: An interesting research direction compiles into exploring ways
via data placement and task scheduling could be either solved in conjunction or in a
clever but independent way such that they do take into account the same set of (high-
level) user requirements. This could lead to producing solutions which are in concert
and also optimal according to both aspects of data and computation.

•	 Additional information: We advocate that the additional information required to be
collected or derived include: (i) co-locating frequently accessing tasks and data; (ii)
exploiting data dependencies to have effective data partitioning. A similar approach
is employed by Wang et al. [83] where data are grouped together at a finer granu-
larity. There are also precautions in not storing different data blocks from the same
data in the same node; (iii) data variability data can be of different forms. Each form
might require a different machine configuration for optimal storage and processing.

Page 33 of 37Mazumdar et al. J Big Data (2019) 6:15

In this case, profiling should be extended to also capture this kind of machine perfor-
mance variation which could be quite beneficial for more data-form-focused place-
ment. In fact, we see that whole approaches are dedicated to dealing with different
data forms. For instance, graph analytics-oriented data placement algorithms exploit
the fact that data are stored in the form of graphs to more effectively select the right
techniques and algorithms for solving the data placement problem. While special-
purpose approaches might be suitable for different data forms, they are not the right
choice for handling different kinds of data. As such, we believe that an important
future direction should be the ability to more optimally handle data of multiple forms
to enhance the applicability of a data placement algorithm and make it suitable for
handling different kinds of applications instead of a single one.

Concluding remarks
The primary aim of this survey is to provide a holistic overview of the state of the art
related to both data storage and placement in the Cloud ecosystem. We acknowledge
that there do exist some surveys on various aspects of Big Data, which focus on the
functional aspect and mainly on Big Data storage issues. However, this survey plays a
complementary role with respect to them. In particular, we cover multiple parts of the
Big Data management architecture (such as DLM, data storage systems, data placement
techniques), which were neglected in the other surveys, under the prism of non-func-
tional properties. Further, our contribution to Big Data placement is quite unique. In
addition, the in-depth analysis of each main article section is covered by a well-designed
set of evaluation criteria. Such an analysis also assists in a better categorization of the
respective approaches (or technologies, involved in each part).

Our survey enables readers to better understand which solution could be utilized
under which non-functional requirements. Thus, assisting towards the construction of
user-specific Big Data management systems according to the non-functional require-
ments posted. Subsequently, we have described relevant challenges that can pave the
way for the proper evolution of such systems in the future. Each challenge prescribed
in "Lessons learned and future research directions" section has been drawn from the
conducted analysis. Lastly, we have supplied a set of interesting and emerging future
research work directions concerning both the functionalities related to the Big Data
management (i.e., Big Data storage and placement), as well as the Big Data lifecycle man-
agement as a whole, in order to address the identified challenges.

Abbreviations
ACL: access control list; BDaaS: Big Data-as-a-service; BEA: bond energy algorithm; BI: business intelligence; CDM: cogni-
tive data management; DaaS: data-as-a-service; DBaaS: database-as-a-service; DCs: data centers; DDBMS: distributed
database management system; DFS: distributed file system; DLMS: data lifecycle management system; DMS: data
management system; HA: high availability; HDFS: Hadoop distributed file system; IoT: internet-of-thing; NFS: Network File
System; PaaS: platform-as-a-service; PSO: particle swarm optimization; PVFS: parallel virtual file system; QoS: quality of
service; SLR: systematic literature review; STaaS: storage-as-a-service.

Authors’ contributions
"Introduction" is contributed by SM, DS, KK and YV; "Data lifecycle management (DLM)" is contributed by SM, KK and YV;
"Methodology" is contributed by KK and SM; "Non-functional data management features" is contributed by DS and SM;
"Data storage systems" is contributed by DS, SM and YV; "Data placement techniques" is contributed by KK and SM; and
"Lessons learned and future research directions" is contributed by YV, SM, DS, KK. All authors read and approved the final
manuscript.

Page 34 of 37Mazumdar et al. J Big Data (2019) 6:15

Author details
1 Simula Research Laboratory, 1325 Lysaker, Norway. 2 Ulm University, Ulm, Germany. 3 ICS-FORTH, Heraklion, Crete,
Greece. 4 Institute of Communication and Computer Systems (ICCS), 9 Iroon Polytechniou Str., Athens, Greece.

Acknowledgements
The research leading to this survey paper has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No. 731664. The authors would like to thank the partners of the
MELODIC project (http://www.melod​ic.cloud​/) for their valuable advices and comments.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Funding
This work is generously supported by the Melodic project (Grant Number 731664) of the European Union H2020
program.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 October 2018 Accepted: 22 January 2019

References
	 1.	 Khan N, Yaqoob I, Hashem IAT, et al. Big data: survey, technologies, opportunities, and challenges. Sci World J.

2014;2014:712826.
	 2.	 Kaisler S, Armour F, Espinosa JA, Money W. Big data: issues and challenges moving forward. In: System sciences

(HICSS), 2013 46th Hawaii international conference on, IEEE. 2013. pp. 995–1004.
	 3.	 Zheng Z, Zhu J, Lyu MR. Service-generated big data and big data-as-a-service: an overview. In: Big Data (BigData

Congress), 2013 IEEE international congress on, IEEE. 2013. pp. 403–10.
	 4.	 Chen M, Mao S, Liu Y. Big data: a survey. Mob Netw Appl. 2014;19(2):171–209.
	 5.	 Inukollu VN, Arsi S, Ravuri SR. Security issues associated with big data in cloud computing. Int J Netw Secur Appl.

2014;6(3):45.
	 6.	 Wang C, Wang Q, Ren K, Lou W. Privacy-preserving public auditing for data storage security in cloud computing.

In: Infocom, 2010 proceedings IEEE, IEEE. 2010. pp. 1–9.
	 7.	 Chaudhuri S. What next?: a half-dozen data management research goals for big data and the cloud. In: PODS,

Scottsdale, AZ, USA. 2012. pp. 1–4.
	 8.	 Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and

challenges in big data analytics. J Big Data. 2015;2(1):1.
	 9.	 Verma D. Supporting service level agreements on IP networks. Indianapolis: Macmillan Technical Publishing; 1999.
	 10.	 Sakr S, Liu A, Batista DM, Alomari M. A survey of large scale data management approaches in cloud environments.

IEEE Commun Surv Tutor. 2011;13(3):311–36.
	 11.	 Wu L, Yuan L, You J. Survey of large-scale data management systems for big data applications. J Comput Sci Tech-

nol. 2015;30(1):163.
	 12.	 Oussous A, Benjelloun FZ, Lahcen AA, Belfkih S. Big data technologies: a survey. J King Saud Univ Comput Inf Sci.

2017;30(4):431–48.
	 13.	 Grolinger K, Higashino WA, Tiwari A, Capretz MA. Data management in cloud environments: NoSQL and NewSQL

data stores. J Cloud Comput Adv Syst Appl. 2013;2(1):22.
	 14.	 Zhang H, Chen G, Ooi BC, Tan KL, Zhang M. In-memory big data management and processing: a survey. IEEE Trans

Knowl Data Eng. 2015;27(7):1920–48.
	 15.	 Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU. The rise of “big data” on cloud computing: review

and open research issues. Inf Syst. 2015;47:98–115.
	 16.	 Ball A. Review of data management lifecycle models. Bath: University of Bath; 2012.
	 17.	 Demchenko Y, de Laat C, Membrey P. Defining architecture components of the big data ecosystem. In: Interna-

tional conference on collaboration technologies and systems. 2014. pp. 104–12.
	 18.	 Pääkkönen P, Pakkala D. Reference architecture and classification of technologies, products and services for big

data systems. Big Data Res. 2015;2(4):166–86.
	 19.	 NBD-PWG. NIST big data interoperability framework: volume 2, big data taxonomies. Tech. rep., NIST, USA 2015.

Special Publication 1500-2.
	 20.	 Organisation for Economic Co-operation and Development. Data-driven innovation: big data for growth and well-

being. Paris: OECD Publishing; 2015.
	 21.	 Kaufmann M. Towards a reference model for big data management. Research report, University of Hagen. 2016.

Retrieved from https​://ub-depos​it.fernu​ni-hagen​.de/recei​ve/mir_mods_00000​583. Retrieved 15 July 2016.
	 22.	 Höfer C, Karagiannis G. Cloud computing services: taxonomy and comparison. J Internet Serv Appl.

2011;2(2):81–94.
	 23.	 Baru C, Moore R, Rajasekar A, Wan M. The sdsc storage resource broker. In: CASCON first decade high impact

papers, IBM Corp.; 2010. pp. 189–200.

Page 35 of 37Mazumdar et al. J Big Data (2019) 6:15

	 24.	 Chasen JM, Wyman CN. System and method of managing metadata data 2004. US Patent 6,760,721.
	 25.	 Gómez A, Merseguer J, Di Nitto E, Tamburri DA. Towards a uml profile for data intensive applications. In: Proceed-

ings of the 2nd international workshop on quality-aware DevOps, ACM. 2016. pp. 18–23.
	 26.	 Verginadis Y, Pationiotakis I, Mentzas G. Metadata schema for data-aware multi-cloud computing. In: Proceedings

of the 14th international conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. 2018.
	 27.	 Binz T, Breitenbücher U, Kopp O, Leymann F. Tosca: portable automated deployment and management of cloud

applications. In: Advanced web services. Springer; 2014. pp. 527–49.
	 28.	 Kritikos K, Domaschka J, Rossini A. Srl: a scalability rule language for multi-cloud environments. In: Cloud comput-

ing technology and science (CloudCom), 2014 IEEE 6th international conference on, IEEE. 2014. pp. 1–9.
	 29.	 Rossini A, Kritikos K, Nikolov N, Domaschka J, Griesinger F, Seybold D, Romero D, Orzechowski M, Kapitsaki G,

Achilleos A. The cloud application modelling and execution language (camel). Tech. rep., Universität Ulm 2017.
	 30.	 Das S, Nishimura S, Agrawal D, El Abbadi A. Albatross: lightweight elasticity in shared storage databases for the

cloud using live data migration. Proc VLDB Endow. 2011;4(8):494–505.
	 31.	 Lu C, Alvarez GA, Wilkes J. Aqueduct: online data migration with performance guarantees. In: Proceedings of the

1st USENIX conference on file and storage technologies, FAST ’02. USENIX Association 2002.
	 32.	 Stonebraker M, Devine R, Kornacker M, Litwin W, Pfeffer A, Sah A, Staelin C. An economic paradigm for query

processing and data migration in mariposa. In: Parallel and distributed information systems, 1994., proceedings of
the third international conference on, IEEE. 1994. pp. 58–67.

	 33.	 Brubeck DW, Rowe LA. Hierarchical storage management in a distributed VOD system. IEEE Multimedia.
1996;3(3):37–47.

	 34.	 Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg J. Preliminary guidelines for
empirical research in software engineering. IEEE Trans Softw Eng. 2002;28(8):721–34.

	 35.	 Gessert F, Wingerath W, Friedrich S, Ritter N. NoSQL database systems: a survey and decision guidance. Comput
Sci Res Dev. 2017;32(3–4):353–65.

	 36.	 Sakr S. Cloud-hosted databases: technologies, challenges and opportunities. Clust Comput. 2014;17(2):487–502.
	 37.	 Cattell R. Scalable SQL and NoSQL data stores. Acm Sigmod Rec. 2011;39(4):12–27.
	 38.	 Gray J. Database and transaction processing performance handbook. In: The benchmark handbook for database

and transaction systems. 2nd ed. Digital Equipment Corp. 1993.
	 39.	 Traeger A, Zadok E, Joukov N, Wright CP. A nine year study of file system and storage benchmarking. ACM Trans

Storage. 2008;4(2):5.
	 40.	 Agrawal D, El Abbadi A, Das S, Elmore AJ. Database scalability, elasticity, and autonomy in the cloud. In: Interna-

tional conference on database systems for advanced applications. Springer. 2011. pp. 2–15.
	 41.	 Séguin C, Le Mahec G, Depardon B. Towards elasticity in distributed file systems. In: Cluster, cloud and grid com-

puting (CCGrid), 2015 15th IEEE/ACM international symposium on, IEEE. 2015. pp. 1047–56.
	 42.	 Seybold D, Wagner N, Erb B, Domaschka J. Is elasticity of scalable databases a myth? In: Big Data (Big Data), 2016

IEEE international conference on, IEEE. 2016. pp. 2827–36.
	 43.	 Gilbert S, Lynch N. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.

Acm Sigact News. 2002;33(2):51–9.
	 44.	 Bermbach D, Kuhlenkamp J. Consistency in distributed storage systems. In: Networked systems. Springer. 2013.

pp. 175–89.
	 45.	 Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Oper Syst Rev.

2010;44(2):35–40.
	 46.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distrib-

uted storage system for structured data. ACM Trans Comput Syst. 2008;26(2):4.
	 47.	 Pavlo A, Aslett M. What’s really new with newsql? ACM Sigmod Rec. 2016;45(2):45–55.
	 48.	 Corbellini A, Mateos C, Zunino A, Godoy D, Schiaffino S. Persisting big-data: the NoSQL landscape. Inf Syst.

2017;63:1–23.
	 49.	 Davoudian A, Chen L, Liu M. A survey on NoSQL stores. ACM Comput Surv. 2018;51(2):40.
	 50.	 Jensen SK, Pedersen TB, Thomsen C. Time series management systems: a survey. IEEE Trans Knowl Data Eng.

2017;29(11):2581–600.
	 51.	 Bader A, Kopp O, Falkenthal M. Survey and comparison of open source time series databases. In: BTW (Work-

shops). 2017. pp. 249–68.
	 52.	 Abadi JD. Data management in the cloud: limitations and opportunities. IEEE Data Eng Bull. 2009;32:3–12.
	 53.	 Pritchett D. Base: an acid alternative. Queue. 2008;6(3):48–55.
	 54.	 Codd EF. Extending the database relational model to capture more meaning. ACM Trans Database Syst.

1979;4(4):397–434.
	 55.	 Aslett M. How will the database incumbents respond to nosql and newsql. The San Francisco. 2011;451:1–5.
	 56.	 Sadalage PJ, Fowler M. NoSQL distilled. 2012. ISBN-10 321826620
	 57.	 Seybold D, Hauser CB, Volpert S, Domaschka J. Gibbon: an availability evaluation framework for distributed data-

bases. In: OTM confederated international conferences “On the Move to Meaningful Internet Systems”. Springer.
2017. pp. 31–49.

	 58.	 Seybold D, Domaschka J. Is distributed database evaluation cloud-ready? In: Advances in databases and informa-
tion systems. Springer. 2017. pp. 100–8.

	 59.	 Barahmand S, Ghandeharizadeh S. BG: a benchmark to evaluate interactive social networking actions. In: CIDR.
Citeseer. 2013.

	 60.	 Cooper BF., Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with ycsb. In:
Proceedings of the 1st ACM symposium on Cloud computing, ACM. 2010. pp. 143–54.

	 61.	 Kuhlenkamp J, Klems M, Röss O. Benchmarking scalability and elasticity of distributed database systems. Proc
VLDB Endow. 2014;7(12):1219–30.

	 62.	 Bermbach D, Tai S. Benchmarking eventual consistency: lessons learned from long-term experimental studies. In:
Cloud engineering (IC2E), 2014 IEEE international conference on, IEEE. 2014. pp. 47–56.

Page 36 of 37Mazumdar et al. J Big Data (2019) 6:15

	 63.	 Domaschka J, Hauser CB, Erb B. Reliability and availability properties of distributed database systems. In: Enter-
prise distributed object computing conference (EDOC), 2014 IEEE 18th international, IEEE. 2014. pp. 226–33.

	 64.	 Brewer E. Cap twelve years later: How the “rules” have changed. Computer. 2012;45(2):23–9.
	 65.	 Klems M, Bermbach D, Weinert R. A runtime quality measurement framework for cloud database service

systems. In: Quality of information and communications technology (QUATIC), 2012 eighth international
conference on the, IEEE. 2012. pp. 38–46.

	 66.	 Abadi D, Agrawal R, Ailamaki A, Balazinska M, Bernstein PA, Carey MJ, Chaudhuri S, Chaudhuri S, Dean J, Doan
A. The beckman report on database research. Commun ACM. 2016;59(2):92–9.

	 67.	 Group NBDPW, et al. Nist big data interoperability framework. Special Publication 2015. pp. 1500–6.
	 68.	 Kachele S, Spann C, Hauck FJ, Domaschka J. Beyond iaas and paas: an extended cloud taxonomy for computa-

tion, storage and networking. In: Utility and cloud computing (UCC), 2013 IEEE/ACM 6th international confer-
ence on, IEEE. 2013. pp. 75–82.

	 69.	 Levy E, Silberschatz A. Distributed file systems: concepts and examples. ACM Comput Surv. 1990;22(4):321–74.
	 70.	 Muthitacharoen A, Morris R, Gil TM, Chen B. Ivy: a read/write peer-to-peer file system. ACM SIGOPS Oper Syst

Rev. 2002;36(SI):31–44.
	 71.	 Ross RB, Thakur R, et al. PVFS: a parallel file system for Linux clusters. In: Proceedings of the 4th annual Linux

showcase and conference. 2000. pp. 391–430.
	 72.	 Yu B, Pan J. Sketch-based data placement among geo-distributed datacenters for cloud storages. In: INFO-

COM, San Francisco: IEEE. 2016. pp. 1–9.
	 73.	 Greene WS, Robertson JA. Method and system for managing partitioned data resources. 2005. US Patent

6,922,685.
	 74.	 Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks.

ACM SIGCOMM Comput Commun Rev. 2008;39(1):68–73.
	 75.	 Hardavellas N, Ferdman M, Falsafi B, Ailamaki A. Reactive nuca: near-optimal block placement and replication

in distributed caches. ACM SIGARCH Comput Archit News. 2009;37(3):184–95.
	 76.	 Kosar T, Livny M. Stork: making data placement a first class citizen in the grid. In: Distributed computing sys-

tems, 2004. Proceedings. 24th international conference on, IEEE. 2004. pp. 342–9.
	 77.	 Xie T. Sea: a striping-based energy-aware strategy for data placement in raid-structured storage systems. IEEE

Trans Comput. 2008;57(6):748–61.
	 78.	 Yuan D, Yang Y, Liu X, Chen J. A data placement strategy in scientific cloud workflows. Future Gener Comput

Syst. 2010;26(8):1200–14.
	 79.	 Doraimani S, Iamnitchi A. File grouping for scientific data management: lessons from experimenting with real

traces. In: Proceedings of the 17th international symposium on High performance distributed computing,
ACM. 2008. pp. 153–64.

	 80.	 Cope JM, Trebon N, Tufo HM, Beckman P. Robust data placement in urgent computing environments. In: Paral-
lel & distributed processing, 2009. IPDPS 2009. IEEE international symposium on, IEEE. 2009. pp. 1–13.

	 81.	 Kosar T, Livny M. A framework for reliable and efficient data placement in distributed computing systems. J
Parallel Distrib Comput. 2005;65(10):1146–57.

	 82.	 Bell DA. Difficult data placement problems. Comput J. 1984;27(4):315–20.
	 83.	 Wang J, Shang P, Yin J. Draw: a new data-grouping-aware data placement scheme for data intensive applica-

tions with interest locality. IEEE Trans Magnetic. 2012;49(6):2514–20.
	 84.	 McCormick W, Schweitzer P, White T. Problem decomposition and data reorganisation by a clustering tech-

nique. Oper Res. 1972;20:993–1009.
	 85.	 Ebrahimi M, Mohan A, Kashlev A, Lu S. BDAP: a Big Data placement strategy for cloud-based scientific work-

flows. In: BigDataService, IEEE computer society. 2015. pp. 105–14.
	 86.	 Papaioannou TG, Bonvin N, Aberer K. Scalia: an adaptive scheme for efficient multi-cloud storage. In: Proceed-

ings of the international conference on high performance computing, networking, storage and analysis. IEEE
Computer Society Press. 2012. p. 20.

	 87.	 Er-Dun Z, Yong-Qiang Q, Xing-Xing X, Yi C. A data placement strategy based on genetic algorithm for scientific
workflows. In: CIS, IEEE computer society. 2012. pp. 146–9.

	 88.	 Rafique A, Van Landuyt D, Reniers V., Joosen W. Towards an adaptive middleware for efficient multi-cloud data
storage. In: Proceedings of the 4th workshop on CrossCloud infrastructures & platforms, Crosscloud’17. 2017.
pp. 1–6.

	 89.	 Lan K, Fong S, Song W, Vasilakos AV, Millham RC. Self-adaptive pre-processing methodology for big data
stream mining in internet of things environmental sensor monitoring. Symmetry. 2017;9(10):244.

	 90.	 Zhang J, Chen J, Luo J, Song A. Efficient location-aware data placement for data-intensive applications in geo-
distributed scientific data centers. Tsinghua Sci Technol. 2016;21(5):471–81.

	 91.	 Hsu CH, Slagter KD, Chung YC. Locality and loading aware virtual machine mapping techniques for optimizing
communications in mapreduce applications. Future Gener Comput Syst. 2015;53:43–54.

	 92.	 Xu Q, Xu Z, Wang T. A data-placement strategy based on genetic algorithm in cloud computing. Int J Intell Sci.
2015;5(3):145–57.

	 93.	 Chervenak AL, Smith DE, Chen W, Deelman E. Integrating policy with scientific workflow management for
data-intensive applications. In: 2012 SC companion: high performance computing, networking storage and
analysis. 2012. pp. 140–9.

	 94.	 Fedak G, He H, Cappello F. Bitdew: a programmable environment for large-scale data management and
distribution. In: 2008 SC—international conference for high performance computing, networking, storage and
analysis. 2008. pp. 1–12.

	 95.	 Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J. Pegasus:
a framework for mapping complex scientific workflows onto distributed systems. Sci Program.
2005;13(3):219–37.

Page 37 of 37Mazumdar et al. J Big Data (2019) 6:15

	 96.	 Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu M, Schwartzkopf
B, et al. Giggle: a framework for constructing scalable replica location services. In: Proceedings of the 2002 ACM/
IEEE conference on supercomputing. IEEE computer society press. 2002. pp. 1–17.

	 97.	 LeBeane M, Song S, Panda R, Ryoo JH, John LK. Data partitioning strategies for graph workloads on heterogene-
ous clusters. In: SC, Austin: ACM; 2015. pp. 1–12.

	 98.	 Quamar A, Kumar KA, Deshpande A. Sword: scalable workload-aware data placement for transactional workloads.
In: Proceedings of the 16th international conference on extending database technology, EDBT ’13, ACM. 2013. pp.
430–41.

	 99.	 Kumar KA, Deshpande A, Khuller S. Data placement and replica selection for improving co-location in distributed
environments. CoRR 2012. arXiv​:1302.4168.

	100.	 Catalyurek UV, Kaya K, Uçar B. Integrated data placement and task assignment for scientific workflows in clouds. In:
Proceedings of the Fourth International Workshop on Data-intensive Distributed Computing, New York, NY, USA:
ACM; 2011. pp. 45–54.

	101.	 Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J. Cloud orchestration features: are tools fit for
purpose? In: Utility and Cloud Computing (UCC), 2015 IEEE/ACM 8th international conference on, IEEE. 2015. pp.
95–101.

	102.	 Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J. Borg, omega, and kubernetes. Queue. 2016;14(1):10.
	103.	 Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements in the cloud: observing, analyzing, and reducing vari-

ance. Proc VLDB Endow. 2010;3(1–2):460–71.
	104.	 Thanh TD, Mohan S, Choi E, Kim S, Kim P. A taxonomy and survey on distributed file systems. In: Networked com-

puting and advanced information management, 2008. NCM’08. Fourth international conference on, vol. 1, IEEE.
2008. pp. 144–9.

	105.	 Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I. Disk-locality in datacenter computing considered irrelevant. In:
HotOS. 2011. p. 12.

	106.	 Nightingale EB, Chen PM, Flinn J. Speculative execution in a distributed file system. In: ACM SIGOPS operating
systems review, vol. 39, ACM. 2005. pp. 191–205.

	107.	 Coelho F, Paulo J, Vilaça R, Pereira J, Oliveira R. Htapbench: Hybrid transactional and analytical processing bench-
mark. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ACM; 2017.
pp. 293–304.

	108.	 Seybold D, Keppler M, Gründler D, Domaschka J. Mowgli: Finding your way in the DBMS jungle. In: Proceedings of
the 2019 ACM/SPEC international conference on performance engineering. ACM. 2019.

	109.	 Allen MS, Wolski R. The livny and plank-beck problems: studies in data movement on the computational grid. In:
Supercomputing, 2003 ACM/IEEE conference, IEEE. 2003. pp. 43.

Chapter 9

[core2] Cloud orchestration features: Are tools fit
for purpose?

This article is published as follows:

Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christopher B Hauser, and Jörg Do-
maschka. “Cloud orchestration features: Are tools fit for purpose?” in IEEE/ACM 8th International Conference
on Utility and Cloud Computing (UCC), 2015, IEEE, pp. 95–101, DOI: https://doi.org/10.1109/UCC.2015.
25.

©2015 IEEE. Reprinted, with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Ulm University’s products or services. Internal or personal use of this material is permit-
ted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/
publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

141

https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/UCC.2015.25
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Cloud Orchestration Features:
Are Tools Fit for Purpose?

Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christopher B. Hauser, Jörg Domaschka
Institute of Information Resource Management

University of Ulm, Germany
Email: {firstname.lastname,joerg.domaschka}@uni-ulm.de

Abstract—Even though the cloud era has begun almost one
decade ago, many problems of the first hour are still around.
Vendor lock-in and poor tool support hinder users from taking
full advantage of main cloud features: dynamic and scale. This
has given rise to tools that target the seamless management and
orchestration of cloud applications. All these tools promise similar
capabilities and are barely distinguishable what makes it hard
to select the right tool. In this paper, we objectively investigate
required and desired features of such tools and give a definition of
them. We then select three open-source tools (Brooklyn, Cloudify,
Stratos) and compare them according to the features they support
using our experience gained from deploying and operating a
standard three-tier application. This exercise leads to a fine-
grained feature list that enables the comparison of such tools
based on objective criteria as well as a rating of three popular
cloud orchestration tools. In addition, it leads to the insight that
the tools are on the right track, but that further development
and particularly research is necessary to satisfy all demands.

I. INTRODUCTION

The last decade has been dominated by the Cloud in both
research and industry. Nevertheless, many problems have been
around since the beginning of the cloud era and are sub-
stantially hindering the move forward. These include vendor
lock-in, the incomparability of cloud providers with respect to
performance per price, the weak adoption of cloud standards
from the providers, etc.

Particularly, researchers from domains that make use of
clouds such as software engineering and data mining, but
also software architects and DevOps teams need robust and
powerful mechanisms to bring their applications and inno-
vations to the Cloud—ideally to many cloud providers. In
order to perform evaluations and test the elasticity of their
application, these users need to be able to seamlessly change
the distribution of their application across multiple cloud
providers. They also have to be able to quickly change the
scaling factor of individual components. Similar considerations
hold for start-ups whose demands change with the growth of
the business.

In order to satisfy these demands, a powerful and reliable
cloud orchestration and operation platform is needed. Indeed,
there are multiple commercial and open-source tools available
that promise to solve above mentioned issues. Yet, it is hard to
find a visible distinguishing factor. Also, there are barely any
sources available that report on the success of using these tools.
This document aims at closing this information gap by the
following contributions: (i) We establish a fine-grained feature
list that enables the comparison of such orchestration tools

based on objective criteria. We also provide a guideline on
how to grade tools according to the features. (ii) We identify
tools that promise to realise some or multiple of the above
mentioned features. (iii) We rate three tools according to our
feature list.

Based on our feature extraction, it becomes possible to
compare existing and upcoming orchestration tools: What is
more, the identified lack of supported features shall drive future
research and development with respect to cloud orchestration.
The remainder of this document is structured as follows:
Section II introduces the terminology of the document as well
as the methodology of our approach. Section III introduces
background and basic capabilities of the tools. Section IV
introduces the feature list and does the comparison for each
introduced feature. Section V presents the comparison results
from applying the list in tabular I. Section VI discusses related
work before we conclude.

II. BACKGROUND

In the following, we briefly introduce the terminology
that we use throughout the document and further classify the
methodology of our comparison.

A. Terminology

Even though more advanced terminologies have been pub-
lished (e.g. [1]), we follow the well-known NIST standard [2]
defining the three service models IaaS, PaaS, and SaaS.

We define (cloud) application as a possibly distributed
application consisting of multiple interlinked application com-
ponents. For illustration consider a blog application B that may
consist of the three components load balancer lb, application
server together with the business logic as, and a database db.

We depict cloud orchestration tool, as a software compo-
nent that manages the complete lifecycle of a cloud application.
It therefore needs to fulfil the following criteria: (1) appli-
cation specification (definition); (2) deployment of specified
applications: the tool has to acquire virtual machines and then
distribute component instances over them; (3) collection of
monitoring data from deployed instances. This data further has
to be consolidated and aggregated and provided to the opera-
tors. (4) If application management shall be (semi-)automatic,
the tool has to allow the definition of rules that capture when
to execute which management task (e.g. scaling). We therefore
explicitly exclude pure deployment tools like Chef.

B. Methodology

While the primary goal of this document is to present a feature
list that helps rating cloud development tools a secondary
goal is to show its applicability to existing software tools.
For this purpose we select three tools fulfilling the above
mentioned four criteria: Apache Brooklyn1, Cloudify2, and
Apache Stratos3.

For the evaluation we install the tools in our local data
centre and apply the defined features. As a sample application
we select a three-tier application consisting of NGINX as a
load balancer, Node.js as an application server running the
Ghost blogging application, and PostgreSQL as a database
management system. The used application descriptions are
available on Github4.

III. INTRODUCTION TO TOOLS

All three selected tools make use of third party IaaS platforms
for running applications and all of them offer a PaaS-like in-
terface to operators. Below we introduce the tools in particular
with respect to their terminology and define the versions used
for the evaluation. As a rule of thumb, we used the latest stable
version available at the time writing this document.

Apache Brooklyn is compared using milestone release 0.7.0-
M2-incubating. Brooklyn’s application description is based on
blueprints written in a domain specific language (DSL) in
YAML format. A blueprint contains global properties (e.g.
name, cloud provider configuration) as well as a services
block defining application components. The definition of the
components is split into abstract types and entities. The type
captures the structure for entities such as defining the proper-
ties and interfaces. The entities refer to those types and provide
the concrete configuration. Each type is linked to a Java
implementation. Besides deployment, Brooklyn also supports
a monitoring interface and elastic adaptation at runtime.

Cloudify by GigaSpaces Technologies is offered in a free open-
source edition and a commercial Pro edition. Our comparison
is based on the open-source edition version 3.2. Cloudify
uses a TOSCA-aligned modelling language for describing
the topology of the application which is then deployed to
allocated virtual machines in the cloud environment. TOSCA-
like, Cloudify splits the blueprint in a type and template
definition. Types define abstract reusable entities and are to
be referenced by templates. The types therefore define the
structure of the template, by e.g. defining the properties that
a template can have/must provide. The template then provides
the concrete values. This mechanism is used for nodes as well
as for relationships.

Apache Stratos is compared using the release candiate 4.1.0-
RC2. Stratos makes use of an abstract virtual machine de-
scription, named cartridge, with an application component
type (named cartridge type) like an application runtime con-
tainer (e.g. Tomcat). An application is described by a single
cartridge or/and a set of cartridges (groups), combined with
deployment and scaling policies. The cartridges, applications

1https://brooklyn.incubator.apache.org/
2http://getcloudify.org/
3http://stratos.apache.org/
4https://github.com/dbaur/orchestration comparison

and other configurations are represented in a Stratos specific
JSON format. For the deployment itself, it solely relies on
the DevOps tool Puppet. The application itself is subsequent
cloned from a Git repository. Stratos is installed as one central
controller and in all virtual machines by having a virtual
machine image prepared with the necessary software (Stratos
and Puppet agents) installed.

IV. FEATURES AND COMPARISON

In this section we perform the actual comparison. Each of
the following two sections introduces a set of features. Sec-
tion IV-A addresses cloud-related aspects and Section IV-B
considers application-related features.

In the individual sections, we introduce the features of
the set and for each of them, (i) define the feature in detail
and argue why it is desirable. In case sub-features exist for
a feature, they are introduced as well (highlighted in italics).
Moreover, we (ii) discuss to what extend each feature and all
its sub-features are actually supported by each of the three
tools.

A. Cloud Feature Set

The Cloud Feature Set relates to the cloud infrastructure.
Hence, its features focus on supported deployment across
multiple cloud providers and levels.

1) Multi-Cloud Support Feature: Supporting multiple
cloud providers is one of the most crucial features for cloud
application management tools, as it allows the selection of the
best matching cloud offer for an application from a diverse
offering landscape. Cloud providers often differ from each
other regarding their API. This causes the user to suffer from
a vendor lock-in once he depends on the native API of a cloud
provider. For that reason cloud orchestration tools should offer
a cloud abstraction layer which hides differences and avoids
the need for provider-specific customisation thus removing the
vendor lock-in.

Apache Brooklyn Support: Brooklyn uses Apache
jclouds as cloud abstraction layer and therefore supports many
public and private cloud providers.

Cloudify Support: Cloudify comes with plugins sup-
porting AWS, Openstack and VMWare vCloud. It also offers a
contributed plugin for Apache Cloudstack and two commercial
plugins (Pro version) for VMWare vSphere and SoftLayer.
Nevertheless, Cloudify does not support an abstraction layer
and each model needs to explicitly reference cloud provider
specific features.

Apache Stratos Support: Stratos utilises jclouds as a
cloud abstraction layer, supporting multiple providers. Support
is tested for AWS EC2, Openstack and Google Compute
Engine. Yet, the abstraction is imperfect as application speci-
fications still need to refer to cloud specific entities.

2) Cross-Cloud Support Feature: Cross-cloud support en-
hances the multi-cloud feature such that the user is able
to deploy a single application in a way that its component
instances are distributed over multiple cloud providers. For
instance, the database may be deployed in a private cloud on
the user’s premises while numerous instances of the application

server run in a public cloud. The advantages of cross-cloud
deployment are three-fold: (i) It allows a sophisticated per-
component instance selection of the best-fitting offer. (ii) It
leverages the availability of the application as it introduces
resilience against the failure of individual cloud providers. (iii)
It helps coping with privacy issues (private vs. public cloud).

Apache Brooklyn Support: Brooklyn supports cross-
cloud deployments on a per-component level: Each component
can be bound to a separate cloud provider by referencing its
configuration.

Cloudify Support: Cloudify offers cross-cloud support.
For each virtual machine defined in the model, the user can
reference a different cloud provider.

Apache Stratos Support: Stratos allows the definition of
network partitions which are logical groups of IaaS resources
such as regions or availability zones. Network partitions enable
cross-cloud scaling and deployment using policies like round
robin through available network partitions. Cartridges may
only be configured for a subset of network partitions.

3) External PaaS Support Feature: In addition to support-
ing IaaS clouds, the support of PaaS clouds (e.g. Google
App Engine) is desirable. For PaaS offers ready-to-deploy
application containers, it reduces complexity compared to IaaS.
This also reduces the management effort for the user. On the
downside, it comes at the cost of reduced flexibility, it is the
provider that defines the container configuration.

Tool Support: None of the three tools allows the use
of external PaaS clouds.

4) Support of Cloud Standards Feature: In addition to sup-
porting multiple provider APIs (cf. Section IV-A1) the support
of cloud API standards such as CIMI [3] or OCCI [4] enables
support for any cloud provider adapting such a standard.

Tool Support: None of the three tools supports any
cloud interface standard.

5) Bring Your Own Node (BYON) Feature: BYON captures
the ability to use already running servers for application
deployment. It enables the use of servers not managed by
a cloud platform or virtual machines on unsupported cloud
providers.

Apache Brooklyn Support: Brooklyn supports BYON
by providing an IP address and login credentials for the server.

Cloudify Support: Cloudify supports BYON through
an externally installable Host-Pool Service that works as a
cloud middleware mock-up. When enabled, Cloudify requests
IP addresses and login credentials from this service whenever
it needs to provision a new server.

Apache Stratos Support: Stratos does not support
BYON, despite the general ability of jclouds to do so.

B. Application Feature Set

This section discusses features related to the deployment
and automation of applications. It starts with features related
to the application description language and deployment, con-
tinues with features related to runtime adaptation, and finally
discusses additional features such as support of the Windows
operating system.

1) Application Standards Feature: Supporting open stan-
dards such as TOSCA [5] and CAMP [6] for modelling
the application topology, the component life cycles, and the
interaction with the cloud management tool facilitates the
usage of the tool and further increases the reusability of the
topology definition, as it avoids moving the vendor lock-
in from cloud provider level to management tool level (cf.
Section IV-A1). Moreover, it reduces the initial effort and costs
to learn a new DSL.

Apache Brooklyn Support: Brooklyn’s YAML format
follows the CAMP specification, but uses some custom ex-
tensions. Yet, it is possible to deploy CAMP YAML plans
with Brooklyn and via the separately provided CAMP server.
Support for TOSCA is planned for a future release.

Cloudify Support: While Cloudify’s DSL for the de-
ployment description is strongly aligned with the TOSCA
modelling standard it does not directly reference the standard
types, but instead defines its own profile following the TOSCA
Simple Profile in YAML. Full TOSCA support is planned.

Apache Stratos Support: Stratos does not implement
any standard.

2) Resource Selection Feature: The resource selection is
part of the application topology description. It defines the
resources used for the deployment of a component instance
in an IaaS cloud. Hence, a resource will commonly refer to
the virtual machine type/flavour, an image, and a provider-
specific location: 〈location, hardware, image〉. A tool has
mainly four possibilities to define or derive such a tuple: (i)
In an manual binding the user provides the concrete unique
identifiers of the cloud entities. (ii) In an automatic binding the
user defines abstract requirements regarding the defined tuple
(e.g. number of cores). These are then bound to a concrete offer
at runtime by the tool. Automatic binding can be enhanced by
offering an iii) optimised binding. Here, the specification of
optimisation criteria based on attributes of the cloud provider
such as price or location is possible. Finally, (iv) dynamic bind-
ing offers a solving system that enables changes to the binding
based on runtime information, e.g. metric data collected from
the monitoring system. Automatic binding is a prerequisite
for complex deployment and runtime adaptation scenarios,
as it allows the cloud management platform to dynamically
select the concrete offer during runtime. Optimised binding
offers optimised selection based on simple criteria like price.
Dynamic binding offers the possibility to use a solver applying
an optimisation algorithm for selecting the best-fitting offer
based on complex criteria (performance or performance per
$).

Apache Brooklyn Support: Brooklyn supports manual
as well as basic automatic binding. For the latter it supports
resource boundaries for the hardware. The resource selection
happens either in the global or in the component-specific parts
of the blueprint.

Cloudify Support: Cloudify exclusively supports man-
ual binding of the resources used for a virtual machine. The
user needs to reference a cloud provider specific node type (e.g.
cloudify.openstack.nodes.Server for Openstack)
to provide the implementation for the chosen cloud provider,
as well as the specific properties defined by this type. These
include the location, the image and the flavour information.

Automatic binding of resources (like offered by TOSCA’s
nodes_filter requirements specification) is not supported
by Cloudify. Due to this shortcoming optimised and dynamic
bindings are also not possible.

Apache Stratos Support: The resource selection in
Stratos is a manual process when configuring cartridges by
referencing to (i) an image and (ii) a hardware description in
an IaaS cloud.

3) Life Cycle Description Feature: The life cycle descrip-
tion defines the actions that need to be executed in order to
deploy the application including all its component instances
on started virtual machines. The basic approach for the life
cycle description of the application is to provide shell scripts
that are executed in a specific order. This approach can be
extended to support DevOps tools such as Chef that offer a
more sophisticated approach to deployment management and
ready to use deployment descriptions.

Apache Brooklyn Support: In Brooklyn each defined
type provides basic life cycle actions called effectors. These
can be configured in the concrete application component def-
inition. The configuration can either happen with shell scripts
or by referencing Chef recipes.

Cloudify Support: Cloudify relies on the interface def-
inition of TOSCA for defining life cycle actions. The base
node type defines multiple life cycle actions as interfaces, that
are executed during deployment. The actions are defined as
shell scripts or by using Chef and Puppet. Support for Salt is
in development. Cloudify also has the possibility to provide
python scripts. This is evaluated and provides immediate
access to Cloudify’s API.

Apache Stratos Support: The life cycle description for
managing virtual machines is done by Stratos itself, while the
software setup is delegated to Puppet. Stratos cartridges have
a cartridge type, which is a reference to a Puppet module.
During application deployment, Stratos identifies and invokes
the needed Puppet modules.

4) Wiring and Workflows: Most cloud applications are
distributed applications where components reside on different
virtual machines, e.g. the application server resides on a
compute optimised host, while the database is on a storage op-
timised host. Hence, the modelling language needs to support
a way to configure those communication relationships between
the components by offering a way to pass the endpoint, either
before the start of the dependent component (database starts
before application server) or after (application server is added
to already running load balancer).

A straight-forward approach to resolve those dependencies
is attribute and event passing. That is, the tool allows the
user (life cycle scripts) to lock/wait for attributes to become
available or register listeners on topology change events. This
is commonly achieved by a global registry shared between all
component instances of an application.

Obviously, this approach offloads most complexity to the
user who needs to, e.g., make sure that the database URL is
only available when it already started. An improvement is a
manual workflow definition. Here, the user defines a workflow
taking care of the deployment order. Finally, the easiest way
for the end user is an automatic workflow deduction, where

the modelling language is sufficiently verbose to allow the
system to automatically deduce the correct workflow from the
defined life cycle actions on the virtual machines and their
relationships.

Additionally, a tool may offer extensions to its model,
allowing to refer to external services like PaaS (cf. Sec-
tion IV-A3) or SaaS services, to ensure that the deployment
engine is aware of this dependency and e.g., can open ports
on firewalls.

Apache Brooklyn Support: Brooklyn supports wiring
by attribute-and-event-passing. It offers a locking action, that
waits until the dependent service provides a required attribute.
The reverse way, where a later starting service needs to
reconfigure a running service, is not supported out of the box.
Instead, the user has to implement this functionality. Yet, for
the commonly used load-balancer scenario, Brooklyn supports
predefined static out-of-box load balancing. The tool neither
supports workflow scenarios nor access to external services.

Cloudify Support: Cloudify uses the relationship mech-
anism of TOSCA. It defines a generic depends_on relation-
ship type that offers the execution of custom actions on either
the source or the target of the relationship on specific events.
Combined with a shared configuration space available via e.g.
a shell extension, this allows the user to configure endpoints
before or after the start of a service. Using python the user
can implement custom workflows, making sure that the life
cycle actions are executed in the correct order. If the user
only uses the basic life cycle actions, Cloudify is capable of
automatically deducing the correct execution order. Cloudify
does not support external services by default. Yet, the modular
communication relationship might allow adding this feature if
needed.

Apache Stratos Support: Stratos provides a metadata
service where the component instances of an application can
export and import variables. This basic but manual wiring
using variable exchange must be implemented by the user
at application setup. In case of joining or leaving component
instances Stratos broadcasts a topology change event, which
is used by Stratos core functionality (e.g. notify the user for
a successful application deployment) or any load balancers
existing in a deployed application setup, to update their state
for redirecting client requests. For assessing the overall deploy-
ment workflow, support of both Stratos and Puppet have to be
considered. Stratos defines a startup order of virtual machines,
while Puppet has a more complex dependency expression for
each single virtual machine. Puppet modules can be depending
on each other and inside of one module, dependencies between
different steps can be defined. This rather static deployment
workflow is defined in advance of the application deployment.
The flow cannot be controlled during application boot or
execution time. Stratos does not support external services.

5) Monitoring Feature: Being able to track the behaviour
of the application is a key to assessing the quality of the
deployment. Consequently, it is necessary to monitor the
current resource consumption and the quality-of-service (QoS)
parameters of the application. Only if the end-user is aware
of current bottlenecks he is able to remove them. The cloud
management framework should therefore offer a way to mea-
sure system metrics like CPU usage and application specific

metrics like number of requests. If those predefined metrics
are not sufficient, the tool should offer a well defined way to
add custom metrics.

An aggregation mechanism enables users to compute
higher-level metrics (e.g. 10 minute average over CPU load)
and also to combine multiple metrics (e.g. average over 10
minute CPU average of all instances of a particular compo-
nent). For helping users in accessing and assessing the current
load on his application, it is beneficial to have the gathered
metrics presented through a dashboard. In order to support
higher-level evaluation of monitoring data access to historical
data is desirable.

Apache Brooklyn Support: Brooklyn’s uses a pulling
mechanism gathering the data from the virtual machines by
either executing remote actions or accessing an external tool.
It is the user’s responsibility to implement those actions, or to
provide an interface to an external monitoring tool. Brooklyn
does not store historical data and only supports access to the
latest measured value impairing aggregation. The latest value
of all metrics is shown in a dashboard.

Cloudify Support: Cloudify’s monitoring system relies
on the Diamond monitoring daemon that has built-in collec-
tors for the most common system and application metrics.
Additionally, it offers an interface for the implementation of
custom collectors. The Cloudify user interface for viewing
(historical) metrics is only available in the closed-source Pro
version. Aggregation of metrics is possible using the policy
framework (cf. Section IV-B6).

Apache Stratos Support: Stratos uses a cartridge agent
residing within each virtual machine. This agent comprises a
Health Publisher to avail itself of the machine’s health statis-
tics, load average, free memory, and the amount of in-flight
requests. It is not possible to define further custom metrics.
Monitoring data is sent to a central real-time processing engine
where aggregation and evaluation is performed. Support for
visualisation of current and historical health statistics through
the Web GUI is is planned for the future.

