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Abstract

Natural human interactions are enabled by the inherent ability of human beings
to use a combination of different communication cues stemming from a diverse set
of modalities (such as facial expressions, paralinguistic vocalizations, intonation
patterns, or changes in body posture) in order to continuously assess the current
context of the interaction and respond accordingly. This points out at the fact
that multi-modality is rather a natural and crucial element of natural human in-
teractions. In order to enable a similar form of communication in human-computer
interactions, computer systems need to be able to perceive, assess and successfully
aggregate several forms of information (which are usually converted into measur-
able parameters) across various modalities (e.g. audio, video, bio-physiological
signals) in order to continuously model and dynamically adapt to a user’s current
affective state. This is particularly relevant nowadays, since significant techno-
logical advancements in such domains as sensors and data persistence, enable
almost every single ubiquitous device with the ability of recording and streaming
a huge amount of bio-physiological and biometric data. Therefore, these devices
provide abundant and diverse data (which are continuously and systematically
collected) that can be used to model and assess a user’s affective, physical and
psychological state in order to further improve human-computer interactions, as
well as enabling new fields of applications, such as remote patient monitoring.
Thus, suitable fusion approaches are needed for the extraction, selection and suc-
cessful combination of relevant information from a set of diverse modalities in
order to improve both the robustness as well as the performance of a specific
affect recognition system. This thesis introduces novel multi-modal information
fusion mechanisms for several pattern recognition tasks, in the domains of active
learning, supervised learning and deep learning.

Concerning active learning, the optimization of the training process of an infer-
ence model is pursued by first introducing a multiple criteria sample selection
approach. The goal of the proposed method is to perform an aggregation of the
outputs of multiple heuristics in order to improve the robustness of the sample
selection process. Moreover, the method is further extended in order to exploit
complementary information stemming from adjacent and correlated input chan-
nels for the selection of the most informative samples, which are subsequently



used to train an audiovisual events detection model.

Furthermore, each single step involved in the design, optimization and assessment
of a multiple classifier system is thoroughly described and assessed in the con-
text of the development of a pain intensity classification system. Manual feature
engineering is applied for the design and extraction of several feature representa-
tions, based on a multitude of modalities ranging from audio to video signals as
well as bio-physiological parameters. The extracted feature representations are
subsequently combined using different fixed and trainable information fusion ap-
proaches for the optimization of a robust and effective pain intensity classification
model.

Lastly, feature learning in the form of deep physiological models and multi-stream
attention-based convolutional neural networks are investigated, in order to im-
prove on some of the shortcomings of manual feature engineering for the develop-
ment of robust pain intensity classification models. The assumption behind the
proposed deep fusion architectures is that enabling a specific neural network ar-
chitecture to autonomously and simultaneously optimize a set of suitable feature
representations as well as the corresponding set of fusion parameters can signifi-
cantly improve the performance of the classification system. The validity of the
proposed approaches and methodological contributions is empirically evaluated
through an extensive assessment involving custom as well as publicly available
datasets.
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Chapter 1

Introduction

During human interactions, each single individual continuously alternates be-
tween assessing the actual context of an interaction, and accordingly choosing a
suitable channel of communication in order to convey some form of information.
This is made possible by the inherent ability of human beings to display and
recognize specific communication cues using a combination of different informa-
tion channels (or modalities) such as speech, facial expressions, postural shifts
and gestures, among others. Therefore, the concept of multi-modality is rather
natural and crucial regarding human interactions, since the inability to perceive
or communicate social and interpersonal cues negatively affects the dynamics of
such interactions. Hence, the field of Affective Computing [Picard 1997] aims
to significantly improve Human-Computer Interaction (HCI) through the imple-
mentation of a similar form of multi-modal communication. Computer systems
should therefore be able to perceive and aggregate information stemming from di-
verse sources in order to assess, model and recognize users’ affective dispositions.
This will enable computer systems to adapt more naturally to the users’ needs
and provide suitable responses accordingly, therefore substantially enhancing the
user experience [Schwenker, Bock, et al. 2017] and further enabling new fields of
application such as in the domains of health monitoring [Dautov et al. 2019] or
user-centered content retrieval [Gupta et al. 2016; Rinaldi and Russo 2018].

Furthermore, the concept of multi-modality becomes even more relevant when
considering the multifaceted characteristics of affective dispositions. More specif-
ically, emotions are conveyed through a combination of several distinct channels,
each of which provides a specific amount of complementary information depict-
ing just a single facet or aspect of the underlying affective state, when observed
alone. Hence, the aggregation of complementary information stemming from dif-
ferent sources is more likely to improve the discrimination performance between
ambiguous emotional states than relying on the information stemming from a
unique source. Moreover, the combination of multiple sources of complementary
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Figure 1.1: How to combine information stemming from a multitude of sources in
order to improve the performance of an inference model, depending on the underlying
pattern recognition task?

information improves the robustness of the system by simultaneously capitaliz-
ing on each source’s advantages and mitigating the drawbacks of each individual
channel.

This specific topic has become very relevant throughout the last decade, since
most of the ubiquitous smart devices used nowadays (e.g. phones, watches, tablets,
voice assistants, fitness devices) are interconnected and equipped with countless
sensors, that continuously record and stream a huge amount of biometric and
bio-physiological data such as electrocardiogram (ECG), respiration signal (RSP),
electromyography (EMG) or electrodermal activity (EDA). Therefore, researchers
are provided with an inexhaustible source of heterogeneous data that can be used
in order to assess a user’s habits and affective dynamics. However, several chal-
lenges arise when it comes to dive into such a huge amount of data in order to
extract and combine relevant information for the optimization of an inference
model specific to an underlying pattern recognition task (see Figure 1.1). These
challenges can be summarized into the following research questions:

Which information is relevant for the underlying pattern recognition
task?
Since the performance of an inference model relies primarily on the quality of the



training material, the identification and selection of relevant information relative
to the underlying pattern recognition task constitutes a crucial and challenging
endeavor. This information can be represented either by a set of relevant modal-
ities (e.g. video, audio, EDA), as well as by a set of informative samples or by a
specific set of diverse feature representations. This becomes even more relevant
in a scenario where a huge amount of unprocessed data is available. Using the
totality of available sources of information can be extremely computationally ex-
pensive and in most cases inefficient, since there is a high probability of running
into a huge amount of redundant, contradicting or noisy information. Therefore,
the available data has to be pre-processed and the most relevant information has
to be identified and extracted into suitable feature representations.

Hence, the optimization of the training material can occur at different levels of
abstraction. The lowest level consists in selecting relevant modalities. This is
usually done based on some expert knowledge of the underlying pattern recog-
nition task. The mid-level consists of the selection of relevant modality specific
samples. For example, in the case of supervised learning pattern recognition
tasks, the training material consists of a set of labeled samples. Data labeling is
known to be error prone, cumbersome, temporally expensive and costly. There-
fore, several approaches stemming from the domains of active learning [Settles
2009], and semi-supervised learning [Chapelle et al. 2006] are proposed in or-
der to improve the efficiency of the labeling process by substantially reducing
the amount of labeled data needed for the optimization of an effective infer-
ence model through the combination of both manual and automatic annotation
[Thiam, Meudt, Schwenker, et al. 2016]. This is done by assessing the informa-
tiveness of the input samples based on designed heuristics and selecting the most
informative samples to be either manually labeled by a human annotator or au-
tomatically labeled by a pre-trained inference model. The highest level consists
of the selection of relevant feature representations (or feature selection): at this
level, several techniques ranging from sequential to uni-variate feature selection
approaches have been proposed in order to simultaneously reduce the dimension-
ality of the feature space while improving the performance of the trained inference
model [Khalid et al. 2014; Kéchele, Zharkov, et al. 2014]. Thus, the selection of
relevant information constitutes an essential pre-processing step that contributes
to the reduction of computational costs, as well as to the improvement of the
performance of an inference model. Moreover, the identification of each source
of information that positively or negatively impacts the performance of a specific
inference model can provide more insights for a better understanding and inter-
pretation of the underlying process.

When should the processed information be aggregated?
Modality specific characteristics such as temporal granularity (or sampling rate)
and signal representation (e.g. one-dimensional signal representations such as
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bio-physiological signals, two-dimensional signal representations such as images,
three-dimensional signal representations such as video signals), as well as fea-
ture representations’ attributes and data temporal alignment (or synchronization)
constitute a set of diverse properties across modalities that have to be taken in
consideration while designing a suitable architecture to perform the aggregation
of the chosen set of information [Poh and Kittler 2010]. Depending on the level
of abstraction at which the aggregation is performed, three main aggregation ar-
chitectures can be identified, consisting of early fusion, mid-level fusion and late
fusion [Schels et al. 2013]. Early fusion consists in aggregating either the pre-
processed raw input signals or the extracted feature representations across the
modalities into a single high dimensional representation. This representation is
subsequently used for the optimization of an inference model. It constitutes one of
the simplest aggregation approaches. However it can just be applied on identical
signal representations characterized with an identical sampling rate. Moreover,
the high dimensional representation resulting from the aggregation at such a low
level can be problematic both computationally and also in case the content across
the respective representations is highly contradicting, which can negatively im-
pact the performance of the trained model. A more appropriate approach consists
in performing the aggregation at a higher level of abstraction such as in the case
of mid-level and late fusion techniques.

Mid-level approaches consist of a layered construct of successive processing steps,
during which the output of each layer is used as input for the subsequent layer.
The conducted processing steps consist usually of generating diverse subsets of
the input data and subsequently optimizing an inference model for each specific
subset, resulting in the generation of different sets of intermediate representa-
tions. This process can be carried out throughout successive layers. The last
layer however performs the mapping between the current intermediate represen-
tations and the defined output of the underlying pattern recognition task. Late
fusion approaches on the other hand consist of training a single inference model on
each specific representation and subsequently performing the aggregation of the
models’ outputs at a subsequent layer [Bellmann et al. 2018]. Both approaches
improve the scalability of the trained inference model and reduce the complexity
of the underlying task by performing an aggregation of related and less complex
sub-tasks. However, a suitable amount of training material is needed in order to
effectively optimize the models specific to each level of abstraction.

How should the processed information be aggregated?

Once relevant feature representations have been computed and a specific aggrega-
tion architecture has been designed, an aggregation rule has to be defined in order
to map the resulting intermediate representations to the predefined outputs of the
underlying pattern recognition task. One can distinguish between fixed aggrega-
tion rules and trainable aggregation rules [Kuncheva 2004]. Fixed aggregation



rules such as Majority Voting, Average Rule, Product Rule are straightforward
and do not require any type of further optimization, due to the nonexistence of
adaptive parameters to be optimized. On the other hand, trainable aggregation
rules such as Weighted Average Rule, Dempster-Shafer Aggregation Rule [Wu
et al. 2003], or Decision Templates [Schwenker, Dietrich, et al. 2006] are charac-
terized by a set of trainable parameters to be optimized and subsequently used
to perform a weighted aggregation of the outputs of the respective intermediate
inference models. The optimized weights should reflect the relative significance
or informativeness of each intermediate representation. Moreover, a deep neural
network can also be designed and directly applied on the pre-processed raw sig-
nals in order to take advantage of its hierarchical construct for the simultaneous
and autonomous generation of suitable representations and aggregation parame-
ters [Ramachandram and Taylor 2017]. Even though trainable aggregation rules
have proven to be able to significantly outperform fixed rules, such approaches
require substantially more training material as well as computational resources
for an effective optimization of the aggregation parameters.

The contributions described in the current thesis consist of novel information fu-
sion approaches applied in the domains of active learning, supervised learning and
deep learning respectively. The description of the proposed approaches involves
providing answers to each of the previously described research questions related
to specific pattern recognition tasks.

The work presented in [Thiam, Meudt, Palm, et al. 2018] and summarized in
Chapter 2 consists of the description of two novel active learning approaches for
the detection of audiovisual events. First, a Multiple Criteria Sample Selection
(MCSS) approach is proposed, which is characterized by the aggregation of the
results of a diverse set of heuristics for the selection of the most relevant and infor-
mative samples that are subsequently used for the optimization of an audiovisual
events detection model. Furthermore, the proposed approach is extended into a
multi-modal approach in order to further reduce the amount of labeled samples
needed for the optimization of a suitable events detection model. Therefore, the
proposed extension consists of a combination of active and semi-supervised learn-
ing techniques, consisting of using the temporal correlation of events’ occurrences
in both audio and video channels for the selection and automatic annotation of
relevant samples. The assessment of both approaches was performed on the Ulm
University Multimodal Affective Corpus (UUImMAC) [Hazer-Rau et al. 2020] and
showed that in most cases, an inference model trained with a little less than 30%
of the dataset is able to achieve the same performance as a model trained on
the totality of the available dataset. Therefore, the application of the proposed
approaches in a real world scenario would further improve the efficiency of the
cumbersome and costly annotation process, without any loss of performance of
the optimized inference model.
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In Chapter 3, a summary of the work presented in [Thiam, Kessler, et al. 2019] is
provided. The work conducted consists of the design and assessment of a multi-
modal pain intensity classification system based on the SenseEmotion Database
[Velana et al. 2017]. The whole design process starting from the pre-processing
of each involved single modality, through the extraction and selection of relevant
feature representations, until the assessment of the performance of uni-modal
classification systems based on each single modality, as well as the assessment of
various information fusion approaches combined with different aggregation rules is
thoroughly described. The performed assessments show that given a substantial
amount of training material, late fusion approaches with trainable aggregation
rules significantly outperform other information fusion approaches.

Chapter 4 provides a summary of the works presented in both [Thiam, Bell-
mann, et al. 2019] and [Thiam, Kestler, et al. 2020b]. Both works consist of
deep multi-modal fusion architectures applied on bio-physiological signals of the
BioVid Heat Pain Database [Walter, Gruss, Ehleiter, et al. 2013] and the video
signals of both the BioVid Heat Pain Database and SenseEmotion Database re-
spectively. In [Thiam, Bellmann, et al. 2019], a multi-modal deep neural network
based on a hierarchical construct of modality specific one-dimensional convolu-
tional neural networks and coupled to a weighted aggregation layer is proposed
and assessed for the classification of several levels of heat induced nociceptive
pain based on bio-physiological signals. In [Thiam, Kestler, et al. 2020b], an end-
to-end approach based on attention networks [Zhou et al. 2016] is proposed for
the assessment of pain related facial expressions. The proposed approach relies
on both temporal and spatial components of video signals for the extraction of
specific spatio-temporal representations of the input data in the form of Opti-
cal Flow Images (OFIs) [Horn and Schunck 1981] and Motion Histogram Images
(MHIs) [Ahad et al. 2012]. These representations are subsequently processed
through a hybrid deep neural network involving two-dimensional convolutional
neural networks coupled to channel specific attention-based Bidirectional Long
Short-Term Memory (BiLSTM) [Hochreiter and Schmidhuber 1997] Recurrent
Neural Networks (RNNs). The output of the whole architecture is subsequently
computed based on a weighted aggregation of the output of each channel specific
attention-based BiLSTM RNN. The performed assessments show in both works
that enabling an inference model to autonomously generate not just relevant
feature representations of specific input signals but also to optimize a suitable
multi-modal aggregation architecture can lead to a significant improvement of
the classification performance of the whole system.

This thesis is subsequently concluded with a summary of the main findings as
well as a description of potential future works in Chapter 5. The full versions of
the summarized works presented in the Chapters 2 to 4 are included in Chapter
I in addition to a detailed description of the individual contributions, followed by
a summary of major contributions as a list of publications in Chapter II.



Chapter 2

Multi-Modal Active Learning

In this chapter, a summary of the work in [Thiam, Meudt, Palm, et al. 2018] (see
Chapter 1.1) is provided, including a description of the proposed multi-modal
active learning approach for audiovisual events detection. Moreover, a short de-
scription of the main findings and results is also provided.

2.1 Introduction and Motivation

Supervised learning approaches rely on a set of labeled samples {(z;, ;) : i =
1,...,n} (where y; € Y depicts the label or class membership of the sample
x; € X C R™), in order to optimize a classifier fy (where 6 depicts the set of
trainable parameters specific to the classifier), which maps each data sample x;
to its predefined class membership y; as follows:

The main goal of the optimization process of the classifier fy is the improve-
ment of its generalization ability, which depicts its capability to properly adapt
to and successfully classify unseen samples (samples that do not belong to the
set of training samples and were never seen during the optimization process of
the classifier). Therefore, the performance of supervised learning approaches is
contingent upon both the amount of available labeled samples and the quality of
the performed labeling, since noisy labeled samples negatively affect the perfor-
mance of a trained classifier. Recent advances in sensors have led to a substantial
increase of the amount of unlabeled data, since nowadays almost every single
ubiquitous device continuously gathers different categories of information related
to a user’s biometric and bio-physiological characteristics. This data can be used
to optimize user-centered pattern recognition systems based on supervised learn-
ing approaches, provided that the data is systematically and accurately labeled.

7
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Figure 2.1: Pool-Based Active Learning. The dotted block specifies the area of interest
of the current chapter (sample selection approaches).

However, it is well known that data labeling is a very cumbersome, time consum-
ing and cost expensive process. Active learning is a field of pattern recognition
specifically defined to address the issue of optimizing an effective classifier under
the constraint of scarceness of labeled samples.

Active Learning [Settles 2009] aims to substantially reduce the cost of manual
annotation required for the optimization of a supervised learning classification
model. Herefore, an iterative process is designed and applied (see Figure 2.1),
consisting of the careful selection and annotation of the most informative sam-
ples from a large pool of unlabeled samples (pool-based active learning), based
on predefined heuristics. The amount of training samples needed to optimize an
effective classifier is thereby substantially reduced, without any loss of the gen-
eralization ability of the trained classifier. The iterative process usually begins
with a relatively small set of labeled samples £ and a comparatively large set of
unlabeled samples U (|£]| < |U|). A classifier fy is first initialized using the set
of labeled samples. The trained classifier is subsequently applied on the pool of
unlabeled samples. Based on a predefined heuristic (used to assess the informa-
tiveness of each unlabeled sample) and the resulting class distribution relative to
the classifier fy, the most informative instances of the pool of unlabeled samples
are selected and further labeled by an oracle, which is usually a human annota-
tor. These manually labeled samples are subsequently removed from the pool of
unlabeled samples, added into the pool of labeled samples, and used to actualize
the classifier. This iterative process is repeated until a predefined termination
criterion is reached.
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Figure 2.2: Multiple Criteria Sample Selection (MCSS). Similarly to Multiple Clas-
sifier Systems, MCSS consists of aggregating the results of a set of heuristics based on
different classifiers combined with different selection criteria in order to perform the
selection of the most interesting samples.

Through the years, several active learning approaches have been proposed and
successfully applied in diverse domains such as content-based information re-
trieval [C. Zhang and Chen 2002; Gosselin and Cord 2008], anomaly and event
detection [Pelleg and Moore 2004; Thiam, Meudt, Kéchele, et al. 2014; Thiam,
Kéchele, et al. 2015] and also emotion recognition [Zhao and Ma 2013; Y. Zhang
et al. 2015]. Most of the proposed approaches focus on the design and optimiza-
tion of effective sample selection heuristics in order to significantly reduce the
amount of labeled data needed to train an effective classification model. How-
ever, these approaches consist of optimizing a single selection heuristic for the
underlying pattern recognition task. In Chapter 2.2 a Multiple Criteria Sample
Selection (MCSS) approach is proposed and consists of the aggregation of the
results of different selection heuristics in order to select the most informative
samples. Moreover, potentially useful information can be extracted from corre-
lated modalities (when such modalities are available) and subsequently used to
further reduce the amount of samples needed for the optimization of an effec-
tive inference model. However, most of previous works focus uniquely on a single
modality. A multi-modal active learning approach is presented in Chapter 2.2, for
the optimization of a model specifically designed for the detection of audiovisual
events.

2.2 Multi-Modal Active Learning for Audio-
visual Events Detection

In [Thiam, Meudt, Palm, et al. 2018], a Multiple Criteria Sample Selection
(MCSS) approach is proposed (see Figure 2.2). Inspired by Multiple Classifier
Systems (MCS), a MCSS approach leverages the strength of multiple heuristics
through the combination of complementary sample selection criteria, instead of
relying on a single heuristic in order to estimate the informativeness of each
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supervised learning approach, that is combined with the proposed active learning ap-
proach in order to improve the efficiency of the training process of the classifier.

unlabeled sample. In order to perform the aggregation, a ranking of the unla-
beled samples relative to their informativeness is generated based on each in-
volved heuristic (using the informativeness score specific to each heuristic). Sub-
sequently, rank aggregation is performed on the resulting set of rankings and the
first ny € Nog samples with the highest aggregated rankings are selected for man-
ual annotation.

Furthermore, the proposed MCSS approach is extended to a multi-modal active
learning approach. The idea is to use the ambiguous temporal correlation of
the manifestation of a specific event within several modalities (e.g. audiovisual
events), in order to improve the efficiency of the training process of a modality
specific classification model. For example, laughter is characterized by expressive
facial motions in video sequences which can be accompanied with perceptible vo-
cal utterances in audio sequences. However, the temporal order of occurrence of
the manifestations of laughter in each modality is not predictable and unaligned,
in most cases. The facial motions can occur before the laughter vocalization
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penalizes samples of the target pool (video samples) that are located far away from the
selected samples of the auziliary pool (audio samples). Thus, the approach focuses on
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tary pool. Reprinted by permission from Springer Nature: Springer, Neural Processing
Letters, Thiam et al., A Temporal Dependency Based Multi-modal Active Learning Ap-
proach for Audiovisual Event Detection, ©) 2018.

or both phenomena can occur simultaneously. Therefore, in order to efficiently
optimize the training process of an event detection model for video sequences,
complementary information in the form of co-occurring audio events is included
into the active learning approach, as depicted in Figure 2.3. This is achieved by
combining the proposed active learning approach applied on video sequences, with
a semi-supervised learning approach [Chapelle et al. 2006] consisting of using the
temporal dependency between audio and video manifestations of specific events
to further select and automatically annotate an additional set of video samples.
As usual, a supervised learning classifier fy is initialized based on a small set
of labeled video data L. The classifier is subsequently applied on the pool of
unlabeled video samples & and based on the defined heuristics, a set of sam-
ples is selected, manually annotated and added to the pool of labeled samples.
Concurrently, an unsupervised outlier detection approach (e.g. Support Vector
Data Description [Tax and Duin 2004]) is applied on the set of audio samples in
order to select interesting samples. This is motivated by the fact that samples
that substantially deviate from normal observations are susceptible to be lying
in regions of low density. These samples are subsequently used to select further
video samples from the pool of unlabeled samples ¢/ based on a defined temporal
window centered around the time-stamp corresponding to the audio sample, in
combination with a Gaussian weighting technique depicted in Figure 2.4. The
selected video samples are further automatically labeled by the trained classifica-
tion model fy, and the resulting labeled samples are added to the pool of labeled
video samples. The process is repeated iteratively until a predefined stopping
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Figure 2.5: Results based on an approach consisting of a combination of both Support
Vector Data Description (SVDD) and Support Vector Machine (SVM) algorithms. v =
0 and w € {2,4}. Reprinted by permission from Springer Nature: Springer, Neural
Processing Letters, Thiam et al., A Temporal Dependency Based Multi-modal Active
Learning Approach for Audiovisual Event Detection, ) 2018.

criterion is reached.

Both approaches (MCSS active learning and its multi-modal extension) are as-
sessed on a subset of the Ulm University Multimodal Affective Corpus (UUlm-
MAC) [Hazer-Rau et al. 2020], which consists of several participants taking part
to a gamified experimental setup simulating everyday life Human-Computer Inter-
actions. The participants were asked to play a series of games with several levels
of difficulties ranging from boring to overwhelming. The demeanor of each par-
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ticipant was synchronously captured using several sensors, including cameras and
microphones. The designed active learning approaches were applied in order to
efficiently optimize an effective inference model designed for the detection of spe-
cific occurrences (events) that substantially deviate from neutral (resp. normal)
occurrences, without having to go through the cost expensive process consisting of
labeling the entire dataset. The results depicted in Figure 2.5 show the relevance
of the proposed approaches, since a classifier trained with a little less than 50%
of the entire dataset is able to achieve the same performance as one trained on
the entire dataset. Moreover, the multi-modal counterpart of the proposed MCSS
active learning approach performs best and outperforms its uni-modal counter-
part in almost all settings, since in most cases, a classifier trained on less than
30% of the entire dataset is able to achieve the same performance as one trained
on the entire dataset. This shows that integrating complementary information
stemming from correlated modalities positively impacts the performance of the
designed active learning approach.






Chapter 3

Multiple Classifier Systems and
Fusion Mechanisms

In this chapter, a summary of the work in [Thiam, Kessler, et al. 2019] (see
Chapter 1.2) is provided, including a description of the proposed Multiple Clas-
sifier System (MCS) with the corresponding fusion mechanisms. Furthermore, a
short description of the main findings and results is also provided.

3.1 Introduction and Motivation

In the last decades, the consensus in the pattern recognition community has
been that it is rather ill advised to rely on a single classifier for complex pattern
recognition tasks, since such an approach entails several drawbacks which nega-
tively impact both the performance and the robustness of a pattern recognition
system [Kittler 2000]. First of all, designing a single classifier that effectively
and efficiently exploits the multiple facets and diverse characteristics of a spe-
cific classification task is a rather complex and cumbersome endeavor. Moreover,
supplementary and potentially complementary information provided by a set of
diverse features and classifiers which could substantially reduce the complexity of
the underlying pattern recognition task, is also completely ignored and unused.
Since a pattern recognition system should benefit from an appropriate combina-
tion of complementary information stemming from a heterogeneous ensemble of
classifiers, a Multiple Classifier System (MCS) aims at designing a suitable en-
semble of classifiers as well as a corresponding and appropriate combination (resp.
fusion) approach of the classifiers” outputs, in order to improve the overall per-
formance as well as the robustness of a classification system. Several approaches
have therefore been proposed for the optimal design and optimization of a MCS
[Kuncheva 2004; Roli 2009; Bellmann et al. 2018].

15
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The heterogeneity or diversity of the ensemble of classifiers is necessary in order
for the MCS to outperform a system based on a single classifier. Some of the
most popular approaches to ensure the diversity of the ensemble are bootstrap
aggregation (bagging) [Breiman 1996], boosting [Freund and Schapire 1996] and
random subspace modeling [Ho 1998]. Additionally, it is also possible to gener-
ate a diverse ensemble by training different classifiers on different sets of features
extracted from distinct modalities (e.g. audio, video, bio-physiology). Hence,
the performance of a MCS can be further improved through the combination of
both mechanisms, which literally consists of applying bagging or boosting ap-
proaches on modality specific features and designing a suitable fusion approach
for the aggregation of the classifiers’ outputs (Multi-modal Classifier Fusion).
Such methods have been successfully applied to several pattern recognition tasks
and in most cases significantly outperform pattern recognition systems based on
a single classifier [Kéchele, Thiam, Palm, et al. 2015; Thiam and Schwenker 2017;
Bellmann et al. 2019]. Additionally to the diversity of the ensemble, an adequate
fusion approach has to be designed in order to successfully combine the informa-
tion stemming from the different classifiers. Depending on the level of abstraction
at which the information from the different classifiers is aggregated, three main
categories of information fusion approaches can be distinguished: early fusion,
hybrid (mid-level) fusion, and late fusion.

Early fusion approaches consist of concatenating the features extracted from each
of the available modalities into one single high dimensional feature vector, which
is subsequently used to train a single classifier. The advantages of such an ap-
proach are its simplicity and the potential reduction of the complexity of the
underlying classification task resulting from the combination of complementary
features. However, the major drawback of early fusion approaches is the proba-
bility of running into the so called curse of dimensionality [Bishop 2006], which
negatively affects the overall classification performance. Hybrid (mid-level) fusion
approaches are characterized by a hierarchical (resp. layered) structure. In each
layer, a set of classifiers is trained on different feature sub-spaces stemming from
the aggregation of the output of the preceding layer into different groups, based
on predefined heuristics. The output of each layer is fed into the next one, where
the same procedure takes place. Finally, the last layer uses a specific aggregation
rule in order to compute the final output of the classification architecture. Late
fusion approaches consist of training a diverse set of classifiers based on each
modality specific set of features and subsequently using an aggregation rule to
combine the outputs of the trained classifiers. The aggregation rules can be cate-
gorized into fixed aggregation rules (e.g. majority voting, product rule, averaging
rule) [Kuncheva 2002] and trainable aggregation rules (e.g. linear discriminant
analysis, decision templates, Pseudo-inverse) [Schwenker, Dietrich, et al. 2006].
Fixed rules are simple, straightforward and are characterized by the non-existence
of trainable parameters. Trainable rules on the other hand, are characterized by
a set of trainable parameters to be optimized in order to perform the aggregation
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of the classifiers’ outputs. This inquires that a sufficient amount of labeled data
is available for the optimization of the base classifiers, as well as the optimization
of the trainable parameters specific to the aggregation layer.

Hence, designing a MCS for a specific pattern recognition task constitutes a man-
ual and an iterative process, where crucial decisions have to be taken at each single
step of the design process. First of all, relevant features have to be extracted from
each single modality. This is done based on some expert knowledge related to
the nature of each specific modality. Next, a specific set of classifiers has to be
defined in order to perform the classification experiments at each level of abstrac-
tion. Furthermore, a specific fusion approach has to be defined. This also involves
defining an aggregation rule in order to perform the fusion of the classifiers’ out-
puts at the level of the aggregation layer. Finally, the whole architecture has
to be evaluated depending on the nature of the underlying pattern recognition
task. The work presented in Chapter 3.2 depicts exactly such a process, with the
underlying task being the recognition of different intensities of pain elicitation,
starting from the description of the involved modalities until the evaluation of
the designed fusion architecture.

3.2 Multi-Modal Pain Intensity Recognition

In [Thiam, Kessler, et al. 2019] (see Chapter 1.2), several experiments are under-
taken for the development and assessment of a MCS for the recognition of dif-
ferent intensities of pain elicitation based on the SenseEmotion Database [Velana
et al. 2017]. Pain is a very challenging phenomenon to assess due to its inherent
subjective nature. Therefore, instead of relying uniquely on self-reporting tools,
an additional reliable and automatic multi-modal pain assessment system should
substantially improve the effectiveness of pain management. Hence, in order to
investigate the suitability of a MCS for the detection and assessment of noci-
ceptive pain, a dataset consisting of several healthy individuals submitted to a
series of gradually increasing levels of painful thermal stimuli is recorded. Several
modalities including audio signals, video signals, electrocardiography (ECG), elec-
tromyography (EMG), respiration signal (RSP), electrodermal activity (EDA),
are simultaneously recorded during the conducted experiments, before being in-
dividually assessed and subsequently combined to identify the underlying set of
predefined and gradually increasing intensities of pain elicitation (Ty, 17, Ts, and
T3). Different sets of features are designed and extracted from each involved
modality, before being subsequently assessed on this specific pattern recognition
task. Furthermore, several MCS architectures are designed and evaluated, using
different fixed and trainable aggregation rules in order to perform the combina-
tion of the recorded modalities (see Figure 3.1).

The performed uni-modal assessment shows that the EDA is the best perform-
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(a) Early Fusion. (b) Hybrid Fusion. (¢) Late Fusion.

Figure 3.1: MCS Fusion Architectures. For both hybrid and late fusion architectures
(resp. Fig.3.1b and Fig.3.1c), two fized mappings (Mean and Maz) and two trainable
mappings (LDA and Pseudo-inverse) are evaluated. The mappings are applied on the
classification scores of the base classifiers (Random Forest (RF)) to generate the final
label of an unseen sample. ©) 2019 IEEE. Reprinted, with permission, from Thiam
et al., Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database,
IEEFE Transactions On Affective Computing, January/2019.

ing single modality for this specific experimental setting (heat induced painful
stimuli in a controlled environment). EDA significantly outperforms all other
modalities for the vast majority of the performed experiments. Moreover, the
assessment of the classification architectures shows that given a sufficient amount
of training data, late fusion architectures in combination with trainable aggre-
gation rules significantly outperform the other forms of MCS (early and hybrid
fusion). The resulting best performing architecture consists of a late fusion ap-
proach, with the Pseudo-inverse (Pinv) aggregation rule [Schwenker, Dietrich, et
al. 2006] (see Table 3.1). Given a matrix consisting of the horizontally concate-
nated outputs of the base classifiers C = [C':...:C*:...:C"] € [0, 1]v e,

where C* € [0,1]V¢ (N is the total number of training samples, ¢ is the num-
ber of classes of the classification task, n is the number of base classifiers), a
least-squares optimal linear mapping M € R"*¢ is generated by computing the
Moore-Penrose Pseudo-inverse of C' and multiplying it with the matrix of the

corresponding class labels Y™ e [0, 1]V
M = lim CT(CCT+al) 'Y (3.1)
a—0o0

which is subsequently used to perform the aggregation of the base classifiers’
outputs for unseen samples.

