
Efficient estimation and verification of
quantum many-body systems

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Naturwissenschaften der Universität Ulm

vorgelegt von

Milan Holzäpfel
aus Sersheim

2019



Universität Ulm
Fakultät für Naturwissenschaften
Institut für Theoretische Physik

Dekan: Prof. Dr. Peter Dürre
Erstgutachter: Prof. Dr. Martin B. Plenio
Zweitgutacher: Prof. Dr. Joachim Ankerhold

Tag der Prüfung: 29. Juli 2019



Summary

Tensor reconstruction as well as quantum state and process estimation, verification
and certification are the main subjects of this thesis. Quantum systems and tensors
share the property that the complexity of their description grows exponentially
with the number n of subsystems or indices, respectively. We discuss methods
which, in many instances, are efficient or scalable in the sense that the necessary
resources grow only polynomially with n.

The restriction to polynomial resources requires that states, processes and tensors
are represented in an efficient way. We focus on matrix product state (MPS)/tensor
train (TT) representations and also employ projected entangled pair state (PEPS)
and hierarchical Tucker representations in some places. In Chapter 4, the resources
required by a state estimation method based on MPSs and maximum likelihood
estimation (MLE) are discussed and it is shown that polynomial resources are
sufficient to achieve a constant estimation error for a particular family of states. In
addition, we show that the MPS-MLE method can be adapted to estimate states of
infinite-dimensional systems with continuous variables from measurement data of
quadrature amplitudes. We further improve the MPS-MLE method by combining
it with so-called locally purified MPSs.
The Choi-Jamiołkowski isomorphism provides a way to represent unitary and

non-unitary quantum processes as pure and mixed quantum states, respectively.
In Chapter 5, we show how this correspondence can be used to construct efficient
representations of unitary and general, completely positive quantum processes.
Determining a quantum process by estimating a corresponding quantum state is
known as ancilla-assisted process tomography (AAPT), where the terms tomography
and estimation are used synonymously. We show that this approach enables efficient
quantum process tomography by using existing efficient estimators for quantum
states. The feasibility of this approach is demonstrated for unitary processes by
means of numerical simulations including unitary circuits and local Hamiltonians.
The interaction range of a Hamiltonian is the maximal distance of subsystems

coupled by the Hamiltonian and we call a family of Hamiltonians local if its
interaction range is bounded by a constant which is independent of n. It was shown
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Summary

that the time evolution induced by a local Hamiltonian on a one-dimensional linear
chain can be computedwith resources exponential in evolution time but polynomial
in n. We extend this result to lattices of arbitrary spatial dimension in Chapter 6,
replacing the polynomial scaling with a pseudo-polynomial one. Furthermore,
we introduce a verification or certification method for a pure product state which
evolves under a local Hamiltonian and show that the necessary resources obey the
same scaling. This method relies on a so-called parent Hamiltonian, a concept from
the theory of matrix product states.
In Chapter 7, we discuss results from an ion trap experiment performed by Ben

Lanyon, Christine Maier and others. The experiment implements time evolution
under an approximately local Hamiltonian on 8 and 14 qubits. The resulting state
was determined with efficient estimation methods and the estimate was verified
with an efficient certification method. The certificate is again derived from a parent
Hamiltonian. The results confirm both the capability of the ion trap experiment to
act as a high-fidelity quantum simulator and the power of MPS-based methods for
state estimation and verification in real-world physical systems.
Tensors are central to representing quantum states, discrete multivariate proba-

bility distributions and many other data sets. In Chapter 8, we explore similarities
between an efficient quantum state estimationmethod and several othermethods for
tensor reconstruction. In this way, an efficient method for reconstructing low-rank
tensors is obtainedwhich is applicable to different tensor representations andwhich
combines advantages of several previous proposals.
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Chapter 1.

Basic concepts

Chance plays a fundamental role in quantum mechanics because measurement
outcomes are inherently random. Measurement outcomes are random samples from
a probability distribution and this distribution is determined by the measurement
configuration and the quantum state of the system. In deriving a quantum state or
any other information from the results of a quantum measurement, one estimates
one ormore parameters of a probability distribution from a random sample. For this
reason, this chapter starts by reviewing selected concepts from statistical estimation
theory. Afterwards, basic properties of quantum states and measurements as well
as relevant notation are introduced.

1.1. Elements of statistical estimation theory

Setting. The central object in statistical estimation theory1 is a joint probability
density function (PDF) p(x) � p(x1 , . . . , xm) of m random variables X1 , . . . ,Xm .
We will refer to the random variables mainly by their value x � (x1 , . . . , xm). We
consider xi ∈ Rn , i.e. x ∈ Rmn . At this point, the division of the mn values into
m vectors of n values is arbitrary and depends on the application: The PDF may
describe e.g. m repetitions of an experiment where the i-th run of the experiment
produces the observation xi ∈ Rn . A PDF has the following properties:

p(x) ≥ 0
∫
Rmn

p(x)dx � 1 x � (x1 , . . . , xm) (1.1)

1See e.g. Mood et al. 1974; Lehmann and Casella 2003; Jaynes 2003.
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Chapter 1. Basic concepts

Other basic objects of our interest are functions f , g : Rmn → R of observations
x ∈ Rmn . Their mean, covariance and variance are given by:

Ep( f ) :�
∫

f (x)p(x)dx (1.2a)

Vp( f , g) :� Ep( f g) − Ep( f )Ep(g) (1.2b)

Vp( f ) :� Vp( f , f ) (1.2c)

A quick inspection of the definitions shows that the mean is linear and that the
covariance is bilinear and symmetric in its arguments. For functions f , g , h : Rmn →
R and a scalar a ∈ R, we have:

E(a( f + g)) � a[E( f ) + E(g)] (1.3a)

V( f , g) � V(g , f ) (1.3b)

V(a f , g) � aV( f , g) (1.3c)

V( f + g , h) � V( f , h) + V(g , h) (1.3d)

Related to the division of x ∈ Rmn into m vectors of n entries, we also use functions
f , g : Rn → R. The sample mean of such a function f is a function Rmn → R,
x 7→ Ex( f )whose value is given by

Ex( f ) :� 1
m

m∑
i�1

f (xi), x � (x1 , . . . , xm) ∈ Rmn . (1.4a)

We define the sample covariance and variance2 of functions f , g : Rn → R in the
same way as the covariance and variance (Equation (1.2)):

Vx( f , g) :� Ex( f g) − Ex( f )Ex(g) (1.4b)

Vx( f ) :� Vx( f , f ) (1.4c)

The estimation problem. In estimation problems, it is assumed that the PDF p(x)
depends on a parameter θ which cannot be observed directly. The dependence is
indicated by a subscript, pθ(x) � p(x) (sometimes, we omit this subscript). The
goal is to estimate a function value g(θ) using a random sample x from pθ(x) and
prior information on the structure of pθ(x). We use the assumption that X1, . . . , Xm

2The sample variance is often defined to be m
m−1Vx( f ) because that is an unbiased estimator of Vp( f ).

We discuss this matter below.
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1.1. Elements of statistical estimation theory

are random variables which are independent and indentically distributed (i.i.d.). If
m corresponds to the number of independent repetitions of a given experiment,
assuming i.i.d. random variables X1, . . . , Xm is often justified. In the i.i.d. case, the
probability density factorizes into pθ(x) � p(1)θ (x1) . . . p(1)θ (xm) (cf. (1.8) below).

An estimator is a function ε : Rmn → R which takes a sample x from pθ and
returns an estimate ε(x) of g(θ). A commonly used measure for an estimator’s
accuracy is given by the mean squared error (MSE):

MSE(ε) :� Epθ [(ε − g(θ))2] (1.5)

The MSE is given by the squared difference between the estimated value ε(x) and
the true value g(θ), averaged over pθ. A short computation shows that the MSE is
the sum of two contributions:

MSE(ε) � [b(ε)]2 + v(ε) b(ε) :� Epθ (ε) − g(θ) v(ε) :� Vpθ (ε) (1.6)

The two terms b(ε) and v(ε) are called the bias and variance of the estimator ε. The
bias is sometimes also called the estimator’s systematic error.3 An estimator is called
unbiased if its bias is equal to zero. In general, it is desirable to use an estimatorwhich
has minimal MSE or which minimizes another reasonable measure of estimation
accuracy. It is well possible that a biased estimator achieves a smaller MSE than a
given unbiased estimator and it is also possible that no unbiased estimator exists
for a particular problem.4 Despite the negative connotations of the word biased, a
biased estimator may be the best or even the only choice.

Suppose that for m ∈ {1, 2, 3, . . . }, there is a probability density pθ,m of m random
variables and a corresponding estimator εm . Such a sequence (εm)m of estimators
is called consistent if

lim
m→∞MSE(εm) � 0. (1.7)

If a sequence of estimators is consistent, their MSE vanishes as m increases. If m
corresponds to the number of repetitions of an experiment, an estimator should
be consistent because we want to obtain estimates with smaller expected error for
larger numbers of repetitions. In the following, we discuss two examples in the
i.i.d. setting, which is a natural assumption for m repetitions of an experiment.

3Lehmann and Casella 2003; Schwemmer et al. 2015.
4E.g. Shang et al. 2014. See also Section 3.2.1.
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Chapter 1. Basic concepts

Simple examples in the i.i.d. setting. Here, we introduce two simple and well-
known estimators which are used in Chapter 7. In this section, we denote the
common PDF by pm(x) :� pθ(x), x � (x1 , . . . , xm) ∈ Rmn . Since the random
variables X1, . . . , Xm are assumed to be i.i.d., the distribution pm(x) factorizes into

pm(x) � p(x1)p(x2) . . . p(xm). (1.8)

We restrict our attention to estimands of the following form: Given a function
g : Rn → R, we want to estimate the mean

g0 :� Ep(g). (1.9)

An estimator of g0 is given by the sample mean,

ε(x) :� Ex(g). (1.10)

The estimator from the last equation, obtained by inserting the function g into the
sample mean Ex( · ), is called a plug-in estimator.5 The estimator ε has the following
properties:

Epm (ε) � Ep(g), (1.11a)

MSE(ε) � v(ε) � Vpm (ε) � Vpm (Ex(g)) �
Vp(g)

m
. (1.11b)

The properties can be obtained using Lemma 1.1 below. Equation (1.11) shows that
the estimator ε is unbiased. In addition, it is consistent if Vp(g) is finite.

If an estimator is given by a sample mean of a function as in Equation (1.10), we
call v(ε) and

√
v(ε) the variance of the mean and the standard deviation of the mean. As

an estimator for v(ε), we propose

vε(x) :� 1
m − 1Vx(g). (1.12)

The following Lemma 1.16 shows that vε(x) is an unbiased estimator of the variance
v(ε) as follows:

Epm (vε) �
1

m − 1Epm (Vx(g)) � Vpm (Ex(g)) � Vpm (ε) � v(ε) (1.13)

Note that
√

vε(x) is a biased estimator of the standard deviation of the mean
√

v(ε).
5See Section 4, in particular Eqs. (4.13) and (4.17) in Section 4.3, of Efron and Tibshirani (1993).
6See e.g. Lehmann and Casella (2003). The lemma is reproduced from the author’s contributions to
Lanyon, Maier, et al. (2017).
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Lemma 1.1 For two functions f , g : Rn → R, we have

Epm [Ex( f )] � Ep( f ), (1.14a)

Vpm [Ex( f ),Ex(g)] � 1
m
Vp( f , g), (1.14b)

1
m
Vp( f , g) � 1

m − 1Epm [Vx( f , g)]. (1.14c)

Proof First equation:

Epm [Ex( f )] �
∫

1
m

m∑
i�1

f (xi)p(x1) . . . p(xm)dx1 . . . dxm �
m
m
Ep( f ). (1.15)

For the second and third equation, we first compute

Epm [Ex( f )Ex(g)] �
∫

1
m2

m∑
i�1

m∑
j�1

f (xi)g(x j)p(x1) . . . p(xm)dx1 . . . dxm

�
m
m2Ep( f g) + m2 − m

m2 Ep( f )Ep(g)

�
1
m
Vp( f , g) + Ep( f )Ep(g). (1.16)

This provides

Vpm [Ex( f ),Ex(g)] � Epm [Ex( f )Ex(g)] − Epm [Ex( f )]Epm [Ex(g)]
�

1
m
Vp( f , g) (1.17)

and

Epm [Vx( f , g)] � Ep( f g) − Epm [Ex( f )Ex(g)] � (1 − 1
m
)Vp( f , g), (1.18)

which completes the proof. �

1.2. Notation
Definitions are indicated by the notation a :� b2 or b2 �: a, which are both taken
to mean that a is defined as b2. Given three sets A, B and C, the Cartesian
product is defined as A × B × C :� {(a , b , c) : a ∈ A, b ∈ B, c ∈ C}. Assuming
suitable equivalence relations, the Cartesian product becomes associative, i.e.
A × (B × C) � (A × B) × C � A × B × C. Powers of sets are given by A1 :� A and
An :� A × An−1. The notation A ⊂ B and A ⊆ B both denote x ∈ A ⇒ x ∈ B

7



Chapter 1. Basic concepts

whereas strict subsets are indicated by A ( B which means that both A ⊂ B and
A , B hold. The expression C � A Û∪ B implies that C � A ∪ B and A ∩ B � ∅.
The sets {Bi : i} are called a partition of the set A if A � Û⋃i Bi . Let A, B be sets
and f : A → B a map. For C ⊂ A, the restriction f |C is defined as f |C : C → B,
( f |C)(x) :� f (x). We use the notation [m : n] :� {m ,m + 1, . . . , n} and [n] :� [1 : n].
The complex conjugate of a complex number a ∈ C is denoted by a.

Given two functions f and g, we write f � O(g) if there are positive constants
c1, c2, c3 such that f (n) ≤ c1 g(c2n) holds for all n ≥ c3. We say that f is at
most polynomial in n and write f � O(poly(n)) if there is a polynomial g such that
f � O(g). A function f is called at most exponential in n, denoted by f � O(exp(n)), if
there are constants c1 , c2 > 0 such that f (n) ≤ c1 exp(c2n) holds for all n. A function
f (n) is called quasi-polynomial in n if f (n) � O(exp(c1(log n)c2)) � O(nc1(log n)c2−1)
with constants c1 , c2 > 0. A function is called poly-logarithmic in n if f (n) �
O((log n)c1)with a positive constant c1.
The dimension of a vector space V is denoted by dim(V) or dV . Most vector

spaces are finite-dimensional and infinite-dimensional vectors spaces are not treated
rigorously. Most vector spaces are complex vector spaces but real vector spaces
occur as well. Vectors from a vector space V are denoted by x ∈ V or, in bra–ket
notation, by |x〉 :� x ∈ V . Sometimes, the differing notation x � |x〉〈x | is used, but
this is indicated. An inner product on V is denoted by 〈x , y〉 or 〈x |y〉 :� 〈x , y〉 and
satisfies 〈x , y〉 � 〈y , x〉 and 〈ax + b y , z〉 � a〈x , z〉 + b〈y , z〉, where x , y , z ∈ V and
a , b ∈ C. An inner product induces the norm ‖x‖ :�

√
〈x , x〉.

The set of bounded, linear maps from a vector space V to another vector space
W is denoted by B(V ; W) and B(V) :� B(V ; V) is the set of bounded, linear
operators on V . The set B(V ; W) is a vector space and a basis of B(V ; W) is called
a matrix basis or operator basis. The sets of linear maps and operators on tensor
products of vector spaces V1, V2, W1, W2 may be denoted as B(V1 ,V2; W1 ,W2) :�
B(V1 ⊗ V2; W1 ⊗ W2) and B(V1 ,V2) :� B(V1 ⊗ V2). In the bra–ket notation, the
notations |uv〉 :� |uv〉1,2 :� |u〉1 ⊗ |v〉2 :� |u〉 ⊗ |v〉 all denote the tensor product of
|u〉 ∈ V1 and |v〉 ∈ V2.
The (algebraic) dual space is V∗ :� B(V ;C), the dual or Hermitian adjoint vector

of x is denoted by x∗ ∈ V∗ and it is defined in terms of the inner product as
x∗(y) :� 〈x , y〉. The bra–ket notation for dual vectors is 〈x | :� x∗. Given inner
product spaces V and W , the (Hermitian) adjoint of a linear map A ∈ B(V ; W)
is denoted by A∗ ∈ B(W ; V) and it is defined by the property 〈A∗y , x〉 � 〈y ,Ax〉
for all x ∈ V and y ∈ W . The notation A† for the adjoint is not used because it
may be confused with the pseudoinverse A+ (see below). A linear operator A
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1.2. Notation

is called self-adjoint or Hermitian if it satisfies A � A∗. The sets of (trace-free)
Hermitian linear operators on V are denoted by BH(V) :� {A ∈ B(V) : A � A∗}
and B0(V) :� {A ∈ BH(V) : Tr(A) � 0}. The sets BH(V) and B0(V) are a real vector
spaces. A linear operator A ∈ B(V) on a complex vector space V is called positive
semidefinite (positive definite) if 〈x ,Ax〉 is real and 〈x ,Ax〉 ≥ 0 (〈x ,Ax〉 > 0) holds
for all x ∈ V . A positive semidefinite linear operator on a complex vector space is
also Hermitian.7 The image (range) and kernel of a linear map A ∈ B(V ; W) are
im(A) :� {Ax : x ∈ V} andker(A) :� {x ∈ V : Ax � 0}. The orthogonal complement
of a vector subspace Z ⊂ V is given by Z⊥ :� {x ∈ V : ∀y ∈ Z : 〈x , y〉 � 0}. A
linear map A ∈ B(V ; W) is a partial isometry if it satisfies ‖Ax‖ � ‖x‖ for all
x ∈ [ker(A)]⊥.8 A linear operator A ∈ B(V) is the orthogonal projection onto a
vector subspace Z ⊂ V if [ker(A)]⊥ � Z and Ax � x for all x ∈ Z. A linear operator
U ∈ B(V) is unitary if ‖Ux‖ � ‖x‖ for all x ∈ V . It satisfies UU∗ � U∗U � idV ,
where idV is the identity map on V .

Vectors from Cn are treated as column vectors (or matrices from Cn×1). On
V � Cn , the standard inner product 〈x , y〉 � ∑n

i�1 xi yi is usually used. Here, the

induced norm is the vector 2-norm ‖x‖2 �

√∑n
i�1 |xi |2. In this case, adjoint vectors

and adjoint linear maps are given by the conjugate transpose vectors and maps.
The n-by-n identity matrix is denoted by 1n .

Any matrix A ∈ Cm×n admits a singular value decomposition (SVD)9

A � USV∗ , S ∈ Cr×r , U ∈ Cm×r , V ∈ Cn×r (1.19)

where r � rk(A) is A’s rank. The matrix S is positive definite and diagonal. Its
entries S � diag(σ1 , . . . , σr) are called singular values of A and we take them to be
ordered non-increasingly. If necessary, we set σi :� 0 for the further singular values
with i > r. The matrices U and V are partial isometries satisfying U∗U � V∗V � 1r .
Thematrices U and S can be obtained from an eigendecomposition of the Hermitian
matrix AA∗ � US2U∗. The thirdmatrix V could then be obtained as V∗ � S−1U∗A.10

Equation (1.19) is called a compact SVD. In contrast, a non-compact SVD is given by

A � USV∗ , S ∈ Cm×n , U ∈ Cm×m , V ∈ Cn×n . (1.20)

7Horn and Johnson 1991a, Section 7.1.
8E.g. Horn and Johnson 1991b, Definition 3.1.7.
9Eckart and Young 1936. See also Horn and Johnson 1991a, Section 7.3, Horn and Johnson 1991b,
Chapter 3 or Bhatia 1997, Section I.2.

10Due to the matrix inverse, this approach can be numerical unstable if small non-zero singular values
occur.
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Chapter 1. Basic concepts

Here, the only non-zero entries of S are Sii � σi for i ∈ {1 . . . r} and the matrices U
and V are unitary.
The set of matrices Cm×n is a vector space and an inner product on Cm×n is the

Hilbert–Schmidt inner product 〈A, B〉 :� Tr(A∗B), A, B ∈ Cm×n . Given a matrix
A ∈ Cm×n , the trace norm, Frobenius norm and operator norm are defined as11

‖A‖(1) :�
r∑

i�1
σi , (1.21a)

‖A‖(2) :� ‖A‖Fr :�

√√ r∑
i�1

σ2
i , (1.21b)

‖A‖(∞) :� σ1. (1.21c)

These three norms are the so-called Schatten-p-norms for p ∈ {1, 2,∞}. They
are unitarily invariant, which means that ‖UAV ‖ � ‖A‖ holds for all unitary
U ∈ B(Cm) and V ∈ B(Cn). Unitarily invariant matrix norms are submultiplicative
because they satisfy ‖ABC‖ ≤ ‖A‖(∞)‖B‖‖C‖(∞) ≤ ‖A‖‖B‖‖C‖.12 Note that the
Hilbert–Schmidt inner product induces the Frobenius norm, i.e. ‖A‖(2) � Tr(A∗A).
The trace norm is elsewhere also called nuclear norm and denoted by ‖ · ‖∗ :� ‖ · ‖(1).
The trace distance is D(M,N) :� 1

2 ‖M − N‖(1) where M,N ∈ Cm×n .
The Moore–Penrose pseudoinverse A+ ∈ Cn×m of A ∈ Cm×n is the only matrix

which satisfies the following four equations:13

AA+A � A A+AA+
� A+ (A+A)∗ � A+A (AA+)∗ � AA+ (1.22)

We refer to A+ as the pseudoinverse of A. If A � USV∗ is a compact SVD, the
pseudoinverse is A+ � VS−1U∗. The pseudoinverse has the properties AA+ � Pim(A)
and A+A � P(ker(A))⊥ , where Pim(A) and P(ker(A))⊥ denote the orthogonal projections
onto A’s image im(A) and onto the orthogonal complement of its null space ker(A).
The adjoint and the pseudoinverse satisfy (A∗)∗ � A, (A+)+ � A and (A∗)+ � (A+)∗.
The equivalent relations im(A) � [ker(B)]⊥ and ker(A) � [im(B)]⊥ hold for the
adjoint B � A∗ and the pseudoinverse B � A+. Given a matrix A, we define
A+
τ :� (Aτ)+ and Aτ is given by A with singular values smaller than or equal to τ

replaced by zero.

11E.g. Horn and Johnson 1991b, Section 3.5 or Bhatia 1997, Section IV.2.
12Bhatia 1997, Proposition IV.2.4.
13Moore 1935, 1939; Penrose 1955; Rado 1956. See also Greville 1966.
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1.3. Quantum states

1.3. Quantum states
The central object of the present work is the state of a quantum system which
consists of a finite number of n distinguishable subsystems. For the most part,
we consider finite-dimensional systems such that the Hilbert space of system
i ∈ {1 . . . n} is isomorphic toHi :� Cdi where di < ∞ is subsystem i’s dimension.
The set Λ :� [n] � {1 . . . n} refers to the complete system and a subset t ⊂ Λ refers
to a subsystem composed of the given basic subsystems. A subsystem k ∈ Λ is also
called a site and a subsystem t ⊂ Λmay be called a supersite. The Hilbert space of
t ⊂ Λ and its dimension are denoted by

Ht :�
⊗

i∈t

Hi dt :�
∏
i∈t

di (1.23)

The state of a quantum system with Hilbert space H is described by a density
matrix and the set of all such density matrices is

D(H) :�
{
ρ ∈ B(H) : ρ is positive semidefinite and Tr(ρ) � 1

}
(1.24)

If ρ ∈ D(HΛ) is a density matrix of the complete system, the reduced or marginal
state ρt of t ⊂ Λ is

ρt :� Trtc (ρ) (1.25)

where tc :� Λ \ t. The so-called partial trace over t ⊂ Λ is defined as

Trt :� T(t)1 ⊗ · · · ⊗ T(t)n , T(t)i �

{
B(Hi) → B(Hi), σ 7→ σ if i < t ,

B(Hi) → C, σ 7→ Tr(σ) if i ∈ t .
(1.26)

A quantum state is called pure or mixed if the rank of the density matrix equals or
exceeds one, respectively. We setH (1) :� {|ψ〉 ∈ H : 〈ψ |ψ〉 � 1}. For any density
matrix ρ ∈ D(H) of unit rank, there is a vector |ψ〉 ∈ H (1) such that ρ � |ψ〉〈ψ |.
Accordingly, a pure state is described by a unit rank density matrix or by a state
vector.

In the following, we discuss bipartite correlations in quantum states. For this
purpose, we restrict to n � 2. There are no correlations between subsystems 1 and 2
in a given state if the density matrix is a tensor product ρ � σ1 ⊗ σ2, σi ∈ D(Hi),
i ∈ {1, 2}. For pure states, this is equivalent to |ψ〉 � |φ1〉 ⊗ |φ2〉, |φi〉 ∈ H (1)i .
Correlations between subsystems 1 and 2 exist in all density matrices and state
vectors which are not of this form.

11



Chapter 1. Basic concepts

The Schmidt rank14 of a general vector |ψ〉 ∈ H12 or state vector |ψ〉 ∈ H (1)12 is

SR(1 : 2)|ψ〉 :� min
{
r : |ψ〉 �

r∑
j�1

��x(1)j

〉 ⊗ ��x(2)j

〉
,

��x(i)j

〉 ∈ Hi , i ∈ {1, 2}
}
. (1.27)

The operator Schmidt rank (OSR)15 of a linear operator ρ ∈ B(H12) or a density
matrix ρ ∈ D(H12) is

OSR(1 : 2)ρ :� min
{
r : ρ �

r∑
j�1

X(1)j ⊗ X(2)j , X(i)j ∈ B(Hi), i ∈ {1, 2}
}
. (1.28)

Note that the operator Schmidt rank is not the same as the so-called Schmidt
number.16 Dividing a multipartite system into two parts, bipartite OSRs such as
OSR(23 : 145)ρ are already covered by the given definition. Note that OSR(1 :
2)|ψ〉〈ψ | � [SR(1 : 2)|ψ〉]2. For |ψ〉 , 0 and ρ , 0, we have

SR(1 : 2)|ψ〉 ∈ {1, . . . ,min{d1 , d2}}, (1.29)

OSR(1 : 2)ρ ∈ {1, . . . ,min{d2
1 , d

2
2}}. (1.30)

Both Schmidt ranks share the property that they assume their minimal value if
and only if there are no correlations between subsystems 1 and 2. If the Schmidt
ranks’ logarithms are taken, the minimal value zero is assumed if and only if there
are no correlations in a given state. It can be shown that the Schmidt ranks are
non-increasing under local operations.17 This property justifies using the Schmidt
ranks or their logarithms as correlations measures.18 For any density matrix or state
vector, there is an arbitrarily close vector or matrix of maximal (operator) Schmidt
rank. A stable measure of correlations can nevertheless be obtained by considering
minimal ranks over small neighbourhoods in some distance measure.19

14See e.g. Nielsen and Chuang 2007, where the Schmidt rank of a pure state is called Schmidt number.
15Nielsen et al. 2003; Datta and Vidal 2007.
16The Schmidt number of a density matrix ρ ∈ D(H12) is defined in terms of decompositions
ρ �

∑
i pi |φi〉〈φi | where pi ≥ 0,

∑
i pi � 1 and |φi〉 ∈ H (1)12 (not necessarily orthogonal). The Schmidt

number of ρ is equal to r if there is at least one |φi〉 which has Schmidt rank r in any decomposition
and if there is a decomposition such that all |φi〉 have Schmidt rank at most r (Terhal and Horodecki
2000).

17A local operation is given by a completely positive, trace non-increasing map from B(B(Hi)) and
such maps are discussed in some detail in Section 5.1. For the OSR, see Holzäpfel et al. 2018,
Corollary 11. The Schmidt rank of a pure state is non-increasing even if local operations and classical
communication (LOCC) are allowed (Nielsen 1999, Theorem 1).

18Cf. e.g. Henderson and Vedral 2001.
19Cf. e.g. Renner 2005.
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At this point, a comment on different types of correlations is in order. Generally,
correlations can be divided into classical correlations and quantum correlations but
there are different possibilities where to draw the line between the two categories.
The Schmidt rank quantifies quantum entanglement because this is the only type
of correlations in pure states; entanglement is a (or even the) form of quantum
correlations. The operator Schmidt rank, on the other hand, is called a measure
of total (classical and quantum) correlations. For mixed states, the distinction
between classical and quantum correlations is achieved by defining a set of all
states containing only classical correlations and no quantum correlations at all. All
remaining states then contain at least some quantum correlations. The first choice
for the set of purely classically correlated states is the set of separable states; a
separable state is a state which can be written as ρ �

∑
j p jσ

(1)
j ⊗ σ(2)j where {p j} is a

probability distribution and where σ(i)j ∈ D(Hi).20 All non-separable states contain
entanglement and with this choice, entanglement is the only type of quantum
correlations. An alternative choice for the set of purely classically correlated states
is the set of classical-classical states which contains all states which can be written
as ρ �

∑
jk p jk

��φ(1)j

〉〈φ(1)j

��⊗ ��φ(2)k

〉〈φ(2)k

��where
��φ(i)j

〉 ∈ Hi are orthonormal and where
{p jk} is a bivariate probability distribution.21 With this choice, all separable states
which are not in the set of classical-classical states do not contain entanglement
but some other form of quantum correlations referred to as quantum discord.22

The operator Schmidt rank assumes its minimal value only for product states
which do not contain any correlations at all. Therefore, the operator Schmidt rank
quantifies total (classical and quantum) correlations independently of the choice
for the division between quantum and classical correlations.23

1.4. Quantum measurements

There are two important differences betweenmeasurements in a classical system and
measurements in quantum mechanics: First, the outcome of a quantum mechanical
measurement is described by a probability distribution over all possible outcomes of
the measurement and this holds true even for a perfect measurement on a perfectly

20Werner 1989.
21E.g. Piani et al. 2008, and references therein.
22Henderson and Vedral 2001; Ollivier and Zurek 2002.
23This is a property which the operator Schmidt rank shares with the quantum mutual information,

which is also a measure of total (classical and quantum) correlations (Cerf and Adami 1997; Groisman
et al. 2005).
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Chapter 1. Basic concepts

Table 1.1: Properties of projective measurements {Pi}, generalized measurements {Mi}
and positive operator-valued measures {Ni}. The table provides the probability pi for
obtaining outcome i ∈ {1, . . . , µ} and the state ρi after outcome i has been obtained.

Properties pi ρi Relation

Pi ∈ B(A) Pi P j � δi j Pi
∑µ

i�1 Pi � 1 Tr(ρPi) PiρPi/pi –

Mi ∈ B(A; B) –
∑µ

i�1 M∗i Mi � 1 Tr(MiρM∗i ) MiρM∗i /pi Mi � Pi

Ni ∈ B(A) Ni ≥ 0
∑µ

i�1 Ni � 1 Tr(ρNi) – Ni � M∗i Mi

controlled system. As a consequence, any measurement needs to be repeated many
times to obtain meaningful statistics and statistical estimation plays a central role in
inferring properties or the complete state of a quantum system from measurements.
Second, quantum mechanical measurements either have the potential to strongly
perturb or even destroy the state of the system or they are limited to delivering
very restricted amounts of information on the system. This property implies that
repeated measurements are only possible if the system in question is prepared
anew for each measurement, providing many identically prepared copies of the
system in a given state, one for each repetition of the measurement.
In the following, we discuss the formal description of quantum measurements

carried out on a state ρ ∈ D(HA) of a system with Hilbert space HA of finite
dimension dA < ∞. For simplicity, we assume a finite number µ of distinguishable
outcomes of themeasurement. The discussion can be generalized to an uncountably
infinite number of distinguishable outcomes and infinite-dimensional Hilbert
spaces; we discuss such measurements non-rigorously in Section 4.2 below. The
µ distinguishable outcomes of a given measurement are denoted by i ∈ {1 . . . µ}.
By pi , we denote the probability that outcome i will be obtained and the quantum
state of the system after outcome i has been obtained is denoted by ρi . We will
discuss projective measurements, generalized measurements and measurements
described by a positive operator-valued measure (POVM). Table 1.1 provides an
overview of their properties.

The most basic quantum mechanical measurement is a projective measurement. It
is specified by a sequence of mutually orthogonal projections Pi which determine
outcome probabilities via pi � Tr(ρPi). The projections must sum to the identity,
i.e.

∑µ
i�1 Pi � 1, which ensures that

∑µ
i�1 pi � 1 holds. The state after outcome i has

been obtained is ρi � PiρPi/pi ∈ D(HA). The maximal number of distinguishable
outcomes of a projective measurement is µ ≤ dA.
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1.4. Quantum measurements

A Hermitian linear operator H ∈ B(HA) is called an observable and its eigende-
composition specifies a projective measurement: The eigendecomposition can be
written as H �

∑µ
i�1 λiPi where λ1 > λ2 > . . . are the eigenvalues of H without

repetitions of degenerate eigenvalues. The eigenprojections {Pi} form a projective
measurement and measurement outcomes are specified by i ∈ {1, . . . , µ} or, equiv-
alently, by an eigenvalue λi of H. The expectation value of H in the state ρ is given
by the mean eigenvalue, 〈H〉ρ :�

∑µ
i�1 piλi , and we observe that 〈H〉ρ � Tr(ρH)

holds. Conversely, each projection Pi is an observable whose expectation value is
the outcome probability of outcome i since pi � Tr(ρPi) � 〈Pi〉ρ holds. (The same
holds true for the elements of a positive operator-valued measure (POVM).)
As mentioned already, the maximal number of outcomes of a projective mea-

surement is µ ≤ dA and the state after measurement is ρi ∈ B(HA). A generalized
measurement is more general in that it allows for an arbitrary, even infinite number
of outcomes and it also allows the state after measurement to belong to a different
systemwithHilbert spaceHB , i.e. ρi ∈ B(HB). A generalized measurement is specified
by a sequence of linear maps Mi ∈ B(HA;HB). Outcome probabilities and states
after measurement are given by pi � Tr(MiρM∗i ) and ρi � MiρM∗i /pi , respectively.
The property

∑
i M∗i Mi � 1 ensures

∑
i pi � 1.

Measurements described by a positive operator-valued measure (POVM) are as
general as generalized measurements but they omit the description of the system
state after measurement. This is convenient if the state after measurement is
discarded because the system is prepared again for the next repetition of the same
measurement. A POVM is given by a sequence of positive-semidefinite linear
operators Ni ∈ B(A) which satisfy

∑
i Ni � 1 and specify outcome probabilities

pi � Tr(ρNi).
Table 1.1 summarizes the similarities anddifferences between thementioned types

of measurements. Note that any projective measurement is also a valid generalized
measurement (set Mi :� Pi) and that a POVM can in turn be constructed from a
generalized measurement via Ni :� M∗i Mi .
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Chapter 2.

Tensor representations

State vectors and density matrices of n distinguishable quantum systems with
dimensions (d1 , . . . , dn) correspond to tensors with n indices and shape d1× · · · × dn

or d2
1 × · · · × d2

n , respectively. As the number of entries grows exponentially with n,
efficient tensor representations are urgently needed. For this reason, we introduce
the matrix product state and operator tensor representations in this chapter.1 They
are also known as tensor train representation and the last section of this chapter
briefly touches upon so-called projected entangled pair states, a generalization to
higher-dimensional lattices.
A tensor is a collection of complex numbers organized by n indices:

M ∈ Cd1×···×dn , Mi1 ,...,in ∈ C, ik ∈ {1, . . . , dk}, k ∈ {1, . . . , n}. (2.1)

The number n is also called the number of modes of the tensor. The tensor M could
e.g. contain the joint probability distribution of n discrete random variables or the
components of a finite-dimensional quantum state vector or density matrix in some
vector or matrix basis. In the case of uniform dimensions d :� d1 � · · · � dn , the
tensor M has dn components and this exponential growth of the storage cost with
the number of modes is called the curse of dimensionality.2

The practical limitations imposed by the curse of dimensionality are illustrated
by the following example. A contemporary personal computer with random access
memory (RAM) size of 8 GiB (� 233 bytes) has the capability to store 230 real
numbers in double precision (8 bytes per number), which equals the number of
entries of a tensor with d � 4 and n � 15. Even a supercomputer with 2 PiB
(� 251 bytes) distributed RAM3 could only store a tensor of size d � 4 and n � 24.
1Parts of Section 2.2.1 reproduce parts of the original publication Holzäpfel et al. 2018 with the
permission of AIP Publishing. See Footnote 15 on Page 21.

2E.g. Grasedyck et al. 2013.
3Top500 supercomputer list 2018.
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Chapter 2. Tensor representations

Table 2.1: Tensor notation and terminology. Maximal local and bond dimensions are denoted
by d � maxk dk and D � maxk Dk . In the present work, the physics notation is used.

Names Physics Mathematics

Tensor
Multidimensional array

T ∈ Cd1×···×dn T ∈ Cn1×···×nd

Shape
Size

d1 × · · · × dn n1 × · · · × nd

Mode k ∈ {1 . . . n} k ∈ {1 . . . d}
Index ik ∈ {1 . . . dk } ik ∈ {1 . . . nk }
Component
Entry

Ti1 i2 ...in ∈ C Ti1 i2 ...id ∈ C

Number of modes/indices
Dimension of the tensor
Order/degree/rank of the tensor

n d

Size of mode/index k
Dimension of mode/index k
Local dimension k

dk nk

Maximal mode/index size
Maximal local dimension

d � max
k∈{1...n}

dk n � max
k∈{1...d}

nk

Bond dimension
Representation rank

Dk rk

The real part of a quantum density matrix of only 24 qubits corresponds to such a
tensor. Storing all components of a tensor becomes infeasible quickly as the number
n of modes grows. Manifold applications for n-mode tensors call for efficient
methods for storing and processing tensors. We call a given method efficient if its
cost increases at most polynomially with n.

The basis for any efficient tensor method is an efficient tensor representation, i.e.
a scheme which specifies all components of a tensor with storage cost polynomial
in n. The storage cost of a tensor representation is usually determined by a
suitably defined tensor rank and several concepts of tensor rank are reviewed in
Section 2.1. Section 2.2 then continues by presenting the MPS/TT representation
and it is divided into three subsections covering basic properties, examples and
efficient methods. The MPS/TT representation is limited in that it assumes a one-
dimensional structure. Consequently, matrix product states were very successful
in applications to one-dimensional quantum systems but are not well-suited for
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quantum states of higher-dimensional quantum lattice systems. An appropriate
extension of the MPS/TT representation is given by the PEPS representation which
is briefly discussed in Section 2.3.

The non-uniform terminology of tensor properties can be summarized as follows.
The tensor T from Equation (2.1) is said to have size or shape d1 × · · · × dn . The
complex (or real) numbers Ti1 ...in are the components or entries of the tensor. The
number n has many names: It is called the number of modes, the number of indices or
the dimension of the tensor. It is also called the rank, degree or order of the tensor
(note that both n and rkCP(T) defined in (2.3) may be called tensor rank). The size or
dimension of the k-th mode (the k-th index) is given by dk . The shape of a tensor is
often taken as d1 × · · · × dn (as above) or as n1 × · · · × nd (with n and d swapped).
The former convention is frequently used in quantum physics literature4 while the
latter convention is more prevalent in the literature on numerical mathematics.5

The discussed terminology and the two conventions are summarized in Table 2.1.
(The bond dimension or representation rank is introduced in Section 2.2 below.)

2.1. Tensor rank

To prepare our discussion of tensor representations, this section introduces dif-
ferent notions of tensor rank, which are related the storage cost of corresponding
representations. We shall explain the basic idea of a tensor representation at the
example of a low-rank matrix. Consider a matrix A ∈ Cd1×d2 of rank r :� rk(A). The
matrix rank can be defined as follows:6

rk(A) � min
{
r : A �

r∑
j�1

x(1)j

(
x(2)j

)∗
, x(k)j ∈ Cdk , k ∈ {1, 2}

}
. (2.2)

This definition implies that there are matrices B ∈ Cd1×r , C ∈ Cr×d2 which represent
the matrix as A � BC.7 The matrix A can be considered to have low rank if its rank
is much smaller than the number of rows and columns in the matrix; in this case,
the storage cost for the representation, (d1 + d2)r, is much smaller than the storage
cost d1d2 for the full matrix, i.e. r(d1 + d2) � d1d2.

4E.g. Vidal 2004.
5E.g. Oseledets 2011.
6Use e.g. an SVD (Section 1.2) and rk(BC) ≤ min{rk(B), rk(C)} (e.g. Horn and Johnson 1991a, 0.4.5(c)).
7The matrices B and C can be obtained e.g. from an SVD of the matrix. Cf. Section 1.2.
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Direct generalization of (2.2) to tensors results in the following definition:

rkCP(M) :� min
{
r : M �

r∑
j�1

x(1)j ⊗ · · · ⊗ x(n)j , x(k)j ∈ Cdk , k ∈ {1 . . . n}
}
. (2.3)

The quantity rkCP(M) is called the CP rank or just tensor rank of M. CP is an abbrevi-
ation for CANDECOMP/PARAFAC or canonical polyadic. The tensor representation
defined in (2.3) is called the CP decomposition and its storage cost is only drn,
where d � d1 � · · · � dn and r � rkCP(M). There is an extensive amount of work
concerning the CP decomposition but it suffers from the fact that computing the
CP rank is NP-hard.8 In this work, we will not use the CP decomposition.
An alternative definition of tensor rank is obtained by considering a subset

t ⊂ Λ of all modes Λ :� {1 . . . n}. The t-matricization or t-unfolding of a tensor
M is denoted byMt(M) ∈ Cdt×d′t . It is the matrix with dt :�

∏
k∈t dk rows and

d′t :�
∏

k∈Λ\t dk columns which has the same entries as M.9 The t-unfolding rank or
t-rank of M is now defined as the matrix rank of its t-matricization:10

rkt(M) :� rk(Mt(M)) (2.4)

Different selections of subsets t ⊂ Λ now are related to different tensor represen-
tations such as the Tucker representation, the MPS/TT representation and the
hierarchical Tucker representation.11 The MPS/TT representation is introduced
in the next section and plays central role in this work. The other mentioned
representations occur in Chapter 8.

2.2. Matrix product states and tensor trains (MPS/TT)

2.2.1. Definitions and basic properties

This section summarizes the main properties of the matrix product state (MPS) or
tensor train (TT) tensor representations. Note that Section 2.2.2 discusses the repre-
sentation in greater detail, introduces a graphical notation for the representations
discussed here and also discusses related numerical algorithms.

8Håstad 1990; Kolda and Bader 2009.
9E.g. Grasedyck et al. 2013. A more formal definition is provided in Definition 8.10.
10This terminology is used at least for t � {k}, k ∈ Λ by Kolda and Bader (2009) as well as Grasedyck

et al. (2013).
11Grasedyck et al. 2013.

20



2.2. Matrix product states and tensor trains (MPS/TT)

An MPS/TT representation12 of a tensor T ∈ Cd1×···×dn is given by

Ti1 ...in � G1(i1)G2(i2) . . .Gn(in), Gk(ik) ∈ CDk−1×Dk (2.5)

where ik ∈ {1 . . . dk}, k ∈ Λ :� {1 . . . n} and D0 � Dn � 1.13 The integers Dk are
called bond dimensions or representation ranks. The representation’s storage cost is
proportional to ndD2, where d � maxk dk and Dk � maxk Dk , which is linear in n if
D is independent of n.
The tensor T from (2.5) has unfolding ranks rk[k](T) ≤ Dk , k ∈ {0 . . . n} where
[k] � {1 . . . k}. Conversely, any tensor T admits an MPS/TT representation with
bond dimensions Dk � rk[k](T).
The MPS/TT tensor representation can be used to represent quantum state

vectors, quantum density matrices and to purifications14 of density matrices, which
we set out to do in the following.15 Using the MPS/TT representation to represent
quantum state vectors constitutes the MPS representation in a strict sense. Let{��φ(k)ik

〉}dk
ik�1 ⊂ Hk be an orthonormal basis of the k-th quantum system. An MPS

representation of a pure state |ψ〉 ∈ H (1)
Λ

is given by〈
φ(1)i1

. . . φ(n)in

��ψ〉
� G1(i1)G2(i2) . . .Gn(in) (2.6)

where D0 � Dn � 1, Gk(ik) ∈ CDk−1×Dk and ik ∈ {1, . . . , dk}.
The matrix product operator (MPO) representation16 is obtained by applying

the MPS/TT representation to linear operators ρ ∈ B(HΛ) or density matrices
ρ ∈ D(HΛ) in the following way:〈

φ(1)i1
. . . φ(n)in

�� ρ ��φ(1)j1
. . . φ(n)jn

〉
� G1(i1 , j1)G2(i2 , j2) . . .Gn(in , jn) (2.7)

where D0 � Dn � 1, Gk(ik , jk) ∈ CDk−1×Dk and ik , jk ∈ {1, . . . , dk}. Alterna-
tively, an MPO representation may be given in terms of operator bases: Let
12Fannes et al. 1992; Perez-Garcia et al. 2007; Schollwöck 2011; Oseledets 2011.
13A related representation is obtained by letting D0 � Dn be an arbitrary integer and by setting

Ti1 ...in � Tr(G1(i1)G2(i2) . . .Gn(in)). This representation has been called matrix product state with
periodic boundary conditions (PBC) (in contrast to so-called open boundary conditions (OBC) in (2.5), cf.
Perez-Garcia et al. 2007). Another name is tensor chain (e.g. Espig et al. 2012).

14Apurificationof ρ ∈ D(HA) is any |ψ〉 ∈ HA⊗HB with 〈ψ |ψ〉 � 1 and ρ � TrB(|ψ〉〈ψ |). SystemBneeds
to have dimension dB ≥ rk(ρ). If ρ �

∑r
j�1 λ j |x j〉〈x j | is an eigendecomposition and {|y j〉 : j ∈ [r]} is

an orthonormal sequence fromHB , then |ψ〉 � ∑r
j�1

√
λ j |x j〉 ⊗ |y j〉 is a purification of ρ.

15Parts of the following remainder of Section 2.2.1 were reproduced from Holzäpfel et al. (2018,
Section II.B and Appendix A.5) with the permission of AIP Publishing.

16Zwolak and Vidal 2004; Verstraete et al. 2004. Note that the similar term matrix product density
operator (MPDO) can refer to the PMPS representation (Verstraete et al. 2004) or to the MPO
representation (De las Cuevas et al. 2013).
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Chapter 2. Tensor representations

{F(k)ik
: ik ∈ {1 . . . d2

k }} be a Hilbert–Schmidt orthonormal basis of B(Cdk ). An MPO
representation of ρ is also given by〈

F(1)i1
⊗ · · · ⊗ F(n)in

, ρ
〉
� G1(i1)G2(i2) . . .Gn(in) (2.8)

where D0 � Dn � 1, Gk(ik) ∈ CDk−1×Dk and ik ∈ {1, . . . , d2
k }. If the operator basis

F(k)(ik , jk ) �
��φ(k)ik

〉〈φ(k)jk

�� is used, Equation (2.8) turns into Equation (2.7).
The locally purified matrix product state (PMPS) representation17 provides an

alternative to the MPO representation for positive semidefinite linear operators
such as density matrices. The purification14 is given in terms of n ancilla systems
of dimensions d′k with orthonormal bases

{��ε(k)i′k

〉}d′k
k�1. A PMPS representation of a

positive semidefinite ρ ∈ B(HΛ) is given by

ρ � Tr1′...n′(|Ψ〉〈Ψ|) D0 � Dn � 1〈
φ(1)i1

ε(1)i′1
. . . φ(n)in

ε(n)i′n

��Ψ〉
� G1(i1 , i′1)G2(i2 , i′2) . . .Gn(in , i′n) ik ∈ {1, . . . , dk} (2.9)

Gk(ik , i′k) ∈ CDk−1×Dk i′k ∈ {1, . . . , d′k}
The linear operator ρ from the last equation is positive semidefinite by definition
and it is a density matrix if |Ψ〉 has unit norm. The quantum state ρ can also be
written as

ρ � MM∗ (2.10)

where the linear map M is defined by the MPO representation which uses the
matrices Gk(ik , i′k) from the PMPS representation (2.9), i.e.