6) Runtime Adaptation Feature: While monitoring (cf.
Section IV-B5) lays one of the foundations for adapting the
configuration of the application during runtime, the cloud
management platform should be able to react upon deviations
automatically. For this purpose, the user needs to be able to
define (i) metric and QoS conditions that trigger (ii) actions
if violated: For instance, scale component horizontally, if the
CPU usage is > 80%. In order to support that, the cloud
management tool should at least offer a simple threshold-based
approach for the detection of violations and support horizontal
scaling. As extensions, we consider repair and the custom
definition of actions on the actions side, and more complex
rule engines with respect to QoS.

Another feature related to adaptation is continuous delivery
of the application. It enables the user to change the topology
model of an already deployed and running application (e.g.
add a load balancer, or update the software version of a
component). This should be possible with as few changes as
needed to the running components.

Apache Brooklyn Support: Brooklyn policies enable
the specification of metrics/QoS. By default a threshold-based

policy is available. Scaling is enacted in so called clusters.
By default Brooklyn supports horizontal scaling. Both the
policies and the clusters are in general customisable by new
implementations, but there is no easy way to plugin such
custom extensions. Continuous delivery is exclusively possible
on component level, namely by redeploying single components
with updated software.

Cloudify Support: Cloudify uses the event stream pro-
cessor Riemann for the definition of QoS requirements. By
default, they provide policies for host failure detection, simple
threshold and exponential weighted moving average threshold.
It enables the definition of custom aggregations and policies
using Clojure and Riemann. On the action side, Cloudify
offers workflows for healing the application (uninstall/reinstall)
and a scale workflow offering horizontal scaling. Complex
scaling scenarios (e.g. cloud bursting, vertical scaling) are not
supported out of the box. Instead, the user may define custom
workflows using a DSL. This enables support for complex
scenarios, but leaves the responsibility with the user. Contin-
uous delivery of the application is currently not supported by
Cloudify, meaning that the user has to un-deploy the entire
application, even for minor changes in the model. Support for
this has been announced for the Pro version.

Apache Stratos Support: Stratos balances the QoS re-
quirements by using policies, that enable a multi-factored auto-
scaling. Using client requests and system load as health data
(cf. Section IV-B5) combined with a complex event processor
and the Drools rules engine, Stratos enacts horizontal scaling
to the environment. Moreover, repair actions are supported,
in case some tasks within virtual machines of an application
topology fail (e.g. installation of required software), by auto-
matically destroying and re-creating the affected instance. The
implementation of custom actions is not foreseen. Continuous
delivery is not supported. Instead, the user has to un-deploy
the whole application first and change its definition.

7) Reusability and Sharing of Models Feature: When using
cloud management tools, the main task of the user is the
creation of the application description based on components.
As this imposes a high initial effort, this task needs to be
supported by sharing of existing models.

Regarding reusability the tool should offer a modularised
approach regarding the application description. Generally
speaking, each application description consists of components.
In order to facilitate re-use, modularisation shall be used to
an extend where the description and life cycle handling of
components is mostly self-contained and independent from
e.g. the application it is embedded in. At the same time
the composing mechanism that forms applications from sets
of components has to be powerful enough to capture the
most common use cases, such as setting the port numbers
wiring two components. In an ideal case, exchanging an
SQL-based database in an application with a different SQL-
based database should neither require changes to the invoking
component definition nor to the new database component.
Also, the application should be widely untouched except that
the configuration parameters for the new database have to be
set. Approaches to achieve this modularity include templating,
parameterisation, and inheritance.

In order to facilitate easy sharing of entire models and parts

thereof, the tool should offer a marketplace where users can
exchange their models with other users. If such a marketplace
does not exist, the tool provider should at least offer application
models for the most important standard services.

Apache Brooklyn Support: Brooklyn achieves the re-
usability of types by using inheritance. Yet types of the same
parent can not be exchanged without modifying the concrete
properties of connected types. Types can be shared either
locally or in a Git repository.

Cloudify Support: Cloudify uses the same reusability
mechanisms for its models as TOSCA: For the model is split
into types and templates, defined types are in general usable
in other templates. The separation of the server host and the
application using the hosted on relationship also decouples
the server from the application description. The reusability
is further increased by the import mechanism, that allows
to define types in another file location as the templates and
then import them. Another feature increasing modularity is
the relationship mechanism, that allows a custom wiring for
each type usage. Another mechanism that Cloudify shares with
TOSCA is the inheritance of types. This allows the user to
inherit from parent types, meaning that defined elements of
the parent type are also defined in the child type. Finally,
the input mechanism allows defining parameterised models.
Cloudify does not offer a marketplace.

Apache Stratos Support: Since Stratos defines its con-
figurations and applications in JSON, they can be shared
as any text file. Yet, the cartridges contain references to
IDs of IaaS snapshots and hardware configurations. Thus the
reusability is limited to a cloud. Moreover, the definitions of
an already deployed application can’t be changed dynamically;
it needs to be un-deployed first and then edit its definition.
Similarly, Puppet is built to be reusable and shareable also. Its
marketplace Puppet Forge contains more than 3, 300 modules,
which can be added to a Stratos setup. The reusability of
Puppet modules is gained by dependencies between modules,
which allows splitting work in smaller but linked modules.

8) Containerisation Feature: The use of containers such
like Docker is a reasonable approach for sharing a virtual
machine between several component instances, while keeping
them isolated. This leads to better utilisation of the virtual
machine [7]. Moreover, the increased isolation offered by
containers allows resource consumption to be configured,
controlled, and limited on the level of component instances.
This feature does not consider whether cloud providers use
containers instead of hypervisors, as this is transparent for the
users of the platform.

Apache Brooklyn Support: Brooklyn does not support
containers out of the box. Yet, the separate project Clocker
enables the usage of Docker.

Cloudify Support: Cloudify supports containerisation
using Docker. The user can use a docker container node
type what allows starting a docker container from a provided
Docker image. The Docker container, then can be deployed on
a virtual machine node using a contained in relationship.

Apache Stratos Support: Stratos supports containeri-
sation with Docker by using Google Kubernetes as a cluster
orchestration framework.

9) Windows Application Support Feature: While Linux
is dominating the cloud computing environment, there are
many professional companies running their applications on
a Windows operating system [8]. Hence, these applications
should be supported by cloud management tools.

Apache Brooklyn Support: Brooklyn relies heavily on
SSH which excludes native Windows support. Windows sup-
port is currently under development, though.

Cloudify Support: Cloudify supports Windows but re-
quires that the virtual machine (image)s have WinRM enabled.
Cloudify uses this protocol to install its agents on the machine.
The agents then operate in an operating system independent
manner.

Apache Stratos Support: Stratos cartridges for de-
ploying applications also support Windows, e.g. for .NET
framework applications. Both the Stratos agent running in
the applications’ virtual machines and Puppet support the
Windows operating system.

V. COMPARISON RESULT

Table I depicts the achievements of the three cloud tools
with respect to the features defined in Section IV. To be
able to account for different partial achievement or different
achievement quality we use a three-staged marker.

VI. RELATED WORK

To the best of our knowledge there is currently no directly
comparable work defining an in-detail comparison framework
based on features and applying it to the given tools. The work
of [9] and [10] present a general view of cloud computing
defining characteristics, features and challenges of the cloud
computing environment on a much higher level, from which
our features are derived. There is also multiple work defining
a taxonomy and doing a comparison of cloud computing
systems [11] [12]. However, those comparisons focus on cloud
computing in general. They hence put stress on features
offered by and comparison of cloud providers. A qualitative
and quantitive survey for the two IaaS management tools
Openstack and Synnefo5 is provided by [13]. [14] depicts
an elaborate overview of frameworks, projects and libraries
with respect to provisioning, deployment and adaptation of
cloud systems, but also stays at a much coarser granularity.
[15] compares multiple cloud brokerage solutions by first
categorising them, and then listing their core capabilities.
However, their comparison is also done on a much higher
level. Finally, Paasify6 gives a good overview of existing PaaS
and PaaS-like offers doing a feature comparison on higher,
quantifiable levels.

VII. CONCLUSION

In this paper, we have considered basic requirements of
cloud orchestration tools and derived a fine-grained list of
features any of the tools shall support. We also applied these
results by rating three publicly available cloud orchestration
tools based on our list: Apache Brooklyn, Cloudify, and
Apache Stratos.

5https://www.synnefo.org/
6http://www.paasify.it

TABLE I. COMPARISON OF BROOKLYN, CLOUDIFY, AND STRATOS.

Features Tools
Brooklyn Cloudify (Pro) Stratos

Cloud Features
Multi-Cloud

of Cloud Providers jclouds 3 (5) jclouds
Abstraction Layer 3 7 0

Cross-Cloud 3 3 3

External PaaS 7 7 7

Cloud Standards 7 7 7

BYON 3 3 7

Application Features
Model Standards 0 0 7

Resource Selection
Manual Binding 3 3 3

Automatic Binding 0 7 7

Optimised Binding 7 7 7

Dynamic Binding 7 7 7

Life Cycle Description
Shell Script 3 3 7

DevOps Tools 1 3 1
Wiring & Workflow

Attribute & Event Passing 0 3 3

Manual Workflow 7 3 3

Automatic Workflow 7 3 7

External Services 7 7 7

Monitoring
System Metrics 7 3 3

Application Metrics 7 3 3

Custom Metrics 3 3 7

Aggregation 0 3 3

Dashboard 0 7(3) 7

Historical Data 7 7(3) 7

Runtime Adaptation
Thresholds 3 3 3

Rule Engine 7 3 3

Horizontal Scaling 3 3 3

Repair 0 3 3

Custom Action 7 3 7

Continuous Delivery 0 7 7

Reusability and Sharing of Models
Reusability 0 3 0

Sharing 3 7 0
Containerisation 7 3 3

Windows Support 7 3 3

7= not fulfilled, 0= partially fulfilled, 3= fully fulfilled

When looking at the results it becomes evident, that
especially the resource selection feature is underrepresented
in all three tools. All tools require the user to manually
bind a concrete resource to the components at description
time causing vendor lock-in due to missing abstraction and
non-optimal placement due to an incorrect initial selection,
performance unpredictability and no possibility to change it at
runtime. Our own cloud orchestration tool CLOUDIATOR7 [16],
[17] has the goal to close this gap.

Future work will include the finalisation of a first release of
our CLOUDIATOR tool based on the experiences gained while
working with Brooklyn, Cloudify, and Stratos. In parallel, we
will evaluate and rate more tools and we plan to extend this
evaluation to ongoing research projects, also considering non-
function features like performance, availability or security.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
317715 (PaaSage) and 610711 (CACTOS), and from the

7https://github.com/cloudiator

European Community’s Framework Programme for Research
and Innovation HORIZON 2020 (ICT-07-2014) under grant
agreement number 644690 (CloudSocket).

REFERENCES

[1] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond IaaS
and PaaS: An extended cloud taxonomy for computation, storage and
networking,” in Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, ser. UCC ’13. Washing-
ton, DC, USA: IEEE Computer Society, 2013, pp. 75–82.

[2] P. M. Mell and T. Grance, “SP 800-145. the NIST definition of cloud
computing,” National Institute of Standards & Technology, Gaithers-
burg, MD, United States, Tech. Rep., 2011.

[3] DMTF, “Cloud infrastructure management interface (CIMI) model and
RESTful HTTP-based protocol,” 2013.

[4] Open Grid Forum, “Open cloud computing interface - core,” 2011.
[5] D. Palma and T. Spatzier, “Topology and orchestration specification for

cloud applications version 1.0,” OASIS Standard, 2013.
[6] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud application management

for platforms version 1.1,” OASIS Committee Specification, 2014.
[7] K. Razavi, A. Ion, G. Tato, K. Jeong, R. Figueiredo, G. Pierre,

and T. Kielmann, “Kangaroo: A tenant-centric software-defined cloud
infrastructure,” in Proceedings of the IEEE International Conference on
Cloud Engineering, Tempe, AZ, USA, United States, 2015.

[8] Linux Foundation, “Enterprise end user trends report,” 2014.
[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[10] R. Buyya, “Market-oriented cloud computing: Vision, hype, and reality
of delivering computing as the 5th utility,” in Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1–.

[11] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Proceedings of the 2009 Fifth International
Joint Conference on INC, IMS and IDC, ser. NCM ’09. IEEE Computer
Society, 2009, pp. 44–51.

[12] C. Höfer and G. Karagiannis, “Cloud computing services: taxonomy
and comparison,” Journal of Internet Services and Applications, vol. 2,
pp. 81–94, 2011.

[13] E. Qevani, M. Panagopoulou, C. Stampoltas, A. Tsitsipas, D. Kyriazis,
and M. Themistocleous, “What can OpenStack adopt from a Ganeti-
based open-source IaaS?” in 2014 IEEE 7th International Conference
on Cloud Computing, Anchorage, AK, USA, June 27 - July 2, 2014,
2014, pp. 833–840.

[14] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in Cloud Computing (CLOUD), 2013 IEEE Sixth
International Conference on, 2013, pp. 887–894.

[15] F. Fowley, C. Pahl, and L. Zhang, “A comparison framework and review
of service brokerage solutions for cloud architectures,” in Service-
Oriented Computing ICSOC 2013 Workshops. Springer International
Publishing, 2014, pp. 137–149.

[16] D. Baur, S. Wesner, and J. Domaschka, “Towards a model-based
execution-ware for deploying multi-cloud applications,” in Advances
in Service-Oriented and Cloud Computing, ser. Communications in
Computer and Information Science, G. Ortiz and C. Tran, Eds. Springer
International Publishing, 2015, vol. 508, pp. 124–138.

[17] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger, “Cloudiator:
A cross-cloud, multi-tenant deployment and runtime engine,” in 9th
Workshop and Summer School On Service-Oriented Computing 2015,
2015, in press.

Chapter 10

[core3] Is Distributed Database Evaluation
Cloud-Ready?

This article is published as follows:

Material from: Daniel Seybold and Jörg Domaschka, ”Is Distributed Database Evaluation Cloud-Ready?”, Eu-
ropean Conference on Advances in Databases and Information Systems (ADBIS) - New Trends in Databases
and Information Systems (Short Papers), published 2017, Springer International Publishing, DOI: https:
//doi.org/10.1007/978-3-319-67162-8_12

Reprinted with permission from Springer Nature.

149

https://doi.org/10.1007/978-3-319-67162-8_12
https://doi.org/10.1007/978-3-319-67162-8_12

Is Distributed Database Evaluation
Cloud-Ready?

Daniel Seybold(B) and Jörg Domaschka

Institute of Information Resource Management, Ulm University, Ulm, Germany
{daniel.seybold,joerg.domaschka}@uni-ulm.de

Abstract. The database landscape has significantly evolved over the
last decade as cloud computing enables to run distributed databases on
virtually unlimited cloud resources. Hence, the already non-trivial task
of selecting and deploying a distributed database system becomes more
challenging. Database evaluation frameworks aim at easing this task by
guiding the database selection and deployment decision. The evaluation
of databases has evolved as well by moving the evaluation focus from per-
formance to distribution aspects such as scalability and elasticity. This
paper presents a cloud-centric analysis of distributed database evalua-
tion frameworks based on evaluation tiers and framework requirements.
It analysis eight well adopted evaluation frameworks. The results point
out that the evaluation tiers performance, scalability, elasticity and con-
sistency are well supported, in contrast to resource selection and avail-
ability. Further, the analysed frameworks do not support cloud-centric
requirements but support classic evaluation requirements.

Keywords: NoSQL · Distributed database · Database evaluation ·
Cloud

1 Introduction

Relational database management systems (RDBMS) have been the common
choice for persisting data for many decades. Yet, the database landscape has
changed over the last decade and a plethora of new database management sys-
tems (DBMS) have evolved, namely NoSQL [20] and NewSQL [15]. These are
promising persistence solutions not only for Web applications, but also for new
domains such as “BigData” and “IoT”. While NewSQL database systems are
inspired by the relational storage model, the storage models of NoSQL database
system can be further classified into key-value stores, document-oriented stores,
column-oriented stores and graph-oriented stores [20]. NoSQL and NewSQL
DBMS are designed to satisfy requirements such as high performance or scalabil-
ity by running on commodity hardware as a distributed database management
system (DDBMS), providing a single DBMS, which is spread over multiple nodes.
An element of the overall DDBMS is termed database node.

An enabler of the DBMS evolvement is cloud computing by providing fast
access to commodity hardware via elastically, on-demand, self-service resource
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, CCIS 767, pp. 100–108, 2017.
DOI: 10.1007/978-3-319-67162-8 12

Is Distributed Database Evaluation Cloud-Ready? 101

provisioning [17]. Infrastructure as a Service (IaaS) is the preferable way to
deploy a DDBMS, requiring a high degree of flexibility in compute, storage and
network resources [17].

With the number of available NoSQL and NewSQL systems and cloud
resource offerings, the database selection and deployment on the cloud is a chal-
lenging task. Hence, DBMS evaluation is a common approach to guide these
decisions. With the evolvement of the DBMSs, the landscape of database evalu-
ation frameworks (DB-EFs) has evolved as well: from single node evaluation, e.g.
TPC-E 1 of the Transaction Processing Performance Council (TPC), to DDBMS
evaluation, e.g. the Yahoo Cloud Serving Benchmark (YCSB) [7], adding new
evaluation tiers such as scalability, elasticity or consistency. Yet, these DB-EFs
aim at different evaluation tiers and differ towards common DB-EF require-
ments [6,14], especially with respect to cloud computing.

In order to facilitate the selection and deployment of DDBMS in the cloud,
we present an analysis of DB-EF with the focus on exploiting cloud comput-
ing. Our contribution is threefold by (1) defining relevant evaluation tiers for
DDBMS deployed in the cloud; (2) extending existing requirements towards
DDBMS evaluation with cloud specific requirements; (3) analyse existing evalu-
ation frameworks based on the evaluation tiers and evaluation requirements.

The remainder is structured as follows: Sect. 2 introduces the background on
DBMS evaluation. Section 3 defines the evaluation tiers while Sect. 4 defines the
requirements towards evaluation frameworks. Section 5 analysis and discusses
existing frameworks. Section 6 concludes.

2 Background

Evaluating DBMS imposes challenges for the evaluation frameworks itself, which
have been discussed over decades. A first, but still valid guideline for evaluating
RDBMS defines the requirements such as relevance to an application domain,
portability to allow benchmarking of different systems, scalability to support
benchmarking large systems, and simplicity to ensure that the results are easy
to understand [14]. A more recent guideline adds the DDBMS and the resulting
challenges for supporting different deployment topologies and coordination of
distributed experiments [6]. By adopting these challenges, several DB-EFs have
been established over the years, which are analysed in Sect. 5.

An overview of existing DB-EF focuses on the tiers availability and consis-
tency. Yet, general requirements for DB-EF are not introduced and cloud specific
characteristics are not considered [11]. An overview of DB-EFs for NoSQL data-
base systems is provided by [19]. Yet, the focus lies on evaluating the data model
capabilities, without taking explicitly into accout DDBMS aspects and the usage
of cloud resources. Evaluating the dimensions of consistency in DDBMS, is also
analysed by [5], introducing client-centric and data-centric consistency met-
rics. Related DB-EF for consistency are presented and missing features for fine-
grained consistency evaluation are outlined. An overview of DB-EF is included
1 http://www.tpc.org/tpce/.

102 D. Seybold and J. Domaschka

in a recommendation compendiums [16] for distributed database selection based
on functional and non-functional requirement Yet, the compendium considers
only the performance evaluation.

3 Distributed Database Evaluation Tiers

With the evolving heterogeneity in DDBMSs their evaluation becomes even
more challenging. DBMS evaluation is driven by workload domains (WD).
On a high level WDs can classified into transactional (TW) [9], web-oriented
(WOW) [9], Big Data (BDW) [12] and synthetic workloads (SW) [7]. These
WDs drive the need for considering various evaluation tiers, which are distilled
out of database and cloud research.

Resource selection (RS) determines the best matching resources to run a
DBMS. For traditional RDBMSs the focus lies on single node resources,
(CPU, memory, storage). For DDBMSs network, locality and number of nodes
became important factors. By using cloud resources for a DBMS, the cloud
providers tend to offer more heterogeneous resources such as VMs with dedi-
cated storage architectures2, container based resources3, or dedicated resource
locations from data center to physical host level.

Performance (P) evaluates the behaviour of a DBMS against a specific kind
of workload. Performance metrics are throughput and latency, which are mea-
sured by the evaluation framework.

Scalability (S) defines the capability to process arbitrary workload sizes by
adapting the DBMS by scaling vertically (scale-up/down) or horizontally
(scale-in/out) [1]. Scaling vertically changes the computing resources of a
single node. Horizontal scaling adds nodes to a DDBMS cluster (scale-out) or
removes nodes (scale-in) In the following the term scalability implies horizon-
tal scalability Measuring scalability is performed by correlating throughput
and latency for growing cluster sizes and workloads. A high scalability rating
is represented by constant latency and proportionally growing throughput
with respect to the number of nodes and the workload size [7].

Elasticity (E) defines the ability to cope with sudden workload fluctuations
without service disruption [1]. Elasticity metrics are speedup and scaleup [7].
Speedup refers to the required time for a scaling action, i.e. adapting the
cluster size, redistributing data and stabilising the cluster. Scaleup refers
to the benefit of this action, i.e. the throughput/latency development with
respect to the workload fluctuation.

Availability (A) represents the degree to which a DBMS is operational and
accessible when required for use. The availability of a DBMS can be affected
by overload (issuing more requests in parallel than theDBMS can handle
or failures on the resource layer (a node failure). With respect to failures,
DDBMSs apply replication of data to multiple database nodes. A common

2 https://aws.amazon.com/de/ec2/instance-types/.
3 https://wiki.openstack.org/wiki/Magnum.

Is Distributed Database Evaluation Cloud-Ready? 103

metric to measure availability with respect to node failures are the takeover
time, and the performance impact.

Consistency (C) Distributed databases offer different consistency guarantees
as there is trade-off between consistency, availability and partitioning, i.e. the
CAP theorem [13]. Consistency can be evaluated client-centric (i.e. from the
application developer perspective) and data-centric (i.e. from the database
administrator perspective) [5] . Here, we only consider client-centric consis-
tency that can be classified into staleness and ordering [5]. Staleness defines
how much a replica lags behind its master. It is measured either in time or
versions. Ordering defines all requests must be executed on all replicas in the
same chronological order.

4 Evaluation Frameworks Requirements

Besides the evaluation tiers, DBMS evaluation imposes requirements towards
the DB-EF itself. We briefly present established requirements [6,14] as well as
novel cloud-centric requirements.

Usability (U) eases the framework configuration, execution and extension by
providing sufficient documentation and tools to run the evaluation. Hence,
the evaluation process has to be transparent to provide objective results [14].

Distribution/Scalability (D/S) is provided by distributed workload gener-
ation, i.e. the framwork clients can be distributed across multiple nodes in
order to increasing the workload by utilising an arbitrary amount of clients [6].

Measurements Processing (MP) defines that measurements are gathered
not only in an aggregated but also in a fine-grained manner for further
processing [6]. As the amount of measurements can grow rapidly for multiple
or long running evaluation runs, file-based persistence might not be sufficient.
Hence, advanced persistence options such as time series databases (TSDBS),
will ease the dedicated processing and visualisation.

Monitoring (MO) data improves the significance of evaluation results. Hence,
monitoring of the involved resources, clients ,and DBMSs should be supported
by the evaluation framework to provide the basis of a thorough analysis. Again
an advanced persistence solution is beneficial.

Database Abstraction (DA) enables the support of multiple DBMSs by
abstracting database driver implementations. Yet, the abstraction degree
needs to be carefully chosen as a too high abstraction might limit specific
DBMS features and distort results. Therefore, the abstraction interface should
be aligned with the specified workload scenarios [6].

Client Orchestration (CO) enables automated evaluation runs. Therefore,
the framework should provide tools that orchestrate evaluations, i.e. provi-
sion (cloud) resources, create, execute and collect the results and clean-up
the clients. Hence, CO eases the creation of arbitrary load patterns and the
simulation of multi-tenant workload patterns.

104 D. Seybold and J. Domaschka

Database Orchestration (DO) enables the management of the DDBMSs to
facilitate repetitive evaluation for different resources, configurations and the
adaptation of the DDBMS based on predefined conditions. Hence, the evalu-
ation framework should provide tools to automatically orchestrate DDBMSs,
i.e. provision resources, setup, configure and adapt generic DDBMSs.

Multi-phase Workloads (MpW) define the support of multiple workloads
that run in parallel This is crucial to execute advanced evaluation scenarios.
Further, the specification of the load development over a certain time frame
per workload is required to simulate real world scenarios.

Extensibility (E) defines the need to provide an architecture, which eases the
extension of the framework capabilities, e.g. by adding support for additional
DBMSs or workload types.

5 Analysis of Evaluation Frameworks

In this section we analyse DB-EFs, which focus on DDBMSs. Hereby, we consider
only DB-EFs, which have been published within the evolvement of DDBMSs, i.e.
from 2007 on. In addition, we only consider the original evaluation frameworks
and no minor extensions or evaluations based on these frameworks.

First, we analyse each framework based on the workload domain and sup-
ported evaluation tiers. The results are shown in Table 1. Second, we analyse
each frameworks capabilities against the presented DB-EF requirements from
Sect. 4. The results are shown in Table 2. The analysis applies ✗= not supported,
(✓)= partially supported, ✓= supported. A detailed analysis can be found in an
accompanying technical report [21].

Table 1. Distributed database evaluation tiers

Evaluation framework Evaluation tier

WD RS P S E A C

TPC-E TW (✓) ✓ ✓ ✗ ✗ ✗

YCSB [7] SW ✗ ✓ ✓ ✓ ✗ ✗

YCSB++ [18] TW, BDW, SW ✗ ✓ ✓ ✓ ✗ ✓

BG [3] WOW ✗ ✓ ✓ ✗ ✗ ✓

BigBench [12] TW, BDW ✗ ✓ ✗ ✗ ✗ ✗

OLTP-bench [9] WOW, SW ✗ ✓ ✓ ✗ ✗ ✗

YCSB-T [8] TW, SW ✗ ✓ ✓ ✓ ✗ ✓

LinkBench [2] WOW ✗ ✓ ✗ ✗ ✗ ✗

The first insight of our analysis is that performance, scalability, elasticity and
consistency tiers are well covered, but the resource selection and availability tier
lack support (cf. Sect. 5.2). The second insight points out that the traditional
DB-EF requirements [14] such as usability, distribution and extensibility are well
supported, while monitoring and cloud orchestration are not (cf. Sect. 5.2).

Is Distributed Database Evaluation Cloud-Ready? 105

Table 2. Distributed database evaluation tiers

Evaluation framework Evaluation framework requirement

U D/S MP MO DA CO DO MpW E

TPC-E ✓ ✓ (✓) ✗ (✓) ✗ ✗ ✓ ✓

YCSB [7] ✓ ✓ (✓) ✗ ✓ ✗ ✗ ✗ ✓

YCSB++ [18] (✓) ✓ ✓ ✓ (✓) ✓ ✗ ✓ ✗

BG [3] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

BigBench [12] ✓ ✓ ✗ ✗ (✓) ✗ ✗ ✗ ✓

OLTP-bench [9] (✓) ✓ (✓) ✓ (✓) ✓ ✗ ✓ ✓

YCSB+T [8] (✓) ✓ (✓) ✗ ✓ ✗ ✗ ✗ ✓

LinkBench [2] ✓ (✓) (✓) ✓ (✓) ✗ ✗ ✓ ✓

5.1 Results for Evaluation Tiers

The resulting table (cf. Table 1) shows that the early DB-EFs focus on per-
formance, scalability and elasticity, while newer frameworks focus as well on
consistency. Hereby, only the performance tier has established common rating
indices such as throughput, latency or SLA based rating [3]. While multiple
frameworks target the scalability and elasticity tier, a common methodology
and rating index has not yet been established. Yet, the need for a common
evaluation methodology [22] and rating index [10] is already carved out.

Currently not supported evaluation tiers are resource selection and avail-
ability. While resource selection is partially supported by TPC-E, which con-
siders physical hardware configurations, cloud-centric resource selection is not
in the scope of any of the frameworks. With the increasing heterogeneity of
cloud resources from diverse virtual machines offering to even container based
resources, the consideration of cloud-centric resource selection needs to move
into the focus of novel DB-EFs. Yet, existing DB-EFs can be applied to evalu-
ate DDBMS running on heterogeneous cloud resources, but the DB-EFs do not
offer an explicit integration with cloud resource offerings. Hence, manual resource
management, monitoring and client/DDBMS orchestration hinders cloud-centric
evaluations.

As availability is a major feature of DDBMS it is surprising that it is not
considered by the analysed DB-EFs. Especially, as cloud resources do fail, avail-
ability concepts for applications running on cloud resources is widely discussed
topic. Again, the support of DDBMSs orchestration can enable database specific
availability evaluations.

5.2 Results for Evaluation Framework Requirements

The analysis of the evaluation framework requirements (cf. Table 2) shows that
usability, scalability, database abstraction and extensibility are covered by all

106 D. Seybold and J. Domaschka

frameworks. Measurement processing is covered as well but only a few frame-
works support advanced features such as visualisation and none of the frame-
works supports advanced storage solutions such as TSDBs. Multi-phase work-
loads are partially covered by the frameworks, especially by the frameworks from
the TW and WOW domains. The monitoring of client resources is partially cov-
ered, but only OLTP-bench considers resource monitoring. While all frameworks
support the distributed execution of evaluations, only two support the orches-
tration of clients, which complicates the distributed evaluation runs. Further,
none of the frameworks supports DBMS orchestration. This fact leads to high
complexity only for setting up the evaluation environment, especially when it
comes to heterogeneous cloud resources. Further, dynamic DDBMS transitions
for evaluating tiers such as elasticity or availability, always require custom imple-
mentations, which impedes the comparability and validity of the results.

6 Conclusion and Future Work

In the last decade the landscape of distributed database systems has evolved and
NoSQL and NewSQL database systems appeared. In parallel, cloud computing
enabled novel deployment option for database systems. Yet, these evolvements
raise the complexity in selecting and deploying an appropriate database system.

In order to ease such decisions, several evaluation frameworks for distributed
databases have been developed. In this paper, we presented an analysis of distrib-
uted database evaluation frameworks based on evaluation tiers and requirements
towards the frameworks itself. The analysis is applied to eight evaluation frame-
works and provides a thorough analysis of their evaluation tiers and capabilities.
The results of this analysis shows that the performance, scalability, elasticity,
and consistency tiers are well covered, while resource selection and availability
are not considered by existing evaluation frameworks. With respect to the frame-
work requirements, traditional requirements are covered [14], while cloud-centric
requirements such as orchestration are only partially supported.

The analysis shows, that existing frameworks can be applied to evaluate
distributed databases in the cloud, but there are still unresolved issues on the
evaluation tier side, i.e. the support for resource selection and availability evalua-
tion, and on the framework requirement side, i.e. the orchestration of clients and
databases and exploitation of advanced storage solutions. This hinders repeata-
bility [14] of evaluations on heterogeneous cloud resources as well as dynamic
transition in the cluster. Yet, cloud computing research already offers approaches
to enable automated resource provisioning and application orchestration in the
cloud based on Cloud Orchestration Tools (COTs) [4]. Integrating COT into
evaluation frameworks can be an option to ease the distributed execution of
evaluation runs as well as orchestrating database clusters across different cloud
resources. As COTs provide monitoring and adaptation capabilities, they can
ease the evaluation of dynamic cluster transitions by defining advanced evalua-
tion scenarios with dynamic database cluster adaptations.

Is Distributed Database Evaluation Cloud-Ready? 107

Future work will comprise the analysis of COTs with respect to their exploita-
tion in database evaluation frameworks. In addition, the design and implemen-
tation of a cloud-centric database evaluation framework is ongoing.

Acknowledgements. The research leading to these results has received funding from
the EC’s Framework Programme HORIZON 2020 under grant agreement number
644690 (CloudSocket) and 731664 (MELODIC). We thank Moritz Keppler and the
Daimler TSS for their valuable and constructive discussions.

References

1. Agrawal, D., Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elastic-
ity, and autonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.)
DASFAA 2011. LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20149-3 2

2. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph. In: SIGMOD (2013)

3. Barahmand, S., Ghandeharizadeh, S.: Bg: A benchmark to evaluate interactive
social networking actions. In: CIDR (2013)

4. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.:
Cloud orchestration features: Are tools fit for purpose? In: UCC (2015)

5. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40148-0 13

6. Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an exten-
sible middleware for database benchmarking. In: Nambiar, R., Poess, M. (eds.)
Performance Characterization and Benchmarking: Traditional to Big Data. LNCS,
pp. 82–96. Springer, Cham (2015). doi:10.1007/978-3-319-15350-6 6

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: SoCC (2010)

8. Dey, A., Fekete, A., Nambiar, R., Rohm, U.: Ycsb+t: Benchmarking web-scale
transactional databases. In: ICDEW (2014)

9. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An exten-
sible testbed for benchmarking relational databases. VLDB 7, 277–288 (2013)

10. Dory, T., Mejias, B., Roy, P., Tran, N.L.: Measuring elasticity for cloud databases.
In: Cloud Computing (2011)

11. Friedrich, S., Wingerath, W., Gessert, F., Ritter, N., Pldereder, E., Grunske, L.,
Schneider, E., Ull, D.: Nosql oltp benchmarking: A survey. In: GI-Jahrestagung
(2014)

12. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.:
Bigbench: towards an industry standard benchmark for big data analytics. In:
SIGMOD (2013)

13. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM Sigact News 33, 51–59 (2002)

14. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Sys-
tems. Morgan Kaufmann Publishers Inc, San Francisco (1993)

15. Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in
cloud environments: Nosql and newsql data stores. JoCCASA 2, 22 (2013)

108 D. Seybold and J. Domaschka

16. Khazaei, H., Fokaefs, M., Zareian, S., Beigi-Mohammadi, N., Ramprasad, B.,
Shtern, M., Gaikwad, P., Litoiu, M.: How do i choose the right NoSQL solution?
a comprehensive theoretical and experimental survey. BDIA 2, 1 (2016)

17. Mell, P., Grance, T.: The nist definition of cloud computing. Technical report,
National Institute of Standards & Technology (2011)

18. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: SoCC (2011)

19. Reniers, V., Van Landuyt, D., Rafique, A., Joosen, W.: On the state of nosql
benchmarks. In: ICPE (2017)

20. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Pearson Education, London (2012)

21. Seybold, D., Domaschka, J.: A cloud-centric survey on distributed database eval-
uation. Technical report. Ulm University (2017)

22. Seybold, D., Wagner, N., Erb, B., Domaschka, J.: Is elasticity of scalable databases
a myth? In: IEEE Big Data (2016)

Chapter 11

[core4] Gibbon: An Availability Evaluation
Framework for Distributed Databases

This article is published as follows:

Material from: Daniel Seybold, Christopher B. Hauser, Simon Volpert, and Jörg Domaschka, ”Gibbon: An Avail-
ability Evaluation Framework for Distributed Databases”, On the Move to Meaningful Internet Systems (OTM),
published 2017, Springer International Publishing, DOI: https://doi.org/10.1007/978-3-319-69459-7_
3

Reprinted with permission from Springer Nature.

159

https://doi.org/10.1007/978-3-319-69459-7_3
https://doi.org/10.1007/978-3-319-69459-7_3

Gibbon: An Availability Evaluation Framework
for Distributed Databases

Daniel Seybold(B), Christopher B. Hauser, Simon Volpert,
and Jörg Domaschka

Institute of Information Resource Management, Ulm University, Ulm, Germany
{daniel.seybold,christopher.hauser,simon.volpert,

joerg.domaschka}@uni-ulm.de

Abstract. Driven by new application domains, the database manage-
ment systems (DBMSs) landscape has significantly evolved from single
node DBMS to distributed database management systems (DDBMSs).
In parallel, cloud computing became the preferred solution to run dis-
tributed applications. Hence, modern DDBMSs are designed to run in
the cloud. Yet, in distributed systems the probability of failures is the
higher the more entities are involved and by using cloud resources the
probability of failures increases even more. Therefore, DDBMSs apply
data replication across multiple nodes to provide high availability. Yet,
high availability limits consistency or partition tolerance as stated by
the CAP theorem. As the decision for two of the three attributes in not
binary, the heterogeneous landscape of DDBMSs gets even more complex
when it comes to their high availability mechanisms. Hence, the selection
of a high available DDBMS to run in the cloud becomes a very challeng-
ing task, as supportive evaluation frameworks are not yet available. In
order to ease the selection and increase the trust in running DDBMSs in
the cloud, we present the Gibbon framework, a novel availability eval-
uation framework for DDBMSs. Gibbon defines quantifiable availability
metrics, a customisable evaluation methodology and a novel evaluation
framework architecture. Gibbon is discussed by an availability evaluation
of MongoDB, analysing the take over and recovery time.

Keywords: Distributed database · Database evaluation · High avail-
ability · NoSQL · Cloud

1 Introduction

The landscape of database management systems (DBMSs) has evolved signif-
icantly over the last decade, especially when it comes to large-scale DBMSs
installations. While relational database management systems (RDBMS) have
been the common choice for persisting data over decades, the raise of the Web
and new application domains such as Big Data and Internet of Things (IoT)
drive the need for novel DBMS approaches. NoSQL and only recently NewSQL

c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part II, LNCS 10574, pp. 31–49, 2017.
https://doi.org/10.1007/978-3-319-69459-7_3

32 D. Seybold et al.

DBMSs [15] have evolved. Such DBMSs are often designed as a distributed data-
base management system (DDBMS) spread out over multiple database nodes and
supposed to run on commodity or even virtualised hardware.

Due to their distributed architecture, DDBMSs support horizontal scalability
and consequently the dynamic allocation and usage of compute, storage and
network resources [1] based on the actual demand. This fact makes Infrastructure
as a Service (IaaS) cloud platforms a suited choice for running DDBMSs, as it
provides elastically, on-demand, self-service resource provisioning [19].

Even though distributed architectures can be used to improve the availabil-
ity of the overall system, this is not automatically the case. In particular, in
distributed systems the probability of failures is the higher the more entities are
involved, i.e. in the case of DDBMSs the more data nodes are used. When cloud
resources are used, the situation is worsened, as failures on lower level may affect
multiple virtualised resources and cause mass failures [13,16].

With respect to DDBMSs, the common approach to availability is to repli-
cate data items across multiple database nodes to ensure high availability in case
of resource failures. However, the desire for availability is hindered by the CAP
theorem stating that availability is achieved by scarifying consistency guaran-
tees or partition tolerance [6]. However, the choice between two of these three
attributes is not a binary decision and offers multiple trade-offs [5]. This has led
to a very heterogeneous DDBMS landscape not only with respect to the sheer
number of systems, but also the availability mechanisms they provide [11].

Hence, we find ourselves in the situation that more DDBMSs exist than ever,
each of them promising availability features and often enough even high avail-
ability. Further, many of these DDBMS are operated on IaaS infrastructures with
an increased risk of mass failures. Yet, for none of the DDBMSs it is known how
it actually behaves under failure conditions and how the failure condition affects
the availability of the DDBMSs. At the same time, no supportive frameworks
for evaluating availability of DDBMSs exist [24] and in consequence, selecting a
DDBMS becomes a gamble for users if availability is a major selection criterion.

In order to increase the trust in running DDBMSs on cloud resources and
easing the selection of high available DDBMSs, we present Gibbon, a novel frame-
work for evaluating the availability of DDBMSs. It explicitly supports cloud fail-
ure scenarios. Hence, our contribution is threefold: (1) we identify quantifiable
metrics to evaluate availability; (2) we define an extensible evaluation method-
ology; (3) we present a novel availability evaluation framework architecture.

The remainder is structured as follows: Sect. 2 introduces the background
on availability, DDBMS and cloud computing, while Sect. 3 analyses the impact
of failures. Section 4 defines the availability metrics while Sect. 5 presents the
evaluation methodology. Section 6 presents the framework architecture. Section 7
discusses the presented framework and Sect. 8 presents related work. Section 9
concludes.

Gibbon: An Availability Evaluation Framework 33

2 Background

In order to consolidate the context of the Gibbon framework, we introduce in
this section the background on DDBMSs, availability, and DDBMSs on IaaS.

2.1 Distributed Database Systems

Per definition, a DBMS manages data items grouped in collections or databases.
For DDBMS these data items are spread out over multiple database nodes each
of which runs management logic. Hence, the databases nodes communicate and
cooperate in order to realise the expected functionality.

The use of distribution has two conceptionally unrelated benefits: (i) more
data can be stored and processed, as the overall available capacity is the sum
of the capacity of the individual database nodes. In this usage scenario the
sharding (partitioning) strategy defines which data items are stored on which
of the database nodes. (ii) data items can be stored redundantly on multiple
database nodes protecting them against failures of individual database nodes. A
replication degree of n denotes that a data item is stored n times in the system.

Replication. When sharding is used without replication, no tolerance against
node failures exists. On the other hand, using replication without sharding means
that all data is available on all database nodes. This is also referred to as full
replication. When sharding and replication is used in parallel, each database
node will contain only a subset of all data items [9]. Depending on the replication
strategy [22] a user is allowed to interact with only one of the replicas (master-
slave replication) or all of them (multi-master).

In the master-slave approach one of the n physical copies of a data item
has the master role. Only this item can be changed by users. It is the task of
the database node hosting this item to synchronize slave nodes. The latter only
execute read requests. A failure of the master will require the re-election of a new
master amongst the remaining slaves. In the multi-master approach, any replica
can be updated and the hosting database nodes have to coordinate changes.

Geo-replication caters for mirroring the entire DDBMS cluster to a different
location in order to protect the data against catastrophic events.

Replica Consistency. Having multiple copies of the same data item in the
system requires to keep the copies in sync with each other. This is particularly
true for multi-master approaches. Here, two approaches exist: synchronous prop-
agation ensures consistency is coordinated amongst all database nodes hosting
a replica before any change is confirmed to a client. Asynchronous propagation
in turn delays this so that multiple diverging copies of the item can exist in the
system and clients can perform conflicting updates unnoticed.

Node and Task Types. Besides storing data items, a DDBMS has several other
tasks to do: management tasks keep track of the location of data items, routing
queries to the right destination, and detecting node failures. Query tasks process
queries issued by the client and interact with the database nodes according to the

34 D. Seybold et al.

distribution information the management task stores. Depending on the actual
DDBMS these tasks are executed by all database nodes in peer-to-peer manner,
isolated in separate nodes, or even part of the database driver used by the client.

Storage Models. For DBMS three top-level categories are currently in use [15]:
relational, NoSQL and NewSQL data stores. Relational data stores target trans-
actional workloads, providing strong consistency guarantees based on the ACID
paradigm [17]. Hence, relational data stores are originally designed as single
server DBMS, which have been extended lately to support distribution (e.g.
MySQL Cluster1). NoSQL storage models can be classified into key-value stores,
document-oriented stores, column-oriented stores and graph-oriented stores.
Compared to relational, their consistency guarantees are weaker and tend to
towards BASE [21]. This weakening consistency makes those DDBMS better
suited for distributed architectures and eases the realisation of features such as
scalability and elasticity. NewSQL data stores are inspired by the relational data
model and target strong consistency in conjunction with a distributed architec-
ture.

2.2 Availability for DDBMSs

Generally, availability is defined as the degree to which a system is operational
and accessible when required for use [14]. Besides reliability (the “measure of
the continuity of correct service” [3]), availability is the main pillar of many
fault-tolerant implementations [11].

In this paper, we solely focus on the availability aspect and assume that
DDBMSs are reliable, i.e. work as specified. As our primary metric, we use what
Zhong et al. call expected service availability and define availability of a DDBMS
as the proportion of all successful requests [27] over all requests.

The availability of the DDBMS can be affected by two kinds of conditions [11]:
(i) A high number of requests issued concurrently by clients, overloading the
DDBMS such that the requests of clients cannot be handled at all or are handled
with an unacceptable latency > Δt. (ii) Failures occur that impact network
connectivity or availability of data items. The failure scenarios we consider are
subject to Sect. 2.3.

2.3 Cloud Infrastructure

IaaS clouds have become a preferable way to run DDBMSs. Due to its cloud
nature, IaaS offers more flexibility than bare metal resources. IaaS provides
processing, storage, and network to run arbitrary software [19]. The process-
ing and storage resources are typically encapsulated in a virtual machine (VM)
entity that also includes the operating system (OS). VMs run on hypervisors
on top of the physical infrastructure of the IaaS provider. As cloud providers
typically operate multiple data centres, IaaS eases to span DDBMSs across dif-
ferent geographical locations. The location of cloud resources can be classified
1 https://www.mysql.com/products/cluster/.

Gibbon: An Availability Evaluation Framework 35

into geographical locations (regions), data centres inside a region (availability
zones), racks inside a data centre and physical hosts inside a rack.

This set-up heavily influences availability as failures on different levels of that
stack can have impact on individual database nodes (running in one VM), but
also on larger sets of them. For instance, the failure of a hypervisor will lead to
the failure of all VMs on that hypervisor.

An exemplary DDBMS deployment on IaaS is depicted in Fig. 1. Here, an 8-
node DDBMS is deployed across two regions of one cloud provider. Each database
node is placed on a VM and the VMs rely on different availability zones of the
respective region. The example also illustrates the use of heterogeneous physical
hardware: availability zones B and C are built upon physical servers without
disks and dedicated storage servers. Availability zones A and D are built upon
servers with built-in disks.

virtualization layer

VM

db
node

cl
ou

d
m

id
dl

ew
ar

e VM

db
node

VM

db
node

VM

db
node

availability
zone B

availability
zone A

region X

virtualization layer

VM

db
node

cl
ou

d
m

id
dl

ew
ar

e VM

db
node

VM

db
node

VM

db
node

availability
zone D

availability
zone C

region Y

S
M

B
D

D

Fig. 1. DDBMS on IaaS

3 Failure Impact Analysis

Section 2.2 stated that two types of events impact the availability of DDBMSs:
overload and failures. Dealing with overload has seen much attention in litera-
ture (cf. Sect. 8) so that this paper will focus on the latter that has barely received
attention in the past [24]. In particular, our work addresses the capabilities of
DDBMSs availability mechanisms to overcome failures in IaaS environments.