Moreover, the performed assessment also shows that the classification of lower
levels of pain elicitation is very challenging. In this specific case, the aggregation of
multiple modalities does not improve the overall performance of the classification
system, since the modality (resp. channel) specific classifiers are performing at



3.2.  Multi-Modal Pain Intensity Recognition 19

Table 3.1: Classification Results (Mean £ Standard Deviation(in%)). These results
have been achieved by merging the data specific to each forearms of the SenseEmotion
Database into a single set and performing a Leave One Subject Out (LOSO) cross-
validation evaluation. The best performance achieved by a single modality is underlined
and the best overall performance is depicted in bold. An asterisk (*) indicates a sig-
nificant performance improvement between the fusion architecture (late fusion with the
Pseudo-inverse combination approach) and the corresponding best performing single
modality. The test has been conducted using a Wilcoxon signed-rank test with a signifi-
cance level of 5%. (©) 2019 IEEE. Based on Thiam et al., Multi-Modal Pain Intensity
Recognition Based on the SenseEmotion Database, IEEE Transactions On Affective
Computing, January/2019.

Tovs. T1vs. Ty

Task Tovs. Ty Tovs. Ty Tovs. T3 Tovs. Tavs. T3

vs. T3

Random 50.00 50.00 50.00 33.33 25.00
Audio 49.23 +4.37 50.19 £ 5.47 64.75 + 14.27 42.80 + 8.77 32.35 + 6.87
Head Pose 51.73 £4.71 51.68 &+ 5.10 63.05 4+ 14.28 42.94 + 9.48 32.06 + 7.08
Geometric 52.58 +4.00 52.87 +4.49 66.22 4+ 14.48 45.15 £+ 10.10 34.22 + 7.54
LBP-TOP 51.50 +4.34 51.73 £4.23 62.42 +12.18 41.78 £ 8.12 30.87 +5.99
EMG 49.97 £5.48 50.50 + 4.99 59.33 £ 10.18 39.39 +6.43 29.73 £ 5.30
ECG 50.39 £ 3.58 51.69 &+ 5.16 66.28 +12.59 44.42 + 8.41 33.58 +6.85
RSP 50.21 +£4.75 52.04 + 5.61 67.27 £ 11.17 45.18 £8.19 33.89 £5.90
EDA 52.14 + 3.95 62.96 + 9.02 82.23 + 10.57 57.84 +10.51 42.92 +7.07
Late Fusion 51.39 £4.18 62.28 + 8.98 83.39 = 10.23* 59.53 £ 9.94* 43.89 + 7.61

the random level. However, the fusion architecture significantly outperforms all
modality specific classifiers for higher levels of pain elicitation as well as in the
case of multi-class classification tasks, therefore proving the effectiveness of MCS
and its relevance for multi-modal pain recognition tasks.






Chapter 4

Deep Multi-Modal Fusion
Mechanisms

In this chapter, a summary of the deep multi-modal fusion mechanisms proposed
in both [Thiam, Bellmann, et al. 2019] and [Thiam, Kestler, et al. 2020b] is
provided, including a short description of each specific approach, with the corre-
sponding main findings and results.

4.1 Introduction and Motivation

A classical supervised learning pipeline involves a set of subsequent and interre-
lated steps. The very first step consists of the data pre-processing, and involves
various techniques applied directly on the raw input signal in order to reduce the
computational requirements related to the optimization of an inference model.
Hence, the data pre-processing step aims at significantly reducing the amount
of noise within the input signal, as well as detecting and extracting regions of
interest (ROI), which are specific areas of the input signal that are relevant for
the task at hand (e.g. facial area for the assessment of facial expressions). Data
pre-processing is followed by feature engineering. It aims at extracting informa-
tion from the pre-processed input signal that is most relevant with regards to the
underlying inference task. It relies on some expert knowledge in the area of ap-
plication that is used to manually design a set of measurable descriptors, which
is subsequently extracted from the pre-processed signal in the form of feature
vectors. The performance as well as the robustness of traditional inference mod-
els heavily rely on the discriminative and representative ability of the designed
features.

Traditionally, feature engineering is followed by feature selection, which aims at
improving both the robustness and the efficiency of an inference model by se-
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lecting a subset of the most relevant and informative features, while removing
irrelevant and redundant ones. Therefore, the goal of feature selection is two-fold
and involves a substantial reduction of the dimensionality of the feature space,
and at the same time, an improvement of the performance of the corresponding
inference model. Lastly, based on the set of selected features in combination with
the set of corresponding labels, the model optimization phase can be carried out.
During this phase, a specific inference architecture is designed, optimized and
assessed. It involves different types of inference models such as Support Vector
Machines (SVMs) [Abe 2010], Decision Trees [Breiman 1996; Breiman 2001] and
Artificial Neural Networks (ANNs), among others.

Besides, when several channels (resp. modalities) are involved in the underlying
classification task, the designed architecture should efficiently and effectively ag-
gregate complementary information stemming from each of the channels in order
to improve the overall performance and robustness of the classification system
(see Chapter 3). Usually in such a case, pre-processing techniques as well as fea-
ture extraction and selection approaches, specific to each of the involved channels
are separately applied. Subsequently, either a single model is optimized based on
the descriptor resulting from the concatenation of the channel specific features
(Early Fusion), or several channel specific models have to be optimized and sub-
sequently integrated in order to perform the inference task (Multiple Classifier
Systems (MCS)) [Kittler and Roli 2000; Kuncheva 2004].

Hence, classical supervised learning approaches are characterized by a set of inter-
related sequential phases. The overall optimization of such systems is therefore an
iterative process during which the output of each phase constitutes the unique in-
formation shared from one phase to another. The parameters characterizing each
phase are either fixed or optimized based on the output of the preceding phase.
Consequently, even though such approaches can eventually attain state-of-the-art
inference performances, both the robustness as well as the generalization ability
of the trained inference models are hampered and constrained due to three prin-
cipal factors: the manual nature of the optimization pipeline, the reliance on
an expert knowledge in the area of application for the design and extraction of
relevant features and the isolation of each module characterizing the whole op-
timization pipeline. This becomes particularly challenging when dealing with a
multi-modal classification task, since a modality-specific pre-processing pipeline
has to be undertaken, subsequently followed by the optimization of a suitable
fusion (resp. aggregation) mechanism involving the information stemming from
all the involved modalities.

Meanwhile, several works have shown that this whole manual process can be ef-
fectively and efficiently replaced by deep learning approaches [LeCun et al. 2015],
which have been outperforming classical supervised learning approaches in such
domains as image processing [Szegedy et al. 2015], speech recognition [Hinton
et al. 2012] or natural language processing [Costa-jussa 2018]. Deep learning
approaches are characterized by a hierarchical construct of successive processing
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layers, which typically consist of simple and non-linear operations, that enable
the whole architecture to learn very complex functions as well as suitable fea-
tures directly from the pre-processed input signal. Therefore, the work presented
in both Chapter 4.2 and Chapter 4.3, aims at enabling an inference model to
autonomously generate not just relevant feature representations of specific input
signals, but also to optimize a suitable multi-modal aggregation architecture in
order to adequately perform the underlying classification task. In both cases, the
pattern recognition task consists of the assessment of different levels of nocicep-
tive pain elicitation based respectively on bio-physiological signals (Chapter 4.2)
and video sequences (Chapter 4.3).

4.2 Deep Physiological Models for Pain
Assessment

In [Thiam, Bellmann, et al. 2019] (see Chapter 1.3), the reliance on expert knowl-
edge for the design of competitive feature representations as well as the iterative
and time consuming manual model optimization process characterizing classi-
cal supervised learning approaches are both avoided by the introduction of deep
neural networks. Feature engineering and model optimization are therefore si-
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Figure 4.1: Late Fusion Architecture. The final output is computed by an additional
layer comsisting of trainable parameters and a linear output function. Therefore, the
final output consists of a weighted average of the modality-specific outputs. The whole
architecture is trained in an end-to-end manner. Reproduced with permission from
[Thiam, Bellmann, et al. 2019]; published by Sensors, 2019, licensed under CC BY-
NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/).



24 Chapter 4. Deep Multi-Modal Fusion Mechanisms

Table 4.1: Fusion performance comparison to early work on the BVDB (Part A) in
a Leave One Subject Out (LOSO) cross-validation setting for the classification task
Tovs.Ty. The performance metric consists of the average accuracy (in %) over the
LOSO cross-validation evaluation. The best performing approach is depicted in bold.
Based on [Thiam, Bellmann, et al. 2019]; published by Sensors, 2019, licensed under
CC BY-NC-ND 4.0 (hitps://creativecommons.org/licenses/by-nc-nd/4.0/).

Approach Description Performance

[Werner, Al-Hamadi,

Early Fusion with Random Forests (Head Pose and

lebertccal{c_QE())Clk;r ndt, Facial Activity Descriptors) 7240
[Werner, Al-Hamadi, Early Fusion with Random Forests (EDA, EMG, ECG, 77 80
Niese, et al. 2014] Video) '
[Kéchele, Werner, . . .
et al. 2015] Early Fusion with Random Forests (EDA, ECG, Video) 78.90
[Kéchele, Thiam, Late Fusion with Random Forests and Pseudo-inverse 83.10
Amirian, et al. 2015] (EDA, EMG, ECG, Video) '
Our Approach Late Fusion with CNNs (EDA, EMG, ECG) 84.40 +14.43

multaneously undertaken by a deep artificial neural network consisting of one-
dimensional convolutional layers. Furthermore, an aggregation layer is proposed
for the fusion of the modality-specific models’ outputs (see Figure 4.1). The
aggregation layer consists of a set of trainable weights (ay, s, a3), and a lin-
ear activation function. Therefore, given the set of class probabilities of each
modality-specific model i related to a specific sample j ({6;; € [0,1]°: 1 < < 3},
where ¢ is the number of classes of the underlying classification task), the final
class probability output is computed as follows:

3
1
=1

with the following constraints: Vi,a; > 0 and Z?:l a; = 1. The whole archi-
tecture is trained in an end-to-end fashion, which means that the aggregation
parameters are simultaneously optimized with the parameters of each modality-
specific network. The proposed approach is evaluated on both parts (Part A and
Part B) of the BioVid Heat Pain Database [Walter, Gruss, Ehleiter, et al. 2013],
for the classification of different levels of nociceptive pain elicitation, based on
bio-physiological signals (Electrocardiography (ECG), Electromyography (EMG),
Electrodermal Activity (EDA)). The performed assessment shows that the de-
signed deep architectures are able to attain new state-of-the-art classification
performances in the case of the uni-modal approach based on the EDA, and also
in the case of the fusion of all three modalities, while significantly outperforming
previous approaches that rely on a set of carefully engineered manual features (see
Table 4.1 and Table 4.2). Therefore, domain expert knowledge can potentially be
bypassed by enabling a suitable artificial neural network to autonomously learn
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Table 4.2: Fusion performance comparison to early work on the BVDB (Part B) in
a Leave One Subject Out (LOSO) cross-validation setting for the classification task
Tovs.Ty. The performance metric consists of the average accuracy (in %) over the
LOSO cross-validation evaluation. The best performing approach is depicted in bold.
Based on [Thiam, Bellmann, et al. 2019]; published by Sensors, 2019, licensed under
CC BY-NC-ND 4.0 (hitps://creativecommons.org/licenses/by-nc-nd/4.0/).

Approach Description Performance

Late Fusion with SVMs and Mean Aggregation (EMG
(zygomaticus), EMG (corrugator), EMG (trapezius), 76.60
ECG, EDA, Video)

Early Fusion with SVM (EMG (zygomaticus), EMG

[Kéchele, Werner,
et al. 2015]

[Walter, Gruss,

1 _ =
Lunberte(:it ;)Cllj]u ndt, (corrugator), EMG (trapezius), ECG, EDA) 77.05
Our Approach Late Fusion with CNNs (EMG (trapezius), 70 48 4 14.96

ECG, EDA)

both relevant representations of the input data as well as the aggregation param-
eters needed to perform the fusion of several modality-specific models’ outputs.

Hence, motivated by these findings, more information fusion architectures were
assessed as described in [Thiam, Kestler, et al. 2020a], where several architec-
tures consisting of Deep Denoising Convolutional Auto-Encoders (DDCAES) (see
Figure 4.2) were designed and also assessed on the same dataset. The described
architectures are characterized by the simultaneous optimization of both a single
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Figure 4.2: Fusion architectures based on Deep Denoising Convolutional Auto-
Encoders (DDCAEs), trained simultaneously with an additional neural network per-
forming the classification task. Reproduced with permission from [Thiam, Kestler, et al.
2020a], licensed under CC BY-NC-ND 4.0 (https://creativecommons.orq/licenses/by-

ne-nd/4.0/).
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representation of all involved modalities through the use of DDCAESs and a feed-
forward neural network performing the classification of the different levels of pain
elicitation. In this case, the performed assessment points at the fact that using
a trainable gating layer for the generation of a weighted representation of the
modality-specific latent representations significantly improves the performance of
the whole architecture. The gated latent representation architecture (see Figure
4.2c¢) significantly outperforms previous works based on manually designed fea-
tures.

Thus, the autonomous representation learning based on deep neural networks
constitutes a sound alternative for manual feature engineering. Moreover, a sig-
nificant performance improvement can be achieved by integrating feature learn-
ing, classifier design and classifier aggregation into a single deep neural network
architecture.

4.3 Multi-Attention Network for Video
Sequence Analysis

In [Thiam, Kestler, et al. 2020b] (see Chapter 1.4), an end-to-end approach based
on attention networks [Zhou et al. 2016] is proposed, for the analysis of pain
related facial expressions in video sequences. The approach consists of the com-
bination of both spatial and temporal aspects of facial expressions in video se-
quences at both representational (input signal) and structural (inference model
architecture) levels of the classification architecture (an overview of the approach
is depicted in Figure 4.3). For this purpose, video sequences are first encoded into
suitable spatio-temporal representations using Motion Histogram Images (MHIs)
[Ahad et al. 2012] and Optical Flow Images (OFIs) [Horn and Schunck 1981].
Given the j™ video sequence {fo1,..., fxj,---, f1;}, each single representation
(OFI or MHI) is computed using a predefined and fixed reference frame ( fi+ ;) and

ofi L ofi
| ) Attention s
OpticalFlow = % _“ Netronz Classifier
Images \ { {
— hiphi scoremhi
[ Attention o
MotionHistory " | Network Classifier
Images A

Figure 4.3: Two-Stream Attention Network based on Optical Flow Images (OFIs) and
Motion Histogram Images (MHIs) with Weighted Score Aggregation. Reproduced with
permission from [Thiam, Kestler, et al. 2020b]; published by Sensors, 2020, licensed
under CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/).
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the consecutive frames constituting the video sequence. In the current work, the
very first frame of each video sequence is chosen as the reference frame (k* = 0).
Therefore, each generated spatio-temporal representation of the j** video se-
quence consists of a total of [ images {im; j,...,imy;}, encoding both long and
short term facial motions. These representations are subsequently fed into specific
hybrid neural network architectures, each one consisting of a feature embedding
Convolutional Neural Network (CNN) coupled to an attention-based Bidirectional
Long Short-Term Memory (BiLSTM) [Hochreiter and Schmidhuber 1997] recur-
rent Neural Network (RNN) (see Figure 4.4).

The CNN generates a sequence of [ feature embeddings {X; ;,...,X;;} which
are fed to the attention-based BiLSTM. The BiLSTM generates hidden repre-
sentations {hy ;j}_;, {hr;}i_, by processing the input signal backwards and for-
wards in time. These representations are subsequently concatenated {hy ;}i_, =

— l
{ [hk,j . m} }k and fed into an attention layer that generates a single weighted
=1

X, hij  Attention Layer

@ Concatenation @ Element-wise Sum

Figure 4.4: Attention Network. Reproduced with permission from [Thiam, Kestler,
et al. 2020b]; published by Sensors, 2020, licensed under CC BY-NC-ND 4.0
(https://creativecommons.org/licenses/by-nc-nd/4.0/).
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representation h; as follows:

ajp = elu (thm + bk) (42)

l
> exp(ag)hy
h; ==L (4.3)

5™ explar)

k=1

where {Wj, b, }._, represents the set of trainable parameters of the attention
layer and elu refers to the exponential linear unit activation function [Clevert
et al. 2016].

Next, the resulting spatio-temporal representations specific to both OFI sequences
(h;f ") and MHI sequences (h7") are fed into specific classifiers (which are Multi-
Layer Perceptrons (MLPs) in this case), before the resulting class probabilities
are further aggregated using a weighting layer, similar to the one presented in
Chapter 4.2. The assessment performed on the video recordings of both the
BioVid Heat Pain Database (Part A) and the SenseEmotion Database [Velana
et al. 2017] points at the relevance of the proposed architecture, as its perfor-
mance is on par with state-of-the-art classification approaches (see Figure 4.5).
The proposed approach also outperforms most of the proposed methods in the
literature based on manually engineered features, thus pointing at the fact that
the integration of the spatial and temporal dimensions of facial expressions in
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(a) BioVid Heat Pain Database. (b) SenseEmotion Database.

Figure 4.5: Classification performance (Accuracy). An asterisk (*) indicates a signif-
icant performance improvement. The test has been conducted using a Wilcoxon signed-
rank test with a significance level of 5%. Within each box plot, the mean and the median
classification accuracy are depicted respectively with a dot and a horizontal line. Re-
produced with permission from [Thiam, Kestler, et al. 2020b]; published by Sensors,
2020, licensed under CC BY-NC-ND 4.0 (https://creativecommons.orq/licenses/by-nc-

nd/4.0/).
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both representational and structural levels of a deep architecture significantly
improves its overall performance.






Chapter 5

Summary & Conclusion

The work presented in this thesis focused on the development of information fu-
sion mechanisms for the optimization of effective inference models applied in di-
verse scenarios. The assessment of the proposed approaches was performed on dif-
ferent pattern recognition tasks ranging from the detection of audiovisual events,
to the classification of several levels of heat induced painful stimuli. The per-
formed assessment involved different datasets, each consisting of a set of healthy
participants submitted to a series of audiovisual or thermal stimuli. The de-
meanor of the participants involved in the experiments leading to the creation of
each dataset was recorded using a diverse set of modalities, ranging from audio
and video signals, to bio-physiological signals (electrodermal activity, electrocar-
diography, electromyography, respiration signal). Accordingly to the underlying
pattern recognition task, the works summarized in the Chapters 2, 3 and 4 have
shown that a careful integration of a diverse set of information stemming from
multiple sources can substantially improve the efficiency of the training process of
an inference model, as well as its performance. Furthermore, the design of a suit-
able fusion architecture not only depends on the underlying pattern recognition
task, but more importantly, on the amount, diversity and quality of the training
material. These attributes offer more flexibility concerning the design of the fu-
sion architecture which can be exploited to improve the efficiency of the training
process as well as the overall performance of the optimized inference model.

In [Thiam, Meudt, Palm, et al. 2018] (summarized in Chapter 2), a uni-modal
active learning approach based on a multiple criteria sample selection mechanism
as well as its multi-modal counterpart have been proposed for the optimization
of the training process of an audiovisual events detection model. The proposed
multi-modal approach relies on the temporal correlation of events in both video
and audio channels, for the selection and annotation of informative samples, that
are subsequently used to continuously actualize the parameters of the inference
model. Hence, an effective event detection model can therefore be optimized
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on a significantly reduced set of manually annotated samples, without any loss
of the generalization performance. The assessment of the proposed approaches
performed on the UUImMAC dataset [Hazer-Rau et al. 2020] has shown that a
suitable model can be trained on a little less than 30% of an entire dataset, while
still achieving the same performance as a model trained on the entire dataset.
This proves that, depending on the underlying pattern recognition task, a huge
amount of redundant, inconsistent and noisy data is comprised within the training
material. This specific type of data causes the labeling process to be cumbersome,
error-prone and temporally expensive. An adequate selection and annotation of
a reduced set of samples suffices for the optimization of an effective inference
model. Moreover, the proposed multi-modal approach significantly outperforms
its uni-modal counterpart in most cases, thus pointing at the validity and rel-
evance of the integration of diverse sources of information for the optimization
of a specific inference model. Therefore, potential future works should consist
in investigating further heuristics for an effective combination of sample selec-
tion approaches stemming from different modalities. Moreover, the integration
of more channels into the whole process should also be investigated. In the case
of bio-physiological channels, expert knowledge is needed for the localization and
interpretation of specific events within the processed signals. A multi-modal ac-
tive learning approach could be implemented in order to perform the detection
of such events within bio-physiological signals based on complementary informa-
tion stemming from synchronous video and audio modalities and be subsequently
assessed by comparing the generated output to the results of the detection pro-
cess performed manually by an expert. Such an approach would further improve
the efficiency of the training process of bio-physiological inference models, since
little to no expert knowledge for the annotation of the targeted events would be
needed.

In [Thiam, Kessler, et al. 2019] (summarized in Chapter 3), a systematic analysis
and assessment of several modalities including audio, video and bio-physiological
signals is performed for the classification of several levels of heat induced pain
elicitation. Additionally, a thorough assessment of several information fusion ar-
chitectures (early, hybrid and late fusion) in combination with different fixed and
trainable aggregation rules is conducted in order to design an effective multi-
ple classifier system that significantly outperforms each uni-modal classification
model. One of the main findings of the performed evaluation of the designed
feature representations specific to each modality on the SenseEmotion Database
[Velana et al. 2017] is the fact that the electrodermal activity (EDA) constitutes
the best performing single modality. EDA significantly outperformed all the other
modalities in almost the entirety of the performed experiments. However, these
results could be biased due to the nature of the stimuli, since a strong correlation
between the signals specific to the thermal stimuli and the EDA signals could be
observed. Further evaluation of EDA in different experimental settings, involving
different types of pain elicitation (e.g. pressure or cold) should be performed in
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order to validate the aforementioned finding.

This work is also one of the first to assess the audio channel as a potential suitable
modality for the assessment of pain. Even though the experimental settings did
not include any type of verbal interaction which resulted in audio signals compris-
ing mostly of mourning sounds, the performed assessment proved the relevance
of the audio modality, which generally performed better than the electromyogra-
phy (EMG) (which, by the way, is the worst performing single modality). The
assessment of the audio channel in a more realistic setting including verbal inter-
actions should also be performed. Finally, the performed experiments also showed
that late fusion architectures with trainable aggregation rules significantly out-
performed the other forms of fusion mechanisms. The best performing fusion
approach consists of a late fusion architecture with the Pseudo-inverse aggrega-
tion rule [Schwenker, Dietrich, et al. 2006]. This specific fusion approach was
also able to significantly outperform the best performing single modality (EDA)
classification model in almost all conducted experiments. Therefore, information
fusion can substantially improve the performance of a pattern recognition system
and the choice of a suitable architecture for the aggregation of a diverse set of in-
formation also relies on the size of the available training material. Given enough
training samples, late fusion approaches with trainable aggregation rules should
be preferable to other fusion mechanisms. Lastly, these results were acquired
based on a dataset collected in a controlled environment. Therefore, valuable
insights would be achieved by implementing and assessing the proposed architec-
ture in a real world scenario.

Based on the findings in [Thiam, Kessler, et al. 2019], specific fusion approaches
based on deep neural networks are proposed in both [Thiam, Bellmann, et al.
2019] and [Thiam, Kestler, et al. 2020b] (summarized in Chapter 4). In [Thiam,
Bellmann, et al. 2019], a deep neural network based on one-dimensional convo-
lutional layers is proposed for the simultaneous generation and aggregation of
suitable high level bio-physiological representations in order to perform the clas-
sification of several levels of heat induced painful stimuli. The proposed late
fusion architecture is characterized by the weighted aggregation of the outputs
of a set of channel-specific deep neural architectures. The whole architecture is
subsequently trained in an end-to-end manner. Therefore, the reliance on an
expert knowledge in the domain of application for the extraction of suitable fea-
ture representations can be bypassed by enabling the network to autonomously
engineer suitable representations directly from the pre-processed raw input sig-
nals. Furthermore, an end-to-end optimization including the modality-specific
weighting parameters, enables the system to automatically identify the most rel-
evant sources of information and adapt the weighting parameters accordingly.
The proposed deep fusion approach achieved new state-of-the-art classification
performances on the BioVid Heat Pain Database [Walter, Gruss, Ehleiter, et al.
2013], and also significantly outperformed related approaches based on hand-
crafted features. A further integration of recurrent neural networks in order to
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optimally use the temporal aspect of one-dimensional bio-physiological signals as
well as the optimization of a temporal gating layer should be further investigated.
In [Thiam, Kestler, et al. 2020b], a two-stream attention network for the analysis
and assessment of pain related facial expressions in video sequences is proposed.
The architecture also consists of a late fusion approach with trainable weight-
ing parameters, which performs the aggregation of the outputs of two channel-
specific attention networks, based respectively on sequences of Motion Histogram
Images (MHIs) [Ahad et al. 2012] and Optical flow Images (OFIs) [Horn and
Schunck 1981]. The proposed approach integrates both temporal and spatial as-
pects of facial motion in image sequences at both the representational level (by
using OFIs and MHIs as input) and structural level (by using attention-based
Bidirectional Long Short-Term Memory (BiLSTM) [Hochreiter and Schmidhu-
ber 1997] Recurrent Neural Networks (RNNs)). Therefore, the network is able
to identify the most interesting frames within each video sequence in relation
with the corresponding level of pain elicitation based on the optimized attention
weights. This information is further integrated into the resulting weighted repre-
sentations generated by each channel-specific attention network and subsequently
used to process with the classification of the video sequences. The outputs of the
channel-specific networks are aggregated using a layer characterized by a set of
trainable parameters and a linear output function. The whole architecture is
trained in an end-to-end manner based on the findings in [Thiam, Bellmann, et
al. 2019]. The assessment performed on both the BioVid Heat Pain Database
and the SenseEmotion Database shows that the proposed approach is capable
to attain state-of-the-art classification performances and is also on-par with the
best performing approaches proposed in the literature. An optimization of the
channel-specific attention-based neural networks should be further investigated
in order to improve the performance of the whole classification system.

In summary, the work presented in this thesis provides the following contributions
regarding each of the three research questions raised in Chapter 1:

Which information is relevant for the underlying pattern recognition
task?

This question was addressed by introducing a novel uni-modal active learning
approach based on a multiple criteria sample selection mechanism, as well as its
multi-modal active learning counterpart in [Thiam, Meudt, Palm, et al. 2018|.
The assessment of the proposed approaches has shown that an effective inference
model can be efficiently optimized on a significantly small amount of carefully
selected training samples. Furthermore, the sample selection and annotation pro-
cess can be further optimized by exploiting relevant information extracted from
auxiliary and temporally correlated input channels. Herewith, the annotation
of a huge amount of irrelevant, noisy and redundant information can be effec-
tively avoided and therefore, the cumbersome and temporally expensive labeling
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process, needed for the optimization of supervised learning approaches, can be
efficiently optimized.

Moreover, a thorough assessment of several modalities regarding the underlying
pattern recognition task consisting of the classification of pain intensities was
conducted in [Thiam, Kessler, et al. 2019]. Several sets of feature representations
based on spatial, spectral and temporal domains were subsequently designed and
extracted from each modality, and individually assessed. The results of the per-
formed assessment indicate that the electrodermal activity (EDA) constitutes the
most relevant and best performing modality for the underlying and specific exper-
imental settings (involving thermal pain stimuli), followed by the video channel.
Furthermore, the audio channel outperforms the electromyography (EMG) chan-
nel measured at the level of the trapezius muscles (which, by the way, is the
worst performing modality), and therefore constitutes an additional and relevant
modality for the classification of pain intensities. A similar overall performance
could be observed for both respiration (RSP) and electrocardiography (ECG)
channels. Finally, the integration of temporal information at both the struc-
tural and representational levels of a deep neural network in combination with
a frame attention mechanism for the analysis of pain induced facial expressions
in video sequences was proposed and assessed in [Thiam, Kestler, et al. 2020b].
The performed assessment of the proposed approach indicates that the attention
mechanism enables the architecture to automatically detect the most relevant
frames in a specific video sequence and assign specific weights accordingly, while
the integration of the temporal aspect of facial motions significantly improves the
overall performance of the pain intensity classification system.

When should the processed information be aggregated?

This question was addressed by proposing and assessing several information fu-
sion architectures characterized by the aggregation of information stemming from
multiple modalities at different levels of abstraction (early fusion, hybrid fusion
and late fusion) for the classification of several levels of pain elicitation in [Thiam,
Kessler, et al. 2019] based on Random Forest base classifiers, and in [Thiam, Bell-
mann, et al. 2019] based on deep neural networks. In both works, the performed
assessment of the proposed architectures points at the fact that the choice of an
effective information fusion architecture depends to a large extent on the size of
the training data. Late fusion approaches perform consistently better and sig-
nificantly outperform the other information fusion architectures given that an
accordingly high amount of training material is available. The high amount of
training material allows a better optimization of single representation inference
models, and offers more flexibility concerning the combination of the resulting
intermediate representations at a higher level of abstraction, while significantly
improving the scalability of the whole architecture.
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How should the processed information be aggregated?

Several information aggregation rules ranging from fixed to trainable aggregation
mechanisms were designed and assessed in [Thiam, Kessler, et al. 2019] in combi-
nation with different information fusion architectures and in [Thiam, Bellmann,
et al. 2019; Thiam, Kestler, et al. 2020b] in combination with a late fusion archi-
tecture, in order to address this question. The assessment performed in each work
points to the fact that trainable aggregation mechanisms significantly outperform
fixed aggregation mechanisms given that a sufficient amount of training material
is available for an effective optimization of the base classifiers, as well as the ag-
gregation parameters. Moreover, the Moore-Penrose Pseudo-inverse aggregation
approach [Schwenker, Dietrich, et al. 2006] significantly outperformed the other
forms of trainable and fixed aggregation rules proposed in [Thiam, Kessler, et al.
2019] for the classification of pain intensities, while using Random Forest models
as base classifiers. Furthermore, the experiments conducted in both [Thiam, Bell-
mann, et al. 2019] and [Thiam, Kestler, et al. 2020b] have shown, that enabling an
architecture to simultaneously optimize the modality-specific representations as
well as the aggregation parameters using a deep neural network, can significantly
improve the performance of the classification system. In each work, an end-to-end
multi-modal fusion architecture based on several modality-specific deep neural
networks combined with a weighting aggregation layer is proposed and assessed.
In both cases, the weighted aggregation layer is able to consistently outperform
each system based on a specific single modality, by automatically identifying the
most relevant input channel and correspondingly assigning specific aggregation
weights. Herewith, new state-of-the-art pain intensity classification performances
could be achieved on publicly available as well as custom datasets.

In conclusion, this thesis has introduced and thoroughly assessed several new in-
formation fusion mechanisms for the optimization of inference models specific to
different pattern recognition tasks. The performed experimental evaluation have
proven the effectiveness and relevance of the proposed approaches. However, most
of the performed experiments were conducted in controlled environments. The
application of the proposed approaches in real world scenarios is more than desir-
able and also relevant, in particular nowadays, when ubiquitous devices provide
an unlimited source of diverse data, which can be used to implement and perform
different pattern recognition tasks. When performed wisely, this technology can
substantially improve human-computer interactions as well as open the door to
potentially new fields of application.
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Abstract In this work, two novel active learning approaches for the annotation
and detection of audiovisual events are proposed. The assumption behind the pro-
posed approaches is that events are susceptible to substantively deviate from the
distribution of normal observations and therefore should be lying in regions of low
density. Thus, it is believed that an event detection model can be trained more
efficiently by focusing on samples that appear to be inconsistent with the majority
of the dataset. The first approach is an uni-modal method which consists in using
rank aggregation to select informative samples which have previously been ranked
using different unsupervised outlier detection techniques in combination with an
uncertainty sampling technique. The information used for the sample selection
stems from an unique modality (e.g. video channel). Since most active learning
approaches focus on one target channel to perform the selection of informative
samples and thus do not take advantage of potentially useful and complementary
information among correlated modalities, we propose an extension of the previous
uni-modal approach to multi-modality. From a target pool of instances belonging
to a specific modality, the uni-modal approach is used to select and manually label
a set of informative instances. Additionally, a second set of automatically labelled
instances of the target pool is generated, based on a transfer of information stem-
ming from an auxiliary modality which is temporally dependent to the target one.
Both sets of labelled instances (automatically and manually labelled instances)
are used for the semi-supervised training of a classification model to be used in
the next active learning iteration. Both methods have been assessed on a set of
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participants selected from the UUImMAC dataset and have proven to be effective
in substantially reducing the cost of manual annotation required for the training
of a facial event detection model. The assessment is done based on two different
methods: Support Vector Data Description (SVDD) and Expected Similarity Es-
timation (EXPoSE). Furthermore, given an appropriate sampling approach, the
multi-modal approach outperforms its uni-modal counterpart in most of the cases.