〈φ(1)i1
. . . φ(n)in

|M |ε(1)i′1
. . . ε(n)i′n

〉 � G1(i1 , i′1)G2(i2 , i′2) . . .Gn(in , i′n). (2.11)

Given the tensors Gk of a PMPS representation, the tensors G̃k of an MPO represen-
tation are given by

G̃k(ik , jk) �
d′k∑

i′k�1
Gk(ik , i′k) ⊗ Gk( jk , i′k) (2.12)

17Verstraete et al. 2004; De las Cuevas et al. 2013. The structure of MPO and PMPS representations was
used by Fannes et al. (1992) in the analysis of translationally invariant (TI) states of infinite spin chains.
MPOs and PMPSs correspond to finitely correlated state (FCS) and C∗-FCS, respectively, where
the infinite chain has been replaced by a finite chain and where the requirement of translational
invariance has been dropped (Fannes et al. 1992, Definitions 2.2 and 2.4). In classical probability
theory, a similar structure, called a hidden Markov model (HMM), has been used already in 1957
(Vidyasagar 2011, and references therein). For more information about other similar structures, refer
to Kliesch et al. (2014a).
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2.2. Matrix product states and tensor trains (MPS/TT)

where the overline denotes the complex conjugate. Equation (2.12) shows that given
a PMPS representation of bond dimension D, we can directly construct an MPO
representation of bond dimension D2.

As mentioned at the beginning of the section, the smallest bond dimensions Dk

which allow for an exact representation of a tensor are determined by the tensor’s
unfolding ranks via Dk � rk[k](T). For the MPS, MPO and PMPS representations,
these unfolding ranks correspond to the following Schmidt or operator Schmidt
ranks, which is shown by comparing the definition of the matrix rank as per (2.2)
with the definitions of the Schmidt ranks in Section 1.3. If T|ψ〉 is the n-mode tensor
from the MPS representation (2.6), then

rk[k](T|ψ〉) � SR(1, . . . , k : k + 1, . . . , n)|ψ〉 . (2.13)

If Tρ is the n-mode tensor from the MPO representation (2.8), then

rk[k](Tρ) � OSR(1, . . . , k : k + 1, . . . , n)ρ . (2.14)

If T|Ψ〉 is the 2n-mode tensor containing the entries of |Ψ〉 from the PMPS represen-
tation (2.9), then

rk[2k](T|Ψ〉) � SR(1, a1 , . . . , k , ak : k + 1, ak+1 , . . . , n , an)|Ψ〉 (2.15)

where ak refers to the k-th ancilla system. Furthermore, if ρ is constructed according
to (2.9), then

OSR(1, . . . , k : k + 1, . . . , n)ρ
≤ OSR(1, a1 , . . . , k , ak : k + 1, ak+1 , . . . , n , an)|Ψ〉〈Ψ| (2.16a)

�
[
SR(1, a1 , . . . , k , ak : k + 1, ak+1 , . . . , n , an)|Ψ〉

]2
. (2.16b)

The preceding equations show that the amount of correlations as measured by the
Schmidt or operator Schmidt rank determines the bond dimension of an exact MPS
or MPO representation of a state vector or density matrix. Furthermore, the OSR of
a density matrix implies only a lower bound on the bond dimension of an exact
PMPS representation because a given density matrix can be represented by a family
of purifications.18

We conclude this section with a short comparison of the MPO and PMPS
representations, which can both be used to represent positive semidefinite operators
18Unitary operators on the ancilla systems do not affect the represented density matrix but can change

the value of |Ψ〉’s Schmidt rank.
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Chapter 2. Tensor representations

such as density matrices. The MPO representation is conceptually simple and can
represent not only positive semidefinite operators but arbitrary operators. Most
numerical algorithms involve approximating an MPO by an MPO of smaller bond
dimension and this process can replace a positive semidefinite operator with a
linear operator which is no longer positive semidefinite. This can be a serious
problem because verifying whether a givenMPO is positive semidefinite has shown
to be NP-hard in the number of sites n, i.e. a solution in polynomial (in n) time is
unlikely.19 Positivity, once destroyed, cannot be recovered efficiently in the general
case. In a particular instance of a particular numerical scheme, however, it may well
be possible to restore positivity efficiently.
Above, it was mentioned that a PMPS representation of bond dimension D

implies that an MPO representation of bond dimension D2 exists as well. However,
an MPO representation with bond dimensions smaller than D2 can exist. It has
been shown that there is a family of quantum states on n systems which can be
represented as an MPO with bond dimension independent of n but the bond
dimension of any PMPS representation of those states increases with n.20 The
PMPS representation guarantees that the represented linear operator is positive
semidefinite while the MPO representation can provide a bond dimension which
scales more favorably with n in some cases. In conclusion, the relative merits
of the MPO and PMPS representations of a mixed quantum state depend on the
application.

2.2.2. Efficient methods

The MPS/TT representation can be efficient in the sense that the storage cost of the
representation increases only linearly or polynomially with the number of modes n
(if the maximal bond dimension D is constant or polynomial in n, respectively). A
tensor representation is of limited use, however, without methods for operations
involving tensors which are also efficient, i.e. whose processing time increases at
most polynomially with the number of modes n. In this section, we discuss the
MPS/TT representation in more detail and sketch the outlines of such methods.
We discuss methods for computing inner products, operator-vector products as
well as operator-operator products. Furthermore, we discuss the approximation of
tensors by tensors of lower bond dimension and the problem of computing extremal
eigenvalues of Hermitian, linear operators. A full description of the namedmethods

19Kliesch et al. 2014a.
20De las Cuevas et al. 2013.
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2.2. Matrix product states and tensor trains (MPS/TT)

can be found in the literature.21

In the following, we assume that themaximal bonddimension D does not increase
with the number of modes n. As in Section 2.2.1, vectors fromHΛ � H1 ⊗ · · · ⊗ Hn

are mapped isomorphically to tensors from Cd1×···×dn by means of orthonormal
bases of each Hk . In the same way, linear operators from B(HΛ) are mapped to
tensors with 2n modes from Cd1×d1×···×dn×dn .

The MPS/TT representation. Any matrix A can be written as a product of two
other matrices,

A � BC, (2.17)

where B has m columns and C has m rows if m is not smaller than the rank of the
matrix, i.e. m ≥ rk(A) (cf. Equation (2.2)). A graphical representation of the matrix
factorization from Equation (2.17) is given by

kiki jA � Aik � (BC)ik �

m∑
j�1

Bi jC jk � B C (2.18)

A possible generalization for a four-mode tensor T is given by the following
graphical equations:

R1

i2 i3 i4

b1 ∈ {1, . . . ,D1}

�

�R2

R1 G2

G3

R2

G4

b2

b3

b2 ∈ {1, . . . ,D2}

b3 ∈ {1, . . . ,D3}
i2

i3

i3 i4

i4

i2 i3 i4

i3 i4

b1b1

b2b2

i1 i2 i3 i4

G1

i1

b1T �

(2.19)

In each row, the tensors Gk and Rk are obtained from Rk−1 by means of a (e.g.
rank-revealing) matrix decomposition, introducing the index bk (at the beginning
and end, we have R0 � T and R3 � G4). In the end, the tensors Gk suffice to
represent T:

i1 i2 i3 i4

G1

i1

b1 G2 G3 G4

i2 i4i3

b3b2T � (2.20)

21Schollwöck 2011; Oseledets 2011.
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Chapter 2. Tensor representations

The last equation as a formula reads

Ti1 ...in �

D0∑
b0�1
· · ·

Dn∑
bn�1
[G1]b0 i1b1[G2]b1 i2b2 . . . [Gn]bn−1 in bn (2.21)

� G1(i1) . . .Gn(in) (2.22)

where [Gk(ik)]bk−1 ,bk � [Gk]bk−1 ik bk . The tensors Gk are called core tensors, the
indices bk and their dimensions Dk are called bond indices and bond dimensions and
we have introduced the dummy bond indices b0 and bn of dimensions D0 � Dn � 1.
The last equation is anMPS/TT representationofT asdefined in (2.5). Theprocedure
outlined in (2.19) therefore shows how to construct an MPS/TT representation of
an unknown tensor T. If a rank-revealing matrix decomposition is used in each
step, the obtained bond dimensions equal T’s corresponding unfolding ranks.

The bond dimension/representation rank. Next, we show that the bond dimen-
sions are related to the so-called unfolding matrices. The {1, 2}-matricization or
unfolding of T is the following matrix of shape d1d2 × d3d4d5:

i1
i2

i3
i4
i5

T[M12(T)]i1 i2 ,i3 i4 i5 � (2.23)

We can write unfoldings of the typeM[k](T) ([k] � {1 . . . k}) as a composition of
linear maps constructed from the core tensors Gk :

i1
i2

i3
i4
i5

i1
i2

G1
b1

G2
b2 i3

i4
i5

b3G3 G4 G5b4

T � (2.24)

Because e.g. the bond index b2 runs over b2 ∈ {1, . . . ,D2}, decompositions of this
kind imply that the following unfolding ranks cannot exceed the bond dimensions:

rk
(M[k](T)) ≤ Dk (2.25)

We discuss how a givenMPS/TT representation can be converted to a representation
with Dk � rk(M[k](T)). A tensor T represented by cores Gk as shown in (2.20) is
also represented by the following modified core tensors, under the condition that
the rectangular matrices Ui and Vi satisfy UiVi � 1 ∈ CDk×Dk :

i1 i2 i3 i4

G1

i1 i3

U1 V1 U2 V2 U3 V3G2

i2

G3 G4

i4

T � (2.26)
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2.2. Matrix product states and tensor trains (MPS/TT)

For example, the matrices Ui and Vi could be used to increase the bond dimension
of the representation beyond the previous value. The bond dimension of a given
representation can be reduced to the unfolding rank by applying rank-revealing
matrix decompositions starting as follows:

i3

b3

i3

b3b′3G′
3� �

i3

G3
b2b′2 b′2 b′2b3

� �

�

i1 i1

b1 b′1G′
1G1

b1

G2 G′
2

b′1 b1 b2 b′1 b2 b′1 b′2 b2

i2 i2 i2

(2.27)

A rank-revealing matrix decomposition is used repeatedly to introduce the new
indices b′k whose dimension equals the rank of the corresponding matrix. Trans-
formations which proceed through the chain step by step as shown in the last
Equation are often called sweeps. A representation with Dk � rk(M[k](T)) for a
single value of k is obtained by sweeping from both ends of the chain up to the
desired point (Dk is changed twice). Alternatively, one can obtain a representation
with Dk � rk(M[k](T)) for all k with a complete left-to-right sweep followed by
a complete right-to-left sweep. (or vice-versa).22 The mentioned operations are
efficient because they involve at most one core tensor at a time (assuming bond
dimensions which do not increase with n).

Norm and inner product. The standard inner product of two tensors S and T
is given by 〈S, T〉 � ∑

i1 ...in Si1 ...Sin
Ti1 ...in and it induces a norm ‖T‖ �

√
〈T, T〉 for

tensors. Computing the standard inner product is another efficient operation:

G1
i1

b1 G2 G3 G4
i2 i4i3

b3b2

H1 H2 H3 H4

〈S, T〉 �

d1∑
i1�1
· · ·

dn∑
in�1

Si1 ...in Ti1 ...in � (2.28)

Here, the contraction order is important: If we contract G1 , . . . ,Gd first, a tensor
with dn entries is created as intermediate result and the procedure is not efficient
(in the figure, n � 4). However, if we contract in the order G1 ,H1 ,G2 ,H2 , . . . , the
size of any intermediate result is at most dD2 and the procedure is efficient.
22Schollwöck 2011; Oseledets 2011.
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Sums. As mentioned above, the MPS/TT representation can be expressed as
follows:

Ti1 ...in � G1(i1)G2(i2) . . .Gn(in) Gk(ik) ∈ CDk−1×Dk D0 � Dn � 1 (2.29)

The sum of two tensors T and S represented by core tensors Gk and Hk has a
representation with bond dimension equal to the sum of the bond dimensions:

Ti1 ...in + Si1 ...in �

(
G1(i1) H1(i1)

) (
G2(i2) 0

0 H2(i2)

)
. . .

(
Gn(in)
Hn(in)

)
(2.30)

Operator representations and operator products. Consider two linear opera-
tors A, B ∈ B(HΛ). The following representation of A allows for the efficient
computation of the product AB:

i1 i2 i3

b1 b2H1 H2 H3
j1 j2 j3

i1 i2 i3

j1 j2 j3

G1 G2 G3

k1 k2 k3

G1 G2 G3[A]i1 i2 i3 , j1 j2 j3 � [AB]i1 i2 i3 ,k1k2k3 � (2.31)

The representation of A from the last equation is the matrix product operator (MPO)
representation from (2.7). The product can be computed in the same way if A and
B are suitable linear maps (instead of operators) and, in particular, if B is replaced
by a vector |ψ〉 ∈ HΛ. The last equation already shows that the bond dimension of
the representation of the product equals the product of the bond dimensions of the
individual representations.

Compression to/approximation by a tensor with smaller bond dimension. As
the examples of the sum and product of two tensors have shown, operations on
tensors often increase the bond dimension of the representation. This calls for
methods for finding approximate representations of reduced bond dimension. If
the SVD is used in the scheme to find the minimal exact bond dimension from
Equation (2.27), approximate representations can be found by truncating small
singular values, reducing the bond dimension.23 Based on this approach, a quasi-
optimal approximation can be found, meaning that the obtained approximation
error is at most the minimal possible error (for a given bond dimension) times
23For reliable results, cores should be in a suitable canonical or orthogonal form, which is not discussed

here. See e.g. Schollwöck 2011; Oseledets 2011.
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√
n − 1 (SVD compression).24 As an alternative, one can try to solve the maximization

problem arg maxS |〈T, S〉|/‖T‖‖S‖ with a restriction on the bond dimension on S
(variational compression).25 It has the same solution as arg maxS 〈S, T〉〈T, S〉/〈S, S〉,
whose efficient, heuristic solution is discussed in some detail in the next paragraph.

Computing eigenvectors/DMRG. Consider a Hermitian linear operator A ∈
B(HΛ) and a vector v ∈ HΛ, represented as an MPO and MPS, respectively. The
result of the maximization

arg max
v
〈v ,Av〉/〈v , v〉 (2.32)

is an eigenvector of the largest eigenvalue of A. If A and v are represented as
MPO and MPS with cores Gk and Hk , one can attempt to find such an eigenvector
efficiently as follows. One can hope to increase the value of 〈v ,Av〉/〈v , v〉 by
replacing Gk with a solution of26

arg max
Gk

〈v ,Av〉
〈v , v〉 ,

i1 i2 i4i3

G1
b1 G3 G4

b3b2

H1 H2 H3 H4

j1 j2 j3 j4

G1 G3 G4
b1 b2

G2

G2

〈v ,Av〉(G2 ,G2) � . (2.33)

The right hand side of the Equation shows the tensor network which provides the
value of 〈v ,Av〉 as a function of the core tensors Gk and Gk (for k � 2). The tensor
network can be contracted efficiently by contracting from both ends to mode k and
the resulting tensor allows direct solution of the maximization on the left hand side.
One attempts to find a global maximum by repeated local optimizations. Instead of
reaching the global maximum, such an algorithm can get stuck in a local maximum.
A partial remedy is provided by a modified optimization where two neighbouring
cores are contracted into one supercore Gk ,k+1:

ik+1

Gk Gk+1
bkbk−1 bk+1

ik ik+1

�
bk−1 bk+1

ik

Gk ,k+1 (2.34)

One step optimizes over a complete supercore, i.e. over a greater number of
parameters, reducing but not eliminating the risk of getting stuck in a local
24Vidal 2003, 2004; Oseledets 2011; Schollwöck 2011.
25Schollwöck 2011; Holtz et al. 2012.
26Schollwöck 2011; Holtz et al. 2012.
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maximum. After the optimization the supercore must be split into two normal
cores, e.g. using an SVD:

ik+1

bk bk+1

ik+1

�
bk−1 bk+1

ik

Gk ,k+1
bkbk−1

ik

U S V (2.35)

Because the splitting can increase the bond dimension, a truncation of singular
values can be necessary to keep the bond dimension constant. The approximation
error can be used as a means to gauge whether the chosen bond dimension
is sufficiently large.27 Further improvements and applications of the sketched
variational algorithm have been demonstrated recently, with applications including
the solution of a linear system specified by an MPO as well as the computation of
inverses, extreme singular values and pseudoinverses of MPOs.28 For the relation
of these variational MPS/TT algorithms to earlier algorithms based on the density
matrix renormalization group (DMRG) and for a more complete introduction to
MPS/TT representations, we refer the reader to the literature.29

2.2.3. Examples

A product state

|ψ〉 � |ψ〉1 ⊗ · · · ⊗ |ψ〉n (2.36)

admits anMPS representation with bond dimension one. The Greenberger–Horne–
Zeilinger (GHZ) state

|GHZ〉 � 1√
2

(|00 . . . 0〉 + |11 . . . 1〉) (2.37)

admits an MPS representation with bond dimension two because it is the sum of
two MPSs with bond dimension 1. The W state

|Wn〉 � 1√
n

(|100 . . . 0〉 + |010 . . . 0〉 + . . . ) (2.38)

admits an MPS representation with bond dimension n. It also admits an MPS
representation with bond dimension two because its 1 . . . k |k+1 . . . n Schmidt ranks
27Schollwöck 2011; Oseledets and Dolgov 2012.
28Kressner et al. 2014; Oseledets and Dolgov 2012; Dolgov and Savostyanov 2014; Lee and Cichocki

2015, 2016.
29Schollwöck 2011; Oseledets 2011.
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are equal to two, which is shown by writing

|Wn〉 � 1√
2

(√
n − k |00 . . . 0〉1...k ⊗ |Wn−k〉k+1...n +

√
k |Wk〉1...k ⊗ |00 . . . 0〉k+1...n

)
.

An arbitrary state vector admits an MPS representation with bond dimension
D � d bn/2c (this is an upper bound on the Schmidt ranks SR(1, . . . , k : k + 1, . . . , n)).
A product observable

A � A1 ⊗ · · · ⊗ An (2.39)

admits an MPO representation with bond dimension one. In the case of uniform
local dimensions di � d, an observable which acts on r qubits admits an MPO
representation of bond dimension D � dr (upper bound on OSR(1, . . . , k : k +

1, . . . , n)). A local Hamiltonian on a one-dimensional, linear chain whose terms act
on r neighbouring sites,

H �

n−r+1∑
i�1

11...i−1 ⊗ hi ⊗ 1i+r ...n , (2.40)

where hi ∈ B(Hi , . . . ,Hi+r−1), admits an MPO representation of bond dimension
(n − r + 1)dr . However, with an argument similar to the one used for the W state,
one can show that an MPO representation with bond dimension independent of n
is possible.30

Consider the time-evolved state |ψ(t)〉 � exp(−iHt)|ψ〉 where |ψ〉 is a product
state |ψ〉 (Equation (2.36)) and H is a one-dimensional, local Hamiltonian H
(Equation (2.40)) with ‖hi ‖(∞) ≤ J and r as well as J independent of n. The time-
evolved state |ψ(t)〉 admits an approximate MPS representation of bond dimension
D � O(exp(vt) + poly(n/ε)) where ε is the approximation error. At fixed time t
and approximation error ε, the bond dimension scales polynomially in n and the
representation is efficient. This has been shown by Osborne (2006). The result is
generalized to local Hamiltonians on arbitrary-dimensional lattices in Theorem 6.33
below.31

2.3. Projected entangled pair states (PEPS)
The MPS/TT representation as well as the related MPO and PMPS representations
have a one-dimensional structure and they were observed to be useful for one-
30See e.g. Section 6.1 of Schollwöck (2011). A similar scheme has been implemented in the function
mpnum.local_sum of the open source library mpnum (Suess and Holzäpfel 2017).

31See Page 117 or Holzäpfel and Plenio 2017.
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Chapter 2. Tensor representations

dimensional quantum systems in the examples from the last section as well as many
other applications. One possible generalization of MPS andMPO representations to
higher dimensions is given by projected entangled pair states (PEPSs) and projected
entangled pair operators (PEPOs),32 which are introduced in this section. We also
prove a bound on the PEPO bond dimension of a unitary circuit composed of a
limited number of unitary gates which act on a limited number of neighbouring
sites.33

Let Λ � {1 . . . n} be the set of all systems. The systems need not be in a linear
chain but we assign the names 1, . . . , n to the sites of the system in an arbitrary
order. Let d(x) denote the dimension of system x ∈ Λ. Let ��φ(x)i

〉
(i ∈ {1 . . . d(x)})

denote an orthonormal basis of system x. As above, the components of a pure state
|ψ〉 on the n systems are given by

ti1 ...in �
〈
φ(1)i1

. . . φ(n)in

��ψ〉
, ix ∈ {1 . . . d(x)}. (2.41)

The last equation shows that the pure state on n systems corresponds to a tensor
t with n indices of shape d(1) × · · · × d(n). A PEPS representation of |ψ〉 or t
is defined in terms of a graph (Λ, E) whose vertices correspond to sites x ∈ Λ
(Figure 2.1 left). The graph (Λ, E) is assumed to be simple and connected, i.e. each
edge e ∈ E connects exactly two distinct sites and each vertex is connected to any
other vertex by a suitable sequence of edges. The set of neighbours of x ∈ Λ is
given by N(x) � {y ∈ Λ : {x , y} ∈ E} and the number of neighbours (degree) is
given by zx � |N(x)|. We denote the edges involving x ∈ Λ in some arbitrary, fixed
order by {n(x)1 . . . n(x)zx }; i.e. n(x)k � {x , y} ∈ E for one y ∈ N(x). For each edge e ∈ E,
choose a positive integer D(e), called the bond dimension. The maximal local and
bond dimension are denoted by d � maxx∈Λ d(x) and D � maxe∈E D(e). For x ∈ Λ,
let Gx be a tensor of size d(x) × D(n(x)1 ) × · · · × D(n(x)zx ). Let {e1 . . . e |E |} � E be an
enumeration of all the edges. A PEPS representation34 of the tensor t is given by
(Figure 2.1 middle)

ti1 ...in �

D(e1)∑
b(e1)�1

· · ·
D(e |E |)∑

b(e |E |)�1

n∏
x�1

Gx

[
ix , b

(
n(x)1

)
, . . . , b

(
n(x)zx

) ]
(2.42)

A PEPS representation of a pure quantum state is given by the combination of
Equations (2.41) and (2.42). Any tensor or quantum state can be represented as
32Verstraete and Cirac 2004; Verstraete et al. 2008.
33The content of Section 2.3 is reproduced from Holzäpfel and Plenio 2017, Section 4.2.
34Verstraete and Cirac 2004; Schuch et al. 2007; Verstraete et al. 2008.
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2.3. Projected entangled pair states (PEPS)

1

2 3 4

5 6

Figure 2.1: Left: Graph (Λ, E) whose vertices correspond to lattice sites x ∈ Λ. Lattice
sites have been named {1 . . . 6} � Λ. Middle: Graphical representation of the tensor
networkwhich constitutes a PEPS representation of a quantum state on the lattice. Circles
correspond to tensors, lines correspond to indices and lines which connect two circles
indicate which indices are contracted (Equation (2.42); cf. Section 2.2.2). Right: The
shaded box exemplifies how a PEPO representation of the operator product is obtained
(Equation (2.44)).

PEPS if the bond dimensions D(e) are chosen sufficiently large (cf. Lemma 2.2
below).

A projected entangled pair operator (PEPO) representation35 of a linear operator
G on n quantum systems is given by a PEPS representation of the following tensor:

t(i1 , j1)...(in , jn ) � 〈φ(1)i1
. . . φ(n)in

|G |φ(1)j1
. . . φ(n)jn

〉 (2.43)

As for the MPO representation described above, the tensor t is treated as tensor
with n indices and shape [d(1)]2 × · · · × [d(n)]2. Suppose that two linear operators
G and H have PEPO representations given by tensors Gx and Hx with bond
dimensions DG(e) and DH(e). The following formula provides the tensors of a
PEPO representation of the operator product F � GH (Figure 2.1 right):

Fx

[
ix , kx , b

(
n(x)1

)
, . . . , b

(
n(x)zx

) ]

�

d(x)∑
jx�1

Gx

[
ix , jx , c

(
n(x)1

)
, . . . , c

(
n(x)zx

) ]
Hx

[
jx , kx , d

(
n(x)1

)
, . . . , d

(
n(x)zx

) ]
(2.44)

where b
(
n(x)k

)
�

(
c
(
n(x)k

)
, d

(
n(x)k

) )
(k ∈ {1 . . . zx}). Equation (2.44) proves the

following lemma:

Lemma 2.1 Let G and H be operators with PEPS bond dimensions DG(e) and DH(e).
The operator product F � GH admits a PEPS representation with bond dimension
DF(e) � DG(e)DH(e) (e ∈ E).

35E.g. Molnar et al. 2015.
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Chapter 2. Tensor representations

The next lemma gives an explicit upper bound on the bond dimension of the
PEPS representation of an arbitrary tensor:

Lemma 2.2 Let t be a tensor with n indices and size d(1) × · · · × d(n). Then t admits a
PEPS representation with maximal bond dimension D ≤ dn where d � maxx∈Λ d(x).
Remark 2.3 When applying Lemma 2.2 to an operator which acts non-trivially on
a region Y ⊂ Λ observe that this region Y must be connected in terms of the PEPS
graph (Λ, E). 2

Proof (of Lemma 2.2) Suppose that the connected, simple graph (Λ, E) is such that
it admits a permutation (x1 , . . . , xn) of all the vertices such that {xk−1 , xk} ∈ E is a
valid edge (k ∈ {2 . . . n}; such a permutation is called a Hamiltonian path). In this
case, an MPS/TT representation of the suitably permuted tensor provides a valid
PEPS representation with bond dimension36 D ≤ d bn/2c < dn . However, the graph
may not admit such a permutation.37 In this case, we perform a depth-first search
(DFS) on the graph to obtain a tree graph with the same vertices and a subset of the
edges of the original graph (we can start the DFS on any vertex). Walking through
the resulting tree graph in the DFS order visits each vertex at least once and each
edge at most twice.38 The tensor with indices permuted according to their first
visit in the DFS order39 can be represented as MPS/TT of bond dimension d bn/2c .
Because each edge is visited at most twice, the resulting MPS can be converted to a
PEPS with bond dimension D ≤ (d bn/2c)2 ≤ dn . �

The bond dimension of a unitary circuit can be bounded with Lemmata 2.1
and 2.2 as follows:

Lemma 2.4 Let U � U1 . . .UG a unitary circuit composed of G gates where each gate U j

acts non-trivially on at most K connected sites ( j ∈ {1 . . .G}). Let at most L gates act
on any site of the system. The unitary U admits an exact PEPO representation of bond
dimension D ≤ d2KL where d � maxx∈Λ d(x) is the maximum local dimension.

Proof The statement is proven by repeating a simple counting argument which
has been used before by Jozsa (2006) for one-dimensional MPS.40 As the operator
36E.g. Schollwöck 2011.
37Example: A central vertex connected to three surrounding vertices.
38Tarry’s algorithm returns a bidirectional double tracing, i.e. a walk over the graph which visits each

edge exactly twice (J. L. Gross et al. 2014, Sec. 4.2.4). Omitting visits to already-visited vertices in this
walk represents a depth-first search (J. L. Gross et al. 2014, Sec. 2.1.2).

39It would be equally permissible to use the second or a later visit in the DFS order.
40The argument could be improved by counting how often each edge is used instead of counting how

often each site is acted upon; cf. Holzäpfel et al. (2015).
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2.3. Projected entangled pair states (PEPS)

U j acts non-trivially on at most K connected sites, it admits a PEPO representation
with bond dimension D′ � (d2)K (Lemma 2.2). At each edge, the bond dimension
of U is at most the product of the bond dimensions of the operators U1, . . . , UG

(Lemma 2.1): DU(e) ≤ ∏G
j�1 DU j (e), e ∈ E. We have DU j (e) ≤ D′ for all edges and

DU j (e) � 1 if the edge e involves a site x on which U j acts as the identity. At most
L of the G operators U1, . . . , UG act non-trivially on an arbitrary site x and this
bounds U’s bond dimension to DU(e) ≤ (D′)L � d2KL for all edges. �
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Chapter 3.

Quantum state tomography

Quantum state tomography (QST), which is also called quantum state estimation,
refers to the task of determining the unknown state of a quantum system from
measurement outcomes. The state of a quantum system is described by a density
matrix ρ which is a linear operator on a Hilbert space HΛ whose dimension dn

grows exponentially with the number n of subsystems.1 Quantum measurements
provide an estimate of y �M(ρ) ∈ Rµ whereM is a linear map. Determining an
arbitrary density matrix ρ requires µ ≥ d2n − 1, corresponding to measurements
whose complexity grows exponentially with n. (see Section 3.1.1 below). However,
additional constraints can enable determining ρ uniquely from y �M(ρ) even if
µ < d2n−1. A method for quantum state tomography which is efficient or scalable in
the sense that the necessary measurement and post-processing effort increases at
most polynomially with n can be given by the following steps:2

1. Measure: Choose ameasurementM ∈ B(BH(HΛ);Rµ)whereµ � O(poly(n)).
Obtain an estimate yest of y �M(ρ).

2. Estimate: Choose a subset S ( D(HΛ) or S ( BH(HΛ) and determine a
σest ∈ S which satisfiesM(σest) ≈ yest. The set S contains all linear operators
or density matrices which satisfy reasonable but unverified assumptions.

3. Verify that σest ≈ ρ using only yest ≈ M(ρ) or additional measurements of
complexity polynomial in n. This step is also called certification.

The method is efficient if all steps are performed with O(poly(n)) storage space and
processing time. Considering the tensor representations from the previous chapter,
restricting the amount of correlations by bounding the Schmidt or operator Schmidt

1For simplicity, we set dk � d, k ∈ Λ.
2Cramer et al. 2010.
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Chapter 3. Quantum state tomography

rank appears as an obvious constraint. In addition, it can be beneficial to restrict to
positive semidefinite density matrices if the chosen estimation method admits that.
If ρ is assumed to be pure or nearly pure, estimation is simplified by restricting to
unit rank density matrices. The remainder of this chapter provides an introduction
to standard (“inefficient”) methods for quantum state tomography and also presents
known methods for efficient quantum state estimation and verification.

3.1. Basic concepts
In this section, we discuss the complexity of quantum state tomography, explain
when a measurement is called informationally complete (IC) and define frequently-
used observables.

3.1.1. Complexity

At the beginning of the chapter, we already suggested that the complexity of
quantum state tomography generally increases exponentially with the number
n of subsystems. We proceed by discussing this question in more detail, in
particular for the case where only an approximate description of a quantum state
required; obtaining an approximate description of a quantum state could be easier
than obtaining an exact description. Our main, unsurprising result is that an
approximate description of a density matrix still requires storage space exponential
in n (Lemma 3.1). Therefore, the effort for QST of an arbitrary state also grows
exponentially with n.
The state of a quantum system is described by a state vector |ψ〉 ∈ H (1)

Λ
or a

density matrix ρ ∈ D(HΛ). In the case of n subsystems of uniform dimension d ≥ 2,
state vectors and density matrices are represented by vectors and matrices from CN

or CN×N , respectively, where N � dΛ � dn . It appears inevitable that the difficulty
of determining a quantum state increases exponentially with n since a vector or
matrix with dn or (d2)n entries is to be determined. However, some states turn out to
be easy to identify. Suppose that an observable M � |φ〉〈φ | is measured and yields
the expectation value Tr(Mρ) ≈ 1 (|φ〉 ∈ H (1)

Λ
). The only solution ρ ∈ D(HΛ) of the

equation Tr(Mρ) � 1 is ρ � |φ〉〈φ | (more on this example in the next subsection).
In a system comprised of n two-dimensional subsystems, effort polynomial

in n is sufficient for the following problem which is related to QST and which
was proposed by Aaronson (2007). Consider a probability distribution P over
observables M ∈ BH(HΛ) with ‖M‖(∞) ≤ 1. Instead of demanding, as in QST, that
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3.1. Basic concepts

expectation values of all observables can be predicted with error at most γ, the task
is restricted to predicting the expectation values of observables drawn from P with
error at most γ and success probability 1− ε. The prediction is to be achieved using
expectation values of accuracy ∼ γε and the expectation values of m observables
drawn from P are available. Remarkably, this data is already sufficient3 with
probability 1 − δ if m grows linearly with (γε)−4 log2(1/γε), linearly with log(1/δ)
and, as a surprise, linearly with the number n of qubits. This approach does not
provide a description of the density matrix ρ, but it shows that observables drawn
from a probability distribution can in principle be predicted correctly with high
probability and with effort linear in n.

Next, we show that specifying a general density matrix ρ ∈ D(HΛ) requires at
least ∼ dn −1 bits even if a (sufficiently small) finite error in trace distance is allowed
(d � di , i ∈ Λ). Since describing the output of QST, which is a general density
matrix, requires effort exponential in n, one can conclude that at least the same
effort is required for QST itself in general.

Any method for specifying a density matrix approximately needs to distinguish
between at least a certain finite number of regions inD(HΛ). To this end, consider
a set C of subsets ofD(HΛ)with the following properties:

D(HΛ) �
⋃
A∈C

A (3.1a)

where for each A ∈ C, there is an M ∈ B(HΛ) such that

A ⊂ Bε(M) :�
{
ρ ∈ D(HΛ) : D(ρ,M) ≤ ε} (3.1b)

where D(M,N) :� 1
2 ‖M − N‖(1) is the trace distance (M,N ∈ B(HΛ)). An arbitrary

density matrix ρ can now be described approximately by choosing A ∈ C such that
ρ ∈ A. Any approximate description of a general density matrix gives rise to a set
C with the given properties. The trace distance radius ε describes the accuracy of
the description.

If there was a set C which satisfied (3.1) and contained only e.g. 2n elements, then
log2(2n) � n bits would be sufficient to enumerate C’s elements and to represent
general density matrices approximately. However, the following lemma shows that
|C| ≥ cN−1, which implies that at least log2(cN−1) � (N − 1) log2(c) bits are required
for any approximate description of a density matrix. The constant is c �

1
8ε and it

satisfies c > 1 for ε < 1
8 . In the case of uniform dimensions, di � d, i ∈ Λ, we can

3Aaronson 2007.
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insert N � dΛ � dn . The approximate description of a density matrix ρ ∈ D(HΛ)
accordingly requires at least (dn − 1) log2(c) bits.
Lemma 3.1 The set C from (3.1) has at least ( 1

8ε )N−1 elements where N :� dΛ.

In the following, we provide a proof sketch for the claimed scaling and a more
involved rigorous proof of Lemma 3.1.

Proof (Sketch) Covering the set H (1)
Λ

� {|ψ〉 ∈ HΛ : 〈ψ |ψ〉 � 1} with ε-balls B(v)ε
in vector-2 norm requires roughly (1/ε)2N−1 balls, where N � dΛ.4 This can be
seen be relatingH (1)

Λ
to the unit sphere in R2N , where a real vector contains real

and imaginary parts of all components of |ψ〉 ∈ H (1)
Λ

in some basis. We extend
an ε-ball B(v)ε into Aε :� {eiα |ψ〉 : |ψ〉 ∈ B(v)ε , α ∈ R}. Heuristically, this is expected
to reduce the number of sets required to coverH (1)

Λ
to about (1/ε)2N−2. The same

scaling (with potentially different constants) applies to the number of elements
in the set C since the norm inHΛ and the trace distance in D(HΛ) are related by

minα∈R ‖|ψ〉 − eiα |φ〉‖/√2 �
√

1 − |〈ψ |φ〉| ≤
√

1 − |〈ψ |φ〉|2 � D(|ψ〉〈ψ |, |φ〉〈φ |).5 �

Proof Choose an orthonormal basis {|φi〉 : i ∈ [N]} ofHΛ and set

E(M) :�
N∑

i�1
|φi〉〈φi |M |φi〉〈φi |, x(M) :� [〈φi |M |φi〉]Ni�1 (M ∈ B(HΛ)). (3.2)

Let ‖x‖1 :�
∑N

i�1 |xi | denote the vector-1 norm on RN . For density matrices
ρ ∈ D(HΛ), the relation x(ρ) ∈ ∆(N) :� {x ∈ RN : xi ≥ 0, ‖x‖1 � 1} holds. For
subsets A ⊂ D(HΛ), set x(A) :� {x(ρ) : ρ ∈ A}. Let C satisfy (3.1). Let A ∈ C and
ρ, σ ∈ A. Then D(ρ, σ) ≤ 2ε and

‖x(ρ) − x(σ)‖1 � ‖E(ρ) − E(σ)‖(1) ≤ ‖ρ − σ‖(1) ≤ 4ε. (3.3)

The first inequality holds because the map E is completely positive and trace-
preserving.6 This shows that x(A) ⊂ B(N)4ε (x(ρ)) holds where

B(N)ε (y) :� {z ∈ ∆(N) : ‖z − y‖1 ≤ ε}, y ∈ RN . (3.4)

Furthermore, (3.1) implies that ∆(N) � ⋃
A∈C x(A) holds. Applying a result by Knill

(1995, Lemma 2.5 and Appendix) completes the proof. �

4E.g. Nielsen and Chuang 2007, Section 4.5.4.
5Lemma A.7 and Nielsen and Chuang 2007, Eq. (9.99).
6E.g. Nielsen and Chuang 2007, Theorem 9.2.
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3.1.2. Informationally complete measurements

In Section 1.4 above, we learned that outcomes of quantum mechanical mea-
surements on a system in state ρ ∈ D(HΛ) provide statistical estimates of linear
functionals Tr(Miρ) where Mi ∈ BH(HΛ) are observables. A general measurement
can thus be described with the following R-linear map:

M : BH(HΛ) → Rµ , ρ 7→ [
Tr(Miρ)

]µ
i�1 (Mi ∈ BH(HΛ)). (3.5)

Suppose that a statistical estimate yest of y �M(ρ) is available. In order to estimate
the unknown density matrix ρ, we can try to find a σ ∈ D(HΛ) which satisfies
M(σ) ≈ yest. Several estimators for the densitymatrix are discussed in the following
Sections; in the remainder of this Section, we shall discuss conditions under which
y �M(ρ) uniquely determines ρ.
The density matrix ρ is uniquely determined by y � M(ρ) if the map M is

injective when restricted to the set of density matricesD(HΛ). In this case, we call
M and the set of observables

{
M1 , . . . ,Mµ

}
informationally complete (IC):7

Definition 3.2 The set of observables
{

M1 , . . . ,Mµ

} ⊂ BH(HΛ) and the induced,
R-linear mapM : BH(HΛ) → Rµ,M(X) � [Tr(MiX)]µi�1 are called informationally
complete (IC) if the mapM|D(HΛ) is injective. 2

Recall that the set of trace-free observables is denoted by B0(HΛ) � {X ∈
BH(HΛ) : Tr(X) � 0}. The mapM has the following properties:

Lemma 3.3 IfM is injective, thenM|B0(HΛ) is injective.
M|B0(HΛ) is injective if and only ifM|D(HΛ) is injective.
M|B0(HΛ) andM are injective if and only if rk(M|B0(HΛ)) � (dΛ)2−1 or rk(M) � (dΛ)2,

respectively.
Let the set of observables

{
M1 , . . . ,Mµ

} ⊂ BH(HΛ) be a POVM or let it be such that
there are coefficients ci ∈ R such that 1 �

∑µ
i�1 ci Mi . Under these conditions, M is

injective if and only ifM|B0(HΛ) is injective whereM is the induced map.

Proof The relationsD(HΛ) ⊂ B0(HΛ) ⊂ BH(HΛ) imply the following implications:
M injective⇒M|B0(HΛ) injective⇒M|D(HΛ) injective.
LetM|B0(HΛ) be non-injective and let A ∈ B0(HΛ),M(A) � 0 and A , 0. Set

ρ± � (1 ± A/‖A‖(∞))/dΛ. Then ρ± ∈ D(HΛ) andM(ρ+) �M(ρ−), i.e.M|D(HΛ) is
not injective.
7Prugovečki 1977; Busch 1991; Renes et al. 2004.
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The sets B0(HΛ) and BH(HΛ) are vector spaces over R of dimension (dΛ)2 − 1
and (dΛ)2, respectively.
If

{
M1 , . . . ,Mµ

}
is a POVM, then 1 �

∑
i ci Mi holds for ci � 1. Let 1 �

∑
i ci Mi

hold and letM be non-injective. Let A ∈ BH(HΛ),M(A) � 0 and A , 0. Then
Tr(A) � Tr(1A) � ∑µ

i�1 ci[M(A)]i � 0. Accordingly, A ∈ B0(HΛ),M(A) � 0 and
A , 0 hold andM|B0(HΛ) is not injective. �

The lemma states that injectivity of the mapsM|B0(HΛ) andM|D(HΛ) is equivalent.
Therefore, the property that density matrices are positive semidefinite does not
reduce the number of expectation values required to identify an arbitrary state. For
uniform dimensions d � di , i ∈ Λ, at least (dΛ)2 − 1 � dn − 1 expectation values are
required to identify an arbitrary state.

While the fact that density matrices are positive semidefinite does not help with
identifying an arbitrary state, it can be very helpful for identifying particular states
such as pure states |φ〉 ∈ H (1)

Λ
. As already suggested in the last subsection, suppose

that we obtained an estimate of Tr(Mρ) where M � |φ〉〈φ |. It is easy to see that the
null space of B0(HΛ) → R, ρ 7→ Tr(Mρ) has dimension (dΛ)2 − 2 but that the only
solution σ ∈ D(HΛ) of Tr(Mσ) � 1 is σ � |φ〉〈φ |. It is implied e.g. by8

D(τ, |φ〉〈φ |) ≤
√

1 − 〈φ |τ |φ〉 �
√

1 − Tr(Mτ) (3.6)

where τ ∈ D(HΛ) and D(M,N) � 1
2 ‖M − N‖(1) is the trace distance (M,N ∈

B(HΛ)). An observed value of Tr(Mρ) ≤ 1 − ε thus implies that the trace distance
of the unknown state ρ and |φ〉〈φ | is at most

√
ε. Given orthonormal state vectors��φ(i)1

〉
,
��φ(i)2

〉 ∈ H (1)i (i ∈ Λ), one can similarly show that the expectation values of the
2n observables Mi j � 1i−1 ⊗

��φ(i)j

〉〈φ(i)j

�� ⊗ 1n−i (i ∈ Λ, j ∈ {1, 2}) suffice to determine

the system’s state if it is in any of the 2n orthogonal states
��φ(1)j1

〉 ⊗ · · · ⊗ ��φ(n)jn

〉
,

ji ∈ {1, 2}, i ∈ Λ. Furthermore, it has been shown that a density matrix with small
rank (e.g. an arbitrary pure state) can be distinguished from all other states with a
POVMwith fewer than (dΛ)2 elements and that even fewer elements are necessary if
the state is to be distinguished only from states with at most the same rank.9 These
examples show that exploiting the positive-semidefiniteness of density matrices
can greatly simplify determining the state of a quantum system.

8E.g. Nielsen and Chuang 2007, Eqs. (9.60), (9.110).
9Flammia et al. 2005; Finkelstein 2004; Heinosaari et al. 2013; Baldwin et al. 2014; Baldwin et al. 2016.
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3.1.3. Pauli matrices

In the following, we discuss useful techniques for constructing POVMs and we
define a number of POVMs constructed from eigenvectors of Pauli matrices, which
constitute frequently used observables of quantum mechanical two-level systems.

We refer to a POVMonH by the setΠ ⊂ BH(H) containing the POVM’s elements.
For simplicity, index sets IΠ, which enumerate elements via Π � {Pi : i ∈ IΠ}, are
not specified explicitly. Given POVMsΠ1 onH1 andΠ2 onH2, a POVM onH1 ⊗H2

is given by

Π1 ⊗ Π2 :�
{
A ⊗ B : A ∈ Π1 , B ∈ Π2

}
. (3.7)

The POVM is IC if and only if both Π1 and Π2 are IC. A measurement of Π1 ⊗ Π2

can be implemented by measuring Π1 on system 1 and Π2 on system 2 and the two
measurements can be performed sequentially or simultaneously.
For quantum state estimation with maximum likelihood estimation (MLE), it is

convenient to represent the measurement data of several POVMs as data of a single
POVM. This is achieved by the uniformly weighted union10

UP({Π1 , . . . ,ΠN }) :�
{

1
N

X : X ∈ Π1 ∪ · · · ∪ΠN

}
. (3.8)

The union enables us to consider an arbitrary number of distinct measurements
with a single POVM because dividing Πi ’s outcome probabilities by N pro-
vides corresponding outcome probabilities of UP({Π1 , . . . ,ΠN }). Choosing i ∈
{1, . . . ,N} uniformly at random and measuring Πi implements a measurement
of UP({Π1 , . . . ,ΠN }). If UP({Π1 , . . . ,ΠN }) is measured mN times, then m mea-
surements of Mi (i ∈ {1, . . . ,N}) are performed on average. This difference
between mN measurements ofUP({Π1 , . . . ,ΠN }) and m measurements of each Πi

(i ∈ {1, . . . ,N}) vanishes for large M.
The Pauli matrices

σX :�

(
0 1
1 0

)
σY :�

(
0 −i
i 0

)
σZ :�

(
1 0
0 −1

)
(3.9)

are frequently-used observables for quantum-mechanical two-level systems (qubits).
The matrices

P(σ)0 :� 12√
2
, P(σ)1 :� σX√

2
, P(σ)2 :� σY√

2
, P(σ)3 :� σZ√

2
(3.10)

10The notation accounts for the fact that taking unions in this way is not associative.
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constitute a basis of C2×2 which is orthonormal in the Hilbert–Schmidt inner
product. In multi-qubit systems, we use the notation

σ(k)a :� 1k−1 ⊗ σa ⊗ 1n−k , a ∈ {X,Y, Z} (3.11)

where σa acts on site k ∈ {1, . . . , n} and where 1 j denotes the identity operator on
the first k − 1 or last n − k sites, respectively. We denote normalized eigenvectors
and eigenprojectors by

σa |Ψσa ,s〉 � s |Ψσa ,s〉, a ∈ {X,Y, Z}, s ∈ {+1,−1}, (3.12a)

Pσa ,s :� |Ψσa ,s〉〈Ψσa ,s |. (3.12b)

The notation Pa ,s :� Pσa ,s is also used. The POVM which describes a projective
measurement of σa is

Π
(1)
σa �

{
Pσa ,s : s ∈ {+1,−1}}. (3.13)

We define the tensor product observables

σa :� σa1 ⊗ · · · ⊗ σar , a ∈ {X,Y, Z}r (3.14)

as well as the POVMs

Π
(r)
σa :� Π(1)σa1

⊗ · · · ⊗ Π(1)σa1
�

{
Pσa1 ,s1 ⊗ · · · ⊗ Pσar ,sr : s ∈ {+1,−1}r

}
. (3.15)

The POVMΠ(r)σa describes ameasurement of σak on site k, where the r measurements
can be carried out in any order. The POVMs

Π
(1)
σ :�UP

({
Π
(1)
σX ,Π

(1)
σZ ,Π

(1)
σZ

})
�

{
1
3 Pσa ,s : a ∈ {X,Y, Z}, s ∈ {+1,−1}

}
(3.16)

and

Π
(r)
σ :�

(
Π
(1)
σ

)⊗r
�UP

({
Π
(r)
σa : a ∈ {X,Y, Z}r

})
(3.17)

�

{
1
3r Pσa1 ,s1 ⊗ · · · ⊗ Pσar ,sr : a ∈ {X,Y, Z}r , s ∈ {+1,−1}r

}
(3.18)

are IC on one and r qubits, respectively. In a system with n sites, the last POVM
applied to sites k , . . . , k + r − 1 is denoted by

Π
(n ,r,k)
Block :�

{
1k−1 ⊗ A ⊗ 1n−r−k+1 : A ∈ Π(n ,r,k)Local :� Π(r)σ

}
. (3.19)
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where k ∈ {1, . . . , n − r + 1}. The POVMΠ(n ,r,k)Local contains the same elements asΠ(r)σ
but it is taken to act on sites k , . . . , k + r − 1. The POVM

Π
(n ,r)
Block :�UP

({
Π
(n ,r,k)
Block : k ∈ {1, . . . , n − r − k + 1}

})
(3.20)

provides complete information on all contiguous blocks of r neighbouring sites in a
linear chain of n sites. This POVMwill be useful in conjunction with the estimation
of matrix product states.

3.2. Standard estimators
Three standard estimators for quantum state tomography are described in this
section: Linear inversion, Bayesian mean estimation and maximum likelihood
estimation (MLE). Their complexity increases exponentially with the number of
subsystems unless they are suitably modified (see Section 3.3).