3.1 Replication for Availability

In Sect. 2.1, we introduced replication and partitioning as two major, but basi-
cally unrelated concepts used in DDBMSs. This section investigates the impact
of their use under failure conditions.

36 D. Seybold et al.

No Replication. Apparently, when a database node fails and no replication
is used, all data items stored on that database node become unavailable. The
impact on the overall availability of the DDBMS depends on the access pattern
of the failed shard, but for uniform distribution, the availability will drop to N−1

N
while this database node is unavailable.

Master-Slave Replication. When master-slave replication is used, the failure
of a single database node has less impact, as copies of the data item are in the
system. Yet, the process of detecting the failure and finding a new master for
all data items from the failed database node needs time no matter if the new
master is elected manually or automatically [11]. Hence, for uniform distribution
of access, availability will still drop to N−1

N . Yet, hopefully for a shorter time.

Multi-master Replication. When using multi-master replication the failure
of a single database node does not affect the overall availability, as any other
database node hosting a replica of the requested data item can be contacted.
Nevertheless, depending on the driver implementation and the routing, a small
portion of requests may fail, when they are connected with the failed database
node at the time of failure.

Functional Nodes. Some DDBMSs make use of additional hosts that function
as entry points for clients or as a registry storing the mapping from data item
to database node. The failure of these node also has impact on the overall avail-
ability. In particular, if configured wrong, the failure of any of those nodes can
render the entire DDBMSs unavailable.

3.2 Failures and Recovery

This section investigates failures and recovery of DDBMSs hosted on Clouds. In
particular, it derives how to emulate the failure of certain resources for the sake
of evaluating availability metrics of different DDBMSs.

From Fig. 1 we can see that a cloud-operated DDBMS sits on top of several
layers of hard- and software. Hence, even assuming that both DDBMS code and
the operating system surrounding it are correct, the large stack leaves oppor-
tunities that can go wrong: On the infrastructure level, servers, network links,
network device, power supplies, or cooling may fail. Similarly, on software level,
management software and hypervisors can fail; algorithms, network, and devices
can be buggy, misconfigured, or in the process of being restarted.

Any of these failures can affect virtual machines and virtual networks, but
also physical servers, physical networks, entire racks, complete availability zones,
or even entire data centers. Table 1 lists these failure levels with a way to emulate
the failure and an action that helps to recovery from the failure.

The failure of a database node or a virtual machine can be represented as
virtual machine unavailability and can be emulated by forcibly terminating the
virtual machine. Here, it is important to ensure that no additional clean-up
tasks, e.g. closing network connections get executed. The failure of a physi-
cal server leads to the unavailability of all virtual machines hosted on that

Gibbon: An Availability Evaluation Framework 37

Table 1. DDBMS failures in a Cloud Infrastructure

Failure level Emulate Recovery

DDBMS node Forcibly terminate VM Replace VM

VM Forcibly terminate VM Replace VM

Physical server Forcibly terminate all
VMs on server

Replace VMs/move zone

Availability zone Forcibly terminate all
VMs in zone

Move zone or region

Region Forcibly terminate all
VMs in region

Move region/provider

Cloud provider Forcibly terminate VMs
hosted by provider

Move provider

server. The failure of a full availability zone or even an entire region leads to the
unavailability of multiple physical servers and hence unavailability of all hosted
virtual machines.

4 Availability Metrics

From the previous sections we derive input parameters and output metrics
to evaluate the availability of DDBMSs running on cloud infrastructures.
Input parameters describe the deployment and evaluation specifications of the
DDBMS, while output metrics describe the experienced availability after the
input parameters have been applied. Hence, a tuple of input parameters and
output metrics provide the base for the availability evaluation (cf. Sect. 5).

4.1 Input Parameters

The input parameters as listed in Table 2 comprise the deployment and evalu-
ation specification. The deployment specification combines the replication and
partitioning characteristics (cf. Sect. 3.1), failure and recovery characteristics (cf.
Sect. 3.2) and deployment information of the DDBMS nodes. The first two input
parameters define the replication setting of the DDBMS, i.e. node replication
level and cross data centre geo-replication level. None, one, or both replication
levels might be configured for the DDBMS under observance. The replication
first is defined by the strategy, defines the amount of replicas the replication will
have in normal, healthy state, and the update laziness, how the write requests
are synchronized between replicas.

Partitioning defines the setting for data partitioning, if present. If partition-
ing takes place, the amount of partitions are specified, and how the distribution
strategy of data items to partitions is handled (group based, range based, with
hashing functions). For accessing the distributed data items, the data access is
of importance, namely if the client connects to the correct partition directly, via
a proxy or requests are routed automatically.

38 D. Seybold et al.

Table 2. Input parameters

Input parameter Description

Deployment Node replication Strategy (single-/multi-master,
selection), replicas, laziness

Geo-replication Equals “node replication”

Partitioning Number of partitions, strategy (range,
hash), data access (client, proxy, routing)

Resources Hierarchical infrastructure model of
DDBMS (cf. Fig. 1)

Evaluation Failure spec Number of failing nodes per level (cf.
Table 1), number of failing nodes per
types

Recovery Spec Restart policies, number of database
nodes to add (per node type if existent)

Workload spec Requests per second, read/write request
ratio, number of data items

The resources parameter contains a full model of the allocated infrastructure
resources for the DDBMS. This model includes all infrastructure entities involved
from geographic location, to physical servers, virtual machines and DDBMS
nodes (cf. Fig. 1). If the DDBMS differentiates node types, the type is reflected
in the resource information as well.

Further, Table 2 also presents the evaluation specification parameters. The
failure specification parameter defines a failure scenario which will be emulated
by the Gibbon framework. For each level of potential failures described in Table 1,
the amount of failing resource entities and (optionally) the DDBMS node type to
fail is defined. The recovery specification parameter on the other hand describes
the emulated recovery plan such as restarting virtual machines or adding new
nodes to the DDBMS. The input parameters can skip the optional failure recov-
ery parameter.

For simulating failure and recovery specification, the DDBMS is continuously
under an artificial workload, defined by the workload specification parameter.
This parameter defines the amount of read and write requests, as well as the
total amount of data items stored in the DDBMS.

4.2 Output Metrics

The output metrics presented in Table 3 represent the experienced availability
after the input parameters deployment and evaluation specification have been
applied. The output metrics are results of continuously monitoring the metrics
while input parameters are applied.

The accessibility α defines if the database is still reachable by clients (accept-
ing incoming connections) and accepts read and write requests. While accessi-
bility represents boolean values over time, the performance impact φ represents

Gibbon: An Availability Evaluation Framework 39

Table 3. Output metrics

Output metric Description

Statistics Accessibility DDBMS is accessible for client requests
(read and write)

Performance impact Throughput (read/write requests per
second), latency of requests

Request error rate Amount of failed requests due to data
unavailability

Times Take over time Time until the failure spec is being masked
by the DDBMS

Recovery time Time until the recovery spec is applied by
the DDBMS

the throughput the DDBMS can handle during the evaluation scenario, includ-
ing the amount of requests and the latency for request handling. For instance
the performance may be decreased if replicas are down. In case of node failures,
not all data partitions of a DDBMS may be available until the failure is handled.
The request error rate ε describes as output metric the amount of failed requests
due to data unavailability over the evaluation time.

The output metrics take over time and recovery time specify the measured
time the DDBMS required to identify the applied failure specification, and the
time it takes to apply the recovery specification. The accessibility, the perfor-
mance impact and the data loss rate are time series values over the time the
evaluation scenario is being applied. These values are measured periodically
at runtime, are then aggregated and statistically represented in an percentile
ranking over the time separately for the time it takes to apply (i) the failure
specification and (ii) the recovery specification.

From the described output metrics, the overall availability metric of the
evaluated DDBMS can be calculated. From the output metrics, only a con-
figurable amount of percentiles (e.g. > 90) are considered. Each of the three
metrics accessibility, performance impact and data loss rate gets its configurable
weighting factor Wα,Wε,Wφ resulting in the overall availability metric defined
as Θ = α ∗ Wα + ε ∗ Wε + φ ∗ Wφ.

5 Availability Evaluation

In this section we present an extensible methodology to evaluate the availabil-
ity capabilities of DDBMSs based on the defined input parameters and output
metrics (cf. Sect. 4). Therefore we define an adaptable evaluation process, which
emulates the previous failure levels and enacts the respective recovery actions.
This process enables the monitoring of the defined availability metrics in order
to analyse the high availability efficiency of the evaluated DDBMS. First, we
introduce the evaluation process, defining the required evaluation states and

40 D. Seybold et al.

transitions. Second, we present an algorithm to inject cloud resource failures on
different levels, based on a predefined failure specification.

5.1 Evaluation Process

Emulating cloud resource failures and monitoring the defined availability metrics,
requires the definition of a thorough and adaptable evaluation process, from the
DDBMS deployment in the cloud over the simulation of cloud resource failures
to the recovering of the DDBMS. A fine-grained evaluation process is depicted
in Fig. 2, where the monitoring periods of the availability metrics are presented
in the white box, the evaluation process state in the yellow box and the frame-
work components in the blue box. In the following we introduce the evaluation
process states and the monitoring periods, while the framework components are
described in Sect. 6.

deploy

finishedhealthy unhealthy masked recovered

start
workload

trigger
failure

take over recovery
action

stop
workload

performance impact & accessibility

DB
Gibbon DDBMS recovery

agent
workload

agent
workload

agent

fr
am

ew
or

k
co

m
po

ne
nt

st
at

e
m

on
ito

ri
ng

pe
ri

od
s

ready
initialised

orchestrator

recovery timetake over time

request error rate

mandatory optional

Fig. 2. Evaluation process

The depicted evaluation process in Fig. 2 illustrates an exemplary evaluation,
which runs through all defined states exactly once by executing the respective
transitions (cf. Tables 4 and 5). Yet, it is also possible to leave out dedicated tran-
sitions such as recovery action. The Gibbon framework executes each evaluation
process and it also supports the combination of multiple evaluation processes
into an evaluation scenario.

Throughout each evaluation process, the defined availability metrics (cf.
Sect. 4) need to be monitored. Yet, the monitoring period for each availabil-
ity metric depends on the evaluation process state as depicted in Fig. 2. The
performance impact and accessibility is monitored from the healthy to the fin-
ished state to analyse the performance development over the intermediate states
and compare it with the performance at the beginning. The request error rate

Gibbon: An Availability Evaluation Framework 41

Table 4. Evaluation states

State Description

Initialised A new evaluation process is triggered

Ready All nodes of the DDBMS deployed in the cloud and the
configuration is finished, i.e. the DDBMS is operational

Healthy All nodes of DDBMS are serving requests

Unhealthy n nodes of the DDBMS are not operational due to cloud
resource failures, the DDBMS has not yet started take over
actions.

Masked The DDBMS initiated automatically the take over of n
replicas to reestablish the availability of all data records.
The DDBMS is operational again but with −n nodes

Recovered The number of nodes complies again with the initial
number of nodes, all nodes of DDBMS are serving requests

Finished The evaluation process is finished

Table 5. Evaluation transitions

Transition Description

Deploy The DDBMS is being deployed and configured, i.e.
dedicated VMs are allocated in specified locations

Start workload A constant workload is started against the deployed
DDBMS

Trigger failure A specified cloud resource failure is emulated by the DB
Gibbon component (cf. Sect. 5.2, provoking the failure of n
nodes

Take over DDBMS recognizes the failure of n nodes and initialises
the take over of the remaining replicas by propagating the
new locations for the currently unavailable data records

Recovery action the DDBMS is restored to its actual number or nodes by
adding n new nodes to the DDBMS. In this process the
new nodes are integrated in the running DDBMS and the
data is redistributed

Stop workload The workload is stopped

is monitored during the unhealthy to the recovered state to analyse the develop-
ment of the failed request rate. The take over time is monitored in the transition
from the unhealthy to the masked state while the recovery time is monitored in
the transition from the masked to the recovered state.

5.2 DB Gibbon Algorithm

In order to emulate failing cloud resources on the different levels, we build
upon the concepts of Netflix’s Simian Army [26] and adapt these concepts

42 D. Seybold et al.

for DDBMS in the cloud. Therefore, we define an algorithm, which is able to
enact the introduced cloud failure levels (cf. Sect. 3.2) for DDBMSs. Follow-
ing the Simian Army [26] concepts, we name our algorithm the DB Gibbon.
The algorithm is depicted in Listing 1.1 and requires as input parameters a list
of failures <List<failure >> and the dbDeployment. The failures list
contains n failure objects with the attributes failureLevel, indicating the
cloud resource failure level (cf. Table 1), failureQuantity specifying the num-
ber of failures to be enacted by the DB Gibbon and nodeType specifying the
failing nodes type. Possible nodeTypes are <ANY, DATA, MANAGEMENT, QUERY>
The dbDeployment parameter contains the information of the deployed DDBMS
topology, i.e. the mapping of each node to the cloud resource. Based on these
parameters the DB Gibbon algorithm enacts the specified failures in the transi-
tion to the unhealthy state as depicted in Fig. 2. After enacting all failures, the
algorithm returns the updated deployment, which is used to trigger the recovery
action by calculating the difference to the initial deployment and deriving the
required recovery actions.

Listing 1.1. DB Gibbon Algorithm

input : f a i l u r e s <List<f a i l u r e >>, dbDeployment
output : dbDeployment
beg in
f o r each f a i l u r e in f a i l u r e s
i f f a i l u r e . f a i l u r e L e v e l == f a i l u r e L e v e l .VM
def VMs List<VM> ← dbDeployment . getVMsOfNodeType (f a i l u r e . nodeType)
f o r (i n t i : f a i l u r e . f a i l u r eQuan t i t y)
def failedVM VM ← failRandomVM(VMs)
dbDeployment ← updateDeployment (dbDeployment , failedVM)

end

e l s e i f f a i l u r e . f a i l u r e L e v e l == f a i l u r e L e v e l .AVAILABILITY ZONE
fo r (i n t i : f a i l u r e . f a i l u r eQuan t i t y)
def VMs List<VM> ← dbDeployment
. a v a i l a b i l i t yZon e (i) . getVMsOfNodeType (f a i l u r e . nodeType)
def fai ledVMs List<VM> ← fai lVMs (VMs)
dbDeployment ← updateDeployment (dbDeployment , fai ledVMs)

end

e l s e i f f a i l u r e . f a i l u r e L e v e l == f a i l u r e L e v e l .REGION
fo r (i n t i : f a i l u r e . f a i l u r eQuan t i t y)
def VMs List<VM> ← dbDeployment . r eg i on (i)
. getVMsOfNodeType (f a i l u r e . nodeType)
def fai ledVMs List<VM> ← fai lVMs (VMs, f a i l u r e S e v e r i t y)
dbDeployment ← updateDeployment (dbDeployment , fai ledVMs)

end

// only p r i va t e c loud deployments
e l s e i f f a i l u r e . f a i l u r e L e v e l == f a i l u r e L e v e l .PHYSICAL HOST
fo r (i n t i : f a i l u r e . f a i l u r eQuan t i t y)
def VMs List<VM> ← dbDeployment . phys i ca lHost (i)
. getVMsOfNodeType (f a i l u r e . nodeType)
def fai ledVMs List<VM> ← fai lVMs (VMs, f a i l u r e S e v e r i t y)
dbDeployment ← updateDeployment (dbDeployment , fai ledVMs)

end
e l s e
return FAIL

end
return dbDeployment

end

Gibbon: An Availability Evaluation Framework 43

6 Architecture

This section presents the architecture of the novel Gibbon Framework for exe-
cuting the introduced evaluation methodology (cf. Fig. 2). A high-level view
on the architecture is depicted in Fig. 3, introducing the technical framework
components and their interactions between each other. The entry point to the
Gibbon framework represents the evaluation API, expecting the evaluation sce-
nario specification. This specification comprises four sub specifications for the
respective framework components. In the following each framework component
is explained with respect to the required specification and its technical details.

{…}{…}{…}
orchestrator

DB Gibbon

workload
agent

orchestration

data flow

control flow

execute
workload

workload
results

monitoring

trigger failure

recovery
agent

recovery
action

deployment

deployment
(after failure)

ev
al

ua
tio

n
A

PI{ evaluation
process }

evaluation
scenario

failure
spec

deployment
spec

recovery
spec

workload
spec

Fig. 3. Gibbon evaluation framework architecture

Orchestrator. Orchestrator receives the deployment specification, which com-
prises the description required cloud resources and the actual DDBMS with its
configuration. Hence, the orchestrator interacts with the cloud provider APIs to
provision the cloud resources and to orchestrate the DDBMS on these resources.
As carved out in our previous work, the usage of advanced Cloud Orchestration
Tools (COTs) over basic DevOps tools is preferable as COTs abstract cloud
provider APIs and provide monitoring and adaptation capabilities during run-
time [4]. The monitoring capabilities comprise general system metrics as well as
customisable application specific metrics. Hence, the monitoring capabilities of
COTs can be exploited to measure metrics such as the DDBMS nodes state or
ongoing maintenance operations, which are required to express the availability
metric (cf. Sect. 4). COTs offer run-time adaptations such as deleting or suspend-
ing cloud resources or DDBMS nodes, adding new cloud resources and DDBMS
nodes or the execution of additional applications on the existing DDBMS nodes.
These capabilities are used by the DB Gibbon and recovery agent components.
The Gibbon framework builds upon the Cloudiator COT2 [10], which supports

2 http://cloudiator.org/.

44 D. Seybold et al.

the main public IaaS providers (Amazon EC23, Google Compute4, Microsoft
Azure5) as well as private clouds built upon OpenStack6 and provides advanced
cross-cloud monitoring and adaptation capabilities [12].

DB Gibbon. This component is responsible to emulate cloud resources failures
based on the provided failure specification. It queries the COT for the current
DDBMS deployment information, i.e. the mapping of nodes to cloud resources
and their location. Based on the deployment information and the failure spec-
ification, it executes the DB Gibbon algorithm (cf. Sect. 5.2). In the execution
phase of the algorithm the DB Gibbon interacts with the COT to enact the
actual failures on cloud resource level, e.g. deleting all VMs of the DDBMS
which rely in availability zone A.

Recovery Agent. The component receives the recovery specification, which
comprises the defined recovery actions (cf. Sect. 3.2). It collects the DDBMS
deployment state from the DB Gibbon after its execution and map the recovery
actions to the failed resources. To enact the actual recovery actions, the recovery
agent interacts with the COT, which executes the cloud provider API calls and
orchestrates the DDBMS nodes.

Workload Agent. It keeps the DDBMS under constant workload during the
evaluation process to measure the performance development during the different
evaluation states by receiving a workload specification, describing the targeted
operation types, the data set size and the number of operations. Further, the
workload agent is responsible to measure the performance metrics and store them
for further analysis in the context of the availability metrics. Our framework uses
the Yahoo Cloud Serving Benchmark (YCSB) as workload agent [8] as the YCSB
supports distributed execution, multiple DDBMSs and easy extensibility.

7 Discussion

In this section, we discuss the effectiveness of the Gibbon framework based on
a concrete evaluation scenario for MongoDB7. First, we describe the applied
deployment, failure, recovery, and workload specifications and second, we discuss
early evaluation results of the accessibility, take over and recovery time.

7.1 Evaluation Scenario: MongoDB

We select MongoDB as the most prevalent document-oriented data store8 as the
preliminary DDBMS to evaluate. MongoDB is classified as CP in the context of

3 https://aws.amazon.com/ec2/.
4 https://cloud.google.com/compute/.
5 https://azure.microsoft.com.
6 https://www.openstack.org/.
7 https://www.mongodb.com/.
8 http://db-engines.com/en/ranking trend.

Gibbon: An Availability Evaluation Framework 45

the CAP theorem but still provides mechanisms to enable high availability [11],
such as automatic take over in case of node failures. MongoDB’s architecture is
built upon three different services: (1) mongos act as query router, providing an
interface between clients and a sharded cluster, (2) configs store the metadata
of a sharded cluster, (3) shards persist the data. A group of shards build a replica
set with one primary handling all requests and n secondaries, synchronizing
the primary data and taking over in case the primary becomes unavailable.

The applied evaluation scenario builds upon a single evaluation process as
depicted in Fig. 2. Yet, in this preliminary evaluation process we do not apply
a constant workload during the evaluation but use three different data set sizes
which are inserted in MongoDB during the deployment of MongoDB. Hence,
we only measure the metrics take over time and recovery time. Accessibility is
measured by periodic connection attempts by a MongoDB client.

The deployment specification comprises one mongos and three shards nodes,
building a MongoDB replica set with one primary and two secondaries with
full-replication and no sharding. For the sake of simplicity we did not deploy a
production-ready setup with multiple mongos and config nodes. All nodes are
provisioned on a private cloud based on OpenStack version Kilo with full and
isolated access to all physical and virtual resources. All nodes are provisioned
within the region Ulm and the availability zone University. Each node runs on
a VM with 2 vCPUs, 4GB RAM, 40GB disk and Ubuntu 14.04.

As failure specification we applied one failure object with the attributes
failureLevel=VM, failureQunatity=1 nodeType=data to the DB Gibbon.

The recovery specification defines to add of a new data node (i.e. secondary in
MongoDB), as soon as MongoDB reaches the masked state after a node failure.
MongoDB is configured to elect a new primary if the recent primary node failed.

As stated above, we do not apply a constant workload during the evaluation,
the workload specification only defines the data set by number of records=100K,
400K, 800K and record size=10KB.

7.2 Evaluation Results

The preliminary evaluation results reveals two insights: the behaviour in case of
node failures and in the case of adding a new replica to the system.

In case of a node failure, the behaviour depends on the failed node type. If a
secondary fails, connected clients will loose their read-only connections and have
to reconnect to another secondary or to the primary node. In this case we can
assume, that at least the primary node is still accessible, so clients can reconnect
immediately. If the primary fails, clients will loose their read/write connections,
but may connect immediately to a secondary node for read requests. Remaining
secondaries will recognize that the primary fails and will elect the new primary
after a configurable timeout. During this timeout and election phase, no clients
can issue write requests, the DDBMS is hence only accessible for read requests
and not for write requests. Per default, the primary failover timeout is configured
to ten seconds. In repeated experiments an average duration for election and

46 D. Seybold et al.

primary take over of five seconds (± one second) is measured. Hence, the overall
take over time is 15 s.

Whenever a node failure happens, the evaluation scenario adds a new replica
after the remaining nodes elected a primary. The new secondary node has to
synchronize the stored data from other nodes, for consistency reasons from the
primary node. The replication time depends on the size of stored data. For 100 k,
400 k, and 800 k items the median for replication time with 30 runs takes 31 s,
300 s, and 553 s with a standard deviation of 7s, 15 s, and 25 s. The recovery
time hence depends on the amount of data to replicate, plus a fixed amount of
time it takes to allocate new resources on the Cloud. The DDBMS is accessi-
ble throughout the replication, yet with reduced resources due to the ongoing
synchronisation.

8 Related Work

The view on availability in distributed systems evolved over the last two decades.
The CAP theorem published in 2000, states that any networked shared-data
system can only have two of the three properties consistency, availability and
partition tolerance [6]. A revisited view on the CAP theorem is presented in
2012 [5], reflecting how emerging distributed systems such as DDBMSs adapted
their consistency, availability and partition tolerance properties as the decision
for two out of the three properties is not a binary decision [5].

The classification of DDBMSs according to their CAP properties in CA or
CP DDBMSs is a widely discussed topic in database research. A first overview
and analysis of emerging DDBMSs is provided by [7], analysing various DDBMSs
with respect to their availability capabilities in the context of the CAP theorem.

DDBMSs mechanism to provide high availability are discussed by [15], break-
ing down the technical replication strategies from master-slave replication to
masterless, asynchronous replication of 19 DDBMSs. Yet, the high availability
mechanisms are only discussed on a theoretical level and no evaluation of their
efficiency is proposed. Further, cloud resources are introduced as the preferable
resources to run DDBMSs but the different failure levels and their implication
to the availability of the DDBMS are not considered.

A similar approach is followed by [23], adding a dedicated classification of
common DDBMSs with respect to their CAP properties, i.e. AP or CP. Further,
the usage of cloud resources is discussed with respect to virtualisation and data
replication across multiple regions. Yet, the focus relies on enabling consistency
guarantees of wide-area DDBMSs while side-effects by using cloud resources that
effect as well as ensure availability in DDBMS are not considered in detail.

An availability- and reliability-centric classification of DDBMSs is presented
by [11]. Hereby, the challenges to provide non-functional requirements such as
replication, consistency, conflict management, and partitioning are broken down
in a fine grained classification schema and a set of 11 DDBMS are analysed.
Two availability affecting issues and solutions are presented, overloading and
node failures: (i) Is a DDBMS not available due to overloading, the DDBMS

Gibbon: An Availability Evaluation Framework 47

needs to be scaled out. (ii) Replicas need to be in place to overcome database
node failures. Yet, the proposed solutions are on an architectural level and the
actual capabilities of DDBMSs are not evaluated in real-world scenarios.

While theoretical classifications of DDBMSs provide a valuable starting point
for a first selection of DDBMSs, the final selection still remains challenging due
to the heterogeneous DDBMSs landscape. Hence, database evaluation frame-
works provide additional insights in DDBMS capabilities by evaluation ded-
icated evaluation tiers based on different workload domains. While available
evaluation frameworks such as YCSB [8] or YCSB++ [20], focus on the eval-
uation performance, scalability, elasticity and consistency, the availability tier
is not yet considered by these frameworks [24]. First approaches in availability
evaluation are based on the YCSB and focus the on decreased availability due
to an overloaded database [18,25]. While an evaluation framework focusing on
the availability of cloud-hosted DDBMSs is not yet available, an approach to
enact synthetic failures on cloud resources is described by [26] and implemented
at Netflix. Yet, this approach only describes the failure scenarios in the cloud
and does not propose evaluation metrics or an evaluation methodology for cloud
applications in general and DDBMS in particular. A first approach towards the
availability metrics is presented by [2], yet the focus relies on the resilience of
DBMSs, while DDBMSs and their availability mechanism are not considered.
Existing failure-injection tools such as the DICE fault injection tool9 or jepsen10

either inject failures on node or DBMS level but do not support the injection of
resource failures in different granularity.

9 Conclusion and Future Work

In the last decade the database management system (DBMS) landscape grew
fast, resulting in a very heterogeneous DBMSs landscape, especially when it
comes to distributed database management systems (DDBMSs). As cloud com-
puting is the preferable way to run distributed applications, cloud computing
seems to be the choice to run DDBMSs. Yet, the probability of failures increases
with the number of distributed entities and cloud computing adds another layer
of possible failures. Hence, DDBMSs apply data replication across multiple
DDBMS nodes to provide high availability in case of node failures. Yet, pro-
viding high availability comes with limitations with respect to consistency or
partition tolerance as stated by the CAP theorem. As these limitations are not
binary, a vast number of high availability implementations in DDBMSs exist.
This makes the selection of a DDBMS to run in the cloud a complex task, espe-
cially as supportive availability evaluation frameworks are missing.

Therefore, we present Gibbon, a novel availability evaluation framework for
DDBMSs to increase the trust in running DDBMSs in the cloud. We describe
levels of cloud resource failures, existing DDBMS concepts to provide high avail-
ability and distill a set of five quantifiable availability metrics. Further, we
9 https://github.com/dice-project/DICE-Fault-Injection-Tool.

10 https://github.com/jepsen-io/jepsen.

48 D. Seybold et al.

derive the DDBMSs specific technical details, affecting the availability evaluation
processes. Building upon these findings, we introduce the concept of extensible
evaluation scenarios, comprising n evaluation processes. Further, we present the
DB Gibbon, which emulates cloud resource failures on different levels.

The Gibbon framework executes the defined evaluation scenarios for generic
DDBMSs and cloud infrastructures. Its architecture comprises an orchestrator
to deploy the DDBMS in the cloud, a workload agent, a recovery agent and
the DB Gibbon to inject cloud resources failures. As preliminary evaluation, we
evaluate the take over and recovery time of MonogDB in a private cloud, by
injecting failures on the virtual machine level.

Future work will comprise an in-depth evaluation of multiple well-adopted
DDBMSs (See footnote 8) based on the Gibbon framework. Further, the defin-
ition of a minimal evaluation scenario to derive a significant availability rating,
is in progress. In this context, the statistical calculations of the overall availabil-
ity rating index will be refined. Finally, the portability of Gibbon evaluate the
availability of generic applications running in the cloud will be evaluated.

Acknowledgements. The research leading to these results has received funding from
the EC’s Framework Programme HORIZON 2020 under grant agreement numbers
644690 (CloudSocket) and 731664 (MELODIC). We also thank Daimler TSS for the
encouraging and fruitful discussions on the topic.

References

1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J.,
Chaudhuri, S., Chaudhuri, S., Dean, J., Doan, A., et al.: The Beckman report on
database research. Commun. ACM 59(2), 92–99 (2016)

2. Almeida, R., Neto, A.A., Madeira, H.: Resilience benchmarking of transactional
systems: experimental study of alternative metrics. In: PRDC (2017)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. TDSC 1(1), 11–33 (2004)

4. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.:
Cloud orchestration features: are tools fit for purpose? In: UCC (2015)

5. Brewer, E.: Cap twelve years later: how the “rules” have changed. Computer 45(2),
23–29 (2012)

6. Brewer, E.A.: Towards robust distributed systems. In: PODC (2000)
7. Cattell, R.: Scalable SQL and NoSQL data stores. ACM Sigmod Rec. 39(4), 12–27

(2011)
8. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: SoCC (2010)
9. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

10. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: a cross-cloud,
multi-tenant deployment and runtime engine. In: SummerSOC (2015)

11. Domaschka, J., Hauser, C.B., Erb, B.: Reliability and availability properties of
distributed database systems. In: EDOC (2014)

Gibbon: An Availability Evaluation Framework 49

12. Domaschka, J., Seybold, D., Griesinger, F., Baur, D.: Axe: a novel approach
for generic, flexible, and comprehensive monitoring and adaptation of cross-cloud
applications. In: ESOCC (2015)

13. Ford, D., Labelle, F., Popovici, F.I., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in globally distributed storage systems. In: OSDI
(2010)

14. Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz,
J., Yee, M., Porteous, H., Springsteel, F.: IEEE standard computer dictionary:
Compilation of IEEE standard computer glossaries: 610. IEEE Press (1991)

15. Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in
cloud environments: NoSQL and NewSQL data stores. In: JoCCASA (2013)

16. Gunawi, H.S., Hao, M., Suminto, R.O., Laksono, A., Satria, A.D., Adityatama,
J., Eliazar, K.J.: Why does the cloud stop computing? Lessons from hundreds of
service outages. In: SoCC (2016)

17. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. In:
CSUR (1983)

18. Konstantinou, I., Angelou, E., Boumpouka, C., Tsoumakos, D., Koziris, N.: On
the elasticity of NoSQL databases over cloud management platforms. In: CIKM
(2011)

19. Mell, P., Grance, T.: The NIST definition of cloud computing. Technical report,
National Institute of Standards & Technology (2011)

20. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced
features in scalable table stores. In: SoCC (2011)

21. Pritchett, D.: Base: an acid alternative. Queue 6, 48–55 (2008)
22. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World

of Polyglot Persistence. Pearson Education, London (2012)
23. Sakr, S.: Cloud-hosted databases: technologies, challenges and opportunities. Clus-

ter Comput. 17(2), 487–502 (2014)
24. Seybold, D., Domaschka, J.: Is distributed database evaluation cloud-ready? In:

ADBIS (2017)
25. Seybold, D., Wagner, N., Erb, B., Domaschka, J.: Is elasticity of scalable databases

a myth? In: IEEE Big Data (2016)
26. Tseitlin, A.: The antifragile organization. Commun. ACM 56(8), 40–44 (2013)
27. Zhong, M., Shen, K., Seiferas, J.: Replication degree customization for high avail-

ability. In: EuroSys (2008)

Chapter 12

[core5] Mowgli: Finding Your Way in the DBMS
Jungle

This article is published as follows:

Daniel Seybold, Moritz Keppler, Daniel Gründler, and Jörg Domaschka. ”Mowgli: Finding Your Way in the
DBMS Jungle”, 10th ACM/SPEC International Conference on Performance Engineering (ICPE), published 2019,
ACM, DOI: https://doi.org/10.1145/3297663.3310303

Reprinted with permission from ACM.

179

https://doi.org/10.1145/3297663.3310303

Mowgli: Finding Your Way in the DBMS Jungle
Daniel Seybold

Institute of Information Resource Management
Ulm University, Germany
daniel.seybold@uni-ulm.de

Moritz Keppler
Daimler TSS
Ulm, Germany

moritz.keppler@daimler.com

Daniel Gründler
Daimler TSS
Ulm, Germany

daniel.gruendler@daimler.com

Jörg Domaschka
Institute of Information Resource Management

Ulm University, Germany
joerg.domaschka@uni-ulm.de

ABSTRACT
Big Data and IoT applications require highly-scalable database man-
agement system (DBMS), preferably operated in the cloud to ensure
scalability also on the resource level. As the number of existing
distributed DBMS is extensive, the selection and operation of a
distributed DBMS in the cloud is a challenging task. While DBMS
benchmarking is a supportive approach, existing frameworks do
not cope with the runtime constraints of distributed DBMS and the
volatility of cloud environments. Hence, DBMS evaluation frame-
works need to consider DBMS runtime and cloud resource con-
straints to enable portable and reproducible results. In this paper we
present Mowgli, a novel evaluation framework that enables the eval-
uation of non-functional DBMS features in correlation with DBMS
runtime and cloud resource constraints. Mowgli fully automates the
execution of cloud and DBMS agnostic evaluation scenarios, includ-
ing DBMS cluster adaptations. The evaluation of Mowgli is based on
two IoT-driven scenarios, comprising the DBMSs Apache Cassan-
dra and Couchbase, nine DBMS runtime configurations, two cloud
providers with two different storage backends. Mowgli automates
the execution of the resulting 102 evaluation scenarios, verifying
its support for portable and reproducible DBMS evaluations. The
results provide extensive insights into the DBMS scalability and the
impact of different cloud resources. The significance of the results is
validated by the correlation with existing DBMS evaluation results.

CCS CONCEPTS
• Information systems→Database performance evaluation;
• Computer systems organization → Cloud computing;

KEYWORDS
benchmarking, cloud, NoSQL, scalability, distributed database

ACM Reference Format:
Daniel Seybold, Moritz Keppler, Daniel Gründler, and Jörg Domaschka.
2019. Mowgli: Finding Your Way in the DBMS Jungle. In Tenth ACM/SPEC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310303

International Conference on Performance Engineering (ICPE ’19), April 7–11,
2019, Mumbai, India. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3297663.3310303

1 INTRODUCTION
IoT and Big Data drive the need for highly scalable and (geo-)
distributed data management. The NoSQL landscape provides dis-
tributed database management systems (DBMS) that promise to
fulfil the need for both scale and distribution and in some cases
even geo-distribution, together with non-functional properties such
as elasticity and high-availability. Additionally, cloud computing
offers the necessary mechanisms to enable scalability on resource
level. Yet, choosing the right DBMS set-up in the jungle of available
solutions is a complex task that is not done with the selection of
a well-suited DBMS1, but continues with the selection of a cloud
provider, and ends with the choice of the right size and amount of
virtual machines. The three choices influence each other [35], so
that making independent decisions may lead to sub-optimal results.
Additionally, runtime parameters, including the expected workload,
consistency requirements, and availability considerations, are influ-
encing the set-up and depend on each other: for instance, the type
of workload can influence whether a user should pay for having a
local SSD attached to their virtual machines or not [18].

While benchmarking is an established approach to select soft-
ware systems as well as hardware platforms, existing DBMS bench-
marking frameworks cannot cope with the volatility of cloud envi-
ronments [35], particularly as volatile environments demand for
reliable and reproducible benchmarking [29]. Based on these obser-
vations, we claim that even with the knowledge of the workload
and non-functional constraints, a manual selection of DBMS, cloud
provider(s), and virtual machine types cannot deliver satisfactory
results and that suitable tool support is strongly needed.

Only by this approach we are able to find an appropriate ini-
tial solution, but also keep up with DBMS version upgrades and
new DBMSs entering the market, as well as to address new cloud
providers and virtual machine types. This paper presents Mowgli, a
novel DBMS evaluation and benchmarking framework that fully
automates the whole evaluation flow from the cloud resource al-
location, DBMS deployment, workload execution and the DBMS
cluster adaptation. Its underlying orchestration engine is cloud
provider-agnostic and supports cross-cloud evaluation scenarios [5].

1in June 2018, http://nosql-databases.org lists more than 225 NoSQL database projects

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

321

In particular, Mowgli helps answering the DBMS runtime centric
question Q1 and the cloud resource allocation centric question Q2:

Q1: "How much throughput for workloadWx can DBMS Dx
achieve with cluster size CSx , replication factor RFx , and
ensures the write-consistency ofWCx if operated on VM
type VMx in cloud Cx ?"

Q2: "Which cluster size CSx of DBMS Dx achieves the highest
throughput for workloadWx if operated with replication
factor RFx , ensuring write-consistencyWCx and running
on VM types VMx in cloud Cx if the maximum number of
available cloud resources is CR −MAXx ?

The motivation for Mowgli is our need to find a DBMS-cloud
set-up that is capable of handling an IoT scenario with a growing
number of sensors where each sensor si would issue its current
state every t seconds and no message is allowed to be dropped. This
leads to the requirement that the chosen DBMS needs to provide a
constant write throughput even in the case of failures. While this
paper does not present the final outcome of the selection process,
we apply this use case as a frame for validatingMowgli. In particular,
we validate Mowgli by applying an evaluation of two DBMSs over
three different cloud environments for write-intensive workloads.

The remainder of this paper is structured as follows: Section 2
details the challenges of DBMS evaluation while Section 3 describes
Mowgli. Section 4 presents the evaluation scenarios we use to val-
idate our approach and Section 5 analyses the evaluation results.
Section 6 discusses the usability and significance of Mowgli. Sec-
tion 7 presents related work, before Section 8 concludes.

2 DBMS EVALUATION CHALLENGES
In order to guide the DBMS selection process, the introduced ques-
tions Q1 and Q2 need to be addressed by evaluating potential DBMS.
Yet, a significant evaluation needs to consider multiple domains as
the results are affected by the applied cloud resource, DBMS run-
time and workload constraints. Hence, the evaluation approach
requires the specification of multi-domain evaluation scenarios as
depicted in Figure 1. Each evaluation domain comprises its own
set of domain specific constraints, which affect the results for the
specified evaluation objectives [35]. Consequently, domain knowl-
edge in each evaluation domain is required, which makes the DBMS
evaluation a complex and error prone task. In order to reduce this
complexity and enable the portable and reproducible evaluation
scenario execution, dedicated tool support is required. In the follow-
ing, we introduce each evaluation domain with respect to relevant
constraints and present the challenges with respect to execute
multi-domain evaluation scenarios in a portable, reproducible and
consistent manner.

2.1 DBMS Runtime Domain
With the rise of the NoSQL data models [8, 12, 22], the usage of
distributed architectures for shared-nothing DBMS has become a
common approach to provide scalability, elasticity and availabil-
ity [32]. In this context, the extent of DBMS runtime constraints
has increased as distributed DBMS aim to provide flexibility for
multiple usage scenarios [16, 20]. Common configurable runtime
properties of distributed DBMS are the replication factor, read/write
consistency settings and the sharding strategy, while there is an

evaluation
scenario execution

DBMS
runtime domain

cloud
resource domain

workload
domain

- replication
- consistency
- sharding

performance scalability elasticity availability

ev
al

ua
tio

n
do

m
ai

ns
ev

al
ua

tio
n

ob
je

ct
iv

e

- resource type
- sizing
- location
- storage

- CRUD
- OLTP
- HTAP

Figure 1: DBMS Evaluation Domains

extensive number of DBMS-specific runtime constraints such as
storage engines or compression algorithms. Consequently, com-
parative evaluation scenarios need to abstract the DBMS runtime
domain to general runtime constraints, enabling the specification of
consistent and portable DBMS runtime specifications [7, 29]. More-
over, the DBMS runtime specification needs to be extensible to allow
DBMS-specific evaluations based on custom constraints [6, 7].

2.2 Cloud Resource Domain
While cloud resources have become a common solution to operate
DBMS [33], cloud resource offerings are getting more heteroge-
nous with respect to the offered compute resource type; compute
resource sizing; storage backends; control over tenant isolation and
control over locations [4]. Especially for DBMS, storage backends
are important as remote storage makes it easier to scale out a DBMS
but network latency and bandwidth can limit the DBMS perfor-
mance. Dedicated storage reduces these limitations, but a failure of
a physical server decreases availability and failover mechanisms
are required [1]. Hence, evaluation scenarios have to include ex-
isting cloud resource offers by abstracting provider specific details
and enabling a consistent and portable cloud resource specifica-
tion [29, 35].

2.3 DBMS Workload Domain
DBMS workloads emulate heterogenous application domains, from
synthetic create, read, update, delete (CRUD) operations over more
realistic Online Transaction Processing (OLTP) to novel Hybrid
Transaction-Analytical Processing (HTAP) workloads [35]. While
realistic workloads increase the significance of the results, they typ-
ically make use of DBMS-specific features, which limits their field
of use [31]. In addition, each workload implementation provides
its own set of workload constraints, which have direct impact on
the results. Hence, workload specifications for comparative DBMS
evaluations require portable workloads to compare different DBMS
against the evaluation objectives [6, 29]. DBMS-specific scenarios
need to support realistic workloads to enable the in-depth evalua-
tion of DBMS-specific features [6, 31]. Respectively, the workload
specification has to abstract common workload constraints to en-
able comparative and DBMS-specific workload specifications.

2.4 Evaluation Scenario Execution
The consistent specification of evaluation scenarios considering the
introduced domains requires abstract evaluation templates that are

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

322

adapt DBMS clustadapt DBMS cluster

execute workloadexecute workloadallocate cloud
resource

deploy
DBMS cluster

execute
workload

release cloud
resource

process
objective

adapt
DBMS cluster

monitor
evaluation

(T_1) (T_2)

(T_3.3)

(T_3.1)

(T_3.2)
(T_4) (T_5)

Figure 2: DBMS Evaluation Process

enriched with the concrete domain constraints. This enables the
portable and reproducible execution of evaluation scenarios. Yet,
the manual execution of such multi-domain evaluation scenarios is
a complex and error prone process. Each domain requires detailed
knowledge on its own and the entire evaluation process comprises
a sequence of multiple interdependent evaluation tasks as depicted
in Figure 2. Consequently, a supportive framework is required
that automates the evaluation process and fulfils the established
requirements of DBMS evaluation [6, 7, 21, 29, 35]:

Ease of use (R1) : The deployment and configuration of the
framework needs to be simple and it needs to provide user-
friendly interfaces to specify and execute the evaluation
scenarios [6, 7, 21, 29]

Portability (R2): In order to execute the evaluation scenarios
for different domain properties, the framework has to ab-
stract technical implementations of each evaluation domain
and map the high-level evaluation scenarios to concrete tech-
nical implementations for each evaluation domain [21, 35]

Reproducibility (R3): The framework needs to provide com-
parable evaluation scenario templates, which ensure the
deterministic execution for concrete domain constraints [6,
29, 35]

Automation (R4): The automated execution of multi-domain
evaluation scenarios requires the orchestration of evaluation
tasks across all domains to ensure the reproducibility and
portability [35]. In addition, complex evaluation objectives
such as elasticity or availability require the DBMS cluster
adaptation at evaluation runtime [36].

Significance (R5): In order to enable significant results by
applying realistic domain constraints, the framework needs
to support comparative and realistic workloads, commercial
cloud resource offerings and relevant DBMS [6, 29, 35]

Extensibility (R6): As each evaluation domain is constantly
evolving, the framework needs to provide an extensible ar-
chitecture and interfaces that allow the easy integration
of future domain specific constraints and evaluation objec-
tives [7, 21, 29, 35].

3 MOWGLI
In the following, we present the multi-domain evaluation frame-
work Mowgli2 that builds upon existing DBMS evaluation con-
cepts [34]. Mowgli automates the entire evaluation process shown
in Figure 2 by enabling the definition and execution of portable
and reproducible evaluation scenarios via a loosely coupled and
2https://omi-gitlab.e-technik.uni-ulm.de/mowgli

E
va

lu
at

io
n-

A
PI

Workload
Catalogue

sensor storage scenario

metadata
collectorobjective

processor

DBMS
Catalogue

data flow control flow

Cloudiator

measurement
collector

template
sensorStorage:{
dbms:couchbase,
cloud:ec2,
workload:ycsb,
…}

cloud resource
catalogue

Evaluation Orchestrator

Workload-API

runtime
monitor

Figure 3: Mowgli architecture

extensible evaluation framework. It does so by exploiting the fea-
tures of cloud orchestration tools (COTs) [5] and combines them
with an extensible DBMS catalogue, an auto-generated cloud re-
source catalogue and a workload catalogue. The architecture of
Mowgli is depicted is in Figure 3. Evaluation templates define the
required input of an abstract evaluation scenario and reach the
system through the Evaluation API. In its current state, Mowgli
supports the abstract sensor storage evaluation scenario to address
Q1 and Q2. The specification of elasticity and availability related
evaluation scenarios is subject to ongoing work.

3.1 Evaluation Templates
Each evaluation template comprise three different types of sub-
templates3, which are listed in Table 1-3. The Tables list the ab-
stract domain constraint and Mowgli’s supported parameter range.
Domain constrains and their parameter range can be customized
due to Mowgli’s extensible architecture.