Keywords Active Learning - Unsupervised Outlier Detection - Support Vector
Data Description - Expected Similarity Estimation

1 Introduction

In recent years, there has been a growing interest of the affective computing com-
munity towards the analysis of the affective state of users in different fields of
application like the development of personal assistance systems, health care appli-
cations, robotics or entertainment industry. Potential applications of the analysis
of an individual’s affective state span from personal assistance to elderly care
monitoring and improved human computer interaction (HCI). All these fields of
application have in common that a classification system has to be trained on a
preferably huge set of annotated training data. In the past years this data started
to become multi-modal, containing at least audio and video information, often ad-
ditional physiological data or infrared and depth information [1]. Furthermore, the
content of the data moved from small datasets of acted emotions with condensed
strong expressive emotions to more realistic everyday life situation data. As a con-
sequence, an exponential growth of unannotated realistic datasets characterised
by a scarceness of emotional content can be observed. This is a specific charac-
teristic of human behaviour, as we do not express our emotions, or more general,
our affective state all the time. So these datasets are much harder to classify and
contain lots of useless and redundant data from a classifier’s point of view [2,3].
Given the fact that nowadays, almost every single device is equipped with sensors
that continuously gather and stream valuable information about the user’s daily
habits, physical shape and mental state, it is highly probable that this amount
of data will continue growing. But before a classifier can be trained, the available
data or at least a part of it, needs to be annotated first. This labelling is so far done
mostly by human experts. Thus, the problem does not reside in the availability of
data but instead in the labelling of such a huge amount of data. It is well known
that data annotation is a very cumbersome and cost expensive process. Therefore,
several machine learning methods spanning from semi-supervised learning [4] to
active learning [5] have been proposed to substantially reduce the cost of manual
annotation without any significant degradation of the performance of the trained
classifier [6].

Moreover, the combination of multiple modalities can be advantageous, because
emotions are expressed differently depending on the modality. Furthermore, some
signs of emotion only appear in specific modalities [7,8]. For instance, the first
signs of happiness are shown by smiling and laughter. This information would be
lost if the laughter is not vocalized and the only available modality is the audio
channel. On the other hand, a frustrated user may show his emotion by using
some strong language. This would not be visible on a video recording. Therefore,
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a multi-modal approach in affective computing is often preferred to analyse the
overall emotional state of an individual. However multi-modal scenarios are dif-
ficult to handle, because each modality has specific characteristics (e.g. distinct
feature extraction methods are needed for each modality). Thus, feature vectors
are calculated from different points of time and cover different time intervals. In
combination with emotion detection, a well designed strategy is needed to success-
fully master the task of multi-modal emotion detection.

In the following work, we first present a uni-modal pool-based active learning
approach for audiovisual event detection. The approach consists in using rank ag-
gregation to select informative samples which have previously been ranked using
different outlier detection techniques in combination with an uncertainty sampling
technique. Moreover, an extension of the uni-modal approach to multi-modality
is proposed. The multi-modal approach uses complementary information from an
auxiliary modality to select samples from a target modality, which are subsequently
used together with manually annotated samples to train an event detection model
in a semi-supervised manner. The approach exploits the temporal dependency
between the modalities to select instances from the target modality that are lo-
cated at defined temporal neighbourhoods of interesting samples of the auxiliary
modality, which have previously been selected using unsupervised outlier detection
techniques. The goal here is to further improve the efficiency of the training process
of an event detection model on a specific target modality, by further reducing the
cost of manual annotation through the exploitation of complementary information
extracted from auxiliary modalities. The proposed approaches are assessed on a
subset of the Ulm University Multimodal Affective Corpus (UUImMAC) database.
The remainder of this work is organized as follows. In Section 2, an overview of
several active learning approaches in a multitude of domain spanning from content-
based information retrieval to event detection and emotion recognition in human
computer interaction is provided. In Section 3 a thorough description of the pro-
posed approaches is given. The dataset utilized to assess the proposed approaches
including its annotation process is described in Section 4. In Section 5, a descrip-
tion of the experimental validation and results assessment is provided. Finally in
Section 6 we conclude the present work and offer ideas for future work in the
current direction.

2 Related Works

In recent years, research in active learning has expanded from content-based in-
formation retrieval [9-11], to anomaly and rare category detection [12-15] and
to emotion recognition in Human Computer Interaction (HCI) [16-18] as well as
physiological signal processing [19-21]. Content-based information retrieval has
gained more interest lately due to its relevance in many multimedia applications
as web search and audiovisual content management. Rare category detection con-
sists in identifying instances from rare classes within unlabelled datasets. Gornitz
et al. [22] proposed an active learning method based on Support Vector Data
Description (SVDD) [23] for anomaly detection in network traffic. The proposed
approach incorporates unlabelled and labelled data in a semi-supervised training
of a decision boundary (ActiveSVDD). Subsequently, the instances that are to be
manually annotated are selected using a combined strategy, consisting of querying
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those instances that are close to the decision boundary and that also lie in poten-
tially anomalous clusters detected using a k-nearest neighbour graph. By doing
so, the cost of annotation required for a proper calibration and validation of an
intrusion detection model is substantially reduced.

Pelleg et al. [12] proposed a pool based active learning approach based on semi-
supervised Gaussian Mixture Model (GMM) for anomaly detection in the case
of extremely unbalanced datasets. The proposed querying strategy (Interleave
method) consists of generating ranked lists of unlabelled instances by using the
probability distribution function of each component of the mixture. These lists are
subsequently merged into one final ranked list by cycling through each of them and
picking the top instance that has not already been put in the final list. The picked
instance is subsequently placed at the next position in the final list. Thereafter,
the top n instances of the final list are selected for manual annotation. The ap-
proach was tested on synthetic as well as real datasets and proved to be effective in
discovering rare classes for extremely unbalanced datasets while reducing the cost
of manual annotation. In [13], He and Carbonell proposed two nearest-neighbour
based rare category detection algorithms, one for the binary case (NNDB) and
the other for the multiple classes case (NNDM) respectively, by performing local
density differential sampling. Both methods rely on the prior(s) of the minority
class(es). Based on the latter, an estimate of the number of instances belonging
to the minority class(es) is computed. Thereafter, the latter is used in combina-
tion with a nearest neighbour clustering algorithm to measure the density around
each unlabelled sample. The querying method consists of measuring the change
in local density for each sample and selecting those with the maximum change.
The approach was tested on both synthetic and real datasets and proved to be
significantly better than the Interleave method proposed by Pelleg et al. [12].
Furthermore, He et al. in [24] proposed a graph-based rare category detection al-
gorithm (GRADE) which is a generalised form of the NNDB algorithm proposed
in [13]. The proposed approach also relies on the prior of the minority class and
utilizes a global similarity matrix to detect compact clusters susceptible to cor-
respond to the minority class. The querying strategy then consists of selecting
instances from regions where the local density changes the most (regions where
the probability of selecting samples of the minority class is high). In [14], the
authors proposed a pool based active learning approach to jointly perform rare
classes discovery and classification. The approach consists of adaptively selecting
an appropriate query strategy online, amongst several query strategies based on
their performance at discovering new classes and also their classification perfor-
mance. Moreover, a combination of a generative model based on Gaussian mixture
model and a discriminative model based on Support Vector Machine (SVM) [25]
is proposed, since generative models have proven to be effective in rare category
detection tasks, while discriminative models have proven to be effective in classi-
fication tasks.

Pichara and Soto [15] proposed a semi-supervised anomaly detection method that
first uses a Bayesian network (BN) [26] to build an initial set of anomalous sam-
ples based on the generated probabilistic model. Thereafter, a subspace clustering
method is used to identify relevant subspaces and micro clusters within the previ-
ously selected samples. Finally, a probabilistic active learning scheme (a hierarchi-
cal Bayesian generative model in this case) based on the earlier identified subspaces
and micro clusters, is used to select and annotate the most relevant samples. How-



Multi-modal Active Learning for Audiovisual Event Detection 5

ever, the main focus of the proposed approach does not reside in improving the
generalization performance of a classifier while significantly reducing the cost of
annotation. Instead, the main goal is to quickly learn to identify relevant anoma-
lous instances based on the feedback provided by the expert while minimizing the
amount of query. Yan et al. [27] proposed a multi-class active learning approach
for video data annotation, with query strategies based on the minimization of the
expected generalization risk.

Concerning emotion recognition, Zhao and Ma in [16] proposed an active learn-
ing method consisting of applying Conditional Random Fields (CRF) [28] with
a combination of uncertainty sampling and density measure for speech emotion
recognition. Zhang et al. in [17] proposed the Dynamic Active Learning (DAL)
for emotion recognition in spoken interactions in order to reduce the cost of hu-
man annotation by adaptively deciding for each instance if it should be labelled
automatically by the trained model, or manually. The method also decides how
many human annotators are required for an effective annotation of an instance.
The method utilizes the medium certainty query strategy [29] to select the samples
to be labelled. Subsequently, instead of using a majority voting model amongst all
available annotators, an agreement level based selection scheme is used to select
a subset of the annotators for the labelling of the selected samples. In [30], the
authors use active learning for the detection and annotation of facial action units
in webcam videos. The annotated facial action units are used subsequently for the
classification of the facial expressions displayed in the videos. The proposed ap-
proach consists in using pre-trained action unit classifiers to provide probabilities
of the presence of the action units in each frame of a video segment. Thereafter,
video segments are chosen based on a specific threshold and ranked using the ave-
rage values of the classifier outputs over the segment. The highest ranked segments
are subsequently selected for manual annotation.

Regarding physiological signal processing, Xia et al. [18] applied simple margin
active learning based on SVMs for skin conductance responses detection, as well
as artefacts detection from electro-dermal activity (EDA) data. In [19,20], the au-
thors utilize active learning to improve the efficiency of the annotation process of
patient-specific electrocardiogram (ECG) signals, for the discrimination between
ventricular ectopic beats (VEBs) and non-VEBs, and also for the detection of
ECG abnormalities. The querying strategy applied in this case is a combination of
uncertainty sampling and hierarchical clustering. In [21], the authors apply active
learning in order to improve the scalability of personalised long-term physiological
monitoring in the context of epileptic seizure onset detection, based on the analysis
of Electroencephalogram (EEG) signals.

3 Proposed Approach

We propose a pool-based active learning method which is a further iteration of
the methods presented by Thiam et al. in [31,32]. The method consists in com-
bining outlier detection [33—35] with uncertainty sampling [5] to select informative
samples that are labelled by an oracle and subsequently used to train a classifica-
tion model. This approach has been previously applied in [36] and has proven to
be effective in substantially reducing the cost of manual annotation required for
the training of a good speech event detection model without any degradation of
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performance in comparison to a fully supervised trained model. In this work, the
approach is assessed on the task of facial event detection.

Furthermore, the uni-modal approach is extended to a multi-modal approach. The
idea is to use complementary information from an auxiliary modality to perform
the sample selection from a target modality and improve the efficiency as well as
the performance of the generated classification model. Both target and auxiliary
modalities depict some strong temporal dependency and are partially correlated.
The partial correlation is defined as the frequency of events occurring at the same
time in both modalities. The approach is assessed on the same task of facial event
detection, where the target modality is the video channel and the auxiliary moda-
lity is the audio channel.

The assumption behind the proposed uni-modal approach is that events are sus-
ceptible to deviate substantively from normal observations and thus should be
lying in regions of low density. Therefore, it is believed that an event detection
model can be effectively trained by providing labels to the samples which appear to
be inconsistent with the majority of the dataset. Furthermore, uncertainty sam-
pling is also performed to select samples that would further refine the decision
boundary between both classes (event class vs normal class). The approach re-
lies on rankings of the unlabelled data samples relative to their informativeness.
These rankings are generated using unsupervised outlier detection techniques and
uncertainty sampling. Subsequently, rank aggregation is performed to combine the
resulting rankings and the k samples with the highest aggregated rankings are se-
lected for manual annotation. Two outlier detection techniques have been assessed
in the present work.

3.1 Support Vector Data Description (SVDD)

Introduced by Tax and Duin [23], Support Vector Data Description (SVDD)
is inspired by the Support Vector Classifier [37]. Given a set of observations
{z;}L, = X C R" with 2; € R" Vi, the SVDD generates a closed boundary
around the data, characterised by a center a € R"™ and a radius R > 0. The
optimization problem to be solved consists in minimizing the volume of the hyper-
sphere with the constraint that all observations are located within the boundary.
To allow the possibility of outliers in the training set, slack variables & > 0 are
introduced to relax the strictness of the constraint, as well as a parameter C > 0
which controls the trade-off between the volume of the closed boundary and the
amount of miss classifications. The optimization problem translates into:

min F(R,a) = R® +CZ&
R,a,¢; - (1)
(2
subject to (z; —a,z; —a) < R*4&, &>0,i=1,...,N
The optimization problem is solved by quadratic programming and a new ob-
servation z is classified as an outlier if the distance from z to the center of the
hypersphere a is greater than the radius of the hypersphere R: (z —a,z —a) =
|z — a|* > R?. Similarly to the Support Vector Classifier, a more flexible hyper-
sphere can be obtained by using the kernel trick and replacing the inner product
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in Equation 1 by an appropriate kernel function. In the present work, the Gaus-
sian kernel function (K (zi,z;) = exp(—v||z; — z;||?), v > 0) is applied, since it
produces a more flexibel decision boundary than a model based on either a linear
or a polynomial kernel.

3.2 Expected Similarity Estimation (EXPoSE)

Proposed by Schneider et al. [38], Expected Similarity Estimation (EXPoSE) is an
outlier detection method which utilizes a similarity function to compute a score
(n(2), z being an observation), which represents the likelihood of an observation
belonging to the distribution of regular data P. The lower the score (n(z)) the
higher the likelihood that the corresponding observation is an outlier. Let X C R™
be the input space. Given a kernel function k£ : X x X — R which measures the
similarity between observations of the input space X, the expected similarity of
an observation z € X under the probability distribution P is defined as follows:

n(z) = E [k(z, )] = / k(2 2)dP(x) (2)

X

Given a finite set of observations {wz}f\;l drawn independently from P, the ex-
pected similarity estimation can be approximated by the following scalar product:

1 N
n(z) = <¢(2), N Z¢(wi)> (3)

where ¢ is an approximated feature map such that k(z,z) = (¢(2), #(z)). In the
present work, we use the Gaussian RBF kernel to measure the similarity between
the observations and we apply the Nystrom method [39,40] for the computation
of the approximated feature map ¢.

3.3 Unsupervised Outlier Detection

Throughout the active learning iterations, outlier detection is performed in an un-
supervised manner since the labels of the observations are unknown. The absence
of labels hinders the optimization of the parameters for a single SVDD (respec-
tively EXPoSE) model. Therefore, the unsupervised outlier detection is conducted
with an ensemble of SVDD (respectively EXPoSE) models.

Based on the work of Chang et al. [41], 4 x v SVDD models are generated by
choosing p values for the trade-off parameter C, equally spaced within the in-
terval [+,1] where N is the number of unlabelled instances, and v values for

the Gaussian RBF kernel parameter v, equally spaced within the interval H’ 1}

where f is the dimensionality of the feature vector. In this way, the grid of pos-
sible values for both parameters is covered and the diversity in the ensemble is
ensured. Furthermore a threshold is used to prune the generated ensemble, based
on the reclassification results of each generated model. This threshold specifies
the maximum ratio of observations that have to be classified as outliers. Models
with outlier classification rates higher than the specified threshold are discarded.
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Subsequently, the unlabelled samples are ranked in descending order of the voting
count of the generated ensemble.

Concerning the EXPoSE method, the Gaussian RBF kernel parameter v consti-
tutes the unique parameter that has to be optimized. At each iteration, a random
subset constituting 20% of the unlabelled instances is chosen for the approxima-
tion of the feature map ¢. This value was selected emperically. The ensemble is
generated by choosing several equally spaced ~ values within the interval (0, 1].
Subsequently, the unlabelled samples are ranked in ascending order of the aver-
aged scores of the generated EXPoSE models.

3.4 Pool-based Active Learning: Uni-modal Sample Selection

An overview of the proposed approach can be seen in Figure 1. The approach is
applied to an artificial dataset. Unlabelled instances are represented by black dots.
Labelled instances of the normal class are represented by filled blue dots, while
labelled instances of the event class are represented by filled red diamonds. The
samples selected using the outlier detection methods (see Figure 1(b)) and the
uncertainty sampling method (see Figure 1(c)) are enclosed in yellow filled circles.
The samples selected for manual annotation are enclosed within yellow filled dia-
monds (see Figure 1(d)). The decision boundary of the model trained after each
iteration with the labelled instances is depicted with a full black line and the cor-
responding hyperplane is depicted in green.

Initial Outlier Detection Uncertainty Rank Aggregation New Decision
Set based Sampling Sampling Boundary
Sampling

Fig. 1: Proposed pool-based active learning approach.

Initially, a set of samples is selected using an unsupervised outlier detection method
(SVDD, EXPoSE) and subsequently manually labelled. From the labelled in-
stances, a binary Support Vector Machine (SVM) model is trained (see Figure
1(a)). In the next iteration, besides the set of samples selected using the unsuper-
vised outlier detection method (see Figure 1(b)), an additional set of observations
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is selected using the SVM model trained in the previous iteration by using an un-
certainty sampling method. In this work, the applied uncertainty sampling method
is based on the distance from the unlabelled instances to the decision boundary
(see Figure 1(c)). Thereafter, both sets of selected instances are merged using
Borda’s geometric mean rank aggregation [42]. The k samples with the highest
aggregated rankings are selected for manual annotation (see Figure 1(d)) before
the supervised SVM model is updated (see Figure 1(e)). A detailed description of
the proposed approach can be seen in Algorithm 1.

Algorithm 1 Pool-based Active Learning: Uni-modal Sample Selection

Require:
U = {s;|s; € R™ Vi} > Pool of unlabelled instances
k € N5o > Query size
1: Up«< U > Unlabelled set initialisation
2: Lo+ 0 > Labelled set initialisation
3: Mg+ 0 > Classification model
4: t <+ 1
5: while U;—1 # 0 do
6: Outlier Detection based Sampling on Us—1: Synsupervised
7 if My_1 # 0 then
8: Uncertainty Sampling by applying M;—1 on Ui—1: Ssupervised
9: Rank Aggregation Sampling based on Synsupervised and Ssupervised: Sfinal
10: else
11: Sfinal — Sunsupervised
12: end if

13: Selection S¢;nq; Annotation

14: Lt < Li—1 U Stinal

15: Ut <~ Ui—1\ Stinal

16: P« {(sj,l)|s; € Ly N1; > 0} > Labelled samples belonging to the majority class
17: N« {(sj,15)|sj € Ly ANl < 0} > Labelled samples belonging to the minority class
18 if P£OAN # 0 then

19: Train a supervised classification model using L;: M;

20: end if

21: t—t+1

22: end while

3.5 Pool-based Active Learning: Bimodal Sample Selection

In the previous section (see Section 3.4), the unlabelled instances belong to a single
modality (e.g. audio or video). The information used to select the most informa-
tive instances is restricted to that specific modality. In the following section we
describe an active learning method that takes advantage of the temporal depen-
dency and the complementary information between two modalities, in combination
with semi-supervised learning [4] to further reduce the cost of manual annotation
and improve the performance of a model on a target modality.

It has to be noted that the proposed approach is completely different from multi
view active learning [43—45]. In the case of multi view active learning, the different
views constitute disjoint subsets of features, each of which is sufficient to learn an
adequate decision boundary. Furthermore, multi view active learning approaches
rely on the assumptions that each observation is identically labelled in each view
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and the feature vectors of each observation in each view are independent.

The proposed approach is based on the assumption that the instances, as well as
the corresponding labels in both modalities are independent and partially corre-
lated (i.e. the temporal occurrences of the target events are partially correlated
in both modalities). For instance, if the task at hand is laughter detection, an
unvoiced laughter in a video sequence is labelled as an event due to the presence
of facial activities. But in the audio channel, the corresponding temporal segment
is labelled as normal given the absence of laughter vocalization. There will be a
correlation in both modalities in the case of vocalized laughter. Still, the correla-
tion will be partial because of the length of the vocalization in the audio segment
compared to the length of the facial activity display.

Although the task at hand remains identical to the one described in Section 3.4,
the initial setting is however different: additionaly to a specific target pool of ob-
servations (e.g. video), a secondary pool of observations (auxiliary pool), which
is temporally linked to the target pool (e.g. audio), is also available. The goal is
to exploit information from the auxiliary pool to improve the efficiency and the
performance of a model generated and applied on the target pool by reducing
the cost of annotation. This transfer of information is realised by exploiting the
temporal dependencies between the observations in each pool in combination with
semi-supervised learning. Outlier detection methods are applied on the auxiliary
pool to select interesting samples. Instances from the target pool lying in a spe-
cific temporal neighbourhood of the previously chosen samples are selected and
automatically labelled by the classification model of the previous active learning
iteration. The samples automatically labelled by the trained model in combination
with those which have been manually labelled are subsequently used to update the
classification model.

In the following lines, the target pool is refered to as A C R™ and the auxiliary
pool as B C R™. The features describing the observations (s; € A, s; € B) are
specific to the modalities and independent in each pool. The timestamps of the
occurrences of the observations in both pools are also provided (¢; € A, ¢; € B).
Therefore, the initial setting consists of two pools of unlabelled instances: one tar-
get pool A = {(tj,s;)|t; € R>o,s; € R™,Vj = 1,...,p} and one auxiliary pool
B = {(ti,s:) |ti € R>0,s; € R",Vi =1,...,q}. The labels of the observations are
set separately in each modality. At each iteration, the method presented in Section
3.4 is applied on the target pool for the selection and annotation of instances. The
classification model is thereafter actualised using the new set of labelled instances.
Following, the same outlier detection method is applied on the auxiliary pool,
but the selected samples are not annotated. Based on a fixed temporal window
w € R>¢ and for each selected sample 4 from the auxiliary pool, all samples from
the target pool that are located within the temporal window [t; — w,t; + w] are
selected (¢; is the time stamp of the selected observation in the auxiliary pool)
and weighted using the following Gaussian function:

8ij = exp(—v|t; — t;|%) (4)

where t; is the time stamp of an observation in the target pool that falls within
the specified window. This specific weight is computed to penalise samples that
are located far away from the observation in the auxiliary pool (see Figure 2).
Thereafter, the selected samples from the auxiliary pool are discarded. As soon
as the auxiliary pool is empty, the uni-modal approach is further applied to the
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Algorithm 2 Bimodal Sample Selection

1: procedure BIMODALSELECTION(A, B, L, M, w, v, k)

A={(tj,s5)| t; € R>q Vj, s; € R™ Vj} > Target pool
B ={(ti,si)| t: € R>q Vi, s; € R™ Vi} > Auxiliary pool
L - > Labelled set
M > Classification model
w € Rxg > Temporal window
v €[0,1] > Gaussian function parameter
k € N5o > Query size

2: Outlier Detection based Sampling on B: S
3: Sauziliary <~ U {(tjasj)éij)‘(tjvsj) GA/\ti_wStj Sti+w}

(ti,s;)€S
4: Apply M on Sqygiliary and calculate the weighted scores Wscores based on &;;
5: Calculate the threshold thy;modqar based on Wgeores
6: Sauzilia'ry — {(tj’ Sjs l;)‘ (tj’ Sj) € Sauziliary A Wscores (S]) > thbimodal} > l; is the

label generated by the model M

7 B+ B\S

8: A+ A \ Sauwiliary

9: L+ Lu Sauziliary

10: Train a classification model using L: M
11: end procedure

target pool until a stopping criteria is attained (in the present work, until the
target pool is empty). The final set of selected samples from the target pool using
the time dependency between both pools can be expressed as:

S= | {ts,85,0)| (t,85) € Anti —w < t; <ty + w} (5)
(tissqi)

where s; is the selected observation in the target pool.

1%
o)
=
<
=
0.5 1
=
.20
5]
=
0

Time

Fig. 2: Weight Function. The function penalises samples of the target pool
that are located far away from the selected sample of the auxiliary pool. Thus,
the approach focuses on instances of the target pool that are temporally near to
interesting samples in the auxiliary pool.

Subsequently, the classification model is applied on the samples selected using the
temporal dependency constraint (S). The classification confidence of each obser-
vation s; is weighted using d;; and the observations with a weighted confidence
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above a specific threshold thpimodar are selected and added with the corresponding
machine generated label to the labelled set. Those samples are also discarded from
the target pool. Following that, the classification model is actualised using both
the manually annotated and the machine annotated samples for the next iteration.
A detailed description of the proposed approach can be seen in both Algorithms
2 and 3.

Algorithm 3 Pool-based Active Learning with Bimodal Sample Selection

Require:
A={(tj,s5) | t; € R>o Vj, s; € R™ Vj} > Target pool
B = {(ti,s:) | ti € R>o Vi, s; € R" Vi} > Auxiliary pool
w € R>g > Temporal window
v € [0,1] > Gaussian function parameter
k € Nso > Query size
1: Ag+ A > Unlabelled set initialisation (target pool)
2: Bp«+ B > Unlabelled set initialisation (auxiliary pool)
3: Lo« 0 > Labelled set initialisation
4: My <0 > Classification model
5: t+ 1
6: while A;—1 # 0 do
7 Outlier Detection based Sampling on A:—1: Synsupervised
8: if M;_; # 0 then
9: Uncertainty Sampling by applying M;—; on A¢—1: Ssupervised
10: Rank Aggregation Sampling based on Sypervised and Sunsupervised: Starget
11: Selection Starget Annotation
12: Ly <L 1 U Starget
13: Ay — A1 \ Sta'rget
14: Train a classification model using L¢: My
15: if B;_1 # 0 then
16: BIMODALSELECTION(A¢, By—1, Lt, M, w, v, k)
17: end if
18: else
19: Sta'rget — Sunsuper'uised
20: Selection Starget Annotation
21: Li <+ L1 U Sta'rget
22: Ap +— Ai \ Starget
23: P(—{(tj,Sj,lj)lsj' € L Ny > 0}
24: N%{(tj,sj,lj)\sj' € L Nj < 0}
25: if P£OAN # 0 then
26: Train a classification model using Ls: M;
27: end if
28: end if

29: t+—t+1
30: end while

4 Dataset Description

The dataset utilised in the present work is a subset of the Ulm University Mul-
timodal Affective Corpus (UUImMAC) which was recorded at Ulm university. 60
participants were recorded for this dataset in 100 recording sessions. Each session
lasted for about 45 minutes. The participant’s tasks were designed referring to
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Schuessel et al. [46] who proposed a gamified experimental setup close to everyday
life human computer interactions. Each recorded session consisted of a series of
puzzle games during which the participant had to find the unique symbol (unique
in shape and color) in a grid of different symbols (see Figure 3).

9/40
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Fig. 3: Screenshot of the difficult level (left) with target element 6 and
the easyest level (right) with target element 5.

For each correct answer, the participant was paid an additional amount of money.
The already earned amount of money was displayed on the right side of the ga-
ming field. The longer the participant took to provide an answer, the smaller the
amount of money earned was. If the participant ran out of time, no extra reward
was given at all.

A recording session consisted of a total of six sequences. Each sequence was com-
posed of a multitude of puzzles and was designed to induce cognitive under- or
overload by tuning the levels of difficulty of the presented puzzles. The levels of
difficulty were tuned by changing the size of the grid of puzzle and by adjusting the
answering time. The first sequence was an introduction to the gaming mechanics.
The following sequences gradually decreased in difficulty. In the last sequence,
the game logged in wrong answers on purpose to induce frustration. A complete
overview of the sequence’s settings can be seen in Table 1.

Table 1: Gaming sequences of the recording session for UUlmMAC
database.

Sequence Gridsize Time Difficulty Additional info
0 3x3, 4x4 20 sec easy Introduction session, not used
1 6x6 6sec overload
2 4x4 10sec high difficulty
3 3x3 10sec  medium difficulty
4 3x3 100sec underload
5 3x3 10sec frustration game logged in wrong answers

After each sequence the participants had to answer a survey designed to assess



14 Thiam et al.

the level of valence, arousal and dominance in the latest sequence [47]. First, the
participants had to describe in their own words how they felt during the game
sequence. In the following questions, the participants had to choose the matching
values on three scales to their experience (Self Assessment Manikin Scale (SAM))
[48]. Hihn et al. [49,50] show that the reported (V, A, D) values differ signifi-
cantly between the mental overload and underload sequences. Valence is higher
during mental underload sequences, while arousal is higher during mental overload
sequences. Finally, dominance is higher during the mental underload sequences.
This suggests that mental overload and underload can be expressed using the (V,
A, D) space as overload: (V-, A+, D-) and underload: (V+, A-, D+).

[ Overload (Extremely High Difficulty)
[ High Difficulty
[ Medium Difficulty

sl [ Underload (Low Difficulty)

[ JFrustration

Valence Arousal Dominance

Fig. 4: Mean VAD over all sequences. It can be seen, that the reported VAD
varies significantly between the sequences, especially between sequences 1 and 4.

Different modalities were recorded (see Figure 5): three video streams (frontal
HD, frontal webcam, rear webcam), three audio lines (headset, ambiance and di-
rectional microphone), Microsoft Kinect 2 (depth, infrared, video, audio, posture)
and biophysiology (EMG, ECG, SCL, respiration and temperature).

For this work, nine participants were selected out of the total 60 based on their
grade of expressiveness. This subgroup consists of four male and five female par-
ticipants with age ranging from 20 to 27 years. Table 2 shows the participants’
information. This work uses video and audio data from the recorded sessions. Au-
dio information was taken from the participant’s headset. For video information,
the frontal HD camera stream was used. A precedent analysis of the recorded data
shows that all of the participants reacted emotionally after providing an incorrect
answer. This observation is most noticeable in the overload sequences when the
task is nearly impossible to solve in the given time. The present work focuses on
the detection and discrimination of such emotional reactions like laugher, heavy
breathing, idiomatic expressions as a signal of boredom or frustration, from non-
emotional (or neutral) reactions like the participant giving an answer to the task.
Emotional reactions are referred to as events and neutral reactions as normal. To
assess the performance of the proposed approaches, the recorded data of the nine
selected participants was manually annotated. Table 2 shows the duration of the
manual annotation of the dataset specific to each participant for each modality.
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Fig. 5: Overview of the experimental setting with sensors: (1) MS Kinect
v2, (2) frontal webcam, (3) wireless headset, (4) GTec g.MOBIlab+ physiologic
sensor with sensors attached to the users body.

4.1 Data Annotation

Annotating the recorded data is a necessary step to create ground truth labels
which will be used as the knowledge base of the oracle in active learning tasks.
Audio and video recordings were annotated separately by two different persons.
Audio annotation was preprocessed by an automatic segmentation of speech in
voice active and voice inactive segments. This step is necessary since the task
at hand relies uniquely on the voice active segments. Thus, the voice inactive
segments are irrelevant. Because the recording sessions took place in a noise free
environment, a simple unsupervised voice activity detection [51] based on the ener-
gy of the speech signal was used to distinguish between speech and silence. After
preprocessing, each speech segment was manually annotated either as event or as
normal utterance. Additionally the label’s temporal boundaries were adjusted for
a perfect segmentation and for further noise reduction. The annotation process
was performed with ATLAS [52,53] and took in average 90 minutes per partici-
pant (see Table 2).

Similar to audio annotation, the video track was annotated manually. No prepro-
cessing was used, every label was set by hand. As in the case of the audio data,
there are no segments that could create a third class to the two class problem of
differentiating events from normal behaviour. So, only labels for events were set
and all other video information was interpreted as normal behaviour. The anno-
tator focused solely on the participant’s face while annotating. Movements of the
arms or legs were ignored. Like the audio annotation, the video annotation process
was performed with ATLAS. The time needed to manually annotate one partici-
pant ranged from 4 to 7 hours. More precise information about the annotation
times can be found in Table 2.