3.2.1. Linear inversion

A very basic approach to quantum state estimation consists in finding a solution
χ ∈ BH(HΛ) of the linear system M(χ) � yest, where yest contains statistical
estimates obtained from measurement data. The linear inversion estimator is based
on this approach11 and we define it as follows:12

Definition 3.4 LetM : BH(HΛ) → Rµ be a linear map and let y ∈ Rµ be given. Set
ρLI :�M+(y)whereM+ denotes the Moore–Penrose pseudoinverse.
ρLI minimizes ‖M(χ) − y‖, χ ∈ BH(HΛ).13 If rk(M) � (dΛ)2 and y �M(ρ), then

ρLI � ρ. 2

If we set e.g.M(χ) :� [Tr(P(σ)i χ)]µi�1 with the normalized Pauli matrices P(σ)i from
(3.10), then the linear inversion estimator is particularly simple:

ρLI �M+(y) �
3∑

i�0
yiP
(σ)
i (3.21)

As is illustrated by the last equation, ρLI �M+(y) provides an estimator if exact
expectation values yi � [M(ρ)]i are replaced by their estimates. This estimator
11E.g. Schwemmer et al. 2015, and references given therein.
12For the relevant properties of the pseudoinverse, see e.g. Horn and Johnson 1991a, Section 7.3, P8.
13On Rµ , the standard inner product and norm are assumed.
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suffers from the fact that the estimate ρLI ∈ BH(A)may not be positive semidefinite,
i.e. χ may not be a valid density matrix. If the original density matrix ρ which
gave rise to the expectation values y �M(ρ) has zero as an eigenvalue, ρLI is likely
to have small negative eigenvalues for estimated expectation values of any finite
precision. Many practical applications of tomography can be adapted to work
with an estimate which is not positive semidefinite.14 Alternatively, one can use
an estimator which returns a density matrix. Such an estimator necessarily has
non-zero bias,15 but, more importantly, it can bring the advantage of a smaller
mean-squared error.16 In the following subsections, we discuss two estimators
which restrict estimates to the set of density matrices.

3.2.2. Bayesian mean estimation

The Bayesian mean estimator for quantum states can be constructed as follows.
Denote the probability that one or more measurements on a state ρ ∈ D(HΛ)
produce a particular result z by

p(z |ρ). (3.22)

The probability distribution p(z |ρ) can be constructed as function of ρ with knowl-
edge of the performed measurements using the rules from Section 1.4 (an example
is given in (3.27) below). Note that p(z |ρ) is a probability distribution over mea-
surement results z and that ρ is only a parameter. To construct the Bayesian mean
estimate, we need to choose a measure for the setD(HΛ) of density matrices and a
so-called prior distribution p(ρ). The prior distribution p(ρ) represents prior knowl-
edge about the unknown quantum state. Together with the conditional probability
p(z |ρ), the prior distribution gives rise to the joint probability distribution

p(z , ρ) � p(z |ρ)p(ρ) � p(ρ |z)p(z) (3.23)

of measurement results z and quantum states ρ (the last equation is known as Bayes’
theorem). The marginal distribution p(z) can be obtained from

p(z) �
∫
D(HΛ)

p(z , ρ)dρ �

∫
D(HΛ)

p(z |ρ)p(ρ)dρ. (3.24)

14E.g. Schwemmer et al. 2015.
15Schwemmer et al. 2015.
16Hradil 1997; Fiurášek 2001; Shang et al. 2014.
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The Bayesian mean estimate (BME) ρBME of ρ is then given by

ρBME �

∫
D(HΛ)

ρp(ρ |z)dρ �

∫
D(HΛ)

ρ
p(z |ρ)p(ρ)

p(z) dρ (3.25)

which is evaluated for the observed measurement result z.17 Computing the
Bayesianmean estimate can pose a challenge because it involves computing integrals
over the setD(HΛ) of density matrices.

3.2.3. Maximum likelihood estimation

As before, let p(z |ρ) denote the probability that measurements on ρ produce an
outcome z. The maximum likelihood estimation (MLE) approach suggests the
following estimate:18

ρMLE � arg max
ρ
L(ρ) L(ρ) � p(z |ρ) (3.26)

where, again, the observed outcome is inserted for z. The likelihood function
L assigns each state its so-called likelihood and the estimate ρMLE is a state with
maximal likelihood. It should be noted that the likelihood function is not a
probability distribution because no measure has been chosen forD(HΛ).

In the following,we specify the likelihood function for aPOVMΠ �
{

M1 , . . . ,Mµ

} ⊂
BH(HΛ) and m measurements of the POVM.Measuring the POVM m times provides
the sequence of outcomes (x1 , . . . , xm), xk ∈ {1, . . . , µ}, k ∈ {1, . . . ,m}. Denote
by zi :� |{k : xk � i}| the number of occurrences of outcome i, i.e.

∑µ
i�1 zi � m.

Denote by fi � zi/m the relative frequencies of the different outcomes. The symbols
z � (z1 , . . . , zµ) and f � ( f1 , . . . , fµ) denote the vectors of counts and relative
frequencies. Given a density matrix ρ ∈ D(HΛ), the probability for an outcome z
of the m measurements is given19 by the multinomial distribution:

p(z |ρ) �
(
m
z

) µ∏
i�1

pi
zi pi � Tr(Miρ)

(
m
z

)
�

m!
z1! . . . zµ! (3.27)

We define the log-likelihood function L, which is maximized by the same states as
the likelihood function L, by

L(ρ) � 1
m

log

((
m
z

)−1

L(ρ)
)
�

µ∑
i�1

fi log(Tr(Miρ)). (3.28)

17E.g. Granade et al. 2016 and references given therein.
18Hradil 1997; Hradil et al. 2004.
19Hradil et al. 2004, Eq. (3.6).
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The log-likelihood function has the following property:20

L(ρ) � −S( f ‖M(ρ)) − H( f ) M(ρ) � [Tr(Miρ)]µi�1 (3.29)

Here, S(q‖p) � ∑µ
i�1 qi[log(qi) − log(pi)] is the relative entropy (Kullback–Leibler

divergence) and H(q) � −∑µ
i�1 qi log(qi) is the Shannon entropy. Accordingly, a

state ρ with maximal (log-) likelihood is also a state with minimal relative entropy
distance between the observed frequencies fi and the probabilities pi predicted by
ρ.
Finding a state which maximizes the likelihood can be non-trivial. It is a convex

optimization problem because the log-likelihood L is concave and the set of all
density matrices is convex.20 This simplifies the solution of the optimization
because it implies that any local maximum of the log-likelihood L is also a global
maximum.21 A state which maximizes the likelihood has the property20

ρ � R(ρ)ρ � ρR(ρ) R(ρ) �
µ∑

i�1

fi

Tr(Miρ)Mi . (3.30)

As a consequence, one may try to find the maximumwith the fixed point iteration22

ρk+1 � R(ρk)ρR(ρk), ρ1 � 1/Tr(1). (3.31)

This iteration has been shown to not decrease the likelihood.20 Furthermore, it has
been shown that the “diluted” prescription

ρk+1 � Rε(ρk)ρRε(ρk) Rε(ρ) � 1 + εR(ρ)
1 + ε

(3.32)

provides a strictly increasing likelihood if ε ∈ (0, 1) is sufficiently small.23

It turns out that the algorithm fromEquation (3.31) can be implemented efficiently
for many-body quantum systems using MPS representations.24 Equation (3.32)
is essentially a gradient descent of the likelihood function25 and methods for
accelerated gradient descent have been applied to find the likelihood’s maximum
with less computational time.26 Some of these methods can be applied to the
MPS-based maximum likelihood estimation algorithm as well.27

20Hradil et al. 2004.
21E.g. Boyd and Vandenberghe 2009, Sec. 4.2.2.
22Lvovsky 2004; Molina-Terriza et al. 2004; Hradil et al. 2004.
23Řeháček et al. 2007; D. S. Gonçalves et al. 2014.
24Baumgratz et al. 2013b.
25Siah Teo 2013; Shang et al. 2017.
26E.g. Siah Teo 2013; D. Gonçalves et al. 2016; Shang et al. 2017; Bolduc et al. 2017; Bai et al. 2017; Knee

et al. 2018.
27Safieldeen 2016.
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3.3. Efficient estimation

This section presents efficient or scalable methods for estimating quantum states.
The MPS-MLE method28 is presented and adapted to so-called locally purified
matrix product states which enforce positive semidefiniteness of the density matrix.
The MPS-SVT method is presented in a way29 which enables future extensions of
the original proposal.30 MPO reconstruction is mentioned only briefly and covered
in greater detail in Chapter 8.

3.3.1. Maximum likelihood estimation with MPSs

The computational resources required for maximum likelihood estimation of
quantum states can often be reduced by representing quantum states with MPSs
and MPOs as proposed by Baumgratz et al. (2013b). This section explains relevant
details and additionally proposes to perform MLE of a mixed state by representing
it as locally purified matrix product state (PMPS).

As mentioned in Section 3.2.3, the maximum likelihood estimate is a state which
maximizes the log-likelihood function L(ρ). One attempts to find such a state
with the iteration (3.31). In the following, we discuss conditions under which the
iteration may be evaluated efficiently in the sense that the necessary computation
time increases only polynomially with n.
The operator R(ρ) from (3.30) is constructed from the POVM elements M1, . . . ,

Mµ describing the measurement and the observed relative outcome frequencies
fi . An MPO representation of the operator R(ρ) can be computed in O(poly(n))
time if the MPO bond dimension of ρ is O(poly(n)), if the POVM is restricted to
µ � O(poly(n)) elements and if each element admits an MPO representation of
bond dimension O(poly(n)). The restriction of the POVM to O(poly(n)) elements
implies that it is not informationally complete; therefore, the estimation methods
needs to be complemented by a verification method as described at the beginning
of the chapter if assumption-free QST is the goal.

If an MPO representation of ρk is available, an MPO representation of ρk+1 can be
obtained and its bond dimension is at most D(ρk+1) � D(ρk)[D(R(ρk))]2. Since the
bond dimension of R(ρk) usually exceeds one, the bond dimension of ρk increases
exponentially with k. Typically, a few hundreds or thousands of iterations are

28Baumgratz et al. 2013b.
29Cai et al. 2010.
30Cramer et al. 2010.
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required and this necessitates approximating ρk+1 by an MPO of smaller bond
dimension:

ρk+1 � C[R(ρk)ρk R(ρk)]. (3.33)

Here, C denotes compression to some given bond dimension. If the unknown state
is known to be close to a pure state, one can attempt to find it with the following
iteration over pure states represented as MPSs:

|ψk+1〉 � C[R(|ψk〉)|ψk〉], (3.34)

where R(|ψk〉) :� R(|ψk〉〈ψk |). Note that compression to a smaller bond dimension
can reduce the likelihood, potentially keeping the algorithm from reaching a
maximum of the likelihood function. Furthermore, the set of matrix product
states or matrix product operators whose bond dimension does not exceed some
constant is not a convex set. In evaluating (3.33) or (3.34) we thus attempt to solve a
non-convex optimization problem. As a consequence, the iterations can converge
to a local maximum of the likelihood function which is not a global maximum.
Nevertheless, the scheme provided satisfactory results in several applications.31

This completes the description of scalable MLE as proposed by Baumgratz et al.
(2013b).

Compressing an MPO to a smaller bond dimension also introduces another issue:
It can destroy the hermiticity and positive semidefiniteness of the represented
operator. Hermiticity can be enforced by representing the operator in a Hermitian
operator basis with real coefficients or restored by computing (ρ + ρ∗)/2. Testing
whether anMPO is positive semidefinite, however, can take time exponential in n.32

Preserving positive semidefiniteness by increasing theMPO’s bond dimension until
a sufficiently small compression error is achieved may not be feasible if the iteration
without compression traverses a region of large bond dimension before reaching
the final estimate of low bond dimension. To remedy this issue, we propose to
represent a mixed state as locally purified matrix product state (PMPS).33

MLEandpurifications. To clarify the idea, wefirst explain howMLEwithoutMPS
can be performed with purified states. A purification of a mixed state ρ ∈ D(HΛ) is
31Baumgratz et al. 2013b; Holzäpfel et al. 2015; Lanyon, Maier, et al. 2017. See also Chapters 4, 5 and 7.
32Kliesch et al. 2014a. See also Section 2.2.1.
33This idea came up in conversation with Daniel Suess and it has been investigated together with two

Bachelor students before the submission of this thesis (Baumann 2016; Safieldeen 2016).
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any pure state |ψ〉 ∈ HΛ ⊗ HΛ′ such that ρ � TrΛ′(|ψ〉〈ψ |) and a purification exists
if the dimension of Λ′ is at least rk(ρ).34 Consider the iteration

|ψk+1〉 � R(|ψk〉)|ψk〉, (3.35)

where all POVMelements act as the identity on the ancilla system. As a consequence,
R(|ψk〉) can be constructed from ρk � TrΛ′(|ψk〉〈ψk |), R(|ψk〉) � R(ρk), and R(|ψk〉)
also acts as the identity on the ancillary sites. We find

ρk+1 � TrΛ′
[|ψk+1〉〈ψk+1 |

]
� TrΛ′

[
R(|ψk〉) |ψk〉〈ψk | R(|ψk〉)

]
(3.36a)

� R(ρk) TrΛ′
[|ψk〉〈ψk |

]
R(ρk) � R(ρk) ρk R(ρk) , (3.36b)

which is nothing but the original iteration (3.31). In (3.31), positive semidefiniteness
of ρk can be destroyed by numerical rounding errors,35 which can become an issue
as errors accumulate over many iterations. The iteration (3.35) preserves positive
semidefiniteness of ρk by definition and it has been recognized early on that this is
advantageous36 e.g. to estimate the uncertainty of the estimated state.37

MLE and locally purifiedmatrix product states (PMPSs). In the PMPS represen-
tation, a mixed state ρk of n subsystems is represented by a purification |ψk〉 whose
ancilla system comprises n subsystems (see Section 2.2.1). Therefore, we propose
the iteration

|ψk+1〉 � C[R(|ψk〉)|ψk〉] (3.37)

where POVM elements and the operators R(|ψk〉) act as the identity on all ancilla
systems. The last equation appears to be identical to (3.34). However, (3.34) is
used to estimate a pure state of n subsystems while (3.37) is used to estimate a
mixed state of n subsystems represented as a pure state on 2n subsystems. The
symbol C in (3.37) refers to compression by approximating the state with a PMPS
representation of lower bond dimension. If compression is dropped, the iterations
(3.33) and (3.37) are formally equivalent (cf. (3.36b)). However, the different kinds
of compression can make a significant difference: In the two cases, approximated
operators are chosen from different admissible sets according to a different objective
functions. In particular, compression cannot destroy the positive semidefiniteness
34See Section 2.2.1.
35This applies if ρk does not have full rank.
36Banaszek et al. 1999.
37Lvovsky 2004, and references therein.
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of ρk if it represented as PMPS. We present simulation results of MLE with PMPS
in Section 4.2. A comparison of the relative merits of MLE with MPOs and PMPSs
is left for future work.

3.3.2. Singular value thresholding with MPSs

Reconstructing a quantum state ρ ∈ D(HΛ) from an informationally incomplete
vector of expectation values y � M(ρ) corresponds to a reconstruction from a
small number of linear functionals of ρ. The problem of reconstructing an arbitrary
matrix of low rank from few of its entries or other linear functionals is known as
the matrix completion problem.38 In this section, we present the basic properties of
the singular value thresholding (SVT) algorithm for matrix completion and the
application of SVT to quantum tomography of pure states represented as MPS.39

The main purpose of this section is to show how the original MPS-SVT proposal
can be applied to non-qubit systems and to measurements described by arbitrary
POVMs.

Matrix completion with singular value thresholding (SVT). In the following,
we summarize the results on SVT obtained by Candès and Recht (2008) and Cai
et al. (2010). Following their work, we consider a real matrix X ∈ Rk1×k2 , a map
A ∈ B(Rk1×k2 ;Rµ), a vector b ∈ Rµ and the condition A(X) � b. Later on, we
will substitute this condition withM(ρ) � y. The first ansatz for reconstructing a
matrix from few linear functionals under the assumption that it has low rank is
given by the minimization problem

min
X

rk(X) subject to A(X) � b. (3.38)

Unfortunately, this minimization is NP-hard in the matrix dimension.40 If µ is
sufficiently large and if X andA are sufficiently random in a certain sense, then,
with high probability, (3.38) has the same solution41 as

min
X
‖X‖(1) subject to A(X) � b. (3.39)

In solving (3.39), methods for convex optimization can be applied because the
trace norm ‖ · ‖(1) is convex42 and the constraint A(X) � b can be replaced by
38Candès and Recht 2008; Candès and Recht 2009; Cai et al. 2010.
39Cramer et al. 2010.
40Candès and Recht 2008, Sec. II.C.
41Candès and Recht 2008.
42Boyd and Vandenberghe 2009.
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a more general constraint.43 For (3.38) and (3.39) having the same solutions, at
least µ � O(k6/5r log k) entries were required initially where k � max{k1 , k2} and
r � rk(X).44 Later, this was improved to µ � O(kr ln2(k)) for certain matrix bases.45

For k � 2n , both numbers are exponential in n. Instead of solving (3.39), we
consider46

min
X
τ‖X‖(1) + 1

2 ‖X‖(2)
2 subject to A(X) � b (3.40)

where τ > 0 is a constant. For τ→∞, the solution of the last equation converges
to the solution of (3.39) which minimizes ‖X‖(2).47 In the following, we use a
singular value soft-thresholding operator Dτ, which is defined in terms of an SVD
X � USV∗:

Dτ(X) � URV∗ , Ri j � δi j max{0, Sii − τ}. (3.41)

In order to solve (3.40), we define Xk ∈ Rk1×k2 and Yk ∈ Rµ via48

Xk � Dτ(A∗(Yk−1)), (3.42a)

Yk � Yk−1 + δk(b −A(Xk)), Y0 � 0. (3.42b)

If suitable step sizes δk > 0 are used, the sequence (Xk)k converges to the solution
of (3.40).49 A∗ denotes the adjoint map ofA (cf. (3.43) below).

SVT with matrix product states. We apply SVT to quantum state tomography
by replacingA(X) � b withM(ρ) � y where ρ ∈ D(HΛ) is a density matrix. The
mapM is defined in terms of observables Mi ∈ BH(HΛ) asM(ρ) � [Tr(Miρ)]µi�1
and its adjoint is given by50

M∗(y) �
µ∑

i�1
yi Mi . (3.43)

AnMPO representation ofM∗(y)with bond dimension O(poly(n)) can be obtained
if µ � O(poly(n)) and if each observable Mi admits an MPO representation of
43Cai et al. 2010.
44Candès and Recht 2008.
45D. Gross 2011; Liu 2011.
46Cai et al. 2010, Eq. (3.1).
47Cai et al. 2010, Thm. 3.1.
48Cai et al. 2010, Eq. (3.3).
49Cai et al. 2010, Cor. 4.5.
50Let M(ρ) � [Tr(Miρ)]µi�1. 〈M∗(y), ρ〉 � 〈y ,M(ρ)〉 �

∑µ
i�1 yi Tr(Miρ) � Tr[∑µ

i�1(yi M∗i )∗ρ] �

〈∑µ
i�1 yi M∗i , ρ〉. This also holds for non-Hermitian Mi , i.e. forM ∈ B(B(H);Cµ).
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bond dimension O(poly(n)). To simplify the computation of (3.42), one can replace
the thresholding operator Dτ in (3.42) with an operator which preserves only the
largest eigenvalue. An MPS representation of the corresponding eigenvector can
often be obtained with DMRG and related algorithms.51 This is the method for
reconstructing a pure state (i.e. a rank-1 density matrix) which was proposed by
Cramer et al. (2010). It could be extended by computing several eigenvalues or by
computing several extreme singular values with recently proposed methods.52

To recover the variant of (3.42) which was presented in the original MPS-SVT
proposal,53 we set X̃k � M∗(M(Xk)) and Ỹk � M∗(Yk). With these definitions,
(3.42) becomes

X̃k �M∗(M(Dτ(Ỹk))), (3.44a)

Ỹk � Ỹk−1 + δk(M∗(y) − X̃k). (3.44b)

3.3.3. Reconstruction of matrix product operators

It was shows that a density matrix ρ ∈ D(HΛ) can be reconstructed from marginal
density matrices on few neighbouring sites if the correlations in the state satisfy
conditions which correspond to the following operator Schmidt rank conditions:54

OSR(1 . . . k : k + 1 . . . n)ρ � OSR(k − l + 1 . . . k : k + 1 . . . k + r)ρ (3.45)

where l , r ≥ 1, l + r ≤ n − 2 are fixed and the condition must hold for all
k ∈ {l + 1 . . . n − r − 1}. The conditions divide a linear chain of n subsystems into a
left half comprising subsystems {1, . . . , k} and a right half comprising subsystems
{k + 1, . . . , n}. The conditions demand that correlations between the two halves of
the chain do not decrease if all but the l sites to the left of the cut and the r sites to
the right are traced out. If these conditions are satisfied, anMPO representation of ρ
can be constructed from themarginal states ρk−l...k+r where k ∈ {l+1 . . . n− r}. This
result was obtained by Baumgratz et al. (2013a) and it is discussed and generalized
in Chapter 8 (see, in particular, Example 8.20).

51E.g. Schollwöck 2011. See also Section 2.2.2.
52E.g. Lee and Cichocki 2015.
53Cramer et al. 2010, Eq. (6).
54Baumgratz et al. 2013a.
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3.4. Efficient verification
We discuss two methods for efficient verification or certification of quantum states.
The first method applies to pure states and uses a so-called parent Hamiltonian
and is related to theory of MPS. The second method uses a decomposition of the
von Neumann entropy and it can succeed if the state is pure or if its entropy is
known. The two methods share the property that measurements can be limited
to a predetermined set of neighbouring sites, allowing for a measurement of the
relevant observables independently of an estimated state. Measurements which
depend on an estimated state are used by the verification method direct fidelity
estimation (DFE),55 which is not discussed here.

3.4.1. Parent Hamiltonian certificate

It has been shown that a large fraction of all pure states |ψ〉 with small MPS bond
dimension are determined uniquely by their reduced density matrices on a small
number of neighbouring sites.56 Furthermore, the distance between such a pure
state and an arbitrary state σ can be bounded if only the corresponding reduced
density matrices of σ are known.57 In the following, we discuss the technical details
of these results. The condition for an MPS being uniquely determined by reduced
density matrices is usually stated as injectivity of certain maps Γ which are related
to the details of the MPS representation. We introduce an equivalent condition
which only involves certain Schmidt ranks.

The results are derived using a so-called parent Hamiltonian. An observable G is
called a parent Hamiltonian of a pure state |ψ〉 if |ψ〉 is a ground state of G (i.e. an
eigenvector of G’s smallest eigenvalue). A parent Hamiltonian with non-degenerate
ground state has the following useful property:58

Lemma 3.5 Let G be an observable with the two smallest eigenvalues E0 and E1 > E0. Let
|ψ〉 be a normalized eigenvector of the smallest eigenvalue E0 and let E0 be non-degenerate.
Let σ be a density matrix. Then,

1 − 〈ψ |σ |ψ〉 ≤ Eσ − E0
E1 − E0

(3.46)

where Eσ � Tr(Gσ).
55da Silva et al. 2011; Flammia and Liu 2011.
56Fannes et al. 1992; Perez-Garcia et al. 2007.
57Cramer et al. 2010.
58Cramer et al. 2010.
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Chapter 3. Quantum state tomography

The lemma shows that the distance between σ and |ψ〉 can be bounded in terms
of the expectation value Eσ � Tr(Gσ) if G is a parent Hamiltonian with unique
ground state |ψ〉. If G is a local Hamiltonian, i.e. a sum of terms acting on a small
number of neighbouring sites, then Tr(Gσ) can be obtained from the corresponding
reduced density matrices of σ. The following Theorem 3.7 states a condition under
which a pure state admits a local parent Hamiltonian with unique ground state.
The condition is formulated in terms of ranks of reduced density matrices, which
have the following property:

Lemma 3.6 Let |ψ〉 ∈ HΛ be a vector and ρ � |ψ〉〈ψ |. Denote Schmidt ranks by

SX :� SR(X : Λ \ X)|ψ〉 and sk :� S{1,...,k} (3.47)

where X ⊂ Λ (Schmidt ranks equal |ψ〉’s matricization/tensor unfolding ranks, cf. Sec-
tion 2.2.1). Then

rk(ρk+1,...,k+r) � Sk+1,...,k+r ≤ S1,...,kSk+r+1,...,n � sk sk+r (3.48)

where r ∈ {1, . . . , n} and k ∈ {0, n − r}.

A proof of Lemma 3.6 is given below. Existence of a local parent Hamiltonian
with unique ground state is guaranteed by the following theorem if certain reduced
density matrices have maximal rank:

Theorem 3.7 Let |ψ〉 ∈ H (1)
Λ

be a pure state and ρ � |ψ〉〈ψ |. Let r ∈ {0, 1, . . . , n − 2}.
Define the positive semidefinite H ∈ BH(HΛ) as

H �

n−r∑
k�1

11,...,k−1 ⊗ hk ⊗ 1k+r+1,...,n , hk � Pker(ρk ,...,k+r ) (3.49)

Then H |ψ〉 � 0. H’s eigenvalue zero is non-degenerate if

rk(ρk+1,...,k+r) � sk sk+r , sk � SR(1 . . . k : k + 1 . . . n)|ψ〉 (3.50)

holds for k ∈ {1, . . . , n − r − 1}. (The operator hk � Pker(ρk ,...,k+r ) ∈ BH(Hk ,...,k+r) denotes
the orthogonal projection onto the null space of the reduced density matrix ρk ,...,k+r .)

Proof (of Lemma 3.6 and Theorem 3.7) Let
{��φ(k)ik

〉}dk

ik�1
⊂ Hk be an orthonormal

basis of the k-th quantum system. Let
〈
φ(1)i1

. . . φ(n)in

��ψ〉
� G1(i1)G2(i2) . . .Gn(in) (3.51)
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be an MPS representation of |ψ〉 whose bond dimensions equal the corresponding
Schmidt ranks, i.e. Dk � sk (k ∈ {1, . . . , n − 1}), D0 � Dn � 1, Gk(ik) ∈ CDk−1×Dk and
ik ∈ {1, . . . , dk}. Define a linear map

Γk : CDk+r×Dk →Hk+1,...,k+r , (3.52a)〈
φ(k+1)

ik+1
. . . φ(k+r)

ik+r

��Γ(X)〉 � Tr
(
Gk+1(ik+1) . . .Gk+r(ik+r)X

)
. (3.52b)

Inserting the MPS representation into ρk+1,...,k+r � Tr1,...,k ,k+r+1,...,n(|ψ〉〈ψ |) yields

ρk+1,...,k+r � ΓkAk (3.53)

where Ak ∈ B(Hk+1,...,k+r ;CDk+r×Dk ) is a suitably defined linear map (see Lemma 3.8
for details). The last equation and Dk � sk imply that rk(ρk+1,...,k+r) ≤ rk(Γk) ≤
Dk Dk+r � sk sk+r and the remainder of Lemma 3.6 is proven as part of Lemma 3.8.
Furthermore, the conditions rk(ρk+1,...,k+r) � sk sk+r imply that rk(Γk) � Dk Dk+r

holds and that the map Γk is injective (k ∈ {1, . . . , n− r−1}). The proof is completed
by applying results by Baumgratz (2014, Lemmata 12 and 13) which mostly go back
to work by Perez-Garcia et al. (2007) and Fannes et al. (1992). �

If |ψ〉’s MPS matrices Gk(ik) are chosen randomly and r is chosen such that
maxk Dk ≤ dr/2 holds, the conditions Dk � sk and rk(ρk+1,...,k+r) � sk sk+r are most
likely satisfied.59 In this sense, Theorem 3.7 applies to almost all pure states of
given Schmidt ranks if r is chosen such that maxk sk ≤ dr/2. The combination of
Lemma 3.5 and Theorem 3.7 then shows that the distance between |ψ〉 and some
density matrix σ can be bounded in terms of the reduced density matrices of σ
on r + 1 neighbouring sites. Whether this bound is practically useful depends on
whether the difference between G’s two smallest eigenvalues, which is often called
energy gap above the ground state, is small when compared to ‖G‖(∞) ≤ n − r.60 For
pure product states which undergo time evolution under a local Hamiltonian, a
closely related result is shown inChapter 6. Theorem6.10 constructs an approximate
parent Hamiltonian whose range r is bounded in terms of evolution time and other
system parameters; it applies to lattices of arbitrary dimension.
The remainder of this section presents a lemma and a Remark which provide

additional technical details. It also completes the proof of Lemma 3.6.

59Under the same conditions, the maps Γk are most likely injective (Perez-Garcia et al. 2007). See also
Lemma 3.8.

60See Section 6.3 for further details.
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Chapter 3. Quantum state tomography

Lemma 3.8 Let Gk(ik) be the matrices of an MPS representation of |ψ〉 ∈ HΛ (as in
(3.51)).61 For l ∈ {1, . . . , n} and j ∈ {0, . . . , n − l}, set

R :� { j + 1, . . . , j + l}, ��φ(R)iR

〉
:�

��φ( j+1)
i j+1

. . . φ
( j+l)
i j+l

〉
, (3.54)

iR :� (i j+1 , . . . , i j+l), GR(iR) :� G j+1(i j+1) . . .G j+l(i j+l) (3.55)

and define linear maps62

ΓR : CD j+l×D j → HR ,
〈
φ(R)iR

��Γ(A)〉 � Tr(GR(iR)A), (3.56)

∆R : HR → CD j×D j+l ,
��φ(R)iR

〉 7→ GR(iR). (3.57)

Choose r ∈ {1, . . . , n}, k ∈ {0, . . . , n − r} and define the intervals

X :� {1, . . . , k}, Y :� {k + 1, . . . , k + r}, Z :� {k + r + 1, . . . , n}. (3.58)

Let ρY � ρk+1,...,k+r be a reduced density matrix of ρ :� |ψ〉〈ψ |. Then

ρY � ΓY(∆X ⊗ ∆Z)(∆∗X ⊗ ∆∗Z)Γ∗Y . (3.59)

where C1×Dk ⊗ CDk+r×1 has been identified with CDk+r×Dk .
The relations rk(ρY) � SY ≤ sk sk+r , SY ≤ rk(ΓY) ≤ Dk Dk+r , sk ≤ rk(∆X) ≤ Dk and

sk+r ≤ rk(∆Z) ≤ Dk+r hold. If D j � s j holds for j ∈ {k , k + r}, then rk(ρk+1,...,k+r) �
sk sk+r holds if and only if ΓY is injective.

Proof Define the linear operator M ∈ B(HXZ ;HY) as〈
φ(Y)iY

��M��φ(X)iX
φ(Z)iZ

〉
:�

〈
φ(X)iX

φ(Y)iY
φ(Z)iZ

��ψ〉
� BX(iX)BY(iY)BZ(iZ). (3.60)

Using ρY � TrXZ(|ψ〉〈ψ |), we obtain
〈
φ(Y)iY

��ρY
��φ(Y)i′Y

〉
�

∑
iX iZ

〈
φ(X)iX

φ(Y)iY
φ(Z)iZ

��ψ〉〈
ψ
��φ(X)iX φ

(Y)
i′Y
φ(Z)iZ

〉
�

〈
φ(Y)iY

��MM∗
��φ(Y)i′Y

〉
.

(3.61)

This shows ρ � MM∗, which implies rk(ρ) � rk(M) � SY . Note that BX(iX) ∈ C1×Dk ,
BZ(iZ) ∈ CDk+r×1 and therefore,

(∆X ⊗ ∆Z)
��φ(X)iX

φ(Z)iZ

〉
� BX(iX) ⊗ BZ(iZ) � BZ(iZ)BX(iX). (3.62)

61Dk � sk is not required here.
62One may wonder whether there is a relation between the maps ΓR and ∆R . If the vector basis

��φ(R)ir

〉
and the matrix basis Ei j � ei e>j are used, a relation is Γ � ∆>T and ∆ � TΓ> where T(A) � A>.

58



3.4. Efficient verification

This shows
〈
φ(Y)iY

��ΓY(∆X ⊗ ∆Z)
��φ(X)iX

φ(Z)iZ

〉
� Tr(BY(iY)BZ(iZ)BX(iX)) � BX(iX)BY(iY)BZ(iZ),

which shows M � ΓY(∆X ⊗ ∆Z) and SY � rk(M) ≤ rk(ΓY) ≤ Dk Dk+r . If an MPS
representation with D j � s j ( j ∈ {k , k + r}) is used, it implies SY ≤ sk sk+r and this
inequality is independent of the representation used. As an alternative, SY ≤ sk sk+r

can also be obtained as consequence of Lemma 8.15.
We define M′ by replacing, in the definition of M, the sets X and Y with X′ � ∅

and Y′ � X ∪ Y. Then M′ � ΓX∪Y∆Z and

sk+r � SX∪Y � rk(M′) ≤ rk(∆Z). (3.63)

In this way, we obtain sk+r ≤ rk(∆Z) ≤ Dk+r and sk ≤ rk(∆X) ≤ Dk .
Note that

rk(ΓY) ≥ SY � rk(M) ≥ rk(ΓY) + rk(∆X ⊗ ∆Z) − Dk Dk+r (3.64a)

≥ rk(ΓY) + sk sk+r − Dk Dk+r (3.64b)

holds.63 If D j � s j holds for j ∈ {k , k + r}, it implies SY � rk(ΓY). In this case, ΓY

being injective, rk(ΓY) � sk sk+r and SY � sk sk+r are seen to be equivalent. �

Remark 3.9 If a pure state |ψ〉 and an MPS representation with bond dimensions
Dk are given, reduced density matrices satisfy

rk(ρk+1,...,k+r) ≤ sk sk+r ≤ Dk Dk+r . (3.65)

In this case, rk(ρk+1,...,k+r) � Dk Dk+r directly implies sk � Dk , sk+r � Dk+r ,
rk(ρk+1,...,k+r) � sk sk+r and the existence of a parent Hamiltonian with non-
degenerate ground state as per Theorem 3.7. 2

3.4.2. Markov entropy decomposition certificate

In this section, we present a result which upper bounds the trace distance between
two density matrices in terms of von Neumann entropies of certain reduced
density matrices. The von Neumann entropy of a density matrix is denoted by
S(ρ) :� −Tr(ρ log ρ) and S(A)ρ :� S(ρA) where ρA � TrΛ\A(ρ) is a reduced density

63We used rk(A) + rk(B) − k ≤ rk(AB) where A has k columns and where B has k rows. E.g. Horn and
Johnson 1991a, 0.4.5(c).
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Chapter 3. Quantum state tomography

matrix. Conditional von Neumann entropies are denoted by S(A|B) � S(AB)−S(B).
The following upper bound on ‖ρ − σ‖(1) was shown by Kim (2014, Eq. (12)):64

Theorem 3.10 For k ∈ Λ � {1, . . . , n}, choose subsets Mk ⊂ {1, . . . , k − 1}. Let
ρ, σ ∈ D(HΛ). Then

S(ρ) ≤ SM(ρ) :�
n∑

k�1
S(k |Mk)ρ (3.66)

and

1
4

(

ρ − σ

(1)
)2
≤ 2S

( ρ + σ

2

)
− S(ρ) − S(σ) ≤ 2SM

( ρ + σ

2

)
(3.67)

hold.

Theorem 3.10 provides an upper bound on the trace distance 1
2 ‖ρ − σ‖(1) which

depends only on the reduced densitymatrices ρMk ,k and σMk ,k . The trace distance of
two density matrices ρ and σ always satisfies 1

2 ‖ρ − σ‖(1) ≤ 1 and Theorem 3.10 can
provide a tighter bound if ρ and σ are nearly pure (i.e. S(ρ), S(σ) � 1

2 ) or if S(ρ) and
S(σ) are known. The application of Theorem 3.10 is not limited to one-dimensional
lattices because the sets Mk do not need to be contiguous. The upper bound SM(ρ)
on S(ρ) is calledMarkov entropy and the sets Mk are calledMarkov shields.65 Equality
in S(ρ) ≤ SM(ρ) implies that the density matrix ρ can be reconstructed from
the reduced density matrices ρMk k with the so-called Petz recovery map.66 This
approach has been compared to MPO reconstruction (Section 3.3.3) in a previous
work67 but it is not discussed in the remainder of this work.

64The cited work further shows that −S(ρ) ≤ SM′ (ρ) where SM′ (ρ) :�
∑n

k�1 S(k |M′k )ρ with arbitrary
subsets M′k ⊂ {k + 1, . . . , n}. Applying the proof of S(ρ) ≤ SM(ρ) to a reversed chain yields S(ρ) �∑n

k�1 S(k |k + 1, . . . , n) ≤ ∑n
k�1 S(k |M′k ) � SM′ (ρ) where strong subadditivity of the von Neumann

entropy was used in the form S(A|BC) ≤ S(A|B) (e.g. Nielsen and Chuang 2007, Theorem 11.15).
Since S(ρ) ≥ 0, we obtain the bound −S(ρ) ≤ 0 ≤ SM′ (ρ).

65Poulin and Hastings 2011.
66See Petz 2003; Hayden et al. 2004; Poulin and Hastings 2011; Holzäpfel et al. 2018. Let Nk :�
{1, . . . , k − 1} \ Mk . S(ρ) � SM(ρ) implies S(k |Nk Mk ) � S(k |Mk ) or, in terms of the conditional
mutual information I(A : C |B), that I(Nk : k |Mk ) � S(k |Mk ) − S(k |Nk Mk ) � 0 holds. This in
turn implies ρ � (En . . . E2)(ρ1) where Ek : B(HMk ) → B(HMk k ) are Petz recovery maps given by
Ek (σ) � (ρMk k )1/2(ρMk )−1/2σ(ρMk )−1/2(ρMk k )1/2.

67Holzäpfel et al. 2018.
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Chapter 4.

Efficient maximum likelihood
estimation (MLE)

In the following, we take a closer look at maximum likelihood estimation of
quantum states represented as matrix product states by means of numerical studies.
In Section 4.1, we determine the measurement effort necessary for a constant
estimation error as the number of subsystems grows.1 The measurement effort is
determined as the number of repeated measurements of a fixed set of observables
for a selection of time-evolved states. The following Section 4.2 presents results
on MPS-MLE for mixed states represented as locally purified matrix product state
(PMPS). Here, we reconstruct a state from simulated measurement data of tensor
products of quadrature amplitudes of several harmonic oscillators, demonstrating
successful, efficient reconstruction of a state of a system with continuous variables.

4.1. Resources for constant estimation error

Estimating a given quantum state with the MPS-MLE method can succeed or
fail, depending on the correlations in the quantum state and the selection of a
non-informationally-complete measurement. Insight on the method’s capabilities
can be gained with numerical studies involving specific states. For example, the
original proposal included simulation results for mixed and pure states of 16
and 20 qubits.2 Successful estimation from a finite number of measurements was
demonstrated but the question whether a constant estimation error can be achieved

1Section 4.1 reproduces parts of the Supplementary Information of the original publication Lanyon,
Maier, et al. 2017. The present author performed numerical simulations of the estimation method.
MPS representations of time-evolved states were supplied by Anton S. Buyskikh (cf. Buyskikh 2017).

2Baumgratz et al. 2013b.
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Figure 4.1: Estimation error of MPS-MLE with a finite number of measurements.4 The
estimation error D and estimation fidelity F � |〈ψ(t)|ψest〉|2 are related by D �

√
1 − F.

Markers show errors obtained in 10 individual reconstructions and lines connect average
values. Markers are shifted slightly horizontally to enhance visibility and straight lines
serve as guide to the eye.

as the number of subsystems increases was left open. Related evidence is presented
in Section 5.3.2 below but the question is not directly answered there either.3 In
this section, we show, for a specific class of time-evolved states, that a total number
of measurements proportional to n3 is sufficient for estimating a pure state up to a
constant error in trace distance.1

Weconsider an initial pure product statewhich evolves under a nearest-neighbour
Hamiltonian on a linear chain. Specifically, the initial state is |ψ(0)〉 � |↑↓↑↓ . . . 〉
and it evolves into |ψ(t)〉 � exp(−iHIsingt/~)|ψ(0)〉 under the nearest-neighbour
Hamiltonian

HIsing � ~
n−1∑
i�1

2J σ(i)X σ
(i+1)
X + ~

n∑
i�1
(B + Bi) σ(i)Z (4.1)

where ~ is the reduced Planck constant. This Hamiltonian is motivated by the ion
trap experiment described in Chapter 7 and we use the average nearest-neighbour
coupling J and field B+Bi from this setting. AnMPS representation of |ψ(t)〉 can be
obtained with DMRG or related numerical algorithms1 with effort which increases

3Originally published in Holzäpfel et al. 2015.
4The figure reproduces Figure S3 from the Supplementary Information of Lanyon, Maier, et al. 2017
with modifications.
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exponentially with t but only polynomially with n.5 Furthermore, |ψ(t)〉 is uniquely
determined by its reduced density matrices on a number of sites which also grows
exponentially with t but only polynomially with n.6 Therefore, we attempt to
estimate |ψ(t)〉 from complete information of reduced density matrices on all blocks
of r neighbouring sites where r � 3. We simulate m measurements of each of the
(n − r + 1)3r POVMs Π(r)σa ; here, a ∈ {X,Y, Z}r and Π(r)σa is constructed from r-fold
tensor products of Paulimatrix eigenvectors and is taken to act on sites k , . . . , k+r−1
(see Equation (3.15)). The outcomes of the simulated measurements are used to
compute observed outcome frequencies of the POVMΠ(n ,r)Block (Equation (3.20)), which
are in turn used for MLE over pure MPS (Equation (3.34)). After each iteration, the
estimated state is compressed to MPS bond dimension D � 4 and the iterations are
started from the output from the MPS-SVT algorithm (Section 3.3.2). We quantify
the estimation error with the trace distance D �



|ψ(t)〉〈ψ(t)| − |ψest〉〈ψest |



(1)/2,

which can be computed7 from the fidelity F � |〈ψ(t)|ψest〉|2 via D �
√

1 − F. The
estimation error after 2000 iterations of (3.34) is shown in Figure 4.1. We observe that
the estimation error decreases slightly with the number of qubits n if the number
of measurements m is proportional to n2. This shows that a constant estimation
error can be achieved, for this particular family of states, with a total number of
measurements given by O(n3). An open question for future work concerns the
growth of the number of iterations in the SVT and MLE algorithms necessary to
achieve a desired estimation error. The given, fixed number number of iterations is
seen sufficient in this example but it could change for other states or larger systems.

4.2. Efficient maximum likelihood estimation with
continuous variables

In this section, we demonstrate efficient MLE of quantum states of systems with
continuous variables, i.e. systems with an infinite-dimensional Hilbert space.
Our basic model is the quantum-mechanical harmonic oscillator, realized e.g. by
oscillations of electromagnetic fields in photonic systems, by amolecular vibrational
mode, by the motion of trapped ions or by a micromechanical oscillator.
We proceed with a short, mathematically non-rigorous introduction to the

quantummechanical harmonic oscillator. The Hamiltonian of a quantum harmonic

5Osborne 2006. See also Chapter 6, in particular Theorem 6.33.
6Lanyon, Maier, et al. 2017; Supplementary Information. See also Chapter 6, in particular Theorem 6.10.
7Nielsen and Chuang 2007, Eqs. (9.11), (9.60), (9.99).
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oscillator of angular frequency ω is given by8

H � ~ω

(
a∗a +

1
2

)
(4.2)

where a∗ and a are creation and annihilation operators and ~ is the reduced Planck
constant. The Hamiltonian has the non-degenerate eigenvalues E j � ~ω( j + 1

2 )with
j ∈ {0, 1, . . . }. The corresponding eigenvectors |n j〉 are called the Fock basis and they
satisfy a∗a |n j〉 � j |n j〉, j ∈ {0, 1, . . . }. Dimensionless conjugate variables are given
by X � (a + a∗)/√2 and P � −i(a − a∗)/√2, describing e.g. position and momentum
or electric and magnetic fields. They satisfy the commutation relation [X, P] � +i.
Independently of whether the physical system is given by a photonic mode or not,
we shall call the quantum number j the number of photons and a harmonic oscillator
a mode.
The essential observable of the quantum Harmonic oscillator is the so-called

quadrature amplitude9

Qθ :� X cos(θ) + P sin(θ) (4.3)

where θ ∈ [0, π) is called the phase of the quadrature amplitude. The eigenvalues
q ∈ R of the quadrature amplitude Qθ are non-degenerate and we denote its
eigenvectors by |φθq 〉. In a photonic experiment, the quadrature amplitude can be
measured with a balanced homodyne detection (BHD) experiment where θ is the
phase between a to-be-detected mode and a strong, coherent field, called the local
oscillator.10 Quadrature amplitudes have also been measured for oscillations of
atoms in molecules,11 for oscillations of trapped ions12 and for micromechanical
oscillators.13

The quadrature amplitudes Qθ are essential because an unknown quantum state
ρ can be reconstructed if the outcome probability distributions pρ,θ(q) � 〈φθq |ρ |φθq 〉
are known for all θ ∈ [0, π).14 If the quantum state is supported on the first d
elements of the Fock basis (i.e. at most d − 1 photons), the distributions pρ,θ(q) for
d distinct phases θ are already sufficient to reconstruct ρ.15 The assumption of a
8E.g. Nielsen and Chuang 2007, Section 7.3.2; Lvovsky and Raymer 2009.
9E.g. Lvovsky and Raymer 2009, Section II.A. Note that Qθ+π � −Qθ .
10Smithey et al. 1993; Lvovsky and Raymer 2009.
11Dunn et al. 1995.
12Poyatos et al. 1996.
13Aspelmeyer et al. 2014. See also e.g. Vanner et al. 2013.
14Vogel and Risken 1989.
15Leonhardt and Munroe 1996.

66



4.2. Continuous variables

single mode with at most d − 1 photons allows us to restrict the density matrix
to a d-dimensional subspace of the complete Hilbert space and enables the state
to be estimated with the regular MLE method.16 In the following, we consider
reconstruction under the assumption that an n-mode state has at most d−1 photons
in each mode. This assumption is satisfied e.g. by photonic modes containing few
photons or by mechanical oscillators near their ground state.

Measurement of a quadrature amplitude is described by the POVM

Π
Q
θ :�

{
Pθq : q ∈ R

}
, Pθq :� |φθq 〉〈φθq | (4.4)

whose positive-semidefinite elements Pθq satisfy
∫
R

Pθq dq � 1. In the following
construction of r-mode measurements, the POVM ΠQ

θ basically assumes the role of
a Pauli POVM Π(1)σa from Section 3.1.3. A simultaneous or sequential measurement
measurement of the quadrature amplitude Qθi on mode i ∈ {1 . . . r} is described
by the POVM

Π
(r,θ)
Q :� ΠQ

θ1
⊗ · · · ⊗ ΠQ

θr
�

{
Pθq :� Pθ1

q1 ⊗ · · · ⊗ Pθr
qr : q ∈ Rr

}
(4.5)

where the vector θ ∈ [0, π)r ⊂ Rr contains r independent phases θ1 , . . . , θr . We
denote the outcome probabilities of Π(r,θ)Q by pρ,θ(q) :� Tr(Pθq ρ)where q ∈ Rr .
Assuming at most d − 1 photons in each mode, we choose d distinct phases

Θ :� {θ1 , . . . , θd} ⊂ [0, π). The measurement of all combinations of each phase
θi ∈ Θ on each mode is described by the POVM

Π
(n ,r,k ,Θ)
Local :�UP

({
Π
(r,θ)
Q : θ ∈ Θr

})
�

{
1
|Θ|r Pθ1

q1 ⊗ · · · ⊗ Pθr
qr : θ ∈ Θr , q ∈ Rr

}
(4.6)

Assuming n modes, the POVM Π(n ,r,k ,Θ)Local is taken to act on modes k , . . . , k + r − 1
where k ∈ {1, . . . , n − r + 1}. Note that

Π
(n ,r,k ,Θ)
Local �

(
ΠQ ,Θ

)⊗r where ΠQ ,Θ :�UP

({
Π

Q
θ : θ ∈ Θ

})
. (4.7)

The POVM ΠQ ,Θ is IC if a single mode is restricted to d − 1 photons; therefore, the
POVM Π(n ,r,k ,Θ)Local is IC on r modes if there are at most d − 1 photons in each mode.
On n modes, we define the POVM

Π
(n ,r,Θ)
Block �

{
1

n−r+11k−1 ⊗ P ⊗ 1n−k−r+1 : P ∈ Π(n ,r,k ,Θ)Local , k ∈ {1 . . . n − r + 1}
}

(4.8)

16Banaszek et al. 1999; Lvovsky 2004. Other approaches, such as obtaining a Wigner function
representation of the density matrix using e.g. the inverse Radon transform are not covered here; cf.
Lvovsky and Raymer 2009.
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Chapter 4. Efficient maximum likelihood estimation (MLE)

which collects all the elements of the POVMs from (4.6).
The operator R from MLE is straightforwardly adapted to POVMs with one or

more continuous indices as

R(ρ) �
∫
Rl

f (x)
Tr(M(x)ρ)M(x)dx (4.9)

where f (x) represents observed outcome frequencies and where l is a positive
integer. For the corresponding POVM Π � {M(x) : x ∈ Rl} we will insert Π(n ,r,k ,Θ)Local
or Π(n ,r,Θ)Block , wherein discrete indices are formally included with an additional
continuous index and delta distributions. Certainly, it is not feasible to observe
the relative frequencies of f (x) for all x ∈ Rl and an estimate of f (x) must be
used instead. Suppose that we measured Π m times and obtained the outcomes
x1 , . . . , xm ∈ Rl . A basic estimate for the observed frequencies f (x) is given by

f (x) �
m∑

i�1
δ(x − xm). (4.10)

where δ is the Dirac delta distribution. More sophisticated estimates of f (x)may
improve the estimation method but may also increase the difficulty of obtaining
R(ρ). Inserting the given estimate of f (x), R(ρ) becomes17

R(ρ) �
m∑

i�1

1
Tr(M(xi)ρ)M(x). (4.11)

As mentioned above, we assume that the to-be-reconstructed quantum state is
supported on the first d elements of the Fock basis. As a consequence, it is sufficient
to compute the corresponding matrix elements of R(ρ) in the Fock basis. This
requires the components of the quadrature amplitude eigenstates in the Fock basis,
which are given by18

〈n j |φθq 〉 � ei jθψ j(q), ψ j(q) � 1
π1/4

1√
2 j j!

e−q2/2H j(q). (4.12)

Here, the H j(q) are Hermite polynomials19 and j ∈ {0, 1, 2, . . . } enumerates the
Fock basis.
17Lvovsky 2004.
18E.g. Lvovsky and Raymer 2009, Eqs. (26) and (44).
19H j(q) � j!