The DBMS runtime template includes use-case specific DBMS
runtime configurations in a DBMS agnosticmanner, which are listed
in Table 1. Hence, it describes the desired distribution requirements.
It requires the mandatory configuration options cluster topology,
cluster size and replication factor and offers optional DBMS-specific
configurations options. The cloud resource templates describes the
required compute and storage resources in a cloud provider agnostic
way as shown in Table 2. Using this type of agnostic description of
both non-functional properties of the DBMS and resources is key to
making evaluations portable between DBMS and cloud providers,
but also fosters reproducibility of evaluation results. Finally, the
workload template listed in Table 3 specifies the desired load on the
system by referring to known DBMS benchmarks through unified
configuration properties which are extended by benchmark specific
properties such as read/write consistency settings, DBMS driver
settings and request distribution.

3.2 Catalogues
Catalogues enable the mapping from abstract evaluation scenario
templates to executable experiments. The DBMS catalogue contains

3Exemplary input templates are publicly availablehttps://omi-gitlab.e-technik.uni-ulm.
de/mowgli/getting-started/tree/icpe2019/examples

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

323

Table 1: DBMS Runtime Template

Constraint Parameter Range
DBMS Dx ∈ {RDBMS,NoSQL,NewSQL}

Cluster Topology CTx ∈

{data center , cross data center }

Cluster Size CSx ∈ {3..n}
Replication Factor RFx ∈ {n <= CSx }

Custom Configuration CCx ∈ {key = value}

Table 2: Cloud Resource Template

Constraint Parameter Range

Cloud API Cx ∈ {OpenStack,
EC2,Gooдle Compute}

Location VM − Lx ∈ {rack,
availability zone, reдion}

vCores VM −Cx ∈ {2..n}
RAM (in GB) VM −Mx ∈ {2..n}
Storage Capacity (GB) VM − SCx ∈ {20..n}
Storage Type VM − STx ∈ {HDD, SDD,Remote}

Table 3: Workload Template

Constraint Parameter Range
Type WTx ∈ {YCSB,TPC −C}

Runtime (in seconds) WRx ∈ {60..n}
Client instances WCx ∈ {1..n}
Client threads WCx ∈ {1..n}
Network WNx ∈ {public,private}

Write Consistency WCx ∈ {low,medium,hiдh}

Read Consistency RCx ∈ {low,medium,hiдh}

mappings from DBMS templates to concrete configurations. In par-
ticular, based on the DBMS catalogues, Mowgli is able to configure
and run different DBMS in the way specified in the DBMS templates.
Currently, Mowgli supports Apache Cassandra4, Couchbase5, Mon-
goDB6, Riak 7 and CockroachDB8.

Similarly, the cloud resource catalogue provides a mapping from
cloud resource templates to actual cloud resources. As defining this
mapping is cumbersome and repetitive, we use the resource discov-
ery features of the COT Cloudiator [4, 15]. For each cloud credential
stored at Cloudiator, it automatically creates the cloud-provider
specific resource entries in its catalogue as well as a cloud-provider
agnostic representation thereof that is referenced byMowgli’s cloud
resource templates.

Finally, the workload catalogue captures concrete implementa-
tions of workloads. Its entries specify what kind of load to issue
on the DBMS and in what order. Mowgli supports the Yahoo Cloud
4http://cassandra.apache.org/
5https://www.couchbase.com/
6https://www.mongodb.com/
7http://basho.com/products/riak-kv/
8https://www.cockroachlabs.com/

Serving Benchmark (YCSB) [11] and a DBMS-specific implemen-
tation of the TPC-C workload9. For our evaluation, we make use
of the YCSB as it enables the emulation of a write–heavy sensor
storage workload.

3.3 Evaluation Process
Using the catalogues, Mowgli is able to map the concrete scenario
parameters received through the evaluation-API to the abstract
sensor storage scenario specification and create an executable eval-
uation scenario. The entire execution of a specified evaluation sce-
nario is automated by the evaluation orchestrator that orchestrates
the tasks depicted in Figure 2. Therefore, an evaluation scenario is
internally implemented as workflow with sequential, conditional
and parallel tasks. The workflow of the introduced sensor storage
scenario is implemented as a subset of the introduced evaluation
tasks of Figure 2 using sequential and parallel tasks. In the follow-
ing, the workflow tasks executed by the evaluation orchestrator are
presented together with the involved components of Mowgli.

T_1: allocating cloud resources for each evaluation iteration
viaCloudiator that enacts the cloud provider specific requests

T_2: deploying and configuring the DBMS cluster by fetching
the DBMS deployment scripts from the DBMS catalogue and
passing them to Cloudiator to deploy the DBMS cluster on
the allocated cloud resources

T_3.1 measuring system and DBMS metrics during each run
via the runtimemonitor. The runtimemonitor is implemented
by the time-series DBMS InfluxDB10

T_3.2 distributing the workload execution across the specified
workload-API instances

T_4 releasing the cloud resource after the each evaluation iter-
ation via Cloudiator and repeating task (1)-(4) according to
the scenario parameters

T_5 collecting and processing of the evaluation results as fol-
lows: the measurement collector collects basic performance
metrics such as throughput and latency, provided by the
applied workload; a scenario-specific objective processor com-
putes composedmetrics such as scalability [11], elasticity [17],
availability [36] or the cloud resource and distribution im-
pact [35] by correlating the performance metrics with the
applied DBMS runtime and cloud resource specifications
provided by the metadata collector

As the implementation of the sensor storage scenario does not
require the adaptation of the DBMS cluster at evaluation runtime,
T_3.3 is omitted. Although, Mowgli is able to support the adaptation
of the DBMS cluster at runtime by specifying adaptation tasks
that use metrics of the runtime monitor as adaptation trigger and
Cloudiator to adapt the DBMS cluster.

4 SENSOR STORAGE EVALUATION
SCENARIOS

In order to validate the Mowgli framework, we apply the sensor
storage scenario and seek help in answering questions Q1 and Q2.
Consequently, we define the sensor storage template and apply

9https://github.com/cockroachdb/loadgen
10https://docs.influxdata.com/influxdb

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

324

Q1 and Q2 specific domain constraints. This section details the
choice of DBMSs, their runtime configuration, the selection of
cloud resources as well as the sensor workload specification.

4.1 DBMS Specification
For the validation of the DBMS runtime centric Q1, we select
Apache Cassandra [27] and Couchbase as DBMSs. The cloud re-
source centric Q2 is validated by using Apache Cassandra. Both
are popular NoSQL DBMSs11. They provide a flexible data model
and a multi-master architecture that supports automated shard-
ing and horizontal scalability. They only have limited support for
complex queries, but for write-heavy workloads, this is negligible.
Furthermore, both DBMSs have already been subject to scalability
evaluations with respect to read-update workloads and achieved
promising results [24, 26, 37]. Also, the availability of other eval-
uation scenarios allows us to cross-check the results reported by
Mowgli for read-update workloads (not part of this paper but car-
ried out with a preliminary version of Mowgli [37]). Apache Cas-
sandra applies the column-oriented data model, while Couchbase
applies the document-oriented data model [8]. Table 4 describes
the relevant runtime specifications for the selected DBMSs based
on the introduced runtime constraints (cf. Table 1). Other options
are supported, but have not been used for the results presented in
this paper. By default, Mowgli configures a DBMS instance to use
50% of the available memory for its operation.

Due to the architectural similarities of both DBMSs comparable
cluster topologies, cluster sizes and replication factors can be de-
fined. Yet, they differ when it comes to persistence configuration at
client side. Apache Cassandra applies write ahead logging (WAL),
while Couchbase does not. Instead, it caches records directly in
memory and persists them to disk asynchronously. Couchbase pro-
vides the configuration option to enforce replicating a record to
n replica nodes via replicateTo or persisting the record to disk of
n replica nodes via persistTo. For Apache Cassandra we can con-
figure the amount of replicas where an item has to be written to
the WAL and the in-memory cache. Consequently, the write consis-
tency configurations can not be exactly mapped for both DBMSs.
For Apache Cassandra, we select the write consistency levels ANY,
ONE, TWO 12 while for Couchbase, we select the following options:
NONE (replicateTo=NONE and persistTo=NONE) confirms a write
as successful after the record has been transmitted. R-ONE (repli-
cateTo=1) ensures that the record is written to the cache of at least
one replica node, and P-ONE (persistTo=1) ensures that the record
is persisted to the disk of at least on replicate node.

4.2 Cloud Resource Specification
The portability of our approach is verified by using cloud resources
of two different cloud providers. For answeringQ1, we applyMowgli
to three different cloud resource configurations as outlined in Ta-
ble 5: OS_SSD and OS_REMOTE run on a private, OpenStack-based
cloud13 (version Pike) with full and isolated access to all physical
and virtual resources. All physical hosts in the OS_SSD availability

11https://db-engines.com/en/ranking
12https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.
html
13https://www.openstack.org/

Table 4: DBMS Runtime Specifications

Specification Spec_CA Spec_CB
Dx Apache Cassandra Couchbase
Version 3.11.2 5.0.1 community
CTx data center data center
CS −Q1x 3,5,7,9 3,5,7,9
CS −Q2x 3,6,9 -
RFx 3 3
WClow ANY NONE
WCmedium ONE R-ONE
WChiдh TWO P-ONE

zone have two dedicated SSDs in Raid-0 configuration. Physical
hosts with the OS_REMOTE configuration share one storage server
with RAID-6 set-up and magnetic disks. Network bandwidth be-
tween physical hosts and the remote storage is 10G. EC2_REMOTE
runs Amazon EC2 VM instances in the Frankfurt region and the
availability zone eu-central-1. The selected EC2 instance type is
t2.medium14 and each VM is provisioned with a Remote Storage
GP2 SSD EBS volume. For the evaluation the comparable VM type
VM −Tsmall is selected, which is available in OpenStack and EC2.
Each VM type is composed by the tuple vCores, RAM and storage
capacity as listed in Table 2.

Table 5: Q1 - Cloud Resource Specifications

Specification OS_SSD OS_REMOTE EC2_REMOTE
Cx OpenStack OpenStack EC2
VM − Lx Ulm Ulm Frankfurt
VM −Tsmall 2 vCores, 4GB RAM, 50GB disk
VM − STx SSD Remote Remote
VM −OSx Ubuntu Server 16.04
VM − NETx private

To emphasize Mowgli’s capabilities of evaluating the impact of
cloud resources in the context of Q2, OpenStackwith the availability
zones OS_SSD and OS_REMOTE is selected. Using this private
cloud allows the specification of custom VM types and the in-depth
analysis of the cloud resource impact. We define an exemplary
maximum resource poolCR−MAXx and specify the respective VM
types as listed in Table 6. These VM types are applied toCS−Q23,6,9
to accordingly match the maximum resource pool.

4.3 Workload Specification and Metrics
For our evaluation, we use YCSB version 0.12.015, which is inte-
grated in Mowgli (cf. Section 3) and allows the specification of a
write-heavy workload required by Q1 and Q2. Besides, relying on
the widely used YCSB, allows us to validate our results against
published results.

The specification is such that the workload is issued through
one independent virtual machine running in the same environment
14https://aws.amazon.com/ec2/instance-types/
15https://github.com/brianfrankcooper/YCSB/releases/tag/0.12.0

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

325

Table 6: Q2 - Cloud Resource Specifications

Specification OS_SSD_Q2 OS_REMOTE_Q2
Cx OpenStack OpenStack
VM − Lx Ulm Ulm
CR −MAXx 18 vCores; 36GB RAM
VM −Tlarдe 6 vCores, 12GB RAM, 50GB disk
VM −Tmedium 3 vCores, 6GB RAM, 50GB disk
VM −Tsmall 2 vCores, 4GB RAM, 50GB disk
VM − STx SSD Remote
VM −OSx Ubuntu Server 16.04
VM − NETx private

as the DBMS instances. This virtual machine is configured with 8
vCores, 16GB memory and 20GB of remote storage disk, running
Ubuntu Server 16.04. It uses a cloud-internal network to commu-
nicate with the DBMS cluster. Table 7 contains the relevant YCSB
specifications. The DBMS-specific consistency settings in Table 4
are mapped to the respective YCSB binding for Apache Cassandra
and Couchbase.

The YCSB provides the performancemetrics latency and through-
put. As Q1 and Q2 are throughput related, the latency metrics are
collected but not used for processing composed metrics. For ad-
dressing Q1, the scalability metric is computed by calculating the
throughput increase with respect to the cluster size. For Q2, the
throughput increase with respect to the defined different VM types
and cluster sizes is computed to analyse the cloud resource and
distribution impact.

Table 7: Workload Specifications

Specification YCSB_Sensor_Workload
YCSB instances 1 (per cloud)
Threads (per instance) 16
Network private
MAX_Runtime 1,800s
Number of records 4,000,000
Record size 5KB
Operations distribution 100% write
YCSB Binding cassandra/couchbase2

5 MOWGLI EVALUATION
This section presents the results of the sensor storage scenario
evaluation. The analysis of the results first focuses on the DBMS
runtime centric Q1 by analysing performance and scalability and
second on the cloud resource centric Q2 by analysing the impact of
different VM types and cluster sizes.

For Q1, the DBMS specifications Spec_CA and Spec_CB in combi-
nationwith the cloud resource configurationsOS_SSD, OS_REMOTE
and EC2_REMOTE and the YCSB_Sensor_Workload results in 72
evaluation scenarios specifications. The Q2 results are based on
the DBMS specifications Spec_CA and Spec_CB with the cloud
resource configurations OS_SSD_MAX, OS_REMOTE_MAX and

the YCSB_Sensor_Workload, resulting in 18 evaluation scenarios
specifications.

As Mowgli allows to specify the repetition of each scenario ex-
ecution for n ∈ N times, we configure Mowgli to execute each
scenario five times to verify the automated repeatability and to
strengthen the significance of the results by providing the standard
deviation as well as the minimum and maximum values. The run-
time of a single evaluation is limited to 30 minutes, which is allows
to the DBMS to stabilize and execute internal compaction processes.
Likewise, Mowgli allows to specify custom runtime settings.

From system monitoring we ensure that the following properties
hold for all evaluations: (1) The workload generator is not a bottle-
neck as the CPU load never exceeds 60%. (2) The network between
the workload generator and DBMS cluster is not becoming a bottle-
neck, as the consumed network bandwidth is below the evaluated
maximum available bandwidth. (3) The workload generator creates
sufficient load to saturate the CPU resources of at least the 3-node
clusters, i.e. the average CPU load of each node is > 90%.

The following sections present the throughput results as the
average throughput over all five executions including standard
deviation as well as global minimum and global maximum over all
executions.

5.1 Q1 - DBMS Performance and Scalability
In the following, the results of Q1 are analysed for the concrete
evaluation domain properties: "Which DBMS DCA,CB achieves the
highest throughput for workloadWYCSB_Sensor if operated with
with cluster size CS3,5,7,9, replication factor RF3, and ensures the
write-consistency ofWClow ,medium,hiдh by running on VM type
VMsmall in cloud COS_SSD ,OS_REMOTE ,EC2_REMOTE?"

We group the results by cloud type (OS_SSD, OS_REMOTE,
EC2_REMOTE). For each cloud type, we discuss the performance
impact of cluster size and write consistency. The scalability is anal-
ysed computing the average throughput increase from the 3-node
cluster to the 9-node cluster whereby the average throughput of
the 3-node cluster represents the baseline.

5.1.1 OpenStack SSD Results. The Apache Cassandra results de-
picted in Figure 4 show that write consistency only has a slight
impact on the performance for all cluster sizes. It is surprising that
ANY as the weakest consistency provides less throughput than
ONE for the 5-7-9-node clusters. With respect to the scalability, the
throughput scales with growing cluster sizes, e.g. a scale-up of 19%
is achieved from a 3-9 node cluster with write consistency ONE as
listed in Table 8. The highest scalability factor of 31% is achieved
for the write consistency TWO.

The results for Couchbase depicted in Figure 5 show significant
differences depending on the applied write consistency. While the
NONE configuration (not providing any guarantees at all) for a 3-
node cluster achieves only 5% less throughput compared to 9-node
Apache Cassandra cluster, we see massive drops in throughput
when applying R-ONE and P-ONE. For R-ONE, the throughput
for the 3-node cluster drops by 62% and for the 9-node cluster by
66% compared to NONE. For P-ONE it decreases by 92% compared
to NONE and by 80% compared to R-ONE for the 3-node cluster.
With respect to scalability, Table 8 shows that Couchbase achieves

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

326

 0

 2000

 4000

 6000

 8000

 10000

 12000

ANY ONE
3-nodes

TWO ANY ONE
5-nodes

TWO ANY ONE
7-nodes

TWO ANY ONE
9-nodes

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s/
s]

avg (stddev)
max
min

Figure 4: Q1 - Cassandra - OpenStack SSD Storage

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3-nodes
P-1

5-nodes
P-1

7-nodes
P-1

9-nodes
P-1

T
h

ro
u

g
h

p
u

t
[o

p
s/

s]

avg (stddev)
max
min

NONE R-1 NONE R-1 NONE R-1 NONE R-1

Figure 5: Q1 - Couchbase - OpenStack SSD Storage

a scale-up from 3–9 nodes for the write consistency NONE of 60%,
for R-1 of 43% and P-1 of 113%.

Table 8: Scalability - OpenStack SSD Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% +4% +6% +17%
ONE 100% +6% +12% +19%
TWO 100% +11% +20% +31%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +6% +17% +60%
R-1 100% +13% +38% +43%
P-1 100% +33% +53% +113%

5.1.2 OpenStack Remote Storage Results. The evaluation scenarios
on OpenStack with remote storage also comprise 3–9 node. Yet, the
use of remote storage makes expect that the overall performance of
a write-heavy workload will suffer due to concurrent use of storage.

The graphs for Apache Cassandra depicted in Figure 6 show
indeed less throughput than for the SSD case. It also shows that a

 0

 2000

 4000

 6000

 8000

 10000

 12000

ANY ONE
3-nodes

TWO ANY ONE
5-nodes

TWO ANY ONE
7-nodes

TWO ANY ONE
9-nodes

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s]

avg (stddev)
max
min

Figure 6: Q1 - Cassandra - OpenStack Remote Storage

 0

 2000

 4000

 6000

 8000

 10000

 12000

NONE R-1
3-nodes

P-1 NONE R-1
5-nodes

P-1 NONE R-1
7-nodes

P-1 NONE R-1
9-nodes

P-1

T
h

ro
u

g
h

p
u

t
[o

p
s]

avg (stddev)
max
min

Figure 7: Q1 - Couchbase - OpenStack Remote Storage

larger cluster size does not improve the throughput because the sin-
gle remote storage server represents the shared resource and results
in a bottleneck (cf. Section 4.2). Increasing the cluster size from 3
to 9 nodes even results in a scale-up of -27% for write consistency
ANY as listed in Table 9.

Also Couchbase depicted in Figure 7 achieves less throughput for
all write consistency levels compared to the SSD case. Even though
it uses asynchronous writes and no WAL, the write rate is limited
and outstanding writes decrease throughput. While, from 3-7 nodes
Couchbase still achieves a scale-up for NONE and R-ONE as the
cache size and number of disk writers increases with the number of
nodes as listed in Table 9, for the 9-node cluster the scalability factor
is negative and the variance in the results increases. For P-ONE, the
throughput stays on a constant level of 230 ops/s for 3-9 nodes.

5.1.3 EC2 Remote Storage Results. The EC2 results of Cassandra
(cf. Figure 8) show the analogue performance impact of the write
consistency as for the OpenStack results, i.e. ANY and ONE are in
similar ranges where TWO results in 10% less throughput compared
to ONE, independent of the cluster size. While the provisioned
EC2 VMs use remote storage, the results show a clear scale-up
from 3 to 9 nodes, e.g. 90% for ONE as shown in Table 10. Hence,
the EC2 remote storage infrastructure does not impose the same
bottleneck as OS_REMOTE. The Couchbase results, depicted in

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

327

Table 9: Scalability - OpenStack Remote Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% -25% -15% -27%
ONE 100% -7% -26% -22%
TWO 100% +11% -17% -8%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +52% +68% 5%
R-1 100% +20% +21% -10%
P-1 100% +1% +9% -8%

 0

 2000

 4000

 6000

 8000

 10000

 12000

ANY ONE
3-nodes

TWO ANY ONE
5-nodes

TWO ANY ONE
7-nodes

TWO ANY ONE
9-nodes

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s/
s]

avg (stddev)
max
min

Figure 8: Q1 - Cassandra - EC2 Remote Storage

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

NONE R-1
3-nodes

P-1
5-nodes

P-1
7-nodes

P-1
9-nodes

P-1

T
h

ro
u

g
h

p
u

t
[o

p
s/
s]

avg (stddev)
max
min

NONE R-1 NONE R-1 NONE R-1

Figure 9: Q1 - Couchbase - EC2 Remote Storage

Figure 9, verify the findings that the EC2 remote storage does not
impose a bottleneck. For P-ONE, we see a scale-up of 68% from 3 to
9 nodes. Further, as in the OS cases, Couchbase shows a significant
drop in performance with higher consistency levels.

5.1.4 Comparative DBMSAnalysis. Comparing bothDBMSs, Apache
Cassandra achieves better throughput if strong write consistency
is required. Couchbase achieves the highest throughput in total if
the weakest write consistency NONE is applied, while for R-ONE

Table 10: Scalability - EC2 Remote Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% +49% +79% +85%
ONE 100% +54% +91% +90%
TWO 100% +56% +82% +92%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +49% +71% +76%
R-1 100% -3% -39% -24%
P-1 100% +20% +43% +68%

the throughput is constantly lower (OpenStack SSD, EC2) or simi-
lar (OpenStack Remote) to Apache Cassandra; P-ONE constantly
achieves lower throughput than Apache Cassandra. Hence, Apache
Cassandra should be preferred if write consistency is required while
Couchbase should be preferred if maximum throughput is required
and data inconsistency or (partial) data loss is tolerable.

With respect to scalability, both DBMSs scale with increasing
cluster sizes, if there is no bottleneck on the cloud resource level.
Yet, the scale-up degree depends heavily on the applied DBMS
runtime configurations and cloud resource configurations.

With respect to the cloud resource configuration, Apache Cassan-
dra achieves better throughput with SSD storage backends as WAL
generates synchronous I/O for each write operation. In contrast,
in the case of Couchbase, the applied storage backend affects the
results of NONE and R-ONE only secondary. Consequently, only
the throughput of P-ONE seems to be correlated to the storage.

5.2 Q2 - Cloud Resource Allocation and
Distribution Impact

In the following, we analyse the results of Q2 for the concrete
evaluation domain properties:

"Which cluster size CS3,6,9 of DBMS DCA achieves the highest
throughput for workloadWYCSB_Sensor if operated with replica-
tion factor RF3, ensuring write-consistencyWClow ,medium,hiдh
and running on VM types VMsmall ,medium,larдe in cloud
COS_SSD ,OS_REMOTE if the maximum number of available cloud
resources is CR −MAX18 vCores ,36GB RAM ?"

The results are grouped by OS_SSD_Q2 and OS_REMOTE_Q2
as listed in Table 6. For each cloud type, we discuss the impact of
cluster size in correlation to the VM type and storage backend.

5.2.1 OpenStack SSD Results. The results depicted in Figure 10
show that the 3-node cluster on large VMs achieve the highest
throughput. These results are expected as larger cluster sizes require
additional network and coordination operations. Yet, the three node
cluster also shows the highest throughput variance which indicates
potentially suboptimal placement of the large VMs on the same
physical server or interfering load of other VMs. Yet, an analysis
would require the correlation of physical server monitoring with
the Mowgli results, which is currently not supported and depends
on provider specific monitoring information.

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

328

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

ANY ONE
3-nodes (large)

TWO ANY ONE
6-nodes (medium)

TWO ANY ONE
9-nodes (small)

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s]

avg (stddev)
max
min

Figure 10: Q2 - Cassandra - SSD Storage

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

ANY ONE
3-nodes (large)

TWO ANY ONE
6-nodes (medium)

TWO ANY ONE
9-nodes (small)

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s]

avg (stddev)
max
min

Figure 11: Q2 - Cassandra - Remote Storage

The relative throughput impact of the selected VM type and clus-
ter size is listed in Table 11 where the average throughput of the
3-node cluster with VM type large represents the baseline. It is note-
worthy that the throughput for write consistency TWO can even
be increased by using more and less powerful nodes (e.g. 6-node
cluster on VM type medium), which increases the internal writer
threads. This indicates that the write performance configurations
of the vanilla Apache Cassandra installation are underprovisioned
for the large VM size and provide optimisation capabilities.

Table 11: SSD Storage & Distribution Impact

Apache Cassandra
Consistency 3-nodes large 6-nodes

medium
9-nodes small

ANY 100% -7% -18%
ONE 100% -4% -16%
TWO 100% +2% -3%

5.2.2 OpenStack Remote Results. Figure 11 depicts the through-
put of Apache Cassandra with respect to the three specified VM
types and the remote-storage backend. The results clearly show

that larger cluster sizes decrease the throughput as the shared usage
of the remote-storage imposes a bottleneck. The relative through-
put decrease is listed in Table 12 where the average throughput
of the 3-node cluster represents the baseline. In addition, these
results verify the negative scale-up results for Apache Cassandra
(cf. Section 5.1.1).

Table 12: Remote Storage & Distribution Impact

Apache Cassandra
Consistency 3-nodes large 6-nodes

medium
9-nodes small

ANY 100% -29% -43%
ONE 100% -28% -40%
TWO 100% -16% -30%

5.2.3 Comparative Resource Allocation Analysis. Comparing the
different VM types and storage backends first shows that allocating
larger VM types with small cluster sizes provides better throughput
than large clusters of small VMs due to additional communication
and coordination overhead. Yet, the latter can improve the availabil-
ity in case of physical hardware failure if the VMs are distributed
equally across the physical infrastructure. Mowgli eases the deter-
mination of the performance versus availability tradeoff. Second, as
cloud resources are typically shared amongst multiple tenants, in-
terferences can impact the performance or even limit the scalability
as shown for the remote storage in the Ulm OpenStack. Mowgli en-
ables the extensive evaluation of cloud resources for the operation
of DBMS to identify potential bottlenecks and interferences.

6 DISCUSSION
Within this section, first we discuss the advantages and limitations
of Mowgli in order to answer Q1, Q2 and similar questions based
on the introduced requirements towards a multi-domain evaluation
framework (cf. Section 2.4). Second, we validate the significance of
our results by comparing them to related evaluation results and dis-
cuss how Mowgli can improve their portability and reproducibility.

6.1 Mowgli Feature Analysis
Ease of use (R1):While Mowgli comprises multiple loosely cou-
pled services, its deployment of all five components is automated via
Docker16 and its configuration is based on six parameters. Mowgli
provides a simple graphical as well as a REST-based interface. With
the presented evaluation results we verified the usability of Mowgli
for DBMS runtime and cloud resource specific evaluation scenar-
ios. The specification of the sensor storage scenario comprises 16
template properties, separated by four DBMS properties, five cloud
resource properties and seven workload properties17. Our expe-
riences show that undergraduate students can be taught to use
Mowgli in the order of less than a day.

Portability (R2): In the context of answeringQ1 andQ2, the sen-
sor storage scenario is applied to two DBMS, two cloud providers,
three different storage backends and three VM types, which shows
16https://omi-gitlab.e-technik.uni-ulm.de/mowgli/docker
17Excluding YCSB binding specific properties for Apache Cassandra/Couchbase

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

329

that Mowgli eases the evaluation portability between different
DBMS or cloud resources. While the DBMS catalogue abstracts
the deployment of the DBMS, still thorough DBMS-specific knowl-
edge is required to extend the DBMS catalogue. Similarly, extending
cloud resource templates or adding new cloud providers requires
knowledge of the Cloudiator framework.

Reproducibility (R3): Using our existing templates3, the de-
terministic reproduction of our validation scenario on any of the
supported DBMS or cloud providers is a matter of minutes.

Automation (R4): DBMS fully automates the evaluation pro-
cess based on customizable evaluation tasks by orchestrating the
cloud resource allocation, DBMS deployment, workload execution,
system monitoring and releasing cloud resources. It automates the
collection of workload-specific performance metrics as well as the
system and DBMS metrics during the evaluation execution. It also
provides advanced processing and visualization support for the
sensor storage scenario. Custom processing and visualization task
are supported by implementing new objective processors.

Significance (R5): In its current state, Mowgli supports two
major cloud providers, i.e. EC2 and Google Compute as well as
OpenStack for private clouds. With respect to the DBMS domain,
five common DBMS are supported (cf. Section 3.2). Regarding the
workload domain, the YCSB enables comparable evaluation scenar-
ios by simple synthetic workloads. In order to enable more in-depth
evaluation scenarios for DBMS-specific features, additional work-
loads such as TPC-C, HTAP or trace-based workloads need to be
integrated into Mowgli. As a first step into this direction, a prelimi-
nary TPC-C workload implementation has been integrated.

Extensibility (R6): As outlined in Section 3, Mowgli builds
upon loosely coupled components, which interact via REST-based
interfaces. Hence, the framework is prepared for extending ded-
icated components, e.g. the workload-API with additional work-
loads or extending supported DBMS in the DBMS catalogue. In
order to add a new evaluation scenario, the evaluation orchestrator
needs to be extended by (1) defining a new evaluation workflow by
building upon the existing tasks or by implementing new ones; (2)
defining a new evaluation scenario template by building upon the
existing DBMS configurations and cloud resource templates; (3) im-
plementing the mapping from the scenario template to the scenario
workflow. Consequently, thorough domain specific knowledge is re-
quired as the Mowgli components can only provide the conceptual
technical abstraction but the domain specific commands are still
required. The extensibility of Mowgli has been demonstrated by
extending the current evaluation scenario (targeting performance
and scalability) to elasticity [37] and availability [36].

6.2 Evaluation Result Verification
With the growing impact of distributed DBMSs, performance and
scalability evaluations are a widely addressed research topic. Conse-
quently, we compare existing DBMS evaluation results with our re-
sults to validate their correctness with respect to Q1 and Q2. Hereby,
we only consider research publications and no white papers due
to their questionable scientific neutrality. Further, we only select
results for Apache Cassandra and Couchbase that evaluate the scal-
ability of different DBMS cluster sizes and rely on the YCSB as work-
load. Optionally, the results are created on cloud resources. Several

published results evaluate the performance of Apache Cassandra
and Couchbase with the YCSB [2, 19, 23, 24, 38, 39]. Yet, only a few
evaluate their scalability based on different cluster sizes [11, 30]
and by using cloud resources [26, 37], which consolidates the need
for Mowgli in order ease the DBMS evaluation by portable and
reproducible evaluation scenarios. In the following these results
are analysed and compared to our results in chronological order.

An evaluation of the early version 0.5.0 of Apache Cassandra
has been conducted with the initial YCSB [11]. The evaluations are
carried out on a proprietary private cloud middleware and with
Cassandra cluster sizes from 2 to 12 nodes. While the results are
based on read-heavy and read-update workloads, they also verify
the scalability of Cassandra with growing cluster sizes.

The result of [30] execute a write-heavy YCSB workload against
2 to 14 Cassandra nodes on physical hardware. Similar to our re-
sults, Cassandra shows a throughput increase with growing cluster
sizes. Yet, the results of [30] show a nearly linear scalability of
Apache Cassandra which due to disabled replication and scaling
YCSB client instances and threads relative to the cluster size. Hence,
the Cassandra cluster is always saturated while in our scenario a
constant workload is applied, which saturates only a 3-node cluster.
Yet, our presented evaluation scenario can easily be adapted to scale
the workload in relation to the cluster size.

The previous evaluations [30] are reproduced by [26], replacing
the physical resources with cloud resources on EC2 with remote
storage. Similar to [30], the results show a nearly linear scalability
of Cassandra by increasing the workload relative to the cluster
size, which verifies our Apache Cassandra results on EC2. In addi-
tion, [26] evaluate the performance impact based on the selected
cloud storage backend configurations, which accompanies our re-
sults with respect to the SSD and remote storage results. In this
context, [26] emphasize the need but also the complexity to evaluate
different cloud resource configurations.

In a preliminary version of Mowgli, the scalability of Cassan-
dra and Couchbase was evaluated by read-heavy and read-update
workloads by using one VM type and one storage backend [37]
on a dedicated host in the OpenStack cloud at Ulm. The results
confirm the scalability of Couchbase and Cassandra with growing
cluster sizes. Yet, the results are carried out without replication
and the lowest consistency settings. The impact of VM resource
configurations including storage backends have not been analysed.

The comparative analysis of existing evaluation results, verifies
the significance of Mowgli as the scalability of Apache Cassandra
and Couchbase is verified. In addition, the impact of the selected
storage backend is confirmed. Yet, the analysis also shows that
reproducing existing evaluations is a time consuming and error
prone task, as the required domain properties might not be docu-
mented or have changed over time. This also limits the portability
as existing evaluations do not provide any abstraction of the evalu-
ation domains. Hence, porting existing evaluation results becomes
a challenging task [26]. Therefore, Mowgli enables the reproducible
and portable evaluation execution for multi-domain scenarios.

7 RELATED WORK
Since the era of RDBMS, their selection is guided by domain-specific
benchmarks that have evolved together with distributed DBMSs.

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

330

The need for portable and reproducible evaluations then led to
the integration of existing benchmarks into evaluation frameworks,
which extend the sole workload generation by DBMS runtime fea-
tures to cover more complex evaluation domains [7, 35].

7.1 Benchmarks
Benchmarks are applied to evaluate non-functional features of
DBMSs by artificial or trace-based workloads, producing evaluation
metrics [21]. While traditional DBMS benchmarks mainly target the
performance, recent benchmarks also target non-functional features
of distributed DBMSs, such as scalability, elasticity, consistency and
availability [35]. The workload domain of DBMS benchmarks is
distinguished between OLTP, Online Analytical Processing (OLAP)
and the recently evolving HTAP.

Performance benchmarks of the OLTP andOLAP domains for the
relational data model are provided by the transaction performance
council (TPC)18, namely TPC-C19 and TPC-H20. Building upon
these, HTAPBench enables HTAP workloads for the relational data
model [10]. For the NoSQL data models, the YCSB [11] is widely
used for performance and scalability benchmarks. Advancements
of YCSB such as YCSB+T and YCSB++ focus on the performance
of transactions in NoSQL models [13] and on the consistency of
distributed NoSQL DBMSs [28] respectively. While the YCSB work-
loads target artificial CRUD operations, web-application workloads
are presented by OLTP-Bench [14] and BG [3]. BenchFoundry [6]
presents a trace-based workload generator for realistic workloads.

Existing benchmarks cover a variety of workload domains, which
enables significant DBMSs evaluations. Hence, our framework does
not focus on the definition of a new benchmark rather than on
integrating existing benchmarks to enable DBMS runtime-driven
and resource-driven evaluation scenarios.

7.2 Cloud-centric DBMS Evaluations
A multitude of modern DBMS evaluations has been conducted
within the recent years based on existing benchmarks. Yet, only a
subset of these evaluations focus on cloud-related aspects. Origi-
nally, YCSB evaluated the performance and scalability of Apache
Cassandra, Apache HBase and Yahoo PNUTS in Yahoo’s data cen-
ter [11]; yet, only for read- and update-heavy workloads running
on a static pool of physical resources. Building upon YCSB, cloud-
centric evaluations have been conducted: [26] focus on the scala-
bility and elasticity of Apache Cassandra and HBase for different
cluster sizes on Amazon EC2 with different remote storage back-
ends. Also [24] build upon fixed EC2 resources for evaluating the
performance impact of different consistency configurations for
Apache Cassandra, MongoDB and Riak. A private OpenStack cloud
is used by [37] to evaluate the scalability and elasticity of Apache
Cassandra, Couchbase andMongoDB under varying workload sizes.

While these results prove the scalability of Apache Cassandra and
Couchbase with respect to read-heavy and read-update workloads,
the scalability of write-heavy workloads has not been evaluated,
especially with respect to different cloud resource offerings and
storage backends. Yet, even as these evaluation results provide a

18http://www.tpc.org/information/benchmarks.asp
19http://www.tpc.org/tpcc/default.asp
20http://www.tpc.org/tpch/default.asp

thorough technical explanation, their reproducibility is limited and
error-prone due to the complexity of the involved domains, i.e. cloud
computing, distributed DBMSs and benchmarks. Hence, [26, 37]
highlight the need for more sophisticated DBMS evaluation to
ensure reproducibility, portability and significance.

7.3 Evaluation Frameworks
While the portability and reproducibility of evaluation results has
been emphasized for a long time [21], its compliance becomes even
more challenging with the evolving technologies. Hence, build-
ing only upon benchmarks for distributed DBMSs in the cloud is
not sufficient to enable reproducible, portable and comparable re-
sults which take into account the runtime configurations [7, 35].
Therefore, evaluation frameworks need to provide additional fea-
tures such as evaluation orchestration, resource abstraction and
the specification of portable evaluation scenarios [7, 35].

[25] presents an evaluation framework that builds upon the
YCSB and enables the evaluation of Amazon’s DBaaS offerings and
Apache Cassandra with a focus on scalability and the performance
impact of different consistency configurations. Yet, the framework
does not abstract the DBMSs deployment and the cloud resource of-
ferings. Hence, the framework is not supporting portable evaluation
scenarios and cannot be applied to different cloud providers and
cloud resources. A cloud-resource centric framework is presented
by [9], which provisions cloud resources, orchestrates applications,
executes generic micro-benchmarks and monitors the execution
performance. While this framework focuses on evaluating cloud
resources based on resource-specific micro-benchmarks, DBMS
evaluation and cloud resources for DBMS are not in its scope.

Hence, current evaluation frameworks either focus on the bench-
mark execution and DBMS runtime configuration or on the cloud
resource benchmarking in general, Mowgli combines both aspects
and automates the full evaluation execution. This enables the defini-
tion and execution of portable and comparable evaluation scenarios
for different cloud resources and DBMSs.

8 CONCLUSION
Big Data and IoT demand for distributed and scalable database man-
agement systems (DBMS). Cloud resources provide these scalability
demands on the resource level. Yet, operating a DBMS in the cloud
is a challenging task, due to immense number of DBMSs and cloud
resource offerings. While DBMS evaluation guides this task, current
approaches do not consider DBMS runtime and cloud resource con-
straints, limiting evaluation portability and reproducibility. Hence,
we present Mowgli that enables portable and reproducible evalua-
tions in a consistent manner. Mowgli provides abstract evaluation
scenario templates, which are mapped to DBMS runtime and cloud
resource configurations and executed automatically by allocating
cloud resources, deploying DBMS cluster, executing the workload
and adapting the DBMS cluster.

We evaluate the usability of Mowgli by applying an IoT-driven
evaluation scenario for Apache Cassandra and Couchbase that first
focusses on their performance and scalability with respect to the
runtime constraints cluster size and write consistency and second,
focuses on the impact of the allocated cloud resources in correlation
to the cluster size. Both DBMSs are evaluated on three resource

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

331

configurations comprising Amazon EC2 and a private OpenStack.
The executed 102 evaluation scenarios verify the portability and
reproducibility byMowgli and allow the correlation between DBMS
runtime constraints and cloud resources. Both DBMSs show a scale-
up for growing cluster sizes and the performance of Cassandra
correlates with the applied storage while the performance of Couch-
base heavily depends on the applied write consistency level. The
significance of Mowgli is verified by evaluating its features against
established requirements of DBMS evaluation and by comparing
the collected results against existing evaluation results.

While Mowgli provides a powerful tool to guide the way through
the DBMS jungle, a holistic DBMS recommendation system building
upon machine learning and artificial intelligence is subject to ongo-
ing work. Furthermore, availability evaluation scenarios emulating
cloud resource failures and sudden workload peaks are ongoing
work. With respect to the workload domain, ongoing work investi-
gates into hybrid transaction-analytical processing workloads and
their impact on the DBMS runtime and cloud resource constraints.

Acknowledgements
We thank Eddy Truyen of the KU Leuven for his constructive feed-
back on earlier versions of the paper. The research leading to these
results has received funding from the EC’s Framework Programme
HORIZON 2020 under grant agreements 731664 (MELODIC) and
732667 (RECAP). We also thank the Daimler TSS for their valuable
and constructive discussions and the funding for parts of the work.

REFERENCES
[1] Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,

Philip A Bernstein, Michael J Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J Franklin, et al. 2016. The Beckman report on database research.
Commun. ACM 59, 2 (2016), 92–99.

[2] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. 2014. Which nosql
database? a performance overview. Open Journal of Databases (OJDB) 1, 2 (2014),
17–24.

[3] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A Benchmark to
Evaluate Interactive Social Networking Actions.. In CIDR.

[4] D. Baur, D. Seybold, F. Griesinger, H. Masata, and J. Domaschka. 2018. A Provider-
Agnostic Approach to Multi-cloud Orchestration Using a Constraint Language.
In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID). 173–182. https://doi.org/10.1109/CCGRID.2018.00032

[5] Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christo-
pher B Hauser, and Jörg Domaschka. 2015. Cloud Orchestration Features: Are
Tools Fit for Purpose?. In IEEE/ACM UCC.

[6] David Bermbach, Jörn Kuhlenkamp, AkonDey, Arunmoezhi Ramachandran, Alan
Fekete, and Stefan Tai. 2017. BenchFoundry: A Benchmarking Framework for
Cloud Storage Services. In International Conference on Service-Oriented Computing.
Springer, 314–330.

[7] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Sherif Sakr, and Raghunath
Nambiar. 2014. Towards an extensible middleware for database benchmarking.
In TPCTC.

[8] Rick Cattell. 2011. Scalable SQL and NoSQL data stores. Acm Sigmod Record 39,
4 (2011), 12–27.

[9] Ryan Chard, Kyle Chard, Bryan Ng, Kris Bubendorfer, Alex Rodriguez, Ravi
Madduri, and Ian Foster. 2016. An automated tool profiling service for the cloud.
In Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International
Symposium on. IEEE, 223–232.

[10] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, and Rui Oliveira. 2017.
HTAPBench: Hybrid Transactional and Analytical Processing Benchmark. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ACM, 293–304.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In ACM SoCC.

[12] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores.
ACM Computing Surveys (CSUR) 51, 2 (2018), 40.

[13] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. 2014. YCSB+T:
Benchmarking web-scale transactional databases. In IEEE ICDEW.

[14] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. VLDB Endowment (2013).

[15] Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger. 2015. Cloudi-
ator: a cross-cloud, multi-tenant deployment and runtime engine. In 9th Sympo-
sium and Summer School on Service-Oriented Computing.

[16] Jörg Domaschka, Christopher B Hauser, and Benjamin Erb. 2014. Reliability and
availability properties of distributed database systems. In Enterprise Distributed
Object Computing Conference (EDOC), 2014 IEEE 18th International. IEEE, 226–233.

[17] Thibault Dory, Boris Mejías, PV Roy, and Nam-Luc Tran. 2011. Measuring
elasticity for cloud databases. In Proceedings of the The Second International
Conference on Cloud Computing, GRIDs, and Virtualization.

[18] Michael Galloway, Gabriel Loewen, Jeffrey Robinson, and Susan Vrbsky. 2018.
Performance of Virtual Machines using Diskfull and Diskless Compute Nodes.
(2018). https://doi.org/10.1109/CLOUD.2018.00101

[19] Andrea Gandini, Marco Gribaudo, William J Knottenbelt, Rasha Osman, and
Pietro Piazzolla. 2014. Performance evaluation of NoSQL databases. In European
Workshop on Performance Engineering. Springer, 16–29.

[20] Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter. 2017.
NoSQL database systems: a survey and decision guidance. Computer Science-
Research and Development 32, 3-4 (2017), 353–365.

[21] Jim Gray. 1992. Benchmark handbook: for database and transaction processing
systems.

[22] Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari, and Miriam AM
Capretz. 2013. Data management in cloud environments: NoSQL and NewSQL
data stores. Journal of Cloud Computing: Advances, Systems and Applications 2, 1
(2013), 22.

[23] Abdullah Talha Kabakus and Resul Kara. 2017. A performance evaluation of
in-memory databases. Journal of King Saud University-Computer and Information
Sciences 29, 4 (2017), 520–525.

[24] John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham, and Chrisjan
Matser. 2015. Performance evaluation of NoSQL databases: a case study. In
Proceedings of the 1st Workshop on Performance Analysis of Big Data Systems.
ACM, 5–10.

[25] Markus Klems, David Bermbach, and Rene Weinert. 2012. A runtime quality
measurement framework for cloud database service systems. In Quality of In-
formation and Communications Technology (QUATIC), 2012 Eighth International
Conference on the. IEEE, 38–46.

[26] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. 2014. Benchmarking scal-
ability and elasticity of distributed database systems. Proceedings of the VLDB
Endowment 7, 12 (2014), 1219–1230.

[27] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[28] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. 2011. YCSB++: benchmarking and
performance debugging advanced features in scalable table stores. In ACM SoCC.

[29] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance
Testing. In Proceedings of the Workshop on Testing Database Systems. ACM, 2.

[30] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor Muntés-
Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. 2012. Solving big data
challenges for enterprise application performance management. Proceedings of
the VLDB Endowment 5, 12 (2012), 1724–1735.

[31] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. 2017.
On the state of nosql benchmarks. In Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion. ACM, 107–112.

[32] Pramod J Sadalage and Martin Fowler. 2013. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education.

[33] Sherif Sakr. 2014. Cloud-hosted databases: technologies, challenges and opportu-
nities. Cluster Computing 17, 2 (2014), 487–502.

[34] Daniel Seybold. 2017. Towards a framework for orchestrated distributed database
evaluation in the cloud. In Proceedings of the 18th Doctoral Symposium of the 18th
International Middleware Conference. ACM, 13–14.

[35] Daniel Seybold and Jörg Domaschka. 2017. Is Distributed Database Evaluation
Cloud-Ready?. In Advances in Databases and Information Systems. Springer, 100–
108.