After the manual annotation, a first assessment of the dataset was undertaken.
Tables 3 and 4 show the amount of labelled observations. For each modality, the
normal observations clearly outnumber the event observations. Regarding the au-
dio channel, there is an average of 1537 normal observations to 693 event ob-
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Table 2: Amount of time needed for the manual annotation of each partic-
ipant for each modality. The amount of time is specified in minutes. In average,
the length of the audio recording for each participant is 2.7 minutes which results
in a total annotation time of 95.6 minutes. Concerning the video recordings, the
annotator needs to review 36.6 minutes which results in an annotation time of
320.6 minutes. The resulting large factors of 37.5 for audio and 9 for video clearly
indicate the cost-intensity of the annotation process.

audio video
ID  sex age | rec. duration ann.time 9% | rec. duration ann. time %%
09 f 21 2 85 42.5 36 340 9.4
11 f 27 5 150 30.0 31 315 10.2
12 f 20 3 105 35.0 32 405 12.7
13 m 21 2 70 35.0 35 330 9.4
17 f 22 3 ~90 30.0 32 275 9.2
19 m 20 2 ~90 45.0 32 285 6.3
28 m 25 3 ~90 30.0 33 245 8.2
29 f 23 2 ~90 45.0 34 325 7.2
31 m 23 2 ~90 45.0 35 365 8.1
avr 22.4 2.7 95.6 37.5 36.6 320.6 9.0

servations per participant. Concerning the video channel, there is an average of
3284 normal observations and 401 event observations per participant. This imbal-
ance is a very important characteristic of this dataset and is typical in realistic
HCI scenarios. The amount of audio samples from one participant to the next is
very similar, except for the participant 011, who was extremely expressive. The
mentioned imbalance is a very typical characteristic of a dataset derived from a
human computer interaction scenario. Usually, a person remains most of the time
in a neutral state. For example, when using a companion technology [54], the user
only interacts with the companion device if he has a question or receives a notifi-
cation. But most of the time, the device waits for an event like a keyword to start
interacting. Of course, the whole time the device’s sensors need to be active to
catch such a keyword.

4.2 Audio Feature Extraction

Following the annotation of the audio signal, a fixed window of 215 milliseconds
was selected for the segmentation of the voice active samples. The window was
shifted with a fixed offset of 65 milliseconds. The resulting data distribution for
each participant can be seen in Table 3.

The following set of features was subsequently extracted from the resulting seg-
ments with fixed frames of 25 milliseconds, sampled at a rate of 10 milliseconds: 8
linear predictive coding coefficients (LPC) [55]; 5 perceptual linear prediction cep-
stral coefficients (PLP-CC) [56], each with delta and acceleration coefficients; 12
Mel frequency cepstral coefficients (MFCC) [57], each with delta and acceleration
coefficients; fundamental frequency (FO0); voicing probability; loudness contour;
log-energy with its delta and acceleration [58]. Thus, each frame is represented
by a 65 dimensional feature vector. Consequently, each labelled speech segment
is represented by a 20 x 65 feature matrix. The features were extracted using the
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Table 3: Audio Data Distribution: window size set at 215 milliseconds

Participant 009 011 012 013 017 019 028 029 031

ID
Events 350 2206 890 195 1036 297 439 632 196
Normal 1033 2162 1574 1464 1330 1363 1851 1503 1555
Total 1383 4368 2464 1659 2366 1660 2290 2135 1751

openSMILE feature extraction tool [59].

Subsequently, in order to compute the features at the segment level, 14 statistical
functions (mean, median, standard deviation, maximum, minimum, range, skew-
ness, kurtosis, first and second quartile, inter quartile, 1%-percentile and 99%-
percentile, range of 1% and 99% percentile), were applied on each of the extracted
frame level feature resulting in a 910 dimensional segment level feature vector.
Principal Component Analysis (PCA) was subsequently applied on the extracted
features to reduce the dimensionality of the feature space. The first 10 components
represented 98% of the variance and were selected as segment level feature vectors.

4.3 Video Feature Extraction

Concerning the video signal, a window size of 1 second (30 frames) with a shift
of 0.5 seconds (15 frames) was chosen. The resulting data distribution for each
participant can be seen in Table 4.

Using the facial behaviour analysis toolkit OpenFace [60], the facial area of each

Table 4: Video Data Distribution: window size set at 1 second (30 frames)

Participant 99 011 012 013 017 019 028 029 031

ID
Events 231 307 610 207 277 283 140 217 1337
Normal 3874 3007 2488 3736 3350 3346 3615 3552 2592
Total 4105 3314 3098 3943 3627 3629 3755 3769 3929

participant was automatically detected and tracked from one frame to the next
through out the entire video. Subsequently, Local Binary Patterns from Three Or-
thogonal Planes (LBP-TOP) [61] features were extracted based on the detected
facial regions. Within each video segment, each facial region was divided in a 4 x 4
grid of cells with a 25% overlap from one cell to the next. From each resulting
cuboid a uniform LBP-TOP feature vector was extracted. These feature vectors
were subsequently concatenated, resulting in a 720 dimensional segment level fea-
ture vector. Additionally, Pyramid Histogram of Oriented Gradients (PHOG) [62]
features were also extracted from each detected facial region. Within each segment,
a 3 levels PHOG feature vector with 20 bins was extracted from the detected facial
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region in each frame. The feature for the whole segment was subsequently gener-
ated by performing a max pooling from the frame level feature vectors resulting
in a 210 dimensional segment level feature.

For further assessment of the dataset, both PHOG and LBP-TOP features were
concatenated to form a 930 dimensional segment level feature vector. Thereafter,
PCA was applied as well to reduce the dimensionality of the feature space. As
a result, the first 5 components, which accounted for 95% of the variance, were
selected for the assessment of the proposed methods.

5 Evaluation

In the following section, the proposed approaches are assessed on the earlier des-
cribed dataset (see Section 4). The pool of video observations is set as target
pool and the pool of audio observations is set as auxiliary pool. More specifically,
the uni-modal method described in Section 3.4 is applied on the video modality.
The multi-modal method described in Section 3.5 is assessed by using the pool of
video instances as target pool and the pool of audio instances as auxiliary pool.
The goal is to improve the performance of the uni-modal method applied on the
video modality by transferring information acquired from the audio modality u-
sing the temporal dependency between both modalities.

The proposed approaches are assessed by performing a 5-fold blocked cross valida-
tion [63]. During a blocked cross validation the dataset is partitioned sequentially
(not randomly) into several subsets. Each single subset is subsequently used within
each cross validation iteration as a test set while the remaining sets are used as
training sets. During each active learning iteration, the baseline result is first com-
puted by training a fully supervised SVM model with Gaussian RBF kernel on
the entirely labelled training set and applying the generated model on the test set.
Next, the proposed approaches are applied on the unlabelled training set. At each
active learning iteration, the updated supervised (respectively semi-supervised)
SVM model is applied on the test set.

Data imbalance is known to affect the performance of a SVM model, since it is
biased into classifying almost every samples as belonging to the majority class.
Therefore, the Synthetic Minority Over-Sampling Technique (SMOTE) [64] is ap-
plied on the labelled set to balance the data before the supervised (respectively
semi-supervised) classification model is trained. Undersampling the majority class
to deal with data imbalance results in losing a huge amount of potentially use-
ful information in the form of the discarded data samples. By oversampling the
minority class this information is preserved. However, oversampling can lead to
overfitting when the samples of the minority class are simply duplicated. Instead,
by generating synthetic samples of the minority class, the overfitting effect is sub-
stantively reduced.

The performance of the generated model is expected to be high on both majority
and minority classes simultaneously. Therefore, the geometric mean (gmean) [65,
66] defined in Equation 6 is used as performance metric for the assessment of the

developed methods:
gmean = \/acct X acc™ (6)

where acc™ stands for the accuracy on the minority class and acc™ stands for the
accuracy on the majority class. It depicts the balance of classification performances
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of the trained model on both majority and minority classes. The SVM models are
trained using the libsvm library [67].

Concerning the uni-modal approach, a fixed number of 25 SVDD models (u = 5,
v = 5) is generated for the unsupervised outlier detection ensemble. The size of
the ensemble was set empirically and the influence of the size of the committee
on the performance of the system has not been explored at this point. The same
committee size is also generated for the EXPoSE based method. At each active
learning iteration, a fixed size of 50 samples is selected for the manual annotation.
Regarding the multi-modal approach, the uni-modal sample selection performed
once on the target pool and once on the auxiliary pool is performed using the
same settings as previously described. The experiments are conducted using two
specific window sizes of 2 and 4 seconds (w € {2,4}). The impact of the weigh-
ting function was evaluated using four specific v values: v € {0,0.05,0.5,1}. The
threshold thpimodar for the sample selection in the target pool is dynamically set
to be the 65%-quantile of the weighted confidences of the samples located within
the specified windows. Figures 6 and 7 show the assessment results for the SVDD-
based approaches for two different participants.

Window Size: 2 s Window Size: 4 s
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Fig. 6: Participant 009: SVDD based approaches. The bimodal approaches
converge faster than the uni-modal approach. However, higher values of the para-
meter 7 (0.5, 1) converge to sub-optimal models that are worse than the uni-modal
approach, while lower values (0, 0.05) outperform the uni-modal approach.

Figure 6 proves the effectiveness of the bimodal approach, in particular during
the early stages of the active learning iterations. For both windows (w € {2,4}),
the performance curves of the bimodal approaches rise and converge faster than
the performance curve of the uni-modal approach, confirming that the bimodal
approaches outperform the uni-modal approach with a reduced set of labelled in-
stances. Moreover, lower values of the v parameter (0,0.05) outperform higher
values (0.5,1) as it can be clearly seen in the 4 seconds window figure. Given the
same amount of labelled instances, higher values of the weighting parameter ~y
might converge to sub-optimal classification models which are outperformed by
the uni-modal generated model, while lower v values still lead to models that out-
perform the uni-modal generated model.
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Fig. 7: Participant 028: SVDD based approaches. The performances of both
approaches are quite similar. In this case, the bimodal approach does not out-
perform the uni-modal approach. Given the correct parameter =y, the multi-modal
approach converges to a model with similar performances as a uni-modal generated
model.

Figure 7 shows that the bimodal approach can also be unnecessary, since the per-
formance of both bimodal and uni-modal approaches are quite similar. Given the
wrong weighting parameter (7) the bimodal approach might lead to a sub-optimal
classification model. But given an optimized weighting parameter, the bimodal
approach will lead to a model which is at least as good as a model trained by
the uni-modal approach. The EXPoSE variant of the approaches yielded similar
performance results.

For the next assessment, the weighting parameter is set to 0, which means literally
that all video samples situated within the define window [t; — w, t; + w] receive the
same weight equal to 1. For the sake of clarity, the variance of the computed results
is not displayed. Figures 8 and 9 depict the results of the approaches for the se-
lected participants, based respectively on the SVDD outlier detection method and
the EXPoSE outlier detection method. The uni-modal SVDD approach proves to
be effective since the baseline performance is attained for almost all participants
(except for the participants 019 and 031), by manually labelling in average less
than 60% of the entire dataset. The uni-modal EXPoSE approach depicts similar
results, but converges slower than the uni-modal SVDD approach.

In both settings (SVDD, EXPoSE), the performance curves for the bimodal ap-
proaches stop earlier than the performance curves of the uni-modal approaches
due to the fact that a larger amount of instances are labelled at each iteration
through the semi-supervised labelling process. Concerning the SVDD based ap-
proaches, the bimodal methods converge quicker than the uni-modal methods for
almost all participants, except for the participants 028 and 031, where the perfor-
mances of all approaches are very similar. The bimodal SVDD approaches outper-
form the uni-modal approach in most of the cases. Regarding the EXPoSE based
approaches, similar results can be reported. Except for the participant 012, the
bimodal approaches outperform the uni-modal approach and converge faster than
the uni-modal approach. The size of the window for the selection of samples in
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the target pool seems to only affect the amount of instances that are automati-
cally labelled. The performances of both windows are very similar and a further
assessment is needed here to have a better understanding of the impact of the size
of the window.
In order to further assess the performances of the proposed approaches, the avera-
ged quantity of instances from the target pool that has to be labelled in order to
attain 95% of the average performance of the fully supervised SVM model (base-
line) is computed for each approach. The results are depicted in Table 5.

The result for the EXPoSE based method specific to the participant 012, with
a weighting parameter v = 0 and a window w = 4 seconds is not available due
to its poor performance as can be seen in Figure 9. The corresponding perfor-
mance curve could never reach the fully supervised performance curve (baseline).
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Fig. 9: Results of the EXPoSE based approaches. v = 0 and w € {2,4}.
Except for the participant 012, the bimodal approaches outperform the uni-modal

approach.

However, the bimodal SVDD based approach with a weighting parameter v = 0
and a window w = 4 seconds outperforms the other active learning approaches in
most cases. Moreover, both SVDD based bimodal approaches outperform the uni-
modal approaches in all cases except for the participants 017 and 031. This proves
the effectiveness of the proposed bimodal approaches. Given a set of optimized
parameters (v, w), the bimodal approaches converge faster than the uni-modal
approaches, thus the cost of manual annotation is considerably reduced. More-
over, given the same amount of labelled instances, the bimodal SVDD approaches
are for the hardest classification tasks at least as good as the uni-modal approach.



Multi-modal Active Learning for Audiovisual Event Detection 23

Table 5: Active learning performance assessment. Ratio of manually labelled
samples in order to attain at least 95% of the baseline performance.

Participant

D 009 011 012 013 017 019 028 029 031

Unimodal

SVDD 0.32 0.38 0.38 0.22 0.12 0.41 0.20 0.33 0.08

Unimodal
EXPoSE

Bimodal
SVDD (0,2)

Bimodal
EXPoSE 0.21 0.15 0.52 0.11 0.12 0.48 0.12 0.15 0.10
(0,2)
Bimodal
SVDD (0,4)

Bimodal
EXPoSE 0.11 0.11 N.A. 0.08 0.12 0.38 0.08 0.10 0.10
(0,4)

0.30 0.38 0.44 0.24 0.16 0.69 0.28 0.33 0.25

0.11 0.09 0.18 0.05 0.16 0.36  0.18 0.20 0.13

0.11 0.09 0.18 0.02 0.12 0.41 0.17 0.20 0.10

6 Conclusion

In this work, two novel active learning approaches for the annotation and detec-
tion of audiovisual events have been proposed. The first approach is a uni-modal
method which consists of a combination of unsupervised outlier detection tech-
niques and uncertainty sampling throughout rank aggregation for the selection
of informative samples. The pool of unlabelled samples belongs to one specific
modality and the method exploits uniquely the information from this modality
to perform the selection of informative samples. The method has been previously
applied for speech event detection in [36] and has shown its effectiveness by sub-
stantially reducing the cost of manual annotation required for the training of an
effective speech event detection model. In this work, the method was further as-
sessed and applied in the domain of facial events detection. The results also offer
evidence of the effectiveness of the method for facial events detection. Further-
more, a new outlier detection technique (EXPoSE [38]) was also assessed within
the proposed active learning approach and has also yielded satisfactory results.

The second approach is a multi-modal method which consists of the exploita-
tion of the temporal dependency between two modalities, in combination with
semi-supervised learning in order to further reduce the cost of annotation, while
improving the performance of the generated model. In this work, the method was
also assessed in the domain of facial events detection, by using both audio and
video modalities. Informative samples are detected within the pools of audio and
video instances using the uni-modal method described earlier. The selected video
samples are manually labelled while further video samples are selected within a
temporal neighbourhood of the selected audio samples and classified using the
model trained in the previous iteration. The corresponding scores of the selected
video samples are subsequently weighted based on a temporal Gaussian function
and the samples with weighted scores above a specific threshold are discarded from
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the pool of video instances and placed in the pool of labelled instances with the ma-
chine generated labels. The labelled instances are used to train a semi-supervised
classification model that is used in the following iteration. The assessment results
show that the bimodal approach outperforms its uni-modal counterpart in most
of the cases by achieving better classification performances with less manually la-
belled instances.

For future work, the proposed bimodal approach has to be assessed on more multi-
modal datasets and also in different classification tasks. Furthermore, several me-
thods for the transfer of information between the modalities have to be developed
and assessed. The assessment of combination methods for the selection of infor-
mative samples has also to be undertaken.
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Abstract—The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment
approaches rely on an individual’s ability to recognise and report an observed pain episode. However, pain perception and expression
are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches
have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In
the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification
system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and
physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive
assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of
the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the
relevance of the multi-modal classification approach, which achieves classification rates of respectively 83.39%, 59.53% and 43.89% in

a 2-class, 3-class and 4-class pain intensity classification task.

Index Terms—Pain Intensity Recognition, Multiple Classifier Systems, Multi-modal Information Fusion, Signal Processing.

1 INTRODUCTION

Effective pain management implies reliable and valid
assessment of pain. However, pain is a complex and highly
subjective phenomenon [1], [2] which is commonly asso-
ciated with unpleasant psycho-physiological and physical
experiences. Furthermore, pain is an individually unique
experience which varies from one individual to the next [3].
This particular aspect further increases the complexity of
pain assessment. Hence, self-report is considered to be the
gold standard in pain assessment and has been successful in
providing valuable insights for effective pain management
[4], [5]. However, self-reporting tools such as the Visual
Analogue Scale (VAS) or the Numerical Rating Scale (NRS)
for pain [6], [7] strongly rely on an individual’s ability
to recognise, assess and communicate an observed pain
episode. Thus, self-report would provide inconsistent and
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unreliable information in cases where an individual is suf-
fering from a form of cognitive impairment which impedes
the individual’s ability to reliably and systemically perceive,
assess and share informative insights about the experienced
pain episode. Hence, relying uniquely on self-report could
lead to unsuitable and inadequate pain management.
Various studies have investigated the feasibility and re-
levancy of automatic pain assessment systems based on
measurable audiovisual and physiological parameters (see
Section 2). These studies show that such systems are able
to provide valuable insights for the assessment of pain in-
tensities by automatically analysing non-verbal pain indica-
tors including pain related facial expressions, paralinguistic
vocalisations, body postures and changes in physiological
parameters. Therefore, the combination of self-reporting
tools with a reliable and automatic pain assessment system
could potentially improve the robustness as well as the
effectiveness of pain management.

Moreover, the huge diversity of pain related expressions
within each specific modality (e.g. frowning (facial ex-
pressions), moaning (paralinguistic vocalisations), changes
in body posture (behavioural pain responses), changes in
physiological parameters (autonomic pain responses)) sug-
gests that pain intensity classification should be approached
as a multi-modal pattern recognition problem. Instead of
relying on the information provided by a single modality,
a well designed fusion approach should be able to appro-
priately combine complementary information from multiple
sources in order to improve both the robustness of a classi-
fication system as well as its performance.

In the following work, several fusion approaches are pro-
posed and assessed within the scope of the development of
an automatic pain intensity recognition system. The assess-
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ment is performed on the recently recorded SenseEmotion
Database [8], which consists of 45 individuals subjected
to a series of artificially induced pain stimuli, elicited
through temperature elevation. Several modalities were
synchronously acquired during the experiments including
audio streams, video streams, respiration (RSP), electrocar-
diography (ECG), electromyography (EMG) and electroder-
mal activity (EDA) signals. A broad spectrum of descrip-
tors is extracted from each involved modality followed by
an evaluation of an uni-modal pain intensity classification
system based on the set of features extracted from each
single modality. Subsequently, several fusion architectures
performing the combination of the extracted descriptors at
different levels of abstraction based on various aggregation
rules are evaluated. The goal here is to design an effective
fusion architecture that is able to significantly outperform
the best performing single modality, through an adequate
combination of information extracted from each specific
modality.

The remainder of this work is organised as follows. In Sec-
tion 2, an overview of the related research on automatic pain
recognition is provided. In Section 3, the recently recorded
SenseEmotion Database is described. A description of the
sensor system used for the data acquisition, followed by a
description of the recorded data and the features extracted
from each involved modality is provided respectively in
Section 4 for the audio modality, Section 5 for the video
modality and Section 6 for each physiological modality. The
proposed fusion architectures are described in Section 7 and
a thorough description of the performed experiments as
well as the yielded results is provided in Section 8. Finally,
the current work is concluded in Section 9 with a discussion
about the findings as well as an overview about potential
future works.

2 RELATED WORK

The following section provides an overview of related re-
search and proposed approaches for the development of
automatic pain assessment and pain intensity recognition
systems.

The recent advancements in the domain of automatic pain
assessment have been possible thanks to the availability
of a few databases containing specific and representative
pain related data. One of the first and very prominent
databases specific to pain made available to the research
community is the UNBC-McMaster Shoulder Pain Expression
Archive Database [9]. It consists of 129 participants suffer-
ing from shoulder pain and performing specific motion
exercises with both affected and unaffected limbs. During
the exercises, video sequences of the spontaneous facial
expressions of the participants were recorded. Each frame of
the recorded video sequences was subsequently annotated
using Ekman’s Facial Action Unit System (FACS) [10] and
the Prkachin and Solomon Pain Intensity (PSPI) [11] metric.
The recordings were also annotated at the sequence level
based on each participant’s self-report and observer mea-
sures. This database focuses specifically on the analysis of
facial expressions and does not involve any other modality.
No external stimulus was used to trigger the pain episode,
but rather the exercises conducted with the affected limb

triggered genuine pain related facial expressions.

Lately, Walter et al. proposed the BioVid Heat Pain Database
[12], which is a multi-modal database consisting of 87
healthy participants submitted to four gradually increas-
ing levels of artificially induced pain through tempera-
ture elevation. During the experiments, several modali-
ties were synchronously recorded including video streams,
EMG, ECG and EDA data. The labels of the acquired data
consist of the four different levels of pain elicitation. In
contrast to the UNBC-McMaster Shoulder Pain Expression
Archive Database, the BioVid Heat Pain Database is multi-
modal since the data acquired stems from at least two
different modalities (video and physiology). Furthermore,
pain was elicited artificially even though the recorded pain
related expressions were genuine.

Most recently, Aung et al. introduced the Multimodal
EmoPain Dataset [13], which is a collection of data specific
to chronic pain. The database consists of 22 individuals
suffering from chronic lower back pain and 28 healthy
individuals, each performing various physical exercises in
a realistic physical rehabilitation setting. High resolution
multi-view video streams were recorded during the ex-
periments, as well as multi-directional audio streams, full
body three dimensional motion capturing data and EMG
signals of back muscles. The recorded data was annotated
using two different sets of labels. The first set of labels
consists of a continuous rating of the level of pain perceived
by an annotator while observing the participants” facial
expressions. The assigned rating values ranged between 0
(lowest level of pain) and 1 (highest level of pain). This
specific annotation was conducted by eight different anno-
tators. The second set of labels is based on the occurrence
of six pain-related body behaviours (guarding or stiffness,
hesitation, bracing or support, abrupt action, limping, rubbing
or stimulating) that was previously defined by six experts in
the field of physical rehabilitation.

Concordantly to the released databases, several approaches
for the automatic recognition of pain related expressions
have been developed, based either on single modalities
or on a combination of several modalities. Many of the
proposed approaches focus uniquely on the facial area [14],
[15], [16], [17], since a huge amount of information related
to an individual’s affective state is conveyed throughout
facial expressions. These approaches consist of manually
or automatically defining and extracting several descriptors
from the recorded facial area and performing the classifi-
cation of the processed data by using common classifiers
(e.g. Support Vector Machine (SVM), Random Forests (RF))
or deep learning architectures (e.g. Deep Belief Networks
(DBN) [17]).

Moreover, several approaches based on the analysis of
physiological modalities as EMG, ECG, RSP and EDA have
been proposed [18], [19], [20], [21]. These approaches have
shown that each modality provides specific insights that
can be used in order to adequately assess pain intensity
in a realistic setting. However, single modality recognition
approaches are known to be inflexible and need extra adjust-
ments in order to deal with missing or erroneous data [22].
Approaches based on the analysis of facial expressions rely
strongly on an accurate localisation of the facial area in each
frame of a video sequence. This task is known to be very dif-
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ficult in a natural setting due to unconstrained movements
of a monitored participant. Sensors used to record physio-
logical modalities are quite sensitive and might sometimes
record unreliable signals due to unconstrained body motion
during the acquisition of the data, with the eventuality that
the sensors get completely disconnected from the subject’s
skin, resulting in missing data. This issue can be alleviated
by using several modalities and performing the assessment
based on an appropriate combination of the data provided
by the most reliable ones [23], [24].

Several studies [25], [26], [27], [28] have shown that an
adequate combination of information extracted from several
modalities might improve the robustness (against noisy
inputs) as well as the overall performance of a pain classifi-
cation system. The most prominent combination approaches
consist of the early fusion strategy [29], [30] and several late
fusion strategies, which consist of combining the decision
of individual models trained on different sets of features
by using fixed combination rules (e.g. product rule) or
trainable combination rules (e.g. pseudo-inverse) [31], [32].
Furthermore, the combination can occur at different levels
of abstraction [33] and also in a hierarchical manner by
using a cascade of different aggregation strategies [34].
Multiple Kernel Learning (MKL) [35] and multi-modal deep
autoencoders [36] have also been employed as fusion strate-
gies for emotion recognition. In [37], the authors combine
both audio and video modalities in order to proceed with
pain recognition in real clinical settings, using early and
late fusion strategies. The labels used for the assessment
of the proposed pain recognition system consist of the
recorded subjective pain intensities (defined on the NRS
scale), grouped in three pain severity categories (mild, mod-
erate and severe). The proposed late fusion strategy consists
in fusing the decision scores from each individual channel
using logistic regression.

Analogously to [37], the audio modality is assessed in the
following work, in addition to both video and physiolog-
ical modalities. However, the data assessed in the current
work is recorded in an experimental setting and the labels
consist of three levels of artificially induced pain elicitation.
Moreover, we investigate multiple classifier architectures
for the combination of paralinguistic descriptors with bio-
visual modalities at different levels of abstraction, and in
both user dependent and independent settings.

3 DATASET DESCRIPTION

The following section provides a short description of the
SenseEmotion Database (the reader is referred to [8] for more
details).

The database consists of 45 healthy participants, each sub-
jected to a series of artificially induced pain stimuli. The
pain stimuli were elicited through moderate temperature
elevation using a Medoc pathway thermal simulator’. The
experiments were conducted in accordance with the ethical
guidelines defined in the Declaration of Helsinki, developed
by the World Medical Association (WMA)?. During the ex-
periments, several modalities were synchronously recorded

1. http:/ /medoc-weg.com/products/pathway-model-ats/
2. Ethics Committee Approval: 196/10-UBB/bal
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using several sensors integrated within the Social Signal
Integration (SSI) framework [38] including audio streams,
high resolution video streams, trapezius EMG, RSP, ECG
and EDA. The experiments were conducted in two sessions,
each of them lasting approximately 40 minutes, with the
pain elicitation sensor attached throughout each session to a
different forearm (left and right). The participants remained
seated during each experiment with the arms resting on a
desk in front of them (see Figure 1(a)).

Before the data was recorded, each participant’s specific
pain threshold temperature (77) and pain tolerance temper-
ature (73) were calibrated based on the individual’s self-
reports. The range of calibration of the temperatures was
set to a minimum of 32 °C' and a maximum of 50.5°C. An
intermediate elicitation temperature (75) was computed by
taking the average of both temperatures 77 and T3. These
temperatures formed the three gradually increasing levels
of artificial pain elicitation used throughout the experiments
(see Figure 1(b)). The baseline temperature (1) correspond-
ing to no pain stimulation was set to 32°C' for all partic-
ipants. Each temperature was applied randomly 30 times
with a pause of 8 to 12 seconds (sec) between consecutive
stimuli. Each stimulation consisted of a 2sec onset during
which the temperature was gradually elevated starting from
the baseline until the target temperature was attained. Sub-
sequently, the target temperature was maintained for 4 sec
before being gradually dropped to the baseline (see Figure
1(c) for more details).

In the current work, the proposed classification approaches
are evaluated on a subset of the dataset consisting of 40
participants (20 male and 20 female). Five of the 45 par-
ticipants were not included in the assessment because of
missing or erroneous data due to technical issues during
the recordings. The data specific to each of the remain-
ing 40 participants is complete for each modality and for
each experimental session. Moreover, each participant is
represented by two sets of data, each one specific to one
experimental session (left forearm and right forearm) and
consisting of 120 instances of artificial pain stimuli (30
elicitations for each Ty, T4, T, and T3 temperature).

4 AuUDIO CHANNEL ASSESSMENT

The following section provides a description of the experi-
mental settings specific to the audio channel. A description
of each single step involved in the assessment of the data is
also provided.

Throughout the conducted experiments, three audio
streams were synchronously recorded using a digital wire-
less headset microphone (Line6 XD-V75HS), a directional
microphone (Rode M3) and the integrated microphone of
the Microsoft Kinect v2. The wireless headset microphone
allowed unconstrained head movements and recorded any
sound emitted by the participants. The directional micro-
phone as well as the integrated Kinect microphone recorded
ambient acoustic sounds. All recordings were performed at
a fixed sample rate of 48 kHz. Since the experiments did not
involve any type of verbal interaction, the recorded audio
data consists mostly of breathing, moaning and sighing
sounds, as well as ambient noises.

Since the headset microphone was located in the vicinity of



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

Left Forearm

Right Forearm

(b)

50 ‘ T 50F T ‘ 7
B 48l - 481
%
g o 46t
NPT a4l
E x| 4t
%’407 + 40} E
S 38| - 38| g
I | 36| g
g
& 3af | 34f g

Ll : ‘ Ll

T T Ty T T Ty

8 — 12 sec

(©

2sec 4 sec 2sec  4sec

Fig. 1. (a) Experimental settings. The participants remained seated during the whole experiment with both forearms resting on a desk in front
of them. The picture depicts a session of the experiment during which the thermal simulator is attached to the right forearm. (b) Temperatures
(heat stimulation). For each level of pain elicitation, the subjective nature of pain is reflected into the large variance of elicitation temperatures
across a set of 40 participants selected for the evaluation of the designed classification approaches (see Section 3). (c) Artificially induced
pain stimulation through temperature elevation. 7,: baseline temperature (32 °C); T7: pain threshold temperature; T5: intermediate elicitation
temperature; T5: pain tolerance temperature. The green dot symbolises the onset starting point in time which is later used in Section 8.1 as a
reference point to define the windows from which features are extracted from each modality.

the facial nasolabial area, it was capable to appropriately
capture the breathing and moaning sounds emitted by the
participants, thus, its recordings were more suitable for
the task at hand. Therefore, the current assessment of the
audio channel is based uniquely on the recordings from
the headset microphone. Those from both directional and
Kinect microphones are not further analysed since they
were unable to capture the breathing and moaning noises
satisfactorily (both sensors were placed at a distance of
approximately 1 meter from the participants).

The first step in the processing pipeline of the audio
recordings consists of the extraction of several low-level
descriptors from the raw audio signal. The resulting signals
are further preprocessed using bandpass-filtering, signal
smoothing and detrending. Subsequently, several high-level
descriptors are extracted from the preprocessed signals. In
the following subsections, each single step of the pipeline is
described.

4.1

The first step of the audio data processing pipeline consists
of the extraction of Low-Level Descriptors (LLDs) from the
raw audio signal. LLDs are parameters computed from short
time frames of a whole signal. Such parameters describe
temporal and spectral properties of the signals, while signif-
icantly reducing the amount of data to be processed. In the
current work, all LLDs are extracted from 25 milliseconds
(ms) frames with a 10 ms shift between consecutive frames.
The extraction is performed by using the openSMILE feature
extraction toolkit [39].

Commonly used LLDs in speech processing are the Mel
Frequency Cepstral Coefficients (MFCCs) [40]. MFCCs have
proven to be very effective in tasks such as automatic speech
recognition, emotion recognition or speaker identification
[41], [42], [43]. For the present work, 13 MFCCs were
extracted, each combined with its first and second order
temporal derivatives, resulting in a total of 39 MFCC-based
LLDs. Another set of commonly used LLDs is computed by
using the Relative Spectral Perceptual Linear Predictive Coding
(RASTA-PLP) [44]. RASTA-PLP is an extension of Perceptual
Linear Predictive (PLP) [45] analysis which improves the ro-
bustness of the computed coefficients against linear spectral

Low-Level Descriptors

distortions. For the present work, 6 RASTA-PLP coefficients
were extracted, each in combination with its first and second
order temporal derivatives, resulting in a total of 18 RASTA-
PLP-based LLDs.