∑s
l�0
(−1)s−l

(s−l)!
(2x) j−2(s−l)
( j−2(s−l))! , s � b j/2c (Olver et al. 2010, Eq. (18.5.13), available at https:

//dlmf.nist.gov/18.5.E13).
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Figure 4.2: Estimation of an n-mode state from quadrature amplitude measurements on all
modes. Left and middle: Estimation error as function of S � 1/√s where s is the number
of samples. Up to s � 1.28 × 106 samples per phase setting were used. Lines serve
as guide to the eye. Right: Outcome probability density of the quadrature amplitude
with phase θ � (0, 0, 0) on the three-mode state with q � (0, q2 , q3). The to-be-estimated
random state does not possess any obvious symmetries.

Writing the density matrix and the operator R(ρ) in the Fock basis, we have
everything in order to performMLE of a quantum state from quadrature amplitude
measurements on a single harmonic oscillator or mode as proposed by Lvovsky
(2004). In the following, we discuss the straightforward generalization to multiple
modes20 and, at the end, efficient tomography of multiple modes from incomplete
measurements.
First, we focus on the reconstruction of a state of n ∈ {1, 2, 3} modes from

measurements on all modes. We consider states with at most d − 1 � 2 photons in
each mode. We set r � n and choose the d equidistant phasesΘ � {0, π/d , . . . , (d −
1)π/d}.21 For each θ ∈ Θr , we simulate s measurements of the POVM Π(r,θ)Q

numerically, meaning that measurements of all the POVMs contributing toΠ(n ,r,k ,Θ)Local
are simulated (n � r, k � 1). For r ∈ {1, 2}, we simulatedmeasurements by drawing
from a piecewise constant approximation to the outcome distribution pρ,θ(q) and
for r ∈ {1, 2, 3}, we sampled from the distribution with ensemble Markov chain
Monte Carlo sampling implemented by the emcee package.22 The full outcome

20E.g. Babichev et al. 2004.
21In other numerical experiments, using d phases chosen uniformly random from [0, π) was observed

to generally yield worse results. This may not be surprising because quadrature amplitude
measurements with a smaller phase difference yield more similar outcome distributions.

22Foreman-Mackey et al. 2013.
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Figure 4.3: Estimation error after i iterations of (3.37). A state on n ∈ {3 . . . 6} modes is
estimated from measurements on r � 3 neighbouring modes using s samples per phase
setting.

distribution of the POVM Π(n ,r,k ,Θ)Local is known to uniquely determine the state and
we attempt reconstruction from a finite number of samples with MLE as described
above.

Figure 4.2 shows results for the estimation of a random mixed state.23 The figure
shows the estimation error of states on one, two and three modes from s samples
per phase setting (see above). The statistical noise caused by a finite number of
samples s is heuristically quantified by S � 1/√s. The estimation error is measured
by the trace distance Dtr(ρ, ρest) � ‖ρ − ρest‖(1)/2 and it is seen to decrease as the
number of samples increases.
Next, we discuss efficient estimation of a state on n ∈ {3, 4, 5, 6} modes using

measurements on only r � 3 neighbouring modes. We perform MLE using the
POVM Π(n ,r,Θ)Block and simulate measurements of the POVMs Π(r,θ)Q whose elements
contribute toΠ(n ,r,Θ)Block as described above. The total number of samples is (n−r+1)dr s.
Figures 4.3 and 4.4 show results of the estimation of a random locally purified

matrix product state (PMPS) of bond dimension D � 2 (at most d − 1 � 2 photons
per mode). We use Equation (3.37) to perform MLE with the PMPS representation
restricted to bond dimension D � 4. Here, we measure the estimation error with
the Frobenius norm as DF(ρ, ρest) � ‖ρ − ρest‖(2)/(‖ρ‖(2) + ‖ρest‖(2)). Figure 4.3
shows the estimation error over 2700 iterations of (3.37). More iterations are seen
to be necessary as the number of samples s and the number of modes n increase
and the scaling should be investigated in future work. The estimation error at the
23ρ � TT∗/Tr(TT∗)where the entries of T have normally distributed real and imaginary parts.
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Figure 4.4: Efficient state estimation from measurements on r � 3 out of n ∈ {3, 4, 5, 6}
modes. Left: Modes are arranged in a linear chain and measurements on neighbouring
modes are simulated. Middle and right: Reconstruction error of a state on n modes from
measurements on r � 3 neighbouring modes. Statistical noise is quantified by S � 1/√s
where s is the number of samples per phase setting. Lines serve as guide to the eye.

end of the iterations is shown in Figure 4.4 as function of the number of samples s
and as function of the number of modes n. The estimation error decreases with the
number of samples and exhibits only a moderate, possibly linear increase with the
number of modes n. As mentioned above, the total number of samples used for this
estimation increases only linearly with the number of modes n. The computational
time was observed to be roughly proportional to n − r + 1. This is consistent with a
large fraction of computational time being spent on processing the measurement
data, whose total size is proportional to the number of r-site blocks which is exactly
n − r + 1. Processing the global state is comparably easy and thanks to the PMPS
representation, this is not expected to change for larger mode counts n if the block
size r is kept constant. In summary, we demonstrated efficient estimation of a
multi-mode state with a restricted number of photons per mode from quadrature
amplitude measurements.

In the following, we discuss the computational time required by our imple-
mentation and discuss possible starting points for algorithmic improvements. In
each iteration of (3.37), we need to construct the operator R(ρ), which requires a
summation over all samples (Equation (4.11)). We replaced our original Python
implementation by a faster implementation based on just-in-time compilation with
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Chapter 4. Efficient maximum likelihood estimation (MLE)

Numba24 and a still faster C implementation interfaced to Python with Cython.25

Estimating a three-mode state from measurements on three modes, this enabled us
to perform 600 iterations with about 107 samples in 40 hours of CPU time.26 This
highlights the need for algorithmic improvements. As the estimated state often
changes only slightly from one iteration to the next, one could update R(ρ) only
after a larger number of iterations instead of recomputing it after every iteration.
Alternatively, one could divide the sum (4.11) into several parts, recomputing
one part in each iteration. Improving our basic estimate (4.10) for the observed
frequencies f (x) could remove the need to consider all the samples individually in
the summation (4.11). One may consider a multidimensional piecewise constant
approximation to f (x)withweights given by the number of samples in each interval
(“binning”), which, however, can limit the achievable precision.27 Alternatively,
one could replace several samples with similar values by one sample with an
appropriate weight, otherwise keeping the structure of (4.11). One can also view
the computation of R(ρ) as an estimation problem where the true R(ρ), as defined
by the exact but unknown POVM probabilities, is to be estimated. The mentioned
estimates of f (x) already provide three different estimators and more efficient,
potentially biased, estimators may be found.

24Lam et al. 2015.
25Dalcin et al. 2010.
26Using a single core of an Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.
27Lvovsky 2004.
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Chapter 5.

Scalable ancilla-assisted process
tomography (AAPT)

Amethod for efficient tomography of quantumprocesses acting on one-dimensional
quantum many-body systems is presented in this chapter.1 It allows for the
reconstruction of unitary processes, local Hamiltonians or more general quantum
operations. This is achieved by combining AAPT with efficient methods for
quantum state estimation.

5.1. Local ancilla-assisted process tomography
Due to the exponential growth of Hilbert space with the number of particles n, the
measurement and post-processing effort required for QST and quantum process
tomography increase exponentially with the number of particles. This exponential
growth refers to the task of distinguishing an arbitrary quantum state or process
from all other states or processes and as mentioned above, a particularly simple
state may be distinguished from all other states with much smaller effort – this is
utilized by methods for efficient quantum state tomography based on MPSs.2

Quantum process tomography can be reformulated as a quantum state tomogra-
phy problem using the Choi-Jamiołkowski isomorphism,3 which we discuss below.
The Choi-Jamiołkowski isomorphism involves a maximally entangled pure state, a
state which does not immediately allow for an efficient MPS representation due
to its maximal amount of entanglement. This section shows how efficient process
1This chapter reproduces the original publication Holzäpfel et al. 2015 (© 2015 American Physical
Society). In Section 5.1, the evidently completely positive (CP) representation of quantum operations
was added. Sections 5.2 and 5.3 were edited slightly.

2Cramer et al. 2010; Baumgratz et al. 2013a,b. See also Chapter 3.
3Choi 1975; Jamiołkowski 1972.

73



Chapter 5. Scalable ancilla-assisted process tomography (AAPT)

tomography is enabled by efficient state tomography and the Choi-Jamiołkowski
isomorphism despite the fact that the latter involves a maximally entangled state.

A quantum operation is a linear map E ∈ B(B(HB);B(HA)) which is completely
positive and trace preserving (CPTP). If HC is an arbitrary finite-dimensional
Hilbert space and σ ∈ D(HB ⊗ HC) is a density matrix, then the CPTP property
ensures that (E ⊗ idC)(σ) is a valid density matrix fromD(HA ⊗ HC).4 In order to
define the Choi-Jamiołkowski isomorphism, we set C :� B′,HB′ :� HB and choose
an orthonormal basis {|φb〉 : b ∈ {1 . . . dB}} of HB . Given E ∈ B(B(HB);B(HA)),
the Choi matrix ρE ∈ B(HA ⊗ HB) is given by

ρE :� (E ⊗ idB′)|Ψ〉〈Ψ| (5.1)

where |Ψ〉 � ∑dB
b�1 |φbφb〉/

√
dB ∈ HB ⊗ H ′B is a completely entangled state. The

bĳective, linear map from E to its Choi matrix ρE is called the Choi-Jamiołkowski
isomorphism.5 The map E is completely positive (or trace-preserving) if and only
if ρE is positive semi-definite (or TrA(ρE) � 1dB/dB holds).6 Since the linear map
from E to ρE is bĳective, determining ρE via QST provides a full description of the
quantum operation E and this approach to quantum process tomography is known
as ancilla-assisted process tomography (AAPT).7 The “ancilla” system is the second
copy B′ of system B in (5.1).

In order to examine four equivalent forms of the Choi-Jamiołkowski isomorphism,
we choose a basis {|εa〉 : a ∈ [dA]} ofHA. Equation (5.1) is equivalent to

ρE �
1

dB

dB∑
b ,b′�1

E
(
|φb〉〈φb′ |

)
⊗ |φb〉〈φb′ | (5.2)

and taking components of the last Equation shows that it is equivalent to

〈εaφb | ρE |εa′φb′〉 � 1
dB
〈εa | E

(
|φb〉〈φb′ |

)
|εa′〉 (5.3)

for all a , a′ ∈ [dA], b , b′ ∈ [dB]. The last Equation is in turn equivalent to

Tr
( (|εa′〉〈εa | ⊗ |φb′〉〈φb |

)
ρE

)
�

1
dB

Tr
(
|εa′〉〈εa | E

(
|φb〉〈φb′ |

))
. (5.4)

4E.g. Nielsen and Chuang 2007, Section 8.2. Specifically, complete positivity (CP) implies that
(E ⊗ idC)(ρ) is positive semidefinite for all positive semidefinite ρ ∈ B(HB ⊗ HC) and E is called
trace preserving if Tr(E(ρ)) � Tr(ρ) holds for all ρ ∈ B(HB).

5Choi 1975; Jamiołkowski 1972.
6TP: Jamiołkowski 1972, Theorem 2. CP: Choi 1975, Theorem 2.
7D’Ariano and Lo Presti 2001; Dür and Cirac 2001; Altepeter et al. 2003. In addition to AAPT, there are
other methods for reconstructing unitary channels from a smaller number of input and output states
(Baldwin et al. 2014).
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Using linearity shows that last Equation for all a , a′ ∈ [dA], b , b′ ∈ [dB] is equivalent
to

Tr
((A ⊗ B) ρE

)
�

1
dB

Tr(A E(B>)) (5.5)

for all A ∈ B(HA), B ∈ B(HB).8 The transpose is defined in terms of the basis |φb〉,
i.e. 〈φb |B> |φb′〉 � 〈φb′ |B |φb〉.
In the following, we consider n particles, i.e. HB � H1 ⊗ · · · ⊗ Hn and HA �

HA1 ⊗ · · · ⊗ HAn . We also choose product bases |φb〉 �
��φ(1)b1

〉 ⊗ · · · ⊗ ��φ(n)bn

〉
and

|εa〉 �
��ε(1)a1

〉 ⊗ . . . ��ε(n)an

〉
where b � (b1 , . . . , bn) and a � (a1 , . . . , an). Dimensions

are denoted by dk :� dim(Hk), d � maxk dk and dAk :� dim(HAk ). The maximally
entangled state |Ψ〉 is given by

|Ψ〉 � 1√
dB

d1∑
b1�1
· · ·

dn∑
bn�1

(��φ(1)b1

〉 ⊗ · · · ⊗ ��φ(n)bn

〉) ⊗ (��φ(1)b1

〉 ⊗ · · · ⊗ ��φ(n)bn

〉)
. (5.6)

|Ψ〉 is an element ofHB ⊗HB′ � H1 ⊗ · · · ⊗Hn ⊗H1′ ⊗ · · · ⊗Hn′ where k′ is a copy of
k,Hk′ :� Hk . It is easy to verify that the bond dimension of an MPS representation
of this state is maximal at every bipartition; i.e. |Ψ〉 from (5.6) does not admit an
efficient MPS representation. As a consequence, the matrix ρE corresponding to
the identity channel E � id does not admit an efficient MPO representation and
efficient MPS tomography of ρE cannot succeed. This changes if we switch the
order of the 2n sites from (1, . . . , n , 1′, . . . , n′) to (1, 1′, 2, 2′, . . . , n , n′). In this case,
the state |Ψ〉 becomes

|Ψ〉 � |Φ+

1 〉1,1′ ⊗ · · · ⊗ |Φ+
n〉n ,n′ ∈ H1 ⊗ H1′ ⊗ · · · ⊗ Hn ⊗ Hn′ (5.7)

where |Φ+

k 〉k ,k′ �
∑dk

i�1

��φ(k)i φ(k)i

〉
k ,k′/
√

dk is a completely entangled state onHk ⊗Hk′ .
The map E acts on sites 1, 2, . . . , n of this chain of 2n sites, i.e. on every second site,
as illustrated in Figure 5.1. Clearly, |Ψ〉 from (5.7) admits an MPS representation
whose bond dimensions do not exceed d � maxk dk . As a consequence, at least
the Choi matrix ρE of the identity channel, E � id, now admits an efficient MPO
representation. In this way, the ancilla systems can enable an efficient representation
of E. However, they may represent a significant challenge in an experiment. In
the following, we show how measurements can be carried out without the ancilla
system and we discuss possible efficient representations of quantum operations
based on their Choi matrix.
8Equation (5.5) appears e.g. in Flammia et al. 2012.
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Figure 5.1: Scalable ancilla-assisted process tomography (AAPT)9 uses tensor product
measurements on few neighbouring sites of the linear chain (1, 1′, 2, 2′, . . . , n , n′) where
system and ancilla sites are arranged alternatingly (top row). The quantum operation E
acts on the sites (1, 2, . . . , n). The need for the ancilla system is eliminated by preparing
a product state, applying E and performing a local tensor product measurement (bottom
row; details in the main text).

Expectation values in ρE can be obtained without the ancilla system, which is
shown by (5.5), and we set out to show that this also applies to many-body systems.
A general tensor product observable of the linear chain after E has been applied
assumes the form M � A1 ⊗ B1′ ⊗ · · · ⊗An ⊗ Bn′ with Ak ∈ HAk and Bk′ ∈ Hk′ � Hk .
Efficient QST of ρE typically uses expectation values of tensor product observables
where all but few neighbouring tensor product factors are proportional to the
identity matrix (Figure 5.1 top row). We assume that σ � B1′ ⊗ · · · ⊗ Bn′ is a
valid quantum state (if this is not the case, it can be achieved by considering
eigendecompositions of the Bk′). The expectation value of M in ρE is related to the
quantum operation E via (use (5.5))

Tr[(A1 ⊗ B1′ ⊗ · · · ⊗ An ⊗ Bn′)ρE]
� Tr[(A1 ⊗ · · · ⊗ An)E(B>1′ ⊗ · · · ⊗ B>n′)]/dB (5.8)

where the transpose B>k′ is defined in terms of the basis
��φ(k)bk

〉
. For efficient QST, we

prepare the state σ>, a tensor product of maximally mixed states except for a small
number of consecutive sites, apply E and perform a tensor product measurement
on few consecutive sites of E(σ>) (Figure 5.1 bottom row). With this procedure, we
can determine the expectation value Tr(MρE) efficiently and without the need for
n ancilla particles.
9The figure reproduces Figure 1 from Holzäpfel et al. 2015 (© 2015 American Physical Society) with
modifications.
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After ρE has been obtained with quantum state tomography, the quantum
operation E is determined by (combine (5.1) and (5.7), cf. (5.3))〈

ε(1)a1 φ
(1)
b1
. . . ε(n)an φ

(n)
bn

�� ρE ��ε(1)a′1
φ(1)b′1

. . . ε(n)a′n
φ(n)b′n

〉
(5.9a)

�
1

dB

〈
ε(1)a1 . . . ε

(n)
an

�� E (��φ(1)b1
. . . φ(n)bn

〉〈φ(1)b′1
. . . φ(n)b′n

��) ��ε(1)a′1
. . . ε(n)a′n

〉
. (5.9b)

The density matrix ρE can be represented as a matrix product operator (MPO) or
as a locally purified matrix product state (PMPS), inducing two different, possibly
efficient representations of thequantumoperationE. Sincepositive semidefiniteness
of ρE is equivalent to complete positivity of E, the quantum operation E may or
may not be completely positive if ρE is represented as an MPO. Moreover, complete
positivity would be NP-hard to verify because this holds for determining whether
an MPO is positive semidefinite.10 If E is represented as a PMPS, then ρE is
guaranteed to be positive semidefinite and this implies that E is completely positive.
The next equation shows the result of inserting MPO and PMPS representations of
ρE into (5.9):

E � �H1 Hn

b1 b′1 bn b′n

a1 a′1 an a′n

. . .

. . .

cnc1

Gn

Gn

G1

G1

b1 b′1 bn b′n

a1 a′1 an a′n

b1 b′1 bn b′n

a1 a′1 an a′n

1
dB

(5.10)

In the representations,HAk ⊗ Hk′ is treated as a single site. As formula,11 the MPO
representation of ρE provides the representation

1
dB

〈
ε(1)a1 . . . ε

(n)
an

�� E (��φ(1)b1
. . . φ(n)bn

〉〈φ(1)b′1
. . . φ(n)b′n

��) ��ε(1)a′1
. . . ε(n)a′n

〉
� H1(a1 , b1 , a′1 , b

′
1) . . .Hn(an , bn , a′n , b′n) (5.11)

with Hk(a1 , b1 , a′1 , b
′
1) ∈ CDk−1×Dk and D0 � Dn � 1. The PMPS representation of ρE

provides the representation

1
dB

〈
ε(1)a1 . . . ε

(n)
an

�� E (��φ(1)b1
. . . φ(n)bn

〉〈φ(1)b′1
. . . φ(n)b′n

��) ��ε(1)a′1
. . . ε(n)a′n

〉
�∑

c1

· · ·
∑
cn

[
G1(a1 , b1 , c1) ⊗ G1(a′1 , b′1 , c′1)

]
. . .

[
G1(a1 , b1 , c1) ⊗ G1(a′1 , b′1 , c′1)

]
.

(5.12)

10Kliesch et al. 2014a. See also Section 2.2.1.
11Cf. Equations (2.7) and (2.9).
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where Gk(ak , bk , ck) ∈ CDk−1×Dk and D0 � Dn � 1. The indices ck ∈ [dCk ] correspond
to additional systems with Hilbert spacesHCk used to purify the mixed state ρE
(k ∈ [n]). Their dimensions dk are parameters of the representation. As mentioned
already, the representation (5.12) guarantees that E is completely positive and may
thus be called evidently positive. This can be an advantage over an MPO-based
representation whose complete positivity can be lost if MPS compression or other
operations are applied.
The representations are simplified if we restrict to HA � HB � HΛ (Λ � [n]),
HAk � Hk ,

��ε(k)ak

〉
�

��φ(k)ak

〉
and unitary operations E( · ) � U ·U∗. In this case, the

Choi matrix ρE is a pure state, ρE � |ψE〉〈ψE |, which can be represented as matrix
product state:

〈
φ(1)a1 φ

(1)
b1
. . . φ(n)an φ

(n)
bn

��ψE〉 � G1(a1 , b1) . . .Gn(an , bn) (5.13)

where Gk(ak , bk) ∈ CDk−1×Dk and D0 � Dn � 1. As before, HAk ⊗ Hk′ has been
treated as as single site in the MPS representation. The representation (5.13) is
the special case of (5.12) where all the systems Ck have unit dimension, dCk � 1
(k ∈ [n]). The core matrices Gk(ak , bk) from (5.13) provide an MPO representation
of U because we can derive

〈
φ(1)a1 . . . φ

(n)
an

�� U
��φ(1)b1

. . . φ(n)bn

〉
�

√
dB

〈
φ(1)a1 φ

(1)
b1
. . . φ(n)an φ

(n)
bn

��ψE〉 (5.14)

in the same way as (5.9).

5.2. Hamiltonian reconstruction

In this section, we discuss amethod to determine the time-independentHamiltonian
which generated a unitary evolution U � e−iHt . An MPO representation of H can
be determined efficiently with this method if U is given as an MPO as well. To
obtain H from the unitary U, we use the identity

x � sin(x)arccos(cos(x))√
1 − (cos(x))2

, x ∈ (−π, π), (5.15)

together with the power series

arccos(z)√
1 − z2

�

∞∑
k�0

ck(z − 1)k , ck �
(−1)k

2k

k∏
j�1

j

j + 1
2

(5.16)

78



5.3. Numerical simulations

which converges for |z−1| < 2.12 The basic idea is as follows. The relation U � e−iHt

implies

sin(Ht) � 1
2i (U

∗ −U), cos(Ht) � 1
2 (U

∗
+ U). (5.17)

With x � Ht, Equation (5.15) holds up to times limited by ‖Ht‖(∞) < π. While
this appears to limit the accessible time interval for Hamiltonian reconstruction,
Section 5.3.2.2 explains how to extend this result to longer times.

For practical purposes, we only want to evaluate a finite number of terms of the
series in Equation (5.16) and enforce Hermiticity. To this end, we use the expression

1
2 sin(Ht)

N−1∑
k�0

ck(cos(Ht) − id)k + h.c. (5.18)

to estimate Ht, with a given N and sin(Ht) and cos(Ht) as above. This approach
has two advantages over using a power series expansion of the logarithm: It is
valid for larger values of ‖Ht‖ and the series converges more quickly. Note that
the time evolution induced by H is just as well described by U � eiφe−iHt with
an arbitrary global phase φ ∈ R. With a global phase, Equation (5.15) imposes
‖Ht − φ id‖(∞) < π. To remedy this problem, we use U Tr(U)∗/| Tr(U)| instead of
U when computing cos(Ht) and sin(Ht).

5.3. Numerical simulations

In this section, we describe how scalable AAPT can be simulated numerically and
we present results of such numerical simulations. For several exemplary channels E,
we numerically obtain |ψE〉 as detailed below. The state |ψE〉 is on 2n qubits and we
simulatemeasurementswhich act on the r neighbouring qubits (k , k+1, . . . , k+r−1)
for k ∈ {1 . . . 2n − r + 1}. For each r-qubit block, we simulate M repetitions of
3r different, projective measurements given by all r-fold tensor products of Pauli
matrix eigenvectors.13 The total number of simulated measurements is linear in
n. Using the outcomes of the simulated measurements to determine an estimate
|ψrec
E 〉 of |ψE〉 takes statistical errors from a finite number of measurements into

12Derived from Olver et al. 2010, Eq. 4.24.2, available at https://dlmf.nist.gov/4.24.E2.
13M measurements of Π(2n ,r,k)

Local for a ∈ {X,Y, Z}r , see Equation (3.19). For MPS-MLE, the measurement
is represented with the POVM Π(2n ,r)

Block , see Equation (3.20).
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account and their effect is very similar in a scenario without ancilla system.14

The estimate |ψrec
E 〉 is determined by using the singular-value-thresholding-like

algorithm proposed by Cramer et al. (2010) to obtain an initial state for the scalable
maximum-likelihood algorithm by Baumgratz et al. (2013b).15 The result is an
MPS representation of |ψrec

E 〉 with 2n sites which is easily converted to an MPS
representation on n supersites as in Equation (5.13) (cf. Section 2.2).
We assume that |ψE〉 and |ψrec

E 〉 are normalized. With the estimate |ψrec
E 〉 and

thus the corresponding operator Urec at hand, we then quantify the quality of the
reconstruction scheme by

F � F(U,Urec) � |〈ψE |ψrec
E 〉|2 , (5.19)

and note that this is in one-to-one correspondence to other distance measures for
unitary channels used in the literature. In particular, we have the relation16

F � FA +
FA − 1

dΛ
, FA �

∫
|〈ψ |U∗Urec |ψ〉|2d|ψ〉 (5.20)

where dΛ � dim(H1 ⊗ · · · ⊗ Hn) and where the average fidelity FA is defined in
terms of the Haar measure.17 In addition, F(U,Urec) is related to the Frobenius
norm distance via minα∈R ‖eiαU −Urec‖(2)2/dΛ � 2(1 − F1/2(U,Urec)) because |ψE〉
and |ψrec

E 〉 are normalized.
In the case of Hamiltonian reconstruction, we assess our reconstructed estimates

as follows: First, note that two Hamiltonians H and H + λ id, λ ∈ R, are physically
indistinguishable. Therefore, we measure relative distances between Hamiltonians
with18

D(H,H′) � minλ∈R ‖H − H′ − λ id‖(∞)
minλ∈R ‖H − λ id‖(∞) , (5.21)

which is independent of energy offsets in both H′ and H. We choose the operator

14Measurement data with very similar statistics can be obtained without ancilla by ensuring that each
initial state (as given by the ancilla part of a POVM element) is prepared as often as it would be
obtained (on average) in the scenario with ancilla. The latter is easy to compute because the reduced
state of the ancilla sites remains maximally mixed under any CPTP linear map.

15See also Chapter 3.
16Pedersen et al. 2007.
17See also Raginsky 2001; Gilchrist et al. 2005.
18The operator norm and its minimization over α can be carried out numerically for Hamiltonians

given as MPOs by obtaining the largest and smallest eigenvalue using DMRG methods. See e.g.
Schollwöck 2011 or Section 2.2.2.
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norm ‖ · ‖ motivated by its property19

��〈A(t)〉% − 〈A′(t)〉% �� ≤ 2|t |‖H − H′‖(∞)‖A‖(∞) ,

where A(t) and A′(t) are the Heisenberg picture time evolutions of A ∈ B(HΛ)
according to H and H′, respectively. In other words, the operator norm distance
defines a timescale on which two Hamiltonians can be considered equivalent.
For all results below, we repeat the whole procedure of sampling from the

simulated state, reconstructing it, and assessing the quality of the reconstruction
several times. All results shown are mean values of F(U,Urec) and D(H,Hrec) over
a small number of runs, with fluctuations that are, for the number of measurements
per observable considered, smaller than the size of the markers. In the following,
we present numerical results for the reconstruction of quantum circuits and
Hamiltonians and study the performance as a function of the number of qubits
n, the number M of measurements per observable, and the block size r of the
subsystems on which measurements are performed. We simulate circuits and
Hamiltonians on up to 32 qubits. Hence, reconstructing the unitary uses pure state
reconstruction on up to 64 qubits.

5.3.1. Unitary quantum circuits

We demonstrate the feasibility of our scalable tomography scheme by considering
the GHZ circuit, which maps the product state |0 . . . 0〉 to an n-qubit GHZ state,
and the quantum Fourier transform,20

GHZ � CNn−1,nCNn−2,n−1 · · ·CN1,2H1 , (5.22a)

QFT �

n∏
k�1

[(
n−k∏
j�1

CRk ,k+ j(π/2 j)
)

Hk

]
, (5.22b)

where we use the convention
∏k

j�1 U j � Uk · · ·U1 for products of non-commuting
operators. Here, Hk �

1√
2

( 1 1
1 −1

)
denotes the Hadamard gate acting on qubit k and

CNi ,i+1 (CRi , j(φ)) denotes the two-qubit conditional-NOT (conditional rotation)

19Use |Tr(Xρ)| ≤ ‖X‖(∞)‖ρ‖(1) (Bhatia 1997, Exercise IV.2.12) and ‖U∗t AUt −U′t
∗AU′t ‖(∞) ≤

2‖Ut −U′t ‖(∞)‖A‖(∞) (Lemma A.4). The remaining ‖Ut −U′t ‖(∞) ≤ |t |‖H − H′‖(∞) follows from
∂tUt � −iHUt , ∂tU′t � −iH′Ut and e.g. Osborne 2006, Eq. (11), which is also Equation (6.50) below.

20E.g. Nielsen and Chuang 2007, Ch. 5.
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Figure 5.2: Reconstruction error of unitary circuits.21

gate,22 given by

CN � |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σX , (5.23a)

CR(φ) � |0〉〈0| ⊗ 1 + |1〉〈1| ⊗
(
|0〉〈0| + eiφ |1〉〈1|

)
. (5.23b)

where σX is a Pauli matrix (cf. Equation (3.9)). A simple counting argument shows
that the GHZ circuit admits an exact efficient MPO representation. This counting
argument can by stated in terms of the number of gates which act on each qubit.23

A slightly improved bound on the bond dimension of an MPO representation can
be obtained if the number of gates which concern each bond is counted.24

Omitting small conditional rotations in the quantum Fourier transform25 pro-
vides an approximation which can be simulated classically.26 Let QFTc be the
circuit obtained by omitting all conditional rotations with j > c from Equa-
tion (5.22). The distance in operator norm satisfies ‖QFT−QFTc ‖(∞) ≤ nπ/2c ,27 i.e.
‖QFT−QFTc ‖(∞) ≤ ε if 2c ≥ nπ/ε. One can also show that QFTc admits an MPO
representation with bond dimension D � nπ/ε.28 In practice, we use numerical
21The figure reproduces Figure 2 from Holzäpfel et al. 2015 (© 2015 American Physical Society) with

modifications.
22Nielsen and Chuang 2007.
23Jozsa 2006; a generalization to PEPOs is presented in Lemma 2.4.
24Holzäpfel et al. 2015.
25Coppersmith 1994.
26Yoran and Short 2007.
27Yoran and Short 2007.
28Holzäpfel et al. 2015, Appendix B.
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MPO compression techniques29 and obtain an approximate MPO representation
with bond dimension 16 and error bounded by [2(1 − √F)]1/2 < 2 × 10−5 for the
n ≤ 32 qubits we consider. Note that the upper bound

2(1 −
√

F(U,U′)) ≤ ‖|ψU〉 − |ψU′〉‖22 �
‖U −U′‖(2)2

2n ≤ ‖U −U′‖(∞)2 (5.24)

holds. Below, we use this bound for U � QFT and U′ � QFTc .
The reconstruction results are summarized in Figure 5.2. The reconstruction

of the gate GHZ performs very well. To discuss the performance of the quantum
Fourier transform reconstruction, we note that the distance εc � [2(1 − √F)]1/2
between the exact quantum Fourier transform and its approximation QFTc is upper
bounded by εc ≤ nπ/2c (Equation (5.24)). We reconstruct the circuit QFT with
high fidelity F ≈ 0.99 from measurements on r � 5 consecutive qubits on the
combined system + ancilla (Figure 5.2). Naively, one would expect to be able
to reconstruct QFTc only for c ≤ 2, because r � 5 corresponds to information
about three neighbouring system qubits only. However, the upper bound on the
approximation error is trivial for c � 2 and 8 ≤ n ≤ 32, and numerical tests show
that the numerical approximation error εc (for c � 2) is indeed several times larger
than the reconstruction error [2(1 − √F)]1/2 we achieve. This shows that there
are non-local gates which can be reconstructed without using the corresponding
non-local information.

5.3.2. Hamiltonian reconstruction

5.3.2.1. Short times

We simulate the time evolution U of time-independent local one-dimensional
Hamiltonians H with well-established numerical DMRG/MPO algorithms.30 If
H is a Hamiltonian with finite range in one spatial dimension and the evolution
time is fixed, then U admits an efficient, approximate MPO representation.31 After
29Schollwöck 2011, see also Section 2.2.2.
30The time evolution U � e−iHt of a local one-dimensional Hamiltonian can be obtained up to a certain

time scale with DMRG/MPO methods (Östlund and Rommer 1995; Vidal 2004; Schollwöck 2011).
We obtained U up to tmax �

1
η from a second-order Trotter expansion of e−iHt with 2000 Trotter

steps and MPO bond dimension 128; with η �
1

n−1
∑n−1

k�1 ‖hk ,k+1‖(∞), H �
∑n−1

k�1 hk ,k+1.
31Osborne 2006. This result is extended to higher spatial dimensions in Chapter 6. A related topic

are area laws (Eisert et al. 2010) for the von Neumann and Rényi entropies (Eisert and Osborne
2006; Bravyi et al. 2006). The relation between area laws and the existence of efficient approximate
representations has been analyzed by Schuch et al. (2008).
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obtaining the estimate Urec of the time evolution, we determine an estimate Hrec of
theHamiltonian that governs the time evolution by the series given in Equation (5.18)
with N � 3. With this, and the assumption32 that minλ∈R ‖H − λ id‖(∞) � ‖H‖(∞),
one has

D(H,Hrec) ≤ ‖H−Hrec‖(∞)
‖H‖(∞) ≤ 1

140 ‖Ht‖(∞)6 + O(‖Ht‖(∞)8). (5.25)

Figure 5.3 shows results for three different nearest-neighbour Hamiltonians on n ≤
32 qubits, the isotropic Heisenberg Hamiltonian, the critical Ising Hamiltonian and
a Hamiltonian with random nearest-neighbour interaction. We use tn � 1/‖H‖(∞)
as a time unit. For the models considered here, we have tn ∼ 1/n.
The distance D(H,Hrec) between the reconstructed and the exact Hamiltonian

shown in Figure 5.3 displays the following features: First, the reconstruction is
expected to fail for ‖Ht‖(∞) ≥ π (see Equation (5.15)) and, indeed, D(H,Hrec) is
large in this area (indicated by the grey background). Secondly, Equation (5.25)
suggests that close to ‖Ht‖(∞) � π, D(H,Hrec) should scale as ‖Ht‖(∞)6/140 �

t6/(140t6
n) (thick grey line in Figure 5.3). Thirdly, we observe that for infinitely many

measurements per observable, M � ∞, and fixed t/tn � ‖H‖(∞)t ∼ nt, the distance
D(H,Hrec) decreases with system size, a behaviour inherited from the quality of
the reconstruction |ψrec

E 〉 (see left of Figure 5.3): The fidelity F(U,Urec) is limited by
the amount of block entanglement in |ψE〉. At a fixed time t, an area law34 holds for
this entanglement such that it is bounded even for arbitrarily large systems.35 For
sufficiently large systems, we hence expect F(U,Urec) at fixed t to be independent
of the system size n. If we keep t/tn ∼ t · n fixed, we therefore expect F to increase
with n. Finally, let us discuss the dependence of the distance between the exact and
the reconstructed Hamiltonian in Figure 5.3 on the number M of measurements per
observable. First of all, with a finite number of measurements no reconstruction
will be possible at small times, because the signal of the Hamiltonian in U ≈ 1− iHt
will be smaller than the noise. Furthermore, the data suggests that, for times before
t/tn ≈ π,

D(H,Hrec) ∝ 1
t/tn

n√
M
. (5.26)

32If the assumption is violated, we get an additional time-independent prefactor.
33The figure reproduces Figures 3 and 5 from Holzäpfel et al. 2015 (© 2015 American Physical Society)

with modifications.
34Eisert et al. 2010.
35Eisert and Osborne 2006; Bravyi et al. 2006.
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Figure 5.3: Reconstruction quality (inverse reconstruction error) of local Hamiltonians. The
right (left) column shows the reconstruction error of the Hamiltonian H (induced unitary
evolution U � e−iHt ).33
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This is the behaviour one would expect if one assumes that the relative error
D(H,Hrec) is proportional to the ratio R/S of a noise amplitude R and the strength
of the signal S � ‖Ht‖ � t/tn , in which R � n/√M is motivated by the fact that
we have measured ∝ n observables, each of which has been estimated to within
a standard deviation which is, for sufficiently large M, proportional to 1/√M.
The explanation of the scaling properties together with the fact that all properties
described are the same in the three different local Hamiltonians investigated
suggests that the scaling laws apply for many local Hamiltonians on a linear chain,
for a large range of system sizes and any sufficiently large (as indicated by the
examples) number of measurements.
To summarize, measuring at larger times gives a larger signal and a smaller

error, but we are limited by the condition t/tn < π imposed by Equation (5.15).
Solving Equation (5.26) for the number of measurements per observable, we
obtain M ∝ n2(t/tn)2/D2: A constant relative error D at a fixed t/tn < π requires
M ∝ n2 measurements per observable, resulting in a total number of measurements
proportional to n3 .

5.3.2.2. Long times

In its present formulation, the reconstruction scheme is limited to t/tn < π, a
restriction that may be overcome by measuring at two different times t and t′: The
times up to which the fidelity F(U,Urec) is sufficiently high is only limited by r –
increasing r will increase the time up to which full information about U may be
obtained by measuring on r consecutive qubits. In fact, as can be seen on the left of
Figure 5.3, for n � 32 and the relatively small r � 3, the fidelity F(U,Urec) is still
quite high at t/tn � πwhile the reconstruction of H fails for these times. Measuring
at t, t′ and obtaining U � e−iHt , U′ � e−iHt′ by reconstruction, we are only limited
by |t′ − t | < πtn when reconstructing H from U∗U′ � eiH(t−t′).

Figure 5.4 shows results of this reconstruction scheme with t/tn � 3.51 and t′ > t.
Reconstructing the Hamiltonian from U(t′ − t) � U∗U′, the time difference t′ − t
clearly assumes the role of the time t when reconstructing the Hamiltonian from U
at time t alone. Therefore, all scaling properties carry over as long as Urec and U′rec
can be obtained with sufficiently high fidelity. We simulated measurements on
blocks of r � 5 consecutive sites to satisfy this requirement. For exactmeasurements,
M � ∞, the relative error D(H,Hrec) does not approach zero for t′ − t → 0. The
reason is that the error in Urec(t′ − t) remains non-zero as t′ − t → 0 because Urec(t)
has a fixed non-zero error at fixed t. This non-zero error may also become larger
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Figure 5.4: Reconstruction quality (inverse reconstruction error) of local Hamiltonians
reconstructed from unitary evolution at two times t and t′.36

than the signal amplitude ‖Ht‖, explaining the increasing error as t′ − t → 0 for
some of the Hamiltonians.
Note that, from U(t′ − t), we can also reconstruct Hamiltonians that are time-

dependent for times before t and nearly constant between t and t′. In this way,
stroboscopic reconstructions of a time-dependent Hamiltonian may be obtained
after large propagation times. Furthermore, t/tn < π becomes more restrictive as n
increases, thus the usefulness of taking measurements at two times increases for
larger systems.

5.3.2.3. Enforcing a local reconstruction

Of course, making use of additional information can only improve the scheme. As
an example, suppose that we know that the Hamiltonian is nearest-neighbour only.
One may then project the reconstructed Hrec onto a nearest-neighbour Hamiltonian.
As can be seen in Figure 5.4 this reduces the reconstruction error.

36The figure reproduces Figure 4 from Holzäpfel et al. 2015 (© 2015 American Physical Society) with
modifications.
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Chapter 6.

Efficient verification and simulation of
local time evolution

6.1. Summary

In this chapter, we discuss efficient simulation and certification of the dynamics
induced by a quantum many-body Hamiltonian H with short-ranged interactions.
Here, we extend prior results for one-dimensional systems1 to lattices in arbitrary
spatial dimensions.2 We consider n < ∞ lattice sites and Hamiltonians whose
interactions have a strictly finite range.
We present a method which can certify the fact that an unknown quantum

system evolves according to a certain Hamiltonian. Suppose that the evolution
time grows at most poly-logarithmically3 with n. We prove that the necessary
measurement effort scales quasi-polynomially in the number of particles n. It
also scales quasi-polynomially in the inverse tolerable error 1/I. In addition, we
show that a projected entangled pair state (PEPS) representation of a time-evolved
state can be obtained efficiently in the following sense. Suppose that the evolution
time t grows at most poly-logarithmically with n. We prove that the necessary
computation time and the PEPS bond dimension of the representation scale quasi-
polynomially in the number of particles n and the inverse approximation error
1/ε.

For certification of a time-evolved state, we consider an initial product state |ψ(0)〉,
1Osborne 2006; Lanyon, Maier, et al. 2017.
2This chapter reproduces the preprint Holzäpfel and Plenio 2017 with the following changes: The
formulation of the main results in Section 6.3, Theorem 6.10 and Lemma 6.15, as well as Lemma 6.5
was improved. A missing factor η was added in Equation (6.31). A missing exponential function
was added in Corollary 6.20. Definition 6.25 was added to improve the presentation.

3Recall the definitions from Section 1.2.
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G′ � ∑n
i�1 g′i

Site i

Site j

Ω

g′j acts here

g′i acts here – O(Ωη) sites

Ω ∼ vt + ln
(

n
I
)
+ const.

1 − 〈ψ(t)|ρ |ψ(t)〉
≤ β � Tr(ρG′) + δ ≤ I

Figure 6.1: Certifying time-evolved states: The local terms g′i of G′ � ∑
i g′i act on regions

whose diameter is proportional toΩ, i.e. onO(Ωη) sites if the lattice has η dimensions. The
Lieb–Robinson velocity v determines the growth of Ω with time. The expectation value
Tr(ρG′), which provides an upper bound on the distance I(ρ, |ψ(t)〉) � 1 − 〈ψ(t)|ρ |ψ(t)〉,
can bedetermined fromcompletemeasurements on n regions of sizeO(Ωη) (Theorem6.10
and Equation (6.29)).

the time-evolved state |ψ(t)〉 and an unknown state ρ. We measure the distance
between a pure and a mixed state by the infidelity

I(ρ, |ψ〉) :� 1 − 〈ψ |ρ |ψ〉. (6.1)

In order to verify or certify that the unknown state ρ is almost equal to the time-
evolved state |ψ(t)〉, we provide an upper bound β on the infidelity of the two states,
i.e.

I(ρ, |ψ(t)〉) ≤ β. (6.2)

We prove that the bound β can be obtained from the expectation values of complete
sets of observables on regions whose diameter is proportional to some distance Ω
(Figure 6.1). If the unknown state ρ is exactly equal to the time-evolved state |ψ(t)〉,
then a bound β which is no larger than a tolerable error I can be obtained if Ω
grows linearly with log(n/I) and if it also grows linearly with the evolution time t.
If we assume a spatial dimension η ≥ 1, a region of diameter ∼ Ω contains ∼ Ωη
sites. Since there are n regions of diameter Ω and since O(exp(cΩη)) observables
are sufficient for a complete set on a single region, the total measurement effort is
O(n exp(c log(n)η)) � O(n1+(c(log n)η−1)), i.e. it increases quasi-polynomially with n.
This scaling reduces to polynomial in n if the system is one-dimensional (η � 1). In
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6.1. Summary

addition, we show that the upper bound β increases only slightly if ρ has a finite
distance from |ψ(t)〉 or if the bound is obtained from expectation values which are
not known exactly, e.g. due to a finite number of measurements per observable.

Suppose that the Hamiltonian is a nearest-neighbour Hamiltonian in one spatial
dimension and that the evolution time t grows at most logarithmically with the
number of particles n. In this case, an approximate matrix product state (MPS)
representation of the time-evolved state |ψ(t)〉 can be obtained efficiently, i.e. the
computational time grows at most polynomially with n/ε where ε is the approxi-
mation error.4 PEPSs are a generalization of MPSs to higher spatial dimensions. It
has been demonstrated that MPS-based numerical algorithms for computing time
evolution can also be applied to PEPSs.5 However, the computational time required
by these algorithms has not been determined in general. Here, we show that an
approximate PEPS representation of the time-evolved state |ψ(t)〉 can be obtained
efficiently for poly-logarithmic times (in n). Suppose that the evolution time t grows
at most poly-logarithmically with n (i.e. t ∼ (log n)c). We prove that the necessary
computational time and the PEPS bond dimension of the representation scale
quasi-polynomially in the number of particles n and the inverse approximation
error 1/ε. Furthermore, we show that there is an efficient projected entangled
pair operator (PEPO) representation of the unitary evolution generated by the
Hamiltonian. This representation is structured in a way which guarantees efficient
computation of expectation values of single-site observables in |ψ(t)〉, an operation
which can be computationally difficult for a general PEPS.6

In Section 6.2, existing results on Lieb–Robinson bounds are mentioned and
some corollaries are derived. In Section 6.3, parent Hamiltonians and their use as
fidelity witnesses are introduced.7 Parent Hamiltonians are then used to efficiently
certify time-evolved states. In Section 6.4, we construct efficient representations
of a unitary time evolution operator Ut . The first subsection discusses the Trotter
decomposition. The remaining two subsections construct an efficient representation
of Ut , first for an arbitrary lattice and and then for a hypercubic lattice. In the
special case of a hypercubic lattice, a representation with improved properties is
achieved. Section 6.5 concludes.

4Osborne 2006.
5Murg et al. 2007; Verstraete et al. 2008.
6Computing the expectation value of a single-site observable in an arbitrary PEPS has been shown to
be #P-complete and it is widely assumed that a polynomial-time solution for such problems does not
exist (Schuch et al. 2007).

7Cramer et al. 2010.
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6.2. Lieb–Robinson bounds

Suppose that H is a nearest-neighbour Hamiltonian on a lattice. The time evolution
of an observableA under aHamiltonianH is given by τH

t (A) � eiHtAe−iHt (assuming
that H is time-independent). Even if A acts non-trivially only on a small part of
the system, τH

t (A) acts on the full system for any t > 0 because the exponential
functions contain arbitrarily large powers of H. (We shall assume that no part of
the system is decoupled from the rest.) However, τH

t (A) can be approximated by
an observable which acts non-trivially on a small region around the original A.
The approximation error is exponentially small in the diameter of the region and
the error remains constant if the diameter increases linearly with time (see also
Figure 6.2 on Page 94). In this sense, information propagates at a finite velocity
in a quantum lattice system. A Lieb–Robinson bound is an upper bound on the
norm of the commutator [τH

t (A), B] and provides a means to bound the error of
the named approximation. The first bound on the commutator [τH

t (A), B] has
been given by Lieb and Robinson (1972) for a regular lattice. More recently, these
bounds have been extended to lattices described by means of graphs or metric
spaces.8 For interactions which decay exponentially (polynomially) with distance,
Lieb–Robinson bounds have been proved which are exponentially (polynomially)
small in distance;9 here, the distance is between the regions on which A and B act
non-trivially.

