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Abstract

Unified Modeling Language (UML) offers extensive possibilities to model static struc-
ture as well as dynamic behavior, both key domains of a complete system specification.
UML, however, fails to clearly specify its semantics, in particular to coherently and
consistently align the semantics of structure and behavior.
The key idea of Model-Driven Development (MDD), which is to generate implementa-
tions from models, is hardly feasible due to the informally and therefore ambiguously
defined semantics. The misalignment between the semantics of static structure and
dynamic behavior, which both are required for a complete specification of a system,
makes things even worse.
This thesis is particularly concerned with the semantics of UML regarding the modeling
of static structure and dynamic behavior. It identifies design flaws, inconsistencies, and
shortcomings and presents suggestions on how to overcome semantical deficiencies in
order to succeed in generating software implementations from models. The provided
solutions are founded on an adapted semantics which tightly integrate modeling of
static structure and dynamic behavior. Based on this adapted semantics, it is detailed
how the high abstraction levels provided by the modeling language are transformed
into the lower abstraction levels of programming language concepts.
With the profound study of the semantics and the presented modifications to it, a re-
liable foundation for better tool support is given. The mapping of modeling concepts
to programming language constructs is specified using executable transformation for-
malisms. From these transformation specifications, a prototypical implementation of
a code generator is derived, which translates UML models into the Java programming
language.
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Summary

Extended Abstract
Modeling is a concept applied in many fields of engineering. Accordingly, there are various forms
of models which, however, always refer to a common basic idea: a model is a representative of an
item of the real world or of imagination. Models may vary in the level of abstraction as well as in
their intrinsic nature and their purpose.

For example, a blueprint is on the one hand a graphic specification of the shape and dimensions
of components, on the other hand an illustration of how several individual parts together form
assemblies that finally together form the overall structure. It is a 2D abstraction of the real 3D
object, as e. g. the constructional drawing of the 1903 Wright Flyer shown in Fig 1.

Figure 1: Blueprint of the 1903 Wright Flyer1.

With regard to an objects shape, a 3D model created as a true-to-scaled mock-up is less abstract
than a blueprint because it does not reduce the modeled entity to a 2D view. A mock-up may
represent an item that itself possibly does not yet exist. For instance, the aerodynamics of a car or

1Based on the Christman drawings, ©http://wright-brothers.org [104].
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an aircraft can be verified in a wind tunnel by means of a true-to-scale aerodynamic model. Figure
2(a) shows such a model of the Panavia PA200 Tornado2 aircraft. The benefit of such models
is that design flaws - here in the field of aerodynamics - can be identified before cost intensive
prototypes are built, and the risks of driving or flight tests is reduced.

As computing power increases, modeling shifts continuously from real physical models towards
computer simulations. The benefit of computer models is that such models are capable of exhibiting
design flaws that occur in environments that are difficult or even impossible to simulate, such as
e. g. zero gravity or vacuum, both conditions under which spacecraft and satellites are operated.
Figure 2(b)3 shows the pressure coefficient on the Space Shuttle Launch Vehicle and in the near-
body flowfield at mach 2.46 at an altitude of 66.000 feet [101].

(a) Wind tunnel model of the Panavia PA200 aircraft2. (b) Aerodynamic model of the Space
Shuttle Launch Vehicle3.

Figure 2: Real and virtual aerodynamic models.

With regard to software, models can be beneficial in the same way: a model may represent a
complex software system with respect to various characteristics prior to its implementation. For
instance, software components of an embedded system can be implemented, tested, and integrated
before other components are available, if the missing parts can be simulated by prototypes or
executable models.

The relation between virtual models and modeled artifacts is essentially different when modeling
software rather than modeling real world entities: software is immaterial and therefore, the model
and the modeled entity are of the same domain — they both are artifacts that are processed by
the same type of machines. For this reason, in principle it is possible to translate a design model
into an implementation4. Model-Driven Development is an approach focusing on this idea.

The main benefit is considered to be achieved by a higher level of abstraction, i. e. a modeling
language usually is designed to fit closely to the problem domain. The translation to runnable ma-
chine code is to be covered by tool support. A prominent approach to face this task is Model-Driven
Architecture, an open standard providing a set of transformations from platform independent mod-
els, i. e. models completely independent from technical details induced by the underlying system
software, to the target implementation which may depend on the technology of target machines.

This thesis targets such a translation from a highly abstract modeling language to a general
purpose object-oriented programming language. In particular, it addresses two issues of modeling
and implementation characteristics:

• the architecture of the system, i. e. static structures

• the functionality of the system, i. e. dynamic behaviour.
2Author’s own work, picture taken at the Deutsches Museum, courtesy of the Deutsches Museum, Munich.
3The image is originally published by NASA and is in the public domain [101].
4To create the modeled entity from a model is not limited to software, e. g. automated production using metal

cutting tools creates the modeled entities as well. But it requires a machining tool which must be operated and
maintained and, with regard to complex systems such as a car or an aircraft, the complete assembling currently
cannot be automated completely.
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The general purpose modeling language, which is the specification language for input models
is Unified Modeling Language (UML), a standard released by Object Management Group (OMG).
The target object-oriented programming language in which the system is to be implemented is Java.
This is an arbitrary choice and we could have chosen other languages for both, input and output
artifacts. However, both languages are popular in business environment as well as in academic
science and widely used by researchers as well as practitioners. In particular, UML currently is
the de-facto standard regarding modeling of software systems.

A peculiarity of UML is, that its semantics is not formally specified. It is ambiguous and ac-
cordingly, different interpretations exist. Furthermore, the specifications regarding static structure
on the one hand and dynamic behavior on the other hand partly contradict each other. Approaches
focusing on only one of both aspects, either on static structure or on dynamic behavior, hence can-
not cope with contradictions between the both fields of modeling. In contrast, this thesis aims to
identify the design flaws of UML regarding the interplay between structural and behavioral models:

• In a first step, semantics of modeling static structure is investigated in detail with a main focus
on classes with their attributes and relationships between them. Here, a central issue is the
question how the semantics of associations, in particular symmetry, navigability, association
end visibility and association end ownership can be implemented in object-oriented language
concepts.

• In a second step, the semantics of activity is investigated and a mapping from the token flow
semantics to threads of the target language is elaborated. Most challenging in this regard
is supporting all kinds of control nodes while adequately considering the effects of guarded
flows.

• With activity, the execution environment for actions is given. In a third step, the semantics
of a subset of actions is discussed. This set mainly comprises those actions which are seman-
tically related to static structures, e. g. by reading or updating class attributes or by creating
or reading association links.

• Founded on these three steps, we provide a formal and executable description of how to
translate models into code, taking into account the semantic details of input models.

• We discuss modifications of UML in order to properly align semantics of static structures
with semantics of dynamic behavior and vice versa.

In the course of addressing the issues listed above, this work contributes to the understanding
and development of model-driven development in the following ways:

• a better and deeper understanding of semantics and a semantic-preserving implementation
of associations, especially of n-ary associations and association classes

• a general mapping from the token flow semantics of activity to Java threads, including the
semantics of control nodes and the combination of control nodes with guarded flows

• suggestions on how to improve UML semantics in order to bring semantics of structural
features into line with the semantics of actions that access structural features

• a transformation from highly abstract modeling concepts to less abstract programming lan-
guage concepts, as well as a transition from models to code, both formally given by executable
declarative OMG standards.

Based on these contributions, the efficiency of Model-Driven Development could be increased
by improving the tools’ ability to handle models using the full variety of UML modeling concepts.
Development tools need to be able to translate the full semantic content of the input models into
a modern target language as described in our approach, so that the advantage of the modeling
languages, namely the higher level of abstraction, can be profitably exploited in the development
process.





Chapter 1

Introduction

Abstraction is a key technique for handling complexity and therefore a fundamental concept in soft-
ware engineering [100]. Todays programming languages are on almost the same level of abstraction
as the first high-level programming languages were, even though there have been developments like
the object-oriented paradigm. In contrast, complexity of todays software systems has significantly
changed compared to systems for which to implement first high-level programming languages were
designed. In this regard, we use mid-20th century technology to face 21st century problems [89].

To improve the situation, more abstract languages are desired. Todays evolution of languages
does not produce more abstract textual programming languages but (most often graphical) mod-
eling languages, a very famous one of which is Unified Modeling Language (UML)1.

Modeling is applying abstraction to any entity, be it of the real world or imagined. The result
is a model that reduces complexity of the original entity but may represent it in order to make
complex entities accessible to human comprehension and increase understandability or appreciation
of it [91]. Similar to other engineering disciplines, in software engineering models are used for

• better understanding of the represented system

• easier and more accurate communication

• prediction of characteristics of a system built on the basis of a specific model

• design specification of the system to build.

In software engineering, models as well as the software they represent both are immaterial and
— since both are processed by the same devices — it is possible to create the software through a
transformation of the model [91].

Model-driven Development (MDD) is an approach based on this idea: models resulting from the
analysis and design phases of the development process are automatically transformed to software.
Changes to the software are applied by changing the models and re-generating the software. Key
techniques a MDD approach must cope with is either interpretation of models or code generation,
both possibly preceded by model transformations.

The de-facto standard for modeling software is UML which has been released by Object Man-
agement Group (OMG) in 2005 in its current version 2 with some modifications up to now. Model-
Driven Architecture (MDA) is a MDD approach of OMG proposing to apply UML for modeling
[47] and defining an architecture of models and transformations. A key feature of MDA is platform
independence. All information contained in a model is reusable for implementations of different
techniques thus providing a clear distinction between logical and technological aspects of a system.
A representative of MDA based on UML is Executable UML [59].

This thesis summarizes our research results about code generation from UML models and how
tool support can further improve software engineering. Although the presented approach shares
commonalities with MDA, it is not completely aligned with it and can be categorized as a MDD
approach slightly related or inspired by MDA.

In this chapter, we first properly describe some problems regarding the application of abstrac-
tion in modern software engineering. We state the three theses which formulate the core issues
faced by our research, define the scope of our research work and survey our basic results. Finally,
an outline of this thesis follows.

1in this thesis, we refer to UML 2.4, [69]
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1.1 Problem
Abstraction is necessary to focus on relevant details of a system while omitting all the others.
By this, complexity is reduced and an understanding of the overall problem is obtainable. But
when generating software, this abstraction has to be resolved to concrete elements of the language
running on the target machine. We term this process Semantical Resolution. First part of the
problem is that current UML-based MDD approaches lack a proper description of a seman-
tical resolution. This also prevents a higher degree of automation in tool support for UML
[11].

Semantical resolution is a mapping from modeling language concepts to appropriate concepts of
the target language or model. Elaborating such a mapping inevitably requires a clear specification
of the semantics of input and target concepts. For UML semantics, only a description by natural
language but no formal specification is given. Accordingly, semantics of some concepts are not
clearly identifiable and thus, semantical equivalence of a model and the results of its transformation
is not definitively determinable. Therefore, the second part of the problem is an insufficient
specification of the semantics of UML.

A modeling language must support modeling static structure as well as dynamic behavior, since
internal structure and interaction between components are integral parts of each system. UML
complies to this claim, however, the semantics of some behavioral concepts is not well aligned with
the semantics of concerned structural elements. Another problem is that the semantics at some
points is not strong enough to only allow the intended interpretation, or a statement about the
intended semantics is even completely absent. These issues make the third part of the problem,
which generally speaking are inconsistency and incompleteness of the semantics of UML.

Current MDD approaches often do not generate a whole application. Code generation for static
structure is far more supported than code generation for behavior. If behavior is covered, support
of state machines is very common. In UML, a fundamental concept of behavioral modeling is
Action which can only be applied within Activity [10]. Consequently, another part of the problem
is the unsatisfactory tool support of activities.

In the following, we address two minor issues related to our problem statement. First, the
question arises whether semantical resolution should target common general purpose languages like
Java, C, or C# or whether to address languages comprising more abstract elements, e. g. relation.
The design of languages directly supporting relations as a semantic construct was demanded by
Rumbaugh already in 1987 [79].

Another question is which formalisms to use for implementation of a semantical resolution.
Depending on the applied techniques, it might be easier or more straightforward to split the res-
olution into several steps. Each of these steps then can be specified by the best fitting formalism
or maybe is just better readable if specified apart from other aspects of the semantical resolution.

All these deficiencies of which — or at least, of part of which — most current UML-based MDD
approaches suffer can be summarized as follows:

Today’s UML-based MDD approaches offer unsatisfactory support for activities and
only rudimentary support for static structures, both very likely caused by UML’s in-
sufficient and inconsistent specification, and furthermore, they lack a proper description
of the semantical resolution of modeling concepts to target language elements formal-
ized in suitable formalisms.

1.2 Research Approach
This thesis has been triggered by the idea to model applications by means of class diagrams
and activities. Whereas tools for generating code for static structures as well as tools that execute
state machines have been available, support for translating or executing activities has been missing
when our research in this field has started. With ActiveCharts[85, 84], Sarstedt [83] provided a
foundation for obtaining runnable software from structural and behavioral models of an application.

In practical courses at Ulm University, the limitations of ActiveCharts have become visible.
These are in particular a not completely UML compliant implementation of associations and a
limitation to binary associations as well as bad scaling characteristics of the activity interpreter if
used in larger application scenarios. Overcoming these limitations and supporting a larger set of
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modeling elements, such as n-ary associations or more types of actions has influenced the approach
how ActiveCharts should be advanced.

Our research therefore covers two separate objectives which are

• an internal technical redesign and

• functional extensions.

Concerning the internal redesign in order to speed up activity executions, two kinds of proto-
types have been sketched:

• a high-performance execution engine (interpreter)

• implementation patterns for translating activities to code.

While trying to enhance the scaling characteristics of our tool, a better level of UML compliance
has been targeted by concurrently analysing the UML semantics. The inclusion of other types of
actions for compliantly accessing structural features has placed the semantical foundations of our
research upon a sound basis. At this point, the weak semantics of actions possibly causing invalid
system states affected our approach for the first time.

By continuously applying ActiveCharts in practical courses, a set of small sized systems for
testing feasibility is available. TravelPlaner is another sample project launched in order to
design a system making use of those modeling elements that should be included in an enhanced
version of ActiveCharts. Finally, the expertise of some years of applying ActiveCharts in
smaller projects and a deeper understanding of UML semantics made it possible to build a tool
that completely translates UML class models and activities into runnable code while supporting a
larger portion of behavioral modeling features.

1.3 Thesis Statement and Scope of Research
From our experiences in advancing ActiveCharts, we derive our thesis statement which comprises
three essential claims:

• The semantics of UML is on a higher level of abstraction than typical object-oriented lan-
guages (like Java) thus requiring a semantical resolution.

• The higher level constructs of structural models can be feasibly translated to object-oriented
languages without loss of information as well as this can be achieved for constructs of acti-
vities.

• Constraints specified upon the structure of a system, such as association multiplicities, impact
behavioral modeling. This impact is not yet considered by the UML semantics specification,
although it must be considered by the implementation of a modeled system.

In the scope of our research work we accurately analyze the semantics of UML and present
code patterns suitable to implement UML concepts in Java. In contrast to other research in this
field, we delve deeper into the complexity of UML. We do not define a subset of UML elements
dropping those ones difficult to implement, like it is done by OMG defining the Semantics of a
Foundational Subset for Executable UML Models (fUML) [72]. Furthermore, we do not consider
elements independently from each other, but we focus on the interplay between concepts, e. g. we
consider the impact of structural constraints like association multiplicities when executing behavior
trying to link instances, or we consider guards constraining the execution flow in activities together
with the semantics of control nodes.

Our analysis of UML semantics is based on the textual specification of UML. Since numerous
ambiguities and deficiencies of this specification often cause misunderstandings or uncertainty
about the intended meaning, the design of code patterns at some points is backed by consulting
formalizations of UML semantics.

The semantic resolution from UML to Java is formalized by providing a model to model trans-
formation covering most of the semantic resolution and a model to text transformation mainly for
transcending the gap between model and code.

Even though thoroughly comparing semantics of models and code, consulting formalizations
when necessary and formally defining our approach, the correctness of transformations and code
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generation is not proved. The reason for this is that the basis for such a prove, a formal semantics
of UML, is missing. Providing a formal specification of UML is only valuable, if the compliance to
UML is somehow approved, i. e. it must be accepted by the UML vendor OMG. Otherwise, we could
prove the correctness to a formal specification that is not necessarily a valid UML specification.
Since for such a formalization and validation, remarkable effort is required, we decided to base on
the informal specification and leave a formal validation for future work.

Our research is furthermore constrained by the following:
Considering structural and behavioral modeling in its completeness goes beyond the scope of this
thesis. Those issues which are excluded from this work are not disregarded because of obvious
difficulties in including them but rather because the scope of our work cannot cover the whole
UML specification of structures and behavior. It cannot even cover the part of UML related to
class diagrams and activity diagrams. For the modeling of classes with attributes and methods,
we support Class, Property, and Operation, for the modeling of relationships between classes,
we additionally include Generalization and Association as well as AssociationClass, all specified
within the language unit Classes. These elements are specializations of other modeling elements
such as Classifier or Feature which therefore are implicitly covered as well. Finally, we support
MultiplicityElement and VisibilityKind which are basic concepts needed for modeling class features.
Other elements of this language unit are not essential and therefore not included in our approach.
Such elements are for example Package for providing mechanisms to group elements in packages,
other kinds of relationships like Realization or Usage dependencies, the element Type for defining
types or ValueSpecification for modeling values, e. g. for supplying attributes with default values.
Another concept relating to association not considered in detail is qualified association.

Regarding behavior, we include the basic mechanisms needed for activity execution specified
in language Unit Activities. These are ActivityNode, ActivityEdge, and ActivityGroup. Con-
cerning nodes, we consider all kinds of ControlNode, Pin on the level needed for specifying object
flows, and Action. Regarding flows, the effect of guards at activity edges is considered. Relating
to ActivityGroup, we limit our approach to InterruptibleActivityRegion, which is covered in detail
and include ActivityPartition on a very abstract level only. However, more advanced and special
elements like StructuredNode, concepts for more sophisticated data processing like ParameterSet
or CentralBufferNode are not addressed by this thesis.

The set of actions which are supported, is constrained to those actions which access the underly-
ing static structure by reading or updating class properties or by creating or navigating association
links. Some other actions which are needed to obtain context information, e. g. on which object to
access a structural feature, are covered as well. Actions referring to elements of the static struc-
ture not covered in our approach as well as actions related to qualified associations, structured
activity nodes, or modeling of variables are not considered. Thus, the language Unit Actions is
not completely covered in our approach either. More precise hints on limitations of our work are
contained in the sections where concerned parts of UML are discussed.

Parts of this work have already been published in [33, 34, 35, 36, 37, 39].

1.4 Basic Results
At this point, we glance over our research work and foreclose the main outcome.

The foundation of this thesis is a very detailed analysis of UML semantics of static structures
and dynamic behaviors. This analysis reveals, that the semantics of UML cannot be easily mapped
to programming languages for two reasons:

• object-oriented languages lack equivalents to some modeling elements, e. g. such as associa-
tion

• even if adequate mechanisms exist in programming languages, the concrete mapping still
may be very difficult, like it is when trying to implement control and data flows of activities.

Based on our analysis of UML semantics, the shortcomings of semantics itself are identified
and solutions are proposed. The problem of mapping models to code is targeted by an evaluation
of current implementation patterns. To overcome shortcomings of state-of-the-art code generation
approaches, rich featured implementation patterns for Classes with Attributes and Associations are
contrived. These pattens provide complete integration of multiplicity, navigability, and visibility
of association ends and are applicable for the implementation of association classes.
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Concerning behavior, Java implementations for Actions which have impact on static structures
are developed. Beyond the semantics of UML, our approach offers a mechanism for cross checking
multiplicity constraints implied in the static model in order to assure that no execution of any action
that changes the set of values of a class attribute or the set of existing links of an association results
in an invalid system state.

In order to support Activities which built the context of action executions, patterns for im-
plementing control and object flows between actions are engineered, which are significantly closer
to the intended semantics than state-of-the-art approaches. With regard to flows, an important
contribution is the consideration of control nodes and the effects of guarded flows. Furthermore,
the complex semantics of interruptible activity regions is properly considered.

Since UML is not specified in a formal way but informally by natural language, the semantic
conformity of our proposed implementation patterns to the UML semantics is backed up by a very
detailed analysis of UML semantics on the one hand as well as on the implementation patterns for
static structure and for dynamic behavior on the other hand. Whether or not the implementations
are fully UML compliant could be proved if a UML formalization was available. However, a
formalization was not targeted in the scope of our research.

In order to not only give a catalogue of mappings between input models and target imple-
mentations, we decided to link our implementation patterns to UML by executable formalizations
in QVT-R and MOFM2T which describe how to generate the source code as proposed by us for
any input model. The QVT-R relations specify model transformations which show how to replace
modeling concepts not available in the target implementation language by elements, which are
offered in the implementation language as well. A transition from models to text, i. e. Java source
code, is specified using MOFM2T, likewise. Both formalizations are prototypically implemented
as eclipse plugins.

1.5 Organization of Thesis
In Chapter 2 we provide some basic background knowledge supporting a better understanding of
the problems discussed and the solutions proposed. Chapter 3 gives a detailed discussion of the
semantics of structural modeling in UML and appropriate code patterns for implementing static
structure. A corresponding disquisition on the semantics of UML Activity and Action including
suitable implementations follows in Chapter 4. The semantical resolution of modeling concepts is
achieved by a model to model transformation. A formalization of this transformation using the
OMG standard QVT (Query/View/Transformation) is presented in Chapter 5. The translation of
the transformed model into code, which is given in Chapter 6, is implemented using another OMG
standard, namely MOF Model to Text Transformation Language (MOFM2T ). For evaluating our
approach, we implemented a prototype. In Chapter 7, we discuss this implementation and compare
it to other tools by means of benchmarks and a case study for proving feasibility. We discuss the
keynotes of this thesis, survey related work and summarize our contributions in Chapter 8 and
finally conclude in Chapter 9.





Chapter 2

Background

In this chapter, we provide some background of our work. We point out our view of model-driven
software engineering, motivate the decision to use UML and sum up our previous work which
pioneered this thesis.

2.1 Model-Driven Software Engineering
The desire for higher levels of abstraction caused the introduction of assembly language as an ab-
straction over machine code. Third-generation languages abstract from low-level, machine-specific
instructions by introducing higher level abstractions (such as named variables and structured pro-
gramming constructs). The translation to the underlying machine is achieved by compilers. With
abstract data types and objects, the Object-Paradigm provides additional abstractions. [43]

MDD is the next step to higher levels of abstraction. Its objective is to increase productivity and
quality by using modeling languages which provide semantically more advanced constructs and thus
are closer to the problem domain and further away from platform specific implementation details.
Fig. 2.1 shows the evolution of abstraction over time.

MDD’s key challenge is to transform its abstractions in runnable code, i. e. transforming models
to concrete representations [92, 43]. To this end, a promising perspective also associated with MDD
is a higher level of automation for bridging the semantic gap between models and code [89].

Modeling Language

Object Oriented Language

3rd-Generation Language

Assembler Language

Machine Language

Level of Abstraction

Time

Figure 2.1: Evolution of languages and abstraction levels, based on [41].

MDD is one approach to face the continuously rising complexity of problems and solutions in
software engineering. In this thesis, we do not mind about the question whether it is the best nor
in which contexts MDD is or is not applicable. Provided that MDD is valuable in any concrete
context, this thesis delivers insight into problems and possible solutions of using UML in MDD —
and according to our and other’s expertise, MDD is a valuable approach for at least some domains.

From our point of view, the phrase model-driven in contrast to code-centric clearly indicates
that models are the central artifact in an approach based on MDD, not code. Code is derived from

7
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models which themselves are a result of analysis and design phases of the development process.
Although reverse and roundtrip engineering are quite popular and contained in the feature list of
many tools, with our approach and implementation we solely target the model-to-code direction
since we strongly belief conceptual work should be done on the highest possible level of abstraction.
According to this claim, generated code is not the place where bug fixing or maintenance should
be done.

A great benefit of modeling is that before a system is implemented, a formal representation
of it exists which affords analysis of various characteristics by means of model checking or tests
applied to the model. By accurately modeling and thoroughly analyzing, testing, and checking it,
a model may attain to a level of best quality, preferably causing the implementation to be as well.

For generation of the full runnable code, models must cover a system’s structure as well as
its behavior [44]. UML supports both aspects but current UML tools implement both parts only
rudimentary with little advance of structural aspects. Behavior is rarely supported and if, only
the very basic constructs are considered.

2.2 Modeling Using UML2
Using UML is not only a promising option because OMG has established its MDA based on this
language. Other considerations, too, suggest to apply UML.

2.2.1 General Characteristics of UML
Although suffering from numerous flaws, UML is popular, widely-used, and often, it is referred to
it as the de facto standard, e. g. by Crane [18], Avgeriou et al. [2], or Broy and Cengarle [11].

Its specification is freely available for everyone and may be used for any purpose at no charge.
Being widely-used and supported by many tools, UML is of some relevance for developers as well

as for researchers. Many approaches base on UML, a lot of research attends to it, altogether making
sure that UML has a good chance to compete with other general purpose modeling languages in
the long run. Furthermore, when basing research work on UML, there is a great chance to benefit
from results of other researchers as well as from feedback of practitioners.

However, having no formal specification of its semantics, work with UML is challenging and
sometimes even questionable. Nevertheless, we decided to base on UML, in particular on activities,
in the tradition of our ActiveCharts project, introduced in Sect. 2.3.

2.2.2 UML Semantics Architecture
With his formalization of the semantics of activities, Sarstedt [83] is one of the first researchers
addressing this formalism, which has been fundamentally revised with the release of UML2. UML
semantics project is another attempt to base UML’s semantics on a formal foundation [12]. Unfor-
tunately, the project has been discontinued only having finished a fraction of the aspired extent.

Crane contributes to the field by a formalization of UML’s three-layer semantics architecture
of behavior [18], which is shown in Fig. 2.2.

Structural Foundations

Behavioral Base
Actions

Activities State Machines Interactions

Figure 2.2: The UML three-layer semantics architecture, based on [69, 18, 39].

The basic idea of this three-layer architecture is to define actions, which access the underlying
structural model, e. g. by reading or updating values of class attributes or by creating or navigat-
ing along association links. Higher level behavioral formalisms are built on the basis of actions.
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Here, activities are of particular interest since actions can only be contained by them [10, 69].
Consequently, other formalisms can access the structural foundation only by invoking activities
providing the desired functionality by using appropriate actions.

The UML specification is divided into different language units. From these, the units Activi-
ties, Actions, and Classes directly relate to the three-layers semantics. Figure 2.3 shows the
three language units as boxes with round corners. The class Person with an attribute and two
operations builds the structural foundation, specified in the language unit Classes. The action
writeName is an element of language unit Actions. It is associated with the attribute name of
class Person indicated by a dashed arrow, i. e. the action accesses a structural feature by setting an
attribute to a given value. Actions are contained in activities, which might serve as specifications
of operations, like activity SetName specifying a class operation, indicated by the dotted lines
stretching from the operation to the activity frame. The parameter of the operation corresponds
to the parameter node of the activity, indicated by a dashed arrow. The given activity with all of
its containing elements except of the actions is specified by the language unit Activities.

Figure 2.3: Relationships between structural and behavioral modeling concepts in UML.

2.2.3 Interplay of Structures, Actions, and Behaviors

Behavioral models depend on structural models if actions access structural features. Behavioral
models may also serve as a specification of operations contained in structural models. This is
illustrated in Fig. 2.4: An excerpt of the UML meta-model is given on the left, a concrete instance
on the right. Gray shaded beams connect meta classes with their instances in the model. The
bold framed actions read and write are instances of specializations of the bold framed Structural-
FeatureAction. Dashed arrows pointing from actions to attributes and from operations to activities
represent instances of the bold printed meta associations between the corresponding meta classes
[39].

Figure 2.4: Excerpt of the UML metamodel showing dependencies and relationships between some
basic modeling elements (left) and notation of these elements (right), based on [39].

Adapted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,
(doi: 10.1007/978-3-642-21470-7_15.)
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2.3 ActiveCharts — The Project Pioneering this Thesis
With ActiveCharts [84, 85, 86] an approach has been introduced that combines modeling using
UML2 and coding in a new way. The basic idea is to completely model static structures by means of
class diagrams, whereas dynamic aspects of the system are partially modeled as activity diagrams
and to some extent are expressed in code. Initially, ActiveCharts has been based on an activity
interpreter that executes activities according to the token flow semantics defined by UML.

Whereas UML specifies numerous kinds of actions for different purposes, ActiveCharts only
supports CallBehaviorAction. The specification intends to associate a CallBehaviorAction with a
behavior which is executed when the control flow reaches the action. In ActiveCharts, Call-
BehaviorAction may be used complying to UML specification to invoke a behavior associated with
the action. If not associated with another behavior, CallBehaviorAction builds the connection from
models to code: for each CallBehaviorAction contained in an activity, a method of the same name
with conforming parameters must be present in the class implementation of the owning classifier
that represents the context of the CallBehaviorAction.

By generating code for static structures, implementations of actions get access to features of
the context classifier.

In ActiveCharts, activities are used to model behavior to an arbitrary degree. It is not
assumed that covering all behavioral details of a system by models is feasible. For example, sort or
search algorithms have been elaborated and implementations exist in many languages. It is much
more convenient to embed such implementations in code than to translate them into activities.

For this reason, ActiveCharts seamlessly combines user code with models. The code, e. g. a
search or sort algorithm, makes up the body of a method which is represented as a CallOperation-
Action in an activity. By that, details like when to invoke the method, where to get inputs from
and which action to provide outputs to are all captured by activity diagrams.

If applied adequately, models are clear and readable as well as the code, which comprises
methods providing solutions to special, self-contained tasks by implementing possibly commonly
known, highly sophisticated and efficiently designed algorithms.

Although activities are processed by an interpreter, code generation is part of ActiveCharts
with respect to static structures. Beyond generating classes with members for attributes and
association ends, methods are generated to access members as well as to manage associations.
Depending on the upper bound of a feature, methods are generated for setting its value or adding
a new value, for reading its value or its set of values, and for un-setting its value or removing one
(or all) value(s).

The names for these methods are derived from the names of attributes and association ends by
prepending the appropriate prefix set, add, unset, remove, or get. In user code, structural features
may be accessed by invoking these generated methods.

2.4 Advanced Code Generation with ActiveCharts
Improving code generation for ActiveCharts is causative for the research work presented in this
thesis. As a result of this, code generation from models of the static structure has been revised in
particular with regard to associations and multiplicity specifications of structural features. With a
newly elaborated pattern which supports the implementation of n-ary and binary associations as
well as association classes considering the detailed semantics of visibility and navigability of asso-
ciation ends, the results of this thesis excel the capabilities of code generation for static structures
offered by ActiveCharts.

Concerning Activity, ActiveCharts is based on an interpreter approach with a special focus
on difficult concepts which are often excluded when dealing with activities, such like concurrency or
InterruptibleActivityRegion. We now offer translation of activities into code covering in particular
concurrency, complex compositions of control and object flows and InterruptibleActivityRegion.
By this, the presented translation approach is as mighty as the interpreter of ActiveCharts,
however, it is noticeably faster and scales better if applied to larger systems.



Chapter 3

Semantics of Static Structures

UML offers concepts for modeling static structure on different levels. The lowest level comprises
the basic modeling concepts of UML which relate to class diagrams. In particular, these are
classes and their relationships. Upon them, more complex structures which are called Components
are defined. Composite Structures support the composition of interconnected elements which are
collaborating to achieve some common objectives. The execution architecture of a system, i. e. the
assignment of software artifacts to hardware devices or software execution environments, is covered
by Deployments [69].

In this chapter, we discuss the semantics of the basic UML concepts for modeling static struc-
ture, as specified in the language unit Classes. In particular, we deal with Class, Property
considering multiplicities, Association including higher order associations as well as aggregation
and composition, and AssociationClass. The specification of these elements is shown by an excerpt
of the UML metamodel in Fig. 3.1.

First, we introduce the semantics of typical object-oriented concepts as is informally given by
the specification of UML in Sect. 3.1. In Sect. 3.2, we concentrate on the semantics of association, a
concept going beyond the core of the object paradigm. We regard shortcomings of UML concerning
structural modeling concepts in Sect. 3.3. Afterward, we survey state-of-the-art code generation
approaches for attributes in Sect. 3.4 and for associations in Sect. 3.5, where we additionally outline
how implementations of associations suffer from the inappropriate specification. Finally, we present
solutions to those problems of code generation which are not covered by existing approaches by
defining a mapping from modeling elements to code which — for all supported concepts — is
fully complying to the semantics of UML. In Sect. 3.6, we provide some technical, implementation
specific details to unsolved problems of association implementation in Java. We summarize this
chapter in Sect. 3.7.

Some of the concepts and ideas discussed here were also examined and analyzed by Waniek in
his diploma thesis [99], which I supervised. The aim of Waniek’s work is to prove the applicability
of code generation patterns. Some of its findings have been further refined as part of this work,
others are beyond the scope of this thesis and therefore are not included here.

3.1 Object-Oriented Concepts of Structural Modeling
“Built upon fundamental OO concepts including class and operation, UML is a natural fit for
object-oriented languages and environments such as C++, Java, and the recent C#” [67]. In
fact, the semantics of class, attribute and method as known from object-oriented programming
languages comply with Class, Property, and Operation of UML, except for some discrepancies
probably induced by the complexity of the UML meta-model. Regarding these concepts, the level
of abstraction of UML equals to that of object-oriented languages.

3.1.1 Class, Property, and Operation at a Glance
In UML, a class describes a set of objects which share the same features. Such a feature is
either a StructuralFeature, i. e. an attribute of a class represented by an instance of Property or a
BehavioralFeature, i. e. an Operation [69, § 7.3.7] which corresponds to a method.

11
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Figure 3.1: Excerpt of the UML Classes meta-model.
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Being a Classifier, a class can be related to another class by a directed relationship specifying
a classifier to be a specialization of another, more general one. This relates to the same concept
in programming languages where subclasses refer to their superclasses whereas from a superclass,
navigation to subclasses is not provided.

Class and Property are typed elements meaning that they can only represent instances of the
specified type. Furthermore, both as well as Operation are NamedElements. Apart from having
a name, NamedElements have a visibility. In UML, visibility is defined as follows and is almost
identical to visibility modifiers in object-oriented languages [69, §7.3.56]:

• a public element is visible to all elements that can access the contents of the namespace that
owns it.

• a private element is only visible inside the namespace that owns it.

• a protected element is visible to elements that have a generalization relationship to the names-
pace that owns it.1

• a package element is owned by a namespace that is not a package, and is visible to elements
that are in the same package as its owning namespace. Only named elements that are not
owned by packages can be marked as having package visibility. Any element marked as
having package visibility is visible to all elements within the nearest enclosing package (given
that other owning elements have proper visibility). Outside the nearest enclosing package,
an element marked as having package visibility is not visible. [69, p. 141]

Property is an indirect subclass of MultiplicityElement. Therefore, each attribute of a class
has a multiplicity. “A multiplicity is a definition of an inclusive interval of non-negative integers
beginning with a lower bound and ending with a (possibly infinite) upper bound” [69, §7.3.33].Mul-
tiplicities are used to determine how many values an attribute must at least and may at most hold
at a time.

Semi-Formal Definition of an Attribute

Diskin and Dingel [22] give an intuitive, semi-formal understanding of association from which a
semi-formal definition of attributes is derivable. An attribute a of type Y owned by class X as in
Fig. 3.2 is a mapping defined by the function

aX : X → P(Y ).

a: Y

Figure 3.2: Classes related by an attribute.

For x ∈ X, aX(x) = x→a where x→a ∈ P(Y ) denotes the set of instances which are values of
attribute a. Let l be the lower bound of a and u its upper bound, then the size of x→a is

l ≤ |x→a| ≤ u.

If the upper bound is 1, attribute a is a function

aX : X → Y .

Such an attribute is also called a single-valued attribute, since at most one value for it may exist.
If a lower bound is 1, attribute a is a mapping

aX : X → x→a ∈ P(Y ), x→a 6= ∅.

Such an attribute is also called a mandatory attribute, since it must always hold at least one value.
If upper and lower bounds are 1, a mandatory, single-valued attribute is specified, which always

must hold exactly one value. Attributes which are not single-valued are referred to as multi-valued
attributes.

1In Java, a member with protected visibility is accessible in subclasses and in elements located in the same
package.
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3.1.2 Discrepancies between UML and Programming Languages
On the face of it, Class, Property, and Operation of UML exactly fit to classes, attributes and
methods in object-oriented languages. On closer inspection, some discrepancies become visible,
which we will shortly explain in the following:

• Parameters of Operation may be featured with characteristics not applicable to method
parameters

• For attributes, a minimum amount of values may be specified

• Attributes may be featured with a special aggregation semantics.

Operations may have parameters. Parameter is a specialization of NamedElement. Hence, it
has a visibility, but the semantics of parameter visibility, in particular if parameter visibility and
operation visibility are different, is not specified. We suspect that this is an effect of being caught
in the overgeneralization trap [91] — the inadvertent outcome of unanticipated conflicts between
multiple generalizations in deep and complex generalization hierarchies by which parameter inherits
visibility, an attribute actually not needed for parameters.

A class property in UML as well as an attribute in an implementation class may consist of a
set of values. A lower bound greater than 0, say 1, forces an attribute to always hold at least one
value, which is similar to the effect of a not null statement in SQL2 column definitions. Upper
bounds of an attribute relate to the size of a set or the length of an array implementing that
attribute, however, lower bounds greater than 1 cannot directly be mapped to characteristics of
member declarations in object-oriented languages.

Another meta-attribute of Property is aggregation. This attribute defines whether values as-
signed to the property are parts of the owning classifier. If they are, the owning classifier has
responsibility for the lifetime of its owned parts, i. e. if the owner of parts is destroyed, the parts
must either be removed before or be destroyed, too. This responsibility relates to lower bounds
of attributes: if an object which is included in the set of values of an attribute owned by another
classifier is destroyed, the lower bound of this attribute may be violated.

In either cases, composition as well as lower bound violation, structural integrity is preserved
by a cascading destruction or by rejection of a requested destruction. Unfortunately, in order to
come to the point, cascading destruction or rejection of a destruction request is not pursued by
semantics of action, as it is discussed in Chapter 4.

These three examples show that although UML is a close match to object-oriented languages,
it cannot be seen as an exact image thereof.

3.2 Structural Modeling beyond Object-Oriented Concepts
In contrast to the close match between classes and their features in UML and those in program-
ming languages, other concepts of UML do not have any equivalents provided by object-oriented
programming languages at all. A foundational concept of UML structural modeling is Association,
which is not directly supported in mainstream languages. For this reason, a detailed examination
of the semantics of Association is the basis for supporting adequate code generation.

The presentation of UML modeling concepts in this section is based on and extends the intro-
duction of association as provided in our previous work [33].

Many patterns for implementing associations have been elaborated in recent years, however,
we are not aware of any covering all the aspects which a UML association may be featured with.
Probably, the hardest problems with regard to implementation are caused by UML offering the
ability to specify associations between more than two classes. In contrast to binary associations,
i. e. association between two classes, “higher-order (e.g., ternary) associations are difficult to im-
plement and are generally avoided” [93].

Since higher order associations indeed are difficult to understand as well as to implement, we
concentrate on binary associations in the following sections unless otherwise stated. But in order
to be able to make use of higher order associations in system engineering, we fully support higher
order associations and provide the necessary details for sufficient implementation.

2Structured Query Language, ISO/IEC 9075
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3.2.1 Constituent Parts of Association
"An association specifies a semantic relationship that can occur between typed in-
stances. It has at least two ends represented by properties, each of which is connected
to the type of the end. (...) Each end represents participation of instances of the
classifier connected to the end in links of the association." [69, §7.3.3]

The lower part of the class diagram of Fig. 3.1 shows the abstract syntax of Association. Since
association ends are properties, they are named, have a multiplicity and a visibility. They are
owned either by the association itself or by the classifier connected at the opposite end of the
association. Further, some special aggregation semantics may be specified. Figure 3.3 gives a
general view on the notation of association. Optional items are printed gray.

participating classparticipating class association end characteristicsassociation end characteristics

BA name name
ownership 

symbol
multiplicity

visibility modifier visibility modifier
ownership 

symbol
multiplicity

navigability
symbol

navigability
symbol

association name

Figure 3.3: UML Association.

Associations are defined between classes, the relation between instances of classes is represented
by links. An association can be seen as a table whose rows are tuples in the association and columns
are the association ends [22]. Another view of an association is to consider it as a set of mappings,
e. g. for the binary association between classes X and Y :

f1 : X → P(Y ),
f2 : Y → P(X)

For higher order association, such mappings become more complex. A ternary association between
classes X1, X2, X3 may be considered as a triple of binary mappings [22]:

f1 : X2 ×X3 → P(X1),
f2 : X1 ×X3 → P(X2),
f3 : X1 ×X2 → P(X3).

The specification of Association is highly inconsistent. Effects of combining characteristics like
e. g. navigability and ownership of association ends are defined contradictory to the actual impli-
cations of ownership on navigability. In order to crave out such inconsistencies, we first present
the intended semantics of associations before we oppose the intentions to the real facts.

3.2.2 Ownership of Association Ends
An association end may be owned by the association itself as an ownedEnd or by a member end
class as an ownedAttribute. If an end is owned by a class, it is a structural feature of it representing
an ownedAttribute of this class. As such, it becomes part of the object’s state of class instances
on which adding or removing a link will have impact. For ends owned by associations, the same
rules hold, but the impact is on the association and therefore not emergent in linked instances [33].
Figure 3.4 shows an association where the end connected to class B is owned by class A, indicated
by the dot (•) at end b. Since this end is owned by class A, it may by displayed in the attribute
compartment of A as well.

B
b: B

A a b

Figure 3.4: Association end ownership notation.

For a binary association between classes X and Y , the mappings f1, f2 defining this association
can be attributed to participating classes, such that f1 : X → P(Y ) is related to X and f2 : Y →
P(X) is related to Y . By doing so, f1, f2 also can represent an owned attribute of X,Y . Therefore,
the specification considers ends of binary associations to possibly be owned by participating classes.
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In either case, the relation between the objects remains unaffected, however, implementation
of links does not: as suggested by Diskin and Dingel [22], ownership of association ends should be
considered by the implementation of links, in particular where links are to be stored.

Note that for higher order associations, all ends must be owned by the association. Mappings
defining higher order associations are of the form

f1 : X2 × . . .×Xn → P(X1), . . . , fn : X1 × . . .×Xn−1 → P(Xn) [22].

Function f1 can be attributed to any or all classes except X1, say X2, however, X3, . . . , Xn then
must be provided as parameters — or in the terminology of UML, as qualifiers. Since UML does
not define qualified properties, association ends of higher order association cannot be owned by
participating classes.

3.2.3 Symmetry of Associations
An association is a constraint given to two or more properties which are the association ends.
While a property only representing an attribute of a class may hold any value of the specified type,
properties additionally representing association ends cannot.

For an association between classes X,Y , and mappings

f1 : X → x→ ∈ P(Y ), x→ = {y1, . . . , yk},
f2 : Y → y→ ∈ P(X), y→ = {x1, . . . , xm}

the condition y ∈ x→ ⇔ x ∈ y→ must always hold [22].
Since association is not an object-oriented concept, its implementation must be based on at-

tributes, resulting in a set of uni-directional links as shown in Fig. 3.5(a). Here, the links are shown
as connectors with a UML-like navigability indication. Association is an abstraction of such a set
of uni-directional links to a single bi-directional link, depicted as a single connector in Fig. 3.5(b).
Such an abstraction of a collection of connectors into a single connector at the higher abstraction
level is called a cable [90].

(a) Two uni-directional relations between two classes. (b) A single bi-directional relation between two
classes.

Figure 3.5: Cable Pattern: abstraction of a collection of connectors into a single connector.

3.2.4 Multiplicities of Association Ends
An essential feature of associations are multiplicities at association ends. According to the seman-
tics of multiplicities of attributes, multiplicities at association ends determine how many instances
of the associated classes can or must be linked at a time [33].

For the sets x→ and y→ and multiplicities [k..l] at the X-end and [n..m] at the Y-end,

k ≤ |y→| ≤ l and n ≤ |x→| ≤ m

must hold.
Figure 3.6 shows the notation for an association according to the given generic example.

YX

[k..l] [n..m]

Figure 3.6: Multiplicities at association ends.
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3.2.5 Navigability of Association Ends
"Navigability means instances participating in links at runtime (instance of an associa-
tion) can be accessed efficiently from instances participating in links at the other ends
of the association." [69, §7.3.3]

An association end is navigable when it is either a navigableOwnedEnd of the association or an
ownedAttribute of an end class. Otherwise, it is not navigable [69, §7.3.3].The specification does
not claim that a non-navigable end must not be accessed by opposite ends. It rather states that it
may or may not. Accordingly it is not necessary to store links directed in a non-navigable direction
of an association, however, it is not invalid to store them either. An association between X and Y
navigable from X to Y as in Fig. 3.7 is sufficiently represented by a single mapping f : X → P(Y )
[33].

YX x y

Figure 3.7: Navigability symbols at association ends.

An informal convention whereby non-navigable ends are assumed to be owned by the association
whereas navigable ends are assumed to be owned by the classifier at the opposite end is deprecated
[69, §7.3.3], but we find a dependency when having a look at the inversion. A non-navigable end
must be owned by the association. If owned by the class via ownedAttribute, it is navigable [33].

3.2.6 Visibility of Association Ends
The visibility “determines where the NamedElement appears within different Namespaces within
the overall model, and its accessibility.” [69, §7.3.34]

The specification allows to define a non-navigable end as public. Such an end must be owned
by the association (because it is non-navigable) but being public, it is accessible. It can be used to
create links, however, the effect of accessing a non-navigable end for reading values is unclear [33].

An example for visibilities of association ends is given by Fig. 3.8. In the scope of class B, all
ends w, x, y, and z are visible. From class A, the end w is accessible through b.w, since it is public.
The end x is accessible through b.x, if classes A and B are members of the same package, the end
y is accessible through b.y if A is a (possibly transitive) specialization of B, and finally, the end z
is never visible to A since it is of private visibility.

WBb
+w

~x

#y

A

-z

X

Y

Z

Figure 3.8: Visibilities of association ends.

3.2.7 Aggregation Types of Association Ends
An association end has an aggregationType which may have one of the values

• none

• shared

• composite.
The values shared and composite may only appear in binary associations and indicate a whole/part
relationship. Aggregation is transitive and may not be modeled in a cyclic way. An association
end with aggregationType composite

"indicates that the property is aggregated compositely, i. e. the composite object has
responsibility for the existence and storage of the composed objects (parts)." [69, §7.3.2]

This implies that the deletion of the composite entails the deletion of all of its current parts unless
these parts have been removed from the composite before deletion [33].
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3.3 Implications of Combining Concepts
Concerning the presented modeling concepts, the specified semantics seems to fail implementing the
intended semantics. This certainly is the result of a non-formal specification containing examples
based on the graphical notation of UML diagrams which is an abstraction over the underlying
model.

We discuss the stated orthogonality as well as replaceability of modeling concepts which both
are proof of either flawed specifications or inopportuneness of varying the level of abstraction
between explained facts and examples given to ease perceivability.

3.3.1 Orthogonality of Modeling Concepts
The specification states that "aggregation type, navigability, and end ownership are orthogonal
concepts," [69, §7.3.3].

We agree to this with regard to an end’s aggregation type.
Concerning navigability and end ownership, it is not clear whether or not both concepts are

orthogonal since navigability denotes two different things, depending on the context:

• navigability may denote the concept of association ends to be navigable or not (e. g. depending
on the navigability of an end, . . . )

• navigability may denote the fact, that an association end is navigable (e. g. the navigability
of end A guarantees the access from end B, the non-navigability of the B end prevents from
any access in the opposite direction.)

Considering the latter, more special case, both concepts are orthogonal since a navigable end may
be owned by both, an end class or the association. However, in the context of the former, more
general meaning of navigability, both concepts are not orthogonal:

• an association end owned by a class via ownedAttribute implies that this association end is
navigable

• being not navigable implies that the association end is owned by the association via ownedEnd
and must not be included in the subset navigableOwnedEnd [33].

We suspect that in the citation above, the general meaning of navigability applies, because Fig. 3.93,
which is taken from the specification, shows the combination of ownership with navigability — in
the sense of defining an end to be navigable or non-navigable — on the right end of an association.
This figure gives an example for combining line path graphics, however, it unintendedly proves
that orthogonality of ownership and navigability is assumed although ownership has impact on
navigability: the right end is owned by class A, indicated by the black dot (•) at the association
end, and therefore cannot be non-navigable as indicated by the crossed lines (×) at the same end.

Figure 3.9: Invalid combination of association end ownership and navigability, according to [69,
§7.3.3, p. 41].

A similar dependency exists between navigability and visibility. Consider a navigableOwnedEnd
of an association with private visibility:

• being navigable, it is supposed to be efficiently accessed by instances of classifiers at the
opposite end,

• being private and not owned by opposite end classifiers, it is supposed to be not accessed by
instances of them at all [33].

3This is Figure 7.20 of the UML Superstructure [69]
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3.3.2 Impact of Arity
Higher order associations differ from binary associations not only in the number of association
ends. In the following, we discuss the three most relevant differences between binary and higher
order associations which affect the semantics of three features of association ends:

• visibility

• navigability

• lower bounds.

The impact on visibility is caused by an additional constraint over end ownership. For binary
associations, ownership of association ends offers two arbitrary options: an end may be owned
by a member end class or by the association. If owned by a member end class, a private end is
accessible to the member end class exclusively. If a private end is owned by the association, it is
not accessible to any class participating in the association or any other class of the system.

If an association has more than two ends, all these ends must be owned by the association [69,
§7.3.3]. A consideration of feasibility of this constraint is given in Sect. 3.2.2. If an end is private,
it is not accessible from classes participating in the association, if it is public, it is visible to all
classes, regardless of whether they participate in the association or not.

Therefore, we identify an impact of the arity of an association to visibility and consequently
to accessibility of association ends. Whereas in binary associations, participating classes may be
privileged, this is not possible for higher order associations. In consequence, it is impossible to
conceal the relation of objects from other objects which are not parts of a link. Links of higher
order associations are always publicly4 visible and no secret matter of concerned classes and their
instances.

Another problem of higher oder associations is an impact on navigability. Navigability is defined
as the efficient access to instances referenced by a navigable end. The problem here is, that for
accessing a navigable end, n − 1 values for all the other ends — the so called context — must
be provided by the instance navigating across the association. In binary associations, the context
is atomic, comprising only the instance for which related instances are queried. In higher order
associations with n ends, the context is a composite comprising n− 1 ends, i. e. to retrieve a link,
a n− 1 tuple must be already known.

Based on the consideration of mappings implementing an association, the design fault of nav-
igability is that for an association between classes A,B,C with ends a, b, c as in Fig. 3.10(a),
navigability of end a is associated with a mapping fa : B × C → P(A). But how can the context
B × C be obtained at runtime, if either one or both ends b, c are non-navigable?

A solution could be to define navigability of end a by a set of mappings — for each element
of the context — fab

: B → P(A × C) and fac
: C → P(A × B). This view is motivated by the

question, what higher order associations are good for, if obtaining information from it requires
to already know most of the desired information. If one is interested in all tuples in which one
specific instance is referenced, it is necessary to query the association with all possible contexts.
We assume that handling higher order associations is easier to understand as well as to implement
if it is possible to obtain all tuples in which a given instance is included and to filter from this set
of tuples. This view furthermore is closer to the result of replacing higher order associations by
a set of binary associations as in Fig. 3.10(b) and might countervail the avoidance of higher order
associations [93]. In the modified model, it is possible to access end a only providing one element
of the former context e. g. from an instance of B via the mappings fABCb

: B → P(ABC) and
faABC

: ABC → P(A).
Finally, arity of associations also has impact on the semantics of lower bounds. In a binary

association, a lower bound of 1 at one end demands that each instance of a classifier connected to
the opposite end participates in at least one link of the association. Relating to the association
between X1, X2, X3, a lower bound of 1 at the x1-end demands a link for all possible pairs X2×X3
with an instance of X1. A probably more intuitive view is that for each existing element of X2×X3,
a link must exist which associates this tuple to an instance of X1, as proposed by Génova et al. [31].
The fact that UML expressly defines the former interpretation of minimum multiplicities in higher
order associations causes binary and multi-ary associations to be qualitatively different [22].

4We subsume package visibility here as well, which is public visibility constrained to the publicity of a package.
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(a) An association between three classes. (b) A transformation of the association from (a) into a
set of binary associations and an additional class.

Figure 3.10: Transformation of a ternary association into a set of binary associations.

3.3.3 Replaceability of Modeling Concepts
A serious shortcoming of the UML specification is that it is suggestive of a replaceability of asso-
ciation ends and attributes, if ends are owned by a binary association.

Owned Attributes versus Association Ends

The UML specification postulates a replaceability of attribute and association notation. The
transformation from attribute to association notation (which we term T1) is described as follows:

"The attribute notation can be used for an association end owned by a class, because
an association end owned by a class is also an attribute. This notation may be used in
conjunction with the line-arrow notation to make it perfectly clear that the attribute
is also an association end." [69, §7.3.3]

Instead of "may be used", it should rather state "can only be used in conjunction with (. . . )". A
proper application of this transformation is discussed by Crane et al. [19], where classes are enriched
by attributes instead of replacing associations.

An analogous transformation from the attribute to the association notation (which we term
T2) is stated as follows:

"An attribute may also be shown using association notation, with no adornments at
the tail of the arrow (. . . )" [69, §7.3.8].

Since an association at least has two ends but only one attribute is intended to be shown, some
characteristics of the second end must be specified correctly. The item "with no adornments at the
tail of the arrow" inhibits the explicit definition of multiplicity and navigability for this end. By
default, upper and lower bounds of a multiplicity are 1 and according to no specification, these
values are to be applied. We assume that the owner of the second end is the association since the
structure of the referenced classifier should remain unchanged, but navigability is undefined since
ends owned by an association may be either navigable or non-navigable. T2 is supposed to be the
inverse transformation to T1.

Replaceability of Attribute and Association Notation

In general, an association end owned by an end class is not equal to an attribute which is not
representing an association end.

Figure 3.11 shows two class diagrams. T1 allows the transformation from the left to the right
diagram, T2 allows the transformation in the opposite direction. For the end b, no multiplicity is
specified, since this is prohibited by T2, and by T1, a multiplicity specification is not considered,
as it cannot be modeled using the attribute notation anyway. Because of the missing specification,
the multiplicity of the end b is 1, which is the default multiplicity.

The implication of this default multiplicity is, that each instance a : A must be linked (or in
terminology of Java: must be referenced) by exactly one instance b : B. If a : B → P(A) denotes
the mapping from an instance of B to values of its attribute a, the following condition must hold:
∀ai : A ∃ bj : B such that ai ∈ a(bj) and ∀j1, j2 : j1 6= j2 ⇒ a(bj1) ∩ a(bj2) = ∅.
This is much more restrictive than the common view of attributes and the way all code generators
we evaluated generate code or implementors would write it.



3.3. IMPLICATIONS OF COMBINING CONCEPTS 21

According to the meta-model, the underlying models of the two diagrams are not identical. An
association has at least two ends, each of which is a Property, a subtype of MultiplicityElement.
An attribute is a Property, too, but when replacing an association by an attribute, there is no
second MultiplicityElement contained in the model. This can be seen when comparing the tree
views of Fig. 3.12 representing the models given in Fig. 3.11. While the tree in Fig. 3.12(a) contains
a property named b, this property is missing in Fig. 3.12(b).

+a +b

(a) Association notation of Fig. 3.11(b).

+ a: A

(b) Attribute notation of Fig. 3.11(a).

Figure 3.11: Association notation vs. attribute notation.

Class
Name=A

Class
Name=B
ownedAttributes

Property
Name=a
Type=<class::A>
visibility=public
navigability=true
lower=...
upper=...

Association
Name=AB
memberEnd

Property <class::B:a>
Property

Name=b
Type=<class::B>
visibility=public
navigability=false
lower=...
upper=...

ownedEnd
Property <Property::AB.b>

navigableOwnedEnd

(a) Tree view representation of association notation as
in Fig 3.11(a)

Class
Name=A

Class
Name=B
ownedAttributes

Property
Name=a
Type=<class::A>
visibility=public
navigability=true
lower=...
upper=...

(b) Tree view representation of attribute notation as
in Fig 3.11(b)

Figure 3.12: referring to Fig. 3.11.

Although association notation and attribute notation are exchangeable, the examples given
in the UML specification do not reflect the differences between the concepts on the level of the
meta-model.

Modeling a reference from A to B with no restriction about how many references to an instance
of B may exist at a time can be achieved by an attribute or by means of an association with
appropriate multiplicities. The replacement rules as stated in the specification lack a proper
consideration of multiplicities and thus entail an unnatural semantics that obviously is not intended.

The specification does not define where links are to be stored. This implies that parts of links
may not be stored at all if these parts are derivable from other information. Diskin and Dingel [22]
give a detailed discussion about that. An example is given in Fig. 3.13 showing an association that
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is navigable from A to B. Instances of B do not need to know to which instances of A they are
related. Therefore, links may be implemented by a single multi-valued attribute e. g. by a static
Map<A,Set<B», accessible through the class A. The multiplicity constraint of the A-end can be
satisfied by checking the size of sets before inserting new values thus assuring that each instance
of B is not contained in more than 10 sets, i. e. is not referenced by more than 10 instances of
A. This example shows, that an association may be implemented by means of attributes. But
the replaceability as stated in the specification is to general and needs to consider the constraints
under which both variants are semantically identical.

- b

*0..10

Figure 3.13: Association navigability and end multiplicities.

3.4 Implementation of Attributes
Implementation of attributes comprises a structural and a functional part. The structural part is
to add a class member that can hold attribute values. The functional part is to provide means for
reading and updating attribute values.

Typically, implementation of attributes focuses on the structural part, i. e. it is associated with
a member declaration for storing the attribute value or a collection of values, if the attribute
is multi-valued. Upper bounds may be considered if using arrays of appropriate size for multi-
valued attributes. If using other kinds of data sets which dynamically grow with the number of
actually stored values, upper bounds possibly can only be considered if the data set supports the
specification of a maximum size. Thus, if applying data sets of an appropriate fixed size, the
structural specification of an attribute copes with upper bounds. For lower bounds, this is not
possible in standard object-oriented languages, since data sets lack a minimum size constraint.

Apart from the structural issue, our intention is to include also the functional dimension of
attributes, i. e. providing means for accessing attributes. In the course of implementing access
to attributes, additional semantics of attributes, in particular multiplicity bounds, are taken into
account.

An upper bound of an attribute must be checked before adding a new value, in particular if
applying dynamically growing data structures without a specified maximum capacity for attribute
implementation. A lower bound must be checked before removing a value. This is easily achieved
by applying encapsulation: by hiding the attribute and providing methods for accessing it, the
code for checking bounds that is inserted into accessor methods is always executed when updating
attribute values. The visibility of accessor methods corresponds to the visibility of the implemented
structural feature.

A problem of this approach is, that accessor methods may be bypassed if attribute values are
updated by the owning classifier. If behavior is implemented by the developer directly by adding
methods to the code of generated classes, such access to attributes very likely could occur. If
behavior is modeled as well, code for behavior is generated and preferably should be correct. Nev-
ertheless, a mechanism for ensuring the structural integrity of a system is aspired in our approach
regardless of modeling or coding behavioral aspects.

The basic idea is to force the use of accessor methods, which contain bound checks. For some
technical reasons, which are discussed in the following section, generated code is separated from
user implementations. This separation entails a solution for forcing the use of accessor methods
even to private attributes. An example is given in Fig. 3.14: methods marry(Person) and divorce()
access the private attribute spouse of class Person given in Fig. 3.14(a).

Using accessor methods is forced by making the attribute private and the accessor methods
protected, thus visible in specializations of Person. In user code, which is included in an implemen-
tation class such as PersonImpl in Fig. 3.14(b) for class Person, the private attribute is accessible
only via the accessor methods. Since visibility of these methods cannot be reduced in specializa-
tions, access to a private attribute is granted to all specializations, unless accessor methods are
redefined in specializations. For this purpose, accessor methods for attribute spouse of class Person
are redefined in class Student. Redefinition may remove side effects and return default values such
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- spouse: Person [0..1]

marry(Person)
divorce()

Person

Student

(a) Generalization with private attribute in general
classifier.

- spouse: Person [0..1]

# setSpouse(Person)
# getSpouse():Person

Person

marry(Person)
divorce()

PersonImpl

StudentImpl

# setSpouse(Person)
# getSpouse(): Person
...

Student

(b) Implementation of a private attribute in the con-
text of generalization.

Figure 3.14: Implementation of private attributes.

as null, or raise exceptions in order to indicate the discouraged use of accessor methods outside the
intended visibility of the concerned attribute. By marking such methods as deprecated, compilers
and code editors could give warnings at compile time.

With regard to an implementation in Java, another problem arises by this approach: protected
visibility also permits access to classes belonging to the same package. Hence, there is a choice of
either forcing the use of accessor methods but widening visibility or to strictly consider visibility
and therefore moving private attributes into implementation classes, resulting in the possibility of
bypassing accessor methods. We provide details to this issue in Chapter 5, Sect. 5.4.1. Note that
in other languages, e. g. C#, protected visibility strictly restricts access to the class owning the
feature and its subclasses. Implementations for the classes Person, PersonImpl, and Student are
given in Listing 3.1, Listing 3.2, and Listing 3.3.

1 class Person {
2 private Person spouse ;
3 protected Person getSpouse (){ return spouse ; }
4 protected void setSpouse ( Person spouse ){ this. spouse = spouse ; }
5 }

Listing 3.1: Implementation of a class with private attribute (see Fig. 3.14(b)).

1 class PersonImpl extends Person {
2 public void marry( Person p){ setSpouse (p); }
3 public void divorce (){ setSpouse (null); }
4 }

Listing 3.2: Accessing private attributes in user code (see Fig. 3.14(b)).

1 class Student extends PersonImpl {
2 protected Person getSpouse (){ return null; }
3 protected void setSpouse ( Person spouse ){ }
4 }

Listing 3.3: Implementation of hiding accessor methods to specializations (see Fig. 3.14(b))

Note that as a consequence of dynamic method binding in Java, this pattern for implementing
private attributes does not allow for having a private attribute in a specialization with the same
name as a private attribute of a general classifier.

Whereas introducing additional generalization as shown in Fig. 3.14(b) is often done for sepa-
rating generated code from user code what can be done by partial classes [57] if supported by the
target language as well, partial classes cannot be used to force the use of accessor methods.
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3.5 Implementation of Associations
Generally, two main alternative code patterns for implementing associations are considered:

• Attribute Pattern: binary associations are implemented as a pair of mutual references

• Relationship Object Pattern: an association is implemented as a class in its own right.

The first strategy is quite straightforward and closely related to the idea of replaceability of class
attributes and associations. We already discussed the problem of multiplicities for this approach. If
they are adequately considered, an implementation by mutual references is practicable. However,
this approach suffers some limitations which definitely require a more complex implementation
based on the Relationship Object Pattern: a dedicated implementation class for associations.

We will first explain the implementation by mutual references and point out its limitations.
Afterward, we introduce the second strategy as is state-of-the-art, compare it to mutual refer-
ences, exhibit its limitations and present our enhancements to achieve full compliance to the UML
specification.

3.5.1 Association Implementation — Attribute Pattern
This way of implementing associations is often referred to, e. g. by Akehurst et al. [1] and Génova
et al. [30]. It is also the most common implementation of tools providing code generation from
UML class diagrams. However, implementations of tool vendors vary considerably with regard
to their compliance to the UML specification. Most of the tools only rudimentarily support code
generation at all.

The following tools which are listed at the UML vendor directory5 use the Attribute Pat-
tern for association implementation: Altova umodel [105], ARTiSAN Studio [107], Micro Focus To-
gether [113], ChangeVision Jude Professional [108], Gentleware Apollo [106], IBM Rational Software
Architect [117], No Magic MagicDraw [112], Sparx System Enterprise Architect [110] and Visual
Paradigm for UML [118], as well as EMF [23], UMPLE [3], Fujaba [111], Gentleware Poseidon [115],
and Telelogic Rhapsody [116] which are not included there [33].

General Implementation of the Attribute Pattern

The implementation by using the Attribute Pattern bases on the decomposition of a binary asso-
ciation into its two mappings f1 : X → P(Y ), f2 : Y → P(X) (see 3.2.1). Attributes are used to
implement the set of instances to which an instance is related. Class X owns an attribute f so
that the values assigned to x.f, x ∈ X implement f1(x) = {y1, . . . , yk}. Accordingly, the type of
attribute f in general must be a suitably typed collection.

In principle, higher order associations could be managed as well, but depending on charac-
teristics of association ends such as multiplicity or navigability, necessary adaptations complicate
the attribute pattern. The attribute pattern hence is not a well-fitting implementation for higher
oder association. We agree to France [93] that due to the difficulties in implementing higher order
associations, they are generally avoided.

Multiplicities at Association Ends

Upper bounds of multiplicities can easily be considered by implementing an attribute as a typed
collection of appropriate size, e. g. an array of corresponding length. If the upper bound of an end
is 1, the class connected to the concerning end may serve as the type of the attribute instead of a
typed collection. Thus, the upper bound can be implemented exactly according to the input model
[33].

However, tool support most often is on a lower level only identifying two states, namely an upper
bound that is either 1 or infinite. For the latter case, attributes are implemented by collection
types which are not limited in size, such as sets or lists [33].

Lower bounds cannot be considered on the level of attribute specification. Generally, they are
fully omitted although they could be checked when changing the set of references by removing
values as well as upper bounds can be checked when adding new values [1].

5http://uml-directory.omg.org/vendor/list.htm
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Ownership of Association Ends

Ownership of association ends is not considered by the Attribute Pattern. Since the attributes are
located within the associated classes, ends are always treated as if they were owned attributes of
end classes. This implies that non-navigable ends become navigable [33]. The specification does
not claim for non-navigable ends to be not accessible. It rather states that accessibility of opposite
ends is not guaranteed. Consequently, to this end, the attribute pattern is not contradictory to
UML semantics.

Many tools do not support association end ownership on the modeling level. Therefore, devel-
opers will not mind about modifications of the ownership relation of association ends. Very likely,
they will not even miss this modeling feature since it rarely is addressed in literature dealing with
UML modeling [45, 80][33].

The sole consideration of association ends owned by member end classes gives rise to the at-
tribute pattern. It facilitates the association implementation without a dedicated implementation
class by completely managing the association by means of attributes of member end classes. Be-
tween classes of the model and the code, a bijective mapping exists.

Navigability of Association Ends

The lack of ownership representation in code leads to associations that are navigable in both ways.
It is common to omit the generation of an attribute in a member end class if the opposite end is
non-navigable. It is assumed that an association which ends are all non-navigable cannot appear
in a model. This assumption is problematic because non-navigable associations might be useful in
combination with association classes and therefore should be allowed and translated to code [33].

By omitting the generation of an attribute, the ownership of a non-navigable association end is
considered (see Sect 3.2.5) as it is not a feature of a classifier participating in the association [33].
However, the end becomes not only inaccessible for reading but also for writing, i. e. for creating
new links by relating instances with each other. It is not clear whether this is intended by the
specification or not.