Finally, a third set of LLDs from the time domain was
extracted, consisting of the root mean square signal energy
and the logarithmic signal energy, in combination with their
first and second order temporal derivatives. Additionally,
the following descriptors were extracted: loudness contour,
zero-crossing rate, mean-crossing rate, maximum absolute sample
value, minimum and maximum sample value and arithmetic
mean of the sample values. This last set represents a total of
13 LLDs.

4.2 Signal Processing

Following the extraction of LLDs, an additional signal pro-
cessing step is undertaken in order to substantially reduce
the amount of noise within the signal spawned by each
single LLD. Much of this noise is related to the recorded
ambient sounds in the room where the experiments were
undertaken, since no precaution was taken to avoid them,
resulting in a more realistic experimental setting. Therefore,
in order to attenuate these noises, a third order Butterworth
bandpass filter with a frequency range of [5, 500] Hz is ap-
plied on each individual low-level descriptor signal. Next,
each filtered signal is smoothed using a Gaussian filter with
a 30-point window, and subsequently mean centered.

4.3 High-Level Descriptors and Feature Vectors

Once the LLDs have been extracted and preprocessed, a
set of high-level descriptors (HLDs) is extracted from each
signal within a predefined and specific temporal window.
The preprocessed LLD signals are segmented based on a
fixed window and HLDs are extracted from these specific
segments before being used as feature vectors for the clas-
sification tasks. In the current work, the following set of 14
statistical functions is applied on the segmented LLD signals
for the extraction of HLDs: mean, median, standard deviation,
maximum, minimum, range, skewness, kurtosis, first and sec-
ond quartiles, interquartile, 1%-percentile, 99%-percentile, range
from 1%~ to 99%-percentile.
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Feature Vectors. The MFCC-based feature vectors have a to-
tal dimensionality of 14 x 39 = 546. The RASTA-PLP-based
feature vectors have a total dimensionality of 14 x 18 = 252,
and the last set of feature vectors from the temporal domain
has a total dimensionality of 14 x 13 = 182. Subsequently,
the HLDs are standardised individually and per participant
using the z-score.

5 VIDEO CHANNEL ASSESSMENT

This section provides a description of each single step in-
volved in the assessment of the recorded video data. First, a
short description of the camera set-up used to perform the
recordings is provided. Next, the recorded data is described.
Last, a description of the processes undertaken to extract
several descriptors from the recorded data is provided.

5.1 Camera Set-up Description

A multiple view camera set-up was constructed in order to
capture the facial expressions of the participants through-
out the experiments. It consisted of three identical high
resolution cameras (iDS UI-3060CP-C-HQ) equipped with
identical lenses (Tevidon 1.8/16). Each camera recorded a
video stream at a resolution of 1600 x 1200 pixels. The first
camera was positioned directly in front of the participant at
a distance of approximately 1 meter. The two other cameras
were placed respectively at the right and the left hand-side
of the participant, each in a 45° angle (see Figure 2 for an
overview of the set-up). In this way, the facial area could
still be captured frontally in case it went beyond the scope
of the frontal camera, due to relative large head rotations
in both left and right directions. Sufficient illumination
was provided throughout the experiments by three LED
panels mounted respectively at the front, left and right
side of the participant. The three cameras synchronously
recorded facial expressions displayed by the participants
from three different perspectives and additionally allowed
unconstrained natural head movements. The recordings of
the first 24 participants were performed with a fixed frame
rate of 60 frames per second (fps) and involved all three
cameras, while the recordings of the next 21 participants
were performed at a fixed frame rate of 30 fps, and involved
uniquely the frontal camera.

Left TR [ . Right
Camera .° | .. Camera
!

S | (%
SN [

. A g ’ ‘.
N = ,
ool .

N ’

N L4507
D%

N ,

Participant

Fig. 2. Multiple view camera set-up. The multiple view camera set-up
consists of one front camera placed at approximately 1 meter from the
participant and two additional cameras placed each in a 45° angle at
the left and right hand-side of the participant. Hence, the facial area can
still be recorded in a frontal view for a maximal angle of head rotation of
45° to the left or to the right.

5.2 Signal Processing

Prior to the assessment of the recorded data, all recordings
were first converted into full color videos using demosai-
cking [46], since the recordings were performed using a
Bayer pattern color filter array (CFA). Then, the full color
videos were compressed using the codec H.264. Missing
frames were reconstructed using temporal interpolation ac-
cording to the cameras’ time stamps. For the current work,
the processed recordings were subsequently converted into
a unique frame rate of 30 fps, in order to involve all recorded
participants in the current assessment. Moreover, the current
work focuses uniquely on the recordings performed with
the frontal camera.

Based on the processed video recordings, several descriptors
of the facial area are extracted from fixed temporal windows
in order to discriminate between the different levels of pain
elicitation. Before these descriptors can be computed, the
facial area in each video frame has to be localised, aligned
and normalised. For this work, the facial behaviour anal-
ysis toolkit OpenFace [47] (which uses Constrained Local
Neural Fields (CLNF) [48] for facial landmarks detection
and tracking) is used for the automatic detection, alignment
and normalisation of the facial area. Based on the extracted
and preprocessed facial area, the same tool is used for the
extraction of a set of two-dimensional facial landmarks and
for the estimation of the head pose.

5.3 Feature Extraction

Several descriptors are computed from the two-dimensional
location estimations of the facial landmarks, as well as from
the head pose estimation data and the preprocessed facial
area.

Geometric and Head Pose Descriptors. According to
Prkachin et al. [11], [49], four specific facial movements are
consistently associated with pain and carry most of the pain
related information: brow lowering, tightening of the eye lids
in combination with raising cheeks, closing of the eyes and nose
wrinkling in combination with upper lip raising. Each of these
movements involves one or several of the following regions
of interest: mouth, nose, eyes and eyebrows. Therefore, a set
of 23 two-dimensional facial landmarks (see Figure 3(a)),
characterising each of the defined regions of interest, are
detected and tracked from one video frame to the next.

PITCH

Fig. 3. Facial area and head pose data. (a) Using the toolkit OpenFace
[47] a set of 23 two-dimensional facial landmarks, which characterises
eyebrows, eyes, nose and mouth, is tracked from one video frame
to the next. (b) The frame level descriptors consist of 17 Euclidean
distances computed between specific facial landmarks. These distances
capture the dynamic of the facial expressions at the frame level. (¢) The
orientation of the head (head pose) can be described by three angles of
rotation around three orthogonal axis: roll, pitch and yaw.
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Based on these landmarks, a set of 17 Euclidean distances
are computed at the frame level (see Figure 3(b)). Each
distance characterises a facial dynamic specific to each of the
four pain related facial movements described earlier. Hence,
each video frame is represented by a 17 dimensional feature
vector. Moreover, pain is not only associated with specific
facial movements. Intense pain causes sporadic changes of
the head orientation and position [50]. Therefore, a three
dimensional estimation of the head position as well as an
estimation of the head orientation described by three angles
of orientation (pitch, raw, roll) (see Figure 3(c)), is computed
at the frame level. The resulting 6 dimensional frame level
vector is used to assess the relevance of head motion for the
classification of the different levels of pain elicitation.

Each of these features in the span of a fixed temporal win-
dow yields a specific time series, generated by considering
the corresponding feature values for all frames within the
window. These time series are smoothed by applying a third
order low-pass Butterworth filter with a cut-off frequency of
3Hz. The first and second order derivatives of the filtered
time series are also computed.

Feature Vectors. By applying the same set of statistical
functions defined in Section 4.3 on each signal, a total of
14 x 17 x 3 = 714 features are extracted from the set of land-
mark distances and 14 x 6 x 3 = 252 features are extracted
from the head pose estimations. The extracted features are
subsequently standardised per participant using the z-score.
Appearance-based Descriptors. Spatio-temporal texture
properties of the aligned and normalised facial areas are
also assessed and dynamic texture descriptors are extracted
using local binary patterns from three orthogonal planes (LBP-
TOP) [51]. LBP-TOP extend the ordinary local binary patterns
(LBP) [52] for static images to the spatio-temporal domain
(see Figure 4). They incorporate the temporal component
into the description of dynamic textures and therefore com-
bine motion and appearance to describe facial expressions in
video sequences. This is done by concatenating local binary
patterns extracted from the spatial plane XY and from both
spatio-temporal planes XT and YT. The LBP operator can
be further extended by using uniform patterns. A binary
pattern is called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa. Subsequently, all non-
uniform patterns are assigned the same and unique label,
while each uniform pattern is assigned a single and specific
label. Hence, the dimensionality of LBP can be substantially
reduced by using uniform patterns without any significant

Fig. 4. Local binary patterns from three orthogonal planes (LBP-
TOP). Given a fixed size video sequence, a cuboid consisting of a
specific region of interest is extracted. LBP-TOP are subsequently com-
puted based on the cuboid by combining local binary patterns (LBP)
extracted from the spatial plane XY, with those extracted from both
spatio-temporal planes XT and YT. In this way, motion and appearance
are both combined and used for the description of facial expressions.

loss of information.

In this work, each detected facial region within a fixed tem-
poral window is divided into a 4 x 4 grid of cells with a 25%
overlap from one cell to the next. Furthermore, the temporal
window is divided in 3 temporal blocks with a 20% overlap
from one block to the next. This segmentation results in the
generation of a total of 4 x 4 x 3 = 48 spatio-temporal
cuboids. From each cuboid, uniform LBP-TOP descriptors
are extracted. The number of neighbourhood points in each
of the three planes (XY, XT, YT) is set to n = 4. The radius
in both spatial directions 7, and r, is set to 1, while the
radius in the temporal direction r; is set to 2. This setting
results in normalized histograms on each plane with a
fixed dimensionality of 15. After concatenating the extracted
patterns from each plane, the LBP-TOP descriptor extracted
from each cuboid has a dimensionality of 3 x 15 = 45.
Feature Vector. To form the dynamic texture descriptor of
the whole temporal window, the descriptors of all generated
cuboids are concatenated into a final feature vector with a
dimensionality of 48 x 45 = 2160.

6 PHYSIOLOGICAL CHANNELS ASSESSMENT

This section provides a description of each process involved
in the assessment of the recorded physiological data. First, a
description of the sensor system used to acquire the data
is provided, followed by a description of each recorded
physiological channel. Next, each step involved in the pre-
processing of the recorded data, as well as in the extraction
of descriptors from each specific physiological channel is
described.

6.1 Sensor System Description

Physiological data was acquired throughout the experi-
ments using the multi-purpose version of the g. MOBIlab+°
wireless biosignal acquisition system, equipped with sev-
eral sensors. All physiological channels were synchronously
recorded at a fixed sampling rate of 256 Hz.

Electromyography (EMG). EMG measures the electrical
activity caused by muscle contractions and propagated
through the skin’s surface. The intensity of the recorded
electrical potential is proportional to the strength of the con-
tractions. For the current experiments, the electrical activity
of the upper trapezius muscle (located at the upper back
of the human torso) was acquired by using three sintered
(Ag/AgCl) electrodes (positive, negative, neutral) attached
to the surface of the skin. In order to improve the robustness
of the recorded signal against noise, a conductive gel was
applied on the electrodes before they were attached to the
skin. The conductive gel increases the conductivity between
the skin and the electrodes and therefore improves the
quality of the recorded signals (improved signal to noise ra-
tio). While the difference of electrical potential is measured
between the positive and negative electrodes placed on the
right upper trapezius muscle, the neutral electrode is used
to define a baseline in order to filter out electrical activities
propagated through the skin which are unrelated to the
muscle activity. Numerous studies [53], [54], [55] report an
increase in muscle activity (in particular in the trapezius

3. http:/ /www.gtec.at/Products/Hardware-and-Accessories /
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muscles) concordantly with the experience of stress. The
current experiment is based on the assumption that a sim-
ilar response is to be observed when the participants are
subjected to painful stimuli.

Electrocardiography (ECG). ECG data was acquired using
three sintered electrodes attached to the surface of the skin.
Analogously to EMG, a conductive gel was applied on the
electrodes prior to their attachment to the skin’s surface, in
order to perform robust recordings of the electrical activity
of the heart muscle. Previous studies [56], [57], [58] have
shown that abrupt changes in electrocardiography patterns
correspond to physiological arousal as a response to external
stimuli, hence the relevance of ECG for the current study.
Respiration (RSP). RSP data was acquired using an elastic
belt system worn over clothing around the thorax. The
embedded piezoelectric sensor reacts to pressure variations
caused by the fluctuation of the thoracic circumference dur-
ing respiration. Thereby, several respiration patterns (e.g.
inhalation and exhalation) can be acquired and recorded.
Various studies [59], [60], [61] have investigated the relation-
ship between emotion and respiration, and have shown the
existence of a strong correlation between specific emotional
states and respiration patterns. This can be observed by a
change in breathing patterns when an individual transits
from one affective state to another, thus the relevance of
RSP for the current study.

Electrodermal activity (EDA). EDA, also referred to as gal-
vanic skin response (GSR) or skin conductance (SC), depicts
the change in the electrical resistance of the skin triggered
by the activation of sweat glands. The degree of activation
of the sweat glands is regulated by the sympathetic nervous
system and therefore is sensitive to external stimuli. EDA is
considered as a good indicator of physiological arousal [62],
[63], [64]. EDA data was acquired by applying a very low
constant voltage to the skin through two electrodes fixed
respectively at the index finger and ring finger of a parti-
cipant’s right hand. Based on the applied constant voltage
and the measured current that flows through the skin of
the participant, the skin conductance can be measured and
recorded.

6.2 Signal Processing

Prior to the extraction of descriptors from each of the
recorded physiological modalities, an individual prepro-
cessing step was undertaken in order to substantially re-
duce the amount of noise and artefacts within each specific
signal. Concerning the EMG signal, a third order bandpass
Butterworth filter with a frequency range of [0.05,25] Hz
was applied in order to further isolate the bursts in the
signal which carry potentially useful information about the
muscles” activity and thus the induced level of pain. The
resulting signal was subsequently detrended (by subtract-
ing a least-squares-fit straight line from the filtered signal)
in order to focus uniquely on the fluctuations within the
filtered signal. Analogously, the ECG signal was first filtered
using a third order bandpass Butterworth filter with a fre-
quency range of [0.1, 25] Hz followed by signal detrending.
Additionally, the filtered ECG signal was normalised in
order to obtain a uniform range of signal values for all
involved participants, since a huge inter-individual variance
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of signal values could be observed during the processing
of the recorded ECG data. The RSP signal was smoothed
using a third order low-pass Butterworth filter with a cut-
off frequency of 0.8 Hz. Finally, the EDA signal was filtered
by applying a third order low-pass Butterworth filter with a
cut-off frequency set to 0.2 Hz. A sample of the preprocessed
signals is depicted in Figure 5.

6.3 Feature Extraction

Several descriptors from both frequency and temporal do-
mains were extracted from fixed size temporal windows
of the preprocessed physiological signals (see Section 8.1
for more details about the conducted temporal window
analysis). A common set of 65 features was extracted from
each of the involved modalities (EMG, ECG, RSP, EDA).
This common set of features includes amongst others the
following set of statistical features extracted from the fil-
tered signal, as well as from its first and second temporal
derivatives [65]: mean value of the signal, mean value of the
normalised signal, mean wvalue of the absolute values of the
signal, mean value of the absolute values of the normalised signal
(3 x 4 = 12 features). Moreover, the following additional
features from the temporal domain proposed in [18] were
extracted uniquely from the filtered signal: standard devia-
tion of the signal, standard deviation of the normalised signal,
skewness, maximum to minimum peak value ratio, kurtosis,
peak amplitude (maximum peak value), peak range (difference
between maximum and minimum peak values), root mean squared
value of the signal, mean value of local maxima, mean value
of local minima, temporal slope of the signal (11 features).
Based on [66], [67], the following set of features was also
extracted uniquely from the filtered signal: integrated EMG
(IEMG), modified mean absolute values (MMAV1 and MMAV?2),
slope of mean absolute value (MAVSLP), simple square integral
(SS1), signal variance, waveform length, slope sign change (SSC),
Willison amplitude (WAMP), v — Order = {/E{|xy|"}, log-
Detector (logDetect = exp(% >_;log(|z;]))) (11 features).
Furthermore, normalised histogram coefficients [66] (8 features)
as well as coefficients resulting from fitting an autoregressive
model using the Burg method [68] (5 features) were also
extracted.

From the frequency domain, numerous descriptors were
also computed including low frequency to very low frequency
ratio based on Welch’s power spectrum density estimation,
zero crossing, frequency mode, bandwidth, central frequency,
mean frequency and median frequency (7 features). Addition-
ally, specific features that capture relevant information from
the non-stationary nature of the acquired signals were also
computed. It comprises stationary mean, median, area, variance
and standard deviation (5 features). Finally, several features
were computed in order to capture the irregularities within
the recorded signals. These features consist of the following:
Shannon entropy [69], approximate entropy (ApEn), sample en-
tropy (SampEn), fuzzy entropy (FuzzyEn) [70], spectral entropy
and Shannon entropy of the peak frequency shifting (SEPFS) [71]
(6 features).

From the ECG modality, an additional set of 58 features was
extracted. Most of these features are based on the analysis of
the POQRST waves of the recorded signals and include sev-
eral statistical features (mean, standard deviation, minimum,
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Fig. 5. Recorded physiological data (preprocessed signals). From top to bottom: series of artificially induced pain elicitation with the
corresponding temperatures (Tp: baseline temperature, T7 : pain threshold temperature, T»: intermediate elicitation temperature, T3: pain tolerance

temperature), EMG (uV), ECG (1V), RSP (nV), EDA (1S).

maximum) computed from the amplitudes and widths of the
P, Q, R, S and T wavelets, the temporal delay between each
couple of peaks, as well as the following angles: ZPQR,
ZQRS and ZRST [72]. Subsequently, based on the detected
R peaks, the heart rate variability was computed and further
features were extracted from the resulting signal, including
the mean and root mean square deviation of the heart rate
variability. Moreover, the slope of a linear regression fitted to
the R peaks occurrences was computed. Additionally, based
on [73], wavelet transform decomposition coefficients were
also extracted, using a Daubechies wavelet of order 8 at the
level 4 applied on the detected and aligned R peaks. The
final feature was generated by computing the mean of the
low frequencies coefficients representing an approximation
of the original ECG signal.

Finally, following the decomposition of the EDA signal
into its phasic and tonic components based on a convex
optimisation algorithm proposed by Greco et al. [74], 7
additional statistical features were extracted from the phasic
component (number of skin conductance responses, mean ampli-
tude of the responses, mean, standard deviation, maximum, range
and area under the curve of the phasic component) and 10
more from the tonic component (mean and standard deviation
of the tonic component and its first and second temporal
derivatives, maximum, minimum, range and area under curve
of the tonic component).

Feature Vectors. Therefore, both RSP and EMG signals are
represented by feature vectors of dimensionality 65. The
ECG feature vector consists of the common set of features
combined with those extracted using the analysis of the
PQRST waves and those produced throughout the wavelet
decomposition of the signal, which results into a feature
vector of dimensionality 65 + 58 = 123. The EDA feature
vector is generated by concatenating the set of common
features with those extracted from both phasic and tonic
components, resulting in a feature vector of dimensionality
65+ 7 + 10 = 82.

7 CLASSIFICATION ARCHITECTURES

This section provides a description of the classification ar-
chitectures assessed within the scope of the current work.
Each modality is characterised by specific properties which
provide valuable and distinctive insights about the level of
artificially induced pain. A classification system based on a
single modality should then be able to use these insights in
order to perform its task to a satisfactory extent. However,
the performance of the whole system can be significantly
improved by appropriately combining the information pro-
vided by several modalities. Multiple classifier systems are
able to take advantage of the diversity as well as the com-
plementarity of the information extracted from each of the
involved modalities in order to improve the performance of
the system. Moreover, single modality classification systems
can be unstable due to their reliance on one unique modality,
in particular in case of missing data. Multiple classifier
systems on the other hand can improve the robustness of the
recognition system, since the information used to perform
the classification task stems from a variety of modalities.
Thus, several multiple classifier system architectures have
been designed and assessed. Information fusion is per-
formed at different levels of abstraction, using both trainable
and fixed mappings.

The designed fusion architectures use Random Forests clas-
sifiers as base classifiers. Proposed by Breiman [75], Random
Forests consist of a committee of bagged decision trees
which are trained using a combination of both random sub-
space and random sub-sampling methods. New samples are
classified by applying majority voting to the decisions of the
bagged trees. Random Forests are known to be efficient and
robust against high dimensional data and do not require
lengthy parameter searches for performance optimization
in comparison to commonly used classifiers as, for example,
SVMs.

The first evaluated fusion architecture consists of an early
fusion approach, depicted in Figure 6(a). Early fusion con-
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Fig. 6. Fusion Architectures. (a): Early Fusion. (b): Late Fusion A. (c):
Late Fusion B. For both late fusion architectures, two fixed mappings
(Mean and Max) and two trainable mappings (LDA and Pseudo-inverse)
are evaluated. The mappings are applied on the classification scores of
the base classifiers to generate the final label of an unseen sample.

sists of concatenating the descriptors extracted from each
of the available modalities into one single high dimensional
feature vector. A single Random Forests classifier is subse-
quently trained on the resulting high dimensional dataset.
Some of the most prominent advantages of an early fusion
approach are its simplicity and the potential reduction of
the complexity of the classification task resulting from the
combination of complementary descriptors. Moreover, no
additional training and optimisation phase is needed and
therefore the whole dataset can be used for the optimisation
of the base classifier. However, several drawbacks emerge
from the combination of the descriptors at such an early
phase. First, the resulting recognition system is inflexible
and is unable to deal with missing data, since it relies on the
availability of all involved modalities. Moreover, the result-
ing high dimensional dataset increases the computational
requirements. Last, there is a high probability of running
into a sub-optimal solution for the classification task due to
the so called curse of dimensionality [76].

The next fusion architectures consist of late fusion ap-
proaches. The fusion strategy in Figure 6(b) consists of con-
catenating the descriptors extracted from the physiological
modalities into a single input channel. The same procedure
is undertaken with the descriptors extracted from the video
modality. Subsequently, a single Random Forests classifier
is trained on each of the three input channels (audio, video,
physiology), followed by the combination of the resulting
scores in an aggregation layer. The last fusion strategy in
Figure 6(c) consists of training a single Random Forests
classifier on each individual set of descriptors, followed
by the combination of the base classifiers’ outputs in an
aggregation layer.

In the current work, several aggregation rules consisting
of two fixed mappings (Mean and Max) and two train-
able mappings (Linear Discriminant Analysis and Pseudo-
inverse) are evaluated. In the following lines, ¢ € N rep-
resents the number of classes while n € N depicts the
number of base classifiers. Moreover, N € N depicts the
size of the testing set and Tr € N depicts the size of the
training set. The classification output of each base classi-
fier k € {1,...,n} is represented by the matrix C* =
(df hr<isna<j<e with 0 < df; < 1, V(i) € [1,N] x [1,¢]
and j* € {1, ..., c} denotes the label assigned to an unseen

sample.
Fixed mappings. Fixed aggregation rules are simple,
straightforward and characterised by the non-existence of
parameters that have to be optimised in order to proceed
with the combination of the base classifiers” outputs. One of
the most used fixed mappings is the simple average aggre-
gation rule (Mean). It consists of averaging the classification
scores of the base classifiers for each class and subsequently
assigning the label of the class with the maximum averaged
score:

— D i = max (n de) ,Vie{l,...,N} (1)

k=1 k=1

Another popular fixed mapping is the maximum aggrega-
tion rule (Max). Analogously to the average aggregation
rule, an unseen sample is assigned the label of the class
with the maximum score amongst the outputs of the base
classifiers:

max dm, Vie{l,...,.N} ()

max d¥.. = max (
1<k<n

1<k<n " 1<j<c

Trainable mappings. Trainable combination rules are char-
acterised by a second training step following the training
of the base classifiers intended to optimise the parameters
of the aggregation layer. Therefore, an extra set of data
is required (and set aside) in order to proceed with an
effective training of the aggregation layer. In the current
work, a linear discriminant analysis classifier (LDA) [77] is
trained and applied on the outputs of the base classifiers
in order to assign a label to an unseen sample. The idea
behind a LDA classifier is to consider all involved classes
as normally distributed and sharing an identical covariance
matrix. Based on these assumptions, each class’s conditional
probability density function is estimated. The predictions
are subsequently undertaken by using the Bayes’s rule, and
an unseen sample is assigned the label of the class with the
maximum conditional probability estimation [78].

A Pseudo-inverse (Pinv) [79] mapping has also been evalu-
ated. The idea behind the Pseudo-inverse aggregation rule
is to generate a least-squares linear mapping by comput-
ing the pseudo-inverse of the base classifiers horizontally
concatenated outputs C = [C',...,C"] € [0, 1]rx(en)
(C* € [0,1)77 represents the output of each classifier
k for the whole training set) and multiplying it with the
corresponding class labels Y € {0,1}7"*¢ accordingly to
the data available in the training set:

M e R™¢ = lim CT (CCT +al) 'Y 3)

The mapping is subsequently applied to the horizontally
concatenated outputs of the base classifiers for an unseen
sample and the assigned label corresponds to the class with
the maximum estimated score:

n C
d¥ .My v = max
> D diMime = max

n C k
Z Zdi,le,m (4)

k=1j=1 k=1j=1
vie{l,...,N}
with I = c¢(k — 1) +jand M = (Mi,m)1<jcon1<m<e €

RCTLXC

Late fusion architectures offer more flexibility in comparison
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to an early fusion approach since the modalities are grouped
in several input channels. Moreover, the probability of
running into a sub-optimal solution due to the size of the
feature sets is reduced. However, the system still relies on
the availability of all recorded modalities and an extra set of
data is needed in order to train the aggregation layer in case
a trainable combination rule is applied. Thus, a substantial
amount of data is needed in order to effectively train not just
the base classifiers, but the aggregation mapping as well.

8 EXPERIMENTS AND RESULTS

In this section, a description of the undertaken experiments
and the corresponding results is given. First, the experi-
ments undertaken to proceed with the segmentation of the
recorded signals consisting of defining adequate windows
for modality specific feature extraction is described. Next,
classification experiments and results in both user specific
and user independent settings are described. Since the
temperature calibration was performed individually and
iteratively at the beginning of each session, the assessment
is performed for each forearm separately in the Sections 8.1,
8.2 and 8.3. Further experiments with the merged data are
performed and described in Section 8.4.

8.1 Temporal Window Analysis

The first experiment consisted of the evaluation of several
temporal windows from which the descriptors were ex-
tracted for each specific modality in order to proceed with
the classification task. This analysis was motivated by the
existence of a temporal latency between the moment in
time at which an artificial pain elicitation is triggered and
the moment at which the reaction of a participant to this
specific elicitation is observable in a given signal. Therefore,
an approximation of this temporal latency could help in
defining the boundaries of the response to the triggered
elicitation for each signal individually and thus improve the
classification performance of the recognition system.

In [27], the authors show that the level of energy within
an audio signal is low during the elicitation phase before it
shortly and significantly increases within the phase during
which the corresponding temperature is gradually dropped
to the baseline temperature. This observation corresponds
to a typical demeanour of the participants observed during
the experiments and consisting of the participants’ breath
being held during painful phases, subsequently followed
by some deep exhale as soon as the temperatures became
bearable and the pain receded (see Figure 5). This heavy
expiration corresponds to the aforementioned peak of audio
signal energy. This observation also suggests that potentially
valuable insights about the actual level of pain elicitation
could be extracted from temporal windows defined within
the last seconds of an elicitation.

On the other hand, facial movements as response to a
painful stimulation have a lower latency compared to the
audio signal. For most of the participants, observable reac-
tions in the facial area were almost instantaneous as soon
as the targeted tolerance temperature (13) was reached. Fur-
thermore, the response latency in the physiological signals
seems to be the highest amongst all recorded modalities.
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Since these physiological modalities are regulated by the
sympathetic nervous system, a certain delay is to be ac-
knowledged between the acquisition of the relayed informa-
tion (related to an external stimulus) by the central nervous
system and the feedback consisting of a specific response to
the stimulus.

The temporal window analysis was conducted by perform-
ing a grid search, which consists of performing successive
classification tasks based on descriptors specific to each
modality and extracted from several windows of varying
lengths and positions in time. The lengths of the windows
vary between 4 sec and 6.5 sec. Each window, was tempo-
rally shifted in steps of 1sec starting from the onset point
in time when the temperature starts to increase (see Figure
1(c)), with a maximum shift of 5sec. These ranges were
selected in order to avoid extracting ambiguous information
from sections in time which are not related to the current
pain elicitation. From each specific window, the extracted
descriptors were used to perform a 10-fold cross validation
evaluation of a binary classification task (7 vs. 13) in a
user specific setting. For the audio modality, the MFCC-
based descriptors are the unique features involved in this
evaluation. For the video modality only the descriptors
based on the tracked landmarks are involved while all
descriptors extracted from each physiological modality are
used to proceed with this evaluation.

Figure 7(a) and Figure 7(b) depict the results of the per-
formed grid search for the left forearm and right forearm
respectively. The results displayed correspond to the median
of the classification accuracy of the user specific 10-fold
cross validation evaluation for each specific modality. A first
look at these figures points at the similarity of the results
for both forearms. At a glance, EDA appears to achieve
the best classification performances in comparison to the
other modalities. Moreover, both EMG and audio modalities
appear to be the worst performing modalities. Still, most
of the modalities achieve low classification rates when the
descriptors are extracted from windows having a lower
boundary located within the first 2sec of pain elicitation,
regardless of the length of the windows.

Furthermore, a substantial improvement in the classification
performances can be observed when the temporal windows
are starting within a range of 3sec to 5sec following the
temperature elevation onset, for both audio and physiologi-
cal modalities. On the other hand, the performance improve-
ments concerning the video modality appear to rely more on
the length of the window than on the temporal shift, since
relatively good classification performances are depicted for
windows extracted within temporal shifts ranging from
1sec to 5 sec. Thus, the exact combination of window length
and temporal shift in order to achieve the best classification
performance depends on the nature of each modality which
confirms the assumptions stipulated earlier.

Based on these findings, a modality specific signal segmen-
tation is performed as depicted in Figure 8. Video descrip-
tors are extracted from temporal windows with a length of
6.5sec and a temporal shift of 2sec from the onset. The
descriptors of the audio and physiological modalities are
extracted from identical windows of length 4.5 sec, with a
temporal shift of 4 sec.
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Fig. 7. Temporal Window Analysis. (a): Left Forearm. (b): Right Forearm. The results depict the median accuracy for each evaluated temporal
window, computed for each modality by applying a 10-fold cross validation evaluation in a user specific setting. The features involved in this
evaluation are specific to each temporal window. These windows have lengths ranging from 4 sec to 6.5 sec and are temporally shifted in steps of
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Audio & Bio Window
— 4.5 sec—|

Video Window

1
1
1
I
1
1
1
!
T

T
2sec 4 sec 8 — 12 sec

Fig. 8. Signal segmentation. The video features are extracted from a
window of length 6.5 sec with a temporal shift of 2 sec from the onset.
The audio and physiological features are extracted from an identical
window of length 4.5 sec with a temporal shift of 4 sec from the onset.

8.2 User Specific Binary Classification Results

The next experiment consists of the evaluation of the pain
recognition system in a user specific setting. For this eval-
uation, the descriptors extracted from the audio modality
are concatenated into a single input channel. The evaluation
is performed as a “No Pain” vs. “Pain” binary classifi-
cation problem, consisting of the discrimination between
the baseline temperature (1p) and each of the 3 different
temperatures (17, T5, T3). Therefore, a stratified 10-fold
cross validation evaluation is performed on the dataset
specific to each single participant. Moreover, the evaluation
is performed for each modality individually, followed by the
evaluation of the fusion strategies presented in Section 7.
The results, consisting of the average classification accuracy
and the standard deviation over the entire 40 participants,
are depicted in Table 1.

Overall, low pain elicitation temperatures (17 and 7%) are
very difficult to discriminate from the baseline temperature
(T). The best performance for the classification task T vs.
Ty is achieved by the EDA with a performance of 52.74% for

shift of 5 sec.