[36] Daniel Seybold, Christopher B Hauser, Simon Volpert, and Jörg Domaschka. 2017.
Gibbon: An Availability Evaluation Framework for Distributed Databases. In
OTM Confederated International Conferences" On the Move to Meaningful Internet
Systems". Springer, 31–49.

[37] Daniel Seybold, Nicolas Wagner, Benjamin Erb, and Jörg Domaschka. 2016. Is
elasticity of scalable databases a Myth?. In IEEE Big Data.

[38] Enqing Tang and Yushun Fan. 2016. Performance comparison between five
NoSQL databases. InCloud Computing and Big Data (CCBD), 2016 7th International
Conference on. IEEE, 105–109.

[39] Jan Sipke Van der Veen, Bram Van der Waaij, and Robert J Meijer. 2012. Sensor
data storage performance: SQL or NoSQL, physical or virtual. In Cloud computing
(CLOUD), 2012 IEEE 5th international conference on. IEEE, 431–438.

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

332

Chapter 13

[core6] Kaa: Evaluating Elasticity of Cloud-Hosted
DBMS

This article is published as follows:

Daniel Seybold, Simon Volpert, StefanWesner, André Bauer, Nikolas Herbst, and Jörg Domaschka. “Kaa: Eval-
uating Elasticity of Cloud-Hosted DBMS” in 11th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), 2019, IEEE, pp. 54–61, DOI: https://doi.org/10.1109/CloudCom.2019.00020.

©2019 IEEE. Reprinted, with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Ulm University’s products or services. Internal or personal use of this material is permit-
ted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/
publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

193

https://doi.org/10.1109/CloudCom.2019.00020
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Kaa: Evaluating Elasticity of Cloud-hosted DBMS
Daniel Seybold, Simon Volpert, Stefan Wesner

Institute of Information Resource Management
Ulm University, Germany

firstname.lastname@uni-ulm.de

André Bauer, Nikolas Herbst
Informatik II

University of Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

Jörg Domaschka
Inst. of Inf. Resource Management

Ulm University, Germany
joerg.domaschka@uni-ulm.de

Abstract—Auto-scaling is able to change the scale of an appli-
cation at runtime. Understanding the application characteristics,
scaling impact as well as the workload, an auto-scaler aligns
the acquired resources to match the current workload. For
distributed Database Management Systems (DBMS) forming the
backend of many large-scale cloud applications, it is currently an
open question to what extent they support scaling at run-time.
In particular, elasticity properties of existing distributed DBMS
are widely unknown and difficult to evaluate and compare. This
paper presents a comprehensive methodology for the evaluation
of the elasticity of distributed DBMS. On the basis of this
methodology, we introduce a framework that automates the
full evaluation process. We validate the framework by defining
significant elasticity scenarios for a case study that comprises two
DBMS for write-heavy and read-heavy workloads of different
intensities. The results show that scalable distributed DBMS are
not necessarily elastic and that adding more instances to a cluster
at run-time may even decrease the experienced performance.

Index Terms—elasticity, cloud, NoSQL, scalability, distributed
DBMS

I. INTRODUCTION

Auto-scaling exploits the cloud’s on-demand resources to
adapt application scale to the resource demands of the applica-
tion’s currently experienced workload [1]. Realising this kind
of elasticity requires a scalable application architecture and the
capability of the application to scale-out/-in at run-time [2].
For stateless applications, scaling at run-time is no issue
and research has focussed on auto-scalers that determine the
required application scale at a given time. For such scenarios,
the quality of the achieved elasticity is of high importance [3].

For stateful applications such as Database Management Sys-
tems (DBMS), the NoSQL movement is promising scalability
in return to giving up the ACID properties of relational DBMS,
favouring distributed DBMS [4]. For this kind of DBMS,
the capability to scale-out/-in at run-time is of importance:
(a) to provide client-side performance guarantees for changing
workload patterns; (b) with the growing amount of data
generated DBMS need to grow over time as well; (c) any
elastic application may reach a scale-out degree where the
storage back-end becomes a bottleneck if not scaled as well;
(d) when offering database-as-a-service (DBaaS) [5], cloud
operators benefit from the ability to adapt the scale of their
customers’ DBMS instances according to workload; (e) better
understanding of stateful applications will help to improve
auto-scalers in wide-spread orchestration platforms such as
Kubernetes.

While DBMS auto-scalers exist for very specific scenar-
ios [6], [7], it is an open question to what extent existing
DBMS support elasticity [8] for general workloads; similarly,
the metrics needed to determine the quality of elasticity
in different scenarios are widely undecided, but needed to
compare DBMS [9]. Consequently, elasticity evaluations of
cloud-hosted DBMS are strongly needed [4].

In accordance with established methods [10], [11], we claim
that cloud-based evaluations need to increase the availability
of data, the quality of data, and the flexibility and repeatability
of experiments to mitigate the current situation and improve
the understanding of the elasticity of distributed DBMS.
Considering the enormous design space, only an automation
framework is able to provide the necessary amount of data
and ensure repeatability.

In consequence, this paper provides the following contri-
butions: (i) a comprehensive methodology for the evaluation
of distributed DBMS elasticity that builds on established
metrics [12], [13]; (ii) an extension to our Mowgli evaluation
framework [14] capable to evaluate elasticity based on above
methodology. (iii) a validation of the framework by defining
significant elasticity scenarios for a case study with two DBMS
for write-heavy and read-heady workloads.

The remainder of this paper is structured as follows: Sec-
tion II introduces the background on distributed DBMS and
DBMS scalability and elasticity. Section III presents chal-
lenges with respect to DBMS elasticity evaluation, while in
Section IV we discusses our Kaa evaluation framework. In
Section V, we present a case study evaluating the elasticity
of two DBMS under two workloads. We discuss the results
in Section VI, before Section VII presents related work and
Section VIII concludes.

II. BACKGROUND AND TERMINOLOGY

This section summarises the background on distributed
DBMS and presents the terminology we use in this paper,
particularly with respect to scalability and elasticity.

A. Distributed Database Management Systems

The evolution of DBMS has led to an increasing hetero-
geneity in available DBMS. Currently they are separated into
three top-level categories: relational, NoSQL and NewSQL [4],
[15]. For being able to benefit from any type of horizontal
scale-out, the DBMS needs to operate as a distributed DBMS.
Distributed DBMS provide a logical DBMS instance to clients,

allocate

resource

install

software

configure

DBMS

distribute

data

stabili-

zation

Fig. 1: Steps of an elastic scale-out

but distribute the DBMS functionality across multiple physical
or virtual resource entities. These hosting DBMS nodes are
connected via network and form a DBMS cluster.

Distributed DBMS exploit sharding as a basic technique: the
full data set is separated such that each data-hosting DBMS
node manages only a local share of the overall data set.
With more nodes joining the cluster, the overall storage and
memory capacity increases and the system scales horizontally.
Ideally, with adding more nodes to the cluster, also the
compute capacity increases so that also the throughput scales
horizontally.

Due to the fact that an increased cluster size increases
the probability of failures, distributed DBMS also provide
means for replication. That means, a single data item is stored
by multiple cluster members so that in case of single-node
failures, one or more copies are still available. The consistency
level of the data defines how eagerly replicas of data items are
kept in sync with each other. Besides providing fault-tolerance
and increasing availability, the use of replicas also allows to
further increase the scaling of read operations, as multiple
nodes host the item.

B. DBMS Elastic Scale-out Process

Most distributed DBMS support elastic scale-out, i.e. in-
creasing the DBMS cluster at run-time without service in-
terruption [16]. Figure 1 illustrates these steps: In the first
step, a new resource is provided. In particular for cloud-hosted
DBMS, this means acquiring a new virtual machine. Step two
provisions the necessary software, including the installation of
DBMS binaries. Step four sets the configuration files.

Afterwards, the new DBMS node joins the DBMS cluster.
At that point, it is not able to handle client requests yet.
This can only be done after the data set managed by the
DBMS has been re-shareded and the new shards have been
distributed over all cluster members. During this transition,
additional compute and storage resources are used to exchange
data amongst all nodes of the cluster. The step completes once
the new node is able to answer client requests and hence,
from a client-side perspective, appears as a regular cluster
member. Internally, the DBMS may go through a stabilization
phase [12] once the data shuffling has been completed.

All of the steps except for the first one differ from DBMS
to DBMS. Among the remaining ones, software installation
and configuration need to be performed from outside the
DBMS. The distribution of data and the stabilization phase
run automatically and usually cannot be influenced externally.

C. DBMS Scalability and Elasticity Metrics

Here, we define scalability and elasticity as used in this
paper. By building upon established elasticity metrics [12], we
define metrics related to these two aspects that build upon the

traditional performance metrics storage capacity (gigabytes),
throughput (requests per second) as well as latency (response
time per request) [17].

Definition 1 (DBMS Horizontal Scalability). Horizontal scal-
ability denotes the capability of a distributed application to
increase its performance by increasing the cluster size.

The remainder of this paper focusses on scalability with re-
spect to throughput and latency. In particular, the performance
improvement achieved from increasing the DBMS cluster size
is defined by scale-out metrics:

Metric 1 (DBMS Scale-out). The Scale-out metric [12] cor-
relates the performance of the DBMS with the DBMS cluster
size for a given workload. Ideally, not only the cluster size,
but the overall available resources need to be considered.

Accordingly, the scale-out factor denotes the improvement
in latency and throughput when changing the size of a DBMS
cluster. A good scale-out property is indicated by a constant
latency and a throughput increasing proportionally with the
cluster sizes [12]. Yet, the Scale-up metric exclusively deter-
mines the performance difference between two cluster sizes. It
does not capture the impact of scaling out a cluster at run-time
and therefore ignores aspects related to elasticity.

Definition 2 (Elastic scale-out). An elastic scale-out is the
change of a DBMS cluster size at run-time. Its impact is mea-
sured through the DBMS elasticity metrics data distribution
impact, data distribution time, and provisioning time [12].

Metric 2 (Provisioning time). This metric captures the time
span required to provide a new computational resource, e.g. a
virtual machine, and to install software on that resource. As
such, it also reflects differences between cloud providers.

Metric 3 (Data distribution impact). This metric captures the
performance change during the data distribution phase of an
elastic scale-out.

Metric 4 (Data distribution time). This metric captures the
duration of the data distribution phase.

Conceptionally, similar metrics exist for the stabilisation
phase. Yet, we are currently not aware how they can be
precisely measured for any DBMS presented in this paper,
so that we do not consider them in the following.

III. DBMS ELASTICITY EVALUATION CHALLENGES

The analysis of established DBMS benchmarks [18] shows
that they only support client-side performance metrics, but
lack the required support on the DBMS operator side. Due
to that, we first define an elasticity evaluation process that
includes the DBMS operator related tasks. Secondly, we
identify requirements for enabling holistic DBMS elasticity
evaluations.

A. Elasticity Evaluation Process

Figure 2 depicts our elasticity evaluation process with
individual evaluation tasks (ET) defined in Table I. In contrast

allocate
cloud

resource

deploy DBMS
cluster execute workload

release
cloud

resource

process
objective

adapt
DBMS cluster

setup workload
monitor

(ET_1) (ET_2.1)

(ET_4)(ET_2.2)

(ET_3)
(ET_6)

(ET_7)

setup DBMS
monitor

adapt workload

start evaluation evaluation finished

(ET_5)(ET_2.3)
required

optional

Fig. 2: Elasticity Evaluation Process

to DBMS workload tools, this process supports the operator-
side by managing cloud resources and the DBMS cluster [18],
[19]. In addition, the process handles workload issuing and
client-side evaluation metrics.

In the first step of the evaluation process, the necessary re-
sources are allocated (ET 1). ET 2 comprises the deployment
of the workload generators and DBMS cluster on the allocated
as well as the setup of the DBMS and workload monitoring
systems. The workload is executed in ET 3. While the system
is under test, adaptations can be applied for the DBMS cluster
(ET 4) and the workload (ET 5).

Adaptations to the cluster size (ET 4) are a requirement
for any type of elasticity evaluation. The DBMS adaptations
in ET 4 can either be time-based or metric-based. In the first
case, predefined timestamps are used as a trigger for executing
the DBMS adaptation. Time-based triggers enable isolated
elasticity evaluations for specific workload configurations,
ensuring reproducibility. In the latter case, system and DBMS
metrics are retrieved from the DBMS monitor (cf. ET 2.2) and
combined into DBMS scaling rules (DSR). DSR enable more
realistic evaluations, but they require a thorough understanding
of the DBMS utilization in order to apply reasonable metric
compositions. Consequently, DSR neglect reproducibility in
favour of realistic scenarios.

Adaptations to the workload (ET 5) are required to emulate
fluctuating workloads. The trigger for these adaptations can be
caused time-based, progress-based, and metric-based: Time-
based triggers use predefined timestamps, progress-based trig-
gers refer to the execution progress of ET 3, and composed
metric-based triggers are termed workload scaling rules (WSR)
and follow the same concept as DSR. If specified, DBMS and
workload adaptations can be repeated multiple times within an
elasticity evaluation to emulate realistic application scenarios
of increasing and decreasing DBMS workload patterns [20].

TABLE I: Elasticity Evaluation Tasks

ET Description
1 allocate new cloud resources for the evaluation
2.1 deploy and configure the DBMS cluster
2.2 setup system and DBMS monitoring
2.3 (optional) setup workload state monitoring
3 execute a baseline workload to measure the performance metrics
4 execute elastic scale-out/in based on predefined adaptation rules
5 (optional) adapt workload intensity
6 release the cloud resource
7 collect and process the elasticity results

B. Elasticity Evaluation Requirements

The evaluation process from Section III-A defines the
evaluation tasks, but also increases the complexity com-
pared to performance or even scalability evaluations, which
already depend on many impact factors including DBMS,
cloud resources, and workload domain [14]. For handling
this complexity, a framework supporting automated elasticity
evaluations needs to fulfil the following requirements:

An elasticity evaluation scenario specification (R1) that
comprises all technical aspects to ensure the reproducibility
and portability for adopters and subsequent evaluations. There-
fore, it needs to contain the cloud resource, DBMS runtime and
workload configurations and provide an executable scenario of
the full evaluation process (cf. Figure 2). The elasticity evalu-
ation scenario needs to support the definition of the adaptation
tasks (ET 4, ET 5) on a fine-grained level, yielding relevant
adaptations on operator side, realistic workload models, and
support for fluctuating workloads and overload situations [9].

An adaptation controller (R2) provides an external adapta-
tion mechanism for both the DBMS cluster, but also the adap-
tation of running workloads, and the scheduling of additional
workloads. The latter supports the emulation of fluctuating
workloads and overload situations.

A detailed evaluation data set (R3) is the basis for the
computation of the elasticity metrics defined in Section II-C.
It includes not only fine-grained performance metrics, but
also an extensive set of evaluation meta-data such as cloud
resource provisioning times, adaptation trigger timestamps,
system metrics, and DBMS metrics.

Evaluation automation support (R4) covering all ETs ensure
transparency and reproducibility that are key concepts in
DBMS and cloud service evaluations [10], [11]. Moreover,
portability support is required by a reasonable level of abstrac-
tion across the cloud, DBMS and workload domain [18], [21],
i.e. enabling the execution of evaluation scenario on different
cloud resources or for different DBMS.

IV. ELASTICITY EVALUATION FRAMEWORK: KAA

In earlier work we analysed established DBMS benchmarks
and evaluation frameworks with respect to their support of
elasticity evaluations [18]. The results show that a variety of
OLTP1 and HTAP2 partially fulfil R3, but none of them support
R1, R2 and R4. Here, we introduce Kaa to overcome these
limitations. It is based on our Mowgli scalability evaluation
framework [14]. We first give an overview on Mowgli before
introducing Kaa and it elasticity evaluation extensions.

A. Mowgli

Mowgli automates the performance and scalability evalua-
tion process, i.e. ET 1 – ET 3 and ET 6 – ET 7 (cf. Figure 2).
It enables the definition of portable and reproducible perfor-
mance and scalability evaluation templates and their execution
via a loosely coupled and extensible architecture (cf. Figure 3).

1online-transaction-processing (OLTP)
2hybrid-transaction-analytical-processing (HTAP)

E
va

lu
at

io
n-

A
PI

DBMS
Catalogue

elasticity scenario

metadata
collectorobjective

processor

Workload
Catalogue

data flow control flow

Cloudiator

measurement
collector

elasticTemplate:{
dbms:couchbase,
cloud:ec2,
workload:ycsb,
adapt: DBMS
}

cloud resource
catalogue

Evaluation Orchestrator

W-API

runtime
monitor

Adaptation
Catalogue

W-API W-API

elasticity
extensions

Fig. 3: Mowgli architecture with Kaa elasticity extension

Mowgli exploits cloud orchestration tools (COTs) [22] and
combines them with extensible DBMS, auto-generated cloud
resource and workload catalogues. Evaluation scenario (ES)
templates define the required input structure of the Evaluation
API. The catalogues contain the technical implementation of
each ES. The evaluation orchestrator schedules the execution
of each ES via the Cloudiator COT [22] and the workload-
APIs (W-API). In addition, it collects extensive system and
DBMS metrics.

B. Kaa

In order to support elasticity evaluations, we enhance
Mowgli through Kaa (blue boxes in Figure 3). Kaa enables
the specification and automated execution of ET 4 and ET 5
to establish reproducible and portable elasticity ESs. Table II
summarises the parameters and supported parameter ranges for
the DBMS adaptation template. Workload adaptation param-
eters are listed in Table III. For illustration, we provide a set
of full-fledged elasticity scenario templates, including cloud
resource, DBMS and workload specifications [14]3.

TABLE II: DBMS Adaptation Template

Constraint Parameter Range Case Study
adaptation type {scale− out, scale− in} scale-out
trigger type {time,DSR} time
time trigger {1 . . . n} seconds 180
DSR (metric, threshold, duration) N/A

The DBMS adaptation specification comprises n DBMS
adaptation templates, defining the desired adaptation types and
adaptation triggers: Time-based triggers define a delay until
the adaptation is executed; DSRs define advanced triggers
by composing metrics, thresholds and validity durations. The
evaluation orchestrator sequentially processes the adaptation
steps. For DSRs, Kaa correlates the defined threshold and
the validity period with the runtime metrics collected by the
DBMS monitor (implemented through InfluxDB). Currently,

3https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started

Kaa supports triggers based on the system metrics CPU,
memory, disk, and network. The framework is extensible for
additional system metrics and DBMS-specific metrics.

The analogue approach is executed for the workload adap-
tation templates where the adaptation type increase either (i)
increases the number of threads for of a running workload via
the W-API or (ii) starts identical workloads on additional W-
API instances. The actual decision is workload-dependent. For
the integrated Yahoo Cloud Serving Benchmark (YCSB) [12],
only the latter option is supported. Time- and metric-based
triggers are processed in the similar way as for the DBMS
adaptation templates. Progress-based triggers correlate the
overall progress of the baseline workload (i.e. ET 3) with the
progress threshold.

By automating each evaluation task, Kaa is not only able to
provide performance metrics, but also extensive task-related
meta-information such as applied configurations and runtimes
that are provided in machine interpretable formats for ad-
vanced post processing.

TABLE III: Workload Adaptation Template

Constraint Parameter Range
adaptation type {increase, decrease}
worker threads {1 . . . n}
trigger type {time, progress,WSR}
time trigger {1 . . . n} minutes

progress trigger {0 . . . 1.0} % of total workload progress

WSR (metric, threshold, duration)

V. CASE STUDY

In order to validate Kaa against the identified evaluation
challenges (cf. Section III), we apply a case study evalu-
ating the elasticity of two distributed DBMS operated on
cloud resources. While Kaa supports multiple cloud providers,
DBMS and workloads [14], we address the following baseline
hypothesis which is relevant for each DBaaS provider:

Hypothesis: During an elastic scale-out, the DBMS contin-
uously serves requests while the throughput decreases due
to the data redistribution. With the completion of the data
redistribution, the throughput starts to increase and surpasses
the initial throughput.

In the following, first we introduce methodology and the
concrete ES specifications we use. Secondly, we analyse the
results. Due to space limitations we only analyse the results
with respect to throughput, while the complete Kaa data set
also contains latency-related evaluations. The 160 data sets are
archived and publicly available [23].

A. Methodology

For the evaluation, we apply a two-phase approach for
each of the DBMS: In the workload calibration phase, we
iteratively apply increasing intensive workloads to a fixed and
pre-defined cluster size (ET 1 – ET 3, ET 6, and ET 7).
For each workload intensity, we obtain the DBMS utilization.

From the (utilization, workload intensity) tuples, we identify
those workload intensities that lead to low, optimal or overload
DBMS utilization as specified in Table VII.

In the elastic scale-out phase, we apply the resulting three
tuples under a time-based adaptation trigger. This results in
the iterative execution of ET 1 – ET 4, ET 6, and ET 7.

B. Configuration

For the case study, we rely on fixed cloud resource configu-
rations: VM SMALL for DBMS nodes and VM LARGE for
the W-API instance (cf. Table IV). All physical servers hosting
VM SMALL types use a two SSDs Raid-0 configuration.

TABLE IV: Cloud Resource Specifications

Specification VM SMALL VM LARGE
Cloud private OpenStack Ulm, version Rocky
VM vCores 2 8
VM RAM 4GB 8GB
VM Disk 70GB 20GB
OS Ubuntu Server 16.04
network private, 10GbE

We select Apache Cassandra and Couchbase as both are
popular NoSQL DBMS4 that have already been subject to
scalability evaluations and achieved promising results [14],
[24]. Both provide a comparable multi-master architecture that
supports automated sharding and horizontal scalability. Due to
their architectural similarities, a comparable cluster size and
replication factor can be applied (cf. Table V). Yet, as they
differ with respect to their consistency mechanisms, client-side
consistency settings differ. Each DBMS node is configured to
use 50% of the available memory for its operation.

TABLE V: DBMS Runtime Specifications

Specification Apache Cassandra Couchbase
Version 3.11.2 5.0.1 community
Cluster size 3 3
Replication 3 3
Write consistency ONE P=0, R=0
Read consistency ONE default

For the evaluation, Kaa uses one W-API that provides
YCSB [12] in version 0.15.0. It is a widely adopted workload
to evaluate distributed DBMS. In order to demonstrate the flex-
ibility of our approach, we define typical DBMS workloads:
the write-heavy workload emulates volume spikes while the
read-heavy workload emulates data spikes [20].

C. Calibration Phase Results

The calibration phase is required to determine the DBMS
utilization by correlating the workload intensities (cf. Ta-
ble VI) with the resulting throughput of the write-heavy and
read-heavy workloads. By choosing these number of worker
threads, we ensure that the CPU load of the W-API does not
exceed 80% to avoid a bottleneck at W-API side. Figure 4

4https://db-engines.com/en/ranking

TABLE VI: Workload Specifications

Specification write-heavy read-heavy
Metric reporting interval 10 s
Initial Number of records 2.000.000
Record size 5KB
Operations 5.000.0000 writes. 5.000.0000 reads
Read distribution N/A zipfian
Calibration worker threads 1-2-4-8-16-32-64-128

1 2 4 8 16 32 64 12
8

workload intensities by YCSB client threads

0

2000

4000

6000

8000

10000

12000

14000

av
g.

 th
ro

ug
hp

ut
 in

 o
ps

/s

cassandra-write
cassandra-read
couchbase-write
couchbase-read

Fig. 4: Calibration Results — 3 Node Cluster

presents the calibration scenario results. The y-axis displays
the average throughput and standard deviation of the five
executions per calibration scenario. The y-axis shows the
applied workload intensities. Based on the scale-out metric
(cf. Section II-C) and increasing standard deviation, we obtain
the six (utilization, workload intensity) tuples as shown in
Table VII.

TABLE VII: Calibration Tuples

Specification Cassandra Couchbase
low highest average throughput with

lowest standard deviation
4 4

optimal highest average throughput in
relation to the standard deviation

16 32

overload decreased average throughput
and growing standard deviation

64 128

D. Elastic Scale-out Phase Results

The elastic scale-out phase analyses the DBMS elasticity
by applying one elastic scale-out adaptation as specified in
the case study column of Table II. Each elasticity scenario
uses an initial cluster size of three nodes (cf. Table V) and
applies a time-based trigger after 180 seconds that starts the
elastic scale-out. We specify and execute the ESs for all
eight workload intensities used in the calibration phase, each
executed for five times, resulting in 80 evaluation data sets4.

We validate the introduced hypothesis in an explorative
manner by analysing the throughput development in correla-

0 250 500 750 1000 1250 1500 1750
runtime in s

1000

2000

3000

4000

5000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

 low
 optimal
 overload
scale-out trigger
VM ready
scale-out complete
scale-out complete
scale-out complete

Fig. 5: Cassandra—elastic scale-out, read-heavy workload

tion to the applied evaluation task. The resulting graphs depict
on the x-axis the evaluation runtime in seconds, i.e. ET 1 to
ET 7. The y-axis depicts the average throughput including
the standard deviation per timestamp over the five scenario
execution. Each graph is workload-specific and groups the
three calibration tuples in one graph per DBMS. In order
to visualize the defined elasticity metrics (cf. Section II-C),
each graph contains the fixed scale-out trigger, the average
VM allocation time and the average scale-out end timestamp
per utilization as vertical lines. Consequently, provisioning
duration is visualized by the scale-out trigger to VM ready
states, the data distribution impact is visualized by throughput
development from the VM ready to scale-out complete state
and likewise the data distribution duration for the runtime. The
overall runtimes vary, as we apply the number of operations
as limiting factor.

1) Read-Heavy Results: The results of the read-heavy
workload are depicted in Figures 5 and 6. For Apache Cassan-
dra, they confirm the hypothesis. There even is no significant
data distribution impact during the scale-out phase. For Couch-
base, the results indicate a confirmation of the hypothesis,
yet with a significant data distribution impact. In comparison,
Couchbase achieves a drastically higher throughput for the
optimal and overload utilization (and consequently shorter
runtimes) than Apache Cassandra. This is probably due to
Couchbase’s weaker consistency mechanisms. In conclusion,
the read-heavy results confirm the initial hypothesis for both
DBMS.

2) Write-Heavy Results: Figure 7 and Figure 8 depict the
results for the write-heavy workload. Both graphs show a
similar data distribution impact over the evaluation runtime for
the applied calibration tuples: the scale-out for low utilization
results in minor data distribution impact, but after the scale-out
completion, no significant throughput increase is achieved. For
the optimal and overload states, the data distribution impact is
worse; throughput constantly decreases and the scale-out only
completes after the workload has finished. These results show
that an elastic scale-out imposes too much additional load due

0 250 500 750 1000 1250 1500 1750
runtime in s

2000

4000

6000

8000

10000

12000

14000

16000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

 low
 optimal
 overload
scale-out trigger
VM ready
low scale-out
complete
optimal scale-out
complete
overload scale-out
complete

Fig. 6: Couchbase—elastic scale-out, read-heavy workload

0 250 500 750 1000 1250 1500
runtime in s

1000

2000

3000

4000

5000

6000

7000

8000

9000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

 low
 optimal
 overload
scale-out trigger
VM ready
scale-out complete
scale-out complete
scale-out complete

Fig. 7: Cassandra—elastic scale-out, write-heavy workload

to data redistribution and the constantly increasing number of
data that needs to be redistributed and the additional replicas
that need to be generated. Moreover, depending on the DBMS-
specific sharding mechanism, the data redistribution might be
constantly invoked due to incoming write request [4]. Conse-
quently, the write-heavy results disprove the initial hypothesis
for Cassandra and Couchbase.

E. Lessons Learned

While the applied case study only covers a small scope
of Kaa’s supported elasticity scenarios, it reveals a number
of relevant elasticity insights (EI): (EI-1) elastic scale-out
adaptations under read-heavy workloads behave as expected,
even under overload situations, i.e. reactive and pro-active
DSRs can be applied; (EI-2) elastic scale-out adaptations under
write-heavy workloads impose significant additional load on
the DBMS, especially for optimal and overload utilization,
resulting in negative outcome. Therefore, DSRs for write-
heavy workloads shall be proactive. (EI-3) Elastic scale-out
for low utilized DBMS results in low data distribution impact,
but in parallel, in low throughout increase. Hence, low utilized

0 200 400 600 800 1000 1200
runtime in s

2000

4000

6000

8000

10000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

 low
 optimal
 overload
scale-out trigger
VM ready
low scale-out
complete
optimal scale-out
complete
overload scale-out
complete

Fig. 8: Couchbase—elastic scale-out, write-heavy workload

DBMS are suitable for proactive elastic scale-outs if increasing
workloads are expected. (EI-4) Defining DSRs requires the
consideration of essential impact factors, such as the workload
type and the DBMS utilization, and potential impact factors
like DBMS configurations and resource provisioning time.

VI. DISCUSSION

Here, we validate Kaa against the presented challenges on
a qualitative basis before we outline its potential adoptions.

A. Validation

Elasticity evaluation scenario specification (R1): Extend-
ing Mowgli’s ES with adaptations provides comprehensive
elasticity scenarios, comprising cloud resources, DBMS run-
time properties and composed adaptations scenarios, including
DBMS and workload adaptations. Ongoing work addresses
advanced adaptation specifications, including more complex
DSRs [1], [25] and workload specifications [20].

Adaptation controller (R2): Kaa realises DBMS and work-
load adaptions at runtime by two-level orchestration: the
evaluation orchestrator executes workload adaptations; a cloud
orchestrator manages cloud resources and DBMS adaptations.

Evaluation data (R3): Regarding the granularity of the
provided performance metrics, Kaa is dependent on the work-
load generator. Yet, due to its modular architecture, suitable
workloads can easily be integrated via W-API. Currently,
Kaa supports YCSB and two OLTP workloads. The produced
data sets contain all relevant cloud resources, DBMS runtime
settings, system metrics, DBMS metrics and the duration of
each elastic scale-out phase in machine interpretable formats
as well as visualized to support explorative analysis.

Evaluation automation support (R4): By building upon
Mowgli that has been validated for enabling automation and
reproducible performance and scalability results [14], Kaa
extends these capabilities for elasticity evaluations. This is also
verified by the applied case study that comprises the automated
execution of 80 calibration and 80 elasticity scenarios. In
addition, the portability of the elasticity scenario specification

has been validated for two DBMS and can easily be achieved
for different cloud providers as shown in [14].

B. Looking Ahead

The obtained elasticity insights lead to several remaining
challenges and potential adopters: (i) long running elastic-
ity ESs are required, including multiple elastic scale-out/-in
and adaptations to analyse more realistic DBMS operation
scenarios; (ii) DBMS elasticity needs to be analysed against
more complex workloads of the OLTP and HTAP domain; (iii)
an in-depth analysis of cloud providers and DBMS runtime
configurations is required to derive comprehensive elasticity
impact factors; (iv) the evaluation results of Kaa can be fed into
scaling rules of DBMS auto-scalers such as Tiramloa [6] and
MeT [7] or for building the foundation of DBMS adaptations
by cloud auto-scalers [1].

VII. RELATED WORK

Research on elasticity for cloud computing can be divided
into describing elasticity through metrics as well as approaches
to measure service elasticity. Auto-scaling is also a popular
research topic in cloud computing [1], but not considered here
as auto-scaling applies elasticity, but does not evaluate it.

Several metrics for elasticity have been proposed in litera-
ture: Early work focuses on mere (de)provisioning time [26],
[27]. However, these metrics cover only technical properties
and thus are independent of the timeliness and accuracy
of demand changes. The elastic speedup metric proposed
by SPEC OSG [27] does not capture the dynamic aspects
of elasticity and is regarded as a scalability metric. Other
approaches like [12], [13], [28], [29] characterise elasticity
indirectly by analysing latency and throughput.

To counter the drawbacks of aforementioned metrics, elas-
ticity metrics explicitly covering the timeliness, accuracy and
stability were proposed and used in different use cases [3],
[25], [30]. Yet, those metrics are mostly tied to the elasticity
of stateless cloud applications and thus, are not suitable for
DBMS for which elasticity is defined differently. The industry-
driven SPEC Cloud™IaaS 20185 partially covers DBMS
workloads, but still omits elasticity in the sense of automated
scaling under changing load. Approaches for evaluating the
elasticity in a stateless context include BUNGEE, a framework
for benchmarking the elasticity of cloud platforms [30].

The need for DBMS-centric elasticity evaluations is high-
lighted by [4], [9] due to the growing heterogeneity of cloud
resources and distributed DBMS. While there is a significant
number of DBMS workloads that measure the performance
metrics at client side, none of them supports the required
adaptions at operator side [18]. Consequently, supportive
frameworks are required to automate the evaluations and
enable reproducible results [17], [18], [21]. However, DBMS
frameworks that also support the operator side are limited [14],
[31] and none of them supports the specification and execution
of elasticity evaluations.

5https://www.spec.org/cloud iaas2018/

Consequently, the number and scope of existing DBMS
elasticity evaluations in the cloud is limited [8], [13], [24],
[32], as supportive frameworks are missing, which also im-
pedes their reproducibility. Our novel framework Kaa ad-
dresses these limitations by ensuring reproducible and portable
DBMS elasticity evaluations in the cloud, that also enables to
keep track with evolving cloud resources and DBMS.

VIII. CONCLUSION

Elasticity has become a key feature of cloud applications
and its comparative evaluation is a central topic for cloud
resources, stateless services and stateful components such
as distributed DBMS. While the elasticity evaluation of the
former is supported by specific evaluation frameworks, the
elasticity evaluation of distributed DBMS remains a challenge,
as supportive metrics exist, but evaluation frameworks are
missing. This hinders reproducible and portable evaluations,
which are key concepts of cloud service benchmarking. There-
fore, we present the novel elasticity evaluation framework Kaa
that automates the execution of DBMS elasticity evaluations
and ensures reproducibility. We validate our approach by ap-
plying an elasticity evaluation case study for two DBMS under
eight workload intensities and one elastic scale-out adaptation.
Kaa fully automates the benchmarking of the resulting 160
evaluation scenarios and the results provide valuable insights
into the elasticity and potential impact factors, such as the
workload type and DBMS utilization.

Future work will comprise extensive elasticity evaluations,
focusing on more complex workloads and adaptions. In ad-
dition, extensions of the metric processing capabilities will
enable the analysis of established elasticity metrics under
workload, cloud resource and DBMS-specific aspects.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the EC’s Framework Programme HORIZON 2020 under
grant agreements 731664 (MELODIC) and 732667 (RECAP).

REFERENCES

[1] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Comput. Surv., vol. 51, no. 4,
pp. 73:1–73:33, Jul. 2018.

[2] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity
in cloud computing: state of the art and research challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2017.

[3] N. Herbst, A. Bauer, S. Kounev, G. Oikonomou, E. V. Eyk,
G. Kousiouris, A. Evangelinou, R. Krebs, T. Brecht, C. L. Abad et al.,
“Quantifying cloud performance and dependability: Taxonomy, metric
design, and emerging challenges,” ACM ToMPECS, vol. 3, no. 4, p. 19,
2018.

[4] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, p. 40, 2018.

[5] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond iaas
and paas: An extended cloud taxonomy for computation, storage and
networking,” in IEEE/ACM 6th UCC. IEEE, 2013, pp. 75–82.

[6] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, elastic resource provisioning for nosql clusters
using tiramola,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE, 2013, pp. 34–41.

[7] F. Cruz, F. A. F. M. A. Maia, M. Matos, R. C. M. d. Oliveira, J. Paulo,
J. Pereira, and R. M. P. Vilaça, “Met: workload aware elasticity for
nosql,” in 8th ACM EuroSys. ACM, 2013, pp. 183–196.

[8] D. Seybold, N. Wagner, B. Erb, and J. Domaschka, “Is elasticity of
scalable databases a myth?” in IEEE Big Data, 2016.

[9] S. Sakr, “Cloud-hosted databases: technologies, challenges and oppor-
tunities,” Cluster Computing, vol. 17, no. 2, pp. 487–502, 2014.

[10] D. Bermbach, E. Wittern, and S. Tai, Cloud service benchmarking.
Springer, 2017.

[11] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski,
A. Ali-eldin, C. Abad, J. N. Amaral, P. Tůma, and A. Iosup, “Method-
ological principles for reproducible performance evaluation in cloud
computing,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in ACM SoCC, 2010.

[13] T. Dory, B. Mejı́as, P. Roy, and N.-L. Tran, “Measuring elasticity
for cloud databases,” in Proceedings of the The Second International
Conference on Cloud Computing, GRIDs, and Virtualization, 2011.

[14] D. Seybold, M. Keppler, D. Gründler, and J. Domaschka, “Mowgli:
Finding your way in the dbms jungle,” in Proceedings of the 2019
ACM/SPEC ICPE. ACM, 2019, pp. 321–332.

[15] S. Mazumdar, D. Seybold, K. Kritikos, and Y. Verginadis, “A survey on
data storage and placement methodologies for cloud-big data ecosys-
tem,” Journal of Big Data, vol. 6, no. 1, p. 15, 2019.

[16] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore, “Database
scalability, elasticity, and autonomy in the cloud,” in DASFAA, 2011.

[17] J. Gray, Benchmark handbook: for database and transaction processing
systems, 1992.

[18] D. Seybold and J. Domaschka, “Is distributed database evaluation cloud-
ready?” in ADBIS. Springer, 2017, pp. 100–108.

[19] D. Seybold, “Towards a framework for orchestrated distributed database
evaluation in the cloud,” in 18th Doctoral Symposium of the 18th
International Middleware Conference. ACM, 2017, pp. 13–14.

[20] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proceedings of the 1st ACM symposium on Cloud comput-
ing. ACM, 2010, pp. 241–252.

[21] L. Brent and A. Fekete, “A versatile framework for painless bench-
marking of database management systems,” in Australasian Database
Conference. Springer, 2019, pp. 45–56.

[22] D. Baur, D. Seybold, F. Griesinger, H. Masata, and J. Domaschka,
“A provider-agnostic approach to multi-cloud orchestration using a
constraint language,” in CCGRID, May 2018, pp. 173–182.

[23] D. Seybold and J. Domaschka, “Mowgli: Dbms elasticity evaluation
data sets,” Aug. 2019. [Online]. Available: https://doi.org/10.5281/
zenodo.3362279

[24] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking scalability and
elasticity of distributed database systems,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1219–1230, 2014.

[25] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A hybrid, proactive auto-scaling mechanism on a level-
playing field,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 800–813, 2018.

[26] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a Catalogue of Metrics for
Evaluating Commercial Cloud Services,” in ACM/IEEE CCGrid 2012,
Sept 2012, pp. 164–173.

[27] D. Chandler and more, “Report on Cloud Computing to the OSG
Steering Committee,” Tech. Rep., Apr. 2012.

[28] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the Weather
Tomorrow?: Towards a Benchmark for the Cloud,” in DBTest 2009, ser.
DBTest ’09. New York, NY, USA: ACM, 2009, pp. 9:1–9:6.

[29] R. F. Almeida, F. R. Sousa, S. Lifschitz, and J. C. Machado, “On defining
metrics for elasticity of cloud databases.” in SBBD, 2013, pp. 12–1.

[30] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, “Bungee: an
elasticity benchmark for self-adaptive iaas cloud environments,” in Pro-
ceedings of the 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. IEEE Press, 2015, pp. 46–56.

[31] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality mea-
surement framework for cloud database service systems,” in Quality of
Information and Communications Technology (QUATIC), 2012 Eighth
International Conference on the. IEEE, 2012, pp. 38–46.

[32] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos, and
N. Koziris, “On the elasticity of nosql databases over cloud management
platforms,” in Proceedings of the 20th ACM international conference on
Information and knowledge management. ACM, 2011, pp. 2385–2388.

Chapter 14

[core7] King Louie: Reproducible Availability
Benchmarking of Cloud-hosted DBMS

This article is published as follows:

Daniel Seybold, Stefan Wesner, and Jörg Domaschka. ”King Louie: Reproducible Availability Benchmarking
of Cloud-hosted DBMS”, 35th ACM/SIGAPP Symposium on Applied Computing (SAC), published 2020, ACM,
DOI: https://doi.org/10.1145/3341105.3373968

Reprinted with permission from ACM.

203

https://doi.org/10.1145/3341105.3373968

King Louie: Reproducible Availability Benchmarking of
Cloud-hosted DBMS

Daniel Seybold
Institute of Information Resource
Management, Ulm University

Ulm
daniel.seybold@uni-ulm.de

Stefan Wesner
Institute of Information Resource
Management, Ulm University

Ulm
stefan.wesner@uni-ulm.de

Jörg Domaschka
Institute of Information Resource
Management, Ulm University

Ulm
joerg.domaschka@uni-ulm.de

ABSTRACT
Cloud resources have become a preferred operational model dis-
tributed Database Management Systems (DBMS) by offering the
elasticity and virtually unlimited scalability, but increase the risk
of failures with increasing cluster sizes. While distributed DBMS
provide high-availability mechanisms, it is currently an open re-
search question to what extent they are able to provide availability
and performance guarantees in case of cloud resource failures. Es-
pecially as existing DBMS benchmarks do not consider availability.
We present a comprehensive methodology for evaluating the avail-
ability of distributed DBMS in case of cloud resource failures. Based
on this methodology, we introduce a novel framework that auto-
mates the full evaluation process, including the failure injection,
and emphasizes reproducibility. The framework is validated by 16
diverse availability evaluations. The results show that distributed
DBMS are not necessary available even if sufficient replicas are
available and clients can experience significant downtimes.

CCS CONCEPTS
• Information systems→Database performance evaluation;
Database utilities and tools; • Computer systems organization
→ Cloud computing;

KEYWORDS
availability, NoSQL, cloud, distributed DBMS, benchmark
ACM Reference Format:
Daniel Seybold, Stefan Wesner, and Jörg Domaschka. 2020. King Louie:
Reproducible Availability Benchmarking of Cloud-hosted DBMS. In The
35th ACM/SIGAPP Symposium on Applied Computing (SAC ’20), March 30-
April 3, 2020, Brno, Czech Republic. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3341105.3373968

1 INTRODUCTION
The raise of cloud computing a decade ago has led to a change
in the way storage backends are treated. Instead of large, single-
instance servers, the NoSQL movement has established a large
amount of different Database Management Systems (DBMS) that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3373968

share the concept of a distributed architecture [11]. Here, multiple
independent DBMS instances form a cluster and provide the user
with the impression of a single logical DBMS.

A distributed architecture enables scaling the DBMS horizontally
as needed by adding more resources [26]. This increases the storage
capacity of a DBMS as well as its processing capabilities. Often
scaling can even be realised as an elastic scale-out during run-time
without users of the DBMS experiencing any downtime [20].

Yet, the risk of failures increases with the size of the systems
as failures are more likely for distributed DBMS than for single-
instance DBMS. On the other hand, the distributed nature enables
the introduction of replication by storing individual data items
more than once. This facilitates a continued operation of the logical
DBMS without the user noticing. However, the use of replication
introduces overhead, as the various replicas of a data item need
to be kept in sync; and due to the CAP theorem [9], availability
of the DBMS and consistency of replicas are not independent, but
influence each other. The higher the need for availability, the less
consistency guarantees can be given in the case of failures. Vice-
versa, the higher the need for consistency, the less available the
system will be in the case of failures. Many of existing DMBS claim
high-availability. Yet, it is widely unclear where in the continuum
of possible consistency-availability trade-offs they reside and what
will be the impact on the performance.

An established approach to exploit the scalability and elasticity
properties of distributed DBMS is to host them across IaaS cloud
systems, as they provide the necessary flexibility when more (vir-
tual) hardware is required [26]. On the downside, cloud resources
are volatile and also prone to failure on various levels [1, 16].

When designing a large-scale application, the choice of a stor-
age backend is a crucial decision. Yet, no DBMS allows the direct
configuration of availability properties; instead, a user often can
only select indirect parameters such as replication degree and con-
sistency demands, whose impact on availability is only mediately
visible. Hence, it is difficult to assess the impact of a configuration
on availability, but also to assess the impact of a failure on the over-
all DBMS performance. Moreover, future DBMS will experience
different demands than existing ones as future IoT environments
will expose constant write-heavy workloads that are contrary to
the current read-heavy workloads.

In consequence, the choice of a DBMS requires extensive evalu-
ations which are very time consuming when done manually, due
to the large number of configuration properties and different fail-
ures [7]. Furthermore, these benchmarks need to be repeated for
new DBMS appearing on the market, but also when new versions

144

of existing DBMS are released. Hence, a large degree of automation
is required for reproducible benchmarking [23].

To mitigate this situation, this paper provides the following con-
tributions: (i) we define a reproducible and portable methodology
for evaluating the availability of DBMS in the context of resource
failures; (ii) we introduce a novel evaluation framework that im-
plements the defined methodology; (iii) we present an Web- and
IoT-based case study that validates the framework and provides
novel insights into the availability of distributed DBMS.

Our considerations and also methodology focuses exclusively
on the client perspective and hence, captures metrics such as per-
formance (latency and throughput) and success rate of queries.

The remainder of this document is structured as follows: Sec-
tion 2 presents background on distributed DBMS, availability, and
cloud hosting. Section 3 discusses DBMS system models and fail-
ure models. Section 4 introduces the novel availability evaluation
methodology. Section 5 presents the King Louie framework. Sec-
tion 6 defines the case study while Section 7 discusses the respective
results. Section 8 validates King Louie. Section 2 presents related
work before Section 10 concludes.

2 BACKGROUND
This section summarises background on availability and distributed
DBMS focusing on their high-availability mechanisms.

2.1 Availability
For computing systems, availability is defined as the degree to which
a system is operational and accessible when required for use [14]. Be-
sides reliability (themeasure of the continuity of correct service” [2]),
availability is the main pillar of many fault-tolerant implementa-
tions [12]. In this paper, we focus on the availability aspect from the
client perspective and assume that DBMS are reliable, i.e. work as
specified. The availability of the DBMS can be affected by two kinds
of conditions: (i) A high number of requests issued concurrently by
clients, overloading the DBMS so that the requests of clients cannot
be handled at all or are handled with an unacceptable latency > ∆t .
(ii) Resource failures occur that impact network connectivity or
the compute/storage resources the DBMS is hosted on [12]. In this
work, we solely consider (ii).