Visibility of Association Ends

Visibility of an association end is taken over to the generated attribute representing that end. As
non-navigable ends are not implemented in code, visibility for those ends is not taken into account.
Thus, all implemented association ends are supplied with the intended visibility [33].

Symmetry of Associations

Many tools just provide the static structure for associations, i. e. the attribute generation in the
member end classes. When using those tools, managing the association remains in the responsibility
of developers [33].

However, Fujaba [111], Rhapsody [116], and EMF [23] generate code that allows to add or re-
move instances from associations. These tools even implement the consistency of associations:
Whenever an instance x is referenced by an instance y, the instance y calls a generated method in
x passing itself as a parameter. The instance x then obtains a reference to y [14, 28, 64][33].

Aggregation and Composition

Aggregation is a relationship in which one participant is considered to be a part of another one.
The only implication of this is that aggregation may not be modeled so that an element is a part
of its own, i. e. cyclic aggregations must not exist in a model.

Composition is stronger in two ways: an element may only be part of at most one other element
and when an element is destroyed, all parts of it are destroyed, too, unless they are removed before.

Cyclic aggregations can be statically detected by model validation. Therefore, it is not necessary
to prevent cycles by the implementation of associations. The constraint that an element may only
be part of at most one other element as well as the dependency of lifetime of elements and their
parts must be considered by the association implementation at runtime.

If applying the attribute pattern for association implementation, a cascading destruction of
objects can easily be achieved if the target language supports destructors. However, destroying
instances may violate lower bounds of other associations in which the classifier of the destroyed
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instance participates. A sound implementation, possibly even with avoiding dangling references
requires comprehensive enhancements of the attribute pattern.

For languages using garbage collection, destruction of objects is the result of removing all
references to this object. An implementation for removing references based on the attribute pattern
cannot be done efficiently if objects are referenced along associations which are not navigable in
the opposite direction.

Insofar, it is not surprising that the situation regarding code generation for aggregate associa-
tions is staggering. The evaluated tools do not consider the difference between "plain" associations
and aggregations or compositions. Akehurst et al. [1] evaluated a selection of more tools describing
nearly the same situation in 2006. As far as we know, the situation has not substantially changed.
In this regard, the modeling facilities of the current tools allow the violation of UML semantics
like having a part included in multiple composites at a time [33].

Why Does the Attribute Pattern Fail?

Mutual updates of references require each association end to be visible to its opposite end [33].
Associations with both ends defined private cannot be managed because synchronizing references
is not possible [30].

Another problem is that if for non-navigable ends no attribute is generated in a member class,
information of multiplicities are not considered [33]. Instead, the attribute pattern implements a
lower bound of 0 and an infinite upper bound unless additional code for counting references of the
omitted end is inserted.

A minor defect of the attribute pattern is that associations of which both ends are non-navigable
cannot be managed at all unless ends are made navigable.

Therefore, the attribute pattern is only well suited for some cases of binary associations. For
higher order associations, to our best knowledge, it has not yet been adapted. Although it probably
is possible to generalize this pattern for higher order associations, this kind of associations generally
is associated with the Relationship Object Pattern. The same holds for AssociationClass which
can be implemented by the Attribute Pattern but is inherently closer related to the Relationship
Object Pattern.

3.5.2 Association Implementation — Relationship Object Pattern
The Relationship Object Pattern makes the association a class in its own right. The implementation
of the association is no longer dispersed among its participating classes hampering readability and
maintainability of the code [65], rather it is merged into a single class.

Generating a class for an association is a straight-forward implementation of a link that is
defined as a tuple of values by the UML specification. Accordingly, we term the class representing
instances of the association Link and the references to participating class instances the values of a
link [33]

In Fig. 3.15, two alternative implementations of the Relationship Object Pattern are given.
Which alternative is used may have impact on the implementation of classes A and B, but it
should not be visible through their interfaces. These interfaces comprise accessor methods for
creating links, querying links and destroying links.

*

1

*

1

n..m

*

s..t

*

b a

(a) Association implementation by means of a dedi-
cated class representing links.

<<singleton>>

*1 * 1

*

1

1

*

1

*

ab

(b) Association implementation by means of a ded-
icated link class and a manager class, based on
[34].

Figure 3.15: Shapes of the Relationship Object Pattern.
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We prefer the pattern including a dedicated class for managing links as shown in Fig. 3.15(b).
On the one hand, a drawback of this variant is that the multiplicities of the association it imple-
ments cannot be expressed by multiplicities of associations which are part of this pattern. Further-
more, having a manager class introduces an additional indirection. On the other hand, handling
links is more straightforward with respect to multiplicities and implementation of compositions.

The pattern as presented here may cause a memory leak: if objects are referenced by a link
only, they cannot be removed by the garbage collector, because they are indirectly linked by the
manager class. But if all classes are not referenced elsewhere, they should be removed from the
heap. A solution to this problem is given at the end of this chapter in Sect. 3.6.5.

In the following, we refer to the Relationship Object Pattern with a manager class.

Implementing Consistency of Associations

Consistency of associations is assured by dedicated link instances [34]. Referring to the tabular
view of associations [22], each link object represents a row in a table of links.

Requests to the association are delegated to the association implementation which manages
link objects. Linking instances to each other is achieved by creating new link objects, unlinking
instances is done by deleting link objects. Finding instances linked to a given context is achieved
in two steps: first, all links fitting the given context must be identified and, afterwards, for each
such link, the value of the inquired end must be added to the result which is returned.

Implementing Ownership

Diskin and Dingel [22] associate ownership with the location where to store links or references.
But when applying the Relationship Object Pattern, links are represented by dedicated instances
and ownership has no effect on the location of links.

An association end is a structural feature of its owner. We assume, that the intended implication
of that is to specify the element offering access to association ends [34]. This is either the association
itself or classes connected to association ends. Considering ownership therefore is achieved by
creating accessor methods to an association end within the implementation of this end’s owner.

If an end is owned by the association, the visibility of accessor methods determines which
elements can access this end. Accessor methods for an end not owned by the association are
part of the implementation of the opposed class which delegates the request to the association
implementation. Such a delegation is only valid if initiated by the end’s owning class. Thus,
implementation of ownership requires to offer access to association ends only to those classes
participating in the association while excluding all the other classes. However, without additional
effort, granting access to a method to one class excluding other classes cannot be achieved in most
object-oriented languages. How to solve this problem is presented in Sect. 3.6.

Implementing Navigability

Navigability is correctly implemented, if values of a tuple are only returned to the requester if the
end to which the values refer is navigable. Additionally, if the end is not owned by the association,
the requester must be an instance of a class participating in links at the opposite end. By that, we
assume that navigability entails access granted to member end classes even for those ends privately
owned by the association.

Implementing Visibility

For a privately owned association end, access methods to the corresponding set of links must be
defined private [33]. If a private end is owned by a member end class, only this class can access
the opposite end. If an end is owned by the association, private visibility restricts access to this
end to the association itself. Such a restriction is reasonable in the case of association classes to
restrict access to the link object. But as stated above, in general we assume it is intended that
navigable ends are accessible from linked instances regardless of visibility.

Non-private ends owned by the association may be accessed by those classes to which the
association is visible. If an end is owned by a member end class, it must be assured that this
end is only accessible to instances of the class owning this end, as mentioned in the context of
implementing ownership. According to the end’s visibility, the owning class grants access to this
end by providing accessor methods with appropriate visibility.
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Implementing Multiplicities

Checking upper and lower bounds can only be done by the implementation class created for each
association by counting links before creating or destroying a link. Violations of bounds can be
reported by raising exceptions or by return parameters of accessor methods.

Technically speaking, a lower bound never should be underrun by the actual number of links,
but to lower bounds greater 0 it is not always possible to comply with. Imagine a 1-to-1 association
where objects at either ends must be linked to objects at the opposite end. After creation of the
first object, its lower bound is violated until the second object needed for establishing a link is
created.

Applying the factory pattern [29] can be used for the creation of instances. A factory makes
complex object structures unavailable before all links are set and thus ensures that no inconsistent
state is revealed to other instances.

If lower and upper bounds of a multiplicity are equal, changing links is not possible, as can be
seen in Fig. 3.16. Classes A and B are associated with multiplicity 1..1 on both ends (Fig. 3.16(a)).
The corresponding instances a1, a2, b1, and b2 are associated by two links, one between a1, b1,
another between a2, b2 (Fig 3.16(b)). The desired final state is to relate a1 with b2 and a2 with b1
(Fig. 3.16(d)). From the initial state to the final state, an invalid state with violation of multiplicity
bounds occurs (Fig. 3.16(c)), unless changing the links can be done by means of an atomic switch
implemented in a single operation [30]. To come to the point, neither such an operation exists in
UML nor any kind of transactions supporting temporarily but isolated invalid system states.

A B
1..1 1..1

(a) Class diagram with a 1-to-1 association.

(b) Initial system state. (c) Intermediate wrong system
state.

(d) Desired valid final system state.

Figure 3.16: Consequence of the equality of lower and upper bounds of multiplicities, based on
[30].

Implementing Ordered Association Ends

When implementing associations by means of member end attributes, ordering is covered by im-
plementing such attributes as ordered sets. If applying the Relationship Object Pattern, links are
managed from a manager class. If only one end of an association is ordered, than aggregation of
links must be ordered accordingly. But if two or more ends are ordered, links must be included in
multiple sets, each of which is ordered according to one ordered end.

3.6 Enhancements to State-of-the-Art Code Generation
A problem occurring regardless of whether applying the Attribute Pattern or Relationship Object
Pattern is how to handle associations if the visibility of all ends is private. Concerning the
Attribute Pattern , the problem is that mutual updates of association ends are not possible.
Génova et al. [30] state that the Relationship Object Pattern as shown in Fig. 3.15(b) does not
solve this problem either, since the class AB cannot provide access to methods for classes A and
B excluding all others. In general, this statement is right, however, we developed a mechanism to
solve that problem. We term this mechanism Adornment with a Handle or briefly a Handle [34].
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3.6.1 Handles
The idea of Handles is, that an instance having a valid handle can use it for the invocation of
methods that cannot be invoked by instances that do not have a valid handle. We term methods
that require a handle semi-private methods. The scope in which such methods are accessible is not
limited to the owning class but extended to those classes, which have a valid handle. A handle is
a runtime feature and could be applied to single instances. In our approach, it is used as a static
class member and therefore is applicable on the class level rather than for individual instances.

We consider three kinds of handles:

• method handles

• global handles

• distinguishable handles [34].

A method handle is implemented as a parameter of a semi-private method. The implementation
of the invoked method checks the handle and executes only if the handle is valid.

A global handle may be used, when all methods of a class are semi-private. In this case, it is
more efficient to use the class itself as the handle. Not the handle is passed as a parameter when
invoking a method but the methods are invoked on the handle.

Another issue is whether handles should be distinguishable. If they are, semi-private methods
can have different effects for callers with different handles. Instances can be grouped by providing
the same handle to them. If handles are distinguishable, as a matter of fact a global handle is not
applicable.

Implementing Global Handles

The implementation of a global handle is related to the application of the visitor pattern. Listing 3.4
shows the implementation of the visitor pattern by the method getHandle() (lines 8–13). This
method does not return a reference of the association object to the caller rather than it calls
the method takeHandle(AB) (Listing 3.5, lines 5–7) of the caller’s class passing the reference as a
parameter. The invocation of getHandle() is located inside the initialization block of participating
classes (Listing 3.5, line 3). Consequently, the method is only called once when a class participating
in the association is loaded. The overhead of obtaining a handle thus is reduced to a single method
invocation for each associated class when creating the first instance of it. Afterward, all instances
share the same handle [34].

Implementing Method Handles

A method handle is implemented similarly to a global handle. Listing 3.6 implements a binary
association of which only accessing one end requires a handle. An implementation of a class
accessing this end is given in Listing 3.7.

The singleton instance representing the association is public and so are the methods for accessing
association ends. For that end owned by the member end class, access methods must not be invoked
by other classes than the owner of this end.

A dedicated handle object is requested by end classes (Listing 3.7, line 3). The handle is passed
to the end’s owner by the same mechanism as it is used for global handles (Listing 3.6, lines 8–10)
and stored in the end class (Listing 3.7, lines 8–10). When attempting to access the end not
owned by the association, this handle must be passed as a parameter (Listing 3.7, line 12). Before
accessing the association end, the handle is validated (Listing 3.6, line 12). Since the handle is
only provided to the end’s owning class, access to this end is limited to the owning class as well.

Implementing Distinguishable Handles

A distinguishable handle is a method handle. The getHandle() method must take some kind of
discriminator as a parameter in order to be able to return that kind of handle that is intended for
the actual discriminator value.

When invoked, semi-private methods do not compare the handle to a single reference object
like it is when checking a method handle. Here, the handle is used to decide what the effect of the
invoked method is depending on the kind of caller, which is identified by the handle.
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1 public class AB {
2

3 /* singleton pattern */
4 private static final AB fInstance = new AB ();
5 private AB (){}
6

7 /* providing handles */
8 public static void getHandle (Class <?> end ){
9 if (end == A.class)

10 A. takeHandle ( fInstance );
11 if (end == B.class)
12 B. takeHandle ( fInstance );
13 }
14

15 /* methods for managing the association */
16 private List <Link > tuples = new LinkedList <Link >();
17 public void createLink (A a, B b){
18 if (a != null && b != null)
19 tuples .add(new Link(a, b));
20 }
21 public void destroyLink (A a, B b){
22 for(Link l : tuples ){
23 if(l.a == a && l.b == b){
24 tuples . remove (l);
25 break;
26 }
27 }
28 }
29 public List <A> getA(B context ){
30 List <A> result = new LinkedList <A >();
31 for(Link l : tuples ){
32 if (l.b == context )
33 result .add(l.a);
34 }
35 return result ;
36 }
37 public List <B> getB(A context ){
38 List <B> result = new LinkedList <B >();
39 for(Link l : tuples ){
40 if (l.a == context )
41 result .add(l.b);
42 }
43 return result ;
44 }
45

46 /* implementation of links */
47 private class Link{
48 private A a;
49 private B b;
50

51 public Link(A a, B b){
52 this.a = a;
53 this.b = b;
54 }
55 }
56 }

Listing 3.4: Implementation of a fully navigable binary association and its links, based on [34].
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1 public class A {
2 /* association implementation code */
3 static { AB. getHandle (A.class); }
4 private static AB handle ;
5 public static void takeHandle (AB ab){
6 handle = ab;
7 }
8

9 /* methods for owned end */
10 public void addB(B b){
11 handle . createLink (this, b);
12 }
13 public void removeB (B b){
14 handle . destroyLink (this, b);
15 }
16 public List <B> getB (){
17 return handle .getB(this);
18 }
19 }

Listing 3.5: Implementation of a class participating an association, based on [34].

1 public class AB{
2 /* singleton pattern */
3 public static final AB fInstance = new AB ();
4 private AB (){};
5 /* handle object */
6 private Object handle = new Object ();
7

8 public void getHandle (){
9 A. takeHandle ( handle );

10 }
11 public List <B> getB(A a, Object handle ){
12 if(this. handle != handle ) return null;
13 // original implementation here
14 }
15 ...
16 }

Listing 3.6: Implementation of a binary association with one private end, based on [34].

1 public class A {
2 /* singleton pattern */
3 static { AB. fInstance . getHandle (); }
4 private static AB fAB = AB. fInstance ;
5 /* handle object */
6 private static Object handle ;
7

8 public static void takeHandle ( Object h){
9 handle = h;

10 }
11 public List <B> getB (){
12 fAB.getB(this, handle );
13 }
14 ...
15 }

Listing 3.7: Implementation of access to a private association end with a method handle, based on
[34].
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Hiding Details from the User

Note that classes presented in Listings 3.4, 3.5, 3.6, and 3.7 can be generated automatically. In
order to keep code generators easy, re-generating code typically replaces the complete contents of
created source files. Therefore, developer code must be located in subclasses of A and B to prevent
loss of modifications after model changes and subsequent repeated code generation.

Since the handle is defined as a private static field, it is not accessible in subclasses. The
implementation of handles, how to get a handle and how to use it is completely hidden from the
developer, thus excluding any kind of unintended as well as willful misuse [34].

Using Handles for Accessing Associations

If both ends of a binary association are owned by the associated classes, methods for managing
the association must not be accessible to other than those classes. As the association itself has no
features accessible to other classes, using a global handle like implemented in Listings 3.4 and 3.5
is appropriate.

If one end is owned by the association and the other one owned by an end class, methods for
the end owned by the association are accessible in the same way to all classes according to the
end’s visibility whereas methods for accessing the other end must be restricted to the owner of
that end. In this case, method handles are needed for methods accessing the end not owned by
the association. An implementation is given by Listing 3.6.

For higher order associations, all ends must be owned by the association and a handle is not
required because classes participating the association are not privileged. But if desired, privi-
leged access to association ends can be granted to classes participating in the association by an
implementation based on handles.

Note that before adding new links, upper bounds must be checked, before removing links, lower
bounds must be checked. Both checks can be implemented by the implementation of an association,
but are omitted in Listing 3.4 for brevity.

Handles can be used for implementing associations by means of the Attribute Pattern. Because
method handles allow for the restriction of access on attributes representing association ends to
classes participating in the association, applying the handle pattern facilitates the attribute pattern
to successfully implement binary associations.

However, since the Relationship Object Pattern additionally offers some advantages in terms
of association class implementation or implementation of composition semantics, we do not con-
centrate on the application of handles in combination with the Attribute Pattern here [34].

3.6.2 Implementing Association Classes
For the implementation of an association class, the Relationship Object Pattern can be used to im-
plement the association characteristics, the class characteristics are implemented by implementing
attributes and operations as members of links of the association.

Since an association class is both, a class as well as an association, it can participate in other
associations as a member end class. It is necessary to distinguish the different kinds of accessing
an association class:

• accessing it from the role of a member end class

• accessing it as an associated class.

Figure 3.17 gives an example. Class A and B are member end classes which cannot access features
of AB, but can navigate across AB to the opposite ends. Class C can access the public features of
AB, i. e. the operation toString() and can access the instances at the b end of the association class,
which is public, but not instances of the a end, which is private. But the access to an association
end is different from a member end class like A and another class associated to the association
class like C6: an instance of C is associated with an instance of AB and can access the instance
of B which is the value of the link represented by the AB-instance. In contrast, accessing the b
end from an instance of A results in a set of instances of B representing all instances linked to the
instance which is actually accessing the association.

6This is the result of the semantics of actions, not of AssociationClass itself (see ReadLinkAction and Read-
LinkObjectEndAction in Chapter 4, Sect. 4.3.1).



3.6. ENHANCEMENTS TO STATE-OF-THE-ART CODE GENERATION 33

A B

- Id: int

+ toString(): String

AB

C

- a + b

- ab - c

Figure 3.17: Access to an AssociationClass by associated classes and member end classes.

Therefore, accessing association ends must be implemented in multiple ways and it must be
assured that the returned values are appropriate for the kind of request, more technically speaking
to the kind of requester. The method for accessing the b end of AB could be implemented by
means of a distinguishable handle to comply to the different kinds of accessing the end.

3.6.3 Implementing Aggregation and Composition
The semantic impact of aggregation is little. It just indicates, that an instance is part of another
instance, representing the whole whereas a composition entails that the whole is responsible for
the lifetime of its parts.

Java uses a garbage collector that removes unreachable objects. As long as a part is contained
in the composite, both the part and the whole are referenced by a link and either both or none
of them are removed. This effect runs contrary to lifetime control in the way that the parts may
prevent the composite from being destroyed. If an element representing the whole of a composite
is no longer referenced by an instance not participating in the composition, it should be removed
by the garbage collector. Akehurst et al. [1] consider the use of Java weak references but discard
it because this mechanism does not assuredly prevent access to deleted parts. An alternative
implementation is given but a drawback of this is that objects are marked inaccessible while links
persist.

For the proposed code pattern, a simple idea is applicable: Links are always accessible, either
directly by the referenced instances or indirectly by the association. If the whole of a composition
is to be deleted, the values of links referencing its parts must be set to null if the links are not an
instance of the composition itself. If neither the whole nor its parts are referenced by an attribute
of another class, both stay linked but become unreachable from anywhere else and may be removed
by the garbage collector. An unsolved problem is that destroying links may violate multiplicities
of associated classes [33].

3.6.4 Implementing Ordered Association Ends
For ordered association ends, the implementation of association (Listing 3.4) must be adapted as
in Listing 3.8. The signature of createLink (line 9) contains additional parameters for specification
of the insertion position of newly created links. For each ordered end, links are added into an
ordered list at the specified position.

When reading an association end, the appropriate list of links must be used for iterating over all
existing links. As an example, the method for reading end a is given. In line 21, the list containing
the links ordered according to and a is used. Thus, the result is created in correct order.

3.6.5 Avoiding Memory Leaking
The Relationship Object Pattern as introduced above causes a memory leak, if instances are linked,
but none of the instances is referenced from elsewhere. In this case, the garbage collector cannot
remove the instances because they are indirectly referenced by the manager class through the link.
Replacing the reference from the manager class to its links by weak references makes links and
their values removable by the garbage collector, if the whole complex of a link and its values is
not externally referenced. But since a link is not referenced by its values, the link object will be
accessible for the garbage collector immediately after its creation. To prevent a link form being
removed by the garbage collector, non-weak references to it must exist.

Figure 3.18 shows an extension to the Relationship Object Pattern. The manager references
its links by weak references and by that does not prevent a link from being removed. In order to
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1 public class AB {
2 ...
3 /* list implementing ordered association ends */
4 private List <Link > tuples_A = new LinkedList <Link >();
5 private List <Link > tuples_B = new LinkedList <Link >();
6 private List <Link > tuples_N = new LinkedList <Link >();
7

8 /* methods for managing the association */
9 public void createLink (A a, int posA , B b, int posB , ..., N n, int posN ){

10 if (a != null && b != null && ... && n != null){
11 Link link = new Link(a, b, ..., n);
12 tuples_A . insertAt (link , posA );
13 tuples_B . insertAt (link , posB );
14 ...
15 tuples_N . insertAt (link , posN );
16 }
17 }
18

19 public List <A> getA(B b, ..., N n){
20 List <A> result = new LinkedList <A >();
21 for(Link link : tuples_A ){
22 if (link.b == b && ... && link.n == n)
23 result .add(link.a);
24 }
25 return result ;
26 }
27 ...
28 }

Listing 3.8: Implementation of ordered association ends.

not loose all links immediately after creation, link values reference the link. If no instance which
is a value of link l is referenced from anywhere except from l, than the values of l as well as l itself
are inaccessible and are removed.
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<<singleton>>
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Figure 3.18: Memory leaking resistant implementation of the Relationship Object Pattern.

The implementation of member end classes (Listing 3.9) must include a set of links (line 3) as
well as methods for adding (line 4) and removing (line 6) links. The list of links is not typed for a
concrete association so it can be used for links of any association in which the class participates.
Because methods for adding and removing links are public, it is possible to abuse the list for storing
other objects than links. However, this has no effects on the management of association links.

In the association implementation class (Listing 3.10), weak references must be used to store
links (line 4). Furthermore, creation and destruction of links must be extended: new links must
be referenced by link values (line 9 and line 10) and references to destroyed links must be removed
(line 16 and line 17). Additionally, from time to time, the list of weak references to links must be
cleaned up by removing weak references which do not reference an object any more.
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1 public class A {
2 ...
3 private List <Object > links = new LinkedList <Object >();
4 public void associate ( Object link ){ links.add(link ); }
5 public void deAssociate ( Object link ){ links. remove (link ); }
6 }

Listing 3.9: Implementation of memory leak prevention in member end classes.

1 public class AB{
2 ...
3 private List < WeakReference <Link >> tuples =
4 new LinkedList < WeakReference <Link > >();
5

6 public void createLink (A a, B b){
7 Link l = new Link(a, b);
8 tuples .add(new WeakReference (l));
9 a. associate (l);

10 b. associate (l);
11 }
12 public void destroyLink (A a, B b){
13 for( WeakReference <Link > l : tuples ){
14 if(l.get ().a == a && l.get ().b == b){
15 tuples . remove (l);
16 a. deAssociate (l.get ());
17 b. deAssociate (l.get ());
18 break;
19 }
20 }
21 }
22 }

Listing 3.10: Implementation of memory leak prevention in associations.

3.7 Summary
In this chapter, we introduced some key concepts of modeling static structures in UML. With
respect to attributes and associations, in particular association ends, models of static structures
support the specification of constraints which must be held at runtime, e. g. the size of sets of
values for attributes or association ends.

As a result of missing code generation for dynamic behavior, some tools include code for using
the static structure at runtime by providing access to class attributes and associations. Technically
speaking, this is an implementation of Actions which are not included in a behavioral modeling
formalism but which can be accessed directly by the user when completing the implementation of
generated classes by implementing behavior.

Additionally, we designed the implementation of association in a way that considers details like
end ownership, navigability, visibility, or composition semantics, and keeps these characteristics
of associations orthogonal to each other. Furthermore, we provide privileged access on private
association ends to member end classes, i. e. regardless of ownership, member end classes can
always access associations. Implementation of association classes can be based on this design of
association implementation, too.

Since the ideas for implementing static structure as described in this chapter implicitly imple-
ment the semantics of some actions, the semantics of models of dynamic behavior and the semantics
of actions should be cross checked and code generation for static structure should be aligned to be
supportive for code generated from behavioral models as well.

For this purpose, the following chapter is concerned with the semantics ofActivities andActions.





Chapter 4

Semantics of Behaviors

In UML, behavior is based on Action. Actions are predefined foundational units of behavior.
Activities contain actions and manage their execution. In this chapter, we introduce activities
and their constituent parts as well as actions in general and the semantics of a subset of them
concentrating on implications on the underlying static structure.

Furthermore, we present a mapping from Activity to Java and a suitable model transformation
reflecting the implementation pattern back to the model. Finally, we propose some improvements
to the UML specification.

4.1 Actions and Activities at a Glance
In this section, we give a short survey over activities and actions, introduce notations and outline
the basic ideas of modeling concepts related to activity modeling.

Activities own (and in terms of graphical representation, they contain) actions, which might be
executed during the execution of the owning activity. Activities are drawn as rectangles with round
corners with its name attached to the upper left corner. We omit names if they do not contribute
to a better understanding of a model or of given examples. Figure 4.1 shows an example of an
activity.

MyActivity

a receiveA

sendB

[ Condition=true ] [ else ]

receiveB

x ysendA

Figure 4.1: Notation of activity and its owned elements.

Actions are contained inside the activity frame as rectangles with round corners and a name
centered inside the action shape (a, x, and y in Fig. 4.1). Some kinds of action, such as SendSig-
nalAction (sendA, sendB) or AcceptEventAction (receiveA, receiveB) have different shapes. By
that, paths of communication given by a signal sender and a receiver are easily recognizable.

37
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The order of action execution is given by the specification of a control flow. A control flow is a
directed edge from a source action to a target action indicating that the target action is executed
after the source action has been terminated.

If output of source actions shall be provided as input for target actions, object flows1 can be
used instead of or additionally to control flows. Object flows do not connect actions, but object
nodes, such as input and output pins which are connected to actions. The notation of object flow
and pins is schown in Fig. 4.2 by the flow from a to b.

Figure 4.2: Notation of object flow [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

Control nodes allow for the specification of starting and end points of flows as well as alternative
or parallel branches:

• Control flows start at InitialNode .

• Control and object flows end at FlowFinalNode .

• Flows end and cause activity termination at ActivityFinalNode .

• Alternative branches (or semantics) start at DecisionNode and end at MergeNode.

• Parallel, concurrent branches (and semantics) start at ForkNode and end at JoinNode .2

Control and object flows may be guarded. A guard is a constraint attached to an edge and
specifies a boolean expression. A guard must hold in order to cause the execution of a target action
as a result of the termination of the source action. In Fig. 4.1, depending on the value of Condition,
one of the two possible alternative flows will cause either SendA or SendB to be executed.

After either signal a has been received by receiveA or signal b has been recieved by receiveB,
actions x and y are executed concurrently, since both actions are contained in parallel brachnes.
The activity execution terminates when both actions have been terminated, i. e. when both parallel
flows have been joined and reached the activity final node.

InterruptibleActivityRegion supports aborting executions of actions which are grouped inside
the region. Figure 4.3 shows the notation of InterruptibleActivityRegion and an interrupting edge.
Actions a, b, c, and d are executed sequentially. If during execution of action b or c an interrupt
signal is received, b, or c respectively, is aborted and no downstream action of the aborted action
is executed. Instead, action x is executed.

a d

interrupt

b c

x

Figure 4.3: Notation of InterruptibleActivityRegion.

4.2 Activities
UML defines the semantics of a number of specialized actions which serve as fundamental units of
behavior specification. These fundamental units are composed to complex behavior by means of
Activity, which contains actions and specifies the sequence of action executions. Thus, an activity
represents an algorithm whereas actions represent basic steps.

1We use the terms data flow and object flow interchangeably.
2This shape is drawn orthogonal to the flow direction, therefore it may be drawn vertically.
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Our approach focuses on three concepts which make activities a very expressive formalism:
• ObjectFlow,

• InterruptibleActivityRegion,

• and concurrency.
Dedicated object flows are convenient as they clearly show locations of data creation and

consumption and make activities well suited for modeling behaviors where sharing data between
actions is extensively used [39].

Interruptible regions support more flexible non-local termination of flow. They are a mighty
concept to handle interrupts, unexpected events, or invalid system states which need to end the
default behavior and execute actions for recovering.

Concurrency supports parallelism in activities. It is either explicitly or implicitly modeled.
Fig. 4.4 shows the use of ForkNode and JoinNode for explicitly modeling concurrency as well as
an implicit fork (outgoing flows of a) and an implicit join (incoming flows of d) [39].

Figure 4.4: Implicitly and explicitly forks and joins [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

The above mentioned aspects of activities are embedded in an implementation design that
completely covers the basic semantics of activities, which is given by the execution semantics
based on a token flow concept.

4.2.1 Basic Token Flow Concept
The semantics of the abstract meta-class Action from FundamentalActivities defines four steps
of action execution [69, §12.3.2]:

• Creation of an execution, which requires all object flow and control flow prerequisites to be
satisfied, i. e. tokens must be available at all incoming edges and input pins.

• Consumption of the offered tokens, which are removed from their original sources.

• Execution of the action until it terminates.

• Creation of token offers at all outgoing edges and output pins.
Tokens representing control flow are considered to be indistinguishable from each other whereas
tokens of object flows represent concrete, distinct values.

A sequence of actions a and b with a single flow from a to b as shown in Fig. 4.5(a) corresponds
to a sequence of statements such as the first line of the listing of Fig. 4.5(b) [39].

Object flows may be implemented by explicitly using a variable or by nesting calls. For the flow
from pin x at action c to pin x at action d in Fig. 4.5, the former option is shown in Fig. 4.5(b),
the latter one in Fig. 4.5(c) [39].

If multiple object flows exist between two actions, this still can be implemented as a sequence
of statements. Depending on the implementation language, processing of the parameters requires
appropriate techniques. Considering Java which only supports a single return value and no out
parameters, a class is required to hold the return values as shown in Fig. 4.5(b). The class XY has
two attributes representing the output pins x and y of action e which must create an instance of that
class and write its output values to the attributes. Fig. 4.5(c) shows an alternative implementation
suitable for languages providing out parameters [39].

A basic flow, i. e. a flow from one to another action without any control nodes in between,
sequences actions so that two sequential statements calling the according methods are a suitable
implementation. Statements representing an action sequence are implemented in single threads.
By doing so, parallel token flows of an activity are implemented by concurrently executing threads
each representing one flow. For a proper implementation of the token flow semantics, it is necessary
to properly implement guards and control nodes, both explained in the following, but for a start
limited to control flows. Later, we generalize our considerations to suite to object flows as well.
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a

c

b

e

d

f

x: int

y: float

x: int

y: float

x: int x: int

(a) Control and data flows.

a(); b();

int x = c(); d(x);

XY xy = e();

f(xy.x, xy.y);

(b) Implementation of con-
trol and data flows.

d(c());

int x; float y;

e(out x, out y); f(x, y);

(c) Alternative implementation of data
flows.

Figure 4.5: Sequences of actions and implementations [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

4.2.2 Guarded Flows
Guards are boolean conditions associated with an edge. If such a condition does not hold, it
prevents tokens from traversing the concerned edge. Applied to Fig. 4.6(a), if the guard at the
edge from a to b does not hold, the call of b() must be deferred as long as the guard does not hold.

a

c

[cond==true]
b

d
[cond==true]

x: int x: int

(a) Guarded control flow.

a();
while (cond==false){ ; }
b();

(b) Implementation of a guarded flow.

Figure 4.6: Guarded flow and its implementation.

A proper implementation of guards requires to pause the execution of code as long as a guard
prevents a token from flowing. This is important in particular if concurrency occurs in an activity:
The evaluation of a guard may depend on other concurrently executed sequences of actions. An
implementation based on if else statements as proposed e. g. by Bhattacharjee and Shyamasun-
dar [7] does not cause the control flow of an application to pause. Therefore, it is insufficient in
any situation, where no alternative flow exists or where guards of all alternative flows do not hold.

An implementation of guards based on if else statements is only valid at control nodes
splitting a flow into alternative branches of which always at least one of all guards holds.

Regarding Fig. 4.6(b), the while loop pauses the activity execution. A more sophisticated
approach is to let a thread wait until the guard holds. As a waiting thread cannot evaluate the
guard, all waiting threads must be notified if a guard might evaluate to true. Therefore, the
implementation of actions accessing attributes, variables, or associations must contain code to
notify waiting threads which immediately re-evaluate guards. Depending on the result of this
evaluation, threads must either continue execution or wait for another notification [39].

Besides deferring the execution of an action in a sequence of actions, guards have a far more
complex impact on the execution of actions if used in combination with control nodes. This is
discussed in detail in Sect. 4.2.4.

4.2.3 Code Generation Based on Token Flow Semantics
Generating code for sequences of actions is trivial as can be seen from the examples given in Fig. 4.5
since one action is executed after another. When considering control nodes, the situation gets more
complicated, depending on how complex flows are composed. We consider the following cases:

1. at most one control node is used in a flow from one action to another;

2. any number of control nodes may occur, but the flow from the source to the target is acyclic;

3. any number of control nodes and cycles may occur.

Here, we present code generation as designed for activities where flows contain at most one control
node (1). However, it can be adapted to handle more complex flows (2, 3), but remarkable effort is
required. We provide additional information to this issue in Sect. 4.2.5, Sect. 4.2.6, and Sect. 4.2.7.

Our prototype is implemented in Java, but the general idea can be applied to any other object
oriented language supporting threads:
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• sequences of actions are mapped to sequences of method calls, each method being the imple-
mentation of a corresponding action

• an activity is implemented as a switch statement with each case block containing a sequence
of method calls

• the switch statement is executed repeatedly, an id is used to select the case block to execute

• control nodes are implemented by setting the id at the end of each sequence, so that —
according to the semantics of the control node — the correct downstream sequence is selected
to be executed in the next iteration

• concurrency is implemented by creating new threads with the appropriate id.

Fig. 4.7 gives an example of an activity implemented by Listing 4.1. Gray shaded boxes group
actions which build a sequence. The number refers to the case block used for implementation. By
setting the id to -1, no valid sequence to execute is selected and the thread terminates. When all
threads have been terminated, the activity execution ends.

4

32

1 a

b1 c1

b2 c2

d

Figure 4.7: UML activity with sequences of
actions, according to [39].

1 class ActThread extends Thread {
2 private int id;
3 public ActThread (int id){
4 this.id = id;
5 }
6 public void run (){
7 while(id >= 0){
8 switch(id){
9 case 1: a();

10 break;
11 case 2: b1 ();
12 b2 ();
13 break;
14 case 3: c1 ();
15 c2 ();
16 break;
17 case 4: d();
18 }
19 }
20 }
21 }

Listing 4.1: Implementation of sequences of
actions in a single class.

Note that at the end of each case block in Listing 4.1, the value of id must be updated before the
break statement in order to cause the thread to execute another sequence of actions during the
next while-loop iteration. Which value to assign to id depends on the control node between ending
and subsequent sequences. In Listing 4.1, code for setting appropriate values to id or create new
threads is omitted because we introduce basic considerations to that issue in the following section
before completing the code example.

4.2.4 Token Flow at Control Nodes
UML defines seven kinds of control nodes, which are specializations of the common ancestor Con-
trolNode as shown in Fig. 4.8: InitialNode, FlowFinalNode, ActivityFinalNode, DecisionNode,
MergeNode, ForkNode, and JoinNode.

Before going into detail, we roughly give the implication of control nodes. InitialNode defines
starting points of flows when an activity execution is initiated. FlowFinalNode specifies flow
ends, ActivityFinalNode specifies flow ends causing the activity execution to end as well. A
DecisionNode is used to choose between multiple alternatives from which only one may be taken.
Which alternative actually is taken depends on guards of outgoing edges. For complex decisions, a
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behavior can be associated with the node and additional information for taking a decision may be
provided via the decision input flow. A ForkNode splits an incoming flow into multiple concurrent
outgoing flows. Multiple flows are combined to one single flow by a MergeNode. A token arriving
at one incoming edge results in a token flow on the outgoing edge. When combining multiple flows
with a JoinNode, a token must be available at each incoming edge to emit a single token at the
outgoing edge [39].

ControlNode

FinalNode JoinNodeForkNode MergeNodeDecisionNode

ObjectFlow BehaviorFlowFinalNode ActivityFinalNode

0..1

0..10..1

*

+ decisionInput+ decisionInputFlow

InitialNode

Figure 4.8: UML control nodes.

Tokens cannot rest at control nodes. Control tokens always flow from one action to another
action, data tokens flow from one object node to another one. An exception to this rule is ForkNode,
where tokens may be buffered. We discuss this in detail when looking closer at fork nodes later.

Note that two or more incoming edges of an action represent an implicit join, i. e. tokens must
be offered to all incoming edges. This implicit join may be made explicit either by modeling so or by
a model transformation. Therefore, we consider activities to be free of implicit joins. Analogously,
two or more outgoing edges represent an implicit fork. For the same reason as for implicit joins,
we consider all forks to be explicitly modeled [39].

InitialNode

When starting to execute an activity, flows are initialized by each InitialNode emitting a single
control token. Actions with no incoming edges are executed immediately. If for each such action,
an InitialNode and a flow from there to the action is inserted, these actions still are executed
immediately after starting the activity execution (see Fig. 4.9(a)).

Concerning AcceptEventAction without incoming flows, two exceptions have to be considered:

• after accepting an event, the action is immediately executed again waiting to accept another
event

• if placed inside an InterruptibleActivityRegion, it is not executed before a flow enters the
region directly containing it.

The first exception can be made explicit by modeling as shown in Fig. 4.9(b). However, this
modification to the model breaks the sequence of the AcceptEventAction to the following action. In

(a) Action without incoming flows and equivalent
model with incoming flows.

(b) AcceptEventAction without incoming flows and
equivalent model with incoming flows.

Figure 4.9: Control flow semantics for Action without incoming flows.
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consequence, the code generated from such a modified model becomes more complex. With regard
to code complexity and performance, it probably is preferable to address this special semantic issue
by generating suitable, optimized code for restarting an AcceptEventAction without incoming flows
than modifying the input model.

Even more complex is a model transformation in order to make the activation of AcceptEvent-
Action contained in an InterruptibleActivityRegion explicit. We refer to this in the context of
InterruptibleActivityRegion later in Sect. 4.2.10.

FlowFinalNode and ActivityFinalNode

The effect of FlowFinalNode is the destruction of all arriving tokens without any further effect to
the execution of an activity, in particular to other flows. It can easily be implemented by setting
the id to -1 causing the thread of Listing 4.1 to terminate.

An ActivityFinalNode terminates an activity execution, i. e. all threads processing a sequence
must terminate. Therefore, an activity execution must be aware of all threads processing action
sequences of it and must interrupt all these threads. In order to actually stop the processing
of action sequences, between two actions, the thread status must be checked. Within actions
which are responsible for any kind of consistency, e. g. CreateLinkAction, if the processing thread
is interrupted, already done work must be finished or undone in order to maintain consistency
of the system. Aborting an activity execution is related to the issue of aborting an interruptible
activity region. We provide a code example when discussing this in Sect. 4.2.10.

MergeNode

Implementing a merge node is achieved by changing the value of id [39]. In Listing 4.1, before line
13 and line 16, the value 4 must be assigned to id. Thus, action d will be executed next. If incoming
edges are guarded, the terminating sequence must wait until the guard holds, if outgoing edges
are guarded, the new sequence must wait for the guard to hold before executing its first action. If
incoming and outgoing edges are guarded, both guards must be checked at the same time, either
by the ending sequence implementation or by the following one. Otherwise, the execution might
continue even though both guards had never been true at the same time.

DecisionNode

A token arriving at a decision node may traverse any of the outgoing edges, but only one of them.
If guards are annotated to outgoing edges — what typically is the case as these guards define the
decision to take — the token may traverse any edge the guard of which evaluates to true. If one
of the outgoing edges is labeled with an else guard as is in Fig. 4.10(a), at least one edge may
always be traversed [39]. A suitable implementation is given in Listing 4.2(a), in which Gincoming

denotes the guard at the incoming edge of the decision node. If the incoming edge is not guarded,
Gincoming may be replaced by the value true or the if statement (line 2) can be omitted.

(a) Deterministic decision. (b) Partially undefined deci-
sion.

(c) Partially non-determinis-
tic decision.

Figure 4.10: Determinism and decidability at DecisionNode [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

Fig. 4.10(b) shows a situation in which none of the outgoing edges may be traversed if x=0.
The decision shown in Fig. 4.10(c) is non-deterministic if x=0. Consideration of this while code
generation demands for an analysis of guards which is difficult since guards may be any boolean
expression evaluated within the context of the activity. We prefer to test guards of all edges for
holding until a guard is found that is satisfied. If none of the guards holds, the thread waits until
receiving a notification which is sent when the values of attributes or variables of the context object
have changed [39]. Since the flow from a source to a target is considered to be an atomic event,
guards of all edges of a path from the source to the target must hold at the time of token transition.
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Therefore, the guard of the incoming edge has to be tested together with the evaluation of guards
of outgoing edges.

Listing 4.2(b) implements the decision node of Fig. 4.10(b), Listing 4.2(c) implements the de-
cision node of Fig. 4.10(c).

An else guard, as in Fig. 4.10(a), could also be considered by replacing else with true and
ensuring that the affected edge is processed last. Then the last if-statement reads else if
(true), which causes this edge to be traversed if guards of all other edges fail.

1 while (true){
2 if (<Gincoming >){
3 if (x >0)
4 id = ...;
5 break;
6 else
7 id = ...;
8 break;
9 }

10 wait ();
11 }
12

13

14

(a) Deterministic decision

1 while (true){
2 if (<Gincoming >){
3 if (x >0){
4 id = ...;
5 break;
6 }
7 else if (x <0)
8 {
9 id = ...;

10 break;
11 }
12 }
13 wait ();
14 }

(b) Partially undefined decision

1 while (true){
2 if (<Gincoming >){
3 if (x <=0){
4 id = ...;
5 break;
6 }
7 else if (x >=0)
8 {
9 id = ...;

10 break;
11 }
12 }
13 wait ();
14 }

(c) Non-deterministic decision

Listing 4.2: Implementations of decision nodes.

ForkNode

The semantics of ForkNode is very complex. A token offered to its incoming edge is offered to the
targets of its outgoing edges, if the corresponding guards hold. If at least one token is accepted by
a target, a copy of this token is buffered at each outgoing edge which guard holds, but the target
of which cannot accept the token. This can only happen if a target has more than one incoming
edge. Such an implicit join can be made explicit, consequently, if we assume that all implicit joins
of an activity have been eliminated, token buffering cannot occur in the context of a single fork
node as shown in Fig. 4.11.

We address the issue of token buffering when discussing more complex control flows in
Sect. 4.2.6. The basic implementation of ForkNode is similar to that of DecisionNode as can
be seen in Listing 4.3. Since a flow can only happen when the guard of the incoming edge and the
guard of at least one outgoing are true, the thread waits until this condition holds (lines 1–3).

Figure 4.11 gives an example: if, after the execution of action a, the value of i is an even number,
either x or y, or x and y, or none of both actions may be executed, depending on the evaluation of
guards at outgoing edges of the fork node. Note that if none of both actions is executed, the token
rests at the incoming edge of the fork node and may cause the execution of one or both actions
later.

Figure 4.11: Application of ForkNode.

1 while (!(i%2==0 && (i <100 || i >10))){
2 wait ();
3 }
4 if (i <100){
5 new ActThread (<idx>).start ();
6 }
7 if (i >10){
8 new ActThread (<idy>). start ();
9 }

10 ...

Listing 4.3: Implementation of ForkNode.
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JoinNode

JoinNode is the most complex node with regard to implementation. Although it is known which
sequences must be executed before the join node is reached, it is unknown, which threads will be
the first ones reaching the join node[39].

Our implementation of a join node is a class with lists of objects. An example is given in
Fig. 4.12 and its implementation, Listing 4.4. Each incoming edge of the join node is represented
by a list (line 2) [39].

Whenever a sequence ending at a join node terminates, all guards of incoming edges and that
of the outgoing edge of the join node are evaluated. If all guards hold, a token is added to the
appropriate list by calling one of the provided methods (line 3 or 6) and the following sequence is
initiated. If at least one guard fails, the ending sequence waits to be notified of a system change
before re-evaluating guards.

When started, the subsequent sequence checks whether the join node offers a token by calling
the canJoin method (line 9). All lists are checked and if each list contains at least one token,
tokens are removed from the lists and the initiated sequence may continue. A guard check is not
necessary since canJoin is only called when a token is added at an incoming edge and before that,
guards have been tested. If canJoin returns false, the sequence is aborted.

Figure 4.12: Joining of control flows.

1 class Join1 {
2 private List <Object > l1 , l2;
3 public void add1( object token) {
4 l1.add(token );
5 }
6 public void add2( object token) {
7 l2.add(token );
8 }
9 public boolean canJoin () {

10 if(!( l1. isEmpty () || l2. isEmpty ())){
11 l1. remove (0);
12 l2. remove (0);
13 return true;
14 }
15 else return false;
16 }
17 }

Listing 4.4: Implementation of JoinNode.

Some approaches like e. g. translating activities to Esterel [7] use an implementation based on
the assumption that tokens to be joined are siblings created from the same token offer at a fork
node. However, such an assumption is unjustifiable since tokens may be produced by distinct initial
nodes or be the result of accepted events. Accordingly, in general tokens to be joined are not the
result of a fork. Furthermore, since control tokens have no identity, they cannot be identified as
siblings even if they are.

To this end, the presented code is a proper implementation of JoinNode accommodating the
vast diversity of possible executions and resulting combinations of threads to be joined.

4.2.5 Guard Propagation
The implementations of control nodes discussed above are all subject to the restriction that sources
of incoming flows and targets of outgoing flows are not control nodes. In order to be more general,
we define some rules facilitating the replacement of a set of control nodes by a single control node.
In preparation therefore, we first introduce Guard Propagation Rules.

The idea of guard propagation is, that guards of incoming edges can be combined with guards of
outgoing edges and vice versa without changing the execution semantics of the affected flows. We
term the prepending of guards of incoming edges to those of outgoing edges forward propagation,
appending guards of outgoing edges to those of incoming ones, we term backward propagation.

The effect of backward propagation is to consider guards of outgoing edges of a control node
while evaluating the guard of an incoming edge of this control node. If properly constructed,
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the guard of incoming edges of a control node only hold, if a token can reach at least one target
downstream the control node. Thus, backward propagation is a means of determining whether or
not an offered token can reach any target at all.

The effect of forward propagation is to consider guards of incoming edges of a control node
while evaluating guards of outgoing edges. If properly constructed, this guard only holds, if a
token can traverse any incoming edge of the control node and, in the same moment, can traverse
the outgoing edge. Thus, forward propagation is a means to determining which actions are to be
executed downstream of a control node.

Backward and forward propagation are means for determining whether a token may traverse
edges connected to a control node, and if so, which actions it may reach.

For the following definitions, let E = {e1, . . . , en} be a set of edges such that typeOf (ei) ∈
{ControlFlow,ObjectFlow} for each ei ∈ E. Let Ge be the guard of edge e and G′e the guard of
the same edge e resulting from guard propagation.

DecisionNode

Let inc : DecisionNode → E be a function returning the incoming edge of a decision node, out :
DecisionNode → P(E) a function returning the set of its outgoing edges. The following guard
propagation rules hold for incoming and outgoing edges of DecisionNode D:

∀e ∈ out(D) : G′e = Ginc(D) ∧Ge. (forward propagation)
G′inc(D) = Ginc(D) ∧ (

∨
e∈out(D) Ge). (backward propagation)

ForkNode

Guard propagation very likely is not legal at a ForkNode since the token buffering may be affected
if guards are changed. If the context in which a ForkNode is used cannot lead to token buffering,
guard propagation is possible as for a DecisionNode.

Let inc : ForkNode → E be a function returning the incoming edge of a fork node,
out : ForkNode → P(E) a function returning the set of its outgoing edges. The following guard
propagation rules hold for incoming and outgoing edges of ForkNode F :

∀e ∈ out(F) : G′e = Ginc(F) ∧Ge. (forward propagation)
G′inc(F ) = Ginc(F ) ∧ (

∨
e∈out(F) Ge). (backward propagation)

JoinNode

Let inc : JoinNode → P(E) be a function returning the set of incoming edges of a join node,
out : JoinNode → E a function returning its outgoing edge. For a JoinNode J , the following guard
propagations hold:

G′out(J) = (
∧

e∈inc(J) Ge) ∧Gout(J). (forward propagation)
∀e ∈ inc(J ) : G′e = Ge ∧Gout(J). (backward propagation)

MergeNode

Let inc : MergeNode → P(E) be a function returning the set of incoming edges of a merge node,
out : MergeNode → E a function returning its outgoing edge. For a MergeNode M , the following
guard propagations hold:

G′out(M) = (
∨

e∈inc(M) Ge) ∧Gout(J). (forward propagation)
∀e ∈ inc(M ) : G′e = Ge ∧Gout(M). (backward propagation)

Figure 4.13 abstractly shows guard propagation at DecisionNode (a), ForkNode (b), JoinNode
(c), and MergeNode (d). Original guards are annotated to the right side of an edge, propagated
guards are annotated to its left side. Furthermore, forward propagation is marked with blue color,
backward propagation is marked red. Note that forward and backward propagation are applied on
the original guards, i. e. none of both propagations is applied on the results of the other one.

Here and in the following, we use a generic notation for guards. By [n], we denote a guard
which is a numbered, but not further specified boolean expression. The guard [n ∧m] denotes a
boolean expression resulting from the conjunction of the expressions specified by the guards [n]
and [m]. The ∧-operator is granted a higher precedence than the ∨-operator.
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(a) Guard propagation at
DecisionNode

(b) Guard propagation at
ForkNode

(c) Guard propagation at
JoinNode

(d) Guard propagation at
MergeNode

Figure 4.13: Guard propagation at control nodes.

Application of Guard Propagation Rules

By propagating guards according to the introduced guard propagation rules, two kinds of charac-
teristic guards can be constructed for each flow:

• selection guard, which is the result of forward propagation, denoted Si in Fig. 4.14. This
guard determines where to continue activity execution.

• activation guard denoted Ai in Fig. 4.14, which is the result of backward propagation of
selection guards. This guard holds, if a token offer can reach any target, i. e. if the execution
can be continued somewhere.

The backward propagation of selection guards is performed after forward propagation and after
removing guards of all incoming edges of each control node which is part of the flow3.

A net of control flows and control nodes thus can be abstracted to a black box which can
distribute a token to its targets if an activation guard holds. To which target to direct a token —
or insofar as fork nodes are concerned, to which targets to direct copies of a token — is determined
by evaluating selection guards.

Activation and selection guards must be evaluated whenever a new token is offered to the black
box and whenever the system state changes, e. g. when values of variables or attributes are changed
or when links are created or destroyed.
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Figure 4.14: Abstracting from control flow nets to black boxes.

Code generation for activities targets to statically determine which action to execute next
whenever an action is terminated. Implementations of control flow nets can become very complex
ending in worst case with the generation of an interpreter such as described by Bulach [13].

By the limitation of at most one control node between two actions, generated code can be
kept plain and clear by using the Java implementations of control nodes presented above. These
implementations already make use of activation and selection guards.

For nets containing only fork and decision nodes, i. e. 1–N Black Boxes (Fig. 4.14(a)), assem-
bling activation guards across multiple subsequent nodes still produces a valid result. A holding
activation guard guarantees that tokens will be directed to some target without resting at any
downstream node due to failing guards. The actual target of each token can be determined by
checking selection guards, provided that there is no non-determinism at any decision node. If

3For merge nodes, an exception from this rule is needed, which will be discussed later.
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non-deterministic decisions occur, selection guards of a set of actions may hold of which only a
subset of actions may execute.

If we abandon non-deterministic decisions, evaluation of activation guards and starting se-
quences for which selection guards hold, make up a semantically correct implementation of this
type of control flow nets. Furthermore, abandonment of non-determinism affords replaceability of
decision nodes by fork nodes as shown in Fig. 4.15(a) and Fig. 4.15(b). Note that both activities
have the same execution semantics.

This replacement can be advanced to a replacement of cascading fork nodes as shown in
Fig. 4.15(c) by one single fork node (Fig. 4.15(d)).

(a) Definite choice
at a Decision-
Node.

(b) Definite choice
at a ForkNode.

(c) Cascade of fork nodes. (d) Fusion of the cascade
from (c) to a single
fork node.

Figure 4.15: Simplifications of 1-N black boxes.

A net of decision nodes can be translated to a single decision analogously to Fig. 4.15(c) and
Fig. 4.15(d). The implementation of 1–N black boxes therefore is possible if only decision and fork
nodes are involved by either replacing all decision nodes by fork nodes or — if non-determinism
occurs — by propagating guards and translating each node separately.

Analogously, subsequent join nodes like those of Fig. 4.16(a) can be combined to a single join
(Fig. 4.16(b). Subsequent merge nodes like such of Fig. 4.16(c) may be combined to a single merge
node as well, however, valid guards are obtained only if solely applying backward propagation
(Fig. 4.16(d)). Both of these rules contribute to a reduction of complexity of N–1 Black Boxes
(Fig. 4.14(b)) if both types of nodes do not occur strictly alternately downstream.

(a) Cascade of join nodes. (b) Single join node imple-
menting the cascade of
joins from (a).

(c) Cascade of merge
nodes.

(d) Single merge node im-
plementing the cas-
cade of merge nodes
from (c).

Figure 4.16: Simplifications of N-1 black boxes.

By applying the above defined rules, control flow nets can be processed if all control nodes
are of the same type. Flows containing both decision and fork nodes may be handled if decisions
are deterministic. In the following, we assume all decisions to be deterministic. Non-determinism
could be handled by manually implementing the non-deterministic decision to be made, as outlined
in Sect. 4.2.7.

Although the rule for forward propagation at merge node is defined correctly, it has to be
modified in order to correctly assemble valid selection and activation guards. It is the only rule
that adds conditions by conjunction. In this way, the result of the propagation contains fragments
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that refer to guards of edges that are not part of the actual path from the source to the target. The
selection guard for action X of the model shown in Fig. 4.17(a) obtained by forward propagation
is ((1∨ 2)∧ 3)∧ 4 the selection guard for action Y is ((1∨ 2)∧ 3)∧ 5. By backward propagation of
these guards, the activation guard of both actions A and B is ((1∨ 2)∧ 3)∧ 4)∨ ((1∨ 2)∧ 3)∧ 5).

If action A offers a token, the activation guard might be true due to conditions 2, 3, and 4
holding while conditions 1 and 5 do not hold. In this case, the selection guard of X succeeds,
too. But this is caused by those parts of the selection and activation guard referring to edges that
are not part of the path from the actually considered source to the intended target. Indeed, the
fragments derived from guards actually located at traversed edges fail (1 and 5). Therefore, the
selection guard for paths containing merge nodes must be determined for each source separately.

This can be achieved by a transformation which pushes merge nodes to the end of each flow as
shown in Fig. 4.17. Merge nodes occurring ahead of a decision node can be pushed downstream of
the decision as shown in Fig. 4.17(a) and Fig. 4.17(b). This rule can be applied in the same way
for contexts similar to that of Fig. 4.17(a) but with a ForkNode occurring at the position of the
DecisionNode. Analogously, the result of a transformation equals to that of Fig. 4.17(b) with each
decision node being replaced by a fork node.

Figure 4.17(c) and Figure 4.17(d) show the same rule for a JoinNode downstream to a Merge-
Node. Note that this transformation is only semantic preserving if for each incoming edge of the
join, the weight is defined to be 1. Otherwise, this transformation conflicts with the following
statement of the UML specification: “Multiple control tokens offered on the same incoming edge
[of a join node] are combined into one (. . . )” [69, §12.3.34].

If a token is offered at A, another one at B, and two tokens are offered at C but guard 3 fails,
action X will be executed once as soon as guard 3 succeeds. When executing the transformed
activity, X will be executed once, too, but the offer of either the token at A or B will continue
standing if all tokens offered at incoming edges of the join are consumed. With a weight of 1
defined for all incoming edges of the join node, action X is executed twice because only one token
of each offer at incoming edges is consumed.

(a) MergeNode ahead of
a DecisionNode.

(b) Result of pushing a
MergeNode after a
DecisionNode.

(c) MergeNode ahead of a
JoinNode.

(d) Result of pushing a
MergeNode after a
JoinNode.

Figure 4.17: Pushing MergeNode downstream.

If after applying rules for pushing merge nodes downstream, these nodes build a cascade like
shown in Fig. 4.16(c). This cascade is replaced by a single merge node as illustrated in Fig. 4.16(d).

Note that the application of forward and following backward guard propagation on an activity as
in Fig. 4.18(a) into one as in Fig. 4.18(b) results in flawed activation and selection guards. Forward
propagation returns (1 ∧ 4 ∨ 2 ∧ 4) ∧ 3 as selection guard for action X and (1 ∧ 5 ∨ 2 ∧ 5) ∧ 3 as
selection guard for action Y. Backward propagation leads to the activation guard ((1∧ 4∨ 2∧ 4)∧
3) ∨ ((1 ∧ 5 ∨ 2 ∧ 5) ∧ 3) for actions A and B. With these guards, a token offered at the outgoing
edge of A could activate X if (2 ∧ 4 ∧ 3) is true. But Fig. 4.18(a) shows that for a token flow from
A to X, guard 1 necessarily must hold.

Valid results are achieved by modifying the algorithm for the construction of activation and
selection guards: First, guards from outgoing edges of the last merge node are propagated to
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incoming edges of this node(see also Fig. 4.18(b)). Following this transformation, forward propa-
gation is applied starting at all outgoing edges of actions until incoming edges of the merge node
are reached (Fig. 4.18(c)). Since by traversing incoming edges of this merge node can only activate
one action (the target action), the guard at an incoming edge of the merge node is the selection
guard for this target action valid for the source action from where the forward guard propagation
started. By now applying backward propagation to these selection guards, valid activation guards
are constructed (Fig. 4.18(d)).

(a) Initial situation. (b) Backward propagation
of guard to incoming
edges of a MergeNode.

(c) Assembling selection
guards by forward
propagation.

(d) Assembling activation
guards by backward
propagation.

Figure 4.18: Assembling Selection Guards and Activation Guards by guard propagation.

4.2.6 Black Box Implementation of Complex Flows
After having defined some rules for the transformation of 1–N Black boxes not containing join
or merge nodes and N–1 Black Boxes not containing decision or fork nodes, we now discuss
some patterns occurring when using control nodes for splitting flows and those for combining
flows together. N–M Black Boxes consisting of a combination of the following patterns can be
implemented by combining the proposed transformations and implementations.

Volatile Offers

The first case we consider is a combination of decision node and join node, as shown in Fig. 4.19.
The initial situation is depicted in Fig. 4.19(a). Fig. 4.19(b) shows the same situation after guard
propagation. The problem here is what to do if after executing action A, guard 1 fails, but guard
2 and 3 hold. If no token is offered to the outgoing edge of action B, the join cannot emit a token.
If a token is offered, then this token together with the token offered at action A would cause a
token to be offered to action Y.

The implementation of a join node given in Sect. 4.2.4 considers offers by adding tokens to lists
representing incoming edges. As long as such an offer cannot expire since the token cannot be
consumed by another flow target, this implementation suffices. However, the combination with a
previous decision node invalidates the token offer if guard 2 does not hold. This fact is considered by
the outgoing edge which is guarded by condition 2 and 3. But if guard 1 holds, the offer definitely
has to be removed permanently from the list representing incoming edges. For this reason, we
consider the token offered to the outgoing edge of A to be a volatile offer to the join node.

How this can be achieved is illustrated in Fig. 4.19(c), which is not conforming UML although
using its notation. It is a visualization of an implementation based on the insertion of another join
node between the decision node and action X and the deletion of the decision node itself. The join
nodes j1 and j2 share a common list for representing the split edge from A to j1 and j2. If one
of both nodes can join, it consumes the token, which also is offered to the other join node, from
the list. As an indication for a common representation of incoming edges of different join nodes,
we use an ellipse surrounding the ends of concerned edges.
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(a) Initial situation. (b) Result of applying guard
propagation rules.

(c) Implementation model (not
UML).

Figure 4.19: Implementing volatile token offers.

A modification to the implementation of join node is necessary as well since it now is possible
that tokens are offered even though the guard of the outgoing edge fails. Therefore, the imple-
mentation of canJoin() must return false, if not all incoming edges have token offers, it must
wait when tokens are offered but guards fail and it must return true, when tokens are offered and
guards hold.

Unknown Origins

Based on the implementation for volatile offers, we can support another combination of control
nodes which is a merge node preceding a join node (Fig. 4.20(a)). This combination is problematic
if one or both incoming edges of the merge node are guarded. If a token is offered by actions A
or B, this token is added to the list of tokens representing the offers of the outgoing edge of the
merge node. When another token is offered by action C, it is necessary to know the actual origin
of a token emitted by the merge node in order to be able to evaluate the right guards. But if the
offered token has been added to the list representing an incoming edge of the join node, the token
origin is unknown. This is no problem if all edges upstream to the merge node are not guarded
because then, there is no guard to evaluate.

The pattern shown in Fig. 4.20(a) can be transformed to the pattern given in Fig. 4.20(b)
by pushing the merge node downstream. The problem then has turned into a volatile offer
(Fig. 4.20(c). A token provided by C is either merged with a token of A or B, thus being a
volatile offer to both join nodes.

(a) Initial situation. (b) Model transformation to uncer-
tain token offers.

(c) Implementation model of trans-
formation result (not UML)

Figure 4.20: Implementing uncertain token origins.

Fork Node Buffering

Another semantic feature of UML that is difficult to handle by statical analysis is buffering of
tokens at fork nodes. It is specified as follows:
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Any offer that was not accepted on an outgoing edge [of a fork node] due to the failure of
the target to accept it remains pending on that edge and may be accepted by the target
at a later time. These edges effectively accept a separate copy of the offered tokens, and
offers made to the edges stand to their targets in the order in which they were accepted
by the edge (first in, first out). This is an exception to the rule that control nodes
cannot hold tokens if they are blocked from moving downstream (see “Activity (from
BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities)” on
page 324).
Note that any outgoing edges that fail to accept an offer due to the failure of a guard
do not receive copies of those tokens. [69, §12.3.30]

Because of token buffering, making implicit fork nodes explicit cannot be done by just inserting
a fork node like shown in Fig. 4.21. Such a transformation is not semantics preserving if guards
are applied to the outgoing edges of an action (Fig. 4.21(a)). Tokens at outgoing edges of a fork
node are only buffered if the guard of this outgoing edge is true, but token offers to outgoing
edges of actions are independent from the evaluation of guards. For this reason, it is necessary to
additionally insert empty actions (i. e. actions with no effects) at each outgoing edge of the inserted
fork node which is guarded (action ε in Fig. 4.21(b)). By this, all outgoing edges can accept a token
and the inserted actions just act as token buffers.

(a) Implicit fork between action a and
actions x, y.

(b) Explicification of the implicit fork of (a).

Figure 4.21: Explicification of an implicit fork.

Figure 4.22 illustrates the effects of token buffering by means of a simple example which is an
assistance system for decelerating an aircraft after touch down. For deceleration, wheel brakes
and thrust reversers can be used. Both options can be preselected and are automatically applied
considering the following constraints:

• thrust reversers must not be used in flight, i. e. the signal weight-on-wheels (WoW) indicating
that the aircraft hit the ground must be received before

• wheel brakes must not be used if the speed of 120 knots is exceeded

• wheel brakes must not be applied before wheels hit the ground in order to avoid immoderate
abrasion of tires or even tire failures.

If only one of both options is preselected, only this option will be applied. This scenario is
shown for using thrust reversers in Fig. 4.22(b). Green filled circles indicate tokens, green arrows
indicate a token flow. The sequence of single execution steps following Sarstedt [83] is indicated by
the number next to the arrows indicating token flows. T (true) and F (false) indicate the actual
values of guards in the activity.

In a first step, the accept event action listening for the WoW signal is activated. After receiving
WoW, one token is offered to the outgoing edge of the accept event action. This token is offered
to action Reverse whereas neither a token is offered to Brake nor is a token buffered (discarding
of the token is indicated by the red circle filled with a ×) due to the failing guard auto_break
representing the missing preselection of wheel brakes. The evaluation of the guard [speed < 120]
is irrelevant for this activity execution.

If only wheel brakes are preselected, after receiving WoW, a token is offered to Brake. Since if
the speed limit of 120 knots is not exceeded another token is offered to Brake and thus all token
flow prerequisites are satisfied, Brake executes and the token offered to the edge connected to
Reverse is discarded due to the failing guard (Fig. 4.22(c)).

A situation where a token actually is buffered at an outgoing edge of the fork node is shown in
Fig. 4.22(d). The first three steps of the activity execution lead to the execution of Reverse while
brakes cannot be applied because the speed constraint is not satisfied (steps and guards are drawn
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in green color). Since guards of all outgoing edges of the fork node are true, a token is buffered
and contributes to the execution of Brake as soon as the speed constraint is satisfied (indicated by
guards and steps in blue color).

A similar situation is illustrated by Fig. 4.22(e). During this execution, after performing the
first steps (green), neither breaks nor reversers are used because speed is to high for wheel breaks,
which already are selected, reversers are not preselected. If now selecting reversers (indicated by
blue color), Reverse is executed and a token is buffered. Wheel brakes are applied as soon as the
speed falls under 120 knots (indicated by cyan color).

A last scenario is depicted by Fig. 4.22(f). In the same initial situation as before (indicated by
green color), the speed constraint is satisfied (blue) before selecting the reversers (cyan). Wheel
brakes will be used whereas reversers are not activated due to the discarding of the token during
step 3.

(a) Activity for activating wheel
brakes and thrust reversers.

(b) Activity execution activating
thrust reversers only.

(c) Activity execution activating
wheel brakes only.

(d) Activity execution activating
thrust reversers and wheel
brakes afterwards due to to-
ken buffering.

(e) Activity execution activating
reverser due to preselection
after touch down at high
speed.

(f) Activity execution activat-
ing wheel brakes only due
to reverser preselection after
touch down at low speed.

Colors:
• 1st time slice
• 2nd time slice
• 3rd time slice

Figure 4.22: Application of fork node buffering in an example activity.