Basic notation is defined in Chapter 1. The time-evolved observable τH
t (A) can be

approximated by τH′
t (A)where the Hamiltonian H′ contains only the interaction

termswhich act on a given region R of the system and this has been proven for a one-
dimensional system by Osborne (2006). An explicit bound on the approximation
error ‖τH

t (A) − τH′
t (A)‖(∞) for a lattice with a metric has been given by Barthel and

Kliesch (2012) for the case of a local Liouvillian evolution.10 Their result is limited
to interactions with a strictly finite range but this restriction also enables an explicit
definition of all constants. In the remainder of this section, we introduce their result
and derive corollaries used below.
The time evolution from time s to time t under a time-dependent Hamiltonian

H(t) is described by the unitary Uts � [Ust]∗ given by the unique solution of
∂tUts � −iH(t)Uts where Uss � 1, s , t ∈ R and H(t) is assumed to be continuous
except for finitely many discontinuities in any finite interval. The unitary satisfies

8Nachtergaele and Sims 2006; Hastings and Koma 2006; Nachtergaele et al. 2006.
9Hastings and Koma 2006.
10See also Kliesch et al. 2014b for an introduction.
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6.2. Lieb–Robinson bounds

∂sUts � +iUts H(s) and, if H is time-independent, it is given byUts � exp(−iH(t−s)).
To distinguish time evolutions under different Hamiltonians, we use the notation
UH

ts � Uts . The time evolution of a pure state |ψ(s)〉 and a density matrix ρ(s) are
given by |ψ(t)〉 � Uts |ψ(s)〉 and ρ(t) � Uts ρ(s)Ust �: τH

ts(ρ(s)). If we omit the
second time argument s, it is equal to zero: Ut :� Ut0 and τH

t :� τH
t0.

We consider a system of n < ∞ sites and Λ denotes the set of all sites. Associated
to each site x ∈ Λ, there is a Hilbert space Hx of finite dimension d(x) ≥ 2. In
this chapter, quantum states ρ, ψ generally are density matrices (not state vectors),
ρ, ψ ∈ D(HΛ). We assume that there is a metric d(x , y) on Λ. The diameter of a set
X ⊂ Λ is given by diam(X) � maxx ,y∈X d(x , y). Distances between sets are given
by d(x ,Y) � miny∈Y d(x , y) and d(X,Y) � minx∈X,y∈Y d(x , y) where X,Y ⊂ Λ. The
Hamiltonians HV and H of a subsystemV ⊂ Λ and of thewhole system, respectively,
are given by

HV :�
∑
Z⊂V

hZ , H :� HΛ. (6.3)

The local terms hZ(t) can be time-dependent but we often omit the time argument.
At a given time, each local term hZ(t) is either zero or acts non-trivially at most
on Z. In the following, we define several properties of the Hamiltonian, including
the interaction strength J, the interaction range a, the maximal numberY of sites
per interaction term, the maximal numberZ of nearest neighbours and the lattice’s
spatial dimension η :� κ+1. These parameters are constants which are independent
of the evolution time t and the number of sites n. The interaction strength and
range are given by

J :� 2 sup
t ,Z⊂Λ

‖hZ(t)‖(∞) , a :� sup
Z : hZ,0

diam(Z). (6.4)

Terms which act non-trivially only on a single site, which may unduly enlarge the
maximal norm J, can be eliminated from our discussion by employing a suitable
interaction picture as described in Appendix A.1. The maximal number of nearest
neighbours is given by

Z :� max
Z : hZ,0

|{Z′ ⊂ Λ : hZ′ , 0, Z′ ∩ Z , ∅}|. (6.5)

This restricts the number of local terms in the Hamiltonian to |{Z ⊂ Λ : hZ , 0}| ≤
Zn � O(n).11 The number of local terms at a certain distance r is given by the

11Write {Z ⊂ Λ : hZ , 0} � ⋃
x∈Λ{Z ⊂ Λ : hZ , 0, x ∈ Z}.
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Y

R
R̄

d(Y,Λ \ R)

Λ

a

Figure 6.2: An observable A at time zero acts non-trivially on Y and its time evolution
τH

t (A) is approximated by τHR̄
t (A) on R̄. The approximation error is determined by the

evolution time t and the distance d(Y,Λ \ R) (Theorem 6.1; Barthel and Kliesch 2012).

number of elements in the set

Rr,y :�
{
Z ⊂ Λ : hZ , 0, d(y , Z)/a ∈ [r, r + 1)} (6.6)

and we assume that it is bounded by a power law:

|Rr,y | ≤ Mrκ ∀ y ∈ Λ, r ∈ {0, 1, 2, . . . }, (6.7)

where M and κ are constants. A regular lattice in an Euclidean space of dimension η
satisfies this condition with κ � η − 1. Equation (6.7) restricts the number of local
terms hZ , 0 within a certain distance in terms of the metric but the number of sites
on which a local term may act remains unbounded. We demand that this number
of sites is bounded by a finite

Y :� sup
Z : hZ,0

|Z |. (6.8)

Weassume that for each x ∈ Λ, there is aZ ⊂ Λwith x ∈ Z and hZ , 0. Togetherwith
Equations (6.7) and (6.8), this assumption implies that |Bo ,c

r ({x})| � O(rη) where
η � κ + 1, x ∈ Λ, Bo

r (X) :� {y ∈ Λ : d(X, y) < r}, Bc
r (X) :� {y ∈ Λ : d(X, y) ≤ r}

and X ⊂ Λ. The extension of a volume V ⊂ Λ in terms of the Hamiltonian is given
by

V̄ :�
⋃

Z : hZ,0,
Z∩V,∅

Z. (6.9)

The following theorem has been shown by Barthel and Kliesch (2012, Theorem 2)
and they have called it quasilocality:
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6.2. Lieb–Robinson bounds

Theorem 6.1 Let a, Z and J be finite and t ∈ R. Let Y ⊂ R ⊂ Λ and let A act on Y
(Figure 6.2). Let da :� d(Y,Λ \ R)/a and ddae > 2κ + 1. Then

‖τH
t (A) − τHR̄

t (A)‖(∞) ≤
2M
Z ‖A‖(∞) ddaeκ exp(v |t | − ddae) (6.10)

holds. The Lieb–Robinson velocity is given by v :� JZ exp(1).

The upper bound from Equation (6.10) can be simplified as xκ exp(−x) ≤
exp(−(1 − q)x) holds for any q ∈ (0, 1) if x is large enough. The following
lemma provides a precise formulation of this fact and Corollary 6.3 applies it
to Equation (6.10).

Lemma 6.2 Choose q ∈ (0, 1) and set D :� (1 − q)da with da ≥ 0. We say that ddae
is large enough if it satisfies ddae > 2κ + 1 and ddae ≥ 2κ

q ln( κq ); let ddae be large
enough.12 Set αq :� exp[−(1 − q)(ddae − da)]. Then 1

e < 1
exp(1−q) < αq ≤ 1 and

ddaeκ exp(−ddae) ≤ αq exp(−D) hold.

Proof We have αq � exp(D − (1 − q)ddae). Because ddae was assumed to be large
enough, we can use Lemma A.5 to obtain ddaeκ exp(−ddae) ≤ exp(−(1 − q)ddae) �
αq exp(−D). This completes the proof. �

We simplify the bound from Equation (6.10) by applying Lemma 6.2:

Corollary 6.3 Let a, Z and J be finite and t ∈ R. Let Y ⊂ R ⊂ Λ and let A act on Y.
Choose q ∈ (0, 1) and set D :� (1 − q)da where da :� d(Y,Λ \ R)/a and where ddae is
large enough (Lemma 6.2). Then

‖τH
t (A) − τHR̄

t (A)‖(∞) ≤
2Mαq

Z ‖A‖(∞) exp(v |t | − D) (6.11)

holds. The Lieb–Robinson velocity is given by v � JZ exp(1) and αq ∈ (exp(−(1− q)), 1].
Specifically, αq � exp(−(1 − q)(ddae − da)).

The upper bound from Equation (6.11) is at most ε if D is large enough:

Corollary 6.4 Let a, Z and J be finite and t ∈ R. Let Y ⊂ R ⊂ Λ and let A act on Y.
Choose q ∈ (0, 1) and set D � (1− q)da where da � d(Y,Λ \ R)/a and where ddae is large
enough (Lemma 6.2). If D satisfies

D ≥ v |t | + ln
(

1
ε

)
+ ln

(‖A‖(∞)) + c1 , c1 :� ln(2M/Z), (6.12)

12The slightly simpler conditions D ≥ 2κ + 1 and D ≥ 2κ
q ln( κq ) are stricter and can also be used.
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then13

‖τH
t (A) − τHR̄

t (A)‖(∞) ≤ αqε ≤ ε. (6.13)

The Lieb–Robinson velocity is given by v � JZ exp(1). Refer to Corollary 6.3 for αq .

Corollary 6.4 states that the time evolution A(t) of a local observable A(0) acting
on Y can be approximated by another local observable A′(t)which acts on a certain
region R̄ around Y. This is possible with high accuracy if the region R̄ is large
enough. Suppose that G is a sum of time-evolved local observables and G′ is
obtained by taking the sum of corresponding approximated observables. The next
lemma compares the expectation value Tr(ρG′) of the approximated observable
G′ with the expectation values Tr(ρG) and Tr(ψG) where the quantum state ψ has
small distance from ρ (in trace norm).

Lemma 6.5 Let gi(0) be observables with ‖gi(0)‖(∞) ≤ 1 which act non-trivially on Yi ,
Yi ⊂ Ri ⊂ Λ. Choose a fixed time t ∈ R, let G �

∑Γ
i�1 gi(t) and let G′ be the sum

of g′i(t) � τ
HR̄i
t (gi(0)). Let ψ and ρ be quantum states. Choose I and γ such that

0 ≤ Γγ < I. Choose q ∈ (0, 1) and set D :� (1 − q)da where da :� 1
a maxi d(Yi ,Λ \ Ri).

Let ddae be large enough (Lemma 6.2), let D satisfy

D ≥ v |t | + ln
(

2Γ
I − Γγ

)
+ c1 (6.14)

and set δ :� 1
2 (I − Γγ). Then

Tr(ρG) ≤ Tr(ρG′) + δ ≤ Tr(ψG) + I (6.15)

where the second inequality holds if ‖ρ − ψ‖(1) ≤ γ.
Proof Set ε :� δ

Γ �
1

2Γ (I − Γγ). Applying Corollary 6.4 provides

‖G − G′‖(∞) ≤
Γ∑

i�1
‖gi(t) − g′i(t)‖(∞) ≤ Γε � δ. (6.16)

Using the bound14 |Tr(ρ(G − G′))| ≤ ‖ρ‖(1)‖G − G′‖(∞) provides
Tr(ρG) ≤ Tr(ρG′) + δ ≤ Tr(ρG) + 2δ. (6.17)

Using |Tr (ρ − ψ)G | ≤ ‖ρ − ψ‖(1)‖G‖(∞) provides
Tr(ρG) − Tr(ψG) ≤ ‖ρ − ψ‖(1)‖G‖(∞) ≤ γΓ. (6.18)

Inserting (6.18) into (6.17) completes the proof. �

13This holds for all D which satisfy (6.12); it holds e.g. if D is equal to the lower bound stated in (6.12).
14Bhatia 1997, Exercise IV.2.12.
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6.3. Efficient verification of local time evolution

An observable G is called a parent Hamiltonian of a pure state |ψ〉 if |ψ〉 is a ground
state of G (i.e. an eigenvector of G’s smallest eigenvalue). If such a ground state
is non-degenerate, the expectation value Tr(ρG) in an arbitrary state ρ provides a
lower bound on the fidelity of ρ and the ground state |ψ〉:15

Lemma 6.6 Let G be an observable with the two smallest eigenvalues E0 and E1 > E0. Let
|ψ〉 be an eigenvector of the smallest eigenvalue E0 and let E0 be non-degenerate. Let ρ be
some quantum state. Then,

1 − 〈ψ |ρ |ψ〉 ≤ β :�
Eρ − E0

E1 − E0
(6.19)

where Eρ � Tr(ρG).16 The value of the right hand side is bounded by

β �
Eρ − E0

E1 − E0
≤



ρ − |ψ〉〈ψ |

(1)

G



(∞)

E1 − E0
. (6.20)

Proof Proofs of Equation (6.19) have been given by Cramer et al. (2010) and
Baumgratz (2014). Equation (6.20) follows from17

Tr(ρG) − E0 � |Tr([ρ − ψ]G)| ≤ ‖ρ − ψ‖(1)‖G‖(∞) (6.21)

where ψ :� |ψ〉〈ψ |, which completes the proof. �

Remark 6.7 Suppose that the expectation value Eρ � Tr(ρG) is not exactly known
e.g. because it has been estimated from a finite number of measurements. The
resulting uncertainty about the value of β is given by the uncertainty about Eρ
multiplied by the inverse of the energy gap ∆ � E1 − E0 above the ground state. For
robust certification, this energy gap must be sufficiently large.

Suppose that ρ is the unknown quantum state of some experimentwhich attempts
to prepare the state |ψ〉. If the experiment succeeds, ρ will be close to the ideal state
|ψ〉 (e.g. in trace distance) but the two states will not be equal. The maximal value
of the infidelity upper bound β from Equation (6.19) is provided by (6.20). In the
worst case, β is given by the trace distance of ρ and |ψ〉, multiplied by the ratio of
the Hamiltonian’s largest eigenvalue and its energy gap ∆.

15Cramer et al. 2010.
16Cramer et al. 2010.
17Bhatia 1997, Exercise IV.2.12.
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In a typical application, the expectation value Eρ is not exactly known and the
states ρ and |ψ〉 are not exactly equal. In order to obtain a useful certificate, it
is necessary that both the energy gap ∆ is sufficiently large and that the largest
eigenvalue ‖G‖(∞) is sufficiently small. 2

The following simple Lemma shows that pure product states admit a parent
Hamiltonian that has unit gap and only single-site local terms. This result is a
simple special case of prior work involving matrix product states.18

Lemma 6.8 Let |φ〉 � |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉 be a product state on n systems of
dimension di ≥ 2, 〈φi |φi〉 � 1, i ∈ {1 . . . n}. Define

G �

n∑
i�1

hi , hi � 11,...,i−1 ⊗ Pker(ρi ) ⊗ 1i+1,...,n (6.22)

where Pker(ρi ) � 1 − |φi〉〈φi | is the orthogonal projection onto the null space of the
reduced density operator ρi � |φi〉〈φi | of |φ〉 on site i. The eigenvalues of G are given by
{0, 1, 2, . . . , n}, the smallest eigenvalue zero is non-degenerate and |φ〉 is an eigenvector of
eigenvalue zero.

Proof Let |µ(k)ik
〉 (ik ∈ {1, . . . , di}) anorthonormal basis of system k with |µ(k)1 〉 � |φk〉

(k ∈ {1, . . . , n}). The product basis constructed from these bases is an eigenbasis of
H:

G |µ〉 � λ |µ〉, |µ〉 � |µ(1)i1
〉 ⊗ · · · ⊗ |µ(n)in

〉, λ � |{k ∈ {1 . . . n} : ik > 1}|.

Aswe required di ≥ 2, the eigenvalues of H are given by {0, 1, 2, . . . , n}. We also see
that the smallest eigenvalue zero is non-degenerate and that |φ〉 is an eigenvector
of eigenvalue zero. This completes the proof. �

In Lemma 6.8, a parent Hamiltonian G is constructed from projectors onto null
spaces of single-site reduced density matrices. One projection is required for each
of the n sites and this determines the value of the operator norm ‖G‖(∞) � n.
In Lemma 6.6, a smaller operator norm was seen to be advantageous for robust
certification. By projecting onto null spaces of multi-site reduced density matrices,
the following Lemma obtains a parent Hamiltonian with smaller operator norm.
More importantly, it also provides a parent Hamiltonian for the time-evolved state
|ψ(t)〉.
18Perez-Garcia et al. 2007; Cramer et al. 2010; Baumgratz 2014. See also Section 3.4.1.
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Lemma 6.9 Let |ψ(0)〉 � |φ1〉 ⊗ · · · ⊗ |φn〉 be a product state on the lattice Λ. Let
Y1 , . . . ,YΓ a partition of the set of sites Λ. For a subset Y ⊂ Λ, define |φY〉 �

⊗
k∈Y |φk〉.

Set gi(0) � (1− |φYi 〉〈φYi |) ⊗ 1Λ\Yi . Choose a fixed time t ∈ R and let gi(t) � τH
t (gi(0))

and G �
∑Γ

i�1 gi(t).
The time-evolved state |ψ(t)〉 � Ut0 |ψ(0)〉 is an eigenvector of G’s non-degenerate

eigenvalue zero and the eigenvalues of G are given by {0, 1, . . . , Γ}.
Proof Let G0 �

∑Γ
i�1 gi(0). G0’s eigenvalues are given by {0, . . . , Γ} and |ψ(0)〉

is a non-degenerate eigenvector of G0’s eigenvalue zero (Lemma 6.8; group sites
into supersites as specified by the sets Yi). The operators G and G0 are related by
the unitary transformation G � Ut0G0U0t , which implies that they have the same
eigenvalues including degeneracies and also that G |ψ(t)〉 � 0. This completes the
proof. �

The parent Hamiltonian of |ψ(t)〉 from the last Lemma is not directly useful for
certification because it is a sum of terms gi(t)which all act on the full system (for
t , 0). However, these terms can be approximated by terms which act on smaller
regions, as described in the next theorem. The theorem is illustrated in Figure 6.1
on Page 90 for Yi � {i} (i ∈ Λ).
Theorem 6.10 Consider the setting of Lemma 6.9 which includes a fixed time t ∈ R.
Choose sets Ri such that Yi ⊂ Ri ⊂ Λ and let G′ be the sum of g′i(t) � τ

HR̄i
t (gi(0)). Choose

I > 0 and γ ≥ 0 such that

δ :�
I − Γγ

2 > 0. (6.23)

Set D :� (1 − q)da where da :� 1
a mini d(Yi ,Λ \ Ri) and q ∈ (0, 1). Let ddae be large

enough (Lemma 6.2), let D satisfy

D ≥ v |t | + ln
(

2Γ
I − Γγ

)
+ c1 , c1 � ln(2M/Z), (6.24)

let ρ be a quantum state and set I(ρ, ψ(t)) � 1 − 〈ψ(t)|ρ |ψ(t)〉. Then
I(ρ, ψ(t)) ≤ Tr(ρG′) + δ ≤ I (6.25)

where the second inequality holds if


ρ − |ψ(t)〉〈ψ(t)|

(1) ≤ γ is satisfied.

Proof Using Lemma 6.6, the properties of G from Lemma 6.9 imply that

1 − 〈ψ(t)|ρ |ψ(t)〉 ≤ Tr(ρG). (6.26)

Inserting G |ψ(t)〉 � 0, Lemma 6.5 completes the proof. �
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The next lemma simplifies the premise of Theorem 6.10 by eliminating Γ:

Lemma 6.11 Let f (D) a function with 1 ≤ f (D) ≤ n
Γ . Assuming nγ < I, the inequality

D + ln( f (D)) ≥ v |t | + ln
(

2n
I − nγ

)
+ c1 (6.27)

is sufficient for (6.24).

Proof The premise implies I − nγ ≤ I − Γγ and

D ≥ v |t | + ln
(

2Γ
I − nγ

)
+ c1 ≥ v |t | + ln

(
2Γ
I − Γγ

)
+ c1 , (6.28)

which completes the proof. �

The following lemma bounds the measurement effort if Tr(ρG′) is estimated from
finitely many measurements:

Lemma 6.12 Let R :� maxi |R̄i | be the maximal number of sites on which any of the local
terms of G′ from Theorem 6.10 act. On each region R̄i , choose an IC POVM (examples
are provided in Remark 6.14). Let “one measurement” refer to one outcome of one of
the POVMs. The upper bound Tr(ρG′) + δ from Equation (6.25) can be estimated with
standard error ε from M � O(exp(R)n3/ε2) such measurements.

Proof The individual Tr(ρg′i(t)) can be estimated independently by carrying out
separate measurements for the estimation of each Tr(ρg′i(t)). By the central limit
theorem, M′ measurements are sufficient to estimate a single Tr(ρg′i(t)) with
standard error ε′ � c/√M′. Here, c ≤ exp(c̃R) � O(exp(R)) where c̃ is a constant.
To achieve standard error ε for Tr(ρG′), we set ε′ � ε/n and obtain M′ � c2n2/ε2.
As separate measurements for each g′i(t) were assumed, the total number of
measurements is at most M � nM′ � c2n3/ε2. �

Remark 6.13 (Discussion of Theorem 6.10) Theorem 6.10 provides a means to
verify that an unknown state ρ is close to an ideal time-evolved state ψ(t) with the
expectation values of few observables. Specifically, the theorem warrants that the
infidelity I(ρ, ψ(t)) is at most β � Tr(ρG′) + δ where G′ is a sum of observables
which act non-trivially only on small parts of the full system. Furthermore, the
theorem guarantees β ≤ I and we can choose any desired I > 0. To simplify
the discussion, we restrict to



ρ − |ψ(t)〉〈ψ(t)|

(1) ≤ γ �
I
2n . For larger systems

or smaller certified infidelities, the unknown state ρ has to be closer to the ideal
state ψ(t).
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Let Û⋃Γi�1 Yi � Λ be a partition of Λ with diam(Yi) ≤ r′ for some r′ > 0. Note
that Yi ⊂ Bc

r′({yi}) holds for all yi ∈ Yi (Lemma A.12). Let r > 0 and set
Ri � Bo

r (Yi), then R̄i ⊂ Bo
r+r′+a({yi}) (LemmaA.10). We assume r′ � O(r) and obtain

|R̄i | � O((r + r′ + a)η) � O(rη) (a is independent of n). Note that d(Yi ,Λ \ Ri) ≥ r
(Lemma A.10), i.e. D ≥ (1 − q)r/a where q ∈ (0, 1) is a constant.

A particularly simple partition which works for any lattice is Yi � {i} with
i ∈ Λ � {1 . . . n}, Γ � n, r′ � 0 and |R̄i | � O(Dη). We choose D according to
Lemma 6.11 using f (D) � n/Γ � 1:

D � v |t | + ln
(

4n
I

)
+ c1. (6.29)

The length scale D grows linearly in time and logarithmically in n/I. As discussed
in Lemma 6.12, the measurement effort to estimate Tr(ρG′) with standard error ε is

O(n3 exp(Dη)/ε2) � O
(
n3 exp

( [
v |t | + ln

(
4n
I

)
+ c1

] η)
/ε2

)
. (6.30)

Themeasurement effort grows exponentially with time but only quasi-polynomially
with n and with 1

I . For one-dimensional systems, η � 1, this quasi-polynomial
scaling reduces to a polynomial scaling.
Finally, we explore what can be gained by choosing a coarser partition Λ �

Y1 Û∪· · · Û∪YΓ of a cubic latticeΛ � {1 . . . L}ηwith themetric d(x , y) � maxi |xi − yi |.19
Let Ω � bDac ∈ {1 . . . L} and B � dL/Ωe. The cubic lattice can be divided
into Γ � Bη smaller cubes of maximal diameter r′ � Ω � O(D) and we still
have |R̄i | � O((r + r′ + a)η) � O(Dη). We set f (D) � (bDac/2)η which satisfies
f (D) ≤ n/Γ.20 Inserting f (D) into Equation (6.27) provides

D + η ln(bDac) ≥ v |t | + ln
(

4n
I

)
+ c1 + η ln(2). (6.31)

We have increased the radius of R̄i from (D + 1)a to about (2D + 1)a. However, the
last equation shows that it is then already sufficient if D grows slightly less than
linearly in the right hand side, i.e. slightly less than mentioned above, as described
by the additional logarithmic term. 2

Remark 6.14 (Examples of IC POVMs) In this remark, we discuss measurements
on a region R̄i where i is fixed. Recall that a set of operators {Mk : k} on the Hilbert
19Cubic lattices are also discussed in more detail in Section 6.4.3.
20Ω ≤ L implies L/d L

Ω e > L/( L
Ω + 1) � Ω/(1 +

Ω
L ) ≥ Ω/2, i.e. n/Γ � (L/d L

Ω e)η > (Ω/2)η � f (D).
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space HR̄i
is a POVM if each Mk is positive semidefinite and

∑
k Mk � 1.21 The

POVM is IC if the operators Mk spanHR̄i
.

Measurement outcomes of an IC POVM on Ri can be obtained in several different
ways in an experiment. For example, a measurement of a tensor product observable
A � A1 ⊗ · · · ⊗ A |R̄i | onHR̄i

returns one of the eigenvalues of A as measurement
outcome. Access to measurement outcomes of a set of observables which spansHR̄i

allows sampling outcomes of an IC POVMon R̄i . Alternatively, one canmeasure the
single-site observables A j ( j ∈ {1 . . . |R̄i |}) in any order or simultaneously. Here, the
measurement outcome is given by a vector (λ1 , . . . , λ |R̄ |) where λ j is an eigenvalue
of A j . Access to this type of measurement outcomes of a set of observables which
spansHR̄i

provides another way to sample outcomes of an IC POVM on R̄i . 2

Lemma 6.9 provides a parent Hamiltonian G of the time-evolved state |ψ(t)〉 at a
fixed time t. Theorem 6.10 provides an upper bound on the distance between an
unknown state and the time-evolved state in terms of G′ which is an approximation
of G. The next Lemma shows that G′ is the parent Hamiltonian of a state |ψ′〉
which is approximately equal to the time-evolved state. As a consequence, an upper
bound on the distance between an unknown state and |ψ′〉 can also be obtained.

Lemma 6.15 In the setting of Theorem 6.10, let

δ′ :�
I − γΓ
2(1 + I) , 0 < δ′ < 1

2 . (6.32)

Let the length D be at least

D ≥ v |t | + ln
(
Γ

δ′

)
+ c1. (6.33)

The operator G′ has a non-degenerate ground state and the difference between its two smallest
eigenvalues is at least E′1 − E′0 ≥ 1 − 2δ′. The ground state |ψ′〉 of G′ satisfies

|〈ψ(t)|ψ′〉| ≥ 1 − δ′

1 − δ′ ≥ 1 − 2δ′, ‖ψ(t) − ψ′‖(1) ≤ 2
√

2δ′
1 − δ′ ≤ 4

√
δ′. (6.34)

where ψ(t) :� |ψ(t)〉〈ψ(t)| and ψ′ :� |ψ′〉〈ψ′ |. Then

1 − 〈ψ′ |ρ |ψ′〉 ≤ Tr(ρG′) + δ′
1 − 2δ′ ≤ I (6.35)

where the second inequality holds if


ρ − |ψ(t)〉〈ψ(t)|

(1) ≤ γ.

21E.g. Nielsen and Chuang 2007. See also Sections 1.4 and 3.1.2.
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Proof Set ε � δ′
Γ . Applying Corollary 6.4 provides

‖G − G′‖(∞) ≤
Γ∑

i�1
‖gi(t) − g′i(t)‖(∞) ≤ Γε � δ′. (6.36)

All eigenvalues change by at most ‖G − G′‖(∞) ≤ δ′.22 Accordingly, the two smallest
eigenvalues of G′ satisfy E′0 ∈ [−δ′, δ′], E′1 ∈ [1 − δ′, 1 + δ′] and δ′ < 1

2 ensures that
the ground state remains non-degenerate. In addition, we have E′1 − E′0 ≥ 1 − 2δ.
Lemma 6.6 provides

1 − 〈ψ′ |ρ |ψ′〉 ≤ Tr(ρG′) + δ′
1 − 2δ′ . (6.37)

We bound (cf. proof of Lemma 6.5)

Tr(ρG′) ≤ Tr(ρG) + δ′ ≤ ‖ρ − ψ(t)‖(1)‖G‖(∞) + δ′ ≤ γΓ + δ′. (6.38)

Combining the last two equations provides

1 − 〈ψ′ |ρ |ψ′〉 ≤ Tr(ρG′) + δ′
1 − 2δ′ ≤ γΓ + 2δ′

1 − 2δ′ �
(1 + I)γΓ + I − γΓ

1 + I − I + γΓ
� I (6.39)

where the second inequality depends on ‖ρ − ψ(t)‖(1) ≤ γ. To quantify the change
in the ground state, we use23

‖EF‖(∞) ≤ 1
∆
‖G − G′‖(∞) (6.40)

where E � PG(S1) and F � PG′(S2) are projectors onto eigenspaces of G and G′ with
eigenvalues from S1 and S2. The sets S1 and S2 must be separated by an annulus or
infinite strip of width ∆ in the complex plane. We set S1 � [1, Γ], S2 � [−δ′, δ′] and
∆ � 1 − δ′. We denote by |ψ〉 :� |ψ(t)〉 and |ψ′〉 the (normalized) ground states of
G and G′. Therefore, we have E � 1 − |ψ〉〈ψ |, F � |ψ′〉〈ψ′ | and

1 − |〈ψ |ψ′〉| �



|ψ′〉〈ψ′ |




(∞)
− |〈ψ |ψ′〉|




|ψ〉〈ψ′ |



(∞)

≤



|ψ′〉〈ψ′ | − |ψ〉〈ψ |ψ′〉〈ψ′ |




(∞)

� ‖EF‖(∞) ≤ δ′

1 − δ′ ≤ 2δ′ (6.41)

22Bhatia 1997, Theorem VI.2.1.
23Bhatia 1997, Theorem VII.3.1.
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where the very last inequality holds for δ′ ≤ 1
2 . The change in the ground state is at

most 1 − |〈ψ |ψ′〉| ≤ δ′/(1 − δ′) ≤ 1 (using δ′ ≤ 1
2 ). This implies (Lemma A.7)

‖ψ − ψ′‖(1) ≤ 2
√

2δ′
1 − δ′ ≤ 4

√
δ′ (6.42)

and completes the proof. �

Remark 6.16 The certificates provided by Theorem 6.10 and Lemma 6.15 differ
in that the former certifies the fidelity with the time-evolved state |ψ〉 while the
latter certifies the fidelity with its approximation |ψ′〉. The value of the infidelity
upper bound provided by Lemma 6.15 is slightly larger than that provided by
Theorem 6.10, but in the limit I → 0 both results have the same scaling including
all constants. 2

6.4. Efficient simulation of local time evolution

In this section, we construct a unitary circuit which approximates the unitary
evolution Ut induced by a local Hamiltonian H(t) on n quantum systems; the
circuit approximates Ut up to operator norm distance ε. For times poly-logarithmic
in n, the circuit is seen to admit an efficient PEPS representation. Hence, the circuit
shows that Ut can be approximated by an efficient PEPS.
Note that the following line of argument also provides an efficient PEPS rep-

resentation of Ut . Time evolution under an arbitrary few-body Hamiltonian can
be efficiently simulated with a unitary quantum circuit and the Trotter decom-
position.24 This unitary circuit is efficiently encoded as a measurement-based
quantum computation (MBQC). In turn, a PEPS of the smallest non-trivial bond
dimension two is sufficient to encode an arbitrary MBQC efficiently.25 The PEPS
representation from this construction is efficient but it is supported on a larger
lattice than the original Hamiltonian: For example, the lattice grows as O(nt2/ε) if
the first-order Trotter decomposition is used (cf. Section 6.4.1). Application of the
Trotter formula also leads to an efficient representation of Ut as a tensor network
state (TNS) but the lattice of this construction grows in the same way.26 In this work,
we construct an efficient PEPS representation of Ut which lives on the same lattice
as the Hamiltonian and which has another advantageous property: Computing
24Nielsen and Chuang 2007, Chapter 4.7.2.
25Schuch et al. 2007.
26Hübener et al. 2010.
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the expectation value of a local observable in an arbitrary PEPS is assumed to be
impossible in polynomial time27 but the unitary circuit fromwhich we construct our
PEPS representation always enables efficient computation of such local expectation
values. This property is shared e.g. with the class of so-called block sequentially
generated states (BSGSs),28 a subclass of all PEPS, where a state is also represented
by a sequence of local unitary operations (albeit arranged differently).

The limitations of the first-order Trotter decomposition become apparent already
in one spatial dimension as discussed in Section 6.4.1. Section 6.4.2 presents
an efficient representation of Ut for an arbitrary graph. This representation is
non-optimal in that it evolves local observables into observables which seemingly
act non-trivially on a region whose diameter grows polynomially with time. Lieb–
Robinson bounds already tell us that this diameter should grow only linearly
with time (Section 6.2). An improved representation which fulfills this property is
presented in Section 6.4.3 for a hypercubic lattice of spatial dimension η ≥ 1. In
both Sections, representations in terms of unitary circuits are converted to PEPS
representations using the results from Section 2.3.

6.4.1. Properties of the Trotter decomposition

The Trotter decomposition is the key ingredient of many numerical methods
for the computation of Ut with MPSs or PEPSs.29 As discussed above, it also
enables various efficient representations of Ut . The following lemma presents the
well-known first-order Trotter decomposition:

Lemma 6.17 (Trotter decomposition in 1D) Let H a time-independent30 nearest neigh-
bour Hamiltonian on a linear chain of n sites, H �

∑n−1
j�1 h j, j+1. Let the operator norm of the

local terms be uniformly bounded, i.e. ‖h j, j+1‖(∞) ≤ J ( j ∈ {1 . . . n − 1}). Take H1 and H2

to be the sum of the terms with even and odd j, respectively: Set H1 :�
∑b(n−1)/2c

j�1 h2 j,2 j+1

and H2 :�
∑bn/2c

j�1 h2 j−1,2 j . The time evolution induced by H is given by Ut � e−iHt and

its Trotter approximation is given by U(T)
t �

(
e−iH1τe−iH2τ

)L where L is a positive integer
and τ � t/L. The approximation error is at most ε, i.e.

‖Ut −U(T)
t ‖(∞) ≤ ε (6.43)

if L is at least L ≥ c̃t2n/(2ε) where c̃ > 0 is some constant which depends only on J.
27Schuch et al. 2007.
28Bañuls et al. 2008.
29E.g. Vidal 2004; Murg et al. 2007; Verstraete et al. 2008 and references given in Schollwöck 2011.
30The time-dependent case is discussed e.g. in Poulin et al. 2011.
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Figure 6.3: Operator norm error ε � ‖Ut −U(T)
t ‖(∞) of the first order Trotter decomposition

as a function of the number of sites n. The figure shows data for L � 200 Trotter steps and
the 1D nearest-neighbour isotropic Heisenberg Hamiltonian at t � 11

9J where J � ‖hi ,i+1‖
is the operator norm of a coupling term.

Proof For any division of H into H � H1 + H2 and any τ ≥ 0, the following
inequality holds:31



e−iHτ − e−iH1τe−iH2τ



(∞) ≤

τ2

2


[H1 ,H2]




(∞). (6.44)

Using the triangle inequality (as in Lemma A.4) and τ � t/L, we obtain



e−iHt − (
e−iH1τe−iH2τ

)L


(∞) ≤

Lτ2

2


[H1 ,H2]




(∞). (6.45)

It is simple to show that ‖[H1 ,H2]‖(∞) ≤ c̃n holds for some constant c̃ > 0 which
depends only on J. This provides

‖Ut −U(T)
t ‖(∞) ≤

c̃t2n
2L

(6.46)

which completes the proof. �

Figure 6.3 shows the approximation error ε � ‖Ut −U(T)
t ‖(∞) of a particular

Hamiltonian as function of n at fixed t and L. The approximation error appears to
grow linearly with n and this suggests that the bound (6.46) is optimal in n up to
constants; in this case, the scaling L ≥ c̃t2n/ε is optimal in n up to constants as well.
Lemma 6.17 provides an approximate decomposition of Ut into O(n2t2/ε) two-

bodyunitaries and it has been recognized before that this constitutes an approximate,
31This is De Raedt 1987, Eq. (A.15a). See also Suzuki 1985.
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efficient decomposition of Ut by a tensor network on a two-dimensional lattice with
O(n2t2/ε) sites.32 However, the lattice of the Hamiltonian is only one-dimensional.
The bond dimension of a one-dimensional MPO representation of the circuit U(T)

t
can grow exponentially with n.33 It has been shown that Ut indeed admits a smaller
bond dimension34 but this is not visible from the circuit U(T)

t provided by the
Trotter decomposition and needs additional arguments based on Lieb–Robinson
bounds. Since the first-order Trotter decomposition does not provide an efficient
MPO representation of Ut with H on a one-dimensional lattice, it does not provide
an efficient PEPS representation on the same lattice as the Hamiltonian in higher
dimensions either.

Another important property of representations of the time evolution Ut concerns
the growth of the region on which a time-evolved, initially local observable appears
to act non-trivially. If an initially local observable A is evolved with the Trotter
decomposition U(T)

t into (U(T)
t )∗AU(T)

t , it appears to act non-trivially on a region of
diameter O(L) � O(nt2/ε). In the following Sections 6.4.2 and 6.4.3, we construct
circuits under which this diameter grows only poly-logarithmically with n/ε. This
is an improvement over the Trotter circuit but it does not reach the ideal case from
Corollary 6.4 (no growth with n).

6.4.2. Efficient simulation of time evolution: Arbitrary lattice

Suppose that a local Hamiltonian H(t) is perturbed by a spatially local and possibly
time-dependent perturbation A(t). The following lemma states that there is a
spatially local unitary V′ such that ‖V′UH−A

ts −UH
ts ‖(∞) is small; the lemma has

been proven for one-dimensional systems by Osborne (2006). His proof also works
for higher-dimensional systems if combined with Theorem 6.1 (proven by Barthel
and Kliesch 2012). We pretend to extend the existing proof by accounting for
time-dependent Hamiltonians explicitly.

Lemma 6.18 Let a, Z and J be finite and t ∈ R. Let Y ⊂ R ⊂ Λ and let A(s) act on
Y. Let A(s) be continuous except for finitely many discontinuities in any finite interval.
Choose q ∈ (0, 1) and set D :� (1 − q)da where da :� d(Y,Λ \ R)/a. Let ddae large
enough (Lemma 6.2). Let V′s (t) on R̄ be the solution of ∂sV′s (t) � iL′t(s)V′s (t) where
32Hübener et al. 2010.
33Osborne 2006. This can be seen by applying the counting argument from Jozsa 2006, which was

generalized to PEPS in Lemma 2.2.
34Osborne 2006.
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L′t(s) � τHR̄
ts (A(s)) and V′t (t) � 1 (s ∈ R). Then

‖V′s (t)UH−A
ts −UH

ts ‖(∞) ≤
2Mαq

vZ |A| exp(v |t − s | − D) (6.47)

where |A| � maxr∈[s′ ,t′] ‖A(r)‖(∞), s′ :� min{s , t} and t′ :� max{s , t}. The Lieb–
Robinson velocity is given by v � JZ exp(1) and αq ∈ (1/e1−q , 1]. Specifically, αq �

exp(−(1 − q)(ddae − da)).

Proof Let Vs(t) � UH
ts UH−A

st .35 Due to unitary invariance of the operator norm, we
have

‖V′s (t)UH−A
ts −Uts ‖(∞) � ‖(V′s (t)UH−A

ts −Uts)UH−A
st ‖(∞) � ‖V′s (t) − Vs(t)‖(∞).

For fixed t ∈ R, Vs(t) satisfies the differential equation

∂sVs(t) � iUH
ts (H(s) − H(s) + A(s))UH−A

st � iLt(s)Vs(t) (6.48)

where Lt(s) :� UH
ts A(s)UH

st � τ
H
ts(A(s)) and Vt(t) � 1. The Trotter decomposition of

V is given by36

Vt(s) � lim
m→∞

m∏
j�1

e−iLt (s+ jδm )δm (6.49)

where δm :� (t−s)/m. The operator norm is unitarily invariant, therefore the triangle
inequality implies ‖U1U2 − V1V2‖(∞) ≤ ‖U1 − V1‖(∞) + ‖U2 − V2‖(∞) (Lemma A.4).
We obtain

‖Vs(t) − V′s (t)‖(∞) ≤ lim
m→∞

m∑
j�1



e−iLt (s+ jδm )δm − e−iL′t (s+ jδm )δm



(∞) (6.50a)

≤ lim
m→∞

m∑
j�1
|δm |



Lt(s + jδm) − L′t(s + jδm)



(∞) (6.50b)

�

∫ t′

s′



Lt(r) − L′t(r)



(∞) dr. (6.50c)

35Alternatively, one can obtain an approximation of the form UH
ts ≈ UH−A

ts W′t (s) where W′t (s) is the
solution of ∂tW′t (s) � −iW′t (s)τ

HR̄
st (At ), W′s (s) � 1. W′t (s) is an approximation of Wt (s) � UH−A

st UH
ts .

This approach is a bit more similar to the original proof by Osborne (2006).
36See e.g. Theorem 1.1 and 1.2 by Dollard and Friedman (1979b) or Theorem 3.1 and 4.3 by Dollard and

Friedman (1979a).

108



6.4. Efficient simulation

For all r, r′ ∈ [s′, t′], Corollary 6.3 provides the bound


τH
tr(A(r′)) − τHR̄

tr (A(r′))




(∞)
≤ 2Mαq

Z ‖A(r′)‖(∞) exp(v |t − r | − D). (6.51)

Inserting r′ � r provides a bound on


Lt(r) − L′t(r)




(∞); inserting this bound into

(6.50c) completes the proof. �

In the following lemma, we decompose the global evolution Uts into a sequence
of local unitaries by removing all local terms of the Hamiltonian which involve site
n, then removing those which involve site n − 1 and so on. Here, the order of the
sites does not matter and the geometry of the lattice enters only via the constants
defined above. However, the subsequent Theorem 6.21 shows that ordering the
sites of the system in a certain way improves the properties of the resulting unitary
circuit.

Lemma 6.19 Let H j �
∑

Z⊂Λ j
hZ denote the sum of all terms which act at most on the

first j sites Λ j � {1 . . . j}. Denote by Yj ⊂ Λ j the set of sites on which F j :� H j − H j−1

acts non-trivially. Choose q ∈ (0, 1). Let r be such that dre > 2κ + 1 and dre ≥ 2κ
q ln( κq ).

Let R :� (1 − q)r satisfy

R ≥ v |t − s | + ln
( n
ε

)
+ c2 (6.52)

where c2 � ln
(

M
Z exp(1)

)
+ 2(1 − q). Set R j :� Bo

da(Yj) ∩Λ j where d :� r − 2. Let R̄ j be
the extension of R j in terms of the Hamiltonian H j , i.e. R̄ j ⊂ Λ j . Then R̄ j ⊂ Bo

ra({ j})∩Λ j .
Let V′js(t) on R̄ j be the solution of ∂sV′js(t) � iτG j

ts (F j(s))V′js(t) where G j :� HR̄ j
and

V′jt(t) � 1. Then

‖UH
ts − V′n . . .V′2V′1‖(∞) ≤ ε (6.53)

holds where V′j :� V′js(t).
Proof There are at mostZ non-zero local terms hZ with j ∈ Z. As a consequence,
‖F j(s)‖(∞) ≤ Z J/2 holds. In addition, Yj ⊂ Bc

a({ j}) holds and implies R̄ j ⊂
Bc

a(R j) ∩Λ j ⊂ Bc
a(Bo

da(Bc
a({ j}))) ∩Λ j ⊂ Bo

ra({ j}) ∩Λ j (Lemma A.10). The definitions
imply that d(Yj ,Λ j \ R j)/a ≥ d (Lemma A.10).37 Set D � (1 − q)d. Note that
D � R − 2(1 − q). Therefore, Lemma 6.18 implies that

‖UH j
ts − V′j U

H j−F j
ts ‖(∞) ≤ JM

v
exp(v |t − s | − D) ≤ JM

v
ε
n

exp(2(1 − q) − c2) � ε
n

(6.54)
37Note that we restrict to the sublattice Λ j .
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holds for all j ∈ {1 . . . n}. Note that we have

UH
ts − V′n . . .V′2V′1 �

n∑
j�1

V′n . . .V′j+1U
H j
st − V′n . . .V′j U

H j−1
ts (6.55)

where H � Hn and UH0
ts � 1. The triangle inequality and unitary invariance of the

operator norm imply

‖UH
ts − V′n . . .V′2V′1‖(∞) ≤

n∑
j�1
‖UH j

ts − V′j U
H j−1
ts ‖(∞) ≤ ε (6.56)

where we have used H j−1 � H j − F j . This completes the proof of the Lemma. �

Corollary 6.20 Let d be the graph metric38 of the PEPS graph and let t be poly-logarithmic
in n. The operator V � V′n . . .V′1 from Lemma 6.19 provides an efficient, approximate
PEPS representation of the time evolution UH

ts because it admits a PEPS representation
with bond dimension D � O(exp(poly(R))).
Specifically, the bond dimension is D � d2n2

r where nr � max j∈Λ |Bo
ar({ j})| is the

maximal number of sites in a ball of radius ar (where d � maxx∈Λ d(x) is the maximal
local dimension).

Proof For a set Z ⊂ Λwhich is connected in terms of the PEPS graph, the open ball
Bo

k (Z) (k ≥ 0) is also connected in terms of the PEPS graph because d is the graph
metric of that graph. The unitary V′j acts as the identity outside the connected set
Bo

ar({ j}) which contains at most nr � max j∈Λ |Bo
ar({ j})| � poly(R) sites. At most

|Bo
ar({ j})| ≤ nr of the n operators V′1, . . . , V′n act non-trivially on a given, arbitrary

site j. Applying Lemma 2.4 with K � L � nr completes the proof. �

Lemma 6.19 provides an efficient, approximate representation of the time evo-
lution UH

ts . However, this representation may not be particularly useful: Con-
sider a one-dimensional setting where V′j acts only on { j, j − 1} and A is an
observable which acts on site n.39 We want to compute the expectation value
Tr(τH

st(A)ρ(s)) where the initial state ρ(s) is a product state. The time-evolved
observable is given by τH

st(A) � UH
st AUH

ts . We could obtain an approximation
from τH

st(A) ≈ (V′1)∗ . . . (V′n)∗AV′n . . .V′1, but the latter operator can act non-trivially
38The distance between x , y ∈ Λ in the graph metric is given by the number of edges in a shortest path

from x to y.
39Indeed, the operators V′j would need to act on larger numbers of neighbouring sites to achieve a

non-zero value of R if the Hamiltonian contains any interactions.
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on the full system. The structure of the approximation does not convey the fact
that operators propagate with the finite Lieb–Robinson velocity, as shown e.g. by
Theorem 6.1. The next theorem shows how the representation can be improved by
reordering the sites of the system before applying Lemma 6.19.

Theorem 6.21 ChooseR > 0, q ∈ (0, 1) and set r :� R/(1−q). Let L :� max j∈Λ |Bo
2ar({ j})|.

There is an efficiently computable colouring function C : Λ → {1 . . . L} which has the
property that C(x) � C(y) implies d(x , y)/a ≥ 2r. Suppose that the sites of the system
are ordered such that there are integers ak with 1 � a0 ≤ a1 ≤ · · · ≤ aL � n in terms
of which the consecutive sites {ak−1 + 1 . . . ak} have the same colour k ∈ {1 . . . L}. In
this case, V � V′n . . .V′1 from Lemma 6.19 can be expressed as V � WL . . .W1 where
Wk � V′ak

. . .V′ak−1+1. V′j and V′j′ do not act non-trivially on the same site if j and j′ have
the same colour. At most L of the n operators V′1, . . . , V′n act non-trivially on any given
site j ∈ Λ.

Proof Consider agraphwith sites givenbyΛ andedgesgivenbyEC � {{x , y} : x , y ∈
Λ, 0 < d(x , y) < 2ar}. The number of nearest neighbours (degree) of this graph is
L − 1. A so-called greedy colouring of the graph (Λ, EC), which can be computed
in O(nL) time,40 has the property d(x , y) < 2ar ⇒ C(x) , C(y). In other words, a
greedy colouring already has the necessary property C(x) � C(y) ⇒ d(x , y) ≥ 2ar.
Note that Bo

ar({ j}) and Bo
ar({ j′}) have an empty intersection if d( j, j′) ≥ 2ar

(Lemma A.10). Therefore, in this case, at most one of V′j and V′j′ act non-trivially on
any site. �

Remark 6.22 The operator V from Theorem 6.21 admits a PEPS representation
with the bond dimension mentioned in Corollary 6.20.