2.2 Distributed DBMS
Over the last decade the DBMS landscape is showing an increasing
heterogeneity with respect to data models relational, NoSQL and
NewSQL, but also with respect to distributed architectures [11, 22].
Distributed DBMS provide a logical DBMS instance to clients, but
distribute the DBMS functionality across multiple physical or vir-
tual resource entities. These resources hosting the DBMS nodes are
connected via network and form a DBMS cluster.

Distributed DBMS provide horizonal scalability by exploiting
sharding as a basic technique: the full data set is separated such
that each data-hosting DBMS node manages only a local share of
the overall data set. With more nodes joining the cluster, the overall
capacity increases and the system scales horizontally.

As growing cluster sizes increase the probability of failures,
distributed DBMS provide diverse means for replication [12]. A
key characteristic is the replication scope that is classified into full

and partial replication [12]. Full replication defines that each DBMS
node stores a full copy of the entire database. In partial replication,
each data itemmay only be stored on a subset of all DBMS nodes, i.e.
the replication factor is smaller than the DBMS cluster size. Partial
replication closely relates to sharding as if sharding is used without
replication, there is no tolerance against DBMS node failures. On
the other hand, using replication without sharding means that all
data is available on all DBMS nodes.

Due to given constraints of the CAP theorem [9] that a dis-
tributed storage system can only provide two out of the three
properties: consistency (C), availability (A) and partition tolerance
(P), distributed DBMS provide heterogenous consistency guaran-
tees [33]. Their evolvements show that these constraints are not a
binary decision [8].

3 AVAILABILITY TRADE-OFFS
The heterogeneity of distributed DBMS offerings, their extensive
amount of runtime configurations and the number of cloud resource
offerings create a vast design space for operating distributed DBMS.
While this design space includes use case specific decision such as
the functional feature-driven DBMS selection [11] and the compar-
ative evaluation of non-functional features such as performance
and scalability [17, 21]. In this process the non-functional feature
analysis needs to consider availability mechanisms as well to ensure
a seamless operation in case of cloud resource failures [1, 16]. This
work considers distributed DBMS from a cloud architect perspec-
tive with the primary focus on the client perspective and secondary
on the DBMS operator perspective. As the clients main interest
relies in getting the promised DBMS performance even in case of
failures, we consider the performance impact in case of failures as
key aspect in the following. Therefore, we do not discuss related ap-
proaches such as analysing the availability on the DBMS level [24]
or evaluating the consistency impact on client and DBMS level [5].

In the following, we discuss availability and performance related
design decision for selecting and operating cloud-hosted distributed
DBMS, discuss potential cloud resource failure scenarios and clas-
sify both domains according to their impact on DBMS availability.

3.1 Operating Distributed DBMS
For operating distributed DBMS, we separate the design decisions
into the DBMS level and client level and discuss the resulting avail-
ability and performance impact on the client level.

On DBMS level, a variety of fault-tolerance mechanisms are
adopted in distributed DBMS [12]. Yet, the exposed runtime con-
figurations of these fault-tolerance mechanisms are always DBMS
specific and require the individual consideration and evaluation.
A high-level set of common runtime configurations are the cluster
size, the replication factor. With an increasing cluster size (CS), data
is sharded across the DBMS nodes, an increase of the overall DBMS
performance can be expected if the load is evenly distributed across
all nodes in the cluster. In parallel, the probability of failures in-
creases as DBMS nodes might be distributed across multiple poten-
tially failing resources. Therefore, replication is preferably enabled
to increase availability by defining a suitable replication factor (RF).
The scale of the RF is limited by the CS or a DBMS specific replication
factor limit (RFL) following the constraint 1 ≤ RF ≤ min(CS,RFL).

145

allocate
resource

install
software

configure
DBMS

cleanup
tasks operationalstart & join

cluster
distribute

data

restart
resource

restart
DBMS

cleanup
tasks operationalrejoin

cluster
synchronize

data

permanent failure recovery steps:

temporary failure recovery steps:

cloud provider specific DBMS specific DBMS internal optionalrequired

Figure 1: Failure Recovery Steps

The replication factor defines the existing number of identical data
items within a DBMS cluster. Thus, it increases data availability as
in case of a DBMS node failure the remaining replicas still contain
copies of the data. With respect to data accessibility, replicas can
take over read and write requests depending on the applied client
consistency as described below. Yet, increasing the RF comes with
a cost in performance as the data replication and synchronization
mechanisms add additional load on the DBMS cluster.

3.2 Cloud-hosted DBMS
As cloud resources tend to fail [1, 16], their usage impacts DBMS
availability as failures on different levels of the cloud resource
stack can have impact on individual DBMS nodes (running on a
VM), but also on larger sets of them. For instance, the failure of a
hypervisor will lead to the failure of all VMs on that hypervisor [28].
Consequently, the failure type can be caused on the physical level as
servers, network links, network device, power supplies, or cooling
may fail. As a result, all DBMS nodes hosted on these resources,
either directly or virtualised, become unavailable. Similarly, on
the software level, management software and hypervisors can fail;
algorithms, network, and devices can be buggy, misconfigured, or
in the process of being restarted. Any of these failures can affect
virtual machines and virtual networks, but also physical servers,
physical networks, entire racks, complete availability zones, or even
entire data centres. The failure of a full availability zone or even
an entire region leads to the unavailability of multiple physical
servers and hence unavailability of all hosted virtual machines and
consequently the DBMS nodes running on these resources. These
failures can be classified based on their severity permanent and
temporary and occurrence expressed in the failure rate (FR).

In parallel, the elasticity of cloud resources enables the imple-
mentation of manual or (semi-) automated recovery mechanism
to overcome such failures. In order to recover from such failures,
we define a set generic recovery steps for cloud-hosted DBMS as
depicted in Figure 1, one for temporary failures and one for perma-
nent resource failures. While the cloud provider and DBMS specific
steps can be executed manually or automated by relying on cloud
orchestration tools (COTs) [4], the DBMS internal steps are exe-
cuted by the DBMS itself. For temporary failures, depending on the
failure type, only a subset of the depicted steps might be required,
e.g. in case of a temporary network outage, the unavailable DBMS
nodes will synchronize their data with the remaining nodes as soon
as their are online again.

performance availability

DBMS
domain cloud domain

architecture replication
type

replication
factor

consistency
model

read-
consistency

write-
consistency

severity

temp. perm.

failure
rate

failure
type

physical VM av.
zone region

quantifiable

configurable fixed

cluster
size

client level

operational level

provider

Figure 2: Availability Impact Factors

3.3 Impact Factor Classification
Operating distributedDBMS in the cloud and ensuring high-availability
already becomes a challenging task due to the vast amount of dis-
tributed DBMS offers in combination with their heterogeneous run-
time configuration [22]. The diverse set of potential cloud resource
failures even increases this challenge. In Figure 2 we summarise
availability and performance impact factors based on the DBMS
domain and cloud domain. We classify the impact factors into con-
figurable and fixed impact factors. Fixed impact factors are given by
the selected DBMS such as architecture type or consistency model,
or resource failure probabilities. Configurable impact factors offer
a certain range of runtime configurations such as the cluster size
for the DBMS or the provider for the cloud domain.

Consequently, the selection and operation process of cloud-
hosted DBMS requires the consideration of a multitude of impact
factors to ensure high performance, but also availability for the
client level. Therefore, the preferred approach for underpinning
this process is the comparative evaluation of suitable DBMS with
respect to their non-functional features. But as the heterogeneous
DBMS landscape raises new challenges in comparative DBMS eval-
uations [7], the volatile cloud context even increases these chal-
lenges [6] and raises the need for reproducible and portable evalua-
tions [23]. Moreover, as current benchmarks only focus on perfor-
mance related evaluation objectives, availability in the context of
failures is not yet in the scope of DBMS benchmarks [27]. In order to
address these limitations, we define a comprehensive methodology
which enables comparative availability evaluation of cloud-hosted
DBMS by explicitly considering the presented impact factors.

4 EVALUATION METHODOLOGY
In order to introduce the concepts and challenges of our availability
evaluation methodology, we build upon the following baseline
hypothesis that describes the expected client level performance and
availability in case of a failure on DBMS level.
Hypothesis (H1): If a DBMS node fails due to a cloud resource
failure, the performance is temporarily decreasing as client requests to
the failed node are stalled until the DBMS recognize the DBMS node
failure and trigger the replicas for taking over these requests; with the
replicas taking over the performance is increasing, but does not achieve
the initial performance due to the reduced CS. In case the permanent
recovery steps are executed, performance will decrease during the data
synchronization/redistribution and increase afterwards to the initial

146

runtime

pe
rf

or
m

an
ce

healthy
unhealthy
recovering
recovered

Figure 3: Expected DBMS performance in case of failure

performance. Throughout these phases, the DBMS connection remains
available and all DBMS request are executed successfully.

Based on H1, the performance undergoes four phases depicted
in the corresponding Figure 3: the healthy phase represents the op-
erational cluster with its initial CS; in the unhealthy phase n DBMS
nodes are unavailable due to resource failures;in the recovery phase
n recovery steps are executed to resolve the failures before the
cluster reaches the recovered phase with finished data synchroniza-
tion/redistribution and its initial CS of operational nodes.

4.1 Metrics
As comparative availability evaluations require a set of quantifiable
metrics, we build upon the established DBMS performance metrics
throughput and latency [15]. These metrics are correlated with
the respective phases in order to enable significant availability
evaluations. In the following we only build upon the throughput
metric, but the resulting metrics can similarly applied for latency.
In order to correlate the throughput with the specific phase in case
of a failure, we define the phase throughput (PT) as follows:
Phase Throughput (PT): successf ul r equests

phase duration
As availability metrics, we consider downtime and the request

success rate (RSR) as relevant metrics. The downtime metrics build
upon [28] and represent the minimal tolerable throughput in cor-
relation to the respective phase. The phase downtime (PD) and the
according phase downtime duration (PDD) are defined as follows:
Phase Downtime (PD) : PT < threshold

PD Duration (PDD):
∑phase end
phase star t PT < threshold

The RSR builds upon the expected service availability [34] and
spans over all all four phases:
Request Success Rate (RSR): successf ull r equests

total scheduled requests

4.2 Evaluation Process
To define a comprehensive availability evaluation methodology
that provides the introduced metrics, we define the evaluation
process depicted in Figure 4. It comprises eight evaluation tasks
(ETs) with the concept of explicit cloud failure injection (ET_5.1) in
combination with recovery tasks (ET_5.2) to emulate realistic cloud
failure scenarios [16]. ET_1 specifies of a comprehensive evaluation
scenario, comprising the cloud resources, the specific DBMSwith the
availability-related configurations, a DBMS workload and the cloud
failure to be injected with an optional recovery action. The actual
execution of the evaluation starts with ET_2 by allocating the cloud
resources, followed by the deployment of the DBMS (ET_3). The

allocate cloud
resource

deploy
DBMS execute workload release cloud

resource
process
metrics

(ET_2) (ET_3) (ET_4) (ET_6) (ET_7)

recovery

start evaluation
execution

evaluation
execution finished

(ET_5.1)

requiredoptionalinject
failure

(ET_5.2)

(ET_1) (ET_8)define
scenario

analyse
results

Figure 4: Availability Evaluation Process

workload execution (ET_4) and the failure injection in combination
with the recovery are executed in parallel and can be executed
multiple times if specified in ET_1. After ET_4 is finished, the cloud
resources need to be released (ET_6). The metric processing (ET_7)
completes the execution phase of the evaluation process. In the
final step ET_8, the results are analysed and additional or refined
evaluation scenarios are defined for further executions.

4.3 Evaluation Process Execution
The execution of this evaluation process involves detailed knowl-
edge of the cloud provider, DBMS andworkload domain. In addition,
the parallel ET_4 and ET_5 require an orchestrated execution. These
constraints lead to a time consuming, error prone and technically
challenging execution if done manually. This limits reproducibility
and portability across the domains, e.g. executing the evaluation
scenario for different cloud providers or DBMS. Consequently, a
supportive framework is required to execute the evaluation process.
By building upon established benchmarking guidelines [6, 7, 23] we
define the following requirements towards a supportive availability
evaluation framework to ensure significance and reproducibility:

Evaluation Design (R1): Reusable and comprehensive evalu-
ation scenario specification need to be provided.

Abstraction (R2): A suitable abstraction level is required for
the technical domain specific properties.

Failure Injection (R3): has to be supported for temporary
and permanent failures of different failure types

Automation (R4): is required for all ETs of the execution
phase to ensure reproducibility and transparency, includ-
ing the orchestration of parallel but timely dependent ETs

Extensibility (R5): As each evaluation domain is constantly
evolving, extensible specifications and architectures are re-
quired to support the integration of future domain specific
constraints and failure models

Transparent Data (R6): the resulting data needs to comprise
raw metrics and extensive meta-data such as monitoring
data, task related details, DBMS and cloud resource details.

5 KING LOUIE FRAMEWORK
In order to implement the defined methodology, we present the
novel evaluation framework King Louie that explicitly addresses the
identified requirements R1 - R6. King Louie builds upon the Mowgli
framework [29] that addresses the automated performance and scal-
ability evaluation of cloud-hosted DBMS. King Louie supports ET_1

147

by providing JSON-based evaluation scenario templates1 to describe
comprehensive availability evaluation scenarios. A simplified ex-
ample is detailed in Listing 1. The dbms object exposes all relevant
details (cf. Figure 2) to deploy a DBMS cluster on arbitrary cloud
resources, a comprehensive description of the deployment model is
presented in [29]. The workload object specifies the desired work-
load, including the DBMS specific read/write consistency configu-
rations. The failureSpec defines the desired failure to be injected
and optional recovery actions to be executed. In its current state,
King Louie supports the failure types VM, AVAILABILITY_ZONE
and REGION and the recovery ADD-NODE for permanent failures
and RESTART-DBMS for temporary failures.

King Louie builds upon a loosely coupled and extensible archi-
tecture (cf. Figure 5). Evaluation scenarios are submitted via the
Evaluation API and the evaluation orchestrator maps the specified
configurations to its technical implementations. These are pro-
vided by extensible cloud, DBMS and workload domain catalogues
(R5). Based on these technical implementations, the evaluation or-
chestrator fully automates the evaluation process (R4), i.e. ET_2 –
ET_7. In order to abstract cloud provider APIs and ease the DBMS
deployment (R2), King Louie exploits cloud orchestration tools
(COTs) [4], in particular the Cloudiator framework [3]. The work-
load is executed by separate workload-API (W-API) instances that
are controlled by the evaluation orchestrator. The failure injection
is controlled by the evaluation orchestrator by exploiting the COTs
control over allocated cloud resources. This enables the injection of
different failure types such as the (temporary) stopping or deletion
of single VMs, but also for VMs in specific availability zones or
even regions. Moreover, additional failure types can be injected on
running VMs the evaluation orchestrator is able to execute custom
commands on the deployed DBMS nodes via the COT (R3).

By orchestrating each ET, King Louie is able to process availabil-
ity and performance metrics and add extensive meta-information
such as runtime configurations, logs and monitoring data that are
provided in machine interpretable formats for advanced post pro-
cessing (R6). Currently, King Louie supports EC2 and OpenStack
based clouds, seven DBMS and two different workloads2.

Listing 1: Availability Scenario Template
{"dbms": {

"type": "CASSANDRA",
"instances": 3,
"replicationFactor" : 3
"vmLocation" : "openstack",
"vmType": "small",
...

},
"workload": {
"type" : "YCSB",
"config" : {

"writeConsistency": "ONE",
...

}
}
"failureSpec":[{

1https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started/tree/master/
examples/availability
2https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started

E
va

lu
at

io
n-

A
PI

Domain

Catalogues

availability scenario

metadata

collectorobjective

processor

data flow control flow

COT

measurement

collector

cloud resource

catalogue

Evaluation Orchestrator

runtime

monitor

W-API

Figure 5: King Louie technical architecture

"failureType": "VM",
"severity": "permanent"
"failureRecovery": true,
"recoveryType": "ADD -NODE"
}]

}

6 CASE STUDY
We apply a case study to validate King Louie by analysing H1, fo-
cusing on the impact of cloud resource failures. Therefore, eight
availability evaluation scenarios are specified, comprising Apache
Cassandra (CA) and Couchbase (CB) in two cluster sizes (CS), a
write-heavy IoT driven workload, a read-heavy Web driven work-
load and one failure specification. It is noteworthy that these speci-
fications represent only a small frame of the supported evaluation
scenarios supported by King Louie.

6.1 DBMS Specification
CA and CB are selected as both are popular NoSQL DBMS3 that
promise high-availability and have already achieved promising re-
sults [19, 21]. Both provide a comparable multi-master architecture
with a configurable replication factor. As they differ with respect
to their consistency mechanisms, client-side consistency settings
can not exactly be mapped for both DBMS. CA applies write ahead
logging (WAL), while CB caches records directly in memory and
persists them to disk asynchronously. The case study focuses on
availability and performance optimized DBMS configurations by
applying a replication factor of three and weak client consistency
settings as detailed in Table 1. For CA, a write and read consistency
ofONE4 is applied, while for CB the write consistency replicateTo=0
(R=0) and persistTo=0 (p=0) is applied, specifying the confirmation
of a write as successful after the record is transmitted5. Concep-
tually, this setup overcomes two DBMS node failures. For CB, the
automatic failover mechanism is explicitly enabled with the min-
imum configurable failover time of 30 seconds while in CA it is
enabled by default with a default failover time of 10 seconds.
3https://db-engines.com/en/ranking
4https://docs.datastax.com/en/archived/cql/3.3/cql/cql_reference/cqlshConsistency.
html
5https://docs.couchbase.com/java-sdk/2.2/durability.html#persistto-and-replicateto

148

Table 1: DBMS Runtime Specifications

Specification Apache Cassandra (CA) Couchbase (CB)
Version 3.11.2 5.0.1 community
Cluster size 3,7 3,7
Replication 3 3
Write consistency ONE P=0, R=0
Read consistency ONE default

6.2 Cloud Resource Specification
The cloud resource configurations for the DBMS nodes and W-API
instance is detailed in Table 2. All physical hosts hosting VM_DBMS
types use a two SSDs Raid-0 configuration. Each DBMS instance is
configured to use 50% of the available memory for its operation.

Table 2: Cloud Resource Specifications

Specification VM_DBMS VM_WORKLOAD
Cloud private OpenStack, version Rocky
VM vCores 2 8
VM RAM 4GB 8GB
VM Disk 70GB 20GB
OS Ubuntu Server 16.04
network private, 10GbE

6.3 Workload Specification
The W-API of King Louie provides the Yahoo Cloud Serving Bench-
mark (YCSB) [10] in version 0.15.0 King Louie. The YCSB is selected
as it is a widely adopted workload to evaluate distributed DBMS.
Moreover, it supports a variety of distributed DBMS by implement-
ing the client connection in a baseline approach without adding
specialised code to improve availability on client side. In order to
demonstrate the flexibility of our approach, we define two typical
DBMS workloads, one write-heavy workload and one read-heavy
workload as described in Table 3.

Table 3: Workload Specifications

Specification write-heavy read-heavy
Metric granularity 10 s
Initial records 0 2.000.000
Record size 5KB
Operations 8.000.000
Operation type 100% write 95% read, 5% update
Read distribution N/A zipfian
client threads 4,16 4,16

6.4 Failure Specification
While King Louie supports an extensive number of potential failure
scenarios, we define a baseline failure specification to get first
insights into the availability of distributed DBMS. As presented

in Table 4, the failure specification comprises a permanent cloud
resource failure on VM level and the respective recovery steps for
permanent failures as depicted in Figure 1. Hereby, specific delays
are specified to ensure a stable workload before the respective
failure injection and recovery actions are triggered.

Table 4: Failure Specification

Specification VM_FAILURE
Failure delay 180s write-heavy, 500s read-heavy
Failure type VM
Severity permanent
Recovery delay 180s
Recovery type add new DBMS node

7 AVAILABILITY EVALUATION RESULTS
The case study results in 16 availability scenarios, i.e. 2DBMS types∗
2 cluster sizes∗2workload types∗2workload intensities ∗1 f ailure .
Each availability scenario is executed 10 times, resulting in 160
data sets. Each data set contains raw performance metrics, phase-
specific throughput metrics for additional processing, monitoring
data and auto-generated plots. Due to space constraints, we omit
the presentation of the 16 threads workload intensity, but to ensure
transparency, all collected evaluation data is publicly available [31].

First, for each data set, an explorative analysis based on the PT
is executed by comparing the throughput graphs with H1. Based
on this comparison, a set of reoccurring throughput development
patterns are identified for each evaluation scenario. If different
patterns are identified, the data sets are classified into the resulting
pattern. For each identified pattern per availability scenario, one
exemplary plot is provided in while all plots are available online6. In
the following, we term each identified availability scenario pattern
according the scheme DBMS TYPE_CLUSTER SIZE_PATTERN ID,

Second, for each availability scenario a descriptive analysis is
carried out, resulting in measurement tables. Each Table contains
the introduced phase-specific metrics (cf. Section 4.1) by providing
the average phase throughput (APT) including the standard devi-
ation. The downtime threshold for all evaluation scenarios is set
to 10 ops/s, i.e. each reported throughput value below 10 ops/s is
marked as downtime and the resulting downtime duration (PDD)
is provided. In addition, the occurrence ratio (OR) of each pattern
over the ten executions per availability scenario is provided. The
RSR is provided as average over each 10 executions.

7.1 Apache Cassandra Results
7.1.1 Write-heavy Workload. The explorative analysis of the CA
for the write-heavy workload results in two patterns as shown
in Figure 6. Hereby, P1 and P2 reoccur for both cluster sizes. The
graphs in Figure 6 clearly show that none of the identified pat-
terns matches the expected hypothesis as for both cluster sizes a
downtime occurs after the VM failure is injected. Moreover, the
downtime varies from 10s to 70s as described in the corresponding
measurement Table 5. Hereby, the OR of the 10s downtime, i.e. CA-
CS3-P1 and CA-CS7-P1, is significantly higher than 70s downtime

149

0 250 500 750 1000 1250 1500 1750
runtime in s

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(a) CA-CS3-P1 & CA-CS7-P1

0 500 1000 1500 2000
runtime in s

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(b) CA-CS3-P2 & CA-CS7-P2

Figure 6: Cassandra patterns for write-heavy workload

patterns, i.e. CA-CS3-P2 and CA-CS7-P2. The fact that the through-
put in the unhealthy phase remains on a similar or even slightly
higher average compared to the healthy phase relates to the applied
weak write consistency and replication factor of three. As in the
unhealthy phase, one replica is missing, less internal replication op-
erations are executed while there are still enough replicas available
to satisfy the applied write consistency. The decreased throughput
during the recovery phases relates to the redistribution of data to
the newly added DBMS node. Moreover, this finding is validated
by existing elasticity studies [21, 30]. The throughput variations
during the recovered phase (cf. Table 5) are caused by internal com-
paction mechanisms and potential resource interferences due to
the fact that the I/O bandwidth of the physical server hosting the
DBMS VMs is shared with multiple tenants.

In order to analyse the unexpected throughput development, the
raw YCSB results are checked for potential issues on client-side, but
none are present in the result files. While P1 is partially explainable
as 10s is the default request timeout before a new DBMS node takes
over6, this should only affect the client threads trying to write to the
unavailable DBMS node and consequently the throughput should
only decrease for their stalledwrite requests while the results clearly
show that the overall throughput reaches the downtime threshold.
Moreover, the less frequent P2 can not be correlated to Apache
Cassandra configuration options.

7.1.2 Read-heavy Workload. The read-heavy result also show two
throughput patterns P1 and P2 for both cluster sizes as depicted in
Figure 7. Again, these patterns do not match the expected through-
put development of H1, they even show an increased downtime
compared to the write-heavy results. As Figure 7 depicts and the
according measurement Table 5 shows, the downtime ranges from
10s to 240s, spanning over the whole unhealthy, recovery and even
into the recovered phase. Again the YCSB raw results do not show
any issues. While the 10s downtime is again partially explainable
due to the default request timeout7, the 240s downtime does not
correlate with any CA configuration settings on client and DBMS
side. A second deviation from the expected throughput develop-
ment, the increased APT in the recovered phase compared to the
initial phase is noteworthy. The explanation refers to the workload
type as for the read-heavy workload, the longer phase duration of
the recovered phase improves the caching of frequently accessed

6https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/operations/
opsRepairNodesHintedHandoff.html

0 500 1000 1500 2000 2500 3000 3500
runtime in s

0

500

1000

1500

2000

2500

3000

3500

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(a) CA-CS3-P1 & CA-CS7-P1

0 500 1000 1500 2000 2500 3000 3500
runtime in s

0

500

1000

1500

2000

2500

3000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(b) CA-CS3-P2 & CA-CS7-P2

Figure 7: Cassandra patterns for read-heavy workload

records. Compared to the write-heavy workload, the impact of ad-
ditional cloud tenants is barely present as the read-heavy workload
is mainly memory- and compute-bound and not I/O-bound.

7.2 Couchbase Results
7.2.1 Write-Heavy Workload. For CB three patterns are identified
for the write-heavy workload, CB-CS3-P1, CB-CS3-P2 and CB-CS7-
P1 as depicted in Figure 8 and the corresponding measurement
Table 6. The three node patterns, CB-CS3-P1 and CB-CS3-P1, show
that the VM failure causes an unexpected availability of the DBMS
on the client-side, either with the beginning of the recovery phase
(CB-CS3-P1) or even before the recovery phase (CB-CS3-P2). The
resulting YCSB results show frequent occurrence of timeout excep-
tions that cause the termination of the workload even as enough
replicas are available. For seven node cluster, CB-CS7-P1, the avail-
ability of the cluster is provided with the reoccurring pattern shown
in Figure 8c. Hereby, a downtime of 30s is identified that correlates
to the configured take-over time of CB. CB-CS7-P1 also shows a
reoccurring throughput decrease in the recovered phase indicates
due to ongoing CB internal management processes. The results
indicate that for a write-heavy workload, a CB size of three nodes
is not sufficient to overcome one node failure, even with a weak
write consistency applied.

7.2.2 Read-Heavy Workload. The identified patterns of the read-
heavy workload are depicted in Figure 9 and the correlating Table 6.
Compared to the write-heavy workload patterns, they do not show
any persistent downtime. Pattern CB-CS3-P1 shows a downtime
of 30s and the less frequent CB-CS3-P2 a downtime of 175s (cf.
Table 6). For the seven node cluster, only the pattern CB-CS7-P1
with the downtime of 30s is identified. Hereby, the 30s downtime
matches again the configured take-over time, but also shows that a
DBMS node failure causes a downtime for all clients,even if replicas
could handle the read requests. Regarding the 175s downtime, the
YCSB result files show temporary failure exceptions during the
recovering phase and disappear in the recovered phase.

7.3 Threats to Validity
Even with the support of King Louie, the complexity of the cloud,
DBMS and workload domain requires the consideration of the
following aspects for adopting the results. For cloud domain, the re-
covery phase duration can be influenced by provider dependent VM

150

Table 5: Cassandra Phase Measurements

write-heavy read-heavy
Phase Metric CA-CS3-P1 CA-CS3-P2 CA-CS7-P1 CA-CS7-P2 CA-CS3-P1 CA-CS3-P2 CA-CS7-P1 CA-CS7-P2
all OR 7/10 3/10 9/10 1/10 7/10 3/10 7/10 3/10
all RSR 99.99% 99.99% 99.99% 99.99% 99.65% 99.74% 100.00% 99.99%
initial APT (σ) 4305 (80) 4254 (71) 4718 (64) 4779 (0) 1399 (157) 1345 (68) 2950 (89) 2816 (99)

unhealthy APT (σ) 4384 (266) 2886 (215) 4518 (60) 3248 (0) 1728 (133) 8 (1) 3336 (41) 27 (1)
PDD 10s 70s 10s 70s 10s 240s 10 240

recovering APT (σ) 3361 (251) 2746 (106) 4324 (71) 4448 (0) 1967 (111) 1 (0) 3512 (42) 2 (0)
recovered APT (σ) 4301 (490) 4071 (48) 4364 (143) 4262 (0) 2179 (152) 1855 (57) 3650 (21) 2928 (42)

0 200 400 600 800 1000
runtime in s

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering

(a) CB-CS3-P1

0 200 400 600 800 1000
runtime in s

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering

(b) CB-CS3-P2

0 200 400 600 800 1000 1200 1400 1600
runtime in s

0

1000

2000

3000

4000

5000

6000

7000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(c) CB-CS7-P1

Figure 8: Couchbase patterns for write-heavy workload

0 500 1000 1500 2000 2500
runtime in s

0

1000

2000

3000

4000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(a) CB-CS3-P1

0 500 1000 1500 2000
runtime in s

0

1000

2000

3000

4000

5000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(b) CB-CS3-P2

0 200 400 600 800 1000 1200 1400
runtime in s

0

1000

2000

3000

4000

5000

6000

7000

8000

av
er

ag
e

th
ro

ug
hp

ut
 in

 o
ps

/s

failure injection
recovery start
recovery finished
healthy
unhealthy
recovering
recovered

(c) CB-CS7-P1

Figure 9: Couchbase patterns for read-heavy workload

Table 6: Couchbase Phase Measurements

write-heavy read-heavy
Phase Metric CB-CS3-P1 CB-CS3-P2 CB-CS7-P1 CB-CS3-P1 CB-CS3-P2 CB-CS7-P1
all OR 7/10 3/10 10/10 8/10 2/10 10/10
all RSR 23.61% 18.19% 99.99% 99.99% 99.99% 99.99%
initial APT (σ) 5172 (136) 6130 (96) 4718 (64) 3205 (692) 3691 (600) 4975 (140)

unhealthy APT (σ) 3219 (77) 17 (24) 4925 (86) 2470 (525) 100 (22) 4643 (216)
PDD 30s ∞ 30s 30s 175s 30s

recovering APT (σ) 82 (65) 0 5554 (57) 2581 (801) 867 (250) 5360 (403)
recovered APT (σ) 0 0 4592 (52) 3205 (697) 3489 (843) 6213 (170)

spawning times and the DBMS performance in general can be im-
pacted by resource interferences on different levels. As King Louie
supports multiple cloud providers, these challenges can easily be

addressed by additional case studies. With respect to the DBMS do-
main, vanilla DBMS installations are applied to ensure comparable
results but there are numerous DBMS specific configurations that

151

can affect the availability results. Consequently, additional DBMS
specific case studies need to be executed. As the DBMS catalogues of
King Louie are easily extensible, DBMS specific configurations can
be integrated for DBMS specific studies. For the workload domain,
the usage of the YCSB enables comparability by supporting multiple
DBMS, reporting DBMS performance metrics and failed requests.
Yet,the implementation for the DBMS connections solely rely on the
DBMS drivers and follow a basic approach without applying any
dedicated availability mechanisms on client side. Consequently, the
results represent a baseline and pave the path to evaluate enhanced
implementations on client side as the YCSB is easily extensible and
King Louie also supports custom workloads via the W-API.

Finally, the case study focuses on the client side while availability
on the DBMS side is another important aspect. The 80 data sets
show that even after the recovery phase, the cluster state can remain
unhealthy. This is reported two times for CA and eight times for
CB. These results are repeated and the unhealthy ones are excluded
from the presented results. Hence, the root cause analysis of these
cluster states requires further investigation on the DBMS side.

7.4 Lessons Learned
Based on the case study results, we provide a set of lessons learned
on the availability of cloud-hosted DBMS in the case of failures:
(i) as none of the results match the expected H1, there is even
an increasing need for King Louie to further evaluate potential
impact factors; (ii) the reproducibility of King Louie enables the
identification of the different availability patterns in the first place;
(iii) resource failures might not affect the availability on the DBMS
side, but on the client side severe downtimes can occur or even client
connections can be interrupted; (iv) potential throughput drops
or even temporary downtimes need to be taken into account by
client applications and respective mechanisms need to be in place to
handle such downtimes; (v) as the results also show only particular
explainable results, additional availability evaluations are required,
considering DBMS specific configurations and metrics; (vi) even
building upon established DBMS, guaranteeing DBMS availability
and ensuring certain client performance is a challenging task that
becomes even more challeing for automated operation as preferred
in the cloud. Hence, comprehensive additional researchwith respect
to DBMS behaviour and suitable COTs is required.

8 KING LOUIE VALIDATION
This section validates King Louie features against the introduced
requirements and discusses potential limitations and extensions.

Evaluation design (R1) is enabled by providing comprehensive
evaluation scenario templates that enable reusability and multi-
ple customization parameters1. In addition, a sequence of multiple
failures including optional recovery mechanism can be specified.
Abstraction (R2) is addressed by building upon COTs for abstract-
ing the communication with cloud provider APIs and the usage of
DBMS and workload catalogues to abstract the technical details for
deploying the DBMS and executing workloads. King Louie supports
the specification of custom properties in the evaluation scenario,
but the respective technical implementation needs to be able to pro-
cess these custom properties. Its abstraction is shown by applying
the availability evaluation for two DBMS of different cluster sizes

and workload types. Its abstraction of different cloud providers
has been validated in previous work [29]. Failure injection (R3) is
validated by the case study by applying the VM failure type includ-
ing the corresponding recovery mechanisms. While King Louie
provides the framework for arbitrary failure injection, it currently
supports the injection of failures on the VM and availability zone
level. Additional failures can be easily added by implementing a
single interface. Automation (R4) is demonstrated by executing 160
evaluation scenarios, generating the data sets for post-processing
the availability metrics. Yet, the post-processing is not automat-
ically executed by King Louie. Extensibility (R5) is addressed by
building upon a loosely coupled architecture and applying the con-
cept of domain-specific catalogues. This results in extensibility on
different levels as adding or customizing DBMS deployments only
requires the update of the respective scripts. Adding new failure
types only requires the implementation of an interface in the evalu-
ation orchestrator. Transparent data (R6) to ensure significance and
reproducibility is provided by extensive data sets comprising raw
performance metrics, but also monitoring data and execution logs
to enable the full traceability of each evaluation execution [31].

As the availability evaluation of distributed DBMS in the volatile
cloud context is a challenging task that requires the technical knowl-
edge of multiple domains, King Louie provides a novel framework
to support such evaluations by enabling reproducibility and porta-
bility. As the case study results show, there is a significant need
in the thorough availability evaluation of cloud-hosted DBMS in
order to provide high-available cloud services.

9 RELATEDWORK
The evolving heterogeneity of distributedDBMS [11, 12, 22] has lead
to numerous comparative evaluations of cloud-hosted distributed
DBMS. A variety of DBMS workloads have been established for
evaluating distributed DBMS in the context of Web and Big Data
applications [25, 27]. Evaluations building upon these workloads
focus either on the sole DBMS performance and scalability [17], the
performance impact of different cloud resources [21]. With respect
to availability evaluations, only the aspect of overload situations
due to increasing workload intensities are evaluated [20, 30]. Yet,
these studies do not consider the aspect of resource failures.

As the number of cloud resource offerings and distributed DBMS
is still increasing, supportive evaluation frameworks are required
to enable reproducible and portable evaluations of cloud-hosted
DBMS [7, 23, 27]. Yet, none of them provides the capabilities of
cloud resource failure injection and consequently none of them
supports the evaluation of the introduced availability metrics.

A first approach towards analysing the availability of distributed
DBMS is presented by [13] by studying existing DBMS bugs with re-
spect to failure recovery mechanisms. Yet, the study focuses only on
the DBMS layer and does not support failure injection nor the eval-
uation of client-side availability metrics. Building upon the "chaos
monkey" concept, [32] present a framework to inject random cloud
resource failures into cloud-hosted applications. While King Louie
builds upon this concept, [32] does not evaluate any availability
metrics nor is it intended for DBMS as failures are injected ran-
domly which hinders reproducible and comparable evaluations.
The Gremlin approach [18] presents a failure injection framework

152

for evaluating the availability of micro-services. A failure model
describes the failures on the network level and injects them into
a running system, analysing the latency impact on the client-side.
Yet, Gremlin only considers statelss applications network failures,
without focusing on stateful services and resource failures.

Consequently, a supportive framework for evaluating the avail-
ability of distributed DBMS under different cloud resource failures
is missing. Therefore, King Louie addresses these limitations by
enabling reproducible and portable availability evaluations for dis-
tributed DBMS by supporting cloud resource failure injection.

10 CONCLUSION
Cloud resources are a preferred solution to operate distributed
DBMS. Yet, with increasing DBMS cluster sizes, the probability
of cloud failures increases.Therefore distributed DBMS implement
heterogeneous availability mechanisms and expose a diverse set
of runtime configurations. Yet, in case of cloud resource failures,
it remains unclear to what extent these mechanisms are able to
ensure availability and guarantee stable performance. As supportive
benchmarks are missing, we define a comprehensive availability
evaluationmethodology that ensures reproducibility and portability.
Based on this methodology, we introduce the novel King Louie
framework that automates the full evaluation process, including
the cloud failure injection.We validate King Louie in a client-centric
case study for different DBMS, cluster sizes and workload types
resulting in 16 evaluation scenarios with 160 data sets. The results
show novel and unexpected insights with respect to the availability
and performance development in case of cloud resource failures.

Future work will focus on advanced evaluations that comprise
multiple cloud failures and recovery steps. Moreover, machine learn-
ing techniques will be applied to derive efficient failure mitigation
strategies. Also, King Louie will be applied to evaluate the avail-
ability from the DBMS side, including data related aspects such as
accessibility and consistency.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the Federal Ministry of Education and Research of Germany un-
der grant agreement 01IS18068 (SORRIR) and the EC’s Frame-
work Programme HORIZON 2020 under grant agreements 731664
(MELODIC) and 732667 (RECAP).

REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April
2010), 50–58.

[2] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. 2004. Basic
concepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing 1, 1 (2004), 11–33.

[3] D. Baur, D. Seybold, F. Griesinger, H. Masata, and J. Domaschka. 2018. A Provider-
Agnostic Approach to Multi-cloud Orchestration Using a Constraint Language.
In CCGRID. 173–182.

[4] Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christo-
pher B Hauser, and Jörg Domaschka. 2015. Cloud Orchestration Features: Are
Tools Fit for Purpose?. In IEEE/ACM UCC.

[5] David Bermbach. 2014. Benchmarking eventually consistent distributed storage
systems. KIT Scientific Publishing Karlsruhe.

[6] David Bermbach, Erik Wittern, and Stefan Tai. 2017. Cloud service benchmarking.
Springer.

[7] Lexi Brent and Alan Fekete. 2019. A Versatile Framework for Painless Bench-
marking of Database Management Systems. In Australasian Database Conference.
Springer, 45–56.

[8] Eric Brewer. 2012. CAP twelve years later: How the" rules" have changed. Com-
puter (2012).

[9] Eric A Brewer. 2000. Towards robust distributed systems. In PODC.
[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In ACM SoCC.
[11] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores.

ACM Computing Surveys (CSUR) 51, 2 (2018), 40.
[12] Jörg Domaschka, Christopher B Hauser, and Benjamin Erb. 2014. Reliability and

availability properties of distributed database systems. In Enterprise Distributed
Object Computing Conference (EDOC), 2014 IEEE 18th International. IEEE, 226–233.

[13] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. 2018. An empirical study on crash recovery
bugs in large-scale distributed systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 539–550.

[14] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul
Wilson, Jane Radatz, Mary Yee, Hugh Porteous, and Fredrick Springsteel. 1991.
IEEE standard computer dictionary: Compilation of IEEE standard computer glos-
saries. IEEE Press.

[15] Jim Gray. 1992. Benchmark handbook: for database and transaction processing
systems.

[16] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D
Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why does the cloud stop
computing?: Lessons from hundreds of service outages. In Proceedings of the
Seventh ACM Symposium on Cloud Computing. ACM, 1–16.

[17] Abdeltawab Hendawi, Jayant Gupta, Liu Jiayi, Ankur Teredesai, Ramakrishnan
Naveen, Shah Mohak, and Mohamed Ali. 2018. Distributed NoSQL Data Stores:
Performance Analysis and a Case Study. In 2018 IEEE International Conference on
Big Data (Big Data). IEEE, 1937–1944.

[18] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K Reiter, and
Vyas Sekar. 2016. Gremlin: Systematic resilience testing of microservices. In 2016
IEEE 36th International Conference on Distributed Computing Systems. IEEE.

[19] Murtadha AI Hubail, Ali Alsuliman, Michael Blow, Michael Carey, Dmitry Ly-
chagin, Ian Maxon, and Till Westmann. 2019. Couchbase Analytics: NoETL for
Scalable NoSQL Data Analysis. Proc. VLDB Endow. 12, 12 (Aug. 2019), 2275–2286.

[20] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios
Tsoumakos, and Nectarios Koziris. 2011. On the elasticity of NoSQL databases
over cloud management platforms. In Proceedings of the 20th ACM international
conference on Information and knowledge management. ACM, 2385–2388.

[21] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. 2014. Benchmarking scal-
ability and elasticity of distributed database systems. Proceedings of the VLDB
Endowment 7, 12 (2014), 1219–1230.

[22] Somnath Mazumdar, Daniel Seybold, Kyriakos Kritikos, and Yiannis Verginadis.
2019. A survey on data storage and placement methodologies for Cloud-Big Data
ecosystem. Journal of Big Data 6, 1 (2019), 15.

[23] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A. Ali-eldin,
C. Abad, J. N. Amaral, P. Tůma, and A. Iosup. 2019. Methodological Principles for
Reproducible Performance Evaluation in Cloud Computing. IEEE Transactions
on Software Engineering (2019), 1–1.

[24] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2019.
CLOTHO: Directed Test Generation for Weakly Consistent Database Systems.
Proc. ACM Program. Lang. 3, OOPSLA, Article 117 (Oct. 2019), 28 pages.

[25] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. 2017.
On the state of nosql benchmarks. In Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion. ACM, 107–112.

[26] Sherif Sakr. 2014. Cloud-hosted databases: technologies, challenges and opportu-
nities. Cluster Computing 17, 2 (2014), 487–502.

[27] Daniel Seybold and Jörg Domaschka. 2017. Is Distributed Database Evaluation
Cloud-Ready?. In ADBIS. Springer, 100–108.

[28] Daniel Seybold, Christopher B Hauser, Simon Volpert, and Jörg Domaschka. 2017.
Gibbon: An Availability Evaluation Framework for Distributed Databases. In
OTM Confederated International Conferences" On the Move to Meaningful Internet
Systems". Springer, 31–49.

[29] Daniel Seybold, Moritz Keppler, Daniel Gründler, and Jörg Domaschka. 2019.
Mowgli: Finding your way in the DBMS jungle. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering (ICPE ’19). ACM,
321–332.

[30] Daniel Seybold, Nicolas Wagner, Benjamin Erb, and Jörg Domaschka. 2016. Is
elasticity of scalable databases a Myth?. In IEEE Big Data.

[31] Daniel Seybold, Stefan Wesner, and Jörg Domaschka. 2019. King Louie: DBMS
Availability Evaluation Data Sets. https://doi.org/10.5281/zenodo.3459604

[32] Ariel Tseitlin. 2013. The Antifragile Organization. Commun. ACM 56, 8 (2013).
[33] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (Jan. 2009), 5.
[34] Ming Zhong, Kai Shen, and Joel Seiferas. 2008. Replication Degree Customization

for High Availability. In EuroSys.

153

Chapter 15

[core8] Is elasticity of scalable databases a Myth?

This article is published as follows:

Daniel Seybold, Nicolas Wagner, Benjamin Erb, and Jörg Domaschka. “Is elasticity of scalable databases
a Myth?” in 4th IEEE International Conference on Big Data (Big Data), 2016, IEEE, pp. 2827–2836, DOI:
https://doi.org/10.1109/BigData.2016.7840931.

©2016 IEEE. Reprinted, with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Ulm University’s products or services. Internal or personal use of this material is permit-
ted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/
publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

215

https://doi.org/10.1109/BigData.2016.7840931
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Is Elasticity of Scalable Databases a Myth?
Daniel Seybold∗, Nicolas Wagner∗, Benjamin Erb† and Jörg Domaschka∗

∗Institute of Information Resource Management
†Institute of Distributed Systems
Ulm University, Ulm, Germany

Email: {daniel.seybold, nicolas.wagner, benjamin.erb, joerg.domaschka}@uni-ulm.de

Abstract—The age of cloud computing has introduced all
the mechanisms needed to elastically scale distributed, cloud-
enabled applications. At roughly the same time, NoSQL databases
have been proclaimed as the scalable alternative to relational
databases. Since then, NoSQL databases are a core component
of many large-scale distributed applications.

This paper evaluates the scalability and elasticity features
of the three widely used NoSQL database systems Couchbase,
Cassandra and MongoDB under various workloads and settings
using throughput and latency as metrics. The numbers show
that the three database systems have dramatically different
baselines with respect to both metrics and also behave unexpected
when scaling out. For instance, while Couchbase’s throughput
increases by 17% when scaled out from 1 to 4 nodes, MongoDB’s
throughput decreases by more than 50%. These surprising results
show that not all tested NoSQL databases do scale as expected
and even worse, in some cases scaling harms performances.

I. INTRODUCTION

The evolvement of cloud computing has gained tremendous
focus in industry and academia, especially for web-based
applications. With the typical benefits of cloud computing
such as on-demand self-service, resource pooling or rapid
elasticity [1] also traditional web service architectures experi-
enced the rethinking from monolithic structures to distributed
services. Whereas the distribution of the mostly stateless busi-
ness logic services fits well for distribution in the cloud, the
distribution of stateful database services is more challenging.
Hence, in parallel to cloud computing, a distributable database
class, the NoSQL databases, evolved and proclaim as alterna-
tive for traditional relational databases. NoSQL databases store
data in non-relational way and promise to be scalable and to
run on commodity hardware as offered by the cloud.