At a first glance, token buffering is a nice feature to support concurrency where the execution of
one branch is delayed until an additional condition holds which is not relevant for other branches.
In the example given above, wheel brakes and thrust reversers shall be used together. The first
condition affecting both reversers and brakes is that the aircraft must not be in flight. The second
condition only affecting brakes is that speed must not exceed 120 knots. However, by using guards,
two more conditions appear which are the preselection of brakes and reversers. Preselection is
intended to be done before touchdown, the actual activation is effected after touchdown.

On closer inspection, we can see that there is another dependency between actions Reverse
and Brake which is Reverse will never be executed after execution of Brake has started. Suchlike
unobvious dependencies undermine a better perceptibility of relations between elements, which
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is targeted by graphical notation. Furthermore, the example shows that highly sophisticated
semantics of concepts are to be taken with a pinch of salt.

Nevertheless, we support token buffering at fork nodes as described in the following on the
basis of the generic activity given in Fig. 4.23(a). A token may be buffered at the left outgoing
edge of the fork node if a token is offered at B, condition 3 holds, and X cannot accept a token
due to a missing offer at A or the failure of guard 1 while condition 2 holds. At the right outgoing
edge of the fork node, a token is never buffered since it either may traverse the edge or the guard
fails. A token offered at B may also move downstream if a token is offered at A and conditions
1 and 2 hold. Figure 4.23(b) shows the same situation after explication of the implicit join of
incoming edges of X. Regarding the activation guard at the outgoing edge of B, guard 1 should
be considered, however, to the edge connecting the fork and the join nodes, only condition 2 must
be taken into account. Otherwise, token buffering would depend on a more special guard than it
should. Consequently, to a join node representing an implicit join, propagation rules do not fully
comply.

For a statical analysis, a flow of a token from B to X due to offers at B and A and guards 1
and 2 holding while guard 3 fails, is difficult to detect. The reason is that information about the
existence of an offer at A is not available to the thread executing the sequence ending with B.

The problem of token buffering is related to volatile offers. A token offered at B is offered to the
outgoing edges of the fork. Whether this offer is valid can only be determined at that point in time
when tokens actually flow. For action Y, the offer is not stable since it is only valid if condition 3
holds while tokens flow. However, this situation cannot be modeled based on the implementation
of volatile offers since the offer to the join node is volatile, too.

(a) Initial situation requiring
token buffering.

(b) Result of guard propagation
and explication of implicit
join.

(c) Explicit modeling of token buffer-
ing.

Figure 4.23: Explicit modeling of fork node buffering.

Fig. 4.23(c) shows a modification to the initial model making token buffering explicit. If con-
dition 3 holds and a token is offered at B, this token is directly passed to Y. If to that time, also
condition 2 holds, a token is offered to the join, if not, no token is offered. If condition 3 does not
hold, the token activates action ε, which has no effects but offering the token to Y via a merge
node. The token rests at the outgoing edge of ε until condition 3 holds. Note that if condition 3
does not hold, condition 2 must do so in order to satisfy the activation guard. If both conditions
fail, the fork node will not offer any token to any of its outgoing edges. If now a token is offered
at A and conditions 1 and 2 hold, the token offered to the join node at the outgoing edge of the
fork node is accepted causing the region to be interrupted.

An implementation of a fork node having two outgoing edges which possibly both have to
buffer tokens is given in Fig. 4.24(c). It bases on the same idea as the implementation given in
Fig. 4.23(c). Note that the join nodes intersecting the outline of the interruptible activity region
are intended to be not owned by the region.
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(a) Initial situation requiring token
buffering at all outgoing edges.

(b) Result of guard propagation and
explication of implicit join.

(c) Explicit modeling of token
buffering at two outgoing edges
of a fork node.

Figure 4.24: Explicit modeling of multiple fork node buffering.

4.2.7 Further Considerations on Control Nodes
For a proper consideration of control nodes in general, in particular when flows contain more
than one control node, additional research is required including an appropriate formalization of
control nodes’ semantics. A formalization of control nodes would facilitate the definition of rules
for transformations as well as to prove correctness of such rules.

Another approach — which is also supposable in combination with or based on a formalization
of control nodes — is to establish a catalogue of patterns for which implementations are provided.
Code snippets for pattern implementation could then be combined according to the matching of
patterns in a complex activity graph.

An open question is how complex useful control flows may become. For sure, beyond some
degree of complexity, models will also be beyond human comprehension. Consequently, it certainly
is satisfactory to be able to handle flows of a complexity that is still understandable for developers.
Criteria for how to determine whether a flow in this respect is worth being supported at code
generation do not exist. Therefore, we assume that by the techniques presented above, a good
portion of control flows which actually may ease modeling can be processed.

The initial limitation of our approach to support at most one control node between the source
and the target of a flow has been pushed to support an unlimited number of control nodes of the
same type. Furthermore, we consider a number of patterns which we described above. The fact
that flows might occur in models that are not yet covered does not lapse our approach. Suchlike
flows still can be implemented by hand as long as some kind of integration with the generated code
is provided.

A low level approach to implement a complex flow as in Fig. 4.25(a) is to use a combination
of a join node and a downstream fork node, as shown in Fig. 4.25(b). An implementation of any
black box is possible by manually implementing the method canJoin (see Fig. 4.4) of the join node.
This could be achieved by a specialization of the class implementing the join node and method
overriding. The implementation of canJoin by the user must provide the following:

• check token offers and guards at incoming edges of the join node

• decide which actions Xi must be started according to the black box semantics

• for each Xi to be started, set Ui to true

• evaluate guards of outgoing edges of the fork node

• if any guard evaluates to true, offer a token to ε.

The action ε has no effects, it just serves as a segmentation of the flows. If a token is offered to
the join node, the method canJoin is automatically called in order to determine whether ε can be
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started. If it can be started, it has no effects, but the downstream fork node will offer tokens to
actions Xi. The complete control flow net thus is implemented and integrated into the generated
code.

However, an interface for such an implementation should be provided. It should comprise two
elements: a modeling element to indicate a complex control flow which is implemented instead of
being modeled and a hook in code where to insert the complex decision of action activation.
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(b) representing a N–N Black Box by a combi-
nation of JoinNode and ForkNode

Figure 4.25: Abstracting from black boxes.

In the example given by Fig. 4.25(a), canJoin must return true if a token is offered at a1 while
A1 and S1 both evaluate to true. In addition, the token offered at a1 must be consumed and U1
must be set to true. Another situation where the black box can emit a token is another token
additionally offered at a2 and A2 holds while S1 does not hold and at least one of S2 or S3 holds.
Then, canJoin must set either U2 or U3 to true and consume the input offered at a1 and a2 and
offer a token to ε.

4.2.8 Implementing Object Flows
In Fig. 4.5, two options for passing a single object token are given:

int x = c(); d(x); and d(c());

The first alternative is more general since the second alternative requires an unguarded flow directly
from action c to action d. Since pins are a specialization of MultiplicityElement, they may hold
multiple values at the same time according to their lower and upper bounds. Regarding this, a
more general implementation of object flow is given in Listing 4.5.

1 List <int> x = ...
2 x. addAll (c());
3 d(x);

Listing 4.5: Implementation of an output pin

This implementation considers the flow of multiple tokens, but still is not compliant to the
UML specification regarding multiplicity bounds of pins: “An action may not put more values
in an output pin in a single execution than the upper multiplicity of the pin” [69, §11.3.27]. In
order to implement output pins correctly, they must be represented by a list. Relating to the
implementation of Listing 4.5, the length of the list of objects returned by c() must not be greater
than the upper bound of x. Additionally, it must be assured that if an action is executed repeatedly,
tokens of previous executions must flow downstream before tokens created by later executions cause
the pin’s upper bound to be violated. The semantics of activities does not define how to handle
such an output pin overflow.

For guarded object flows, the execution must be paused after adding values to the list repre-
senting the source output pin and must not be resumed before the guard holds.

Actions with an input pin having a lower bound greater than 1 cannot be executed before the
number of offered input tokens reaches the lower bound of the pin. How to consider multiplicity
bounds of pins is shown in Listing 4.6.
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1 List <int> x = ... // implementation of the output pin
2 List <int> i = ... // implementation of the input pin
3 int iupper = ... // upper bound of input i
4 int ilower = ... // lower bound of input i
5 ...
6 case <idc>:
7 x. addAll (c());
8 int upper = x.size () > iupper ? iupper : x.size ();
9 while (upper > ilower ){

10 i. addAll (x. subList (0, upper );
11 x. sublist (0, upper ). clear ();
12 new ActivityThread (<idd>). start ();
13 upper = x.size () > iupper ? iupper : x.size ();
14 }
15 break;
16 case <idd>:
17 d(i);
18 ...

Listing 4.6: Implementation of an object flow considering input and output multiplicities.

If an output pin contains more elements than the upper bound of the downstream target pin,
the target action must be executed repeatedly until the number of remaining token offers does no
longer satisfy the lower bound of the target. Therefore, it is not sufficient to start a downstream
action. Rather, it is necessary to start downstream actions in own threads in order to be able to
start additional, concurrently executing actions (Listing 4.6, line 12).

An action cannot execute if the upstream output pin does not offer enough tokens to satisfy
the lower bound of the action’s input pin. In that case, the current thread ends. During the
activity execution, the upstream output pin may obtain additional objects if the upstream action
is executed again (referred to Listing 4.6, action c may be executed again). The evaluation of
bounds then is performed again and downstream actions might execute.

Object Flows with Control Nodes

The implementation of control nodes needs only little adaptations to support object flow, if only
one node is considered between a source and a target pin. If we assume that only one object flows
at a time, this object must be available for guards. However, even though only one token flows at
a time, multiple tokens may be offered by the source pin. Since the implementation of sequences
of actions is not mapped to different thread classes but code for all sequences is contained in one
single class divided into different case-blocks of a switch statement, it is not possible to refer to
that individual object which has been created in the context of the current sequence execution. In
consequence, if object tokens cannot flow because guards fail, for each token waiting at an output
pin, a thread is waiting as well. Each of these threads will check guards for each waiting token.
With respect to CPU time, optimizations should be applied, but conceptually, this approach will
not fail as long as guard evaluation of different threads is synchronized in order to prevent race
conditions. The number of waiting threads will decrease with each token flow.

If multiple objects must flow at a time because of lower bounds of input pins greater than 1,
guards must be repeatedly evaluated for a set of object tokens until enough valid objects are found
or guards have been evaluated for all objects. This requires more complex code and entails the
problem that the number of waiting threads does not decrease synchronously with the number of
available tokens. We leave this problem which is very likely solvable as well as the more complex
code of guard evaluation for future work.

Concurrent Object Flows

Figure 4.26 gives an example of concurrent object flows. It includes splitting a flow up into parallel
flows (Fig. 4.26(a)) and joining two flows (Fig. 4.26(b)).

Listing 4.7 gives an implementation of a fork of an object flow, Listing 4.8 gives an implemen-
tation for joining object flows.
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[c.value < 100]

[c.value > 10]

[c.value % 2 == 0]

c: Counter

c: Counter

c: Counter

(a) Modeling concurrent object flows.

[c.value < 100]

[c.value > 10]

c: Counter

c: Counter

c: Counter

(b) Joining concurrent object flows.

Figure 4.26: Concurrent object flows.

The main difference compared to a fork node implementation in combination with control flows
is that if objects traverse outgoing edges, these objects are copies of the offered object token (Listing
4.7, lines 20 and 26) and the source object token is removed from the offering output pin (line 30).

With regard to join node implementation, the most important change is that the join class
no longer has lists representing incoming edges. It rather directly accesses output pins, from
which object tokens are offered. Another striking change is that guard evaluation is done within
the canJoin() method. The reason for this is that guard evaluation requires access to objects at
output pins located at the end of other sequences. In order to avoid code duplication, accessing
objects is implemented once as part of the join node implementation.

For both control node implementations, another important difference is that all offered object
tokens must be considered. Therefore, guard evaluation is nested in a foreach-loop which is aborted
as soon as an object is found, for which guards evaluate to true.

1 // Declaration of pins:
2 List <Counter > a_c = ...;
3 List <Counter > x_c = ...;
4 List <Counter > y_c = ...;
5

6 ...
7 while (! a_c. isEmpty ()){
8 Iterator <Counter > it =
9 a_c. iterator ();

10 Counter c;
11

12 while (it. hasNext ()){
13 c = it.next ();
14

15 if (c.value %2 == 0 &&
16 (c.value <100 ||
17 c.value >10)){
18

19 if (c.value <100){
20 x_c.add(c.clone ());
21 new ActThread (<idx>).
22 start ();
23 }
24

25 if (c.value >10){
26 y_c.add(c.clone ());
27 new ActThread (<idy>).
28 start ();
29 }
30 it. remove (c);
31 }
32 }
33 wait ();
34 }

Listing 4.7: General implementation of an ob-
ject flow containing a fork node.

1// Declaration of pins:
2List <Counter > a_c = ...;
3List <Counter > x_c = ...;
4List <Counter > y_c = ...;
5

6class Join1 {
7public boolean canJoin () {
8Counter x_cToken ;
9Counter y_cToken ;
10

11for ( Counter c: x_c ){
12if (c.value <100){
13x_cToken = c;
14break;
15}
16}
17for ( Counter c: y_c ){
18if (c.value >10){
19y_cToken = c;
20break;
21}
22}
23

24if ( x_cToken != null
25&& y_cToken != null){
26x_c. remove ( x_cToken );
27y_c. remove ( y_cToken );
28a_c.add( x_cToken );
29a_c.add( y_cToken );
30return true;
31}
32else return false;
33}
34}

Listing 4.8: General implementation of a join
of two object flows.
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How to join concurrent flows is presented in Listing 4.9 which refers to Figure 4.26(b). An
instance of join node (line 1) as well as a thread waiting for the two flows to be joined (line 2) are
created upon starting the activity execution. In the case block representing the sequence which
starts with action a, a loop implements the waiting until canJoin() returns true. After this loop,
i. e. when the join actually has happened, a new thread waiting on other object tokens to be joined
is created and started (line 16). Afterward, action a is executed by calling method a(a_c) where
a_c is the list representing the input pin of a thus providing required input to the action execution.

1 Join1 j1 = new Join1 ();
2 new ActivityThread (<idj1>). start ();
3 ...
4 case <idx>:
5 ...
6 x_c. addAll (x());
7 id = −1;
8 break;
9 case <idy>:

10 ...
11 y_c. addAll (y());
12 id = −1;
13 break;
14 case <idj1>:
15 while(! j1. canJoin ()) wait ();
16 new ActivityThread (<idj1>). start ();
17 id = <ida>;
18 break:
19 case <ida>:
20 a(a_c );
21 ...

Listing 4.9: Joining object flows.

Alternative Object Flows

Figure 4.27 shows alternative object flows. It contains splitting a flow up into two alternative flows
(Fig 4.27(a)) and merging independent flows (Fig. 4.27(b)). Listing 4.10 gives an implementation
of an alternative branching of an object flow, Listing 4.11 gives an implementation for merging
object flows.

[c.value < 100]

[c.value > 10]

[c.value % 2 == 0]

c: Counter

c: Counter

c: Counter

(a) Modeling alternative object flows.

[c.value < 100]

[c.value > 10]

c: Counter

c: Counter

c: Counter

(b) Merging alternative object flows.

Figure 4.27: Alternative object flows.

Compared to the implementation of decision node with control flows, when using object flows,
the offered object tokens must be placed on the input pin of the target action (Listing 4.10, lines
18 and 24) and removed from the offering output pin (line 30). Since all offered object tokens must
be considered just as it is when implementing fork node, guard evaluation, token flow to target
pins and resetting the thread id must be nested in a loop which is aborted if the id of the current
thread has been changed (checked in line 29). If the id has not been changed, no decision has been
taken and the thread must wait for additional tokens or a change of the system state (line 33).

Implementing a merge node, too, becomes more complex when applying object flows. It is
no longer just setting the same id at the end of different sequences, i. e. as the last statement of
different case blocks. As shown in Listing 4.11, the implementation given in the context of control
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flows must be extended to consume tokens from output pins (lines 13 and 35) and place them
on downstream input pins (lines 14 and 36) and guard evaluation must consider all object tokens
available at the concerning output pin.

Since we consider only one token flowing at a time, a new thread executing the downstream
sequence is created for each token to which guard evaluation succeeded (lines 19 and 41). For the
last token, the current thread is reused by resetting its id (lines 16 and 38).

1 // Declaration of pins
2 List <Counter > a_c = new ...;
3 List <Counter > x_c = new ...;
4 List <Counter > y_c = new ...;
5 ...
6 case <ida>:
7 ...
8 a_c. addAll (a());
9 while (! a_c. isEmpty ()){

10 Iterator <Counter > it =
11 a_c. iterator ();
12 Counter c;
13 while (it. hasNext ()){
14 c = it.next ();
15 if (c.value %2 == 0){
16 if (c.value <100){
17 id = <idx>;
18 x_c.add(c);
19 break;
20 }
21 else if (c.value >10)
22 {
23 id = <idy>;
24 y_c.add(c);
25 break;
26 }
27 }
28 }
29 if (id != <ida>){
30 a_c. remove (c);
31 break;
32 }
33 wait ();
34 }
35 }
36 break;
37 case ...
38

39

40

41

42

43

44

45

46

47

48

49

50

Listing 4.10: Implementation of an object flow
containing a decision node.

1// Declaration of pins
2List <Counter > a_c = new ...;
3List <Counter > b_c = new ...;
4List <Counter > x_c = new ...;
5...
6case <ida>: ...
7a_c. addAll (a());
8id = <idacont>;
9case: <idacont>:
10while(true){
11for( Counter c: a_c ){
12if (c.value <100){
13a_c. remove (c);
14x_c.add(c);
15if (a_c. isEmpty ())
16id = <idx>;
17else{
18new ActivityThread (<idx>).
19start ();
20}
21break;
22}
23}
24if (id == <idacont>) wait ();
25else break;
26}
27break;
28case <idb>: ...
29b_c. addAll (b());
30id = <idbcont>;
31case <idbcont>:
32while(true){
33for( Counter c: b_c ){
34if (c.value >10){
35b_c. remove (c);
36x_c.add(c);
37if (b_c. isEmpty ())
38id = <idx>;
39else{
40new ActivityThread (<idx>).
41start ();
42}
43break;
44}
45}
46if (id == <idbcont>) wait ();
47else break;
48}
49break;
50case ...

Listing 4.11: Implementation of a merged ob-
ject flow.
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Limitations of Object Flow Implementation

The implementation of object flows as presented here is not fully compliant to the UML specifica-
tion. First of all, more than one token may flow at a time if the weights of concerned edges do not
prevent from multiple objects flowing at the same time.

Furthermore, the presented approach does not consider multiplicity bounds of pins. To include
this, guard evaluation must be done for all objects available for a flow and those objects which
might flow must be marked, but not yet moved to the target input pin. If they are moved to the
target pin before the lower bound of the receiving pin is reached, the moved object is no longer
offered to other pins which might be able to consume it.

A merge of object and control flow is possible at join node. Control tokens must be offered
together with object tokens, but only the latter ones are offered at outgoing edges.

A problem related to guard evaluation is that after applying propagation rules, referring to
the object tokens in guards may result in name clashes. Therefore, naming of output pins must
be thoroughly done. Alternatively, keywords could be used to access object tokens, e. g. object or
data, or special characters could denote the object actually flowing, e. g. $.

4.2.9 Executing Activities
Listing 4.12 shows the skeleton of an activity implementation.

1 class Activity extends Thread {
2 private int id;
3

4 public static void activate (boolean concurrent ){
5 if ( concurrent ) new Activity (0). start ();
6 else new Activity (0). run ();
7 }
8

9 public Activity (int id){
10 this.id = id;
11 }
12

13 public void run (){
14 while (id >= 0){
15 switch (id){
16 case 0:
17 new Activity (1). start ();
18 new Activity (2). start ();
19 new Activity (3). start ();
20 case 1:
21 // Implement AcceptEventAction without incoming flows.
22 // After receiving a signal , reactivate AcceptEventAction
23 new Activity (1). start ();
24 // Execute the downstream actions
25 ...
26 case 2:
27 // Implement AcceptEventAction without incoming flows.
28 // After receiving a signal , reactivate AcceptEventAction
29 new Activity (2). start ();
30 // Execute the downstream actions
31 ...
32 case 3:
33 // Implement sequences of actions
34 ...
35 }
36 }
37 }
38 }

Listing 4.12: Implementation of an Activity.
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The activity execution is started by calling the static method activate(concurrent). The
parameter concurrent determines if the activity is executed concurrently. An execution is created
and the initiation sequence implemented in the case 0 branch is run. In this branch, all sequences
starting with an initial node as well as sequences starting with AcceptEventActions (without
incoming flows) are started. In the given example, the branches case 1 and case 2 are considered
to start with such kind of automatically activated AcceptEventActions. The reactivation after a
signal receipt is implemented by creating a new thread running the same sequence again.

Since a flow reaching an ActivityFinalNode causes the execution to end and consequently, each
executing action to be aborted, an activity itself can be seen as an InterruptibleActivityRegion.
Therefore, in the next section, besides interrupting InterruptibleActivityRegion, ending an activity
execution is presented.

4.2.10 Interruptible Activity Region
As its name suggests, InterruptibleActivityRegion groups flows and actions that are interruptible,
i. e. which can be aborted. But yet another important feature is its impact on starting action
executions:

AcceptEventActions in the region that do not have incoming edges are enabled only
when a token enters the region, even if the token is not directed at the accept event
action. [69, §12.3.33]

This is similar to the situation of AcceptEventActions outside an InterruptibleActivityRegion which
are activated when the containing activity starts executing.

Figure 4.28 shows an attempt to make the activation of AcceptEventActions inside an Interrupt-
ibleActivityRegion explicit by a model transformation. Each flow entering the region is forked in
order to enable the flow target as well as the AcceptEventActions. Forked flows of all flows entering
the regions are merged. This merged flow then is forked in order to enable all AcceptEventActions.

This model transformation may result in multiple action executions for AcceptEventActions
inside the region if more than one token enters the region. However, the transformation is still se-
mantically correct since action executions without incoming edges are executed again after a signal
receipt. Thus, there is no difference between multiple concurrently executing AcceptEventActions
and a single execution: each signal arriving after a token entered the region and before this region
is aborted is received.

a x

(a) InterruptibleActivityRegion with implicit activation
of AcceptEventActions.

a x

(b) InterruptibleActivityRegion with explicit activation
of AcceptEventActions.

Figure 4.28: Control flow semantics for AcceptEventAction without incoming flows inside
InterruptibleActivityRegion

Listing 4.13 shows that the problem of AcceptEventActions without incoming flows located in
an InterruptibleActivityRegion can easily be faced at the level of generated code. The activation of
such AcceptEventActions is moved from the initiation sequence of the activity into an initialization
method of the InterruptibleActivityRegion. By means of the boolean flag init, it is assured that
activation of AcceptEventActions only happens once. When actions inside the region are aborted,
init must be set to false in order to cause the next entering token to activate AcceptEventActions
again.
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1 class IR{
2

3 private boolean init = false;
4

5 public synchronized void init (){
6 if (! init ){
7 init = true;
8 new <ActivityName>(1). start ();
9 new <ActivityName>(2). start ();

10 }
11 }
12 ...
13 }

Listing 4.13: Initialisation of InterruptibleActivityRegion.

Supporting abortion of executions related to actions inside a region necessitates to recognize
entering and exiting flows as well as to distinguish normal exiting flows from interrupting ones.
Figure 4.29 shows an example of an InterruptibleActivityRegion containing two sequences of ac-
tions. Since both sequences are mapped to an executing thread, the basic idea of implementation
is:

• register threads executing actions contained in an InterruptibleActivityRegion

• unregister registered threats when leaving the InterruptibleActivityRegion

• if leaving the region via an interrupting edge, interrupt all registered threads.

Listing 4.14 shows an implementation for registering and unregistering threads (lines 3–8) as
well as for interrupting threads if the region is interrupted (lines 9–14).

21

xa

zd

b

c

y

Figure 4.29: InterruptibleActivityRegion
with an interrupted and an
interrupting flow.

1 class IR{
2 List <Thread > threads = new ...;
3 public void add( Thread t){
4 threads .add(t);
5 }
6 public void remove ( Thread t){
7 threads . remove (t);
8 }
9 public void terminate (){

10 for ( Thread t: threads )
11 t. interrupt ();
12 for ( Thread t: threads )
13 t.join ();
14 }
15 }

Listing 4.14: Implementation pattern for an
InterruptibleActivityRegion.

An implementation of the left sequence 1 (a, b, c, d) is given by Listing 4.15. When entering the
region, i. e. after executing a and before executing b, the current thread adds itself to a list of active
threads inside the region (line 2). When leaving the region via a normal (i. e. non-interrupting)
edge, the thread removes itself from the list as it is no longer affected by abortion of the region
(line 13) [39]. Before and after executing an action, it must be tested if the region has been
interrupted (lines 4 and 9). For long running actions, suchlike tests should be performed during
action execution in order to be able to cooperatively end the action execution if needed.
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The implementation of the right sequence 2 (x, y, z) leaving the region via an interrupting edge
is given by Listing 4.16. It also contains code for registering and unregistering the thread (lines 2
and 4). For actually aborting all actions inside the region, ir1.terminate() is called (line 5). The
implementation of that method might either kill all threads, sent a message requesting the threads
to terminate, or set a flag which is checked before new actions are executed. One of the two latter
options probably is preferable as killing threads — although closer to the specification — is quite
risky [39]. The implementation given in Listing 4.14, lines 9–14 notifies all affected threads and
waits for their termination before the method call returns.

1 case 1: a();
2 ir1.add(this);
3 b();
4 if ( isInterrupted ){
5 id = −1;
6 break;
7 }
8 c();
9 if ( isInterrupted ){

10 id = −1;
11 break;
12 }
13 ir1. remove (this)
14 d();
15 ...

Listing 4.15: Implementation pattern for an
interruptible action sequence.

1 case 2: x();
2 ir1.add(this);
3 y();
4 ir1. remove (this);
5 ir1. terminate ;
6 z();
7 ...
8

9

10

11

12

13

14

15

Listing 4.16: Implementation pattern for an
interrupting flow.

A proper implementation of interruptible regions requires, when interrupted, to clear those lists
of join nodes which represent edges having their source located inside the region and fork nodes
within the region to discard buffered tokens [39].

The implementation of ActivityFinalNode can be based on InterruptibleActivityRegion. The
same mechanism to register active parts of an InterruptibleActivityRegion is used to manage active
parts of an activity. The implementation of ending an activity then is implemented by considering
the whole activity as an InterruptibleActivityRegion and each flow to an ActivtyFinalNode as an
interrupting edge.

4.2.11 Preparing Activities by Model Transformations
A model transformation can keep our code generation straightforward by applying three steps:

1. make implicit forks and joins explicit

2. move sequences of actions to separate behaviors and replace them by CallBehaviorAction

3. if possible, replace multiple control nodes by a single one [39].

An activity and the result of the transformation is shown in Fig. 4.30. Note that the two object
flows between a1 and a2 are not handled as an implicit fork and subsequent join since both flows
can be implemented as in Fig. 4.5 [39].

The transformation At of activity A only contains actions of type CallBehaviorAction which
implement simple sequences of actions. If A contained a CallBehaviorAction (say action a2), it
was moved to activity X. Consequently, each CallBehaviorAction of At is mapped to an activity
containing only a sequence of actions, each CallBehaviorAction occurring in a sequence represents
a call of another behavior. All control nodes sequencing the sequences of actions remain in At.
Thus, finding sequences is part of the transformation whereas sequencing of sequences is part of
the code generation [39].

Since all actions still persist – even though at a different location – mapping actions of At to
actions of A can easily be done if necessary e. g. for the development of a debugger. In our approach,
debugging is done by using our interpreter, but adding debug information to the generated code
in principle is possible [39].
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Figure 4.30: Transformation of an activity [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

What happens to InterruptibleActivityRegion?

The proposed transformation leads to a model that in one concern is no longer in line with the UML
semantics: Actions contained in the same region or activity partition may be moved into different
activities, but still the information of being contained in a common container must persist. As
can be seen in Fig. 4.29, such a situation occurs if an InterruptibleActivityRegion contains distinct
sequences of actions. The implementation of all those sequences must refer to the same region
(Listing 4.15 and Listing 4.16 both refer to ir1).

At the level of the transformed model, it is not possible to include actions that are owned by
different activities in the same region — or in other words: one region can not be spread across
multiple activities. This problem is fixed by including interruptible activity regions of the same
name in each activity containing an action sequence which is affected by an abortion of the region
or may cause it. Since all sequences are implemented in the same code class, they refer to the same
region by name.

However, interruptible activity regions without any interrupting edge look quite strange, but
we do not mind because the transformed model is an intermediate result at a level the user should
not work on.

4.2.12 Semantical Resolution of Behavioral Concepts at a Glance

In the previous sections of this chapter we have outlined that activities can be divided into a set of
sequences of actions. The semantics of such sequences is trivial, since it is the consecutive execution
of the contained actions. These sequences of actions are mapped to threads. Thus, concurrency is
supported. Guards at edges between actions or output and input pins are considered by suspending
threads. InterruptibleActivityRegion is supported by registration and if necessary termination of
threads affected by interruption of a region. Object flows are covered by the implementation of
pins as typed sets.

Apart from a general pattern which partitions an activity into sequences of actions, semantics
of control nodes is discussed and implementations are given which are needed to combine threads
representing sequences of actions. Guard propagation, reordering of control nodes as well as im-
plementation of complex flows by the user are considered for coping with flows containing multiple
control nodes.

An important semantic issue we do not consider is the weight of edges. By specifying a weight,
the number of tokens flowing together at the same time can be specified. In our approach, it is
assumed that the weight of all edges is 1.

By intelligently combining the different concepts, we successfully implement activities in Java.
The result is a kind of framework, in which actions can be executed. Therefore, the next step
towards generating code for behavior is to examine the semantics of UML actions and derive
implementations for actions. The following section is about this issue.
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4.3 Actions
Action is the fundamental unit of executable functionality. UML’s specification contains 37 con-
crete actions for various purposes, e. g.:

• specializations of StructuralFeatureAction support reading and writing of attribute values

• specializations of LinkAction provide creation and destruction of links of associations, as well
as reading navigable association ends

• CallOperationAction causes a behavior which implements the called operation to execute

• CallBehaviorAction directly invokes another behavior.

The sequencing of action executions is defined by control and object flows. Each action is
executed in its own context, which — according to the specification — is the owner of the behavior
containing the action [69]. If an action accesses features of a classifier, those features must be
visible to the context object of the action.

We assume that the context of an action should be the context of the behavior containing the
action rather than the owner of such a behavior itself, because the owner of a behavior might be
another behavior. But the context of an activity is the owning BehavioredClassifier, if any, or
if an activity is not directly owned by a behaviored classifier, its context is the first behaviored
classifier reached by following the chain of ownership; if it is ultimately not owned by a classifier,
then the context is the activity instance itself [69, §13.3.2]. By defining the context of an action as
the owner of the behavior containing it, the context of an activity and an action contained by this
activity might be different objects.

Besides graphical modeling of activities, UML encourages the use of a surface action language
which encompasses both primitive actions and the control mechanisms provided by behaviors. A
surface action language could introduce higher-level constructs such as e. g. a creation operation
with initialization as a single unit as a shorthand for the create action to create an object and
further actions to initialize attribute values and create objects for mandatory associations [69,
§11.1].

Foundational UML (fUML) [72], a subset of UML, and the Action Language for Foundational
UML (Alf) [71] both have been specified by the OMG. Although only very few new constructs have
been introduced, using Alf may have advantages compared to traditional graphical modelling.

Fig. 4.31(a) shows an activity for setting the value of an attribute of the context object,
Fig. 4.31(b) shows the same activity in Alf. Here, the graphical notation is more complex than a
textual, code-like representation. The Quicksort example of the Alf specification [71, pp. 333, 335]
contrasts an Alf implementation of 10 lines with a graphical representation consuming a whole A4
page. Another advantage of Alf is that it can be seen which feature is updated. In the graphical
notation of UML, this detail is not presented [39].

(a) Graphical UML notation.

1 activity SetName(in _ name: String)
2 {
3 this.name = _ name;
4 }

(b) Implementation in Alf

Figure 4.31: Graphical vs. textual representation of an activity [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

But regardless of advantages and drawbacks of both, graphical representation and Alf, two
problems remain unsolved:

• behavioral modeling in UML is based on very fine grained actions which are not suitable to
reach a higher level of abstraction or bringing out a big picture

• the poor tool support of activities is not addressed by introducing another representation of
activities [39].
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As our approach comprises code generation from behavioral models, implementations of actions
are required. Those implementations complete the code generated to implement activities as
described in Sect. 4.2. Implementations of activities and actions together build a strong foundation
for code generation from behavioral models.

4.3.1 Semantics of Actions and Implementations
In this section, we explain the semantics of those actions considered in our approach and give
suitable implementations. For each action, we will refer to its purpose, its inputs and outputs,
further features if applicable and, if relevant for our approach, its constraints.

Action

VariableAction

SendObjectAction

RemoveStructuralFeatureValueAction

ReplyAction

RemoveVariableAction

ReduceAction

ReclassifyObjectAction

ReadVariableAction

ReadStructuralFeatureAction

ReadSelfAction

ReadLinkObjectEndQualifierAction

ReadLinkObjectAction ReadLinkAction

ReadIsClassifiedObjectAction

ReadExtentAction

RaiseExceptionAction

OpaqueAction

DestroyObjectAction

DestroyLinkAction

CreateObjectAction

CreateLinkObjectAction

LinkAction

WriteLinkAction

CreateLinkAction

ClearStructuralFeatureAction

ClearVariableAction

ClearAssociationAction

CallOperationActionCallBehaviorAction

CallAction

InvocationAction

BroadcastSignalAction

WriteVariableAction

AddVariableAction

StructuralFeatureAction

AddStructuralFeatureValueAction

AcceptEventAction

WriteStructuralFeatureAction

AcceptCallAction

SendSignalAction

StartClassifierBehaviorActionStartObjectBehaviorAction

TestIdentityAction

UnmarshallAction

ValueSpecificationAction

Figure 4.32: UML meta-model of Action.4

4Actions with names written gray are not considered, according to UML notation, abstract classes are labeled in
italics.
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Figure 4.32 shows all actions defined in UML and their generalization relationships. The black
printed actions are considered in our approach in detail and explained in the following. These
actions are related to static structure and therefore are of particular interest for our work. The
gray printed actions are included in the figure for giving a survey of all actions available in UML.

At first, we will have a look at actions related to object creation and destruction. Afterward
we address specializations of StructuralFeatureAction, followed by a discussion of specializations
of LinkAction. Finally, we will survey actions for communication by signal processing and some
other general purpose actions.

When referring to features of an action, say the type of its result, this is indicated by using
gray font in angle brackets, e. g. <result.type>. If model elements are preprocessed by a macro,
the name of the macro is written in green and a reference to the appendix follows the macro call
(e. g. ↗X.n).

Visibility of Action

Action is a specialization of NamedElement and inherits the attribute visibility, but the semantics
of visibility of an action is undefined. Actions are parts of activities and executed when control
and object flow prerequisites are satisfied. Thus, the execution of an action is an effect of the
execution of an activity which controls the executions of its own actions. Since actions are always
owned by the activity in which they are contained, this owning activity can access them regardless
of the specified visibility. Another activity cannot trigger the execution of an action, thus another
visibility than protected seems useless to us5. We consider visibility of actions to be another case
where UML designers have been fallen into the overgeneralization trap [91].

CreateObjectAction

CreateObjectAction instantiates a classifier which may neither be abstract, nor an Association-
Class. It is associated with the classifier to be instantiated. The created instance is placed on an
output pin. The type of the output pin must be the same as that of the created classifier and
its multiplicity is 1..1. The action has no other effect like e. g. initialization of structural features.
Therefore, it conforms to calling a parameterless constructor in Java. Such a constructor must be
provided by all classifiers. An implementation is given by Listing 4.17.

<result.type> <result.name> = new <classifier>();

Listing 4.17: Implementation of CreateObjectAction.

DestroyObjectAction

DestroyObjectAction action supports destruction of objects which are provided to an untyped
input pin. Whether links in which the object participates are destroyed is specified by the attribute
isDestroyLinks. Its default value is false, i. e. links are not deleted.

The semantics of an object destruction without destruction of links referencing this object is
undefined. In Java, destroying the links is necessary to make the object accessible to the garbage
collector. Other languages may support links referencing destroyed objects, but the impact on
multiplicities or return values of actions reading link values is not considered by the specification.

The attribute isDestroyOwnedObjects specifies whether objects owned by a composite aggre-
gation are destroyed together with the object. This is probably intended to be a shortcut for
removing owned objects before destruction. However, whether to remove all owned objects is valid
with respect to specified lower bounds is not considered.

How to properly implement this action depends on the target language. As we refer to Java,
we give a strategy for how to let the garbage collector remove this object from the heap in Listing
4.18.

<target>. destroy (<isDestroyOwnedObjects>);

Listing 4.18: Implementation of DestroyObjectAction.

5Regarding specialization applied to activities, besides private visibility, protected visibility is feasible.
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This implementation just delegates the destruction to the object to be destroyed (Listing 4.19).
If owned objects are to be destroyed, too, then destroy is invoked for each owned object.

The actual destruction of an object is indirectly achieved by making an object accessible for the
garbage collector. This requires that no reference to an object exists. Consequently, efficient access
to all references is needed. An easy way to ensure efficient access to all references to objects is to
replace attributes to non-primitive types by associations. Then it is possible to find all associations
in which the classifier participates of which an instance is to be deleted, to identify links of which
the instance to be destroyed is a value, and to remove such links:

∀a ∈ Association : a.memberEnd.contains(instance.classifier) :
∀l ∈ a, l.contains(instance) :
a.remove(l)

For a convenient implementation in Java, a set of all associations must be provided and links must
provide the method contains(instance) which returns true, if instance is equal to any value of the
link. The generation and initialization of such data structures as well as the implementation of
such methods should be addressed as part of the code generation. Here, we assume that a mapping

Associations : Classifier → P(Association)

exists which maps a classifier to all associations in which it participates. The destruction of an
object is given in Listing 4.19.

public void destroy (boolean destroyOwnedObjects ){
if ( destroyOwnedObjects ){

for( Object o: ownedObjects ){
o. destroy (true);

}
}
for( Association a: associations .get(this.class){

for(Link l: a. getLinks ()){
if (l. contains (this)

a. remove (l);
}

}
}

Listing 4.19: Implementation of object destruction by dereferencing.

ReadSelfAction

By ReadSelfAction, the host object of an action is retrieved. The result is provided to the output pin
result. The method getContext() used in the implementation of Listing 4.20 returns the instance
which builds the context for the activity execution. The context of an activity is the owning
BehavioredClassifier, if any. If an activity is not owned by a behaviored classifier, its context is
the first behaviored classifier reached by following the chain of ownership. If it is ultimately not
owned by a classifier, then the context is the activity instance itself [69, §13.3.2].

In order to be independent from the model at execution time, the context should be passed as
a parameter to methods which start activities. Thus, the context is referenced by each activity
execution and can easily be retrieved when a ReadSelfAction executes.

<result.type> <result.name> = this. getContext ();

Listing 4.20: Implementation of ReadSelfAction.

CallOperationAction

CallOperationAction is associated with an operation. It transmits an operation call request to
the instance placed at its input pin target. Parameters of the called operation must be supplied
by placing values on input pins. Therefore, number and type of parameters of the action must
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conform to those of the called operation. Accordingly, the number and type of output pins of the
action must be consistent with parameters of type return, in-out, and out of the operation.

The call may either be synchronous or asynchronous. If synchronous, the caller is blocked and
continues execution when the behavior implementing the invoked operation completes and results
are placed on the output pins. An implementation is given in Listing 4.21.

if (outputs.isEmpty())
<target>.<operation>(<createParameterValues(inputs)>↗A.2 );

fi
if (outputs.size()==1)

<result.type> <result.name> =
<target>.<operation>(<createParameterValues(inputs)>↗A.2 );

else
for i=0..outputs.size()

<outputs[i].type> <outputs[i].name> = new <OutputPinImplementation>();
end

<target>.<operation>(<createParameterValues(inputs, outputs)>↗A.3 );
fi

Listing 4.21: Implementation of CallOperationAction (isSynchronous = true).

The call createParameterValues(inputs, outputs) is intended to return a string representation of
arguments of the operation call. It is used here in order to omit details of parameter implementa-
tions like using a collection type for multi-valued pins. Details are provided in Appendix A.

If the call is asynchronous, the caller continues execution immediately after the call request has
been transmitted without waiting for the invoked behavior to complete and without receiving any
return values like implemented in Listing 4.22. Nevertheless, the action must have output pins like
it is when being marked synchronous even though these pins will never contain any values other
than null. This obviously is an error in the constraints defined for this action where existence of
output pins and conformance to according parameters of the called operation is not claimed for
synchronous calls only.

new Thread (){
public void run (){

<target>.<operation>(<createParameterValues(inputs)>↗A.2 );
}

}. start ();

Listing 4.22: Implementation of CallOperationAction (isSynchronous = false).

ClearStructuralFeatureAction

ClearStructuralFeatureAction is a specialization of StructuralFeatureAction. StructuralFeature-
Action is associated to the structural feature which is to be accessed and provides an input pin
from which the object whose feature is to be accessed is obtained.

Additionally, ClearStructuralFeatureAction may have an output pin on which the modified
object is placed. An implementation for this action is given in Listing 4.23. If the feature’s upper
bound is greater than 1, its implementation is a list which is to be cleared, otherwise, it is a
single-valued attribute whose value is to be set to null.

if <structuralFeature.upper != 1>
<object>.<structuralFeature>.clear ();

else
<object>.<structuralFeature> = null;

fi
if (result != null)

<result.type> <result.name> = <object>;
fi

Listing 4.23: Implementation of ClearStructuralFeatureAction.
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ReadStrucutralFeatureAction

In addition to the characteristics inherited from StructuralFeatureAction, ReadStructuralFeature-
Action must provide an output pin on which the result is put. Since the multiplicity of the output
pin must be compatible with the multiplicity of the feature, the output pin may support multiple
values even when the structural feature is single-valued. Therefore, the implementation given in
Listing 4.24 determines whether a single value or an array of values is to be returned by checking
the output pin’s upper bound.

if (<result.upper != 1> && <structuralFeature.upper != 1>)
List <<result.type>> <result.name> = new LinkedList <<result.type>>();
<result.name>. addAll (<object.structuralFeature>);

else if (<result.upper != 1> && <structuralFeature.upper == 1>)
List <<result.type>> <result.name> = new LinkedList <<result.type>>();
<result.name>.add(<object.structuralFeature>);

else
<result.type> <result.name> = <object>.<structuralFeature>;

fi

Listing 4.24: Implementation of ReadStructuralFeatureAction.

AddStructuralFeatureValueAction

AddStructuralFeatureValueAction is a specialization of WriteStructuralFeatureAction which itself
is a StructuralFeatureAction. WriteStructuralFeatureAction may have an input pin value and an
output pin result. If present, the object obtained from the inherited input pin object, as modified,
is placed on the output pin.

AddStructuralFeatureValueAction requires the optional input pin inherited by WriteStruc-
turalFeatureAction and additionally has an input named insertAt if (and only if) the structural
feature is ordered, which gives the position at which to insert the new value. If the structural
feature is ordered and unique and the value to add is already contained in the set of its values, the
value is moved to the specified position.

The attribute isReplaceAll, which by default is false, specifies whether or not the structural
feature should be cleared before inserting a new value. If the value to add already exists, then
the structural feature is not cleared. An implementation considering the characteristics of the
structural feature as well as isReplaceAll is shown in Listing 4.25.

if (<isReplaceAll>)
if(!<object>.<structuralFeature>. contains (<value>))

<object>.<structuralFeature>.clear ();
fi

if (<structuralFeature.isUnique> && !<structuralFeature.isOrdered>)
if(!<object>.<structuralFeature>. contains (<value>))

<object>.<structuralFeature>.add(<value>);
else if (<structuralFeature.isUnique> && <structuralFeature.isOrdered>)

if(<object>.<structuralFeature>. conatins (<value>))
<object>.<structuralFeature>. remove (<value>);

<object>.<structuralFeature>.add(<insertAt>, <value>);
else if (<!structuralFeature.isUnique> && <structuralFeature.isrOdered>)

<object>.<structuralFeature>.add(<insertAt>, <value>);
else

<object>.<structuralFeature>.add(<value>);
fi

<output> = this;

Listing 4.25: Implementation of AddStructuralFeatureValueAction.
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RemoveStructuralFeatureValueAction

RemoveStructuralFeatureValueAction, too, is a WriteStructuralFeatureAction.
The boolean attribute isRemoveDuplicates specifies whether to remove duplicates of the value

in non-unique structural features. If a non-unique structural feature is ordered and isRemoveDu-
plicates is false, then the action must have the input pin removeAt in order to allow for specifying
the position of the value to remove. Otherwise, the value to be removed is obtained by the inherited
input pin value and the action must not have a removeAt input pin. Listing 4.26 implements this
action.

if (<isRemoveDuplicates>)
while(<object>.<structuralFeature>. contains (<value>))

<object>.<structuralFeature>. remove (<value>);
else if (!<structuralFeature.isUnique> && <structuralFeature.isOrdered>)

<object>.<structuralFeature>. remove (<removeAt>);
else

<object>.<structuralFeature>. remove (<value>);
fi

Listing 4.26: Implementation of RemoveStructuralFeatureValueAction.

LinkAction

“LinkAction is an abstract class for all kind of link actions that identify their links by the objects
at the ends of the links” [69, §11.3.21]. Figure 4.33 shows an excerpt of the UML abstract syntax
from which the mechanism of identifying and accessing links can be seen.

A link action owns two or more instances of LinkEndData called endData. Each of these
endData is associated with a property representing an association end and an input pin. That
way, input pins are mapped to association ends. The input of a link action consists of the input
pins associated to its endData. For identifying links, objects which are placed on the input pins
of the link action are used. If all endData are associated with an input pin, all ends are supplied
with a specific value and a single link can be identified. If one endData element has no input pin,
the end to which this element is associated is called the open end.

LinkAction

Action InputPin

LinkEndData

Property

{subsets action}
+ linkAction

+ action

0..1

{subsets owner}
+ linkAction

{subsets ownedElement}
+ endData

2..*

1
+end

*

+ /input

{subsets input}
+ inputValue

+ value
0..1

1..*

*0..1

1

Figure 4.33: Abstract syntax of LinkAction.

ReadLinkAction

ReadLinkAction reads the values of a navigable end of an association. It is a specialization of
LinkAction. The end to be read is the open end, i. e. the endData element associated to this end
has no input pin. Thus, no value for this end can be provided to the action.

The input of ReadLinkAction identifies a subset of all existing links of an association, such that
the values for the specified ends of the link are the objects provided as input. The values of the
open end of these identified links are the output of the action.

Listing 4.27 gives an implementation. The association concerned by the action is identified
by the first endData element. Since the end of each endData element must belong to the same
association, any endData element can arbitrarily be chosen for this purpose. The item openEnd
denotes the endData element that is not associated with an input pin. The arguments passed to
the get method of the association are provided by the macro createParameterValues (see Appendix
A) operating on the set of endData except for the openEnd.
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In Chapter 3, Sect. 3.6, an implementation of association is provided. This implementation
offers methods to retrieve associated instances of a given context. ReadLinkAction can directly use
these methods, if the method parameters and input pins are in the same order, e. g. alphabetically
sorted by their names.

<result.type> <result.name> =
<endData[0].end.association>.get<openEnd.name>(

<createParameterValues(endData \openEnd)>↗A.2 );

Listing 4.27: Implementation of ReadLinkAction.

CreateLinkAction

This action is a WriteLinkAction which itself is a LinkAction. EndData of a WriteLinkAction must
not have an open end, i. e. all LinkEndData elements must be associated to an input pin.

EndData is redefined in CreeateLinkAction so that its type is LinkEndCreationData, which is
a specialization of LinkEndData. LinkEndCreationData adds the boolean attribute isReplaceAll.
If the association end to which a link end creation data refers to is ordered, LinkEndCreationData
provides an additional input pin for specifying the position where to insert the new link. An
implementation for CreateLinkAction basing on the association implementation of Chapter 3,
Sect. 3.6 is given in Listing 4.28. For unordered association ends, the parameter specifying the
position for insertion of the new link is obsolete.

A correct consideration of the attribute isReplaceAll requires that the association provides
additional methods for each end. These methods must delete all links in which a given instance
participates, regardless of values at other ends. An implementation is given in Listing 4.29. Before
creating a new link, these methods are called for association ends according to the specification
of isReplaceAll of associated endData. The macro createParameterValues must provide values for
link ends and positions where to insert values for ordered association ends.

for i=0..<endData.size>
if (<endData[i].isReplaceAll>)

<endData[i].end.association>. destroyAll (<endData[i].value>);
fi end

<endData[0].end.association>.createLink(<createParameterValues(endData)>↗A.2 );

Listing 4.28: Implementation of CreateLinkAction.

1 /* list of links of the association */
2 private List <Link > tuples = new LinkedList <Link >();
3

4 public void destroyAll (A a){
5 for(Link l : tuples ){
6 if(l.a == a)
7 tuples . remove (l);
8 }
9 }

Listing 4.29: Implementation of isReplaceAll.

CreateLinkObjectAction

A specialization of CreateLinkAction operating on association classes is CreateLinkObjectAction.
The additional semantics provided by this action is that the link object is placed on the output
pin result. Accordingly, the implementation given in Listing 4.30 is similar to that of create link
(Listing 4.28). Considerations about isReplaceAll and ordered association ends are applicable in
the same way as they are for CreateLinkAction. If a link already exists and no duplicates are
allowed, than the action returns the existing link as result, if duplicates are allowed, lines 3 to 7 of
Listing 4.31 are to be removed.
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<output.type> <output.name> =
<endData[0].end.association>. createLinkObject (

<createParameterValues(endData)>↗A.2 );

Listing 4.30: Implementation of CreateLinkObjectAction.

1 public Link createLinkObject (A a, B b, ...){
2 if (a != null && b != null && ...){
3 for (Link link : tuples ){
4 if (link.a == a && link.b == b && ...){
5 return link;
6 }
7 }
8 Link l = new Link(a, b, ...);
9 tuples .add(l);

10 return l;
11 }
12 return null;
13 }

Listing 4.31: Adapted implementation of link creation for link object creation.

ReadLinkObjectEndAction

ReadLinkObjectEndAction is another action operating on AssociationClass, which is both kind of
an association as well as kind of a class. The features of an association class inherited by Class
can be accessed as if the link object was a normal instance of a class. ReadLinkObjectEndAction
is an action that provides access to objects via the ends of a link object. Thus, it is possible to
access the objects which are related by a specific link object, however, end objects cannot access
the link object but rather objects of opposite ends.

Inputs of ReadLinkObjectEndAction are the link object and the end to be read, the output is
the end object. Listing 4.32 gives an implementation for this kind of action.

<result.type> <result.name> = <object>.get<end.name>();

Listing 4.32: Implementation of ReadLinkObjectEndAction.

DestroyLinkAction

DestroyLinkAction is a WriteLinkAction that destroys a specified link. For the identification of
the link to be destroyed, instances of LinkEndDestructionData, which is a specialization of Link-
EndData, are used to specify the endData. LinkEndDestructionData supports to define whether
duplicates are to be destroyed by means of the boolean attribute isDestroyDuplicates. Further-
more, for ordered non-unique ends, an input pin named destroyAt is used to specify the link by
its position rather than by its end value.

Listing 4.33 gives an implementation which makes use of the link management provided
by association implementation. From the action inputs, parameters for calling the method
destroyLink(...) are obtained.

The actual implementation for deleting links identified by their end values is given by Listing
4.34. The deletion of links for non-unique, ordered associations is given by Listing 4.35.

<endData[0]>.<end>.<association>. destroyLink (
<createParametersValues(input), isDestroyDuplicates>)↗A.2;

Listing 4.33: Implementation of DestroyLinkAction.
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1 public void destroyLink (A a, ..., N n, boolean destroyDuplicates )
2 {
3 List <Link > toRemove = new LinkedList <Link >();
4 for (Link link : tuples_A )
5 if (link.a == a && ... && link.n == n){
6 toRemove .add(link );
7 if (! destroyDuplicates )
8 break;
9 }

10 }
11 for (Link link : toRemove )
12 tuples_A . remove (link );
13 ...
14 tuples_N . remove (link );
15 }
16 }

Listing 4.34: Implementation of destroyLink in an implementation class of an association.

1 public void destroyLink (int posA , ..., int posN)
2 {
3 tuples_a . remove (posA );
4 ...
5 tuples_N . remove (posN );
6 }

Listing 4.35: Implementation of destroyLink in an implementation class of an association for an
ordered, non-unique association.

ClearAssociationAction

This action destroys all links of a statically-defined association in which the object placed on the
input pin at runtime participates. Since the action has no parameter to specify the end at which
the object participates in the link, it is not possible to clear a reflexive association in a way that
only links are destroyed in which the input object participates in a special role.

The implementation of this action is given by Listing 4.36. It calls a method that should be
implemented in the scope of association implementation, as shown in Listing 4.37.

<association>.clear(<object>);

Listing 4.36: Implementation of ClearAssociationAction.

1 public void clear( Object value ){
2 List <Link > toRemove = new LinkedList <Link >();
3 for (Link link : tuples ){
4 if (link.a == value || ... || link.n == value ){
5 toRemove .add(link );
6 }
7 }
8 for (Link link : toRemove )
9 tuples . remove (link );

10 }
11 }

Listing 4.37: Implementation of Clear.
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SendSignalAction

A SendSignalAction sends a signal to a target object, which is placed on an input pin. The type
of the signal is statically defined. The action may have additional inputs. The signal to be send is
created by the action from its inputs.

At the target object, a SignalEvent occurs. The occurrence of such an event may have an
immediate effect or it may be saved and trigger an effect later, i. e. by being processed by an
AcceptEventAction. In either case, it is suitable to first store the occurrence of an event in the
input event pool of the target object. If it can be processed, it is removed from the input event
pool and associated data, e. g. the signal instance, are made available to the behavior consuming
the event.

The event pool is part of the target object and therefore, adding an event to the pool is in the
responsibility of the target object as well.

The implementation of SendSignalAction is given by Listing 4.38. It consists of the creation of
the signal instance and of invoking method receiveSignal(signal) of the target object.

<signal.type> <signal.name> = new <signal.type>(
<createParameterValues(inputs)>↗A.2 );

<target>. receiveSignal (<signal.name>);

Listing 4.38: Implementation of SendSignalAction.

The implementation of method receiveSignal(Signal s) is given by Listing 4.39. The signal
instance is added to the event pool of the target object. This makes the signal available for
AcceptEventActions.

EventPool eventPool = new EventPool ();

public void receiveSignal ( Signal s){
eventPool .add(s);

}

Listing 4.39: Implementation of signal receipt.

AcceptEventAction

An AcceptEventAction is associated to at least one Trigger, which is associated to an Event. We
only consider triggers which are associated with a SignalEvent. This defines for each AcceptEvent-
Action a set of signals whose occurrence the action waits for.

The action may have outputs which either hold the received signal instance or its attributes, if
the boolean attribute isUnmarshall is true. We only support the action if isUnmarshall is false.

The semantics of AcceptEventAction is primarily covered by the implementation of the event
pool which we designed to intelligently dispatch signal instances to the correct action executions.
The implementation of AcceptEventAction as given by Listing 4.40 and comprises only a call of
the event pool which returns a signal instance. The types of events of triggers associated with the
accept event action are passed as parameters to the event pool.

<result.type> <result.name> = eventPool . dispatch (<triggers.event>);

Listing 4.40: Implementation of AcceptEventAction.

Implementing an Input Event Pool

For the implementation of sending and receiving signals, an input event pool is used for which an
implementation is given in Listing 4.41. Objects serving as the context for accept event actions
need to have an event pool and must provide a method for receiving signals (Listing 4.41, lines
4–9) and storing signals within their event pool. Signals passed to the event pool for this purpose
are internally stored until they are consumed by an AcceptEventAction.

For convenience, activities might have direct access to the event pool of their context object
instead of calling a method which just passes the signal event through.
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When an AcceptEventAction is executed, the method dispatch(signals) is called. Within this
method, the complete event pool is searched for a signal conforming to a signal type contained in
the list passed as a parameter (lines 15 and 26–35). If no such signal is found, the thread waits
(line 18) until it is notified after a new signal has been received (line 7). If such a signal is found
(line 28), it is removed from the event pool (line 29) and returned to the AcceptEventAction (lines
30 and 23).

1 public class EventPool {
2 private List <Signal > events = new LinkedList <Signal >();
3

4 public void receive ( Signal s){
5 synchronized ( events ) {
6 events .add(s);
7 events . notifyAll ();
8 }
9 }

10

11 public Signal dispatch (List <Class <? extends Signal >> signals ){
12 Signal s = null;
13 while (s == null){
14 synchronized ( events ) {
15 s = find( signals );
16 if (s == null){
17 try{
18 events .wait ();
19 }catch ( InterruptedException e){}
20 }
21 }
22 }
23 return s;
24 }
25

26 private Signal find(List <Class <? extends Signal >> signals ){
27 for ( Signal s: events ){
28 if ( signals . contains (s. getClass ())){
29 events . remove (s);
30 return s;
31 }
32 }
33 return null;
34 }
35 }

Listing 4.41: Implementation of AcceptEventAction.

BroadcastSignalAction

BroadcastSignalAction can be implemented as an iterative execution of SendSignalAction for each
target object. The set of all objects which are potential targets is the result of ReadExtentAction,
if it is executed for each classifier of the model. An implementation is given in Listing 4.42.

for (Classifier c: <Model.classifiers>)
for (instance i: c.readExtent())

i. receiveSignal (<signal>);
end end

Listing 4.42: Implementation of BroadcastSignalAction.

In the implementation of BroadcastSignalAction, let Model be a class representing model charac-
teristics needed at runtime, e. g. a list of all classifiers specified in a model.
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ReadExtentAction

ReadExtentAction returns all instances of a classifier placed at the input pin. In order to support
this action, each classifier must provide a method returning all instances. Listing 4.43 gives an
implementation of the action, Listing 4.44 gives an implementation for the method readExtent().
Furthermore, it shows how instances are managed in a static list of weak references in order to
prevent a memory leak (line 3). Upon creation, each instance is added to the extent (line 6).
When the extent is read, references of objects that have been removed by the garbage collector
are removed from the extent (line 14). Objects reachable through the weak references are put into
the result set (line 16). As a precaution, the garbage collector could be called before reading the
extent to assure that no outdated values are contained in the result.

<output> = <classifier.name>. readExtent ();

Listing 4.43: Implementation of ReadExtentAction.

1 public class <classifier.name> {
2 private static List < WeakReference <<classifier.name>>> extent =
3 new LinkedList < WeakReference <<classifier.name>>>();
4 // Constructor
5 <classifier.name>(){
6 extent .add(new WeakReference (this));
7 }
8

9 public List <<classifier.name>> readExtent (){
10 List <<classifier.name>> result =
11 new LinkedList <<classifier.name>>();
12 for( WeakReference <<classifier.name>> ref: extent ){
13 if (ref.get () == null)
14 extent . remove (ref );
15 else
16 result .add(ref.get ());
17 }
18 return result ;
19 }
20 }

Listing 4.44: Implementation of readExtent.

OpaqueAction

OpaqueAction is an action the semantics of which is not predefined by UML. It may have input
and output pins, a body consisting of non-unique ordered strings specifying the semantics in one
or more languages. For each string contained in body, the used language is specified in the same
order as the body strings. An implementation is given in Listing 4.45.

for i = 0..<output.length>
List <<output[i].type>> <output[i].name>=new LinkedList <<output[i].type>>();

end
public void <name>(<createInputParameters(input)>↗A.1 ){

for i = 0..<body.length>
if (<language[i]>.equals("java"))

<body[i]>
fi end

}

Listing 4.45: Implementation of OpaqueAction.
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RaiseExceptionAction

RaiseExceptionAction accepts an object on the input pin exception. The execution of the action
effects this input object to be thrown as an exception. Listing 4.46 contains the line of code needed
for implementation.

throw <exception>;

Listing 4.46: Implementation of RaiseExceptionAction.

StartClassifierBehaviorAction

This action supports the dedicated starting of a classifier behavior. A classifier behavior is a
behavior specification of a BehavioredClassifier — which is a specialization of Classifier — that
describes the behavior of the classifier itself. StartClassifierBehaviorAction “is provided to permit
the explicit initiation of classifier behaviors, such as state machines and code, in a detailed, low-
level raw specification of behavior” [69, §11.3.46].

Considering the facts, that “when an instance of a behaviored classifier is created, its classifier
behavior is invoked” [69, §13.3.4] and that “if the behavior has already been initiated, or the object
has no classifier behavior this action6 has no effect” [69, §11.3.46], it is not possible to imagine
a context where to use this action. Possibly UML misses to define any means of deferring the
invocation of classifier behavior as an effect of creating instances of behaviored classifiers.

Despite the question in which contexts, if at all, StartClassifierBehaviorAction is applicable,
Listing 4.47 gives an implementation of starting the classifier behavior of an object: the method
startBehavior() is invoked on the object which is placed on the input pin object of StartClassifier-
BehaviorAction. Since the action does not accept additional inputs, the classifier behavior cannot
be supplied with parameter values. The same applies to output values.

An implementation of startBehavior() must be provided by each classifier, even if it does not
own a behavior. In this case, the method implementation is empty as the action has no effect. If the
classifier has a behavior which has already been started, the action has no effect, too. A suitable
implementation is given by Listing 4.48. By checking (line 5) and setting (line 6) the boolean flag
isStarted, only the first execution of the action has the desired effect. In order to prevent race
conditions between concurrent action executions, the method startBehavior() is synchronized.
The actual creation of an activity execution is achieved by the activation of the behavior in line 7
which refers to the activity implementation as proposed in Listing 4.12.

<object>. startBehavior ();

Listing 4.47: Implementation of StartClassifierBehaviorAction.

1 private boolean isStarted = false;
2 private Behavior classifierBehavior = new <classifierBehavior.name>();
3

4 <classifierBehavior.visibility> synchronized void startBehavior (){
5 if (! isStarted ){
6 isStarted = true;
7 classifierBehavior . activate ();
8 }
9 }

Listing 4.48: Implementation of starting an owned behavior.

6StartClassifierBehaviorAction
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CallBehaviorAction

A call behavior action directly calls another behavior. Whereas behavior invoked via CallOper-
ationAction can be assigned to the context object of the invoked behavioral feature, identifying
the context of a directly invoked behavior is problematic: the association between behavior and
classifier is at the level of classes rather on the level of instances. Therefore, the context might be
defined to be the same object that serves as the context of the behavior owning the calling action.
Apart from this option, the context can be defined by using an ActivityPartition which refers to
an instance: Behaviors of invocations contained by such a partition are the responsibility of the
particular instance of the classifier represented by the partition.

Listing 4.49 gives an implementation. It considers both of the above described options regarding
the context. In either cases, a context object is passed as a parameter to the creation of an activity
execution. This context object either is the classifier represented by an activity group (line 4) or
the context object of the invoking execution (line 6).

Another feature of CallBehaviorAction inherited from CallAction is isSynchronous. If false,
the action execution ends immediately after starting the associated behavior, return values are
discarded. If true, the action execution does not end before the invoked behavior execution ends.
Results of the called behavior are placed at output pins of the action. In Listing 4.49, method
getResult() is considered to return the outputs of the behavior. These values must be placed on
the according output pins of the action.

1 <behavior.return.type> result = null;
2 if <action.owner> instanceOf ActivityGroup
3 <behavior.type> execution = new <behavior.type>(
4 <action.owner.represents>);
5 else
6 <behavior.type> execution = new <behavior.type>(this. getContext ());
7 fi
8 execution .start(<createParameterValues(inputs)>↗A.2 );
9 if(isSynchronous)

10 {
11 execution .join ();
12 <behavior.return.name> = execution . getResult ();
13 }
14 fi

Listing 4.49: Implementation of CallBehaviorAction.

4.3.2 Action Execution and Static Structure
The precondition for executing an action is the satisfaction of all control and object flow prerequi-
sites, i. e. object tokens must be available at all input pins and control tokens must be offered to
all incoming control flow edges.

Postconditions of an action execution are token offers at outgoing control flows, object tokens
created at output pins and side effects caused by the semantics of the action. If these side effects
violate the specification of the structure, action semantics is either not specified or in the case of
violating lower bounds, action semantics is defined to cause an invalid system state.

Since we generate code for accessing structural features in the context of code generation for
static structure, implementation of concerning actions is achieved by mapping these actions to set,
get, add, and remove methods. These methods then are called when an Action associated with
the corresponding structural feature is executed. By doing so, we are not compliant to UML since
our access methods do not violate constraints given by structural modeling but throw exceptions.
Besides omitting side effects in favor of a valid static structure, throwing exceptions contradicts the
UML specification since exceptions cannot be raised by an action execution unless the executed
action is a RaiseExceptionAction.

For our implementations to be valid, UML were to be changed. But before arguing for such
changes in the specification of the modeling language, we motivate this claim by shortly discussing
how our full featured code is obtainable by adequate modeling.
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4.4 Considering Constraints Defined by Static Structures
Generally, there are two ways of maintaining a valid system state:

• either check the current state before attempting any changes or

• try changes and recover in the case of failure.

Since failure is not an option designated by UML semantics, both alternatives require to examine
the system state and to figure out the permissibility of the desired side effects to the system.
According to the set of supported actions, in our approach multiplicity bounds may be violated
directly by actions or indirectly as a consequence of object destruction or by cascading destruction
if composite aggregation is applied.

4.4.1 Modeling Multiplicity Bounds Checks
Checking bounds of multiplicities may be explicitly modeled, but resulting activities are not trivial
as can be seen in Fig. 4.34(a). Instead of using structured nodes, OpaqueAction can be used to
count the number of values of an attribute or association end in order to compare it to the specified
bounds (Fig. 4.34(b)). The opaque action count returns the size of the input set provided at pin v.

Both examples of Fig. 4.34 raise an exception if bounds are violated. With little changes, these
examples can be adapted to test for multiplicity bounds before attempting to add values and
return a boolean result, thus supporting a previous test instead of causing an error requiring the
retroactive recovery of a valid system state.

Although checking bounds can be included in behavioral models, we believe that the spec-
ification of actions should completely ensure the integrity of the underlying structural model.
Multiplicity bounds are part of the structural specification of a system and there is no reason to
discard this information. Modeling multiplicity bound checks adds significant modeling overhead
and does not seem feasible since such checks must be modeled separately for each kind of access
and for each feature.
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Figure 4.34: Modeling checks of multiplicity bounds.
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Generation of activities like those of Fig. 4.34 certainly is an issue of tooling. We discuss the
inclusion of the generated parts of behavioral models based on information obtained from structural
specifications in Chapter 7.

4.4.2 Avoiding Structural Feature Action and Link Action
Another, even more rigorous way to consider multiplicity bounds when accessing structural fea-
tures is to provide an own implementation based on OpaqueBehavior, OpaqueAction, or Opera-
tion together with CallOperationAction. Since in our approach, methods for accessing features
are generated as a part of the implementation of structures, calling these methods when Struc-
turalFeatureActions are to be executed seems likely.

Irrespective of the way by which multiplicities are considered, the impact on activities is that
each occurrence of StructuralFeatureAction has to be replaced by the provided action or behavior.
Avoiding the use of StructuralFeatureAction on the one hand gives rise to better aligning semantics
of behavior to the underlying static structure, on the other hand, it entails fundamental changes
since now exceptions may occur where this has not been possible before.