Note that Theorem 6.21 states that at most L � max j∈Λ |Bo
2ar({ j})| unitary op-

erations act on a given site while we already know that this number is at most
nr � max j∈Λ |Bo

ar({ j})| (proof of Corollary 6.20). This difference enables efficient
computation of the colouring function which arranges the operations V′j into L
groups of non-overlapping operations.
Let A act non-trivially only on site j. The advantage of Theorem 6.21 over

Lemma 6.19 is that V∗AV now acts non-trivially at most on nA � |Bo
s ({ j})| sites

where s � 2arL � poly(R), i.e. at most on nA � poly(R) sites (use Lemma 6.23 and

40A greedy colouring is obtained by picking a vertex which has not been assigned a colour and assigning
the first colour which has not been assigned to any neighbour of the given vertex (neighbour in
terms of EC). See e.g. Bondy and Murty (2008, Sec. 14.1, Heuristic 14.3, p. 363) or J. L. Gross et al.
(2014, Sec. 5.1.2, Fact F13).
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Lemma A.10). This is an improvement over Lemma 6.19 alone where V∗AV can
(appear to) act non-trivially on the full system. The radius s increases polynomially
with R, i.e. polynomiallywith time. Below, we construct an improved representation
where s increases linearly with time (Corollary 6.34), which matches what is already
known from Lieb–Robinson bounds (e.g. Theorem 6.1). 2

Lemma 6.23 LetA be an operator which acts non-trivially onY ⊂ Λ. LetV � V1V2 . . .Vb

where the Vk (k ∈ {1 . . . b}) are unitary and Vk acts non-trivially (at most) on Bo
r ({ jk})

with some jk ∈ Λ and r > 0. Let the Vk commute pairwise, i.e. [Vk ,Vl] � 0 for all
k , l ∈ {1 . . . b}. Then B � V∗AV acts non-trivially at most on Bo

2r(Y).
Proof In the expression B � V∗b . . .V

∗
1 AV1 . . .V∗b , all Vk which commute with A can

be omitted (because a given Vk commutes with all other Vl). In particular, all Vk

which do not act non-trivially on Y can be omitted without changing B. Let x ∈ Λ
be a site on which B acts non-trivially. If x ∈ Y holds, x ∈ Bo

2r(Y) holds as well and
we are finished. In the following, let x < Y. Then, there is a k ∈ {1 . . . b} such that
x ∈ Bo

r ({ jk}). In addition, there is a y ∈ Bo
r ({ jk})∩Y (otherwise, Vk and A commute

and Vk can be omitted from B). Note that d(x , y) < 2r (the diameter of the given
open ball). As a consequence, x ∈ Bo

2r(Y) holds, which completes the proof. �

6.4.3. Efficient simulation of time evolution: Hypercubic lattice

In this section, we construct a representation of time evolution under a local
Hamiltonianwhich has a smaller bond dimension than the representation presented
above. In order to split the complete time evolution into independent parts in a
more efficient way, we consider a cubic lattice Λ of finite dimension η with L sites
in each direction:

Λ :�
{(x1 , . . . xη) : xi ∈ [1 : L], i ∈ [1 : η]} (6.57)

Here, we used the notation [1 : L] � {1, 2, . . . , L} to denote a set of consecutive
integers. The total number of sites is n � |Λ| � Lη. In this Section, Ûa � bac denotes
the interaction range rounded down.
The Cartesian product (Section 1.2) has the basic property (A × B) ∩ (C × D) �
(A ∩ C) × (B ∩ D). Powers of sets are given by the Cartesian product, e.g. [1 : L]2 �

[1 : L] × [1 : L], and this allows us to write Λ � [1 : L]η ⊂ Zη where Z is the set of
all integers.
We assume a metric d on Λwhich satisfies the property

|xi − yi | ≤ d(x , y) ∀ i ∈ [1 : η] (6.58)
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For example, the metric induced by the vector-p norm, d(x , y) � [∑η
i�1 |xi − yi |p]1/p

with p ∈ [1,∞], has this property. Below, we partition the lattice into cubic sets
defined as follows:

Definition 6.24 Two points x , y ∈ Zη define the cube41 C(x , y) :� Λ∩>η
i�1[xi : yi].

For a non-negative integer r, the enlarged cube is defined as Cr(C(x , y)) :� C(x −
rv , y + rv)where v :� (1, 1, . . . , 1) ∈ Zη. 2

Definition 6.25 For PEPS representations, we use the graph in which x , y ∈ Λ are
connected if and only if

∑η
i�1 |xi − yi | � 1, such that each site has at most 2η nearest

neighbours. In this graph, the cube C(x , y) is a connected set for all x , y ∈ Zη. 2

We employ the following notation for Cartesian products: Let c , d ∈ Z and
x , y ∈ Zη−1, then

[c : d]i × C(x , y) �
[x1 : y1] × · · · × [xi−1 : yi−1] × [c : d] × [xi : yi] × · · · × [xη−1 : yη−1]. (6.59)

We partition the full lattice Λ into cubes Qm of edge lengthΩ and aim at splitting
the full time evolution into independent evolutions on the cubes Qm . Figure 6.4
illustrates the partition Λ � Û⋃m Qm and outlines the way forward. The next lemma
identifies all local terms hZ which couple at least two cubes Qm and Qm′ :

Lemma 6.26 Let Ω be a positive integer and B � dL/Ωe. For m ∈ [1 : B]η, set

Qm :� C(xm , ym), xm :� [Ω(mi − 1) + 1]ηi�1 , ym :� [Ωmi]ηi�1. (6.60)

These cubes partition the lattice, Λ � Û⋃m Qm . For i ∈ [1 : η] and j ∈ [1 : B − 1], set

Ai j :� [1 : Ω j]i × [1 : L]η−1 , Bi j :� [Ω j + 1 : L]i × [1 : L]η−1 (6.61)

and

Si j :�
{

Z ⊂ Λ : hZ , 0, Z ∩ Ai j , ∅, Z ∩ Bi j , ∅
}
. (6.62)

The complete Hamiltonian is given by H � HQ + HS where HQ contains all terms which
act within one of the cubes Qm and HS contains all terms which couple at least two cubes:

HQ :�
∑

m∈[1:B]η

∑
Z⊂Qm

hZ , HS :�
∑
Z∈S

hZ , S :�
η⋃

i�1

B−1⋃
j�1

Si j . (6.63)

41To be precise, C(x , y) is a hyperrectangle.
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L

Ω/2 Ω/2
Ω

Ω

Bη cubes

B �
⌈ L
Ω

⌉
slices

R̄u ⊂

B−1 surfaces

(a) (b) (c)

(d) (e) (f)

LSB(k)

Figure 6.4: Decomposition of an η-dimensional hypercube, illustrated for η � 3. (a) The
lattice Λ lives inside a cube of edge length L. (b) Along each direction, the cube is split
into B � dL/Ωe slices of width Ω (Lemma 6.26). (c) As a result, the cube is split into Bη

smaller cubes Qm of edge length Ω (Equation (6.60)). (d) Centered around each surface
from (b), there is a slice of width Ω. (e) Each surface from (b) is split into Bη−1 surface
segments Q̃k of edge length Ω (Lemma 6.28). The surface segments are divided into
2η−1 groups of non-neighbouring surfaces as specified by LSB(k) and indicated by the
symbols (Lemma 6.32). (f) The sets R̄u do not overlap for surface segments with the same
symbol (the same value of LSB(k); Lemma 6.31).

Proof The definition directly implies that the cubes Qm partition the lattice Λ (any
two cubes do not intersect and the union of all cubes equals the complete lattice).
As the sets Qm are disjoint, HQ contains each local term from H at most once. It
remains to show that HS contains exactly once all local terms which are not in
HQ . Let Z ⊂ Λ be such that hZ , 0 is not in HQ , i.e. there are m ,m′ ∈ [1 : B]η
with m , m′ such that both Z ∩ Qm , ∅ and Z ∩ Qm′ , ∅. There is an i ∈ [1 : η]
such that mi , m′i . Without loss of generality, assume that mi < m′i (otherwise,
exchange m and m′). Let a ∈ Z ∩Qm , then ai ≤ miΩ holds. Let b ∈ Z ∩Qm′ , then
bi ≥ Ω(m′i − 1) + 1 ≥ Ωmi + 1 holds. Set j � mi , then a ∈ Z ∩ Ai j and b ∈ Z ∩ Bi j

and this shows that both intersections are non-empty, i.e. Z ∈ Si j ⊂ S. This shows
that the local term hZ , which is not in HQ , appears in HS exactly once. �

The last lemma has identified the local terms which we want to remove from H.
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The next lemma determines the possible extent of these local terms:

Lemma 6.27 Let Z ∈ Si j . Then Z ⊂ Ii j ×[1 : L]η−1 where the interval Ii j :� [Ω j− Ûa + 1 :
Ω j + Ûa]i is along dimension i (cf. Equation (6.59)).

Proof Recall that diam(Z) ≤ a as hZ , 0. The property Z ∩ Ai j , ∅ implies
Z ⊂ Bc

a(Ai j) ⊂ C Ûa(Ai j) � [1 : Ω j + Ûa]i × [1 : L]η−1 (Lemmata A.11 and A.12). In the
same way, Z ∩ Bi j , ∅ implies Z ⊂ Bc

a(Bi j) ⊂ C Ûa(Bi j) � [Ω j − Ûa + 1 : L]i × [1 : L]η−1.
Combining both provides Z ⊂ Bc

a(Ai j) ∩ Bc
a(Bi j) ⊂ Ii j × [1 : L]η−1 (Lemma A.13). �

The local terms Z ∈ Si j ⊂ S, which we aim at removing, generally cover the
full volume described in the last lemma; if we removed all Z ∈ Si j with a single
application of Lemma 6.18, the resulting correction V′ would act on a large fraction
of the lattice, which we want to avoid. In addition, a given local term Z may be a
member of more than one of the sets Si j . We construct a partition of the set S which
addresses these issues:

Lemma 6.28 Let [1 : L]η−1 � Û⋃k∈[1:B]η−1 Q̃k a partition into cubes as in Equation (6.60).42

For i ∈ [1 : η], j ∈ [1 : B − 1] and k ∈ [1 : B]η−1, let

Si jk � {Z ∈ Si j : Z ∩Qi jk , ∅}, Qi jk � Ii j × Q̃k (6.64)

where Ii j is from Lemma 6.27. Then Si j �
⋃

k∈[1:B]η−1 Si jk holds and Z ∈ Si jk implies
Z ⊂ Ii j × C Ûa(Q̃k). Subsets S′i jk ⊂ Si jk which partition S, S � Û⋃ S′i jk , can be chosen in
O(n2) computational time.

Proof The equality Si j �
⋃

k∈[1:B]η−1 Si jk holds because the Qi jk partition Ii j × [1 :
L]η−1, which is a superset of all Z ∈ Si j (Lemma 6.27); this equality also implies
S �

⋃
i jk Si jk .

Let Z ∈ Si jk . This implies hZ , 0 and diam(Z) ≤ a. We have Z ⊂ Bc
a(Qi jk) ⊂

C Ûa(Qi jk) � C Ûa(Ii j) × C Ûa(Q̃k) (Lemmata A.11 and A.12, Definition 6.24). Combining
this with Z ⊂ Ii j × [1 : L]η−1 provides Z ⊂ [C Ûa(Ii j) × C Ûa(Q̃k)] ∩ [Ii j × [1 : L]η−1] �
Ii j × C Ûa(Q̃k).
In order to obtain suitable subsets S′i jk ⊂ Si jk , choose any fixed order for the sets

Si jk and remove all elements from Si jk which are already an element of a previous
Si jk . This takes computational time O(n2)where n � Lη � |Λ|. �

We aim at removing all interactions in a set S′i jk with a single application of
Lemma 6.18. For this purpose, we define a sequence H0 , . . . ,HΞ of Hamiltonians

42I.e. Q̃k � C(xk , yk ), xk � [Ω(ki − 1) + 1]η−1
i�1 and yk � [Ωki]η−1

i�1 .
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where H0 � HQ , HΞ � H. Consecutive Hamiltonians in this sequence differ
precisely by the local terms contained in one of the sets S′i jk . In order to define this
sequence of Hamiltonians, we define a specific order of the sets S′i jk which also
proves to be advantageous below.

Definition 6.29 For k ∈ [1 : B]η−1, let b � LSB(k) ∈ [0 : 1]η−1 be the vector whose
component bi is the least significant bit of ki ; i.e. bi � 1 (bi � 0) if ki is odd (even).2

Lemma 6.30 Let i ∈ [1 : η], j ∈ [1 : B − 1], k ∈ [1 : B]η−1 and Ξ :� η(B − 1)Bη−1.
Let ω : [1 : Ξ] → [1 : η] × [1 : B − 1] × [1 : B]η−1 be a bĳective function such that its
inverse ω−1 maps all (i , j, k) with the same value of (i , LSB(k)) to consecutive integers from
[1 : Ξ].43 For u ∈ [1 : Ξ], set

Σu :� Σu−1 Û∪ S′ω(u) , Fu :�
∑

Z∈S′
ω(u)

hZ (6.65)

where Σ0 :� Û⋃m∈[1:B]η {Z ⊂ Qm : hZ , 0}. For u ∈ [0 : Ξ] and subsets Ru ⊂ Λ, set
Hu :�

∑
Z∈Σu

hZ , H′u :�
∑

Z∈Σu
Z⊂R̄u

hZ (6.66)

Then, H0 � HQ , HΞ � H and Hu − Hu−1 � Fu (u ∈ [1 : Ξ]).
Proof The sets {Z ⊂ Qm : hZ , 0} are disjoint because the sets Qm are disjoint
(Lemma 6.26). Let EH � {Z ⊂ Λ : hZ , 0}. Lemma 6.26 implies H0 � HQ and
EH � S Û∪ Σ0. S � Û⋃Ξu�1 S′

ω(u) is provided by in Lemma 6.28 and implies EH �

Σ0 Û∪
( Û⋃

u S′
ω(u)

)
, Σu−1 ∩ S′

ω(u) � ∅ as well as HΞ −H0 � HS, i.e. HΞ � HQ + HS � H.
Fu � Hu − Hu−1 is implied by the definitions. �

The correction for removing the interactions from S′
ω(u) is to be supported on R̄u

and the choice of Ru ⊂ Λ is still open. The next lemma defines the sets Ru and
discusses whether two given R̄u overlap.

Lemma 6.31 Let Ω be an even integer and Ω > 4 Ûa. Let u ∈ [1 : Ξ] and set

Yu �

⋃
Z∈S′

ω(u)

Z, Ru � Bo
r (Yu), r � Ω/2 − 2 Ûa. (6.67)

Let i ∈ [1 : η], j, j′ ∈ [1 : B − 1], k , k′ ∈ [1 : B]η−1, u � ω−1(i , j, k) and u′ �
ω−1(i , j′, k′). The set R̄u is at most R̄u ⊂ [Ω( j − 1

2 ) + 1 : Ω( j + 1
2 )]i × CΩ/2(Q̃k).

R̄u ∩ R̄u′ � ∅ holds if (i) j , j′ or (ii) k , k′ and LSB(k) � LSB(k′).
43For example, ω−1(i , j, k) can be defined as position the of (i , LSB(k), j, k) within the lexicographically

ordered sequence of all (i , LSB(k), j, k).
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Proof Lemma 6.28 implies Yu ⊂ Ii j × C Ûa(Q̃k). We have R̄u ⊂ Bc
a(Bo

r (Yu)) ⊂
Bo

r+a(Yu) ⊂ Cr+ Ûa(Ii j) × Cr+2 Ûa(Q̃k) and the same for R̄u′ and (i , j′, k′) (Lemmata A.10
and A.11 and Definition 6.24). Note that r + 2 Ûa � Ω/2.
Assume that j , j′ holds. Cr+ Ûa(Ii j) � [Ω j − (r + 2 Ûa) + 1 : Ω j + r + 2 Ûa]i �

[Ω( j − 1
2 )+ 1 : Ω( j + 1

2 )]i . This set does not intersect with the same set for j′ if j , j′.
As a consequence, R̄u and R̄u′ do not intersect (use Lemma A.13).

Assume that k , k′ andLSB(k) � LSB(k′)hold. Let µ ∈ [1 : η−1] such that kµ , k′µ.
Without loss of generality, assume that kµ < k′µ (exchange k and k′ if necessary).
Note that this implies k′µ − kµ ≥ 2 because kµ and k′µ are both even or both odd
(which follows from LSB(k) � LSB(k′)). Note that CΩ/2(Q̃k) � C(xk − Ω2 v , yk +

Ω
2 v)

where v � (1, 1, . . . , 1) ∈ Zη and the same for k′. We have

[xk′ − Ω2 v]µ − [yk +
Ω
2 v]µ �

(
Ω(k′µ − 1 − 1

2 ) + 1
)
−Ω(kµ + 1

2 ) ≥ 1 (6.68)

where we have used k′µ − kµ ≥ 2. As a consequence, CΩ/2(Q̃k) does not overlap
with the same set for k′ and this implies that R̄u and R̄u′ do not overlap (use
Lemma A.13). �

The next lemma provides the necessary definitions for applying Lemma 6.18,
taking advantage of the particular ordering function ω (Lemma 6.30) and of
non-overlapping sets R̄u (Lemma 6.31):

Lemma 6.32 Let Ω be an even integer and Ω > 4 Ûa. For u ∈ [1 : Ξ] and s , t ∈ R, let
V′us(t) on R̄u be the solution of ∂sV′us(t) � iL′ut(s)V′us(t) where L′ut(s) � τH′u

ts (Fu(s)) and
V′ut(t) � 1. Set V′u � V′us(t) and V′ :� V′Ξ . . .V

′
2V′1. Then, V′ is given by

V′ :�
η∏

i�1

∏
l∈[0:1]η−1

V′il , V′il :�
B−1⊗
j�1

⊗
k∈[1:B]η−1

LSB(k)�l

V′i jk . (6.69)

where V′i jk :� V′u with u � ω−1(i , j, k).44 In addition, set V :� V′UHQ
ts .

Proof Use Lemmata 6.30 and 6.31 recalling that all (i , j, k) � ω(u)with the same
value of (i , LSB(k)) appear consecutively as u proceeds from 1 to Ξ. �

Finally, we have completed the preparations for applying Lemma 6.18:

Theorem 6.33 Let Λ � [1 : L]η, n � |Λ| � Lη and let d be a metric on Λ which satisfies
(6.58). Let Ω be an even integer and B � dL/Ωe. Choose q ∈ (0, 1) and let Ω be such that
44The order of the terms V′il in (6.69) is specified by the function ω.
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r :� Ω/2 − 2 Ûa satisfies r > 0, dr/ae > 2κ + 1 and dr/ae ≥ 2κ
q ln( κq ) where κ � η − 1.

The distance between V � V′UHQ
ts from Lemma 6.32 and the exact time evolution UH

ts is at
most 


V′UHQ

ts −UH
ts





(∞)
≤ ε (6.70)

if

Ω ≥ 2a
1 − q

[
v |t − s | + ln

( n
ε

)
+ ln(c3)

]
(6.71)

where c3 :� 2ηaM exp(1)/Z.
The operator UHQ

ts is the tensor product of Bη < n independent time evolutions on Ωη

sites. The operator V′ consists of Ξ � η(B − 1)Bη−1 < ηn independent time evolutions on
Ω(2Ω)η−1 sites. All constituents of the two operators can be computed in O(nη exp(Ωη))
computational time. The operator V admits a PEPS representation of bond dimension
D � O(exp(η4ηΩη ln(d))) where d � maxx∈Λ d(x) is the maximal local dimension. The
PEPS representation is defined in terms of the graph from Definition 6.25.

Proof Let u ∈ [1 : Ξ] and (i , j, k) � ω(u). Note that Û⋃k∈[1:B]η−1 Qi jk � Ii j × [1 : L]η−1

(cf. Lemma 6.28), which implies
∑

k |Qi jk | ≤ 2 ÛaLη−1. The operator Fu is the sum of
a subset of all terms which intersect with Qi jk (Lemma 6.28 and Equation (6.65));
i.e. Fu is the sum of at most |Qi jk |Z local terms. As a consequence, ‖Fu ‖(∞) ≤
(J/2)|Qi jk |Z � v |Qi jk |/2e. We have Ru � Bo

r (Yu)with r � Ω/2−2 Ûa (cf. Lemma 6.31),
therefore d(Yu ,Λ \Ru)/a ≥ r/a � Ω/(2a) − 2bac/a ≥ Ω/(2a) − 2 (Lemma A.10). We
have (use Lemma 6.18)


V′i jkUHu−1

ts −UHu
ts





(∞)
≤ M
Ze
|Qi jk | exp(v |t − s | − (1 − q)Ω/2a + 2). (6.72)

The total distance is at most the sum of such terms for all u ∈ [1 : Ξ] or all (i , j, k),
respectively.45 We evaluate∑

i jk

|Qi jk | ≤
∑

i j

2 ÛaLη−1
� 2 Ûaη(B − 1)Lη−1 < 2ηan. (6.73)

This provides


V′UHQ
ts −UH

ts





(∞)
≤ nc3 exp(v |t − s | − (1 − q)Ω/2a) ≤ ε (6.74)

45Completely analogous to the proof of Lemma 6.19.
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where c3 � 2ηaM exp(1)/Z.
In order to determine the maximal bond dimension of a PEPS representation,

recall that hypercubes are connected sets (Definition 6.25) and note that all unitaries
in the decomposition act on hypercubesQm (Lemma 6.26) or on sets R̄u (Lemma 6.32)
which are subsets of hypercubes (Lemmata 6.28 and 6.31). Therefore, Qm is a
connected set whose number of sites is |Qm | ≤ Ωη and R̄u is a subset of a connected
set whose number of sites is |R̄u | ≤ Ω(2Ω)η−1 (Lemma 6.31). Using Lemmata 2.1
and 2.2 as well as Equation (6.69) shows that the bond dimension of a PEPS
representation of V′UHQ

ts is at most D ≤ exp[(Ωη + η2η−1Ω(2Ω)η−1) ln(d2)]. �

Corollary 6.34 Let A be an operator which acts non-trivially on a single site x. Then
V∗AV with V � V′UHQ

ts acts non-trivially at most on Cr({x}) and the radius r � λΩ

increases linearly with time and with ln(n/ε) (λ � η2η + 3/2). (Proof: Analogous to
Lemma 6.23.)

Remark 6.35 The radius in the last corollary is proportional to Ω; using the repre-
sentation for an arbitrary lattice, this radius is proportional to Ωη (Remark 6.22).2

6.5. Discussion
In this work, we have discussed the unitary time evolution operator Ut induced by
a time-dependent finite-range Hamiltonian on an arbitrary lattice with n sites. In
addition, we have discussed time-evolved states |ψ(t)〉 � Ut |ψ(0)〉 where the initial
state |ψ(0)〉 is a product state. We have shown that such a time-evolved state can be
certified or verified efficiently, i.e. there is an efficient method to determine an upper
bound β on the infidelity of the time-evolved state |ψ(t)〉 and an arbitrary, unknown
state ρ. We presented a method where the measurement effort for obtaining
the upper bound β was only O(n3 exp[(v |t | + ln(n/I))η]) instead of O(exp(n)). If
the time-evolved state |ψ(t)〉 and the unknown state ρ are sufficiently close, the
upper bound β is guaranteed to not exceed I. The measurement effort is seen
to increase quasi-polynomially with n if the spatial dimension η is two or larger
and polynomially with n in one spatial dimension. The scaling in a single spatial
dimension matches results from previous work.46 The complete time evolution
operator Ut can be encoded into a time-evolved state |ψ(t)〉 if each site of the lattice
is augmented by a second site of the same dimension and the initial state is one
where each pair of sites is maximally entangled.47 A certificate for this time-evolved
46Lanyon, Maier, et al. 2017; Supplementary Information.
47Holzäpfel et al. 2015. See also Section 5.1.
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Chapter 6. Efficient verification and simulation of local time evolution

state then also provides a certificate for the time evolution operator Ut . This enables
assumption-free verification of the output of methods which, under the assumption
that it is a finite-ranged Hamiltonian, determine the unknown Hamiltonian of a
system.48

We have also shown that the time evolution operator Ut admits an efficient
PEPO representation on the same lattice as the Hamiltonian, implying that the
time-evolved state |ψ(t)〉 admits an efficient PEPS representation. This holds if time
t is at most poly-logarithmic in the number of sites n. An efficient representation
on the same lattice is different from efficient PEPO representations of Ut based
on the Trotter decomposition, which use a lattice of a larger dimension than the
Hamiltonian itself. Our result provides guidelines on the necessary resources for
numerically computing the time-evolved state |ψ(t)〉 with PEPSs (or a suitable
subclass thereof); such methods typically attempt to represent the time-evolved
state |ψ(t)〉 on the same lattice as the Hamiltonian. We construct an efficient
representation of Ut which approximates Ut up to an error ε and which is based on
a unitary circuit which propagates a local observable to a region whose diameter
grows only linearly49 with v |t | + ln(n/ε). This highlights that Ut is approximated
by a PEPO with a very specific structure; a general PEPO might e.g. displace local
observables by arbitrarily large distances. This property can also be used for an
alternative proof of efficient certification of time-evolved states |ψ(t)〉, following
the original approach pursued in one spatial dimension.50

We have shown that time-evolved states of finite-range Hamiltonians can be
certified and represented efficiently. At this point, it remains an open question
whether these results can be extended to Hamiltonians with exponentially decaying
couplings.

48da Silva et al. 2011; Holzäpfel et al. 2015. See also Chapter 5.
49This holds for a hypercubic lattice. For an arbitrary lattice, the diameter increases polynomially

instead of linearly with the given expression.
50Lanyon, Maier, et al. 2017; Supplementary Information.
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Chapter 7.

Tomography of an ion trap quantum
simulator

This chapter discusses results on efficient tomography of an ion trap quantum
simulator experiment with 14 qubits realized by Lanyon, Maier, et al. (2017).1 We
focus on the description of the basic method, which could be applied to any n-qubit
system which allows for control of individual qubits. For example, the quantum
state of four photonic qubits has been estimated from complete information on two
or three neighbouring qubits in another recent experiment.2

After a short review of the experiment’s capabilities, we describe the three basic
steps of efficient quantum state tomography with reference to the experiment:

1. Measure: Take informationally complete measurements on blocks of r neigh-
bouring qubits, i.e. on qubits k , . . . , k + r − 1 for all k ∈ {1 . . . n − r + 1}.

2. Estimate: Find an n-qubit pure state |ψ〉 compatible with the measurements.

3. Certify: Verify that the estimate |ψ〉 is close to the unknown, true state ρ.

While measurements contain complete information on r neighbouring qubits, we
additionally perform steps 2 and 3 using complete information on only r̃ qubits
where r̃ ≤ r.

1This chapter reproduces parts of the original publication Lanyon, Maier, et al. 2017 (published by
Macmillan Publishers Limited, part of Springer Nature), which was subsequently also discussed by
coauthor Buyskikh (2017). The present author contributed data analysis and numerical simulations.
This chapter presents selected aspects and adds Figures 7.1, 7.2 left and 7.3.

2Zhao et al. 2017.
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Chapter 7. Tomography of an ion trap quantum simulator

7.1. The ion trap quantum simulator experiment

Here, we give a schematic overview of the capabilities of the experiment presented
by Lanyon, Maier, et al. (2017). Most technical information, such as the frequencies
of all the different involved lasers, is not mentioned here and can be found in the
original publication.

Qubits One qubit in the experiment is provided by two electronic states of a
single ion in an ion trap. A linear Paul trap, which confines charged particles
using oscillating and constant electric fields, contains n ions in a linear chain. The
position of each ion is described in terms of the axial direction along the chain
and the two radial directions perpendicular to the chain. The ion trap contains
40Ca+ ions and one qubit is provided by the two states |↓〉 � |S1/2 ,m � 1/2〉 and
|↑〉 � |D5/2 ,m � 1/2〉 of the remaining valence electron of a single ion.3 The states
of the qubits are manipulated and measured by shining continuous wave (CW)
laser light on the ions in a radial direction and detecting fluorescence light from
the ions in a perpendicular radial direction. Fluorescence light is detected with an
electron-multiplying CCD camera.

Single-qubit rotations The single-qubit rotationsusedweredescribedbySchindler
et al. (2013). A σZ rotation of qubit k is implemented by shining laser light on the cor-
responding ion, implementing the operation exp(−iθσ(k)Z ), where θ is proportional
to the illumination time. Collective σX and σY rotations are implemented by shining
laser light on all ions. Specifically, this implements the operation exp(−iθSφ)where
Sφ �

∑n
k�1[σ(k)X cos(φ) + σ(k)Y sin(φ)], φ depends on the phase of the light and θ

is again proportional to the illumination time. Both operations together allow
arbitrary single-qubit rotations.4

State preparation The qubit state |↓↓ . . . ↓〉 is prepared by Doppler cooling and
optical pumping. After state preparation, the 2N radial motional modes are also
cooled to their ground states via frequency-resolved sideband cooling and optical

3Recall that l, j and m denote the quantum numbers of orbital angular momentum, total angular
momentum and the z component of orbital angular momentum, respectively. The letters S, P, D
indicate l � 0, l � 1 and l � 2 and their subscript indicates j. The two states have the quantum
numbers (l � 0, j � 1

2 ,m �
1
2 ) and (l � 2, j � 5

2 ,m �
1
2 ).

4Schindler et al. 2013.
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7.2. Measurements

pumping. After that, single-qubit rotations are used to flip every second spin,
obtaining the Néel-ordered state |↑↓↑↓ . . . 〉.

Time evolution A global beam which contains three frequencies induces the
Ising Hamiltonian

HIsing � ~
n∑

i , j�1
Ji j σ

(i)
X σ
( j)
X + ~

n∑
i�1
(B + Bi) σ(i)Z (7.1)

where ~ is the reduced Planck constant. The Hamiltonian is turned on after state
preparation for some time t and it is turned off before measurement. Parameters
Ji j and Bi which match the experiment were derived from other experimentally
measured parameters.5 The coupling roughly decays with a power-law Ji j ∼
1/|i − j |αwith 1.1 < α < 1.6. The timeunitweuse is J−1 where J �

∑n−1
i�1 Ji ,i+1/(n−1)

is the average nearest-neighbour coupling. The parameters satisfy |B + Bi | � | Ji j |,
which implies that the Hamiltonian is approximately equivalent to an XY model
in a transverse field.6 With the given initial state and Hamiltonian, correlations
increase with time as shown by the growing von Neumann entropies in column 1
of Figure 7.1 on page Page 130.

Measurement Asingle-qubit projectivemeasurement of σZ could be implemented
by shining light on the corresponding ion and collecting fluorescence light in a
perpendicular direction. A simultaneous single-qubit projective measurement
of σZ on each qubit is implemented by shining light on all ions and collecting
the fluorescence light of all ions with a CCD camera which resolves single ions.
Other measurements are implemented by applying suitable rotations, followed by
a simultaneous σZ measurement of all qubits.

7.2. Measurements

For a � (Z, . . . , Z), the following POVM describes a simultaneous measurement of
σZ on each qubit (cf. Equation (3.15)):

Π
(n)
σa �

{
Pσa1 ,s1 ⊗ · · · ⊗ Pσan ,sn : s ∈ {+1,−1}n

}
. (7.2)

5Lanyon, Maier, et al. 2017.
6Lanyon, Maier, et al. 2017; Jurcevic et al. 2015.
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Chapter 7. Tomography of an ion trap quantum simulator

Recall that the POVM is defined for all a ∈ {X,Y, Z}n and that its elements are
Pσak ,sk � |Ψσak ,sk 〉〈Ψσak ,sk | where |Ψσak ,sk 〉 is the eigenvector of the eigenvalue sk of
the Pauli matrix σak .
In the experiment, the following POVMs on n qubits were measured for r � 3:

P �
{
Π
(n)
σa : a ∈ A}

, A � {a ∈ {X,Y, Z}n : ak � ak+r , k ∈ {1 . . . n − r}} (7.3)

The set P contains 3r POVMs. Each POVM from P represents a projective
measurement which was implemented in the experiment by a sequence of unitary
rotations followed by a global, projective measurement of σZ on each qubit. In a
numerical simulation, measurements of the POVMs fromP are simulated efficiently
by simulating this sequence of projective measurements.7 In numerical simulations,
m � 1000 measurements of each POVM from P are simulated for r ∈ {3, 4, 5}. In
the experiment, m � 1000 measurements of each POVM were taken for r � 3.
The elements of all POVMs from P give rise to the following POVMwith 3r2n

elements:

Π
(n ,r)
Cyc �

{
1
3r P : P ∈ Π,Π ∈ P

}
. (7.4)

All probabilities of the POVMΠ(n ,r)Cyc can be estimated from the measurements taken
in the experiment. For r̃ ∈ {1 . . . r}, consider the r̃-qubit Pauli POVMs

Π
(n ,r̃ ,k)
Local �

{
1
3r̃ P : P ∈ Π(r̃)σa , a ∈ {X,Y, Z} r̃

}
, k ∈ {1 . . . n − r̃ + 1} (7.5)

where the superscript k indicates that the elements of the POVM act on qubits
k , . . . , k+ r̃−1. All probabilities of these POVMs can be estimated from themeasure-
ment data by considering the partial measurement results for the corresponding
qubits as long as we keep r̃ ≤ r. As the POVMs Π(n ,r̃ ,k)Local , which act only on r̃ qubits,
are IC,8 they can be used to reconstruct the corresponding local reduced density
matrices on r̃ neighbouring sites. We conduct tomography and certification of
the n-qubit state on the basis of the estimated probabilities of the POVMs Π(n ,r̃ ,k)Local ,
which include complete information on r̃ neighbouring sites. These probabilities
are estimated from the measurement data of the 3r POVMs from P (or, equivalently,

7Details can be found in the function mpnum.povm.MPPovm.sample() of the open source library mpnum
(Suess andHolzäpfel 2017). A similar problemhas been discussed in da Silva et al. 2011, Supplemental
Material.

8See Section 3.1.3.
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7.3. State estimation

the data of Π(n ,r)Cyc ). The elements of the POVMs from Equation (7.5) give rise to the
following POVM on n qubits:9

Π
(n ,r̃)
Block �

{
1

n − r̃ + 11k−1 ⊗ P ⊗ 1n−k−r̃+1 : P ∈ Π(n ,r̃ ,k)Local , k ∈ {1 . . . n − r̃ + 1}
}

(7.6)

The measurement data, which comprise estimated probabilities for all POVMs
from P, are sufficient to estimate all probabilities of the POVM from the last
equation. These are also exactly the probabilities which we use for state estimation
and certification below.

7.3. State estimation
We use the scheme for scalable maximum likelihood estimation (MLE)10 to re-
construct a pure state |ψest〉 from the estimated probabilities of the POVM (7.6).
In future work, one could consider maximum likelihood estimation with more
information from the measurements, such as complete information about all pairs
of qubits or the full POVM (7.4). With these two options, the estimation scheme
remains efficient in principle but its practical usefulness has to be evaluated.11

Convergence of the iterative likelihoodmaximizationmay requiremany iterations
and a lot of computation time if it is started from a random pure MPS. To reduce
computation time, we start likelihood maximization from the output of the MPS-
SVT algorithm.12 The estimated probabilities of the POVM (7.6) are used as input
to the MPS-SVT reconstruction algorithm.

7.4. Certificate
Let H be an operator with two smallest eigenvalues E0 < E1 and non-degenerate
ground state |ψGS〉 (H is called a parent Hamiltonian of |ψGS〉). For any mixed state
9Cf. Equation (3.20).

10Baumgratz et al. 2013b. See also Section 3.3.1.
11The scheme may remain efficient if the number of measurements M increases at most polynomially

with the number of qubits n. For sufficiently large n, the total number of outcomes is smaller
than |Π(n ,r)Cyc | � 3r2n and it is not possible to estimate all probabilities of this POVM accurately.
Nevertheless, it is possible that the resulting estimate is more accurate than an estimate based on
Π
(n ,r)
Block. For continuous variables, one has the similar situation that the total number of outcomes is

much smaller than the (infinite) number of elements of the POVM in question, and one still obtains
useful estimates; see Section 4.2.

12Cramer et al. 2010. See also Section 3.3.2.
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ρ, we have13

〈ψGS |ρ |ψGS〉 ≥ 1 − E − E0
E1 − E0

�: FLB (7.7)

where E :� Tr(Hρ) is the “energy” of ρ in terms of H. Note that H usually is artificial
and unrelated to any energy in the physical system in the laboratory. Suppose that
H �

∑n−r̃+1
k�1 hk where hk acts non-trivially only on qubits k , . . . , k + r̃ − 1. In this

case, we can obtain E and the fidelity lower bound FLB from the probabilities of the
POVM (7.6), which can be estimated from the measurement data. In Section 7.4.1,
a suitable parent Hamiltonian is constructed and in Section 7.4.2, we derive the
measurement uncertainty of the fidelity lower bound FLB.14

7.4.1. Empirical parent Hamiltonian

The following Hamiltonian is of the desired form:

H �

n−r̃+1∑
k�1

11,...,k−1 ⊗ Pker(Tτ(σk )) ⊗ 1k+r̃ ,...,N . (7.8)

Here,

σk � Tr1,...,k−1,k+r̃ ,...,n(|ψest〉〈ψest |) (7.9)

are the local reduced states of the initial estimate |ψest〉. The thresholding function
Tτ replaces eigenvalues of σk smaller than or equal to some threshold τ by zero
and Pker(A) denotes the orthogonal projection onto the null space of the operator A.
For τ � 0, |ψest〉 is a ground state of H from Equation (7.8) and this ground state is
non-degenerate if |ψest〉 is an injective MPS.15 A positive threshold τ can make the
ground state non-degenerate even if this condition is not met.

The ground states of H depend on τ. If H has a non-degenerate ground state, we
denote it by |ψGS〉. We consider all possible values τ ≥ 0 and select all Hamiltonians
with non-degenerate ground state. Among these Hamiltonians, we choose one
which minimizes

cD(|ψest〉, |ψGS〉) − (E1 − E0) (7.10)

13Cramer et al. 2010.
14The same method for deriving the measurement uncertainty of a sum of local observables from

correlated measurement outcomes was subsequently used in Friis et al. 2018.
15Perez-Garcia et al. 2007; Baumgratz 2014. See also Section 3.4.1.
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where c > 0 is some constant and

D(|ψ〉, |φ〉) � 

|ψ〉〈ψ | − |φ〉〈φ |

(1)/2 �

√
1 − |〈ψ |φ〉|2 (7.11)

is the trace distance.16 The motivation for this choice is twofold: (i) We aim for
a large energy gap E1 − E0 to avoid a large measurement uncertainty in FLB. (ii)
The desired FLB ≈ 1 requires ρ ≈ |ψGS〉〈ψGS | which implies, if we assume that
estimation was successful, |ψest〉〈ψest | ≈ ρ ≈ |ψGS〉〈ψGS |. Therefore, we aim for a
small distance D(|ψest〉, |ψGS〉) (if estimation was not successful, we do not attempt
to obtain a useful certificate). We obtain a valid fidelity lower bound for any value
of the constant c. However, we may obtain a very small lower bound or a lower
bound associated with a large measurement uncertainty for some choices of this
constant. We have used the value c � 5 and we do not observe significantly higher
fidelity lower bounds for other values of this constant.

7.4.2. Measurement uncertainty of the fidelity lower bound

Let ρk � Tr1...k−1,k+r̃ ...n(ρ) be the local reduced state on qubits k , . . . , k + r̃ − 1 of the
unknown state ρ. We use the following mapMk from a quantum state on r sites to
the probabilities of the POVM Π(n ,r̃ ,k)Local (Equation (7.5)):

Mk(ρk) :� [Tr(Pã s̃ρk)]Pã s̃∈Π(n ,r̃ ,k)Local
(7.12)

In this section, Pauli eigenprojectors are denoted by Pas :� Pσa ,s . As the POVMs
Π
(n ,r̃ ,k)
Local are IC, the identityMk

+Mk(ρk) � ρk holds; here,Mk
+ denotes the Moore–

Penrose pseudoinverse ofMk . This relation provides

E � Tr(Hρ) �
N−r̃+1∑

k�1
Tr(hkMk

+(Mk(ρk))) �
N−r̃+1∑

k�1

∑
ã s̃

ckã s̃ pkã s̃ , (7.13a)

ckã s̃ :� Tr(hkMk
+(eã s̃)), pkã s̃ :� Tr(Pã s̃ρk). (7.13b)

where the sum runs over ã ∈ {X,Y, Z} r̃ and s̃ ∈ {+1,−1} r̃ . The vectors eã s̃ ∈ R6r̃

form a standard basis. The last equation provides a decomposition of E � Tr(Hρ)
in terms of the probabilities pkã s̃ of the POVM Π(n ,r̃)Block (Equation (7.6)).
We now spell out how to estimate the probabilities pkã s̃ from the data of the

POVM Π(n ,r)Cyc . In order to use the machinery from Section 1.1 for this task, we
need to make some definitions. Recall that P contains one POVM for each
16Nielsen and Chuang 2007, Eqs. (9.60), (9.99).
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Chapter 7. Tomography of an ion trap quantum simulator

a ∈ A � {a ∈ {X,Y, Z}n : ak � ak+r , k ∈ {1 . . . n − r}} and that the POVM Π(n ,r)Cyc is
constructed from the elements of all these POVMs. An outcome of onemeasurement
of one POVM is given by s ∈ {+1,−1}n , which is treated as integer from the set
{1 . . . 2n} where necessary. The complete measurement data is represented by
x � (x1 , . . . , xm) where m is the number of measurements per POVM. Each xi

contains one outcome of each POVM from P, i.e. xi � (xia)a∈A with xia ∈ {+1,−1}n
or, equivalently, xia ∈ {1 . . . 2n}.
The sampling distribution pm(x) � p(x1) . . . p(xm) is i.i.d. The outcome distribu-

tion of a single measurement of all POVMs is p(xi) � ∏
a∈A pa(xia). The outcome of

a single POVM is distributed according to pa(xi) � ∑2n

s�1 δ(xia − s)Tr(Pasρ), where
δ denotes the Dirac delta distribution.
In the following, let y � (yb)b∈A , yb ∈ {+1,−1}n denote one outcome from each

POVM from P. As before, let a ∈ A and s̃ ∈ {+1,−1} r̃ . Define the comparison
function

θaks̃(y) :�




1, if (sk , . . . , sk+r̃−1) � (s̃1 , . . . , s̃ r̃)
with y � (yb)b∈A and ya �: (s1 , . . . , sn),

0, otherwise.

(7.14)

The set of POVMs from P which can be used to estimate a given pkã s̃ is indexed by

Akã :�
{

a ∈ A : ak+i−1 � ãi , i ∈ {1 . . . r̃}
}
. (7.15)

The setAkã has 3r−r̃ elements, i.e. it has at least one element. Let a ∈ Akã , then

Epm (Ex(θaks̃)) � Ep(θaks̃) �
∑
s∈Ss̃

Tr(ρPas) � Tr(ρkPã s̃) � pkã s̃ (7.16)

where Ss̃ � {s ∈ {+1,−1}n : sk+i−1 � s̃i , i ∈ {1 . . . r̃}}. In the four steps, we used
(i) Equation (1.14a) (ii) definitions, (iii) the definition of Pas and a ∈ Akã and (iv)
definitions. Further, we set

qkã s̃(y) :� 1
|Akã |

∑
a∈Akã

θaks̃(y), (7.17)

which preserves the property Epm (Ex(qkã s̃(y))) � pkã s̃ . Finally, we are able to define
an estimator for E � Tr(Hρ) (the coefficients are defined in Equation (7.13b)):

ε(x) :� Ex( fε), fε(y) :�
n−r+1∑

k�1

∑
ã s̃

ckã s̃ qkã s̃(y). (7.18)
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Table 7.1: Estimators of the energy E which enters the fidelity lower bound (Equation (7.7))
and of the variance/standard deviation of the estimated energy. fε is defined in
Equation (7.18).

Estimand Estimator Name Bias

E � Tr(Hρ) ε(x) � Ex( fε) Mean Unbiased

v(ε) � Vpm (ε) vε(x) � 1
m−1Vx( fε) Variance (of the mean) Unbiased√

v(ε)
√

vε(x) Standard deviation (of the mean) Biased

Epm (ε) � E immediately follows because expectation values are linear. 1
m−1Vx( fε)

provides an unbiased estimator of our estimate’s variance (Section 1.1). The results
are summarized in Table 7.1. Naturally, the standard deviation of the fidelity lower
bound FLB is obtained from that of E by dividing by the energy gap E1 − E0.

7.5. Results

In this section, we discuss results from the ion trap quantum simulator experiment
presented by Lanyon, Maier, et al. (2017) and compare the experimental results to
numerical simulations. Recall that the ideal time-evolved state |ψ(t)〉 is given by
|ψ(t)〉 � exp(−iHIsingt/~)|ψ(0)〉 where |ψ(0)〉 � |↑↓↑↓ . . . 〉 is a Néel-ordered state.
For simulations of 8 and 14 qubits, the Hamiltonian was constructed as a sparse
matrix and time evolution was simulated with a library function.17 Measurements
on the time-evolved state |ψ(t)〉 were simulated as discussed above and provide
complete information on r neighbouring qubits. State estimation and certification
was performed using complete information on r̃ qubits where r̃ ≤ r. We set r � 3
for r̃ ∈ {1, 2, 3} and r � r̃ for r̃ ∈ {3, 4, 5}. In order to ensure that our estimate
of the fidelity lower bound FLB is unbiased, we split the m � 1000 measurement
outcomes into two parts of 500 outcomes, of which the first (second) part is used for
estimation (certification). From measurement data, we obtain the initial estimate
|ψest〉 (Section 7.3) and the parent Hamiltonian ground state |ψGS〉 (Section 7.4). As
explained above, the parent Hamiltonian provides the lower bound

〈ψGS |ρ |ψGS〉 ≥ FLB (7.19)

17scipy.sparse.linalg.expm_multiply from SciPy (Jones et al. 2001).
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Figure 7.1: Bipartite entanglement of the ideal time-evolved state |ψ(t)〉 (column 1) and
certified/initial estimates (columns 2–5). The width of each stripe indicates the entangle-
ment across a bipartition 1 . . . k |k + 1 . . . n, as quantified by the von Neumann entropy of
a corresponding reduced state (binary logarithm). Columns 2–5 show the entropy of
certified estimates |ψGS〉, for which the fidelity lower bounds presented below hold, and
of initial estimates |ψest〉.

on the fidelity of its ground state with the unknown state ρ in the laboratory.
Therefore, we call |ψGS〉 the certified estimate of the unknown state.

Figure 7.1 compares the bipartite entanglement found in the ideal time-evolved
state |ψ(t)〉 with that of initial and certified estimates. Entanglement grows with
time in the ideal state (column 1 in the figure) and the certified estimated |ψ r̃�3

GS 〉
based on experimental data reproduces this growth except for the last time step
where experimental data is available (column 2). In the numerical simulation which
uses complete information on r̃ � 3 neighbouring sites, growing entanglement can
be estimated up to about t ≈ 3

2 J−1, but it can be certified only up to t ≈ J−1 (|ψ r̃
est〉

and |ψ r̃�3
GS 〉 in columns 3 and 4). Complete information on r̃ � 5 sites is sufficient to

certify growing entanglement for longer times (|ψ r̃�3
GS 〉 in column 5).

Figure 7.2 shows fidelity lower bounds FLB obtained in simulations and exper-
iments with 8 qubits. Solid lines show lower bounds obtained with simulations
assuming exact knowledge of probabilities (of the POVM (7.6), which has (n− r̃+1)6r̃

elements). Shaded areas show the corresponding expected standard deviation
of the fidelity lower bound if estimation is performed with exact probabilities
and certification is performed with 500 measurement outcomes. This standard
deviation accounts for imperfect knowledge of the energy in terms of the parent
Hamiltonian but it does not account for changes in the parent Hamiltonian due to
imperfect knowledge of measured probabilities used for state estimation. To also
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Figure 7.2: Certified tomography of 8 qubits.18 Symbols: Tomography and certification with
500measurements each in simulation (left) and experiment (right). Solid lines: Simulation
of certified tomography with exactly known probabilities. Shaded areas: Expected
standard deviation of the fidelity lower bound if estimated from 500 measurements.

incorporate the latter, symbols show fidelity lower bounds where estimation and
certification have been performed with 500 measurement outcomes each. Here, the
error bars indicate an estimated standard deviation for repetitions of certification
with the same parent Hamiltonian, without repeating state estimation. The symbols
and error parts in the left and right parts of Figure 7.2 show results from numerical
simulations and from the experiment, respectively.
In Figure 7.2, fidelity stays close to unity for some time and then drops to

zero rather quickly; the time at which it drops increases with r̃, i.e. as complete
information on more neighbouring sites is used. The bond dimension of the
estimated state was constrained to D � 4. Non-zero fidelity lower bounds can
be obtained for longer times from r̃ � 5 if this bond dimension is increased: In
this case, certification was not limited by the available measurements but by the
constraint imposed during state estimation. The experimental results, which are
indicated by the symbols in Figure 7.2 right, are quite similar to the results of the
numerical simulation.
Figure 7.3 shows results of a numerical simulation involving 14 qubits and

complete measurements on r � r̃ � 3 qubits. Lines (solid, dotted or dashed),
shaded areas and symbols have the same meaning as before. The figure shows
results from simulations based on two different Hamiltonians and initial states. The
18The right part of the figure reproduces Figure 3 from Lanyon, Maier, et al. 2017 with modifications.