These developments in the database area also have influ-
enced the service models of the initial cloud service models [1]
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS) by extending them with more
fined grained service models such as Database as a Service
(DBaaS) [2]. Yet, the selection of the distributed database still
remains as challenge.

Within the last years, a high number the existing of NoSQL
databases reached a mature state and nearly all of them
promise up to “unlimited” scalability by utilising cloud re-
sources. In this context we provide an up-to-date evaluation
of the common NoSQL databases, Apache Cassandra, Couch-
base and MongoDB, with the focus on their scalability and
elasticity capabilities for a DBaaS system.

Our contribution is twofold, (1) we define a thorough
methodology to evaluate the scalability and elasticity of dis-
tributed databases; (2) we evaluate the mentioned NoSQL
databases in a distributed setup with respect to their specific
scalability and elasticity capabilities and discuss the results
with respect to an expected behaviour.

The remainder of the paper is organised as follows. Sec-
tion II describes the challenges of scalability and elasticity
with respect to DBaaS. In Section III, we introduce the cloud
architecture, distributed databases and distributed storage mod-
els. Section IV defines the methodology that we used for our
evaluation. Section V describes the cloud environment of our
evaluation. Section VI presents our evaluation results, followed
by a discussion in Section VII. Section VIII discusses the
related work. Finally, Section IX concludes and outlines future
work.

II. DATABASE CHALLENGES FOR DBAAS

In the following we define the terms scalability and elas-
ticity for our considerations in the context of a DBaaS,
with respect to their definitions in cloud computing and for
distributed databases.

A. Scalability

The term scalability is a common term in IT in general. As
we focus in our work on the scalability of distributed databases
in the cloud, we narrow down scalability with respect to
cloud computing and database systems. In the cloud context
a well-known definition is provided by Herbst et. al. [3] with
“Scalability is the ability of the system to sustain increasing
workloads by making use of additional resources”.

Database system workloads can be classified in memory-
bound (i.e. the data fits into memory) and storage-bound
workloads (i.e. fractions of the data is kept in memory and
the rest in persistent storage) [4]. In this paper, we only focus
on the scaling of memory-bound workloads. A definition of
scalability for distributed systems in general and with respect
to distributed databases is provided by Agrawal et. al. [5],
defining the terms scale-up, scale-out and scale-in in order
to manage growing workloads. Scale up or vertically scaling
applies by adding more computing resources to a single node.
This paper only focuses on the two horizontal scaling actions,
namely scale out (i.e. adding nodes to a cluster) and scale in
(i.e. removing nodes from a cluster).

For applying a distributed database in a DBaaS a high
scalability factor is required to process virtually unlimited
workload sizes by scaling the database cluster to a sufficient
size. A high scalability factor is represented by constant
latency and proportionally growing throughput with respect
to the number of nodes and the workload size [6].

B. Elasticity

Scalability focuses on the general ability to process arbitrary
workload sizes. Elasticity is tightly coupled to scalability and
enables the overcoming of sudden workload fluctuations by
scaling the cluster without any downtime. With respect to the
cloud, elasticity is defined as “Capabilities can be elastically
provisioned and released, in some cases automatically, to scale
rapidly outward and inward commensurate with demand.” [1]

A definition with the focus on distributed databases is
provided by Agrawal et. al. [5] with “Elasticity, i.e. the ability
to deal with load variations by adding more resources during
high load or consolidating the tenants to fewer nodes when the
load decreases, all in a live system without service disruption,
is therefore critical for these systems.”

Hence, a DBaaS architecture requires a high elasticity
factor, defined by scaling the cluster at run-time without down-
time and improving the throughput to resolve the workload
fluctuations [6].

III. DATABASE AS A SERVICE ARCHITECTURE

In this section, we introduce the technical architecture
for our following evaluation. This potential architecture of
a DBaaS covers the underlying cloud infrastructure, the
scalability-enabled architecture of distributed databases and
the corresponding storage models.

A. Cloud Infrastructure

A DBaaS system requires a high degree of flexibility on
the resource level, so that it can be built upon a bare metal
infrastructure or upon the IaaS cloud service model. Based on
cloud features such as resource pooling or rapid elasticity [1],
IaaS offers more flexibility than bare metal and is therefore
the preferable way to build a DBaaS system.

IaaS provides processing, storage, networks and other fun-
damental computing resources to run arbitrary software [1].
The processing and storage resources are typically encapsu-
lated in a virtual machine (VM) entity that also includes the
operating system (OS). VMs run on the virtualised physical
infrastructure of the IaaS provider, which is not accessible to
the user. An exemplary IaaS architecture is depicted in Fig. 1.

B. Distributed Databases Architectures

Distributed databases provide a single database system to
the user which is spread over multiple nodes as depicted
in Fig. 1. A single database instance as part of the overall
distributed database system is termed database node in the
following. The overall distributed database system is termed
database cluster. Our evaluation only considers distributed,
shared-nothing database clusters where each database node
resides on its own VM as shown in Fig. 1.

virtualisation layer

VM VM VM VM

distributed database cluster

db
node

db
node

db
node

db
node

Fig. 1: System Model

The architecture of distributed databases is typically cate-
gorised into the following distribution models [7]:

1) Single Server: A single server architecture represents the
simplest option without any distribution at all. The single node
handles all read and write requests. We do not consider single
server architectures as they do not offer horizontal scalability.

2) Master-Slave: In a master-slave distribution the data
is replicated across multiple nodes. One node represents the
designated master node, executing all write requests and syn-
chronizing the slave nodes, which only execute read requests.
The master-slave distribution can be applied to scale read-
heavy workloads.

3) Multi-Master: The multi-master or peer-to-peer distri-
bution do not build upon different node types, i.e. all nodes
are equal. In a multi-master distribution replication and shard-
ing [7] of the data is applied to spread write and read requests
across all nodes of the cluster.

C. Storage Models

Distributed databases are commonly classified according to
the following storage models.

In relational data stores, data is stored in tuples, forming
an ordered set of attributes. Relations consist of sets of tuples
while a tuple is a row, an attribute is a column and a relation
forms a table. Tables are defined using a normalised data
schema. SQL has established itself as a generic data definition,
manipulation and query language for relational data. Column-
oriented data stores store data by columns rather than by
rows. This enables to store large amounts of data in bulk
and allows for efficiently querying over very large, structured
data sets. A column-oriented data model does not rely on
a fixed schema. Key/value data stores relate to hash tables
of programming languages. The storage records are tuples
consisting of key/value pairs. While the key uniquely identifies
an entry, the value is an arbitrary chunk of data. Document-
oriented data stores are similar to key/value stores. However,
they define a structure on the values in structured formats such
as XML or JSON. Compared to key/value stores, document
stores allow more complex queries, as document properties
can be used for indexing and querying. Inspired by the
graph theory, graph-based data stores rely on graph structures
for data modelling. Hence, vertices and edges represent and
contain data. Queries often relate to graph traversals.

IV. METHODOLOGY

Based on the presented challenges for DBaaS, this section
elaborates on our methodology to evaluate the scalability and
elasticity of three distributed databases. The following section
describes the methodology used to select the databases, to
decide on the workload issued on the databases and the way
it is generated. Finally, we define two evaluation scenarios
for capturing the scalability and elasticity properties of the
databases.

A. Database Selection

With the emergence of cloud computing the number of
available distributed database systems increased as well. How-
ever, not all storage models fit well to scalability and elasticity
requirements. Relational databases offer distributed represen-
tatives such as MySQL Cluster1 or Postgres-XL2. Yet, neither
MYSQL Cluster3 nor Postgres-XL4 support elasticity, as re-
sizing the cluster will lead to a downtime for both databases.
Additionally, relational databases offer limited horizontal scal-
ing capabilities compared to NoSQL databases [8]. Therefore,
we do not consider relational databases for our evaluation. We
also do not consider graph databases, as their elasticity is either
very limited, e.g. neo4j5 provides scale-out capabilities only
for reads, or the elasticity properties rely on the underlying
storage backends (e.g. Titan6 with Cassandra). The specific
structure of graph-based data and the corresponding queries
make it also difficult to compare its performance metrics.

Hence, we set the focus of our evaluation databases to
the remaining storage models: column-oriented, key-value and
document-oriented. Below, we provide a brief overview of
the selected databases and their selection criteria. All of them
provide automated data sharding and promise high scalability
and elasticity.

1) Apache Cassandra: Apache Cassandra7 is selected as
one of the most common column-oriented data stores8. Cas-
sandra aims to run on top of commodity infrastructure and
scale up to hundreds of nodes. Its architecture follows the
multi-master paradigm and is designed to handle high write
throughput without sacrificing read efficiency [9].

2) Couchbase: Couchbase is a document-oriented data
store which can also be operated as a key-value data store.
Its architecture follows the multi-master paradigm and takes
advantage of memcached9 for in-memory caching. We select
Couchbase because of these features and also due to fact
that Couchbase has gained industry attention [10], [11] for
its scalability. Yet, Couchbase has undergone only limited
scientific evaluation so far.

1https://www.mysql.com/products/cluster/
2http://www.postgres-xl.org/
3http://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
4http://files.postgres-xl.org/documentation/tutorial-createcluster.html
5https://neo4j.com/
6http://titan.thinkaurelius.com/
7http://cassandra.apache.org/
8http://db-engines.com/en/ranking trend
9https://memcached.org/

3) MongoDB: MongoDB10 has been selected as the most
prevalent document-oriented data store8. MongoDB’s archi-
tecture is built upon three different services: (1) mongos act
as query router, providing an interface between clients and a
sharded cluster, (2) configs store the metadata of the cluster,
(3) shards contain the actual data.

B. YCSB Benchmarking Tool

In the course of the database systems evolution, the vari-
ety of database benchmarking tools grew as well. Common
representatives of such database benchmarking tools include
TPC Benchmarks11, RUBiS [12] and the Yahoo Cloud Serving
Benchmark (YCSB) [6].

While TPC workloads (TPC-C and TPC-E) target online
transaction processing (OLTP) applications and RUBiS work-
loads target a typical 3-tier web application, YCSB offers sim-
ple database-centric workloads based on create, read, update
and delete (CRUD) operations. Therefore, we chose the YCSB
tool as it enables a comparable evaluation of the selected
databases and their corresponding data models.

YCSB client

workload
executor

client threads

statistics

DB
interface

layer

Fig. 2: YCSB client architecture

1) YCSB Architecture: YCSB offers an extensible archi-
tecture shown in Fig. 2. A YCSB client comprises the four
depicted modules, workload creator, client threads, statistics
and the database interface layer. The workload creator and
the database interface layer offer a convenient interface to
customise or extend the respective module. The design of
YCSB enables the usage of an arbitrary number of YCSB
clients in a distributed setup to generate the desired load.

2) YCSB Metrics: The statistics module of YCSB ag-
gregates and reports the latency metrics (average, 95th and
99th percentile, minimum and maximum). The throughput is
aggregated and reported as average and actual throughput at a
specific timestamp. We focus in our evaluation on the average
throughput and latency and the time series representation
of the throughput to evaluate the elasticity of distributed
databases, which will be described in more detail in the
remainder of this section.

C. Workloads and Workload Generation

As introduced in Section IV-B YCSB issues CRUD op-
erations by default. In addition, it provides a set of built-in
distributions to perform the required random choices during

10https://www.mongodb.com/
11http://www.tpc.org/default.asp

the load generation. The supported distributions are uniform,
zipfian, latest and multinomial. We choose the zipfian distri-
bution for our workloads, as it represents a typical distribution
of web workloads [13]—some records are very popular and
are often accessed, while most of the records are not.

For the distribution of the operations, we select two common
workloads of cloud based applications [6]: read-heavy and
a read-update. The distribution of operations as well as the
selected distribution of each workload is provided in Table I.

TABLE I: Composition of Chosen Workloads

Workload Create Read Update Delete Distribution
Read-heavy 0.0% 0.95% 0.05% 0.00% zipfian
Read-update 0.0% 0.50% 0.50% 0.00% zipfian

D. Scalability Evaluation Scenario

The scalability evaluation bases on static cluster sizes,
which allow to evaluate the scalability of the selected
databases by comparing the average throughput and latency
for each cluster size and determine and compare throughput
and latency across the different cluster sizes.

Four static cluster sizes and a fixed number of YCSB clients
are considered as depicted in Fig. 3. The cluster sizes comprise
a 1-node, 2-node, 4-node and 8-node cluster of the selected
databases (cf. Section IV-A). Small node sizes highlight the
effects induced by changes to the cluster size. For all three
databases and all four cluster sizes, we use the same, fixed
number of YCSB clients to generate the workload for each
database cluster.

All evaluations are performed on a previously loaded
database cluster containing 1,000,000 records. All scalabil-
ity evaluation runs comprise 10,000,000 operations that are
equally distributed among all YCSB clients involved. We
select the size of the database (i.e. 1,000,000 records) such that
it entirely fits in RAM, which allows us to exclude disk I/O
as bottleneck and to focus on distribution and scaling effects.

YCSB ClientYCSB ClientYCSB ClientYCSB client

Fig. 3: Static Cluster

In order to achieve comparable results for all databases
we calibrate the number of YCSB clients. For the scalability
evaluation scenario, we determine the number of YCSB clients
such that all database clusters are subject to comparable load.
In particular, we pick the number of clients such that no
database node is overloaded (>90% CPU utilisation) nor idling
(<20% CPU utilisation), even in a 1-node configuration.

On the database side, no specific configurations are made.
Only for MongoDB, we needed to decide on a distribution
of the components not available for the two other database
types (mongos and configs; cf. Section IV-A3). Therefore
we monitored the resource consumption of each component
and derived an appropriate distribution which is described in
Section VI-A.

E. Elasticity Evaluation Scenario

The elastic evaluation scenario investigates a sudden growth
in workload can be overcome by scaling the cluster under
load. Starting from a 1-node cluster, the cluster is scaled-out as
soon as the node running the database gets overloaded, i.e. the
throughput drops significantly. We use the CPU utilisation (>
90%) and a drop in throughput as indicators for an overloaded
node and extend the cluster when both conditions occur. In
order to ensure overload is reached for all three databases, we
vary the number of YCSB clients accordingly (cf. Fig. 4).

When an overloaded state for the 1-node cluster is reached,
we manually add a new node. During that time, the load is
kept at the same level. Based on the time series representation
of the current throughput, we are able to evaluate the elasticity
during the redistribution of the data and in the resulting 2-node
cluster of each database.

As before, the 1-node cluster starts with 1,000,000 pre-
loaded records. For operations, we need to guarantee a high
load over a longer period of time, ensuring the overload state
is reached, the redistribution of the data is finished and the
database has time to stabilise. Therefore, we increase the
total number of operations to 500,000,000, which are again
distributed over all YCSB clients.

YCSB ClientYCSB ClientYCSB ClientYCSB client …

Fig. 4: Elastic Cluster

V. EVALUATION ENVIRONMENT

The overall evaluation takes place in a private, OpenStack-
based cloud12 with full and isolated access to all physical
and virtual resources. The cloud infrastructure13 is operated
with OpenStack version Kilo. In order to reduce possible
side effects and to guarantee reproducible results we use the
availability zones feature of OpenStack to dedicate physical
hosts for spawning the required VMs. Hence, we dedicate one
physical host to the YSCB clients and one to the database
nodes. This reflects the optimal VM distribution for a dis-
tributed database in a cloud environment as one physical host
is capable to run all database nodes (cf. Table II) and no

12https://www.openstack.org/
13https://www.uni-ulm.de/in/omi/institut/blog/details/article/our-openstack-

physical-testbed-part-3up-to-date-with-software-and-requirements/

additional communication on a physical level is required. In
the following, we describe the technical details of the cloud
infrastructure, the YCSB client and database VMs.

A. Physical Infrastructure
The VMs for the YCSB clients and database nodes are

placed on a different physical host. Table II shows the technical
details for the physical hosts of the YCSB clients and the
database nodes. The physical hosts are connected via 1Gb.

TABLE II: Physical Host Details

YCSB Client Host Database Host
CPU 2xIntel Xeon

E5-2630v3 8-Core
Haswell 2.4Ghz

2xIntel Xeon E5-2637 8-
Core SandyBridge 2.6Ghz

Memory 64 GB ECC DDR4 64 GB ECC DDR4
Storage 2x1 TB HDD 7.2k rpm NAS
Network gigabit ethernet gigabit ethernet
Operating
System

CentOS 7, Linux 4.2.0-
1.el7.elrepo.x86 64

CentOS 7, Linux 4.2.0-
1.el7.elrepo.x86 64

Hypervisor KVM, QEMU 1.5.3 KVM, QEMU 1.5.3

B. YCSB Client
The YCSB client VMs are provisioned with the details

shown Table III. Observing the resource consumption of
YCSB has shown that, with respect to the VM flavour, the
mainly consumed resource is CPU whereas memory and disk
I/O are negligible. Hence, the provisioned VM flavour is
focused on CPU. For the YCSB tool we use our fork14 of
the original YCSB version 0.8 with an updated version of
the Couchbase DB interface from 1.4.10 to 2.2.2. Additional
details of YCSB configuration are shown in Table IV.

TABLE III: YCSB VM Details

VM Detail Configuration
CPU 4 vCores
Memory 2 GB
Storage 10 GB
Network gigabit ethernet
Operating System Ubuntu Server 14.04.2 AMD64

LTS 3.13.0-59-generic x86 64
YCSB Detail Configuration
Version 0.8
of records 1.000.000
record size 1 KB
of operations (for scala-
bility scenario)

10.000.000

of operations (for elas-
ticity scenario)

500.000.000

of threads 20

C. Database Node
Each database VM is provisioned with the details shown in

Table IV. The size of the database VMs represents a typical
commodity hardware configuration15 and is selected to fit the

14https://github.com/seybi87/YCSB/releases/tag/scalability-evaluation
15https://docs.mongodb.com/manual/administration/production-

notes/#hardware-considerations

required system requirements of all the selected databases.
The specific version of the evaluated databases is shown

in the second part of Table IV. In order to guarantee a
fair comparison we use each database in its vanilla version
without custom optimisations. We only configure the available
memory for each database to 6 GB to reserve 2 GB for
the operating system. Each database is configured with the
minimum replication configuration.

TABLE IV: DB VM Details

VM Detail Configuration
CPU 4 vCores
Memory 8GB
Storage 80GB
Network gigabit ethernet
Operating System Ubuntu Server 14.04.2 AMD64

LTS 3.13.0-59-generic x86 64
DB Detail Configuration
Apache Cassandra version 2.2.6
Couchbase version 4.0.0 community edition
MongoDB version 3.2.7

VI. EVALUATION RESULTS

In this section, we present our scalability and elasticity
evaluation results. For the scalability evaluation, we show the
throughput and latency development for static cluster sizes.
For the elasticity evaluation, a dynamic cluster is scaled at run-
time under continuous load and the throughput development
is presented as time series for each database.

A. Calibrating the Scalability Scenario

Initial evaluation results show that three YCSB clients
overload a MongoDB 1-node cluster, so that two clients is the
maximum possible amount of clients. At the same time, using
only one client barely loads Couchbase. Hence, we decide
to use two YCSB clients for the entire scalability scenario.
For any kind of 1-node and 2-node clusters, all database
nodes stay within the load boundaries (cf. Section IV-D).
The calibration results for 8-node cluster show that 2 YCSB
clients are not sufficient to saturate Couchbase and Cassandra.
Hence, all evaluations of the 8-node clusters are performed
with 2 and 4 YCSB clients to ensure saturation and comparable
results. Regarding the distribution of the different MongoDB
nodes our calibration efforts show that the shard services
create the main load. The mongos and config services
each only generate a negligible load of <10% CPU utilisation.
Therefore, for the 1-node cluster, we run all three MongoDB
services in the same virtual machine. For larger clusters, we
only deploy new shard services. This setup still allows a fair
evaluation against the other databases

During the calibration, we execute the read-heavy and read-
update workloads 10 times in a 2-node Couchbase cluster
environment. We encounter a standard deviation of the average
throughput of <500 operations per second. This leads us to
the conclusion that our private cloud environment causes only
little noise and provides stable results. In consequence, we

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 4 8

T
hr

ou
gh

pu
t [

O
ps

/s
ec

]

Nodes

Couchbase
Cassandra
MongoDB

(a) Throughput Read-Heavy Workload

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 4 8

T
hr

ou
gh

pu
t [

O
ps

/s
ec

]

Nodes

Couchbase
Cassandra
MongoDB

(b) Throughput Read-Update Workload

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8

L
at

en
cy

 [
m

s]

Nodes

Couchbase
Cassandra
MongoDB

(c) Latency Read-Heavy Workload

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8

L
at

en
cy

 [
m

s]

Nodes

Couchbase
Cassandra
MongoDB

(d) Latency Read-Update Workload

Fig. 5: Troughput and latency results of different workloads.

consider a repetition factor of 3 for all scalability evaluations
as sufficient.

In order to exclude the network as possible bottleneck
for the evaluation results, we monitor the YCSB clients and
database nodes using Ganglia16. As depicted in Fig. 6 the
network load on a single YCSB client with 20 threads reaches
at most ≈600 KB/sec (in/out combined). Accordingly, in worst
case (cf. Table V), we can expect ≈3.0MB/s at a database
node, which is far below the maximum bandwidth provided by
our 1Gb network and allows us to neglect network saturation.

Fig. 6: YCSB Network Load

16http://ganglia.info/

B. Results of the Scalability Evaluation Scenario
In the following, we present the results of the scalability

evaluation scenario. For both workloads we describe the mea-
sured throughput and latency per database and with growing
cluster sizes. The dashed lines show the additional results by
using 4 YCSB clients in an 8-node cluster (cf. Section VI-A).

1) Read-Heavy Workload: Fig. 5a depicts the throughput
achieved by all databases in all cluster configurations. It is
noticeable that Couchbase has the highest overall throughput
for all cluster sizes. It is capable of increasing throughput by
17% when going from a 1-node to a 4-node cluster. Increasing
the cluster size from 4 to 8 nodes decreases the throughput by
4% because 2 YCSB clients are not sufficient to saturate the 8-
node cluster. By using 4 YCSB clients instead the throughput
again increases by 29%.

Cassandra achieves the lowest throughput in a single node
cluster, but outperforms MongoDB for the 2-node and 4-
node cluster due to a throughput increase of 26%. Similar
to Couchbase, the throughput decreases by 1% in an 8-node
cluster with 2 YCSB clients but increases by 16% using 4
YCSB clients.

In contrast to its competitors, MongoDB performs better as
single node than in a cluster. Its throughput decreases by 58%
when moving from a 1-node to a 4-node cluster. For an 8-node

cluster throughput increases by 18% for 2 YCSB clients and
by 26% for 4 YCSB clients compared to a 4-node cluster.

The latency results shown in Fig. 5c unveil a similar
ranking as for the throughput. Couchbase achieves the lowest
latency for all cluster sizes. Increasing its cluster to four nodes
decreases latency by 17% compared to a 1-node configuration.
In a 8-node cluster the latency remains constant for 2 YCSB
and increases for 4 YCSB clients by 44% compared to a 4-
node cluster.

Cassandra benefits the most from increasing the cluster size
as a 35% latency decrease from one to 4 nodes is achieved.
For eight nodes the latency increases by 3% for 2 clients and
by 73% for 4 clients.

MongoDB reaches the highest latency for all cluster sizes
and even with an increasing cluster size the latency increases
by 100% from one to four nodes. In an 8-node cluster the
latency increases by 35% for two and by 49% for four YCSB
clients.

2) Read-Update Workload: For the read-update workload
we measure similar trends as for the read-heavy results:
Couchbase achieves the highest overall throughput and the
lowest latency. Throughput is summarised in Fig. 5b, latency
in Fig. 5d: Couchbase increases its throughput by 22% from a
1-node to a 4-node cluster and by 36% for an 8-node cluster
with 4 YCSB clients. Cassandra again reaches the highest
throughput increase of 38% from 1-4 nodes and 12% in an
8-node cluster with 4 YCSB clients. MongoDB’s throughput
decreases by 27% from 1-4 nodes and increases by 28% (2
YCSB clients) and by 33% (4 YCSB clients) in an 8-node
cluster. Couchbase achieves a latency decrease of 20% when
increasing the cluster size from one to four nodes. For 8 nodes
and 2 YCSB clients the latency remains constant and for 4
YCSB clients it increases by 45%. For Cassandra we measure
a 37% latency decrease from 1-4 nodes and for 8 nodes an
increase of 10% for 2 YCSB clients and 78% for 4 YCSB
clients. The latency of MongoDB increases by 38% from 1-4
nodes and decreases in an 8-node cluster with 2 YCSB clients
by 22%. With 4 YCSB clients the latency increases by 49%.

C. Calibrating the Elasticity Scenario

As the elasticity evaluation bases on an overloaded 1-
node database cluster (cf. Section IV-E) the required number
of YCSB clients has to be determined for each database
separately. For that purpose, for each database we proceed
as follows: Starting with three clients (cf.

Section VI-A), we issue load on a 1-node cluster of that
database, while monitoring CPU usage and throughput. Then,
we increase the number of clients until the metrics show a
constant overload situation. The resulting number of required
YCSB clients is summarised in Table V.

For the distribution of MongoDB services, we use the same
approach as in the scalability scenario.

The calibration results show that a benchmark run-time of
15 minutes is sufficient time for all the databases to redistribute
the data and balance the load across the nodes. Therefore, each
benchmark run is manually terminated after 15 minutes.

TABLE V: Number of clients used for the elasticity scenario.

Cassandra Couchbase MongoDB
Clients 4 5 3

D. Results for the Elasticity Evaluation Scenario

The evaluation of the elastic cluster is performed with the
read-update workload and a each database is previously loaded
with 1,000,000 records.

1) Apache Cassandra: For Cassandra our experimental
results show that four YCSB clients are required to create an
overload situation for a single node. The four YCSB clients
are started in 30s gaps to ensure a warm-up time for each
YCSB client. We continuously monitor the throughput of the
Cassandra instance and the CPU utilisation of the hosting VM.
The throughput graph of Cassandra’s throughput is depicted
in Fig. 7a as time series. All four YCSB are running after 90s
and produce the overload situation with a dropping throughput
at 110s. In addition the CPU utilisation reaches >90% at this
point. At 120s a new Cassandra node is added to the cluster
and the data is getting rebalanced. As depicted in Fig. 7a the
throughput stops dropping after rebalancing the data but the
2-node cluster does not reach the throughput of the one node
cluster in the beginning of the benchmark.

2) Couchbase: Our experimental results have shown that
five YCSB Clients are required to overload one Couchbase
node. Again, the YCSB clients are started in 30s gaps and
all clients are started after 120s. As depicted in Fig. 7b the
throughput starts dropping at 130s and a second node is added
at 150s. After rebalancing the data, the two node cluster
increases the throughput significantly and compared to the
initial one node cluster

3) MongoDB: For overloading a single MongoDB node,
three YCSB clients are required. The three clients are started
in 30s gaps and produce an overload situation for the Mon-
goDB instance at 100s as depicted in Fig. 7c. By adding a
second node at 120s the overload situation is balanced as the
throughput increases but only slightly above the throughput of
the initial one node cluster.

VII. DISCUSSION

The main insight from our evaluation is that more instances
does not necessarily mean better performance. Indeed, in the
case of MongoDB more instances decreases throughput and
increases latency.

This section discusses the results from a high level view.
It clarifies the impact of the evaluation methodology on
the results received and draws conclusions. It also addresses
impact on the design of distributed architectures.

A. Interpretation of Scalability Results

Key to the interpretation of the scalability evaluation is
the fact that for all three databases, two clients were used
(the four clients results in the 8-node cluster are discussed at
the end). Both clients use 20 threads leading to a maximum

 0

 5000

 10000

 15000

 20000

 25000

 0 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 330

 360

 390

 420

 450

 480

 510

 540

 570

 600

 630

 660

 690

 720

 750

 780

 810

 840

 870

 900

added 2nd node

T
hr

ou
gh

pu
t [

O
ps

/s
ec

]

Runtime [s]

(a) Cassandra

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 100 200 300 400 500 600 700 800 900

added 2nd node

T
hr

ou
gh

pu
t [

O
ps

/s
ec

]

Runtime [s]

(b) Couchbase

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 330

 360

 390

 420

 450

 480

 510

 540

 570

 600

 630

 660

 690

 720

 750

 780

 810

 840

 870

 900

added 2nd node

T
hr

ou
gh

pu
t [

O
ps

/s
ec

]

Runtime [s]

(c) MongoDB

Fig. 7: Elasticity benchmark results: adding an additional node
while the database system is under load.

parallelism of 40 requests. This number was selected such that
none of the databases was overloaded in a single node set-
up. In consequence, for the scalability evaluation, no database
instance was overloaded, and the performance metrics of the
databases are directly comparable.

In an ideal case going from one to two nodes, throughput
would double and going from one to four nodes it would
quadruple (cf. Section II-A). The fact that this has not hap-

pened could have three causes: (i) the clients or the network are
maximally utilised and so that clients cannot issue new queries
and updates faster (we excluded this by carefully calibrating
the number of clients and checking the network bandwidth).
(ii) The database instances are overloaded (this is prevented
by the set-up). (iii) Queuing at the databases occurs.

In case a single database instance can only serve n < 40
parallel requests this will cause the remaining requests to
be queued. As each client thread issues only one request at
a time, this load will cause the system to adjust and lead
to an (on average) constant queue size. Adding a second
database node to the cluster will decrease the load on the
first one, as data is sharded between the two nodes. Due
to using a zipfian distribution for the access pattern, an
unequal distribution of load amongst nodes could be expected.
As all evaluated databases apply hash-based sharding in the
used default configuration, the prevention of hot spot nodes
is addressed at database level. Yet, even with an uniform
load distribution, throughput would only double when each
database instance could process n ≥ 20 requests at the same
time. As we do not see a large increase in throughput for any
of the databases (even not for 4-node clusters), we conclude
that the parallelism for each database is n < 10.

Looking at the results for the 8-node cluster, the throughput
decrease compared to a 4-node cluster might be surprising in
the first place. Yet, it leads us to the assumption of a too
large cluster size in respect to the issued load by two YCSB
clients. Hence, an overhead of inter-cluster communication is
caused by request routing as the results show no further latency
decrease compared to a 4-node cluster. Increasing the load
by using four YCSB clients confirms our assumption as the
clusters are saturated and the throughput increases in respect
to two YCSB clients. Yet, the increased load also increases
the latency significantly for all three databases.

This analysis is accurate for Couchbase, which does not
apply any replication strategy out of the box. The impact
of their lazy (i.e. asynchronous) replication on throughput
behaviour for Cassandra and MongoDB remains unclear. Also,
the routing strategy of the respective database can impact
the throughput (as well as the latency): while Couchbase
and Cassandra route messages through the database nodes in
a peer-to-peer manner, MongoDB uses a centralised routing
service. Even if this service does not impose measurable load
on a virtual machine, the fact that all messages from the
clients have to proceed through one place, may have significant
impact on the drop of throughput and increase in latency
when adding more MongoDB instances. A reason may be
that MongoDB relies on smart indexes for achieving high
throughput; YCSB does only use simple indexing to provide
comparable results.

B. Interpretation of Elasticity Results

The elasticity results raise even more questions than the
results of the scalability evaluation. Only Couchbase exposes
a behaviour a naive observer would expect. Adding a second
node first takes some time for synchronisation, which also

causes a drop in throughput. After a while the system is fully
operational again and is able to serve more requests per time
unit than before.

In contrast to Couchbase, Cassandra requires more time to
synchronise the new node with the existing cluster. While the
drop in throughput (caused by the overload situation) stops
at some point, Cassandra will not recover from the decrease,
but continue performing at a lower average throughput than at
peak time. This is remarkable as the 2-cluster throughput for
the elasticity scenario stays below the 2-cluster throughput for
the scalability. Here, the only difference is that the elasticity
evaluation uses four clients instead of two for the scalability
evaluation. Similar holds for MongoDB where the throughput
does not change at all after scaling out. For this database, also
the reason for the periodic drops in throughput raise questions.
While we assume that garbage collection, internal compaction
processes or similar mechanisms cause them, this need to be
verified.

C. Looking Ahead: Refining the Methodology

The scalability and elasticity evaluation provided throughout
this paper has led to several surprising results. We on purpose
go for a purely observative approach describing how the
systems behaves. While we had not expected to achieve
near linear performance when scaling out the databases—
in particular not without tweaking their configurations—it
is astonishing to see that after more than four decades of
distributed systems research, the use of sharding can still lead
to decreasing throughput and increasing latency.

The results gained here seem to indicate that we should
move to a more analytical approach in order to understand
why the platforms behave as they do. Nevertheless, we assume
that such an approach is less lasting, as it is vulnerable to
version upgrades and other changes to the algorithms used by
the database implementation.

Instead, we suggest to take the work here as a starting point
to develop an evaluation framework that is able to repeatedly
and reliably characterise the scaling and elasticity behaviour
of distributed databases. In order to do that, we shall refine our
methodology. This allows us to isolate different triggers on the
behaviour of the database (e.g. more load vs. higher replication
degree or the relation between throughput and latency). In
the long run, this will have to involve the collection large
amounts of monitoring data and the execution of advanced
data analytics.

VIII. RELATED WORK

DBaaS providers typically deploy a distributed database
system on IaaS resources to offer a elastic database service
on demand. One of the first DBaaS are offered by Amazon’s
DynamoDB17 or Google’s BigTable18 which use proprietary
NoSQL databases. With the expansion of NoSQL, emerg-
ing open source NoSQL databases are being considered as

17https://aws.amazon.com/dynamodb/?nc1=h ls
18https://cloud.google.com/bigtable/

DBaaS storage backend, such as mlab19 using MongoDB or
OpenStack Trove20 using Cassandra or Couchbase. Hence,
performance evaluation of distributed databases is an ongoing
research area.

Due to the evolution of distributed databases and cloud com-
puting, new benchmarking tools are required with the focus
on scalable and elastic databases. Released in 2010, YCSB [6]
became the de facto standard benchmarking tool for distributed
databases. The original version was developed by Yahoo to
evaluate their column-oriented data store PNUTS [14] against
Cassandra and HBase and the relational MySQL Cluster. The
evaluation shows the scalability and elasticity results where
Cassandra and PNUTS achieve the best results. The evaluation
does not consider key-value and document-oriented data stores
or overloading the database explicitly.

Rabl et. al. [4] evaluate six distributed databases (key-value,
column-oriented and relational) in the light of storing moni-
toring data for application performance management (APM)
systems. They use YCSB as benchmarking tool, but apply
custom workloads reflecting typical APM workloads. Their
evaluation focuses on two kind of workloads, memory-bound,
i.e. records fitting completely in RAM and disk-bound, i.e.
records do not completely fit into RAM. The cloud context
is not considered as all evaluations are run on physical
infrastructure. The results show for both workload types that
Cassandra achieves the best scalability results while elasticity
is not evaluated.

Gandini et. al. [15] evaluate the performance of three
NoSQL databases (Cassandra, MongoDB and HBase) in the
cloud. They are using Amazon EC221 as evaluation environ-
ment. The evaluation focuses on scalability in relation to the
number of cores in a single-server setup and to the number of
nodes in a distributed setup. In addition, they analyse how the
replication degree influences performance. Their results show
that Cassandra as well as MongoDB increase their throughput
for static cluster sizes, whereas an increasing replication de-
gree will decrease the throughput for both databases. However,
the benchmarking methodology misses technical details like
used database versions and YCSB version, which harms the
comparison with our results.

Klein et al. [16] evaluate Cassandra, MongoDB and Riak in
the light of a health care use case with a customised version
of YCSB. The evaluation focuses on the performance and
scalability with respect to differently strict consistency levels.
Their results attest Cassandra the highest scalability, whereas
similar to our results MongoDB does not scale.

Konstantinou et al. [17] analyse the distributed databases
Cassandra, Hbase and Riak in the context of their TIRAMOLA
framework for elastic NoSQL cluster provisioning. Their
evaluation focuses on the cost in terms of time for scaling
a database cluster and the optimal thresholds for execut-
ing a scaling action. Scalability and elasticity of distributed

19https://mlab.com/
20https://wiki.openstack.org/wiki/Trove
21http://aws.amazon.com/ec2

databases in respect to context of cloud computing is con-
sidered by [6] however without performing the evaluation in
a fully transparent cloud environment. The elasticity aspect
is considered by scaling a cluster at run-time, but without
creating an explicit overload situation in the database.

IX. CONCLUSION AND FUTURE WORK

Cloud computing provides “unlimited” resources, which
can be allocated on demand. Based on these prerequi-
sites, distributed databases gained significant focus in recent
years. Whereas traditional relational databases offer distributed
derivates, a new class of distributed databases emerged,
NoSQL databases. By promising horizontal scalability and
elasticity, NoSQL databases are commonly used for the cloud
service model Database as a Service (DBaaS).

In this paper, we present thoroughly evaluate the scalability
and elasticity of the common NoSQL databases Cassandra,
Couchbase and MongoDB with respect to DBaaS environ-
ment. Therefore, we define two evaluation scenarios, one for
scalability and one for elasticity. The scalability evaluation
comprises different static cluster sizes to determine the scal-
ability with growing cluster sizes. The elasticity is evaluated
by overloading a database and scaling-out the database at run-
time to resolve the overload situation.

The scalability evaluation results show significant differ-
ences between the evaluated databases. Whereas Couchbase
achieves the highest throughput and lowest latency results,
Cassandra benefits the most from larger cluster sizes in con-
trast to MongoDB where a distributed setup even harms the
performance. The elasticity results state that only Couchbase
is able to resolve an overload situation at run-time in contrast
to Cassandra and MongoDB.

The discussion concludes with the main outcome of the
evaluation results: more instances does not necessarily mean
better performance. An interpretation of the results is provided
in greater depth by discussing possible bottlenecks on database
and evaluation environment side. Whereas only Couchbase
provides expected results for scalability and elasticity, the
results of Cassandra and MongoDB raise additional questions
for deeper evaluations. Therefore, the future work will focus
on a deeper analysis of the gathered results by analysing the
database distribution by including extensive resource moni-
toring and advanced data mining techniques. In addition, the
evaluation of scalability and elasticity in larger scale clusters
will also be targeted as well as the evaluation of distributed
databases running on microservices platforms.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EC’s Framework Programme FP7/2007-2013 under
grant agreement number 317715 (PaaSage) and the EC’s
Framework Programme HORIZON 2020 (ICT-07-2014) under
grant agreement number 644690 (CloudSocket). In addition,
we thank Alexander Rasputin for assistance in performing the
evaluation.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.
[2] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond iaas

and paas: An extended cloud taxonomy for computation, storage and
networking,” in Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing. IEEE Computer Society,
2013, pp. 75–82.

[3] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud com-
puting: What it is, and what it is not,” in Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 13), 2013,
pp. 23–27.

[4] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A.
Jacobsen, and S. Mankovskii, “Solving big data challenges for enter-
prise application performance management,” Proceedings of the VLDB
Endowment, vol. 5, no. 12, pp. 1724–1735, 2012.

[5] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore, “Database
scalability, elasticity, and autonomy in the cloud,” in International
Conference on Database Systems for Advanced Applications. Springer,
2011, pp. 2–15.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

[7] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[8] R. Cattell, “Scalable sql and nosql data stores,” Acm Sigmod Record,
vol. 39, no. 4, pp. 12–27, 2011.

[9] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[10] D. Nelubin and B. Engber, “Nosql failover characteristics: Aerospike,
cassandra, couchbase, mongodb,” Thumbtack Technology, Inc., White
Paper, 2013.

[11] ——, “Ultra-high performance nosql benchmarking: Analyzing dura-
bility and performance tradeoffs,” Thumbtack Technology, Inc., White
Paper, 2013.

[12] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel,
“Performance comparison of middleware architectures for generating
dynamic web content,” in Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware. Springer-Verlag New York,
Inc., 2003, pp. 242–261.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” in INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 1. IEEE, 1999, pp.
126–134.

[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1277–1288, 2008.

[15] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla,
“Performance evaluation of nosql databases,” in European Workshop on
Performance Engineering. Springer, 2014, pp. 16–29.

[16] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser, “Per-
formance evaluation of nosql databases: a case study,” in Proceedings of
the 1st Workshop on Performance Analysis of Big Data Systems. ACM,
2015, pp. 5–10.

[17] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos, and
N. Koziris, “On the elasticity of nosql databases over cloud management
platforms,” in Proceedings of the 20th ACM international conference on
Information and knowledge management. ACM, 2011, pp. 2385–2388.

Chapter 16

[core9] Towards a Framework for Orchestrated
Distributed Database Evaluation in the Cloud

This article is published as follows:

Daniel Seybold. ”Towards a Framework for Orchestrated Distributed Database Evaluation in the Cloud”, 18th
Doctoral Symposium of the 18th International Middleware Conference (MIDDLEWARE), published 2017, ACM,
DOI: https://doi.org/10.1145/3152688.3152693

Reprinted with permission from ACM.

227

https://doi.org/10.1145/3152688.3152693

Towards a Framework for Orchestrated Distributed Database
Evaluation in the Cloud

Daniel Seybold
Institute of Information Resource Management

Ulm University
Ulm, Germany

daniel.seybold@uni-ulm.de

Abstract
The selection and operation of a distributed database management
system (DDBMS) in the cloud is a challenging task as support-
ive evaluation frameworks miss orchestrated evaluation scenarios,
hindering comparable and reproducible evaluations for heteroge-
neous cloud resources. We propose a novel evaluation approach
that supports orchestrated evaluation scenarios for scalability, elas-
ticity and availability by exploiting cloud resources. We highlight
the challenges in evaluating DDBMSs in the cloud and introduce
a cloud-centric framework for orchestrated DDBMS evaluation,
enabling reproducible evaluations and significant rating indices.

CCS Concepts • Information systems → Database perfor-
mance evaluation;

Keywords benchmarking, distributed database, cloud, NoSQL,
NewSQL, orchestration

1 Introduction
In the last decade, database management systems (DBMSs) have
evolved by focusing as well on distributed database management
systems (DDBMSs) as evolving application domains such as the
Web or Big Data impose new challenges to Online Transaction
Processing (OLTP) [13]. Thus, a plethora of new DDBMSs have
appeared on the DBMS landscape, which can be classified into
NoSQL and NewSQL. These DDBMSs are built on a shared-nothing
architecture and promise to cater for non-functional requirements
such as scalability, elasticity, availability by running on commodity
hardware or even on cloud resources. As cloud computing offers on-
demand resource provisioning, the cloud seems to be the preferable
solution to operate DDBMSs.

Yet, with the vast number of available DDBMSs and the hetero-
geneous cloud resource offerings, the selection of a DDBMS and
its operation in the cloud becomes a challenging task. Assuming a
DDBMS is required to continuously store social media data based
on actual events. The data is read from a varying amount of users
and periodically queried by an analytics engine. Hence, the DDBMS
needs to scale horizontally in case of growing workloads and pro-
vide elasticity to handle sudden workload peaks, created by social
media events and the resulting user requests. Cloud resources are
used to run the DDBMS, ensuring the dynamic resource allocation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware ’17, Las Vegas, NV, USA
© 2017 ACM. 978-1-4503-5199-7/17/12. . . $15.00
DOI: 10.1145/3152688.3152693

on demand. Yet, as cloud resources can fail, the DDBMS needs to
provide availability in case of cloud resource failures. Evaluating
these requirements of existing DDBMS is a common approach to
guide the DDBMS selection process. Yet, current evaluation frame-
works (EFs) do not explicitly consider the usage of heterogeneous
cloud resources and lack the support for orchestrated evaluation
scenarios [11] with respect to scalability, elasticity and availability.

2 Problem Statement
Our research targets the enhancement of the DDBMS selection
by providing a cloud-centric EF for the orchestrated scalability,
elasticity and availability evaluation. In the scope of our research,
we highlight the following key challenges:

Cloud Resource Characteristics needs to be considered by
the EF as cloud resources tend to become more heteroge-
neous, from virtual machines to container technologies,
various storage technologies and resource locality options.
Thus, our EF will be aware of these characteristics and en-
ables the access to cloud resources in a unified way, easing
comprehensive, significant and reproducible results.

Orchestrated Evaluation Scenarios enable the evaluation
of elasticity and availability in a comparable and repro-
ducible way, by adapting the DDBMS topology bymanaging
cloud resources. Consequently, predefined evaluation sce-
narios can be applied to generic DDBMS and cloud resource
templates (CRTs) that will be executed by the EF.

Workload Domains such as OLTP or Hybrid Transaction
and Analytical Processing (HTAP), are required for realistic
evaluation scenarios. Thus, our EF will support domain-
specific workload creation, based on synthetic and trace-
based workloads.

Rating Indices on a DDBMS basis need to be computed based
on the raw evaluation results to ease the DDBMS selection.
While for established features such as performance, rating
indices are available, comparable rating indices as elasticity
and availability still need to be defined.

3 Related Work
One of the main drivers of non-functional DBMS feature evalua-
tion is the Transaction Processing Performance Council (TPC)1,
providing EFs for the OLTP domain. Yet, TPC rather focuses on the
performance of relational DBMS than on DDBMSs features such as
elasticity, availability or the usage of cloud resources. DDBMSs cen-
tric EFs such as the Yahoo Cloud Serving Benchmark (YCSB) [5] and
its extensions YCSB++ [10] and YCSB+T [6] support the evaluation
of scalability and consistency based on synthetic workloads. Ad-
vanced workload domains are addressed by BG [2], LinkBench [1]

1http://www.tpc.org/default.asp

13

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Daniel Seybold

and OLTP-Bench [7], yet without the explicit consideration of cloud
resources. Evaluating the scalability and elasticity of DDBMSs by
using cloud resources is presented by [9]. Yet, the evaluation relies
on synthetic workloads and does not consider multi-cloud scenarios.
A first attempt to evaluate availability is presented by UPB [8] by
measuring the performance impact in case of node failures, while
advanced scenarios including cloud resource failures, DDBMS fail-
over and recovery capabilities are not considered.