In order to hide effects of replacing predefined UML actions by special, user defined or generated
accession behaviors, exception handling as well as other kinds of handling invalid system states
must be covered in the scope of the replacing modeling elements. For a more detailed discussion,
we again refer to Chapter 7.

4.5 A More Convenient Semantics for UML Actions
In spite of the presented options for considering multiplicity bounds in behavioral models, a more
convenient specification of the semantics of actions is justifiable. Certainly we do not expect too
much of UML if we demand a higher level of abstraction from it. However, what we actually get is
lower level of abstraction than typically provided by programming languages, many of which check
correctness of accessing user defined structures such as arrays.

UML leaves the semantics of violations of constraints specified by structural modeling unde-
fined. Consequently, complying with the constraints of structural models is in the responsibility
of developers. Modeling, in particular consistently maintaining structural and behavioral models
becomes laborious. But actually, using UML should make lives of software engineers easier. For
this reason, semantics should be based on the needs of developers, i. e. behavior should not override
structural constraints. Hence, we propose to introduce some additional features for actions.

4.5.1 Reporting about Success by Outputs
An optional boolean output would qualify StructuralFeatureAction to provide information about
success or failure of accessing a structural feature. How to advance in case of failure remains in
the responsibility of the modeler, but detecting necessity of recovering to a valid system state is
supported by the system, thus reducing modelers’ workloads.

Another way basically targeting the same idea of conveniently identifying invalid system states
would be to introduce a new Action, say TestConsistencyAction, which supports checking consis-
tency of actual values with respect to the specification of the concerned structural feature.

4.5.2 Reporting about Failures by Exceptions
We would prefer to change the specification of exceptions in UML. Only one action can raise an
exception and the exception instance is to be passed to this action as an input. By that, the
modeler can decide to indicate a failure during the execution of a behavior, but not a failure of an
action. In other words, actions may report about success of their execution by output values, but
making those output available to callers requires an explicit raising as an exception of it. Since
modeling should make software specification more abstract, it would be of advantage to have some
exception types predefined in UML with actions having meta-attributes to determine which kind
of failures to report. In addition to exceptions reporting violations of upper or lower multiplicity
bounds, it would be valuable to report an attempt to add existing values to features that have
been defined as unique, or to remove values that are not included in the set of values of a feature.
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Instead of using predefined exception types, these types could be assigned by the modeler by
associating an action to the type of which an instance shall be raised as an exception.

In either cases, failure during action execution could be processed by exception handlers or
the exception propagation mechanism of UML would direct exceptions to callers of behaviors or
operations.

4.5.3 Facing Temporarily Invalid System States
By the proposed means of coping with invalid system states, a particular case has not yet been
considered, namely the intended temporary violation of multiplicity bounds. Violations of multi-
plicities sometimes are inevitable, e. g. when creating instances which must be linked with other
instances.

CreateObjectAction creates an instance, but initializing it with required attribute values or
links for associations is to be done by subsequent actions. Thus, immediately after the execution
of a CreateObjectAction terminates, the system state might be invalid.

Another situation requiring to accept a temporarily invalid system state has already been
mentioned in terms of discussing implementation of multiplicity bounds in Sect. 3.5.2. We once
again refer to the example described by Génova et al. [30] and illustrated in Fig. 4.35.

A B
1..1 1..1

(a) Class diagram with a 1-to-1 association.

(b) Initial system state. (c) Intermediate wrong system
state.

(d) Desired valid final system state.

Figure 4.35: Consequence of the equality of lower and upper bounds of multiplicities, based on [30]

Since a temporarily violation of the static structure sometimes is unavoidable, as can be seen
in Fig. 4.35, UML should provide any means to cope with this problem.

Regions could be applied to introduce transactions. Figure 4.36 gives an example how the
situation shown in Fig. 4.35 could be modeled with transactions. Inside the region, violations of
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structural constraints are permitted. When leaving the region, all constraints are checked. If the
check is successful, the activity execution continues at action continue, if it fails, the region offers
a token to the arrow edge. Thus, execution continues at action recover.

4.6 Summary
In this chapter, we introduced the key concepts of modeling dynamic behavior in UML, which
is based on Action. The execution of actions is specified by modeling behaviors, in particular
activities.

In the first part of this chapter, an approach how to translate activities into code is given
with a detailed examination of semantics of flows and control nodes. The basic idea of translating
activities into code is to identify sequences of actions which are mapped to sequences of method
calls. Sequences of actions are sets of actions, which are connected by unbranched control or object
flows.

Consideration of control nodes requires to evaluate guards in case of alternative branches and
to implement concurrently executing threads in case of parallel branches. If guards are applied
to outgoing edges of fork nodes, the special semantics of fork node buffering must be considered.
Guards applied to flows which are not alternative branches require to pause execution of the
concerned sequence of action while such guards do not hold.

For control nodes, implementations are given which implement the decision which downstream
sequences to start next. If multiple control nodes occur between actions, flows and control nodes
may be reordered or replaced in order to simplify the model while preserving its execution seman-
tics. For this purpose, we introduce guard propagation and provide implementations for a couple
of control flow patterns.

Basic considerations of control flow implementations are advanced to implement object flows
as well. Furthermore, termination of action executions and flows by leaving interruptible activity
regions via an interrupting edge are included in our approach.

In the second part of this chapter, the semantics of actions is examined and implementations
in Java are sketched. The proposed implementations can complete the implementation generated
when translating an activity into code.

Actions accessing the structural features are not designed to consider constraints of static struc-
ture, such as the size of sets of values for attributes or association ends. In order to align semantics
of structural and behavioral models, techniques for modeling additional functionality like multi-
plicity bounds checking are presented and inclusion into tool support is considered. Furthermore,
adaptations to the UML semantics specification are proposed.

In the next chapter, the modifications to input models discussed in Chapter 3 and Chapter 4
are formally specified.



Chapter 5

Model Transformation

In the previous sections we described the semantics of structural and behavioral modeling elements
of UML, presented implementations based on the Java programming language, and discussed model
transformations which reduce the level of abstraction by resolving abstraction patterns.

In this chapter, these model transformations are formalized by providing executable transforma-
tions in QVT1. In Sect. 5.1, we introduce the formalism actually used as well as some alternatives.
By comparing them, we motivate our choice for QVT. A more detailed introduction of QVT is
given in Sect. 5.2. We state the limitations of our executable transformations and general trans-
formation issues in Sect. 5.3, afterwards we present and discuss transformation of static structure
in Sect. 5.4 and of dynamic behavior in Sect. 5.5.

This chapter repeatedly refers to the diploma thesis of Schlecht [87], which was supervised by
me. His work is concerned with the selection of a well suited formalism to be used for the formaliza-
tion of the transformation from input models into implementation models from which to generate
code. Further, he gives a set of transformations for the creation of most of the implementation
patterns presented in Chapter 3 and Chapter 4 form input models.

5.1 Formalisms
For implementing model transformations, various formalisms and tools supporting them may be
considered. On the basis of our experiences from coding transformations directly in Java, the
primary objective of applying another formalism than source code is to separate the idea of what
is done from the implementation details of how it is done. All considered formalisms therefore are
declarative. Other criteria worth being considered at decision making are

• adequacy of a formalism

• preciseness of the formalism’s specification

• clarity of formalizations

• maintainability of formalizations

• continuative tool support, executability of formalizations

• support of proofs of correctness.

Since our ambition is not only to formalize transformations rather than to use formalizations as
implementations in ActiveCharts, not only availability of a tool is a must-have, but also some
features of such a tool are decisive factors. These are

• conformance to the formalism

• interoperability

• ability of integration

• suitable documentation
1MOF 2.0 Query, View, and Transformation specification, Relations [70]
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• usability

• free availability

• continuing development.

A detailed examination with respect to these criteria is carried out on Extensible Stylesheet Lan-
guage Transformations (XSLT) [102], Constraint Handling Rules (CHR) [26, 27], Triple Graph
Grammars (TGG) [88, 46], Atl Transformation Language (ATL) [24], and MOF 2.0 Query/View/-
Transformation (QVT) [70] by Schlecht [87]. An overview presenting the results of this examination
is provided by Table 5.1 and Table 5.2 for which the key is given with Table 5.3.

XSLT CHR TGG ATL QVTO QVTR

Adequacy - - ++ ++ ++ ++

Expressiveness ++ ++ + ++ ++ ++

Precision of Specification ++ ++ ++ + ++ ++

Clarity / Readability - - ++ - - - ++

Maintainability - - + + - ++

Continuity of Tool Support ++ ++ ++ ++ ++ ++

Support of Proofs of Correctness + ++ ++ - - - ++

Table 5.1: Summary of results obtained from the analysis of different formalisms (by Schlecht [87]).

XSLT CHR TGG ATL QVTO QVTR

Conformance ++ + + ++ ++ +

Interoperability + + ++ ++ ++ ++

Integrability ++ - ++ ++ ++ ++

Suitability of Documentation ++ - - - ++ ++ -

Usability – – ++ ++ ++ +

Free Availability ++ ++ ++ ++ ++ ++

Continuation of Tool Support ++ - ++ ++ ++ -

Table 5.2: Summary of tool support for transformation languages of Table 5.1 (by Schlecht [87]).

Rating Meaning

++ fully applies

+ somewhat applies

- hardly applies

- - applies not at all

Table 5.3: Key to Table 5.1 and Table 5.2.

As can be seen from the presented analysis results, XSLT and CHR are not well suited for-
malisms since they both lack a proper interface for being applied to models. XSLT is designed to
operate on XML files. Although UML models can be exported to XMI on which XSLT can directly
operate, working on this level of abstraction is a way back from models to code, in this case the
actual file format for persisting models. In CHR, additionally code is required for embedding CHR
constraints in a host language.
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TGG, ATL, and QVT (explicitly divided into its parts QVTO and QVTR which are explained
in detail later) are well suited, with respect to QVT, QVTR is the best suited formalism but
QVTO is backed up by better tool support. In the end, the excellent rating of QVTR regarding
the suitability of the formalism, the fact of QVTR being an OMG standard and the availability of
tool support led to QVTR to be used in ActiveCharts.

TGG and ATL both are formalisms that could be applied either. The special case of our
transformation in which the source and the target models share the same meta-model is not well
supported by TGG. Whereas in QVT, it is possible to copy whole structures, i. e. parts of the
source model consisting of multiple elements and relationships between them, this cannot be done
using TGG. When using ATL, some parts of our transformations cannot be expressed declaratively
but must be specified operationally.

QVT primarily comprises two parts one of which is operational, the other one is declarative.
While both parts can be used alone for operationally or declaratively specifying transformations,
both approaches can be combined such that in an overall declarative transformation, some details
are operationally specified. Although there are tools supporting either one or the other part of
QVT, tool support for a combined application is missing. Hence a combination of declarative and
operational proceeding is not further considered.

A transformation implemented in QVT Operational Mappings (QVTO) consists of mappings
each of which describes relations between elements of the source model and corresponding elements
of the target model. A complete transformation consists of a chain of mappings where, starting
from some kind of general mapping, more and more detailed mappings are invoked.

Although benefiting from powerful expressiveness, a precise specification, excellent tool support
and even though being an adequate formalism for model transformations as ours, advantages with
regard to clarity and readability are — compared to the prototypical implementations in Java —
marginal, if at all.

In contrast, QVT Relations (QVTR) , which is the declarative approach of QVT, stands to
benefit from the same advantages like QVTO, but together with great readability and still fair tool
support. A drawback is that there are very few tools supporting QVTR, however, at least one of
them, namely mediniQVT, is quite satisfactory for our purpose.

5.2 QVT
The concrete syntax of QVTR, tailored to those language elements we actually make use of, is
given in an EBNF notation in Listing 5.1 and Listing 5.2. Terminal symbols are written blue,
nonterminals are written gray, nonterminals for which no production rules are given are written
in <green> color and put in angle brackets.

A transformation starts with the keyword transformation followed by the transformation
name and a declaration of a set of models, typically a source and a target model by defining a
name and the meta-model of each. Optionally, a definition of keys follows, the effect of which we
describe in the course of the description of our transformation.

The main part of a transformation implemented in QVTR consists of relations such as shown
in Listing 5.3. A relation defines patterns for different domains, typically one for the source model
(lines 9–12) and one for the target model (lines 13–17).

“A domain has a pattern, which can be viewed as a graph of object nodes, their properties and
association links originating from an instance of the domain’s type. Alternatively a pattern can be
viewed as a set of variables, and a set of constraints that model elements bound to those variables
must satisfy to qualify as a valid binding of the pattern. A domain pattern can be considered a
template for objects and their properties that must be located, modified, or created in a candidate
model to satisfy the relation” [70, §7.2].

Additionally, a relation may include a when and a where clause. Such clauses may contain
conditions or other relations. A relation must only hold for those bindings of variables for which
conditions and relations contained in its when clause hold. If a relation holds for a set of bindings
for variables in its domain patterns, then all relations contained in the where clause must hold
under this set of bindings, too, and a valid binding for remaining unbound variables must exist.

Whether or not a relation holds may be determined with two different semantics in mind:
checking semantics and enforcement semantics. Checking semantics is applied if the target domain
k is marked checkonly. Under this condition, a relation holds, if for each binding of variables
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1 transformation ::= transformation <identifier>
2 ( modelDecl (, modelDecl)* )
3 {
4 keyDecl*
5 ( relation | query )*
6 }
7

8 modelDecl ::= modelId : metaModelId
9 modelId ::= <identifier>

10 metaModelId ::= <identifier>
11

12 keyDecl ::= key classId { keyProperty (, keyProperty)* } ;
13 classId ::= <pathNameCS>
14 keyProperty ::= <identifier>
15

16

17 relation ::= [top] relation <identifier>
18 {
19 varDeclaration*
20 (domain | primTypeDomain)+
21 [when]
22 [where]
23 }
24

25 varDeclaration ::= <identifier> (, <identifier>)* : <TypeCS> ;
26

27 domain ::= [checkonly | enforce] domain modelId template ;
28

29 primTypeDomain ::= primitive domain <identifier> : <TypeCS> ;
30

31 template ::= objectTemplate [{ OclExpressionCS }]
32

33 objectTemplate ::= [<identifier>] : <pathNameCS> {
34 [propTemplate (, propTemplate)*]
35 }
36

37 propTemplate ::= <identifier> = OclExpressionCS
38

39 when ::= when { (OclExpressionCS ;)* }
40

41 where ::= where { (OclExpressionCS ;)* }
42

43 query ::= query <identifier> ( [paramDeclList] ) : <TypeCS>
44 (; | { OclExpressionCS })
45

46 paramDeclList ::= paramDecl (, paramDecl)*
47

48 paramDecl ::= <identifier> : <TypeCS>

Listing 5.1: Excerpt of the concrete syntax of QVTR [70].

1 OclExpressionCS::= <PropertyCallExpCS>
2 | <VariableExpCS>
3 | <LiteralExpCS>
4 | <LetExpCS>
5 | <IfExpCS>
6 | ( OclExpressionCS )
7 | template

Listing 5.2: Concrete syntax of OCL Expressions [70].
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of the when clause and variables of domains other than k, a valid binding of the remaining un-
bound variables of domain k exists that satisfies domain k’s patterns and relations and conditions
contained in the where clause [70, §7.10.1].

If a target domain k is marked enforce, the relation holds under the enforcement semantics
if it either holds under the checking semantics or, if it does not, creating, modifying, or removing
existing objects and assigning properties as specified in domain k’s pattern results in a target model
for which the relation now holds under the checking semantics.

Whereas the idea of the checkonly semantics is to assure a postulated relation between source
and target model, the enforce semantics modifies the target model to satisfy the postulated
relation.

A relation is of one of two kinds: either it is a top-level or a non-top-level relation. Top-level
relations must always hold, whereas non-top-level relations must do so only if referenced in the
where clause of another relation.

A generic example is given by Listing 5.3. The relation relationName matches each instance of
the specified type (typeName, line 9) in the source model which holds a specific value in a specified
attribute (metaAttribute = value, line 11) and enforces the existence of an instance of another
type (anotherTypeName, line 13) in the target model. Furthermore, two attributes are supplied
with values, one of which is identical to the value of the same attribute in the source instance (lines
15–16). This relation only must hold for those matches where the value of srcClass.something is
not 0 (line 18). If the relation must hold, the relation anotherRelationName referred to in the
where clause (line 19) must hold, too.

1 transformation transformationName
2 ( sourceModelId : sourceMetaModelId, targetModelId : targetMetaModelId )
3 {
4 key classId { propertyId },
5 key classId { propertyId2 , propertyId3 };
6

7 top relation relationName
8 {
9 checkonly domain sourceModelId srcClass : typeName

10 {
11 metaAttribute = value
12 };
13 enforce domain tragetModelId trgClass : anotherTypeName
14 {
15 metaAttribute = value ,
16 anotherMetaAttribute = srcClass. anotherMetaAttribute + newValue
17 };
18 when { srcClass. something < > 0 }
19 where { anotherRelationName(srcClass, trgClass); }
20 }
21

22 relation anotherRelationName
23 {
24 checkonly domain ...
25 enforce domain ...
26 }
27 }

Listing 5.3: Pseudo transformation.

Queries are functions without side effects, which may occur in a transformation like relations
do and are referred to within when and where clauses. They can be used to perform checks or
to compute values, which are to complex to be in-lined at the place where needed or if reuse is
desired.
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Notational Convention: Referencing Listings

As a shorthand pointer to queries or to relations which occur in when or where clauses, we include
an arrow and the number of the concerned listing (e. g. ↗X.n). Such listings are either contained
in the appendix (e. g. ↗B.12) or in this chapter (e. g. ↗5.3).

By directly indicating within each listing where implementations of referenced relations and
queries may be found, we will not include pointers to those listings in the textual description of
the listings containing such hints.

5.3 Transformations by QVT Relations
Before we present the transformation which formalizes our implemented prototype, we shortly
outline some limitations either induced by deficiencies of mediniQVT or by pragmatical consider-
ations, in particular in order to decrease the complexity of the transformation. Some additional
issues are described by Schlecht [87], but omitted here because they are less relevant for us.

5.3.1 Limitations Caused by medini QVT
mediniQVT does not support all features of QVTR as specified by OMG. Some are missing, others
are implemented with a slightly differing semantics. Furthermore, some bugs in the implementation
of mediniQVT necessitate adaptations of transformations the necessity of which is not compre-
hensible unless knowing about their reasons. In the following, we shortly address those deficiencies
of mediniQVT which are or might be of relevance for our approach.

Collection templates

The QVTR specification defines collection template, which, in contrast to object template, spe-
cifies a pattern that matches a collection of elements. Collection template is not supported by
mediniQVT. Since collection template rather is syntactic sugar than a real necessity, each trans-
formation can be implemented by using object templates — however, such a transformation will
be less comfortable to read and write. Hence, this limitation leads to more complex relations, but
it does not cause any severe or even unsolvable problems.

Black-Box Implementations

Black box implementations, which support using imperative concepts within a declarative formal-
ism, are not supported by mediniQVTas well. Again, this limitation has no serious effect with
respect to our formalization since that can completely be covered by declarative concepts.

Enforcement Semantics — Creation of Objects

The enforcement semantics implemented in mediniQVT differs from the specified enforce seman-
tics. Due to the specification, an element must not be created if an element with the specified
characteristics already exists. Primarily for performance reasons, checking for the existence of
elements before creating them is omitted in mediniQVT. Under special conditions, elements may
be created multiple times [87]. However, the correct enforcement semantics can be enforced by
using keys for those elements which by mistake are possibly repeatedly created.

Indices

mediniQVT does not guarantee the ordering of elements even in ordered sets like Sequence or
OrderedSet. Hence, the identification of elements must not be based on the position within the
containing set.

5.3.2 Arbitrary Limitations for Decreasing Complexity
Even though we aim to support a wide range of modeling concepts, we accept to define some
limitations in order to dispense with excessive handling of very complex or even exceptional cases
such as unnamed model elements. In the following, we shortly introduce the general limitations of
our formalization, which are not induced by limitations of our approach.
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Well Formed Models

Usually it is dispensable to supply all features of a modeling element with values, e. g. association
ends may be unnamed. An association labeled employment between a class named Employee and
another class named Company probably represents any kind of employment that is not better
understandable if role names are given to association ends.

At some point in the processing from models to code, unnamed association ends must be named
in order to distinctly name methods managing associations. Typically, unnamed association ends
are named after the type to which they are connected.

Any kind of creating values for features of modeling elements, such as deriving a name from the
context of an unnamed element, is not originally rooted in the transformation itself. Rather, it is
a supplementation of a model that should be done before. We therefore assume that all features of
modeling elements which are affected by our transformations are supplied with reasonable values.

Multiple Inheritance

One of the key concepts in the object paradigm is generalization. In object-oriented languages,
usually types can specialize other types — which in term are their general types — and implemen-
tations of types may inherit from the implementations of their general types.

In Java, a type is defined by the declaration of an Interface and implemented within a Class.
For convenience, type specification and implementation can be combined by just writing a class
serving as both, type specification and implementation. If types and implementations are strictly
separated, implementations of types can be replaced with no need for any changes to other parts
of the software.

Java supports multiple inheritance only on the level of types, not on their implementations,
i. e. a class may implement multiple interfaces but can extend not more than one general class.
Although there are some patterns which try to map multiple inheritance to languages which do
not natively support it, we do not consider multiple inheritance in our transformation.

The relation between interfaces and classes in Java corresponds to the relation between Inter-
face, Classifier, and InterfaceRealization. Although it is quite straightforward to map the UML
meta-classes to Java language elements, we do not explicitly support this in our approach but
consider all types to be defined only by classes.

Nested Elements

A means for grouping elements in UML as well as in Java is Package. A package typically contains
type definitions (interfaces), and type implementations (classes). A package may contain other
packages. Package is a concept that supports organizing classes which have some characteristics
in common, e. g. belonging to the same category or offering similar functionality.

Unless permitting the same name to different classifiers if both are contained in different pack-
ages and unless having impact on the visibility of features of a classifier to other classifiers, using
packages and nesting packages has no deeper semantics. Since the structure of packages is not
affected by our transformation, we consider all classes to be owned by the same package and omit
nesting packages. We assume that a model containing only one single package can be created by
moving all classes into this package and renaming them by building some kind of qualified name,
e. g. by prepending all package names to the class name. After the transformation, the package
structure can be restored by building all packages and moving classes into those packages according
to their qualified name.

Regarding nested classes, the situation is somewhat more complex and flattening the hierarchy
definitely is not possible since nested classes have access to private features of the containing
classifier. By making nested classifiers instances of their own right, accessibility of private features
of the formerly containing classifier is lost. However, to consider nested classifiers probably is
straightforward by processing each nested classifier of a classifier while processing the containing
classifier itself in a recursive way, but in order to keep our prototype simple, we do not yet consider
nested classifiers.
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Application of Subsetting and Inheritance to Associations

Subsetting and generalization are two different, but somehow similar concepts. Whereas subsetting
is intensively used within the UML specification, generalization is not applied to associations in
the UML specification at all.

The semantics of subsetting is that the set of values of an association end may be defined to
be a subset of the set of values of another association end. Of course, some constraints must hold,
e. g. the number and types of association ends of both associations must conform to each other, in
particular, the subsetting end must be of the same or of a subtype of the subsetted end. Subsetting
does not affect links, i. e. the links of an association of which one end subsets an end of another
association are not related to the links of that other association.

But if an association is a specialization of another association, all links of the special association
are also links of the general association, like instances of classes related by generalization are related
to each other, as well. Generalization is applicable to associations since it is specified for classifiers,
a subclass of which is association.

To give an example, we refer to the specification of Association in UML as shown in Fig. 5.1(a):
there are two associations between Association and Property. One has the ends association and
memberEnd, the other has the ends owningAssociation, which subsets association, and ownedEnd,
which subsetsmemberEnd. The implication of subsetting here is, that a link between an association
and a property for specifying an owned end requires the existence of a link between the same
instances specifying the property to be a member end. Subsetting assures, that the set of owned
ends is a subset of member ends. But the additional semantics of being an owned end is represented
by an additional link in its own right. If a link between association and memberEnd is removed,
a link associating the same instances by owningAssociation and ownedEnd must be removed if
existing, too, in order to hold the subset relation consistent.

In contrast, the association for specifying owned ends could be modeled as a specialization of
the association specifying member ends (as modeled in Fig. 5.1(b)). Then the creation of a link for
defining an owned end would implicitly create a link defining a member end. This is the result of
the special link in itself also being an instance of the general link. The deletion of the link would
be possible in both associations (since the link is an instance of both) and intrinsically would affect
the other association as well. However, changing an owned end to be a non-owned member end
requires to delete the existing link, which is an instance of both associations, and to replace it by
a newly created link which is an instance of the general association only. Making an existing end
an owned end requires to delete the link of the general association and create a link of the special
association.
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0..1

{subsets 
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ownedEnd
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(a) Subsetting of association ends.
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(b) Generalization applied to associations.

Figure 5.1: Subsetting and Generalization applied to associations.

The implementation of associations by the Relationship Object Pattern allows for supporting
both, subsetting and generalization. For subsetting, checks for ensuring consistency between sets
and subsets of links must be inserted into manager classes. For generalization of associations, a
straightforward implementation is to relate classes representing links by generalization as well.

A generalization relationship between links does not require a generalization relationship
between association manager classes. But instances of links of an association must be included in
the set of links of associations which are a general classifier. Therefore, operations for creating or
deleting links must trigger operations in other associations related via generalization.

We investigated the realisability of both, subsetting and generalization applied to associations,
by extending the Relationship Object Pattern on a level detailed enough to see that both concepts
are technically feasible. However, an exhaustive consideration and discussion of implementation
patterns for subsetting or generalization applied to associations is beyond the scope of this thesis.
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No Support of Data-Types

DataType is a specialization of Classifier and is very similar to Class. In contrast to Class, it
is not able to contain nested elements and its instances do not have their own identity. Since
these differences are a limitation of data type compared to class, supporting data types should be
possible on the basis of the support for classes, with little adaptations. However, in the scope of
this work, we do not explicitly include data types.

Confinement to Most Common Features

In our transformation, source and target models share the same meta-model. In this regard, it is a
special case whereas the general case is to transform models from a source meta-model into a target
meta-model. If not sharing the same meta-model, all elements of the source model must explicitly
be assigned to elements in the target model, whereas in our case, elements and subelements could
also be cloned since elements are of the same types (referred to the meta-model) and have the same
values. Cloning or copying elements — and in the case of numerous subelements, whole parts of a
model — is not interesting and its detailed inclusion into our transformation does not contribute
to a better understanding of our approach. Hence, we only include the copying of elements which
are needed in subsequent steps of our model processing. Furthermore, we encapsulate copying in
separate relations and exclude them from a detailed description.

5.3.3 General Aspects
The entire formalization of the transformation as implemented in our prototype ActiveCharts
ranges from high level concepts to technical details of a quite low level of abstraction. Therefore, we
focus on those parts which are relevant for pointing out our basic approach, that is, we concentrate
on the tip of the iceberg and include less interesting technical details in the appendix and refer to
them, if necessary, by giving a rough idea of omitted issues.

All relations for the model transformation are contained in a single QVTR transformation,
i. e. no intermediate results are explicitly stored. The declaration of the transformation with its
source and target models is given in Listing 5.4.

1 transformation mainTransformation( sourceModel : uml, targetModel : uml)
2 {
3 <key declarations>
4 <relations>
5 }

Listing 5.4: QVTR transformation: model declarations.

Before we go into a detailed discussion of the relations, we give some general background
information about the transformation. This includes techniques we use to face problems arising
from the limitations of mediniQVT as well as some design decisions in the organization of relations
which apply to both, transforming structures as well as transforming behavior.

Enforcing the Correct Enforcement Semantics by Using Keys

The semantics of enforce is that model elements are only created if they do not already exist,
i. e. enforce guarantees the presence of an element, not its creation. Since mediniQVT by mistake
possibly repeatedly creates elements instead of matching previously created instances, the enforce-
semantics must be fixed by using keys. A key is defined for each modeling element, i. e. for each
meta-class, for which duplicate creation must be avoided. Meta-attributes used for identifying
duplicates are included in the key declaration. In Listing 5.4, the real contents of line 3 are the
key declarations contained in Listing 5.5.

Note that according to Schlecht [87], the use of keys will not prevent elements to be repeatedly
created if more than one relation of those, which enforce the existence of such elements, are
contained in the where clause of a single relation. This situation can be avoided by referring only
to one of the concerning relations, say R1 in the where clause where it actually appears and moving
references to all other relations Ri in the where clause of R1. If Ri denotes more than one relation,
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1 −−− Key Declarations
2 key PrimitiveType {name };
3 key Package {name };
4 key Class {name };
5 key Generalization {specific , general };
6 key Association {name };

Listing 5.5: QVTR transformation: Key declarations.

the same rule must be applied to the where clause of R1. References to relations which enforce
the existence of other elements are not affected.

Copying Complex Model Elements

Transformation languages are designed to transform a source model into a target model, whereby
the underlying meta-models usually are different. Our transformation aims to resolve complex UML
structures by lower level elements with the target model still being a UML model. Therefore, an
in-place-transformation where the target model initially is a copy of the source model, would be
a suitable alternative, but unfortunately, since mediniQVT does not support pattern matching in
the target model, in-place-transformations are not well supported [87].

Alternatively, those parts of the source model which are not changed by the transformation
can either be explicitly created — by enforcing the elements to exist in the target model with
values of meta-attributes and references to other model elements specified exactly as in the target
model — or be moved from the source model to the target model. In mediniQVT, the second
alternative can only be used if no relation attempts to match a pattern in the source model which
has previously been moved to the target model, although the source model should not be changed
during the transformation.

Since moving patterns from the source to the target model is problematic, in some cases model
elements must be copied by hand, i. e. a relation must enforce an element and all its sub-elements
to exist in the target model and set values of meta-attributes to the values specified in the source
model. The relations for such a kind of copying model elements are not interesting, therefore,
these relations are not discussed in the following but are included in the appendix. Furthermore,
only those sub-elements are copied which are necessarily needed in the target model, i. e. elements
which are supported in subsequent processing steps like code generation.

Setting Up the Target Model

Before transforming the static structure and dynamic behavior specifications, one relation is needed
for setting up the target model. This relation as shown in Listing 5.6 creates the only package
named PSM which exists in the target model (line 6) and copies all element imports defined in the
source model into the target model (line 9). The relation Copy_ElementImport is contained in the
appendix, Listing B.13.

1 top relation ElementImport{
2 checkonly domain source srcPackage : Package {
3 elementImport = srcElementImport : ElementImport {}
4 };
5 enforce domain target trgPackage : Package {
6 name = 'PSM',
7 elementImport = trgElementImport : ElementImport {}
8 };
9 where { Copy_ElementImport(srcElementImport, trgElementImport);↗B.13}

10 }

Listing 5.6: Relation for creating a package and element imports.
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Additional Information of Model Elements

During the transformation, some elements are created which have a very special meaning which
must be considered when generating code from the target model. Stereotype is a concept that can
be used to carry such additional information.

But using stereotypes requires their specification in a model profile, which is applied in the
target model. Such a profile causes additional overhead without contributing to a better under-
standability of the transformation. Therefore, we decided to tag additional information to elements
of the target model by using comments. This technique is easily implementable by covering the
tagging of additional information in relations which are included in where clauses if tagging infor-
mation is required.

Applying stereotypes admittedly is a more proper approach, but in favor of avoiding overhead
while still obtaining executable transformations, comments are a good choice. The relations for
adding comments and the contents of these comments are detailed in Appendix B.1.4.

5.4 Transforming Models of Static Structure
The transformation of static structure, i. e. of class diagrams, divides into three main parts:

1. insertion of implementation classes for associations

2. insertion of operations for accessing structural features

3. separation of generated code from user written code.

A detailed motivation and considerations concerning semantics of input and output models, ade-
quacy of transformations etc. are all given in Chapter 3. Therefore, in this section, we will work
with the patterns introduced in Chapter 3 without reflecting their semantics again.

We start with the transformation of classes with attributes, operations, and generalization
relationships to other classes. Afterwards, we present the transformation of associations and asso-
ciation classes. Finally, additional modifications for implementing compositions are considered.

5.4.1 Transformation of Classes
A keynote of our approach is to hide generated code from the user, not only because generated
code may cause confusion, but also because it should be protected from inadvertent as well as from
intentional changes. For this reason, generated code should not be contained in the same source
file that contains user written code [34].

In C#, the desired separation of generated and user written code both implementing the same
class, can be achieved by applying partial classes [57].

Regarding Java, generated and user written code must be contained in two distinct classes.
This separation of generated and user written code is prepared by the transformation t1 as shown
in Fig. 5.2(a). Class A from the source model (left) is transformed into a pair of two classes of
the target model (right). In the target model, class A is intended to contain generated code, like
implementations of associations, attributes and behaviors, whereas class AImpl is intended to hold
user written code.

In order to clearly distinct the two kinds of created target classes, we term the general class A
a conceptual class and its specialization, class AImpl, we term implementation class.

If in a source model, two classes are related by generalization like in Fig. 5.2(b), transformation
t2 must assure that in the target model, class B is no longer a specialization of class A but of the
newly inserted class AImpl.

Transformation t1 is specified by relation SingleClass of Listing 5.7. It matches each source
class (line 4) and creates an abstract class with the same name and visibility as the source class
(lines 8–11). Additionally, a second class is created having the same name suffixed with Impl and
the same visibility (lines 12–17) and being a specialization of the previously created class.

If a source class is abstract, then both, the conceptual class and implementation class are
abstract, if the source class is not abstract, the conceptual class is abstract whereas the imple-
mentation class is not. A conceptual class is always abstract since it should never be instantiated
alone. It builds a logical unit together with an implementation class and therefore must not exist
on its own. This is insured by declaring the conceptual class to be abstract.
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Figure 5.2: Transformation of classes.

Figure 5.2(a) only gives a rough idea of the transformation of classes. Features of A in the source
model must be distributed among the conceptual class and the implementation class, i. e. among
A and AImpl of the target model. These details are covered by relations contained in the where
clause of SingleClass.

In line 20 of SingleClass (Listing 5.7), a relation is called which tags the information of being
an implementation class to the target implementation class AImpl. This information is needed for
code generation in order to avoid confusion when source class names end with Impl, resulting in
target classes named e. g. AImpl and AImplImpl.

1 top relation SingleClass
2 {
3 checkonly domain source srcPackage : Package {
4 packagedElement = srcClass : Class {}};
5

6 enforce domain target trgPackage : Package {
7 name = 'PSM',
8 packagedElement = trgClass : Class {
9 name = srcClass.name ,

10 isAbstract = true,
11 visibility = srcClass. visibility },
12 packagedElement = trgImplClass : Class {
13 name = srcClass.name + 'Impl',
14 isAbstract = srcClass.isAbstract ,
15 visibility = srcClass.visibility ,
16 generalization = trgGeneralization : Generalization {
17 general = trgClass }}};
18

19 where {
20 SC_Comment(trgImplClass)↗B.32;
21 SC_PublicProtectedPackageProperty_Multiple(srcClass, trgClass)↗5.9;
22 SC_PublicProtectedPackageProperty(srcClass, trgClass)↗B.1;
23 SC_PublicProtectedPackageProperty_Derived_Multiple(
24 trgClass, trgImplClass, srcClass)↗5.10;
25 SC_PublicProtectedPackageProperty_Derived(
26 trgClass, trgImplClass, srcClass)↗B.2;
27 }

Listing 5.7: Transformation of classes.
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Before discussing the other relations contained in the where clause of SingleClass, which handle
the transformation of properties, we introduce the specification of transformation t2 of Fig. 5.2(b).
Since the information about a generalization relationship of classes is not considered by relation
SingleClass, relation SingleInheritance of Listing 5.8 specifying transformation t2 is needed.

This relation matches each possible pair of classes (lines 4–5) of the source model. In the when
clause, it is checked whether the two classes are related by generalization (line 18). If they are,
the relation must hold. In this case, the existence of an implementation class for the superclass
is enforced (lines 10–11). Furthermore, the existence of the conceptual class for the subclass is
enforced (lines 12–13). Finally, the generalization from the conceptual class of the subclass to the
implementation class of the superclass is enforced (lines 14–15).

1 top relation SingleInheritance
2 {
3 checkonly domain source srcPackage : Package {
4 packagedElement = srcSuperClass : Class {},
5 packagedElement = srcSubClass : Class {}
6 };
7

8 enforce domain target trgPackage : Package {
9 name = 'PSM',

10 packagedElement = trgSuperImplClass : Class {
11 name = srcSuperClass.name + 'Impl' },
12 packagedElement = trgSubClass : Class {
13 name = srcSubClass.name ,
14 generalization = trgGeneralization : Generalization {
15 general = trgSuperImplClass }}};
16

17 when {
18 srcSubClass.general −>includes(srcSuperClass. oclAsType (Classifier)); }
19 }

Listing 5.8: Transformation of generalization relationships.

Transformation of Owned Attributes

The transformation of properties, which are owned attributes of a classifier, is specified by a set
of relations. Each of these relations handles only a subset of all owned properties. The subsets,
into which the set of owned properties is divided, group properties regarding their characteristics
of being derived or not and being single-valued or multi-valued, as shown by Table 5.4:

isDerived upper bound

relation name yes no = 1 > 1

SC_PublicProtectedPackageProperty_Multiple x x

SC_PublicProtectedPackageProperty x x

SC_PublicProtectedPackageProperty_Derived_Multiple x x

SC_PublicProtectedPackageProperty_Derived x x

Table 5.4: Mapping from properties to processing relations.

The relations for processing owned attributes are all very similar to each other why it seems
appropriate to discuss not all of them in detail but to include only some of them here and to refer
to the appendix for the remaining relations.

Figure 5.3 shows the transformation of attributes. The transformation of non-private attributes,
i. e. of attributes with public, package, or protected visibility is shown in Fig. 5.3(a). The trans-
formation of private attributes is shown in Fig. 5.3(b). In either case, the owned attributes are
encapsulated as private attributes in the conceptual class, for accessing the attributes, operations
are provided in the conceptual class as well.
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For non-private attributes, operations for accessing owned attributes have the same visibility
as the original attribute (we refer to this visibility by the letter ϕ). The names for these operations
are formed by prepending a prefix before the name of the attribute. The prefixes are set and get,
if the attribute is single-valued, or add, remove, and get, if it is multi-valued.

For private attributes, operations for accessing the attribute must be protected in order to
restrict access to the attribute to the scope of the implementation class. In order to prevent
from accessing the attribute in the scope of further specializations, operations for accessing private
attributes must be redefined in specializations of the implementation class in the target model.
The redefined operations must not access the attribute in order to hide it from specializations [34].

The general approach of transforming attributes comprises three steps:

• create private attributes in the conceptual class of the target model

• provide operations for accessing the private attributes with appropriate visibilities

• redefine operations for accessing private attributes in specializations of the concerning im-
plementation classes.
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Figure 5.3: Transformation of attributes.

Listing 5.9 shows the transformation of a non-derived, multi-valued attribute. In the when
clause, the upper bound of the attribute is determined (line 12). Additionally, in order to prevent
from processing owned ends in the same way as owned attributes, it is assured that the property
is not an association end (line 13).

For each attribute conforming to the constraints defined in the when clause, a private attribute
is enforced in the conceptual class of the target model (lines 8–9). In the where clause, a relation
copying other characteristics of the property and a relation enforcing operations for accessing the
property are included.
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1 relation SC_PublicProtectedPackageProperty_Multiple
2 {
3 checkonly domain source srcClass : Class {
4 ownedAttribute = srcProperty : Property {
5 isDerived = false }};
6

7 enforce domain target trgClass : Class {
8 ownedAttribute = trgProperty : Property {
9 visibility = VisibilityKind:: private }};

10

11 when {
12 srcProperty.upper > 1 or srcProperty.upper = −1;
13 srcProperty. association . oclIsUndefined ();}
14

15 where {
16 Copy_Property(srcProperty, trgProperty)↗B.14;
17 SC_PropertyAccessOperation_Multiple(
18 false, srcProperty, trgClass)↗5.11; }
19 }

Listing 5.9: Transformation of non-private, multi-valued attributes.

Derived properties do not hold values rather values are computed at runtime. Accordingly,
derived attributes are transformed into abstract operations in the conceptual class, which have the
same visibility as the source attribute (or protected, if the attribute is private). These operations
must be implemented by hand in the implementation class providing algorithms for actually de-
riving the values. An example is given by Listing 5.10. The relation for generating operations for
accessing the attribute is included twice. In line 15, the relation is called for creating the abstract
operation in the conceptual class, in line 16, it is called to create the concrete operation in the
implementation class.

1 relation SC_PublicProtectedPackageProperty_Derived_Multiple
2 {
3 primitive domain trgClass : Class;
4 primitive domain trgImplClass : Class;
5

6 checkonly domain source srcClass : Class {
7 ownedAttribute = srcProperty : Property {
8 isDerived = true }};
9

10 when {
11 srcProperty.upper > 1 or srcProperty.upper = −1;
12 srcProperty. association . oclIsUndefined (); }
13

14 where {
15 SC_PropertyAccessOperation_Multiple(true, srcProperty, trgClass)↗5.11;
16 SC_PropertyAccessOperation_Multiple(
17 false, srcProperty, trgImplClass)↗5.11; }
18 }

Listing 5.10: Transformation of non-private, multi-valued attributes that are derived.

A relation enforcing operations for accessing a multi-valued attribute is presented in Listing
5.11. Within this relation, three operations are enforced for reading attribute values, for adding
a new value and for removing a value. By a parameter, it is determined whether or not the
operations should be abstract. If the relation is called for creating operations in a conceptual class
(as in line 15, Listing 5.10), abstract operations are created, if called for creation of operations in
a implementation class (as in line 16, Listing 5.10), all operations will be non-abstract.
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In the where clause, the operations are marked with a comment in order to be able to identify
these operations as a part of the implementation pattern for owned attributes when generating
code from the target model. Some more detailed characteristics like visibility and parameters of the
operations are handled in relations included in the where clause. For multi-valued attributes, rela-
tions SC_GetterCharacteristics (Listing 5.12) and SC_AddRemoveOperationCharacteristics (Listing
5.13) are included, for processing single-valued attributes, SC_SetterCharacteristics (included in
Appendix B.1.1, Listing B.4) is used instead of relation SC_AddRemoveOperationCharacteristics.

A relation similar to SC_PropertyAccessOperation_Multiple of Listing 5.11 but for single-valued
attributes is included in Appendix B.1.1, Listing B.3.

1 relation SC_PropertyAccessOperation_Multiple
2 {
3 primitive domain isAbstractValue : Boolean;
4 primitive domain srcProperty : Property;
5

6 enforce domain target trgClass : Class {
7 ownedOperation = trgClassGetter : Operation {
8 isAbstract = isAbstractValue },
9 ownedOperation = trgClassAddOperation : Operation {

10 isAbstract = isAbstractValue },
11 ownedOperation = trgClassRemoveOperation : Operation {
12 isAbstract = isAbstractValue }};
13

14 where {
15 SC_PropertyAccessOperation_Comment(
16 'Getter', srcProperty.name , trgClassGetter)↗B.33;
17 SC_PropertyAccessOperation_Comment(
18 'AddOperation', srcProperty.name , trgClassAddOperation)↗B.33;
19 SC_PropertyAccessOperation_Comment(
20 'RemoveOperation', srcProperty.name , trgClassRemoveOperation)↗B.33;
21 SC_GetterCharacteristics(
22 srcProperty, trgClassGetter)↗5.12;
23 SC_AddRemoveOperationCharacteristics(
24 'add', srcProperty, trgClassAddOperation)↗5.13;
25 SC_AddRemoveOperationCharacteristics(
26 'remove', srcProperty, trgClassRemoveOperation)↗5.13; }
27 }

Listing 5.11: Creation of accessor operations for multi-valued attributes.

1 relation SC_GetterCharacteristics
2 {
3 primitive domain srcProperty : Property;
4

5 enforce domain target trgOperation : Operation {
6 name = 'get' + srcProperty.name. firstToUpper (),
7 ownedParameter = trgParameter : Parameter {
8 direction = ParameterDirectionKind:: return ,
9 lower = srcProperty.lower ,

10 upper = srcProperty.upper },
11 visibility = ownedElementVisibility(srcProperty. visibility )↗B.45 };
12

13 where {
14 Copy_Parameter_ClassType(srcProperty.type , trgParameter)↗B.22;
15 Copy_Parameter_PrimitiveType(srcProperty.type , trgParameter)↗B.23; }
16 }

Listing 5.12: Completion of the operation for reading access to attributes.
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1 relation SC_AddRemoveOperationCharacteristics
2 {
3 primitive domain namePrefix : String;
4 primitive domain srcProperty : Property;
5

6 enforce domain target trgOperation : Operation {
7 name = namePrefix + srcProperty.name. firstToUpper (),
8 ownedParameter = trgParameter : Parameter {
9 name = srcProperty.name. firstToLower () },

10 visibility = ownedElementVisibility(srcProperty. visibility )↗B.45 };
11

12 where {
13 Copy_Parameter_ClassType(srcProperty.type , trgParameter)↗B.22;
14 Copy_Parameter_PrimitiveType(srcProperty.type , trgParameter)↗B.23; }
15 }

Listing 5.13: Completion of operations for writing access to multi-valued attributes.

The transformation of private attributes as depicted in Fig. 5.3(b) requires to adapt the relation
of inheritance in order to hide protected methods for accessing attributes from specialized classifiers.
For each privately owned attribute of classifier A, the access operations must be redefined in
conceptual classes of specializations of A. Relations implementing this are included in B.5.

Transformation of Owned Operations

With respect to their transformation, we consider two kinds of Operation:

• if behavioral aspects are modeled as well, an operation may have a behavior associated with
it such that the code generated for this behavior is the implementation of the operation

• if behavior is not modeled or an operation is not associated with a behavior, then the imple-
mentation of such an operation is to be done manually after code generation.

In either case, the problem is that a behavior as well as code implementing an operation must
have access to the features of the classifier owning the operation. Therefore, private operations
must be transformed analogously to private attributes with protected visibility in the conceptual
class in order to be accessible in the implementation class.

Listing 5.14 presents the first relation initiating the transformation of operations. It matches
each source class (line 4) and the concerning conceptual class (lines 8–9) and implementation class
(lines 10–11) of the target model. Enforcement of operations is covered by relations included in
the where clause.

1 top relation OwnedOperation
2 {
3 checkonly domain source srcPackage : Package {
4 packagedElement = srcClass : Class {}};
5

6 checkonly domain target trgPackage : Package {
7 name = 'PSM',
8 packagedElement = trgClass : Class {
9 name = srcClass.name },

10 packagedElement = trgImplClass : Class {
11 name = srcClass.name + 'Impl' }};
12

13 where {
14 O_PublicProtectedPackageOperation(srcClass, trgClass, trgImplClass)↗5.15;
15 O_PublicProtectedPackageOperation_Abstract(srcClass, trgClass)↗5.16;
16 }
17 }

Listing 5.14: Transformation of operations.
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Relation O_PublicProtectedPackageOperation of Listing 5.15 transforms operations which are
not abstract (line 5) into a pair of operations, one of which being abstract (line 9) and located in
the conceptual class, the other one being not abstract (line 13) and located in the implementation
class. The where clause contains relations which supply both operations with some details which
are copied from the source operation.

1 relation O_PublicProtectedPackageOperation
2 {
3 checkonly domain source srcClass : Class {
4 ownedOperation = srcOperation : Operation {
5 isAbstract = false }};
6

7 enforce domain target trgClass : Class {
8 ownedOperation = trgClassOperation : Operation {
9 isAbstract = true }};

10

11 enforce domain target trgImplClass : Class {
12 ownedOperation = trgImplClassOperation : Operation {
13 isAbstract = false }};
14

15 where {
16 Copy_Operation(srcOperation, trgClassOperation)↗B.17;
17 Copy_Operation(srcOperation, trgImplClassOperation)↗B.17; }
18 }

Listing 5.15: Enforcing target operations for non-private source operations.

Relation O_PublicProtectedPackageOperation_Abstract given in Listing 5.16 handles abstract
operations. It enforces only one abstract operation in the conceptual class (line 8). Since being
marked abstract, it is obviously not intended to provide an implementation.

In a correct model, a specialization of the class containing the abstract operation must
provide an implementation, i. e. the special class must contain an operation with conforming
name and parameters which is not abstract. This operation will be transformed by relation
O_PublicProtectedPackageOperation which will enforce another abstract operation in the concep-
tual class of the special class. Although this duplicate occurrence of an abstract operation is
useless, we do not mind about it since it causes no problems.

In the where clause a relation is contained which copies all operation details from the source
model into the target model.

1 relation O_PublicProtectedPackageOperation_Abstract
2 {
3 checkonly domain source srcClass : Class {
4 ownedOperation = srcOperation : Operation {
5 isAbstract = true }};
6 enforce domain target trgClass : Class {
7 ownedOperation = trgClassOperation : Operation {
8 isAbstract = true }};
9

10 where {
11 Copy_Operation(srcOperation, trgClassOperation)↗B.17; }
12 }

Listing 5.16: Enforcing target operations for non-private, abstract source operations.

The transformation of private operations follows the semantics presented for the transformation
of private attributes. The operation is included in the conceptual class with protected visibility
and it must be redefined in the conceptual class of each specialization, if any, in order to avoid
accessibility in the down-chain of generalization relationships.

The necessary adaptation of relation SingleInheritance is included in the Appendix (Listing
B.5).
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5.4.2 Transformation of Associations

In the discussion of the semantics of Association in Chapter 3, Sect. 3.2, we motivated that a
semantically sound implementation is achievable, however, it is not simple. We argued to use
the Relationship Object Pattern which is a natural fit to the specification of associations at run-
time described as a set of links which consist of values each value being a reference to an object
participating in that link.

In this section, we explain how to transform a source model in order to have the Relationship
Object Pattern explicitly modeled for each association in the target model.

Conceptually, this transformation can be divided into two domains:

• replace an association by an implementation class and add a link class

• adapt classes participating in the association to the new structure e. g. by adding references
to the association implementation class.

We term that class the instances of which represent links of an association a link class, the class
creating, querying, and destroying links we term a manager class.

Figure 5.4 shows the general transformation of a ternary association applying the Relationship
Object Pattern. The association is replaced by the manager class ABC and the link class Link.
The classes participating in the association are no longer connected to each other rather they all
reference the manager class and are referenced by the link class.

BA

t4

BA

ABC

ABC

Link

C

C

Figure 5.4: Transformation of a ternary association applying the Relationship Object Pattern.

All associations which occur in the Relationship Object Pattern in Fig. 5.4 are navigable in
only one direction. Therefore, they can be implemented as properties in the class which has access
to the class associated to the navigable end. In the following transformations, instead of one way
navigable associations, we use properties for accessing the opposite ends and omit the creation of
associations.

Creating Implementation Classes

The top-level relation Associations of Listing 5.17 mixes two separate relations for the transforma-
tion of associations and for the transformation of association classes, which are separately included
in Listing B.9 and Listing B.10 of Appendix B.1.2. For brevity, both transformations are merged
into a common representation covering transformation of associations and association classes. The
parts only applicable for either associations or association classes are separated in sections en-
closed by green bars. The green bars are labeled to indicate whether the enclosed content refers
to association or association class transformation.
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1 top relation Associations
2 {
3 if isAssociation
4 checkonly domain source srcAssociation : Association {};
5 else if isAssociationClass
6 checkonly domain source srcAssociation : AssociationClass {};
7 fi
8

9 enforce domain target trgPackage : Package {
10 name = 'PSM',
11 packagedElement = trgLinkClass : Class {
12 name = srcAssociation.name ,
13 ownedOperation = trgLinkClassConstructor : Operation {
14 name = srcAssociation.name ,
15 visibility = VisibilityKind:: public }},
16 if isAssociationClass
17 packagedElement = trgLinkImplClass : Class {
18 name = srcAssociation.name + 'Impl',
19 ownedOperation = trgLinkImplClassConstructor : Operation {
20 name = srcAssociation.name + 'Impl',
21 visibility = VisibilityKind:: public }},
22 fi
23 packagedElement = trgManagerClass : Class {
24 name = 'LinkManager_' + srcAssociation.name ,
25 ownedOperation = trgManagerClassConstructor : Operation {
26 name = 'LinkManager_' + srcAssociation.name ,
27 visibility = VisibilityKind:: private },
28 ownedOperation = trgCreateLinkOperation : Operation {
29 name = 'createLink',
30 if isAssociationClass
31 type = trgLinkClass,
32 fi
33 visibility = VisibilityKind:: public },
34 ownedOperation = trgRemoveLinkOperation : Operation {
35 name = 'removeLink',
36 visibility = VisibilityKind:: public },
37 ownedOperation = trgGetLinkOperation : Operation {
38 name = 'getLinks',
39 visibility = VisibilityKind:: public }}};
40

41 where {
42 A_LinkClass_Comment('Association(Class)', trgLinkClass)↗B.24;
43 A_ManagerClass_Comment('Association(Class)', trgManagerClass)↗B.25;
44 A_MemberClass_Comment(
45 'Association(Class)', srcAssociation, trgPackage)↗B.26;
46 A_MemberClass_Property_LinkManager(
47 trgManagerClass, srcAssociation, trgPackage, trgPackage)↗5.18;
48 A_LinkClass(srcAssociation, trgLinkClass)↗5.19;
49 A_LinkClass_Constructor(srcAssociation, trgLinkClassConstructor)↗5.20;
50 if isAssociationClass
51 A_LinkClass_Constructor(srcAssociation,
52 trgLinkImplClassConstructor)↗5.20;
53 fi
54 A_ManagerClass(trgLinkClass, srcAssociation, trgManagerClass,
55 trgCreateLinkOperation, trgRemoveLinkOperation,
56 trgGetLinkOperation)↗5.21;
57 }
58 }

Listing 5.17: General transformation of associations and association classes.
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Relation Associations performs the following transformation steps:

• It matches each association (line 4) or association class (line 6) in the source model.

• For each source association, two classes are created in the target package, one class repre-
senting links (lines 11–15) and another class managing the link instances (lines 23–39). Both
classes are named and are provided with a constructor, which — in the style of Java — is an
operation named like the containing class.

• If the matched association is an association class, an implementation class must be created
for the link class (lines 17–21). The constructor of the link class is public in order to allow the
manager class to create links whereas the constructor of the manager class itself is private,
since the manager class is designed to be a singleton [29].

• Operations for working with links are enforced in lines 25–39. If transforming an association
class, the operation createLink must return the created link instance, therefore, a return
type is specified for this operation in line 31.

In the where clause, relations are called which additionally add comments to the created
classes and to the member end classes of the association (lines 42–45). When transforming as-
sociation classes, the string parameter must read 'AssociationClass', otherwise, it must read
'Association'. These comments are necessary in order to be able to identify the classes as parts
of the implementation pattern of associations and association classes when generating code from
the target model.

The remaining relations, which are described in detail later, adapt the classes participating in
the association to the new structure and complete the link class as well as the manager class:

• Relation A_MemberClass_Property_LinkManager (line 47) adapts member end classes to the
new structure: it creates a property which may hold a reference to the manager class.

• The link class is completed by two relations:

– Relation A_LinkClass (line 48) adds a property to the link class for each association end.
By that, instances of the link class are able to represent a link which holds a value for
each associated instance.

– Relation A_LinkClass_Constructor (line 49) adds a parameter for each association end
to the constructor of a link class in order to allow for the creation of a link which is
immediately supplied with the instances to be linked.

– If an association class is transformed, the constructor of the link implementation class
(which is not needed for plain associations) must be supplied with parameters for each
association end, too. Therefore, relation A_LinkClass_Constructor is included twice but
for the second time, with the link implementation class as the second parameter (line
52).

• Finally, the operations created in lines 25–39 must be completed by adding parameters,
return types and by including information about upper and lower bounds. For this purpose,
relation A_Manager_Class (line 56) is included.
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Providing Member End Classes with Access to Link Managers

Listing 5.18 contains relation A_MemberClass_Property_LinkManager which adds a reference to the
manager class into each member end class:

• the manager class is referred to by the primitive domain trgManagerClass (line 3)

• each association end is matched in line 6

• each member end class is matched in lines 9–10

• in each matched member end class, a privately owned, appropriately named and typed at-
tribute is created (lines 15–21).

The attribute for accessing the manager class is added to member end classes even if all opposite
ends are not navigable, since non-navigability does not preclude the creation of links. Therefore,
regardless of the navigability of opposite ends, in order to be able to create new links, each member
must be able to access a manager class of an association.

The reference to the manager classes is static (line 19), since the manager class is implemented
as a singleton. Simply because only one instance of a singleton class exists, all instances of a class
accessing it may share this single instance.

1 relation A_MemberClass_Property_LinkManager
2 {
3 primitive domain trgManagerClass : Class;
4

5 checkonly domain source srcAssociation : Association {
6 memberEnd = srcMemberEnd : Property {}};
7

8 checkonly domain source srcPackage : Package {
9 packagedElement = srcMemberClass : Class {

10 name = srcMemberEnd.type.name }};
11

12 enforce domain target trgPackage : Package {
13 packagedElement = trgMemberClass : Class {
14 name = srcMemberEnd.type.name ,
15 ownedAttribute = trgManagerClassProperty : Property {
16 name = trgManagerClass.name. firstToLower (),
17 type = trgManagerClass,
18 visibility = VisibilityKind:: private ,
19 isStatic = true,
20 defaultValue = trgPropertyValue : LiteralString {
21 value = 'null' }}}};
22

23 when {
24 srcMemberClass. ownedAttribute . oclIsUndefined ()
25 or not srcMemberClass. ownedAttribute −>exists (
26 p: Property | p.type = trgManagerClass; }
27

28 where {
29 A_MemberClass_Property_LinkManager_Comment(trgManagerClassProperty)↗B.27;
30 }
31 }

Listing 5.18: Linking member end classes to a link manager class.

In the when clause, it is checked that either the member end class does not have any owned
attributes at all (line 24) or that no property exists the type of which is the manager class (line
26). By that, a multiple creation of a property for referencing a manager class is avoided. Such
a multiple property creation would occur in reflexive associations, i. e. if a class participates in an
association more than once in different roles.

In the where clause, additional information is tagged to the created attribute in order to be
able to recognize its special semantics when generating code from the target model.
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Adding Attributes to Link Implementations

Relation A_LinkClass contained in Listing 5.19 completes the class implementing an association
link. It matches each end of an association (line 4) and adds a privately owned attribute for each
matched association end to the link class (lines 7–11).

Only reading access is provided by creating an operation for each end returning the value of
the end (lines 12–18).

In the where clause, a string is tagged to the access operation indicating that its purpose is
granting reading access to an attribute.

1 relation A_LinkClass
2 {
3 checkonly domain source srcAssociation : Association {
4 memberEnd = srcMemberEnd : Property {}};
5

6 enforce domain target trgLinkClass : Class {
7 ownedAttribute = trgProperty : Property {
8 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
9 type = trgPropertyType : Class {

10 name = srcMemberEnd.type.name },
11 visibility = VisibilityKind:: private },
12 ownedOperation = trgGetter : Operation {
13 name = 'get' + roleNameFirstUpper(srcMemberEnd)↗B.35 ,
14 ownedParameter = trgGetterParameter : Parameter {
15 direction = ParameterDirectionKind:: return ,
16 type = trgGetterParameterType : Class {
17 name = srcMemberEnd.type.name }},
18 visibility = VisibilityKind:: public }};
19

20 where {
21 SingleClass_PropertyAccessOperation_Comment(
22 'Getter', roleNameFirstLower(srcMemberEnd)↗B.34 , trgGetter)↗B.28;
23 }
24 }

Listing 5.19: Adapting a link class to the structure of an association.

Supplying Link Constructors with Parameters

Links have attributes each holding the value of one association end. Since links cannot be changed,
attributes can only be accessed for reading. Values must be provided upon the creation of a
link. Therefore, relation A_LinkClass_Constructor given in Listing 5.20 adds parameters to the
constructor of a link class.

It matches each association end (line 4) and enforces the existence of a parameter for each end
(lines 7–10).

1 relation A_LinkClass_Constructor
2 {
3 checkonly domain source srcAssociation : Association {
4 memberEnd = srcMemberEnd : Property {}};
5

6 enforce domain target trgOperation : Operation {
7 ownedParameter = trgInParameter : Parameter {
8 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
9 type = trgParameterType : Class {

10 name = srcMemberEnd.type.name }}};
11 }

Listing 5.20: Supplying a link class constructor with parameters.
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Creating Operations for Managing Links

The last step in the transformations of associations is to complete the operations actually sup-
porting to create, to remove, and to query links. These operations have been created within the
relation Associations of Listing 5.17.

Relation A_ManagerClass of Listing 5.21 performs the following transformation steps:

• it matches each end of an association (line 6)

• it creates two attributes intended to hold the lower (line 9) and upper (line 10) bounds of
the currently matched end

• it creates operations for

– creating new links (line 12)
– removing existing links (line 18)
– reading the association, i. e. accessing link values (line 24)

• for each such created operation, this relation provides an parameter for each association end
which is named and typed like the currently matched end (lines 13–16, lines 19–22, and lines
25–28). A parameter for each end is needed to specify the values for a new link, to identify
a link to be destroyed, or to identify the context, if a navigable end is read.

1 relation A_ManagerClass
2 {
3 primitive domain trgLinkClass : Class;
4

5 checkonly domain source srcAssociation : Association {
6 memberEnd = srcMemberEnd : Property {}};
7

8 enforce domain target trgManagerClass : Class {
9 ownedAttribute = trgLowerProperty : Property {},

10 ownedAttribute = trgUpperProperty : Property {}};
11

12 enforce domain target trgCreateLinkOperation : Operation {
13 ownedParameter = trgCreateLinkInParameter : Parameter {
14 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
15 type = trgCreateLinkParameterType : Class {
16 name = srcMemberEnd.type.name }}};
17

18 enforce domain target trgRemoveLinkOperation : Operation {
19 ownedParameter = trgRemoveLinkInParameter : Parameter {
20 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
21 type = trgRemoveLinkParameterType : Class {
22 name = srcMemberEnd.type.name }}};
23

24 enforce domain target trgGetLinkOperation : Operation {
25 ownedParameter = trgGetLinkInParameter : Parameter {
26 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
27 type = trgGetLinkParameterType : Class {
28 name = srcMemberEnd.type.name }}};
29

30 where {
31 A_ManagerClass_LowerProperty(srcMemberEnd, trgLowerProperty)↗5.22;
32 A_ManagerClass_UpperProperty(srcMemberEnd, trgUpperProperty)↗5.23;
33 A_ManagerClass_GetLinkOperation(trgLinkClass, trgGetLinkOperation)↗5.24;
34 }
35 }

Listing 5.21: Adapting a link manager class to the structure of an association.
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In the where clause, two relations are called which complete the specification of the attribute
holding the value of the lower bound (or upper bound respectively) of the currently matched end
(line 31, 32 respectively).

A third relation supplies the getLinks operation with a return parameter (line 33).
Relation A_ManagerClass_LowerProperty (Listing 5.22) supplies the owned attribute intended to

represent the lower bound of an association end with further details:

• a name derived from the word lower and the role name of the concerning end.

• a type, which is the primitive type integer

• a default value which value specified as the end’s lower bound.

The attribute furthermore is specified to be private, read-only, and static.

1 relation A_ManagerClass_LowerProperty
2 {
3 primitive domain srcMemberEnd : Property;
4

5 enforce domain target trgLowerProperty : Property {
6 name = 'lower' + roleNameFirstUpper(srcMemberEnd)↗B.35 ,
7 type = trgPropertyType : PrimitiveType {
8 name = 'Integer' },
9 visibility = VisibilityKind:: private ,

10 isStatic = true,
11 isReadOnly = true,
12 defaultValue = trgPropertyValue : LiteralString {
13 value = propertyLowerValue(srcMemberEnd)↗B.41 }};
14 }

Listing 5.22: Supplying an attribute representing a lower bound with a concrete value.

Relation A_ManagerClass_UpperProperty (Listing 5.23) is almost identical to relation
A_ManagerClass_LowerProperty (Listing 5.22). The specification of the name and the default value
of the attribute is adapted to comply to the upper bound of the concerning association end.

1 relation A_ManagerClass_UpperProperty
2 {
3 primitive domain srcMemberEnd : Property;
4

5 enforce domain target trgUpperProperty : Property {
6 name = 'upper' + roleNameFirstUpper(srcMemberEnd)↗B.35 ,
7 type = trgPropertyType : PrimitiveType {
8 name = 'Integer' },
9 visibility = VisibilityKind:: private ,

10 isStatic = true,
11 isReadOnly = true,
12 defaultValue = trgPropertyValue : LiteralString {
13 value = propertyUpperValue(srcMemberEnd)↗B.42 }};
14 }

Listing 5.23: Supplying an attribute representing an upper bound with a concrete value..

Relation A_ManagerClass_GetLinkOperation (Listing 5.24) adds a return parameter to the op-
eration for reading the association, i. e. for the operation retrieving links. The return type of this
parameter is the link class and its multiplicity ranges from 0 (since a request might result in no
links to be returned) to unlimited (specified by −1, since any number of links possibly is to be
returned).



110 CHAPTER 5. MODEL TRANSFORMATION

1 relation A_ManagerClass_GetLinkOperation
2 {
3 primitive domain trgLinkClass : Class;
4

5 enforce domain target trgGetLinkOperation : Operation {
6 ownedParameter = trgReturnParameter : Parameter {
7 direction = ParameterDirectionKind:: return ,
8 type = trgLinkClass,
9 lowerValue = trgParameterLowerValue : LiteralInteger {

10 value = 0 },
11 upperValue = trgParameterUpperValue : LiteralUnlimitedNatural {
12 value = −1 }}};
13 }

Listing 5.24: Specifying the return value of an operation for querying links.

5.4.3 Modifying Member End Classes
According to the specification, adding or removing links has an impact on the state of instances
of the owning classifier. Hence if an end is owned by an association, adaptations to the member
end class are not necessary. But if an end owned by an association is navigable, access is granted
to member end classes at opposite ends.

Listing 5.25 contains relation A_MemberClass for preparing operations for write access in each
member end class:

• association ends are matched (line 4)

• an operation for adding a link is enforced (line 10)

• another operation for removing a link (line 11) is created.

1 top relation A_MemberClass
2 {
3 checkonly domain source srcAssociation : Association {
4 memberEnd = srcMemberEnd : Property {}};
5

6 enforce domain target trgPackage : Package {
7 name = 'PSM',
8 packagedElement = trgMemberClass : Class {
9 name = srcMemberEnd.type.name ,

10 ownedOperation = trgAddOperation : Operation {},
11 ownedOperation = trgRemoveOperation : Operation {}}};
12

13 where {
14 A_MemberClass_AddRemoveOperation(
15 'add', srcMemberEnd, srcAssociation, trgAddOperation)↗5.26;
16 AC_MemberClass_AddRemoveOperation(
17 'add', srcMemberEnd, srcAssociation, trgAddOperation)↗B.11;
18 A_MemberClass_AddRemoveOperation(
19 'remove', srcMemberEnd, srcAssociation, trgRemoveOperation)↗5.26;
20 A_MemberClass_Prepare_GetOperation(
21 srcMemberEnd, srcAssociation, trgMemberClass)↗5.27;
22 }
23 }

Listing 5.25: Preparing operations for write access in member end classes.