TABLE 1
User specific classification results
(Mean(in %) + Standard Deviation). The best performance achieved
by a single modality is underlined and the best overall performance is
depicted in bold. An asterisk (*) indicates a significant performance
improvement between the best performing fusion architecture and the
best performing single modality. The test has been conducted using a
Wilcoxon signed rank test with a significance level of 5%.

Forearm Left Right
Task Tovs. Ty Tovs. Ty Tovs. Ty Tovs. Ty Tovs. Ty Tovs. Ty
Audio 51914847 52534038 666441768 51204674 5245+ 10.81  66.45+ 16.08
HeadPose 48084841 525241013 705841423 50.60+8.76 5637 +£10.04 7118+ 13.84
Geometric ~ 49.60+7.31 52884925 724441297 50.38+£0.06 57.2240.20 7251 + 14.72
LBP-TOP  50.36+£7.00 53724979 724041576 50324840 57.35+10.71 7550 £ 12.41
EMG 4867004 52164920 6015+ 14.35 48264794 52004828 6153+ 15.90
ECG 50374790 53394008 684141361 49234741 53984822  68.81415.60
RSP 50444923 539441095 702041316 50.254+8.08 55324819  70.22414.02
EDA 5274+ 7.64 59.96+12.86 8024+ 1351 4884+862 5916+1431 79.78 + 16.03
Early Fusion  51.46+7.89 57404052 81.56+12.12 50.88+828 5045+ 1175 8263+ 11.56
L“'?]\i‘::’)“ A 50504894 50.0241081 831341200 51614787 60.91+12.69 8467 1101
L“e(;‘:;‘)m A 51064004 598241008 8253%1220 50674846 6065+ 1224 8472 % 11.09%
La'e(ﬂ‘)’j;‘;“ A 50004753 586041053 SLO2E1268 50004747 569441015 812441253
L“‘euf;:ls“,‘)’“ A 50244743 582741042 821641285 49.8347.04 569041048 8230+ 12.49
L“a:['e‘::’)“ B 51364872 583041060 821641281 50944830 5088+ 1242 8336+ 1152
L‘“eﬂl\j;‘:;;’“s 5019 £8.72 584741174 83.13+12.85 52.64+806 59.71+1346 83.19+12.49
L“te(f]‘;f;‘)’“s 50114638 57.6249.83 8046+ 13.04 50144677 57.14+1215 8116+ 14.37
L""eufi“:‘:‘)’“ B 10364661 57794058 804241307 51014746 573941210 8133+ 14.63

the left forearm and by the second late fusion architecture
in combination with the maximum aggregation rule for
the right forearm, with an average accuracy of 52.64%.
Concerning the classification task Ty vs. 15, both the EDA
and the first late fusion architecture in combination with
the average aggregation rule achieve the best performances
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for the left and right forearm, with average accuracies of
59.96% and 60.91% respectively. Although these values are
significantly above chance level, only the classification sys-
tem based on EDA is able to discriminate between those low
levels of pain elicitation to an acceptable extent. Meanwhile,
each single modality achieves relatively good classification
performance for the classification problem T vs. T3. This
can be explained by the fact that the stimuli induced with
the pain tolerance temperature (73) resulted in more observ-
able reactions in each modality. EDA is once again the best
performing single modality and significantly outperforms
all the other modalities, while the worst performing single
modality consists of the trapezius EMG with an average
classification accuracy of 60.15% and 61.53% for the left and
right forearm respectively.

Moreover, the best performing fusion architecture is the first
late fusion architecture (Late Fusion A) in combination with
fixed mappings. The performances of the fixed fusion map-
pings are quite similar, with the average combination rule
performing best in case of the left forearm with an average
accuracy of 83.13%, and the maximum aggregation rule
performing best in case of the right forearm with an average
accuracy of 84.72%. Additionally, fixed mappings perform
significantly better than trainable mappings, regardless of
the applied late fusion architecture. This can be explained
by the fact that in a user specific setting, the amount of
training data is insufficient in order to effectively train the
base classifiers and optimise a trainable aggregation layer.

8.3 User Independent Binary Classification Results

The following experiment consists of the evaluation of
the generalisation capabilities of the different classification
models to unseen users by performing a leave one user out
(LOUO) cross validation evaluation with the same binary
classification settings as in Section 8.2. The results of the
evaluation are depicted in Table 2.

At a glance, there is a significant drop of performance for
the video modality in comparison to the results computed
in a user specific setting (see Table 1). This can be explained
by the diversity of expressiveness of pain perception due to
user specific attributes. This drop of performance can also
be seen in the other modalities, except for the EDA which
seems not to be affected by individual characteristics. As
a matter of fact, the performances of the EDA are quite
similar, and in some cases better than those yielded in a
user specific setting. Analogously to the user specific results,
EDA significantly outperforms the other modalities.

The second late fusion architecture (Late Fusion B) performs
in most cases better than the first late fusion architecture
(Late Fusion A) in this setting. Moreover, in contrast to
the results yielded in a user specific setting, trainable map-
pings perform in most cases better than fixed mappings.
The amount of training data available in a LOUO cross
validation seems to be sufficient to effectively train the base
classifiers and the trainable fusion layer. The best classifi-
cation performances are yielded for the classification task
Ty vs. T3 and for each forearm by the second late fusion
architecture in combination with the pseudo-inverse fusion
layer, with performances of 81.76% and 83.95% for the left
and right forearm respectively.
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TABLE 2
User independent classification results
(Mean(in %) + Standard Deviation). A leave one user out (LOUO)
cross validation evaluation is performed. The best performance
achieved by a single modality is underlined and the best overall
performance is depicted in bold. An asterisk (*) indicates a significant
performance improvement between the best performing fusion
architecture and the best performing single modality. The test has been
conducted using a Wilcoxon signed rank test with a significance level of

5%.
Forearm Left Right
Task Tovs.Ty Tovs.T, Tovs.Ty Tovs. Ty Tovs.Ty Tovs.Ts

Audio 50804550 52254624 634041563 5L.044£7.01 49734584  65.04413.99
Head Pose 50424671 50094708 GLOT+1558 52554567 51844675 6378+ 16.28
Geometric 5106536 52194695 6584+ 1544 52464500 5461 +6.85  65.30 £ 17.16
LBP-TOP  5LG9£G79 51344621 608241330 51434563 51894611 63744+ 13.27
EMG 48.96+6.37 4800483 56234930 49.65+576  4846+6.03  62.00 + 14.01
ECG 51164591 51204545 65.0441324 49574573 5L5T+6.67  67.264 1401
RSP 51.35 4+ 6.43 50.68 + 5.49 65.86 +15.53  49.24 + 6.88 49.84 +5.47 66.90 + 14.58
EDA 4893+ 581 623441050 8043+ 13.18 53134582 628741210  82.16+ 13.40
Early Fusion 51.88+581 5091 £8.13 80.79+1227 53.86+5.70 62.37+10.85 80.61+12.33

Late Fusion A . _ " - P _

Moan) 50754528 61054970 80.8641223 52654683 618841004 815841218
La‘etﬂ‘:)‘(‘)’“ A 51034571 6046£041  80.70+1214 52154704 61891050 8158+ 12.10
La‘e(f]';i‘)’“ A 0884690 587241096 70571263 S087THTI1 6236+ 1088 822141318
L“‘eufi‘:ls\‘,‘)’“ A 10034651 586241085 SLOAL1L76 49424663 628341100  82.81 41221
L“f]:[‘e‘::’)“ B 8014526 58254852 778141425 53204700 6189+ 1016  80.01+13.27
L“e(ﬁ‘:;;’“]’ 49744572 587240933  S1.084£1299 51T3+£647 6197964 81311171
L“le(f;f;‘)’“ B 50754760 504041087 814641195 51714604 6233+1201 833641275
Late Fusion B ) 004 680 504441028 81.76+12.08 5145-574 6288+ 1102 83.95+ 12.65°

(Pinv)

For some further assessment of the proposed fusion ap-
proaches, an additional experiment is carried out using all
previously described channels except the EDA. This exper-
iment is motivated by the previous results (see Table 1 and
Table 2) which depict a very high correlation between the
performance of the fusion architectures and the performance
of EDA. Although the fusion approaches outperform the
best performing single modality, the benefit of the combi-
nation of the information stemming from different sources
is overshadowed by the performance of EDA. Therefore,
the best performing fusion architectures in each evaluation
setting (Late Fusion A with the average aggregation rule
for a user specific evaluation and Late Fusion B with the
pseudo-inverse aggregation rule for a user independent
evaluation) are used to perform the fusion of all involved
channels except EDA. A summary of the results for the
classification problem Tj vs. T3 is depicted in Figure 9.

In the absence of EDA, the best performing modality in a
user specific evaluation setting is the video modality. The
best performing single channel consists of the geometric
and LBP-TOP features with classification rates of 72.44%
and 75.50% for the left and the right forearm respectively.
The fusion approach (Late Fusion A (Mean)) significantly
outperforms the video modality for both sessions with
classification rates of 77.46% and 79.54% for the left and the
right forearm respectively. In a user independent setting,
both RSP and ECG modalities perform best with similar
classification performances. RSP performs slightly better
with an average accuracy of 65.86% for the left forearm, and
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Fig. 9. To vs. T3 Results Comparison.(a): User Specific (10-fold cross validation). (b): User Independent (LOUO cross validation). An asterisk (*)
indicates a significant performance improvement between the fusion architecture and the corresponding best performing single modality. The test
has been conducted using a Wilcoxon signed rank test with a significance level of 5%. Within each box plot, the mean and median classification
accuracy across all 40 participants are depicted respectively with a dot and a horizontal line.

ECG performs better with a performance of 67.26% for the
right forearm. The fusion approach (Late Fusion B (Pinv))
significantly outperforms both channels with classification
performances of 70.71% for the left forearm, and 71.66%
for the right forearm. In both evaluation settings and for
both forearms, there is a significant drop of performance
when the information stemming from EDA is excluded.
However, the fusion approaches are still able to significantly
outperform the best performing single modality in all cases
by combining the information provided by the remaining
sources.

Altogether, in both user specific and user independent set-
tings, the discrimination between the different levels of pain
becomes more challenging the lower the level of pain elici-
tation gets. Each single modality provides valuable insights
for the recognition of the different pain intensities, whereby
some of them seem to be more appropriate for the current
experimental settings (thermal pain elicitation). Although
the recorded audio material comprises substantially paralin-
guistic vocalisations, the performance of the audio modality
is significantly better than chance for the classification task
Ty vs. T in both user specific and user independent settings.
The audio channel also outperforms the trapezius EMG in
all classification tasks and settings. Moreover, the sensor
used to perform the audio recordings is less invasive than
physiological sensors and audio data is also much cheaper
to acquire. Furthermore, the recorded audio signal does not

require any substantial processing step (except for the usual
signal filtering and denoising steps) like the localisation of
the facial area for the video signal as an example. Finally,
the audio channel is less affected than the video channel by
the inter-individual differences in pain perception and pain
expressions (see Figure 9). Therefore, the audio signal is a
promising and relevant modality for the development of a
pain intensity recognition system.

The significant drop of performance of the video modality in
a user independent evaluation points to the negative effect
of generalisation on a recognition system based uniquely on
the video modality. A personalisation scheme is needed in
this case in order to improve the classification performance
of the system. The worst performing modality so far has
been the EMG of the trapezius muscle. While both RSP
and ECG perform similarly in both user specific and user
independent settings, EDA has proven to be the best per-
forming single modality in all evaluated settings. EDA not
only significantly outperforms all the other modalities but
also does not seem to be affected by the variety of inter-
individual responses to pain. However, this observation is
susceptible to be biased by the current experimental set-
tings which consist of an isolated and controlled laboratory
environment combined with pain elicitation through ther-
mal stimuli. Further evaluations with diverse experiments
covering different types of pain (chronic and acute pain) in
both experimental and clinical settings, have to be carried
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out in order to better assess the relevance of EDA for pain
assessment.

Finally, for the task Ty vs. T3 in both user specific and
independent settings, the proposed fusion architectures are
able to improve the performance of the recognition sys-
tem by combining the insights provided by each specific
modality. The performance of each fusion approach depends
substantially on the amount of data available for the training
phase. Given enough training data, trainable mappings are
able to outperform fixed mappings.

8.4 Multi-class Classification Experiments in a User In-
dependent Setting

In the previous experiments, the data specific to each fore-
arm was assessed separately. This was motivated by the
fact that the calibration of the temperatures was performed
individually at the beginning of each session, resulting in
different ranges of temperature for each forearm. However,
the results depicted so far are quite similar, which hints at
the similarity of the responses, regardless of the forearm on
which the elicitations are performed. Based on this observa-
tion, further experiments, involving the merged data of both
sessions, are conducted.

In Table 3, the results of a 4-class classification task in a user
independent setting are depicted. A comparison between
the performance of the pain intensity classification system is
addressed when the data specific to each session is assessed
separately and when it is combined in a single dataset.
Similarly to the results depicted so far, EDA significantly
outperforms the other modalities and the overall perfor-
mance of the classification system is improved by the fusion
architecture. The yielded classification rates are quite similar
in all three cases. This can also be seen in the corresponding
confusion matrices of the late fusion classification approach
depicted in Figure 10. The lower temperatures 77 and 75 are
mostly confused with the baseline temperature 7, while the
pain tolerance temperature can be effectively classified.
Furthermore, an experiment is performed by training the

TABLE 3
Multi-class classification results

(Mean(in %) + Standard Deviation). The results correspond to a

4-class classification task (7o vs. T vs. 1% vs. T3). The random

performance for a 4-class classification task is 25%. The evaluation is

performed in a LOUO setting. The best performance achieved by a

single modality is underlined and the best overall performance is

depicted in bold.

Dataset Left Forearm Right Forearm Both Forearms

Audio 31.99+£7.66  31.87£7.65 32.35 4 6.87

Head Pose 3075+ 753 3331+ 7.87 32.06 &+ 7.08
Geometric 33.76 £7.61  34.37+9.57 34.22 4+ 7.54
LBP-TOP 3097+6.34  31.80+£7.94 30.87 & 5.99
EMG 28.34+4.99  30.8247.67 29.73 £ 5.30

ECG 31.83+6.76  33.62+7.17 33.58 £ 6.85

RSP 3316783  33.62+£7.61 33.89 & 5.90

EDA 42174+9.11  41.63+£9.89 42924+ 7.07

Late Fusion B (Pinv) 4248 +8.35 43.11+7.93 43.894+7.61
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Fig. 10. 4-class Classification Task Confusion Matrices (Late Fu-
sion B (Pinv) in a LOUO setting). (a): Left Forearm. (b): Right Forearm.
(c): Both Forearms. The rows correspond to the ground truth, while the
columns correspond to the predictions.

classification architecture on either datasets separately and
also on the combined dataset, and subsequently performing
the evaluation on the data specific to either the left or the
right forearm. The results of the evaluation are depicted in
Figure 11. The similarity of the depicted results regardless of
the data used to train the classification architecture suggests
that there is no significant difference between the data
specific to both forearms.
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Fig. 11. 4-class Classification Task Results Comparison (Late Fu-
sion B (Pinv)) in a LOUO setting. (a): The test evaluation is performed
on the data specific to the left forearm. (b): The test evaluation is
performed on the data specific to the right forearm.

Therefore, the previously conducted experiments (see Sec-
tion 8.3) are reiterated, but this time based on the combined
data of both sessions. Additionally, a 3-class classification
task involving the baseline temperature, and both tempera-
tures T5 and T3 is conducted. This is motivated by the fact
that 7 is mostly confused to Tj and can not be considered
as an effective pain elicitation temperature. The elicitations
performed with this specific temperature could not trigger
any significant reaction in any of the recorded modalities.
The results of the evaluation are depicted in Table 4. The de-
picted results are in conformity with the previous findings,
derived from individual forearms. The fusion architecture
outperforms the best performing modality in both multi-
class classification tasks and for the binary classification task
Tb vs. T3. The improvement is significant with classification
rates of 83.39% (p-value: 1.1%) and 59.53% (p-value: 2.2%)
for both Ty vs. T3 and Ty vs. Ty vs. T3 classification tasks
respectively. By taking into account that the class labels are
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TABLE 4
Classification results (Mean(in %) + Standard Deviation). These results have been achieved by merging the data specific to each forearms
into a single set and performing a LOUO cross validation evaluation. The best performance achieved by a single modality is underlined and the
best overall performance is depicted in bold. An asterisk (*) indicates a significant performance improvement between the fusion architecture and
the corresponding best performing single modality. The test has been conducted using a Wilcoxon signed rank test with a significance level of 5%.

Task Random Audio Head Pose Geometric LBP-TOP EMG ECG RSP EDA Late Fusion B (Pinv)
Tyvs. Ty 50.00 49.23+4.37 51.73+£4.71 52.58+4.00 51.50+4.34 4997548 50.39+3.58 50.21+4.75 52.14 £3.95 51.39 +4.18
Tovs. Ty 50.00 50.19 £5.47 51.68 £5.10 52.87+449 51.73+£4.23 50.50+4.99 51.69+5.16 52.04+5.61 62.96+9.02 62.28 £+ 8.98
Tovs. Ty 50.00 64.75 £ 14.27 63.05+14.28 66.22 £14.48 62.424+12.18 59.33+10.18 66.28 £12.59 67.27 £11.17 82.23 +10.57 83.39 +£10.23*
Tovs. Ty vs. Ty 33.33 42.80 £8.77 42.94+948 45.15+10.10 41.78 +8.12 39.39+6.43 44.42+8.41 4518 +8.19 57.84 +10.51 59.53 + 9.94*
Tovs. Tyvs. Tovs. Ty 25.00 32.35£6.87 3206708 3422+754 3087£599 29.73+530 33.58+6.85 33.89+£590 42.9247.07 43.89 +£7.61

ordinal scaled, the average deviation in absolute value of the
predicted class from the true one (MAE) [80], [81] for both
classification tasks are respectively 0.468 and 0.811. The
observed agreement based on linear (respectively quadratic)
weights [82] is respectively 0.750 (0.826) and 0.728 (0.844)
for each of both classification tasks.

9 CONCLUSION

In this work, several classifier fusion strategies have been
evaluated within the scope of the development of a multi-
modal pain recognition system. The assessment of the pro-
posed approaches is performed on the recently recorded
SenseEmotion Database, which consists of several individuals
subjected to three gradually increasing levels of artificially
induced pain stimuli. The authors suggest for the first time
a combination of three distinctive modalities (Audio, Video,
Physiology) for the recognition of artificially induced pain
intensities. The fusion approaches consist of a combination
of modality specific descriptors at several levels of abstrac-
tion with different aggregation rules (fixed and trainable
mappings). EDA has proven to be the best performing single
modality regardless of the classification setting, and seems
not to be affected by the individual characteristics of each
participant.

Furthermore, the experimental results have proven the effec-
tiveness of the proposed fusion approaches for these specific
experimental settings. Late fusion architectures in combina-
tion with fixed mappings are able to outperform the best
performing single modality in a user specific classification
setting. Moreover, late fusion architectures combined with
trainable mappings perform better than those combined
with fixed mappings in a user independent setting, and
improve the performance of a classification system based
uniquely on the best performing single modality. These
findings suggest that the amount of data available at the
training phase plays a crucial role in the selection of an
appropriate fusion strategy which can substantially improve
the performance of a pain recognition system.

Still, the assessment and recognition of pain intensities re-
mains very challenging. Furthermore, the data used for the
current assessment stems from an experimental setting in
a controlled environment. Therefore, the current assessment
does not reflect the conditions of a clinical setting. In order to
realise a reliable online pain recognition system, more realis-
tic data are to be gathered and evaluated. Several challenges
have to be addressed, beginning with the sensor system to

be used in a realistic context in order to reliably record the
data. This also concerns the actual real time implementation
of several data pre-processing steps as well as the design
and implementation of the classification architectures. In
the future iterations of the current work, fusion approaches
which are robust against missing and erroneous data as well
as feature selection for dimensionality reduction should be
addressed. Also, deep learning fusion architectures have
shown promising results in different fields of application
and are therefore believed to be able to significantly im-
prove the performance as well as the robustness of a pain
recognition system. Furthermore, the extent to which the
designed approaches can be applied for the discrimination
between pain intensities and different types of emotional
states resulting from the combination of different levels of
arousal and valence (e.g. stress, disgust, anger) has not been
addressed and therefore constitutes an interesting extension
of the current work.
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Abstract: Standard feature engineering involves manually designing measurable descriptors based on
some expert knowledge in the domain of application, followed by the selection of the best performing
set of designed features for the subsequent optimisation of an inference model. Several studies have
shown that this whole manual process can be efficiently replaced by deep learning approaches which are
characterised by the integration of feature engineering, feature selection and inference model optimisation
into a single learning process. In the following work, deep learning architectures are designed for the
assessment of measurable physiological channels in order to perform an accurate classification of different
levels of artificially induced nociceptive pain. In contrast to previous works, which rely on carefully
designed sets of hand-crafted features, the current work aims at building competitive pain intensity
inference models through autonomous feature learning, based on deep neural networks. The assessment
of the designed deep learning architectures is based on the BioVid Heat Pain Database (Part A) and
experimental validation demonstrates that the proposed uni-modal architecture for the electrodermal
activity (EDA) and the deep fusion approaches significantly outperform previous methods reported in
the literature, with respective average performances of 84.57% and 84.40% for the binary classification
experiment consisting of the discrimination between the baseline and the pain tolerance level (Tj vs.
Ty) in a Leave-One-Subject-Out (LOSO) cross-validation evaluation setting. Moreover, the experimental
results clearly show the relevance of the proposed approaches, which also offer more flexibility in the
case of transfer learning due to the modular nature of deep neural networks.

Keywords: convolutional neural networks; signal processing; information fusion; pain intensity classification

1. Introduction

Conventional machine learning approaches are built upon a set of carefully engineered
representations, which consist of measurable parameters extracted from raw data. Based on some expert
knowledge in the domain of application, a feature extractor is designed and used to extract relevant
information in the form of a feature vector from the preprocessed raw data. This high level representation
of the input data is subsequently used to optimise an inference model. Although such approaches have
proven to be very effective and can potentially lead to state-of-the-art results (given that the set of extracted
descriptors is suitable for the task at hand), the corresponding performance and generalisation capability
is limited by the reliance on expert knowledge as well as the inability of the designed model to process
raw data directly and to dynamically adapt to related new tasks.

Sensors 2019, 19, 4503; d0i:10.3390/s19204503 www.mdpi.com/journal/sensors
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Meanwhile, deep learning approaches [1] automatically generate suitable representations by applying
a succession of simple and non-linear transformations on the raw data. A deep learning architecture
consists of a hierarchical construct of several processing layers. Each processing layer is characterised
by a set of parameters that are used to transform its input (which is the representation generated by the
previous layer) into a new and more abstract representation. This specific hierarchical combination of
several non-linear transformations enables deep learning architectures to learn very complex functions
as well as abstract descriptive (or discriminative) representations directly from raw data [2]. Moreover,
the hierarchical construct characterising deep learning architectures offers more flexibility when it comes
to adapting such approaches to new and related tasks. Hence, deep learning approaches have been
outperforming previous state-of-the-art machine learning approaches, especially in the field of image
processing [3-7]. Similar performances have been achieved in the field of speech recognition [8,9] and
natural language processing [10,11].

A steadily growing amount of work has been exploring the application of deep learning approaches on
physiological signals. Martinéz et al. [12] were able to significantly outperform standard approaches built
upon hand-crafted features by using a deep learning algorithm for affect modelling based on physiological
signals (two physiological signals consisting of Skin Conductance (SC) and Blood Volume Pulse (BVP)
were used in this specific work). The designed approach consisted of a multi-layer Convolutional Neural
Network (CNN) [13] combined with a single-layer perceptron (SLP). The parameters of the CNN were
trained in an unsupervised manner using denoising auto-encoders [14]. The SLP was subsequently
trained in a supervised manner using backpropagation [15] to map the outputs of the CNN to the target
affective states. In [16], the authors proposed a multiple-fusion-layer based ensemble classifier of stacked
auto-encoder (MESAE) for emotion recognition based on physiological data. A physiological-data-driven
approach was proposed in order to identify the structure of the ensemble. The architecture was able to
significantly outperform the existing state-of-the-art performance. A deep CNN was also successfully
applied in [17] for arousal and valence classification based on both electrocardiogram (ECG) and
Galvanic Skin Response (GSR) signals. In [18], a hybrid approach using CNN and Long Short-Term
Memory (LSTM) [19] Recurrent Neural Network (RNN) was designed to automatically extract and
merge relevant information from several data streams stemming from different modalities (physiological
signals, environmental and location data) for emotion classification. Moreover, deep learning approaches
have been applied on electromyogram (EMG) signals for gesture recognition [20,21] or hand movement
classification [22,23]. Most of the reported approaches consist of first transforming the processed EMG
signal into a two dimensional (time-frequency) visual representation (such as a spectrogram or a scalogram)
and subsequently using a deep CNN architecture to proceed with the classification. A similar procedure
was used in [24] for the analysis of electroencephalogram (EEG) signals. These are just some examples of
an increasingly growing field of experimentation for deep neural networks. A better overview of deep
learning approaches applied to physiological signals can be found in [25,26]. However, there are few
related works that focus specifically on the application of deep neural networks on physiological signals for
pain recognition. The authors of [27] recently proposed a classification architecture based on Deep Belief
Networks (DBNs) for the assessment of patients’ pain level during surgery, using photoplethysmography
(PPG). The proposed architecture consists of a bagged ensemble of DBNSs, built upon a set of manually
engineered features, extracted from the recorded and preprocessed PPG signals. It is important to note
that, in this specific study, the ensemble of bagged DBNs was trained on a set of carefully designed
hand-crafted features. Therefore, an expert knowledge in this specific area of application is still needed in
order to generate a set of relevant descriptors, since the whole classification process is not performed in an
end-to-end manner.

Nonetheless, there is a constantly growing amount of works that focus specifically on pain recognition
based on physiological signals, and categorised by the nature of the pain elicitations. There is a huge
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variety of statistical methods that have been proposed, most of them based on more traditional machine
learning approaches such as decision trees or Support Vector Machines (SVMs) [28]. In [29], the authors
proposed a continuous pain monitoring method using an Artificial Neural Network (ANN), based on
hand-crafted features (wavelength (WL) and root mean square (RMS) features) extracted from several
physiological signals consisting of heart rate (HR), breath rate (BR), galvanic skin response (GSR) and facial
surface electromyogram (SEMG). The proposed approach was assessed on a dataset collected by inducing
both thermal and electrical pain stimuli. In [30], the authors proposed a pain detection approach based
on EEG signals. Relevant features are extracted from the EEG signals using the Choi-Williams quadratic
time—frequency distribution and subsequently used to train a SVM in order to perform the classification
task. Pain in this specific work is elicited throughout tonic cold. Most recently, Thiam et al. [31,32]
provided the results for a row of pain intensity classification experiments based on the SenseEmotion
Database (SEDB) [33], by using several fusion architectures to merge hand-crafted features extracted from
different modalities, including physiological, audio and video channels. Thereby, the combination of
the features extracted from the recorded signals was compared for different fusion approaches, namely
the fusion at feature level, the fusion at the classifiers” output level and the fusion at an intermediate
level. Random Forests [34] were used as the base classifiers. In [35], the authors combined camera PPG
input signals with ECG and EMG signals in order to proceed with a user-independent pain intensity
classification using the same dataset. The authors used a fusion architecture at the feature level with
Random Forests and SVMs as base classifiers.

In [36-38], the authors performed different pain intensity classification experiments based on the
BioVid Heat Pain Database [39] (BVDB). All the conducted experiments were based on a carefully selected
set of features extracted from both physiological and video channels. The classification was also performed
using either Random Forests or SVMs. In [40], Kéchele et al. performed a user-independent pain intensity
classification evaluation based on physiological input signals, using the same dataset. The authors used
the whole data from all recorded pain levels in a classification, as well as a regression setting with Random
Forests as the base classifiers. Several personalisation techniques were designed and validated, based on
meta information from the test subjects, distance measures and machine learning techniques. The same
authors proposed an adaptive confidence learning approach for personalised pain estimation in [41]
based on both physiological and video modalities. Thereby, the authors applied the fusion at feature
level. The whole pain intensity estimation task was analysed as a regression problem. Random Forests
were used as the base regression models. Moreover, a multi-layer perceptron (MLP) was applied to
compute the confidence for an additional personalisation step. One recent work included the physiological
signals of both datasets (SEDB and BVDB) [42]. The authors analysed different fusion approaches with
fixed aggregating rules based on their merging level for the person-independent multi-class scenario
using all available pain levels. Thereby, three of the most popular decision tree based classifier systems,
i.e., Bagging [43], Boosting [44] and Random Forests, were compared.

The current work focuses on the application of deep learning approaches for nociceptive heat-induced
pain recognition based on physiological signals (EMG, ECG and electrodermal activity (EDA)). Several
deep learning architectures are proposed for the assessment of measurable physiological parameters
in order to perform an end-to-end classification of different levels of artificially induced nociceptive
pain. The current work aims at achieving state-of-the-art classification performances based on feature
learning (the designed architecture autonomously extracts relevant features from the preprocessed raw
signals in an end-to-end manner), therefore removing the reliance on expert knowledge for the design
and optimisation of reliable pain intensity classification models (since most of the previous works on pain
intensity classification involving autonomic parameters rely on a carefully designed set of hand-crafted
features). The remainder of the work is organised as follows. The proposed deep learning approaches
as well as the dataset used for the validation of the approaches are described in Section 2. Subsequently,
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a description of the results corresponding to the conducted assessments specific to each presented approach
is provided in Section 3. Finally, the findings of the conducted experiments are discussed in Section 4,
followed by the description of potential future works and a conclusion.

2. Materials and Methods

2.1. BioVid Heat Pain Database (BVDB)

The BioVid Heat Pain Database [39] (BVDB) was collected at Ulm University. It includes multi
modal data recordings from healthy subjects subjected to different levels of artificially induced pain
stimuli under strictly controlled conditions. The pain elicitation in the form of heat was conducted
through the professionally designed PATHWAY (http://www.medoc-web/products/pathway) thermode
attached to the participants’ right forearm. Before the data were recorded, a personalised calibration
step was undertaken for each participant to determine individual levels for the pain threshold, as well
as the tolerance threshold. Therefore, starting at a temperature of 32 °C (global pain free level Ty for
all participants), the temperature was slowly increased until, first, the participant felt a change from
heat to pain (pain threshold T;), and, second, the pain became hardly bearable (tolerance threshold Tj).
In addition, two in-between pain elicitation levels T and T3 were calculated, making the four individual
pain levels Ty, T», T3, Ty equidistant. After the initial calibration steps, starting at the baseline temperature
Tp, each of the four individual pain levels was applied randomly 20 times. Each of the pain levels was
held for a total of 4 s. Each pain stimulation was followed by a rest period during which the baseline
temperature was held for a random duration of 8-12 s. Ninety subjects were recruited for the experiments.
The participants covered three age groups, i.e., 18-35 years, 36-50 years and 51-65 years. Each group
was equally distributed, including 15 male and 15 female subjects. In the current study, the designed
approaches were assessed on the BioVid Heat Pain Database (Part A) since most of the related works were
conducted based on this specific database. The database is publicly available and consists of a total of
87 participants. Due to technical issues during the recordings, some of the data specific to three participants
are missing [36]. Those participants were therefore discarded and the remaining 87 participants, for which
all data are available, constitute the BioVid Heat Pain Database (Part A).

During the experiments, three different physiological signals were recorded, namely electrodermal
activity (EDA), electrocardiogram (ECG) and electromyogram (EMG) (a sample of the recorded
physiological signals is depicted in Figure 1). The EDA is an indicator of the skin conductance level
and was measured at both, the participants” index and ring fingers. The ECG signals measure the
participants” heart activity, such as the heart rate, the interbeat interval and the heart rate variability.
The EMG signal is an indicator of the muscle activity. The EMG signal of the current dataset consists
of the muscle activities of the trapezius muscles, which are located at the back, in the shoulder area.
In addition to the biopotentials, different video signals were recorded. Since in the current work we only
consider the physiological signals, interested readers are referred to [39] to get further details on the whole
dataset. Having 20 elicitations for each level of pain elicitation, every subject is represented by a total of
20 x 5 = 100 sequences of numerical data points (time series). Therefore, the unprocessed dataset consists
of 87 x 100 = 8700 samples, each labelled with its corresponding level of nociceptive pain elicitation (Tp,
Tl, Tz, T3 or T4).
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Figure 1. Recorded physiological data. From top to bottom: Series of artificially induced pain elicitation
(T1, pain threshold temperature; Ty, first intermediate elicitation temperature; T3, second intermediate
elicitation temperature; Ty, pain tolerance temperature); EDA (uS); EMG (1V); and ECG (uV).