The left part of the figure is based on data from the same work.
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Figure 7.3: Certified tomography of 14 qubits (numerical simulation, r̃ � 3). The figure
compares tomography of time-evolved states under different Hamiltonians (HIsing, Hnn)
and starting from different initial states (|ψNéel〉, ρm). Dotted, solid and dashed lines:
Certified tomographywith exactly known probabilities. Shaded areas: Expected variance
of the fidelity lower bound if estimated from 500 measurements. Symbols: Tomography
and certification with 500 measurements each.

Hamiltonian Hnn is obtained from HIsing by removing all non-nearest-neighbour
couplings (i.e. by zeroing all Ji j with |i − j | > 1). The mixed initial state ρm is a
mixture of the Néel-ordered state |↑↓↑↓ . . . 〉 and the same state with one or two
spins flipped19 where the weights are given by the experimental measurement
outcomes of Π(n)σa , a � (Z, Z, . . . , Z) at t � 0: Zero, one and two spin flips were
observed 893, 93 and 12 times. Results for the nearest-neighbour Hamiltonian and
the Néel-ordered initial state are quite similar to the results for 8 qubits (Figure 7.2)
in that the fidelity lower bound stays close to unity before dropping to zero after
some time. Results for the full Hamiltonian differ in that fidelity starts dropping
earlier at a slower rate. Under the mixed initial state, fidelities do not exceed about
0.8 at any time. Out of the three models considered here, the simulations involving
the mixed initial state most closely resembled the experimental results. In the
experiment, the fidelity lower bound FLB � 0.39 ± 0.08 was achieved at t � 4 ms.
The fidelity of the estimated state at t � 4 ms was also estimated with direct
fidelity estimation (DFE),20 obtaining a result of 0.74 ± 0.05.21 Here, DFE required
a much larger number of measurements not constrained to three neighbouring
19The time evolution of each pure state involved in the mixture was simulated with the library function

mentioned above.
20da Silva et al. 2011; Flammia and Liu 2011.
21Lanyon, Maier, et al. 2017.

132



7.6. Conclusion

qubits, illustrating that measurements on three neighbouring qubits are, in this case,
sufficient for reasonable state estimation but may not be sufficient for certification.

7.6. Conclusion
The results presented above demonstrate that quantum state tomography of certain
states can be achieved without complete information. Certifying the estimated
state eliminates the need to assume that the unknown state belongs to a suitable
class. Specifically, this was demonstrated for product states evolved in time under
a Hamiltonian with decaying couplings. Single-qubit observables were seen to
be sufficient to estimate and certify the product state at t � 0 and measurements
on more neighbouring qubits were seen to admit tomography for longer times;
this is in qualitative agreement with the predictions from Chapter 6 based on
Lieb–Robinson bounds. There is good agreement between theory and experiment
for 8 qubits but the results for 14 qubits also show room for improvement in theory,
data analysis and experiment. E.g. regarding data analysis, the certified fidelity of
around 0.8 at t � 0 is unsatisfactory because a fidelity of about 0.893 with the ideal
initial state can be inferred directly from the named measurement results.

There are several avenues for future work. In order to obtain an unbiased estimate
of the fidelity lower bound, we split the data into two halves, where one is used for
state estimation and one is used for certification. A more precise estimate can be
obtained by using the same data for state estimation and certification, necessitating
an investigation of the statistical bias of the resulting estimator. In the case of a
nearest-neighbour Hamiltonian, the results from Chapter 6 guarantee successful
certification if the block size scales logarithmically with system size and linearly
with time. Future work could determine how the parameter range where the
numerical method from this chapter is successful compares with the parameter
range with guaranteed certification from Chapter 6. In an experiment, the unknown
state is always slightly or less slightly mixed. Estimating a mixed state instead of
a perfectly pure state, together with a suitable certificate, can increase the overall
performance of the method. State estimation of mixed states can be performed with
MPO-MLE, PMPS-MLE or density matrix reconstruction.22 One can then certify
the main component of the mixed state with the above method, attempt certification
with a degenerate parent Hamiltonian23 or use other methods.24

22Baumgratz et al. 2013a,b; Holzäpfel et al. 2018. See also Section 3.3.1 and Chapter 8.
23Flammia et al. 2010.
24Kim 2014. See also Section 3.4.2.
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Tensor reconstruction

The number of entries in a tensor grows exponentially with the number of tensor
indices. In this chapter, we reconstruct a tensor from few entries or other linear
functionals.1 The necessary number of entries or linear functionals is determined
by certain tensor unfolding ranks and can be much smaller than the total number
of entries. The necessary computation time and storage complexity are reduced
substantially because they are determined by the number of entries used for
reconstruction. Combining aspects of several previous contributions,2 we derive a
framework which allows for reconstruction of the tensor in the Tucker, hierarchical
Tucker and tensor train (TT)/matrix product state (MPS)/matrix product operator
(MPO) representations.

A tensor M is a collection of complex numbers organized by n indices,

M ∈ Cd1×···×dn . (8.1)

The number n is also called the number of modes. For simplicity, we set d :� d1 �

· · · � dn in this introduction, such that the tensor M has exactly dn components.
As mentioned in Section 2.2, the density matrix describing the quantum state of
n quantum systems of Hilbert space dimension dH may be represented as a tensor
with d � (dH)2. Noting that the set Cd1×···×dn is easily equipped with the properties
of a vector space, consider a linear function

F : Cd1×···×dn → Cm . (8.2)

We shall refer to F as linear measurement on the tensor M. Now, reconstructing
the tensor M from the vector F (M) ∈ Cm is not possible unless both the number
1Section 8.1 reproduces parts of the original publication Holzäpfel et al. 2018 with the permission of
AIP Publishing.

2Caiafa and Cichocki 2010; Oseledets and Tyrtyshnikov 2010; Baumgratz et al. 2013a; Ballani et al. 2013;
Caiafa and Cichocki 2015; Holzäpfel et al. 2018.
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of components m and the rank of F are at least dn (otherwise, the linear system
F (M) � y has more than one solution). In the case rk(F ) < dn , we say that the
value of F (M) does not provide complete information on the tensor M because it is
insufficient to infer M. However, M may well be inferred from F (M) if additional
constraints are known. As an example, M may be known to contain at most ten
non-zero entries. In this case, F (M) is sufficient to infer M if it contains ten non-zero
entries of M, independently of the rank of F .
In order to explain the constraints we use for tensor reconstruction, we need to

introduce the concept of a tensor unfolding or matricization. In the special case n � 5,
the {1, 3}-unfolding of M is the matrix

M{1,3}(M) ∈ Cd1d3×d2d4d5 (8.3)

with the same entries as M. This definition is easily generalized to a linear mapMs

for arbitrary n and s ⊂ Λ :� {1, 2, . . . , n} (see Section 8.2.1). For reconstruction, we
demand constraints of the form

rk(Ms(M)) � rk
(
Ls[Ms(M)]Rs

)
(8.4)

for certain subsets s ⊂ Λ where Ls and Rs are matrices which can be chosen
arbitrarily. The matrices Ls and Rs shall be called measurement matrices or just
measurements. Our reconstruction procedure then takes linear measurements of the
form

[F (M)] si j �
[
Ls[Ms(M)]Rs

]
i j (8.5)

aswell as other, similarly constructed linear functions ofM as input (see Section 8.2.2).
As a special case, the matrices Ls , Rs and the linear map F can be chosen such
that F (M) contains only selected entries of M. It is always possible to choose Ls

and Rs such that the condition (8.4) is satisfied if the number of rows in Ls and
the number of columns in Rs are not smaller than the rank ofMs(M). Suppose
that the rank ofMs(M) is much smaller than its maximally possible value for all
relevant subsets s ⊂ Λ and that measurements are chosen accordingly. In this case,
our reconstruction procedure enables reconstruction of a tensor M from a vector
F (M) ∈ Cm where F is a suitably defined linear map and where m scales e.g. only
linearly in n. Hence, m can be much smaller than the total number of components
dn of M.
Our tensor reconstruction method allows for different choices of the relevant

subsets s ⊂ Λ used in (8.4). It will become clear that the representation of the
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reconstructed tensor depends on this choice and that the MPS/TT, Tucker and
hierarchical Tucker representations are possible options. For example, the men-
tioned linear dependence of m on n can be achieved in the MPS/TT representation,
extending e.g. previous results by Baumgratz et al. (2013a). Indeed, our approach
to tensor reconstruction has been pursued several times before and we relate our
results to a selection of previous works3 in Section 8.2.6.

A reconstruction method for low-rank matrices provides the basis of our tensor
reconstruction method and is introduced in Section 8.1. The tensor reconstruction
method itself is introduced, analyzed and compared to previous work in Section 8.2.

8.1. Reconstruction of low-rank matrices

In this section, we present a method which allows to recover a low-rank matrix
M ∈ Cm×n from less than mn entries or from less than mn linear measurements
in the sense of (8.2).1 The rank of a matrix is considered as low if it is much
smaller than its maximally possible value min{m , n}. Section 8.1.1 discusses the
reconstruction method for low-rank matrices while Section 8.1.2 considers matrices
which are approximately low rank. A matrix is approximately low rank if it differs
from a low-rank matrix only by a small amount (as quantified by a given norm).

8.1.1. Reconstruction

Let M ∈ Cm×n be a matrix. Its matrix rank is equal to r if and only if it can be
written as

M �

r∑
i�1

ui v∗i , ui ∈ Cm , vi ∈ Cn (8.6)

where each of the sets {u1 , . . . , ur} and {v1 , . . . , vr} is linearly independent.4

Suppose that M has small rank in the sense that r is much smaller than m and
n, i.e. r � m , n. In this case, the last equation illustrates that the low-rank
matrix M, which contains mn complex numbers, can be specified in terms of
only (m + n)r � mn complex numbers. What is more, it is well known that all

3Oseledets et al. 2008; Caiafa and Cichocki 2010, 2015; Oseledets and Tyrtyshnikov 2010; Baumgratz
et al. 2013a; Ballani et al. 2013; Savostyanov and Oseledets 2011; Espig et al. 2012; Holzäpfel et al.
2018.

4E.g. Horn and Johnson 1991a, 0.4.5(c).
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entries of M can reconstructed from a suitable selection of (m + n)r of its entries.5

A possible proof uses the following Proposition 8.1: If L and R are submatrices
of permutation matrices, the matrix products LM and MR are given by certain
rows and columns of M. Choosing r � rk(M) linearly independent rows and
columns of M, the proposition reconstructs M from said rows and columns. The
resulting decomposition of M is known as pseudoskeleton decomposition or CUR
decomposition.6

Proposition 8.1 Let L ∈ Cr×m , M ∈ Cm×n and R ∈ Cn×s be matrices. Then

rk(LMR) � rk(M) ⇔ ∃X ∈ Cs×r : M � MR X LM. (8.7)

If the condition is satisfied, M � MR X LM holds for any matrix X with CXC � C,
C � LMR. The Moore–Penrose pseudoinverse X � (LMR)+ has the required property
CXC � C.
Furthermore, rk(LM) � rk(M) implies rk(LMR) � rk(MR).

Proof “⇒” of Equation (8.7): Assume that rk(LMR) � rk(M) holds. The property
CXC � C, C � LMR implies that LMRXu � u holds for all u ∈ im(LMR). Let
q :� rk(M) � rk(LMR). Let u1 , . . . , uq be a basis of im(LMR) and set vi :� Xui ,
wi :� MRvi (here and in the following, i ∈ {1, . . . , q}). The vi are linearly
independent because LMRvi � LMRXui � ui . The wi are linearly independent
because Lwi � LMRvi � ui . The wi are a linearly independent sequence of length
q � rk(M) and they satisfy wi ∈ im(M), i.e. they are a basis of im(M). Now observe

MR X Lwi � MR Xui � MR vi � wi . (8.8)

As a consequence, MR X L maps any vector from im(M) to itself. Accordingly,
(MR X L)M � M holds.

rk(LM) � rk(M) implies rk(LMR) � rk(MR): The equality rk(LM) � rk(M)
implies M � M(LM)+LM (use the “⇒” direction of Equation (8.7) for R � 1). As
a consequence, MR � M(LM)+LMR and rk(MR) ≤ rk(LMR) hold. The converse
inequality rk(LMR) ≤ rk(MR) always holds and we arrive at rk(LMR) � rk(MR).
“⇐” of Equation (8.7): Assume that M � MR X LM holds for some matrix X.

The equality M � MR X LM implies rk(M) ≤ rk(MR) and rk(M) ≤ rk(LM). The
converse inequalities rk(MR) ≤ rk(M) and rk(ML) ≤ rk(M) always hold. As a
consequence, we have rk(LM) � rk(M) and rk(MR) � rk(M). Above, we saw that
5E.g. Goreinov et al. 1997.
6Goreinov et al. 1997; Mahoney et al. 2008.
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the former equality implies rk(LMR) � rk(MR) which, together with the latter
equality rk(MR) � rk(M), proves the theorem. �

Remark 8.2 A violation of the rank condition rk(LMR) � rk(M) does not in general
imply that there is no method to obtain M from LM and MR. As a trivial example,
consider L � 1 and R � 0. Then, the rank condition is violated for all M , 0, but M
is obtained trivially from LM � M. 2

Remark 8.3 Several aspects of Proposition 8.1 have been covered in prior work.7

This is discussed in more detail by Holzäpfel et al. (2018, Remark 5) and in
Section 8.2.6 below. 2

8.1.2. Stability of low-rank matrix reconstruction

Suppose that

rk(LSR) � rk(S) (8.9)

holds for some matrix S, allowing for reconstruction of S from LS and SR via
Proposition 8.1. This rank condition is not robust in the following sense: Consider
the perturbed matrix

M � S + E, ε �
‖E‖(∞)
‖S‖(∞) (8.10)

where ε quantifies the relative magnitude of the perturbation E in the operator
norm. The rank condition (8.9) may not hold for M even if ε is arbitrarily close to
zero, such that and Proposition 8.1 does not allow for reconstruction of M. The
following Theorem 8.4 provides a reconstruction of M with bounded error if ε is
small enough, extending prior work by Caiafa and Cichocki (2015). A bound on
the distance between the reconstruction M̌τ and M is provided by

‖M̌τ −M‖(∞) ≤ ‖M̌τ − S‖(∞) + ‖S −M‖(∞) ≤ ‖M̌τ − S‖(∞) + ε‖S‖(∞) (8.11)

and Theorem 8.4 provides a bound on ‖M̌τ − S‖(∞).
In the remainder of this section, the operator norm (largest singular value) is

denoted by ‖ · ‖ :� ‖ · ‖(∞). Recall that given a matrix M, we define M+
τ :� (Mτ)+

and Mτ is given by M with singular values smaller than or equal to τ replaced by
zero.
7Goreinov et al. 1997; Baumgratz et al. 2013a; Caiafa and Cichocki 2015.
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Theorem 8.4 Let M � S + E, rk(S) � rk(LSR), η � ‖L‖‖S‖‖R‖, γ � σmin(LSR)/η,
ε � ‖E‖/‖S‖. Let γ > 2ε and ε ≤ τ < γ − ε. Then

‖M̌τ − S‖ ≤ 1
γ − ε

(
4ε
γ

+ 2ε + ε2
)
‖S‖ ≤ 7ε

γ(γ − ε) ‖S‖ ,

where M̌τ � MR(LMR)+ητLM.

Proof Weprove the proposition for ‖L‖ � ‖S‖ � ‖R‖ � 1 (without loss of generality
as explained in Remark 8.7). We have M � S + E, ε � ‖E‖, γ � σmin(LSR) and
LMR � LSR+LER with ‖LER‖ ≤ ε. We insert S � SR(LSR)+LS anduse Lemma8.6
(provided at the end of this subsection):

‖MR(LMR)+τLM − S‖ (8.12)

≤ ‖(LMR)+τ − (LSR)+‖ + 2‖(LMR)+τ ‖ε + ‖(LMR)+τ ‖ε2 (8.13)

≤ 4ε
γ(γ − ε) +

2ε
γ − ε +

ε2

γ − ε ≤
7ε

γ(γ − ε) . (8.14)

Note that by premise, we have ε < γ ≤ 1. As a consequence, 1 ≤ 1
γ and ε ≤ 1

(which were used in the last equation) hold. This proves the theorem. �

Remark 8.5 For the interpretation of the theorem, it is convenient to use the case
with ‖L‖ � ‖S‖ � ‖R‖ � 1 and η � 1. Theorem 8.4 shows that the reconstruction
M̌τ reconstructs the low-rank component S of M � S + E up to a small error if the
smallest singular value γ of the low-rank component LSR is much larger than the
norm ε of the noise component. In addition, the threshold τ must be chosen larger
than the noise norm ε but smaller than γ − ε. The appendix of Holzäpfel et al.
(2018) discusses examples which show that the bound from Theorem 8.4 is optimal
up to constants and that the reconstruction error can diverge as ε approaches zero
if small singular values in LMR are not truncated. 2

The following Lemma was used in the proof of Theorem 8.4:

Lemma 8.6 Let A, B, F ∈ Cm×n . Let γ � σmin(A), B � A+ F with ‖F‖ ≤ ε. Let γ > 2ε
and choose τ such that ε ≤ τ < γ − ε. Then σmin(Bτ) ≥ γ − ε, ‖B+

τ ‖ ≤ 1/(γ − ε),
Bτ � Bε and ‖B − Bτ‖ ≤ ε. In addition,

‖B+
τ − A+‖ ≤ 4ε

γ(γ − ε) . (8.15)
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Proof The singular values of B � A + F satisfy8

|σi(A + F) − σi(A)| ≤ σ1(F) ≤ ε
and therefore, with r � rk(A), we obtain

σ1(B) ≥ . . . ≥ σr(B) ≥ γ − ε > τ ≥ ε ≥ σr+1(B) ≥ . . . ≥ 0.

This shows already everything except the inequality in Equation (8.15). To show
the latter one, we use9 ‖X+ − A+‖ ≤ 2‖X+‖‖A+‖‖X − A‖. Inserting ‖Bτ − A‖ ≤
‖Bτ − B‖ + ‖B − A‖ shows the desired inequality. �

Remark 8.7 In this Remark, we provide an argument which extends the proof of
Theorem 8.4 from matrices S with unit operator norm to matrices S with arbitrary
operator norm. Suppose that the matrix M is the sum of a signal S and a noise
contribution E, M � S + E. The signal satisfies rk(S) � rk(LSR), but we only know
the strength ‖E‖ of the noise. Suppose that for ‖S‖ � ‖L‖ � ‖R‖ � 1, we obtain
some error bound of the form

‖MR(LMR)+τLM − S‖ ≤ f (ε, γ, τ), ε � ‖E‖ , γ � σmin(LMR). (8.16)

We can obtain an error bound for M′ � S′ + E′ where S′, L′, and R′ have arbitrary
norms as follows: Set M � M′/‖S′‖, S � S/‖S′‖, E � E′/‖S′‖ L � L′/‖L′‖,
R � R′/‖R′‖. With these definitions, we have

‖MR(LMR)+τLM − S‖ � ‖M
′R′(L′M′R′)+τ′L′M′ − S′‖

‖S′‖ , (8.17)

where τ′ � ‖L‖‖R‖‖S‖τ. Therefore, the bound from the last but one equation
implies

‖M′R′(L′M′R′)+τ′L′M′ − S′‖ ≤ ‖S′‖ f (ε, γ, τ), (8.18)

ε �
‖E′‖
‖S′‖ , γ �

σmin(L′M′R′)
‖L′‖‖R′‖‖S′‖ , τ �

τ′

‖L′‖‖R′‖‖S′‖ . (8.19)

This enables us to assume ‖S‖ � ‖L‖ � ‖R‖ � 1 and ε � ‖E‖ in the above proof. 2

8.2. Tensor reconstruction
In the following, we present a method for tensor reconstruction which is advan-
tageous especially for low-rank tensors. As in the case of matrices, a tensor is
8See e.g. Stewart 1977.
9Wedin 1973; Stewart 1977.
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considered as being low-rank if its ranks (defined below, cf. also (8.4)) are much
smaller than their respective maximal values. The reconstruction method relies
on notation and basic facts presented in Section 8.2.1. After that, we discuss the
reconstruction method and its extension to recursively defined measurements
in Sections 8.2.2 and 8.2.3, where the term measurement is used in the sense of
Equations (8.2) and (8.5). Recursively defined measurements appear to relax the
rank conditions necessary for reconstruction, but our analysis in Section 8.2.4 shows
that this is not actually the case. Sections 8.2.5 and 8.2.6 conclude by considering
further types of recursively defined measurements and by relating the results from
this section to previous work.

8.2.1. Notation and basic facts

A tensor is basically a matrix with more than two indices. For a tensor M with n
indices, we write

M ∈ Cd1×···×dn , Mi1 ...in ∈ C, ik ∈ {1 . . . dk}, k ∈ {1 . . . n}, (8.20)

where dk is the size of the k-th index ik .10 In quantum mechanics, the tensor M
could contain e.g. the components of a pure state vector of n quantum systems of
dimensions d1, . . . , dn : Mi1 ...in � 〈i1 . . . in |ψ〉. Note that in related literature,11 the
same notation is used, except for d and n being exchanged:

M′ ∈ Cn1×···×nd , M′i1 ...id
∈ C, ik ∈ {1 . . . nk}, k ∈ {1 . . . d}. (8.21)

We shall stick to the notation from (8.20) where the tensor M has n indices, which
is also used throughout the rest of this work.

We refer to the n indices of a tensor as n modes and the set of all modes is denoted
by

Λ :� [n] :� {1, 2, . . . , n}. (8.22)

The complement of a subset t ⊂ Λ is denoted by tc and we define the sizes

dt :�
∏
k∈t

dk , d′t :�
∏
k∈tc

dk , tc :� Λ \ t . (8.23)

10The following nomenclature is also used: n is also called the dimension of M or the number of modes.
dk (k ∈ {1 . . . n}) is called the size of the k-th index, the size of the k-th mode or the dimension of the
k-th mode. See also the beginning of Chapter 2.

11E.g. Ballani et al. 2013.
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When we work with a matrix such as A ∈ Ca1a2a3×c , we assume that we can also
treat it as a four-mode tensor from Ca1×a2×a3×c :

Definition 8.8 (Matrices with tensor structure) For matrices whose dimensions
are given by products of integers, a decomposition of column and row indices
into corresponding multi-indices shall be available. For example, components of a
matrix A ∈ Ca1a2a3×b may be denoted as Ai1 i2 i3 ,c where ik ∈ [ak], c ∈ [b] and k ∈ [3].
The order of rows in A is arbitrary but has to remain fixed. 2

This definition enables a commutative notation for the tensor product A ⊗ B:

Definition 8.9 (Non-standard tensor product) Matrix products of tensor products
and matrices are evaluated according to the variable names that occur in the shape
specification of the involved matrices. Example: A product involving A ∈ Ca1a2a3×b

and X(k) ∈ Cxk×ak (k ∈ [3]) shall be defined as
[ (

X(3) ⊗ X(1) ⊗ X(2)
)
A
]

y3 y1 y2 ,c
�

∑
i1 ,i2 ,i3

X(1)y1 ,i1
X(2)y2 ,i2

X(3)y3 ,i3
Ai1 i2 i3 ,c . (8.24)

where yk ∈ [xk], ik ∈ [ak] and c ∈ [b]. This differs from the standard definition of
the tensor product.12 2

Definition 8.10 (Matricization, tensorization) A tensor unfolding or matricization
of a tensor M is the matrixMt(M) ∈ Cdt×d′t with the same entries as M, where
t ⊂ Λ.13 We formalize this definition using suitable multi-indices It and I′t :

[Mt(M)]It ,I′t :� Mi1 ,...,in , It :� (ik)k∈t , I′t :� (ik)k∈tc . (8.25)

We can choose to order the entries ofMt(M) lexicographically according to the
multi-indices It and I′t but any other defined order is equally permissible. Elsewhere,
matricizations are often denoted as M(t) :�Mt(M) or M(t) :�Mt(M). Below, we
also use the notation Mt :�Mt(M).
The tensorization of a matrix A ∈ Cdt×d′t is the tensor Tt(A) ∈ Cd1×···×dn with the

same components, i.e.

[Tt(A)]i1 ,...,in :� AIt ,I′t . (8.26)

12The tensor product, Kronecker product or direct product A ⊗ B of two matrices A ∈ Ca1×a2 and B ∈
Cb1×b2 is elsewhere defined as the matrix A ⊗ B ∈ Ca1b1×a2b2 with the entries Ai1 ,i2 B j1 , j2 �:
(A ⊗ B)b1(i1−1)+ j1 ,b2(i2−1)+ j2 where i1 ∈ [a1], i2 ∈ [a2], j1 ∈ [b1], j2 ∈ [b2]. Cf. e.g. Horn and Johnson
1991b, Definition 4.2.1.

13E.g. Grasedyck 2010, Definition 2.2.
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a) Matrix-matrix product

c) Tucker representation

Aik �
∑

j Bi j C jk

i1 i2 i3 i4 i5 i6 i7

{1, 2, 3, 4, 5, 6, 7}

{1} {2} {3} {4} {5} {6}

{1, 2} {3, 4} {5, 6} {7}

{1, 2, 3, 4} {5, 6, 7}

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}
i1 i2 i3 i4 i5

i1 i2 i3 i4

i1 i2 i3 i4 i5A � B Cii j kj

d) TT/MPS representation

e) Hierarchical Tucker representation

1 2 3 54

b) Tensor M ∈ Cd1×···×d5

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1}

Figure 8.1: (a) Graphical representation of a matrix-matrix product, which constitutes the
basic building block of the graphical representations of tensor networks. (b) Graphical
representations of a tensor with five modes (indices). (c–e) Dimension trees and
corresponding tensor representations.

Tensorization is the inverse operation of matricization. Strictly speaking, we should
writeMd1×···×dn

t (M) and T d1×···×dn
t (A) because both operations depend on the mode

sizes (d1 , . . . , dn). To enhance readability and because the mode sizes can usually
be inferred from the context, we use the shortened notationMt(M) and Tt(A). 2

Example 8.11 As an example, consider a matrix A ∈ Cm12m3d4×m′1234 where d4 is the
size of mode 4 and m12, m3 and m′1234 are certain integers (this example is taken from
the proof of Lemma 8.26 below). This matrix can be tensorized and unfolded into
the matrixMm12Tm12m3d4 A, where we have already abused notation by referencing
modes not by their label (1, 2, etc.) but by the variable which determines their size
(d1, d2, m3, etc.). For the tensorization we shall always introduce one tensor mode
for each integer, obtaining tensors and matrices of the following shapes:

Tm12m3d4 A ∈ Cm12×m3×d4×m′1234 , Mm12Tm12m3d4 A ∈ Cm12×m3d4m′1234 . (8.27)
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Definition 8.12 (Tensor-matrix-product) The product of a matrix A ∈ Cm×dk with
mode k of a tensor Cd1×···×dn is denoted by M ×k A and its components are given
by14

(M ×k A)i1 ,...,in :�
∑

j

Mi1 ...ik−1 jik+1 ...in Aik j . (8.28)

As was mentioned above, the number of elements of a tensor with n modes
increases exponentially with n. To reduce the storage cost where possible and to
make handling tensors with many modes practical, tensors are represented by a
collection of tensors with fewer modes which, when matrix-matrix products are
evaluated between certain modes, return the original tensor. This approach is
illustrated in Figure 8.1. For more details on the MPS/TT representation and the
graphical notation shown in the figure, refer to Sections 2.2 and 2.2.2, respectively.
In order to describe different tensor representations formally, we define a dimension
tree as follows:

Definition 8.13 (Dimension tree) Given a finite set of modes Λ, a dimension tree
T is a finite set with the following properties:15

1. The root of the tree is Λ ∈ T.

2. Each element t ∈ T is a non-empty subset t ⊂ Λ.
3. There is a successor function S : T → T ∪ {∅} with the following properties:

For all t ∈ T and s ∈ S(t), s ( t holds. In addition, the intersection of any two
elements of S(t) is empty.

4. For each s ∈ T, either s � Λ or there is a t ∈ Λ such that s ∈ S(t). (All elements
s ∈ T can be reached from the root Λ via the successor function). 2

Example 8.14 (Tensor representations) In Figure 8.1, everydimension tree element
t ∈ T is associated to one tensor in a tensor network representation of the original
tensor M ∈ Cd1×···×dn . The sizes of open modes are fixed to (d1 , . . . , dn) while the
sizes of modes connecting two tensors are free parameters which determines the
complexity of the representation. In the MPS/TT dimension tree, for example,
the size of modes connecting two tensors are the MPS bond dimensions or TT
14E.g. Lathauwer et al. 2000, Definition 8.
15Cf. Ballani et al. (2013). They impose an additional restriction on dimension trees, requiring either (i)

S(t) � ∅ or (ii) S(t) � {t1 , t2} with t � t1 Û∪ t2 (Ballani et al. 2013, Definition 3).
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representation ranks. If the MPS bond dimensions are bounded by a constant,
the storage cost of the representation is only linear in n (instead of exponential).
Figure 8.1 shows the following tensor representations:

• Matrix product state (MPS)/tensor train (TT):16

S({1, . . . , k}) � {{1, . . . , k − 1}} for k ∈ {2, . . . , n} and S({1}) � ∅.
• Tucker representation:17 S(Λ) � {{1}, {2}, . . . , {n}} and S({i}) � ∅, i ∈ Λ.
• Hierarchical Tucker representation:18 A binary tree with half of each node

t ∈ T as successors and with single-mode leaves. 2

Below, we use the following Lemma, whose basic idea is not new and which is
closely related to the Tucker representation and the related, so-called higher-order
singular value decomposition (HO-SVD):19

Lemma 8.15 Let M ∈ Cd1×d2×d3 be a tensor with three modes and denote unfoldings by
M(t) :�Mt M, t ⊂ {1, 2, 3}. Then

M(12)
�

[[M(1)(M(1))+] ⊗ [M(2)(M(2))+]]M(12) , (8.29)

or, in other words, im(M(12)) ⊂ im(M(1)) ⊗ im(M(2)).
Proof We take a part of the right-hand side and write it as mode-1 product:

T12

(
[[M(1)(M(1))+] ⊗ 1d2]M(12)

)
� M ×1 [M(1)(M(1))+] � T1

(
M(1)(M(1))+M(1)

)
� T1(M(1)) � M. (8.30)

Taking the mode-12 unfolding of the left and right hand sides, we obtain20

[[M(1)(M(1))+] ⊗ 1d2]M(12)
� M(12). (8.31)

In the same way, we obtain [11 ⊗ [M(2)(M(2))+]]M(12) � M(12). This completes the
proof. �

16E.g. Schollwöck 2011; Oseledets 2011. See also Section 2.2.
17Tucker 1966. Lathauwer et al. (2000) further cite the earlier publication Tucker 1964.
18Hackbusch and Kühn 2009; Grasedyck 2010.
19The transformation in Equation (8.30) was used e.g. by Tucker (1966, Eqs. (17)–(19)) and Lathauwer

et al. (2000, Eqs. (14)–(15)).
20Written in components, the argument runs as follows: By i, j, k we denote indices referring to the

first, second and third modes, respectively. We have (M(12))i j,k � Mi jk � (M(1))i , jk , where the
comma separates row and column indices of a matrix. Note that (M(1))i , jk � [M(1)(M(1))+M(1)]i , jk �∑

i′[M(1)(M(1))+]i ,i′ (M(1))i′ , jk holds. Inserting (M(12))i j,k � (M(1))i , jk on both sides yields the desired
M(12) � [[M(1)(M(1))+)] ⊗ 1d2 ]M(12).
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8.2. Tensor reconstruction

8.2.2. Tensor reconstruction

Our main result on tensor reconstruction, Theorem 8.17, uses the following Defini-
tion 8.16, which is illustrated in Figure 8.2.

Definition 8.16 (Reconstruction setting) Let M ∈ Cd1×···×dn be a tensor with un-
foldings denoted by Mt �Mt M ∈ Cdt×d′t , t ⊂ Λ. Let T be a dimension tree with
successor function S.

Set m′
Λ

:� 1 and RΛ :� 1. Let t ∈ T and s ∈ S(t). Choose positive integers ms , m′s
and matrices

Ls ∈ Cms×ds , Rs ∈ Cd′s×m′s . (8.32)

For the successors of t in some arbitrary, fixed order, we write {s1 , . . . , sh} :� S(t)
where h :� |S(t)|. The subset of t which is not covered by any successor is given by
x :� t \⋃s∈S(t) s. Keep in mind that both h and x depend on t. We define matrices

At ∈ Cms1 ...msh dx×m′t , Bs ∈ Cms×m′s , Ct ∈ Cdt×m′t (8.33)

as21

At :�
[(⊗

s∈S(t) Ls

)
⊗ 1dx

]
Mt Rt , Bs :� Ls Ms Rs (8.34)

and (see Figure 8.2)

Ct :�
[(⊗

s∈S(t) Cs(Bs)+
)
⊗ 1dx

]
At . (8.35)

The recursion in Ct stops at leaves t, for which S(t) � ∅ and Ct � At � Mt Rt hold.2

Theorem 8.17 Assume Definition 8.16. If the rank conditions

rk(Ms) � rk(Ls Ms Rs), t ∈ T, s ∈ S(t) (8.36)

hold, then Ct � Mt Rt (t ∈ T) and CΛ � MΛ hold, i.e. M can be reconstructed from At

and Bs (t ∈ T, s ∈ S(t)).

Remark 8.18 As mentioned in the introduction, we call the matrices Ls and Rs

measurement matrices or just measurements. The measurement Ls acts on the mode
set s ⊂ Λ to the right and its output size is given by the integer ms . Conversely, the
measurement Rs acts on the mode set sc � Λ \ s to the left, and its output size is
21Below, we may sometimes omit the identity matrix 1dx .
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given by the integer m′s . The matrices At and Bs are linear functions of M and they
can both be represented by a linear measurement function F : Cd1×···×dn → Cm as
defined in (8.2) in the introduction. Theorem 8.17 enables us to reconstruct M using
the tensorization M � TΛ(CΛ), where CΛ can be constructed using only At and
Bs (t ∈ T, s ∈ S(t)). Furthermore, a tensor representation in accordance with the
dimension tree T can be directly constructed from At and Bs . The representation
ranks (or “bond dimensions”) can be chosen as ms or m′s , as illustrated by Figure 8.2c
and d. If the tensor ranks rk(Ms) and the measurement output sizes are sufficiently
small, this representation can be much more efficient than a full representation of
M as multi-dimensional array. By using the corresponding dimension tree, the
reconstructed tensor can be represented e.g. as MPS/TT and an example of this
case is presented below in Example 8.20. 2

Proof (of Theorem 8.17) As a consequence of Lemma 8.15,

Mt �

[⊗
s∈S(t)Ms(Ms)+

]
Mt , t ∈ T. (8.37)

Due to the rank conditions, Proposition 8.1 for L � Ls , M � Ms and R � Rs

implies22

Ms � Ms Rs (Ls Ms Rs)+ Ls Ms , t ∈ T, s ∈ S(t). (8.38)

Inserting (8.38) into (8.37) provides

Mt �

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls Ms(Ms)+

]
Mt

�

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls

]
Mt , (8.39)

where the second line has been obtained by using (8.37) again. Multiplying with Rt

provides

Mt Rt �

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls

]
Mt Rt

�

[⊗
s∈S(t)Ms Rs (Bs)+

]
At . (8.40)

Recall that Ct � Mt Rt holds if t is a leaf, i.e. if S(t) � ∅. We show that Ct � Mt Rt

holds for all t ∈ T with induction from the leaves to the root of the tree: Let
t ∈ T and suppose that Cs � Ms Rs holds for all s ∈ S(t). Then, (8.40) shows that
Ct � Mt Rt holds. This completes the proof. �

22Spaces in formulas were added to improve readability.
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a) Reconstruction with a dimension tree
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Figure 8.2: (a) Structure of the tensor reconstruction C1234 from Theorem 8.17 for the
exemplary dimension tree shown in (b). (c) Coarse structure of C1234. (d) Tensors can
be contracted in two different ways to obtain a tensor representation which adheres
to the structure from (b). The figure uses the shortened notation C{1,2,3,4} �: C1234,
L{2,3,4} �: L234, etc.
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Remark 8.19 Theorem 8.17 and Ct � Mt Rt still hold if we set

Ct �

[(⊗
s∈S(t) Cs(Ls Cs)+

)
⊗ 1dx

]
At , (8.41)

eliminating the need for Bs . This also applies to Theorem 8.23 below. It is not
clear which ansatz may yield a better reconstruction if the entries of At and Bs are
perturbed by noise and this should be investigated in practical applications. 2

Example 8.20 In order to illustrate Theorem 8.17, we use it to derive the matrix
product operator (MPO) reconstruction scheme proposed by Baumgratz et al.
(2013a). Let ρ ∈ B(H1,...,n) be a linear operator on a tensor product H1,...,n �

H1 ⊗ · · · ⊗ Hn of n finite-dimensional Hilbert spacesHk , k ∈ [n]. For example, ρ
could be a density matrix describing the state of n quantum systems. For notational
simplicity, we assume that all Hilbert spaces have the same dimension dH . Set
d :� (dH)2 and let {F(k)1 , . . . , F(k)d } be an operator basis of B(Hk). Further, let M be
the tensor which contains ρ’s coefficients in the tensor product of these operator
bases, i.e.

ρ �

d∑
i1�1
· · ·

d∑
in�1

Mi1 ...in F(1)i1
⊗ · · · ⊗ F(n)in

. (8.42)

The linear operator ρ is thus represented by the tensor M with n modes of sizes
d1 � · · · � dn � d � (dH)2. In order to apply Theorem 8.17, we make the following
definitions. We choose integers l , r ≥ 1 such that l + r ≤ n − 2. The set of modes is
Λ :� [n] and we use the following successor function:

S(Λ) :� {1 . . . n − r − 1}, (8.43a)

S([k]) :� [k − 1] (k ∈ {l + 2 . . . n − r − 1}), (8.43b)

S([l + 1]) :� ∅. (8.43c)

This is the MPS/TT dimension tree introduced in Example 8.14 with the first l + 1
and last r+1 sites treated as a single site. In the following, let k ∈ {l+1, . . . , n−r−1}.
We choose the matrices L[k] and R[k] by means of the following linear maps:23

L̃[k] : B(H1...k) → B(Hk−l+1...k), σ 7→ Tr1...k−l(σ). (8.44a)

R̃′[k] : B(Hk+1...n) →B(Hk+1...k+r), σ 7→ Trk+r+1...n(σ). (8.44b)

23The partial trace, reduced density matrices and reduced linear operators were defined in Section 1.3.
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Let L[k] and R′[k] be the matrix representations of L̃[k] and R̃′[k] in the operator bases

{F(k)ik
} from above. This defines L[k] andwe set R[k] � (R′[k])>. This result in matrices

L[k] ∈ Cd l×dk
, R[k] ∈ Cdn−k×dr

. (8.45)

Correspondingly, wehave to set m[k] :� d l � (dH)2l and m′k :� dr � (dH)2r . Applying
Theorem 8.17 results in matrices of the sizes

A[k] ∈ Cd l+1×dr
, B[k] ∈ Cd l×dr

, C[k] ∈ Cdk×dr (8.46)

as well as

AΛ ∈ Cd l dr+1×1 , CΛ ∈ Cdn×1. (8.47)

Clearly, A[k], B[k] and AΛ are representations of the reduced density matrices (or
linear operators)23 ρk−l...k+r , ρk−l+1...k+r and ρn−l−r ...n . The rank condition (8.36) can
be rewritten in terms of the operator Schmidt rank (OSR, see Section 1.3) as

OSR(1 . . . k : k + 1 . . . n)ρ � OSR(k − l + 1 . . . k : k + 1 . . . k + r)ρ (8.48)

where, as before, k ∈ {l + 1 . . . n − r − 1}.
If the rank conditions are satisfied, the equality MΛ � CΛ is provided by

Theorem 8.17. The sought linear operator ρ can thus be obtained from its represen-
tation CΛ, which can be constructed from the matrices At and Bs (t ∈ T, s ∈ S(t)).
The named matrices At and Bs correspond the reduced density matrices mentioned
in the last paragraph. In conclusion, ρ can be reconstructed from reduced density
matrices on at most l + r + 1 neighbouring sites if the rank conditions (8.48) hold.
Furthermore, the structure of CΛ is such that an MPS/TT representation of M,
which corresponds to an MPO representation of ρ, can be constructed directly
and the bond dimension of the representation can be chosen as m[k] � (dH)2l or
m′[k] � (dH)2r . This provides an alternate proof of the result by Baumgratz et al.
(2013a, Theorem 1).24 2

8.2.3. Reconstruction with recursive measurements

In this section, we augment the results from the previous section with a result
which exploits a recursive structure in the measurement matrices Rs . The two
results are compared in the following Section 8.2.4.
24For the resulting bond dimension or representation rank, see Remark 8.18 and Figure 8.2. To reproduce

the cited result exactly, we have to adapt our definitions to k ∈ {l + 1, . . . , n − r − 1} and S([l]) :� ∅ in
(8.43) and to k ∈ {l , . . . , n − r − 1} in the remainder of this example.
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Definition 8.21 (Extended reconstruction setting) Assume the reconstruction set-
ting from Definition 8.16 and use the following procedure to choose the matrices
Rs : Set EΛ :� 1 and m̃Λ :� 1. Let t ∈ T and s ∈ S(t). Choose integers m̃s and set
y :� sc \ tc � t \ s (whose dependence on s and t shall be kept in mind). Recalling
dt and d′t from (8.23), choose matrices

Fs ∈ Cm̃t dy×m̃s , Gs ∈ Cm̃s×m′s (8.49)

and define

Es ∈ Cd′s×m̃s , Rs ∈ Cd′s×m′s (8.50)

via

Es :� (Et ⊗ 1dy )Fs , Rs :� Es Gs . (8.51)

Proof For t ∈ T and s ∈ S(t), s ⊂ t and tc ⊂ sc hold. Therefore, d′t dy � dtc dy �

dsc � d′s holds for y � sc \ tc . Induction starting at the root Λ ∈ T shows that the
definition of Es yields matrices of the claimed sizes. �

Remark 8.22 The main idea of Definition 8.21 is as follows. For m̃s � m′s and
Gs � 1, we have Rs � Es � (Rt ⊗ 1dy )Fs . This means that the transformation Rs

which “acts on” sc consists of first applying Rt , which “acts on” the subset tc ( sc ,
followed by the additional transformation Fs . The measurements Rs are therefore
defined recursively.

The factor Gs has been included in Rs because it allows to recover Definition 8.16
as a possible special case of Definition 8.21 as follows. Set m̃s � d′s , which implies
m̃t dy � dtc dsc\tc � d′s � m̃s , turning Fs into a square matrix. Setting Fs � 1 then
implies Es � 1 and Rs � Gs , which recovers Definition 8.16. 2

Theorem 8.23 Assume Definition 8.21 (recalling Ms :�Ms(M)). If the rank conditions

rk(Ms(Et ⊗ 1dy )) � rk(Ls Ms Rs), t ∈ T, s ∈ S(t) (8.52)

hold, then Ct � Mt Rt (t ∈ T) and CΛ � MΛ hold, i.e. M can be reconstructed from At

and Bs (t ∈ T, s ∈ S(t)).

Proof For brevity, we omit the identity matrix 1dy in this proof. Let t ∈ T and
S(t) , ∅. Consider a tensor N with mode sizes m̃t × (×i∈t di)whose t-unfolding is
given by Nt :�Mt(N) � MtEt . Let s ∈ S(t), i.e. s ⊂ t. Then the s-unfolding of N is
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given by Ns � Ms(Et ⊗ 1dy ) where y � sc \ tc (from now on, we omit 1dy again).
As a consequence of Lemma 8.15,

MtEt � Nt �

[⊗
s∈S(t) Ns(Ns)+

]
Nt �

[⊗
s∈S(t)MsEt(MsEt)+

]
MtEt . (8.53)

Inserting Rs � Et Fs Gs into the rank condition provides25

rk(MsEt) � rk(Ls MsEt Fs Gs), t ∈ T, s ∈ S(t). (8.54)

Proposition 8.1 for L � Ls , M � MsEt and R � Fs Gs implies

MsEt � MsEt Fs Gs(Ls MsEt Fs Gs)+Ls MsEt

� Ms Rs (Ls Ms Rs)+ Ls MsEt , t ∈ T, s ∈ S(t). (8.55)

Inserting (8.55) into (8.53) provides

MtEt �

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls MsEt (MsEt)+

]
MtEt . (8.56)

Using (8.53) again, we obtain

MtEt �

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls

]
MtEt (8.57)

and, multiplying with Fs Gs ,

Mt Rt � MtEt Fs Gs �

[⊗
s∈S(t)Ms Rs (Ls Ms Rs)+ Ls

]
Mt Rt

�

[⊗
s∈S(t)Ms Rs (Bs)+

]
At . (8.58)

Recall that Ct � Mt Rt holds if t is a leaf, i.e. if S(t) � ∅. We show that Ct � Mt Rt

holds for all t ∈ T with induction from the leaves of the tree to its root: Let t ∈ T and
suppose that Cs � Ms Rs holds for all s ∈ S(t). Then, (8.58) shows that Ct � Mt Rt

holds. This completes the proof. �

Example 8.24 To illustrate Theorem 8.23 and to compare it with Theorem 8.17,
we take the same example as before, the MPO reconstruction scheme proposed
by Baumgratz et al. (2013a). We use the same definitions as in Example 8.20 but
provide a recursive construction to define the same matrices R[k] as before. Let
k ∈ {l + 1 . . . n − r − 1}. Set m̃[k] � m′[k] � dr , G[k] � 1m′[k] and

F̃′[k] : B(Hk+1...k+r+1) → B(Hk+1...k+r), σ 7→ Trk+r+1(σ). (8.59)

25Spaces in formulas were added to improve readability.
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Similarly as before, let F′[k] be the matrix representation of F̃′[k] in the operator bases

{F(k)ik
} and set F[k] � (F′[k])>. This results in matrices

F[k] ∈ Cdr+1×dr
. (8.60)

It remains to show that Es � Rs with Es from Definition 8.21 and Rs from Exam-
ple 8.20 holds for s � [k], where k ∈ {l + 1 . . . n − r − 1}. For k � n − r − 1, we
have y � {n − r . . . n}, dy � dr+1 and E[k] � F[k] � R[k] clearly holds. Suppose that
E[k+1] � R[k+1] holds for some k ∈ {l + 1 . . . n − r − 2}. We have

E[k] � (E[k+1] ⊗ 1dy )F[k] (8.61)

where y � {k+1} and dy � d. In addition,E[k+1] � R[k+1] is thematrix representation
of

R̃′[k+1] : B({k + 2 . . . n}) → B({k + 2 . . . k + r + 1}), σ 7→ Trk+r+2...n(σ). (8.62)

Taking a closer look reveals that E[k] is the matrix representation of R̃′[k] and that
E[k] � R[k] holds. In other words, the matrices R[k] constructed recursively in this
example equal the matrices R[k] from Example 8.20. However, the rank conditions
(8.52) correspond to (k ∈ {l + 1 . . . n − r − 1})

OSR(1 . . . k : k + 1 . . . k + r + 1)ρ � OSR(k − l + 1 . . . k : k + 1 . . . k + r)ρ , (8.63)

which differ from the conditions (8.48) obtained in the previous example. Apart
from that, the density matrix can be reconstructed in the same way as in the
mentioned example if either set of conditions holds.