In the where clause of relation A_MemberClass, relations are called which create parameters of
accessor operations within member end classes. Two of those relations add parameters to the add
operation of a member end class. The first one (line 15) only matches associations, the second
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one (line 17) only matches association classes. For association classes, the operation for adding a
new link requires an additional result parameter returning the created link instance. The former
relation is printed in Listing 5.26, the latter one in Listing B.11 of Appendix B.1.2.

For the specification of parameters of a remove operation, which is also covered by the relation of
Listing 5.26, but called with a different operation name prefix, no distinction between associations
and association classes is needed.

For get operations, which are prepared by relation A_MemberClass_Prepare_GetOperation (in-
cluded in line 20), such a distinction is not needed either. Preparation of get operations by relation
A_MemberClass_Prepare_GetOperation is contained in Listing 5.27.

1 relation A_MemberClass_AddRemoveOperation
2 {
3 primitive domain namePrefix : String;
4 primitive domain srcClassMemberEnd : Property;
5

6 checkonly domain source srcAssociation : Association {
7 memberEnd = srcMemberEnd : Property {}};
8

9 enforce domain target trgOperation : Operation {
10 name = namePrefix + operationName(
11 srcAssociation.memberEnd −>excluding (srcClassMemberEnd))↗B.36 ,
12 ownedParameter = trgInParameter : Parameter {
13 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
14 type = trgParameterType : Class {
15 name = srcMemberEnd.type.name }},
16 visibility = minimalImplVisibility(
17 srcAssociation.memberEnd −>excluding (srcClassMemberEnd))↗B.43 };
18

19 when {
20 namePrefix < > 'add' or not srcAssociation. oclIsKindOf (AssociationClass);
21 srcMemberEnd < > srcClassMemberEnd;
22 }
23

24 where {
25 Association_MemberClass_AddRemoveOperation_Comment(
26 namePrefix, 'Association',
27 'LinkManager'+associationName(srcAssociation)↗B.38 , trgOperation)↗B.29;
28 }
29 }

Listing 5.26: Specification of parameters for accessor operations in member end classes.

Add and remove operations in member end classes must contain a parameter for each association
end except the end to which the member end class itself is connected. In line 7 of Listing 5.26,
each association end is matched, in the when clause in line 21, it is assured that the relation does
not process the end to which the current member end class is connected. In line 20, it is assured
that the relation does not transform operations for adding new links for association classes.

The operation is named (line 10) by appending all association ends’ names to a prefix already
bound by the calling relation (line 3). The visibility of the operation is determined by the most
restrictive visibility specification of any end (line 16). Similar to private attributes, if an end is
specified with private visibility, accessor operations have protected visibility.

In order to avoid accessibility in all subclasses, accessor methods for private association ends
must be overwritten in specializations, if any. However, this is not included in the presented
transformation yet.

If accessing association ends via member end classes is not desired for ends owned by the
association, a relation must be included in the when clause evaluating to false if no operations are
to be created for a source member end. Remember that in this case, higher order associations
cannot be accessed via member end classes because ends must be owned by the association.
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Finally, in the where clause of relation A_MemberClass_AddRemoveOperation, a relation is included
which tags a comment to each transformed operation in order to identify the intended semantics
when generating code from the target model.

Listing 5.27 shows the relation for preparing a get operation for association ends in a member
end class. A classifier must own such an operation if at least one navigable end connected to
another classifier exists. This is achieved in the following steps:

• each association end is matched (line 6)

• it is checked that the currently matched end is navigable (lines 12–13),

• it is ensured that the currently matched navigable end is an opposite end to that end, to
which the classifier which owns the add operation is connected (line 14),

• a duplicate creation of a get operation is avoided (lines 15–16).

1 relation A_MemberClass_Prepare_GetOperation
2 {
3 primitive domain srcClassMemberEnd : Property;
4

5 checkonly domain source srcAssociation : Association {
6 memberEnd = srcMemberEnd : Property {}};
7

8 enforce domain target trgMemberClass : Class {
9 ownedOperation = trgOperation : Operation {}};

10

11 when {
12 srcAssociation. navigableOwnedEnd −>exists (
13 p : Property | p = srcMemberEnd);
14 srcMemberEnd < > srcClassMemberEnd;
15 not trgMemberClass. ownedOperation −>exists (
16 o : Operation | o.name = 'get' + roleNameFirstUpper(srcMemberEnd))↗B.35;
17 }
18

19 where {
20 A_MemberClass_GetOperation(
21 srcMemberEnd, srcClassMemberEnd, srcAssociation, trgOperation)↗5.28;
22 A_MemberClass_GetOperation_Parameter(
23 srcMemberEnd, srcClassMemberEnd, srcAssociation, trgOperation)↗5.29;
24 }
25 }

Listing 5.27: Preparing an operation for reading ends of a higher order association.

Relation A_MemberClass_Prepare_GetOperation of Listing 5.27 only enforces an operation with-
out specifying the values for any further characteristics. The specification of further details is
covered by two relations contained in the where clause.

The first of both relations, relation A_MemberClass_GetOperation is shown in Listing 5.28. It
specifies the following characteristics of the add operation:

• the name of the operation (lines 8–9)

• the return parameter (lines 10–17) with appropriate type (lines 12–13) and multiplicity
bounds according to those of the end to be read (lines 14–17)

• the visibility according to the end (line 18).

In the where clause, relations are included which tag information to the operation needed to
identify the operation as part of the implementation pattern of associations when generating code
from the target model.

The second relation is given by Listing 5.29. Relation A_MemberClass_GetOperation_Parameter
adds parameters to the operation. Additional parameters are necessary to specify the context,
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1 relation A_MemberClass_GetOperation
2 {
3 primitive domain srcMemberEnd : Property;
4 primitive domain srcClassMemberEnd : Property;
5 primitive domain srcAssociation : Association;
6

7 enforce domain target trgOperation : Operation {
8 name = 'get' + roleNameFirstUpper(srcMemberEnd)↗B.35 +
9 operationSuffix(srcMemberEnd, srcClassMemberEnd, srcAssociation)↗B.40 ,

10 ownedParameter = trgReturnParameter : Parameter {
11 direction = ParameterDirectionKind:: return ,
12 type = trgParameterType : Class {
13 name = srcMemberEnd.type.name },
14 lowerValue = trgParameterLowerValue : LiteralInteger {
15 value = srcMemberEnd.lower },
16 upperValue = trgParameterUpperValue : LiteralUnlimitedNatural {
17 value = srcMemberEnd.upper }},
18 visibility = srcMemberEnd. visibility };
19

20 where {
21 A_MemberClass_GetOperation_Comment(srcAssociation, trgOperation)↗B.30;
22 AC_MemberClass_GetOperation_Comment(srcAssociation, trgOperation)↗B.30;
23 }
24 }

Listing 5.28: Specifying an operation for reading association ends.

for which an association end is to be accessed, i. e. , the values of all other ends. For binary
associations, the context is implicitly defined by the instance on which a get operation is called.
Therefore, the relation must not process binary associations. This is achieved by the first condition
of the when clause (line 16).

The remaining two conditions in the when clause determine for which association ends, a pa-
rameter is added to the get operation currently processed: For higher order associations, when
reading an association end, values must be provided for those ends building the context, i. e. all
ends except the end to be read (line 17). The end, to which the classifier owning the operation is
connected should not be included as a parameter either (line 18), otherwise, it would be necessary
to pass the instance, on which the operation is invoked, as a parameter.

1 relation A_MemberClass_GetOperation_Parameter
2 {
3 primitive domain srcOperationMemberEnd : Property;
4 primitive domain srcClassMemberEnd : Property;
5

6 checkonly domain source srcAssociation : Association {
7 memberEnd = srcMemberEnd : Property {}};
8

9 enforce domain target trgOperation : Operation {
10 ownedParameter = trgInParameter : Parameter {
11 name = roleNameFirstLower(srcMemberEnd)↗B.34 ,
12 type = trgParameterType : Class {
13 name = srcMemberEnd.type.name }}};
14

15 when {
16 srcAssociation.memberEnd −>size () > 2;
17 srcMemberEnd < > srcOperationMemberEnd;
18 srcMemberEnd < > srcClassMemberEnd; }
19 }

Listing 5.29: Supplying an operation for reading association ends with parameters.
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For all other ends of the association, a parameter is added to the get operation. Each parameter
is named like the role name of the concerning end. The type is identified by the name of the classifier
connected to the concerning end.

5.4.4 Transformation of Compositions
The implementation of composition as proposed in Sect. 3.6.3 necessitates that a manager class
implementing a composition can access manager classes of other associations in which parts of the
composition participate. This access is made explicit by inserting an association between concerned
manager classes. Listing 5.30 shows a relation for this purpose. This relation

• matches each composition, i. e. each association of the source model of which an end’s aggre-
gation kind is composite (lines 3–6)

• matches all associations without further restrictions (line 8)

• matches the manager class of the composition (lines 12–13)

• matches the manager class of the other association (lines 14–15)

• enforces an association between the manager class of the composition and the manager class
of the association (lines 16–18).

In the when clause, it is ensured that the matched association is not identical to the matched
composition (line 22) and that the matched association has an end connected to the classifier which
is a part of the composition (lines 23–25).

1 top relation Composition
2 {
3 checkonly domain source srcCompositionAssociation : Association {
4 memberEnd = srcCompositeMemberEnd : Property {
5 aggregation = AggregationKind:: composite },
6 memberEnd = srcOtherMemberEnd : Property {}};
7

8 checkonly domain source srcOtherAssociation : Association {};
9

10 enforce domain target trgPackage : Package {
11 name = 'PSM',
12 packagedElement = trgCompositionManagerClass : Class {
13 name = 'LinkManager'+associationName(srcCompositionAssociation)↗B.38 },
14 packagedElement = trgOtherManagerClass : Class {
15 name = 'LinkManager'+associationName(srcOtherAssociation)↗B.38 },
16 packagedElement = trgManagerAssociation : Association {
17 name = trgCompositionManagerClass.name + '__' +
18 trgOtherManagerClass.name }};
19

20 when {
21 srcCompositionAssociation.memberEnd −>size () = 2;
22 srcCompositionAssociation < > srcOtherAssociation;
23 srcOtherAssociation.memberEnd −>exists (
24 p : Property | p.type = srcCompositeMemberEnd.type
25 or p.type = srcOtherMemberEnd.type ); }
26

27 where {
28 Composition_ClassRelation_Multiplicity(
29 trgCompositionManagerClass,
30 trgOtherManagerClass,
31 trgManagerAssociation)↗5.31; }
32 }

Listing 5.30: Associating a manager class of a composition to manager classes of associations.
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In the where clause, a relation is called which adds navigable owned ends to the association
between the manager class of a composition and manager classes of associations in which the parts
of the composition participate.

This relation is given in Listing 5.31. In this relation, the manager class of a composition and
the manager class of an association in which a part of the composition participates are bound as
primitive domains.

Then, for both manager classes, an association end with appropriate type is created. The upper
and lower bound of both ends are 1, visibility of both ends is private.

1 relation Composition_ClassRelation_Multiplicity
2 {
3 primitive domain trgMemberEndClass1 : Class;
4 primitive domain trgMemberEndClass2 : Class;
5

6 enforce domain target trgAssociation : Association {
7 navigableOwnedEnd = trgOwnedEnd1 : Property {
8 type = trgMemberEndClass1,
9 lowerValue = trgOwnedEnd1LowerValue : LiteralInteger {

10 value = 1 },
11 upperValue = trgOwnedEnd1UpperValue : LiteralUnlimitedNatural {
12 value = 1 },
13 visibility = VisibilityKind:: private },
14 navigableOwnedEnd = trgOwnedEnd2 : Property {
15 type = trgMemberEndClass2,
16 lowerValue = trgOwnedEnd2LowerValue : LiteralInteger {
17 value = 1 },
18 upperValue = trgOwnedEnd2UpperValue : LiteralUnlimitedNatural {
19 value = 1 },
20 visibility = VisibilityKind:: private }};
21 }

Listing 5.31: Supplying ends of associations between manager classes with values.

5.5 Transforming Models of Dynamic Behavior
The transformation of activities differs from that of static structure in the number of supported
meta-classes, i. e. modeling elements. For static structure, the specified transformations support
Package, Class, Association, AssociationClass, Property, Operation, Parameter, ParameterDirec-
tionKind, and VisibilityKind. In contrast, the transformation of activities requires to support much
more meta-classes, namely seven kinds of ControlNodes, Activity and InterruptibleActivityRegion,
all supported kinds of Action2, four kinds of ObjectNode as well as ControlFlow and ObjectFlow.

The large number of concerned meta-classes is problematic for the creation of the target model.
In checkonly domains, which typically refer to the source model, it is possible to use abstract types
for matching a set of concrete type instances, but in enforce domains which are used to create
instances in the target model, abstract types cannot be used. Instead of dynamically choosing the
type of enforced elements, a distinct relation must be provided for each considered type.

Alternatively, the source activity can be copied into the target model where it is changed in
the run of the transformation.

In order to avoid references from the target model into the source model, all references from
the copied activity to model elements that are not copied because they are not part of the activity
must be updated to reference elements of the target model. This is a purely technical aspect for
which relations are listed in Appendix B.2, Listing B.49 and Listing B.50.

The first step of the transformation of behavior is to include each activity of the source model
into the target model. In UML, other kinds of behavior exist, such as StateMachine, however, we
support the full transformation of a model only if it solely contains behaviors of type Activity.

2UML defines 34 different kinds of action.
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Relation Activity of Listing 5.32

• matches each class and each of its owned behaviors (lines 3–4) in the source model

• matches to each source class the conceptual class in the target model (lines 6–9)

• moves the matched activity into the set of owned behaviors of the conceptual class in the
target model (line 10).

• creates an operation containing the behavior as its implementation3 (lines 11–13).

In the where clause, parameters of the activity are copied to this operation.

1 top relation Activity
2 {
3 checkonly domain source srcClass : Class {
4 ownedBehavior = srcActivity : Activity {}};
5

6 enforce domain target trgPackage : Package {
7 name = 'PSM',
8 packagedElement = trgClass : Class {
9 name = srcClass.name ,

10 ownedBehavior = trgClass. ownedBehavior −>prepend (srcActivity),
11 ownedOperation = trgOperation : Operation {
12 name = 'run' + srcActivity.name. firstToUpper (),
13 method = OrderedSet{trgClass. ownedBehavior −>at (1)} }}};
14

15 where {
16 Copy_Activity_Parameter(srcActivity, trgOperation)↗B.51;
17 Activity_CallBehaviorAction(trgClass,
18 trgClass. ownedBehavior −>at(1),
19 trgClass. ownedBehavior −>at (1))↗5.34; }
20 }

Listing 5.32: Moving activities from the source model into the target model.

Another relation called in the where clause extracts sequences of actions which are moved each
into its own activity. Afterwards, sequences of actions are replaced by call behavior actions which
call the activities containing the sequences.

5.5.1 Extraction of Action Sequences
We introduced sequences of actions in Sect. 4.2.3. Figure 5.5 (which is identical to Fig. 4.30 in
Sect. 4.2.11) shows the transformation from activity A into At, which is the extraction of sequences
and their inclusion in the original behavior by means of CallBehaviorAction.

ZYX

At

A a1

b1

a2

b2 c

X

Y
Z

a1 a2 b1 b2 c

Figure 5.5: Extraction of sequences of actions from an activity [39].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,

(doi: 10.1007/978-3-642-21470-7_15.)

3The meta-attribute method may contain a behavior that serves as the behavioral specification of an operation.
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Here, we formally specify how to determine sequences of actions. The general idea is as follows:

• A sequence of actions is an ordered set of actions. The order represents the sequencing of
executions. The first action of a sequence, we term the head.

• If all outgoing edges of a head action reach the same target action, and the target action has
no other incoming flow, then this target is included in the sequence of actions, and we term
such an action flow body action.

• If a flow body action is the head of another sequence, it becomes a flow body action of the
concatenation of both sequences.

Listing 5.33 is a straightforward specification for checking an action being a flow body action.
Note that this relation does not modify the target model. It is needed in another relation to
determine whether an action is to be processed or not.

Given an action (line 6) and an edge (line 7) contained in the same activity (line 5 ), then a
given action bound in the primitive domain (line 3) is a flow body action, if

• for any pair of the given and another action (line 10),
for which an edge exists that starts at the other action (line 11)
and ends at the given action (line 12)

• no other edge exists (line 13) which
is an incoming edge of the given action not starting at the other action (line 14)
or is an outgoing edge of the other action not ending at the given action (line 15).

In case of object flow, the criterion is that output pins are attached to the source of the flow,
i. e. the other action and input pins are attached to the flow target, i. e. the given action.

1 top relation Activity_IsFlowBodyAction
2 {
3 checkonly domain source srcAction : Action {};
4

5 checkonly domain source srcActivity : Activity {
6 node = srcOtherAction : Action {},
7 edge = srcEdge : ActivityEdge {}};
8

9 when {
10 srcAction < > srcOtherAction;
11 srcEdge. source = srcOtherAction and
12 srcEdge. target = srcAction;
13 not srcActivity.edge−>excluding (srcEdge)−>exists ( a : ActivityEdge |
14 (a. target = srcAction and a. source < > srcOtherAction)
15 or (a. target <> srcAction and a. source = srcOtherAction)); }
16 }

Listing 5.33: Checking actions for being part of a sequence.

In order to extract sequences of actions, a relation must identify these sequences and move them
into subactivities. Such a relation is given in Listing 5.34. Relation Activity_CallBehaviorAction
matches each node of type Action of an activity. By means of the relation of Listing 5.33, which is
included in the when clause, it is ensured that the action is no flow body action. Since an action
that is no flow body action can only be the head of a sequence of actions, the extraction of this
sequence is prepared:

• a call behavior action is created (lines 9–11) as well as an activity owned by this call behavior
action (lines 12–26)

• an initial node and an activity final node are created and added to the nodes owned by the
new activity (lines 15–16 and lines 17–18)

• activity edges from the initial node to the head action and from the head action to the final
node are inserted and labeled with names (lines 19–22 and lines 23–26).
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1 relation Activity_CallBehaviorAction
2 {
3 primitive domain trgClass : Class;
4

5 checkonly domain source srcActivity : Activity {
6 node = srcAction : Action {}};
7

8 enforce domain target trgActivity : Activity {
9 node = trgCallBehaviorAction : CallBehaviorAction {

10 name = 'CallBehaviorAction_' + srcActivity.name +
11 '_Subactivity_StartsWith_' + srcAction.name ,
12 behavior = trgSubactivity : Activity {
13 name = srcActivity.name +
14 '_Subactivity_StartsWith_' + srcAction.name ,
15 node = trgInitialNode : InitialNode {
16 name = 'Init' },
17 node = trgFinalNode : ActivityFinalNode {
18 name = 'End' },
19 edge = trgInitialEdge : ControlFlow {
20 name = 'Init_' + srcAction.name ,
21 source = trgInitialNode,
22 target = srcAction },
23 edge = trgFinalEdge : ControlFlow {
24 name = srcAction.name + '_End',
25 source = srcAction,
26 target = trgFinalNode }}}};
27

28 when {
29 not Activity_IsFlowBodyAction (srcAction, srcActivity)↗5.33; }
30

31 where {
32 Activity_Subactivity(
33 srcAction, srcActivity, trgActivity, trgFinalEdge, trgClass)↗5.35;
34 Activity_CallBehaviorAction_Incoming(
35 trgCallBehaviorAction, srcAction)↗5.37;
36 Activity_CallBehaviorAction_Outgoing(
37 trgCallBehaviorAction, srcAction, srcActivity)↗5.39; }
38 }

Listing 5.34: Preparing subactivities for sequences of actions.

So far, a new activity has been created with an initial node and an activity final node. Flows
from the initial node to the head action as well as from the head action to the activity final node
have been inserted. In order to complete the extraction of sequences, three things must be done:

• all actions of the same sequence of actions must be included in the new activity as well as
incoming edges of those actions

• each flow ending at the first action of a sequence must be updated in order to end at the call
behavior action which replaces the sequence in the original activity

• each flow starting at the last action of a sequence must be updated in order to start at the
call behavior action which replaces the sequence in the original activity.

These modifications are achieved by performing the relations in the where clause of Acti-
vity_CallBehaviorAction.

Relation Activity_Subactivity of Listing 5.35 is called in order to actually move all actions of
a sequence into a newly created subactivity. The first action of the sequence, the source and target
activity, the final edge from the new subactivity and the owning class are passed as arguments. The
relation matches the given class (line 8) and the new subactivity by name (lines 9–10), adds the
given action to the set of owned actions (line 11) and evaluates relation Activity_FlowBodyAction
of Listing 5.36. All arguments are passed through to this relation.
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1 relation Activity_Subactivity
2 {
3 primitive domain srcAction : Action;
4 primitive domain srcActivity : Activity;
5 primitive domain trgActivity : Activity;
6 primitive domain trgFinalEdge : ControlFlow;
7

8 enforce domain target trgClass : Class {
9 ownedBehavior = trgSubactivity : Activity {

10 name = srcActivity.name+'_Subactivity_StartsWith_'+srcAction.name ,
11 node = trgSubactivity.node−>including(srcAction) }};
12

13 where {
14 Activity_FlowBodyAction(
15 srcAction, srcActivity, trgSubactivity, trgFinalEdge)↗5.36; }
16 }

Listing 5.35: Moving flow body actions into subactivities.

In relation Activity_FlowBodyAction (Listing 5.36), downstream actions of a sequence are
included into subactivities into which such sequences are isolated:

• the action is included into the set of nodes of the subactivity (line 9)

• all incoming edges of the downstream action are included in the set of owned edges of the
subactivity (line 10).

After this modification, the action is part of the subactivity as well as all its incoming edges. But
now, the origin of the incoming edge of the activity final node must be updated. This is done in
line 14 and it is renamed in line 13. In the when clause it is checked that actions are only added
if they are flow body actions and if they are part of that sequence which is to be included in this
subactivity. The query for checking this last condition is given in the Appendix B.2 in Listing
B.56.

1 relation Activity_FlowBodyAction
2 {
3 primitive domain srcAction : Action;
4

5 checkonly domain source srcActivity : Activity {
6 node = srcOtherAction : Action {}};
7

8 enforce domain target trgActivity : Activity {
9 node = trgActivity.node−>including(srcOtherAction),

10 edge = trgActivity.edge−>union(srcOtherAction. incoming ) };
11

12 enforce domain target trgFinalEdge : ControlFlow {
13 name = srcOtherAction.name + '_End',
14 source = srcOtherAction };
15

16 when {
17 srcAction < > srcOtherAction;
18 Activity_IsFlowBodyAction(srcOtherAction, srcActivity)↗5.33;
19 isSubsequentSubactivityAction(
20 srcOtherAction, srcAction, srcActivity)↗B.56; }
21 }

Listing 5.36: Updating the structure of a subactivity.
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While moving actions into new activities which are associated to call behavior actions, it is
necessary to update flows starting or ending at such moved actions. Relations for updating
incoming flows are given in Listing 5.37 and Listing 5.38. For incoming edges, relation Acti-
vity_CallBehaviorAction_Incoming updates the target of control flows by executing relation Ac-
tivity_CallBehaviorAction_Incoming_Change, which actually replaces the target of the control
flow.

If object flows are to be considered, another relation is needed which maps input pins of the
first action of a sequence to input pins of the call behavior actions as well as to activity parameter
nodes of the behavior associated to the call behavior action. A relation for changing incoming
object flows is given in Listing B.54 in Appendix B.2.2. It must be included in the where clause
which contains relation Activity_CallBehaviorAction_Incoming.

1 relation Activity_CallBehaviorAction_Incoming
2 {
3 primitive domain trgCallBehaviorAction: CallBehaviorAction;
4

5 checkonly domain source srcAction : Action {
6 incoming = srcEdge : ControlFlow {}};
7

8 where {
9 Activity_CallBehaviorAction_Incoming_Change(

10 trgCallBehaviorAction, srcEdge)↗5.38; }
11 }

Listing 5.37: Identifying flows to head actions.

1 relation Activity_CallBehaviorAction_Incoming_Change
2 {
3 primitive domain trgCallBehaviorAction: CallBehaviorAction;
4

5 enforce domain target trgEdge : ControlFlow {
6 target = trgCallBehaviorAction };
7 }

Listing 5.38: Updating the target of incoming edges of head actions to call behavior actions asso-
ciated with subactivities.

For outgoing edges, similar relations are needed. Listing 5.39 matches those edges which must
be updated. But whether or not a flow source must be updated is more complex to determine than
it is for flow targets.

For a given action srcAction and a call behavior action trgCallBehaviorAction which is as-
sociated to the behavior into which srcAction is moved, any edge of activity srcActivity which
contains srcAction before it is moved possibly must be updated. The source of an edge must be
updated, if its source is the last action of a sequence. This is the case if

• the source is an action (line 11)

• the target is either not an action (line 12) or, if it is an action, has more than one incoming
flow, i. e. there is an implicit join before the next action (line 13) or there is an implicit fork
before the next action (line 14)

• provided that the source is not a flow body action (line 15), it is the action to be moved,
i. e. the sequence consists of only one action (line 17), or it is an action contained in the
sequence (line 18).

The actual replacement of the flow source is performed within relation Acti-
vity_CallBehaviorAction_Outgoing_Change given in Listing 5.40.

If object flows are to be considered, another relation must be included in the where clause
of relation Activity_CallBehaviorAction_Outgoing. A relation updating outgoing object flows is
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1 relation Activity_CallBehaviorAction_Outgoing
2 {
3 primitive domain trgCallBehaviorAction: CallBehaviorAction;
4 primitive domain srcAction : Action;
5

6 checkonly domain source srcActivity : Activity {
7 node = srcNode : ActivityNode {
8 incoming = srcEdge : ControlFlow {}}};
9

10 when {
11 srcEdge. source . oclIsKindOf (Action);
12 not srcNode. oclIsKindOf (Action)
13 or srcNode.incoming −>size () > 1
14 or srcEdge. source .outgoing −>size () > 1;
15 not Activity_IsFlowBodyAction(
16 srcEdge. source . oclAsType (Action), srcActivity)
17 and srcEdge. source = srcAction
18 or isSubsequentSubactivityAction(
19 srcEdge. source . oclAsType (Action), srcAction, srcActivity); }
20

21 where {
22 Activity_CallBehaviorAction_Outgoing_Change(
23 trgCallBehaviorAction, srcEdge)↗5.40; }
24 }

Listing 5.39: Identifying outgoing edges of the last flow body action of a sequence.

given in Listing B.55 in Appendix B.2.2. This relation maps the output pins of the last action of
a sequence to output pins of the call behavior action which is associated to the activity containing
the sequence of actions. In addition, activity parameter nodes are added to the activity to ensure
that the inputs of the call behavior action and its associated activity match.

1 relation Activity_CallBehaviorAction_Outgoing_Change
2 {
3 primitive domain trgCallBehaviorAction: CallBehaviorAction;
4

5 enforce domain target trgEdge : ControlFlow {
6 source = trgCallBehaviorAction };
7 }

Listing 5.40: Updating the source of an outgoing edge of the last flow body action of a sequence.

5.5.2 Limitations of Transforming Behaviors
In the previous section, we provide transformations of behavior which consists of identification of
sequences of actions and extraction of such sequences. This is the basic step needed for generating
code conforming to the patterns presented in Sect. 4.2.11.

The transformation of behaviors does not create a transformed behavior rather than it is an
in-place transformation of a behavior that is moved from the input model into the target model.
This is acceptable for a prototype, however, the activity should be copied and modifications should
be applied to the copy of the behavior in the target model.

The presented relations cover the basic idea of separating flows which can be implemented as
threads. Advanced considerations like propagation of guards or decompositions of complex control
flow nets as discussed in Sect. 4.2.5 are not yet considered in our transformation.

Relations identifying sequences of actions and moving them into subactivities are based on
control flow analysis. Analysing object flows for this purpose is not presented. The main idea of
moving action sequences into own activities can be figured out without distinctly including object
flows. Relations processing control flows are less complex since control flows connect actions
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directly. Object flows connect output and input pins. Concerned actions are the owners of the
pins. This makes relations processing object flows more complex.

By omitting object flows, relations remain less complex for a second reason: including object
flows requires to differentiate between both kinds of flows since a control flow is represented by an
edge of type ControlFlow whereas an object flow is represented by an edge of type ObjectFlow.

Another issue regarding flows is that data flows may induce unintended concurrency if an action
requires inputs which is provided by different actions. An example is given by Fig. 5.6. Figure 5.6(a)
shows an activity for adding a value to a structural feature by means of the AddStructuralFea-
tureValueAction write. Its inputs are obtained from two independent actions: the ReadSelfAction
readSelf providing the object on which to access the structural feature and an OpaqueAction get-
Value providing the value to add. Both actions may — but not necessarily have to — be executed
concurrently. An extraction of sequences of actions applied to the activity given by Fig. 5.6(a)
would result in three sequences. A modification of the activity is given in Fig. 5.6(b). By the
additionally inserted control flows (marked bold), the concurrency between action readSelf and
getValue is resolved and a sequencing of action executions is given. Based on the control flow, a
single sequence of actions can be determined.

writereadSelf
instance

getValue
value

(a) Unintended concurrency induced by inde-
pendent input data.

writereadSelf
instance

getValue
value

(b) Serialization of sequences by additional
control flows.

Figure 5.6: Avoiding unintended concurrency by additional control flows.

If claiming that control flows must always be present even if the execution semantics is de-
termined by data flows, sequencing of actions can be based on the sole analysis of control flows.
The existence of such additional control flows can be checked by a model validation: each action
must have at least one outgoing control flow and if it has input pins, it also must have at least
one incoming control flow. Furthermore, outgoing object flows must reach actions which are also
reachable by following downstream control flows. Object flows then must be considered at the
beginning and end of action sequences, within action sequences, they become a matter relevant for
the transition from models to code.

5.6 Summary
In this chapter we give an overview of some formalisms for the transformation of models and justify
our choice for QVTR.

The presented QVTR relations resolve complex modeling concepts of design models and the
resulting models serve as implementation models at a lower level of abstraction.

Associations are resolved by the Relationship Object Pattern, i. e. by inserting classes for im-
plementing associations.

For classes in the input model, a pair of classes related by a generalization relationship is created
in the target model. The intention of this pattern is to hide generated code in the general class
from the user, who may possibly be implementing algorithms that are not contained in the input
model directly into the specialized class. Operations for accessing association ends and attributes
are also included in the more general classes.

Behavior is accounted for by the reorganization of activities that moves sequences of actions
into subactivities which are incorporated into the original activity using call behavior action.

From the models resulting from the application of the presented transformation relations, code
can be generated in a straightforward approach as detailed in the following chapter.



Chapter 6

Code Generation

In this chapter, we describe the transition from models to code. The transformations specified in
the previous chapter resolve modeling concepts, which cannot be directly implemented in Java, as
well as most of them like e. g. association cannot be implemented in other object-oriented languages,
too. After the resolution of these concepts, the transformed models serve as implementation models
the elements of which can be mapped to target language concepts.

This chapter starts with a brief view over the role of code generation in MDD approaches in
Sect. 6.1. After that, the criteria relevant for the decision which formalism to use for specifying
code generation templates are motivated. Two general options of how to proceed from models to
code are presented in Sect. 6.3. Section 6.4 introduces the selected formalism Mof2Text .

Finally, the actual generation of code is presented in two parts, starting with the generation of
code for static structure. The generation of code for dynamic behavior follows in the last section.

6.1 The Role of Code Generation in MDD Approaches

Although models could be compiled to runnable software, they usually are transformed to source
code. The generated code can be processed by existing compilers and is the specification of the
software on the lowest level of abstraction reached on the way from models to executable code.

If we consider the step from source code to runnable machine code acceptably investigated and
take techniques of compiling or interpreting for granted, a core item of model driven development
probably is the step from models to code. In this step, the gap between models and runnable
software actually is bridged.

The concrete way of how to descend from a modeling language to a programming language
is not predetermined, particularly regarding technical options: a code generator may be com-
pletely implemented as a piece of software or its implementation might be based on frameworks or
executable formalisms, either operational or declarative.

But even though the transition from models to code is a core issue of MDD, the harder part is
the semantical mapping from modeling concepts to target language features. Therefore, this part
is more intensively discussed in this thesis whereas code generation is included in order to provide
a continuous, integrated approach covering all the way from highly abstract conceptual models to
runnable software.

6.2 Formalisms

Implementing a code generator in any imperative or object-oriented programming language is an
option, however, it not really is a well suited proceeding. We discard it for the same reasons
why we discard this option with regard to implementing model transformations: An imperative or
object-oriented programming language is a bad choice if a separation of transformation rules from
technical implementation details is desired. Therefore, we look for a formalism which supports to
specify a mapping from models to code on an abstract level hiding the bothersome necessities of
real implementations.

123
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According to the considerations concerning the choice of a formalism for specifying model
transformations, a declarative approach is favored. Again, as proposed by Schlecht [87], additional
criteria considered are

• adequacy of a formalism

• preciseness of the formalism’s specification

• clarity of formalizations

• maintainability of formalizations

• continuous tool support, ability to execute formalizations

• support of proofs of correctness.

Since the applied formalism should be backed up by tool support in order to use the formal-
ization as an implementation in ActiveCharts, not only availability of a tool is demanded, but
also the following requirements must be satisfied by a tool [87]

• conformance to the formalism

• interoperability

• ability of integration

• suitable documentation

• usability

• free availability

• continuing development.

Whereas the choice which formalism to use for specifying model transformations is based on a
detailed analysis by Schlecht [87], the decision what formalism to apply for code generation is not
backed up by such an analysis. Rather, this decision is based on the expertise of other developers
by means of an intensive investigation and evaluation of reports comprising experiences about
possibly applicable formalisms.

Some formalisms that are considered for model transformations have proved to be inadequate,
such as XSLT or CHR and are not taken into account for code generation either due to the fact
that, for the same reasons why they do not qualify for model transformation, they disqualify for
code generation, too. In particular, the criterion for exclusion is the cumbersome interfacing to
the modeling domain.

An approach which is worth being favored is MOF to Text Template Language (Mof2Text) [68]
as this formalism is a standard released by OMG. Therefore it is a natural complement to other
OMG standards on which ActiveCharts is based, such as UML and QVT-R. An evaluation of
the level of compliance to the criteria for decision making formulated above proved the adequacy
of Mof2Text.

Tool support for Mof2Text is little with regard to the number of mature tools. However,
Acceleo1 is a tool supporting Mof2Text while excellently satisfying the demands. For a detailed
presentation of the evaluation of the applicability of Mof2Text and Acceleo in ActiveCharts, we
refer to Schlecht [87].

6.3 Transformation Strategies
In our approach, we transform models in order to resolve highly abstract modeling concepts into
models which, concerning abstraction, level with object-oriented languages. The resulting platform
specific model (PSM) is not the only possible source for code generation. A transformation into
the domain of the target language, i. e. a language specific model (LSM) which is an instance of
a metamodel of the target language, is an equivalent approach. But it requires a meta model for

1http://www.eclipse.org/acceleo
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the target language. MoDisco2 provides a metamodel for the Java programming language and a
model to text transformation based on Acceleo templates. Accordingly, we identify two strategies
of code generation:

• specifying a mapping from a PSM to the target language by means of Acceleo templates

• specifying a transformation from a PSM to a LSM and using an automatic code generation.

The first option is the obvious strategy which most often is applied. It focuses on the specifi-
cation of model to text transformation patterns.

The second alternative moves the transition to a programming language into the modeling
domain. Depending on the adequacy of the metamodel of the LSM, the mapping from a LSM to
code is very simple and straightforward. Ideally, it is included in a tool, as it is e. g. in MoDisco.

A problem of the second approach is a trade-off between level of abstraction of the program-
ming language metamodel on the one hand and the influence a developer has on the design of
generated code on the other hand. If the metamodel of a target language offers no abstraction
over the underlaying represented target language, the transformation of a LSM to code requires no
semantical resolution at all. In this case, the design of resulting code is completely predetermined
by the transformation of a PSM to a LSM.

If the level of abstraction of a LSM is little, the influence on the design of code generated
from the LSM still is high. But a metamodel on a low level of abstraction requires more detailed
transformations, which in term become more complex, less readable and less maintainable.

A metamodel on a higher level of abstraction makes the transformations less complex, however,
the mapping from the LSM to code is more complex. Since this mapping is supposed to be covered
by tool support, it no longer is in the responsibility of the developer. Thus, the developer has less
influence on the design of the actual implementation of a model in code.

The main benefit of a second model transformation and code generation from a LSM is that
only one formalism is applied. But for the time being, the available metamodels for Java are on
a level of abstraction which makes the transformation into a LSM harder to understand than a
transformation of our PSM into code.

Since we base on OMG standards, we discard the option of defining our own Java metamodel
and applying a model transformation that creates a LSM in favor for directly generating code from
the PSM applying Mof2Text.

6.4 Mof2Text
Mof2Text is a standard released by OMG in version 1.0 in 2008. It is designed for model to text
transformations and aligned with other OMG standards such as UML 2.0, MOF 2.0, and OCL 2.0.

The rules for transforming model elements to text are specified in templates, which are grouped
in modules. “A template specifies a text template with placeholders for data to be extracted from
models. These placeholders are expressions specified in terms of metamodel entities and are
evaluated over instances of these metamodel entities” [68, § 8.1.3]. The text producing expres-
sions, i. e. the placeholders, of a template are grouped in blocks.

Besides templates, modules can contain queries. A query specifies a side-effect-free operation.
Mof2Text modules, templates, blocks, and queries are easily readable. Therefore, we explain the
syntax by means of few concrete examples.

The syntax of a template is given in Listing 6.1. The items of the template language are written
in gray color, types of model elements are written red.

1 [template public classToJava(c : Class)]
2 class [c.name/] {
3 // Constructor
4 [c.name/]() {
5 }
6 }
7 [/template]

Listing 6.1: Syntax of a Mof2Text template.

2http://www.eclipse.org/MoDisco



126 CHAPTER 6. CODE GENERATION

In the first line of Listing 6.1, the template classToJava is declared. It is processed once for each
class of the input model. The class element is accessible inside the template through the variable
c. Access to elements of c must be marked as contents of the template by including it in square
brackets. E. g. [c.name/] returns the name of the class bound to variable c. Every character not
included in square brackets is added to the output. For a class named Person, an execution of
template classToJava results in the code of the following Listing 6.2:

1 class Person {
2 // Constructor
3 Person () {
4 }
5 }

Listing 6.2: Code generated by a simple template.

Class properties can be included in template processing in two ways. The property can be
accessed as it is done for the class name in Listing 6.1 or another template may be called as shown
in Listing 6.3.

1 [template public classWithAttributesToJava(c : Class)]
2 class [c.name/]{
3 // Attributes
4 [attributeToJava(c.attribute)/]
5 // Constructor
6 [c.name/](){
7 }
8 }
9 [/template]

10

11 [template public attributeToJava(a : Attribute)]
12 [a.type.name/] [a.name/];
13 [/template]

Listing 6.3: Syntax of a Mof2Text template.

The advantage of the latter option is that for properties, the template processing engine iterates
over all existing elements. If class Person has attributes name and lastName, both of type String,
the code given in Listing 6.4 is generated when processing classWithAttributesToJava.

1 class Person {
2 // Attributes
3 String name;
4 String lastName ;
5 // Constructor
6 Person () {
7 }
8 }

Listing 6.4: Code generated by a simple template.

An alternative way to process multi-valued properties effecting in the same output is using the
for block. The example given in Listing 6.5 produces exactly the same output as the template
given in Listing 6.3. The impact of either grouping template expressions in own templates or
including them inline in another template is on the specification of transformations only, not on
the produced output.

Including the processing of attributes directly in the processing of a class makes a template
more complex and less readable. In contrast, encapsulation of attribute processing in its own
template contributes to a more modular design of transformation patterns, particularly facilitating
template reuse.



6.5. GENERATING CODE FOR STATIC STRUCTURES 127

1 [template public classWithAttributesToJava(c : Class)]
2 class [c.name/]{
3 // Attributes
4 [for(a : Attribute | c.attribute)]
5 [a.type.name/] [a.name/];
6 [/for]
7 // Constructor
8 [c.name/](){
9 }

10 }
11 [/template]

Listing 6.5: Syntax of a Mof2Text template.

A drawback of this modular design is that an invocation of each template requires to pass
all elements needed inside the invoked template as parameters. Invocations of templates become
complex and inside the invoked template, the origin of values for actual parameters cannot be seen.
Therefore, we prefer the option to include most transformation steps in-line.

In the following, we give a top down presentation of our formalization for the code generation
process. We start at the generation of source files for classes and owned behaviors omitting details
of how to implement owned members — such as owned attributes and operations of classes or
nodes and edges of activities — by using snippets. A snippet is a sequence of lines within a code
generation template that is cut out and referred to by [include <name>/]. All variables valid
in the scope of the include statement are valid in the included snippets, too. Snippets are for
presentation purposes only. Before executing the code generator, all include statements must be
replaced by the referenced snippet. The first line snippet::<name>: is to be omitted. We will
descend into the details of code generation for owned elements by following the chain of include
statements and discussing the included snippets.

6.5 Generating Code for Static Structures
The generation of code for static structures comprises the creation of classes and populating cre-
ated class files with content for owned elements such as attributes and operations. Since during
model transformations, associations between classes have been made explicit by introducing asso-
ciation implementation classes, code generation for associations is covered as well by the template
processing classes instead of requiring an own template matching associations.

Listing 6.6 shows the general template for class processing. It produces no output for activities
(line 2) as well as it does not process classes which are not owned by the package named PSM (line
6). For all other classes, a file is created (line 7) and populated with contents by including snippet
CreateClassContent (line 8).

1 [template public generateElement(c : Class)]
2 [if (c.oclIsKindOf(Activity))]
3 [comment : nothing to do here /]
4 [else]
5 [comment : process PSM package only /]
6 [if (c.containingPackages()↗C.11−>last().name.equalsIgnoreCase('PSM'))]
7 [file(classFileName(c)↗C.12, false, 'UTF−8')]
8 [include CreateClassContent /]
9 [/file]

10 [/if]
11 [/if]
12 [/template]

Listing 6.6: Generation of class files for UML classes.
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6.5.1 Generating Code for Classes and Associations
Listing 6.7 contains the generation of a package declaration and an import statement for the classes
contained in package java.util. By this, it is possible to refer to the Java type List, which we
make use of for implementing multi-valued properties and operation parameters. Furthermore,
the class declaration is contained considering the visibility of the class, the keyword abstract for
abstract classes, the class name and the name of the general class if any. Within the class body,
several snippets are included. These are needed for

• processing owned attributes

• processing owned operations

• generating code needed for the implementation of participation in associations

• implementing a link manager (i. e. a class implementing an association)

• generating code for behaviors included in general classes

• generating code for owned behaviors

1 snippet :: createClassContent :
2 package [containingPackages(c).name−>sep('.') /];
3 im port java.util .*;
4

5 [visibilityString(c.visibility)↗C.14/][if(c.isAbstract)] abstract [/if]
6 class [c.name /]
7 [if(not c.generalization−>isEmpty())] ext ends [superClass(c)↗C.15.name /][/if]
8 {
9 [comment : handle Properties/]

10 [include handleClassProperties /]
11 [comment : LinkMemberClass/]
12 [include handleLinkMember /]
13 [comment : LinkManager/]
14 [include handleLinkManager /]
15 [comment : Operation/]
16 [include handleOperation /]
17 [comment : handle general Behaviors/]
18 [include GeneralClassifierBehaviorImplementation /]
19 [comment : handle owned Behavior/]
20 [include ClassifierBehaviorImplementation /]
21 }

Listing 6.7: Generation of class contents.

Some snippets only contribute to the content of specific classes, e. g. code for participation in
an association is only generated if the processed class participates in an association and code for
implementing associations is only generated for manager classes. The order of snippets in the
listing is designed to contribute to the readability of generated code. The order in which snippets
are presented here is intended to group the snippets according to their purpose.

6.5.2 Generating Code for Owned Attributes
The code generation for owned attributes is covered by snippet handleClassProperties. It is
given by Listing 6.8 and it creates a field declaration in the source file. It

• processes each owned attribute in a loop (lines 2, 8)

• inserts the specified visibility modifier (line 3) which is obtained from query
visibilityString

• inserts the optional keywords static (line 4) and final (line 5) if needed
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• determines the type of the field according to type and upper bound of the owned at-
tribute (line 6); if the attribute is multi-valued, query typeString returns a typed list
(List<PropertyType>)

• inserts the name of the attribute (line 6)

• assigns a default value, if a default value is modeled (line 7).

By the declaration of a separator in line 2, a line feed is inserted after each field declaration.

1 snippet :: handleClassProperties :
2 [for(p : Property | c.ownedAttribute) separator('\n')]
3 [visibilityString(p.visibility) /]
4 [if(p.isStatic)] static [/if]
5 [if(p.isReadOnly)] final [/if]
6 [typeString(true, p.type, p.upper)↗C.16 /][p.name /]
7 [if(not p.default.oclIsUndefined())] = [defaultStringValue(p)↗C.20 /][/if];
8 [/for]

Listing 6.8: Generation of code for the implementation of owned attributes.

6.5.3 Generating Code for Owned Operations
Code generation for owned operations as shown in Listing 6.9 is very similar to that of owned
attributes, since a method declaration like a member field declaration has a visibility modifier (line
3), optional keywords static (line 5) and final (line 6), a type, and a name (line 7). However,
there are some differences:

• method signatures not necessarily have a return type: accordingly, the called query
returnType either returns void, a type name, or a typed collection such as List<typeName>.

• operations may have parameters: the parameters for the method signature are obtained
form query inParameterString, which creates a string consisting of pairs of type names and
parameter names. For multi-valued parameters, a typed set is used (e. g. List<typeName>).

• method may be abstract: the keyword abstract must be considered by either including
it in the method declaration (line 4) as well as by closing an abstract method declaration
with a semicolon (line 11) or by generating a method body for which content is provided by
generateOperationBody (lines 13–15).

1 snippet :: handleOperation :
2 [for(o : Operation | c.ownedOperation) separator('\n')]
3 [visibilityString(o.visibility) /]
4 [if(o.isAbstract)]abstract [/if]
5 [if(o.isStatic)]static [/if]
6 [if(o.isLeaf)]final [/if]
7 [returnType(c, o)↗C.16 /][o.name /](
8 [for(p : Parameter | inParameters(o)↗C.17) separator(', ')]
9 [inParameterString(true, p)↗C.19 /]

10 [/for])
11 [if(o.isAbstract)];
12 [else]
13 {
14 [include generateOperationBody /]
15 }
16 [/if]
17 [/for]

Listing 6.9: Generation of method signatures implementing owned operations.

Before descending into the details of code generation for method bodies, the code needed for
association implementation is presented.
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6.5.4 Generating Code for Link Members
Classes participating in associations need access to the association. For this purpose, the handle
pattern is introduced in Sect. 3.6.1. Listing 6.10 covers the generation of code for demanding and
obtaining a handle from a link manager class:

• for each owned attribute that refers to a link manager, indicated by a special comment, an
invocation of the getHandle method is included in a static initializer block (lines 3–10)

• for each such attribute a callback method for obtaining the actual handle for a link manager
class is generated (lines 13–17)

• the provided handle is assigned to the owned attribute (lines 14–15); in order to prevent from
changing the handle, it can only be updated once, i. e. if being null (line 14).

1 snippet :: handleLinkMember :
2 [if(isLinkMemberClass(c)↗C.33)]
3 static
4 {
5 [for(p : Property | c.ownedAttribute)]
6 [if(isLinkMemberClassProperty(p)↗C.35)]
7 [p.type.name /]. getHandle ([c.name /].class );
8 [/if]
9 [/for]

10 }
11 [for(p : Property | c.ownedAttribute)]
12 [if(isLinkMemberClassProperty(p))]
13 public static void takeHandle ([p.type.name/] linkManager ){
14 if([c.name/].[p.name/] == null ){
15 [c.name/].[p.name/] = linkManager ;
16 }
17 }
18 [/if]
19 [/for]
20 [/if]

Listing 6.10: Generation of code implementing the participation in associations.

6.5.5 Generating Code for Link Managers
Link manager classes must provide access to the association to participating classes. The generation
of code for this task as well as for internally storing links is presented in Listing 6.11:

• Query isLinkManager (line 2) is used to determine, whether or not a comment has been
attached to the currently processed class during model transformation, indicating that this
class represents a link manager class. Only link manager classes are processed.

• A line of code for implementing the singleton pattern is inserted (line 3).

• Method getHandle is generated in lines 4–11:
Inside the body of this method, code is generated to supply each participating class with
a handle. The participating classes are identified by looking up the parameters of the
createLink method. In order to create an association link, a value must be supplied for
each association end and therefore, the parameters of this method must contain all associa-
tion ends.

• Finally, a private list for storing links is prepared (lines 12–17); the type of the link class
is looked up from the return type of the getLinks method, which returns a link of the
association.
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1 snippet :: handleLinkManager :
2 [if (isLinkManager(c)↗C.34)]
3 private static final [c.name /] INSTANCE = new [c.name /]();
4 public static void getHandle (Class<?> memberEnd ){
5 [for(t : Type | inParameters(c.ownedOperation−>any(
6 o : Operation | o.name = 'createLink')).type−>asSet()) separator('\n')]
7 if ( memberEnd == [t.name /].class ){
8 [t.name /]. takeHandle ( INSTANCE );
9 }

10 [/for]
11 }
12 private List<[c.ownedOperation−>any(
13 o : Operation | o.name = 'getLinks').ownedParameter−>any(
14 p : Parameter | p.direction.toString() = 'return').type.name /]> links =
15 new LinkedList<[c.ownedOperation−>any(
16 o : Operation | o.name = 'getLinks').ownedParameter−>any(
17 p : Parameter | p.direction.toString() = 'return').type.name /]>();
18 [/if]

Listing 6.11: Generation of code for link manager classes.

6.5.6 Generating Code for Method Bodies

The generation of code for method bodies is covered by special snippets depending on the kind of
operation for which code is generated. Three kinds of operations must be distinguished:

• owned operations of a normal class

• owned operations of a normal class to handle participation in an association

• owned operations of link manager classes.

The decision is implemented as shown in Listing 6.12:

• constructors are identified by name, since constructors have the same name as the owning
class (line 3); the body implementation is provided by snippet generateConstructorBody

• methods which have been inserted by the model transformation process are marked by at-
tached comments which now are used for deciding which kind of method body to create (lines
6–32)

• for operations which are neither a constructor nor have a comment for identification attached,
a default return statement is created (line 34)

• if an operation is associated with a behavior implementing the effect of the operation, then
the code of the method body is to activate the associated behavior (lines 37–43) either
concurrently (line 39) or synchronously (line 41).

Specific implementations for operations are generated for constructors, for getter and setter
methods accessing owned attributes as well as add and remove methods if the accessed owned
attribute is multi-valued. For operations of classes participating in associations as well as for
operations of link manager classes, snippets are included which make a further distinction between
the purpose of operations, which is either to create, retrieve, or remove association links.
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1 snippet :: generateOperationBody :
2 [comment : Constructor /]
3 [if(o.name = c.name)]
4 [include generateConstructorBody /]
5 [comment : Getter /]
6 [elseif (o.ownedComment−>exists(n : Comment | n._body.startsWith(
7 'Operation#Kind:Getter')) and c.ownedAttribute−>exists(
8 p : Property | p.name = substringName(o, 'Operation#Kind:Getter')↗C.36))]
9 return [substringName(o, 'Operation#Kind:Getter') /];

10 [comment : Setter /]
11 [elseif(o.ownedComment−>exists(n : Comment | n._body.startsWith(
12 'Operation#Kind:Setter')) and c.ownedAttribute−>exists(
13 p : Property | p.name = o.ownedParameter−>first().name))]
14 [include generateSetterBody /]
15 [comment : AddOperation /]
16 [elseif(o.ownedComment−>exists(n : Comment | n._body.startsWith(
17 'Operation#Kind:AddOperation')) and c.ownedAttribute−>exists(
18 p : Property | p.name = o.ownedParameter−>first().name))]
19 [include generateAddBody /]
20 [comment : RemoveOperation /]
21 [elseif(o.ownedComment−>exists(n : Comment | n._body.startsWith(
22 'Operation#Kind:RemoveOperation')) and c.ownedAttribute−>exists(
23 p : Property | p.name = o.ownedParameter−>first().name))]
24 [include generateRemoveBody /]
25 [comment : LinkManager /]
26 [elseif(c.ownedComment−>exists(n : Comment | n._body.startsWith(
27 'Class#Kind:LinkManager')))]
28 [include generateLinkManagerBody /]
29 [comment : LinkMemberClass (begin) /]
30 [elseif(c.ownedComment−>exists(n : Comment | n._body.startsWith(
31 'Class#Kind:LinkMemberClass')))]
32 [include generateLinkMemberBody /]
33 [else]
34 [defaultReturnValue(c, o, returnType(c, o))↗C.21 /]
35 [/if]
36

37 [for (method : Activity | o.method) separator (';\n')]
38 [if (o.concurrency.toString() = 'concurrent')]
39 [method.name/]. activate (true);
40 [else]
41 [method.name/]. activate (false);
42 [/if]
43 [/for]

Listing 6.12: Generation of method bodies for owned operations.

Generating Code for Constructors

Listing 6.13 contains the template for generating a method body of a class constructor.
• If a generalization relationship to another class exists, the super constructor is called ( lines

3–5). The parameters for this invocation are obtained from the query inSuperParameters.

• After the call of super, multiplicity bounds are checked for multi-valued attributes (lines
7–15) having the same name as a constructor parameter:

– if bounds are violated, an IllegalArgumentException is thrown (line 10)
– if the value to assign is null, a NullPointerException is thrown (line 12), assignment

of an empty list, however, is allowed.

• After checking bounds, code is generated to assign the values of parameters to owned at-
tributes having the same name in order to initialize the newly created instance (lines 16–20).
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1 snippet :: generateConstructorBody :
2 [if(not c.generalization−>isEmpty())]
3 super([for(p : Parameter | inSuperParameters(c, o)↗C.18) separator(', ')]
4 [p.name /]
5 [/for]);
6 [/if]
7 [for(p : Parameter | o.ownedParameter) separator('\n')]
8 [if(c.ownedAttribute−>exists(a : Property | a.name = p.name)
9 and (p.upper > 1 or p.upper = −1))]

10 if([p.name /] == null) { throw new NullPointerException (); }
11 if([p.name /].size () < [p.lower /] || [p.name /].size () > [p.upper /]) {
12 throw new IllegalArgumentException ();
13 }
14 [/if]
15 [/for]
16 [for(p : Parameter | o.ownedParameter) separator('\n')]
17 [if(c.ownedAttribute−>exists(a : Property | a.name = p.name))]
18 this.[p.name /] = [p.name /];
19 [/if]
20 [/for]

Listing 6.13: Generation of a constructor with parameters.

Generating Method Bodies for Accessing Owned Attributes

Listing 6.14 shows the generation of code for a method setting the value of an owned attribute.

• If the attribute is mandatory, i. e. its lower bound is greater than 0 or if it is multi-valued,
the parameter value to be assigned must not be null (lines 2–8).

• Furthermore, if multi-valued, the number of elements to be set must conform to the lower
and upper bounds of the attribute (lines 9–17).

• Finally the actual parameter is assigned to the owned attribute (line 18).

Note that for a multi-valued attribute with 0 as its lower bound, it is legal to assign an empty list,
but it is not allowed to assign null.

1 snippet :: generateSetterBody :
2 [if (o.ownedParameter−>first().lower > 0
3 or (o.ownedParameter−>first().upper > 1)
4 or (o.ownedParameter−>first().upper = −1)]
5 if([o.ownedParameter−>first().name /] == null) {
6 throw new NullPointerException ();
7 }
8 [/if]
9 [if (o.ownedParameter−>first().upper > 1)

10 or (o.ownedParameter−>first().upper = −1)]
11 if ([o.ownedParameter−>first().name /].size ()
12 < [o.ownedParameter−>first().lower /]
13 || [o.ownedParameter−>first().name /].size ()
14 > [o.ownedParameter−>first().upper /]) {
15 throw new IllegalArgumentException ();
16 }
17 [/if]
18 this.[o.ownedParameter−>first().name/] = [o.ownedParameter−>first().name/];

Listing 6.14: Generation of code for setting attribute values.
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If an attribute is multi-valued, its value either can be set or a value can be added to the set
of previously assigned values. Code for this is generated as shown in Listing 6.15. The presented
template creates

• code to prevent from assigning null values to attributes (lines 2–4)

• code to prevent adding a value while violating the upper bound of an attribute (lines 5–8)

• code to actually add the value if both checks have been passed (lines 9–10).

1 snippet :: generateAddBody :
2 if([o.ownedParameter−>first().name /] == null) {
3 throw new NullPointerException ();
4 }
5 if(this.[o.ownedParameter−>first().name /].size () ≥ [c.ownedAttribute−>any(
6 p : Property | p.name = o.ownedParameter−>first().name).upper /]) {
7 throw new IllegalArgumentException ();
8 }
9 this.[o.ownedParameter−>first().name /].add(

10 [o.ownedParameter−>first().name /]);

Listing 6.15: Generation of code for adding attribute values.

Similar to the content of Listing 6.15, the removal of attribute values is supported by generating
code as given in Listing 6.16:

• code is generated to check that it is not tried to remove a null value (lines 2–4), since it
is not possible to add the value null by the generated setter methods (as given by Listing
6.14)

• code is generated that tests for a violation of the lower bound of the attribute (lines 5–8)

• code is generated for actually implementing the removal of a given value (lines 9–10).

1 snippet :: generateRemoveBody :
2 if([o.ownedParameter−>first().name /] == null) {
3 throw new NullPointerException ();
4 }
5 if(this.[o.ownedParameter−>first().name /].size () ≤ [c.ownedAttribute−>any(
6 p : Property | p.name = o.ownedParameter−>first().name).lower /]) {
7 throw new IllegalArgumentException ();
8 }
9 this.[o.ownedParameter−>first().name /]. remove (

10 [o.ownedParameter−>first().name /]);

Listing 6.16: Generation of code for removing attribute values.

Generating Method Bodies for Managing Association Links

If an operation is marked to be a link manager class method, it is either for

• creating a new link

• retrieving a link or a set of links

• destroying a link.

The decision as implemented in Listing 6.17 is made by evaluating the name of the operation.
An operation body for creating a new link is generated as shown in Listing 6.18. Firstly, a

check is implemented preventing from creating links with null values (lines 3–7). If the value of
any parameter is null, an exception is thrown (line 6).
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1 snippet :: generateLinkManagerBody :
2 [if(o.name = 'createLink')]
3 [include CreateLinkBody /]
4 [elseif(o.name = 'getLinks')]
5 [include GetLinkBody /]
6 [elseif(o.name = 'removeLink')]
7 [include RemoveLinkBody /]
8 [/if]

Listing 6.17: Distinction of methods for accessing association ends from participating classes.

Afterwards, a check is generated to prevent from creating a link violating multiplicity bounds.
Therefore, the upper bound must be tested for each association end. The outer for block (lines
8–14) causes a getLink invocation for each end, the inner for block (lines 9–11) constructs the
parameter list for each such invocation: by replacing the parameter bound in the outer for block
by null, the associated end becomes the open end of the getLink invocation. Thus, each end is
queried and the size of the returned set of links is compared with the concerning upper bound.

Code for the actual creation of the link must distinguish between two cases:

• Creating a link for an association class (lines 15–21)

• Creating a normal link for an association (lines 21–27).

In the first case, a line for creating an instance of the association class is generated (lines 17–18),
internally stored (line 19) and returned (line 20). The class name consists of the name of the type
returned by the operation and the suffix Impl.

In the latter case, an instance of the association is created and internally stored. The name of
the link class is looked up from the return type of the operation getLinks.

In both cases, the values associated to the link ends are passed to the constructor of the link.

1 snippet :: CreateLinkBody :
2 [if(o.name = 'createLink')]
3 if([for(p : Parameter | inParameters(o)) separator(' || ')]
4 [p.name /] == null
5 [/for]){
6 throw new NullPointerException ();
7 }
8 if([for(p : Parameter | inParameters(o)) separator(' || ')]
9 getLinks ( [for(a : Parameter | inParameters(o)) separator(', ')]

10 [if(p.name <> a.name)] [a.name /] [else] null [/if]
11 [/for]). size () == upper[p.name.toUpperFirst() /]
12 [/for]){
13 throw new IllegalArgumentException ();
14 }
15 [if(c.ownedComment−>exists(n : Comment | n._body.startsWith(
16 'Class#Kind:LinkManager#AssociationClass')))]
17 [o.type.name /] link = new [o.type.name /]Impl(
18 [for(p : Parameter | inParameters(o)) separator(', ')][p.name/][/for]);
19 links.add(link );
20 return link;
21 [else]
22 links.add(new [c.ownedOperation−>any(
23 o : Operation | o.name = 'getLinks').type.name /](
24 [for(p : Parameter | inParameters(o)) separator(', ')]
25 [p.name /]
26 [/for]));
27 [/if]
28 [/if]

Listing 6.18: Generation of code for creating association links.
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Listing 6.19 contains the snippet for generating the code of an operation for retrieving links.
Such an operation returns a list of links complying to the provided context.

First, the declaration of a list holding the result set is generated (line 3).
Then, a for loop is generated for iterating over all existing links (lines 4–10). Inside this loop,

an if statement is created. The condition to be tested is that each parameter of the operation is
either null or equals a value of the link (lines 5–7). Which parameter must equal which link value
is determined by the name of the parameter and the link value. If the condition holds, the link is
a candidate to be included into the result set of the operation (line 8).

1 snippet :: GetLinkBody :
2 [if(o.name = 'getLinks')]
3 List <[o.type.name /]> result = new LinkedList <[o.type.name /]>();
4 for([o.type.name /] l : links ){
5 if([for(p : Parameter | inParameters(o)) separator(' && ')]
6 ([p.name /] == null || l.get[p.name.toUpperFirst() /]() == [p.name /])
7 [/for]) {
8 result .add(l);
9 }

10 }
11 return result ;
12 [/if]

Listing 6.19: Generation of code for retrieving association links.

The code needed for the implementation of an operation for removing links is very similar to
that for creating links. Consequently, the snippet for creating such code presented in Listing 6.20 is
very close to the snippet of Listing 6.18. The difference is that not the upper bound for association
ends is tested but the lower bound (line 10) and that not links are created and added into the
internal list of links but removed from that list (line 19).

1 snippet :: RemoveLinkBody :
2 [if(o.name = 'removeLink')]
3 if([for(p : Parameter | inParameters(o)) separator(' || ')]
4 [p.name /] == null[/for]){
5 throw new NullPointerException ();
6 }
7 if([for(p : Parameter | inParameters(o)) separator(' || ')]
8 getLinks ([for(a : Parameter | inParameters(o)) separator(', ')]
9 [if(p.name <> a.name)] [a.name /] [else] null [/if]

10 [/for]). size () == lower[p.name.toUpperFirst() /]
11 [/for]){
12 throw new IllegalArgumentException ();
13 }
14 for([c.ownedOperation−>any(
15 o : Operation | o.name = 'getLinks').type.name /] l : links ){
16 if([for(p : Parameter | inParameters(o)) separator(' && ')]
17 l.get[p.name.toUpperFirst() /]() == [p.name /]
18 [/for]){
19 links. remove (l);
20 break;
21 }
22 }
23 [/if]

Listing 6.20: Generation of code for destroying association links.
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Generating Method Bodies for Accessing Association Ends

The last kind of operations to consider are those offering access to association ends in participating
classes. During the model transformation, such operations have been marked by comments starting
with the prefix Operation#Kind:LinkMemberClassOperation#. The decision about the concrete
kind of operation is made by evaluating the tagged comment like shown in Listing 6.21. In the
included snippets, tagged strings are evaluated for obtaining additional information.

1 snippet :: generateLinkMemberBody :
2 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith(
3 'Operation\#Kind:LinkMemberClassOperation\#add')))]
4 [include MemberAddLinkBody /]
5 [elseif(o.ownedComment−>exists(n : Comment | n._body.startsWith(
6 'Operation\#Kind:LinkMemberClassOperation\#remove')))]
7 [include MemberRemoveLinkBody /]
8 [elseif(o.ownedComment−>exists(n : Comment | n._body.startsWith(
9 'Operation\#Kind:LinkMemberClassOperation\#get')))]

10 [include MemberGetLinkBody /]
11 [/if]

Listing 6.21: Distinction between methods for accessing associations from member classes.

If an operation represents the method to add a new link to an association, the createLink
method of the link manager class must be called. How the necessary code is generated is given by
Listing 6.22.

At first, it must be determined whether the association is an association class or not. In either
case, an invocation of the method to create a new link in the manager class (see Listing 6.18) is
inserted (line 6 and line 16). Only if the created link is an instance of an association class, this
link is returned by the manager class. Thus, the main difference between the if-block from line 3
to line 15 handling association classes and the else-block from line 15 to line 25 handling normal
associations is the return statement generated in line 5.

1 snippet :: MemberAddLinkBody :
2 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith('add')))]
3 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith(
4 'add#AssociationClass')))]
5 return [substringName(
6 o,'add#AssociationClass').toLowerFirst()/]. createLink (
7 [for(p : Parameter | c.ownedAttribute−>any(
8 a : Property | a.type.name = substringName( o,
9 'add#AssociationClass')).type.oclAsType(Class).ownedOperation−>any(

10 o : Operation | o.name = 'getLinks').ownedParameter−>select(
11 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
12 [if(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
13 [p.name /] [else] this [/if]
14 [/for]);
15 [else]
16 [substringName(o, 'add#Association').toLowerFirst() /]. createLink (
17 [for(p : Parameter | c.ownedAttribute−>any(
18 a : Property | a.type.name = substringName( o,
19 'add#Association')).type.oclAsType(Class).ownedOperation−>any(
20 o : Operation | o.name = 'getLinks').ownedParameter−>select(
21 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
22 [if(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
23 [p.name /] [else] this [/if]
24 [/for]);
25 [/if]
26 [/if]

Listing 6.22: Generation of code for linking objects.
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In Listing 6.22, the name of the link manager to call is obtained from the comment tagged to
the operation. For better readability, the prefix Operation#Kind:LinkMemberClassOperation# is
omitted in lines 4, 6, 9, 16, and 19.

The parameter list for the call of method createLink is constructed by obtaining all in-
parameters of the getLinks method of the link manager class. If a parameter of the same name
exists for the currently processed operation, then the name of this parameter is included into the
generated method invocation. Otherwise, the keyword this must be used to pass the member end
class object as a link value to the createLink method of the link manager class.

Code for removing an existing link from an association is very similar to the code for creating
a new link. Consequently, the generation of the concerned method bodies only slightly differ
from each other. Listing 6.23 shows the snippet that supplies a removeLink method with its
body implementation. The difference to the snippet for generating the implementation of an
addLink method (as in Listing 6.22) is that instead of createLink, the method removeLink of the
association manager class is invoked. All other characteristics of the generation of the method body
are identical, in particular the processing of the parameter list for the call of the manager class
methods. However, evaluation of tagged comments of course must be adapted to the processing of
a remove link operation.