2.2. Data Preprocessing

Prior to the classification experiments, the sampling rate of the recorded physiological modalities was
reduced to 256 Hz, in order to reduce the computational requirements. Subsequently, the amount of noise
and artefacts within the recorded data was significantly reduced by applying different signal preprocessing
techniques on each specific modality. A third-order low-pass Butterworth filter with a cut-off frequency of
0.2 Hz was applied on the EDA signals. The EMG signals were filtered by applying a fourth-order bandpass
Butterworth filter with a frequency range of [20,250] Hz. Finally, a third-order bandpass Butterworth
filter with a frequency range of [0.1,250] Hz was applied on the ECG signals. Furthermore, the data
were segmented as proposed in [37], but rather than using 5.5 s windows with a shift of 3 s from the
elicitations” onset, the preprocessed signals were segmented into windows of length 4.5 s, with a shift
from the elicitations’ onset of 4 s (see Figure 2a), as recently proposed in [31]. Each signal extracted within
this window constitutes a 1D array of size 4.5 x 256 = 1152 and was later used in combination with the
corresponding level of nociceptive pain elicitation to optimise and assess the designed deep classification
architectures. Thus, each physiological modality specific to each single participant is represented by a
tensor with the dimensionality 100 x 1152 x 1. After some close analysis of the preprocessed physiological
signals, a clear baseline wandering of the ECG signal, which is characterised by a strong correlation
with the shape of the EDA signal, was observed (see Figure 2b). Therefore, the segmented ECG signals
were additionally detrended by subtracting a fifth-degree polynomial least-squares fit from the filtered
signals. This step was carried out to remove the aforementioned artefacts from the ECG signals, since these
artefacts could potentially bias the classification performance of the corresponding deep classification
model (instead of using information stemming uniquely from the ECG signal, the designed system would
end up extracting information stemming from a non-linear combination of both the ECG signal and a
noisy signal related to the EDA signal). Finally, data augmentation was performed by shifting the 4.5 s
window of segmentation backward and forward in time with small shifts of length 250 ms and a maximal
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total window shift of 1 s in each direction, starting from the initial position of the window depicted in
Figure 2a. The signals extracted within these windows were subsequently used as training material for the
optimisation of the classification architectures.

— ECG Signal
= = = Fitted Polynomial Curve

Detrended ECG Signal

I T 1 I T T
2sec  4sec 8 —12sec 2sec  4sec

0 1 2 3 4
Time (in seconds)

(@) (b)

Figure 2. Data preprocessing. (a) Signal Segmentation. The classification experiments were performed on
windows of length 4.5 s with a temporal shift of 4 s from the elicitations’ onset. (b) The ECG signal was
further detrended by subtracting a least-squares polynomial fit from the preprocessed signal.

2.3. Uni-modal Deep Model Description

As mentioned above, the goal of the current work is to apply feature learning to alleviate the
reliance on domain specific expert knowledge that occurs when relevant and adequate features are to be
manually designed (hand-crafted features) in order to achieve state-of-the-art classification performances.
Therefore, multi-layer CNNs were designed and fed with the preprocessed physiological signals in order
to automatically compute relevant signal representations and at the same time optimise the classification
architectures. In the following sections, ¢ depicts the number of classes of the classification task.

CNNs [45,46] constitute a distinct category of biologically inspired neural networks, which are
characterised by a hierarchical structure of several processing layers. The input to a CNN is sequentially
and progressively transformed by each specific layer and the back-propagated information stemming
from the error computed between the network’s output and the expected output (ground-truth) is used to
optimise the whole structure of the architecture in order to efficiently and effectively solve a classification
or regression task. The basic processing layers of CNNs are convolutional layers, pooling layers and fully
connected layers. Convolutional layers are characterised by a set of neurons (or kernels), whereby each specific
neuron extracts a specific pattern of information from a patch of the layer’s input. Each neuron consists of
a set of trainable weights, the size of which is determined by the patch’s size (or kernel size). The output
of each neuron is calculated by applying a non-linear activation function (e.g., sigmoid function) on the
weighted sum of the neuron’s input. Each neuron scans the layer’s input sequentially and the aggregation
of the resulting local information extracted at each specific patch constitutes a feature map. Thus, the
output of a convolutional layer is a set of feature maps generated by the convolution of each neuron
across the layer’s input. Pooling layers reduce the spatial resolution of the generated feature maps by
merging semantically similar features. Max Pooling is a commonly used pooling approach and consists of
computing the maximum value of a defined local patch (the size of the patch related to a specific pooling
layer is referred in the current work as “pool size”) of each feature map. Fully connected layers are basically
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single-layer feed-forward networks that perform the classification or regression task based on the learned
deep representations.

Several challenges emerge when it comes to optimising such architectures. One of those challenges
is the so-called vanishing or exploding gradients problem, which is caused by the internal covariate shift
(constant fluctuations in layers” input distributions) occurring in deep architectures during the training
process. In [47], the authors proposed a technique called Batch Normalisation to address this specific issue.
Batch Normalisation consists of automatically learning the optimal scaling and shifting parameters of each
layer’s input, so that each layer’s input is dynamically normalised, thus significantly reducing the effects
of the internal covariate shift and therefore stabilising the training process. Another common challenge
occurring when training CNNs is the overfitting problem caused by the large amount of parameters
that have to be consistently and effectively optimised. Applying regularisation techniques can help to
significantly reduce this issue. The authors of [48] introduced the dropout approach, which is one of the
most commonly used regularisation techniques for deep neural networks. The dropout approach consists
of randomly and temporarily removing a set of neurons (or units) from the neural network during each
training step, each neuron having a fixed probability p € [0, 1] of being retained. The resulting model is
therefore more robust against overfitting and generalises better.

In the current work, the designed architectures are regularised using both techniques and the dropout
rate is fixed at 25%. Moreover, the Exponential Linear Unit (ELU) function [49] defined in Equation (1)

elug (x) = {a (exp(x)—1) ifx<0 )
X ifx>0

is used as activation function for both convolutional layers and fully connected layers (with & = 1),
except for the last fully connected layer of each architecture where a softmax function defined in Equation (2)

s(y;) = 2PWi) 2
);_,Jexp(yj)

n
is used as activation function, where y; = elu, ( Y WX+ bl-) ({wi,k }chlfl represents the set of weights
k=1 -

of the ith neuron, b; represents the bias term of the ith neuron and x = (x1,..., X, ..., X, ) represents the
output of the precedent fully connected layer). The designed architectures for each physiological signal
are based on 1D convolutional layers and are described in Table 1. The architectures are similar and were
inspired by the architecture presented in [50] for the classification of ECG signals. The unique difference
between the architectures is the usage of a dropout layer after each convolutional layer in the architecture
specific to both modalities EMG and ECG.
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Table 1. Deep classification architectures for each of the recorded physiological modality.

EDA EMG & ECG

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Layer Name No. Kernels (Units) Kernel (Pool) Size Stride
Convolution 16 3 1 Convolution 16 11 1
Batch Normalisation - - - Batch Normalisation - - -
Max Pooling - 2 2 Max Pooling - 2 2
Convolution 16 3 1 Dropout - - -
Batch Normalisation - - - Convolution 16 11 1
Max Pooling - 2 2 Batch Normalisation - - -
Convolution 32 3 1 Max Pooling - 2 2
Batch Normalisation - - - Dropout - - -
Max Pooling - 2 2 Convolution 32 11 1
Convolution 32 3 1 Batch Normalisation - - -
Batch Normalisation - - - Max Pooling - 2 2
Max Pooling - 2 2 Dropout - - -
Convolution 64 3 1 Convolution 32 11 1
Batch Normalisation - - - Batch Normalisation - - -
Max Pooling - 2 2 Max Pooling - 2 2
Convolution 64 3 1 Dropout - - -
Batch Normalisation - - - Convolution 64 11 1
Max Pooling - 2 2 Batch Normalisation - - -
Convolution 128 3 1 Max Pooling - 2 2
Batch Normalisation - - - Dropout - - -
Max Pooling - 2 2 Convolution 64 11 1
Flatten - - - Batch Normalisation - - -
Fully Connected 1024 - - Max Pooling - 2 2
Dropout - - - Dropout - - -
Fully Connected 512 - - Convolution 128 11 1
Dropout - - - Batch Normalisation - - -
Fully Connected c - - Max Pooling - 2 2
Flatten - - -
Dropout - - -
Fully Connected 1024 - -
Dropout - - -
Fully Connected 512 - -
Dropout - - -
Fully Connected c - -

ELU is used as activation function in both convolutional and fully connected layers, except for the last
fully connected layer where a softmax activation function is used. The networks are further regularised
by using dropout layers with a fixed dropout rate of 25%.

2.4. Multi-Modal Deep Model Description

To further investigate the compatibility of the recorded physiological data, several fusion approaches
based on CNNs are proposed. The information stemming from each modality is aggregated at different
levels of abstraction.

The first approach depicted in Figure 3 consists of an early fusion method, where the aggregation
is done at the lowest level of abstraction, which consists of the preprocessed raw signals (input data).
A 2D representation of the input data is generated by concatenating the three physiological modalities
along the temporal axis, resulting in a tensor with the dimensionality 3 x 1152 x 1. The resulting data
are subsequently fed into a network consisting of 2D convolutional layers. The motivation behind such
an approach is to enable the architecture to dynamically learn an appropriate set of weights, which will
generate feature maps consisting of relevant and compatible information extracted simultaneously from
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the recorded modalities, when applied to the 2D data representation. The designed fusion architecture is
described in Table 2.

Table 2. Early fusion deep CNN architecture.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride
Convolution 16 2 x11 1x1
Convolution 16 2x11 1x1

Batch Normalisation - - _

Max Pooling - 1x2 1x2
Dropout - - -
Convolution 32 1x11 1x1

Batch Normalisation - - _

Max Pooling - 1x2 1x2
Dropout - - -
Convolution 32 1x11 1x1

Batch Normalisation - - -

Max Pooling - 1x2 1x2
Dropout - - -
Convolution 64 1x11 1x1

Batch Normalisation - - _

Max Pooling - 1x2 1x2

Dropout - - -
Convolution 64 1x11 1x1

Batch Normalisation - - _
Max Pooling - 1x2 1x2
Flatten - - _

Dropout - - -
Fully Connected 1024 - -

Dropout - - -
Fully Connected 512 - -

Dropout - - -

Fully Connected C - -

The architecture is based on 2D convolutional layers. A 2D representation of the input data is generated by
concatenating the three physiological modalities resulting in a tensor with the dimensionality 3 x 1152 x 1. Similar
to the previous architectures (see Table 1), ELU is used as activation function in both convolutional and fully
connected layers, except for the last fully connected layer where a softmax activation function is used. The network
is further regularised by using dropout layers with a fixed dropout rate of 25%.
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Figure 3. Early Fusion Architecture. A 2D representation of the input data is generated by concatenating
the three physiological modalities and is subsequently fed into the designed deep architecture.

Furthermore, two additional late fusion approaches are proposed (see Figure 4). Both approaches
are based on the uni-modal CNN architectures described earlier (see Section 2.3). The first approach
described in Figure 4a performs the aggregation of the information at the mid-level since it involves using
intermediate representations of the input data. It consists of concatenating the outputs of the second
fully connected layer of each modality specific architecture and feeding the resulting representation to
an output layer with a softmax activation function. The second approach depicted in Figure 4b performs
the aggregation at the highest level of abstraction, since it involves using the respective softmax layers’
outputs of each modality specific architecture. An additional layer consisting of a set of trainable positive
parameters (aq, a2, a3) € R3 ) with a linear activation function is directly connected to the outputs of each
uni-modal architecture.

(=)
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Figure 4. Late Fusion Architectures. (a) The features extracted by the second fully connected layer are
concatenated and fed into the output layer. (b) The final output consists of a weighted average of the
outputs of each uni-modal model.
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For each modality specific architecture i € {1,2,3} (since we are dealing with three physiological
modalities), let {6;; € [0,1] : 1 < j < c} be the output values of the respective softmax layers. The output
of the aggregation layer is computed by using the following formulas:

1 3 3
=3 <Z aiei,j> , with the constraint: ) _a; =1 3)
i=1 i=1

s(ej) = e; (4)

First, a weighted average output of the class probabilities stemming from the uni-modal architectures
is computed (see Equation (3)), and the corresponding class probabilities of the fusion architecture are
subsequently deducted by applying a linear activation function on the previously computed scores (see
Equation (4)). Furthermore, the whole architecture is trained by using the loss function defined in
Equation (5),

3
L =Y AL+ AaggLage (5)
i=1

where Ly, L, and Lg are the loss functions of each modality specific architecture and Lqgy is the loss function
of the aggregation layer. The parameters A1, A, A3 and A4, are the corresponding weights for each of
the loss functions. Once the architecture has been trained, unseen samples are classified based uniquely
on the output of the aggregation layer. All described fusion approaches are subsequently trained in
an end-to-end manner, which means that the fusion parameters are optimised at the same time as the
parameters of each modality specific classification architecture. Furthermore, the parameters of each
described architecture (uni-modal as well as multi-modal) are optimised using the cross entropy loss
function defined in Equation (6),

[
Loss = — Y yjlog(y;) (6)
=1

where y; is the ground-truth value of the jth class and 7; is the jth output value of the softmax function.
Concerning the second late fusion architecture, the cross entropy loss function is used for each uni-modal
architecture as well as for the aggregation layer (L1 = Ly = L3 = L;go = Loss).

3. Results

All previously described deep architectures are trained using the Adaptive Moment estimation
(Adam) [51] optimisation algorithm with a fixed learning rate set empirically to 10~°. The training process
consisted of 100 epochs with the batch size set to 100. The weights of the loss function for the second
late fusion architecture (see Figure 4b) were empirically set as follows: A = Ay = A3 = 0.2, Agge = 0.4.
The weight corresponding to the aggregation layer (A4¢¢) was set higher than the others to push the network
to focus on the weighted combination of the single modality architectures’” outputs, and therefore to
evaluate an optimal set of the weighting parameters {a1(EDA), a3 (EMG), a3(ECG)}. The implementation
and evaluation of the described algorithms was done with the libraries Keras [52], Tensorflow [53] and
Scikit-learn [54]. The evaluation of the architectures was performed in a Leave-One-Subject-Out (LOSO)
cross-validation setting, which means that 87 experiments were conducted. During each experiment,
the data specific to a single participant were used to evaluate the performance of the trained deep model
and were never seen during the optimisation of this specific deep model. The data specific to each single
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participant were therefore used once as an unseen test set, and the results depicted in this section consist
of averaged performance metrics from a set of 87 performance values.

A performance evaluation of the designed architectures in a binary classification task consisting
of the discrimination between the baseline temperature Tp and the pain tolerance temperature T is
reported in Table 3. The achieved results based on CNNs are also compared to the state-of-the-art
results reported in previous works. At a glance, the designed deep learning architectures outperform the
state-of-the-art results in every setting, except for the ECG modality. Regarding the aggregation of all
physiological modalities, the second late fusion architecture performs best and sets a new state-of-the-art
fusion performance with an average accuracy of 84.40%, which even outperforms the best fusion results
reported in [41], where the authors could achieve an average classification performance of 83.1% by using
both physiological and video features.

Table 3. Performance comparison to early work on the BVDB (Part A) for the classification task Ty vs. Ty in
a LOSO cross-validation setting.

Method ECG EMG EDA Fusion
Werner et al. [36] 62.00 57.90 73.80 74.10
Kichele et al. [40,41] 53.90 58.51 81.10 82.73

Early Fusion: 82.79 £ 15.22
Late Fusion (a): 83.39 4+ 15.54
Our Approaches (CNNs) 57.04+11.58 58.65+13.82 84.57+14.13 Late Fusion (b): 84.40 4-14.43

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation
(the standard deviation of the cross-validation results for the proposed approaches is also provided). The best
performing approach for each modality and the aggregation of all modalities is depicted in bold.

The deep architecture based on the EDA modality significantly outperforms all previously reported
classification results with an average accuracy of 84.57%.

Based on these findings, further classification experiments were conducted, based on each
physiological modality and also the best performing fusion architecture (Late Fusion (b)). The performance
evaluation of the conducted experiments consisting of several binary classification experiments and a
multi-class classification experiment is summarised in Table 4.

EDA significantly outperforms both EMG and ECG in all conducted classification experiments and
constitutes the best performing single modality, which is consistent with the results reported in previous
works. Both EMG and ECG depict similar classification performances and also perform poorly for
almost all classification experiments. The discrimination between the baseline temperature Ty and the
pain threshold temperature Ty, as well as the two intermediate temperatures T, and T3, constitute very
difficult classification experiments that both modalities are unable to perform successfully. However,
the classification performances of both modalities for the classification tasks Ty vs. Ty and T; vs. Ty are
significantly above chance level, which shows that higher temperatures of elicitation cause observable and
measurable responses in the recorded physiological signals, that can be used to perform the classification
tasks at a certain degree of satisfaction. However, the overall performance of the fusion architecture is
greatly affected by the significantly poor performance of both ECG and EMG in comparison to EDA.
As can be seen in Table 4, the EDA classification architecture outperforms the fusion architecture in
almost all classification experiments (but not significantly), except for the classification task T; vs. Ty and
the multi-class classification task (the performance improvement of the fusion architecture is however
not significant).
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Table 4. CNN Classification performance on the BVDB (Part A) in a LOSO cross-validation setting (the
multi-class classification task corresponds to the five-class classification task Ty vs. Ty vs. Tp vs. T3 vs. Ty).

Task ECG EMG EDA Late Fusion (b)
Tovs. Ty 497140690 49.71+02.77 61.67+1254%7 61.15+12.222b
Tovs.To  50724+07.30 50.29+03.60 66.93+16.197  66.81+15922b
Tovs. T3 528740932 5325-+0893 7638+1470%7 76294 14.622P
Tovs. T, 570441158 5865+13.82 84.57+14.13%7 8440+ 14.432P
Tyvs. T, 580741236 5879+12.08 76.61+1538  76.72+15.02 01

Multi-Class  23.234+05.62 22.85+05.65 3625+09.01  36.54 & 08.55 2Pt

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation (the
standard deviation of the cross-validation results is also provided). The best performing approach for each
classification task is depicted in bold. We also performed a significance test between the fusion approach and each
single modality, using a Wilcoxon signed rank test with a significance level of 5%: (*) indicates a significant
performance improvement between EMG and the fusion approach; (°) indicates a significant performance
improvement between ECG and the fusion approach; and (*) indicates no significant improvement between
EDA and the fusion approach.

The information stemming from both modalities EMG and ECG harms the optimisation process of the
fusion architecture due to its inconsistency. However, it can be seen in Figure 5 that the fusion architecture
is able to detect the sources of inconsistent information and dynamically adapt by systematically assigning
higher weight values to EDA, while both ECG and EMG are assigned significantly lower weight
values for all conducted classification tasks, and therefore improving the generalisation ability of the
fusion architecture.

3 «(EDA) B3 ar(EMG) 1 a3(ECG)
1 T — T [ — T I
- e — -
08+ i
| ——— - — B
0.6 .
04+ i
0.2 : g = 2N :
| | | | | | | | | | | | | | | | ?%
N1 Ny N3 N1 Ny N3 N1 Ny N3 N1 Ny QA3 N1 Ny N3 N1 Ny N3
Tg vs. Ty Ty vs. Ty Tovs. Ts To vs. Ty T1vs. Ty Multi-Class
Figure 5. Box plots of the weighting parameters a1, ay and a3 for the late fusion architecture (Late

Fusion (b)), computed during the LOSO cross-validation evaluation of each conducted classification
experiment. Within each box plot, the mean and median values of the performed LOSO cross-validation
evaluation are depicted with a dot and a horizontal line, respectively.

Subsequently, the performance of both EDA and late fusion architectures were further evaluated
using different performance measures. In the case of binary classification experiments, true positives
(tp) correspond to the number of correct acceptances, false positives (fp) correspond to the number of
false acceptances, true negatives (tn) correspond to the number of correct rejections and false negatives (fn)
correspond to the number of false rejections. These four values stem from the confusion matrix of an
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evaluated inference model and are used to define different performance measures. Those used for the
current evaluation of the designed classification architectures are defined in Table 5.

The performance evaluation of the EDA architecture is depicted in Figure 6, while the performance
evaluation of the fusion architecture is depicted in Figure 7. Considering binary classification experiments,
both architectures are able to consistently discriminate between the baseline temperature Ty and the
other temperatures of pain elicitation. However, the performance of both architectures with regards to
the five-class classification experiment suggests that the discrimination between all five levels of pain
elicitation is a very challenging classification task. While the overall accuracy of each architecture is
significantly above random performance (which is 20% in the case of a five-class classification task),
the discrimination of the intermediate levels of pain elicitation remains very difficult, as can be seen in
Figure 8. Both baseline and pain tolerance temperatures Ty and T, can be classified with a relatively good
performance. The classification performance of T is barely above random performance and both T; and
T3 are mostly confused with Ty and T}, respectively. These results are however consistent with previous
works on the same dataset.

Table 5. Classification performance measures.

Measure Binary Classification Multi-Class Classification

tp+in 1 ¢ tp; + tn;
Accuracy P -
tp+tn+fp+ fn ¢ iy tpi+tni+ fpi + fny
t 1 c tp;
Precision P - L -
tp+fp =1 tpi+ fpi
tp 1 ¢ tp;
Recall - Y
tp+ fn ¢ =1 tpi+ fy
2 X Precision x Recall
F1 score

Precison + Recall

In the case of multi-class classification experiments: tp; corresponds to true positives, tn; corresponds to true
negatives, fp; corresponds to false positives and fn; corresponds to false negatives in the confusion matrix
associated with the ith class. Furthermore, since the dataset used for the evaluation of the performance of the
designed architectures is balanced, we use the macro-averaged F1 score in the case of multi-class classification.

1 Accuracy ] Precision 3 Recall 3 F1
| TT
M
j +

+ o4+ H o+

++++

n n |
Ty vs. Ty Ty vs. Ty Ty vs. T Ty vs. Ty T1vs. Ty Multi-Class

Figure 6. EDA classification performance. Within each box plot, the mean and median values of the
respective performance evaluation metrics are depicted with a dot and a horizontal line, respectively.
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Figure 7. Late fusion classification performance (Late Fusion (b)). Within each box plot, the mean and
median values of the respective performance evaluation metrics are depicted with a dot and a horizontal
line, respectively.

Accuracy: 36.54%
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Figure 8. Multi-class classification performance (confusion matrix) of the fusion architecture

(Late Fusion (b)). The darker the color the higher the corresponding performance.

Table 6. EDA performance comparison to early work on the BVDB (Part A) in a LOSO cross-validation setting.

Method To vs. Tq Ty vs. Ta Ty vs. T3 To vs. Ty
Werner et al. [36] 55.40 60.20 65.90 73.80
Lopez-Martinez et al. [55] 56.44 59.40 66.00 74.21

Our Approach (CNN) 61.67 £12.54 66.93+16.19 76.38+14.70 84.57+14.13

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach for each classification task is depicted in bold.
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We therefore compared the performance of the EDA and proposed late fusion approach to early
works. For the sake of fairness, we considered the related works performed on the exact same dataset,
using the exact same evaluation settings (LOSO with all 87 participants). The results depicted in Table 6
clearly show that the designed CNN architecture specific to EDA is able to consistently and significantly
outperform previous approaches in all binary classification settings. Moreover, the authors of [56,57]
reported overall accuracy performances of, respectively, 74.40% and 81.30% for the binary classification
task Tp vs. Ty based uniquely on EDA. These approaches are also based on carefully designed hand-crafted
features and are also significantly outperformed by the proposed CNN architecture specific to EDA.

Furthermore, we also compared the proposed late fusion approach with other fusion approaches
proposed in early works. The results depicted in Table 7 show that the proposed fusion approach
outperforms previous approaches for the binary classification task Ty vs. Ty. Concerning the multi-class
classification task, the proposed fusion approach also outperforms early approaches with an overall
accuracy of 36.54%. The authors of [41] reported an overall accuracy of 33% with a classification model
based on physiological modalities, while Werner et al. [58] reported an overall accuracy of 30.8% with a
classification model based on head pose and facial activity descriptors.

Table 7. Fusion performance comparison to early work on the BVDB (Part A) in a LOSO cross-validation
setting for the classification task Ty vs. Ty.

Approach Description Performance
Werner et al. [58] Early Fusion with Random Forests (Head Pose and Facial Activity Descriptors) 72.40
Werner et al. [36] Early Fusion with Random Forests (EDA, EMG, ECG, Video) 77.80
Kichele et al. [56] Early Fusion with Random Forests (EDA, ECG, Video) 78.90
Kichele et al. [57] Late Fusion with Random Forests and Pseudo-inverse (EDA, EMG, ECG, Video) 83.10

Our Approach (CNN) Late Fusion (b) with CNNs (EDA, EMG, ECG) 84.40 +14.43

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach is depicted in bold.

Moreover, the designed fusion architecture was tested on the BioVid Heat Pain Database (Part
B). The database was generated using the same exact procedure as Part A. However, it consists of
86 participants and two additional EMG signals (from the corrugator and the zygomaticus muscles) were
recorded. In this evaluation, we used the same signals as in Part A (EMG of the trapezius muscle, ECG and
EDA), and used the same fusion architecture (Late fusion (b) depicted in Figure 4b). The computed results

were subsequently compared with those of previous works. The corresponding results are depicted in
Table 8.

Table 8. Fusion performance comparison to early work on the BVDB (Part B) in a LOSO cross-validation
setting for the classification task Ty vs. Ty.

Approach Description Performance
Late Fusion with SVMs and Mean Aggregation (EMG (zygomaticus),
Kichele et al. [56] EMG (corrugator), EMG (trapezius), ECG, EDA, Video) 76.60
Early Fusion with SVM (EMG (zygomaticus),
Walter et al. [37] EMG (corrugator), EMG (trapezius), ECG, EDA) 77.05
Our Approach (CNN) Late Fusion (b) with CNNs (EMG (trapezius), ECG, EDA) 79.48 +14.96

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach is depicted in bold.
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The methods reported in previous works consist of fusion approaches involving all the recorded
signals and based on hand-crafted features [37,56]. Although the fusion approach proposed in the current
work (late fusion (b)) is based only on three of the recorded physiological signals, it is still able to
outperform the previously proposed approaches, as depicted in Table 8. Therefore, it is believed that
the performance of the architecture can be further improved by including the remaining signals (EMG
corrugator, EMG zygomaticus, and Video) in the proposed architecture.

4. Discussion and Conclusions

This work explored the application of deep neural networks for pain intensity classification based
on physiological data including ECG, EMG and EDA. Several CNN architectures, based on 1D and
2D convolutional layers, were designed and assessed based on the BioVid Heat Pain Database (Part
A). Furthermore, several deep fusion architectures were also proposed for the aggregation of relevant
information stemming from all involved physiological modalities. The proposed architecture specific to
EDA significantly outperformed the results presented in previous works in all classification settings. For the
classification task Ty vs. Ty, EDA achieved a state-of-the-art average accuracy of 84.57%. The proposed
late fusion approach based on a weighted average of each modality specific model’s output also achieved
state-of-the-art performances (average accuracy of 84.40% for the classification task Ty vs. Ty), but was
unable to significantly outperform the deep model based uniquely on EDA.

Moreover, all designed architectures were trained in an end-to-end manner. Therefore, it is believed that
the pre-training and fine tuning at different levels of abstraction of the CNN architectures, as well as the
combination with recurrent neural networks (in order to include the temporal aspect of the physiological
signals in the inference model), could potentially improve the performance of the current system, since
such approaches have been successfully applied in other domains of application such as facial expression
recognition [59-61]. Finally, the recorded video data provide an additional channel that can be integrated
into the fusion architecture in order to improve the performance of the whole system. Therefore, the video
modality should also be evaluated and assessed in combination with the physiological modalities.

In summary, the performed assessment suggests that deep learning approaches are relevant for the
inference of pain intensity based on 1D physiological data, and such methods are able to significantly
outperform traditional approaches based on hand-crafted features. Domain expert knowledge could
be bypassed by enabling the designed deep architecture to learn relevant features from the data. In the
future iterations of the current work, approaches consisting of combining both learned and hand-crafted
features should be addressed. In addition, the designed architectures should be also assessed by replacing
the classification experiments by regression experiments. Additionally, several data transformation
approaches applied to the recorded 1D physiological data in order to generate 2D visual representations
(e.g., spectrograms) should also be investigated in combination with established deep neural network
approaches, specifically designed for this type of data representation.
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Abstract: Several approaches have been proposed for the analysis of pain-related facial expressions.
These approaches range from common classification architectures based on a set of carefully designed
handcrafted features, to deep neural networks characterised by an autonomous extraction of relevant
facial descriptors and simultaneous optimisation of a classification architecture. In the current
work, an end-to-end approach based on attention networks for the analysis and recognition of
pain-related facial expressions is proposed. The method combines both spatial and temporal aspects
of facial expressions through a weighted aggregation of attention-based neural networks’ outputs,
based on sequences of Motion History Images (MHIs) and Optical Flow Images (OFIs). Each input
stream is fed into a specific attention network consisting of a Convolutional Neural Network (CNN)
coupled to a Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural Network (RNN).
An attention mechanism generates a single weighted representation of each input stream (MHI
sequence and OFI sequence), which is subsequently used to perform specific classification tasks.
Simultaneously, a weighted aggregation of the classification scores specific to each input stream is
performed to generate a final classification output. The assessment conducted on both the BioVid Heat
Pain Database (Part A) and SenseEmotion Database points at the relevance of the proposed approach, as
its classification performance is on par with state-of-the-art classification approaches proposed in the
literature.

Keywords: convolutional neural networks, long short-term memory recurrent neural networks,
information fusion, pain recognition

1. Introduction

An individual’s affective disposition is often expressed throughout facial expressions. Human
beings are therefore able to assess someone’s current mood or state of mind by observing his or her
facial demeanour. Therefore, an analysis of facial expressions can provide some valuable insight
about one’s emotional and psychological state. Thus, facial expression recognition (FER) has been
attracting a lot of interest from the research community in the recent decades and constitutes a steadily
growing area of research, particularly in the domains of machine learning and computer vision.
The current work focuses on the analysis of facial expressions for the assessment and recognition
of pain in video sequences. More specifically, a two-stream attention network is designed, with the
objective of combining both temporal and spatial aspects of facial expressions, based on sequences of
motion history images [1] and optical flow images [2], to accurately discriminate between neutral, low,
and high levels of nociceptive pain. The current work is organised as follows. An overview of pain
recognition approaches based on facial expressions is provided in Section 2, followed by a thorough
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description of the proposed approach in Section 3. In Section 4, a description of the datasets used for
the assessment of the proposed approach as well as the performed experiments is provided, followed
by a description of the corresponding results. The current work is subsequently concluded in Section 5
with a short discussion and description of potential future works.

2. Related Work

Recent advances in both domains of computer vision and machine learning, combined with the
release of several datasets designed specifically for pain-related research (e.g., UNBC-McMaster Shouder
Pain Expression Archive Database [3], BioVid Heat Pain Database [4], Multimodal EmoPain Database [5] and
SenseEmotion Database [6]), have fostered the development of a multitude of automatic pain assessment
and classification approaches. These methods range from unimodal approaches, characterised by
the optimisation of an inference model based on one unique and specific input signal (e.g., video
sequences [7,8], audio signals [9,10] and bio-physiological signals [11-13]), to multimodal approaches
that are characterised by the optimisation of an information fusion architecture based on parameters
stemming from a set of distinctive input signals [14-16].