While existing EFs rely on static evaluation scenarios, which
either focus on advanced workloads for evaluating performance
or using synthetic workloads without considering heterogeneous
cloud resource configurations, we propose a novel EF enabling the
orchestrated evaluation of scalability, elasticity and availability for
DDBMSs based on heterogeneous cloud resources and multiple
workload types.

4 Approach
Our initial DDBMSs evaluation addresses scalability and elasticity
of DDBMSs in the cloud [12]. Our results show significant dif-
ferences with respect to elasticity and the need for orchestrated
DDBMS evaluation in order to provide adaptive and reproducible
evaluation scenarios. Consequently, we analyze existing EFs with
the focus on their evaluation scenarios and their consideration of
cloud resources [11]. As existing EFs do not yet support orches-
trated evaluation scenarios, elasticity and availability evaluation
lacks dedicated support. In addition, the impact of heterogeneous
cloud resource is not addressed by existing EFs.

Hence, we propose a novel EF, enabling orchestrated evaluation
scenarios with the focus on scalability, elasticity and availability
of DDBMSs in the cloud. Its architecture is depicted in Figure 1.
The evaluation API enables the specification of evaluation scenar-
ios for scalability, elasticity and availability. Each evaluation sce-
nario comprises the properties workload (synthetic/OLTP/HTAP);
a CRT defining providers, locations and resource dimensions; and
a DDBMS template provided by the DDBMS/CRT repository. The
DDBMS template exposes a unified set of non-functional configura-
tion options to ensure comparable evaluation of different DDBMSs.
Each evaluation scenario can specify adaptation actions for scal-
ability, elasticity and availability for evaluating their correlation
with cost-, performance- or locality-optimized CRTs. The execution
of the specified evaluation scenario is enabled by the orchestrator
component, which is realized by a cloud orchestration tool [3]. The
orchestrator unifies the cloud resources access, provisions the re-
quired cloud resources and orchestrates the DDBMS, the workload
and the DDBMS adaptations at run-time. During the evaluation,
system and DDBMS specific monitoring data is collected and stored
by the evaluation monitor. Based on this monitoring data, the or-
chestrator is able to adapt the DDBMS automatically, according
to the specified adaption actions of the evaluation scenario. The
evaluation-specific metrics are collected by the measurement collec-
tor and retrieved by the rating index processor to compute significant
rating indices.

5 Evaluation
The evaluation will follow a two-dimensional approach. The first
dimension will evaluate the framework’s features against distin-
guished guidelines of DBMS evaluation [4]. The second dimension
comprises industry-driven evaluation scenarios for >= 5 DDBMSs

ev
al

ua
tio

n
A

PI

workload
rep.

measurement
collector

evaluation scenario

evaluation
monitorrating index processor

DDBMS
rep.

orchestrator

data flowcontrol flow

CRT rep.

DDBMS

workload

Figure 1. High-level evaluation framework architecture

based on cost-, locality and performance-optimized CRTs. The re-
sulting scalability, elasticity and availability insights are analyzed
towards their significance in the DDBMS selection process.

6 Conclusion
The vast DDBMS landscape requires new evaluation framework
concepts, considering heterogeneous cloud resources and the or-
chestration of the evaluation, including the workload generation
and the DDBMS deployment and adaptation. Thus, we propose a
novel evaluation framework for the orchestrated DDBMS evalua-
tion of scalability, elasticity and availability by explicitly addressing
the usage of cloud resources.

7 Acknowledgements
This work is done under the supervision of Prof. Dr.-Ing. Stefan
Wesner. The author would like to thank Dr. Jörg Domaschka for his
support. The research leading to these results has received funding
from the EC’s Framework Programme HORIZON 2020 under grant
agreement number 644690 (CloudSocket) and 731664 (MELODIC).

References
[1] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. 2013. LinkBench: a database benchmark based on the Facebook
social graph. In ACM SIGMOD.

[2] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A Benchmark to
Evaluate Interactive Social Networking Actions.. In CIDR.

[3] Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christo-
pher B Hauser, and Jörg Domaschka. 2015. Cloud Orchestration Features: Are
Tools Fit for Purpose?. In IEEE/ACM UCC.

[4] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Sherif Sakr, and Raghunath
Nambiar. 2014. Towards an extensible middleware for database benchmarking.
In TPCTC.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In ACM SoCC.

[6] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. 2014. YCSB+T:
Benchmarking web-scale transactional databases. In IEEE ICDEW.

[7] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. VLDB Endowment (2013).

[8] Alessandro Gustavo Fior, Jorge Augusto Meira, Eduardo Cunha de Almeida,
Ricardo Gonçalves Coelho, Marcos Didonet Del Fabro, and Yves Le Traon. 2013.
Under pressure benchmark for ddbms availability. JIDM (2013).

[9] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. 2014. Benchmarking scalabil-
ity and elasticity of distributed database systems. VLDB Endowment (2014).

[10] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. 2011. YCSB++: benchmarking
and performance debugging advanced features in scalable table stores. In ACM
SoCC.

[11] Daniel Seybold and Jörg Domaschka. 2017. Is Distributed Database Evaluation
Cloud-Ready?. In ADBIS.

[12] Daniel Seybold, Nicolas Wagner, Benjamin Erb, and Jörg Domaschka. 2016. Is
elasticity of scalable databases a Myth?. In IEEE Big Data.

[13] Michael Stonebraker. 2012. Newsql: An alternative to nosql and old sql for new
oltp apps. Communications of the ACM. Retrieved (2012).

14

Chapter 17

[core10] The Impact of the Storage Tier: A Baseline
Performance Analysis of Containerized DBMS

This article is published as follows:

Material from: Daniel Seybold, Christopher B. Hauser, Georg Eisenhart, Simon Volpert, and Jörg Domaschka.
”The Impact of the Storage Tier: A Baseline Performance Analysis of Containerized DBMS”, 24th International
European Conference on Parallel and Distributed Computing (Euro-Par): Parallel Processing Workshops, pub-
lished 2018, Springer International Publishing, DOI: https://doi.org/10.1007/978-3-030-10549-5_8

Reprinted with permission from Springer Nature.

231

https://doi.org/10.1007/978-3-030-10549-5_8

The Impact of the Storage Tier:
A Baseline Performance Analysis

of Containerized DBMS

Daniel Seybold(B), Christopher B. Hauser, Georg Eisenhart,
Simon Volpert, and Jörg Domaschka

Institute of Information Resource Management, Ulm University, Ulm, Germany
{daniel.seybold,christopher.hauser,georg.eisenhart,

simon.volpert,joerg.domaschka}@uni-ulm.de

Abstract. Containers emerged as cloud resource offerings. While the
advantages of containers, such as easing the application deployment,
orchestration and adaptation, work well for stateless applications, the
feasibility of containerization of stateful applications, such as database
management system (DBMS), still remains unclear due to potential per-
formance overhead. The myriad of container operation models and stor-
age backends even raises the complexity of operating a containerized
DBMS. Here, we present an extensible evaluation methodology to iden-
tify performance overhead of a containerized DBMS by combining three
operational models and two storage backends. For each combination a
memory-bound and disk-bound workload is applied. The results show a
clear performance overhead for containerized DBMS on top of virtual
machines (VMs) compared to physical resources. Further, a container-
ized DBMS on top of VMs with different storage backends results in a
tolerable performance overhead. Building upon these baseline results, we
derive a set of open evaluation challenges for containerized DBMSs.

Keywords: Container · YCSB · Benchmarking · DBMS · MongoDB

1 Introduction

The raise of containers, containerization, and container orchestration [3] has a
great influence on the structure of distributed applications, and greatly eased
the operation of such systems by finally leveraging the realisation of continuous
deployment. Support for containers is offered beside traditional virtual machine
offerings by Amazon Elastic Container Service1 and OpenStack Magnum2.

Much of the success of containers is a consequence of the fact that they
enable a quick installation of pre-packaged software components, which is a pre-
requisite for handing overload (scale out), bug fixing (software upgrade), and

1 https://aws.amazon.com/ecs/.
2 https://wiki.openstack.org/wiki/Magnum.

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 93–105, 2019.
https://doi.org/10.1007/978-3-030-10549-5_8

94 D. Seybold et al.

replacing failed components (fault tolerance). All of these concepts work fine
for mostly stateless components such as load balancers, web and application
servers, message queues, and also caches. Yet, despite recent attention in the
field [2,14], it is currently unclear to what extent containerization is suited for
and beneficial to the operation of stateful applications. Database management
systems (DBMS) are an important representative of this type of applications
and a crucial part of Big Data and IoT applications.

While the containerization of DBMS particularly eases the usage of features
of modern DBMS such as horizontal scalability or high availability, at least two
challenges remain: (a) The general runtime overhead of containerized DBMS
is unknown. (b) The container eco-system offers a myriad of different storage
backends and their impacts on performance are also unclear.

Only with an answer to these baseline questions, it is beneficial to think
about more sophisticated questions such as placement of state and data migra-
tion. This paper is an initial step to identify further research and engineering
challenges with respect to containerized DBMS. Our contributions are as follows:
(i) We introduce three different operational models for DBMS ranging from bare
metal to containers in virtual machines. (ii) We analyse the landscape of storage
backends for containers and their pros and cons. (iii) For three operational mod-
els and two storage backends we evaluate the performance for the well known
MongoDB3 DBMS under various workloads. In contrast to related work, our
main focus is not on a performance comparison between containerized and vir-
tualised execution. (iv) Based on the outcome of the evaluation, we propose open
challenges for modelling and evaluating DBMS performance.

The remainder of this document is structured as follows: Sect. 2 discusses the
containerization of stateful applications. Section 3 defines the evaluation method-
ology, while Section 4 presents the evaluation environment. Section 5 discusses
the results and derives open evaluation challenges for containerized DBMS.
Section 6 presents related work, and Sect. 7 concludes.

2 Challenges for Containerization of Stateful Applications

Containerization in the context of cloud computing is besides hardware virtual-
ization for virtual machines (VMs) so called operating-system (OS) virtualiza-
tion for containers. In hardware virtualization a hypervisor manages the resource
allocation and operating state of virtual machines. OS-Virtualization uses oper-
ating system features to create lightweight isolated environments, known as
containers. Container engines allocate resources and access to e.g. network-
ing and storage, the popular Docker4 engine. Orchestrators manage VMs or
containers across hypervisors or container engines [1,3,15]. These virtualization
approaches provide the different operational models depicted in Fig. 1(a) where
each operation model combines the benefits and drawbacks of the respective
virtualization approaches: Hardware virtualization securely isolates with fixed
3 https://www.mongodb.com/de.
4 https://www.docker.com.

The Impact of the Storage Tier 95

hardware virtualizationOS virtualization

Container Container VM VM

OS
virtualization

Container Container

OS OS OS

(a) Operational Models

physical
server

container

local

remote

host

VM

remote

local

HDD

local

SSD

NFS

iSCSI
S3

NFSiSCSI

mount storage option

(b) Storage Backends

Fig. 1. Containerization of stateful applications

hardware-oriented offers; OS virtualization provides less strong isolation with
soft hardware limits [12].

In multi-tier applications, stateful components require to store data tem-
porarily or even durably, i.e. by instantiating (distributed) DBMS or stateful
caches. Figure 1(b) lists potential storage backends for VMs and containers,
which leads to challenging decisions when deploying stateful containers, espe-
cially in large-scale set-ups. Challenges in this field include (i) performance
aspects such as throughput and latency, (ii) support for scalability, i.e. consid-
ering parallel read/write access, and (iii) failure strategies and recovery mecha-
nisms. Since VMs and containers isolate customers to share infrastructure, per-
formance interferences may occur whenever resources (e.g. storage) are utilised,
which are not directly under control of the container engine and the underlying
kernel.

The focus of our work evaluates the performance aspect of containerized
DBMS with respect to different storage backends for containerized DBMS on
physical hardware over DBMS in VMs to containerized DBMS on top of VMs.
The performance and runtime overhead of these approaches are evaluated in the
following.

3 Evaluation Methodology

In this section, we define an extensible evaluation methodology for the iden-
tification of potential performance overhead of common operation models for
containerized DBMS. In the following, the methodology is defined on a concep-
tual level, while Sect. 4 describes the technical implementation.

96 D. Seybold et al.

3.1 System Architecture

In order to provide a concise analysis of the potential performance overhead of
containerized DBMS in the cloud, we define an extensible system architecture,
which comprises three common operational models for DBMS, highlighted in
the grey boxes in Fig. 1(a). Each operational model is defined by its virtualisa-
tion, i.e. OS virtualisation for container, hypervisor for VMs or container on top
of VMs. Further, we apply two storage backends for the containerized DBMS,
namely local for using the container filesystem and host for using the hosting
resource filesystem as depicted in Fig. 1(b). For the VM-based DBMS, we apply
the local filesystem provided by the hypervisor. The resulting resource configu-
rations are depicted in Table 1. While remote storage is also a common storage
configurations for containerized DBMS, it is omitted in this work to reduce the
interference factor of the network and will be targeted in future evaluations. In
addition, we do not use any container-specific network virtualisation as the focus
relies on compute, memory and storage.

Table 1. Operational models and storage backends

ID Operational model [physical
(P), container (C), VM]

Storage backend [local (L),
host (H), remote (R)]

P-C-L Physical + container Local

P-C-H Physical + container Host

VM-L VM local

VM-C-L VM + container Local

VM-C-H VM + container Host

3.2 Workload and DBMS

In favour of emulating container-centric workloads, we define a write-heavy (w-h)
workload, emulating the storage of sensor data and a read-heavy (r-h) workload,
emulating a social media application with mostly reads and barely update oper-
ations. Both workloads are defined in a memory-bound version, i.e. the whole
data set fits into memory and a disk-bound version, i.e. the data is larger than
the available memory. As workload generator, we select the Yahoo Cloud Serving
Benchmark (YCSB) [4], which is widely used in performance studies on NoSQL
DBMSs. YCSB offers web-based workloads based on create, read, update and
delete (CRUD) operations, enabling the emulation of container-centric work-
loads [10].

As exemplary containerized DBMS, we select document-oriented MongoDB
for our evaluation as it is a NoSQL DBMS5. MongoDB emphasizes its operation
on virtualised resources6. Records are stored as documents within collections.
5 https://db-engines.com/de/ranking.
6 https://www.mongodb.com/containers-and-orchestration-explained.

The Impact of the Storage Tier 97

While MongoDB supports a distributed architecture, we select a single node
setup for our evaluation to reduce potential interference factors such as network
jitter or MongoDB specific data distribution algorithms. Yet, our methodol-
ogy can easily be extended for a distributed setup and also MongoDB can be
exchanged with any desired DBMS.

3.3 Metrics

For each evaluation scenario the following metrics are collected to analyse the
results: throughput in operations per seconds and latency per operation type in
µs. Each evaluation scenario is repeated ten times to ensure significant results
and for the all metrics the minimum, maximum, average and standard devia-
tion are provided. In addition, system metrics (CPU, RAM, I/O, network) are
monitored during each evaluation scenario for MongoDB and the YCSB to pro-
vide reliable results by ensuring that none of the system resources creates a
bottleneck.

3.4 Evaluation Execution

Our methodology comprises the memory-bound (mb) and disk-bound (db) eval-
uation scenarios. Each scenario starts with the w-h workload, followed by the
r-h workload. Each workload is executed against the resource combinations of
operational models and storage backends presented in Table 1. Hence, the exe-
cution (E) of the memory-bound and disk-bound scenarios can be expressed as
scenario:E(mb(wh,r-h)), e.g. P-C-L:E(mb(wh,r-h)) and P-C-L:E(db(w-h,r-h)).

CoreOS

OpenStack

YCSBDocker

VM

Container

P-C-L H-C-MVH-C-P
MongoDB

SSD

Docker

VM

Container

VM-C-L
MongoDB

VM

MongoDB

Docker

Container

VM-L

MongoDB

Docker

Container

MongoDB

VM

Fig. 2. Evaluation environment

98 D. Seybold et al.

4 Evaluation Environment

Based on the introduced evaluation methodology in Sect. 3, the following
presents its implementation for a private, OpenStack-based cloud7 (version Pike)
with full and isolated access to all physical and virtual resources. In order to
reduce potential resource interference and to guarantee reproducible results, we
use the availability zones feature of OpenStack to dedicate one physical host for
spawning the required VMs and containers. The resulting evaluation environ-
ment for the specified evaluation scenarios is depicted in Fig. 2. In the following,
the implementation details for the resources, MongoDB and YCSB are presented.

Table 2. Evaluation scenario resources

Resource Virtualisation OS Cores RAM FS Storage

Physical host - CoreOS 1632 16a 64GB Ext4 512GBb

MongoDB container Docker 18.04 Ubuntu 16.04 4 4GB overlay2 40GB

MongoDB VM KVM, QEMU 1.5.3 Ubuntu 16.04 4 4GB Ext4 40GB

YCSB VM KVM, QEMU 1.5.3 Ubuntu 16.04 4 2GB Ext4 10GB
a 2x Intel Xeon E5-2630 v3 8-Core Haswell 2.4Ghz
b 2x 256GB SSD of type SAMSUNG MZ7WD240HAFV-00003

4.1 Resources

As depicted in Fig. 2, all containers and VMs are located on the same physical
host, which has enough resources for running the YCSB VM and the DBMSs
without resource interference (i.e. no overbooking). Further, this set-up only
uses the host-internal network interfaces and avoids the overhead of the Open-
Stack network service. Accordingly, all containers are configured to use the host
network interface via --network host. The available resources of the respective
physical host, container and VMs are described in Table 2. In order to ensure
comparable results, the container resources on the physical host (i.e. P-C-L and
P-C-H) are limited to 4 cores and 4 GB RAM. The containers on CoreOS use
the kernel version 4.14.19-coreos while the VM and container inside the VMs
use the kernel version 4.4.0-127-generic.

4.2 MongoDB and YCSB

The evaluation scenarios are based on a vanilla deployment of MongoDB and
the YCSB to ensure a baseline performance evaluation of MongoDB container-
ization. The relevant configurations for MongoDB and the YCSB are listed in
Table 3. Further, the YCSB operation distribution for the w-h workload are
100% write operations and for the r-h workload 95% read operations and 5%
update operations. Table 3 also highlights overall collection size of each workload

7 https://www.openstack.org/.

The Impact of the Storage Tier 99

Table 3. YCSB VM details

MongoDB configuration Value YCSB configuration Value

Version 3.6.3 (CE) Version 0.12a

Services 1×mongod Record size 1 KB

Storage engine WiredTiger # of records (memory-bound) 2.000.000

Replication off # of records (disk-bound) 10.000.000

of operations 10.000.000

of threads 20

Distribution Zipfian
a https://github.com/brianfrankcooper/YCSB/releases/tag/0.12.0

version as the number of records for the memory-bound version results in a 2
GB MongoDB collection, while the disk-bound version results in a 10 GB Mon-
goDB collection. The MongDB binding of YCSB is configured with the write
concern option8 w = 1 and j = false, i.e. write operations are acknowledged
by MongoDB after they are put into memory.

4.3 Portability and Reproducibility

The execution of each scenario is fully automated by utilizing ready to deploy
artifacts, which are together with the results publicly available9; their release as
open research data is currently under way. For the Docker images we make use
of the Docker native capabilities of building images based on Dockerfiles. The
VM images are generated by Packer10. Packer processes a Packerfile, which is
similar to a Dockerfile, but uses a multitude of different virtualization providers
to generate and store the image. In our case we are using OpenStack Glance11.
This approach enables fellow researchers to reproduce, validate and extend our
scenarios by changing the cloud provider or benchmark a different DBMS.

5 Results and Discussion

In the following, we present and discuss the results of the memory- and disk-
bound evaluation scenarios (cf. 1) based on defined metrics in Sect. 3.3.

5.1 Evaluation Results

The throughput results are depicted in Fig. 3 and latency results in the Fig. 4.
Each plot represents the results of the respective scenario, i.e. memory-bound

8 https://docs.mongodb.com/manual/reference/write-concern/.
9 https://github.com/omi-uulm/Containerized-DBMS-Evaluation.

10 https://packer.io.
11 https://docs.openstack.org/glance/pike/.

100 D. Seybold et al.

or disk-bound and the respective workload, i.e. w-h or r-h. For the latency plots
of the r-h workloads, the first bar of each operational model always represents
the read latency while the second bar represents the update latency. As remark,
the results reflect the best case operational models as the DBMS and the YCSB
are operated on the same, isolated physical host (cf. Sect. 4.1).

Fig. 3. Throughput results

The results shows a significant throughput and latency overhead for operat-
ing a DBMS on top of VMs instead of using physical hardware. These results
confirm previous performance studies of memory-bound workloads for former
Docker versions [5]. A novel insight is shown by the results for the DBMS oper-
ated in a container on VM the (VM-C-L,VM-C-H) as the performance only
decreases slightly compared to DBMS directly operated on VMs (VM-L), e.g.
VM-C-H achieves 6% less throughput than VM-L for the w-h workload and
13% for r-h of the disk-bound scenario. Hence, if VMs are the only available
resource, operating the DBMS in container on top of the VMs can be beneficial
to exploit container orchestrators or the soft resource limits to operate additional
containerized applications next to the DBMS on the same VM [12].

The second insight of the results is the performance overhead of the inter-
nal Overlay2 filesystem of Docker. The container on physical hardware with
the Overlay2 filesystem (P-C-L) shows significantly less throughput and higher
latencies compared to the container using the host filesystem (P-C-H). This
finding most clearly applies for the r-h workload of the disk-bound scenario

The Impact of the Storage Tier 101

(cf. Figs. 3(d) and 4(d)). The Overlay2 overhead is also present on container
running on VMs (VM-C-H) but to a lower extent.

Fig. 4. Latency results

5.2 Open Evaluation Challenges

The results of our baseline evaluation, show that containers are suitable to oper-
ate DBMS, even on top of VMs. Yet, the operational models reveal significant
performance deviations, also dependent on the memory- or disk-bound scenarios.
Hence, the selection of the operational model in conjunction with the storage
backend is a crucial decision for the DBMS operator, which has to be driven by
the available operational models, the targeted performance and the demand of
optional orchestration features.

Based on our methodology and the presented baseline results, we derive a set
of open evaluation challenges, which have to be addressed to drive the selection
process of the operational model for containerized DBMS: (i) The performance
of the presented operational models needs to be evaluated based on public cloud
offerings by considering additional hypervisors and containers with respect to
memory- and disk-bound DBMS workloads. (ii) The presented storage back-
ends require a dedicated evaluation with respect to different local and remote
container storage drivers. This also comprises local and remote block storage of
the host resource. (iii) As the DBMS performance deviation of the operational
models VM-L, VM-C-L, and VM-C-H are in a tolerable margin, the advantages

102 D. Seybold et al.

of VM-C-L and VM-C-H have to be analysed with respect to orchestration and
the co-location with suitable applications. (iv) The presented methodology needs
to be extended for additional DBMS to evaluate their containerization feasibility
and container orchestration features with respect to the scalability and elastic-
ity of distributed DBMS [11]. Further, container orchestration features for high
availability and migration of containerized DBMS need to be evaluated in the
context of the presented operational models and storage backends.

6 Related Work

With the increasing usage of containers besides VMs in cloud offerings, different
comparative analysis of their performance overhead and resource isolation capa-
bilities have been conducted. Moreover, the containerization of DBMS moved
into the focus, especially in combination with container orchestrators.

6.1 Performance Overhead and Resource Isolation

The performance overhead of VMs in contrast to Docker containers running
on physical hardware is evaluated by [5]. SysBench12 is used to compare the
throughput of MySQL running on VMs against containerized MySQL. The
results show that VMs cause a higher performance overhead as Docker contain-
ers for disk-intensive workloads. Further, the usage of the Docker AUFS storage
driver causes a higher performance overhead as the usage of Docker volumes.

A related performance comparison of KVM VMs, Docker and LXC containers
and a lightweight VM approach based on OSv13 is provided by [7]. The evaluation
is based on different resource-specific micro-benchmarks and the results accord
to [5] for the lower performance of VMs for disk-intensive workloads.

An analysis and evaluation of the Docker storage drivers with respect to
filesystem performance is presented by [13]. The results demonstrate that the
choice of the storage driver can influence the filesystem performance significantly
where the Btrfs storage driver achieves the best performance but less stability
as the other storage drivers.

The comparative analysis of the resource isolation capabilities of VMs and
containers is provided by [8,12,16]. While [12] apply resource-specific micro-
benchmarks, [8,16] use DBMS and respective DBMS workloads to evaluate the
resource capabilities. All of these evaluation indicate a stronger resource isolation
of VMs, especially for disk-bound workloads.

While existing performance evaluations focus either on micro-benchmarks or
apply DBMS only for the evaluation of the resource isolation, our evaluation
provides an evaluation across multiple operational model and storage backends.
In addition, the operation of container on top of VMs is emphasized by [12] but
so far no performance evaluation has considered this operational model.

12 https://github.com/akopytov/sysbench.
13 http://osv.io/.

The Impact of the Storage Tier 103

6.2 Containerization of DBMS

The containerization of DBMS in combination with container orchestrators
provides multiple adaptation actions to automate the operation of NoSQL
DBMSs [2]. Hereby, the orchestration features of Kubernetes are enhanced with
distributed DBMS-specific adaptation rules for proactive and low-cost adap-
tations to avoid the transfer of data between nodes. While container orches-
trators typically manage the disk storage internally, modifying the persistent
storage within container orchestrators is difficult and hinders their adoption
for DBMS [6]. Therefore, [6] present a persistent storage abstraction layer for
container orchestrators, which eases the usage of containerized DBMS across
different container orchestrators. Yet, the usage of container orchestrators and
their internal handling of persistent storage can introduce additional perfor-
mance overhead for DBMS. Hence, [14] analyse the performance overhead of
using remote storage for containerized DBMS within Kubernetes.

While the usage of containerized DBMS with container orchestrators eases
the automation of DBMS operation, there is potential performance overhead
added by the different handling of the persistent storage of the container orches-
trator. While, [14] provide a fist step into analysing this overhead for remote
storage, we provide a baseline evaluation for container local and host storage
backends. In addition, we apply a memory- and disk-bound workload to identify
the suitability of container for the respective DBMS workloads.

7 Conclusion and Future Work

The evolvement of container leads to a variety of new operational models for dis-
tributed applications in the cloud. While containers work fine for stateless appli-
cations, stateful applications such as database management systems (DBMS)
are receiving increasing attention recently. As DBMS add the persistence aspect
to the operational model, storage backends for containers are evolving. Yet,
the performance impact of these new operational and storage backends remains
unclear for containerized DBMS. Hence, we analyse current operational and
storage backends in the context of containerized DBMS. and derive a baseline
evaluation methodology for a comparative evaluation of operational models and
storage backends. Hereby, we define a memory- and a disk-bound scenario, which
is applied on three operational models (container on physical hardware, virtual
machines (VMs) and container on VMs) in combination with two storage back-
ends (container filesystem and host filesystem), resulting in 20 evaluation config-
urations. The evaluation is executed in a private OpenStack with a containerized
MongoDB. The results show a significant performance overhead of container run-
ning on VMs in contrast to container running on physical hardware. Yet, running
container on VMs with different storage backends only causes a tolerable per-
formance impact in contrast to running the DBMS directly on the VM. Further,
the usage of the container internal filesystem causes a significant performance
overhead compared to using the host filesystem.

104 D. Seybold et al.

Based on these baseline results, we conduct that container are suitable to
operate DBMS but additional evaluations are required to get a clear under-
standing of potential performance bottlenecks. Therefore, we derive a set of
open evaluation challenges, which will be addressed in future work: (i) evaluating
additional operational models implementations; (ii) evaluating additional stor-
age backends; (iii) consolidation of containerized DBMS and processing appli-
cations on top of VMs and (iv) the feasibility of DBMS containerization and
orchestration for different DBMS. These challenges will be addressed within [9].

Acknowledgements. The research leading to these results has received funding from
the EC’s Framework Programme HORIZON 2020 under grant agreement number
731664 (MELODIC) and 732667 (RECAP).

References

1. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.:
Cloud orchestration features: are tools fit for purpose? In: UCC, pp. 95–101. IEEE
(2015)

2. Bekas, E., Magoutis, K.: Cross-layer management of a containerized NoSQL data
store. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM), pp. 1213–1221. IEEE (2017)

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Queue 14(1), 10 (2016)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM Symposium on Cloud computing, pp.
143–154. ACM (2010)

5. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: ISPASS, pp. 171–172. IEEE
(2015)

6. Mohamed, M., Warke, A., Hildebrand, D., Engel, R., Ludwig, H., Mandagere, N.:
Ubiquity: extensible persistence as a service for heterogeneous container-based
frameworks. In: Panetto, H., et al. (eds.) OTM 2017. Lecture Notes in Computer
Science, pp. 716–731. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69462-7 45

7. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization:
a performance comparison. In: IC2E, pp. 386–393. IEEE (2015)

8. Rehman, K.T., Folkerts, E.: Performance of containerized database management
systems. In: DBTEST, p. 6. ACM (2018)

9. Seybold, D.: Towards a framework for orchestrated distributed database evalua-
tion in the cloud. In: Proceedings of the 18th Doctoral Symposium of the 18th
International Middleware Conference, pp. 13–14. ACM (2017)

10. Seybold, D., Domaschka, J.: Is distributed database evaluation cloud-ready? In:
Kirikova, M., et al. (eds.) ADBIS 2017. CCIS, vol. 767, pp. 100–108. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67162-8 12

11. Seybold, D., Wagner, N., Erb, B., Domaschka, J.: Is elasticity of scalable databases
a myth? In: IEEE Big Data, pp. 2827–2836. IEEE (2016)

12. Sharma, P., Chaufournier, L., Shenoy, P., Tay, Y.: Containers and virtual machines
at scale: a comparative study. In: Proceedings of the 17th International Middleware
Conference, p. 1. ACM (2016)

The Impact of the Storage Tier 105

13. Tarasov, V., et al.: In search of the ideal storage configuration for docker containers.
In: FAS* W, pp. 199–206. IEEE (2017)

14. Truyen, E., Reniers, V., Van, D., Landuyt, B.L., Joosen, W., Bruzek, M.: Evalua-
tion of container orchestration systems with respect to auto-recovery of databases
(2017)

15. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at google with borg. In: Proceedings of the Tenth
European Conference on Computer Systems, p. 18. ACM (2015)

16. Xavier, M.G., De Oliveira, I.C., Rossi, F.D., Dos Passos, R.D., Matteussi, K.J.,
De Rose, C.A.: A performance isolation analysis of disk-intensive workloads on
container-based clouds. In: PDP, pp. 253–260. IEEE (2015)

Chapter 18

[core11] Towards Understanding the Performance of
Distributed DatabaseManagement Systems in
Volatile Environments

This article is published as follows:

Jörg Domaschka and Daniel Seybold. ”Towards Understanding the Performance of Distributed Database-
Management Systems in Volatile Environments”, Symposium on Software Performance, published 2019,
Gesellschaft für Informatik, URL:https://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/
SSP2019/SSP2019_Domaschka.pdf

©by the authors.

245

https://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Domaschka.pdf
https://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Domaschka.pdf

Towards Understanding the Performance of Distributed Database

Management Systems in Volatile Environments

Jörg Domaschka
joerg.domaschka@uni-ulm.de

Ulm University, Ulm, Germany

Daniel Seybold
daniel.seybold@uni-ulm.de

Ulm University, Ulm, Germany

Abstract

Cloud computing provides scalability and elasticity
mechanisms on resource level and has become the
preferred operational model for many applications.
These, in turn, are based on distributed architectures
trusting that this leads to scalability and elasticity
and hence, good performance.

Many applications rely on one or multiple database
management systems (DBMS) as storage backends in
order to manage their persistent state. Hence, the se-
lection of a DBMS for a specific use case is crucial
for performance and other non-functional properties.
Yet, the choice is cumbersome due to the large num-
ber of available systems and the many impact factors
ranging from the size of virtual resources, the type of
the DBMS, and its architecture and scaling factor.

In this paper, we summarise our experiences with
performance evaluation for cloud-hosted DBMS in or-
der to find well-suited configurations for specific use
cases. We demonstrate that the overall performance
of a distributed DBMS depends on three major do-
mains (workload, cloud environment, and DBMS)
with various parameters for each dimension.

1 Introduction

Database Management Systems (DBMS) are a major
building block of today’s applications. They sit at the
heart of any Web-business application, of many types
of IoT applications, including geographically spread-
out installations such as Smart Cities and Industry 4.0
sites; they are the backbone of serverless application.

Currently there are more than 200 distributed
DBMS available as commercial and open source prod-
ucts that all claim to be reliable, scalable, and elastic
while providing superior performance [7]. Yet, anal-
yses of existing systems show that they differ a lot
and suggest that the DBMSs need to be carefully se-
lected based on the use case characteristics [3]. Only
then can the DBMS deliver sufficient throughput and
latency while at the same time satisfying potential
non-functional requirements such as availability.

Cloud computing, virtualisation, and containeriza-
tion offer appealing approaches to host DBMS in par-
ticular as they offer a natural way to quickly provi-
sion compute, storage and networking resources, and

hence, realise the technical underpinning for dynamic
scaling and adaptations. On the downside, relying on
such resources introduces volatility in service quality
as many critical aspects of the infrastructure are no
longer in the hands of the DBMS operator. Further,
there is an overwhelming selection of different cloud
offerings with different impact on the performance of
DBMS’s service quality.

Thus, the decision for a cloud-hosted DBMS re-
quires an understanding of the DBMS domain—which
DBMS provides which features and what feature has
which impact on performance; the cloud domain—
which cloud configuration has which impact on perfor-
mance; and finally the workload domain—what is the
read/write/update ratio facing the DBMS and what
consistency and reliability demands exist.

In this paper, we summarise the key insights gained
over a series of papers [4, 6, 8] investigating the impact
of the overall problem over the DBMS and the cloud
domain. Due to limitations of space, we leave out the
workload domain, as this is not something that can be
influenced by an operator. Understanding the work-
load is hence a prerequisite for the selection process
and benchmarking done in that process [5].

2 DBMS Impact Factors

The performance of non-distributed applications is
mostly determined by the capabilities of the particular
hardware (CPU, memory, I/O) running the applica-
tion. For distributed applications the communication
network plays a role as well as communication proto-
cols causing e.g. queuing, drops, latency, and waiting
time. In contrast to stateless applications, stateful
applications may need to coordinate the state of their
component instances causing traffic and load that are
only mediately rooted in external workload, but are
a consequence of internal processes such as garbage
collection and consistency protocols.

In distributed DBMS (DDBMS), multiple in-
stances of a DBMS provide the client with the im-
pression of a logical DBMS. DDBMS provide two ba-
sic mechanisms to ensure scalability, availability, and
reliability: sharding and replication. Hence, when de-
signing a cloud-hosted DDBMS, the operator needs to
size the individual instances (memory, #cores, type

and amount of storage), and decide on the cluster size
(cf. the number of shards), the replication degree (cf.
reliability and availability), and read and write con-
sistency (cf. programmability and availability) [3, 8].
These decisions result in the following impact factors
for operating DDBMS.

2.1 Sharding and Scale

The use of sharding distributes the data set of the
logical DDBMS over the available DBMS instances.
Consequently, sharding increases the overall capacity
of a DDBMS when more instances are added. Shard-
ing increases the overall throughput in cases where the
workload is uniformly distributed over the shards.

2.2 Consistency and Replication

A consistency model defines in which order operations
issued from multiple users to different data tuples
may interleave. Hence, the consistency model defines
which changes to a tuple are visible to a user.

Replication creates multiple copies of a single data
tuple. This protects the tuple against data loss in
case the DBMS instance hosting the shard containing
that tuple fails. Hence, replication increases reliability
of both the DDBMS and individual tuples. Depend-
ing on consistency requirements, the use of replication
may either increase or decrease throughput. In case of
weak consistency, operations may be targeted to dif-
ferent replicas of a tuple. For strong consistency more
than one replica needs to be read/written.

The use of replicated tuples introduces the need
to keep the tuples in sync with each other. Accord-
ing to the CAP theorem, availability and consistency
are mutually dependant in any distributed and state-
ful system [1]. This leaves a continuum of possible
trade-offs which has caused an increasing heterogene-
ity in the DDBMS landscape [7]. In consequence,
many DDBMS have introduced specific configuration
options to optimize for specific use cases. Often, this
makes consistency and availability guarantees incom-
parable and evaluations even more challenging.

2.3 Resource Sizing

When operating a DDBMS, there is a trade-off be-
tween using multiple compute resources (e.g. virtual
machines) or fewer larger ones. While the overall per-
formance increases the fewer and the larger the indi-
vidual resources are, the more vulnerable the system
gets for failures. Also, replacing failed instances takes
longer when larger portions of the overall state fail
and need to be synced. Besides, these general con-
siderations, the number of compute cores influences
the parallelism in processing client requests, while the
amount of memory influences the ratio of the data set
that can reside in memory.

For storage, considerations are even more challeng-
ing due to different types of available cloud offer-
ings [2]. In IaaS clouds usually three options exist: (i)

 0

 2000

 4000

 6000

 8000

 10000

 12000

ANY ONE
3-nodes

TWO ANY ONE
5-nodes

TWO ANY ONE
7-nodes

TWO ANY ONE
9-nodes

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s/
s]

avg (stddev)
max
min

Figure 1: Impact of DBMS Domain: Cassandra [8]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3-nodes
P-1

5-nodes
P-1

7-nodes
P-1

9-nodes
P-1

T
h

ro
u

g
h

p
u

t
[o

p
s/

s]

avg (stddev)
max
min

NONE R-1 NONE R-1 NONE R-1 NONE R-1

Figure 2: Impact of DBMS Domain: Couchbase [8]

use a virtual machine with large storage, (ii) attach
volumes to the virtual machine as block devices, (iii)
include (mount) a remote file system into the virtual
machine. Users of cloud services may further build
custom storage hierarchies from these basic services.
For instance, they may run their own volume-based
distributed file system within their virtual machines
and mount this into other virtual machines.

2.4 Examples

Figures 1 and 2 show the average throughput over
five experiments (including the standard deviation) of
three different write consistency settings for Apache
Cassandra (CA) and Couchbase (CB). While their
consistency mechanisms can not be mapped 1:1, the
applied write consistency increases from the first to
the third setting. Moreover, each plot comprises the
throughput of different cluster sizes, showing the scal-
ability of the respective DBMS under a fixed work-
load. The results clearly show that a stronger write
consistency has a significant throughput impact for
while for CA the impact is neglectable. More details
and results are available in [8].

3 Cloud Impact Factors

The performance of an application running on a
cloud infrastructure heavily depends on many cloud
provider design decisions, but also on operator design
decision as discussed in the following [6, 8].

2

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

P-C-L P-C-H P-VM-L P-VM-C-L

Th
ro

ug
hp

ut
 [o

ps
]

avg (stddev)
max
min

Figure 3: Impact of Cloud Resource Types [6]

3.1 Infrastructure

The maximum overall performance of a cloud-hosted
application depends on the physical hardware capa-
bilities of the cloud infrastructure including the type
of physical CPUs and storage as well as networking.
Further, it depends on configuration choices the cloud
provider has made such as the network topology; the
physical set-up of storage: SSDs vs. HDDs, hierarchi-
cal RAID systems, distributed file systems, hypercon-
verged infrastructure; etc.

Even though these aspects are mostly differenti-
ating factors between cloud providers, customers can
influence these decisions to some extent: for instance,
they can select specific virtual machine types, regions,
and availability zones that are known to be backed by
a certain type of physical hardware. Yet, even if they
are known to the clients, their impact on performance
is hard to estimate and hence mostly unclear.

3.2 Resource Types

The resource type captures the abstraction a cloud
provider offers to its customers. It defines whether
the resource provided is a bare metal server, a virtual
machine, a (Docker) container, or at an even higher
layer. This decision has a significant impact on per-
formance. The type of resource is often an immediate
consequence of choosing a particular cloud provider.

3.3 Examples

Figure 3 shows the performance of heterogenous cloud
resources based on the avg. write throughput (with
stddev.) over ten experiments of a single MongoDB
(MDB) instance deployed on the cloud resource types:
(P-C-L) physical server (P) with a MDB container
(C) using the local Overlay2 container filesystem (L);
P-C-H using the host filesystem (H) of the physical
server; P-VM-L running MDB in a VM using the VM
filesystem; P-VM-C-L running MDB in a container
on top of a VM using the local Overlay2 container
filesystem. The results point out the impact of using
Overlay2 with containers or VMs to operate DBMS.
More results and conclusions are available in [6].

4 Conclusion

This paper summarises the design space when running
distributed database management systems (DDBMS)
in (volatile) cloud environments. Using examples, we
illustrated that the overall performance (measured by
throughput) of DDBMS are dependent on the ser-
vices offered by cloud providers and the storage types
used.Even minor changes in the set-up of experiments
may have larger impact on performance. Besides these
external factors, there are huge differences between
the DDBMS themselves and the choice of a DDBMS
needs to be be well considered and measured against
the workload and application requirements.

Ongoing and future work extends the results shown
here with the consideration of non-functional require-
ments. Here, we focus on the evaluation of both scala-
bility/elasticity and availability guarantees of different
DDBMS under advanced workloads. Finally, we are
currently investigating the impact of overbooking and
noisy neighbours on the performance of DDBMS.

References

[1] E. Brewer. “CAP twelve years later: How the
”rules” have changed”. In: Computer 2 (2012),
pp. 23–29.

[2] S. Kächele et al. “Beyond IaaS and PaaS: An Ex-
tended Cloud Taxonomy for Computation, Stor-
age and Networking”. In: 2013 IEEE/ACM 6th
International Conference on Utility and Cloud
Computing. Dec. 2013, pp. 75–82.

[3] J. Domaschka, C. B. Hauser, and B. Erb. “Reli-
ability and Availability Properties of Distributed
Database Systems”. In: 2014 IEEE 18th Interna-
tional Enterprise Distributed Object Computing
Conference. Sept. 2014, pp. 226–233.

[4] D. Seybold et al. “Is elasticity of scalable
databases a myth?” In: 2016 IEEE International
Conference on Big Data (Big Data). IEEE. 2016,
pp. 2827–2836.

[5] D. Seybold and J. Domaschka. “Is Distributed
Database Evaluation Cloud-Ready?” In: Euro-
pean Conference on Advances in Databases and
Information Systems. Springer. 2017, pp. 100–
108.

[6] D. Seybold et al. “The Impact of the Storage
Tier: A Baseline Performance Analysis of Con-
tainerized DBMS”. In: European Conference on
Parallel Processing. Springer. 2018, pp. 93–105.

[7] S. Mazumdar et al. “A survey on data storage
and placement methodologies for Cloud-Big Data
ecosystem”. In: Journal of Big Data 6.1 (2019),
p. 15.

[8] D. Seybold et al. “Mowgli: Finding your way in
the DBMS jungle”. In: Proceedings of the 2019
ACM/SPEC International Conference on Per-
formance Engineering. ACM. 2019, pp. 321–332.

3

	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Thesis
	Introduction
	Problem Statement
	Research Objectives
	Research Contributions
	Thesis Outline

	Background
	Elastic Infrastructures
	Virtualization
	Cloud Computing
	Fog and Edge Computing
	Application Orchestration on Elastic infrastructures

	Distributed DBMS
	Data Models
	Data Distribution Techniques
	Non-Functional Features
	Boundaries: CAP and PACELC

	Operational Models of Distributed DBMS
	Summary

	Related Work
	Terminology
	DBMS Benchmarking
	OLTP
	OLAP
	HTAP

	Elastic Infrastructure Benchmarks
	Cloud Benchmarks
	Edge and Fog Benchmarks

	Advanced Evaluation Frameworks
	Summary

	Methodological DBMS Evaluation
	Evaluation Impact Factors
	Cross-Domain Evaluation Principles
	Evaluation Design
	Performance Evaluation Design
	Scalability Evaluation Design
	Elasticity Evaluation Design
	Availability Evaluation Design

	Summary

	Methods for the Automated Evaluation of Non-functional DBMS Features
	DBMS Evaluation Templates
	Deployment Template
	Workload Template
	Adaptation Templates
	Implementation

	Mowgli Framework
	Automation Concepts
	Framework Architecture
	Implementation

	Mowgli for Higher-Level Evaluation Objectives
	Elasticity: Kaa Framework
	Availability: King Louie Framework

	Evaluation Data Collection
	Summary

	Validation
	Case Studies
	CS1 - Performance Impact of Elastic Resources
	CS2 - Performance and Scalability
	CS3 - Elasticity
	CS4 - Availability
	Case Study Discussion

	Support for Evaluation Principles
	Reflections on Evaluating distributed DBMS on Elastic Infrastructures
	Summary

	Conclusion and Future Work
	Contribution
	Future Research

	Acronyms
	Bibliography

	Publications
	Mazumdar2019survey A survey on data storage and placement methodologies for Cloud-Big Data ecosystem
	baur2015cloud Cloud orchestration features: Are tools fit for purpose?
	seybold2017dbmsevaluation Is Distributed Database Evaluation Cloud-Ready?
	seybold2017gibbon Gibbon: An Availability Evaluation Framework for Distributed Databases
	seybold2019mowgli Mowgli: Finding Your Way in the DBMS Jungle
	seybold2019kaa Kaa: Evaluating Elasticity of Cloud-Hosted DBMS
	seybold2020louie King Louie: Reproducible Availability Benchmarking of Cloud-hosted DBMS
	seybold2016elasticity Is elasticity of scalable databases a Myth?
	seybold2017phd Towards a Framework for Orchestrated Distributed Database Evaluation in the Cloud
	seybold2018impact The Impact of the Storage Tier: A Baseline Performance Analysis of Containerized DBMS
	domaschka2019towards Towards Understanding the Performance of Distributed DatabaseManagement Systems in Volatile Environments