1 snippet :: MemberRemoveLinkBody :
2 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith('remove')))]
3 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith(
4 'remove#AssociationClass')))]
5 [substringName(o, 'remove#AssociationClass').toLowerFirst()/]. removeLink (
6 [for(p : Parameter | c.ownedAttribute−>any(
7 a : Pr operty | a.type.name = substringName(o,
8 'remove#AssociationClass')).type.oclAsType(Class).ownedOperation−>any(
9 o : Operation | o.name = 'getLinks').ownedParameter−>select(

10 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
11 [if(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
12 [p.name /] [else] this [/if]
13 [/for]);
14 [else]
15 [substringName(o,'remove#Association').toLowerFirst() /]. removeLink (
16 [for(p : Parameter | c.ownedAttribute−>any(
17 a : Property | a.type.name = substringName(o,
18 'remove#Association')).type.oclAsType(Class).ownedOperation−>any(
19 o : Operation | o.name = 'getLinks').ownedParameter−>select(
20 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
21 [if(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
22 [p.name /] [else] this [/if]
23 [/for]);
24 [/if]
25 [/if]

Listing 6.23: Generation of code for unlinking objects.

The implementation of a method that reads links from an association is similar to the two
previously presented methods for adding or removing links, but it differs in two details:

• the method invoked on the link manager class requires the specification of an open end,
i. e. exactly one parameter must not contain a value

• the result of the invoked method must be processed and a result set must be constructed
which is returned.

Generating the parameters for the call of the getLinks method must identify the open end for
which no value is provided:
In contrast to the methods for adding or removing links where all link ends are specified, when
querying an association, this is done for one special end which is called the open end while providing
the context, i. e. values for all other association ends. The open end is determined by comparing
the names of the parameters of the getLinks method of the manager class with the name of
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the operation currently processed. If after removing the prefix get, the name of the operation
equals the name of the parameter, then the keyword null must be inserted to identify this link
end as the open end. Otherwise, either the parameter is passed through or the keyword this
must be inserted, like it is done for parameters of addLink or removeLink operations above. The
creation of parameters is done in two alternative blocks, either for an association class or for a
plain association.

The set of links returned by the link manager class must be processed by the member end class.
A statement for creating the result list is included in line 3. In line 41, the value of the open end
is inserted into the result set. The statement returning the result set is generated in line 48.

The complete template is given in Listing 6.24.

1 snippet :: MemberGetLinkBody :
2 [if(o.ownedComment−>exists(n : Comment | n._body.startsWith('get')))]
3 List <[o.type.name /]> result = new LinkedList <[o.type.name /]>();
4 [if(o.ownedComment−>exists(
5 n : Comment | n._body.startsWith('get#AssociationClass')))]
6 for([substringName(o, 'get#AssociationClass#LinkManager') /]
7 l : [substringName(o, 'get#AssociationClass').toLowerFirst()/]. getLinks (
8 [for(p : Parameter | c.ownedAttribute−>any(
9 a : Property | a.type.name = substringName(

10 o, 'get#AssociationClass')).type.oclAsType(Class).ownedOperation−>any(
11 o : Operation | o.name = 'getLinks').ownedParameter−>select(
12 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
13 [if(o.name.substring(4).toLowerFirst().matches(
14 p.name + '|' + p.name + 'By.*'))]
15 null
16 [elseif(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
17 [p.name /]
18 [else]
19 this
20 [/if]
21 [/for]))
22 [else]
23 for(Link_[substringName(o, 'get#Association#LinkManager') /]
24 l : [substringName(o, 'get#Association').toLowerFirst() /]. getLinks (
25 [for(p : Parameter | c.ownedAttribute−>any(
26 a : Property | a.type.name = substringName(
27 o, 'get#Association')).type.oclAsType(Class).ownedOperation−>any(
28 o : Operation | o.name = 'getLinks').ownedParameter−>select(
29 i : Parameter | i.direction.toString() = 'in')) separator(', ')]
30 [if(o.name.substring(4).toLowerFirst().matches(
31 p.name + '|' + p.name + 'By.*'))]
32 null
33 [elseif(o.ownedParameter−>exists(v : Parameter | v.name = p.name))]
34 [p.name /]
35 [else]
36 this
37 [/if]
38 [/for]))
39 [/if]
40 {
41 result .add(l.
42 [if(o.name.matches('.*By.*'))]
43 [o.name.substring(1, o.name.index('By') − 1) /]
44 [else]
45 [o.name /]
46 [/if]());
47 }
48 return result ;
49 [/if]

Listing 6.24: Generation of code for retrieving linked objects.
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6.5.7 Including Code for Owned Behavior
Depending on the source model and model transformations, behavior may be modeled by indepen-
dent activities, activities which are owned behaviors of classifiers or activities which are classifier
behaviors. In the examples given here, we only consider the behavior which is a classifier behavior.
Other owned behavior can be considered as well, but we give no example for this case.

For linking static structure with dynamic behavior, we include references to classifier behavior
as well as the implementation of StartClassifierBehaviorAction in the implementation of classes,
as shown in Listing 6.25. For the classifier behavior, a private field is generated (line 3). A flag
indicating whether or not the classifier behavior has been started is generated by line 4. From line
6 to 11, code for implementing a StartClassifierBehaviorAction is generated. The flag isStarted
is checked, and if the behavior has not yet been started, the flag is set to true before the classifier
behavior is executed.

1 snippet :: ClassifierBehaviorImplementation :
2 [for (activity : Activity | c.classifierBehavior)]
3 private [activity.name/] classifierBehavior ;
4 private boolean isStarted = false;
5

6 [visibilityString(activity.visibility)/] void synchronized startBehavior (){
7 if (! isStarted ){
8 isStarted = true;
9 classifierBehavior = new [activity.name/](this );

10 }
11 }
12 [include CreateAbstractMethodsForOpaqueActions /]
13 [/for]

Listing 6.25: Generation of code for a classifier behavior.

The code for the activity itself is generated by a separate template which generates its own file.
It is presented in the next section. If code for the activity should be located in the owning class,
the template had to be included here.

In our approach, we consider that opaque actions are used for plugging in user code. During
model transformations, sequences of actions have been identified and been moved into activities
which are related to the activity formerly owning the concerned actions by means of call behavior
actions. We term an activity only containing a sequence of actions subactivity, to an original
activity, we refer to as a main activity.

The implementation of opaque actions is enforced by generating abstract method declarations
in the class owning the behavior, as shown in Listing 6.26.

1 snippet :: CreateAbstractMethodsForOpaqueActions :
2 [for (node : CallBehaviorAction | activity.node)]
3 [for (sub : Activity | node.behavior)]
4 [for (init : InitialNode | sub.node)]
5 [if (init.outgoing−>asSequence()−>first().target.oclIsKindOf(Action))]
6 [let actions : OrderedSet(Action) = getSequence(init)↗C.24−>asOrderedSet()]
7 [for (a : OpaqueAction | actions)]
8 abstract [visibilityString(a.visibility)/]
9 [if (action.output−>asSet()−>isEmpty())] void

10 [else] [action.output.type.name/] [/if]
11 [action.name/]([paramString(action)↗C.22 /]);
12 [/for]
13 [/let]
14 [/if]
15 [/for]
16 [/for]
17 [/for]

Listing 6.26: Generation of abstract method declarations for opaque actions.
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Since a CallBehaviorAction has exactly one behavior, the for loop starting in line 3 is executed
once. Inside the loop, a nested loop iterates over all initial nodes. According to the transformation
of models of dynamic behavior, a subactivity has only one initial node with a single outgoing
flow. The target of that flow is an action (line 5). For this action, the sequence of itself and all
downstream actions is obtained by calling the query getSequence in line 6. For each opaque action
of this sequence (line 7), an abstract method is generated (lines 8–11). By that, the implementation
at runtime is enforced and when generating code for activities, method calls for opaque actions
can be included.

If the action has no outputs, the method return type is void (line 9), otherwise, the return type
is the type of the action output (line 10).

Inside the for block (lines 7–12), specific code could also be generated for other kinds of actions
according to the outlined implementations of Sect. 4.3.1. Handling other kinds of actions would
be included in another for block inserted after the for block, which only handles opaque actions
(lines 7–12).

During model transformation, for each class, a pair of classes is generated in the target model.
One of these two classes is intended to contain the generated code for accessing owned attributes
and association ends as well as implementation of dynamic behaviors, the other one is a special-
ization of the first class which includes the user code inside the body implementation of methods
corresponding to opaque actions. The abstract methods for opaque actions have been created in
the general class. In its specialization, these methods must be implemented.

A default implementation for methods corresponding to such opaque actions is generated by the
snippet given in Listing 6.27. The generation process is similar to that for the abstract methods in
the super class. But it is nested in a for block iterating over all superclasses. For each superclass,
in another nested for block, all owned behaviors are processed. If an activity contains any opaque
action, a comment is included in the generated code and similar to the generation of abstract
methods, empty method implementations are created.

1 snippet :: block :: GeneralClassifierBehaviorImplementation :
2 [for (super : Classifier | c.general)]
3 [for(behavior : Activity | super.ownedElement)]
4 [if hasCallBehavior(behavior)↗C.28]
5 // Implement opaque actions of activity [behavior.name/]
6 [/if]
7 [for (cba : CallBehaviorAction | behavior.node) separator ('\n')]
8 [for (action : OpaqueAction | cba.behavior.oclAsType(Activity).node)]
9 [let s: String = paramString(action) ]

10 [visibilityString(action.visibility)/]
11 [if (action.output−>asSet()−>isEmpty())]
12 void
13 [else]
14 [action.output.type.name/]
15 [/if]
16 [action.name/]([s/])
17 {
18 // TODO Auto−generated method stub
19 System .out. println (" Executing [action.name/]");
20 }
21 [/let]
22 [/for]
23 [/for]
24 [/for]
25 [/for]

Listing 6.27: Generation of default implementations for opaque actions.

After having generated code for static structures and having prepared a link between static
structures and dynamic behavior, templates for generating implementations for activities are dis-
cussed in the following.
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6.6 Generating Code for Dynamic Behavior
A code generator that processes activities must distinguish between the main activity, where action
sequences have been replaced by call behavior actions, and subactivities that solely contain those
sequences of actions. Main activities are the starting point for code generation for dynamic be-
havior. Therefore, we start with the code generation template for main activities. Afterwards, we
move towards the code generation for control flows including control nodes. The complex semantics
of JoinNode requires its own template for the generation of join node implementations. Finally,
the code generation for the implementation of action sequences, i. e. subactivities, is presented.

In the previous chapter, object flows are not included in the model transformation of dynamic
behavior. Consequently, we do not include object flows at code generation either. Considering
object flows makes templates more complex and less readable, while not generally changing the
nature of the presented templates.

6.6.1 Processing Classifier Behavior
Listing 6.28 shows the general structure of the template for creating a class implementing an
activity. The template is executed for each activity, but for subactivities, it produces no code. The
decision is made by evaluating the name (line 2): if it contains the string StartsWith, the activity
is identified as a subactivity. If the activity shall be implemented as an inner class, this template
must be included in the class generation template and the file pattern becomes obsolete.

The rest of this template covers some technical instructions such as a Java package declaration
and import statements (line 7–10) as well as a class declaration (line 13–20) for the activity.

1 [template public generateActivity(a : Activity)]
2 [if (a.name.contains('StartsWith'))]
3 [comment : nothing to do here /]
4 [else]
5 [file(activityFileName(a)↗C.13, false, 'UTF−8')]
6

7 pack age [containingPackages(a).name−>sep('.') /];
8

9 im port java.util .*;
10 im port java.lang. Runnable ;
11

12 /** This class implements the UML Activity [a.name/]. */
13 [visibilityString(a.visibility)/]
14 [if(a.isAbstract)]
15 abstract
16 [/if]
17 cl ass [a.name /]
18 [if(not a.generalization−>isEmpty())]
19 ext ends
20 [superClass(a).name /][/if]
21 {
22 [include ActivityContents/]
23 }
24 [/file]
25 [/if]
26 [/template]

Listing 6.28: Generation of a sourcefile for each activity.

6.6.2 Generating Activity Class Content
The actual and more individual content for each class implementing an activity is generated by
snippet ActivityContents (line 22) given in Listing 6.29. It contains a field declaration for the
context object (line 4) as well as a constructor supplying the field with its value (line 9–19). This
constructor creates an ActivityThread for each node that is reachable from any initial node and
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1 snippet :: ActivityContents :
2 [include JoinNodeClassImplementation/]
3

4 private [a._context.name/] context ; // The context object
5 private boolean terminated = fa lse; // Activity termination flag
6

7 /** Creates an instance of [a.name/] and starts the execution of all
8 * sequences directly reachable from any initial node. */
9 public [a.name/]([a._context.name/] context ){

10 this. context = context ;
11 [for (node: InitialNode | a.node)]
12 [for (edge: ControlFlow |node.outgoing)]
13 new ActivityThread ([a.node−>asSequence()−>indexOf(edge.target)/]);
14 [/for]
15 [/for]
16 [for (node: JoinNode | a.node)] // start job for join nodes
17 new ActivityThread ([a.node−>asSequence()−>indexOf(node)/]);
18 [/for]
19 }
20 /** Generate an inner class for implementing the control and data flow. */
21 [include ActivityThreadImplementation/]
22 /** Generate subactivies. */
23 [include SequenceImplementation/]

Listing 6.29: Generation of class contents for activities.

for each join node, which waits for being able to join tokens offered to incoming edges. Snippet
JoinNodeClassImplementation (line 2) generates the complex implementation of join nodes as
inner classes.

An ActivityThread is the implementation of the control flow in a main activity. It is contained
in an inner class which is generated by snippet ActivityThreadImplementation (line 21). Finally,
snippet SequenceImplementation (line 23) covers the implementation of subactivities.

The field terminated (line 5) indicates that, if set to true, an activity final node has been
reached during the execution of an activity thread and all other running activity threads of the
same activity execution must be aborted. It is required to properly implement join nodes.

6.6.3 Generating Code for Control Flow
Listing 6.30 contains snippet ActivityThreadImplementation which generates the control flow
of a main activity. It contains a class declaration, a field declaration for an id which is a selector
for the subactivity to execute and a constructor (line 9–12) which takes the value for this id.

1 snippet :: ActivityThreadImplementation :
2 private class ActivityThread implements Runnable {
3 /** The id for selecting code sequences to be executed */
4 private int fId = 0;
5

6 /**Constructor creating and starting the execution of a code sequence.
7 * @param id the code sequence to be executed.
8 * @param context the instance which is the context of this activity. */
9 private ActivityThread (int id){

10 this.fId = id;
11 new Thread (this ). start ();
12 }
13 [include ActivityExecutionImplementation/]
14 }

Listing 6.30: Generation of code for the activity execution.
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1 snippet :: ActivityExecutionImplementation :
2 /** This method executes the activity */
3 public void run (){
4 while (fId > 0){
5 switch (fId ){
6 [let seqNr : Sequence(ActivityNode) = a.node−>asSequence()]
7 [for (node : ActivityNode | a.node)]
8 [if (node.oclIsKindOf(CallBehaviorAction))]
9 case [ seqNr−>indexOf(node) /]:

10 [camelCase('ex', node.name)↗C.23 /]();
11 [let nextNode : ActivityNode =
12 node.outgoing−>asSequence()−>first().target]
13 [if (nextNode.oclIsKindOf(JoinNode))]
14 // next node is a join: add token to incoming list!
15 [let eId : Integer = nextNode.incoming−>asSequence()
16 −>indexOf(node.outgoing−>asSequence()−>first())]
17 join[seqNr−>indexOf(nextNode) /].add[eId/](new Token ());
18 [/let]
19 fId = 0;
20 synchronized ( context ){ context . notifyAll (); }
21 [elseif (nextNode.oclIsKindOf(ForkNode))
22 or (nextNode.oclIsKindOf(DecisionNode))
23 or (nextNode.oclIsKindOf(MergeNode))
24 or (nextNode.oclIsKindOf(FinalNode))]
25 fId = [seqNr−>indexOf(nextNode)/];
26 [/if]
27 [/let]
28 break;
29 [/if]
30 [if (node.oclIsKindOf(ControlNode)
31 and not node.oclIsKindOf(InitialNode))]
32 case [ seqNr−>indexOf(node) /]:
33 [include ControlNodeImplementation/]
34 break;
35 [/if]
36 [/for]
37 default : throw new RuntimeException ("No such sequence in [a.name/]");
38 [/let]
39 }
40 }
41 }

Listing 6.31: Generation of code for the selection of sequences.

The run method of an ActivityThread is generated by snippet ActivityExecution-
Implementation (line 13) and given by Listing 6.31 (line 4–40). It consists of a loop that is
executed while the value of fId is greater than 0. Inside the while-loop, a switch statement is used
to determine, according to the value of fId, which part of the activity to execute. The switch
statement is assembled as follows:

1 Each node of a main activity is visited (line 7).

2 If the node is a CallBehaviorAction (line 8), a case block is prepared containing a method
call invoking the appropriate action sequence (line 10).

3 The next node after a CallBehaviorAction is identified (line 11–12). If it is a JoinNode (line
13), a token is added into the appropriate incoming edge (line 17) and fId is set to 0. By
that, this activity thread ends. The activity thread which has been started for the join node
will continue activity execution, if the join node has input at all incoming edges and guards
hold. In order to force the evaluation of the join node, notifyAll() is invoked on the context
object (line 20).

4 If the next node is a ForkNode (line 21), DecisionNode (line 22), or MergeNode (line 23),
fId is set to the appropriate value.



6.6. GENERATING CODE FOR DYNAMIC BEHAVIOR 145

5 If the node is a ControlNode (line 30), but not an InitialNode ( line 31), code for handling
control nodes is included by snippet ControlNodeImplementation (line 33).

In order to handle an invalid value of fId, a default statement is added throwing a RuntimeException
(line 37).

6.6.4 Generating Code for Control Nodes
Listing 6.32 distinguishes the control node for which code is to be created. DecisionNode, Fork-
Node, and JoinNode are covered by own snippets.

A merge node is implemented by assigning the index of the node connected to its outgoing
edge to fId (line 11). We assume that a merge node has only one outgoing edge and thus, the
surrounding for loop executes in a single iteration. By having updated the value of fId, the
activity execution continues at the correct position.

A flow final node is implemented by ending the current activity thread by setting fId to 0 (line
14).

In case of an ActivityFinalNode, the field terminated is set to true (line 16) and waiting threads
are notified (line 17). Then, the current activity thread is ended by assigning 0 to fId (line 18).

1 snippet :: ControlNodeImplementation :
2 [if (node.oclIsKindOf(DecisionNode))]
3 [include DecisionNodeImplementation/]
4 [elseif (node.oclIsKindOf(ForkNode))]
5 [include ForkNodeImplementation/]
6 [elseif (node.oclIsKindOf(JoinNode))]
7 [include JoinNodeImplementation/]
8 [elseif (node.oclIsKindOf(MergeNode))]
9 // implementation of a merge node

10 [for (e : ActivityEdge | node.outgoing−>asSequence())]
11 fId = [seqNr−>indexOf(e.target)/];
12 [/for]
13 [elseif (node.oclIsKindOf(FlowFinalNode))]
14 fId = 0;
15 [elseif (node.oclIsKindOf(ActivityFinalNode))]
16 terminated = true;
17 synchronized ( context ){ context . notifyAll (); }
18 fId = 0;
19 [/if]

Listing 6.32: Generation of code for control nodes.

6.6.5 Generating Code for Join Nodes
The implementation of joining control flows requires the explicit implementation of join nodes as
inner classes. The implementation of joining flows bases on the implementation of join nodes.

Generating Join Node Implementation

Snippet JoinNodeImplementation, which is included in the snippet creating the content of acti-
vities (Listing 6.29, line 2), is given by Listing 6.33. It consists of three parts:

• declaration of a inner class representing control tokens (line 3)

• implementation of join nodes (lines 7–39) comprising

– an implementation of incoming edges (lines 9–17)
– the generation of a method for offering tokens to the node (lines 13–15)
– the implementation of actually joining offered tokens (lines 19–38)

• creation of an instance for each join node of an activity (lines 41–42).
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1 snippet :: JoinNodeClassImplementation :
2 /* Control Token implementation */
3 private class Token {}
4

5 [let seqNr : Sequence(ActivityNode) = a.node−>asSequence()]
6 [for (node : JoinNode | a.node)]
7 /* Implementation of join node [ seqNr−>indexOf(node) /] */
8 private class Join[seqNr−>indexOf(node)/]{
9 [for (inEdge : ActivityEdge| node.incoming)]

10 [let joinId : Integer = node.incoming−>asSequence()−>indexOf(inEdge) ]
11 private List <Token > l[ joinId /] = new LinkedList <Token >();
12

13 public void add[ joinId /](Token token) {
14 l[ joinId /].add(token );
15 }
16 [/let]
17 [/for]
18

19 public boolean canJoin () {
20 if(!(
21 [for (inEdge : ActivityEdge| node.incoming) separator ('||')]
22 l[ node.incoming−>asSequence()−>indexOf(inEdge) /]. isEmpty ()
23 [/for]
24 )){
25 if(
26 [for (inEdge : ActivityEdge| node.incoming) separator ('&&')]
27 ([ inEdge.guard.stringValue() /])
28 [/for]
29 && ([ node.outgoing−>asSequence()−>first().guard.stringValue() /])
30 ){
31 [for (inEdge : ActivityEdge| node.incoming)]
32 l[ node.incoming−>asSequence()−>indexOf(inEdge) /]. remove (0);
33 [/for]
34 return true;
35 }
36 }
37 return false;
38 }
39 }
40

41 private Join[seqNr−>indexOf(node)/] join[seqNr−>indexOf(node)/] =
42 new Join[seqNr−>indexOf(node)/]();
43 [/for]
44 [/let]

Listing 6.33: Generation code for join nodes.

The type Token, which is implemented as an inner class (line 3), is required for the implemen-
tation of incoming edges of the join node.

Join nodes of an activity are implemented as inner classes (line 8), too. The class name is a
concatenation of the prefix Join and the index of the node in the sequence of nodes (line 5).

For each incoming edge, its index in the sequence of edges is determined (line 10). A list
containing offered tokens (line 11) as well as a method for adding offered tokens to that list (line
13–15) are created.

The method canJoin() (line 19–38) returns true, if all incoming edges have tokens (line 20–24)
and if guards hold (line 25–30). Before returning true (line 34), tokens offered at incoming edges
are consumed (line 31–33). If not all guards hold or if not all incoming edges are supplied with
token offers, canJoin returns false (line 37).

Finally, code is inserted to create an instance for each join node (lines 41–42).
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Generating Code for Joining Control Flows

Code generation for handling a join node is given in Listing 6.34. For each join node, an Activi-
tyThread is started when starting the execution of an activity. This thread waits (line 6) while it
cannot join tokens offered to incoming edges (line 4).

1 snippet :: JoinNodeImplementation :
2 // implementation of a join node
3 synchronized ( context ) {
4 while (! join[seqNr−>indexOf(node) /]. canJoin () && ! terminated ){
5 try {
6 context .wait ();
7 } catch ( InterruptedException e) {
8 e. printStackTrace ()
9 }

10 }
11 fId = [seqNr−>indexOf(node.outgoing−>asSequence()−>first().target)/];
12 }
13 if ( terminated ) // start a new job waiting for a join?
14 fId = 0;
15 else
16 new ActivityThread ([a.node−>asSequence()−>indexOf(node)/]);

Listing 6.34: Generation of code for JoinNode.

In line 11, code is generated to update fId. The current activity thread thus will continue
activity execution. In order to be able to join other tokens at the join node, another thread must
be created. Therefore, depending on whether the activity has been terminated (line 13), either a
new thread is started (line 16) or it is ended (line 14).

6.6.6 Generating Code for Decision Nodes
Generation of code implementing a decision node is given by Listing 6.35. It consists of two parts:

• waiting until a decision can be made

• causing the activity execution to continue according to the result of the decision.

1 snippet :: DecisionNodeImplementation :
2 // Implementation of a decision node
3 synchronized ( context ) {
4 while (!([node.incoming−>asSequence()−>first().guard.stringValue()/] && (
5 [for (e : ActivityEdge | node.outgoing−>asSequence()) separator ('||')]
6 ([e.guard.stringValue()/])
7 [/for]
8 ))){
9 try {

10 context .wait ();
11 } catch ( InterruptedException e) {
12 e. printStackTrace ();
13 }
14 }
15 [for (e : ActivityEdge | node.outgoing−>asSequence())]
16 [ifLiteral(node.outgoing−>asSequence()−>indexOf(e))↗C.27 /]
17 ([e.guard.stringValue()/])
18 fId = [seqNr−>indexOf(e.target)/];
19 [/for]
20 }

Listing 6.35: Generation of code for DecisionNode.
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The first part is implemented as a while loop, which is executed repeatedly as long as the
decision node cannot emit a token at any of its outgoing edges. This is the case if the guard of the
incoming edge does not hold (line 4) or for all of the outgoing edges (line 5), guards do not hold,
too (line 6). Inside the loop body, the thread waits (line 10).

When the loop is no longer executed, it is determined at which outgoing edge to continue. For
this purpose, a complex if-then-else statement is created:
For each outgoing edge (line 15), a condition is appended. The query ifLiteral returns the string
if for the first edge, else if for all other edges (line 16). After the keyword if or else if, the
guard is included (line 17). In the body of each if or else if block, the value of fId is set to the
index of the target node of the outgoing edge (line 18).

Since the code which determines where to continue the activity execution is only reached when
the guard of at least one outgoing edge holds, fId definitely will be set in one of the if/else if
blocks.

6.6.7 Generating Code for Fork Nodes
Generation of code implementing a fork node is given by Listing 6.36. It is almost identical to the
template for generating the implementation of a decision node.

The only difference compared to the implementation of a decision node is that tokens may be
emitted at multiple outgoing edges, i. e. the execution may continue with concurrently executed
outgoing flows. Therefore, the evaluation of guards at outgoing edges is not implemented by
a sequence of if ... else if ... else but by a set of if statements which are independent
from each other (line 16). If the condition, which is the guard of an outgoing edge holds, a new
ActivityThread is created (line 17). The index of the target of the outgoing edge is provided as a
parameter. The fId of the current activity thread is set to 0 (line 19).

1 snippet :: ForkNodeImplementation :
2 // implementation of a fork node
3 synchronized ( context ) {
4 while (!([node.incoming−>asSequence()−>first().guard.stringValue()/] && (
5 [for (e : ActivityEdge | node.outgoing−>asSequence()) separator ('||')]
6 ([e.guard.stringValue()/])
7 [/for]
8 ))){
9 try {

10 context .wait ();
11 } catch ( InterruptedException e) {
12 e. printStackTrace ();
13 }
14 }
15 [for (e : ActivityEdge | node.outgoing−>asSequence())]
16 if ([e.guard.stringValue()/])
17 new ActivityThread ([seqNr−>indexOf(e.target)/]);)
18 [/for]
19 fId = 0;
20 }

Listing 6.36: Generation of code for ForkNode.

6.6.8 Generating Code for Sequences of Actions in Subactivities
The implementation of action sequences is given in Listing 6.37. Code is generated for each
CallBehaviorAction (line 2). The signature of a method implementing a sequence is generated in
lines 6–9. It consists of the visibility modifier private, the return type void, if the action has no
outputs (line 7) or the return type of the action outputs (line 8), followed by the method name,
built by the prefix ex and the node name. If the node has inputs, method parameters are included
by calling the query paramString (line 9).

Since a CallBehaviorAction has exactly one behavior, the for loop of lines 10–26 is executed
once. Inside the loop, a nested loop iterates over all initial nodes (lines 11–25). According to
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the transformation of models of dynamic behavior, a subactivity has only one initial node with a
single outgoing flow. The target of that flow is an action (line 13). For this action, the sequence of
itself and all downstream actions is obtained by calling the query getSequence (line 14). For each
action of this sequence (line 16), if it is an OpaqueAction (line 19), a method call is generated (line
20). The method calls on the context object are valid since code generation for static structures
includes the generation of abstract methods for OpaqueActions. By that, the implementation at
runtime is enforced.

Inside the for block (lines 16–22), specific code could also be generated for other kinds of
actions according to the outlined implementations of Sect. 4.3.1. Handling other kinds of actions
would be included in else−if blocks inserted after the if block, that only handles opaque actions
(lines 19–21).

1 snippet :: SequenceImplementation :
2 [for (node : CallBehaviorAction | a.node)]
3

4 /** Implement the action sequence of CallBehaviorAction [node.name/]
5 * Generated by ActiveCharts. */
6 private
7 [if (action.output−>asSet()−>isEmpty())] void
8 [else] [action.output.type.name/] [/if]
9 [camelCase('ex', node.name)/]([paramString(action) /]){

10 [for (sub : Activity | node.behavior)]
11 [for (initial : InitialNode | sub.node)]
12 [if (initial.outgoing−>asSequence()−>first().target.
13 oclIsKindOf(Action))]
14 [let actions : OrderedSet(Action) = getSequence(initial)
15 −>asOrderedSet()]
16 [for (action : Action | actions)]
17 [include ConsiderGuards/]
18 [include ConsiderIRs/]
19 [if (action.oclIsKindOf(OpaqueAction))]
20 context .[action.name/]([paramString(action) /]);
21 [/if]
22 [/for]
23 [/let]
24 [/if]
25 [/for]
26 [/for]
27 }
28 [/for]

Listing 6.37: Generation of code for sequences of actions.

Considering Guards

Regardless of the kind of action to execute, guards must be tested before in order to only execute
actions if all token flow prerequisits are satisfied (line 17 in Listing 6.37). The generation for the
required code is given in Listing 6.38.

Since the result of the evaluation of a guard may depend on values in the context object,
the code for testing guards must not be interrupted by the system scheduler in order to prevent
changes to the context object during guard evaluation. In order to be thread safe, it is contained
in a synchronized block (lines 3–16).

Between actions in a sequence of actions, exactly one control flow exists. The for block (lines
4–15) will only match this single control flow. If the flow is guarded (line 5), the guard is evaluated
inside the loop condition of a while loop (line 6). If the guard does not hold, the thread is suspended
(line 7) and may be resumed if being notified after a modification of the context object, or if the
tread is to be aborted (lines 9–12). If it is to be aborted, the fId is set to 0.
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1 snippet :: ConsiderGuards :
2 // wait until all guards hold
3 synchronized ( context ){
4 [for (g_edge : ActivityEdge | action.incoming−>asSequence())]
5 [if not gedge.guard.oclIsUndefined()]
6 while (!([g_edge.guard.stringValue()/]) && ! terminated ()){
7 try {
8 context .wait ();
9 } catch ( InterruptedException e) {

10 // This sequence is aborted...
11 fId= 0;
12 }
13 }
14 [/if]
15 [/for]
16 }

Listing 6.38: Generation of code for considering guarded flows.

The code lines after testing guards are only reached if the conditions of guards hold, i. e. if the
tokens actually may traverse edges. In order to behave correctly if a sequence is aborted, i. e. if
fId is set to 0, before executing any further lines of code, the value of fId must be checked.

A proper consideration of guards requires modifications to the code generated for merge nodes,
as given in Listing C.1 in Appendix C.1

Considering Interruptible Activity Regions

After having checked guards and the value of fId, it is necessary to consider the effects of inter-
ruptible activity regions before executing actions, because action executions might be affected by
the abortion of an interruptible activity region, if actions are located inside such a region, or the
token flow might trigger the abortion of a region, if the traversed edge is an interrupting edge.

Listing 6.39 shows how to generate code considering interruptble activity regions.

1 snippet :: ConsiderIRs :
2 // manage entering, leaving, and aborting interruptible activity regions...
3 synchronized ( context ){
4 [for (enteredRegion : InterruptibleActivityRegion | action
5 .inInterruptibleRegion)]
6 [if (action.incoming−>asSequence()−>first().source
7 .inInterruptibleRegion−>excludes(enteredRegion))]
8 register ( ActivityThread .this , ir[enteredRegion.node.name/]);
9 [/if]

10 [/for]
11 [for (leftRegion : InterruptibleActivityRegion | action
12 .incoming−>asSequence()−>first().source.inInterruptibleRegion)]
13 [if (action.inInterruptibleRegion−>excludes(leftRegion))]
14 unregister ( ActivityThread .this , ir[leftRegion.node.name/]);
15 [/if]
16 [/for]
17 [for (ir : InterruptibleActivityRegion | action
18 .incoming−>asSequence()−>first().interrupts)]
19 interruptRegion (ir[ir.node.name/]);
20 [/for]
21 }

Listing 6.39: Generation of code for entering, leaving and aborting interruptible activity regions.
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Implementing the semantics of interruptible activity regions consists of three parts:

• registering threads entering a region (lines 4–10)

• unregistering threads leaving a region (lines 11–16)

• interrupting regions if tokens traverse interrupting edges (lines 17–20).

A thread executing a sequence of actions must be registered for an interruptible activity region,
if the target of a flow is located inside an interruptible activity region which does not contain the
source of the flow.

A thread must be unregistered if the source of a flow is contained in an interruptible activity
region in which the target is not contained. Here, it makes no difference if the edge connecting
two actions is a normal edge or an interrupting edge. The current thread must be unregistered in
either case in order to prevent it from being aborted or from aborting itself.

If the incoming edge of the action to be executed next is an interrupting edge, the concerning
interruptible activity region is to be aborted.

The generation of the methods register, unregister, and interrupt is contained in the Ap-
pendix C.3 in Listing C.8.

6.7 Summary
With the code generation templates presented in this chapter, the PSM generated by the model
transformations discussed in Chapter 5 can be translated into a basic Java implementation.

Regarding static structure, code for implementing classes with owned attributes as well as
classes implementing associations are considered. Operations for accessing owned attributes as
well as association ends are included, too. Furthermore, the implementation of the handle pattern
as introduced in Sect. 3.6.1 is part of the presented code generator.

Concerning dynamic behavior, abstract methods are generated for the implementation of
opaque actions. Furthermore, the general pattern for activity execution and the implementa-
tion of sequences of actions is covered by the presented templates. The complete semantics of
control nodes is considered, but limited to the constraint that control flows between actions may
only contain one single control node. The effects of guarded flows are considered as well.

Although not all modeling elements which are considered in our discussion of UML semantics in
Chapter 3 and Chapter 4 are included, these templates give a solid foundation to base on for further
template developments to include additional modeling concepts such as object flows, interruptible
activity regions or the implementation of other kinds of actions as sketched in Sect. 4.3.1.

The presented transformations are included in a prototypical implementation which represents
our most advanced version of the ActiveCharts implementation. A survey from the beginning
of our research in the development of a MDD approach and supportive tooling is presented in the
following chapter.





Chapter 7

Tool Support

In order to contribute to Model-Driven Development, our transformations from models to exe-
cutable code ultimately must be workable. We prove this by prototypical implementations. This
chapter surveys the evolution of these prototypes, starting with the first approach of interpreting
UML2 activities and ending with our most recent approach of completely translating models to
runnable code.

Section 7.1 outlines the first step from a bundle of tools to an integrated IDE. Section 7.2
comprises the technological evolution of the translation from models to code implemented in Java.
The step from a Java implementation to transformation languages is sketched in Sect. 7.3. In
Sect. 7.4 we roughly glance over UML compliance of related tools, compare the different stages in
our own history of tool support, point out limitations as well as proposals for extensions.

7.1 Evolution of ActiveCharts
The story of ActiveCharts is a story of several steps each of which contributed to the current
state of our knowledge and tool support concerning activities as a means of modeling software
behavior. Although applying different techniques to base activity execution on, the extent of
tool support has always been targeted to cover aspects which are typical for activities, such as
concurrency, interruptible activity region, or object flow.

Concerning static structure, class, generalization, attribute, and binary association are sup-
ported. Over time, the extent to which UML concepts are supported has slightly increased,
e. g. attention has been given to higher order associations and association classes.

7.1.1 ActiveChartsIDE
The first prototype, ActiveChartsIDE, primarily serves as an implementation of the formal
semantics of activities from Sarstedt [83]. Basic information about Sarstedt’s implementation
is contained in [84], a detailed tutorial on its usage is given in [82]. Its main purpose is the
visualization of token flow in activity diagrams and the execution of call operation actions, which
are implemented in methods of context classes.

Although ActiveChartsIDE succeeds in visualizing the token flow in activity diagrams and
provides debugging facilities for interactive stepping through activity executions, the implementa-
tion suffers from deficiencies with regard to runtime behavior. The straightforward implementation
of the formalization given by means of Abstract State Machines [42] results in inefficient code.

Trying to model a controller for elevators revealed the inability to stop elevator cabins on
floor level due to badly effects on signal processing caused by inefficient algorithms. Moreover,
using Microsoft VISIO [8, 98] as a UML editor and for visualizations, ActiveChartsIDE is at a
disadvantage compared to tools entirely based on products licenced at no charge. These two points
clearly indicated the promising nature of a reimplementation comprising redesign.

The complex architecture of ActiveChartsIDE is depicted by Fig. 7.1. The tool comprises
three parts: VISIO for modeling and visualization, some kind of development environment for
writing and compiling code and ActiveChartsIDE itself.

Starting from graphical model representations, ActiveChartsIDE imports activity diagrams
and persists them in a textual, XML-based representation. Furthermore, it generates code for
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the implementation of the static structure as modeled in class diagrams. Implementations of call
behavior actions are added by the user in a separate code file. Generated code and user written
code are compiled to an executable.

The interpreter uses the activity import module to load either activity diagrams or activities
stored as xml files. It executes the loaded activities and calls methods contained in the executable.
Visualization of an execution with debugger facilities is provided by the Visualization component
of ActiveChartsIDE, which starts and controls the execution of the interpreter. The debugger
supports stepping through activities, definition of break points, and inspection of context classes.
It communicates with the visualization component which depicts the state of an activity execution
by diagram augmentation with tokens and highlighting of edges traversed by tokens.
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Figure 7.1: Architecture of ActiveChartsIDE.

7.1.2 Migration to Eclipse
The following reasons triggered a re-implementation of ActiveChartsIDE as a bundle of eclipse
plugins:

• basing on eclipse offers to use and tightly integrate visual modeling editors for UML which
are implemented as eclipse plugins as well

• an implementation of the UML2 meta-model is available as part of the eclipse Model Develop-
ment Tools (MDT).

Thus, an eclipse based re-implementation offers better tool support for modeling, and the need to
implement a custom meta-model becomes obsolete.

Improvements of the Execution Engine

Since the implementation language of our tool no longer is Microsoft C# but Java, the execu-
tion engine is implemented completely anew. The recalculation of many items of information at
every execution step is now avoided by using lookup tables and results of earlier execution step
computations [13, 36].

Java Based Code Generation

The transition from C# to Java as a target language for code generation from class models entails
as a necessity to substitute the partial class concept by another mechanism available in Java as well.
Furthermore, the very rudimentary support of association classes and the missing consideration of
composition semantics is targeted by the mapping from UML class diagrams to Java code [33].
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7.2 Approaching a Complete Model Translation
Although execution speed has significantly advanced with the re-design and re-implementation
of the activity interpreter, aspiring the translation of UML activities to object-oriented code is
due to a tighter integration of both, structural and behavioral models. As this thesis focuses
on dependencies between structures and behaviors, the previous chapters attest that behavior
execution must include aspects of structures. Such aspects, e. g. multiplicity bounds, must be
made available to an execution engine unless these information is obtained from code of generated
classes. To that effect, an activity execution engine must also process the model of static structure.

Another solution in favor of a once more faster activity execution is to translate activities into
code in the way of our approach. By doing so, structure and behavior are represented in the same
way (as code) and an execution environment for activities becomes obsolete.

7.2.1 ActiveCharts First Generation Prototype
Our first implementation of a code generator for static structures is purely programmatic. Figure
7.2 overviews the interplay between the modules of the eclipse based ActiveCharts. Third party
UML editor plugins support graphical modeling of UML diagrams. An implementation of the
UML metamodel based on the Eclipse Modeling Framework provides the foundation for building
a UML model according to the graphical specification.

The model transformation directly operates on the model generated by the graphical UML
editors. The resulting transformed model is the input for the code generator, which writes Java
source code line by line. The generated code is translated by the Java compiler.

The activity interpreter operates on the model for executing the activity and on the class files
for invoking operations and accessing attributes and association ends.
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Figure 7.2: Architecture of ActiveCharts First Generation Prototype.

Implementations of model transformation and code generation on such a low level of abstraction
tend to become very complex, badly readable and almost un-maintainable. However, due to the
multitude of limitations revealed by an evaluation of tools either based on template languages or on
transformation frameworks such as openArchitectureWare1, directly accessing models and source
code representations seems favorably. In fact, most limitations are found when using template
languages, which most often are proprietary developed by tool vendors.

7.2.2 ActiveCharts Second Generation Prototype
A first attempt to base code generation on a higher level of abstraction is to create an Abstract
Syntax Tree (AST). In contrast to directly writing code, the construction of such a tree is flexible
with regard to when a certain item of information is implemented: when writing code line by line,
the order in which information is added to the generated code is inherent; when constructing a
tree, child nodes can be added to each node at any time during the generation process.

1OpenArchitectureWare by now is part of Xpand, which itself is included in the eclipse project Model To Text
(M2T) (https://projects.eclipse.org/projects/modeling.m2t).
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As shown in Fig. 7.3, the code generator accesses the model to build an AST covering both,
structural and behavioral aspects of the model. When the tree is complete, it is written to Java
source files and compiled to Java classes.
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Figure 7.3: Architecture of ActiveCharts Second Generation Prototype.

7.3 ActiveCharts Third Generation Prototype
We often refer to the positive effects of working on higher level of abstractions. Unfortunately, the
positive effects make no impact on our first generation prototype. But by applying transformation
languages supporting a descriptive specification, the translation of models to code can be coped
with on a much higher level of abstraction.

The third generation of our tool directly uses the formalized transformations. We consider the
executable specifications of our model transformation as presented in Chapter 5 and the transition
to code as stated in Chapter 6 to be well readable, maintainable, and therefore, a good basis for
extensible tool implementation. From this point of view, the formalizations provided as part of this
work is not only a contribution to theory but also an initial implementation of a core that could
be advanced and refined to a release candidate. Figure 7.4 shows the third generation prototype.
As can be seen on the left side, modeling still is based on the UML2 metamodel and graphical
editors based on it. The model transformation is achieved by mediniQVT, the source files are
generated by Acceleo. A runtime module connecting the model and the generated code no longer
exists, since our third generation tool completely translates the system specification into runnable
code for which no interpreter other than the JVM2 is needed.
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Figure 7.4: Architecture of ActiveCharts Third Generation Prototype.

2Java Virtual Machine
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7.4 Discussion
In this section, we glance over UML compliance of tools that are comparable to our implementations
and compare the characteristics of the different generations of our implementations to each other.

7.4.1 Level of Compliance Compared to Related Tools
Many tools claim to be UML compliant, but most of them are not really. For example, ownership
of association ends is rarely supported. Tools either make associations or associated classifiers to
end owners, without any possibility to change this and with no semantic effects resulting form the
choice for one or the other option. As a matter of fact, tools on such a level of UML compliance
cannot generate code with the same preciseness as pursued by us.

A detailed analysis of UML tools [25] in 2009 reveals, that modeling activities is well supported
by very few tools, e. g. Papyrus [114]. The processing of activities, either execution by interpreters
or code generation, is only rudimentarily supported, if at all. Modeling static structure is quite
fairly supported by most tools, although advanced concepts like end ownership are often miss-
ing. Generally speaking, modeling and processing of models should be improved. The situation
regarding tool support as examined in 2009 has not substantially changed until today [3, 6].

Code generation usually bases on special frameworks or on template languages. Most often,
basic implementations or templates are supplied, which can be extended to cover a comprehensive
code generation. However, both mechanisms are often proprietary and consequently, interoper-
ability of code generators based on templates is not given or restricted, i. e. templates cannot be
used in tools other than from the same vendor.

Another common problem is, that models are not directly accessible. If a tool with suchlike
restrictions uses templates and a template is processed for each class, then code generation for
associations becomes difficult since neither the model is accessible, nor can templates be defined
to be processed for each association. Advanced concepts like implementation of compositions by
cascading object destruction often cannot be addressed by those tools.

7.4.2 Architecture
Our eclipse based implementations rest on a freely available, UML compliant meta-model imple-
mentation. The design of our first generation prototype, however, offers too little abstraction by
directly writing source code into Java files. The hardest problem to face under this approach is
that code generation either must produce lines of code in the order they appear in the source file
or points where to insert code into previously created code fragments must somehow be identified.

Our second generation prototype solves this problem by basing on the AST. But code generation
is still cumbersome since the level of abstraction is low. For a single line of code, a couple of tree
nodes must be created representing e. g. statements, assignments, operators, or arguments. The
resulting code is no good basis for a code generator that should be maintainable and extensible.

In consideration of the fact that users might be interested in adjusting the output of a code
generator to their individual needs, in particular because supporting additional modeling concepts
might be demanded, an acceptable degree of readability, maintainability, and extensibility is in-
evitable. Such a high degree has not been reached before basing on standardized transformation
languages for model to model as well as model to text transformations. Therefore, our third gener-
ation prototype combines powerful and comprehensive initial implementations with an architecture
applying techniques and formalisms which accommodate extending or tailoring tools to individual
preferences and requirements.

7.4.3 Comparison of Runtime Characteristics
Regarding the execution of behavior, we identified some runtime characteristics and compared the
results obtained by evaluating the ActiveCharts interpreter, the eclipse based interpreter and
the output of our third generation prototype. The considered characteristics are

• duration of executions

• code size

• memory allocation.



158 CHAPTER 7. TOOL SUPPORT

A detailed presentation is given in our publication UML Activities at Runtime [36]. In the
following, we roughly summarize the main findings.

As expected, using lookup tables for token flow computation results in faster executions of
activities. Our eclipse based interpreter outruns the ActiveCharts interpreter, except if many
activities are executed which are not very complex. In such a scenario, creating lookup tables
may consume more time than can be saved during the entire activity execution. The fastest
activity execution is achieved by code generation for activities, as provided by the third generation
prototype.

Regarding code size, our eclipse based interpreter is smaller than the ActiveCharts inter-
preter. Whether or not the difference in code size results from the less complex flow algorithms
due to the use of lookup tables cannot be answered for sure, since it probably also is influenced
by the application of different target languages3. But in contrast to the code generation approach
for activities, code size of interpreters is constant. With growing complexity and size of input
models, the size of model representations4 needed by interpreters turned out to grow slower than
the generated code. However, small activities result in code smaller than the interpreter code.
But since generated code is dependent from many factors it is not feasible to try to give a model
marking a break-even point. For very large models, the interpreter approach scales better in terms
of code size, but worse in terms of execution duration.

Allocation of memory scales differently for interpreter and generator approaches. Our inter-
preters allocate memory for storing the token configuration and furthermore for holding an instance
of the entire model. Therefore, beside the memory needed to load the model, much memory is
allocated if many tokens are present, i. e. many tokens wait for guards or for tokens to join with.

How much memory is allocated when running generated code depends on the structure of a
model, in particular on the number of join nodes, since for them, instances are created regardless
of whether tokens are offered to incoming edges or not. Generally, tokens processed by interpreters
correspond to threads executing generated code. Depending on the stack frame of a thread, many
waiting threads can cause more or less memory allocation, even if they represent control tokens,
for which interpreters always demand the same memory allocation.

7.4.4 Current Limitations

In this section, we do not discuss limitations of our approach, but we list limitations of our tool
support.

ActiveChartsIDE uses VISIO for modeling. With our first eclipse implementations, we also
developed class diagram and activity diagram editors offering support for basic modeling concepts.
Whereas with VISIO, a fairly usable editor is employed, our own editors are less usable, but tailored
to our demands. Since in the last years, third party UML editors have increased in usability and
amount of supported modeling concepts, development of our own editor has been discontinued.

ActiveChartsIDE also provides a visualization of token flow [32]. Although aspired for our
eclipse based interpreter as well, visualization is only included on a very basic and rudimentary
level. With regard to our code generation approach, code for visualizing the execution of an acti-
vity could be inserted as a kind of debug info, however, it is not addressed yet.
Furthermore, visualization is limited to our own editors. Including visualization in a third party
editor is possible if source code is available. PapyrusUML [114] is an open source tool thus qual-
ifying itself to be a basis for a modeling and visualization tool. An extension of PapyrusUML is
currently considered, but has not yet been started.

Still a problem is the fact that there is no editor basing on eclipse UML available which supports
all modeling elements our approach uses. With regard to modeling structures, support of higher
order associations often is not supported, with regard to modeling behavior, support of actions
most often is unsatisfactory.
Actually, our test models have not been developed by drawing diagrams but by using the model
editor comprised in eclipse UML. Although it is extremely uncomfortable to design models in a tree
view representation, it actually is the only way to get models containing those modeling concepts
which to deal with constitutes the strength of our approach.

3ActiveChartsIDE generates C# code, the eclipse based prototypes create Java code.
4Models are typically persisted as xml files.
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7.4.5 Possible Extensions
A valuable extension were the development of a modeling editor and visualization component
overcoming the limitations described above. Furthermore, debugging facilities like those offered by
ActiveChartsIDE are not yet available in our eclipse based implementations.

With basic considerations about distributed activities [77], deployment diagrams are to be
included in our approach. If doing so, visualization options for deployments could be elaborated
and included in a next generation prototype.

Since UML offers further formalisms for behavioral modeling, namely state machine and col-
laboration, diagramming could be extended to support both in order to be prepared for a possible
extension of our approach based on the semantic description of Kohlmeyer [51, 50].

Model Generation

In Chapter 3, we argued for a proper consideration of constraints specified in structural models,
such as multiplicity bounds and aggregation or composition semantics. In particular, we proposed
to check bounds of association ends and to reject modifications causing a violation of them. In
Sect. 4.4.1, we presented an activity for checking multiplicity bounds when accessing structural
features. Thus, we provide means for considering structural integrity on the level of modeling as
well as on the level of implementation.

Regarding the option to include checking multiplicity bounds in behavioral models, good tool
support should generate the needed activities since those activities are not trivial and must be
created and maintained in case of changing the structural model. Generating such activities is
possible due to structural models containing all required information.

The option of addressing the structural integrity of a system in code by implementing actions
with additional semantics not backed up by the specification of UML is problematic because the
implementation is not aligned to the modeling language semantics. Accordingly, it is preferable
to reflect the entire semantics of the intended implementation into the model. But this turns the
idea of MDD upside down: instead of deriving implementations from models, a model is derived
from its semantically stronger implementation. Such a model explicitly shows that structural
integrity is checked and exceptions are raised when a change results in an invalid system state.
This explicit representation of accounting for structural integrity is a better strategy to deal with
the missing alignment between the semantics of actions on the one hand and of structural features
on the other hand. An example is given in Fig. 7.5, which shows an activity implementing an
AddStructuralFeatureValueAction with additional semantics, which is throwing an exception in
case of a violation of multiplicity bounds.

AddStructuralFeatureValueActionImplementation

write

instance: Object

self
instance: Object

instance: Object

value

createException

[MultiplicityBounds violated]

[else]

e: MultiplicityException

raiseException

e: MultiplicityException

result: Object

value

Figure 7.5: Activity adding semantics to AddStructuralFeatureValueAction.

Each AddStructuralFeatureValueAction of a model can easily be augmented with the additional
semantics of AddStructuralFeatureValueActionImplementation of Fig. 7.5:

• for each action a to be supplied with the additional semantics, an activity
AddStructuralFeatureValueActionImplementation must be created

• action a must be replaced by a CallBehaviorAction associated to the created activity

• action write in the created activity must be replaced by action a (from the first bullet point).

Since several possible ways exist to cope with multiplicity bound violations, tooling designs should
consider to offer adaptability to developers. In the following, we outline a design incorporating
this demand. It is based on a three tier architecture as shown in Fig. 7.6.
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• Level L0 contains an abstract activity serving as the root for accessing structural features.
AddValue is an OpaqueAction which implements the activity shown in Fig. 7.5.

• Level L1 contains activities which are specializations of the abstract activity of L0. Such
an activity exists for each structural feature that is accessed from within dynamic behavior
specifications. It specifies the types of object nodes owned by the abstract activity from L0
to the types required in the context of each structural feature as well as it redefines AddValue
according to the concrete context.

• Level L2 denotes the set of activities in which structural features actually are accessed.
Instead of using StructuralFeatureAction, CallBehaviorAction associated to an activity of L1
is applied.

JoinTeam

AddMember
team :Team

result: Team

p: Personteam: Team

p: Person

AddMember

AddValue
team: Team 

result: Team

instance: Personteam: Team result: Team

p: Person

AddValue

AddValue
value:Classifier

result: Classifier

c: Classifierv: Classifier
result:
Classifier

instance: Classifier

Figure 7.6: Three tier architecture for considering structural integrity.

The basic consideration behind this three layer architecture is that instead of using Structural-
FeatureActions of UML, activities like that of Fig. 7.5 should be used. But since these activities
serve as a documentation of the actual implementation of associations rather than code is generated
for them, they must not be changed. Therefore, in order to prevent any changes and to achieve
a higher level of abstraction, the semantics of implementations for accessing structural features is
encapsulated by opaque actions.

This actions throw exceptions if multiplicity bounds are violated. The reaction to an exception
may be modeled on L2 level, i. e. individually for each occurring access. If handling exceptions on
L1 level, each access on the same structural feature is uniformly specified. If specifying exception
handling on L0 level, violations of the structural integrity are uniformly handled for all structural
features.

An example is given in Fig. 7.7. Instead of throwing an exception — what actually happens in
case of a multiplicity bounds violation — a boolean result indicates whether or not a value could
be added. The same adaptations could be applied on the L2 level, thus affecting only the attempt
of adding a person to a team in the activity JoinTeam. If applied to the activity AddValue on level
L0, any attempt to add a value to any structural feature would no longer throw an exception, but
rather a boolean indicator of success would be provided.

This example also shows that generalization applied to activities can beneficially be used in
modeling behavior and motivates future work on its semantics as well as its inclusion in tooling.
It allows adapting the responses to invalid system state modifications locally, globally, or globally
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HandleException

addMember

AddValue

member:
Person

result: Team

member: Person

result:Team

HandleException
e: MultiplicityException

e: Multipicity
Exception

ValueSpec
false: boolean

writeVariable
value: boolean

ValueSpec
true: boolean

writeVariable
value: boolean

readVariable
value: boolean

success: 
boolean

team:Team
team: Team

Figure 7.7: Adapting reaction to multiplicity bounds violations.

but restricted to an individual structural feature. Furthermore, it introduces a straightforward
option to align models with our implementations.

7.4.6 Concluding Remarks
With our tools, we provide a basis for processing activities based on two different, alternative
techniques: interpretation and code generation. Both have their strengths and therefore, including
both is a good choice for comprehensive tool support. The applied architecture and formalisms
particularly with regard to the implementation of code generators contribute to an excellent degree
of extensibility and maintainability, which is not reached by our implementations of interpreters.
Using standards such as QVT or Mof2Text to implement our own prototypes demonstrates the
benefits of working at higher levels of abstraction, not only in model-driven development itself, but
also in the development of MDD tools.

Employment of our tool in practical courses has revealed that generated code for static structure
can easily be used and accessing features is convenient since provided methods have meaningful
names derived from input models. Likewise, the implementation of behavior by providing code
for actions but without being responsible for control and data flows has turned out to be well
manageable. Modular implementation of more complex algorithms, based on interacting actions
and each representing relatively small, self-contained tasks each of which represents only a small
portion of the overall behavior, inherently results in clearly structured code. However, inexpedient
input models may markedly diminish this effect.





Chapter 8

Discussion

In this chapter, we discuss our approach in terms of its characteristics, in particular compared to
related work, its validity, and ways of advancing our approach itself as well as the UML specifi-
cation. Moreover, we outline some basic concepts of promoting our approach towards a workflow
execution engine considering two aspects, failure recovery and persistence.

8.1 Characteristics of Our Approach
In this thesis, we outline some severe shortcomings of the UML specification. Concerning Associ-
ation and Property, these are the flawed assumption of replaceability of both concepts as well as
dependencies between concepts concerning Association that are actually designed to be orthogonal,
e. g. end ownership and navigability. We address such issues and provide solutions by proposing
a transformation from models to object-oriented code covering the general case of associations,
i. e. we are not limited to binary associations, cover association classes and properly consider end
multiplicities, navigability, and visibility.

On the other hand, we also address semantics of behaviors and actions. Instead of detachedly
regarding structural and behavioral modeling, we integrate both dimensions of modeling by aligning
semantics of structures and behaviors, e. g. by considering multiplicity bounds when executing
actions. A focus on these relations between structural and behavioral modeling has not yet been
targeted by other approaches with the same emphasis.

Although research results concerned with the above mentioned issues have been published
in recent years, these works differ from ours in their extent on the one hand, i. e. in the set of
considered details, as well as in their objective target on the other hand.

Concerning classes, we do not in detail focus on generalization relationships, in particular
multiple inheritance or the like, and we exclude interfaces and generics completely, although both
concepts are widely-used. The reason for this is that the kind of relationships that has great impact
on behavior is association rather than generalization. Furthermore, interfaces and associations are
concepts which are difficult to combine, as we will explain later. And finally, generic classes
(also often called template classes) as well as generic methods are a feature which rather make
high demands on the compiler than on a code generator, which can map generic parameters of
model elements directly to generic parameters in code, if the target language supports generics like
e. g. Java and C# do.

Regarding activities, other research work most often is concerned with one of three hot spots:

• mapping UML activities to some other formalisms for specifying workflows, such as
e. g. BPMN, or general formalisms like Petri Nets

• executing activities by interpreters

• generating code from activities.

Our estimation is, that the order of the above list represents the amount of research carried out in
the three considered fields. Therefore, we are contributing to a less deeply explored issue, which
in our opinion is of great relevance for practitioners in software engineering. We assume that the
relatively little effort put about code generation from activities results from the fact that in contrast
to UML class models, UML activities are absolutely no natural fit to object-oriented languages.

163
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Furthermore, semantics of UML activities has been fundamentally changed with the release of
UML 2.0 in 2005. Compared to State Machine, Activity is a much younger formalisms for which
tool support not yet is on a par with tool support for other behavioral formalisms.

To close — or at least, to narrow — the gap between activities and code, the scope of supported
UML elements usually is restricted. In order to define a common restriction which assuredly
contains all basic UML elements of activities, new specifications such as fUML [72] have been
released. Our approach supports activities to a much wider extent.

Before we will provide references to related work, oppose it to our approach, outline common-
alities as well as differences, and compare the extent of supported elements, we discuss the reason
why we do not consider interfaces in our approach in detail.

8.1.1 Association and Interfaces
In object-oriented design, it is desired to keep type declarations and implementations apart from
each other. An interface is the declaration of a type, a class is its implementation. If two classes are
to be associated, each class should reference a type rather than an implementation. By doing so,
types can be re-implemented and multiple implementations for the same type may exist. Which
implementation is actually used is not visible to classes referencing a type. In particular, it is
possible to exchange implementations without any need of adaptations to the classes referencing
the implemented types.

The specification of UML states that “an association between an interface and any other classi-
fier implies that a conforming association must exist between any implementation of that interface
and that other classifier. In particular, an association between interfaces implies that a conforming
association must exist between implementations of the interfaces.” [69, §7.3.24]

The claim obviously fails to provide a valid description for the semantics of an association
between interfaces such as shown in Fig. 8.1. Figure 8.2(a) shows the implication of the first
sentence of the above quotation. The result is that not classes are referenced, but interfaces, i. e. a
reference is not committed to a particular implementation, but to a type, complying with good
object-oriented design as presented above. However, the semantics of a single association is lost.
Since there are three properties implicated, it is not possible to represent the relationship between
implementations of interfaces by a binary association, if at least one interface is implemented by
more than one class.

The implications of the second sentence can be seen when looking at Fig. 8.2(b): whereas the
association specified on the type level intends to associate an instance implementing interface IA
with an instance implementing IB, the semantics of an association between classes on the level of
implementations as demanded by the specification is not the same. First, the role name a appears
twice in BImpl each representing an end of an association to a subtype of IA, and second, the
multiplicity bounds of the a end of the type level association cannot be represented correctly by
bounds of the a ends on implementation level1.

<<interface>> <<interface>>

* *

+a +b

Figure 8.1: Association between interfaces.

Our approach is able to generate code preserving the association semantics correctly, as shown
in Fig. 8.3. By generating a manager class and using the interface types as values of the link
class, links can represent any combination of instances which are subtypes of associated interfaces.
However, it is necessary to generate code for referencing the manager class as well as for obtaining a
handle, if needed, into each class directly implementing an interface participating in the association.
Methods for accessing the association can be inserted into the interfaces and must be implemented
in all implementations of a type as well.

In favour of clearly focusing on associations between classes without any ambiguities, we exclude
interfaces as specified in the UML from our approach.

1This problem does not occurs if the lower bound is zero and the upper bound is unlimited.
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<<interface>> <<interface>>
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(a) Associations between implementations of associa-
tions and classifiers.

<<interface>> <<interface>>

* *

+a +b
* *

+a +b

(b) Association between all implementations of inter-
faces.

Figure 8.2: Associations between implementations.
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Figure 8.3: Implementation of associations between interfaces in ActiveCharts.
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8.2 Related Work

We divide this section in two parts. First, we discuss work related to our approach on the basis of
targeting the same elements of structural models. Second, we turn towards work that is like our
approach concerned with behaviors and actions.

8.2.1 Related Research on Structural Modeling

Basic elements of structural modeling are entities and their relationships, as covered by ER di-
agrams [16]. In UML, entities are represented by Class. The predominant kind of relationships
between classes are represented by Generalization and Association.

Translating classes and generalization into code is not difficult at all. Including class attributes
is more difficult, in particular if multiplicity bounds are considered. The translation of associations
is most difficult, unless accepting some limitations.

A straightforward and often applied strategy of implementing associations is to use references
to the opposite class in each class participating the association. Akehurst et al. [1] and Génova
et al. [30] discuss this technique of association implementation. Since Akehurst et al. do not con-
sider visibility, the problem of mutually updating private attributes in member end classes is not
addressed. Furthermore, it is stated that navigable ends must be owned by the classifier whereas
non-navigable ends must be owned by the association. Our work differs from Akehurst et al. by
considering visibility and by considering that a navigable association end can be owned either by
the association or by a member end class. However, Akehurst et al. discuss other characteristics
like e. g. qualified associations which are omitted by us.

Génova et al. [30] consider visibility and state that associations with both ends defined private
cannot be managed because synchronizing references is not possible. Using an implementation
class for an association is discussed and discarded, because it is assumed that it does not solve the
problem either, since it involves auxiliary classes that cannot provide access to the methods for
managing the association to some classes excluding all other classes. Unlike Génova et al. , we show
how to provide access to links to only some classes. For this purpose, a highly sophisticated code
pattern has been elaborated. Besides its ability to facilitate selective access which is restricted
to a set of classes, our handle pattern captivates by its brevity, in particular if global handles
are applicable which are completely based on static features of concerned classes resulting in the
absence of extra CPU time costs.

Some tools, e. g. Fujaba [111] provide access to attributes and even to associations by gener-
ating code according to the Fujaba Association Specification [14, 28, 64], which is similar to the
approaches of Akehurst et al. [1] or Génova et al. [30]. Although in Fujaba, visibility is included, if
both ends of an association are private, generated code cannot be compiled because of an attempt
to access private methods of another class. Albeit visibility is correctly taken into account, Fujaba
fails to resolve the conflict of absent accessibility induced by limited visibility.

Although providing a more comprehensive formalization of associations, Diskin and Dingel [22]
focus on the set theory and mappings to represent associations omitting visibility. Therefore, their
work serves as a basis for understanding and implementing associations, but consideration of all
features of this modeling concept demands for extensions to their work.

Furthermore, there a numerous attempts to formalize UML, based on different languages or
formalisms like Z [93, 60] or a System Model based on pure mathematics, as applied by the UML
Semantics Project [12]. The problem of this kind of research is that although “the imprecisions and
ambiguities of natural language make it difficult to detect and correct subtle errors, incompleteness,
and inconsistencies” [12], a formalization itself certainly will not expose all consistency flaws and
subtle errors. In fact, formalizations build a basis on which correctness and consistency could be
determined, but this determination is additional research work that must be done.

Another problem is that formalization usually is done for some special purpose. If ownership,
navigability, or visibility are not relevant, these concepts consequently are often not covered by
formalizations such like [93, 60]. Since we are not aware of a formalization of sufficient maturity
covering all the aspects relevant for our work, and which is generally accepted as a correct UML
formalization, we directly base on the mostly textually given specification of UML.
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8.2.2 Related Tools for Structural Modeling
Numerous tools claim to generate code from UML class diagrams, however, documentation about
how details of a source model are considered is not provided. An evaluation of freely available —
or at least freely evaluable — tools listed in the UML Vendors Directory reveals that tools rather
provide an infrastructure supporting to implement code generators.

Provided implementations can at best serve as examples because details like multiplicities most
often are not at all or only rudimentarily considered. Whether or not such tools can be extended
to provide comprehensive code generation primarily depends on

• internal model representation

• code generation frameworks or template mechanisms

• embedding of templates in the code generation process.

If the internal model representation is based on a simplified UML model, the simplifications may
lead to less expressive models, e. g. by not supporting dedicated end ownership for associations. For
instance, the recent version of Enterprise Architect [110] handles navigability detachedly from end
ownership. Consequently, it is possible to define a non-navigable association end owned by an end
classifier, albeit an end that is also an owned attribute always represents a navigable association
end.

A limitation often seen at template-based approaches is that the content produced by processing
a template is contained in a separate source file. Consequently, the policy of how to apply templates
determines which model elements can produce output and the output of which elements is isolated
in separate files. Suchlike limitations are problematic because they prevent the generation of a
pair of classes like proposed in our approach in order to separate generated code from code which
is to be completed by the user.

If a template is processed for each instance of a specific UML type, say for each class, code
generation for an association is not possible unless the specification of a template and a model
element for which to apply it is supported. A model transformation prior to the code generation
process may solve this problem, if transformations are supported and the mechanism is powerful
enough.

The template mechanism of Enterprise Architect [110] is an example suffering the above de-
scribed limitations. Classes are processed by templates, but not the entire model is accessible for
template designers but only a representation of the currently processed class. Navigating along as-
sociations does not give access to the opposite classes but only to some information of the opposite
ends such like the name of its type. But accessing the type and its properties is not possible.

8.2.3 Alternative Approaches of Implementing Structural Models
Apart from implementing association by applying any kind of association implementation pattern
in a traditional object-oriented language, a fundamentally different approach is to make association
a member of provided language concepts. The two primary approaches to achieve this are the
development of appropriate libraries and language extensions.

Libraries

Designing libraries providing association implementations and a convenient interface for accessing
this implementations can be seen as a lightweight approach towards making association a language
concept as demanded by Rumbaugh [79] already in 1987.

Although this might be a way of introducing relationships to object-oriented languages, the
benefit of employing such libraries is possibly small. An implementation of a library mainly hides
complex code that is needed for a proper relationship implementation from the user and provides
its reuse. When generating code, the complex implementation of relationships can be hidden
in superclasses as well. Furthermore, implementations can be tailored to the actual needs in the
concrete context of a model [34]. In addition, it is possible to transform models in a way that makes
implementation classes for associations explicit. Such a decorated model is a good documentation
for the implementation of the original conceptual model.

Instead of generating code for associations, a tool also could use libraries implementing asso-
ciations to keep the code generation process less complex. Libraries of a kind generally suited for
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such an approach have been introduced by Nelson et al. [62] and Østerbye [75]. But since these
approaches are not concerned with UML associations but with relations between classes in general,
they do neither support ownership nor visibility of association ends.

The aspect-oriented approach of Pearce and Noble [76, 20] achieves a very clear distinction of
code needed for the class implementation and the code of association implementation, but again,
this approach is not explicitly designed to implement UML associations. Furthermore, benchmark
results regarding execution time provided by the authors show that a direct implementation of
association may be remarkably faster than the implementation of libraries. We assume that for
other libraries, the drawback very likely exists, too.