Regarding pain assessment based on facial expressions, several approaches have been proposed,
ranging from conventional supervised learning techniques based on specific sets of handcrafted
features, to deep learning techniques. These approaches rely on an effective preprocessing of the input
signal (which in this case consists of a set of images or video sequences) and involves the localisation,
alignment and normalisation of the facial area in each input frame. Moreover, further preprocessing
techniques include the localisation and extraction of several fiducial points characterising specific
facial landmarks, and in some cases, the continuous extraction of facial Action Units (AUs) [17,18].
The preprocessed input signal, as well as the extracted parameters, are subsequently used to optimise
a specific inference model based on different methods. In [19], the authors use an ensemble of linear
Support Vector Machines (SVMs) [20] (each trained on a specific AU), in which inference scores
are subsequently combined using Logistical Linear Regression (LLR) [21] for the detection of pain
at a frame-by-frame level. The authors in [22] apply a k-Nearest Neighbours (k-NN) [23] model
on geometric features extracted from a specific set of facial landmarks for the recognition of AUs.
Subsequently, the pain intensity in a particular frame is evaluated based on the detected AUs by using
a pain evaluation scale provided by Prkachin and Solomon [24]. Most recently, the authors in [25]
improve the performance of a pain detection system based on automatically detected AUs by applying
a transfer learning approach based on neural networks to map automated AU codings to a subspace of
manual AU codings. The encoded AUs are subsequently used to perform pain classification, using
an Artificial Neural Network (ANN) [26].

In addition to AU-based pain assessment approaches, several techniques based on either facial
texture, shape, appearance and geometry or on a combination of several of such facial descriptors
have been proposed. Yang et al. [27] assess several appearance-based facial descriptors by comparing
the pain classification performance of each feature with its spatio-temporal counterpart using SVMs.
The assessed spatial descriptors consist of Local Binary Patterns (LBP) [28], Local Phase Quantization
(LPQ) [29], Binarized Statistical Image Features (BSIF) [30] as well as each descriptor’s spatio-temporal
counterpart extracted from video sequences on three orthogonal planes (LBP-TOP, LPQ-TOP and
BSIF-TOP). In [8,31], the authors propose several sets of spatio-temporal facial action descriptors based
on both appearance- and geometry-based features extracted from both the facial area, as well as the
head pose. Those descriptors are further used to perform the classification of several levels of pain
intensities using a Random Forest (RF) [32] model. Similarly, the authors in [7,14,15,33], propose several
spatio-temporal descriptors extracted either from the localised facial area or from the estimated head
pose, including, among others, Pyramid Histograms of Oriented Gradients (PHOG) [34] and Local
Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) [35], to perform the classification of
several levels of nociceptive pain. The classification experiments are also performed with RF models
and ANNS.
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Alongside handcrafted feature-based approaches, several techniques based on deep neural
networks have also been proposed for the assessment of pain induced facial expressions. Such
approaches are characterised by the joint extraction of relevant descriptors (from the preprocessed
raw input data) and optimisation of an inference model, based on neural networks in an end-to-end
manner. In [36-38], the authors propose a hybrid deep neural network pain detection architecture
characterised by the combination of a feature embedding network consisting of a Convolutional
Neural Network (CNN) [39] with a Long Short-Term Memory (LSTM) [40] Recurrent Neural Network
(RNN), to take advantage of both spatial and temporal aspects of facial pain expressions in video
sequences. Soar et al. [41] propose a similar approach by combining a CNN with a Bidirectional LSTM
(BiLSTM), and using a Variable-State Latent Conditional Random Field (VRS-CRF) [42] instead of
a conventional Multi-Layer Perceptron (MLP) to perform the classification. In [43], the authors also use
a similar hybrid approach as in [36,37]; however, in this case, the feature embedding CNN is coupled
to two distinct LSTM networks. The outputs of the LSTM networks are further concatenated and
a MLP is used to perform the classification of the pain intensities in video sequences. Furthermore,
Zhou et al. [44] propose a Recurrent Convolutional Neural Network (RCNN) [45] architecture for the
continuous estimation of pain intensity in video sequences at the frame-level, whereas Wang et al. [46]
propose a transfer learning approach, consisting of the regularisation of a face verification network,
which is subsequently applied to a pain intensity regression task.

The current work focuses on the analysis of facial expressions for the discrimination of neutral, low
and high levels of nociceptive pain in video sequences. Thereby, an end-to-end hybrid neural network
characterised by the integration of spatial and temporal information at both the representational
level of the input data (OFI and MHI) and the structural level of the proposed architecture (hybrid
CNN-BiLSTM) is proposed. Furthermore, frame attention parameters [47] are integrated into the
proposed architecture to generate an aggregated representation of the input data based on an estimation
of the representativeness of each single input frame, in relation with the corresponding level of
nociceptive pain. An extensive assessment of the proposed architecture is performed on both BioVid
Heat Pain Database (Part A) [4] and SenseEmotion Database [6].

3. Proposed Approach

A video sequence can be characterised by both its spatial and temporal components. The spatial
component represents the appearance (i.e., texture, shape and form) of each frame’s content, whereas
the temporal component represents the perceived motion across consecutive frames due to dynamic
changes of the content’s appearance through time. Most of the deep neural network approaches
designed for the assessment of pain-related facial expressions generate spatio-temporal descriptors of
the input data in two distinct and conjoint stages: a specific feature embedding neural network (which
is commonly a pre-trained CNN) first extracts appearance based descriptors from the individual
input frames (which are greyscale or colour images), and a recurrent neural network is subsequently
used for the integration of the input’s temporal aspect based on sequences of previously extracted
appearance features, thus generating spatio-temporal representations of video sequences that are
used for classification or regression tasks. Therefore, both the temporal and spatial aspects of video
sequences are integrated uniquely at the structural level (e.g., the architecture of the neural network)
of such approaches. The current approach extends this specific technique by additionally integrating
motion information at the representational level (e.g., input data) of the architecture throughout
sequences of motion history images [1] and optical flow images [2].

3.1. Motion History Image (MHI)

Introduced by Bobick and Davis [48], a MHI consists of a scalar-valued image depicting both the
location and direction of motion in a sequence of consecutive images, based on the changes of pixel
intensities of each image through time. The intensity of a pixel in a MHI is a function of the temporal
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motion history at that specific point. A MHI H; is computed using an update function ¥ (x, y, t), and
is defined as follows,

ifY (x,y,t)=1

H: (x,y,t) =
wloyt) {max(O,HT(x,y,t—l)—J) otherwise

@

where (x,y) represents the pixel’s location, t the time and 7 the temporal extent of the observed motion
(e.g., the length of a sequence of images); ¥ (x,y, ) = 1is synonym of motion at the location (x,y) and
at the time ¢; and J represents a decay parameter. The update function ¥ (x, y, t) is defined as follows,

1 ifD(xyt)>¢

0 otherwise

Y (x,y,t) = { 2

where ¢ is a threshold; D (x, y, t) represents the absolute value of the difference of pixel intensity values
of consecutive frames and is defined as follows,

D (x,9,t) = |1(x,y,1) — I(x,y,t = Ab) ®)

where I (x,y,t) represents the pixel intensity at the location (x,y) and at the time t; At represents the
temporal distance between the frames.

Therefore, the computation of a MHI consists in first performing image differencing [49] between
a specific, preceding frame and the current tth frame, and detecting the pixel locations where
a substantial amount of movement has occurred (depending on the value assigned to the threshold
¢) based on Equation (2). Subsequently, Equation (1) is used to assign pixel values to the MHI.
If a motion has been detected at the location (x, y) of the tth frame, a pixel value of 7 is assigned at that
location. Otherwise, the previous pixel value of that location is reduced by J, thereby indicating the
temporal occurrence of the motion at that specific location, according to the actual time f. This whole
process is conducted iteratively until the entire sequence of images has been processed. The temporal
history of motion is thereby encoded into the resulting MHI. Therefore, a whole sequence of images
can be encoded into a single MHI. However, in the current work, a sequence of MHIs is generated
from each single sequence of images by saving each single MHI generated at each single step of the
iterative process described earlier. The resulting sequence of images is used as input for the designed
deep neural networks. A depiction of such a sequence of MHIs can be seen in Figure 1b, with the
corresponding sequence of greyscale images depicted in Figure la.

I

(b) MHI input sequence.
SRR AT AT 4 AT A, 4
A Y

'w.
’*J 4

Figure 1. Data preprocessing. Following the detection, alignment, normalisation and extraction of the

L B

(c) OFI input sequence.

facial area in each frame of a video sequence, the images are converted into greyscale. MHI and OFI
sequences are subsequently generated.
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3.2. Optical Flow Image (OFI)

Optical flow refers to the apparent motion of visual features (e.g., corners, edges, textures and
pixels) in a sequence of consecutive images. It is characterised by a set of vectors (optical flow vectors)
defined either at each location (x,y) of an entire image (dense optical flow [50,51]), or at specific
locations of a predefined set of visual features (sparse optical flow [2,52]). The orientation of an optical
flow vector depicts the direction of the apparent motion, whereas the magnitude of an optical flow
vector depicts the velocity of the apparent motion of the corresponding visual feature in consecutive
frames. Thus, an OFI provides a compact description of the location, direction and velocity of a specific
motion occurring in consecutive frames. The estimation of the optical flow is based on the brightness
constancy assumption, which stipulates that pixel intensities are constant between consecutive frames.
If I(x,y,t) is the pixel intensity at the location (x,y) and at the time ¢, the brightness constancy
assumption can be formulated as follows,

I(x,y,t) =I(x+dx,y+dy,t+dt) (4)

where (dx,0y,0t) represents a small motion. By applying a first-order Taylor expansion,
I (x +6x,y + oy, t + 0t) can be written as follows,

ol al al
I(x+ox,y+0yt+dt) = I(x,y,t)+£§x+@(5y+ gét. (5)

Thus,

ol ol al
S0+ @éy + 5,0t~ 0 (6)

and by dividing each term by 4t, the optical flow constraint equation can be written as follows,

oldx dldy dI

Resolving the optical flow constraint equation (Equation (7)) consists of the estimation of both
parameters u = % and v = %. Several methods have been proposed to perform this specific task.
The authors in [53,54] propose an overview of such approaches. In the current work, dense optical flow
is applied, using the method of Farneback [50], to compute OFIs from consecutive greyscale images.
A depiction of such a sequence of images can be seen in Figure 1c (both motion direction and motion
velocity are color encoded).

3.3. Network Architecture

As opposed to still images, the motion component of a video sequence is integrated into both MHIs
and OFlIs, therefore providing more valuable information for facial expressions analysis. Therefore,
the proposed architecture consists of a multi-view learning [55] neural network with both OFIs and
MHIs as input channels. An overall illustration of the proposed two-stream neural network can be
seen in Figure 2. In a nutshell, an attention network specific to each input channel (OFIs and MHIs)
first generates a weighted representation from the jth input sequence (h;f "and h]’.”hi). The generated
representation is subsequently fed into a channel specific classification model (which in this case is
a MLP). The resulting class probabilities of each channel (score‘?f
an aggregation layer with a linear output function, where a weighted aggregation of the provided

" and score") are further fed into
scores is performed as follows,

scorej = Qofi - SCOT’E})ﬁ + Xpni SCOT’E}"M (8)
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with the constraint
Qofi + Wppi = 1. )

The entire architecture is trained in an end-to-end manner by using the following loss function,
L= /\ofi : 'Cofi + Amhi : ‘thi + )‘ugg : »Cagg (10)

where the loss functions of each input channel and of the aggregation layer are respectively depicted
with Lo, Lypi and Lage. The parameters Aqfi, Ay and Agge correspond to the regularisation
parameters of each respective loss function. Once the network has been trained, unseen samples
are classified based on the output of the aggregation layer.

h?f i score;f !
ey
[ ; i e
OpticalFlow % % _“ Iﬁ]téfa,%?f U Classifier
Images | ‘1

mhi mhi
- hj scoref
I [ - ¥ |Attention s
MotionHistory M Network Classifier
Images !

Figure 2. Two-Stream Attention Network with Weighted Score Aggregation.

The attention network (see Figure 3) consists of a CNN coupled to a BILSTM with a frame attention
module [47]. The CNN consists of a time distributed feature embedding network which takes a single
facial image imy ; as input and generates a fixed-dimension feature representation X ; specific to that
image. Therefore, the output of the jth input sequence of facial images {in;} ]’(:1 consists of a set of
facial features {Xk,j}fc:r The temporal component of the sequence of images is further integrated by
using a BILSTM layer. A BiLSTM [56] RNN is an extension of a regular LSTM [40] RNN, to enable the
use of context representations in both forward and backward directions.

It consists of two LSTM layers, one processing the input sequence {Xl,j/ Xojs-- s X1jj } sequentially
forward in time (from X ; to X ;) and the second processing the input sequence sequentially backward
in time (from X ; to Xj ;). A LSTM RNN is capable of learning long-term dependencies in sequential
data, while avoiding the vanishing gradient problem of standard RNNs [57]. This is achieved
throughout the use of cell states (see Figure 4), which regulate the amount of information flowing
through a LSTM network throughout the use of three principal gates: forget gate (f;), input gate (i;)
and output gate (0;). The cell’s output /; (at each time step ¢) is computed, given a specific input x;,
the previous hidden state /;_1, and the previous cell state C;_1, as follows,

fo = o (Wpxt + Uphy 1+ by) (11)
ir =0 (Wixe + Uihy—1 + b;) (12)
Cr = tanh (West + Uchy_1 + be) (13)
Ct=f®C1+it®C (14)

or = 0 (Woxy + Uphy_1 + by) (15)
ht = o ® tanh(Cy) (16)

where ¢ represents the sigmoid activation function ¢(x) = (1 + exp(—x)) ! and tanh represents the
hyperbolic tangent activation function. The element-wise multiplication operator is represented by the
symbol ®. The weight matrices for the input x; are represented by W;, W¢, W, and W for the input gate,
forget gate, output gate and cell state, respectively. Analogously, the weight matrices for the previous
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hidden state h;_1 for each gate are represented by U;, Uy, U, and Uc. The amount of information
to be further propagated into the network is controlled by the forget gate (Equation (11)), the input
gate (Equation (12)) and the computed cell state candidate C; (Equation (13)). These parameters are
subsequently used to update the cell state C; based on the previous cell state C;_; (Equation (14)).
The output of the cell can subsequently be computed using both Equation (15) and Equation (16).

Xy, Iy, Attention Layer
I
imy,j m @ ' '

@ Concatenation @ Element-wise Sum

Figure 3. Attention Network.

Figure 4. Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN).

In the current work, the hidden representation stemming from the forward pass {IZ;, h—z;, e, };;}
and the one stemming from the backward pass {};,}Z, . ,};} are subsequently concatenated
{{Eﬁ],ﬁ;} , [PT;J, ﬁzv]} S, {i;;,l;}} and fed into the next layer. For the sake of simplicity,
the output of the BiLSTM layer will be depicted as follows, {hl,j, hz,j,...,hlrj} (with hy; =

_) H
{hk/j, hk/]} )- The next layer consists of an attention layer, where self-attention weights {ak}izl are
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computed and subsequently used to generate a single weighted representation of the input sequence.
The self-attention weights are computed as follows,

ay = elu (thk,j + bk) (17)
explu
o= - p(ax) (18)
‘21 exp(a;)
i=

— —
where Wy are the weights specific to the input feature representation hy ; = [hk,j, hk,]} and elu represents
the exponential linear unit activation function [58], which is defined as
«-(exp(x)—1) ifx<0
eluy(x) = (exp(x) =1) (19)
X ifx>0

with & = 1. Each self-attention weight expresses the relevance of a specific image for the corresponding
emotional state expressed within the video sequence. Thereby, relevant images should be assigned
significantly higher weight values as irrelevant images. The final representation of the input
sequence is subsequently computed by performing a weighted aggregation of the BiLSTM output

{hl,]’/ hyj, ..., hl,j} based on the computed self-attention weights {ak}izl as follows,

I
hj = 1<Z1 ay - hyj (20)

and is further used to perform the classification task.

4. Experiments

In the following section, a description of the experiments performed for the evaluation of the
proposed approach is provided. First, the datasets used for the evaluation are briefly described,
followed by a depiction of the conducted data preprocessing steps. The experimental settings as
well as the performed experiments are described subsequently. This section is finally concluded with
a description and discussion of the experimental results.

4.1. Datasets Description

The presented approach is evaluated on both the BioVid Heat Pain Database (Part A) (BVDB) [4]
and the SenseEmotion Database (SEDB) [6]. Both datasets were recorded with the principal goal of
fostering research in the domain of pain recognition. In both cases, several healthy participants were
submitted to a series of individually calibrated heat-induced painful stimuli, using the exact same
procedure. Whereas the BVDB consists of 87 individuals submitted to four individually calibrated and
gradually increasing levels of heat-induced painful stimuli (T3, T, Tz and Ty), the SEDB consists of 40
individuals submitted to three individually calibrated and gradually increasing levels of heat-induced
stimuli (T, T; and T3). Each single level of heat-induced pain stimulation was randomly elicited a total
of 20 times for the BVDB and 30 times for the SEDB. Each elicitation lasted 4 s, followed by a recovery
phase of a random length of 8 to 12 s during which a baseline temperature Ty (32°C) was applied
(see Figure 5). Whereas the elicitations were performed uniquely on one specific hand for the BVDB,
the experiments were conducted twice for the SEDB, with the elicitation performed each time on one
specific arm (left forearm and right forearm). Therefore, with the inclusion of the baseline temperature
Tp, the dataset specific to the BVDB consists of a total of 87 x 20 x 5 = 8700 samples, whereas the SEDB
consists of a total of 40 x 30 x 4 x 2 = 9600 samples. During the experiments, the demeanour of each
participant was recorded using several modalities consisting of video and bio-physiological channels
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for the BVDB, while the SEDB included audio, video and bio-physiological channels. The current work
focuses uniquely on the video modality, and the reader should refer to the work in [10,14-16,33,59-64]
for more experiments including the other recorded modalities.

4.2. Data Preprocessing

The evaluation performed in the current work is undertaken in both cases (BVDB and SEDB)
on video recordings performed by a frontal camera. The recordings were performed at a frame rate
of 25 frames per second (fps) for the BVDB and 30 fps for the SEDB. Furthermore, the evaluation
is performed uniquely on windows of length 4.5 s with a shift of 4 s from the elicitation’s onset,
as proposed in [16] (see Figure 5). Once these specific windows are extracted, the facial behaviour
analysis toolkit OpenFace [65] is used for the automatic detection, alignment and normalisation of the
facial area (with a fixed size of 100 x 100 pixels) in each video frame. Subsequently, MHI sequences
and OFI sequences are extracted using the OpenCV library [66]. Both MHIs and OFIs are generated
relatively to a reference frame, which in this case is the very first frame of each video sequence.
Concerning MHIs, the temporal extent parameter T (see Equation (1)) was set to the length of the
sequence of images (25 x 4.5 = 113 frames for the BVDB and 30 x 4.5 = 135 frames for the SEDB).
Furthermore, the threshold parameter ¢ (see Equation (2)) was set to 1 to capture any single motion
from two consecutive frames (in this case, the fluctuation of pixel intensities between the reference
frame and the tth frame). Finally, to reduce the computational requirements, the number of samples
in each sequence is reduced by sequentially selecting each second frame of an entire sequence for
the BVDB (resulting in sequences with a total length of 57 frames), and each third frame of an entire
sequence for the SEDB (resulting in sequences of length 45 frames). The dimensionality of the tensor
input specific to the BVDB is, respectively, (bs, 57,100,100, 3) for OFI sequences and (bs, 57,100,100, 1)
for MHI sequences (bs representing the batch size). The dimensionality of the tensor input specific
to the SEDB is, respectively, (bs,45,100,100,3) for OFI sequences and (bs,45,100,100,1) for MHI
sequences.

I
2s 4s 8§—12s 2s 4s

Figure 5. Video Signal Segmentation (BioVid Heat Pain Database (Part A)). Experiments are carried
out on windows of length 4.5 s with a temporal shift of 4 s from the elicitations’ onsets.

4.3. Experimental Settings

The evaluation performed in the current work consists of the discrimination between high and
low stimuli levels. Therefore, two binary classification tasks are performed for each database: Tyvs.Ty
and Tyvs.Ty for the BVDB, and Tvs.T3 and Tyvs.T3 for the SEDB. Furthermore, the assessment of
the proposed approach is conducted by applying a Leave-One-Subject-Out (LOSO) cross-validation
evaluation, which means that a total of 87 experiments were conducted for the BVDB (40 experiments
for the SEDB), during which the data specific to each participant is used once to evaluate the
performance of the classification architecture optimised on the data specific to the remaining
86 participants (the data specific to 39 participants is used to optimise the architecture for the SEDB, and
the data specific to the remaining participant is used to evaluate the performance of the architecture).

The feature embedding CNN used for the evaluation is adapted from the one proposed by the
Visual Geometry Group of the University of Oxford VGG16 [67]. The depth of the CNN model is
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substantially reduced to a total of 10 convolutional layers (instead of 13 as in the VGG16 model), and
the number of convolutional filters is gradually increased from one convolutional block to the next
starting from 8 filters until a maximum of 64 filters. The activation function in each convolutional
layer consists of the elu activation function (instead of the rectified linear unit (relu) activation function
as in the VGG16 model). Max-pooling and Batch Normalisation [68] are performed after each
convolutional block. A detailed description of the feature embedding CNN architecture can be seen
in Table 1. The coupled BiLSTM layer consists of two LSTM RNNs with 64 units each. The resulting
sequence of spatio-temporal features is further fed into the attention layer in order to generate a single
aggregated representation of the input sequence. The classification is further performed based on this
representation and the architecture of the classification model is described in Table 2. The exact same
architecture is used for the two input sequences (MHIs and OFIs). The outputs of the classifiers are
further aggregated based on both Equation (8) and Equation (9). The whole architecture is subsequently
trained in an end-to-end manner, using the Adaptive Moment Estimation (Adam) [69] optimisation
algorithm with a fixed learning rate set empirically to 10~°. The categorical cross entropy loss function
is used for each network (L,; = Lyfi = Lagg = L), and is defined as follows,

L=—) yjlog(y;) (21)
j=1

where §; represents the classifier’s output, y; is the ground-truth label value and ¢ € N is the number
of classes for a specific classification task.

Table 1. Feature embedding CNN architecture.

Layer No. Filters
2x Conv2D 8
MaxPooling2D -

Batch Normalisation —
2x Conv2D 16
MaxPooling2D —

Batch Normalisation —
3x Conv2D 32
MaxPooling2D —

Batch Normalisation -
3x Conv2D 64
MaxPooling2D —

Batch Normalisation —

Flatten —

The size of the kernels is identical for all convolutional layers and is set to 3 x 3, with the convolutional stride
set to 1 x 1. Max-pooling is performed after each block of convolutional layers over a 2 x 2 window, with
a2 x 2 stride.

The regularisation parameters of the loss function in Equation (10) are set as follows: A,;; =
Aofi = 0.2 and Agge = 0.6. The value of the regularisation parameter specific to the aggregation layer’s
loss is set higher than the others in order to enable the architecture to compute robust aggregation
weights. The whole architecture is trained for a total of 20 epoches with the batch size set to 40 for the
BVDB and 60 for the SEDB. The implementation and evaluation of the whole architecture is done with
the Python libraries Keras [70], Tensorflow [71] and Scikit-learn [72].
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Table 2. Classifier Architecture.

Layer No. Units
Dropout -
Fully Connected 64
Dropout —
Fully Connected c

The dropout rate is empirically set to 0.25. The first fully connected layer uses the elu activation function,
while the last fully connected layer consists of a softmax layer (whereby c depicts the number of classes of the
classification task).

4.4. Results

The performance of the classification architectures specific to each input channel (MHIs and
OFIs), as well as the performance of the weighted score aggregation approach are depicted in Figure 6.
The performance metric in this case is the accuracy, which is defined as

tp+in

Accuracy = bt fp i fn

(22)

where tp refers to true positives, tn refers to true negatives, fp refers to false positives and fn
refers to false negatives (since we are dealing with a binary classification task with two balanced
datasets). For both datasets and both classification tasks, the aggregation approach significantly
outperforms the classification architecture based uniquely on MHIs. Furthermore, the classification
architecture based uniquely on OFIs outperforms the one based on MHIs for both databases and both
classification tasks, with significant performance improvement in the case of the BVDB. The aggregation
approach also performs slightly better than the architecture based uniquely on OFIs for both databases,
although not significantly in most cases. The only significant performance improvement is achieved
for the classification task T; vs. Ty for the SEDB. However, the performance of both channel specific
architectures and the performance of the score aggregation approach are significantly higher than
chance level (which is 50% in the case of binary classification tasks) pointing at the relevance of the
designed approach. Furthermore, the performance of the classification architecture is improved by
using both channels and performing a weighted aggregation of the scores of both channel specific
deep attention models.
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(a) BioVid Heat Pain Database (Part A). (b) SenseEmotion Database.

Figure 6. Classification performance (Accuracy). An asterisk (*) indicates a significant performance
improvement. The test has been conducted using a Wilcoxon signed rank test with a significance level
of 5%. Within each boxplot, the mean and the median classification accuracy are depicted respectively
with a dot and a horizontal line.
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Moreover, to provide more insights into the self attention mechanism, the frame attention weight
values computed at each evaluation step during the LOSO cross-validation evaluation process are
depicted in Figure 7 for the BVDB and in Figure 8 for the SEDB (uniquely for the classification task T vs.
Ty, as the results for the classification task T vs. Ty are similar). The distribution of the weight values
specific to the MHI deep attention models for both databases (Figure 7a,c for the BVDB, Figure 8a,c
for the SEDB) is skewed left. It depicts a steady growth of weight values along the temporal axis of
each sequence, with the MHIs located at the end of a sequence weighted significantly higher as the
others. This is in accordance with the sequential extraction process of MHIs, as each extracted image
contains more motion information as the previous one, with the last images accumulating almost the
totality of motion information of an entire sequence. Therefore, concerning the actual classification
task, the last MHIs are more interesting and relevant than the early images. Thus, such images should
be weighted accordingly higher. The designed network is therefore capable of conducting this specific
task by using self attention mechanisms.

(a) Motion History Images.

Frames
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(b) Optical Flow Images.

(c) Mean Attention Weight Values.

Figure 7. BioVid Heat Pain Database (Part A): Attention network weight values for the classification
task Tovs.Ty. Within each boxplot in (a,b), the mean and the median weight values are depicted,
respectively, with a dot and a horizontal line. In (c), the average weight values are normalised between
the maximum average value and the minimum average value to allow a better visualisation of the
values distributions.

A similar observation can be made concerning the distribution of the weight values of OFIs (see
Figure 7b,c for the BVDB, Figure 8b,c for the SEDB). Both depicted distributions are also skewed
left, with gradually increasing weight values relative to the temporal axis. This shows that the
recorded pain-related facial expressions for both BVDB and SEDB consist of gradually evolving facial
movements, starting from a neutral facial depiction (not relevant for the actual classification task) to
the apex of the facial movement (which is the most relevant frame for the depicted facial emotion)
before gradually turning back to the neutral facial depiction. Therefore, the network assigns weight
values according to this specific characterisation of pain-related facial movements using attention
mechanisms, thus the relevance of such approaches for facial expression analysis.

Furthermore, the performance of the weighted score aggregation approach is further assessed
based on the following additional performance metrics,

.. 1¢ tp;
Macro Precision = = Y | S (23)
citpi+ fri
1¢ tp;
Macro Recall = -~y —FL — (24)
c ; tpi + fn;
Macro F1 Score — 2 x Macro Precision x Macro Recall (25)

Macro Precision + Macro Recall
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where tp;, fp; and fn; refer, respectively, to the true positives, false positives and false negatives of the
ith class. The results of the evaluation are depicted in Figure 9, for both the BVDB (see Figure 9a) and
the SEDB (see Figure 9b).
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Figure 8. SenseEmotion Database: Attention network weight values for the classification task Tovs.Ts.
Within each boxplot in (a,b), the mean and the median weight values are depicted respectively with
a dot and a horizontal line. In (c), the average weight values are normalised between the maximum

average value and the minimum average value to allow a better visualisation of the values distributions.
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(a) BioVid Heat Pain Database (Part A).

Figure 9. Weighted score aggregation classification performance. Within each box plot, the mean
and median values of the respective performance evaluation metrics are depicted with a dot and

(b) SenseEmotion Database.

a horizontal line, respectively.

These results depict a huge variance amongst all performance metrics, in particular the
Macro Recall, which points at the fact that the classification tasks remain difficult. The evaluation
on some participants yields a Macro F1 Score of null or nearly null, pointing at the fact that the
architecture is unable to discriminate between low and high levels of pain elicitation for these specific
participants. This is, however, similar and in accordance with previous works on these specific datasets.
The authors of the BVDB in [73] were able to identify a set of participants who did not react to the
levels of pain elicitation, therefore causing the huge variance in the classification experiments.

Finally, the performance of the weighted score aggregation approach is compared to other
pain-related facial expressions classification approaches proposed in the literature. For the sake
of fairness, we compare the results of the proposed approach with those results in related works which
are based on the exact same dataset and were computed based on the exact same evaluation protocol
(LOSO). The results are depicted in Table 3 for the BVDB and in Table 4 for the SEDB.
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Table 3. Classification performance comparison to early works on the BioVid Heat Pain Database (Part
A) in a LOSO cross-validation setting for the classification task Tyvs.Ty.

Approach Description Performance
Yang et al. [27] BSIF 65.17
Kéchele et al. [31,62] Geometric Features 65.55 +14.83
Werner et al. [8] Standardised Facial Action Descriptors 72.40
Our Approach Motion History Images 65.17 £15.49
Our Approach Optical Flow Images 69.11 £14.73
Our Approach Weighted Score Aggregation 69.254+17.31

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation.
The best performing approach is depicted in bold and the second best approach is underlined.

Table 4. Classification performance comparison to early works on the SenseEmotion Database in
a LOSO cross-validation setting for the classification task Tovs.T;.

Approach Description Performance
Kalischek et al. [38] Transfer Learning 60.10 £ 00.06
Thiam et al. [15] Standardised Geometric Features 66.22 +14.48
Our Approach Motion Histogram Images 60.86 £ 09.81
Our Approach Optical Flow Images 62.70 £ 09.24
Our Approach Weighted Score Aggregation 64.35 +10.40

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation.
The best performing approach is depicted in bold and the second best approach is underlined.

In both cases, the performance of the weighted score aggregation approach is on par with the
best performing approaches. However, it has to be mentioned that the authors of the best performing
approaches for both the BVDB [8] and the SEDB [15] perform a subject-specific normalisation of the
extracted feature representations in order to compensate for the differences in expressiveness amongst
the participants. Although this specific preprocessing step has proven to significantly improve the
classification performance of the architecture [61], it is not realistic as it requires that the whole
testing set is already available beforehand. The normalisation parameters should be learned on the
available training material and subsequently applied to the testing material during the inference phase.
Nevertheless, the proposed approach based on the weighted aggregation of the scores of both MHI-
and OFI-specific deep attention models generalises well and is capable of achieving state-of-the-art
classification performances.

5. Conclusion

In the current work, an approach based on a weighted aggregation of the scores of two deep
attention networks based, respectively, on MHIs and OFIs has been proposed and evaluated for the
analysis of pain-related facial expressions. The assessment performed on both BVDB and SEDB shows
that the proposed approach is capable of achieving state-of-the-art classification performances and is
on par with the best performing approaches proposed in the literature. Moreover, the visualisation of
the weight values stemming from the implemented attention mechanism shows that the network is
capable of identifying relevant frames in relation with the current level of pain elicitation depicted
by a sequence of images, by assigning significantly higher values to the most relevant images in
comparison to the weight values of irrelevant images. Furthermore, as the proposed architecture was
trained from scratch in an end-to-end manner, it is believed that transfer learning, in particular, for the
feature embedding CNN used to generate the feature representation of each frame, could potentially
improve the performance of the whole architecture. Such an analysis was not conducted in the current
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work, as the optimisation of the presented approach was not the goal of the conducted experiments,
but rather the assessment of such an architecture for the analysis of pain-related facial expressions.
Moreover, a multi-stage training strategy could also potentially improve the overall performance of
the architecture, as the end-to-end trained approach is likely to suffer from overfitting, in particular,
when considering the coupled aggregation layer. The representation of the input sequences should be
further investigated as well. Both MHIs and OFIs have the temporal aspect of the sequences integrated
into their properties. The performed evaluation has shown that a model based on OFIs significantly
outperforms the one based on MHIs in most cases. However, it has also been shown that most of
the interesting frames in MHI sequences are located at the very end of the temporal axis of each
sequence. Therefore, single MHIs extracted from entire sequences could also be used as input for deep
architectures. Overall, the performed experiments show that the discrimination between lower and
higher pain elicitation levels remains a difficult endeavour. This is due to the variety of expressiveness
amongst the participants. However, personalisation and transfer learning strategies could potentially
help improve the performance of inference models applied in this specific area of research.
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