The conditions (8.48) were assumed by the original proposal of MPO reconstruc-
tion,26 whereas the conditions (8.63) were shown sufficient in a more recent work.27

One notices that for each k ∈ {l + 1 . . . n − r − 2}, the condition in (8.63) is weaker
than the corresponding condition in (8.48).28 However, we set out to show that the
two condition sets are indeed equivalent in the next subsection. 2

26Baumgratz et al. 2013a, Theorem 1.
27Holzäpfel et al. 2018, Theorem 17.
28For each value of k, (8.48) implies (8.63): OSR(k − l + 1 . . . k : k + 1 . . . k + r)ρ ≤ OSR(1 . . . k :

k+1 . . . k+ r+1) ≤ OSR(1 . . . k : k+1 . . . n) � OSR(k− l+1 . . . k : k+1 . . . k+ r), where the inequalities
follow from the data processing inequality (DPI) for the operator Schmidt rank (Holzäpfel et al. 2018,
Corollary 11). See also Lemma 8.25.
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8.2.4. Recursive versus non-recursive measurements

In the following we compare the different conditions for successful reconstruction
used in Theorems 8.17 and 8.23. Specifically, we can ask the following question: As-
sume a fixed set of measurement matrices Ls and Rs where Rs has been constructed
in accordance with the extended reconstruction setting from Definition 8.21. Is the
set of tensors M for which (8.36) holds strictly smaller than the set for which (8.52)
holds? The following Lemma 8.25 implies that the first set is indeed a subset or
equal to the second set:

Lemma 8.25 Assume Definition 8.21. Given a single, fixed t ∈ T and a single, fixed
s ∈ S(t), the condition (8.36),

rk(Ms) � rk(Ls Ms Rs), (8.64)

implies (8.52),

rk(Ms(Et ⊗ 1dy )) � rk(Ls Ms Rs). (8.65)

Proof Observe

rk(Ls Ms Rs) � rk(Ls Ms(Et ⊗ 1dy )Fs Gs) ≤ rk(Ms(Et ⊗ 1dy )) ≤ rk(Ms),

where we have used rk(ABC) ≤ rk(B) twice. �

A counterexample for the converse of Lemma 8.25 is easy to construct, showing
that (8.64) and (8.65) are not equivalent. However, it turns out that there is an
equivalence between the two sets of conditions containing (8.64) or (8.65) for all
t ∈ T and s ∈ S(t). This is shown in Theorem 8.28, whose proof uses the following
Lemmata 8.26 and 8.27.

Lemma 8.26 Assume Definition 8.16, t ∈ T and s ∈ S(t). Let s′ ⊆ s, recalling that s ( t
holds by definition. Define Ds :� Cs(Bs)+. The following rank inequality holds:

rk (Ms′Tt Ct) ≤ rk (Ms′Ts Ds) ≤ rk (Ms′Ts Cs). (8.66)

155



Chapter 8. Tensor reconstruction

Proof (using graphical representations) Without loss of generality,29 we set

s′ :� {1}, s :� {1, 2}, S(t) :� {{1, 2}, {3}}, t :� {1, 2, 3, 4} (8.67)

and Λ :� {1, 2, 3, 4, 5}, where Λ is the dimension tree’s root. Recall from Defini-
tion 8.16 that Ct and Ds are defined as

C1234 �
(
D12 ⊗ D3 ⊗ 1d4

)
A1234 , D12 � C12(B12)+ , (8.68)

where C12 corresponds to Cs . For matrices, the rank inequality rk(AB) ≤ rk(B)
holds. The simple idea behind the proof is that this rank inequality still applies if
we tensorize and unfold as specified above in Equation (8.66). In order to see that
this is indeed the case, we recall the shapes of all the involved matrices and use
the graphical notation introduced in Section 2.2.2. The matrices have the following
shapes:

At ∈ Cms1 ...msh dy×m′t Bs ∈ Cms×m′s (Bs)+ ∈ Cm′s×ms (8.69a)

Ct ∈ Cdt×m′t Ds ∈ Cds×ms (8.69b)

The graphical representation of (8.68) is thus given by

C1234 A1234

d1

d2

d3

d4

m′
1234

d1

d2

d3

m12

m3

d4

m′
1234

D12

D3� (8.70a)

and

D12
d1

d2 m12

d1

d2 m12C12 m′
12 (B12)+� . (8.70b)

29The following sequence of observations shows that generality is not lost: s′ is a potentially non-empty
set of modes, therefore we assign s′ :� {1} (grouping several modes into one mode if necessary).
s is a possibly strictly larger superset of s′, therefore we assign s′ :� {1, 2} where mode 2 has unit
dimension if s equals s′. s must be a successor of t and t can have other successors than s, such
that we set S(t) :� {{1, 2}, {3}} where mode 3 results from grouping all of t’s successors different
from s into one mode. t may contain modes which are not successors of t and we consider this via
t :� {1, 2, 3, 4}. Modes which are not part of t are grouped into mode 5, such that the complete set of
modes is Λ :� {1, 2, 3, 4, 5}.
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These are easily rearranged into

m12

d2

C1234

d1 m′
1234

d2

d3

d4

A1234

D12d1

D3

m′
1234

m3

d4

d3
� (8.71a)

and

m12

d2D12d1 d1

m12(B12)+
C12

�
m′

12

d2
. (8.71b)

The last two equations in turn provide

M1T1234C1234 � (M1T12D12)
[(Mm12Tm12m3d4 A1234) ⊗ 1d2

](1m′1234
⊗ D>3 ⊗ 1d4d2)

and

M1T12D12 � (M1T12C12)[(B12)+ ⊗ 1d2]. (8.72)

Using the matrix rank inequality rk(AB) ≤ rk(A), we obtain

rk(M1T1234C1234) ≤ rk(M1T12D12) ≤ rk(M1T12C12), (8.73)

which proves the lemma. �

Proof (using algebra) The preceding proof of Lemma 8.26 can also be expressed
without graphical representations, which we shall do in the following. We start
from Equation (8.69) and introduce an index for each dimension involved in the
given shapes:

i1 ∈ {1 . . . d1}, j1 ∈ {1 . . .m1}, j′1 ∈ {1 . . .m′1}. (8.74)

We shall further use the notation m12 :� m{1,2} and corresponding indices such as
j12 ∈ {1 . . .m12}. We define X ∈ Cm12×d3d4 j′123 via

[
X
]

j12 ,i3 i4 j′123

:�
∑

j3

[
D3

]
i3 , j3

[
A1234

]
j12 j3 i4 , j′123

(8.75)
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With this definition, simple rearrangements provide[
(M1T12D12)

(
1d2 ⊗ X

) ]
i1 ,i2 i3 i4 j′123

(8.76a)

�

∑
j12

[
M1T12D12

]
i1 ,i2 j12

[
X
]

j12 ,i3 i4 j′123

(8.76b)

�

∑
j12

∑
j3

[
D12

]
i1 i2 , j12

[
D3

]
i3 , j3

[
A1234

]
j12 j3 i4 , j′123

(8.76c)

�

[ (
D12 ⊗ D3 ⊗ 1d4

)
A1234

]
i1 i2 i3 i4 , j′123

(8.76d)

�

[
M1T1234C1234

]
i1 ,i2 i3 i4 j′123

. (8.76e)

The last Equation implies

M1T1234C1234 � (M1T12D12)
(
1d2 ⊗ X

)
(8.77)

and (use rk (AB) ≤ rk (A) for arbitrary matrices A, B)

rk (M1T1234C1234) ≤ rk (M1T12D12). (8.78)

Slightly simpler rearrangements provide[
(M1T12C12)

(
1d2 ⊗ (B12)+

) ]
i1 ,i2 j12

�

∑
j′12

[
M1T12C12

]
i1 ,i2 j′12

[
(B12)+

]
j′12 , j12

(8.79a)

�

∑
j′12

[
C12

]
i1 i2 , j′12

[
(B12)+

]
j′12 , j12

�

[
C12(B12)+

]
i1 i2 , j12

�

[
D12

]
i1 i2 , j12

(8.79b)

�

[
M1T12D12

]
i1 ,i2 j12

. (8.79c)

This in turn implies

M1T12D12 � (M1T12C12)
(
1d2 ⊗ (B12)+

)
(8.80)

and

rk (M1T12D12) ≤ rk (M1T12C12) (8.81)

Combining the last equation with (8.78) completes the proof. �

The next lemma constitutes the essential step in the proof of the subsequent
Theorem 8.28:
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Lemma 8.27 Assume Definition 8.16. If CΛ � MΛ holds, it implies that

rk(Ms) � rk(Ls Ms Rs) (8.82)

holds for all s ∈ T, s , Λ.

Proof Let s ∈ T, s , Λ. Set t0 :� s and choose tl+1 ∈ T such that tl ∈ S(tl+1) until
the root Λ is reached after k ≥ 1 steps, i.e. l ∈ {0 . . . k − 1} and tk � Λ. Applying
Lemma 8.26 k times yields

rk
(Mt0Ttk Ctk

) ≤ rk
(Mt0Ttk−1 Ctk−1

) ≤ · · · ≤ rk
(Mt0Tt1 Ct1

)
(8.83a)

≤ rk
(Mt0Tt0 Dt0

)
� rk

(
Ct0

(
Bt0

)+) ≤ rk
(
Bt0

)
. (8.83b)

Inserting Ctk � CΛ � MΛ provides Ttk Ctk � TΛMΛ � M. In addition, we insert
Bt0 � Bs � Ls Ms Rs and obtain

rk(Ms) ≤ rk(Ls Ms Rs). (8.84)

Since the converse inequality always holds, the proof is complete. �

Theorem 8.28 Assume Definition 8.21. The following conditions are equivalent:

1. The rank condition (8.36),

rk(Ms) � rk(Ls Ms Rs), (8.85)

holds for all s ∈ T, s , Λ.

2. The rank condition (8.52),

rk(Ms(Et ⊗ 1dy )) � rk(Ls Ms Rs), (8.86)

holds for all t ∈ T and s ∈ S(t).
3. Ct � Mt Rt holds for all t ∈ T.

4. CΛ � MΛ, i.e. the tensor M can be reconstructed from the set of matrices {At , Bs : t ∈
T, s ∈ S(t)}.

If Definition 8.16 is assumed, Items 1, 3 and 4 are equivalent.

Proof 1⇒ 2: Lemma 8.25. 2⇒ 3: Theorem 8.23. 3⇒ 4 is evident because RΛ � 1.
4⇒ 1: Lemma 8.27.30 �

30In addition, 1⇒ 3 is shown by Theorem 8.17.
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Theorem 8.28 states that any tensor M which can be reconstructed with the
construction from Definition 8.16 satisfies the two sets of rank conditions required
by Theorems 8.17 and 8.23. In other words, exactly the same set of tensors is
reconstructed successfully by the two Theorems for a given set of recursively defined
measurements conforming to Definition 8.21. Other types of recursively defined
measurements can be conceived, but a suitably improved theorem such as 8.23
reconstructs exactly the same set of tensors successfully if CΛ from Definition 8.16
is used. In order to prepare the comparison of Theorem 8.17 to related work, we
briefly discuss other types of recursively defined measurements in the following
section.

8.2.5. Further types of recursive measurements

Before we commence the discussion of prior related work, it is helpful to consider
further possibilities for recursive construction of the measurement matrices Ls

and Rs employed above. Definition 8.21 above introduced a scheme where the
matrices Rs are constructed recursively. The essential idea of this scheme is, as was
mentioned in Remark 8.22, to use the following definition:

Rs � (Rt ⊗ 1dy )Fs ∈ Cd′s×m′s , Fs ∈ Cm′t dy×m′s . (8.87)

Here, t ∈ T is a node in the dimension tree, s ∈ S(t) is a successor of t, RΛ :� 1
and y :� sc \ tc . The matrices Fs can be chosen freely and determine the matrices
Rs . The measurement matrix acts on the modes sc � Λ \ s and it is constructed by
first applying Rt , which acts on the tc ( sc , followed by applying Fs . Fs acts on the
output of Rt and on the remaining modes y.

A similar recursive construction is easily devised for the measurement matrices
Ls ∈ Cms×ds . For this purpose, we demand t , Λ, and set h :� |S(t)|, {s1 , . . . , sh} :�
S(t) in some arbitrary, fixed order and define

Lt � Kt
(
Ls1 ⊗ · · · ⊗ Lsh ⊗ 1dx

) ∈ Cmt×dt , Kt ∈ Cmt×ms1 ...msh dx . (8.88)

Here, the set of modes x :� t \⋃s∈S(t) s covers those modes from t which are not
covered by any successor. The recursion stops at leaves t, for which S(t) � ∅ and
Lt � Kt holds. Here, the measurement matrix Lt is given by applying Ls on s ( t
for each successor s ∈ S(t). The matrix Kt takes input from the Ls and it also acts
on the remaining modes x ⊆ t.

Last but not least, the matrices Ls can be used in constructing a given Rs . To this
end, note that the matrix Fs in (8.87) acted on all the modes in y � sc \ tc � t \ s
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(where s ∈ S(t) and t ∈ T; t � Λ is permissible). If t has more than one successor,
the matrices Ls′ for all the other successors s′ , s can be applied next to Rt in (8.87),
which becomes apparent in the next two equations. The set of modes sc can be
decomposed as31

sc
� tc Û∪ (t \ s) � tc Û∪ s2 Û∪ · · · Û∪ sh Û∪ x (8.89)

where s1 � s was assumed without loss of generality. This decomposition shows
that we are able to define

Rs :�
(
Rt ⊗ L>s2 ⊗ · · · ⊗ L>sh

⊗ 1dx

)
Fs ∈ Cd′s×m′s , Fs ∈ Cm′t ms2 ...msh dx×m′s . (8.90)

As already mentioned, Fs acts on the mode set x and takes the output from Rt

and Lsi , which, together with the identity on x, cover the full set sc on which Rs is
supposed to act.
Recursively defined measurement matrices may arise naturally if measurement

matrices correspond to physical measurement devices. In addition, they have
be proven advantageous in numerical algorithms32 which determine tensor en-
tries allowing for the reconstruction of a given tensor with an iterative search.
All the above definitions for recursively constructed measurement matrices al-
low for attempted reconstruction of a given tensor via Theorem 8.17. If the
reconstruction is successful, Theorem 8.28 shows that all conditions in the set
{rk(Ms) � rk(Ls Ms Rs) : s ∈ S(t), t ∈ T} hold. Therefore, a seemingly weaker
condition set such as {rk(Ms Rt) � rk(Ls Ms Rs)}, which is sufficient under (8.87)
and Theorem 8.23, is indeed unable to reconstruct a strictly larger set of tensors.

8.2.6. Related work and conclusion

In the following, we compare Theorem 8.17 and Theorem 8.23 with previous
works which use a similar approach to reconstruct a tensor. Table 8.1 describes
the special cases of Theorem 8.17 included in different contributions.33 In each
column, the most general case is highlighted in green. The comparison is limited to
explicitly derived, mathematical results and it deliberately neglects the great extent
of empirical studies reported by the cited works.
31To see that this decomposition is valid, consider s1 Û∪ · · · Û∪ sh ⊆ t, t � s1 Û∪ · · · Û∪ sh Û∪ x, Λ � t Û∪ tc �

tc Û∪ s1 Û∪ · · · Û∪ sh Û∪ x and Λ � s1 Û∪ sc
1 .

32Cf. Section 8.2.6.
33The first column denotes the following publications by author’s last names and years: Goreinov

et al. 1997; Caiafa and Cichocki 2010; Oseledets et al. 2008; Caiafa and Cichocki 2015; Oseledets and
Tyrtyshnikov 2010; Baumgratz et al. 2013a; Holzäpfel et al. 2018; Ballani et al. 2013.
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Contributions are comparedbymeans of the followingproperties. The tensor to be
reconstructed in Theorem 8.17 is M ∈ Cd1×···×dn and its modes are Λ � {1, 2, . . . , n}.
Reconstruction proceeds along a dimension tree T with successor function S( · ).
For each t ∈ T and s ∈ S(t), the matrices

Bs :� Ls Ms Rs ∈ Cms×m′s (8.91)

and their ranks rs :� rk(Ls Ms Rs) are central to the reconstruction. Reconstruction
uses either the regular inverse or the Moore–Penrose pseudoinverse of Bs . The
matrix Ms :� Ms(M) is an unfolding of M (Definition 8.10). The matrices Ls ∈
Cms×ds and Rs ∈ Cd′s×m′s are called measurement matrices or just measurements (on M).
The measurement Ls acts on the modes in s ⊂ Λ (to the right) and the measurement
Rs acts on themodes in sc � Λ\s (to the left). Themeasurement’s output sizes are ms

and m′s ; their shapes are ms × ds and d′s ×m′s . As explored in Section 8.2.5, different
recursive structures can be used to define the measurements. If Ls and Rs are
submatrices of permutationmatrices,34 they indeed select certain entries of M. Many
previous contributions focus on determining suitable entry-selecting measurements
efficiently (column “Measurements / Adaptive” in Table 8.1); such a search typically
benefits from measurements with recursive structure. Theorems 8.17 and 8.28 are
more limited in that they assume fixedmeasurements Ls , Rs and restrict themselves
to the question whether reconstruction is possible for a given tensor M.
Our tensor reconstruction method is based on a matrix reconstruction scheme

known as skeleton decomposition or CUR decomposition if the matrix is recon-
structed from some of its entries.35 The skeleton decomposition relies on the regular
matrix inverse and ms � m′s � rs and it was generalized to ms � m′s ≥ rs using
the Moore–Penrose pseudoinverse.36 A first step towards tensor reconstruction in
the spirit of Theorem 8.17 was achieved by Oseledets et al. (2008). For the Tucker
dimension tree with three modes, they showed the existence of a tensor decom-
position in terms of selected tensor entries. The structure of their decomposition
is similar to our reconstruction formula. Furthermore, their proof of existence
can be turned into a constructive formula with the restrictions R2 � (L>1 ⊗ 1d2)F2

and R3 � (L>1 ⊗ L>2 )F3; R1, Lk and Fk are arbitrary submatrices of permutation

34A permutation matrix has exactly one non-zero, unit entry in each row and each column (e.g. Horn
and Johnson 1991a, Sec. 0.9.5). A submatrix of a permutation matrix has at most one non-zero, unit
entry in each row and each column; therefore, it is a so-called partial permutation matrix (Horn and
Johnson 1991b, Definition 3.2.5).

35Goreinov et al. 1997; Gantmacher 1986.
36Caiafa and Cichocki 2010.
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Source Dim. tree Condition Inv. Measurements
Shape Kind Structure Adaptive

E.g. GTZ97, Eq. (1.3) Matrix rk(Ms ) � rs Reg. ms � m′s � rs Entries – Yes
CC10, Thm. 1 Matrix rk(Ms ) � rs MP ms � m′s Entries – No
OST08, Thm. 3.1 Tucker (n � 3) rk(Ms ) ≤ rs Reg. ms � m′s � rs Ex./entr. Restr. Yes

CC10, Thm. 3, FSTD-1 Tucker rk(Ms ) ≤ rs MP Arb. Entries Rs �
⊗

L>s′ Yes
CC10, Thm. 5, FSTD-2 Tucker rk(Ms ) ≤ rs Reg. ms � m′s � rs Entries Arb. No
CC15, Thm. p. 784 Tucker rk(Ms ) � rs MP ms � rs Arb. Rs �

⊗
L>s′ No

OT10, Thm. 3.1 MPS/TT rk(Ms ) � rs Reg./ ms � m′s � rs Entries Rs � Rt Fs Yes
other Lt � Kt Ls (opt.)

BGCP13, Thm. 1 MPS/TT rk(Ms ) � rs MP Indep. of rs Fixed Fixed No
HCDP18, Thm. 27 MPS/TT rk(Ms Rt ) � rs MP Arb. Arb. Rs � Rt Fs No
BGK13, Eqs. (7)–(9) H-Tucker rk(Ms ) � rs Reg. ms � m′s � rs Entries Rs � Rt Fs Yes
This work Arb. rk(Ms Et ) � rs MP Arb. Arb. Arb. No

Table 8.1: Comparison of different proposals for tensor reconstruction.33 The table describes
which special case of Theorem 8.17 has been included in each proposal. In each column,
the most general property is highlighted in green.
Formulas assume t ∈ T, s ∈ S(t) and rs :� rk(Ls Ms Rs ). The two conditions rk(Ms ) � rs

and rk(Ms ) ≤ rs are equivalent because rs ≤ rk(Ms ) always holds. Tensor products run
over s′ ∈ S(t), s′ , s. Identity matrices in formulas were dropped. See Section 8.2.5 for
details regarding the (recursive) structure of measurements.
Abbreviations used are dimension tree (Dim. tree), matrix inverse (Inv.), arbitrary/no
restriction (Arb.), (regular) matrix inverse (Reg.), Moore–Penrose pseudoinverse (MP),
independent (Indep.), optional (opt.). OST08 showed the existence of a related decompo-
sition based on tensor entries (Ex./entr.) with restricted structure (Restr.) described in
the main text. The fixed measurements used in BGCP13 were described in Examples 8.20
and 8.24.38

matrices of predetermined shapes. Further results for the Tucker dimension tree
were presented by Caiafa and Cichocki (2010, 2015). They reconstruct a tensor
from selected entries with restrictions on either the shape or the recursive structure
of measurements. In addition, they showed that the restriction of measurement
matrices to submatrices of permutation matrices can be lifted under restrictions on
both the shape and the recursive structure of measurements.
Oseledets and Tyrtyshnikov (2010) showed that reconstruction from tensor en-

tries is possible with the MPS/TT dimension tree under restrictions on the shape
and recursive structure of measurements.37 Baumgratz et al. (2013a) showed that

37They lift the restriction of measurement’s output size by replacing the regular matrix inverse with a
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reconstruction with the MPS/TT dimension tree is possible without limiting the
measurement output sizes to the ranks rs ; however, they restricted to certain, fixed
measurements which correspond to selecting fixed tensor entries.38 Holzäpfel
et al. (2018) improved the previous two results by showing that arbitrary, recursive
measurements can be employed and by introducing a modified rank condition.
Reconstruction from tensor entries for the H-Tucker dimension tree was demon-
strated by Ballani et al. (2013) with restrictions on the shape and recursive structure
of measurements. Another related reconstruction result by Espig et al. (2012) for
tensor chains39 is not mentioned in Table 8.1 because the cyclical structure of tensor
chains cannot be represented with a dimension tree as defined above.
Theorem 8.17 provides a common basis for most of the cited approaches to

tensor reconstruction. It is based on a generalized H-Tucker dimension tree which
was modified to allow faithful reproduction of previous results for the MPS/TT
dimension tree. It requires the set of conditions {rk(MsEt) � rs}, which was
shown to be equivalent to the set {rk(Ms) � rs} but which may in some cases
be easier to verify since each individual condition rk(MsEt) � rs is necessary
but not sufficient40 for rk(Ms) � rs . Theorem 8.17 allows for entry-selecting
or arbitrary measurements with or without recursive structure, each of which
may be advantageous for particular applications: Entry-selecting measurements
are a natural choice if individual tensor entries can be computed41 while more
general measurement matrices are relevant if the task at hand is e.g. quantum
state tomography.42 General measurement matrices also allow Bs to have the same
singular values as Ms , which can improve reconstruction stability43 and which is
usually not possible with entry-selecting measurements. Such a preservation of
singular values can be observed e.g. using the measurements constructed in an
MPS reconstruction scheme by Cramer et al. (2010).44 Measurements with recursive

procedure which is outside the scope of Theorem 8.17 and this discussion because it uses submatrices
of quasi-maximal volume (e.g. Goreinov et al. 1997).

38These fixed measurements correspond to selecting fixed tensor entries if the tensor is represented in
an operator basis which is orthogonal in the Hilbert–Schmidt inner product and which includes the
(normalized) identity matrix as one of its elements. See also Examples 8.20 and 8.24.

39Tensor chains are also known as MPS with periodic boundary conditions, see Section 2.2.1.
40This holds for s ∈ T, s , Λ but not for s � Λ. See Lemma 8.25 and Theorem 8.28.
41E.g. Oseledets and Tyrtyshnikov 2010.
42E.g. Cramer et al. 2010; Holzäpfel et al. 2018.
43Cf. Theorem 8.4 and Caiafa and Cichocki 2015.
44Cramer et al. 2010 describe a method involving unitary quantum operations on few neighbouring

qubits. Preservation of singular values is observed if Theorem 8.17 is used to reconstruct an MPO
representation of a pure density matrix ρ and if measurements are constructed from the named
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structure are beneficial when determining optimal measurements iteratively45

but future applications might benefit from measurements with a non-recursive
structure. In Theorem 8.17, the output size of measurements is not restricted to the
corresponding tensor rank which allows measurements to be chosen independently
from the ranks of the tensor. In addition, measurements with output size strictly
larger than the corresponding tensor rank are advantageous because they have a
higher chance to capture the full support of the unfolding Ms (or its full null space
complement) e.g. if measurements are chosen randomly.
If the tensor to be reconstructed is only approximately low rank, i.e. if it is the

sum of a large low-rank component and a tiny high-rank component (e.g. noise),
the reconstruction from Theorem 8.17 will become unstable due to the matrix
pseudoinverse. This instability can be avoided by restricting the output size of
measurements to the rank of Bs (i.e. ms � m′s � rs) and by additionally choosing
measurements in an optimal or pseudo-optimal way.46 Another, potentially simpler
means to avoid the instability is the introduction of a soft or hard threshold for
singular values in the matrices Bs .47 The conditions under which a hard threshold
guarantees an improved reconstruction were discussed in Theorem 8.4.

In conclusion, Theorem8.17 establishes aunifiedand concisedescriptionof several
previous results and exhibits several desirable theoretical properties. Potential
advantages in practical applications remain to be explored in future work.

unitary operations. The relevant preserved singular values of ρ � |ψ〉〈ψ | are then given by all
products of two Schmidt coefficients of |ψ〉.

45E.g. Oseledets and Tyrtyshnikov 2010; Ballani et al. 2013.
46Goreinov et al. 1997; Oseledets et al. 2008; Oseledets and Tyrtyshnikov 2010. Note that an iterative

method which optimizes measurements and estimates tensor ranks simultaneously has been
proposed by Savostyanov and Oseledets (2011), building upon concepts from the DMRG. See also
Footnote 37.

47Goreinov et al. 1997; Espig et al. 2012; Baumgratz et al. 2013a; Caiafa and Cichocki 2015.
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Chapter 9.

Conclusions and outlook

Two novel applications of existent efficient quantum state estimation methods were
demonstrated in this work. We demonstrated successful efficient estimation of a
mixed quantum state of up to six infinite-dimensional continuous-variable quantum
systems from simulated measurement data of quadrature amplitudes. This shows
that a state of a continuous-variable system can be estimated by the MPS-MLE
method if it is supported on a finite-dimensional subspace; furthermore, one can
expect that states approximately supported on finite-dimensional subspaces can
be estimated with MPS-MLE in the same way. An open problem concerns the
convergence speed of theMPS-MLE algorithm. Both the original RρR algorithm for
maximum likelihood estimation of quantum states and its MPS-based variants were
observed to suffer from relatively slow convergence. Recent work demonstrated
improvements for the former case on the basis of advanced gradient descent
methods and one can hope that similar improvements can be achieved for MPS-
MLE and its variants. Another open question concerns the usefulness of MPS-SVT
for estimating mixed low-rank states or certain low-rank tensors. Developments
in this direction could benefit from recently developed tensor train algorithms.
In addition, MPS-MLE and MPS-SVT are iterative algorithms which can benefit
from carefully chosen step sizes. In principle, the necessary resources for MPS-
MLE and MPS-SVT increase only polynomially with the number of subsystems
because matrix product state (MPS) representations are used. However, the number
of iterations required to obtain a good estimate can depend on the number of
subsystems as well. Existing results suggest that the number of iterations does not
increase too strongly with the number of subsystems but the precise scaling could
be investigated in future work.
We constructed efficient representations of quantum processes on the basis of

existing representations of quantumstates. Numerical simulations involvingunitary
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processes were used to demonstrate that the same construction allows for efficient
quantum process tomography on the basis of existing quantum state tomography
algorithms. The underlying theoretical description relies on augmenting each
subsystem with an additional subsystem of the same dimension but we showed
that the additional systems are not required in an experiment.

The results from the ion trap quantum simulator experiment showed that theMPS-
SVT and MPS-MLE estimators as well as the parent Hamiltonian certificate are well
able to estimate and verify the state of a real-world quantum system. However, the
experiment also highlighted some shortcomings in our approach for experimental
states which possibly exhibit a moderate amount of mixedness. These shortcomings
might be alleviated if a mixed state estimator such as MPO-MLE or PMPS-MLE
and/or a different or improved certificate were used. Alternatively, the performance
of state estimation and verificationmight be improved by considering longer-ranged
observables. For example, incorporating information on all pairs or triplets of
sites, independently of their distance, should still allow for efficient estimation.
Another avenue for future improvements concerns reducing the estimation error
by using the same measurement data for state estimation and state verification.
This most likely results in a biased estimator for the fidelity of the estimated state
and the unknown state in the experiment, but the resulting estimator may exhibit
a smaller mean squared error (MSE) than the estimator which is currently used.
The MSE of the resulting, biased estimator could be estimated with a parametric or
non-parametric bootstrap simulation or other numerical simulations, providing
insight on the usefulness of this estimator as a replacement for the current method.

The complexity of simulating and verifying a time evolution under a local Hamil-
tonian on a lattice of arbitrary spatial dimension was analyzed theoretically. It was
revealed that the necessary effort increases exponentially with time but only quasi-
polynomially with the number of subsystems and for one-dimensional systems,
the quasi-polynomial scaling reduces to a polynomial one. It would be interesting
to compare the predicted worst-case behaviour of the theoretically constructed
certificate with the certificate based on the empirical parent Hamiltonians used in
evaluating the ion trap experiment. Regarding simulation, our decomposition of
time evolution on an arbitrary non-cubic lattice is non-optimal because it evolves
local observables into observables which act on a region whose diameter grows
polynomially instead of linearly with time. This property of the decomposition
is not optimal because the Lieb–Robinson bound used in the decomposition’s
proof already states that the diameter should grow at most linearly with time; our
decomposition for hypercubic lattices shows exactly this behaviour. The latter de-
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composition could allow computing expectation values of a number of time-evolved
tensor product observables if PEPS algorithms for approximate computation of
expectation values are used1 and in some cases this might go beyond what can be
achieved with the Lieb–Robinson bound alone. In any case, our results provide an
upper bound on the resources required by numerical, PEPS-based algorithms for
simulating quantum time evolution. A numerical algorithm, on the other hand,
can require fewer resources for particular Hamiltonians and initial states.
Our result for the verification of an initial, pure product state evolved in time

under a local Hamiltonian also allows for the verification of the corresponding
unitary quantum operation in the following way. As before, each lattice site is
augmented by an ancilla lattice site of the same dimension. A time evolution starting
from a state with maximal entanglement between each site and corresponding
ancilla site then contains complete information on the unitary process induced by
the local Hamiltonian. Moreover, this state can be verified with our method because
the ancilla sites can be incorporated without changing the lattice by squaring the
dimensions of local Hilbert spaces. Determining a local Hamiltonian under an
assumption on its maximal interaction range with existing methods2 and verifying
the result with the method just described therefore enables the assumption-free
reconstruction of local Hamiltonians. This is an important result because local
Hamiltonians were shown to be sufficient to perform universal, adiabatic quantum
computation.3

Recently, the matrix product state representation has started receiving additional
attention under the alias tensor train (TT) representation. Matrix product states and
tensor trains are identical concepts and newly developed numerical algorithms
formulated for tensor trains, the related hierarchical Tucker representation or
other related tensor representations may prove beneficial for the simulation and
analysis of quantum many-body systems. In this direction, we compared a method
for reconstructing a matrix product operator representation of a density matrix
with several effectively related methods for tensor reconstruction. As a result, we
obtained a tensor reconstruction method with improved properties which can also
be used to reconstruct quantum states. Furthermore, many of the named tensor
reconstruction proposals go beyond our discussion based on fixed measurements
by proposing algorithms for determining suitable measurements adaptively and
efficiently, providing new possibilities for adaptive and efficient quantum state

1Verstraete and Cirac 2004.
2da Silva et al. 2011; Holzäpfel et al. 2015. See also Chapter 5.
3Aharonov et al. 2007.
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estimation. In light of the multitude of proposed numerical algorithms for tensors
and quantum many-body systems, it would be desirable to develop a software
platformwhich provides implementations of a preferably large number of numerical
algorithms. Such aplatformwouldboth simplifyusing tensor algorithms inpractical
applications and it would facilitate the development of new or improved algorithms.
Open source libraries such as ttpy4 or mpnum5 can provide a starting point for the
MPS/TT representation, but it would of course be desirable to also incorporate
other, related tensor decompositions.

4Oseledets 2013.
5Suess and Holzäpfel 2017.
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Appendix A.

A.1. Interaction picture

The Lieb–Robinson bounds discussed in Section 6.2 show that information propa-
gates with a maximal velocity v, the Lieb–Robinson velocity, if the Hamiltonian
H(t) � ∑

Z⊂Λ hZ(t) which governs the dynamics satisfies certain conditions. The
Lieb–Robinson velocity is given by v � JZ exp(1) where J � 2 supt ,Z⊂Λ ‖hZ(t)‖(∞)
is twice the maximal norm of a local term of the Hamiltonian (Equation (6.4)).
Adding a term hx acting only on a single lattice site x ∈ Λ to the Hamiltonian can
increase the Lieb–Robinson velocity arbitrarily but one would not expect that it
affects how information propagates in the system because it acts only on a single
site. In infinite-dimensional systems, Lieb–Robinson bounds unaffected even by un-
bounded single-site terms have been proven.1 In the following, we provide a simple
way to use Theorem 6.1 without single-site terms influencing the Lieb–Robinson
velocity. This is achieved by switching to a suitable interaction or Dirac picture
before applying the theorem. Lemma A.1 introduces the interaction picture we use
and Corollary A.2 applies it to the Lieb–Robinson bound from Theorem 6.1.
The interaction or Dirac picture is introduced in most quantum mechanics

textbooks and we present our version in the following lemma. A Hamiltonian H is
split into two parts, H � F + G. Observables AD(t) evolve according to F and states
|ψD(t)〉 evolve such that the correct expectation values arise.

Lemma A.1 Fix a time r ∈ R and let the two times s , t ∈ R be arbitrary. Let H(t) �
F(t) + G(t) be a Hamiltonian and let A(t) be an observable. We have |ψ(t)〉 � UH

tr |ψ(r)〉
and set

AD(t) :� UF
rt A(t)UF

tr , |ψD(t)〉 :� UF
rt UH

tr |ψ(r)〉. (A.1)

1Nachtergaele et al. 2009, 2010; Nachtergaele and Sims 2014.
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Expectation values are given by

〈ψD(t)| AD(t) |ψD(t)〉 � 〈ψ(t)| A(t) |ψ(t)〉 (A.2)

Set

U(D)
ts :� UF

rtU
H
ts UF

sr . (A.3)

This operator propagates the states |ψD(t)〉 via

|ψD(t)〉 � U(D)
ts |ψD(s)〉. (A.4)

and it is the solution of the differential equation

∂tU(D)
ts � −iG̃(t)U(D)

ts (A.5)

where G̃(t) :� UF
rt G(t)UF

tr and U(D)
ss � 1, i.e. U(D)

ts � U G̃
ts .

Proof Equations (A.2) and (A.4) follow directly from the definitions. Equation (A.5)
is shown by

∂tU
(D)
ts � +iUF

rt[F(t) − H(t)]UH
ts UF

sr � −iUF
rt G(t)UF

trUF
rtU

H
ts UF

sr � −iG̃(t)U(D)
ts ,

which completes the proof. �

Corollary A.2 In the setting fromSection 6.2, letH(t) � ∑
Z⊂Λ hZ(t), F(t) � ∑

x∈Λ h{x}(t)
and G(t) � ∑

Z⊂Λ,|Z |≥2 hZ(t). Assume that G(t) , 0 for some t and consider the parame-
ters defined in Equations (6.4) to (6.8). The maximal range a of H, G and G̃ is the same.
The maximal norm J satisfies J(G̃) � J(G) ≤ J(H) and the same holds for the parameters
Z, M, κ andY.
Let Y ⊂ R ⊂ Λ and let A act on Y. Theorem 6.1 provides a bound


τH

ts(A) − τHR̄
ts (A)





(∞)
≤ ε(H) (A.6)

where ε(H) depends on the parameters of H just mentioned, as specified in Theorem 6.1.
Equation (A.6) still holds if ε(H) is replaced by the smaller ε(G̃) � ε(G).

Proof G̃ and G have the same value of J because the operator norm is unitarily
invariant. G̃ and G have the same value of a, Z, M, κ and Y because the tensor
product UF

ts does not change the set of sites on which a local term acts non-trivially.
Inspection of Equations (6.4) to (6.8) yields claimed inequalities between parameters
of H and parameters of G.
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Applying Theorem 6.1 to G̃ and A′ acting on Y provides


τG̃
ts(A′) − τG̃R̄

ts (A′)




(∞)
≤ ε′(G̃). (A.7)

AsZ appears in the denominator of ε, the claimed ε′(G̃) ≤ ε(H)might fail to hold
ifZ(G̃) < Z(H). Z(G̃) � Z(H) can be ensured by keeping arbitrarily small single-
site terms in G instead of removing them completely. If we similarly set κ(G) � κ(H)
and M(G) � M(H), Equation (6.7) is satisfied for G. Inserting A′ � τF

rs(A) � τFY
rs (A),

which acts only on Y, into (A.7) and using the unitary invariance of the operator
norm provides


τH

ts(A) −
(
τ

FR̄
tr τ

G̃R̄
ts τ

FY
rs

)
(A)





(∞)

�




τF
tr

(
τG̃

ts
(
τF

rs(A)
) − τG̃R̄

ts
(
τFY

rs (A)
) )



(∞)
≤ ε′(G̃).

Here, we used UH
ts � UF

trU G̃
tsUF

rs (Equation (A.3)). Note that
(
τ

FR̄
tr τ

G̃R̄
ts τ

FY
rs

)(A) �
VtsAV∗ts where Vts � UFR̄

tr U G̃R̄
ts UFR̄

rs . Applying Lemma A.1 to HR̄ � FR̄ + GR̄,
where HR̄ was split in the same way as H, provides U G̃R̄

ts � UFR̄
rt UHR̄

ts UFR̄
sr , i.e.

UHR̄
ts � UFR̄

tr U G̃R̄
ts UFR̄

rs � Vts , which completes the proof. �

Remark A.3 Before applying Corollary A.2, it can be worthwhile to minimize the
norm of hZ with |Z | ≥ 2 by subtracting single-site terms from it. These single-site
terms can reduce the norm of hZ (i.e. J and v) and they are added to theHamiltonian
as single-site terms in order to leave the total Hamiltonian unchanged. 2

A.2. Selected inequalities

The following inequalities are used in Chapter 6 and elsewhere.

Lemma A.4 Let ‖ · ‖ be a unitarily invariant norm and let U2, V1 be unitary, i ∈ {1, 2}.
Let A be an arbitrary matrix. Then ‖U1AU2 − V1AV2‖ ≤ ‖(U1 − V1)A‖+‖A(U2 − V2)‖.

Proof

‖U1AU2 − V1AV2‖ � ‖U1AU2 − V1AU2 + V1AU2 − V1AV2‖
≤ ‖U1AU2 − V1AU2‖ + ‖V1AU2 − V1AV2‖
� ‖(U1 − V1)A‖ + ‖A(U2 − V2)‖

where the triangle inequality and unitary invariance have each been used once. �

175



Appendix A. Appendix

Lemma A.5 Let n ≥ 0, a > 0 and x ≥ max{0, 2n
a ln( na )}. Then xn exp(−ax) ≤ 1.

Proof For n � 0 or x � 0, the Lemma holds. Let n > 0 and x > 0. Let z �
a
n x

and c � ln( na ). The inequalities z ≥ 2c (implied by the premise) and ln(z) ≤ z
2 (see

Lemma A.6) imply ln(z) + c ≤ z
2 + c ≤ z. We have

ln(z) + c ≤ z ⇔ ln(x) ≤ ax
n

⇔ n ln(x) − ax ≤ 0 ⇔ xne−ax ≤ 1.

This completes the proof because the inequality on the very left is implied by the
premise. �

Lemma A.6 ln(x) ≤ x
2 − (1 − ln 2) < x

2 for x ∈ [0,∞) with equality if and only if x � 2.

Proof Let f (x) � x
2 − ln(x) − (1 − ln 2). The derivative satisfies

f ′(x) � 1
2 −

1
x




> 0, if x > 2,

� 0, if x � 2,

< 0, if x < 2.

(A.8)

In addition, f (2) � 0. This shows the claim. �

Lemma A.7 (i) Let ‖ · ‖(1) denote the trace norm, ψ � |ψ〉〈ψ | and ψ′ � |ψ′〉〈ψ′ |. If
‖|ψ〉 − |ψ′〉‖ ≤ ε ≤ √2, then ‖ψ − ψ′‖(1) ≤ 2ε.
(ii) Let 1 − |〈ψ |ψ′〉| � ε. Then minα∈[0,2π] ‖|ψ〉 − eiα |ψ′〉‖ � √2ε. Let in addition

ε ≤ 1, then ‖ψ − ψ′‖(1) ≤ 2
√

2ε.

Proof (i) Assume that ‖|ψ〉 − |ψ′〉‖ ≤ ε holds. This gives us

ε2 ≥ ‖|ψ〉 − |ψ′〉‖2 � 2(1 − Re(〈ψ |ψ′〉)) ≥ 2(1 −
√

F) (A.9)

where F � |〈ψ |ψ′〉|2 � F(|ψ〉, |ψ′〉). This gives
√

F ≥ 1 − ε2/2 and 1 − F ≤
1 − (1 − ε2/2)2 � ε2 − ε4/4 ≤ ε2. The equality ‖ψ − ψ′‖(1) � 2

√
1 − F completes the

proof.2

(ii) Choose α ∈ R such that, with |ψ′′〉 � eiα |ψ′〉, the equalities |〈ψ |ψ′〉| �
〈ψ |ψ′′〉 � Re(〈ψ |ψ′′〉) hold. In this case, we have

min
α∈[0,2π]

‖|ψ〉 − eiα |ψ′〉‖ ≤ ‖|ψ〉 − |ψ′′〉‖2 � 2[1 − Re(〈ψ |ψ′′〉)] � 2ε (A.10)

and it is clear that for all other values of α ∈ R, the value of 1 − Re(〈ψ |ψ′′〉) will be
larger. Part (i) proofs the remaining part of (ii). �

2Nielsen and Chuang 2007, Eqs. 9.11, 9.60, 9.99.
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A.3. Metric spaces
Remark A.8 Given two sets A and B, the expression A ⊂ B is used to refer to the
implication x ∈ A⇒ x ∈ B. 2

Definition A.9 Let Λ be a set. A function d : Λ × Λ→ R is called a metric if, for
all x , y , z ∈ Λ, d(x , y) ≥ 0, d(x , y) � 0 if and only if x � y, d(x , y) � d(y , x) and
d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality). The pair (Λ, d) is called a metric
space and a finite metric space is a metric space whereΛ has finitely many elements.
Statements in this section for infinite metric spaces should be treated with caution
(they are not used in the main text).

Distances between sets are given by d(A, B) � infa∈A,b∈B d(a , b) and the infimum
turns into a minimum if both sets are finite. Accordingly, we have

∃ a0 ∈ A, b0 ∈ B : d(a0 , b0) < r ⇒ d(A, B) ≤ d(a0 , b0) < r, (A.11a)

∀ a ∈ A, b ∈ B : d(a , b) > r ⇒ d(A, B) > r. (A.11b)

Strict inequalities can be replaced by equalities in both equations. If the metric
space is infinite, the strict inequality in the second equation turns into an inequality.
The diameter of a subset Y ⊂ Λ is given by diam(Y) � supx ,y∈Y d(x , y) and the

supremumturns into amaximumfor afinite setY. LetM be a set of subsets ofΛwith
a � supZ∈M diam(Z) < ∞. Define the extension of R ⊂ Λ via R̄ �

⋃
Z∈M ,Z∩R,∅ Z.

The open and closed ball around Y ⊂ Λ are defined by

Bo
r (Y) � {x ∈ Λ : d(x ,Y) < r}, (A.12a)

Bc
r (Y) � {x ∈ Λ : d(x ,Y) ≤ r}. (A.12b)

Lemma A.10 The following hold (Y ⊂ Λ, r, s ≥ 0):

d(Y,Λ \ Bo
r (Y)) ≥ r (A.13a)

d(Y,Λ \ Bc
r (Y)) > r (A.13b)

d(Bo
s (Y),Λ \ R) > d(Y,Λ \ R) − s (A.13c)

d(Bc
s (Y),Λ \ R) ≥ d(Y,Λ \ R) − s (A.13d)

Bo
r (Y) ⊂ R where r � d(Y,Λ \ R) (A.13e)

[Bc
r (Bo

s (Y)) ∪ Bo
r (Bc

s (Y)) ∪ Bo
r (Bo

s (Y))] ⊂ Bo
r+s(Y) (A.13f)

R̄ ⊂ Bc
a(R) (A.13g)

diam(Bo
r (Y)) < 2r + diam(Y). (A.13h)
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Strict inequalities turn into non-strict inequalities for infinite metric spaces.
Let x , y ∈ Λ. Then d(x , y) ≥ r + s implies Bo

r ({x}) ∩ Bc
s ({y}) � ∅.

Proof For all y ∈ Y and z ∈ Λ \ Bo
r (Y), it is true that z < Bo

r (Y) and thus d(y , z) ≥ r.
(A.11b) thus implies (A.13a).

For all y ∈ Y and z ∈ Λ \ Bc
r (Y), it is true that z < Bc

r (Y) and thus d(y , z) > r.
(A.11b) thus implies (A.13b).

Let z ∈ Λ \ R and x ∈ Bo
s (Y). There is a y ∈ Y such that d(x , y) < s. Note

that d(y , z) ≥ d(Y,Λ \ R) holds. This implies that d(z , x) ≥ d(z , y) − d(y , x) >
d(Y,Λ \ R) − s. (A.11b) implies (A.13c).
Let z ∈ Λ \ R and x ∈ Bc

s (Y). There is a y ∈ Y such that d(x , y) ≤ s. Note
that d(y , z) ≥ d(Y,Λ \ R) holds. This implies that d(z , x) ≥ d(z , y) − d(y , x) ≥
d(Y,Λ \ R) − s. (A.11b) implies (A.13d).
Let x ∈ Bo

r (Y), then there is a y ∈ Y such that d(x , y) < r. If x ∈ Λ \ R was true,
it would imply d(Y,Λ \ R) ≤ d(x , y) < r (see (A.11a)), which is a contradiction.
Therefore, we infer x < Λ \ R and thus x ∈ R. This shows (A.13e).

Let x ∈ Bc
r (Bo

s (Y)). Then there are z ∈ Bo
s (Y) and y ∈ Y such that d(x , z) ≤ r and

d(z , y) < s. This implies d(x , y) < r + s and thus x ∈ Bo
r+s(Y). The remaining parts

of (A.13f) are shown in the same way.
Let x ∈ R̄. If x ∈ R, then x ∈ Bc

a(R) holds. Let x ∈ R̄ \ R. Then there is a
Z ⊂ Λ such that diam(Z) ≤ a and x ∈ Z and Z ∩ R , ∅. Let y ∈ Z ∩ R, then
d(x , y) ≤ diam(Z) ≤ a. Because y ∈ R, we can conclude x ∈ Bc

a(R). This shows
(A.13g).

Let x , y ∈ Bo
r (Y). Then there are x′, y′ ∈ Y such that d(x , x′) < r and d(y , y′) < r.

This implies d(x , y) ≤ d(x , x′) + d(x′, y′) + d(y′, y) < 2r + diam(Y). This shows
(A.13h).

Assume that z ∈ Bo
r ({x}) ∩ Bc

s ({y}) exists. Then d(x , y) ≤ d(x , z)+ d(z , y) < r + s
contradicts the assumption. �

The following lemmata use definitions from Section 6.4.3.

Lemma A.11 Let d be a metric with property (6.58). Let x , y ∈ Λ. For any r ≥ 0, we
have

Bc
r (C(x , y)) ⊂ Cs(C(x , y)), s � brc . (A.14)

Proof Let z ∈ Bc
r (C(x , y)), then there is a b ∈ C(x , y) such that d(z , b) ≤ r; this

implies |zi − bi | ≤ r for all i ∈ [1 : η]. In addition, b ∈ C(x , y) implies xi ≤ bi ≤ yi .
Combining both yields xi − r ≤ zi ≤ yi + r and this shows that z ∈ C(x − su , y + su)
where s � brc and u :� (1, 1, . . . , 1) ∈ Zη. �
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Lemma A.12 Let Y, Z ⊂ Λ with Y ∩ Z , ∅. If r ≥ diam(Z) then Z ⊂ Bc
r (Y).

Proof Let z ∈ Z and y ∈ Z ∩ Y. Then d(z , y) ≤ diam(Z,Y) ≤ r, i.e. z ∈ Bc
r (Y). �

Lemma A.13 Let a , b , c , d ∈ Λ. Then, C(a , b) ∩ C(c , d) � C(x , y) where xi �

max{ai , ci} and yi � min{bi , di}.

Proof C(a , b) ∩ C(c , d) � >η
i�1[ai : bi] ∩ [ci : di] � >η

i�1[xi : yi] � C(x , y). �
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