Language Extensions

For language extensions, the same general consideration as for libraries is valid: it moves the
point where associations are to be resolved to the language compiler which must resolve additional
programming language constructs. Having a look at the whole process of compiling a model to
executable code, the programming language is just one level of abstraction that is passed on the way
from the high level — which is the model — down to the very low level — which is the machine’s
code. From a strict MDD’s point of view, the level of abstraction of the programming language —
and consequently the question whether associations are decomposed when translating a model to
code or when compiling the code to a lower level representation — is irrelevant. Although we do
not reject the idea of a first class construct for associations in programming languages, we consider
it not to be necessary for the implementation of UML models [34].

RelJ by Biermann and Wren[9] is a language comprising a subset of Java and relationships
as a language feature. According to its grammar, it neither supports higher order associations,
nor navigability or visibility of association ends. Furthermore, association classes are limited to
associations with attributes, but operations are not supported.

Rumer by Balzer [5] is another language supporting binary relationships. Being limited to
binary relationships, Rumer cannot implement UML associations in general. Furthermore, navi-
gability is not supported as well as visibility is not.

Nelson et al. [63] present the language Affinity with relation as a built in feature. But semantics
of relation in Affinity differs from the semantics of UML association. A relation is coupled with
equality of instances. Therefore, beside equality as is in Java , another kind of equality based on
egal [4] is introduced. Thus, Affinity is equipped with concepts which are not part of the object
paradigm. Since we focus to generate code for mainstream object-oriented languages, approaches
like RelJ, Rumer, or Affinity disqualify themselves.

Another approach for implementing associations has been based on concern-oriented reuse [6].
The approach is powerful and therefore in principle well suitable for dealing with the problem of
the lack of associations as a stand-alone concept in programming languages. However, it is limited
to binary associations and the objective is to provide a basis for the implementation of binary
associations on a general basis. Aspects such as memory requirements and runtime behavior are
taken into account in such a way that the developer can configure the right one from a set of
predefined association implementations. The reusability and adaptability of a general association
concept is therefore in the foreground.

An attempt to introduce associations as a programming language concept is Umple [95]. It is
a set of extensions to object oriented languages that provides a concrete textual syntax to UML
abstractions such as association [3]. Badreddin et al. [3] use Umple for enforcing multiplicity con-
straints and referential integrity. An analysis of association usage in open source projects clearly
shows that various combinations of multiplicity bounds occur in real systems and a proper consid-
eration in code is necessary. Umple honors multiplicities by not performing creation or destruction
of links that would result in an invalid system state. The actual execution of an operation is
indicated by a boolean return value. However, Umple is also limited to binary associations and
also assumes that the opposite association ends are always accessible and thus does not allow to
freely specify the visibility of association ends.

8.2.4 Related Research on Behavioral Modeling
Over the last years, Activity has been addressed by a growing number of researches and tools. A
survey giving a detailed analysis of UML modeling tools [25] reveals, that support of activities re-
garding modeling is well in only very few tools, e. g. Papyrus [114]. Further processing of activities,
in particular execution by interpreters or code generation is only rudimentarily supported, if at all.
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“Activities are often associated with business processes. Our approach cannot fully compete
with state-of-the-art workflow execution engines, to which such processes might be deployed, since
such engines typically provide additional features, e. g. failure recovery. But activities can also be
used to describe short-lived workflows that do not require recovery capabilities with process state
preservation etc. E. g. the workflow of purchasing a ticket required to use a public transportation
system: the use of a workflow engine for the process of selecting a departure and a destination
station, a departure or arrival time and selecting a connection that meets the given constraints is
oversized. For such purposes, we consider generating code in line with our approach a good option.

Some advantages of generating code are that we can profit from compiler technique benefits
like code optimizations which would have to be re-implemented in an interpreter if runtime char-
acteristics of compiled code are desired. Not building an interpreter but transforming activities to
code and thus making the Java virtual machine to the model interpreter is our goal.

Our approach supports implementations for accessing structural features and maps it to cor-
responding actions, thus achieving the coupling of structures and behaviors. By additionally
accurately considering the subtleties of the UML token flow semantics, our approach supports
behavioral modeling according to the specification. However, as composing complex flows by
combining multiple control nodes between actions makes code generation very difficult – if not
impossible – our approach is limited to a single control node between two actions. This limitation
may be dropped when implementing control nodes as dedicated classes with methods for token
propagation and token consumption.

Although other approaches dealing with code generation for activities exist, these approaches
most often focus on some special application in which code generation for activities is only a minor
part. UML based Web Engineering (UWE) [48, 49] is concerned with this issue, but even claiming
to be based on standards, UWE only uses UML notation, but as can be seen in examples, the
semantics of implicit joins is not considered [49, pp. 171,176][56].

Another approach for comprehensive MDD is implemented in UJECTOR. Since the provided
examples only consist of simple sequences of actions [96, pp. 30,34], we can not assess the value of
code generation for activities of this tool.

Sulistyo and Prinz propose recursive modeling to obtain complete code [94], but the introduced
code patterns neither support concurrency nor a delay of token flow due to not holding guards.

Bhattacharjee and Shyamasundar present an approach for validated code generation for activity
diagrams [7]. This approach overcomes limitations of the so far mentioned works by mapping
activities to Esterel, a language supporting concurrency. However, even here some problems are
not addressed, e. g. the fact that it can not be statically decided which threads will be joined when
reaching a join node. A delay of a token flow due to not satisfied guard conditions as well as the
token buffering semantics of fork nodes are not considered.

Executable UML [59] gives detailed advice how to build executable UML models, but without
addressing details of compiling models to code. BridgePoint[109] is a tool based on executable
UML, but modeling UML2 activities — in contrast to state machines — is not well supported.
Instead, Object Action Language (OAL) is used, which is less expressive than Alf as concurrency
is not supported on the same level. Deferring an activity execution due to non satisfied guards is
not possible in OAL, too. Thus, central concepts which we address in this thesis are not applicable
there.

Summing up we can find the token flow semantics of activities being not sufficiently implemented
in current approaches or tools using more restrictive formalisms such as subsets of the UML
specification of activities or action languages. As explained, a decision node cannot be implemented
only by using an if-then-else statement. If the guard of each outgoing edge is not satisfied, the
decision is delayed until one guard holds. Suchlike effects of the token flow semantics are very
different to what programmers are used to and possibly therefore often not considered – but
dealing with them is the essence of this contribution.” [39] 2

8.3 Feasibility and Validity of Our Approach
Models containing behavior and static structure are a necessary and sufficient foundation for gen-
erating the runnable code of an application [44]. Feasibility of our attempt to take account for

2Reprinted by permission from Springer Nature Customer Service Centre GmbH: [39] ©2011,
(doi: 10.1007/978-3-642-21470-7_15.)
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both aspects particularly considering constraints imposed to behavior by the systems structure
specification, such as multiplicities, is self-evident.

With ActiveCharts, an integration of behavior and static structures has been proposed,
which is applied in research, e. g. for modeling and simulation in the field of telecommunication
systems[58] as well as in real projects. In 2012, the ActiveChartsIDE has been adapted to the
special demands of a German premium automotive manufacturer when specifying the automatic
start/stop. Automatic start/stop switches off the engine, whenever its power is not needed, neither
for propulsion, nor for driving the alternator while the vehicle decelerates to stop, and immediately
restarts the engine immediately when power is needed again. Based on the success of this first
application of ActiveChartsIDE, further projects followed to model new vehicle features.

Apart from such activities with industrial partners, our approach has been applied in practical
courses of our institute at Ulm University in order to estimate the degree of feasibility and gain
information about how to improve our work. In particular, we compared the benefit between using
our prototypical tools and using other modeling tools and code generators. We provide details
about our expertise on designing experiments in order to compare different approaches in our
publication [38].

Also, basing on standards is feasible, especially if models and formalisms for their transforma-
tions are released by the same body, as it is the case in our approach by transforming UML models
using QVT and MOFM2T. Although other formalisms could be employed, as we pointed out, our
choice is well motivated.

Preferring a mainstream language in favor of newly developed languages or libraries such as
described in the previous section seems beneficial to us since how to extend languages to support
relations is still discussed in the community. Furthermore, such languages often are not expressive
enough, e. g. if not being multi-threaded, generating code for activities cannot be done as proposed
by us.

The separation of reducing semantic complexity in a first step and changing the presentation
of a model by transcending to a textual representation in another step is feasible for two reasons:

• it allows for choosing a well suited formalism for each of both steps instead of being committed
to one formalism,

• it supports a language independent decomposition of semantically complex modeling concepts
to object-oriented concepts.

By this separation of handling semantics in a first step and handling syntax in a second step, we
succeed in supporting highly abstract modeling concepts, like composition: at model transforma-
tion, associations between manager classes, which represent associations on which a composition
has impact, i. e. which are concerned by cascading deletes, can be inserted. At code generation,
the collaboration between associated manager classes can be implemented.
With regard to behavior, the separation of sequences of actions which can be implemented in a sin-
gle thread and complex flows, which may demand for a highly sophisticated coordination between
ending threads and threads to be started is a good example for the benefit offered by detaching
the semantical resolution from the translation into another representation.

The validity of our approach has not been formally proved in the scope of this thesis. The
main reason for this is, that UML in itself is not a formal basis on which a proof could be founded.
Rather, UML is a specification primarily formulated in natural language.

A proof of our concept could base on any formalization of UML, but to our best knowledge,
such a formalization does not yet exist. A formalization of UML as a part of our approach also
has not been aspired. Unfortunately, an attempt of formalizing UML, the UML semantics project
[12], has never been completed.

In terms of validity, we nevertheless assume, that our approach withstands due to

• an intensive investigation of the ULM specification,

• a detailed description of the probably intended semantics and

• an attempt to elaborate patterns matching the assumed semantics or a modified semantics
wherever modifications seem appropriate.

Regarding static structure, the correctness of our approach can be validated by comparing class
diagrams to the generated code. Since classes and properties of UML can directly be mapped to
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object-oriented language constructs, the comparison of input models and output code is a sufficient
validation method.

The validation of association semantics can also be done through code inspection, because
the ability to link instances to each other depends on the existence of appropriate mappings and
methods for managing them. The implementation of multiplicity bounds checks is to be realized
within these access methods and can also be proved by code inspection.

The semantics of behaviors, however, should be validated by dynamic tests. The implementa-
tion pattern for activities as in our approach is designed to closely fit to a modified input model.
The modification to the input model is considered to have no impact on execution semantics.

We assure that the execution of generated code complies to the specified original input model
by a set of test activities. These activities are processed by the presented model transformation
and code generation and the generated code is executed. In the case of several possible, valid
execution orders, it must be ensured that any valid order can occur, but no invalid orders occur.
An efficient way to check activity executions for compliance with semantics of input models is
achieved by specifying the effects of opaque actions in the input model as follows:

• print the action name beginning with an upper case letter when the execution starts

• wait a randomly specified amount of time

• print the action name beginning with a lower case letter when the execution ends

• print and exclamation mark (!) followed by the action name beginning with a lower case
letter when an execution is aborted.

Different orders of action executions can be forced by either using guards or by varying the time
that action executions consume. In our test activities, guards of flows refer to a property of the
context class which is set before the activity execution starts. Additionally to the above mentioned
semantics of actions of test activities, the property to which guards refer may be changed by some
actions. In this way, not only different action execution orders are forced, but it is also possible
to check whether guards are properly considered. An execution path in an activity must continue
exactly at the time when a previously unfulfilled condition is satisfied as a result of the change in
the context object.

After an activity has been executed multiple times, it can be checked by searching in the
printed output, whether all executions are valid. For example, if an interruptible activity region
is contained in the activity, only those actions may be aborted which are located inside the region
and if a token passed the interrupting edge. The fact that a token traversed an interrupting edge
can be seen by the output produced by the execution of the action which is the target of the
interrupting edge.

For a large number of activity executions and a wide variety of valid action sequences, a
convenient albeit time-consuming method of validation is to check the first output and to remove
it (together with all duplicates) from the list of activity execution outputs. This will eventually
either find an invalid activity execution output or empty the list.

Another strategy is to search for invalid execution outputs by regular expressions, e. g. if action
A is followed by action B, the upper case letter B must never appear before the lower case letter a.

It is also possible to analytically determine all possible orders and then force each order by
either appropriately defining guards or by appropriately setting the duration of action executions
through wait statements. However, this strategy is only applicable if the number of valid executions
is manageable.

For a proper validation, the set of test activities must meet the following two coverage criteria:

• all elements supported by our approach are to be included

• for each such element, its semantics must be completely covered.

We claim that our approach can handle guards, all kinds of control nodes, concurrency and inter-
ruptible activity regions correctly. Furthermore, our approach can also handle data flows correctly,
although this is not yet automated in all details by our model transformation and code genera-
tion. Some extensions are needed here. For instance, discarding data objects within interruptible
activity regions if the region is left over an interrupting edge, or passing data over control nodes,
requires minor adaptations to the generated code.
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To meet the first coverage criterion, the test set contains the following elements:

• guarded flows

• flow final node and activity final node

• basic object flows, where output of actions are provided as input for other actions

• decision node with guarded outgoing edges

• fork node with guarded outgoing edges

• merge node

• join node

• interruptible activity region and interrupting edges.

The validation of the complete semantical extent of decision and fork nodes, as required by the
second coverage criterion, is assured by:

• no guard of outgoing edges holds

• exactly one guard of outgoing edges holds

• more than one guard of outgoing edges hold

• all guards of outgoing edges hold.

For interruptible activity regions, we consider:

• leaving the region by a non-interrupting edge

• aborting the region due to a token traversing an interrupting edge

• having several, nested interruptible activity regions

• having several, overlapping interruptible activity regions.

The test activities and the produced output is contained in Appendix D.
Apart from the test described above, the applicability of our approach has been tested in real

projects, embedded in practical courses of the university. Besides many small test projects with no
real system in mind, TravelPlaner — to which we refer in a technical report [37] — is a project
designed to estimate the impact of our approach. It comprises a detailed and complex static
structure employing composition, higher oder association, generalization applied to association
classes as well as to normal classes and a behavior containing concurrent execution paths, control
and object flows as well as control nodes. The aim of TravelPlaner was to get an impression
of the share of the generated code in the whole system and to show that the generated code and
user code are easy to integrate and that the generated code actually supports the implementation
of a system.

8.4 Advancing Towards Workflow Execution
Due to the fact that UML activities are often used to model workflows — even though activities
are not really designed for this purpose — adaptations of activities and of our approach in this
direction certainly are valuable.

A workflow modeled in UML typically consists of multiple actions which are executed according
to the token flow semantics defined by UML, but actions do not necessarily start as soon as all
required tokens are available. Workflows are often suspended for some time. When which workflow
is continued may depend on various conditions, e. g. the progress of other workflows or the arbitrary
choice of the person responsible for the next step. Consequently, running workflow instances may
remain in a system for quite a long time. By that, workflow instances are prone to be terminated
during execution due to a system failure. In order to avoid complete re-execution, recovery at the
point of termination or somewhere — typically very short — before this point is desirable.

Up to now, we considered UML activities to be used for short running workflows, like the
example given in our TravelPlaner project: purchasing a ticket for public transportation. In
the following, we give a short use case:
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TravelPlaner Use Case:
A user provides input data, which are the departure and destination stop and departure
and arrival time. Based on these pieces of information, the system searches connections
between both stops departing and arriving within the given time constraint. The user
chooses one of the offered connections which is passed back to the system for evaluating
the possibility of seat reservations. Only if seats are available for reservation, input is
requested from the user. The number of requested seats, or 0 if no seats are available,
is passed to the system and reservations are created. The connection, reservations,
and the calculated ticket price are displayed. If confirmed and payed according to the
selected method, a ticket is printed, if refused, no ticket is printed and seat reservations
are destroyed, if any.

We consider a workflow as the presented use case to be short running, since its execution
typically will successfully terminate within few minutes. Furthermore, an activity implementing
the given use case could simply be restarted, if its execution is aborted in any abnormal way. Such
workflows are not comparable to long running workflows which, if aborted cannot be started from
the very beginning because of dependencies to other systems or the real world, e. g. the process
of building a car is to be continued if a workflow specifying automated production steps has been
aborted; otherwise, the partially built car could not be completed.

At a first glance, activities in our sample projects seem to be related to micro processes as
defined by Künzle and Reichert [53] describing the internal behavior of an object instance. But
UML actions not only cover the micro level, e. g. the access to attributes, but also the macro level
which is the interaction of objects, achieved by CallbehaviorAction and CallOperationAction as
well as communication by means of sending and accepting signals. By that, modeling processes on
the micro and macro level is possible, however, UML is lacking a clear distinction of both aspects
which is aspired by PHILharmonicFlows [17].

Künzle identifies the missing separation of different aspects of workflow modeling and execution
as a crucial issue of current approaches [52]. PHILharmonicFlows is designed to explicitly offer
a data centric as well as a process centric view, user integration as well as a clear separation of
internal object behavior on the one hand and object interaction on the other hand. Although
having a similar execution semantics which possibly might be mapped to the UML token flow
semantics for activity execution, UML Activity is a more general and more abstract concept, not
primarily designed for workflow specification. Activity is intended to also fit to the specification
of embedded systems without user interaction, thus being an instance of a very different, more
general domain than dedicated workflow modelling approaches.

The strength of UML activities to be applicable to many domains of behavioral modeling —
since not being designed to fit primarily to workflow modeling — entails that workflow modeling
is possible on a sketchy level only. Whether or not it is possible to implement the core issues of
PHILharmonicFlows in UML cannot be answered in the scope of this thesis. To a certain degree,
a mapping to UML by means of profiles and stereotypes very likely is achievable. But the question
whether both approaches are equivalent is not constructive: a very specialized language such as
PHILharmonicFlows definitely will outrun a general purpose language such as UML when both
approaches are applied in the domain for which the more special one has been designed for.

However, activities in UML may be used for workflow modeling on both levels, internal object
behavior as well as interactions between objects and activity executions. Although not providing
a real data centric view, data flow supports the specification of data related issues in activities
as well. As a result of possibly complex specification of inter-object communication by means of
CallBehaviorAction, CallOperationAction as well as the application of signal and time events as
triggers within activities, activity executions may turn into long running workflows. Therefore,
we shortly outline two aspects for advancing the applicability of UML Activity in the workflow
domain: recovery and persistency.

8.4.1 Implementing Recovery in ActiveCharts
In our approach, concurrency of parallel branches in an activity is considered by starting a dedicated
thread for each branch. Thus, an activity execution may consist of a single thread or comprise
several threads which are concurrently running. Therefore, if we accept that

• object flows are explicitly modeled, i. e. no data are transmitted by writing values into vari-
ables and reading from them in downstream actions
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• no side effects like any change to the underlying static structure occurs, i. e. no values are
added or removed to attributes or association ends

then activities as implemented in our approach can be recovered by

• creating the threads which were active when the activity execution failed

• starting the execution of each thread at the correct position.

The ability to recover can be implemented by writing a logfile. For each thread that is started,
an entry is appended including the thread’s id and the consumed input data, if appropriate. For
each thread that ends, an entry is appended including the thread’s id and provided output data,
if any. If a thread is reused by changing its id, an entry for the termination of the thread with
the old id and an entry for the starting of a new thread with the current id is appended, including
input and output data as appropriate.

If somewhere in a sequence of actions, a point where to recover is demanded, this sequence
either must be split into two sequences each mapped to its own thread (e. g. by including a merge
node with a single incoming edge), or a second id reporting the progress of execution within a
sequence of actions must be introduced. With such a second id, it is possible to skip statements
implementing actions which, in terms of the token flow, are located upstream to the position at
which to recover.

In Fig. 8.4, we give an example: it shows an activity for some kind of online ordering. The
action login provides user account data, the action order provides the items and quantities the
customer wants to order. With these data, an invoice can be created which the user must confirm.
If he does so, the order is saved, otherwise, the order is skipped, i. e. the activity ends without
saving the order. In case of an unusual termination of the activity, it should be recovered without
asking the user for input he provided before termination.

The gray boxes group those actions which are executed in the same thread. The id for such
threads is given in the lower right corner. According to the idea to start threads for each sequence
(or to reuse a thread by changing its id), an execution can be recovered at the end of a thread or
the start of the next thread respectively.

4

3

2

1

OnlineOrder

order

login
u: User

o: Order

invoice confirm
c: booleani: Invoice

save

[result==false]

[else]

o: Order c: boolean

Figure 8.4: Activity modeling an online order workflow.

A logfile which is the result of a possible execution is given in Fig. 8.5. In green color, entries
reporting about the starting of a thread are listed, entries reporting the termination of threads
are printed in red color. In blue color, entries are listed which report about provided or consumed
data.

Recovery is possible at any point ti in the logfile. To recover at t0 or t1, the activity must
be started normally. Recovering at t2 requires to start thread 2, but not thread 1 since it has
been ended. Instead, its output must be restored and thread 3 must be started. For recovering
at t3, the outputs of thread 1 and thread 2 must be restored and thread 3 and thread 4 must
be started. If recovering at t4, the outputs of thread 1 and thread 2 must be restored but the
objects consumed by thread 3 must be removed since thread 3 will not be started again. Instead,
its output is restored before thread 4 is started.

Each point in time ti represents the transition from one gray box of Fig. 8.4 to another. If
recovering between the actions of box 3 is demanded, the activity implementation must be adapted
to contain a progress id as in Listing 8.1. In line 16, an entry is added to the logfile reporting that
an object token traversed the edge between invoice and confirm. The logfile also must include the
object token i itself. Then, it is possible to recover after action invoice by providing the object
token i and starting a thread with id 32.
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t0
start(1), start(2)

t1
end(1), u.add(< v1 >), start(3)

t2
end(2), o1.add(< v2 >), o2.add(< v2 >), start(3), start(4)

t3
end(3), u.remove(< v1 >), o1.remove(< v2 >), c1.add(< v3 >), start(4)

t4
end(4), o2.remove(< v2 >), c1.remove(< v3 >)

Figure 8.5: Support for activity recovery.

1 User user;
2 Order order;
3 Invoice i;
4 (...)
5 switch (id){
6 case 0: (...)
7 break;
8 case 1: (...)
9 break;

10 case 2: (...)
11 break;
12 // begin sequence 3
13 case 3: user = u. remove (0);
14 order = o1. remove (0);
15 i = invoice (user , oder );
16 log(id (32));
17 case 32: boolean accept = confirm (i);
18 c.add( accept );
19 if ( accept ){
20 log(t3 );
21 id = 4;
22 } else {
23 log (...);
24 id = −1;
25 }
26 break;
27 // end sequence 3
28 case 4: (...)
29 break;
30 }
31 }

Listing 8.1: Implementation of a recovery point between actions.

This example suggests how to include ability for recovery in our concept of activity execution
by threads. We provide no further detail since we just wanted to figure out a general idea of
advancing towards failure recovery.
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8.4.2 Implementing Persistence in ActiveCharts
Persistence is more difficult to automate, since it must be modeled which values to store and which
technology to use. Van Tricht [97] developed a framework for ActiveCharts which supports
persisting instances of classes modeled in class diagrams as well as activities. The data are stored
in XML representations.

If a large number of objects — or data not organized in objects — is to be stored, XML files
are no suitable technology. Instead, powerful database systems might be applied.

In the current state of ActiveCharts, accessing a database for retrieving or storing values is
in the responsibility of the user and must be included in opaque actions or behaviors. However,
a more convenient mechanism is desirable and achievable. But enhancements for storing objects
into databases or creating objects from database query results requires some kind of configuration
or additional information tagged to model elements, e. g. by introducing stereotypes. By that,
information about tables and columns to which attribute values refer to can be specified.

A very simple approach is to create a database with a table for each class. Each attribute of a
class refers to a column in the according table. It is state of the art to create suchlike mappings
automatically, however, when to create objects and when to persist them must be annotated in
the model. Assuming that a mapping between objects and tables exists, actions for accessing the
database could be specified. For writing into the database, instances placed on an input pin of
an action could be mapped and inserted into the according tables. Referential integrity could be
considered by navigating across associations, provided that the static structure and the database
structure are compatible in this respect. For creating objects, some key values could be provided
as an input for an action that returns instances matching the given keys.

For supporting all – or at least the most common — features of today’s database systems to
the full extent, either extensions to the UML are required or a properly designed profile must
be developed. Other approaches probably are more a workaround than a reasonable and reliable
lightweight approach. In the scope of our work, we did not make a point of elaborating a mechanism
for persistence. However, as stated above, there are frameworks that could be applied and such
an application should be backed up by a UML profile or UML modifications in order to provide a
clear semantics, syntax, and notation.

8.5 UML Simplified
This thesis refers to Unified Modeling Language Super Structure Specification 2.4.1, which has been
the current UML version at the time our latest contributions have been published. Meanwhile,
UML Simplified has been introduced, which has been released as UML 2.5 Beta 2 by OMG.
Version 2.5 is formally a minor revision to the UML 2.4.1 specification, having been substantially
re-written as solicited by the UML Specification Simplification RFP3. The main difference to the
version before are editorial issues: whereas formerly, modeling elements where described one after
the other, each with an own section covering abstract syntax, semantics and notation, currently
elements are grouped and share common sections including abstract syntax, semantics and notation
of each member of such a group.

UML 2.4.1 is organized in chapters dealing with different views on a system, such as static
structure, collaboration, deployment, or behavior. Each element of the meta model is introduced
in the chapter covering the concerning modeling purpose. There, all characteristics of each mod-
eling element are specified: its purpose, properties and relations to other modeling elements, its
semantics, rational, and notation, if applicable.

UML 2.5 Beta 2 is organized differently by focusing on different aspects of the specified elements.
It therefore introduces the syntax as well as properties of and relationships between modeling
elements in one part of the document whereas semantics is covered by another part. Whereas
in UML 2.4.1, semantics is scattered all over the specification, in UML 2.5, specification of each
element is split into parts located at different positions in the document.

Changes to the contents of the language, such as its extent, syntax, or semantics are little. Uml
2.5 was declared as a Beta 2 version until December 2017, before it was finally released as UML
2.5.1 [73]. Since to this time, our research work as well as the preparation of this thesis was almost
completed, we refer to the previous UML version, to which also the publications related to this
thesis refer to.

3request for proposals
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8.6 Current Trends in Model-Driven Sofware Engineering
Below is a brief overview of how research and tool support in model-driven engineering has evolved
over the last few years, outlining the main topics currently being discussed in the community

The two most relevant conferences focusing on Model-Driven Engineering are International
Conference on Model-Driven Engineering Languages and Systems (MODELS) and European Con-
ference on Modelling Foundations and Applications (ECMFA). The first seven editions of MODELS
were dedicated to UML, the conference itself being entitled Intl. Conf. on the Unified Modeling Lan-
guage, Modeling Languages and Applications. From 2005 on, it is no longer directly associated with
UML, although still intensively concerned with it, and is constantly emerging to a more language
independent format. Accordingly, it increasingly covers more language independent topics such
like modelling in general, metamodeling, or development and specification of modeling languages
whereas questions such as semantics of a concrete language or even only subsets of a language, for
instance UML behaviors, are less often addressed.

A similar trend can be seen in MODELS European counterpart ECMFA. The focus generally is
more on the evolution of languages including domain-specific and aspect-oriented modelling on the
one hand and the process of Model-Driven Engineering in itself, as for instance model management,
on the other hand.

However, even UML Activities, particularly their semantics and code generation from them,
has not been addressed by the community of the above mentioned conferences in recent years,
several publications prove that both topics still are highly relevant. An empirical evaluation of
current UML modeling tools [81] of 2015 rates the capabilities of current tools, but the evaluation
only surveys class diagrams, state machines and sequence diagrams but not activities for modeling
behavior. Another survey [55] of 2014 states that practitioners of the embedded systems domain do
not consider code generation issues to be a major problem of MDD approaches. But again, UML
activities are not primarily considered since this formalism plays a minor role in this domain. These
two contributions show that still today, the option to use other formalisms than UML Activities
for behavioral modeling, is very popular, at least in some domains. Consequently, often other
formalisms than UML2 Activities are addressed by practitioners as well as researchers, when it is
aimed to generate code from behavioral models. In this regard, our work still is unique with regard
to the examined formalism and its accuracy.

Further, the importance of our work is confirmed by Mussbacher et al. trying to assess the
relevance of Model-Driven Engineering thirty years from now on [61]. Lacking tool support for
keeping models of different levels of abstraction in sync is identified as a current problem. The main
cause why models of different levels of abstraction diverge is that often specification is done on a
high level of abstraction whereas corrections of design faults or bug fixing is done on lower levels of
abstraction, often directly in generated code. Changes of generated code are not transfered back
into models. This problem can either be faced by updating models according to changes in code
or by providing a process following the idea to exclusively work on the higher level of abstraction,
i. e. the models, and generate the artifacts of the lower levels of abstraction [40]. Alternatively,
the redundancy which is induced by having artifacts of at least two different levels of abstractions
describing the same system, i. e. the models and the generated code, can be avoided by directly
executing the models in order to make generated code obsolete [21]. With ActiveCharts, we
follow the idea of exclusively working on the modeling level for specifying structure and control
or data flows of an application. The problem of time consuming model transformation and code
generation, particularly in case of large models, is a drawback of model centric approaches, which
might be adequately faced by incremental approaches [74].

The choice to support UML Activities for modeling systems in general is a good one, since
currently, Activity diagrams are well known and often applied [78]. The fact that activity diagrams
are considered to be widely used especially for software process specification in the way activities
are seen by us, too, motivated an approach for software process verification [54], which would also
fit fine into ActiveCharts. Another approach to testing Java implementations against its UML
class model [15] possibly could be used to verify our code generation results for static structure.

As this brief literature review shows, code generation from class models as well as behaviors has
rarely been addressed in the recent past. However, numerous contributions are somehow related
to code generation issues, which suggests that code generation is still a key topic in model-driven
engineering domain.





Chapter 9

Conclusion

UML notation is a de-facto standard which is well known and widely used. But generally speaking,
its semantics is much less well understood. Many developers who are using UML for documentation
purposes or in model based development processes focus on the notation while semantics is not
properly considered.

According to OMG’s MDA, we are interested in the question to what extent UML can be
beneficially used in model-driven development. Many tool vendors claim full UML compliance of
their tools, but realistically judged, capabilities of most tools are not more than the creation of
class stubs from UML class diagrams or generation of code from very simple activities. The value
of such kind of tool support is little, because it covers only that part of implementing models that
could easily be done manually. Such a level of tool support may result in some time saving, but
the same effect is achievable if using IDEs with good code completion and generation of boilerplate
code. Where tool support is really needed, it is absent leading to a situation in which application
of modeling concepts does not depend on the problem to solve but on their straightforwardness
to be implemented: “Higher-order (e.g., ternary) associations are difficult to implement and are
generally avoided” [93].

The aim of model driven development is, that concepts are applied which are closer to the
problem domain than to the target domain which is the actual implementation. Whether or not
higher order associations are used should depend on the problem to be solved: if it can be described
well with the help of higher order associations, these should be applied and their implementation
should be managed by tools. This claim not only counts for associations but for all modeling
concepts offering a higher level of abstraction. On the way to provide tools which comply to this
claim, still a lot of work is to be done. This thesis contributes some basic foundations to a better
tool support of model-driven development using UML.

9.1 Contributions
Our contributions apply to different aspects of evolving a Model-Driven Development approach.
Coping with Model-Driven Development in terms of elaborating a development approach or tool
support requires

• to understand the semantics of the used modelling language,

• to map this semantics to constructs offered by the target language which typically are on a
lower level of abstraction, and

• to somehow define or implement these mappings.

All the knowledge gathered in the process of understanding the source and target formalisms and
implementing a mapping in between may effectuate ideas for evolving applied formalisms in order
to simplify mappings. The evolution of applied formalisms thus is a fourth issue to be added to
the three issues stated above.

Modifications to applied formalisms can be proposed, but often their implementation is not in
the responsibility of the proposer. Hence, findings concerning applied formalisms not necessarily
trigger an improvement of the initial situation.
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This thesis contributes to all four topics outlined above by its

• detailed examination of the semantics of UML

• resolution of modeling concepts of a high level of abstraction to concepts of a lower level of
abstraction

• formalization of such resolutions and a prototypical implementation for validating the ap-
proach

• proposals of enhancements to the UML semantics.

In the following, we shortly survey our contributions.

Semantical Resolution of Static Structures

With Association, UML introduces a complex modeling concept that cannot be directly mapped
to underlying target language constructs. Associations are difficult to implement in particular if

• they have more than two ends

• composition semantics is applied

• associations are related by generalization.

We present an implementation pattern which considers ownership, navigability, and visibility
of association ends. It is straightforward with regard to the implementation of higher order asso-
ciations and AssociationClass. In addition, it covers generalization between associations as well as
between association classes.

Semantical Resolution of Behaviors

We design a basic pattern for activity implementation. This patten maps the token flow semantics
of activities to threads of the Java programming language. Into this pattern, implementations of
actions can be embedded.

The effects of control nodes and guards are considered by starting and pausing threads imple-
menting guarded flows. But the pattern is only applicable to activities if flows contain at most one
control node.

By the definition of guard propagation rules, control and object flows which pass multiple
control nodes possibly can be transformed to flows which pass only one single control node on
their way from a source to the target. By such a transformation, activities with flows containing
more than one control node become applicable to our implementation pattern.

For some kinds of more complex flows, to which guard propagation rules are not applicable,
we introduce reordering of nodes in order to obtain patterns which are translatable, too. For
flows which are not covered by the proposed reordering patterns, we outlined the specification of
interfaces facilitating the inclusion of manually implemented complex flow algorithms.

Concurrency and signal processing are also included in our approach. InterruptibleActivityRe-
gion, which is rarely supported by currently available tools, is implemented by us, too.

Formalization of Semantical Resolutions

With a set of QVTR relations, we do not only formalize the transformation from complex modeling
concepts to model patterns which are more easily translatable to code. Since the transformation
is executable in mediniQVT, it also serves as a referential implementation of our prototype.

Beyond that, the declarative description of a semantical resolution turned out to be much more
convenient to develop, to extend, and to maintain thus being a promising technique on which to
base tool support.

Formalization of Code Generation

The gap from the transformed model to the textual representation in the target language, which
in our approach is Java, is bridged by another standardized formalism: MOFM2T. Like QVTR,
MOFM2T is executable by tools and can be used for real tool implementation.
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Tool Support

Formalizations — and by using executable formalisms also implementations — of model transfor-
mations and code generation as proposed in our approach are completely based on OMG standards
for which eclipse1 based tools are available.

Models are represented using the EMF-based implementation of the UML2 metamodel of the
eclipse project UML2 2.

Apart from the implementation of model transformations and code generation, we consider to
cover the elimination of UML deficiencies by intelligent tooling, e. g. by generating parts of models
in order to replace actions with poorly specified semantics. In the long run, revisions of UML
should clear out these deficiencies.

In the context of our tooling, we better align semantics of static structure and dynamic behavior.
Basic consideration to inheritance applied to activities are presented in order to make tool support
both powerful and convenient.

Discussion of UML Semantics and Proposals for Enhancements

To all parts of our work, a previously carried out detailed examination of the UML semantics is of
vital importance. As a result of this examination, we discuss some consolidated findings:

Misalignment Concerning the Semantics of Structures and Behaviors.
On the one hand, multiplicities are an integral part of associations, since association ends cannot
be defined without multiplicity bounds. On the other hand, violations of multiplicity bounds do
not affect the execution of actions and behaviors. Whereas specification of multiplicity bounds
is a necessity for structural modeling, consideration is not even optionally possible but must be
completely modeled. This is not practical because it requires much effort, results in complex
activities and is error prone.

Integrating Exceptions to Actions Semantics.
Exceptions in UML are raised by RaiseExceptionAction. An exception cannot occur as a result
of the execution of another action. Consequently, the semantics of actions cannot imply an
exceptional termination of an action, but only of an activity (or a structured node). We propose
to change this and to make exceptions a mechanism that might be used to indicate a clash of
semantics, e. g. structural specifications like multiplicity bounds and behavioral specifications
like adding values to a structural feature causing the violation of an upper bound.

Specification of Stereotype «Create».
Lower bounds are problematic with respect to instance creation and initialization. The stereo-
type «Create» is defined by UML, but its specification is not broad enough to effectively face
this problem.

Specifications of Transactions.
Transactions as known from databases are a solution which is applicable to UML as well. This
concept could be used to define actions which may cause constraints specified upon the static
structure to be temporarily not satisfied. By that, the modeler could clearly define when struc-
tural integrity may be discarded for a moment and when it is properly considered again.

Recovery of UML Activities.
Since the workflow like notation and semantics of activities comforts the specification of work-
flows, activities should provide means for including recovery aspects. We outlined the imple-
mentation of recovery for activities, but it is questionable whether it is feasible to log activity
execution on a level which facilitates recovery at any point.

1eclipse
2http://www.eclipse.org/modeling/mdt/?project=uml2
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9.2 Outlook
Model-Driven Development is a promising approach, although tool support is still rudimentary.
In this work, we introduce the entire tool development process as part of our ActiveCharts
project. We start with a discussion of semantics. Understanding how complex modeling concepts
can be implemented is supported by the presentation of implementation patterns for structural
and behavioral concepts such as association and activity. Based on this, we formalize the mapping
of abstract modeling concepts into concrete constructs of the target language via an executable
formalism in order to directly obtain prototypical tool support. On this basis, tools could provide
high-level model transformations and code generators.

Model-Driven Development is more than just applying models as a documentation or blueprint.
In terms of UML, it is also a step towards a higher level of abstraction, as the modeling language
provides abstractions over concepts of the programming language. To establish this level of ab-
straction in the long term as the level at which problems are addressed and solutions developed,
tomorrow’s developers must be instructed to think and work at a higher level of abstraction than
today’s programming languages.

In addition, modeling is also more than visual programming, and without general agreement to
this claim, it will not be a resounding success. If one considers a model merely as an abstraction
of the code to be developed, i. e. if having the implementation already in mind while modeling,
modeling concepts that are difficult to implement continue not to be used in models. However,
if the level of abstraction the developer is actually working on is to be increased, the mapping of
abstract modeling concepts to concrete programming language elements must be covered by tools
just as today’s development environments allocate programming language constructs to the code
instructions executed by the real hardware or virtual machines.

Demands for higher abstractions in programming languages, especially relations, have often
been formulated, sometimes even up to a few decades ago [79, 66, 103]. Although Model-Driven
Development as an idea to address such claims is not entirely new, it still can not provide satisfac-
tory technology to cope with the complexity of today’s system and software engineering. Making
the MDD tools of tomorrow as advanced as today’s programming IDEs are, requires a lot of work.
Our approach can give orientation to the direction in which modeling languages such as the cur-
rent main stream language UML can develop, it can provide impetus for further tool support and
possibly inspire future work.



Zusammenfassung

Modellierung ist ein Konzept, das in vielen Bereichen des Ingenieurwesens Anwendung findet. Dem-
entsprechend gibt es verschiedene Arten von Modellen, die sich aber immer auf ein und denselben
Grundgedanken beziehen: Ein Modell ist ein Stellvertreter für ein tatsächlich existierendes oder
gedachtes Gebilde. Modelle unterscheiden sich im Grad der Abstraktion sowie in ihrem inneren
Aufbau und ihrem Zweck.

Beispielsweise ist ein Bauplan zum einen eine grafische Spezifikation der Form und Abmessun-
gen von Bauteilen, zum anderen eine Darstellung, wie mehrere Einzelteile zusammen Baugruppen
bilden, die schließlich gemeinsam das Gesamtgebilde darstellen. Sie stellen eine zweidimension-
ale Abstraktion eines dreidimensionalen Objektes dar, wie z. B. die in Abbildung 10.1 gezeigte
Konstruktionszeichnung des Wright Flyers von 1903.

Abbildung 10.1: Blaupause des Wright Flyer von 19031.

Im Hinblick auf die Form eines Körpers ist ein dreidimensionales Modell als maßstabgetreuer
Nachbau weniger abstrakt als ein Bauplan, da es den modellierten Gegenstand nicht auf eine zwei-
dimensionale Abbildung reduziert. Solch ein Modell kann das reale Objekt repräsentieren, bevor
dieses existiert. So können die aerodynamischen Eigenschaften eines Autos oder eines Flugzeugs

1Basierend auf den Plänen von Christman, http://wright-brothers.org [104].
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anhand maßstabsgetreuer Modelle im Windkanal überprüft werden. Abbildung 10.2(a) zeigt das
Windkanalmodell des Panavia PA200 Tornado2. Der Vorteil solcher Modelle ist, dass Konstruk-
tionsfehler — hier im Bereich der Aerodynamik — erkannt werden können, bevor kostenintensive
Prototypen gebaut werden und die Risiken von Fahr- oder Flugtests reduziert werden.

Mit zunehmender Rechenleistung verlagert sich die Modellierung kontinuierlich von physischen
Modellen weg hin zu Computer-Simulationen. Der Vorteil von Computermodellen besteht darin,
dass derartige Modelle in der Lage sind, Entwurfsfehler aufzuzeigen, die in Umgebungen auftreten,
die experimentell nicht nachgestellt werden können, wie z. B. Schwerelosigkeit oder Vakuum, beides
Bedingungen unter denen Raumfahrzeuge und Satelliten betrieben werden. Abbildung 10.2(b)3

zeigt die Druck- und Strömungsverhältnisse um das Space Shuttle mit Feststoffboostern und Tank
im Startaufstieg bei Mach 2,46 in einer Höhe von ca. 20.000 Metern [101].

(a) Windkanalmodell des Panavia PA2002. (b) Aerodynamisches Modell des Space
Shuttle mit externem Tank und
Feststoffraketen3.

Abbildung 10.2: Reales und virtuelles aerodynamisches Modell.

In der Softwareentwicklung können Modelle in der gleichen Weise gewinnbringend eingesetzt
werden: ein Modell kann ein komplexes Softwaresystem vor dessen Implementierung hinsichtlich
vieler Eigenschaften vertreten. So können beispielsweise einzelne Komponenten eines eingebetteten
Systems implementiert, getestet und integriert werden bevor andere Komponenten verfügbar sind,
sofern die fehlenden Bestandteile durch Prototypen oder ausführbare Modelle simulierbar sind.

Dennoch unterscheiden sich Softwaremodelle von den übrigen oben erwähnten Modellen: falls
ein Modell in maschinenlesbarer Form vorliegt, dann stammt das Modell als auch der modellierte
Gegenstand, nämlich die Software, aus der gleichen Umgebung, d. h. beides sind Gebilde die von
der gleichen Art von Maschinen verarbeitet werden können. Daher ist es prinzipiell möglich, ein
Entwurfsmodell in eine Implementierung zu übersetzen4. Modellgetriebene Softwareentwicklung
ist ein Ansatz, der sich genau darauf konzentriert.

Der Eigentliche Vorteil wird durch den höheren Grad der Abstraktion erreicht, denn Model-
lierungssprachen sind für gewöhnlich besser auf den Fachbereich des Problems zugeschnitten. Die
Übersetzung in lauffähigen Maschinencode kann durch entsprechende Werkzeuge geschehen. Ein
bekannter Ansatz dazu ist MDA5, ein offener Standard, der einen Satz von Transformationen
definiert, die plattformunabhängige Modelle, also Modelle die vollkommen frei von Einschränkun-
gen der auf dem Zielsystem verwendeten Systemsoftware sind, in konkrete Implementierungen,

2Eigenes Werk des Autors, aufgenommen im Deutschen Museum, mit freundlicher Genehmigung des Deutschen
Museums, München.

3Diese Abbildung wurde ursprünglich von der NASA veröffentlicht und ist gemeinfrei [101].
4Das Herstellen eines Objektes nach dem Vorbild eines Modells ist nicht auf Software begrenzt, wie beispielsweise

die Herstellung von Werkstücken mittels CNC-Fräsen zeigt. Jedoch werden dazu schon sehr aufwendige Maschinen
benötigt, die bedient und gewartet werden müssen und die vollständige Herstellung komplexerer Gebilde wie das
eines Fahr- oder Flugzeuges sind voll automatisiert derzeit nicht denkbar.

5Model-Driven Architecture
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die von der Technologie der Zielplattform abhängig sein können und typischerweise auch sind,
überführt.

Diese Arbeit zielt auf die Übersetzung einer sehr abstrakten Modellierungssprache in eine all-
gemeine objektorientierte Programmiersprache ab. Besonderes Augenmerk liegt dabei auf zwei
wesentlichen Eigenschaften eines Systems:

• der Systemarchitektur, d. h. der statischen Struktur

• der Funktionalität, d. h. dem dynamischen Verhalten.

Die Modellierungssprache, in welcher die Modelle spezifiziert werden, ist die Unified Modeling
Language (UML), ein Standard der von der Object Management Group (OMG) herausgegeben
wurde. Die Zielsprache in der die Systeme implementiert werden ist Java. Diese Wahl ist willkürlich
und wir hätten sowohl die Eingabemodelle wie für die daraus generierten Implementierungen auch
andere Sprachen auswählen können. Jedoch sind beide Sprachen in der industriellen wie auch der
akademischen Welt sehr populär und ihre Anwendung ist bei Forschern wie auch bei Anwendern
gleichermaßen weit verbreitet. Insbesondere stellt die UML heute einen de-facto Standard in der
Modellierung von Softwaresystemen dar.

Eine Eigenheit der UML besteht darin, dass die Semantik nicht formal beschrieben ist. Sie ist
mehrdeutig und folglich existieren verschiedene Interpretationen. Darüber hinaus widerspricht sich
die Spezifikation hinsichtlich der Modellierung von statischen Strukturen auf der einen und der von
dynamischen Verhalten auf der anderen Seite teilweise. Ansätze, die sich nur auf einen der beiden
Aspekte entweder auf die statische Struktur oder auf das dynamische Verhalten konzentrieren,
können die Widersprüche zwischen den beiden Bereichen der Modellierung nicht bewältigen. Im
Gegensatz dazu zielt diese Arbeit darauf ab, die Schwächen und Fehler der UML im Zusammenspiel
zwischen Struktur- und Verhaltensmodell zu identifizieren:

• In einem ersten Schritt wird die Semantik der Modellierung statischer Strukturen im Detail
untersucht, mit dem Hauptaugenmerk auf Klassen mit ihren Attributen sowie Beziehungen
zwischen Klassen untereinander. Ein zentraler Punkt dabei ist die Frage, wie die Seman-
tik von Assoziationen, insbesondere Symmetrie, Navigierbarkeit, Sichtbarkeit von Assozia-
tionsenden und der Besitz von Assoziationsenden in Konzepte der Zielprogrammiersprache
umgesetzt werden können.

• In einem zweiten Schritt wird die Semantik von Aktivitäten untersucht und eine Abbil-
dung der Token-Flow-Semantik auf Threads der Zielsprache erarbeitet. Die größte Heraus-
forderung besteht hier darin, alle Arten von Kontrollknoten zu unterstützen und gleichzeitig
die Auswirkungen von bedingten Flüssen angemessen zu berücksichtigen.

• Aktivitäten bilden die Ausführungsumgebung für Aktionen. In einem dritten Schritt wird
die Semantik einer Teilmenge von Aktionen diskutiert. Diese Menge umfasst hauptsäch-
lich diejenigen Aktionen, die semantisch mit statischen Strukturen zusammenhängen, z. B.
durch Lesen oder Aktualisieren von Klassenattributen oder durch Erzeugen oder Lesen von
Klassenverknüpfungen in Assoziationen.

• Basierend auf diesen drei Schritten geben wir eine formale und ausführbare Beschreibung,
wie Modelle unter Berücksichtigung der semantischen Details von Eingabemodellen in Code
übersetzt werden können.

• Wir diskutieren Modifikationen der UML, um die Semantik von statischen Strukturen mit
der Semantik des dynamischen Verhaltens in Einklang zu bringen und umgekehrt.

Im Zuge der Auseinandersetzung mit den oben aufgeführten Punkten trägt diese Arbeit zum
Verständnis und zur weiteren Entwicklung von modellgetriebener Softwareentwicklung bei durch

• ein besseres und tieferes Verständnis der Semantik und einer semantikerhaltenden Implemen-
tierung von Assoziationen, insbesondere auch mehrstelliger Assoziationen und Assoziations-
klassen

• eine allgemeine Abbildung der Token-Fluss-Semantik von Aktivitäten auf Java-Threads, ein-
schließlich der Semantik von Kontrollknoten und der Kombination von Kontrollknoten mit
bedingten Flüssen
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• Vorschläge, wie die UML-Semantik verbessert werden kann, um die Semantik struktureller
Merkmale (z. B. Klassenattribute) in Einklang mit der Semantik von Aktionen zu bringen, die
auf strukturelle Merkmale zugreifen (z. B. durch lesen oder verändern von Attributwerten)

• eine Transformation von sehr abstrakten Modellierungskonzepten hin zu weniger abstrakten
Programmiersprachenkonzepten sowie ein Übergang von Modellen zu Code, die beide formal
durch ausführbare deklarative Formalismen angegeben werden, die als Standard der Object
Management Group veröffentlicht sind.

Basierend auf diesen Beiträgen könnte die Effizienz von modellgetriebener Softwareentwicklung
gesteigert werden, indem die Fähigkeit der Werkzeuge verbessert wird, Modelle zu verarbeiten, die
die volle Vielfalt von UML-Modellierungskonzepten verwenden. Entwicklungswerkzeuge müssen
in die Lage versetzt werden, den vollständigen semantischen Inhalt der Eingabemodelle, wie in
dieser Arbeit beschrieben, in eine moderne Zielsprache zu übersetzen, damit der Vorteil der Model-
lierungssprachen, nämlich das höhere Abstraktionsniveau, im Entwicklungsprozess gewinnbringend
ausgeschöpft werden kann.



Appendix A

Macros for Action Implementation

This part of the appendix contains macros referenced from listings contained in Chapter 4.

String createInputParameter( <InputPin[] input> ){
String result = "";
if( <input>. length > 0 ){

result = <input[0].type>+" "+<input[0].name>;
}
for (int i = 1; i < <input>. length ; ++i){

result += ", "+<input[i].type>+" "+<input[i].name>;
}
return result

}

Listing A.1: Macro building a string representation from input pins.

String createParameterValues( <InputPin[] input> ){
String result = "";
if( <input>. length > 0){

result = <input[0].value>;
}
for (int i = 1; i < <input>. length ; ++i){

result += ", " + <input[i].value>;
}
return result ;

}

Listing A.2: Macro building a string representation of input values.

String createParameterValues( <InputPin[] input> , <OutPin[] output> ){
String result = "";
if( <input>. length > 0){

result = <input[0]>;
}
for (int i = 1; i < <input>. length ; ++i){

result += ", "+<input[i]>;
}
for (int i = 0; i < <output>. length ; ++i){

result += ", " + <output[i]>;
}
return result ;

}

Listing A.3: Macro building a string representation of input and output values.
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Appendix B

QVT Relations and Queries

This part of the appendix contains parts of the model transformation discussed in Chapter 5 which
are subject to low level details. We provide those parts here since they are nevertheless needed to
execute transformations.

B.1 Structural Transformation
Here we present those parts of the transformation related to structural aspects of the model.

B.1.1 Transforming Attributes

1 relation SC_PublicProtectedPackageProperty
2 {
3 checkonly domain source srcClass : Class {
4 ownedAttribute = srcProperty : Property {
5 isDerived = false,
6 upper = 1 }};
7

8 enforce domain target trgClass : Class {
9 ownedAttribute = trgProperty : Property {

10 visibility = VisibilityKind:: private }};
11

12 when {
13 srcProperty. association . oclIsUndefined (); }
14

15 where {
16 Copy_Property(srcProperty, trgProperty)↗B.14;
17 SC_PropertyAccessOperation(false, srcProperty, trgClass)↗B.3; }
18 }

Listing B.1: Transforming non-private, non-derived, single-valued owned attributes.
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1 relation SC_PublicProtectedPackageProperty_Derived
2 {
3 primitive domain trgClass : Class;
4 primitive domain trgImplClass : Class;
5

6 checkonly domain source srcClass : Class {
7 ownedAttribute = srcProperty : Property {
8 isDerived = true,
9 upper = 1 }};

10

11 when {
12 srcProperty. visibility <> VisibilityKind:: private ;
13 srcProperty. association . oclIsUndefined (); }
14

15 where {
16 SC_PropertyAccessOperation(true, srcProperty, trgClass)↗B.3;
17 SC_PropertyAccessOperation(false, srcProperty, trgImplClass)↗B.3; }
18 }

Listing B.2: Transforming non-private, derived, single-valued owned attributes.

1 relation SC_PropertyAccessOperation
2 {
3 primitive domain isAbstractValue : Boolean;
4 primitive domain srcProperty : Property;
5

6 enforce domain target trgClass : Class {
7 ownedOperation = trgClassGetter : Operation {
8 isAbstract = isAbstractValue },
9 ownedOperation = trgClassSetter : Operation {

10 isAbstract = isAbstractValue }};
11

12 where {
13 SC_PropertyAccessOperation_Comment(
14 'Getter', srcProperty.name , trgClassGetter)↗B.33;
15 SC_PropertyAccessOperation_Comment(
16 'Setter', srcProperty.name , trgClassSetter)↗B.33;
17 SC_GetterCharacteristics(srcProperty, trgClassGetter)↗5.12;
18 SC_SetterCharacteristics(srcProperty, trgClassSetter)↗B.4; }
19 }

Listing B.3: Adding access operations for owned attributes.

1 relation SC_SetterCharacteristics
2 {
3 primitive domain srcProperty : Property;
4

5 enforce domain target trgOperation : Operation {
6 name = 'set' + srcProperty.name. firstToUpper (),
7 ownedParameter = trgParameter : Parameter {
8 name = srcProperty.name. firstToLower (),
9 lower = srcProperty.lower ,

10 upper = srcProperty.upper },
11 visibility = ownedElementVisibility(srcProperty. visibility )↗B.45 };
12

13 where {
14 Copy_Parameter_ClassType(srcProperty.type , trgParameter)↗B.22;
15 Copy_Parameter_PrimitiveType(srcProperty.type , trgParameter)↗B.23; }
16 }

Listing B.4: Adding getter operations for accessing owned attributes.



B.1. STRUCTURAL TRANSFORMATION 191

Adaptations for the Transformation of Privately Owned Attributes and Operations

The following listings include relations for the transformation of privately owned attributes and
operations.

1 top relation SingleInheritance
2 {
3 checkonly domain source srcPackage : Package {
4 packagedElement = srcSuperClass : Class {},
5 packagedElement = srcSubClass : Class {}
6 };
7

8 enforce domain target trgPackage : Package {
9 name = 'PSM',

10 packagedElement = trgSuperImplClass : Class {
11 name = srcSuperClass.name + 'Impl' },
12 packagedElement = trgSubClass : Class {
13 name = srcSubClass.name ,
14 generalization = trgGeneralization : Generalization {
15 general = trgSuperImplClass }}};
16

17 when {
18 srcSubClass.general −>includes(srcSuperClass. oclAsType (Classifier)); }
19

20 where {
21 hidePrivateOperation(srcSuperClass, trgSubClass)↗B.6;
22 hidePrivateMultivaluedAttributes(srcSuperClass, trgSubClass)↗B.7;
23 hidePrivateSinglevaluedAttributes(srcSuperClass, trgSubClass)↗B.8;
24 }
25 }

Listing B.5: Handling private attributes and private operations.

1 relation hidePrivateOperation
2 {
3 checkonly domain source srcSuperClass: Class{
4 ownedOperation = privOp : Operation {
5 visibility = VisibilityKind:: private
6 }
7 };
8

9 enforce domain target trgSubClass : Class {
10 ownedOperation = hideOp : uml ::Operation {
11 name = privOp.name ,
12 ownedComment = commentOp : uml ::Comment {
13 _body = 'hideOperation'+privOp.name. firstToUpper ()
14 },
15 visibility = uml ::VisibilityKind:: protected
16 }
17 };
18

19 where {
20 Copy_Operation_Parameter(privOp, hideOp); }
21 }

Listing B.6: Hiding private operations in subclasses.
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1 relation hidePrivateMultivaluedAttributes
2 {
3 checkonly domain source srcSuperClass: Class{
4 ownedAttribute = privAttr : Property {
5 visibility = VisibilityKind:: private
6 }
7 };
8

9 enforce domain target trgSubClass : Class {
10 ownedOperation = hideAdd : uml ::Operation {
11 ownedComment = commentAdd : uml ::Comment {
12 _body = 'hideAttribute'+privAttr.name. firstToUpper ()
13 },
14 ownedParameter = trgAddParameter : Parameter {
15 direction = ParameterDirectionKind::_in ,
16 name = privAttr.name ,
17 type = privAttr.type ,
18 lower = 1,
19 upper = 1
20 },
21 name = 'add' + privAttr.name. firstToUpper (),
22 visibility = uml ::VisibilityKind:: protected
23 },
24 ownedOperation = hideRemove : uml ::Operation {
25 ownedComment = commentRemove : uml ::Comment {
26 _body = 'hideAttribute'+privAttr.name. firstToUpper ()
27 },
28 ownedParameter = trgRemoveParameter : Parameter {
29 direction = ParameterDirectionKind::_in ,
30 name = privAttr.name ,
31 type = privAttr.type ,
32 lower = 1,
33 upper = 1
34 },
35 name = 'remove' + privAttr.name. firstToUpper (),
36 visibility = uml ::VisibilityKind:: protected
37 },
38 ownedOperation = hideGet : uml ::Operation {
39 ownedComment = commentGet : uml ::Comment {
40 _body = 'hideAttribute'+privAttr.name. firstToUpper ()
41 },
42 ownedParameter = trgGetParameter : Parameter {
43 direction = ParameterDirectionKind:: return ,
44 name = privAttr.name ,
45 type = privAttr.type ,
46 lower = privAttr.lower ,
47 upper = privAttr.upper
48 },
49 name = 'get' + privAttr.name. firstToUpper (),
50 visibility = uml ::VisibilityKind:: protected
51 }
52

53 };
54

55 when {
56 privAttr.upper < > 1 ; }
57 }

Listing B.7: Inserting protected attributes for hiding private, multi-valued attributes in subclasses.
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1 relation hidePrivateSinglevaluedAttributes
2 {
3 checkonly domain source srcSuperClass: Class{
4 ownedAttribute = privAttr : Property {
5 visibility = VisibilityKind:: private
6 }
7 };
8

9 enforce domain target trgSubClass : Class {
10 ownedOperation = hideRemove : uml ::Operation {
11 ownedComment = commentRemove : uml ::Comment {
12 _body = 'hideAttribute'+privAttr.name. firstToUpper ()
13 },
14 ownedParameter = trgSetParameter : Parameter {
15 direction = ParameterDirectionKind::_in ,
16 name = privAttr.name ,
17 type = privAttr.type ,
18 lower = 1,
19 upper = 1
20 },
21 name = 'set' + privAttr.name. firstToUpper (),
22 visibility = uml ::VisibilityKind:: protected
23 },
24 ownedOperation = hideGet : uml ::Operation {
25 ownedComment = commentGet : uml ::Comment {
26 _body = 'hideAttribute'+privAttr.name. firstToUpper ()
27 },
28 ownedParameter = trgGetParameter : Parameter {
29 direction = ParameterDirectionKind:: return ,
30 name = privAttr.name ,
31 type = privAttr.type ,
32 lower = privAttr.lower ,
33 upper = privAttr.upper
34 },
35 name = 'get' + privAttr.name. firstToUpper (),
36 visibility = uml ::VisibilityKind:: protected
37 }
38 };
39

40 when {
41 privAttr.upper = 1; }
42 }

Listing B.8: Inserting protected attributes for hiding private, single-valued attributes in subclasses.
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B.1.2 Transformations of Associations and Association Classes

1 top relation Association
2 {
3 checkonly domain source srcAssociation : Association {};
4

5 enforce domain target trgPackage : Package {
6 name = 'PSM',
7 packagedElement = trgLinkClass : Class {
8 name = 'Link' + associationName(srcAssociation)↗B.38 ,
9 ownedOperation = trgLinkClassConstructor : Operation {

10 name = 'Link' + associationName(srcAssociation)↗B.38 ,
11 visibility = VisibilityKind:: public }},
12 packagedElement = trgManagerClass : Class {
13 name = 'LinkManager' + associationName(srcAssociation)↗B.38 ,
14 ownedOperation = trgManagerClassConstructor : Operation {
15 name = 'LinkManager' + associationName(srcAssociation)↗B.38 ,
16 visibility = VisibilityKind:: private },
17 ownedOperation = trgCreateLinkOperation : Operation {
18 name = 'createLink',
19 visibility = VisibilityKind:: public },
20 ownedOperation = trgRemoveLinkOperation : Operation {
21 name = 'removeLink',
22 visibility = VisibilityKind:: public },
23 ownedOperation = trgGetLinkOperation : Operation {
24 name = 'getLinks',
25 visibility = VisibilityKind:: public
26 }
27 }
28 };
29

30 when {
31 not srcAssociation. oclIsTypeOf (AssociationClass);
32 srcAssociation.memberEnd −>size () > 1; }
33

34 where {
35 A_LinkClass_Comment('Association', trgLinkClass)↗B.24;
36 A_ManagerClass_Comment('Association', trgManagerClass)↗B.25;
37 A_MemberClass_Comment(
38 'Association', srcAssociation, trgPackage)↗B.26;
39 A_MemberClass_Property_LinkManager(
40 trgManagerClass, srcAssociation, trgPackage, trgPackage)↗5.18;
41 A_LinkClass(srcAssociation, trgLinkClass)↗5.19;
42 A_LinkClass_Constructor(srcAssociation,
43 trgLinkClassConstructor)↗5.20;
44 A_ManagerClass(trgLinkClass, srcAssociation, trgManagerClass,
45 trgCreateLinkOperation, trgRemoveLinkOperation,
46 trgGetLinkOperation)↗5.21;
47 }
48 }

Listing B.9: Transformation of association excluding association classes.
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1 top relation AssociationClass
2 {
3 checkonly domain source srcAssociationClass : AssociationClass {};
4

5 enforce domain target trgPackage : Package {
6 name = 'PSM',
7 packagedElement = trgLinkClass : Class {
8 name = srcAssociationClass.name ,
9 ownedOperation = trgLinkClassConstructor : Operation {

10 name = srcAssociationClass.name ,
11 visibility = VisibilityKind:: public }},
12 packagedElement = trgLinkImplClass : Class {
13 name = srcAssociationClass.name + 'Impl',
14 ownedOperation = trgLinkImplClassConstructor : Operation {
15 name = srcAssociationClass.name + 'Impl',
16 visibility = VisibilityKind:: public }},
17 packagedElement = trgManagerClass : Class {
18 name = 'LinkManager_' + srcAssociationClass.name ,
19 ownedOperation = trgManagerClassConstructor : Operation {
20 name = 'LinkManager_' + srcAssociationClass.name ,
21 visibility = VisibilityKind:: private },
22 ownedOperation = trgCreateLinkOperation : Operation {
23 name = 'createLink',
24 visibility = VisibilityKind:: public ,
25 type = trgLinkClass },
26 ownedOperation = trgRemoveLinkOperation : Operation {
27 name = 'removeLink',
28 visibility = VisibilityKind:: public },
29 ownedOperation = trgGetLinkOperation : Operation {
30 name = 'getLinks',
31 visibility = VisibilityKind:: public
32 }
33 }
34 };
35

36 when {
37 srcAssociationClass.memberEnd −>size () > 1; }
38

39 where {
40 A_LinkClass_Comment('Association(Class)', trgLinkClass)↗B.24;
41 A_ManagerClass_Comment('Association(Class)', trgManagerClass)↗B.25;
42 A_MemberClass_Comment(
43 'Association(Class)', srcAssociationClass, trgPackage)↗B.26;
44 A_MemberClass_Property_LinkManager(
45 trgManagerClass, srcAssociationClass, trgPackage, trgPackage)↗5.18;
46 A_LinkClass(srcAssociationClass, trgLinkClass)↗5.19;
47 A_LinkClass_Constructor(srcAssociationClass,
48 trgLinkClassConstructor)↗5.20;
49 A_LinkClass_Constructor(srcAssociationClass,
50 trgLinkImplClassConstructor)↗5.20;
51 A_ManagerClass(trgLinkClass, srcAssociationClass, trgManagerClass,
52 trgCreateLinkOperation, trgRemoveLinkOperation,
53 trgGetLinkOperation)↗5.21;
54 }
55 }

Listing B.10: Transformation of association classes.
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1 relation AC_MemberClass_AddRemoveOperation
2 {
3 primitive domain namePrefix : String;
4 primitive domain srcClassMemberEnd : Property;
5

6 checkonly domain source srcAssociationClass : AssociationClass {
7 memberEnd = srcMemberEnd : Property {}};
8

9 enforce domain target trgOperation : Operation {
10 name = namePrefix + operationName(
11 srcAssociationClass.memberEnd −>excluding (srcClassMemberEnd))↗B.36 ,
12 ownedParameter = trgInParameter : Parameter {
13 name = roleNameFirstLower(srcMemberEnd),
14 type = trgParameterType : Class {
15 name = srcMemberEnd.type.name }},
16 visibility = minimalImplVisibility(
17 srcAssociationClass.memberEnd −>excluding (srcClassMemberEnd))↗B.43 ,
18 type = trgType : Class {
19 name = srcAssociationClass.name }};
20

21 when { srcMemberEnd <> srcClassMemberEnd; }
22

23 where {
24 A_MemberClass_AddRemoveOperation_Comment(namePrefix, 'AssociationClass',
25 'LinkManager_' + srcAssociationClass.name , trgOperation)↗B.29;
26 }
27 }

Listing B.11: Specification of operations for write access on an association class.

1 relation A_MemberClass_GetOperation_Binary
2 {
3 primitive domain srcClassMemberEnd : Property;
4

5 checkonly domain source srcAssociation : Association {
6 memberEnd = srcMemberEnd : Property {}};
7

8 enforce domain target trgMemberClass : Class {
9 ownedOperation = trgOperation : Operation {}};

10

11 when {
12 srcAssociation.memberEnd −>size () = 2;
13 srcAssociation. navigableOwnedEnd −>exists (
14 p : Property | p = srcMemberEnd);
15 srcMemberEnd <> srcClassMemberEnd;
16 not trgMemberClass. ownedOperation −>exists (
17 o : Operation | o.name = 'get' + roleNameFirstUpper(srcMemberEnd));
18 }
19

20 where {
21 A_MemberClass_GetOperation(
22 srcMemberEnd, srcClassMemberEnd, srcAssociation, trgOperation)↗5.28;
23 }
24 }

Listing B.12: Preparing an operation for reading ends of a binary association.
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B.1.3 Copying Model Elements
In the following, we give the code needed to copy elements from the source model into the target
model without any changes to the copied structures.

1 relation Copy_ElementImport
2 {
3 primitive domain srcElementImport : ElementImport;
4

5 enforce domain target trgElementImport : ElementImport {
6 alias = srcElementImport.alias ,
7 importedElement = srcElementImport. importedElement ,
8 visibility = srcElementImport. visibility };
9 }

Listing B.13: Copying ElementImports.

1 relation Copy_Property
2 {
3 primitive domain srcProperty : Property;
4

5 enforce domain target trgProperty : Property {
6 aggregation = srcProperty. aggregation ,
7 default = srcProperty.default ,
8 isDerived = srcProperty.isDerived ,
9 isDerivedUnion = srcProperty. isDerivedUnion ,

10 isLeaf = srcProperty.isLeaf ,
11 isOrdered = srcProperty.isOrdered ,
12 isReadOnly = srcProperty.isReadOnly ,
13 isStatic = srcProperty.isStatic ,
14 isUnique = srcProperty.isUnique ,
15 lower = srcProperty.lower ,
16 name = srcProperty.name ,
17 upper = srcProperty.upper };
18

19 where {
20 Copy_Property_ClassType(srcProperty.type , trgProperty)↗B.15;
21 Copy_Property_PrimitiveType(srcProperty.type , trgProperty)↗B.16;
22 }
23 }

Listing B.14: Copying attributes of Property.

1 relation Copy_Property_ClassType
2 {
3 primitive domain srcType : Class;
4

5 enforce domain target trgProperty : Property {
6 type = trgPropertyType : Class {
7 name = srcType.name }};
8 }

Listing B.15: Enforcing existence of types of owned attributes.
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1 relation Copy_Property_PrimitiveType
2 {
3 primitive domain srcType : PrimitiveType;
4

5 enforce domain target trgProperty : Property {
6 type = srcType };
7 }

Listing B.16: Copying primitive tapes of owned attributes.

1 relation Copy_Operation
2 {
3 primitive domain srcOperation : Operation;
4

5 enforce domain target trgOperation : Operation {
6 concurrency = srcOperation. concurrency ,
7 isAbstract = srcOperation.isAbstract ,
8 isLeaf = srcOperation.isLeaf ,
9 isOrdered = srcOperation.isOrdered ,

10 isQuery = srcOperation.isQuery ,
11 isStatic = srcOperation.isStatic ,
12 isUnique = srcOperation.isUnique ,
13 lower = srcOperation.lower ,
14 name = srcOperation.name ,
15 upper = srcOperation.upper };
16

17 where {
18 Copy_Operation_ClassType(srcOperation.type , trgOperation)↗B.18;
19 Copy_Operation_PrimitiveType(srcOperation.type , trgOperation)↗B.19;
20 Copy_Operation_Parameter(srcOperation, trgOperation)↗B.20; }
21 }

Listing B.17: Copying attributes of Operation.

1 relation Copy_Operation_ClassType
2 {
3 primitive domain srcType : Class;
4

5 enforce domain target trgOperation : Operation {
6 type = trgOperationType : Class {
7 name = srcType.name }};
8 }

Listing B.18: Enforcing the existence of return types of operations.

1 relation Copy_Operation_PrimitiveType
2 {
3 primitive domain srcType : PrimitiveType;
4

5 enforce domain target trgOperation : Operation {
6 type = srcType };
7 }

Listing B.19: Copying primitive return types of operations.
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1 relation Copy_Operation_Parameter
2 {
3 checkonly domain source srcOperation : Operation {
4 ownedParameter = srcParameter : Parameter {}};
5

6 enforce domain target trgOperation : Operation {
7 ownedParameter = trgParameter : Parameter {
8 default = srcParameter.default ,
9 direction = srcParameter.direction ,

10 effect = srcParameter.effect ,
11 isException = srcParameter. isException ,
12 isOrdered = srcParameter.isOrdered ,
13 isStream = srcParameter.isStream ,
14 isUnique = srcParameter.isUnique ,
15 lower = srcParameter.lower ,
16 name = srcParameter.name ,
17 upper = srcParameter.upper ,
18 visibility = srcParameter. visibility }};
19

20 where {
21 Copy_Parameter_ClassType(srcParameter.type , trgParameter)↗B.22;
22 Copy_Parameter_PrimitiveType(srcParameter.type , trgParameter)↗B.23;
23 }
24 }

Listing B.20: Copying attributes of operation parameters.

1 relation Copy_Activity_Parameter
2 {
3 checkonly domain source srcActivity : Activity {
4 ownedParameter = srcParameter : Parameter {}};
5

6 enforce domain target trgOperation : Operation {
7 ownedParameter = trgParameter : Parameter {
8 default = srcParameter.default ,
9 direction = srcParameter.direction ,

10 effect = srcParameter.effect ,
11 isException = srcParameter. isException ,
12 isOrdered = srcParameter.isOrdered ,
13 isStream = srcParameter.isStream ,
14 isUnique = srcParameter.isUnique ,
15 lower = srcParameter.lower ,
16 name = srcParameter.name ,
17 upper = srcParameter.upper ,
18 visibility = srcParameter. visibility }};
19

20 where {
21 Copy_Parameter_ClassType(srcParameter.type , trgParameter)↗B.22;
22 Copy_Parameter_PrimitiveType(srcParameter.type , trgParameter)↗B.23;
23 }
24 }

Listing B.21: Enforcing the existence of parameter types.
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1 relation Copy_Parameter_ClassType
2 {
3 primitive domain srcType : Class;
4

5 enforce domain target trgParameter : Parameter {
6 type = trgParameterType : Class {
7 name = srcType.name }};
8 }

Listing B.22: Enforcing the existence of parameter types.

1 relation Copy_Parameter_PrimitiveType
2 {
3 primitive domain srcType : PrimitiveType;
4

5 enforce domain target trgParameter : Parameter {
6 type = srcType };
7 }

Listing B.23: Copying primitive parameter types.



B.1. STRUCTURAL TRANSFORMATION 201

B.1.4 Marking Model Elements by Comments

1 relation A_LinkClass_Comment
2 {
3 primitive domain srcAssociationKind : String;
4

5 enforce domain target trgClass : Class {
6 ownedComment = trgComment : Comment {
7 _body = 'Class#Kind:LinkClass#' + srcAssociationKind }};
8 }

Listing B.24: Marking a link implementation class.

1 relation A_ManagerClass_Comment
2 {
3 primitive domain srcAssociationKind : String;
4

5 enforce domain target trgMemberClass : Class {
6 ownedComment = trgComment : Comment {
7 _body = 'Class#Kind:LinkManager#' + srcAssociationKind }};
8 }

Listing B.25: Marking a link manager class.

1 relation A_MemberClass_Comment
2 {
3 primitive domain srcAssociationKind : String;
4

5 checkonly domain source srcAssociation : Association {
6 memberEnd = srcMemberEnd : Property {}};
7

8 enforce domain target trgPackage : Package {
9 packagedElement = trgClass : Class {

10 name = srcMemberEnd.type.name ,
11 ownedComment = trgComment : Comment {
12 _body = 'Class#Kind:LinkMemberClass#' + srcAssociationKind }}};
13 }

Listing B.26: Marking a class connected to an association end.

1 relation A_MemberClass_Property_LinkManager_Comment
2 {
3 enforce domain target trgProperty : Property {
4 ownedComment = trgComment : Comment {
5 _body = 'Property#Kind:LinkMemberClassProperty#LinkManager' }};
6 }

Listing B.27: Marking the owned attribute of a member end class which references the link manager
class.

1 relation SingleClass_PropertyAccessOperation_Comment
2 {
3 primitive domain srcKindName : String;
4 primitive domain srcPropertyName : String;
5

6 enforce domain target trgOperation : Operation {
7 ownedComment = trgComment : Comment {
8 _body = 'Operation#Kind:' + srcKindName + '#' + srcPropertyName }};
9 }

Listing B.28: Marking operations for accessing association ends within link class.
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1 relation A_MemberClass_AddRemoveOperation_Comment
2 {
3 primitive domain srcOperationKind : String;
4 primitive domain srcAssociationKind : String;
5 primitive domain srcManagerClassName : String;
6

7 enforce domain target trgOperation : Operation {
8 ownedComment = trgComment : Comment {
9 _body = 'Operation#Kind:LinkMemberClassOperation#' +

10 srcOperationKind + '#' +
11 srcAssociationKind + '#' + srcManagerClassName }
12 };
13 }

Listing B.29: Marking operations for accessing association ends within a member end class.

1 relation A_MemberClass_GetOperation_Comment
2 {
3 checkonly domain source srcAssociation : Association {};
4

5 enforce domain target trgOperation : Operation {
6 ownedComment = trgComment : Comment {
7 _body = 'Operation#Kind:LinkMemberClassOperation#get#Association#' +
8 'LinkManager' + associationName(srcAssociation) }};
9

10 when { not srcAssociation. oclIsKindOf (AssociationClass); }
11 }

Listing B.30: Marking operations reading association ends in member end classes.

1 relation AC_MemberClass_GetOperation_Comment
2 {
3 checkonly domain source srcAssociationClass : AssociationClass {};
4

5 enforce domain target trgOperation : Operation {
6 ownedComment = trgComment : Comment {
7 _body = 'Operation#Kind:LinkMemberClassOperation#' +
8 'get#AssociationClass#LinkManager_' +
9 srcAssociationClass.name }};

10 }

Listing B.31: Marking operations reading association ends of an association class in member end
classes.

1 relation SC_Comment
2 {
3 enforce domain target trgClass : Class {
4 ownedComment = trgComment : Comment {
5 _body = 'Class#Kind:ImplClass' }};
6 }

Listing B.32: Marking a class being an implementation class.
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1 relation SC_PropertyAccessOperation_Comment
2 {
3 primitive domain srcKindName : String;
4 primitive domain srcPropertyName : String;
5

6 enforce domain target trgOperation : Operation {
7 ownedComment = trgComment : Comment {
8 _body = 'Operation#Kind:' + srcKindName + '#' + srcPropertyName }};
9 }

Listing B.33: Marking operations accessing owned attributes.
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B.1.5 Queries

1 query roleNameFirstLower(m : Property) : String
2 {
3 if(not m.name. oclIsUndefined () and m.name <> '')
4 then m.name. firstToLower ()
5 else
6 m.type.name. firstToLower ()
7 endif
8 }

Listing B.34: Query for obtaining a role name with lower first letter.

1 query roleNameFirstUpper(m : Property) : String
2 {
3 if(not m.name. oclIsUndefined () and m.name <> '')
4 then m.name. firstToUpper ()
5 else
6 m.type.name. firstToUpper ()
7 endif
8 }

Listing B.35: Query for obtaining a role name with upper first letter.

1 query operationName(m : OrderedSet(Property)) : String
2 {
3 operationName(m, '')↗B.37

4 }

Listing B.36: Query for obtaining an operation name.

1 query operationName(m : OrderedSet(Property), n : String) : String
2 {
3 if(m−>size () = 0)
4 then n
5 else operationName(
6 m−>excluding (m.first ()), n. concat (roleNameFirstUpper(m.first ())↗B.35 ))
7 endif
8 }

Listing B.37: Query for obtaining a concatenation of property names.

1 query associationName(a : Association) : String
2 {
3 if(not a.name. oclIsUndefined () and a.name <> '')
4 then '_'. concat (a.name)
5 else
6 associationName(a.memberEnd , '')↗B.39

7 endif
8 }

Listing B.38: Query for obtaining the name of an association of deriving a name from its ends.
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1 query associationName(m : OrderedSet(Property), n : String) : String
2 {
3 if(m−>size () = 0)
4 then n
5 else
6 associationName(m−>excluding (
7 m.first ()), n. concat ('_'). concat (roleNameFirstLower(m.first ())↗B.34 ))
8 endif
9 }

Listing B.39: Query for obtaining a concatenation of property names.

1 query operationSuffix(m1: Property, m2: Property, a: Association): String
2 {
3 if(not a.memberEnd −>excluding (m2)−>exists (
4 p : Property | p.type = m2.type )) then
5 ''
6 else
7 if(m1.type = m2.type) then
8 ''
9 else

10 'By'. concat (roleNameFirstUpper(m2))
11 endif
12 endif
13 }

Listing B.40: Query for making operation names distinct if multiple ends are of the same type.

1 query propertyLowerValue(p : Property) : String
2 {
3 if(p.lower. oclIsUndefined ()) then
4 '1'
5 else
6 if(p.lower = −1) then
7 '*'
8 else
9 toString(p.lower)

10 endif
11 endif
12 }

Listing B.41: Query returning a properties lower multiplicity bound.

1 query propertyUpperValue(p : Property) : String
2 {
3 if(p.upper. oclIsUndefined ()) then
4 '1'
5 else
6 if(p.upper = −1) then
7 '*'
8 else
9 toString(p.upper)

10 endif
11 endif
12 }

Listing B.42: Query returning a properties upper multiplicity bound.
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1 query minimalImplVisibility(m : OrderedSet(Property)) : VisibilityKind
2 {
3 if(m−>exists (
4 p : Property | p. visibility = VisibilityKind:: private
5 or p. visibility = VisibilityKind:: _package
6 or p. visibility = VisibilityKind:: protected ))
7 then
8 VisibilityKind:: protected
9 else

10 VisibilityKind:: public
11 endif
12 }

Listing B.43: Query for deriving a visibility from visibilities of a set of properties.

1 query minimalVisibility(m : OrderedSet(Property)) : VisibilityKind
2 {
3 if(m−>exists (
4 p : Property | p. visibility = VisibilityKind:: private ))
5 then
6 VisibilityKind:: private
7 else if(m−>exists (
8 p : Property | p. visibility = VisibilityKind:: _package ))
9 then

10 VisibilityKind:: _package
11 else if(m−>exists (
12 p : Property | p. visibility = VisibilityKind:: protected ))
13 then
14 VisibilityKind:: protected
15 else
16 VisibilityKind:: public
17 endif endif endif
18 }

Listing B.44: Query returning the most restrictive visibility of a set of properties.

1 query ownedElementVisibility(vis : VisibilityKind) : VisibilityKind
2 {
3 if(vis = uml ::VisibilityKind:: private )
4 then uml ::VisibilityKind:: protected
5 else vis
6 endif
7 }

Listing B.45: Query returning the visibility for the implementation of an owned element.

1 query modulo(a : Integer, b : Integer) : Integer
2 {
3 a − ((a / b). floor () * b)
4 }

Listing B.46: Query implementing a modulo operator.

1 query toString(i : Integer) : String
2 {
3 toString(OrderedSet{'0','1','2','3','4','5','6','7','8','9'},
4 OrderedSet{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, i, '')
5 }

Listing B.47: Query implementing a mapping from Integer to String.



B.1. STRUCTURAL TRANSFORMATION 207

1 query toString(ns : OrderedSet(String),
2 ni : OrderedSet(Integer), i : Integer, s : String) : String
3 {
4 if(ni−>exists (n : Integer | i = n)) then
5 s. concat (ns−>at(i + 1))
6 else
7 toString((i / 10). floor ()). concat (toString(ns , ni , modulo(i, 10), s))
8 endif
9 }

Listing B.48: Query translating an Integer into its string representation.
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B.2 Behavioral Transformation
B.2.1 Copying Model Elements

1 top relation Activity_TypedElement
2 {
3 checkonly domain source srcTypedElement : TypedElement {
4 type = srcType : Class {}};
5

6 where {
7 Activity_TypedElement_Change(srcType.name , srcTypedElement)↗B.50; }
8 }

Listing B.49: Realtion enforcing the existence of all typed elements in the target model.

1 relation Activity_TypedElement_Change
2 {
3 primitive domain trgClassName : String;
4

5 enforce domain target trgTypedElement : TypedElement {
6 type = trgType : Class {
7 name = trgClassName }};
8 }

Listing B.50: Relation enforcing the existence of a type.

1 relation Copy_Activity_Parameter
2 {
3 checkonly domain source srcActivity : Activity {
4 ownedParameter = srcParameter : Parameter {}};
5

6 enforce domain target trgOperation : Operation {
7 ownedParameter = trgParameter : Parameter {
8 default = srcParameter.default ,
9 direction = srcParameter.direction ,

10 effect = srcParameter.effect ,
11 isException = srcParameter. isException ,
12 isOrdered = srcParameter.isOrdered ,
13 isStream = srcParameter.isStream ,
14 isUnique = srcParameter.isUnique ,
15 lower = srcParameter.lower ,
16 name = srcParameter.name ,
17 upper = srcParameter.upper ,
18 visibility = srcParameter. visibility }};
19

20 where {
21 Copy_Parameter_ClassType(srcParameter.type , trgParameter)↗B.52;
22 Copy_Parameter_PrimitiveType(srcParameter.type , trgParameter)↗B.53;
23 }
24 }

Listing B.51: Relation for copying activity parameters.
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1 relation Copy_Parameter_ClassType
2 {
3 primitive domain srcType : Class;
4

5 enforce domain target trgParameter : Parameter {
6 type = trgParameterType : Class {
7 name = srcType.name }};
8 }

Listing B.52: Relation enforcing the existence of the types of activity parameters.

1 relation Copy_Parameter_PrimitiveType
2 {
3 primitive domain srcType : PrimitiveType;
4

5 enforce domain target trgParameter : Parameter {
6 type = srcType };
7 }

Listing B.53: Relation enforcing the existence of primitive types of activity parameters.
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B.2.2 Considering Object Flows

1 relation Activity_CallBehaviorAction_Incoming_Data
2 {
3 checkonly domain source srcAction : Action{
4 input = srcParam : InputPin {}
5 };
6

7 enforce domain target trgCallBehaviorAction : CallBehaviorAction{
8 argument = trgParam : InputPin{
9 name = '_' + srcParam.name ,

10 type = srcParam.type ,
11 lower = srcParam.lower ,
12 upper = srcParam.upper ,
13 incoming = srcParam. incoming
14 }
15 };
16

17 enforce domain target trgSubactivity: Activity{
18 ownedParameter = param : Parameter {
19 name = srcParam.name ,
20 direction = uml ::ParameterDirectionKind::_in ,
21 type = srcParam.type
22 },
23 node = actParam : ActivityParameterNode{
24 name = srcParam.name ,
25 type = srcParam.type ,
26 parameter = param
27 },
28 edge = flow : ObjectFlow{
29 source = actParam,
30 target = srcParam,
31 name = source .name + '−>' + target .name
32 }
33 };
34 }

Listing B.54: Updating the target of incoming object flows of head actions to call behavior actions
associated with subactivities.
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1 relation Activity_CallBehaviorAction_Outgoing_Data
2 {
3 checkonly domain source srcAction : Action{
4 output = srcParam : OutputPin {}
5 };
6

7 enforce domain target trgCallBehaviorAction : CallBehaviorAction{
8 result = trgParam : OutputPin{
9 name = '_' + srcParam.name ,

10 type = srcParam.type ,
11 lower = srcParam.lower ,
12 upper = srcParam.upper ,
13 outgoing = srcParam. outgoing
14 }
15 };
16

17 enforce domain target trgSubactivity: Activity{
18 ownedParameter = param : Parameter {
19 name = srcParam.name + 'Parameter',
20 direction = ParameterDirectionKind:: return ,
21 type = srcParam.type
22 },
23 node = actParam : ActivityParameterNode{
24 name = '_AP_' + srcParam.name ,
25 type = srcParam.type ,
26 parameter = param
27 },
28 edge = flow : ObjectFlow{
29 source = srcParam,
30 target = actParam,
31 name = source .name + '−>' + target .name
32 }
33 };
34 }

Listing B.55: Updating the source of an outgoing object flow of the last flow body action of a
sequence.
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B.2.3 Queries

1 query isSubsequentSubactivityAction(
2 a1 : Action, a2 : Action, a : Activity) : Boolean
3 {
4 if(a2. outgoing .first (). target . oclIsUndefined ()) then
5 false
6 else if(a2. outgoing .first (). target . oclAsType (Action) = a1) then
7 true
8 else if( Activity_IsFlowBodyAction (
9 a2. outgoing .first (). target . oclAsType (Action), a)) then

10 isSubsequentSubactivityAction(
11 a1 , a2. outgoing .first (). target . oclAsType (Action), a)
12 else
13 false
14 endif
15 endif
16 endif
17 }

Listing B.56: Query checking whether an action occurs after another action in the same sequence
of actions.



Appendix C

Code Generation

This appendix contains some modifications to listings provided for generating code from trans-
formed models and introduces additional listings in order to consider effects of guards at merge
nodes, to implement a foundation for supporting object flows, and to generate code for support-
ing interruptible activity regions. Note that these listings require input models which have been
generated by the relations as modified for supporting object flows, contained in Appendix B.2.2.

Furthermore, listings are provided showing the implementation of queries called from code
generation templates.

After query implementations, a survey over the complete composition of the template snippets
presented in Chapter 6 is given by Fig. C.1 and Fig. C.2.

C.1 Considering Guarded Flows
Listing 6.32 contains a simplified processing of merge node which only produces correct code in
case that incoming and outgoing flows of the merge node are not guarded. Listing C.1 shows how
to consider guarded flows together with merge node.

The outgoing flow of the current node, which is the incoming flow of the merge node is tested
in line 4, the outgoing edges of the target of the outgoing flows, which are the outgoing edges of
the merge node, are tested in lines 5–6.

If the current thread is interrupted while waiting for the guards to evaluate to true, fId is
set to 0 to terminate the current thread. Otherwise, if guards evaluate to true, fId is set to the
appropriate value for continuing the activity execution.

1 [if (node.outgoing−>asSequence()−>first().target.oclIsKindOf(MergeNode))]
2 // next node is a merge
3 synchronized ( context ) {
4 while (! ([node.outgoing−>asSequence()−>first().guard.stringValue()/]
5 && [node.outgoing−>asSequence()−>first().target.outgoing
6 −>asSequence()−>first().guard.stringValue()/])){
7 try { context .wait (); }
8 catch ( InterruptedException e) { fID = 0; }
9 }

10 }
11 fId = [seqNr−>indexOf(nextNode)/];
12 [/if]

Listing C.1: Consideration of guards at merge nodes.
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C.2 Considering Object Flows
The following Listing C.2 presents how to implement a wrapper class for multiple action outputs.
For multiple activity outputs, a very similar template can be used matching each activity (line 1)
of the transformed input model.

1 [template public generateCombinedClasses(c : OpaqueAction)]
2 [comment @main /]
3

4 [comment create classes for multiple output pins /]
5 [if (c.output−>asSequence()−>size() > 1)]
6 [file(outputFileName(c), false, 'UTF−8')]
7 /**
8 * Generated file: Wrapper class for flows between opaque actions !
9 */

10 package [containingPackages(c.activity).name−>sep('.') /];
11 [visibilityString(c.visibility)/] class [c.output.type.name/]
12 {
13 /**
14 * Specification of values
15 */
16 [for (pin : OutputPin | c.output)]
17 private [pin.type.name/] [pin.name/];
18 [/for]
19

20 /**
21 * Specification of setter and getter methods
22 */
23 [for (pin : OutputPin | c.output)]
24 public void ['set'.camelCase(pin.name)/]([pin.type.name/] value ){
25 this.[pin.name/] = value;
26 }
27

28 public [pin.type.name/] ['get'.camelCase(pin.name)/](){
29 return this.[pin.name/];
30 }
31 [/for]
32 }
33 [/file]
34 [/if]
35 [/template]

Listing C.2: Generation of a wrapper for multiple action outputs.
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The following Listing C.3 shows, how to declare local variables for inputs and outputs of call
behavior actions of the transformed models. This variables are needed in order to provide outputs
of a sequence of actions as inputs for another sequence of actions. Therefore, the variables must
be declared outside the run method of class ActivityThread, e. g. in Listing 6.30 before including
ActivityExecutionImplementation.

1 [let seqNr : Sequence(ActivityNode) = a.node−>asSequence()]
2 // Prepare input and return parameters for action sequences
3 [for (node : ActivityNode | a.node)]
4 [if (node.oclIsKindOf(CallBehaviorAction))]
5 [for (input : InputPin | inputActionValues(
6 node.oclAsType(Action))−>asOrderedSet())]
7 [if (input.upper>1)]
8 List <[input.type.name/]> [node.name/][input.name/] =
9 new LinkedList <[input.type.name/]>();

10 [else]
11 [input.type.name/] [node.name/][input.name/] = null;
12 [/if]
13 [/for]
14 [for (output : OutputPin | node.oclAsType(CallBehaviorAction).output)]
15 [if (output.upper>1)]
16 List <[output.type.name/]> [node.name/][output.name/] =
17 new LinkedList <[output.type.name/]>();
18 [else]
19 [output.type.name/] [node.name/][output.name/] = null;
20 [/if]
21 [/for]
22 [/if]
23 [/for]
24 [/let]

Listing C.3: Preparing local variables representing inputs and outputs of sequences of actions.

The following Listing C.4 provides a template generating methods to set the inputs of an action
sequence. The generated methods are to be called after creating a new activity thread that requires
inputs before that thread is started. The variables holding the values have been declared by the
code generated by the template given in Listing C.3. The content of Listing C.4 should be included
in Listing 6.30 after the content of Listing C.3.

1 [let seqNr : Sequence(ActivityNode) = a.node−>asSequence()]
2 // Prepare methods for setting sequence inputs
3 [for (node : ActivityNode | a.node)]
4 [if (node.oclIsKindOf(CallBehaviorAction))]
5 [for (input : InputPin | inputActionValues(
6 node.oclAsType(Action))−>asOrderedSet())]
7 [if (input.upper>1)]
8 public void set[input.name/]([input.type.name/] paramValue ){
9 [node.name/][input.name/].add( paramValue );

10 }
11 [else]
12 public void set[input.name/]([input.type.name/] paramValue ){
13 [node.name/][input.name/] = paramValue ;
14 }
15 [/if]
16 [/for]
17 [/if]
18 [/for]
19 [/let]

Listing C.4: Providing methods for setting inputs of action sequences.
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The following Listing C.5 completes the call of an action sequence, as contained in Listing 6.31,
line 10, by considering inputs and outputs.

1 [if (outputActionValues(node.oclAsType(Action))−>asOrderedSet()−>size()=1)]
2 // one output
3 [node.name/][outputActionValues(node.oclAsType(Action))
4 −>asSequence()−>first().name/] =
5 [elseif (outputActionValues(node.oclAsType(Action))
6 −>asOrderedSet()−>size() > 1)]
7 // multiple outputs
8 [let act : Activity =
9 node.oclAsType(CallBehaviorAction).behavior.oclAsType(Activity)]

10 [containingPackages(act).name−>sep('.')/].
11 [act.name/][node.oclAsType(Action).output.type.name/] =
12 [/let]
13 [else]
14 // no outputs
15 [/if]
16 [camelCase('ex', node.name)/](
17 [for (input : InputPin |
18 inputActionValues(node.oclAsType(Action))
19 −>asOrderedSet()) separator (', ')]
20 [node.name/][input.name/]
21 [/for]
22 );

Listing C.5: Passing inputs of action sequences as parameters.

Listing C.6 is a modification of Listing 6.37, lines 6–9 considering inputs to sequences of actions
and return values.

1 private [if (returnValues(node.behavior.oclAsType(Activity))−>size()>0)]
2 [node.output.type.name/] [else] void [/if] [camelCase('ex', node.name)/](
3 [for (param : Parameter | inputValues(node.behavior.oclAsType(Activity))
4 −>asOrderedSet()) separator (', ')]
5 [if (param.direction.toString() = 'in')] final [/if]
6 [if (param.upper>1)]List <[/if]
7 [param.type.name/]
8 [if (param.upper>1)]>[/if]
9 [param.name /]

10 [/for]
11 )

Listing C.6: Considering object flows declarations of methods implementing action sequences.
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Listing C.7 is a modification of Listing 6.37, lines 19–21 considering object flows. Before calling
a method on the context object, a local variable for the return value is declared, if applicable.
If the method returns a value, the call becomes the right side of an assignment. The inputs are
provided as parameters of the method call.

If an action is the last action of a sequence, the output of the method call is returned as a
return value of the method implementing the action sequence (lines 21–25).

1 [if (action.oclIsKindOf(OpaqueAction))] // execute an opaqueAction
2 [if (action.output−>asSet()−>size() > 0)] // prepare parameters
3 [for (output : OutputPin |
4 action.oclAsType(OpaqueAction).output−>asOrderedSet())]
5 [output.type.name/] [output.name/] = null;
6 [/for]
7 [/if]
8 // call [actions−>indexOf(action)/]. operation
9 [if (not action.output−>asSet()−>isEmpty())]

10 [action.output.name/] =
11 [/if]
12 context .[action.name/]([action.input.incoming.source.name−>sep(', ')/]);
13 [if (action.output−>asSet()−>size() > 1)]
14 // map output parameters from wrapper if we have more than one output pin:
15 [for (output : OutputPin |
16 action.oclAsType(OpaqueAction).output−>asSequence())]
17 [output.name/] = [action.output.name/].get[output.name/]();
18 [/for]
19 [/if]
20 [/if]
21 [if actions−>indexOf(action) = actions−>size()]
22 [if action.output−>size() = 1]
23 return [output.name/];
24 [/if]
25 [/if]

Listing C.7: Providing output of actions as input for other actions.
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C.3 Considering Interruptible Activity Regions
Listing C.8 contains methods needed for the implementation of interruptible activity regions as
specified in Listing 6.39.

1 [for (group: InterruptibleActivityRegion | a.group)]
2 /* Interruptible Act ivi ty Region implementation [group.node.name/] */
3 private List <ActivityThread > ir[group.node.name/] =
4 new LinkedList <ActivityThread >();
5 [/for]
6

7 [if (a.group−>size() > 0)]
8 /** By this method , an ActivityThread is registered
9 * when entering an InterruptbleActivityRegion .

10 * @param t, the ActivityThread entering the region .
11 * @param region , a list of ActivityThreads
12 * representing the Threads inside the region .
13 */
14 private void register ( ActivityThread t, List <ActivityThread > region ){
15 if (! region . contains (t)){
16 region .add(t);
17 }
18 }
19

20 /** By this method , an ActivityThread is un−registered
21 * when leaving an InterruptbleActivityRegion .
22 * @param t, the ActivityThread leaving the region .
23 * @param region , a list of ActivityThreads
24 * representing the Threads inside the region .
25 */
26 private void unregister ( ActivityThread t, List <ActivityThread > region ){
27 if ( region . contains (t)){
28 region . remove (t);
29 }
30 }
31

32 /** By this method , an ActivityThread interrupts
33 * an InterruptbleActivityRegion .
34 * @param region , a list of ActivityThreads
35 * representing the Threads inside the region .
36 * All threads contained in this list will be interrupted .
37 */
38 private void interruptRegion (List <ActivityThread > region ){
39 while (! region . isEmpty ()){
40 ActivityThread t = region . remove (0);
41 t. interrupt ();
42 }
43 }
44 [/if]

Listing C.8: Generating methods for handling interruptible activity regions.

Since at fork node, new threads are created for concurrently executing the action sequences
downstream of the fork node, these threads possibly must be registered into interruptible activity
regions. This is achieved by modifications of the template generating code for fork node (see
Listing 6.36) as given by Listing C.9: new threads are created but not started automatically. After
registering threads in interruptible activity regions and supporting them with required input, if
any, threads are started.

Modifications to the generation of constructors of threads executing action sequences are given
in Listing C.10.
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1 // implementation of a fork node
2 synchronized ( context ) {
3 while (!([node.incoming−>asSequence()−>first().guard.stringValue()/]
4 && (
5 [for (gedge : ControlFlow | node.outgoing−>asSequence()) separator ('||')]
6 ([gedge.guard.stringValue()/])
7 [/for]
8 ))){
9 try {

10 context .wait ();
11 } catch ( InterruptedException e) {
12 e. printStackTrace ();
13 }
14 }
15 [for (gedge : ControlFlow | node.outgoing−>asSequence())]
16 if ([gedge.guard.stringValue()/]){
17 ActivityThread at[seqNr−>indexOf(gedge.target)/] = new
18 ActivityThread ([seqNr−>indexOf(gedge.target)/], false);
19 [for (ir : InterruptibleActivityRegion | node.inInterruptibleRegion)]
20 registerRegion (at[seqNr−>indexOf(gedge.target)/],ir[ir.node.name/]);
21 [/for]
22 [for (action : Action | gedge.target)]
23 [for (input : InputPin | action.input)]
24 [for (objectFlow: ObjectFlow | node.incoming)]
25 at[seqNr−>indexOf(gedge.target)/].set[input.name/]
26 ([objectFlow.source.owner.oclAsType(Action).name/]
27 [objectFlow.source.name/]);
28 [/for]
29 [/for]
30 [/for]
31 at[seqNr−>indexOf(gedge.target)/]. execute ();
32 }
33 [/for]
34 fId = 0;
35 }

Listing C.9: Generating code for a fork node considering distribution of inputs to concurrently
executing sequences of actions.

1 /**
2 * This constructor creates a Thread instance and sta rts the execution of
3 * a code sequence .
4 * @param id the code sequence to be executed .
5 * @param start true , if the sequence should be started immediately ,
6 * false , if the sequence is started later by the caller .
7 */
8 private ActivityThread (int id , boolean start ){
9 this.fId = id;

10 if (start)
11 this. execute ;
12 }
13

14 private void execute (){
15 this.start ();
16 }

Listing C.10: Generating constructors supporting to set inputs before running the constructed
thread.



220 APPENDIX C. CODE GENERATION

C.4 Queries
This part of the appendix contains all the queries called from Mof2Text templates which we
specified for the transition from models to code.

1 [query public qualifiedName(c : Classifier) : String =
2 containingPackages(c).name−>sep('.')−>
3 including ('.')−>including (c.name)−>toString () /]
4

5 [query public containingPackages(c : Classifier) : Sequence (Package) =
6 c. ancestors (Package)−>reject ( oclIsKindOf (Model))−>reverse () /]

Listing C.11: Queries for obtaining a qualified name for a given classifier.

1 [query public classFileName(c : Class) : String =
2 qualifiedName(c). replaceAll ('\\.', '/'). concat ('.java') /]

Listing C.12: Query returning a qualified file name for a given class.

1 [query public activityFileName(a : Activity) : String =
2 qualifiedName(a). replaceAll ('\\.', '/'). concat ('.java') /]

Listing C.13: Query returning a qualified file name for a given activity.

1 [query public visibilityString(v : VisibilityKind) : String =
2 if(v. toString () = 'package') then
3 ''
4 else
5 v. toString (). concat (' ')
6 endif /]

Listing C.14: Query mapping UML visibilities to Java visibility modifiers.

1 [query public superClass(c : Class) : Classifier =
2 c. generalization −>asOrderedSet()−>first (). general /]

Listing C.15: Query returning the general classifier of a class.
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1 [query public returnType(c : Class, o : Operation) : String =
2 if(o.name = c.name) then
3 ''
4 else
5 if(not o. ownedParameter −>exists (
6 p : Parameter | p. direction . toString () = 'return')
7 or o. ownedParameter −>any(
8 p : Parameter | p. direction . toString () = 'return').
9 type.name. oclIsInvalid ()) then

10 'void '
11 else
12 if(o. ownedComment −>exists (
13 n : Comment | n._body. startsWith (
14 'Operation#Kind:LinkMemberClassOperation#get'))) then
15 typeString(false , o.type , −1)
16 else
17 typeString(true , o.type , o.upper)
18 endif
19 endif
20 endif /]
21

22 [query public typeString(c: Boolean, t : Type, upper : Integer) : String =
23 if(upper > 1 or upper = −1) then
24 'List<'. concat (t.name ). concat ('> ')
25 else
26 if (c) then
27 typeName(t). concat (' ')
28 else
29 t.name. concat (' ')
30 endif
31 endif /]
32

33 [query public typeName(t : Type) : String =
34 if(t.name = 'Integer') then
35 'int'
36 else
37 if(t.name = 'Boolean') then
38 'boolean'
39 else
40 t.name
41 endif
42 endif /]

Listing C.16: Query returning a return type of an operation.

1 [query public inParameters(o : Operation) : OrderedSet (Parameter) =
2 o. ownedParameter −>select (p : Parameter | p. direction . toString () = 'in') /]

Listing C.17: Query returning input parameters of an operation.

1 [query public inSuperParameters(
2 c : Class, o : Operation) : OrderedSet (Parameter) =
3 inParameters(o)−>reject (
4 p : Parameter | c. ownedAttribute −>exists (
5 a : Property | a.name = p.name )) /]

Listing C.18: Query returning a subset of a set of parameters.
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1 [query public inParameterString(c : Boolean, p : Parameter) : String =
2 typeString(c, p.type , p.upper ). concat (p.name) /]

Listing C.19: Query returning a string containing type and name for a set of parameters.

1 [query public defaultStringValue(p : Property) : String =
2 if(p.type.name = 'String') then
3 '"'. concat (p. default ). concat ('"')
4 else
5 if(p.type.name = 'Integer' and p. default = '*') then
6 'Integer.MAX_VALUE'
7 else
8 p. default
9 endif

10 endif /]

Listing C.20: Query translating a default value into s string representation.

1 [query public defaultReturnValue(
2 c : Class, o : Operation, p : String) : String =
3 if(o.name = c.name) then
4 ''
5 else
6 if(p = 'byte ' or p = 'short ' or p = 'int ' or p = 'long '
7 or p = 'float ' or p = 'double ' or p = 'char ') then
8 '// TODO\nreturn 0;'
9 else

10 if(p = 'boolean ') then
11 '// TODO\nreturn false;'
12 else
13 if(p <> 'void ') then
14 '// TODO\nreturn null;'
15 else
16 '// TODO\n'
17 endif
18 endif
19 endif
20 endif /]

Listing C.21: Query returning a return statement with a default return value.

1 [query public paramString(c : Action) : String =
2 paramString_(c, 0, '')/]
3

4 [query public paramString_(c : Action, i : Integer, s : String) : String =
5 if(i < c.input−>asOrderedSet()−>size()−1) then
6 paramString_(c, i+1, s. concat (
7 c.input−>asOrderedSet()−>at(i). type.name ). concat (
8 ' '). concat (c.input−>asOrderedSet()−>at(i). name ). concat (', '))
9 else

10 if(i < c.input−>asOrderedSet()−>size ()) then
11 paramString_(c, i+1, s. concat (
12 c.input−>asOrderedSet()−>at(i). type.name ). concat (
13 ' '). concat (c.input−>asOrderedSet()−>at(i). name ))
14 else
15 s
16 endif
17 endif
18 /]

Listing C.22: Query returning a string of comma separated pairs of input pin types and names.
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1 [query public camelCase(str1 : String, str2 : String) : String =
2 str1. concat (str2. toUpperFirst ())/]

Listing C.23: Query building a camel case string concatenation of two given strings.

1 [query public getSequence( initial : InitialNode) : OrderedSet (Action) =
2 getSequence(
3 initial .outgoing −>asSequence()−>first (). target . oclAsType (Action),
4 initial .outgoing −>asSequence()−>first (). target . oclAsType (Action)−>
5 asOrderedSet ())/]

Listing C.24: Query returning a sequence of actions starting at an initial node.

1 [query public getSequence(
2 from: Action, result : OrderedSet (Action)) : OrderedSet (Action) =
3 if (isAction(from. outgoing .target −>asSequence()−>first ())) then
4 getSequence(
5 from. outgoing .target −>asSequence()−>first (). oclAsType (Action),
6 result −>append (from ))
7 else
8 result
9 endif /]

Listing C.25: Query returning a sequence of actions starting at a given action.

1 [query public isAction(node: ActivityNode) : Boolean =
2 node. oclIsKindOf (Action) /]

Listing C.26: Query checking whether an activity node is an Action.

1 [query public ifLiteral(count : Integer) : String =
2 if(count = 1) then
3 'if'
4 else
5 'else if'
6 endif /]

Listing C.27: Query returning the string if or else if.

1 [query public hasCallBehavior(a : Activity) : Boolean =
2 a.node−>exists (cba : ActivityNode | cba. oclIsTypeOf (CallBehaviorAction))/]

Listing C.28: Query returning true if a given activity contains a CallBehaviorAction.

1 [query public returnValues(a: Activity) : OrderedSet (Parameter) =
2 a. ownedParameter −>select (p : Parameter |
3 ((p. direction . toString () = 'return')
4 or (p. direction . toString () = 'out')
5 or (p. direction . toString () = 'inout'))) /]

Listing C.29: Query returning output parameters of a given activity.

1 [query public inputValues(a: Activity) : OrderedSet (Parameter) =
2 a. ownedParameter −>select (p : Parameter |
3 ((p. direction . toString () = 'in')
4 or (p. direction . toString () = 'inout'))) /]

Listing C.30: Query returning input parameters of a given activity.
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1 [query public inputActionValues(a: Action) : OrderedSet (InputPin) =
2 a.input−>select (p : InputPin | not p.type.name−>isEmpty ()) /]

Listing C.31: Query returning all typed input pins of a given Action.

1 [query public outputActionValues(a: Action) : OrderedSet (OutputPin) =
2 a.output −>select (p : OutputPin | not p.type.name−>isEmpty ()) /]

Listing C.32: Query returning typed output pins of a given action.

1 [query public isLinkMemberClass(c: Class) : Boolean =
2 c. ownedComment −>exists (n : Comment | n._body. startsWith (
3 'Class#Kind:LinkMemberClass')) /]

Listing C.33: Query checking whether a class participates in an association.

1 [query public isLinkManager(c: Class) : Boolean =
2 c. ownedComment −>exists (n : Comment | n._body. startsWith (
3 'Class#Kind:LinkManager')) /]

Listing C.34: Query checking whether a class is a link manager class of an association.

1 [query public isLinkMemberClassProperty(p: Property) : Boolean =
2 p. ownedComment −>exists (n : Comment | n._body. startsWith (
3 'Property#Kind:LinkMemberClassProperty#LinkManager')) /]

Listing C.35: Query checking whether a property is an owned attribute referencing a link manager
class.

1 [query public substringName(e : Element, s : String) : String =
2 e. ownedComment −>any(
3 c : Comment | c._body. startsWith (s)). _body. substring (s.size ()+2) /]

Listing C.36: Query returning the rest of the string value of a comment starting with a given string.
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C.5 Snippets Processing Structures
Fig. C.1 gives a survey over the complete composition of the template snippets processing static
structures as presented in Chapter 6.

CreateClassContent

HandleClassProperties

HandleLinkMember

HandleLinkManager

HandleOperation

GenerateOperationBody

GenerateConstructorBody

GenerateSetterBody

GenerateAddBody

GenerateRemoveBody

GenerateLinkManagerBody

GenerateLinkMemberBody

CreateLinkBody

GetLinkBody

RemoveLinkBody

MemberAddLinkBody

MemberRemoveLinkBody

MemberGetBody

GeneralClassifierBehaviorImplementation

ClassifierBehaviorImplementation

CreateAbstractMethodsForOpaqueActions

Figure C.1: Composition of snippets for class code generation.
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C.6 Snippets Processing Behavior
Fig. C.2 gives a survey over the complete composition of the template snippets processing dynamic
behavior as presented in Chapter 6.

GenerateActivity

ActivityContents

JoinNodeClassImplementation

ActivityThreadImplementation

SequenceImplementation

ActivityExecutionImplementation

ControlNodeImplementation

DecisionNodeImplementation

ConsiderGuards

ConsiderIRs

ForkNodeImplementation

JoinNodeImplementation

Figure C.2: Composition of snippets for code generation of dynamic behavior.



Appendix D

Evaluation

For evaluation purposes, we modified the code generation for actions and activity edges by inserting
some debug outputs.

The implementation given in Listing D.1 is a modification to the processing of actions as in
Listing 6.27. It replaces lines 17–20. In line 5, r is an instance of java.util.Random. In line
6, it is checked if the action is to be aborted due to the interruption of the executing thread.
The executing thread may be interrupted because of a token passing an interrupting edge of an
interruptible activity region or because a flow reached an activity final node.

1 ...
2 {
3 // simulate some time consuming action implementation...
4 System .out.print (" [action.name/]". toUpperCase ());
5 for (int c = 0; c < r. nextInt (500)*1000; c++) {
6 if ( Thread . currentThread (). isInterrupted ()) {
7 System .out.print (" !");
8 break;
9 }

10 }
11 System .out.print (" [action.name/]". toLowerCase ());
12 }

Listing D.1: Modified code generation for actions in test activities.

An execution of action A produces the output A a, if it is normally finished, or A ! a, if it is
aborted.

If actions A and B are executed concurrently, valid outputs are
A a B b,
A B a b,
A B b a,
B b A a,
B A b a,
B A a b.

For each test activity, a test runner is started which creates instances of a class owning the test
activity as its classifier behavior. The integer variable i of the context object is set and the output
Execution i= followed by the value of i is written to the console.

If the value of i is changed in order to continue an execution that is paused due to failing
guards, the output <old value>-><new value> , e. g. 5->10 is written.

If the execution of an activity is interrupted while waiting for a guard to evaluate to true, the
output !<source.name>-><target.name>, e. g. !X->Y is written.

Note that this output not necessarily occurs when a path is terminated. It depends on the
scheduler whether a waiting threat will be interrupted, or possibly be resumed normally. If being
continued normally, the guard will still not evaluate to true, but since the thread is marked being
discontinued, it will end anyway, but without producing the debug output.

227



228 APPENDIX D. EVALUATION

D.1 Testing Control Flows and Activity Termination

Flows

ba c d e f
[i > 0] [i > 2] [i > 2] [i > 4] [i > 4]

vu w x y z
[i > 1] [i > 3] [i > 3] [i > 5] [i > 5]

Figure D.1: Test activity for guards and flow final nodes.

1 Execution i=1
2 A U a B u b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
3 A U u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
4 U A a B u b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
5 U A u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
6 U A u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
7 U A u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
8

9 Execution i=2
10 A U a B b u V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
11 A U u V v a B b 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
12 A U u V v a B b 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
13 U A a B b u V v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
14 U A a B u V b v 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
15 U A u V v a B b 2->3 C c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
16

17 Execution i=3
18 A U a B b C u V v c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
19 A U u V a B b C c D v d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
20 A U u V a B b C v c D d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
21 U A a B b C c D u V d v 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
22 U A a B u V b C c D v d 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
23 U A u V a B b C c D d v 3->4 W w X x 4->5 E e F f 5->6 Y y Z z
24

25 Execution i=4
26 A U a B u V b C v W c D d w X x 4->5 E e F f 5->6 Y y Z z
27 A U u V a B v W b C w X x c D d 4->5 E e F f 5->6 Y y Z z
28 A U u V v W a B w X b C c D x d 4->5 E e F f 5->6 Y y Z z
29 A U u V v W a B w X b C c D x d 4->5 E e F f 5->6 Y y Z z
30 A U u V v W a B w X x b C c D d 4->5 E e F f 5->6 Y y Z z
31 U A a B u V v W b C w X c D d x 4->5 E e F f 5->6 Y y Z z
32

33 Execution i=5
34 A U a B b C u V v W c D w X d E e F f x 5->6 Y y Z z
35 A U a B u V v W b C c D w X x d E e F f 5->6 Y y Z z
36 A U u V a B v W w X x b C c D d E e F f 5->6 Y y Z z
37 U A a B u V b C c D v W w X d E x e F f 5->6 Y y Z z
38 U A a B u V v W b C w X x c D d E e F f 5->6 Y y Z z
39 U A u V a B v W w X x b C c D d E e F f 5->6 Y y Z z
40

41 Execution i=6
42 A U a B b C c D u V d E v W w X e F x Y y Z f z
43 A U u V v W w X a B b C x Y y Z c D z d E e F f
44 U A a B b C u V c D d E e F f v W w X x Y y Z z
45 U A u V a B b C c D d E v W w X e F f x Y y Z z
46 U A u V a B v W b C c D w X x Y d E y Z z e F f
47 U A u V v W a B b C w X c D x Y d E y Z e F z f
48

49 Test completed .

Listing D.2: Output produced by executing test activity Flows of Fig.D.1
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Flows

ba c d e f
[i > 0] [i > 2] [i > 2] [i > 4] [i > 4]

vu w x y z
[i > 1] [i > 3] [i > 3] [i > 5] [i > 5]

Figure D.2: Test activity for guards and activity final nodes.

1 Execution i=1
2 A U a B b u 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f
3 A U u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f !X->Y
4 A U u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f
5 A U u a B b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f
6 U A a B u b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f
7 U A a B u b 1->2 V v 2->3 C c D d 3->4 W w X x 4->5 E e F f
8

9 Execution i=2
10 A U a B u V b v 2->3 C c D d 3->4 W w X x 4->5 E e F f
11 A U a B u V v b 2->3 C c D d 3->4 W w X x 4->5 E e F f
12 A U u V a B b v 2->3 C c D d 3->4 W w X x 4->5 E e F f
13 A U u V a B v b 2->3 C c D d 3->4 W w X x 4->5 E e F f
14 A U u V a B v b 2->3 C c D d 3->4 W w X x 4->5 E e F f
15 U A a B u V b v 2->3 C c D d 3->4 W w X x 4->5 E e F f
16

17 Execution i=3
18 A U u V a B b C v c D d 3->4 W w X x 4->5 E e F f
19 A U u V a B b C v c D d 3->4 W w X x 4->5 E e F f
20 A U u V v a B b C c D d 3->4 W w X x 4->5 E e F f
21 U A u V v a B b C c D d 3->4 W w X x 4->5 E e F f
22 U A u V a B v b C c D d 3->4 W w X x 4->5 E e F f
23 U A u V a B v b C c D d 3->4 W w X x 4->5 E e F f
24

25 Execution i=4
26 A U u V v W a B w X b C x c D d 4->5 E e F f !X->Y
27 A U u V v W w X a B x b C c D d 4->5 E e F f
28 U A a B b C u V c D v W d w X x 4->5 E e F f
29 U A a B u V b C c D v W d w X x 4->5 E e F f
30 U A u V a B v W w X b C x c D d 4->5 E e F f
31 U A u V v W a B w X x b C c D d 4->5 E e F f
32

33 Execution i=5
34 A U u V a B b C c D v W w X d E x e F f !X->Y
35 A U u V a B b C v W w X c D d E e F x f
36 A U u V a B v W w X b C c D x d E e F f !X->Y
37 A U u V v W a B w X b C c D x d E e F f
38 A U u V v W a B w X b C c D x d E e F f
39 U A u V a B v W w X b C x c D d E e F f
40

41 Execution i=6
42 A U a B u V b C c D v W d E e F w X f ! x
43 A U a B u V b C c D v W w X d E x Y y Z e F f ! z
44 A U a B u V b C v W c D d E e F w X f ! x
45 A U a B u V v W b C c D w X d E x Y e F y Z f ! z
46 A U u V a B v W b C w X x Y c D d E y Z e F f ! z
47 U A a B u V b C c D v W d E e F w X f ! x
48

49 Test completed .

Listing D.3: Output produced by executing test activity Flows of Fig.D.2
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D.2 Testing Control Flows with Control Nodes

Merge

ba c

[i % 2 == 0]

ed f

x

[i % 3 == 0]

[i % 5 == 0]

Figure D.3: Test activity for merge semantics without guards.

1 Execution i=2
2 A D a B b C d E c X e F x f X x
3 A D a B b C d E e F c X x f X x
4 A D a B b C d E e F f X c X x x
5 D A a B d E b C e F c X x f X x
6 D A d E e F f X a B x b C c X x
7

8 Execution i=3
9 A D a B d E b C e F c X f X x x

10 A D a B d E e F f X b C x c X x
11 D A a B b C d E c X e F x f X x
12 D A a B d E b C e F f X x c X x
13 D A a B d E b C e F c X x f X x
14

15 Execution i=5
16 A D d E a B e F b C c X f X x x
17 A D d E a B e F f X b C c X x x
18 D A d E a B e F f X b C c X x x
19 D A d E a B b C e F c X f X x x
20 D A d E e F a B b C f X c X x x
21

22 Execution i=10
23 A D a B d E b C e F c X f X x x
24 A D d E a B b C e F c X f X x x
25 A D d E e F a B f X b C x c X x
26 D A a B d E b C e F c X f X x x
27 D A d E a B e F f X b C c X x x
28

29 Execution i=15
30 A D a B d E b C c X x e F f X x
31 A D d E a B e F b C c X x f X x
32 D A a B b C c X x d E e F f X x
33 D A d E a B e F b C f X c X x x
34 D A d E e F a B f X x b C c X x
35

36 Execution i=30
37 A D a B b C c X d E e F f X x x
38 A D a B d E b C c X e F x f X x
39 A D d E a B e F b C f X c X x x
40 D A a B b C d E c X x e F f X x
41 D A d E a B b C e F c X x f X x
42

43 Test completed .

Listing D.4: Output produced by executing test activity Merge of Fig.D.3
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Merge

ba c
[i % 2 == 0]

ed f

x

[i % 3 == 0]

[i % 5 == 0]

Figure D.4: Test activity for merge semantics with guarded flows.

1 Execution i=2
2 A D d E a B e F b C c f
3 A D d E a B e F f b C c
4 D A a B d E b C c e F f
5 D A d E a B e F f b C c
6 D A d E e F a B b C f c
7

8 Execution i=3
9 A D a B b C d E e F c f

10 A D a B b C d E e F f c
11 A D a B d E e F b C c f
12 D A a B b C c d E e F f
13 D A a B b C d E c e F f
14

15 Execution i=5
16 A D a B b C d E c e F f
17 A D d E a B e F b C f c
18 D A a B b C c d E e F f
19 D A d E a B b C e F c f
20 D A d E a B e F f b C c
21

22 Execution i=10
23 A D a B b C d E e F c X f x
24 A D a B d E b C c X e F x f
25 A D d E a B b C e F f c X x
26 D A a B d E b C e F c X x f
27 D A a B d E e F f b C c X x
28

29 Execution i=15
30 A D a B b C d E e F f X x c
31 A D d E a B e F b C f X x c
32 D A a B b C d E c e F f X x
33 D A a B b C d E e F c f X x
34 D A a B d E e F b C c f X x
35

36 Execution i=30
37 A D d E e F a B b C c X f X x x
38 A D d E e F f X a B b C x c X x
39 D A a B b C d E e F c X f X x x
40 D A a B d E b C c X x e F f X x
41 D A d E a B e F f X b C x c X x
42

43 Test completed .

Listing D.5: Output produced by executing test activity Merge of Fig.D.4
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Join

ba c

ed f

x

[i % 3 == 0]

Figure D.5: Test activity for join semantics without guards.

1 Execution i=2
2 A D d E a B e F b C c f X x
3 D A d E a B b C e F c f X x
4 D A d E a B b C e F f c X x
5 D A d E a B e F b C f c X x
6 D A d E e F a B f b C c X x
7

8 Execution i=3
9 A D d E e F a B b C c f X x

10 D A d E a B b C e F c f X x
11 D A d E a B e F f b C c X x
12 D A d E e F a B b C f c X x
13 D A d E e F a B f b C c X x
14

15 Execution i=5
16 A D d E a B e F b C f c X x
17 D A d E a B b C e F f c X x
18 D A a B b C d E c e F f X x
19 D A a B b C d E c e F f X x
20 D A d E e F a B b C f c X x
21

22 Execution i=10
23 A D a B b C d E c e F f X x
24 A D d E a B e F f b C c X x
25 D A a B b C d E c e F f X x
26 D A a B d E e F b C f c X x
27 D A d E e F a B f b C c X x
28

29 Execution i=15
30 A D d E a B e F b C c f X x
31 D A a B d E b C c e F f X x
32 D A a B d E e F f b C c X x
33 D A d E a B b C e F c f X x
34 D A d E a B e F f b C c X x
35

36 Execution i=30
37 A D a B b C c d E e F f X x
38 A D d E a B e F b C f c X x
39 A D d E a B e F b C f c X x
40 A D d E e F a B b C c f X x
41 A D d E e F f a B b C c X x
42

43 Test completed .

Listing D.6: Output produced by executing test activity Join of Fig.D.5
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Join

ba c
[i % 2 == 0]

ed f

x

[i % 3 == 0]

[i % 5 == 0]

Figure D.6: Test activity for join semantics with guarded flows.

1 Execution i=2
2 A D a B b C d E c e F f
3 A D a B d E b C e F f c
4 A D d E a B e F b C c f
5 D A a B d E b C e F f c
6 D A d E e F a B b C c f
7

8 Execution i=3
9 A D a B d E b C e F c f

10 A D d E a B b C e F c f
11 A D d E e F a B f b C c
12 D A a B d E e F b C f c
13 D A a B d E e F b C f c
14

15 Execution i=5
16 A D a B b C c d E e F f
17 A D a B d E e F f b C c
18 A D d E a B e F f b C c
19 D A a B d E e F b C c f
20 D A d E a B e F f b C c
21

22 Execution i=10
23 A D a B b C d E c e F f
24 A D d E a B b C e F c f
25 A D d E e F a B b C c f
26 D A d E a B e F b C f c
27 D A d E e F a B f b C c
28

29 Execution i=15
30 D A a B d E b C e F c f
31 D A a B d E e F b C f c
32 D A d E a B e F b C f c
33 D A d E e F a B b C f c
34 D A d E e F f a B b C c
35

36 Execution i=30
37 D A d E a B b C e F c f X x
38 D A d E a B b C e F f c X x
39 D A d E a B e F b C c f X x
40 D A d E a B e F b C f c X x
41 D A d E a B e F b C f c X x
42

43 Test completed .

Listing D.7: Output produced by executing test activity Join of Fig.D.6
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Decision

ba c
[i % 5 == 0]

hg k

x

[i % 7 == 0]

[i % 2 == 0]

ed f
[i % 3 == 0]

Figure D.7: Test activity for decision node.

1 Execution i=2
2 X x 2−>6 D d E e F f
3 X x 2−>10 A a B b C c
4 X x 2−>14 G g H h K k
5

6 Execution i=3
7 X x 3−>6 D d E e F f
8 X x 3−>10 A a B b C c
9 X x 3−>14 G g H h K k

10

11 Execution i=5
12 X x 5−>6 D d E e F f
13 X x 5−>10 A a B b C c
14 X x 5−>14 G g H h K k
15

16 Execution i=6
17 X x D d E e F f
18

19 Execution i=7
20 X x 7−>6 D d E e F f
21 X x 7−>10 A a B b C c
22 X x 7−>14 G g H h K k
23

24 Execution i=10
25 X x A a B b C c
26

27 Execution i=14
28 X x G g H h K k
29

30 Execution i=30
31 X x D d E e F f
32

33 Execution i=42
34 X x D d E e F f
35

36 Execution i=70
37 X x G g H h K k
38

39 Execution i=210
40 X x D d E e F f
41

42 Test completed .

Listing D.8: Output produced by executing test activity Decision of Fig.D.7
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Fork

ba c

hg k

x

[i % 7 == 0][i % 2 == 0]

ed f

Figure D.8: Test activity for fork semantics without guards.

1 Execution i=2
2 X x G A D d E a B g H e F b C f c h K k
3 X x G A D a B b C g H d E e F f c h K k
4

5 Execution i=3
6 X x G A D a B d E b C g H e F h K k c f
7 X x G A D a B g H h K b C c k d E e F f
8

9 Execution i=5
10 X x D G A d E e F a B g H f b C h K c k
11 X x G D A g H d E a B h K k e F b C f c
12

13 Execution i=6
14 X x A G D a B d E e F g H h K b C k f c
15 X x A G D g H a B b C h K d E k c e F f
16

17 Execution i=7
18 X x G A D g H d E e F a B h K f b C c k
19 X x G D A d E e F a B f b C g H h K c k
20

21 Execution i=10
22 X x G A D a B d E b C g H e F h K k c f
23 X x G A D g H a B h K d E b C k e F c f
24

25 Execution i=14
26 X x G D A d E g H a B h K e F k b C c f
27 X x A G D d E g H a B h K b C e F c k f
28

29 Execution i=30
30 X x A G a B b C D g H h K c d E e F k f
31 X x G A D a B d E g H h K b C e F c f k
32

33 Execution i=42
34 X x G D A g H d E a B e F h K k f b C c
35 X x G A D a B g H d E e F f b C c h K k
36

37 Execution i=70
38 X x G A D d E g H e F f a B h K k b C c
39 X x G A D d E a B g H e F h K f k b C c
40

41 Execution i=210
42 X x G A D d E a B g H e F b C c h K f k
43 X x A G D d E a B g H b C e F h K c f k
44

45 Test completed .

Listing D.9: Output produced by executing test activity Fork of Fig.D.8
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Fork

ba c
[i % 5 == 0]

hg k

x

[i % 7 == 0]

[i % 2 == 0]

ed f
[i % 3 == 0]

Figure D.9: Test activity for fork semantics with guarded flows.

1 Execution i=2 / i=3 / i=5 / i=7
2 X x 2−>6 D d E e F f
3 X x 2−>10 A a B b C c
4 X x 2−>14 G g H h K k
5

6 Execution i=6
7 X x D d E e F f
8

9 Execution i=10
10 X x A a B b C c
11

12 Execution i=14
13 X x G g H h K k
14

15 Execution i=30
16 X x D A a B b C d E c e F f
17 X x D A a B d E e F f b C c
18 X x D A d E e F a B b C f c
19

20 Execution i=42
21 X x D G g H d E h K k e F f
22 X x D G g H d E h K k e F f
23 X x D G g H h K d E e F f k
24

25 Execution i=70
26 X x G A a B g H h K b C c k
27 X x G A g H a B h K k b C c
28 X x G A g H h K a B k b C c
29

30 Execution i=210
31 X x D G A a B d E b C g H h K e F c k f
32 X x G A D a B d E g H b C e F c f h K k
33 X x G D A g H h K k a B d E b C e F f c
34

35 Test completed .

Listing D.10: Output produced by executing test activity Fork of Fig.D.9

In Listing D.10, lines 2–4, the outputs of activity executions with different values of i are
combined in a single output block, since the executions create identical outputs.
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D.3 Testing Interruptible Activity Regions

IR

ba c
[i>5] [i>30] [i>90]

lk m

fe g
[i>10] [i>20]

d

h

x

y

z
[i<95]

[i>95]

[i<90]

[i<15 || i>90]

Figure D.10: Test activity for interruptible activity region.

1 Execution i=3
2 A K E a e k L l M !E−>F m Z z
3 E K A k L e a l M !E−>F m Z z
4 E A K k L l !M e a m Z z
5 E K A e k L a l M !E−>F m Z z
6 E K A a k L e l M !E−>F m Z z
7 E A K e a k L l M !E−>F m Z z
8 Execution i=8
9 E A K a B k L l !e M b m Z z

10 E K A k L a B e b l M !E−>F m Z z
11 E K A k L e l M !E−>F m Z a B z b
12 E A K a B k L e l M !E−>F b m Z z
13 K A E k L e a B b l M !E−>F m Z z
14 A K E k L a B e b l M !E−>F m Z z
15 Execution i=12
16 E K A k L e F l !f M a B m Z b z
17 A K E a B k L e F l !f M b m Z z
18 E A K k L a B b l !e M m Z z
19 E K A a B k L b e F l !f M m Z z
20 E K A k L e F a B f l M !F−>G m Z b z
21 E A K a B e F f k L b l M !F−>G m Z z
22 Execution i=25
23 E K A a B e F k L f G b g H !B−>C l h Y !L−>M y
24 E A K a B k L e F l b f G g H !B−>C h Y !L−>M y
25 E A K a B e F k L l f G g !b H h Y !L−>M y
26 E A K a B e F f G g !H b k L l h Y !L−>M y
27 E K A k L a B b e F l f G g H !B−>C h Y !L−>M y
28 A K E k L l e F a B f G b g H !B−>C h Y !L−>M y
29 Execution i=92
30 E A K e F a B k L b C l M !f c D m Z z d
31 E A K e F k L l !f M a B m Z b C z c D d
32 E K A e F f G a B k L g b C l M m Z c D z d
33 E A K e F f G k L a B l M g m Z b C c D z d
34 E A K a B e F f G k L b C g c D l M d m Z z
35 E K A a B e F k L l !f M b C c D m Z d z
36 Execution i=99
37 E A K k L a B e F b C l !f M m c D d X !M−>Z x
38 E A K a B e F k L f G b C c D g l M d !m X !G−>H x
39 E A K k L e F a B f G g l M m b C c D d !G−>H !M−>Z X x
40 E A K e F a B k L l !f M b C c D d !m X x
41 E A K a B k L e F f G b C l M g c D d !m X !G−>H x
42 E A K k L l !e M a B b C m c D d X !M−>Z x
43 Test completed .

Listing D.11: Output produced by executing test activity IR of Fig.D.10
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D.4 Testing Object Flows
For testing object flows, we designed a simple class model for the data types to be passed between
actions. If types of input pins are not identical to or subtypes of the types of output pins, the
generated code is not compilable.

Content: String

DataItem

X Y Z

Figure D.11: Data model used for test activities with object flows.

Since the extraction of sequences of actions is currently implemented on the basis of control
flow analysis only, activities must have control flows in addition to the object flows. Control flows
specify the execution semantics. Hence, control nodes are applied to control flows. Object flows
directly connect output pins and input pins. In Fig.D.12, Fig.D.14 and Fig.D.16, object flows are
colored blue, the control flows are colored black.

DataFlow

cb eda

aOut:DataItem

bIn: DataItem dIn:Y

bOut: X dOut: Z

cIn: X eIn: Z

cOut: Y

Figure D.12: Simple test activity for object flows.

For traceability of data items, actions that receive data and provide this data as input to other
actions, change the content of the data object. The action creating the data sets the content
to its name. Other actions append their name, as shown in Listing D.12. An action that only
receives data but does not provide any output writes the content into its debug output between
the indications of action execution start and end.

Listing D.13 shows the output of test activity DataFlow of Fig.D.12.

1 public X B( DataItem bIn) {
2 System .out.print(" B". toUpperCase ());
3 X x = new XImpl("");
4 x. setContent (bIn. getContent () + "_B");
5 System .out.print(" B". toLowerCase ());
6 return x;
7 }

Listing D.12: Modified action implementation for test activities with data flows.

1 Execution i=1
2 A a B b C c D d E A_B_C_D e

Listing D.13: Output produced by executing test activity DataFlow of Fig.D.12
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DataDecision

ba
[ i == 3 ]

hg

x

[ i == 7 ]

ed

z

[ i == 5 ]

Y
yOut:DataItem

aIn: DataItem

dIn: DataItem

gIn: DataItem

aOut: x

dOut: y

gOut: z

bIn: x

eIn: y

hIn: z

bOut: x

eOut: y

hOut: z

zIn:DataItem

Figure D.13: Activity with object flows and decision node.

DataDecision

ba

hg

x

ed

z

Y

Figure D.14: Activity of Fig.D.13 with object flows and additional control flows.

1 Execution i=2
2 X x Y y
3

4 Execution i=3
5 X x Y y A a B b Z X_A_B_Z_ z
6

7 Execution i=4
8 X x Y y
9

10 Execution i=5
11 X x Y y D d E e Z X_D_E_Z_ z
12

13 Execution i=6
14 X x Y y
15

16 Execution i=7
17 X x Y y G g H h Z X_G_H_Z_ z
18

19 Test completed .

Listing D.14: Output produced by executing test activity DataFlow of Fig.D.13
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DataFork

ba
[ i % 3 == 0 ]

hg

x

[ i % 7 == 0 ]

ed

z

[ i % 5 == 0 ]
Y

yOut:DataItem

aIn: DataItem

dIn: DataItem

gIn: DataItem

aOut: x

dOut: y

gOut: z

bIn: x

eIn: y

hIn: z

bOut: x

eOut: y

hOut: z

zIn:DataItem

Figure D.15: Activity with object flows and fork node.

DataFork

ba

hg

x

ed

z

Y

[0..3]

Figure D.16: Activity of Fig.D.15 with object flows and additional control flows.

1 Execution i=2
2 X x Y y
3

4 Execution i=3
5 X x Y y A a B b
6

7 Execution i=5
8 X x Y y D d E e
9

10 Execution i=7
11 X x Y y G g H h
12

13 Execution i=15
14 X x Y y D d E A e a B b
15

16 Execution i=21
17 X x Y y G g A a H h B b
18

19 Execution i=35
20 X x Y y G g D H h d E e
21

22 Execution i=105
23 X x Y y D A a B b d E e G g H h Z X_A_B_ : X_D_E_ : X_G_H_ :Z z
24

25 Test completed .

Listing D.15: Output produced by executing test activity DataFork of Fig.D.16
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